

Lecture Notes in Artificial Intelligence 4995
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Alexander Artikis Gregory M.P. O’Hare
Kostas Stathis George Vouros (Eds.)

Engineering
Societies in the
Agents World VIII

8th International Workshop, ESAW 2007
Athens, Greece, October 22-24, 2007
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Alexander Artikis
National Centre for Scientific Research "Demokritos"
Software & Knowledge Engineering Laboratory
Athens 15310, Greece
E-mail: a.artikis@acm.org

Gregory M.P. O’Hare
University College Dublin, Adaptive Information Cluster
Belfield, Dublin 4, Ireland
E-mail: gregory.ohare@ucd.ie

Kostas Stathis
Royal Holloway, University of London, Dept. of Computer Science
Egham, Surrey, TW20 0EX, UK
E-mail: kostas@cs.rhul.ac.uk

George Vouros
University of the Aegean
Dept. of Information and Communication Systems Engineering
83200 Samos, Greece
E-mail: georgev@aegean.gr

Library of Congress Control Number: 2008936469

CR Subject Classification (1998): I.2.11, D.2, K.4, D.1.3, H.3.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-87653-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87653-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12465071 06/3180 5 4 3 2 1 0

Preface

The 8th annual international workshop “Engineering Societies in the Agents’
World” was hosted by the National Centre for Scientific Research “Demokri-
tos”, in Athens, Greece, in October 2007. The workshop was organized as a
stand-alone event, running over three days. ESAW 2007 built upon the success
of prior ESAW workshops: ESAW 2006 held in Dublin, ESAW 2005 held in
Kuşadasi, going back to the first ESAW workshop, which was held in Berlin in
2000. ESAW 2007 was attended by 40 participants from 10 different countries.
Each presentation was followed by highly interactive discussions, in line with the
ESAW spirit of having open discussions with fellow experts.

The ESAW workshop series started in 2000 to provide a forum for present-
ing highly inter-disciplinary work on technologies, methodologies, platforms and
tools for the engineering of complex artificial agent societies. Such systems have
found applications in many diverse domains such as space flight operations,
e-business and ambient intelligence. Despite ESAW traditionally placing em-
phasis on practical engineering issues and applications, the workshop did not
exclude theoretical and philosophical contributions, on the proviso that they
clearly documented their connection to the core applied issues.

Discussions coalesced around the following themes:

– electronic institutions;
– models of complex distributed systems with agents and societies;
– interaction in agent societies;
– engineering social intelligence in multi-agent systems;
– trust and reputation in agent societies;
– analysis, design and development of agent societies.

Three invited presentations underlined the interdisciplinary nature of
research on agent societies by considering aspects of action and agency, and
conflict detection and resolution in norm-governed multi-agent systems, and
coalition formation for collective economic action in electronic markets. The first
invited talk was given by Marek Sergot, a professor of computational logic at Im-
perial College London. In his talk, the contents of which appear in this volume as
an invited submission, Professor Sergot presented a formal language for describ-
ing and analyzing norm-governed systems. The language provides constructs for
expressing properties of states and transitions in a transition system. Moreover
it includes modalities of the kind found in logics of action/agency for expressing
the fact that an agent brings it about that, or is responsible for, its being the
case that a certain property holds.

The second invited talk was given by Robert Axtell, a professor at the George
Mason University, and an external professor at the Santa Fe Institute. Profes-
sor Axtell presented the conditions under which it is individually rational for
agents to spontaneously form coalitions in order to engage in collective economic

VI Preface

action in e-commerce. He showed that, under certain conditions, self-organized
coalitions of agents are capable of extracting welfare improvements even in non-
cooperative environments.

The third invited talk was given by Tim Norman, a senior lecturer in the
Department of Computing Science of the University of Aberdeen. Dr. Norman
elaborated on three challenges concerning the development of Virtual Organi-
zations. First, social norms governing the behavior of agents must be explicitly
declared rather than being implicit in the design of a system. Second, it should
be recognized that there are situations in which there is no possible course of
action available for an agent that satisfies all norms. Third, agents must have
mechanisms to resolve conflicts and to reason about norm violation.

The original contributions, the slides of the presentations, and more infor-
mation about the workshop are available online at the ESAW 2007 website
(http://esaw07.iit.demokritos.gr). The present post-proceedings continue
the series published by Springer (ESAW 2000: LNAI 1972, ESAW 2001: LNAI
2203, ESAW 2002: LNAI 2577, ESAW 2003: LNAI 3071, ESAW 2004: LNAI
3451, ESAW 2005: LNAI 3963, ESAW 2006: LNAI 4457). This volume contains
extended and substantially revised versions of selected papers from ESAW 2007
and an invited contribution by Marek Sergot.

The organization of ESAW 2007 would not have been possible without the
financial help of:

– the University of the Aegean, Greece,
– the EU-funded project Argugrid,
– cosmoONE Hellas MarketSite,
– NCSR “Demokritos”, Greece,
– the Hellenic Artificial Intelligence Society,
– the Institute for Human and Machine Cognition (IHMC), US, and
– Imperial College London, UK.

We would like to thank the Steering Committee for their guidance, the Pro-
gram Committee and the additional reviewers for the insightful reviews, and the
Local Organizing Committee for arranging an enjoyable event. We would also
like to thank all the researchers who submitted a paper to the workshop. Finally,
we would like to offer our thanks to Alfred Hofmann and the Springer crew for
helping us realize these post-proceedings.

The next ESAW workshop will be hosted in France by the Ecole Nationale
Supérieure des Mines de Saint-Etienne, in September 2008, with Alexander
Artikis, Gauthier Picard and Laurent Vercouter as organizers. We look forward
to even more lively interactions, and a still higher level of originality and inno-
vation.

June 2008 Alexander Artikis
Gregory M. P. O’Hare

Kostas Stathis
George Vouros

Organization

ESAW 2007 Organizers

Alexander Artikis NCSR “Demokritos”, Greece
Gregory M.P. O’Hare University College Dublin, Ireland
Kostas Stathis Royal Holloway, University of London, UK
George Vouros University of the Aegean, Greece

ESAW Steering Committee

Marie-Pierre Gleizes IRIT Université Paul Sabatier, France
Andrea Omicini Università di Bologna, Italy
Paolo Petta Austrian Research Institute for Artificial

Intelligence, Austria
Jeremy Pitt Imperial College London, UK
Robert Tolksdorf Free University of Berlin, Germany
Franco Zambonelli Università di Modena e Reggio Emilia, Italy

ESAW 2007 Local Organizing Committee

Alexander Artikis NCSR “Demokritos”, Greece
George Giannakopoulos NCSR “Demokritos”, Greece
Dimosthenis Kaponis Imperial College London, UK
Eugenia Pantouvaki NCSR “Demokritos”, Greece
Vassilis Spiliopoulos NCSR “Demokritos”, Greece
Ilias Zavitsanos NCSR “Demokritos”, Greece

ESAW 2007 Program Committee

Grigoris Antoniou University of Crete, Greece
Federico Bergenti Università di Parma, Italy
Carole Bernon IRIT Université Paul Sabatier, France
Guido Boella Università degli Studi di Torino, Italy
Olivier Boissier Ecole Nationale Supérieure des Mines de Saint-

Etienne, France
Jeff Bradshaw IHMC, USA
Monique Calisti Whitestein Technologies, Switzerland
Jacques Calmet University of Karlsruhe, Germany
Cristiano Castelfranchi ISTC-CNR, Italy
Luca Cernuzzi Universidad Católica “Nuestra Señora de la

Asunción”, Paraguay

VIII Organization

Helder Coelho University of Lisbon, Portugal
Rem Collier University College Dublin, Ireland
Dan Corkill University of Massachusetts at Amherst, USA
R. Scott Cost University of Maryland Baltimore County, USA
Aspassia Daskalopulu University of Thessaly, Greece
Mehdi Dastani Utrecht University, The Netherlands
Paul Davidsson Blekinge Institute of Technology, Sweden
Keith Decker University of Delaware, USA
Oguz Dikenelli Ege University, Turkey
Riza Cenk Erdur Ege University, Turkey
Rino Falcone ISTC-CNR, Italy
Paul Feltovich IHMC, USA
Jean-Pierre George IRIT Université Paul Sabatier, France
Paolo Giorgini University of Trento, Italy
Michael O’Grady University College Dublin, Ireland
Frank Guerin University of Aberdeen, UK
Salima Hassas Université Claude Bernard Lyon 1, France
Lloyd Kamara Imperial College London, UK
Anthony Karageorgos University of Thessaly, Greece
Manolis Koubarakis University of Athens, UK
Michael Luck University of Southampton, UK
Fabien Michel Université de Reims, France
Tim Miller University of Liverpool, UK
Pavlos Moraitis Paris-Descartes University, France
Pablo Noriega IIIA, Spain
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Julian Padget University of Bath, UK
Juan Pavon Mestras Universidad Complutense de Madrid, Spain
Paolo Petta Austrian Research Institute for Artificial

Intelligence, Austria
Jeremy Pitt Imperial College London, UK
Alessandro Ricci Università di Bologna, Italy
Giovanni Rimassa Whitestein Technologies, Switzerland
Juan Antonio

Rodriguez Aguilar IIIA, Spain
Fariba Sadri Imperial College London, UK
Maarten Sierhuis RIACS/NASA Ames Research Center, USA
Tiberiu Stratulat LIRMM, France
Robert Tolksdorf Free University of Berlin, Germany
Leon Van der Torre University of Luxembourg, Luxembourg
Luca Tummolini ISTC-CNR, Italy
Paul Valckenaers Katholieke Universiteit Leuven, Belgium
Wamberto Vasconcelos University of Aberdeen, UK
Mirko Viroli Università di Bologna, Italy

Organization IX

Marina De Vos University of Bath, UK
Danny Weyns Katholieke Universiteit Leuven, Belgium
Pinar Yolum Bogazici University, Turkey
Franco Zambonelli Università di Modena e Reggio Emilia, Italy

Additional Reviewers

Marc Esteva IIIA, Spain
Ramón Hermoso Universidad Rey Juan Carlos, Spain
Dimosthenis Kaponis Imperial College London, UK
Jarred McGinnis Royal Holloway, University of London, UK

Table of Contents

Electronic Institutions

Action and Agency in Norm-Governed Multi-agent Systems 1
Marek Sergot

Managing Conflict Resolution in Norm-Regulated Environments 55
Martin J. Kollingbaum, Wamberto W. Vasconcelos,
Andres Garćıa-Camino, and Tim J. Norman

Alternative Dispute Resolution in Virtual Organizations 72
Jeremy Pitt, Daniel Ramirez-Cano, Lloyd Kamara, and
Brendan Neville

Electronic Institutions Infrastructure for e-Chartering 90
Manolis Sardis and George Vouros

Models of Complex Distributed Systems with Agents
and Societies

Multi-agent Simulation to Implementation: A Practical Engineering
Methodology for Designing Space Flight Operations 108

William J. Clancey, Maarten Sierhuis, Chin Seah, Chris Buckley,
Fisher Reynolds, Tim Hall, and Mike Scott

Progress Appraisal as a Challenging Element of Coordination in Human
and Machine Joint Activity . 124

Paul J. Feltovich, Jeffrey M. Bradshaw, William J. Clancey,
Matthew Johnson, and Larry Bunch

Automated Web Services Composition with the Event Calculus 142
Onur Aydın, Nihan Kesim Cicekli, and Ilyas Cicekli

OPERAS: A Framework for the Formal Modelling of Multi-Agent
Systems and Its Application to Swarm-Based Systems 158

Ioanna Stamatopoulou, Petros Kefalas, and Marian Gheorghe

Interaction in Agent Societies

The Acquisition of Linguistic Competence for Communicating
Propositional Logic Sentences . 175

Josefina Sierra and Josefina Santibáñez

XII Table of Contents

Contextualizing Behavioural Substitutability and Refinement of Role
Components in MAS . 193

Nabil Hameurlain

Amongst First-Class Protocols . 208
Tim Miller and Jarred McGinnis

Engineering Social Intelligence in Multi-agent
Systems

Simulation of Negotiation Policies in Distributed Multiagent Resource
Allocation . 224

Hylke Buisman, Gijs Kruitbosch, Nadya Peek, and Ulle Endriss

Collective-Based Multiagent Coordination: A Case Study 240
Matteo Vasirani and Sascha Ossowski

Tag Mechanisms Evaluated for Coordination in Open Multi-Agent
Systems . 254

Isaac Chao, Oscar Ardaiz, and Ramon Sanguesa

Trust and Reputation in Agent Societies

Toward a Probabilistic Model of Trust in Agent Societies 270
Federico Bergenti

Arguing about Reputation: The LRep Language . 284
Isaac Pinyol and Jordi Sabater-Mir

Analysis, Design and Development of Agent Societies

From AO Methodologies to MAS Infrastructures: The SODA Case
Study . 300

Ambra Molesini, Enrico Denti, and Andrea Omicini

Model Driven Engineering for Designing Adaptive Multi-Agents
Systems . 318

Sylvain Rougemaille, Frédéric Migeon, Christine Maurel, and
Marie-Pierre Gleizes

Trace-Based Specification of Law and Guidance Policies for Multi-Agent
Systems . 333

Scott J. Harmon, Scott A. DeLoach, and Robby

Author Index . 351

Action and Agency in Norm-Governed

Multi-agent Systems

Marek Sergot

Department of Computing, Imperial College London
London SW7 2AZ, UK
mjs@doc.ic.ac.uk

Abstract. There is growing interest in the idea that, in some cases, in-
teractions among multiple, independently acting agents in a multi-agent
system can be regulated and managed by norms (or ‘social laws’) which,
if respected, allow the agents to co-exist in a shared environment. We
present a formal (modal-logical) language for describing and analysing
such systems. We distinguish between system norms, which express a sys-
tem designer’s view of what system behaviours are deemed to be legal,
permitted, desirable, and so on, and agent-specific norms which constrain
and guide an individual agent’s behaviours and which are supposed to
be incorporated, in one way or another, in the agent’s implementation.
The language provides constructs for expressing properties of states and
transitions in a transition system, and modalities of the kind found in
logics of action/agency for expressing that an agent brings it about that,
or is responsible for, its being the case that A. The novel feature is that
an agent, or group of agents, brings it about that a transition has a cer-
tain property rather than bringing it about that a certain state of affairs
obtains, as is usually the case. The aim of the paper is to motivate the
technical development and illustrate the use of the formal language by
means of a simple example in which there there are both physical and nor-
mative constraints on agents’ behaviours. We discuss some relationships
between system norms and agent-specific norms, and identify several dif-
ferent categories of non-compliant behaviour that can be expressed and
analysed using the formal language. The final part of the paper presents
some transcripts of output from a model-checker for the language.

1 Introduction

There has been growing interest in recent years in norm-governed multi-agent sys-
tems. References to normative concepts (obligation, permission, commitment, so-
cial commitment, . . .) feature prominently in the literature. One reason for this
interest is clear, for there are important classes of applications, in e-commerce,
contracting, trading, e-government, and so on, where the domain of application
is defined by and regulated by laws, regulations, codes of practice, and standards
of various kinds whose existence is an essential ingredient of any application. An-
other, somewhat different, motivation is the idea that, in some cases, agent inter-
actions generally can best be regulated and managed by the use of norms. The

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 1–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Sergot

term ‘social laws’ has also been used in this connection, usually with reference to
‘artificial social systems’. A ‘social law’ has been described as a set of obligations
and prohibitions on agents’ actions, that, if respected, allow multiple, indepen-
dently acting agents to co-exist in a shared environment. The question of what
happens to system behaviour when norms or social laws are not respected, how-
ever, has received little or no serious attention. It is also not entirely clear from
works in this area whether these norms are intended to express only the system
designer’s view of what behaviours are legal, permitted, desirable, and so on, or
whether they are supposed to be taken into account, explicitly or implicitly, in the
implementation of the agents themselves, or both.

In a recent paper [1] we presented a formal framework, called there a ‘coloured
agent-stranded transition system’, which adds two components to a labelled tran-
sition system. The first component partitions states and transitions according to
various ‘colourings’, used to represent norms (or ‘social laws’), of two different
kinds. System norms express a system designer’s point of view of what system
states and system transitions are legal, permitted, desirable, and so on. A sepa-
rate set of individual agent-specific norms are intended to guide or constrain an
individual agent’s behaviours. They are assumed to be taken into account in the
agent’s implementation, or in the case of deliberative agents with reasoning and
planning capabilities, in the processes an agent uses to determine its choice of
actions to be performed. The second component of a ‘coloured agent-stranded
transition system’ is a way of picking out, from a global system transition rep-
resenting many concurrent actions by multiple agents and possibly the environ-
ment, an individual agent’s actions, or ‘strand’, in that transition. This is to
enable us to say that in a particular transition it is specifically one agent’s ac-
tions that are in compliance or non-compliance with a system or agent-specific
norm rather than some other’s. This framework allowed us in turn to identify
and characterise several different categories of non-compliant behaviour, distin-
guishing between various forms of unavoidable or inadvertent non-compliance,
behaviour where an agent does ‘the best that it can’ to comply with its indi-
vidual norms but nevertheless fails to do so because of actions of other agents,
and behaviour where an agent could have complied with its individual norms
but did not. The aim, amongst other things, is to be able to investigate what
kind of system properties emerge if we assume, for instance, that all agents of
a certain class will do the best that they can to comply with their individual
norms, or never act in such a way that they make non-compliance unavoidable
for others. The other general aim, which is to consider how agent-specific norms
can be incorporated into an agent’s implementation, was not discussed. It is a
topic of current work.

This paper presents a further development and refinement of those ideas.
Specifically, we now prefer to separate the ‘colourings’ used to represent norms
from the more general structure of an agent-stranded transition system. We
present a formal (modal-logical) language for talking about properties of states
and transitions, including but not restricted to their ‘colourings’, and for talking
about agent strands of transitions. The language has operators for expressing

Action and Agency in Norm-Governed Multi-agent Systems 3

that a particular agent, or group of agents, brings it about that such-and-such
is the case, in the sense that it is responsible for, or its actions are the cause
of, such-and-such being the case. The resulting logic bears a strong resemblance
to Ingmar Pörn’s (1977) logic of ‘brings it about’ action/agency [2], except that
we switch from talking about an agent’s bringing about a certain state of affairs
to an agent’s bringing it about that a transition has a certain property. The
general aim of the paper is to motivate the technical development and illustrate
something of the expressiveness of the formal language. We use the same, rather
simple, example discussed in the earlier paper [1] but present it now in terms
of the new formal system. Technical details of the logic, comparisons with other
works in the logic of action/agency, and discussion of various forms of collective
or group agency are beyond the scope of this paper. These topics are covered
elsewhere [3].

It is important to stress that we make no assumptions about the reasoning
or perceptual capabilities of the agents. Agents could be deliberative (human
or computer) agents, purely reactive agents, or simple computational devices.
We make no distinction between them here. This is for both methodological
and practical reasons. From the methodological point of view, it is clear that
genuine collective or joint action involves a very wide range of issues, includ-
ing joint intention, communication between agents, awareness of another agent’s
capabilities and intentions, and many others. We want to factor out all such con-
siderations, and investigate only what can be said about individual or collective
agency when all such considerations are ignored. The result might be termed
‘a logic of unwitting (collective) agency’—‘unwitting’ means both inadvertent
and unaware. The logic of unwitting agency might be extended and strength-
ened in due course by bringing in other considerations such as (joint) intention;
we do not discuss any such possibilities here. From the practical point of view,
there is clearly a wide class of applications for multi-agent systems composed of
agents with reasoning and deliberative capabilities. There is an even wider class
of applications if we consider also simple ‘lightweight’ agents with no reasoning
capabilities, or systems composed of simple computational units in interaction.
We want to be able to consider this wider class of applications too.

The formal language presented here has been implemented, in the form of
a model-checker that can be used to evaluate formulas on a given transition
system. It is included as part of the iCCalc system1, which at its core is a
re-implementation of the ‘Causal Calculator’ CCalc2 developed at the Univer-
sity of Texas and made available as a means of performing computational tasks
using the action language C+. C+ [4] is a formalism for defining transition sys-
tems of a certain kind. It provides a treatment of default persistence (‘inertia’),
non-deterministic and concurrent actions, and indirect effects of actions (‘ram-
ifications’). CCalc can be used (among other things) to generate (a symbolic
representation of) a transition system defined by means of C+ laws. iCCalc re-
tains the core functionality of CCalc, and the core implementation techniques,

1 http://www.doc.ic.ac.uk/~rac101/iccalc/
2 http://www.cs.utexas.edu/users/tag/cc

4 M. Sergot

and adds a number of other features, such as the ability to pass the transition
system to standard CTL model checking systems (specifically NuSMV). iCCalc
also supports a number of extended forms of C+, of which the language n C+ is
the most relevant here. n C+ [5,6] is an extended form of C+ designed specifically
for representing simple normative and institutional concepts. An action descrip-
tion in n C+ defines a coloured (agent-stranded) transition system of a certain
kind. The examples discussed in this paper are constructed by formulating them
as n C+ action descriptions, using iCCalc to generate (a symbolic representa-
tion of) the transition system so defined, and then passing the transition system
to the model checker that evaluates formulas of the language presented in this
paper. However, the framework presented in this paper is more general, and is
not restricted to transition systems of the kind defined by C+ or n C+.

2 Labelled Transition Systems

2.1 Preliminaries

Transition systems. A labelled transition system (LTS) is usually defined as a
structure 〈S, A, R〉 where

– S is a (non-empty) set of states ;
– A is a set of transition labels, also called events ;
– R is a (non-empty) set of labelled transitions, R ⊆ S × A × S.

When (s, ε, s′) is a transition in R, s is the initial state and s′ is the resulting
state, or end state, of the transition. ε is executable in a state s when there is a
transition (s, ε, s′) in R, and non-deterministic in s when there are transitions
(s, ε, s′) and (s, ε, s′′) in R with s′ �= s′′. A path or run of length m of the labelled
transition system 〈S, A, R〉 is a sequence s0 ε0 s1 · · · sm−1 εm−1 sm (m ≥ 0)
such that (si−1, εi−1, si) ∈ R for i ∈ 1..m. Some authors prefer to deal with
structures 〈S, {Ra}a∈A〉 where each Ra is a binary relation on S.

It is helpful in what follows to take a slightly more general and abstract view
of transition systems. A transition system is a structure 〈S, R, prev, post〉 where

– S and R are disjoint, non-empty sets of states and transitions respectively;
– prev and post are functions from R to S: prev(τ) denotes the initial state of

a transition τ , and post(τ) its resulting state.

In this more abstract account, a path or run of length m of the transition system
〈S, R, prev, post〉 is a sequence τ1 · · · τm−1 τm (m ≥ 0) such that τi ∈ R for
every i ∈ 1..m, and post(τi) = prev(τi+1) for every i ∈ 1..m−1.

A labelled transition system (LTS) is a structure

〈S, A, R, prev, post, label〉

where S, R, prev, and post are as above, and where label is a function from R
to A. The special case of a LTS in which R ⊆ S×A×S then corresponds to the

Action and Agency in Norm-Governed Multi-agent Systems 5

case where prev(τ) = prev(τ ′) and post(τ) = post(τ ′) and label(τ) = label(τ ′)
implies τ = τ ′, and in which prev((s, ε, s′)) = s, post((s, ε, s′)) = s′, and
label((s, ε, s′)) = ε. The more abstract account is of little practical significance
but is helpful in that it allows a more concise statement of some things we want
to say about transition systems. It is also more general: transitions are not iden-
tified by (s, ε, s′) triples—there could be several transitions with the same initial
and resulting states and the same label. Nothing in what follows turns on this.
Henceforth, we will write 〈S, A, R〉 as shorthand for 〈S, A, R, prev, post, label〉
leaving the functions prev, post, and label implicit.

Interpreted transition systems. Given a labelled transition system, it is usual to
define a language of propositional ‘fluents’ or ‘state variables’ in order to express
properties of states. Given an LTS 〈S, A, R〉 and a suitably chosen set of atomic
propositions, a model is a structure M = 〈S, A, R, hf〉 where hf is a valuation
function which specifies, for every atomic proposition p, the set of states in the
LTS at which p is true.

We employ a two-sorted language. We have a set σf of propositional atoms
for expressing properties of states, and a disjoint set σa of propositional atoms
for expressing properties of events and transitions. Models are structures M =
〈S, A, R, hf, ha〉where hf is a valuation function for atomic propositions σf in states
S and ha is a valuation function for atomic propositions σa in transitions R. We
then extend this two-sorted propositional language with (modal) operators for
converting state formulas to transition formulas, and transition formulas to state
formulas. Concretely, where ϕ is a transition formula, the state formula [ϕ]F ex-
presses that the state formula F is satisfied in every state following a transition of
type ϕ. The transition formulas 0:F and 1:G are satisfied by a transition τ when
the initial state of τ satisfies state formula F and the resulting state of τ satisfies
state formula G, respectively. The details are summarised presently.

It is not clear whether evaluating formulas on transitions in this fashion is
novel or not. Große and Khalil [7] evaluate formulas on state-event pairs (s, ε)
when the transition system is a set of triples (s, ε, s′) but that is not the same as
we have here. Venema [8] uses a two-sorted language for expressing properties
of points and lines in projective geometry, though naturally the choice of modal
operators is different there.

We also find it convenient to add a little more structure to the underlying
propositional language. This is not essential but makes the formulation of typical
examples clearer and more concise. It is also the propositional language that is
supported by C+ and n C+, and the CCalc and iCCalc implementations.

Multi-valued signatures. The following is adapted from [4]. A multi-valued propo-
sitional signature σ is a set of symbols called constants. For each constant c in σ
there is a non-empty set dom(c) of values called the domain of c. For simplicity,
in this paper we will assume that each dom(c) is finite and has at least two
elements. An atom of a signature σ is an expression of the form c=v where c is a
constant in σ and v ∈ dom(c). A formula of signature σ is any truth-functional
compound of atoms of σ.

6 M. Sergot

A Boolean constant is one whose domain is the set of truth values {t, f}. If
c is a Boolean constant, c is shorthand for the atom c=t and ¬c for the atom
c=f. More generally, if c is a constant whose domain is {v1, . . . , vn, f}, then by
convention we write ¬c as shorthand for the atom c=f.

An interpretation of a multi-valued signature σ is a function that maps every
constant c in σ to some value v in dom(c); an interpretation I satisfies an atom
c=v if I(c) = v. We write I(σ) for the set of interpretations of σ.

As observed in [4], a multi-valued signature of this type can always be trans-
lated to an equivalent Boolean signature. Use of a multi-valued signature makes
the formulation of examples more concise.

Syntax and semantics

The base propositional language is constructed from a set σf of state constants
(also known as ‘fluents’ or ‘state variables’) and a disjoint set σa of event con-
stants. In previous work we followed the terminology of [4] and called the con-
stants of σa ‘action constants’. This terminology is misleading however. Although
event constants are used to name actions and attributes of actions, they are also
used to express properties of an event or transition as a whole. An example of
an event constant might be x:move with domain {l, r, f} : the atom x:move=l
represents that agent x moves in direction l, x:move=r that x moves in direc-
tion r, and ¬x:move (which, recall, is shorthand for x:move=f) that x does not
move in a given transition. In iCCalc we employ an (informal) convention that
event constants with a prefix ‘x:’ are intended to represent actions by an agent
x. The (Boolean) event constant falls(vase) might be used to represent transi-
tions in which the object vase falls from a table to the ground (say). Here there
is no prefix ‘vase:’—‘falls’ is not an action that is meaningfully performed by
the object vase. Event constants are also used to express properties of a tran-
sition as whole, for instance, whether it is desirable or undesirable, timely or
untimely, permitted or not permitted, and so on. For this reason we prefer the
term ‘event constant’ for the elements of σa, and we reserve the term ‘action
constant’ for referring informally to those event constants that are intended to
represent actions by an agent. In general, an event (or transition label) will rep-
resent multiple concurrent actions by agents and the environment, concurrent
actions, such as the falling of an object, that cannot be ascribed to any agent,
and other properties of the event, such as whether it is desirable or undesirable,
desirable or undesirable from the point of view of an agent x, timely or untimely,
and so on.

For example, the formula

a:move=l ∧ ¬ b:move=l ∧ ¬c:move ∧ falls(vase) ∧ trans=red

might represent an event in which a moves to the left, b does not move to the
left, c does not move at all, and the object vase falls. The atom trans=red might
represent that the event is illegal (say), or undesirable, or not permitted.

Propositional formulas of σa are evaluated on transition labels/events. When
an event satisfies a propositional formula ϕ of σa we say that the event is an

Action and Agency in Norm-Governed Multi-agent Systems 7

event of type ϕ. So, all events of type a:move=l ∧ ¬ c:move are also events of
type a:move=l, and events of type ¬ c:move, and so on. By extension, we also
say that a transition is of type ϕ when its label (event) is of type ϕ. However,
there are things we want to say about transitions that are not properties of
their events (labels), in particular, whenever we want to refer to what holds
in the initial state or final state of the transition. Transition formulas subsume
event formulas but are more general. Although evaluating formulas on transitions
seems to be unusual, representing events by Boolean compounds of propositional
atoms is not so unusual. It is a feature of the action language C+ [4], for example,
and has also been used recently in [9] in discussions of agent ‘ability’.

Formulas. Formulas are state formulas and transition formulas.

State formulas:

F ::= 	 | ⊥ | any atom f=v of σf | ¬F | F ∧ F | [ϕ]F

Transition formulas:

ϕ ::= 	 | ⊥ | any atom a=v of σa | ¬ϕ | ϕ ∧ ϕ | 0:F | 1:F

where F is any propositional state formula (i.e., a propositional formula of σf).
We refer to the propositional formulas of σa as event formulas.

	 and ⊥ are 0-ary connectives with the usual interpretation. The other
truth-functional connectives (disjunction ∨, material implication →, and bi-
implication ↔) are introduced as abbreviations in the standard manner.

Models. Models are structures

M = 〈S, A, R, hf, ha〉

where hf and ha are the valuation functions for state constants and event con-
stants, respectively:

hf : S → I(σf) and ha : A → I(σa)

hf(s) is an interpretation of σf, i.e., a function which assigns to every constant
f in σf a value v in dom(f), and ha(ε) is an interpretation of σa, i.e., a function
which assigns to every constant a in σa a value v in dom(a). Accordingly, for
every state s in S and event/label ε in A we have:

M, s |= f=v iff hf(s)(f) = v

M, ε |= a=v iff ha(ε)(a) = v

and for every transition τ in R:

M, τ |= a=v iff M, label(τ) |= a=v

8 M. Sergot

It would be possible to introduce a third sort σR of propositional atoms for
expressing properties of transitions, different from σa though not necessarily
disjoint. A model would then include a third valuation function hR : R → I(σR)
with

M, t |= a=v iff hR(τ)(a) = v

We will not bother with that extension here. Event constants in σa are evaluated
on both event/transition labels and transitions in the present set up. The dif-
ference is that event formulas are only the propositional formulas of σa whereas
transition formulas are more general (as defined above). Transition formulas will
be extended with some additional constructs in Sect. 6.

When ϕ is a formula of σa and τ is a transition in R we say that τ is a
transition of type ϕ when τ satisfies ϕ, i.e., when M, τ |= ϕ, and sometimes that
ϕ is true at, or true in, the transition τ . A state s satisfies a formula F when
M, s |= F . We sometimes say a formula F ‘holds in’ state s or ‘is true in’ state
s as alternative ways of saying that s satisfies F .

Semantics. Let M = 〈S, A, R, hf, ha〉 and let s and τ be a state and transition of
M respectively. The satisfaction definitions for atomic propositions are described
above. For negations, conjunctions, and all other truth functional connectives,
we take the usual definitions. The satisfaction definitions for the other operators
are as follows, for any state formula F and any transition formula ϕ.

State formulas:

M, s |= [ϕ]F iff M, τ |= ϕ for every τ ∈ R such that prev(τ) = s.

〈ϕ〉 is the dual of [ϕ]: 〈ϕ〉F =def ¬[ϕ]¬F .

Transition formulas:

M, τ |= 0:F iff M, prev(τ) |= F

M, τ |= 1:F iff M, post(τ) |= F

‖F‖M =def {s ∈ S | M, s |= F}; ‖ϕ‖M =def {τ ∈ R | M, τ |= ϕ}.

As usual, we say that F is valid in a model M, written M |= F , when M, s |= F
for every state s in M, and ϕ is valid in a model M, written M |= ϕ, when
M, τ |= ϕ for every transition τ in M. A formula is valid if it is valid in every
model M (written |= F and |= ϕ, respectively).

C+ [4] is a language for defining (a certain class of) transition systems of
this type. The iCCalc implementation can be used to evaluate state, event,
and transition formulas on transition systems defined by C+ though it is not
restricted to transition systems of that type.

Let us discuss the transition formulas first. A transition is of type 0:F when
its initial state satisfies the state formula F , and of type 1:G when its resulting

Action and Agency in Norm-Governed Multi-agent Systems 9

state satisfies G. The following transition formula represents a transition from a
state where (state atom) p holds to a state where it does not:

0:p ∧ 1:¬p

von Wright [10] uses the notation p T q to represent a transition from a state
where p holds to one where q holds. It would be expressed here as the transition
formula:

0:p ∧ 1:q

Our notation is more general. We will make some further comments in Sect. 6.4.
For example, let the state atom on-table(vase) represent that a certain vase is

standing on a table. A transition of type 0:on-table(vase) ∧ 1:¬on-table(vase),
equivalently, of type 0:on-table(vase) ∧ ¬1:on-table(vase) is one from a state in
which the vase is on the table to one in which it is not on the table. Suppose
that the event atom falls(vase) represents the falling of the vase from the table.
A vase-falling transition is also a transition from a state in which the vase is on
the table to a state in which the vase is not on the table, and so any LTS model
M modelling this domain will have the validity

M |= falls(vase) → (0:on-table(vase) ∧ 1:¬on-table(vase))

There may be other ways that the vase can get from the table to the ground.
Some agent might move the vase from the table to the ground, for example. That
would also be a transition of type 0:on-table(vase) ∧ 1:¬on-table(vase) but not
a transition of type falls(vase).

The operators 0: and 1: are both normal3. Since prev and post are (total)
functions on R, we have

|= 0:F ↔ ¬0:¬F and |= 1:F ↔ ¬1:¬F

(which also means that 0: and 1: distribute over all truth-functional connec-
tives).

Now some brief comments about state formulas. When ϕ is a transition for-
mula, then [ϕ]F is true at a state s when every transition of type ϕ from state
s results in a state where F is true. 〈ϕ〉F is true at a state s when there exists
at least one transition of type ϕ from state s whose resulting state satisfies F .
[ϕ]⊥, equivalently ¬〈ϕ〉	, says that there is no transition of type ϕ from the
current state, and ¬[ϕ]⊥, equivalently 〈ϕ〉	, that there is a transition of type
ϕ from the current state. When α is an event formula, that is, a propositional
formula of σa, then 〈α〉	, equivalently, ¬[α]⊥ represents that an event of type
α is executable in the current state.

It is important not to confuse the state formula [ϕ]F with the notation [ε]F
used in Propositional Dynamic Logic (PDL). In PDL, the term ε in an expression
[ε]F is a transition label/event ε of A, not a transition formula as here. For

3 This is standard terminology. See e.g. [11,12] or any introductory text on modal
logic.

10 M. Sergot

example, [0:F ∧ ϕ]G and 〈0:F ∧ ϕ ∧ 1:G〉	 are both state formulas. The first
is equivalent to F → [ϕ]G and the second to F ∧ 〈ϕ〉G.

The logic of each [ϕ] is normal. Moreover:

if M |= ϕ → ϕ′ then M |= 〈ϕ〉F → 〈ϕ′〉F

as is easily confirmed, and hence

if M |= ϕ → ϕ′ then M |= [ϕ′]F → [ϕ]F

We also have validity of:

([ϕ]F ∧ [ϕ′]F) → [ϕ ∨ ϕ′]F

and of
[⊥]⊥

Sauro et al. [9] have recently employed a similar device in a logic of agent
‘ability’ though in a more restricted form than we allow. (Their notation is
slightly different.) They give a sound and complete axiomatisation for the logic
of expressions [α]F where (in our terms) F is a propositional formula of σf

and α is an event formula, that is, a propositional formula of σa. We will not
present a complete axiomatisation of our more general language here. It is not
essential for the purposes of this paper. We note only that an axiomatisation
is more complicated for the more general expressions [ϕ]F because there are
some further relationships between state formulas and transition formulas that
need to be taken into account. For example, all instances of the following state
formulas are obviously valid

[1:F]F

as are all instances of

(F → [ϕ]G) ↔ [0:F ∧ ϕ]G

Generally speaking, we find that properties of labelled transition systems are
more easily and clearly expressed as transition formulas rather than state for-
mulas. For example, although we cannot say using a transition formula that in a
particular state of M, every transition of type ϕ leads to a state which satisfies
G, we can say (as we often want to) that whenever a state of M satisfies F , every
transition of type ϕ from that state leads to a state which satisfies G. That is:

M |= (0:F ∧ ϕ) → 1:G

Properties of models can often be expressed equivalently as validities of state
formulas or of transition formulas. This is because:

M |= F → [ϕ]G iff M |= (0:F ∧ ϕ) → 1:G

For example, suppose that the state atoms light=on and light=off represent
the status of a particular light, and loc(x)=p that agent x is at location p.

Action and Agency in Norm-Governed Multi-agent Systems 11

Suppose that the (Boolean) event constant toggle represents that the light switch
is toggled, and event constants x :move with domain {l, r, f} that agent x moves
in the direction l, r, or stays where it is. A model M modelling this domain
would have the properties:

– State formulas

M |= light=on → [toggle]light=off
M |= loc(x)=p → [¬x:move]loc(x)=p

– Transition formulas

M |= (0:light=on ∧ toggle) → 1:light=off
M |= (0:loc(x)=p ∧ ¬x:move) → 1:loc(x)=p

We find transition formulas are generally more useful and clearer.

2.2 Norms and Coloured Transition Systems

A simple way of representing norms is to partition the states and transitions
of a transition system into two categories. A coloured transition system [5,6] is
a structure of the form 〈S, A, R, Sg, Rg〉 where 〈S, A, R〉 is a labelled transition
system of the kind discussed above, and where the two new components are

– Sg ⊆ S, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) states—we call
Sg the ‘green’ states of the system;

– Rg ⊆ R, the set of ‘permitted’ (‘acceptable’, ‘ideal’, ‘legal’) transitions—we
call Rg the ‘green’ transitions of the system.

We refer to the complements Sred = S \ Sg and Rred = R \Rg as the ‘red states’
and ‘red transitions’, respectively. Semantical devices which partition states (and
here, transitions) into two categories are familiar in the field of deontic logic. For
example, Carmo and Jones [13] employ a structure which has both ideal/sub-
ideal states and ideal/sub-ideal transitions (unlabelled). van der Meyden’s ‘Dy-
namic logic of permission’ [14] employs a structure in which transitions, but not
states, are classified as ‘permitted/non-permitted’. van der Meyden’s version
was constructed as a response to problems of Meyer’s ‘Dynamic deontic logic’
[15] which classifies transitions as ‘permitted/non-permitted’ by reference to the
state resulting from a transition. ‘Deontic interpreted systems’ [16] classify states
as ‘green’/‘red’, where these states have further internal structure to model the
local states of agents in a multi-agent context. Recently, Ågotnes et al. [17] have
presented a language based on the temporal logic CTL. They partition transi-
tions into those that comply with a set of norms and those that do not (that is,
into ‘green’ and ‘red’ in our terminology). They then define a modified form of
CTL for expressing temporal properties of paths/runs in which every transition
is ‘green’, or what we refer to as ‘fully compliant behaviour’ in Sect. 4.1 below.
There are no constructs in the language for expressing properties of paths/runs
in which some transition is not ‘green’.

12 M. Sergot

We require that a coloured transition system 〈S, A, R, Sg, Rg〉 must further
satisfy the constraint that, for all states s and s′ in S and all transitions τ in R:

if τ ∈ Rg and prev(τ) ∈ Sg then post(τ) ∈ Sg (1)

We refer to this as the green-green-green constraint, or ggg for short. (It is
difficult to find a suitable mnemonic.)

The ggg constraint (1) expresses a kind of well-formedness principle: a green
(permitted, acceptable, legal) transition in a green (permitted, acceptable, legal)
state always leads to a green (acceptable, legal, permitted) state. It may be
written equivalently as:

if prev(τ) ∈ Sg and post(τ) ∈ Sred then τ ∈ Rred (2)

Any transition from a green (acceptable, permitted) state to a red (unacceptable,
non-permitted) state must itself be undesirable (unacceptable, non-permitted),
i.e., ‘red’, in a well-formed system specification.

One can consider a range of other properties that we might require of a
coloured transition system: for example, that the transition relation must be
serial (i.e., that there is at least one transition from every state), or that there
must be at least one green state, or that from every green state there must be at
least one green transition, or that from every green state reachable from some
specified initial state(s) there must be at least one green transition, and so on.
These are examples of properties that might be of interest when analyzing a
transition system. We can check for them but we do not assume they are always
satisfied. We do assume that every coloured transition systems satisfies the ggg
constraint.

Instead of introducing a special category of coloured transition systems, with
extra components Sg and Rg, we now prefer to speak of labelled transition sys-
tems generally and introduce colourings for states and transitions by means of
suitably chosen constants in σf and σa. This is more general and adds flexibil-
ity. In particular, we have a state constant status and an event constant trans
both with domain {green, red}. The intended reading is that ‖status=green‖M

denotes the ‘green states’ and ‖status=red‖M = S \ ‖status=green‖M the ‘red
states’; ‖trans=green‖M denotes the ‘green transitions’ and ‖trans=red‖M =
R \ ‖trans=green‖M the ‘red transitions’.

The ggg constraint (1) can then be expressed as validity in any model M of
the state formula

status=green → [trans=green]status=green

or, equivalently, of the transition formula

(0:status=green ∧ trans=green) → 1:status=green

As further illustrations of the use of the language, here are the other properties
mentioned earlier, expressed now as validities in a model M.

Action and Agency in Norm-Governed Multi-agent Systems 13

– The transition relation must be serial

M |= 〈	〉	

– There must be at least one green state

M �|= status=red , equivalently, M �|= ¬(status=green)

– From every green state there must be at least one green transition

M |= status=green → 〈trans=green〉	

We cannot express, in this language, that from every green state reachable from
some specified initial state(s) there must be at least one green transition since
we have no way of expressing reachability (in the language). That could be fixed
by extending the language but we will not do it here. Reachability properties
in a model can be checked using the iCCalc system but are not expressible as
formulas of the language.

n C+ [5,6] is a language for defining (a certain class of) transition systems of
this type. The iCCalc implementation builds in the special treatment of ‘red’
and ‘green’ required to ensure that the ggg constraint is satisfied.

In [6] we presented a refinement where instead of the binary classification of
states as red or green, states are ordered according to how well each complies
with the state permission laws of an n C+ action description. We also discussed
possible generalisations of the ggg constraint for that case. In the current paper,
we keep to the simple classification of states as green or red.

Notice that we would get much more precision by colouring paths/runs of
the transition system instead of just its states and transitions. One could then
extend the logics presented in this paper with features from a temporal logic
such as CTL. The details seem straightforward but we leave them for future
investigation.

3 Example (Rooms)

This example concerns the specification of norm-governed interactions between
independently acting agents. It was discussed in a previous paper [1]. We now
present it using the formalism introduced in previous sections.

In the example there are two categories of agents, male and female, who
move around in a world of interconnecting rooms. The rooms are connected by
doorways through which agents may pass. (The precise topography, and number
of rooms, can vary.) Each doorway connects two rooms. Rooms can contain any
number of male and female agents. The action atoms of σa will take the form
x:move=p, where x ranges over the agents in a particular example, and p ranges
over a number of values representing directions in which agents can move, in
addition to a value f: if a transition satisfies x:move=f, that is to be taken to
represent that agent x does not move during that transition. Recall that by
convention we write ¬x:move as a shorthand for x:move=f.

14 M. Sergot

A normative element is introduced by insisting that a male agent and a female
agent may never be alone together in a room; such configurations are physically
possible, and the transition system will include states representing them, but all
such states will be coloured red.

Although this example is relatively simple, it shares essential features with
a number of real-world domains, in which there are large numbers of interact-
ing agents or components which may be in different states, and where some of
those combinations of states are prohibited. (These real-world examples are not
restricted to domains where agents perform physical actions. Exactly the same
points could be made for examples of institutions or virtual organisations, where
the possible actions by agents are defined and constrained by institutional rules
rather than physical constraints, and where actions by agents can be represented
as transitions from one institutional state to another.)

For the purposes of illustration, we shall consider a concrete instance of the
example in which there are just two rooms, on the left and right, with one
connecting door, and three agents, two males m1 and m2, and a female f1.
We have deliberately made the example simple in order to concentrate on its
essential features, and so that we can depict the transition system in its entirety.
With more agents and more rooms the transition system is too big to be shown
easily in diagrammatic form. We will also impose an additional constraint that
only one agent can move through the doorway at once (the doorways are too
narrow to let more than one agent pass through at the same time). This is a
more significant restriction since it imposes constraints on possible interactions
between the agents: if an agent moves from one room to another it thereby makes
it impossible for other agents to pass through the same doorway.

The propositional language for this instance of the ‘rooms’ example contains
state atoms loc(x)=l and loc(x)=r, where x ranges over m1, m2, f1; loc(m1)=l
is true when the male agent m1 is in the left-hand room, loc(m2)=r is true when
m2 is in the right-hand room, and so on. The action atoms are, in line with
previous remarks, x:move=p, where x ranges over the agents and p ranges over
l, r, f.

We do not show the n C+ formulation of the example here. (It can be found
in [1].) The transition system, whether defined using n C+ or by some other
means, is depicted in Fig. 1. We have not drawn the transitions from states to
themselves, where no agent moves, in order to keep the drawing clear; all such
transitions are coloured green. Also, we have not shown labels for transitions.
These can easily be deduced, for every arc in the diagram should have a label
which makes precisely one x:move=p atom true (for p one of l, r, f); for example,
the (red) transition from the top-most state (s1) to the one immediately below
and to the right (s6) has a label which makes m2:move=r, ¬m1:move, and
¬f1:move true.

One can see that the transition system satisfies the ggg constraint: since noth-
ing further was said about the colouring of transitions, the red transitions are
simply those where the system moves from a green state to a red state, i.e., to
a state in which a male and a female are alone in a room together.

Action and Agency in Norm-Governed Multi-agent Systems 15

m1
m2
f1

m1
m2
f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2
f1

m1
m2
f1

s1

s2 s6

s8

s5

s7 s3

s4

green
red

Fig. 1. A simple ‘rooms’ example

However, the example is also intended to demonstrate some important inade-
quacies. For consider, again, the transition from the top-most state (s1) where all
agents are in the left-hand room, to the state below and to the right of it (s6) where
m1 and f1 are left alone together after m2 has exited to the right. In some sense,
it is m2 who has acted wrongly: m2 has left the room, leaving m1 and f1 alone
together, in a configuration which thus violates the norms governing the system.
On the other hand, if we remove the restriction that at most one agent can pass
through the doorway at one time, it is far from clear which of the three agents, if
any, acted wrongly when m2 exited: it might have been m2 who acted badly, or
it might have been m1, who should have followed m2 out, or it might have been
f1, who should have followed m2 out. Or it might be that all of them, collectively,
acted wrongly, or perhaps none of them. The transition systems as they currently
stand do not have the capacity to represent that it is specifically one agent’s ac-
tions rather than another’s which must be marked as ‘red’. There is no way to
extract from, or represent in, the transition system that a particular agent’s ac-
tions in the transition are illegal, sub-ideal, undesirable, and so on; indeed, there
is no explicit concept of an individual agent in the semantics at all.

16 M. Sergot

4 Agent-Specific Norms

The language of the previous sections provides a means of representing when
states and transitions satisfy, or fail to satisfy, a standard of legality, acceptabil-
ity, desirability, and so on. Much can be said using the resources of this language.
However, in representing systems in which there are multiple interacting agents
(as with the simple ‘rooms’ example depicted in the previous section), it is often
essential to be able to speak about an individual agent’s behaviour: in particu-
lar, about whether individual agents’ actions are in the right or wrong—whether
they are conforming to norms which govern specifically their behaviour. In [1]
we introduced a semantical structure which we called a coloured agent-stranded
transition system. That had two components: a way of picking out an individual
agent x’s actions from a transition—the agent x’s ‘strand’ in that transition,
and a colouring of each such strand as green(x) or red(x) to represent the agent-
specific norms for x. We will deal first with the agent-specific colourings green(x)
and red(x) and defer discussion of the ‘strand’ component until Sect. 5.

In the context of using norms or ‘social laws’ to regulate the interactions of
multiple, independently acting agents in a multi-agent computer system, the
colourings of states and transitions as ‘green’ or ‘red’ represent system norms.
They express a system designer’s point of view of what system states and tran-
sitions are legal, permitted, desirable, and so on. There is a separate category of
individual agent-specific norms that are intended to guide an individual agent’s
behaviours and are supposed to be taken into account in the agent’s implemen-
tation, or reasoning processes, in one way or another. These have a different
character. In order to be effective, or even meaningful, they must be formulated
in terms of what an agent can actually sense or perceive and the actions that it
can actually perform. So, in the ‘rooms’ example an agent-specific norm could
not meaningfully prohibit an agent from acting in such a way that a male and
female are alone in a room together. The agent cannot predict how other agents
will act: just because a room is currently vacant, for example, does not mean
that another agent will not enter it.

We now extend the ‘rooms’ example with some agent-specific norms. As a
concrete example (one of many that could be devised) let us attempt to specify
an (imperfect) protocol for recovery from red system states: whenever a male
agent and a female agent are alone in a room, anywhere, every male agent is
required to move to the room to its left (if there is one), and every female agent
is required to move to the room to its right (if there is one).

Let Ag be a finite set of agent names. In the present example Ag={m1, m2, f1}.
For each agent x ∈ Ag, green(x) is a subset of R representing those transi-
tions where the actions of x have been in accordance with norms specific for x.
red(x) = R \ green(x) are those transitions in which the actions of x have failed
to conform to x’s norms.

So in the example: suppose s is a state of the system in which there is a male
agent and a female agent alone in a room. For every male agent x (anywhere), a
transition from s in which x moves to the room on its left is coloured green(x),
a transition from s in which x stays where it is when there is no room to its left

Action and Agency in Norm-Governed Multi-agent Systems 17

is green(x), and any other transition from s is red(x). And similarly for female
agents, but with ‘left’ replaced by ‘right’. Further (let us suppose) in a state s of
the system where there is not a male agent and a female agent alone in a room, for
any agent x, any transition from s is green(x). Thus, the agents are free to move
around from room to room, but if ever the system enters a red global state, their
individual norms require them to move to the left or right as the case may be;
once the system re-enters a green global state they are free to move around again.

The precise mechanism by which agents detect that there is a male agent and
a female agent alone in a room somewhere is not modelled at this level of detail.
We will simply assume that there is some such mechanism—a klaxon sounds,
or a suitable message is broadcast to all agents—the details do not matter for
present purposes. Similarly, we are not modelling here how an agent determines
which way to move. In a more detailed representation, we could model an agent’s
internal state, its perceptions of the environment in which it operates, how it
determines where to move, and the mechanism by which it perceives that there
is a male agent and a female agent alone in a room. We will not do so here: the
simpler model is sufficient for present purposes.

In general, given a transition system modelling all the possible system be-
haviours, and some (finite) set Ag of agent names, we specify for every agent
x in Ag the norms specific to x that govern x’s individual actions: some subset
of the transitions in a given system state will be designated as green(x) and
the others as red(x). In the example as we have it, the agent-specific norms
only constrain the agents’ actions in a red system state. That is not essential.
It is merely a feature of this particular example. A transition is designated as
green(x) when x’s actions in that transition comply with the agent-specific norms
for x. We specify, separately, system norms which constrain various combinations
of actions by individual agents, or other interactions of interest, by classifying
transitions and states as globally red or green. So we have two separate layers
of specification: (i) norms specific to agents governing their individual actions,
and (ii) norms governing system behaviour as a whole. We are interested in ex-
amining the relationships, if any, between these two separate layers. We might
be interested in verifying, for example, that all behaviour by agent x compliant
with the norms for x guarantees that the system avoids globally red states, or
produces only globally green runs, or always recovers from a global red state to a
global green state, and so on. This is the setting we have in mind for discussion in
this paper. We also want to identify several different categories of non-compliant
behaviours, and generally, the conditions under which we can say that it is a
particular agent x’s actions that are responsible for, or the cause of, a transition
being coloured (globally) red, or more generally, being of type ϕ.

As in the case of coloured transition systems discussed earlier, we prefer to
speak of transition systems in general, and use suitably chosen event constants to
represent the properties of interest. So, let σa contain (Boolean) event constants
green(x) for every agent x ∈ Ag, and let red(x) be an abbreviation for ¬green(x).
A transition τ in R is, or is coloured, green(x), respectively red(x), in a model M
when M, τ |= green(x), or M, τ |= red(x), respectively. The green(x) transitions

18 M. Sergot

in a model M are ‖green(x)‖M; the red(x) transitions are ‖red(x)‖M = R \
‖green(x)‖M.

We retain the ggg constraint for the colouring of states and transitions as
(globally) green or red as determined by the system norms. There is no ana-
logue of the ggg constraint for the colourings representing agent-specific norms.
However, it is natural to consider an optional coherence constraint relating the
agent-specific colourings of a transition to its global (system norm) colouring.
The colouring of a transition as (globally) red represents that the system as a
whole fails to satisfy the required standard of acceptability, legality, desirability
represented by the global green/red colouring. In many settings it is then natural
to say that if any one of the system components (agents) fails to satisfy its stan-
dards of acceptability, legality, desirability, then so does the system as a whole:
if a transition is red(x) for some agent x then it is also (globally) red. Formally,
the model M = 〈S, A, R, hf, ha〉 satisfies the local-global coherence constraint
whenever, for all agents x ∈ Ag, red(x) ⊆ Rred, that is to say, when

M |= red(x) → trans=red (3)

The coherence constraint (3) is optional and not appropriate in all settings. We
will adopt it in the examples discussed below. Notice though, that even if the
coherence constraint is adopted, it is possible that a transition can be coloured
green(x) for every agent x and still itself be coloured globally red. We will give
some examples presently.

There are other, more fundamental constraints that we must place on agent-
specific colourings. We defer discussion of those until Sect. 5.

4.1 Fully Compliant Behaviour

As suggested above, we might now be interested in examining the relationship
between system norms and individual agent-specific norms—in the present ex-
ample, for instance, to determine whether the agent-specific norms expressed
by the green(x) specification do have the desired effect of guaranteeing recovery
from a red system state to a green system state. Given a coloured transition
system representing the system norms and the agent-specific norms, defined by
an n C+ action description or by some other means, we focus attention on those
paths of the transition system that start at a red system state, and along which
every agent always acts in accordance with its norms, i.e., those paths in which
every transition is green(x) for each of the agents x. A natural property to look
for is whether all such paths eventually pass through a green system state; if
this property holds, it indicates that the agent-specific norms are doing a good
job in ensuring that systems in violation of their global system norms eventually
recover to a green state, assuming that all agents follow their individual norms
correctly. (There is a further natural requirement: in the case where the system
is initially in a red system state s, there should be at least one transition from
that state. Otherwise, the requirement that all paths starting at s eventually
reach a green system state would be vacuously satisfied.)

Action and Agency in Norm-Governed Multi-agent Systems 19

In particular applications, it might not be a reasonable assumption to make
that agents always act in accordance with their individual norms. This might
be for several reasons. Sometimes physical constraints in the environment being
modelled prevent joint actions in which all agents act well; in other circum-
stances, and noteworthy especially because we have in mind application areas in
multi-agent systems, agents may not comply with the norms that govern them
because it is more in their interests not to comply. In the latter case, penalties
are often introduced to try and coerce agents into compliance. We leave that
discussion to one side, however, as it is tangential to the current line of enquiry.

Consider now the ‘rooms’ example in particular, and what happens if we
assume that all agents act in accordance with their individual norms. It is clear
that the effectiveness of the protocol (if in a red state, males move to the left
when possible, females move to the right when possible) in guaranteeing that the
system will eventually reach a green state, depends on the topography of rooms
and connecting doors. Let us assume that there is a finite number of rooms, each
room has at least one connecting room to its left or one to its right, and that
there are no cycles in the configuration, in the sense that if an agent continues
moving in the same direction it will never pass first out of, then back into, the
same room. Under these circumstances, and removing the restriction on how
many agents can pass through a door at the same time, it is intuitive that there
is always a recovery, in the sense defined, from every red system state. Since all
agents act in accordance with their norms, every male will move to the left (if it
can), and every female will move to the right (if it can). If the resulting system
state is not green, they will move again. Eventually, in the worst case, the males
and females will be segregated in separate rooms, which is a green system state.

Of course, we cannot guarantee that having reached a green system state,
the agents will not re-enter a red state: in this example, the individual agent-
specific norms only dictate how agents should behave when the system is globally
red. Once the system has recovered, the agents may mingle again. It is easy to
imagine how we might use a model-checker to verify this and similar properties
on coloured transition systems; we will not discuss the details in this paper.

4.2 Non-compliant Behaviours

One must be careful not to assume that if an agent x fails to comply with its
individual norms—if some transition τ is red(x)—then it must be that agent
x acted wilfully, perhaps to seek some competitive advantage, or carelessly; or
if it is a simple reactive device, that its constructors failed to implement it
correctly. This may be so, but an agent may also fail to comply with its norms
because of factors beyond its control, because it is prevented from complying
by the actions of other agents, or by extraneous factors in the environment. To
illustrate: suppose we return to the version of the ‘rooms’ example in which it
is impossible for more than one agent to pass through the same doorway at the
same time. All other features, including the specification of system norms and
agent-specific norms, remain as before. Clearly the situation can now arise where
several agents are required by their individual norms to pass through the same

20 M. Sergot

m1
m2
f1

m1
m2
f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2
f1

m1
m2
f1

s1

s2 s6

s8

s5

s7 s3

s4

+m1
+m2
+f1

+m1
+m2
+f1

+m1
+m2−f1

−m1
+m2
+f1

∗m1−m2−f1

∗m1
+m2∗f1

+m1
+m2
+f1

+m1
+m2
+f1

+m1
+m2−f1

∗m1−m2−f1

+m1−m2
+f1

+m1∗m2∗f1

−m1
+m2∗f1

−m1∗m2
+f1

∗m1
+m2
+f1

+m1
+m2
+f1

+m1
+m2
+f1

+m1−m2∗f1

∗m1−m2
+f1

+m1∗m2
+f1

+m1
+m2
+f1

+m1
+m2
+f1

green
red

+m1 green(m1)
−m1 red(m1)
∗m1 sub-standard(m1)

Fig. 2. Transitions without annotations are green(x) for each of the three agents x.
Reflexive arcs on green nodes, where no agent moves, are omitted from the diagram:
they are all globally green, and green(x) for each agent x. (The concept of a sub-standard
strand is explained in Sect. 4.3.)

doorway; at most one of them can comply, and if one does comply, the others
must fail to comply.

Again, in order to keep diagrams of the transition system small enough to be
shown in full, we will consider just the case of two interconnecting rooms, and
three agents, m1, m2, and f1, of whom the first two are male and the last is
female. Figure 2 shows the coloured agent-stranded transition system for this
version of the example. We have adopted here the local-global coherence con-
straint (3) which is why some transitions that were globally green in the version
of Sect. 3 are now globally red. Nothing essential in what follows depends on
this. Transition labels are omitted from the diagram: since at most one agent can
move at a time, they are obvious from looking at the states. Annotations on the
arcs indicate the three agent-specific colourings for each transition; where arcs
have no such annotation the transition is green(x) for each of the three agents

Action and Agency in Norm-Governed Multi-agent Systems 21

x. Omitted from the diagram are reflexive arcs from the green system states to
themselves, representing transitions in which no agent moves. These transitions
are all globally green, and therefore also (given local-global coherence) green(x)
for each agent x. The significance of the asterisks in some of the annotations
will be explained presently. For now they may be read as indicating that the
transition is red(x) for the agent x.

One can see from the diagram that the system exhibits the following kinds of
behaviour, among others.

(1) There are transitions coloured green(x) for all three agents x but which are
nevertheless globally red. This is because, in this example, the agent-specific
norms do not constrain agents’ actions in green system states. Indeed, one can
see from the diagram that in this example (though not in general) the globally
red transitions which are green(x) for all three agents x are exactly those from
a green system state to a red system state. The model M has the property:

M |= green(m1) ∧ green(m2) ∧ green(f1) ∧ trans=red ↔
0:status=green ∧ 1:status=red

(2) There are globally green transitions from red system states to green system
states (such as the one from state s8 to state s2 in which m2 moves to the left
and m1 and f1 stay where they are). These are transitions in which all three
agents are able to comply with their individual norms. In this example, though
not necessarily in other versions with more elaborate room configurations and
more agents, such transitions always recover from a red system state to a green
system state. The system exhibits the property:

M |= green(m1) ∧ green(m2) ∧ green(f1) ∧ 0:status=red → 1:status=green

(3) There are also globally red transitions in which at least one agent fails to
comply with its individual norms but which lead from a red system state to a
green system state (such as the one from state s8 to state s4 in which m1 moves
to the right and m2 and f1 stay where they are). These transitions recover from
a red system state to a green system state but in violation of the individual
agent-specific norms. These are transitions of type

trans=red ∧ (red(m1) ∨ red(m2) ∨ red(f1)) ∧ 0:status=red ∧ 1:status=green

In fact, in the rooms example, though not in general, the system has the property:

M |= trans=red ∧ 0:status=red ∧ 1:status=green →
(red(m1) ∨ red(m2) ∨ red(f1))

(4) There are globally red transitions, such as the one from state s6 to state s3

in which m1 moves to the right, and f1 and m2 stay where they are, in which
no agent complies with its individual norms. These are transitions of type

trans=red ∧ red(m1) ∧ red(m2) ∧ red(f1)

22 M. Sergot

m1
m2
f1

m1
m2
f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2
f1

m1
m2
f1

s1

s2 s6

s8

s5

s7 s3

s4

green
red

Fig. 3. System behaviour if all three agents comply with their individual norms. Re-
flexive arcs on green nodes are omitted from the diagram.

(5) And as the example is designed to demonstrate, there are globally red tran-
sitions where one agent complies with its individual norms but in doing so makes
it impossible for one or both of the others to comply with theirs. For example,
in the red system state s6 where m1 and f1 are in the room on the left and m2

is on the room on the right, there is no transition in which m2 and f1 can both
comply with their individual norms: the following state formula is true at s6

¬〈green(m2) ∧ green(f1)〉	 equivalently [green(m2) ∧ green(f1)]⊥

green(m2) ∧ green(f1) is not ‘executable’ in state s6.

In this version of the example, what are the possible system behaviours in the
case where all agents do comply with their individual norms? Figure 3 shows
the transition system that results if all red(x) transitions are discarded, for all
three agents x. The diagram confirms that when there is a constraint preventing
more than one agent from moving through a doorway at a time, the system can
enter a state from which there is no transition unless at least one agent fails to
comply with its individual norms. In the diagram, these are the two red system

Action and Agency in Norm-Governed Multi-agent Systems 23

states s5 and s6 where the female agent f1 is in the left-hand room with a male.
The iCCalc system provides facilities for undertaking this kind of analysis.

Now: one may think that there is a flaw in the way that the individual agent-
specific norms in the example have been formulated, that their specification is
wrong in that there are situations which make norm compliance impossible. A
properly designed set of norms, it might be argued, must satisfy an ‘ought implies
can’ principle; if it does not, it is flawed. That is not so. We are thinking here of
a multi-agent system in which agents act independently, where there is no com-
munication between agents, and where no agent can predict how other agents
will act. If there were such communication it might be different, but suppose
there is not. In these circumstances, it is quite impractical to try to anticipate
every possible combination of behaviours by other agents, and in the environ-
ment, and to try to formulate agent-specific norms that make provision for each
eventuality. It is quite impractical, even in examples as simple as this. It is re-
alistic, however, to formulate agent-specific norms that will guide an individual
agent’s behaviour without reference to what other agents might do, and simply
accept that there might be circumstances in which the agent-specific norms for
x conflict with those for y, and generally, that an agent may be prevented from
complying with its individual agent-specific norms in some circumstances.

4.3 Sub-standard Behaviours

The example is designed to demonstrate several different categories of non-
compliant agent behaviour. We pick out one for particular attention. Consider
the state in which m1 and f1 are in the room on the left and m2 is in the room
on the right. (This is the red system state s6 at the upper right of the diagram.)
Because of the constraint on moving through the doorway, it is not possible for
all three agents to comply with their individual norms. But suppose that each
agent behaves in such a way that it will comply with its individual norms in
as much as it can. A purely reactive agent, let us suppose, is programmed in
such a way that it will attempt to act in accordance with its individual norms
though it may not always succeed if something prevents it. A deliberative agent
(human or computer) incorporates its individual norms in its decision-making
procedures and takes them into account when planning its actions: it will al-
ways attempt to act in accordance with its individual norms though it may be
unsuccessful. If all agents in the system behave in this way, then there are two
possible transitions from the red system state s6: either f1 succeeds in moving
to the right in accordance with its individual norms, or m2 succeeds in moving
to the left in accordance with its. The third possible transition from this system
state, in which every agent stays where it is, can be ignored: it can only occur
if no agent attempts to act in accordance with its individual norms, and this,
we are supposing, is not how the agents behave. The exact mechanism which
determines which of the two agents m2 and f1 is successful in getting through
the doorway is not represented at the level of detail modelled here. At this level
of detail, all we can say is that one or other of the agents m2 and f1 will pass
through the doorway but we cannot say which.

24 M. Sergot

Similarly, in the red system state s8 at the lower right of the diagram, in which
m1 is on the left and m2 and f1 are on the right, we can ignore the transition in
which m1 moves to the right, if m1’s behaviour is such that it always attempts
to comply with its individual norms. The transition in which f1 moves to the left
can also be ignored, if f1’s behaviour is to attempt to comply with its individual
norms. And the transition in which m2 stays where it is can be ignored, if m2’s
behaviour is to attempt to comply with its individual norms. This leaves just one
possible transition, in which m2 attempts to move to the left; this will succeed
because the other two agents will not act in such a way as to prevent it. (We
are tempted to refer to this kind of behaviour as behaviour in which every agent
‘does the best that it can’. The term has too many unintended connotations,
however, and so we avoid it.)

We are not suggesting, of course, that agents always behave in this way,
only that there are circumstances where they do, or where it can be reasonably
assumed that they do, or simply where we are interested in examining what
system behaviours result if we suppose that they do.

We now make these ideas a little more precise. We will say that x’s behaviour
in a particular transition τ from a state s is sub-standard(x) if the transition is
red(x) and, had x acted differently in state s while all other agents acted in the
same way as they did in τ , the transition from state s could have been green(x):
x could have acted differently in state s and complied with its individual norms.

Alternatively, as another way of looking at it, we could say that a red(x)
transition τ from a state s is unavoidably-red(x) if every transition from state
s in which every agent other than x acts in the same way as it does in τ is also
red(x): there is no green(x) transition from state s if every agent other than x
acts in the way it does in τ . This is closer to the informal discussion above. One
can see, informally for now, that every red(x) transition is sub-standard(x) if
and only if it is not unavoidably-red(x), and indeed, that every red(x) transition
is either sub-standard(x) or unavoidably-red(x), but not both.

Notice that these definitions allow for the possibility of actions in the environ-
ment. It is easy to imagine other versions of the example where an agent may be
unable to act in accordance with its individual norms not because of the actions
of other agents but because of extraneous factors in the environment. (Suppose,
for instance, that an agent is unable to move to the room on the left while it is
raining.) And here is a reason why we prefer not to treat ‘the environment’ as a
kind of agent: we do not want to be talking about sub-standard behaviours of the
environment, or of agents preventing the environment from acting in accordance
with its individual norms. In this respect at least, ‘the environment’ is a very
different kind of agent from the others.

It still remains to formalise these definitions. For this we need to be able to
refer to actions by individual agents in transitions, which is not part of the LTS
structure as we have it. Indeed, there is no explicit concept of an individual
agent in the semantics at all. We defer further discussion until the next section.
For now, we rely on the informal account just given.

Action and Agency in Norm-Governed Multi-agent Systems 25

The diagram of the transition system for this example was shown earlier
in Fig. 2. The figure shows the sub-standard transitions for each agent. They
are those in which the transition annotations are marked with an asterisk. For
example, in the red system state s6 at the upper right of the diagram, where m1

and f1 are on the left and m2 is on the right, the transition in which all three
agents stay where they are is sub-standard(m2), because there is a green(m2)
transition from this state in which m1 and f1 act in the same way and m2

acts differently, namely the transition in which m1 and f1 stay where they are
and m2 moves to the left in accordance with its individual norms. Similarly,
the transition from state s6 in which m1 moves to the right and m2 and f1

stay where they are is sub-standard(m1) because the transition where all three
agents stay where they are is green(m1). And likewise for the other transitions
marked as sub-standard in the diagram. The red(x) transitions not marked as
sub-standard(x) are unavoidably-red(x).

Suppose we wish to examine what system behaviours result if all three agents
comply, in as much as they can, with their individual norms. Suppose, in other
words, that we disregard those transitions which are sub-standard for any of the
three agents x. The iCCalc implementation supports this kind of analysis. The
result is shown in Fig. 4. There are still red transitions in the diagram. Some,
such as the one from s4 to s8, are green(x) for every x but are nevertheless
globally red. Those, such as the one from s6 to s8, which are red(x) for some
agent x are unavoidably-red(x).

Many other variations of the example could be examined in similar fashion.
If female agents are more reliable than male agents, for instance, we might be
interested in examining what system behaviours result when there is never sub-
standard behaviour by females though possible sub-standard behaviour by males.

Interestingly, when analysing the example using iCCalc, it turned out that if
we assume there is no sub-standard behaviour by either of the two male agents
m1 and m2, that is, if we assume that m1 and m2 always comply with their
individual norms if they can, then there is no sub-standard behaviour by the
female agent f1 either. This is really an artefact of the simplicity of the example
where there are just two rooms and very strong constraints on how the three
agents can move between them. Nevertheless, it does demonstrate the possibility,
in principle at least, that agents can sometimes be coerced into compliance by
the behaviours of others, without resort to sanctions and other enforcement
mechanisms.

As a final remark, notice that what is sub-standard(x) or unavoidably-red(x)
for an agent x can depend on normative as well as physical constraints. Suppose
(just for the sake of an example) that there is another individual norm for m1

to the effect that it should never stay in a particular room (say, the room on
the left) but should move out immediately if it enters it: a transition in which
m1 stays in the room on the left is red(m1), in every system state, red or green.
With this additional constraint, some of the transitions that were globally green
are now globally red because of the local-global coherence constraint (assuming
we choose to adopt it). But further, the transition from the red system state s6

26 M. Sergot

m1
m2
f1

m1
m2
f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2
f1

m1
m2
f1

s1

s2 s6

s8

s5

s7 s3

s4

+m1
+m2−f1

−m1
+m2
+f1

+m1
+m2−f1

+m1−m2
+f1

green
red

+m1 green(m1)
−m1 red(m1)

Fig. 4. System behaviour if all three agents comply with their individual norms, in
as much as they can. Transitions without annotations are coloured green(x) for each
agent x. Reflexive arcs on green nodes are omitted from the diagram.

at the upper right of the diagram in Fig. 2, in which m1 moves to the right and
m2 and f1 stay in the room on the right, was previously sub-standard(m1). It
is no longer sub-standard(m1): there is now no green(m1) transition from this
state when m2 and f1 stay where they are.

Clearly, in this example, if m1 is in the room on the left in a red system state,
it has conflicting individual norms: one requiring it to move to the right, and one
requiring it to stay where it is. It cannot comply with both, so neither action is
sub-standard(m1); both are unavoidably-red(m1).

How m1 should resolve this conflict is an interesting question but not one that
we intend to consider here. It is also a question that only has relevance when m1

is a deliberative agent which must reason about what to do. If m1 is a purely
reactive device, then its behaviour in this case could perhaps be predicted by ex-
amining its program code. Both of these possibilities are beyond the level of detail
of agent and system behaviours modelled in this paper. In the simplest case we
could eliminate the conflict by simply specifying that one norm takes precedence

Action and Agency in Norm-Governed Multi-agent Systems 27

over the other and adjusting the definition of red(x) and green(x) accordingly.
Discussion of other possible mechanisms is beyond the scope of this paper.

Notice that, unlike the situation referred to earlier, where there was a conflict
between agent-specific norms for two different agents, here we have a conflict
between agent-specific norms for the same agent. It would be reasonable to say
that there should be no conflicts of this type in any well-defined set of agent-
specific norms.

There is thus a special category of unavoidably-red(x) transitions in which
every action performed by x is red(x).

– A red(x) transition τ in R is degenerately-red(x) iff for every transition
τ ′ ∈ R such that prev(τ) = prev(τ ′) we have M, τ ′ |= red(x).

Clearly
degenerately-red(x) ⊆ unavoidably-red(x)

When a transition τ is degenerately-red(x) then its initial state s = prev(τ)
is such that there is no action that can be performed by x in compliance with
its individual norms. We call such a state a red(x)-sink:

– state s is a red(x)-sink iff for every transition τ ∈ R such that prev(τ) = s
we have M, τ |= red(x).

In formulas, a state s in a model M is a red(x)-sink when:

M, s |= ¬〈green(x)〉	 equivalently M, s |= [green(x)]⊥

green(x) is not ‘executable’ in a red(x)-sink. Intuitively, s is a red(x)-sink iff every
transition τ from s is degenerately-red(x). A well-designed set of agent-specific
norms should contain no red(x)-sinks. We can test for the presence of such states
but we will not assume that they cannot occur. (Notice that a red(x)-sink is not
necessarily a red(y)-sink for all other agents y.) There are no red(x)-sinks and no
degenerately-red(x) transitions in the ‘rooms’ example we have been discussing.
(Though there are, as we have observed, states in which there are no transitions
of type green(m1) ∧ green(m2) ∧ green(f1).)

Similarly, we can say that a system state s is a (global) red-sink if there is no
transition from s that is globally green. A state s is thus a red-sink when

M, s |= ¬〈trans=green〉	 equivalently M, s |= [trans=green]⊥

trans=green is not ‘executable’ in a red-sink state.
One might think that any well designed set of system norms will have no

red-sinks. That is not so. The local-global coherence constraint (if it is adopted)
means that every red(x)-sink is also a red-sink. But even if there are no red(x)-
sinks there can still be global red-sinks—that is one of the points we are making
with the rooms example. Red-sink states may be undesirable/unwanted but we
do not want to insist that they cannot occur. They can occur even in a well-
designed set of agent-specific and system norms.

28 M. Sergot

As an aside, note that a red-sink state can be (globally) green: a green state
from which all transitions are red (or from which there are no transitions at
all) is a red-sink state. We have considered extending the ‘green-green-green’
constraint: we could say that any transition to a (global) red-sink is undesir-
able/unwanted and should therefore be (globally) red. That seems natural and
straightforward but its implications remain for future investigation and are not
built-in to the framework as we have it now.

5 Agent-Stranded Transition Systems

Although the transition systems as they currently stand allow us to colour tran-
sitions green(x) and red(x), we are only able to give informal definitions of
concepts such as sub-standard(x) and unavoidably-red(x). This is because there
is no way of referring to an individual agent’s actions in a transition. There is no
explicit concept of an individual agent in the semantics at all. We would like to
be able to extract from, or represent in, a transition system that it is specifically
one agent’s actions that are responsible for, or the cause of, a transition’s having
a certain property ϕ.

Let Ag be a (finite) set of agent names. An agent-stranded LTS is a structure

〈S, A, R,Ag, strand〉

where 〈S, A, R〉 is an LTS. Models are structures M=〈S, A, R,Ag, strand, hf, ha〉
where hf and ha are the valuation functions for the propositional atoms of σf

and σa, as before.
The new component is strand, which is a function on Ag×A. strand(x, ε) picks

out from a transition label/event ε the component or ‘strand’ that corresponds
to agent x’s contribution to the event ε. We will write εx for strand(x, ε). For
example, where Ag = {1, . . . , n}, the transition labels A may, but need not, be
tuples

A ⊆ A1 × · · ·Ai × · · · × An × Aenv

where each Ai represents the possible actions of the agent i and Aenv represents
possible actions in the environment. Transition labels (events) with this structure
are often used in the literature on multi-agent systems and distributed computer
systems. In that case, strand would be defined so that

(a1, . . . , ai, . . . , an, aenv)i = ai

However, it is not necessary to restrict attention to transition labels/events of
that particular form. All we require is that there is a function strand defined
on Ag × A which picks out unambiguously an agent x’s contribution to an
event/transition label ε of A. As usual, εx may represent several concurrent
actions by x, or actions with non-deterministic effects (by which we mean that
there could be transitions τ and τ ′ with prev(τ) = prev(τ ′), εx = ε′x where ε
and ε′ are the labels of τ and τ ′ respectively, and post(τ) �= post(τ ′)).

Action and Agency in Norm-Governed Multi-agent Systems 29

Similarly, given a transition τ in R and an agent x in Ag, we can speak of x’s
strand, τx, of the transition τ . Agent x’s strand of a transition τ is that of the
transition label/event of τ :

τx =def strand(x, label(τ))

τx may be thought of as the actions of agent x in the transition τ , where this
does not imply that τx necessarily represents deliberate action, or action which
has been freely chosen by x.

We do not, at this stage, introduce more granularity into the structure of
states or consider norms which regulate the (local) state of an individual agent.
These are possible developments for further work. Our interest here is to study
the norm-governed behaviour of agents, and how this may be related to the
norms pertaining to the system as a whole. To that end, we will concentrate on
the transitions which are used to represent agents’ actions.

We are now able to formalise the sub-standard and unavoidably-red cate-
gories of non-compliant behaviours, amongst other things. But first we turn to
a fundamental feature of agent-specific norms that we were unable to discuss
previously.

We assume as before that there is a constant status in σf for colouring states
(globally) red or green, an event constant trans in σa for colouring transitions
(globally) red or green, and (Boolean) event constants green(x) and red(x) in
σa for each agent x in Ag, with red(x) as an abbreviation for ¬green(x).

We impose the ggg constraint for the global colourings representing system
norms, but not for the colourings representing agent-specific norms. The local-
global coherence constraint M |= red(x) → red is optional. However, we do
impose the following constraint on agent-specific colourings: if τ is a green(x)
(resp., red(x)) transition from a state s in model M, then every transition τ ′

from state s in which agent x behaves in the same way as it does in τ must
also be green(x) (resp., red(x)). In other words, for all transitions τ and τ ′ in a
model M, and all agents x ∈ Ag:

if prev(τ)=prev(τ ′) and τx=τ ′
x then M, τ |= green(x) iff M, τ ′ |= green(x) (4)

(And hence also M, τ |= red(x) iff M, τ ′ |= red(x) whenever prev(τ) = prev(τ ′)
and τx = τ ′

x.) This reflects the idea that whether actions of agent x are in
accordance with the agent-specific norms for x depends only on x’s actions,
not on the actions of other agents, nor actions in the environment, nor other
extraneous factors: we might, with appropriate philosophical caution, think of
this constraint as an insistence on the absence of ‘moral luck’.

Notice that the constraint (4) covers the case where label(τ) = label(τ ′), that
is to say, the case where there are transitions τ and τ ′ with prev(τ) = prev(τ ′)
and label(τ) = label(τ ′) but different resulting states post(τ) �= post(τ ′): the
event ε = label(τ) is non-deterministic in the state s = prev(τ). Constraint (4)
requires that, for every agent x, both of these transitions are coloured the same
way by agent-specific norms for x.

To take a simple example: suppose that when x fires a loaded gun at y, the
action may result in the killing of y, or the shot may miss, or the gun may

30 M. Sergot

misfire, and y survives: the shooting action is non-deterministic. We may take
the view, as system designers, that a shooting transition is red if it results in
the killing of y, and green if it does not. However, since x’s action is the same
whether the shooting is fatal or not, an agent-specific norm for x must either
make both transitions green(x) or both red(x).

We are not putting this forward as a general principle of morality or ethics.
It is a practical matter. The intention is that, in the setting of a multi-agent
system of independently acting agents, the agent-specific norms for x are effective
in guiding x’s actions only if they are formulated in terms of what agent x
can actually perceive/sense and the actions it can itself perform. At the level
of detail treated here we are not modelling perceptual/sensing capabilities or
actions performable by an agent explicitly. These features can be added but
raise more questions than we have space for here. We leave that refinement for
another occasion. For now, we insist on the ‘absence of moral luck’ constraint (4)
as a minimal requirement for agent-specific norms.

Sub-standard behaviours

We are now able to formalise the notion of sub-standard and unavoidably-red
behaviours of agent x.

Definition. Let M = 〈S, A, R,Ag, strand, hf, ha〉 be an agent-stranded model,
with event constants green(x) and red(x) representing the agent-specific norms
for every x in Ag.

Let unavoidably-red and sub-standard be functions from the set of agents Ag
to ℘(R). For every agent x ∈ Ag and every transition τ ∈ R:

– τ ∈ unavoidably-red(x) iff M, τ |= red(x) and, for every transition τ ′ ∈ R
such that prev(τ) = prev(τ ′) and τy = τ ′

y for every agent y ∈ Ag \ {x}, we
have M, τ ′ |= red(x).

– τ ∈ sub-standard(x) iff M, τ |= red(x) and there exists τ ′ ∈ R such that
prev(τ) = prev(τ ′) and τx �= τ ′

x and τy = τ ′
y for every agent y ∈ Ag \ {x}

and M, τ ′ |= green(x).

Notice that the definition of sub-standard(x) makes reference to agent x acting
differently in the transitions τ and τ ′. If we assume the ‘absence of moral luck’
property (4)—as we do—then the definition can be simplified. If M, τ |= red(x)
and M, τ ′ |= green(x) for a transition τ ′ from the same initial state as τ
(prev(τ) = prev(τ ′)) then the condition τx �= τ ′

x is implied: if τx = τ ′
x then

the ‘absence of moral luck’ constraint would be violated. The following simpler
definition is equivalent to the original:

– τ ∈ sub-standard(x) iff M, τ |= red(x) and there exists τ ′ ∈ R such that
prev(τ) = prev(τ ′) and τy = τ ′

y for every agent y ∈ Ag \ {x} and M, τ ′ |=
green(x).

We will use this simpler definition of sub-standard(x) from now on. Agent-
specific colourings must satisfy the ‘absence of moral luck’ property; without
it the notion of sub-standard(x) is not meaningful.

Action and Agency in Norm-Governed Multi-agent Systems 31

One can see from the definitions that, as indicated informally earlier, every
red(x) transition is sub-standard(x) if and only if it is not unavoidably-red(x),
and that every red(x) transition is either sub-standard(x) or unavoidably-red(x),
but not both. In other words

sub-standard(x) = red(x) \ unavoidably-red(x)

Recall that there is a special sub-category of degenerately-red(x) transitions
in which every action performed by x is red(x). Since degenerately-red(x) ⊆
unavoidably-red(x), the red(x) transitions can be partitioned into three disjoint
sub-types:

– sub-standard(x)
– degenerately-red(x)
– unavoidably-red(x) \ degenerately-red(x)

We do not give a name to this third category: a well-formed set of agent-specific
norms will have no degenerately-red(x) transitions, and then it is only the dis-
tinction between sub-standard(x) and unavoidably-red(x) that matters.

There are a number of other questions that we might now consider. For in-
stance:

– Are there any other categories of non-compliant behaviour that could use-
fully be identified?

– Is it meaningful to talk about sub-standard(x) behaviour of an agent y other
than x? What could this mean?

– If a transition is (globally) red, can we determine which of the agents, if
any, is responsible for that transition’s being (globally) red? In the ‘rooms’
example, if agent m2 exits a room and leaves m1 and f1 alone together, can
we determine which of the agents, if any, violated the system norms?

– If a transition is unavoidably-red(x) (but not degenerately-red(x)) is it pos-
sible to identify the subset of agents Ag whose actions prevent x from com-
plying with its agent-specific norms?

The last question concerns forms of collective action/agency that will not be
addressed in this paper. They are investigated elsewhere [3]. The first three
questions are answered below. However the present notation is too cumbersome.
We now extend the language so these and other properties can be expressed as
formulas.

6 A Modal Language for Agency in Transitions

In this section we introduce a modal language for talking about the agent-specific
components of transitions (their ‘strands’). We extend the transition formulas of
Sect. 2 with a (unary) operator [alt], and (unary) operators [x] and [\x] for every
agent x ∈ Ag. This will allow us to express concepts such as sub-standard(x)
and unavoidably-red(x), and others, as formulas. In Sect. 6.2 we will introduce
two ‘brings it about’ modalities.

32 M. Sergot

6.1 A Logic of Agent Strands

Let M = 〈S, A, R,Ag, strand, hf, ha〉 be an agent-stranded LTS model.

M, τ |= [alt]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that
prev(τ) = prev(τ ′).

〈alt〉 is the dual of [alt].
[alt]ϕ is satisfied by, or ‘true at’, a transition τ when all alternative transitions

from the same initial state as τ satisfy ϕ. 〈alt〉ϕ is true at a transition τ if there
exists an alternative transition from the same initial state as τ of type ϕ.

[alt] is a normal modality of type S5. In particular, we have validity (in every
agent-stranded LTS) of the schemas:

[alt]ϕ → ϕ

[alt]ϕ → [alt][alt]ϕ

¬[alt]ϕ → [alt]¬[alt]ϕ

Clearly the following is valid

0:F → [alt]0:F

Now we add the (unary) operators [x] and [\x] for every agent x ∈ Ag.

M, τ |= [x]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that prev(τ) = prev(τ ′)
and τx = τ ′

x;
M, τ |= [\x]ϕ iff M, τ ′ |= ϕ for every τ ′ ∈ R such that prev(τ) = prev(τ ′)

and τy = τ ′
y for every y ∈ Ag \ {x}.

〈x〉 and 〈\x〉 are the respective duals.

As in the case of [alt], [x] and [\x] are used to talk about properties of alter-
native transitions from the same initial state: those, respectively, in which x and
Ag \ {x} behave in the same way. We thus have validity of:

[alt]ϕ → [x]ϕ [alt]ϕ → [\x]ϕ

We will say, for short, that when [x]ϕ is true at a transition τ , ϕ is necessary
for how x acts in τ ; and when [\x]ϕ is true at τ , that ϕ is necessary for how the
agents Ag \ {x} collectively act in τ . (Which is not the same as saying that they
act together, i.e., as a kind of coalition or collective agent. We are not discussing
genuine collective agency in this paper.) 〈x〉ϕ is true at a transition τ if there
is a transition τ ′ of type ϕ from the same initial state as τ in which x acts in
the same way as it does in τ . Clearly ϕ → 〈x〉ϕ is valid. ϕ ∧ 〈x〉¬ϕ is true at
a transition τ if τ is of type ϕ but there is an alternative transition of type ¬ϕ
from the same initial state as τ in which x acts in the same way as it does in
τ . ϕ ∧ 〈x〉¬ϕ is equivalent to ϕ ∧ ¬[x]ϕ. And similarly, ϕ ∧ 〈\x〉¬ϕ is true at

Action and Agency in Norm-Governed Multi-agent Systems 33

a transition τ if τ is of type ϕ and there is an alternative transition of type ¬ϕ
from the same initial state as τ in which every other agent besides x acts in the
same way as it does in τ .

[x] and [\x] are also normal modalities of type S5, so we have validity (in
every agent-stranded LTS) of the schemas:

[x]ϕ → ϕ

[x]ϕ → [x][x]ϕ
¬[x]ϕ → [x]¬[x]ϕ

[\x]ϕ → ϕ

[\x]ϕ → [\x][\x]ϕ
¬[\x]ϕ → [\x]¬[\x]ϕ

It also follows immediately from the satisfaction definitions that the following
schema is valid for all pairs of distinct agents x �= y in Ag:

[y]ϕ → [\x]ϕ (x �= y)

equivalently, as long as Ag is not a singleton, Ag �= {x}:∨
y∈Ag\{x}[y]ϕ → [\x]ϕ (Ag �= {x})

The other direction is not valid:

�|= [\x]ϕ →
∨

y∈Ag\{x}[y]ϕ

This is important. Here is a simple example. Consider the (green) state in the
‘rooms’ example in which all three agents are on the left (this is the state s1 in
the diagrams), and the transition τ from that state in which the female f1 moves
to the right. The resulting state is also green, and so the transition τ is (globally)
green too (trans=green is true at τ). Clearly in all transitions from s1 in which
f1 moves (there is only one), trans=green is true, and so [f1]trans=green is true
at τ . [\f1]trans=green is also true at τ . There are two transitions from s1 in
which m1 and m2 both act as they do in τ : τ itself, and the transition in which
m1 and m2 stay where they are and so does f1. Both of these transitions have
trans=green true.

But consider [m1]trans=green. There are three transitions from state s1 in
which m1 acts as it does in τ : τ itself, the transition in which f1 moves to the
right and m1 and m2 stay where they are, and the transition in which m2 moves
to the right and m1 and f1 stay where they are. The last of these is a transition
from a green system state to a red system state and so is of type trans=red . So
[m1]trans=green is false at τ . By exactly the same argument [m2]trans=green is
false at τ as well. So here we have an example where [\f1]trans=green is true but
neither [m1]trans=green nor [m2]trans=green is true. In general [\x]ϕ is true at
a transition τ because ϕ is necessary for how the agents Ag \ {x} collectively act
in τ , but that is not the same as saying that [y]ϕ is true at τ for some individual
agent y ∈ Ag \ {x}.

For the special case where there are exactly two agents in Ag, Ag = {x, y},
the following is valid

[\x]ϕ ↔ [y]ϕ (Ag = {x, y})

34 M. Sergot

But that is merely a special case. For the special case of a singleton set of agents
Ag = {x} we have validity of

[\x]ϕ ↔ [alt]ϕ (Ag = {x})

and hence also of [\x]ϕ → [x]ϕ.
The language can be generalised to allow expressions [G]ϕ for any G ⊆ Ag.

[x]ϕ is then shorthand for [{x}]ϕ, [\x]ϕ is shorthand for [Ag\{x}]ϕ, and [alt]ϕ is
shorthand for [∅]ϕ. The generalisation actually simplifies the technical develop-
ment but since we are not discussing technical details in this paper we will not
use the generalised form [G]ϕ in what follows. We will note only that the logic of
these operators is very familiar: the logic of [G]ϕ is exactly that of ‘distributed
knowledge’ (of type S5) of a group of agents G. (See e.g. [18].) Soundness, com-
pleteness, and complexity results are immediately available. We leave further
discussion of technical properties to one side. See [3] for details. Our aim in this
paper is to illustrate the expressiveness and uses of the language.

Examples. The ‘absence of moral luck’ constraint (4) for an agent x with respect
to its agent-specific colouring red(x) in a model M can be expressed as the
validities:

M |= red(x) → [x]red(x)
M |= green(x) → [x]green(x)

A transition τ in a model M is unavoidably-red(x) when

M, τ |= [\x]red(x)

It is degenerately-red(x) when

M, τ |= [alt]red(x)

and hence unavoidably-red(x) but not degenerately-red(x) when

M, τ |= [\x]red(x) ∧ ¬[alt]red(x)

What about that category of non-compliance where an agent x could have com-
plied with its agent-specific norms but did not, or what we called sub-standard(x)
behaviour earlier? Expressing the definition given earlier as a formula, transition
τ in a model M is sub-standard(x) when

M, τ |= red(x) ∧ 〈\x〉green(x)

that is, equivalently, when:

M, τ |= red(x) ∧ ¬[\x]red(x)

Consider now the ‘absence of moral luck’ constraint in a model M, that is,
the validity M |= red(x) → [x]red(x). Agent-specific colourings must have this

Action and Agency in Norm-Governed Multi-agent Systems 35

property as the minimal requirement for agent-specific norms of the type we are
discussing. With this constraint we have M |= red(x) ↔ [x]red(x), and this in
turn means that a transition τ in a model M is sub-standard(x) when

M, τ |= [x]red(x) ∧ ¬[\x]red(x)

Implicit in the definition of sub-standard(x) is the idea that it is x, rather
than some other agent y, who is responsible (perhaps unintentionally or even
unwittingly) for the transition’s being red(x): it is x’s actions in the transition
that are the cause, unintentional or not, of the transition’s being red(x). We now
make this aspect of sub-standard(x) explicit. We do this by introducing two new
defined operators for expressing agency of an agent x in bringing it about that
a transition is of a particular type.

Ex and E+
x are defined operators:

Exϕ =def [x]ϕ ∧ ¬[alt]ϕ
E+

xϕ =def [x]ϕ ∧ ¬[\x]ϕ

Both may be read as expressing a sense in which x brings it about that (a
transition is of type) ϕ. We will explain the difference between them below.
Essentially, E+

x takes into account possible actions by other agents whereas Ex
does not but treats them merely as part of the environment in which x acts.

With the ‘absence of moral luck’ constraint, a transition τ in a model M is
sub-standard(x) when

M, τ |= E+
xred(x)

So, a transition is sub-standard(x) when x brings it about that, or is responsible
for, the transition’s being red(x).

The notation Exϕ is chosen because its definition bears a very strong resem-
blance to Ingmar Pörn’s [2] logic of ‘brings it about’—except that in Pörn’s logic
Exp is used to express that agent x brings about the state of affairs represented
by p. We are using Exϕ to express that x ‘brings it about’ that a transition has
the property represented by ϕ. Pörn’s logic does not have the analogue of E+

xϕ.
There are nevertheless some striking similarities, but also some very significant
technical differences. See [3] for further discussion.

What about Exred(x)? What kind of non-compliant behaviour does that
express? Exred(x) is [x]red(x) ∧ ¬[alt]red(x). Assuming the ‘absence of moral
luck’ property for red(x), which we do, this is equivalent to red(x)∧¬[alt]red(x),
which is just red(x) but not degenerately-red(x) behaviour.

Other categories of non-compliant behaviours can similarly be expressed and
investigated. To take just one example, we might look at E+

x(trans=red) and
Ex(trans=red) which express that an agent x brings it about, or is responsible
for, a transition’s being (globally) red. These are not representations of agent-
specific norms. Although E+

x(trans=red) and Ex(trans=red) both satisfy the
required ‘absence of moral luck’ property—both of the following are valid in any
model M:

36 M. Sergot

E+
x(trans=red) → [x]E+

x(trans=red)
Ex(trans=red) → [x]Ex(trans=red)

we are regarding this property as the minimal requirement for agent-specific
norms; the other requirements, concerned with what an agent can actually
sense/perceive and what actions it can actually perform, are not modelled at the
level of detail we have in the present framework. The point is that E+

x(trans=red)
and Ex(trans=red) are unlikely to satisfy these other requirements, since both
are expressed in terms of a global transition property (trans=red) and this is
not something that an individual agent is likely to be able to sense/perceive.
On the other hand, E+

x(trans=red) and Ex(trans=red) both express properties
that might be of interest from the system designer’s point of view. We will see
other examples of similar properties when we look at some examples later.

Finally, as one last illustration, we might ask whether it is ever meaningful
to talk about sub-standard(x) behaviour of an agent y other than x, that is,
whether there can be transitions of type EyE+

xred(x) or E+
yE+

xred(x) for agents
x �= y. Certainly the simpler expressions E+

y red(x) and Ey red(x) are meaningful
for pairs of agents x �= y and may also represent properties of agent-specific
colourings/norms that are of interest from the system designer’s point of view.
But sub-standard(x) behaviour of an agent y �= x is different: it is easy to check
(as we will see later) that EyE+

xred(x) and E+
yE+

xred(x) are not satisfiable in
any model M; both of the following are valid

¬EyE+
xred(x) and ¬E+

yE+
xred(x) (x �= y)

No agent y can bring about, or be responsible for, a transition’s being sub-
standard(x) other than x itself.

6.2 A Logic of ‘Brings It about’

For every agent x ∈ Ag, we have two defined ‘brings it about’ operators:

Exϕ =def [x]ϕ ∧ ¬[alt]ϕ
E+

xϕ =def [x]ϕ ∧ ¬[\x]ϕ

The study of logics of this type has a very long tradition. In computer science
the best known examples are perhaps the ‘stit’ (‘seeing to it that’) family (see
e.g. [19,20,21]). Segerberg [22] provides a summary of early work in this area, and
Hilpinen [23] an overview of the main semantical devices that have been used,
in ‘stit’ and other approaches. As Hilpinen observes: “The expression ‘seeing
to it that A’ usually characterises deliberate, intentional action. ‘Bringing it
about that A’ does not have such a connotation, and can be applied equally
well to the unintentional as well as intentional (intended) consequences of one’s
actions, including highly improbable and accidental consequences.” Our agency
modalities are of this latter ‘brings it about’ kind. They are intended to express
unintentional, perhaps even unwitting, consequences of an agent’s actions, as
well as possibly intentional (intended) ones.

Action and Agency in Norm-Governed Multi-agent Systems 37

We will not present a full account of the logical properties of the agency
operators Ex and E+

x here. They are those one would intuitively expect of ‘brings
it about’ modalities, and are broadly in line with what is found in the literature
on the logic of agency.

We will simply remark that the definitions of Ex and E+
x have two ingredients

typical of logics of agency. The first conjunct is a ‘necessity condition’: M, τ |=
[x]ϕ says that all transitions from prev(τ) in which x acts in the same way as
it does in τ are of type ϕ, or as we also say, that ϕ is necessary for how x acts
in τ . The other component is used to capture the concept of agency itself—
the fundamental idea that ϕ is, in some sense, caused by or is the result of
actions by x. Most accounts of agency introduce a negative ‘counteraction’ or
counterfactual condition for this purpose, to express that had x not acted in the
way that it did then the world would, or might, have been different. The second
conjunct in the definition of Ex adds the ‘counteraction’ requirement: had x
acted differently, then the transition might have been different. The conjunct
¬[alt]ϕ says only that the transition might have been of type ¬ϕ: it is equivalent
to 〈alt〉¬ϕ. But in conjunction with the necessity condition [x]ϕ it can be true at
τ only if x acts differently than in τ . Thus, Exϕ is true at a transition τ if and
only if ϕ is necessary for how x acts in τ , and had x acted differently than in
τ then the transition from prev(τ) might have been different (i.e., of type ¬ϕ).
For E+

x , the counteraction condition is stronger: had x acted differently than in
τ then the transition from prev(τ) might have been different, even if all other
agents, besides x, had acted in the same way as they did in τ .

Both Exϕ and E+
xϕ express a sense in which agent x is ‘responsible for’ or

‘brings it about that’ (a transition is) ϕ. Clearly the following is valid:

E+
xϕ → Exϕ

What is the difference? It is easy to check that, because [y]ϕ → [\x]ϕ is valid
for any x �= y, the following is valid

E+
xϕ → ¬Eyϕ (x �= y)

and hence also:

E+
xϕ → ¬E+

yϕ (x �= y)

So E+
xϕ expresses that it is x, and x alone, who brings it about that ϕ. In

contrast, Exϕ leaves open the possibility that some other agent y �= x also
brings it about that ϕ: the conjunction Exϕ ∧ Eyϕ can be true even when
x �= y.

One might feel uncomfortable with the idea that two distinct agents, acting
independently, can both be responsible for ‘bringing about’ the same thing. But
it is easy to find examples. The ‘rooms’ example has several instances, as will be
demonstrated in Sect. 7. Notice that the conjunction Exϕ∧Eyϕ is equivalent to

[x]ϕ ∧ [y]ϕ ∧ ¬[alt]ϕ

38 M. Sergot

Suppose that two agents are both pushing against a spring-loaded door and
thereby keeping it shut. Suppose either one of them is strong enough by itself
to keep the door shut. Both are then ‘bringing it about’ that the door is shut,
or rather, that the transition is a ‘keeping the door shut’ transition. If x pushes,
the door remains shut; if y pushes, the door remains shut. But ‘keeping the door
shut’ is not unavoidable; there is a transition, viz., the one in which neither x
nor y push, in which the door springs open. It is sufficient that it merely might
spring open.

The conjunction Exϕ∧Eyϕ (x �= y) does not represent that x and y are acting
in concert, or even that they are aware of each other’s existence. We might as
well be talking about two blind robots who have got themselves in a position
where both are pushing against the same spring-loaded door. Neither can detect
the other is there. This is not, and is not intended to be, a representation of
genuine collective agency. The logic of (unwitting) collective action/agency is
investigated in [3]. We do not have space to summarise that here.

In the same vein, there has been some discussion in the literature on whether
the expression ‘x brings it about that some other agent y brings it about that’
is well formed. In the present framework, ExEyϕ when x �= y is well formed.
We can see that it is, and examples can readily be found to demonstrate that it
is meaningful. The ‘keeping the door shut’ example is easily modified.

As it turns out, the ‘transfer of agency’ property:

ExEyϕ → Exϕ (5)

is valid for Ex . Informally, it says that if x acts in such a way that it unwittingly
brings it about that y unwittingly brings it about that ϕ, then x also unwittingly
brings it about that ϕ. What of E+

x and E+
y for different x and y? E+

xE+
yϕ is

syntactically well formed, but it is not meaningful, in the sense that the following
is valid (for x �= y):

¬E+
xE+

yϕ (x �= y)

No agent x can by itself bring it about that some other agent y by itself brings
something about. Moreover both of the following are also valid (for x �= y):

¬E+
xEyϕ ¬ExE+

yϕ (x �= y)

As for ‘transfer of (sole) agency’, E+
xE+

yϕ → E+
xϕ is valid, but only trivially so:

for any x �= y, E+
xE+

yϕ → ⊥ is valid, and so therefore, trivially, is E+
xE+

yϕ →
E+

xϕ.
Clearly Ex and E+

x express a notion of successful action: if agent x brings it
about that (a transition is of type) ϕ then it is indeed the case that ϕ. Or to put
it another way (paraphrasing Hilpinen [23] quoting Chellas [24]): x can be held
responsible for its being the case that ϕ only if it is the case that ϕ. Ex and E+

x
are both ‘success’ operators: both of the following schemes are valid:

Exϕ → ϕ E+
xϕ → ϕ

Action and Agency in Norm-Governed Multi-agent Systems 39

Sergot [3] examines other properties of these ‘brings it about’ operators and
provides a sound and complete axiomatisation of the logic. Further details can
be found there. They are not essential for the purposes of this paper.

6.3 Example: ‘The Others Made Me Do It’

Claims that ‘the others made me do it’ are common in disputes about the ascrip-
tion of responsibility. Merely as an illustration of the language, here are three
different senses in which it can be said that ‘the others made me do it’.

One possibility:
[x]ϕ ∧ [\x]ϕ ∧ ¬[alt]ϕ (6)

This might be read as ‘x did ϕ, but the others Ag \ {x} between them acted in
such a way as to make ϕ unavoidable’. It can be checked that (6) is equivalent
to

Exϕ ∧ ¬E+
xϕ (7)

This might be read as saying ‘x did ϕ, but was not solely responsible’.

‘The others made me do it’: another possibility:

[\x][x]ϕ ∧ ¬[alt]ϕ (8)

We mean by this that between them the others Ag \ {x} acted in such a way as
to make it necessary for what x does that the transition is ϕ. Again this does
not imply any joint action, or even that the agents Ag \ {x} are aware of each
other’s existence, or of x’s. The second conjunct is because the others did not
‘do’ ϕ if there was no alternative for them, or for anyone else. In the case of a
singleton set Ag = {x} there are no ‘others’ and the expression (8) is false. (8)
can be expressed equivalently as

[\x]Exϕ (9)

Moreover, the following is valid:

(Exϕ ∧ ¬E+
xϕ) → [\x]Exϕ

In other words, ‘the others made me do it’ (8)–(9) implies ‘the others made me
do it’ (6)–(7), but not the other way round.

A third possibility would be to say that ‘the others made me do it’ means
that there is some individual agent y ∈ Ag \{x} who brought it about that Exϕ,
in other words that the following is true:∨

y∈Ag\{x} EyExϕ (10)

Now, |= EyExϕ → [y]Exϕ and |= [y]Exϕ → [\x]Exϕ (y �= x). So (10) implies,
but is not implied by, (9).

In summary: we can distinguish at least three different senses in which it can
be said that ‘the others made me do it’: the third (10) implies the second (8)–(9)
which implies the first (6)–(7).

40 M. Sergot

6.4 Bringing about and Sustaining

Exϕ and E+
xϕ represent that x brings it about that a transition is of type ϕ. This

is unusual. Usually, logics of agency do not talk about properties of transitions in
this way. What falls in the scope of a ‘brings it about’ or ‘sees to it that’ operator
is a formula representing a state of affairs : an agent ‘brings it about’ or ‘sees to
it that’ such-and-such a state of affairs exists. How might this sense of ‘brings it
about’ be expressed using the resources of the language presented here?

Ex(0:F ∧ 1:G) expresses that x brings about a transition from a state where
F holds to one where G holds, and E+

x(0:F ∧ 1:G) that x is solely responsible
for such a transition. Ex1:F and E+

x1:F express that x brings about (resp.,
solely) that a transition results in a state where F holds. These formulas express
one sense in which it might be said that x ‘brings about’ such-and-such a state
of affairs F . It is not the only sense, because it says that F holds in the state
immediately following the transition, whereas we might want to say merely that
F holds at some (unspecified) state in the future. Logics of agency usually do
not insist that what is brought about is immediate; indeed, since transitions
are not elements of the semantics, references to ‘immediate’ or the ‘next state’
are not meaningful. There is one other essential difference: Ex1:F and E+

x1:F
are transition formulas; they cannot be used to say that in a particular state
s, x brings it about that such-and-such a state of affairs F holds. This sense of
‘brings it about’ can be expressed as a state formula. We omit the details. It is
transitions that are of primary interest in this paper.

What about Ex 0:F and E+
x 0:F? These are not meaningful: neither is satisfi-

able in any model M. Clearly, |= 0:F → [alt]0:F , and we have |= [alt]ϕ → ¬Exϕ.
However, [alt]ϕ ∧ Exϕ′ → Ex(ϕ ∧ ϕ′) is also valid (and similarly for E+

x), so the
following pair are valid:

0:F ∧ Ex1:G ↔ Ex(0:F ∧ 1:G)
0:F ∧ E+

x1:G ↔ E+
x(0:F ∧ 1:G)

This seems very satisfactory: if in a transition where F holds in the initial state, x
brings it about that G holds in the resulting state, then x brings it about that the
transition is a transition from a state where F to a state where G, and vice versa.

Now, this observation makes it possible to formalise, in a rather natural way,
some suggestions by Segerberg [22] and Hilpinen [23] following an idea of von
Wright [25,26]. We will follow the terminology of Hilpinen’s version; the others
are essentially the same. Hilpinen sketches an account with two components:
first, that actions are associated with transitions between states; and second,
to provide the counterfactual ‘counteraction’ condition required to capture the
notion of agency, a distinction between transitions corresponding to the agent’s
activity from transitions corresponding to the agent’s inactivity. The latter are
transitions where the agent lets ‘nature take its own course’. There are then
eight possible modes of agency, and because of the symmetry between F and
¬F , four basic forms to consider:

– x brings it about that F (¬F to F , x active);
– x lets it become the case that F (¬F to F , x inactive);

Action and Agency in Norm-Governed Multi-agent Systems 41

– x sustains the case that F (F to F , x active);
– x lets it remain the case that F (F to F , x inactive).

The first two correspond to a transition from a state where ¬F to a state where
F . The first is a type of bringing about that F by agent x; the second corresponds
to inactivity by x (with respect to F)—here the agent x lets nature take its own
course. The last two correspond to a transition from a state where F to a state
where F . Again, the first of them is a type of bringing about that F by agent x;
the second corresponds to inactivity by x (with respect to F).

As discussed by Segerberg and Hilpinen there remain a number of fundamental
problems to resolve in this account. Moreover, not discussed by those authors,
the picture is considerably more complicated when there are the actions of other
agents to take into account and not just the effect of nature’s taking its course.
However, these distinctions are easily, and rather naturally, expressed in the
language we have presented here.

The first (‘brings it about that’) and third (‘sustains the case that’) are
straightforward: they are

Ex(0:¬F ∧ 1:F) or E+
x(0:¬F ∧ 1:F)

Ex(0:F ∧ 1:F) or E+
x(0:F ∧ 1:F)

respectively, depending on whether it is x’s sole agency that we want to express
or not.

The second and fourth cases, where x is inactive, can be expressed as:

(0:¬F ∧ 1:F) ∧ ¬Ex(0:¬F ∧ 1:F)
(0:F ∧ 1:F) ∧ ¬Ex(0:F ∧ 1:F)

(Or as above, but with E+
x in place of Ex .)

It remains to check that these latter expressions do indeed correspond to
what Hilpinen was referring to by his term ‘inactive’. Whether or not that is the
case, other, finer distinctions can be expressed. For example (we do not give an
exhaustive exploration of all the possibilities here), supposing that 0:¬F is true
and that the transition to 1:F is not unavoidable or inevitable (in other words,
that ¬[alt]1:F is true), then we can distinguish:

E+
x(0:¬F ∧ 1:F)

Ex(0:¬F ∧ 1:F) ∧ ¬E+
x(0:¬F ∧ 1:F)

0:¬F ∧ ¬[x]1:F ∧ [\x]1:F
0:¬F ∧ 1:F ∧ ¬[x]1:F ∧ ¬[\x]1:F

The reading of the first two is clear. The third and fourth both say that x lets
it become the case that F ; the first of them says that the other agents between
them act in such a way that it becomes the case that F , and the last one that
‘nature takes its own course’. And similarly for the ‘sustains’ and ‘lets it remain’
transitions, i.e., those of type 0:F ∧ 1:F .

42 M. Sergot

Note that intuitively x brings it about that F simpliciter, Ex1:F , should be
equivalent to the disjunction of ‘x brings it about that F ’ in Hilpinen’s termi-
nology and ‘x sustains the case that F ’. This is easily confirmed:

|= Ex1:F ↔ (0:F ∨ ¬0:F) ∧ Ex1:F
↔ (0:F ∧ Ex1:F) ∨ (¬0:F ∧ Ex1:F)
↔ Ex(0:F ∧ 1:F) ∨ Ex(0:¬F ∧ 1:F)

(and likewise for E+
x).

As an example of some of the things we might want to express using formulas of
this kind consider transitions of type 0:status=red ∧1:status=green . These corre-
spond to a recovery from a red system state to a green system state. Ex(0:status=
red∧1:status=green) expresses that agent x brings it about that the system recov-
ers to a green system state, Ex(0:status=red∧1:status=red) that agentx sustains
the case that the system is in a red state, Ex(0:status=green ∧ 1:status=green)
that agent x sustains the case that the system is in a green state, Ex(0:status=
green ∧ 1:status=red) that agent x brings it about, not necessarily by itself, that
the system moves from a green state to a red state, and so on for the other cat-
egories where x is inactive (x lets it become the case that the system is in a red
state, x lets it remain the case that the system is in a red state, and so on). We
write E+

x in place of Ex if we wish to express that x is the sole agent responsible
in each case.

7 Example (Rooms, Contd)

This section illustrates how the formal language presented in the paper may be
applied to the analysis of the ‘rooms’ example. It presents a transcript of the
outputs from the iCCalc system. These transcripts are produced by specifying
a list of formulas expressing properties of interest. iCCalc evaluates these for-
mulas on all transitions in the example. It is also possible to specify formulas to
be evaluated on states. We show only a small extract of state annotations here
to keep the transcripts manageable.

We have also modified the example slightly. In the version discussed here,
the agent-specific norms apply only to those male agents and female agents
who are in a room alone together, and not, as in the previous version, to male
agents and female agents in other rooms as well. So concretely: in this version,
whenever a male agent x and a female agent y are alone in a room together,
a transition from that state is green(x) if the male agent x moves to the left,
if there is a room to the left, green(x) if it does not move when there is no
room to the left, and red(x) otherwise; it is green(y) for the female agent y with
‘left’ replaced by ‘right’. There could be several such rooms in a system state
(though not in the simple example where there are just two rooms and three
agents); the agent-specific norms apply to all such male-female pairs. All other
transitions are green(x) for all agents x. All other features of the example are
exactly as before. The system norms colour any state where there is a male agent

Action and Agency in Norm-Governed Multi-agent Systems 43

and female agent alone in a room (globally) red (status=red); all other system
states are (globally) green (status=green). Transitions are coloured (globally) red
(trans=red) by the ggg constraint and by the local-global coherence constraint
that every red(x) transition is also globally red; all other transitions are globally
green (trans=green). We also have the physical constraint that no more than
one agent can pass through the same doorway in any one transition. If there are
many interconnecting rooms, agents could pass through different doorways in
the same transition, but no more than one through any single doorway at the
same time. In the simple example to be considered here, where there are just
two rooms as before, this cannot happen.

There is nothing particularly significant about the change in the example. The
version discussed here is arguably more realistic, since it requires only that agents
are able to detect when they are alone in a room with a member of the opposite sex;
there is no need to assume that klaxons or other devices exist to inform agents that
the situation has arisen in other rooms. The main reason for choosing the mod-
ified version, however, is simply that features of the original example, including
in particular what is sub-standard(x) and unavoidably-red(x) there, have already
been discussed. The modified version provides a slightly different example.

The states and transitions for the modified version are exactly the same as
those for the original. The global colouring of states is the same; the global
colouring of transitions is slightly different because that is partly determined
by the local-global coherence constraint and in this version of the example the
agent-specific norms are different. We include a diagram of the transition system
in Fig. 5 for ease of reference.

Notice that there are symmetries in the transition system because of symmetry
in the example, between the two male agents m1 and m2, and between left and
right. For that reason it is sufficient to look at transitions from just four states of
the system and not all of them. We will show the transcripts for the transitions
from the states in the top right quadrant of diagrams, that is, the two green states
labelled s1 and s2 in the diagram, and the two red states s6 and s8. Properties
of the other states and transitions in the system are easily reconstructed by
interchanging m1 and m2, or left and right, as the case may be.

We might begin by checking whether there are degenerately-red(x) transitions
in the system, or (globally) red sink states. Here are the relevant queries and the
output produced by iCCalc for the example:

?- satisfiable [-]:red(X) where agent(X).

** not satisfiable

?- satisfiable -executable(trans=green).

** not satisfiable

We trust that the iCCalc syntax is sufficiently close to the syntax of formulas
used in the paper that it requires no explanation. ([-] is the syntax for [alt].)
executable(ϕ) is shorthand for 〈ϕ〉	. The first of the queries above is a transi-
tion formula asking whether there are any degenerately-red(x) transitions. The
second is a state formula asking whether there are any (globally) red sink states.

44 M. Sergot

m1
m2
f1

m1
m2
f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2

f1

m1
m2
f1

m1
m2
f1

s1

s2 s6

s8

s5

s7 s3

s4

+m1
+m2
+f1

+m1
+m2
+f1

+m1
+m2−f1

+m1
+m2
+f1

+m1∗m2−f1

+m1
+m2∗f1

+m1
+m2
+f1

+m1
+m2
+f1

+m1
+m2−f1

∗m1
+m2−f1

+m1
+m2
+f1

+m1
+m2∗f1

−m1
+m2∗f1

−m1
+m2
+f1

∗m1
+m2
+f1

+m1
+m2
+f1

+m1
+m2
+f1

+m1−m2∗f1

+m1−m2
+f1

+m1∗m2
+f1

+m1
+m2
+f1

+m1
+m2
+f1

green
red

+m1 green(m1)
−m1 red(m1)
∗m1 sub-standard(m1)

Fig. 5. The modified ‘rooms’ example. Transitions without annotations are coloured
green(x) for each agent x. Reflexive arcs on green nodes are omitted from the diagram.

(The query for red(x)-sinks would be satisfiable -executable(green(X)). There
are no red(x)-sinks in the example.)

Here we see a difference between this version of the example and the original.
As discussed earlier, the original version does have (globally) red sinks. There
are two of them: one where m1 and f1 are on the left and m2 is on the right
(state s6), and another (by symmetry) where m2 and f1 are on the left and
m1 is on the right (state s5). These are not global red sinks in the modified
example because, unlike in the original, when m1 and f1 are on the left and m2

is on the right the agent-specific norms for m2 do not require it to move left.
In the original version of the example there are no globally green (trans=green)
transitions from these states because of the local-global coherence constraint.

Further: in the original there are states from which there is no transition unless
at least one agent fails to comply with its agent-specific norms. The following
iCCalc query on the original version of the example

?- satisfiable -executable(green(m1) & green(m2) & green(f1)).

Action and Agency in Norm-Governed Multi-agent Systems 45

finds two states where the formula is satisfied: they are also the two global red
sinks. One can check the equivalence as follows:

?- valid -executable(green(m1) & green(m2) & green(f1))

<-> -executable(trans=green).

** valid

Note that this is not the same as:

?- valid (green(m1) & green(m2) & green(f1)) <-> (trans=green).

** not valid

In the modified version of the example, in contrast, we get

?- satisfiable -executable(green(m1) & green(m2) & green(f1)).

** not satisfiable

Now let us look at the transcripts from iCCalc when we ask for annotations
of the transitions (for the modified version of the example). We will consider
first transitions from the two green states s1 and s2.

**transition t17:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

:[m1:move=r,green(m1),green(m2),green(f1),trans=red]

1:[loc(m1)=r,loc(m2)=l,loc(f1)=l,alone(m2,f1),status=red]

E+(m1):(trans=red)

E+(m1):(0:(status=green) & 1:(status=red))

**transition t18:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

:[m2:move=r,green(m1),green(m2),green(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

E+(m2):(trans=red)

E+(m2):(0:(status=green) & 1:(status=red))

**transition t19:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

:[f1:move=r,green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

E(f1):(0:(status=green) & 1:(status=green))

**transition t20:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

:[green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

Fig. 6. Transitions from the green state s1 (all three agents on the left)

46 M. Sergot

Figure 6 shows the transitions from the state s1, where all three agents are
on the left. The numbering of the transitions in the transcript is not significant.
These identifiers are generated by iCCalc when the transition system is calcu-
lated from the n C+ formulation of the example. They are included merely for
ease of reference.

There are no unavoidably-red(x) or sub-standard(x) transitions from this
state. The state is green and so the agent-specific norms in the example do
not impose any constraints on how the agents may move. However, one can see
that in transitions t17 and t18, where one of the male agents moves to the right
and leaves the other alone with the female, the one who moves is (solely) re-
sponsible for bringing it about that the transition is globally red (trans=red). In
both cases the male who moves is also (solely) responsible for bringing it about
that the system state becomes red (status=red) in Hilpinen’s sense.

In contrast, when the female agent f1 moves to the right (transition t19) she is
responsible for sustaining the case that the system state is green (status=green).
She is not solely responsible for sustaining it, however, since it also depends on
how the male agents act: if the male agents both act as they do in t19 (neither
moves) then the system state remains green whether the female agent f1 moves
or not. The transition t20 is the one where no agent moves in this state. There
is nothing that we particularly want to say about it.

Now let us look at the other green state, s2. Figure 7 shows the transitions
from this state. Although this state is not symmetrical to s1 (the male agents and
the female agent are in separate rooms here) the annotation of the transitions
turns out to be the same as for s1. (There could of course be a difference if we
specified a more extensive set of formulas to appear in annotations of transitions.)

Now let us look at the state s6 where m1 and f1 are on the left and m2 is on
the right. Here the system is in a red state and the agent-specific norms impose
some constraints on the behaviours of m1 and f1. Unlike the original version of
the example, there are no agent-specific norms constraining m2’s behaviours in
this state since m2 is in a different room from the other two.

The annotation produced by iCCalc for this state is as follows:

**state s6: [loc(m1)=l, loc(m2)=r, loc(f1)=l, alone(m1,f1), status=red]

oblig(m1,-m1:move) = executable(-m1:move) & -permitted(m1,-(-m1:move))

prohib(m1,m1:move=r) = executable(m1:move=r) & -permitted(m1,m1:move=r)

oblig(f1,f1:move=r) = executable(f1:move=r) & -permitted(f1,-f1:move=r)

prohib(f1,-f1:move) = executable(-f1:move) & -permitted(f1,-f1:move)

The (Boolean) state constant alone(m1, f1) has the obvious interpretation. It
is convenient to include alone(x, y) constants in n C+ formulations of larger
versions of the example, where there are many rooms and more agents.

The state annotation also shows some further notational abbreviations that
we find convenient. Let α be a formula of σa, that is, a propositional formula of
event atoms. It is natural to say that α is permitted for x in a state s according
to the agent-specific norms for x when there is a transition of type α from s
which is green(x). Accordingly, we define:

permitted(x, α) =def executable(α ∧ green(x))

Action and Agency in Norm-Governed Multi-agent Systems 47

**transition t13:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

:[m1:move=r,green(m1),green(m2),green(f1),trans=red]

1:[loc(m1)=r,loc(m2)=l,loc(f1)=r,alone(m1,f1),status=red]

E+(m1):(trans=red)

E+(m1):(0:(status=green) & 1:(status=red))

**transition t14:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

:[m2:move=r,green(m1),green(m2),green(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

E+(m2):(trans=red)

E+(m2):(0:(status=green) & 1:(status=red))

**transition t16:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

:[f1:move=l,green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

E(f1):(0:(status=green) & 1:(status=green))

**transition t15:

0:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

:[green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

Fig. 7. Transitions from the green state s2 (m1 and m2 on the left, f1 on the right)

Here, as usual, ϕ is ‘executable’ means only that there exists a transition of type
ϕ from the current state: executable(ϕ) is shorthand for the state formula 〈ϕ〉	.
In practice, α in an expression permitted(x, α) will always be a propositional
formula of atoms of the form x:a=v.

We can define a sense of ‘obligatory’ and ‘prohibited’ action in similar fashion.
As a first stab, an event of type α is prohibited for x in a state s according to
the agent-specific norms for x if every transition of type α from state s is red(x).
However, that would mean that if there is no transition of type α in state s at
all then α is prohibited for x. It is more informative if we add that there must
be at least one transition of type α from s:

prohib(x, α) =def executable(α) ∧ ¬executable(α ∧ green(x))

(where ‘executable’ has its usual meaning). The above is equivalently expressed
as

prohib(x, α) =def executable(α) ∧ ¬permitted(x, α)

which is the form that appears in the state annotation shown.

48 M. Sergot

Similarly, it is natural to say that α is obligatory for x in a state s according to
the agent-specific norms for x when there is at least one transition of type α from
state s, and every green(x) transition from s is of type α (equivalently, there are
no green(x) transitions from state s of type ¬α). This can be expressed as:

oblig(x, α) =def executable(α) ∧ ¬executable(¬α ∧ green(x))

which is also equivalent to:

oblig(x, α) =def executable(α) ∧ ¬permitted(x,¬α)

This is the definition that is shown in the state annotation above.
The state annotation shown may give the impression that it is not necessary

to have both oblig and prohib: one seems to repeat what the other says. But that
is just a feature of the simplicity of this particular example. In this particular ex-
ample, an agent in the left hand room can only move to the right or stay where it
is: it must do one or the other. In more complicated examples, it may have many
other options, and then the difference between oblig and prohib becomes marked.

It should be noted that these defined forms express only one sense in which α
could be said to be permitted/obligatory/prohibited for x according to the agent-
specific norms for x. We do not have space to discuss any other possibilities in
this paper.

The transitions from state s6 are shown in Fig. 8. In transition t21 the male
agent m1 moves right in contravention of the agent-specific norms that require it
to stay where it is in this state. The transition is sub-standard(m1) because m1

could have complied with its agent-specific norms but does not in this transition.
(It is also the case that E+

xE+
xred(m1) is true at t21; the iCCalc annotation

would show if it were false. Compare transition t24 below.) Transition t21 is
also unavoidably-red(f1): f1 is prevented from complying with her agent-specific
norms by the actions of others in this transition. In this particular case, the tran-
script shows that it is m1’s actions that prevent f1 from moving right as required
by her agent-specific norms. Transition t21 also provides an example where two
different agents (m1 and f1 here) both bring about, are both responsible for, the
transition’s being globally red (trans=red) and thus in contravention of the sys-
tem norms. We also see that m1 is solely responsible in this transition for bringing
it about that the system state becomes green, that is, moves from a red state to
a green state. So here we have an example where the system recovers from a red
system state to a green system state, but where the transition itself is (globally)
red, and therefore in contravention of the system norms, and where the agent
m1 who is solely responsible for the recovery from a red system state to a green
system state does so by acting in contravention of its own agent-specific norms.

Transition t22, in which m2 moves left, is similar but not symmetric with t21.
Here, the agent-specific norms for m2 do not require it to stay where it is because
m2 is not in the same room as m1 and f1. m2 is thus free to move according to
its agent-specific norms, but if it does move, then it makes it impossible for the
female agent f1 to comply with hers: the transition is unavoidably-red(f1), and as
the transcript shows, it is m2 who is responsible (though not solely responsible)

Action and Agency in Norm-Governed Multi-agent Systems 49

**transition t21:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

:[m1:move=r,red(m1),green(m2),red(f1),trans=red]

1:[loc(m1)=r,loc(m2)=r,loc(f1)=l,status=green]

substandard(m1) = E+(m1):red(m1)

unavoidably_red(f1) = [-f1]:red(f1)

E(m1):red(f1)

E(m1):(trans=red)

E(f1):(trans=red)

E+(m1):(0:(status=red) & 1:(status=green))

**transition t22:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

:[m2:move=l,green(m1),green(m2),red(f1),trans=red]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=l,status=green]

unavoidably_red(f1) = [-f1]:red(f1)

E(m2):red(f1)

E(m2):(trans=red)

E(f1):(trans=red)

E+(m2):(0:(status=red) & 1:(status=green))

**transition t23:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

:[f1:move=r,green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

E(f1):(0:(status=red) & 1:(status=red))

**transition t24:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

:[green(m1),green(m2),red(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

substandard(f1) = E+(f1):red(f1)

-E+(f1):E+(f1):red(f1)

E+(f1):(trans=red)

-E+(f1):E+(f1):(trans=red)

Fig. 8. Transitions from the red state s6 (m1 and f1 on the left, m2 on the right)

for making it so. Transition t22 is also another example of two different agents
(m2 and f1) both bringing it about that a transition is of a particular type
(globally red). m2 is also solely responsible for bringing it about that the system
recovers (becomes green), though unlike in t21, not in contravention of its own
agent-specific norms.

Transition t23 is straightforward. Here all three agents comply with their
agent-specific norms. f1 however, although acting in compliance with her agent-
specific norms by moving to the right, nevertheless is thereby responsible (though

50 M. Sergot

**transition t9:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

:[m1:move=r,green(m1),red(m2),green(f1),trans=red]

1:[loc(m1)=r,loc(m2)=r,loc(f1)=r,status=green]

unavoidably_red(m2) = [-m2]:red(m2)

E(m1):red(m2)

E(m1):(trans=red)

E(m2):(trans=red)

E+(m1):(0:(status=red) & 1:(status=green))

**transition t10:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

:[m2:move=l,green(m1),green(m2),green(f1),trans=green]

1:[loc(m1)=l,loc(m2)=l,loc(f1)=r,status=green]

E+(m2):(0:(status=red) & 1:(status=green))

**transition t12:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

:[f1:move=l,green(m1),red(m2),red(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=l,alone(m1,f1),status=red]

unavoidably_red(m2) = [-m2]:red(m2)

E(f1):red(m2)

substandard(f1) = E+(f1):red(f1)

E(m2):(trans=red)

E(f1):(trans=red)

E(f1):(0:(status=red) & 1:(status=red))

**transition t11:

0:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

:[green(m1),red(m2),green(f1),trans=red]

1:[loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

substandard(m2) = E+(m2):red(m2)

-E+(m2):E+(m2):red(m2)

E+(m2):(trans=red)

-E+(m2):E+(m2):(trans=red)

Fig. 9. Transitions from the red state s8 (m1 on the left, m2 and f1 on the right)

not solely responsible) for sustaining the case that the system remains in a red
system state. As with other similar examples, one should be very careful not say
that an agent behaves badly if it is responsible for sustaining, or bringing about,
that a system state remains, or becomes, a red system state. It may also act
well in the same transition, in the sense that it complies with its agent-specific
norms. System norms and agent-specific norms are related, for instance by local-
global coherence, but they express different standards of legality, acceptability,

Action and Agency in Norm-Governed Multi-agent Systems 51

desirability, and therefore different standards of what it means to say that an
agent acts well or acts badly.

Finally, transition t24, in which no agent moves, is sub-standard(f1) because
here f1 could have complied with her agent-specific norms but did not. She is
also solely responsible for bringing about that the transition is globally red. Note
though, that although E+

f1
red(f1) is true at t24 (this is what sub-standard(f1)

means), E+
f1

E+
f1

red(f1) is not true. In general E+
xϕ → E+

xE+
xϕ is not valid. Here

we have an example. We can see that [f1]E+
f1

red(f1) is not true at t24. If it
were, that would mean E+

f1
red(f1) is true at every transition from state s6 in

which f1 acts as she does in t24, i.e., does not move. Transitions t21 and t22

are both like this, but E+
f1

red(f1) is not true at either of them: neither of them
is sub-standard(f1). And if [f1]E+

f1
red(f1) is not true at t24 then neither is

E+
f1

E+
f1

red(f1). Similarly for E+
f1

(trans=red); [f1]E+
f1

(trans=red) is not true at
t24, as is easily confirmed.

To complete the picture, here is the iCCalc output for the other red state, s8.

**state s8: [loc(m1)=l,loc(m2)=r,loc(f1)=r,alone(m2,f1),status=red]

oblig(m2,m2:move=l) = executable(m2:move=l) & -permitted(m2,-m2:move=l)

prohib(m2,-m2:move) = executable(-m2:move) & -permitted(m2,-m2:move)

oblig(f1,-f1:move) = executable(-f1:move) & -permitted(f1,-(-f1:move))

prohib(f1,f1:move=l) = executable(f1:move=l) & -permitted(f1,f1:move=l)

The transitions from this state are shown in Fig. 9. We do not provide a
commentary. Although the details are different, the general points we wish to
make have already been discussed. (When a formula E+

xϕ is true, E+
xE+

xϕ is also
true unless shown otherwise.)

8 Conclusion

We have presented a modal-logical language for talking about properties of states
and transitions of a labelled transition system and, by introducing agent ‘strands’
as a component of transitions, for talking about what transition properties are
necessary for how a particular agent, or group of agents, acts in a particular
transition. This allows us in turn to introduce two defined ‘brings it about’
modalities. The novel feature is that we switch attention from talking about an
agent’s bringing it about that a certain state of affairs exists to talking about an
agent’s bringing it about that a transition has a certain property. We are thereby
able to make explicit the notions of agency that underpin various forms of norm
compliant or non-compliant behaviour, and to be able to discuss relationships
between system norms and agent-specific norms using the formal language. The
aim, amongst other things, is to be able to investigate what kind of system
properties emerge if we assume, for instance, that all agents of a certain class
will do the best that they can to comply with their individual norms, or never
act in such a way that they make non-compliance unavoidable for others. We
are also able to express when an agent, or group of agents, is responsible, solely
or otherwise, for bringing about that a transition complies with system norms,

52 M. Sergot

for bringing it about that the system recovers from a red system state to a green
system state, for sustaining the case that the system remains in a green system
state, and so on.

Besides the generalisation to (unwitting) collective agency [3] there are three
main directions of current work.

(1) Scaleability. It might be felt that the ‘rooms’ example used in this paper
is too simple to be taken seriously as representative of real-world domains. We
deliberately chose the simplest configuration of rooms and agents that allowed
us to make the points we wanted to make while still being able to be depicted
in their entirety. The example works just as well with more rooms, more than
two categories of agents, and a wider repertoire of actions that the agents are
able to perform. Generally, the issues we have addressed arise whenever we put
together a complex system of interacting agents, acting independently, whose
behaviours are subject to their own agent-specific norms, and where we wish to
impose further system norms to regulate possible interactions.

Nevertheless, it is clear that serious issues of scaleability remain, and that in
particular we confront the same state explosion problems that arise in all mod-
elling approaches of this kind. These are problems, however, that are the subject
of extensive current research. There is nothing that prevents us from applying
emerging techniques and solutions to agent-stranded transition systems too.

One promising direction that we are exploring is the use of agent-centric pro-
jections. Roughly, given a model M describing system behaviour, it is possible
to define a projection Mx in which all states and transitions indistinguishable
for an agent x are collapsed into one, and all other states and transitions are
discarded. Mx thus models system behaviour from an individual agent x’s per-
spective. Some information is lost, but (depending of course on what is indis-
tinguishable for an individual x), the projection Mx is much smaller and more
manageable than the full model M.

(2) Agent-specific norms. One fundamental feature of agent-specific norms, as
we see it, is that to be effective or even meaningful in guiding the actions of an
individual agent x they must be formulated in terms of what the agent x can
actually sense/perceive of its environment, and the actions that an agent x can
actually perform. We referred to the ‘absence of moral luck’ constraint as the
minimal requirement we must impose on agent-specific norms. To do a proper
job it is necessary to refine and extend the semantical structures in order to
model these features explicitly. This part is not so difficult. We will present the
details in another paper. There is also the further question of how agent-specific
norms once formulated can be incorporated into an agent’s implementation—in
the case of a ‘lightweight’ reactive agent, how to modify its program code to
take agent-specific norms into account, and in the case of a deliberative agent,
how to represent the agent-specific norms in a form that the agent can use in its
reasoning processes. We have very little to say about that yet.

(3) The representation of norms. We gave in the paper one simple formula-
tion of what it can mean to say that an action is obligatory or permitted for x

Action and Agency in Norm-Governed Multi-agent Systems 53

according to the agent-specific norms for x. There are many other variations and
distinctions that can be expressed using the resources of the language. Gener-
ally, the logic of norms and the logic of action/agency have often been studied
together, and it remains to explore how the full resources of the language can be
used to articulate distinctions and issues that have previously been discussed in
the literature. Further, it is well known in the field of deontic logic that a simple
binary classification of states and/or transitions into green/red (ideal/sub-ideal,
permitted/not permitted) is too simple to deal adequately with many kinds of
norms. In [6], for instance, we presented a refinement of the current approach
in which the states of a transition systems were ordered depending on how well
each complied with a set of explicitly stated norms. Much more remains to be
done along these lines.

Acknowledgements

The characterisation of non-compliant behaviours, agent-specific norms, the
‘rooms’ example, and the iCCalc implementation is joint work with Robert
Craven. I am grateful to Alex Artikis for helpful comments on an earlier draft.

References

1. Craven, R., Sergot, M.: Agent strands in the action language nC+. Journal of
Applied Logic 6(2), 172–191 (2008)

2. Pörn, I.: Action Theory and Social Science: Some Formal Models. In: Synthese
Library, Number 120. D. Reidel, Dordrecht (1977)

3. Sergot, M.: The logic of unwitting collective agency. Technical Report 2008/6,
Department of Computing, Imperial College London (2008)

4. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artificial Intelligence 153(1–2), 49–104 (2004)

5. Sergot, M.: (C+)++: An action language for modelling norms and institutions.
Technical Report 2004/8, Department of Computing, Imperial College London
(2004)

6. Sergot, M., Craven, R.: The deontic component of action language nC+. In:
Goble, L., Meyer, J.J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222–
237. Springer, Heidelberg (2006)

7. Große, G., Khalil, H.: State Event Logic. Journal of the IGPL 4(1), 47–74 (1996)
8. Venema, Y.: Points, lines and diamonds: a two-sorted modal logic for projective

planes. Journal of Logic and Computation 9(5), 601–621 (1999)
9. Sauro, L., Gerbrandy, J., van der Hoek, W., Wooldridge, M.: Reasoning about

action and cooperation. In: Proceedings of the Fifth International Joint Conference
on Autonomous agents and Multiagent Systems: AAMAS 2006, pp. 185–192. ACM,
New York (2006)

10. von Wright, G.H.: Norm and Action—A Logical Enquiry. Routledge and Kegan
Paul, London (1963)

11. Chellas, B.F.: Modal Logic—An Introduction. Cambridge University Press, Cam-
bridge (1980)

54 M. Sergot

12. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

13. Carmo, J., Jones, A.J.I.: Deontic database constraints, violation and recovery. Stu-
dia Logica 57(1), 139–165 (1996)

14. Meyden, R.: The dynamic logic of permission. Journal of Logic and Computa-
tion 6(3), 465–479 (1996)

15. Meyer, J.J.C.: A different approach to deontic logic: Deontic logic viewed as a
variant of dynamic logic. Notre Dame Journal of Formal Logic 29(1), 109–136
(1988)

16. Lomuscio, A., Sergot, M.J.: Deontic interpreted systems. Studia Logica 75(1), 63–
92 (2003)

17. Ågotnes, T., van der Hoek, W., Rodriguez-Aguilar, J.A., Sierra, C., Wooldridge,
M.: On the logic of normative systems. In: Veloso, M.M. (ed.) Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007),
pp. 1175–1180. AAAI Press, Menlo Park (2007)

18. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

19. Belnap, N., Perloff, M.: Seeing to it that: a canonical form for agentives. Theoria 54,
175–199 (1988)

20. Horty, J.F., Belnap, N.: The deliberative stit: a study of action, omission, ability,
and obligation. Journal of Philosophical Logic 24(6), 583–644 (1995)

21. Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
22. Segerberg, K.: Getting started: Beginnings in the logic of action. Studia Log-

ica 51(3–4), 347–378 (1992)
23. Hilpinen, R.: On action and agency. In: Ejerhed, E., Lindström, S. (eds.) Logic, Ac-

tion and Cognition—Essays in Philosophical Logic. Trends in Logic, Studia Logica
Library, vol. 2, pp. 3–27. Kluwer Academic Publishers, Dordrecht (1997)

24. Chellas, B.F.: The Logical Form of Imperatives. Dissertation, Stanford University
(1969)

25. von Wright, G.H.: An essay in deontic logic and the general theory of action.
Number 21 in Acta Philosophica Fennica (1968)

26. von Wright, G.H.: Practical Reason. Blackwell, Oxford (1983)

Managing Conflict Resolution in

Norm-Regulated Environments�

Martin J. Kollingbaum1, Wamberto W. Vasconcelos1, Andres Garćıa-Camino2,
and Tim J. Norman1

1 Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK
{mkolling,wvasconc,tnorman}@csd.abdn.ac.uk

2 IIIA-CSIC, Campus UAB 08193 Bellaterra, Spain
andres@iiia.csic.es

Abstract. Norms are the obligations, permissions and prohibitions as-
sociated with members of a society. Norms provide a useful abstraction
with which to specify and regulate the behaviour of self-interested soft-
ware agents in open, heterogeneous systems. Any realistic account of
norms must address their dynamic nature: the norms associated with
agents will change as agents act (and interact) – prohibitions can be
lifted, obligations can be fulfilled, and permissions can be revoked as a
result of agents’ actions. These norms may at times conflict with one an-
other, that is, an action may be simultaneously prohibited and obliged (or
prohibited and permitted). Such conflicts cause norm-compliant agents
to experience a paralysis: whatever they do (or not do) will go against
a norm. In this paper we present mechanisms to detect and resolve
normative conflicts. We achieve more expressiveness, precision and re-
alism in our norms by using constraints over first-order variables. The
mechanisms to detect and resolve norm conflicts take into account such
constraints and are based on first-order unification and constraint sat-
isfaction. We also explain how the mechanisms can be deployed in the
management of norms regulating environments for software agents.

1 Introduction

Norms are the obligations, permissions and prohibitions associated with mem-
bers of a society [3,18]. Norms provide a useful abstraction to specify and regulate
the observable behaviour in electronic environments of self-interested, heteroge-
neous software agents [2,6]. Norms also support the establishment of organisa-
tional structures for coordinated resource sharing and problem solving [8,19].
Norm-regulated environments may experience problems when norms associated
with their agents are in conflict – actions that are forbidden, may, at the same
time, also be obliged and/or permitted.

� This research is continuing through participation in the International Technology
Alliance sponsored by the U.S. Army Research Laboratory and the U.K. Ministry
of Defence (http://www.usukita.org).

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 55–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

56 M.J. Kollingbaum et al.

We illustrate such situations with a scenario in which software agents share
information. A norm stipulates that “everyone is forbidden to share any informa-
tion with agent ag1” (that is, everyone is forbidden to share(Info, ag1)). However,
as agents interact, a new norm stipulates that “everyone is obliged to share a
particular piece of information info1 with all other agents” (that is, everyone is
obliged to share(info1, X))1. These two norms are in conflict regarding action
share/2 and some of its possible values. Normative conflicts “paralyse” norm-
compliant software agents because whatever they do (or refrain from doing) goes
against a norm.

In this paper, we propose a means to automatically detect and resolve norm
conflicts. We make use of first-order unification [7] to find out if and how norms
overlap in their scope of influence [15]. If such a conflict is detected, a resolution
can be found by proposing a curtailment of the conflicting norms. We curtail
norms by adding constraints, thus limiting their scope of influence. For example,
if we add the constraint Info �= info1 to the prohibition above, we curtail this
norm excluding info1 from its scope of influence – the norm becomes “everyone
is forbidden to share any information, excluding info1, with ag1”. The scope of
influence of the prohibition becomes restricted and does not overlap with the
influence of the obligation. Alternatively, if we add the constraint X �= ag1 to
the obligation above, we curtail its scope of influence to exclude a value, thus
avoiding the conflict with the prohibition.

In next Section we present our approach to norm-governed agency. In Section 3
we define norm conflicts and how to resolve them. Section 4 presents algorithms
for the management of norm-regulated environments, that is, the adoption and
removal of norms. In Section 5 we explain a simple mechanism endowing agents
with norm-awareness. Section 6 explores indirect conflicts arising from relation-
ships among actions. In Section 7 we survey related work. In Section 8 we draw
conclusions and give directions for future work.

2 Norm-Governed Agency

Our model of norm-governed agency assumes that agents take on roles within a
society or organisation and that these roles have norms associated with them.
Roles, as used in, e.g., [20], help us abstract from individual agents, defining a
pattern of behaviour to which any agent that adopts a role ought to conform.
We shall make use of two finite, non-empty sets, Agents = {a1, . . . , an} and
Roles = {r1, . . . , rm}, representing, respectively, the sets of agent identifiers and
role labels. Central to our model is the concept of actions performed by agents:

Definition 1. 〈a : r, ϕ̄, t〉 represents a specific action ϕ̄ (a ground first-order
atomic formula), performed by a ∈ Agents adopting r ∈ Roles at time t ∈ IN .

Although agents are regarded as performing their actions in a distributed fashion
(thus contributing to the overall enactment of the system), we propose a global
1 Info, X are variables and ag1, info1 are constants identifying a particular agent and

a particular piece of information, respectively.

Managing Conflict Resolution in Norm-Regulated Environments 57

account for all actions performed. It is important to record the authorship of
actions and the time when they occur. The set Ξ stores such tuples recording
actions of agents and represents a trace or a history of the enactment of a society
of agents from a global point of view:

Definition 2. A global enactment state Ξ is a finite, possibly empty, set of
tuples 〈a :r, ϕ̄, t〉.

A global enactment state Ξ can be “sliced” into many partial states Ξa = {〈a :
r, ϕ̄, t〉 ∈ Ξ | a ∈ Agents} containing all actions of a specific agent a. Similarly,
we could have partial states Ξr = {〈a : r, ϕ̄, t〉 ∈ Ξ | r ∈ Roles}, representing
the global state Ξ “sliced” across the various roles. We make use of a global
enactment state to simplify our exposition; however, a fully distributed (and
thus more scalable) account of enactment states can be achieved by slicing them
as above and managing them in a distributed fashion.

2.1 Norm Specification

We extend the notion of a norm as presented in [26]. We adopt the notation of
[20] for specifying norms, complementing it with constraints [14]. Constraints are
used to refine the influence of norms on specific actions. A syntax for constraints
is introduced as follows:

Definition 3. Constraints, represented as γ, are any construct of the form τ �
τ ′, where τ, τ ′ are first-order terms (that is, a variable, a constant or a function
applied to terms) and � ∈ {=, �=, >,≥, <,≤}.

We shall make use of numbers and arithmetic functions to build terms τ . Arith-
metic functions may appear infix, following their usual conventions2. Some sam-
ple constraints are X < 120 and X < (Y + Z). Norms are thus defined:

Definition 4. A norm ω is a tuple 〈ν, td, ta, te〉, where ν is any construct of
the form Oτ1:τ2ϕ ∧

∧n
i=0 γi (an obligation), Pτ1:τ2ϕ ∧

∧n
i=0 γi (a permission) or

Fτ1:τ2ϕ∧
∧n

i=0 γi (a prohibition), where τ1, τ2 are terms, ϕ is a first-order atomic
formula and γi, 0 ≤ i ≤ n, are constraints. The components td, ta, te ∈ IN are,
respectively, the time when ν was declared (introduced), when ν becomes active
and when ν expires, td ≤ ta ≤ te.

Term τ1 identifies the agent(s) to which the norm is applicable and τ2 is the
role of such agent(s). Oτ1:τ2ϕ ∧

∧n
i=0 γi thus represents an obligation on agent

τ1 taking up role τ2 to bring about ϕ, subject to constraints γi, 0 ≤ i ≤ n. The
γi’s express constraints on those variables occurring in ϕ.

In the definition above we only cater for conjunctions of constraints. If dis-
junctions are required then a norm must be established for each disjunct. For
instance, if we required the norm PA:Rmove(A)∧A < 10∨A = 15 then we must
break it into two norms PA:Rmove(A) ∧ A < 10 and PA:Rmove(A) ∧ A = 15.

2 We adopt Prolog’s convention [1] using strings starting with a capital letter to rep-
resent variables and strings starting with a small letter to represent constants.

58 M.J. Kollingbaum et al.

We assume an implicit universal quantification over variables in ν. For instance,
PA:Rp(X, b, c) stands for ∀A ∈ Agents.∀R ∈ Roles .∀X.PA:Rp(X, b, c).

We propose to formally represent the normative positions of all agents taking
part in a virtual society, from a global perspective. By “normative position” we
mean the “social burden” associated with individuals [12], that is, their obliga-
tions, permissions and prohibitions:

Definition 5. A global normative state Ω is a finite and possibly empty set of
tuples ω = 〈ν, td, ta, te〉.

A global normative state, expressed by Ω, complements the enactment state of
a virtual society, expressed by Ξ, with information on the normative positions
of individual agents. The management (i.e., creation and updating) of global
normative states is an interesting area of research. A practical approach is that
of [11]: rules depict how norms should be inserted and removed as a result of
agents’ actions. A sample rule is

〈Ag1 :seller , sold(Ag2, Good, Price), T 〉 � ⊕〈OAg2:buyerpay(Ag1, Price), (T + 1), (T + 1), (T + 5)〉

representing that if an agent Ag1 acting as a seller agrees to selling to Ag2

some Good at cost Price then we introduce (denoted by the “⊕” operator) an
obligation on Ag2 acting as a buyer, to pay Ag1 the agreed Price within 5 “ticks”
of a global clock. Similarly to Ξ, we use a single normative state Ω to simplify
our exposition; however, we can also slice Ω into various sub-sets and manage
them in a distributed fashion as explored in [9].

3 Norm Conflicts

We provide definitions for norm conflicts, enabling their detection and resolu-
tion. Constraints confer more expressiveness and precision on norms, but the
mechanisms for detection and resolution must factor them in. We use first-order
unification [7] and constraint satisfaction [14] as the building blocks of our mech-
anisms. Unification allows us i) to detect whether norms are in conflict and ii)
to detect the set of actions that are under the influence of a norm. Initially, we
define substitutions:

Definition 6. A substitution σ is a finite and possibly empty set of pairs x/τ ,
where x is a variable and τ is a term.

We define the application of a substitution in accordance with [7] . In addition,
we describe, how substitutions are applied to norms (X stands for O, P or F):

1. c · σ = c for a constant c.
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x.
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).
4. (Xτ1:τ2ϕ ∧

∧n
i=0 γi) · σ = (X(τ1·σ):(τ2·σ)ϕ · σ) ∧

∧n
i=0(γi · σ).

5. 〈ν, td, ta, te〉 · σ = 〈(ν · σ), td, ta, te〉

Managing Conflict Resolution in Norm-Regulated Environments 59

A substitution σ is a unifier of two terms τ1, τ2, if τ1 · σ = τ·σ. Unification is a
fundamental problem in automated theorem proving and many algorithms have
been proposed [7]; recent work offers means to obtain unifiers efficiently. We shall
use unification in the following way:

Definition 7. unify(τ1, τ2, σ) holds iff τ1·σ = τ2·σ, for some σ. unify(pn(τ0, . . . ,
τn), pn(τ ′

0, . . . , τ
′
n), σ) holds iff unify(τi, τ

′
i , σ), 0 ≤ i ≤ n.

The unify relationship checks if a substitution σ is indeed a unifier for τ1, τ2, but
it can also be used to find σ. We assume that unify is a suitable implementation
of a unification algorithm which i) always terminates (possibly failing, if a unifier
cannot be found); ii) is correct; and iii) has a linear computational complexity.

3.1 Conflict Detection

Conflict detection consists of checking if the variables of a prohibition and those
of a permission/obligation have overlapping values. The values of the arguments
of a norm specify its scope of influence, that is, which agent/role the norm
concerns, and which values of the action it addresses. In Fig. 1 we show two
norms over action deploy(S, X, Y), establishing that sensor S is to be deployed
on grid position (X, Y). The norms are OA1:R1deploy (s1, X1, Y1) ∧ 10 ≤ X1 ≤
50∧5 ≤ Y1 ≤ 45 and FA2:R2deploy(s1, X2, Y2)∧5 ≤ X2 ≤ 60∧15 ≤ Y2 ≤ 40, their
scopes shown as rectangles filled with different patterns. The overlap of their
scopes is the rectangle in which both patterns appear together. Norm conflict is
formally defined as follows:

Definition 8. Norms ω, ω′ ∈ Ω are in conflict under substitution σ, denoted as
conflict(ω, ω′, σ), iff the following conditions hold:

1. ω = 〈(Fτ1:τ2ϕ ∧
∧n

i=0 γi), td, ta, te〉, ω′ = 〈(O′
τ ′
1:τ

′
2
ϕ′ ∧

∧n
i=0 γ′

i), t
′
d, t

′
a, t′e〉,

2. unify(〈τ1, τ2, ϕ〉, 〈τ ′
1, τ

′
2, ϕ

′〉, σ), satisfy(
∧n

i=0 γi ∧ (
∧m

i=0 γ′
i · σ))

3. overlap(ta, te, t
′
a, t′e).

That is, a conflict occurs if i) a substitution σ can be found that unifies the vari-
ables of two norms3, and ii) the conjunction

∧n
i=0 γi∧(

∧m
i=0 γ′

i)·σ) of constraints

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������

60

OA1:R1
deploy(s1, X1, Y1) ∧ 10 ≤ X1 ≤ 50 ∧ 5 ≤ Y1 ≤ 45

FA2:R2
deploy(s1, X2, Y2) ∧ 5 ≤ X2 ≤ 60 ∧ 15 ≤ Y2 ≤ 40

105

5

15

40

45

50

Fig. 1. Conflict Detection: Overlap in Scopes of Influence

3 A similar definition is required to address the case of conflict between a prohibi-
tion and a permission – the first condition should be changed to ω′ = 〈(P′

τ ′
1:τ ′

2
ϕ′ ∧

Vn
i=0 γ′

i), t
′
d, t′a, t′e〉. The rest of the definition remains the same.

60 M.J. Kollingbaum et al.

from both norms can be satisfied4 (taking σ under consideration), and iii)
the activation period of the norms overlap. The overlap relationship holds if
i) ta ≤ t′a ≤ te; or ii) t′a ≤ ta ≤ t′e.

For instance, PA:Rp(c, X)∧X > 50 and Fa:bp(Y, Z)∧Z < 100 are in conflict.
We can obtain a substitution σ = {A/a, R/b, Y/c, X/Z} which shows how they
overlap. Being able to construct such a unifier is a first indication that there may
be a conflict or overlap of influence between both norms regarding the defined
action. The constraints on the norms may restrict the overlap and, therefore,
leave actions under certain variable bindings free of conflict. We, therefore, have
to investigate the constraints of both norms in order to see if an overlap of the
values indeed occurs. In our example, the permission has a constraint X > 50
and the prohibition has Z < 100. By using the substitution X/Z, we see that
50 < X < 100 and 50 < Z < 100 represent ranges of values for variables X and
Z where a conflict will occur.

For convenience (and without any loss of generality) we assume that our
norms are in a special format: any non-variable term τ occurring in ω is replaced
by a fresh variable X (not occurring anywhere in ω) and a constraint X =
τ is added to ω. This transformation can be easily automated by scanning ω
from left to right, collecting all non-variable terms {τ1, . . . , τn}; then we add
∧n

i=1Xi = τi to ν. For example, norm PA:Rp(c, X) ∧ X > 50 is transformed into
PA:Rp(C, X) ∧ X > 50 ∧ C = c.

3.2 Conflict Resolution

We propose to resolve norm conflicts by manipulating the constraints on their
variables, thus removing any overlap in their values. In Fig. 2 we show the
norms of Fig. 1 without the intersection between their scopes of influence –
the prohibition has been curtailed, its scope being reduced to avoid the values
that the obligation addresses. Specific constraints are added to the prohibition
in order to perform this curtailment; these additional constraints are derived
from the obligation, as we explain below. In our example above, we obtain

OA1:R1
deploy(s1, X1, Y1) ∧ 10 ≤ X1 ≤ 50 ∧ 5 ≤ Y1 ≤ 45

10 605

5

15

40

45

50

FA2:R2
deploy(s1, X2, Y2) ∧ 5 ≤ X2 < 10 ∧ 15 ≤ Y2 ≤ 40

FA2:R2
deploy(s1, X2, Y2) ∧ 50 < X2 ≤ 60 ∧ 15 ≤ Y2 ≤ 40

Fig. 2. Conflict Resolution: Curtailment of Scopes of Influence

4 We assume an implementation of the satisfy relationship based on “off-the-shelf”
constraint satisfaction libraries such as those provided by SICStus Prolog [25] and
it holds if the conjunction of constraints is satisfiable.

Managing Conflict Resolution in Norm-Regulated Environments 61

two prohibitions, FA2:R2deploy(s1, X2, Y2) ∧ 5 ≤ X2 < 10 ∧ 15 ≤ Y2 ≤ 40 and
FA2:R2deploy(s1, X2, Y2) ∧ 50 < X2 ≤ 60 ∧ 15 ≤ Y2 ≤ 40.

We formally define below how the curtailment of norms takes place. It is
important to notice that the curtailment of a norm creates a new (possibly
empty) set of curtailed norms:

Definition 9. Relationship curtail(ω, ω′, Ω), where ω = 〈Xτ1:τ2ϕ ∧
∧n

i=0 γi,
td, ta, te〉 and ω′ = 〈X′

τ ′
1:τ ′

2
ϕ′ ∧

∧m
j=0 γ′

j , t
′
d, t

′
a, t′e〉 (X and X′ being either O, F or

P) holds iff Ω is a possibly empty and finite set of norms obtained by curtailing
ω with respect to ω′. The following cases arise:

1. If conflict(ω, ω′, σ) does not hold then Ω = {ω}, that is, the curtailment of
a non-conflicting norm ω is ω itself.

2. If conflict(ω, ω′, σ) holds, then Ω = {ωc
0, . . . , ω

c
m}, where ωc

j = 〈Xτ1:τ2ϕ ∧∧n
i=0 γi ∧ (¬γ′

j · σ), td, ta, te〉, 0 ≤ j ≤ m.

In order to curtail ω, thus avoiding any overlapping of values its variables may
have with those variables of ω′, we must “merge” the negated constraints of ω′

with those of ω. Additionally, in order to ensure the appropriate correspondence
of variables between ω and ω′ is captured, we must apply the substitution σ
obtained via conflict(ω, ω′, σ) on the merged negated constraints.

By combining the constraints of ν = Xτ1:τ2ϕ ∧
∧n

i=0 γi and ν′ = X′
τ ′
1:τ

′
2
ϕ′ ∧∧m

j=0 γ′
j , we obtain the curtailed norm νc = Xτ1:τ2ϕ ∧

∧n
i=0 γi ∧ ¬(

∧m
j=0 γ′

j · σ).
The following equivalences hold:

Xτ1:τ2ϕ ∧
n∧

i=0

γi ∧ ¬(
m∧

j=0

γ′
j · σ) ≡ Xτ1:τ2ϕ ∧

n∧
i=0

γi ∧ (
m∨

j=0

¬γ′
j · σ)

That is,
∨m

j=0(Xτ1:τ2ϕ ∧
∧n

i=0 γi ∧ ¬(γ′
j · σ)). This shows that each constraint

on ν′ leads to a possible solution for the resolution of a conflict and a possible
curtailment of ν. The curtailment thus produces a set of curtailed norms νc

j =
Xτ1:τ2p(t1, . . . , tn) ∧

∧n
i=0 γi ∧ ¬γ′

j · σ, 0 ≤ j ≤ m.
Although each of the νc

j , 0 ≤ j ≤ m represents a solution to the norm conflict,
we advocate that all of them have to be added to Ω in order to replace the
curtailed norm. This would allow a preservation of as much of the original scope
of the curtailed norm as possible.

As an illustrative example, let us suppose Ω = {〈FA:Rp(C, X) ∧C = c∧X >
50, td, ta, te〉}. If we try to introduce a new norm ω′ = 〈PB:Sp(Y, Z) ∧ B =
a ∧ S = r ∧ Z > 100, t′d, t

′
a, t′e〉 to Ω, then we detect a conflict. This conflict

can be resolved by curtailing one of the two conflicting norms. The constraints
in ω′ are used to create such a curtailment. The new permission ω′ contains
the following constraints: B = a, S = r and Z > 100. Using σ, we construct
copies of ω, but adding ¬γ′

i · σ to them. In our example the constraint Z > 100
becomes ¬(Z > 100) · σ, that is, X ≤ 100. With the three constraints contained

62 M.J. Kollingbaum et al.

in ω′, three options for curtailing ω can be constructed. A new Ω′ is constructed,
containing all the options for curtailment:

Ω′ =

8
><

>:

〈PB:Sp(Y, Z) ∧ B = a ∧ S = r ∧ Z > 100, t′d, t′a, t′e〉〈FA:Rp(C, X) ∧ C = c ∧ X > 50 ∧ A 	= a, td, ta, te〉
〈FA:Rp(C, X) ∧ C = c ∧ X > 50 ∧ R 	= r, td, ta, te〉
〈FA:Rp(C, X) ∧ C = c ∧ X > 50 ∧ X ≤ 100, td, ta, te〉

9
>=

>;

For each ¬γ′
i · σ (A �= a, R �= r and X ≤ 100 in our example), the original

prohibition is extended with one of these constraints and added as a new, more
restricted prohibition to Ω′. Each of these options represents a part of the scope
of influence regarding actions of the original prohibition ω, restricted in such
a way that a conflict with the permission is avoided. In order to allow a check
whether any other action that was prohibited by ω is prohibited or not, it is nec-
essary to make all three prohibitions available in Ω′. If there are other conflicts,
additional curtailments may be necessary.

3.3 An Implementation of Norm Curtailment

We show in Figure 3 a prototypical implementation of the curtailment process as
a logic program. We show our logic program with numbered lines to enable the
easy referencing of its constructs. Lines 1–7 define curtail, and lines 8–14 define
an auxiliary predicate merge/3. Lines 1–6 depict the case when the norms are
in conflict: the test in line 4 ensures this. Line 5 invokes the auxiliary predicate
merge/3 which, as the name suggests, merges the conjunction of γi’s with the
negated constraints γ′

j ’s. Line 6 assembles Ω by collecting the members Γ of the
list Γ̂ and using them to create curtailed versions of ω. The elements of the list
Γ̂ assembled via merge/3 are of the form (

∧n
i=0 γi) ∧ (¬γ′

j · σ) – additionally,
in our implementation we check if each element is satisfiable5 (line 10). The
rationale for this is that there is no point in creating a norm which will never be
applicable as its constraints cannot be satisfied, so these are discarded during
their preparation.

1 curtail(ω, ω′, Ω) ←
2 ω = 〈Xτ1:τ2ϕ ∧ Vn

i=0 γi, td, ta, te〉∧
3 ω′ = 〈X′

τ′
1:τ′

2
ϕ′ ∧ Vm

j=0 γ′
j , t′d, t′a, t′e〉∧

4 conflict(ω, ω′, σ)∧
5 merge([(¬γ′

0 · σ), . . . , (¬γ′
m · σ)], (

Vn
i=0 γi), bΓ)∧

6 setof (〈Xτ1:τ2ϕ ∧ Γ, td, ta, te〉, member(Γ, bΓ), Ω)
7 curtail(ω, ω′, {ω})

8 merge([], , [])

9 merge([(¬γ′ · σ)|Gs], (
Vn

i=0 γi), [Γ | bΓ]) ←
10 satisfy((

Vn
i=0 γi) ∧ (¬γ′ · σ))∧

11 Γ = (
Vn

i=0 γi) ∧ (¬γ′ · σ)∧
12 merge(Gs, (

Vn
i=0 γi), bΓ)

13 merge([|Gs], (
Vn

i=0 γi), bΓ) ←
14 merge(Gs, (

Vn
i=0 γi), bΓ)

Fig. 3. Implementation of curtail as a Logic Program

5 We have made use of SICStus Prolog [25] constraint satisfaction libraries [13].

Managing Conflict Resolution in Norm-Regulated Environments 63

3.4 Curtailment Policies

Rather than assuming that a specific deontic modality is always curtailed6, we
propose to explicitly use policies determining, given a pair of norms, which one
is to be curtailed. Such policies confer more flexibility on our curtailment mech-
anism, allowing for a fine-grained control over how norms should be handled:

Definition 10. A policy π is a tuple 〈ω, ω′, (
∧n

i=0 γi)〉 establishing that ω should
be curtailed (and ω′ should be preserved), if (

∧n
i=0 γi) hold.

A sample policy is〈〈FA:Rp(X, Y), Td, Ta, Te〉, 〈PA:Rp(X, Y), T ′
d, T

′
a, T ′

e〉, (Td<T ′
d)〉.

It expresses that any prohibition held by any agent that corresponds to the pat-
tern FA:Rp(X, Y) has to be curtailed, if the additional constraint, which expresses
that the prohibition’s time of declaration Td precedes that of the permission’s T ′

d,
holds. Adding constraints to policies allows us a fine-grained control of conflict
resolution, capturing classic forms of deontic conflict resolution – the constraint
in the example establishes a precedence relationship between the two norms
known as lex posterior (see Section 7 for more details). We shall represent a set
of such policies as Π .

4 Management of Normative States

In this section we explain how our approach to conflict detection and resolution
can be used to manage normative states Ω. We explain how we preserve conflict-
freedom when adopting a new norm as well as how norms are removed – when
a norm is removed we must guarantee that any curtailment it caused is undone.

4.1 Norm Adoption

The algorithm in Fig. 4 describes how an originally conflict-free (possibly empty)
set Ω can be extended in a fashion that resolves any emerging conflicts during
norm adoption. With that, a conflict-free Ω is always transformed into a conflict-
free Ω′ that may contain curtailments. The algorithm makes use of a set Π of
policies determining how the curtailment of conflicting norms should be done.

When a norm is curtailed, a set of new norms replace the original norm. This
set of norms is collected into Ω′′ by curtail(ω, ω′, Ω′′). A curtailment takes place
if there is a conflict between ω and ω′. The conflict test creates a unifier σ re-used
in the policy test. When checking for a policy that is applicable, the algorithm
uses unification to check (a) whether ω matches/unifies with ωπ and ω′ with ω′

π;
and (b) whether the policy constraints hold under the given σ. If a previously
agreed policy in Π determines that the newly adopted norm ω is to be curtailed
in case of a conflict with an existing ω′ ∈ Ω, then the new set Ω′ is created by
adding Ω′′ (the curtailed norms) to Ω. If the policy determines a curtailment of
an existing ω′ ∈ Ω when a conflict arises with the new norm ω, then a new set
Ω′ is formed by a) removing ω′ from Ω and b) adding ω and the set Ω′′ to Ω.
6 In [26], for instance, prohibitions are always curtailed. This ensures the choices on

the agents’ behaviour are kept as open as possible.

64 M.J. Kollingbaum et al.

algorithm adoptNorm(ω, Ω, Π, Ω′)
input ω, Ω, Π
output Ω′

begin
Ω′ := ∅
if Ω = ∅ then

Ω′ := Ω ∪ {ω}
else

for each ω′ ∈ Ω do
if conflict(ω, ω′, σ) then // test for conflict

if 〈ωπ, ω′
π, (

Vn
i=0 γi)〉 ∈ Π and // test policy

unify(ω, ωπ, σ) and unify(ω′, ω′
π, σ) and satisfy(

Vn
i=0(γi · σ)) then

begin
curtail(ω, ω′, Ω′′)
Ω′ := Ω ∪ Ω′′

end
else

if 〈ω′
π, ωπ, (

Vn
i=0 γi)〉 ∈ Π and // test policy

unify(ω, ωπ, σ) and unify(ω′, ω′
π, σ) and satisfy(

Vn
i=0(γi · σ)) then

begin
curtail(ω′, ω, Ω′′)
Ω′ := (Ω − {ω′}) ∪ ({ω} ∪ Ω′′)

end
end

Fig. 4. Norm Adoption Algorithm

4.2 Norm Removal

As well as adding norms to normative states we also need to support their
removal. Since the introduction of a norm may have interfered with other norms,
resulting in their curtailment, when that norm is removed we must undo the
curtailments it caused, that is, we must return (or “roll back”) to a previous form
of the normative state. In order to allow curtailments of norms to be undone,
we record the complete history of normative states representing the evolution of
normative positions of agents:

Definition 11. H is a non-empty and finite sequence of tuples 〈i, Ω, ω, π〉, where
i ∈ IN represents the order of the tuples, Ω is a normative state, ω is a norm and
π is a policy.

We shall denote the empty history as 〈 〉. We define the concatenation of se-
quences as follows: if H is a sequence and h is a tuple, then H • h is a new
sequence consisting of H followed by h. Any non-empty sequence H can be de-
composed as H = H′ • h • H′′, H′ and/or H′′ possibly empty. The following
properties hold for our histories H:

1. H = 〈0, ∅, ω, π〉 • H′

2. H = H′ • 〈i, Ω′, ω′, π′〉 • 〈i + 1, Ω′′, ω′′, π′′〉 • H′′

3. adoptNorm(ωi, Ωi, {πi}, Ωi+1)

The first condition establishes the first element of a history to be an empty Ω.
The second condition establishes that the tuples are completely ordered on their
first component. The third condition establishes the relationship between any
two consecutive tuples in histories: normative state Ωi+1 is obtained by adding
ωi to Ωi adopting policy πi.

Managing Conflict Resolution in Norm-Regulated Environments 65

algorithm removeNorm(ω,H, Ω,H′)
input ω,H
output Ω,H′

begin
if H = H′ • 〈k, Ωk, ω, πk〉 • · · · • 〈n, Ωn, ωn, πn〉 then
begin

Ω := Ωk

for i = k + 1 to n do
begin

adoptNorm(ωi, Ω, {πi}, Ω′)
H′ := H′ • 〈i, Ω, ωi, πi〉
Ω := Ω′

end
end
else
begin

H = H′′ • 〈n, Ωn, ωn, πn〉
Ω := Ωn, H′ := H

end
end

Fig. 5. Algorithm to Remove Norms

H is required to allow the retraction of a norm in an ordered fashion, as not
only the norm itself has to be removed but also all the curtailments it caused
when it was introduced in Ω. H contains a tuple 〈i, Ω, ω, π〉 that indicates the
introduction of norm ω and, therefore, provides us with a normative state Ω
before the introduction of ω. The effect of the introduction of ω can be reversed
by using Ω and redoing (performing a kind of “roll forward”) all the inclusions
of norms according to the sequence represented in H via adoptNorm .

This mechanism is detailed in Figure 5: algorithm removeNorm describes how
to remove a norm ω given a history H; it outputs a normative state Ω and an
updated history H′ and works as follows. Initially, the algorithm checks if ω
indeed appears in H – it does so by matching H against a pattern of a sequence
in which ω appears as part of a tuple (notice that the pattern initialises the
new history H′). If there is such a tuple in H, then we initialise Ω as Ωk,
that is, the normative state before ω was introduced. Following that, the for
loop implements a roll forward, whereby new normative states (and associated
history H′) are computed by introducing the ωi, k + 1 ≤ i ≤ n, which come
after ω in the original history H. If ω does not occur in any of the tuples of
H (this case is catered by the else of the if construct) then the algorithm uses
pattern-matching to decompose the input history H and obtain its last tuple –
this is necessary as this tuple contains the most recent normative state Ωn which
is assigned to Ω; the new history H′ is the same as H.

5 Norm-Aware Agent Societies

With a set Ω that reflects a conflict-free global normative situation, agents can
test whether their actions are norm-compliant. In order to check actions for
norm-compliance, we again use unification. If an action unifies with a norm,
then it is within its scope of influence:

66 M.J. Kollingbaum et al.

check(Action, ω)←
Action = 〈a :r, ϕ̄, t〉∧
ω = 〈(Fτ1:τ2ϕ ∧Vn

i=0 γi), td, ta, te〉∧
unify(〈a, r, ϕ̄〉, 〈τ1, τ2, ϕ〉, σ) ∧ satisfy(

Vn
i=0 γi · σ) ∧ ta ≤ t ≤ te

Fig. 6. Check if Action is within Influence of a Prohibition

Definition 12. 〈a : r, ϕ̄, t〉, is within the scope of influence of 〈Xτ1:τ2ϕ∧
∧n

i=0 γi,
td, ta, te〉 (where X is either O, P or F) iff the following conditions hold:

1. unify(〈a, r, ϕ̄〉, 〈τ1, τ2, ϕ〉, σ) and satisfy(
∧n

i=0 γi · σ)
2. ta ≤ t ≤ te

This definition can be used to establish a predicate check/2, which holds if its
first argument, a candidate action (in the format of the elements of Ξ of Def. 2),
is within the influence of a prohibition ω, its second parameter. Figure 6 shows
the definition of this relationship as a logic program. Similarly to the check of
conflicts between norms, it tests i) if the agent performing the action and its role
unify with the appropriate terms τ1, τ2 of ω; ii) if the actions ϕ̄, ϕ themselves
unify; and iii) the conjunction of the constraints of both norms can be satisfied,
all under the same unifier σ. Lastly, it checks if the time of the action is within
the norm temporal influence.

6 Indirect Conflicts

In our previous discussion, norm conflicts were detected via a direct comparison
of atomic formulae representing actions. However, conflicts and inconsistencies
may also arise indirectly via relationships among actions. For instance, if an
agent has associated norms PA:Rp(X) and FA:Rq(X, X) and that the action
p(X) amounts to the action q(X, X), then we can rewrite the permission as
PA:Rq(X, X) and identify an indirect conflict between the two norms. We use
a set of domain axioms in order to declare such domain-specific relationships
between actions:

Definition 13. The set of domain axioms, denoted as Δ, are a finite and possi-
bly empty set of formulae ϕ → (ϕ′

1 ∧ · · · ∧ϕ′
n) where ϕ, ϕ′

i, 1 ≤ i ≤ n, are atomic
first-order formulae.

In order to address indirect conflicts between norms based on domain-specific
relationships of actions, we have to adapt our curtailment mechanism. With the
introduction of domain axioms ϕ → (ϕ′

1 ∧ · · · ∧ ϕ′
n), the conflict check has to

be performed for each of the conjuncts in this relationship. For example, if we
have Δ = {(p(X) → q(X, X)∧ r(X, Y))} and 〈PA:Rp(X), td, ta, te〉, then actions
q(X, X) and r(X, Y) are also permitted. If we also have 〈FA:Rq(X, X), td, ta, te〉
then an indirect conflict occurs. We now revisit Def. 8, extending it to address
indirect conflicts:

Managing Conflict Resolution in Norm-Regulated Environments 67

Definition 14. An indirect conflict arises between two norms ω, ω′ under a set
of domain axioms Δ and a substitution σ, denoted as conflict∗(Δ, ω, ω′), iff:

1. conflict(ω, ω′, σ), or
2. ω = 〈(Xτ1:τ2ϕ∧

∧n
i=0 γi), td, ta, te〉, there is an axiom (ϕ′ → (ϕ′

1∧· · ·∧ϕ′
m)) ∈

Δ such that unify(ϕ, ϕ′, σ′), and
∨m

i=1 conflict∗(Δ, 〈(Xτ1:τ2ϕ
′
i ∧

∧n
i=0 γi), td,

ta, te〉 · σ′, ω′),

The above definition recursively follows a chain of indirect conflicts, looking for
any two conflicting norms. Case 1 provides the base case of the recursion, check-
ing if norms ω, ω′ are in direct conflict. Case 2 addresses the general recursive
case: if a norm X (that is, O, P or F) on an action ϕ unifies with ϕ′ on the
left-hand side of a domain axiom (ϕ → (ϕ′

1 ∧ · · · ∧ ϕ′
m)) ∈ Δ, then we “trans-

fer” the norm from ϕ to ϕ′
1, . . . , ϕ

′
m, thus obtaining 〈(Xτ1:τ2ϕ

′
i ∧

∧n
i=0 γi), td,

ta, te〉, 1 ≤ i ≤ m. If we (recursively) find an indirect conflict between ω′ and
at least one of these norms, then an indirect conflict arises between the original
norms ω, ω′. It is important to notice that the substitution σ′ that unifies ϕ and
ϕ′ is factored in the mechanism: we apply it to the new ϕ′

is in the recursive call(s).
Domain axioms may also accommodate the delegation of actions between

agents. Such a delegation transfers norms across the agent community and, with
that, conflicts also. We introduce a special logical operator ϕ

τ1:τ2 τ′
1:τ

′
2−−−−−−→(ϕ′

1∧· · ·∧ϕ′
n)

to represent that agent τ1 adopting role τ2 can transfer any norms on action ϕ
to agent τ ′

1 adopting role τ ′
2, which should carry out actions ϕ′

1∧· · ·∧ϕ′
n instead.

We formally capture the meaning of this operator as follows:

3. ω = 〈(Xτ1:τ2ϕ ∧
∧n

i=0 γi), td, ta, te〉, there is a delegation axiom (ϕ
τ1:τ2 τ′

1:τ′
2−−−−−−→

(ϕ′
1∧· · ·∧ϕ′

m)) ∈ Δ, s.t. unify(〈ϕ, τ1, τ2〉, 〈ϕ′, τ ′
1, τ

′
2〉, σ′), and

∨m
i=1 conflict∗

(Δ, 〈(Xτ ′
1:τ ′

2
ϕ′

i ∧
∧n

i=0 γi), td, ta, te〉 · σ′, ω′)

That is, we obtain a domain axiom and check if its action, role and agent unify
with those of ω. The norm will be transferred to the new actions (ϕ′

1 ∧ · · · ∧ϕ′
m)

but these will be associated with a possibly different agent/role pair τ ′
1:τ

′
2. The

new norms are recursively checked and if at least one of them conflicts with
ω′, then an indirect conflict arises. Means to detect loops in delegation must be
added to the definition above.

7 Related Work

Efforts to keep law systems conflict-free can be traced back to the jurispruden-
tial practice in human society. Inconsistency in law is an important issue and
legal theorists use a diverse set of terms such as, for example, normative in-
consistencies/conflicts, antinomies, discordance, etc., in order to describe this
phenomenon. There are three classic strategies for resolving deontic conflicts
by establishing a precedence relationship between norms: legis posterioris – the
most recent norm takes precedence, legis superioris – the norm imposed by the
strongest power takes precedence, and legis specialis – the most specific norm
takes precedence [17].

68 M.J. Kollingbaum et al.

Early investigations into norm conflicts were outlined in [21], describing three
forms of conflict/inconsistency as total-total, total-partial and intersection. These
are special cases of the intersection of norms as described in [16] – a permission
entailing the prohibition, a prohibition entailing the permission or an overlap of
both norms.

In [22,23], aspects of legal reasoning such as non-monotonic reasoning in law,
negation and conflict are discussed. It is pointed out that legal reasoning is often
based on prima facie incompatible premises, which is due to the defeasibility
of legal norms and the dynamics of normative systems, where new norms may
contradict older ones (principle of legis posterioris), the concurrence of multiple
legal sources with normative power distributed among different bodies issuing
contradicting norms (principle of legis superioris), and semantic indeterminacy.
To resolve such conflicts, it is proposed to establish an ordering among norms
according to criteria such as hierarchy (legis superioris), chronology (legis poste-
rioris), speciality (exception to the norm are preferred) or hermeneutics (more
plausible interpretations are preferred). The work presented in [16] discusses
in part these kinds of strategies, proposing conflict resolution according to the
criteria mentioned above.

The work described in [5] analyses different normative conflicts – in spite of
its title, the analysis is an informal one. That work differentiates between ac-
tions that are simultaneously prohibited and permitted – these are called deontic
inconsistencies – and actions that are simultaneously prohibited and obliged –
these are called deontic conflicts. The former is merely an “inconsistency” be-
cause a permission may not be acted upon, so no real conflict actually occurs.
On the other hand, those situations when an action is simultaneously obliged
and prohibited represent conflicts, as both obligations and prohibitions influ-
ence behaviours in an incompatible fashion. Our approach to detecting deontic
conflict can capture the three forms of conflict/inconsistency of [21], viz. total-
total, total-partial and intersection, respectively, when the permission entails the
prohibition, when the prohibition entails the permission and when they simply
overlap. Finally, we notice that the world knowledge explained in [5], required to
relate actions, can be formally captured by our indirect norm conflicts depicted
in Section 6.

The work presented in this paper is an adaptation and extension of [16,26]
and [10], also providing an investigation into deontic modalities for representing
normative concepts [4,24]. In [26], a conflict detection and resolution based on
unification is introduced: we build on that research, introducing constraints to
the mechanisms proposed in that work.

8 Conclusions, Discussion and Future Work

We have presented mechanisms to detect and resolve conflicts in norm-regulated
environment. Such conflicts arise when an action is simultaneously obliged and
prohibited/permitted. We represent norms as first-order atomic formulae whose
variables can have arbitrary constraints associated – this allows for more

Managing Conflict Resolution in Norm-Regulated Environments 69

expressive norms, with a finer granularity and greater precision. The mechanisms
are based on first-order unification and constraint satisfaction, extending the work
of [26], and addressing a more expressive class of norms. Our conflict resolution
mechanism amounts to manipulating the constraints of norms to avoid overlap-
ping values of variables – this is called the “curtailment” of variables/norms. A
prototypical implementation of the curtailment process is given as a logic program
and is used in the management of the normative state of an agent society. We have
also introduced an algorithmto manage the adoption of possibly conflicting norms,
whereby explicit policies depict how the curtailment between specific norms should
take place, as well as an algorithm depicting how norms should be removed, thus
undoing the effects of past curtailments.

In this work we only considered norms with universal quantifiers over discrete
domains. These assumptions limit the applicability of our solution. Universally
quantified permissions capture a common sense of norm: an agent is permitted
to perform an action with any value its quantified variables may get (and which
satisfy the constraints); the same holds for prohibitions. However, obligations are
conventionally existential: an agent is obliged to perform an action once with
one of its possible values.

We are currently exploiting our approach in mission-critical scenarios [27],
including, for instance, combat and disaster recovery (e.g. extreme weather con-
ditions and urban terrorism). Our goal is to describe mission scripts as sets of
norms: these will work as contracts that teams of human and software agents
can peruse and make sense of. Mission-critical contracts should allow for the del-
egation of actions and norms, via pre-established relationships between roles: we
have been experimenting with special “count as” operators which neatly capture
this. Additionally, our mission-critical contracts should allow the representation
of plan scripts with the breakdown of composite actions into the simplest atomic
actions. Norms associated with composite actions will be distributed across the
composite actions, possibly being delegated to different agents and/or roles.

References

1. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, Englewood Cliffs
(1997)

2. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing in
Norm-Governed Ad Hoc Networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum,
p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476. Springer, Heidelberg (2005)

3. Conte, R., Castelfranchi, C.: Understanding the Functions of Norms in Social
Groups through Simulation. In: Gilbert, N., Conte, R. (eds.) Artificial Societies:
The Computer Simulation of Social Life, pp. 252–267. UCL Press, London (1995)

4. Dignum, F.: Autonomous Agents with Norms. A.I. & Law 7, 69–79 (1999)
5. Elhag, A., Breuker, J., Brouwer, P.: On the Formal Analysis of Normative Conflicts.

Information & Comms. Techn. Law 9(3), 207–217 (2000)
6. Esteva, M., Padget, J., Sierra, C.: Formalizing a Language for Institutions and

Norms. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333.
Springer, Heidelberg (2002)

70 M.J. Kollingbaum et al.

7. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, New
York (1990)

8. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Int’ J. Supercomputer Applications 15(3), 209–235 (2001)

9. Gaertner, D., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.-A., Vascon-
celos, W.: Distributed Norm Management in Regulated Multi-agent Systems. In:
Procs. 6th Int’l Joint Conf. on Autonomous Agents & Multiagent Systems (AA-
MAS 2007), Honolulu, Hawai’i (May 2007)

10. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.-A.: An Algorithm for Con-
flict Resolution in Regulated Compound Activities. In: 7th Annual Int’l Work-
shop “Engineering Societies in the Agents World” (ESAW 2006), Dublin, Ireland
(September 2006)

11. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.-A., Sierra, C., Vasconcelos, W.: A Rule-
based Approach to Norm-Oriented Programming of Electronic Institutions. ACM
SIGecom Exchanges 5(5), 33–40 (2006)

12. Garćıa-Camino, A., Rodriguez-Aguilar, J.-A., Sierra, C., Vasconcelos, W.W.: A
Distributed Architecture for Norm-Aware Agent Societies. In: Baldoni, M., Endriss,
U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904. Springer,
Heidelberg (2006)

13. Jaffar, J., Maher, M.J.: Constraint Logic Programming: A Survey. Journal of Logic
Progr. 19(20), 503–581 (1994)

14. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The Semantics of Constraint
Logic Programs. Journal of Logic Progr 37(1-3), 1–46 (1998)

15. Kollingbaum, M.: Norm-governed Practical Reasoning Agents. PhD thesis, Uni-
versity of Aberdeen (2005)

16. Kollingbaum, M., Norman, T., Preece, A., Sleeman, D.: Norm Refinement: Inform-
ing the Re-negotiation of Contracts. In: Procs. Workshop on Coordination, Orga-
nization, Institutions and Norms in Agent Systems (COIN@ECAI 2006), Riva del
Garda, Italy (August 2006)

17. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-Dimensional Dynamic Knowledge
Representation. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001.
LNCS (LNAI), vol. 2173. Springer, Heidelberg (2001)

18. López y López, F.: Social Power and Norms: Impact on Agent Behaviour. PhD
thesis, Univ. of Southampton (June 2003)

19. Norman, T., Preece, A., Chalmers, S., Jennings, N., Luck, M., Dang, V., Nguyen,
T., Deora, V., Shao, J., Gray, W., Fiddian, N.: Agent-based Formation of Virtual
Organisations. Knowledge Based Systems 17, 103–111 (2004)

20. Pacheco, O., Carmo, J.: A Role Based Model for the Normative Specification of
Organized Collective Agency and Agents Interaction. Autonomous Agents and
Multi-Agent Systems 6(2), 145–184 (2003)

21. Ross, A.: On Law and Justice. Stevens & Sons (1958)
22. Sartor, G.: The Structure of Norm Conditions and Nonmonotonic Reasoning in

Law. In: Procs. 3rd Int’l Conf. on A.I. & Law (ICAIL1991), Oxford, England (July
1991)

23. Sartor, G.: A Simple Computational Model for Nonmonotonic and Adversarial Le-
gal Reasoning. In: Procs. 4th Int’l Conf. on A.I. & Law (ICAIL1993). The Nether-
lands, Amsterdam (June 1993)

24. Sergot, M.: A Computational Theory of Normative Positions. ACM Trans. Com-
put. Logic 2(4), 581–622 (2001)

Managing Conflict Resolution in Norm-Regulated Environments 71

25. Swedish Institute of Computer Science. SICStus Prolog (viewed on 10 Feb 2005 at
18.16 GMT) (2005), http://www.sics.se/isl/sicstuswww/site/index.html

26. Vasconcelos, W., Kollingbaum, M., Norman, T., Garćıa-Camino, A.: Resolving
Conflict and Inconsistency in Norm-Regulated Virtual Organizations. In: Procs.
6th Int’l Joint Conf. on Autonomous Agents & Multiagent Systems (AAMAS
2007), Honolulu, Hawai’i (2007)

27. White, S.M.: Requirements for Distributed Mission-Critical Decision Support Sys-
tems. In: Procs 13th Annual IEEE Int’l Symp. & Workshop on Eng. of Computer-
Based Systs (ECBS 2006) (2006)

http://www.sics.se/isl/sicstuswww/site/index.html

Alternative Dispute Resolution in

Virtual Organizations

Jeremy Pitt, Daniel Ramirez-Cano, Lloyd Kamara, and Brendan Neville

Intelligent Systems & Networks Group, Dept. of Electrical & Electronic Engineering,
Imperial College London, SW7 2BT, UK

Abstract. Networked systems are the driving force of modern business
and commerce, underpinned by ideas such as agile enterprises, holonic
manufacturing, and dynamic real-time supply chains. On occasions, the
system operation will be sub-optimal or non-ideal, and disputes will oc-
cur between independent partners. It may be undesirable to resolve such
disputes by recourse to law; preferably, the parties in dispute would
settle the matter by themselves. Therefore, we develop an alternative
dispute resolution (ADR) system for virtual organizations as a way of
settling disputes internally. We provide a norm-governed specification
of an ADR protocol which is, effectively, an intelligent agent-based au-
tonomic system. We develop this specification in two ways: concretely,
through description of the mechanisms underlying protocol operation;
and abstractly, by considering how the specification addresses principles
for jury trials.

1 Introduction

Networked systems are the driving force of modern business and commerce,
underpinned by ideas such as:

– The agile enterprise: a decentralised, flexible and adaptive ‘organization’
which adjusts to changing environments or market opportunities with mini-
mal disruption [1];

– Holonic manufacturing: coordination of factory components (or ‘holons’, i.e.
machines, workbenches, plants, personnel, parts, etc.) for mass customization
and accelerated product development [2]; and

– Real-time business intelligence: on-demand, responsive supply chains which
use visible information to adapt to prevailing market conditions [3].

Characteristic features of all these ideas include decision-making based on local
information, decentralised control, and heterogeneous — and therefore unpre-
dictable — network components with potentially conflicting goals. As a result,
there is scope for error: either by malice, disobedience, self-interest, accident,
or necessity, system operation may occasionally deviate from the ideal. These
are the same characteristics of open agent societies [4, 5]. In previous work, we
have proposed [6] a norm-governed approach to multi-agent systems, as a basis

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 72–89, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Alternative Dispute Resolution in Virtual Organizations 73

for specifying open agent societies which can, in turn, be used to realise agile
enterprises, virtual organizations, and so on.

In this previous work, we have generally identified norm-violation and used
some form of sanction mechanism to deal with it [6]. However, we also recognise
that norm-violation can be subject to dispute between otherwise independent
partners who are participating in an open system such as a virtual organization
(VO) [7]. A commercial dispute in a ‘real’ organization would often be solved
by time-consuming and costly litigation. Furthermore, taking a matter to court
almost certainly damages the potential for any future business opportunities
between the litigants. Therefore it may be undesirable to resolve such disputes
by recourse to law: preferably, the parties in dispute would settle the matter
by themselves. The savings in time, money and importantly long-term business
relations suggest that amicable, mutually agreed, internal settlements are more
in keeping with autonomic ‘self-repair’ mechanisms than adversarial, externally-
decided, imposed ‘crime and punishment’ approaches to social order.

Accordingly, in this paper we present the basis of an alternative dispute
resolution (ADR) system for virtual organizations as a way of settling dis-
putes internally. We provide a norm-governed specification of an ADR protocol
which is, effectively, an intelligent agent-based autonomic system supporting
self-organisation and self-regulation in agent societies. Having described the
mechanisms behind agent actions within the protocol, we then consider how the
specification addresses principles for jury trials in human societies. We find that
not only are these principles embodied by the specification, but that through
them, we can also leverage massive scalability, ‘cheap’ communications and
‘rapid’ decision-making to achieve a pluralistic and representative computational
society.

2 Background and Motivation

In this section we present in more detail the background and motivation for
this work. We briefly consider a key driver for the research, the delivery of
automated intelligent legal information systems; then, we review the background
technology of norm-governed open multi-agent systems (open agent societies),
and then consider the motivation for using ADR as a kind of autonomic system
for virtual organizations.

2.1 Automated Legal Intelligent System

A tripartite systemof governmenthas, particularly through its legislature and judi-
ciary, front-line responsibility for the underlying framework for economic activity
in the governed society. Increasingly, the Internet and other communications net-
works are driving new models for this economic activity, including, as discussed,
newmodels ofB2B (Business-to-Business) commerce (i.e. agile enterprises, holonic
manufacturing, etc.), but also newmodels ofB2CandC2C (Business-to-Consumer
and Consumer-to-Consumer) commerce, enabled by e-commerce,micro-payments
and individually produced and distributed content.

74 J. Pitt et al.

It is partially the role of e-Government, then, with respect to the improvement
of delivery of public services, to ensure that citizens’ rights are respected in
this new digital economy. Therefore, since it will inevitably be the case that
legal conflict will arise, for example over contracts, payments, use of intellectual
property, and so on, it is necessary to provide a mechanism for dealing with that
conflict. In particular, a lightweight mechanism is required, to avoid expensive
litigation over relatively modest sums, and unduly prolonged processes for what
should, or could, be quickly resolved issues.

One objective of the EU ALIS project (IST 027968) is to develop a computa-
tional platform which offers legal information services that can provide exactly
this lightweight mechanism. One underlying concept being used to develop this
platform is the theory and technology of norm-governed multi-agent systems.

2.2 Norm-Governed Multi-agent Systems

A norm-governed multi-agent system can be expressed in terms of a set of agents
(the members of a society), a set of social constraints on a society (norms, and
other constraints, such as physical and logical constraints), a set of roles that
members can play, the state of the members and the environment in which they
act, a communication language, relationships between the members, including
ownership and representation relations, and the structure of an open agent so-
ciety (OAS). For more details, see [6].

In addition to the above features, we maintain the standard and long estab-
lished distinction between physical capability, institutionalised power and per-
mission (see, for instance, [8,9] for illustrations of this distinction). Accordingly,
a specification of the social constraints of a norm-governed multi-agent system
expresses four aspects of agent activity: (i) the physical capabilities; (ii) institu-
tionalised powers; (iii) permissions, prohibitions and obligations of the agents;
and (iv) the sanctions and enforcement policies that deal with the performance
of forbidden actions and non-compliance with obligations.

Of particular interest in the current work is the refinement of the specification
of sanctions and enforcement policies. What we seek is an identification of the
norm-violation (the cause for sanction) or dispute over one of the other three
aspects of agent behaviour, and an enforcement policy for ‘repair’ of the sanction
or dispute that is based on Alternative Dispute Resolution.

2.3 Alternative Dispute Resolution

Alternative Dispute Resolution (ADR), especially on-line, is another option to
litigation, or court resolution, and usually takes the form of negotiation, media-
tion or arbitration (cf. [10,11]). The rise in importance of ADR methods over the
past two decades is due to the numerous benefits offered to the parties involved
in a dispute (see below), coupled with the well known shortcomings of litigation.
Consequently, investigating and implementing ADR in the context of intelligent
legal system is an important focus of attention, and raises many key issues that
citizens and businesses should consider when attempting to resolve a conflict.

Alternative Dispute Resolution in Virtual Organizations 75

Fig. 1. Some relative attributes of dispute-resolution methods (from [13], Chart 7.2)

The problems of litigation have played a major part in the promotion of ADR
to disputing parties, none more so than to firms, especially small to medium
enterprises. Some reports indicate that very few lawsuits filed actually go to
trial, and of this an even smaller proportion arrive at a verdict [12]. This is often
due to a settlement being reached just prior to the end, or the case breaking
down leading to a retrial. Equally, securing ‘justice’ for the individual citizen
can be daunting when faced with the prospect of going to court, whereby the
time, expense and hassle can easily outweigh the relatively small sums involved
in the dispute. There are several initiatives to ensure that such minor cases can
be resolved quickly, e.g. the Small Claims Court in the UK.

Even so, with many litigating cases reaching a settlement, they often come
at a high price, in terms of money and time. In many cases, it can take years
for a case to come to trial, time firms and individuals cannot afford to wait.
During trial, companies and governments could be forced to wait for a prolonged
period, impacting heavily on business. The significant capital expenditures make
the litigation process expensive, with fees incurred for legal services, as well as
the cost of court overheads. There is also the potential for appeals, which can
immediately add to the mounting delay and cost.

By contrast, ADR carries numerous benefits [14], including often being op-
portune and relatively quick. It also allows the parties involved to have more
control over their dispute, and so settlement, as they choose the procedure and
terms and conditions. In addition, any third party required — for example in
a mediation and arbitration procedure — can be determined by those involved,
and can come from within the system, so that ‘juries’ are selected from a peer
group with a genuinely shared experience, knowledge and understanding. Fur-
ther distinctions between various types of dispute resolution appear in Fig. 1,
which depicts a ‘spectrum’ of associated procedural qualities.

ADR and related approaches have also been seen as important auxiliary
services to mainstream legal process. This is apparent in economic contexts
— see for example, the Organisation for Economic Co-operation and Devel-
opment’s workshop on ADR [15] as well as the United Nations 2003 report
on e-commerce [13] — and the assessments of a number of commercial enti-
ties [16, 17, 18]. For all of the above reasons, ADR is a particularly apposite

76 J. Pitt et al.

approach to building an ‘autonomic’ system for dealing with disputes and norm-
violations in Virtual Organizations.

3 Alternative Dispute Resolution Protocol: Specification

In this section, we discuss the specification of an Alternative Dispute Resolution
protocol. A full specification can be found in [19,20], including AUML diagrams
specifying the sequence of actions in the protocol, and an Event Calculus (EC)
[21] axiomatisation of those actions which determine the changing normative
positions (i.e. in terms of power, permissions, sanctions, etc.).

There are in fact three methods for ADR in our system: negotiation, mediation
(negotiation through a third party mediator), and arbitration (the dispute is put
to a panel or ‘jury’ who adjudicate). In the following sub-sections, we concentrate
on the specification of the arbitration protocol and the associated concepts of
arbitration panel composition, jury decision-making through opinion formation
and a voting protocol.

3.1 Arbitration Protocol

The arbitration protocol provides an impartial resolution to a dispute based
on the expert legal opinion of a panel of arbitrators (strictly speaking, agents
occupying the role of arbitrators). The resolution of the arbitrators is given in
the form of an award which is final and not open to negotiation or appeal (unless
specific provision has been made otherwise).

An important advantage of arbitration over litigation is that under the former,
the disputants can choose which neutral third parties arbitrate the dispute and
the rules of the session. Thus, a panel of arbitrators (the size of which is mutually
agreed as a norm of the VO) is chosen from a potential pool of arbitrators.
Membership of the pool can be open to any participant in the VO, or can be
dependent on application-specific qualifications. For example, agents may learn
domain-dependent legal process and strategies from participating in different
mediation/arbitration cases. When a subsequent dispute resolution case arises,
agents with the relevant domain knowledge and experience can be nominated
for the pool from which the actual arbitrators for the case are selected.

The arbitrators consider all the relevant facts during the deliberative process
and eventually formulate an award (binding on the parties) following a process of
opinion formation. In this process each arbitrator can influence and be influenced
by other agents to change its opinion.

The parties present their versions of the dispute and their demands. Each
party has the opportunity to present any argument, evidence or document which
might help their case. For the purpose of the current work it is assumed that a
full ontology to represent relevant facts and laws exists and that the information
presented by the parties is represented using the same ontology.

We propose the following (simplified) arbitration protocol for dispute resolu-
tion, inspired by the work of the WIPO arbitration and mediation center [18]:

Alternative Dispute Resolution in Virtual Organizations 77

(i) Arbitration panel composition; (ii) Voting, and (iii) Jury Decision-making
through opinion formation. We now look at each stage in turn.

3.2 Arbitration Panel Composition

The selection of individual arbitrators depends on the preferences and strategies
of the parties (who are each likely to choose arbitrators that are sympathetic
to their respective case(s)). The panel selection process is, however, overseen
centrally along the following lines:

– Nomination: Both parties nominate a list of arbitrators in order of prefer-
ence.

– Vetoing: Both parties may veto some arbitrators from their counterpart’s
list.

– Alternate strike: Both parties successively remove one name from the list
until the required panel size is met.

– Chair appointing: One arbitrator is appointed as chair, in addition to the
arbitrators chosen by the panel (see Section 3.3).

The Event Calculus (EC) is an executable logic programming formalism for rea-
soning about time, action and events. This formalism can be used to both express
and analyse the panel selection process. In an EC specification, this analysis de-
termines both the multi-valued fluents (a state variable representing a system
property whose value may change over time), and the actions which change
the values of those fluents. Therefore the EC specifications consist primarily of
axioms of the form:

pow(L,nominate(L, C, N)) = true holdsat T ←
role of (L) = litigator holdsat T ∧
status of (C) = agreed(T ′) holdsat T ∧
method for(C) = (arb,) holdsat T ∧
nominated(L, C) = [] holdsat T

nominate(L1 , C, N) initiates status of (C) = nominated at T ←
pow(L1 ,nominate(L1 , C,N)) = true holdsat T ∧
length(N) > 5 ∧ length(N) < 13 ∧
role of (L2) = litigator holdsat T ∧
not nominated(L2 , C) = [] holdsat T

The first axiom states that agent L is empowered to perform a nomination (of
arbitrators), if it occupies the role of litigator, the status of the dispute C is
that an ADR method has been agreed, and the method is arb (arbitration),
and L has not already performed a nomination. The second axiom states that
after performing a valid nomination, i.e. subject to being empowered and the
constraints that the number of nominees is more than 5 and less than 13, the
value of the status fluent of case C is nominated . Another axiom (not given here)
sets the value of nominated(L1, C) = N .

78 J. Pitt et al.

3.3 Jury Decision-Making through Opinion Formation

The decision-making process of a panel of arbitrators (i.e. the jury) can be
modelled through a mathematical and logical formulation of an opinion forma-
tion dynamics [22]. One of the main characteristics of a jury is that arbitrators
are distinct from one another and consequently, each arbitrator has a different
mind-set, i.e. mental models of the law. In accordance with this characteristic,
we introduce a numerical abstraction of an arbitrator’s opinion on a specific case
of award issuance. In addition, we provide a parameterisable set of formulas and
associated algorithms for calculating and updating those opinions, where the
parameters reflect the arbitrators’ distinct initial mind-sets and the algorithms
represent introspective and consultative deliberation by the arbitrators. A full
account of the underlying mechanisms, as well as comparison with other opin-
ion formation models, is given in [22]. The key elements for the purpose of the
subsequent discussion are:

– Topics, the articles about which the arbitrators hold opinions. We treat
topics here as being the specific cases — which, in turn, we consider to be
synonymous with the facts of a case;

– Opinions, where an opinion is a function mapping from time-points to a
number in the real number range [0, 1]. Each arbitrator has an opinion func-
tion whose instantaneous value reflects how much that arbitrator agrees with
the current topic (0 representing total disagreement and 1 total agreement)1;

– Confidence, a number in the range [0, 1], with each arbitrator maintain-
ing time-dependent confidence values for arbitrators of its acquaintance (or
panel). The higher the confidence value for a particular associate, the more
likely that arbitrator is to be influenced by the opinions of that associate.
Arbitrators maintain confidence values for themselves, which capture the
quality of self-confidence; this metric is treated the same way as confidence
values for other arbitrators.

The process of opinion formation is guided by a designated chair arbitrator in
accordance with the following principles. First, the arbitrators receive the facts
surrounding a case and create an opinion about the award that should be issued,
based on their respective initial mind-sets. The arbitrators then exchange opin-
ions amongst themselves. According to individual opinion aggregating mecha-
nisms and the confidence associated with the originator of each received opinion,
arbitrators evaluate the given new opinions and — if influenced to do so — up-
date theirs. If demonstrable consensus is reached following this exchange and
update (i.e. if the subsequent round of opinion exchange shows all arbitrators to
be of the same opinion) then an award can be issued. The arbitrators otherwise
iteratively exchange their opinions until consensus is reached.

We omit further details on a number of aspects of the opinion formation pro-
cedure here. These include mechanisms for appointing a chair, initial opinion
1 This formulation of an opinion assumes that only one topic, or case, is under consid-

eration by an arbitrator at any time. Introduction of an additional parameter (the
topic) allows arbitrators to deliberate upon multiple topics simultaneously.

Alternative Dispute Resolution in Virtual Organizations 79

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ge

nt
’s

 O
pi

ni
on

s

Time

(a) A Jury reaching concensus

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ge

nt
’s

 O
pi

ni
on

s

Time

(b) A Jury with polarised opinions

Fig. 2. Example Jury Opinion Formation Outcomes

creation and opinion aggregation. This is because we consider these aspects to
be configurable — and perhaps uncontrollable — aspects of the problem do-
main. For example, the selection of an arbitrator as chair may be on a strict
rotation basis, random or by external (higher authority) appointment. Similarly,
the means by which an arbitrator forms an initial opinion and performs subse-
quent opinion aggregation may only be known to its owner or designer. These
considerations make the opinion formation procedure an ideal candidate for con-
trolled, experimental settings in which to model and investigate configurations
reflecting aspects of the corresponding real-world domain [22].

Fig. 2a and Fig. 2b illustrate two possible outcomes of the opinion formation
procedure. Both graphs depict the variation of the opinions of a panel of arbitra-
tors over time, each line corresponding to the opinion of a distinct arbitrator. In
Fig. 2a, all the arbitrators eventually arrive at the same opinion about the award
to be issued and thus consensus is reached. It is also possible, however, that the
opinions will dichotomise (as in Fig. 2b), whereupon a hung jury results. It might
be the case, for example, that some arbitrators have high self-confidence in their
individually distinct opinions and therefore resist updating them. We have iden-
tified a number of possible resolutions to such deadlock situations, influenced
by real-world solutions under similar circumstances. These include (i) empow-
ering the chair arbitrator to make the final (casting) decision; (ii) requesting
additional expert arbitrators to join the panel and the deliberation process; (iii)
requesting additional evidence (further facts) from the parties; or (iv) initiating
a law-making procedure in recognition of a novel or revealing case. Although
these methods of resolution are not validated at present, we note that they can
be expressed through the same specification technique appearing in Section 3.2.
We plan to investigate the relative efficacy of such methods in future work.

3.4 Alternative Mechanisms of Jury Decision-Making

In jury decision-making the goal is to reach a consensus about what the ver-
dict should be. Ideally, when the facts are clear and shared by every member of

80 J. Pitt et al.

the panel, the conclusion should easily be inferred. However empirical evidence
collected from several real cases of jury decision-making shows that different
factors influence jurors during the deliberation process. Variables such as panel
size, panel instructions, strength of the evidence, initial juror preferences, inter-
personal influence, definition of key legal terms, polling mechanics, etc. affect
the decision-making process [23].

In Section 3.3 we have adopted opinion formation as a mechanism for jury
deliberation. The field of opinion formation traditionally aims at finding an opin-
ion aggregation mechanism which best simulates opinion change in real social
groups. This simulations provide an insight into how groups reach consensus
or how opinions fragment and polarise. Analysis is focused on the aggregation
mechanisms used (e.g. majority rule, weighted average, etc.). However other
variables such as the topology of the social network and the roles of the agents
significantly affect the opinion dynamics. By making some assumptions about
the social group we are able to simplify and adapt opinion formation as part of
the process of jury deliberation (the other part of the process being the voting
— or polling — stage through the voting protocol). Modeling through opinion
formation has the flexibility to seamlessly accommodate some of the variables
of the deliberation process such as panel size, initial juror preferences and inter-
personal influence.

Similar approaches to jury decision making are information integration mod-
els, Bayesian models, Poisson models and sequential weighing models [24], the
latter being the closest to our opinion formation approach. These models adopt
psychological and mathematical concepts which give them the characteristic of
being quantifiable and verifiable. However, they do not provide a fully accurate
model of the decision-making process since they cannot account for the subjective
factors which are part of cognitive processes [23]. A different, more cognitive-
focused but less quantitative ‘storytelling’ approach has been proposed [25, 23]
in which the jurors assemble and organise the information (e.g. evidence, facts,
etc) of the case in the form of coherent story.

While many jury behaviours such as persuasive influence, faction size, majority
persuasion and hung juries can be analysed using opinion formation, it is limited
in modeling those concerned with reasoning and arguing about the facts of the
case. Furthermore, none of the approaches previously described seems to be able to
tackle this shortcoming. However, a different but well-studied approach to dealing
with dialogical reasoning is that provided by argumentation theory.

In the field of computer science, argumentation has traditionally dealt with
situations where conflict of opinions exist (Bench-Capon and Dunne [26], and
Chesñevar et al [27] provide comprehensive reviews on argumentation, while
Walker [28] considers the role of argumentation in ADR). Of special relevance to
our study is the use of argumentation for legal reasoning [29], [30]. In particular, a
jury making-decision process can benefit from the possibility of defining a system
for defeasible and persuasive argumentation which would allow the use of notions
such as argument (and their status, e.g. justified, overruled and defensible),
counterargument, rebuttal and defeat.

Alternative Dispute Resolution in Virtual Organizations 81

In contrast with the previously described quantitative decision-making mecha-
nisms, argumentation is not concernedwith the process of aggregating opinionsbut
defining arguments andassessing their validity.Argumentationalsoapproaches the
problem of clearly defining key legal terms (e.g. for the benefit of the jurors) since
it incorporates an underlying logical language. Furthermore, the jury deliberation
process can be specified as an argumentation protocol which outlines the procedu-
ral and deliberation characteristics of a jury-decision making process.

However, by adopting argumentation over opinion formation we would lose
some of the quantitative and predictive abilities that the mathematical formu-
lation behind opinion formation provide. Also, argumentation accounts for the
persuasive ability of the arguments but not for that of the individuals. Opinion
formation allows the jurors to assigns individual confidence values to the other ju-
rors according to matching preferences, experiences, attitudes and values. Thus,
it is suggested that a comprehensive juror decision-making specification should
consider a complementarity approach integrating the advantages and attributes
of argumentation, opinion formation and a voting protocol.

A combined approach would adopt an argumentation protocol such as the
executable specification presented in [31]. This protocol already considers the
physical capabilities of the agents, the rules of the protocol and the permissions,
prohibitions and obligations of the agents. Additionally, the protocol should also
include jury instructions, polling procedures (e.g. secret ballot or public vote)
and the jury decision rule (e.g. unanimous decision, majority rule or two-thirds
majority). On the other hand opinion formation mechanisms would be used
as preference criterion between competing arguments by considering the inter-
personal influences between jurors. Moreover, analysis of parameters related to
procedural and deliberation characteristics such as jury size, initial juror prefer-
ences, faction size and faction shifts could still be done by observing their effect
in the collective opinion dynamics.

3.5 Voting Protocol

Once the chosen arbitrators have individually considered the details of the
case(s), they go through a formal voting process to establish the dispute outcome.
This voting procedure is presented in [32], in terms of a formal characterisation
of the powers, permissions and obligations associated with the roles of (for ex-
ample) chair and subject. This formalisation can be used to ‘enforce’ correct
declaration of the voting result.

4 Principles of Juries

In this section, we provide a (preliminary) analysis of our alternative dispute
resolution service (ADR-S), and especially its provision for settling disputes by
arbitration, with the 19 Principles for Juries and Jury Trials, as set down by the
American Bar Association (ABA) [33]. These principles define the fundamental
properties for the management of the jury system. In their words, “Each principle
is designed to express the best of current-day jury practice in light of existing

82 J. Pitt et al.

legal and practical constraints”. Therefore, it is appropriate to cross-reference the
arbitration method of ADR-S to see if it adequately reflects this best practice.
Furthermore, the arbitration method is ‘close’ to a jury trial; if we can show
that the formal specification of the arbitration method respects the principles of
juries and jury trials we have some indicators that our ADR specification is, in
some sense, ‘fair’ and ‘trustworthy’.

The 19 principles are divided into five groups according to the area of concern.
These groups are:

– General principles;
– Assembling a jury;
– Conducting a jury trial;
– Jury deliberations; and
– Post-verdict activity.

In this paper, we only consider the eight principles in the general principles
section, as the others are more specifically concerned with activity in human
concerns and spaces (e.g. courtrooms) rather than the electronic agent environ-
ment with which we are concerned.

The presentation of the principles is given a single sentence summary, and then
qualifiedbyanumber of explanatory clauses and sub-clauses.We shall refer to these
caveats as ‘the details’. We shall now look at each principle’s summary in turn.

Principle 1. The right to jury trial shall be preserved
An informal characterisation of a right is to say that A has a right to (perform)
X if A is empowered to perform X and no-one else is permitted or empowered
to prevent it. So we need to ensure that the following domain constraint holds
at all time points T :

happens(serve writ(L1 ,L2 , C)) at T ′ ∧
T ′ < T ∧
status of (C) = open4proposals holdsat T

↔
pow(L2 , propose(L2 , C, arb)) holdsat T

Now, from the axioms defined in the previous section, if L2 does indeed perform
the propose action for arbitration, for which it is always empowered, then L1
will not be permitted to reject it. In fact, this works for L1 too: it can serve
the writ and immediately propose arbitration; L2 is not permitted to reject this
either. In this way arbitration takes precedence over negotiation and mediations;
moreover we can see that the right to a jury trial is indeed preserved.

Principle 2. Citizens have the right to participate in jury service and
their service should be facilitated
This principle is slightly removed from the arbitration method per se. The fa-
cilitation is supported by the assumption, mentioned above, that the list of
potential arbitrators (jurors, or panel members), is made freely available. It is

Alternative Dispute Resolution in Virtual Organizations 83

then necessary to ensure that those members of the community who qualify in
the appropriate way are added to this list, and this list is freely accessible.

Then, the right to participate is supported, when the list of nominees for the
arbitration panel is made and the alternative strike process is concluded, the
ADR-S takes the following action:

confirm panel (ALIS , C) initiates role of (J, C) = juror at T ←
status of (C) = struckout holdsat T ∧
nominated(, C) = N holdsat T ∧
member(J, N) = true holdsat T ∧
qualifies(J, juror) = true holdsat T

Note that the last condition we would expect to trivially hold: the condition of
qualifying to be a juror should hold in order to be on the ADR-S list of potential
panel members, and all nominations should come from this list. Thus ‘citizens’
are empowered to act as jurors and there is not an action that can prevent or
remove this right under normal circumstances. We retain the option for removal
from the list (through malfeasance, poor performance, and so on), just as the
ABA principles allow for disqualification for jury service if, for example, a person
has been convicted of a felony.

Principle 3. Juries should have 12 members
The ‘should’ here is qualified by the details, and literally it means ‘ideally’ 12
and then stipulates no fewer than 6 under any circumstances.

Under the stricter (deontic) reading of ‘should’, by inspection, we can see
that the process of nomination, veto/replacement, and strike out results in an
arbitration panel of size 12. In fact, we can actually do rather better than this,
and, given a Ccalc (which is an AI action language like Event Calculus, but can
handle planning queries of this sort [34]) representation of the specification, we
can prove that the required property holds using the following query:

Query. Given the initial state of the Alternative Dispute Resolution, is it pos-
sible to reach a state where within 35 transitions status of(C) = struckout holds
and if nominated(L1 , C) = N1 , nominated(L2 , C) = N2 , and L1 �= L2 , then
N1 + N2 > 12?

Proof (sketch). The longest sequence of exchanged messages is 35 (comprising
1 serve writ, 6 proposals (2 propose-reject pairs and 1 propose-agree pair), 2 nom-
inations (1 each), 12 for vetoes (maximum 3 each, each being a veto-nominate1
pair) plus 2 finish-vetoes, and 12 for alternative strike. If the solver fails to find a
state within 35 messages, we infer there is no state where the status of C is struck-
out and the cumulative size of the nominations by the litigants in the case is 12.

More generally, it can be asked why juries in computational societies ‘should’
have 12 members. The earliest traditions of judicial procedure invoking jury
decisions, dating back to Athenian times, consisted of 1,000 to 1,500 ‘dikaste’,

84 J. Pitt et al.

or citizens, while it was King Henry 2nd who introduced juries of 12 ‘free men’
to stand in judgement on land disputes.

As a result, traditionally juries have consisted of 12 members, but court rulings
in the US, for example, are reflected in the ABA principles that 12 is not essential,
but a minimum of 6 is (in particular for criminal cases). The main basis for
such reasoning is that 6 members is sufficiently large to be representative of the
population, facilitates group deliberation, and avoids both internal and external
attempts at intimidation or influence; while promoting the possibility of reaching
a unanimous decision in a ‘reasonable’ span of time.

It is not unreasonable though, to suggest that in online alternative dispute res-
olution, we could actually go back towards the ‘original’ Athenian model. The
values of 6 (nominations each) and 12 (total panel size) are simply parameters,
and they can be changed at design-time, and even at run-time by the agents
themselves, using the techniques proposed in [35]. We could then envisage circum-
stances when the arbitration panel is composed of the entire community. This is
especially apposite in fully-automated environments, such as Virtual Organiza-
tions, where we could enjoy a “fully participatory democracy” where not only
plebiscites and referenda would be commonplace but all disputes are settled by
“the popular will”. However, such possibilities could be resolved in peer-to-peer
networks and e-commerce sites, where disputes between people over minor trans-
actions or IPR infringements could be readily settled by reversion to the entire
user community. In this way we could revert to the original Athenian model and
rely on the ‘wisdom of crowds’ [36] to ensure fair hearings and just decisions.

Principle 4. Jury decisions should be unanimous
It is the provisions of the voting protocol, as reported in [32] that uphold this
principle, rather than any of the axioms reported here. However, the voting
protocol is embedded in the ADR-S, so the required property is preserved.

The key axiom in [32] is this one, which imposes on the chair the obligation to
declare the result in the appropriate way in the case of majority voting, where
the number of votes for (F) exceeds the number of votes against (A):

obl(C, declare(C, M, carried)) = true holdsat T ←
role of (C, chair) = true holdsat T ∧
status(M) = voted holdsat T ∧
votes(M) = (F, A) holdsat T ∧
F > A

If we demand unanimous decisions, we simply need to change the code thus:

obl(C, declare(C, M, carried)) = true holdsat T ←
role of (C, chair) = true holdsat T ∧
status(M) = voted holdsat T ∧
votes(M) = (F, 0) holdsat T

Alternative Dispute Resolution in Virtual Organizations 85

Note that the ‘should’ again means ‘ideally’ rather than ‘universally’ and there
are provisions in the details to allow for non-unanimous decisions. Again, we
have the flexibility to modify the rules to incorporate these nuances, for non-
unanimous decisions of juries between 6 and 12 members, or if we chose to
expand the jury membership in the Athenian model, where reaching a unanimous
decision with 1,000 jury members is clearly impractical.

Principle 5. It is the duty of the court to enforce and protect the
rights to jury trial and jury service
There is no such thing as a ‘court’ within the ALIS platform in which our ADR-S
operates, but the interpretation of the principle in the current context suggests
that the responsibility for administration and maintenance of the arbitration
dispute resolution method within ALIS remains exclusively with the designers,
implementors and maintainers.

There are two aspects to this. One is when the ADR-S is being used to resolve
disputes between automated agents. Here we have to ensure that the integrity
of the ‘rules which allow the rules to be changed’, and the list of potential
arbitrators, is preserved. This is beyond the scope of the present discussion.

The other aspect is when the agents are proxies and the ADR system is being
used to resolve disputes between people in computer-mediated human-human in-
teraction. What we have here is the human reliance of an ALIS ADR-S user on soft-
ware to enact a decision correctly, no matter that some of the inputs determining
that decision may be entered by other users. Following Reynolds and Picard [37],
who studied the issue of privacy in affective computing, we propose to ground those
decisions on mutual agreement. The form of this agreement is a contract.

Contractualism is the term used to describe philosophical theory that grounds
morality, duty, or justice on a contract, often referred to as a ‘social contract’ [38].
Reynolds and Picard extend this notion to Design Contractualism, whereby a
designer makes a number of moral or ethical judgements and encodes them, more
or less explicitly, in the system or technology. The more explicit the contract, the
easier it is for the user to make an assessment of the designer’s intentions and
ethical decisions. There are already a number of examples of (implicit and ex-
plicit) design contractualism in software systems engineering, including copyleft,
TRUSTe, the ACM code of conduct, shareware, and so on,

When designing an intelligent legal system to provide decision support for
juries or arbitration panels, the ADR-S system designers will need to make the
procedures for jury selection and service clear, have rigorously transparent re-
porting and administration channels, and collect, analyse and publish informa-
tion regarding the performance of the jury system and the jurors themselves. The
requirement to present this information needs to be coded in a contract, and in
the case of disputes concerning economic activity, we suggest the terms and con-
ditions should be explicit, and act as a ‘seal of authenticity’ that the dispute
resolution methods used are of an appropriate standard and rigour. Whether a
user or agent ‘signs up’ to the terms and condition will depend on how well the
designers’ perceptions match the user’s expectations.

86 J. Pitt et al.

Principle 6. Courts should educate jurors regarding the essential as-
pects of a jury trial
Much of the detailed provisions in this principle concern the orientation of people
selected for jury service, and the use of plain language for jurors to understand
their role and responsibilities. While this highlights the need, we can reason-
ably presume that such concerns are primarily addressed by the specification of
appropriate ontologies, protocols, and so on.

The interesting provision, however, is the obligation upon jurors to refrain
from discussing the case outside the jury room, and whether or not it is per-
missible to discuss the evidence amongst themselves. While it is an issue to be
addressed in the implementation — and since it is undesirable to monitor all
communications between jurors, it remains an open question how to ensure this
— we note that this obligation (to refrain from) and permission essentially refer
to a physical act rather than a speech act (relating to institutional facts) and
therefore outside the scope of the Event Calculus axioms. Performing such a
physical act, if reported or discovered, would lead to an institutional fact, i.e.
that some sanction would need to be applied, for example, that the individuals
concerned are no longer qualified to occupy the role of a juror.

Principle 7. Courts should respect juror privacy insofar as consistent
with the requirements of justice and the public interest
This principle is mostly concerned with juror “voir dire”, which is the process by
which jurors are selected, or more often rejected, to hear a case. In the ADR-S,
the process of the selection of the arbitrators is controlled by the nomination and
alternative strike steps. If there is no interaction between the nominees and the
parties involved in the dispute, then this principle is not of concern. However,
if there is, then there are constraints that need to be placed on the limits of
interaction (i.e. what are acceptable questions, etc.).

Principle 8. Individuals selected to serve on a jury have an ongoing
interest in completing their service
The ABA principles suggest that jurors should only be removed for “compelling
reasons”. Equally, we should offer an incentive to arbitrators to complete the
job to the best that they are able. While offering an incentive to software is not
quite what we had in mind, the idea of a rational agent maximising its utility
is a well-known notion. Therefore, we could imagine that it should be the goal
of an arbitrator to reach an impartial judgement, and to be proficient in its
assessments, which could be related to a reputation system.

Principles 9-19. The other principles are more directly concerned with human
trials and are not so much of concern to an electronic alternative dispute resolu-
tion service. Some of the provisions further refine the selection process, others are
concerned with ensuring that the jurors understand the applicable law. The latter
is of particular concern, of course, but is beyond the scope of the present paper.

Alternative Dispute Resolution in Virtual Organizations 87

5 Summary and Conclusions

In this paper, we have considered the specification of an Alternative Dispute Reso-
lution (ADR) protocol for dealing with exceptions (norm-violations and disputes)
in norm-governed Virtual Organizations. We have described the advantages of
such a protocol over more antagonistic, time-consuming and expensive methods
of reaching settlements. We have also provided examples of the protocol specifica-
tion in Event Calculus executable form, thereby demonstrating the basis for its au-
tomation, and, subject to extension through the use of additional action languages,
verification and validation. We have identified operational elements behind the
ADR protocol — in particular, arbitration and voting procedures, as well as the
key role of opinion formation in establishing consensus among a panel of arbitra-
tors. A particularly interesting feature of the arbitration procedure so formulated
is the extent to which the principles of juries and jury trials are preserved.

We also consider the convergence of agents possessing different specialisations
with intelligent opinion formation strategies and algorithms to have many ben-
eficial characteristics, some of which we suggest below:

– Robustness : The ADR protocol does not rely on one ‘judge’ arbitrator which
could be targeted for manipulation. It instead relies upon the knowledge
and opinions of expert agents which enforce their expertise with every case.
Moreover, compromised arbitrators can be replaced from the pool of available
arbitrators without major modifications to the system

– Reliability: Since the information is distributed between several arbitrators,
the ADR protocol is resilient to single points of failure. Additionally in-
consistencies or contradictions in law can be more easily overcome as the
agents will be designed to reach a consensus about how that law has been
interpreted before, based on their past experiences.

– Flexibility: Instead of training each new agent when a new legislation is
passed, a new arbitrator can be created with this new law and called to the
relevant cases. All other arbitrators in the case can then learn from interact-
ing with this new agent and add the new legislation to their knowledge base
(as described in Section 3.3).

– Multi-legislative: since arbitrators in norm-governed Virtual Organizations
specialise according to cases, they can also specialise according to the leg-
islation in which they act. Thus it is possible to have expert arbitrators in
domestic laws, European legislations and international treaties.

With these characteristics, we believe that it is possible to leverage massive
scalability, ‘cheap’ communications and ‘rapid’ decision-making to achieve a re-
markable degree of pluralism and representativeness in a computational society.

We are building systems in which to further investigate and validate the claims
made in this paper. We have already constructed one such system which in-
tegrates the ADR protocol with intelligent strategies for decision-making and
opinion formation about frequently occurring issues in commercial disputes.
Preliminary results suggest that it is indeed possible to build ADR into a norm-
governed multi-agent system and subsequently resolve conflicts efficiently and

88 J. Pitt et al.

effectively with minimal cost to the parties involved. Future work will involve
extending, testing and analysing the approach in different settings. One par-
ticular setting is the ALIS project, in which such approaches are required for
automated conflict resolution for a large number and variety of legal cases.

Acknowledgements

We thank Sandip Dhillon for his work on the implementation referred to in Sec-
tion 5. We are also extremely grateful for his contributions to an earlier revision
of this paper and to the reviewers for their insightful and helpful comments. This
work has been supported by the EU ALIS project (IST 027968).

References

1. Brafman, O., Beckstrom, R.: The Starfish And The Spider. Penguin (2006)
2. Mař́ık, V., William Brennan, R., Pěchouček, M. (eds.): HoloMAS 2005. LNCS

(LNAI), vol. 3593. Springer, Heidelberg (2005)
3. Boyson, S., Corsi, T.: Managing the real-time supply chain. In: HICSS 2002, Wash-

ington, DC, USA. IEEE Computer Society, Los Alamitos (2002)
4. Pitt, J., Mamdani, A., Charlton, P.: The open agent society and its enemies: a

position statement and research programme. Telematics and Informatics 18(1),
67–87 (2001)

5. Pitt, J.: The open agent society as a platform for the user-friendly information
society. AI Soc. 19(2), 123–158 (2005)

6. Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies.
ACM Transactions on Computational Logic (to appear)

7. Cevenini, C.: Legal considerations on the use of software agents in virtual enter-
prises. In: Bing, J., Sartor, G. (eds.) The Law of Electronic Agents, vol. 4, pp.
133–146. Unipubskriftserier, Oslo (2003)

8. Makinson, D.: On the formal representation of rights relations. Journal of Philo-
sophical Logic 15, 403–425 (1986)

9. Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal
of the IGPL 4(3), 429–445 (1996)

10. Schultz, T., Kaufmann-Kohler, G., Langer, D., Bonnet, V.: Online dispute resolu-
tion: The state of the art and the issues. Technical report, Report of the E-Com /
E-Law Research Project of the University of Geneva (2001)

11. Slate II, W.: Online dispute resolution: Click here to settle your dispute. Dispute
Resolution Journal 8 (2002)

12. WIPO Arbitration and Mediation Center: Dispute resolution for the 21st century
(2007), http://arbiter.wipo.int

13. United Nations. In: United Nations Conference on Trade and Development
— E-commerce and development report, ch.7, New York, Geneva, vol. UNC-
TAD/SIDTE/ECB/2003/, pp. 177–203 (2003),
http://www.unctad.org/en/docs/ecdr2003ch7 en.pdf

14. Kowalchyk, A.W.: Resolving intellectual property disputes outside of court: Using
ADR to take control of your case. Dispute Resolution Journal 61(2), 28–37 (2006)

15. OECD: OECD workshop on dispute resolution and redress in the global market-
place: Report of the workshop. Technical Report DSTI/CP(2005)9, Organisation
for Economic Co-operation and Development (2005)

http://arbiter.wipo.int
http://www.unctad.org/en/docs/ecdr2003ch7_en.pdf

Alternative Dispute Resolution in Virtual Organizations 89

16. Ware, S.J.: Principles of Alternative Dispute Resolution. West Group (2007)
17. American Arbitration Association (2007), http://www.adr.org/drs
18. WIPO Arbitration and Mediation Center: Guide to WIPO Arbitration (2007),

http://arbiter.wipo.int

19. ALIS: Deliverable D3.1: Formal characteristics of legal and regulatory reasoning
from the computational logic point of view. Available from ISN Group, EEE Dept.,
Imperial College London (2008)

20. ALIS: Deliverable D3.2: ALIS ADR-S: The ALIS alternative dispute resolution
service. Available from ISN Group, EEE Dept., Imperial College London (2008)

21. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Com-
puting 4(1), 67–96 (1986)

22. Ramirez-Cano, D., Pitt, J.: Follow the leader: Profiling agents in an opinion forma-
tion model of dynamic confidence and individual mind-sets. In: IAT, pp. 660–667
(2006)

23. Devine, D.J., Clayton, L.D., Dunford, B.B., Seying, R., Pryce, J.: Jury decision
making: 45 years of empirical research on deliberating groups. Psychology, Public
Policy, and Law 7(3), 622–727 (2001)

24. Pennington, N., Hastie, R.: Juror decision-making models: The generalization gap.
Psychological Bulletin 89(2), 246–287 (1981)

25. Bennett, W.L.: Storytelling in criminal trials: A model of social judgment. Quar-
terly Journal of Speech 64(1), 1–22 (1978)

26. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif.
Intell. 171(10-15), 619–641 (2007)

27. Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM
Comput. Surv. 32(4), 337–383 (2000)

28. Walker, G.B., Daniels, S.E.: Argument and alternative dispute resolution systems.
Argumentation 9, 693–704 (1995)

29. Sartor, G.: A formal model of legal argumentation. Ratio Juris 7(2), 177–211 (1994)
30. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in

legal reasoning. Artificial Intelligence and Law 4(3-4), 331–368 (1996)
31. Artikis, A., Sergot, M., Pitt, J.: An executable specification of a formal argumen-

tation protocol. Artif. Intell. 171(10-15), 776–804 (2007)
32. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in Multi-Agent Systems. The

Computer Journal 49(2), 156–170 (2006)
33. American Bar Association: Principles for juries and jury trials (2005),

http://www.abanet.org/juryprojectstandards/principles.pdf

34. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal
theories. Artif. Intell. 153(1-2), 49–104 (2004)

35. Kaponis, D., Pitt, J.: Dynamic specifications in normative computational societies.
In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006.
LNCS (LNAI), vol. 4457, pp. 265–283. Springer, Heidelberg (2007)

36. Surowiecki, J.: The wisdom of crowds. Doubleday (2004)
37. Reynolds, C., Picard, R.: Affective sensors, privacy, and ethical contracts. In: CHI

2004: extended abstracts on Human factors in computing systems, pp. 1103–1106.
ACM Press, New York (2004)

38. Rawls, J.: A Theory of Justice. Belknap Press (1999)

http://www.adr.org/drs
http://arbiter.wipo.int
http://www.abanet.org/juryprojectstandards/principles.pdf

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 90–107, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Electronic Institutions Infrastructure for e-Chartering

Manolis Sardis and George Vouros

University of the Aegean, Department of Information and Communication Systems
Engineering, 83200 Karlovassi, Samos, Greece

{sardis,georgev}@aegean.gr

Abstract. The need of methodologies and software tools that ease the develop-
ment of applications where distributed (human or software) agents search, trade
and negotiate resources is great. On the other hand, electronic institutions of
multiple agents can play a main role in the development of systems where nor-
mative specifications play a vital role. Electronic institutions define the rules of
the game in agent societies, by fixing what agents are permitted and forbidden
to do and under what circumstances. In this paper we present a case study on
the use of specific tools, supporting the specification, analysis and execution of
institutions for Maritime e-Chartering, proposing an infrastructure for Internet-
based Virtual Chartering Markets (MAVCM).

Keywords: Electronic Institutions, Maritime e-Chartering, Multi agent systems.

1 Introduction

Electronic business and agents are among the most important and exciting areas of
research and development in information and communication technology, with con-
siderable potential impact and opportunities for the Maritime sector [35][36]. This
paper proposes an infrastructure for Multi-Agent, Internet-based Virtual Chartering
Markets (MAVCM). The MAVCM system aims to support business-to-business
transactions in Maritime markets, providing mechanisms for Internet-based e-
Chartering services. The proposed system offers a solution for efficiently handling the
processes involving cargo owners (Charterers) and ship owners (Shipbrokers). Cargo
owners aim to find ship owners to deliver cargoes at certain freight rates. The objec-
tive of MAVCM is to enable Maritime market participants to electronically charter
and trade cargos, via their software agents.

The development of an e-Chartering system involving human and software agents
is one of the most challenging applications for the Maritime domain of applications,
due to the complexity of the task. Factors such as charter selection, port time, selec-
tion of route, costs of cargo handling, communications reliability and efficiency are
critical and difficult to be combined in a detailed design of a highly distributed, open
and dynamic multi-agent system.

In this paper, our aim is to analyze and extend the design specifications for this
complicated system using Electronic Institutions (EIs) [7], supporting agents’ collabo-
rative activities. Furthermore, the paper proposes a solution towards the implementa-
tion of the proposed e-Chartering MAVCM electronic institutions infrastructure in
terms of specific development methodologies and frameworks.

 Electronic Institutions Infrastructure for e-Chartering 91

EIs are open systems that comprise autonomous, independent entities that must
conform to common, explicit interaction conventions. The idea behind EIs is to mirror
the roles traditional institutions play in the establishment of ‘the rules of the game’:
The set of conventions that articulate human agent’s interactions [7][11][27]. EIs
specifications are both descriptive and prescriptive: The institution makes the conven-
tions explicit to participants, and it warrants their compliance. EIs, as artifacts,
involve a conceptual framework to describe agent interactions, as well as an engineer-
ing framework to specify and deploy actual interaction environments [24].

In this paper we specify how EI-related technology can contribute to solving the
problem of agents’ (Ship owners and Cargo owners) participation in different Mari-
time ports for the creation of valid offer/position combinations. As already pointed,
our aim is the development of an e-Chartering infrastructure for MAVCM. Although
our approach has things in common with some of the agent development methodolo-
gies and conceptual specifications of multi-agent systems proposals [28][33], the use
of EIs contribute to the specification and development of the MAVCM system due to
their following distinctive features:

• EIs allow the description of the roles and interactions of both human and soft-
ware agents in a specific setting (the institution) using a comprehensive frame-
work

• EIs make explicit the relationship between the computational framework devel-
oped by MAVCM and the existing maritime transactions for e-Chartering

• EIs clarify the difference between the behavior and the particular strategies the
human and software agents may follow in pursuing individual goals

In this paper, we look into the EI artifact from a methodological perspective: we dis-
cuss the notions that underlie the conceptual EI framework and study the MAVCM sys-
tem development process by means of existing ad-hoc software tools. Notably, many
development tools have been proposed for the agent technologies [1][2][4], but each one
has been proposed for a specific task and for only a part of the whole development cycle.
By using the ISLANDER [6] electronic institutions editor, we describe the EI details that
control the MAVCM agents’ behavior. Finally, we propose development solutions for
those parts of the MAVCM system that are incorporated into EIs [27].

The remainder of the paper is organized as follows. In section 2 we present the
e-Chartering case study characteristics based on our previous work [3] and we clarify
the problem. Sections 3 and 4 present the proposed solution using EIs and we discuss
the methodology that constitutes the conceptual EI framework based on MAVCM
design considerations and characteristics. The development considerations of EIs and
the Electronic Institutions Development Environment (EIDE) framework for the
development and testing of the complicated infrastructures for EIs in the MAVCM
system are presented in section 5.

2 Actual World Institutions for the e-Chartering Case Study

In our case study we deal with a traditional chartering institution, where Ship owners
and Cargo owners have to participate through this institution for reaching, in a best

92 M. Sardis and G. Vouros

price and under certain conditions and terms, an agreement for a contract for the
transferring of specific cargo through sea. The whole system has been analyzed from
its business perspective in [3]. In [3] we have used the GAIA [28] methodology and
AUML [33][34] for the analysis and design of the core parts for the system.

The chartering domain involves an inherently distributed, open and dynamic envi-
ronment, where agents are located in different geographical regions, new agents may
arrive seeking for an offer or making a position, existing agents leave the setting,
while unforeseen events may affect (via new opportunities or new threats) agents’
participation. e-Chartering offers new possibilities to this domain: Parties, due to the
potential of an e-chartering infrastructure to effectively tackle the above mentioned
inherent problems/opportunities effectively, can benefit greatly to participate, react
and reach effective solutions in such a setting. More specifically, the e-Chartering
opens new roads for the Maritime community because it may involve multiple trading
parties, balancing offers and positions, exploit awareness mechanisms for making
participants aware of new opportunities and threats. Moreover, the online procedure,
without the need for extra third parties, reduces the cost of the transactions. This, in
conjunction to the fact that involved parties are facilitated to reach effective solutions
(i.e. solutions with lower costs) in less time, gives the opportunity for small compa-
nies to participate in e-Chartering transactions, in cases where, in real human Mari-
time chartering, they could not afford to be involved.

The brokering procedure during e-Chartering can be described as a space where
several scenes take place simultaneously, at different places, but with some causal
continuity. Each scene involves various agents who at that moment perform well-
defined functions. The scenes and their continuity are shown in a very sketchy way in
Fig. 1. The first scene is the registration scene, where different Cargo owners and
Ship owners have to register their characteristics and to inform the system for their
offers/positions either for cargo or for vessels (Fig. 1). In this scene each Cargo owner
submits in the system an ‘order’ and each Shipowner a ‘position’. The order and the
position are xml files containing the necessary detailed information for cargo and
vessel characteristics, facilitating agents’ reaching a contract agreement.

The content/attributes of orders and positions are shown in Fig. 2. The investiga-
tion scene involves MAVCM agents that search in their domain or in different

 IInnvveessttiiggaattiioonn

 NNeeggoottiiaattiioonn

Fig. 1. e-Chartering scenes

 Electronic Institutions Infrastructure for e-Chartering 93

Fig. 2. Order & position elements

domains (i.e. ports), for finding a relevant position or an order, according to their
position/offer. The negotiation scene follows the investigation scene. It involves
agents performing contract negotiations based on end-user requirements. Finally,
during the contract scene agents finalize or propose a contract between the Ship
owner and the Cargo owner.

During the investigation scene, the agent that is responsible for a specific Ship
owner (position) will search, based on user-specified search criteria, for a matching
order. Figure 3 depicts a typical setting of two ports, each supported by an EI, involv-
ing Cargo owners and Ship owners (represented by agents) that pose orders and posi-
tions, respectively. These agents are acquaintances with broker agents that aim to
coordinate agents’ behavior. For example, Figure 3 shows a number of broker agents
in ports A and B involved in the task. The search results from each broker agent must
be analyzed and presented, so that all agents to be informed for the ‘search solution’,
reaching a coherent and consistent solution: Specifically, a conflict in a port occurs
when at least two brokers consider a different solution for the same pair or agents, or
when at least one broker considers a solution involving different pairs with the same
cargo owner or ship owner.

This problem can be extended in real-world cases where a large number of agents
are involved in the same or in different ports with high Maritime chartering traffic. In
this case, information from port policies (either for cargo like rules for chemical/toxic
cargo, or for vessel rules like port pollution restrictions) and brokering conditions that
should be followed and controlled by the broker agents constitute also sources of
conflict. As it is shown in Figure 3, in this paper, we propose the use of electronic
institutions in each port infrastructure: Different EIs operate in port A and port B. To
reach coherent and consistent solutions among agents within and across several EIs
we extend the EI infrastructure by introducing the Broker Manager agent as a coordi-
nator of the broker agents within the same port and as a coordinator and communica-
tion interface between different EIs. This is further presented in the paragraphs that
follow. The coordination between different EIs operating in different ports is not
coordinated by a central authority as this would make the system to be centralized:
We rather consider broker managers to constitute the backbone of the system
structure, operating in a decentralized way.

94 M. Sardis and G. Vouros

... ...

Fig. 3. The Electronic Institutions in e-Chartering process

It is clear that the investigation and the negotiation scenes are the core and the
most complex scenes for the MAVCM system. This is so because the number of the
participating agents in different, numerous ports and the number of actual messages
between them increases exponential, based on Maritime requirements for world wide
area business transactions. These scenes have been analyzed and designed using the
EIs and the EIDE framework described in section 5.

3 Electronic Institutions Fundamental Concepts

The role of any formal method is to provide a clear and precise description of what a
system is supposed to do, rather than a description of how it operates [5]. The pres-
ence of an underlying formal model supports the use of structured design techniques
and formal analysis, facilitating development, composition and software reuse. Tradi-
tional institutions can be viewed as ‘a set of artificial restrictions that articulate agent
interactions’. Analogously, when looking at computer-mediated interactions we think
of EIs as a regulated virtual environment where the relevant interactions among par-
ticipating entities take place. The core notions of an electronic institution include:

 Electronic Institutions Infrastructure for e-Chartering 95

• Agents and Roles. Agents are the players in an electronic institution, interacting
by the exchange of illocutions. Roles are defined as standardized patterns of be-
havior. The identification and regulation of roles is considered to be part of the
formalization process of any organization [13]. Any agent within an electronic
institution is required to adopt some role(s). While dialogical schemata are asso-
ciated to roles, an agent adopting a given role must perform the actions that in-
stantiate the corresponding schemata

• Dialogical framework. The context of interaction amongst agents of an
institution, such as the objects of the world and the language employed for com-
municating. Agents interact through illocutions using a common ontology (vo-
cabulary), i.e. they use a common language for communication and they share the
same conceptualization of their domain

• Scene. Interactions between agents are articulated through agent group meetings,
which are called scenes, with a well-defined communication protocol. The proto-
col of a scene is considered to delineate the possible dialogues agents may have

• Performative structure. Scenes can be connected, composing a network of scenes.
This captures the existing relationships among scenes. The specification of a per-
formative structure contains a description of how the different roles can legally
move from scene to scene. A performative structure is to contain the multiple,
simultaneous ongoing activities, represented by scenes. Agents, within a perfor-
mative structure, may participate in different scenes at the same time with differ-
ent roles

• Normative rules. Agent’s participation and further activity in the context of an
institution may have consequences that either limit or enlarge its subsequent act-
ing possibilities. Such consequences will impose obligations and/or rights to the
agents and affect its possible paths within the performative structure

The agents, roles and scenes in e-Chartering have already been defined in detail
[3], but with no collaboration between the involved broker agents. Section 4 of this
article describes the dialogical framework, the performative structure and the norma-
tive rules of the EI.

4 Electronic Institutions Structure

As the development of electronic institutions (EIs) is highly complex and critical, this
section briefly presents the constituent elements of EIs, as well as their design and
development methodology [7][8]. In order to clarify the meaning of ‘relevant interac-
tions in a regulated environment’ we present roles and the dialogical framework which
allow us to express the syntactic aspects of EIs and the ontology of a particular EI.
Then we present the elements that allow us to express the prescriptive aspects of EIs.

As already said, we have used the ISLANDER editor for expressing and designing
in detail all the syntactic aspects of the e-Chartering EIs. This editor supports the insti-
tution designer with combined textual and graphical elements for the specification and
verification of electronic institutions design. The output of the editor is an XML file
that can be used from other Electronic Institutions Development Environment (EIDE)
tools towards completing the development phase of the e-Chartering EIs.

96 M. Sardis and G. Vouros

4.1 Roles

In order to participate in an EI, an agent is obliged to adopt some role(s). Roles are
finite set of dialogical actions that enable abstracting from the individuals in the ac-
tivities of an institution. The agent that plays a role must conform to the pattern of
behavior corresponding to that particular role. In human institutions, roles are usually
hierarchically organized, and sometimes roles may produce conflicting results/effects.
For example, turning into our case study, a broker agent may search for a proper posi-
tion of a vessel based on a Cargo owner order (Cargo owner agent). At the same time
another broker agent searches for an order based on the vessel position (Ship owner
agent). Both broker agents may achieve the same result, given a particular vessel and
a particular cargo. It should be noted that there is a limit on the manipulated number
of external Ship owner and Cargo owner agents from each broker agent. The limit is
based on Maritime chartering rules and brokering classifications [37]. This is a case
where a role hierarchy can be effective for EIs performance and quick response on
user requests, as higher-level roles may coordinate subordinate roles to reach consis-
tent and coherent decisions.

As Figure 3 depicts, the most important involved roles in the e-Chartering frame-
work are the agents representing Ship owners and Cargo owners, the broker agents
that control one or more agents, and the Broker Managers that control one or more
broker agents lower in the role hierarchy. Each Maritime port has a single Broker
Manager. The Broker Manager is the most experienced member of a port, with re-
spect to the e-Chartering rules and policies, and controls the final decisions during the
investigation scene. It also supports the end user (Shipowner or Cargo owner) by
suggesting, after an evaluation procedure and by using External Resources [3] agents’
feedback, charters from the same port or from other ports. This is done by exchanging
information with the other Broker Manager agents. The Broker Manager role works
as an interface between different Maritime ports and is responsible for the communi-
cation, information exchange and ports’ cooperation.

4.2 Dialogical Framework

The Dialogical Framework [10] is composed of a communication language, a
representation language and an ontology. Agents are sharing this framework, so het-
erogeneous agents are able to exchange knowledge with one another. To clarify the
available illocutions for agent dialogues in a given institution, a dialogical framework
is defined [24] as a tuple:

DF = <O, L, I, RI, RE, RS> (1)

where,

• O stands for the EI domain ontology
• L stands for a content language to express the information exchanged between

agents
• I is the set of illocutionary particles
• RI is the set of internal roles
• RE is the set of external roles
• RS is the set of relationships over roles

 Electronic Institutions Infrastructure for e-Chartering 97

The domain ontology involves orders and positions and their attributes, together
with possible actions that agents must undertake during their participation in EIs.

Considering roles, we have to recall that, in a chartering procedure, a given agent
may act as a buyer (Cargo owner) at some point, and as a seller (Ship owner) at an-
other, and many agents may act as buyers. This consideration allows us to think of
participants adopting roles. All agents adopting a given role should be guaranteed to
have the same rights, duties and opportunities. We differentiate between the internal
and the external roles. The internal roles define a set of roles that will be played by EI
staff agents. In our case the Broker Manager and the Broker agent are internal roles.
An external role in the MAVCM infrastructure is for example the External Resources
agent that is responsible to bring into the EI external info (for example, market is very
low and duration of charter is long, voyage passes through regions which are to be
avoided by user choice) that is specific to Maritime charter brokering procedures
during charter investigation. Since an EI delegates services and duties to the internal
roles, an external agent (i.e. an agent playing an external role) is never allowed to play
any of them. Finally, we need to define relationships among roles, specifying for
instance roles that cannot be played at the very same time, or roles that have some
authority over others. In this last case, we need to specify that the Broker Manager
agent controls the broker agents’ transactions and activities. On Figure 4, internal
roles are displayed in light and external roles (CargOwner, Shipowner, ExternalRe-
sources) are displayed in dark.

The Broker Manager and the Broker have a static separation of duties relation
(ssd), as e-Chartering agents cannot play both of these roles at the same time within
the institution.

In the MAVCM infrastructure, each Maritime port chartering procedure is de-
scribed by at least one EI (a port could have more than one EI, in order to support
chartering traffic). Each EI is using a dialogical framework to support the involved
agents with the type of illocutions exchanged during the e-Chartering scenes. The
maritime brokering procedures determine the involved illocutions.

Fig. 4. Dialogical framework for e-Chartering (using ISLANDER editor)

4.3 Scene

Scenes [24] specify “group meetings” that articulate well defined communication
protocols, modeling the dialogical interactions between roles. Scenes are graphically
been represented using states and labeled arcs between them: Based on the scene
context. Labels represent the transitions from state to state and impose restrictions on
the paths that the scene execution can follow. Scenes allow agents either to enter or to

98 M. Sardis and G. Vouros

leave a scene at some particular states of an ongoing conversation. More formally a
scene is a tuple [24]:

s = <R, DFs, W, wo, Wf, (WAr)rεR,(WEr)rεR, Θ, λ, min, max> (2)

where,

• R is the set of scene roles involved in that scene
• DFs is the restriction to the scene s of the EI dialogical framework
• W is the non-empty set of scene states
• woεW is the initial state

• WW f ⊆ is the set of final states

• WWA Rrr ⊆∈)(is a family of non-empty sets such that WAr stands for the set of

access states for role Rr ∈

• WWE Rrr ⊆∈)(is a family of non-empty sets such that WEr stands for the set of

exit states for role Rr ∈
• WxW⊆Θ is a set of directed edges

• λ: Θ → L is a labelling function, where L can be a timeout, an illocution schema

or a list of constraints

• min, max : NR ⎯→⎯ min(r) and max(r) specify the minimum and maximum
number of agents that must and can play the role Rr ∈

The specification of scenes and their interconnection in performative structures are
explained and depicted in the section that follows.

4.4 Performative Structure and Transitions

As in real life, during a chartering procedure, one vessel after a finished trip may
search for a cargo, and after a while it will search again for a new cargo and so on. As
a consequence, scenes are repeated (in periods of days or months). Likewise e-
Chartering procedures, where some part of their functionality will be transformed and
defined based on EIs, they follow a performative structure. This structure specifies the
interlacing of regular scenes and transitions. Transitions specify the relationships
among scenes. Complex activities/relations between scenes include:

• Causal dependencies
• Synchronization mechanisms
• Parallelism mechanisms
• Choice points that allow roles leaving a scene to choose their destination
• Role flow policy among scenes, specifying for example which paths can be fol-

lowed by the roles leaving a scene and which target scenes they can reach

The graphical representation of the above stated activity can be based on AUML
roles and graphic presentations. The performative structure becomes populated by
agents that make it evolve whenever agents comply with the rules encoded by the
specification. However, a single agent can possibly participate in multiple scenes at

 Electronic Institutions Infrastructure for e-Chartering 99

the same time. Therefore there is a need for a formal specification of performative
structures that is expressive enough to facilitate the specification of such rules. Scenes
and transitions are connected by means of directed arcs. Labels on the directed arcs
determine which agents, depending on their roles, can progress from scenes to transi-
tions or from transitions to scenes. Transitions are divided into two parts: the input,
“receiving” agents from the incoming arcs, and the output, through which agents
leave following the outgoing arcs towards other scenes. In all EIs there is always an
initial and a final scene, where are the entry and exit points of the institution. Techni-
cally, the definition of a performative structure is as follows:

),,,,,,,,(,, μMLCfffssTSPS O
ETLo Ε= Ω (3)

where,

• S is a non-empty set of scenes
• T is a set of transitions
• s0 S∈ is the initial root scene

• sΩ S∈ is the final output scene
• E = EI ∪ EO is a set of arc identifiers where EI ⊆ S x T is a set of edges from exit

states of scenes to transitions and EO ⊆ T x S is a set of edges from transitions to
scenes

• fL : E → DNF2vAxR maps each arc to a disjunctive normal form of pairs of agent
variable and role identifier representing the arc label

• fT : T → ℑ maps each transition to its type

• O
Ef : EO → E maps each arc to its type (one, some, all or new)

• C : E → ML maps each arc to a meta-language expression of type Boolean, i.e. a
formula representing the arc’s constraints that agents must satisfy to traverse the arc

• ML is a meta-language
• μ : S → {0,1} states whether a scene can be multiply instantiated at run time or not

The classification of transitions in classes T= {and/and, or/or, and/or, or/and} is
based on the behaviour that they exhibit on their input and output sides:

• And/and are establishing synchronization and parallelism points
• Or/or specify asynchronous way at the input and choice points at the output
• And/or synchronize agents on the input and they permit agents to individually

make the choice of which path to follow when leaving
• Or/and specify that agents are not required to wait for others in the input side, but

are forced to follow all the possible outgoing arcs

Finally, the set of arc types are Ε= {1, some, all, *}. 1-arcs constraint agents to en-
ter a single scene instance of the target scene, some-arc allows the agents to choose a
subset of scene instances to enter, all-arc forces the agents to enter all the scenes in-
stances, and finally the *-arc instantiates the creation of a new scene instance of the
target scene. Using the ISLANDER tool from the EIDE framework [6][24] the
e-Chartering performative structure is depicted in Figure 5.

100 M. Sardis and G. Vouros

Fig. 5. e-Chartering performative structure (using ISLANDER editor)

According to Figure 1 the performative structure should at least describe the main
scenes of the e-Chartering procedure. The extension to these scenes could be imple-
mented (at least in design) by capturing more e-Chartering scenarios. Based on Figure 5
there are four scenes apart from the root and the output scene [26]. Each scene is created
by an institutional agent. The Shipowner agent and the CargOwner agent together with
ExternalResources agents and the corresponding broker agents are the inputs for the
intro_e_inv scene which is the registration scene for all the participants in each Mari-
time port (Fig. 6).

Fig. 6. intro_inv scene

The following labels are associated to the arcs in the intro_inv scene:

1 inform(?s:Shipowner,?b:Broker, position(?position))
2 inform(?c:CargOwner, ?b:Broker, order(?order))
3 inform(?e:ExternalRsc, ?b:Broker, charterinfo(?info))
4 inform(?s:Shipowner,?b:Broker, position(?position))
5 inform(?c:CargOwner, ?b:Broker, order(?order))
6 wait(?timeout_limit)
7 wait(?timeout_limit)
8 inform(?b:Broker, ?bm:BrokerMgr, performed_contracts(?price,?contracts))

After the registration and the submission of the position and order info for each
agent (Ship owner and Cargo owner), the EI passes into the e_inv scene, which is the
investigation phase for e-Chartering depicted in Figure 7.

 Electronic Institutions Infrastructure for e-Chartering 101

Fig. 7. e_inv scene

The following labels are associated to the arcs in the e_inv scene:

1 inform(?b:Broker,bm:BrokerMgr, want_a_vessel(?order))
2 inform(?b:Broker,bm:BrokerMgr, want_a_cargo(?position))
3 inform(?bm:BrokerMgr, all:Broker, brokering_begins(?position,?sceneId))
4 position(?bm:BrokerMgr, all:Broker, investigate_for_vessel(?order,?sceneId))
5 position(?b:Broker, ?bm:BrokerMgr, investigate_for_cargo(?position, ?sceneId))
6 inform(?bm:BrokerMgr, all:Broker, brokering_begins(?order, ?sceneId))
7 inform(?bm:BrokerMgr, all:Broker,end_investigation())
8 inform(?bm:BrokerMgr, all:Broker,end_investigation())

The conflicts to which agents operating in the e-Chartering infrastructure may re-
sult to during the search and the investigation stages, are reconciled by the Broker
Manager agent as follows: The Broker Manager controls the collaborative activity
within the EI. During collaborative activity, group members must act like a single
entity by sharing knowledge, creating common awareness, sharing practices and pref-
erences, and building and maintaining models of their peers [13]. This is particularly
true during the investigation phase where the different broker agents will search in
their domain (port) and then in other ports based on specific search criteria that the
Shipowner or the Cargo owner has specified [3]. The result from the search procedure
will be a set of different (and maybe contradictory among agents) order or position
results. To deal with these cases, the Broker Manager possesses policies for reaching
a view that the group of all broker agents members shall accept [13], acting as a sin-
gle entity [18][19][20].

The personal agent for the Ship owner or the Cargo owner can offer three alterna-
tives towards the fulfillment of a specific responsibility. In the first mode, the user
decides to fulfill the responsibility without the help of his agent, so the job of the
broker is easier as it doesn’t act on behalf of the user. In the second mode, the user
delegates the responsibility to the agent. The personal agent must have the appropriate
capabilities and knowledge to fulfill the delegated responsibility. In case the delegated
responsibility is a collaborative one (like the case where very high level of competi-
tion detected at or near destination port), then the agent must have collaboration abili-
ties and must be able to cope with the description of knowledge. In the third mode,
the user collaborates with the broker agent for the fulfillment of the responsibility.
This collaboration with the broker agent is independent on whether the responsibility
is collaborative, as it concerns the relation between the user and his representative
[13][21][22][23].

102 M. Sardis and G. Vouros

4.5 Normative Rules

Normative rules are composed by illocutions and meta-language predicates [24]:

(s1, γ1) Λ …Λ (sm, γm) Λ φ1…φm ⇒ Φn+1Λ …Λφr (4)

where (s1, γ1) Λ … Λ (sm, γm) are pairs of illocution scenes and illocution schemes,
and φ1Λ… …Λφr are meta-language predicates. The following example shows how
normative rules are specified:

(shipowner, commit (?x:a, ?y:b, vessel(?size,?port,?type, …)))
⇒ commit (?y:b,?z:c, register(?vessel characteristics))

In the e-Chartering case study, when a Ship owner commits a vessel for chartering
an order, the vessel is also obliged to commit in a registration scene using the vessel
characteristics. The deployment of normative rules is motivated by the need of the
institution to infer agents’ obligations, as well as the consequences of agents’ actions
across different scenes of agents’ participation.

4.6 Policies

The chartering policies are controlled by the Broker Manager agent in each EI. This
agent will receive contributions from Broker agents and compute group acceptances
(i.e. chartering solutions) and disseminate these to the group. It is required by each
Broker agent to inform about changes in its personal contributions the other agents,
which follow the same policy [13]. It must be noticed that in each EI (in the same or
in different Maritime ports) different policies and the communication requirements
they imply could be a serious source of hindering the performance of the MAVCM
infrastructure: During the investigation procedure these policies could delay the
search and mapping process between Ship owners and Cargo owners, and this is un-
der our future research.

5 Using EIDE for e-Chartering

The Electronic Institutions Integrated Development Environment (EIDE) is a set of
tools to support the engineering of Multi Agent Systems (MAS) as EIs [24]. EIDE
allows for engineering EIs and their participating software agents. Notably, EIDE
moves away from machine oriented views of programming toward organizational
inspired concepts that more closely reflect the way in which we may understand dis-
tributed applications such as MAS. It supports a top-down engineering approach:
Firstly the organization, secondly the individuals. The proposed EIDE for the
MAVCM infrastructure development and deployment is composed of ISLANDER
[6], SIMDEI [32], aBUILDER [24], AMELI [9] and a Monitoring tool.

5.1 EI Design

The e-Chartering market analysis [3] clarifies in detail all the procedures and con-
straints that the Ship owner or a Cargo owner should follow. These market rules are the
basis for a full specification of EI components. The analysis required for the complete

 Electronic Institutions Infrastructure for e-Chartering 103

Fig. 8. The ISLANDER editor

specification of the system forces the designer to gain a thorough understanding of the
modeled institution before developing it. The analysis phase using a graphical tool as
ISLANDER [6] facilitates the work of the institution designer, combining graphical
and textual specs of EI components, based on the formalization of EIs [7] (Fig. 8). The
conversation protocol in scenes, the relationships among roles in the dialogical frame-
work and the performative structure graph shown in Figure 5, have been specified
using the ISLANDER editor. The graphical presentations help the designer to navigate
through a structured data presentation of the graphical EI components and provide
more insights and deep thoughts of all the elements and sub-elements that belong to the
current specification, ordered by category.

5.2 EI Verification

The verification stage for the electronic institution includes both, the static aspects of
the specifications and the dynamic behavior of the EI. The verification of the static
aspects concerns the structural correctness of specifications based on integrity, live-
ness, protocol correctness and normative rules’ correctness. The dynamic verification
of the EIs is carried out by simulation procedures under different circumstances and
permissions for participating agents.

The tool that supports the static verifications is the verification message panel of
the ISLANDER tool, shown in Figure 9. Using this tool we were able to perform:

• E-Institution Verifications
• Dialogical framework verifications
• Performative structure verifications
• Scene verifications
• Ontology based verification of messages

The dynamic verification of the e-Chartering EI can be carried out by the SIMDEI
simulation tool [8]. SIMDEI supports simulations of EIs with varying populations of
agents, enabling what-if analysis. For example, SIMDEI can support the simulation of

104 M. Sardis and G. Vouros

Fig. 9. ISLANDER Verification message panel

the behavior of an e-Chartering procedure between different port brokers for the same
Cargo owner order and different Ship owners’ positions. The verification process
starts with the definition of agents with varying acting capabilities. The dynamic veri-
fication procedure is a future task for our MAVCM framework.

5.3 EI Development

The development of agents based on the EI services and duties is the step performed
before the EI is deployed and opened to agents playing external roles. Using the
aBUILDER tool, the EI designer is able to automatically generate agents’ skeletons
based on the ISLANDER graphical specifications of agent behaviours. The resulting
code is in Java language.

Also the JADE [17] agent platform is an additional option for the development and
the implementation of the MAVCM system, due to the large user community, the
scope for wide deployment of generated organizations and compliance with FIPA
standards [31]. The construction of the agents and the development of the EIs result-
ing in an operational e-Chartering prototype are within our current goals.

5.4 EI Deployment

The EI operates as a middleware between the participating human agents and the
chosen communication layer: It validates agents’ actions based on EI rules. The mid-
dleware layer is enforced from AMELI. The participating agents in the EI do not
interact directly; they have their interactions mediated by the AMELI through a spe-
cial type of internal agent called governor that is attached to agents. The governors
support agents by providing the necessary info in order to participate in the
institution. AMELI is a general purpose platform where agents consult institutional
specifications formed as XML documents generated by ISLANDER. As a result, the
implementation impact of introducing institutional changes amounts to the loading of
XML-encoded specifications. During an EI execution, the agents composing AMELI
maintain and exploit their execution state, along with the institutional rules encoded in
the specification, for the validation of actions and assessment of their consequences.
AMELI agents are working on handling the institution execution. The EI execution
starts with the institution manager. The institution manager activates the initial and
the final scenes launching a scene manager for them. The external agents submit their
positions/orders for participation in the EI, and when they get an authorization they
are connected to the governor and admitted into the initial scene. These agents are
allowed to participate in the different scenes executions or to start new scene in-
stances based on the EI specification and the current execution state. The monitoring
of the EI execution can be done through the monitoring tool which depicts all the

 Electronic Institutions Infrastructure for e-Chartering 105

events occurring at run time. It should be noticed that in addition to AMELI there are
a number of other frameworks that one may use for building agents organizations,
such as PaGoDa [25], MadKit [14], Karma [15], and S-MOISE [16].

The deployment procedure is out of the scope of this paper as our aim was the
completion of the design and verification of the e-Chartering procedures using tech-
nologies that could ”mirror” the human interactions taking place in real-world Mari-
time e-Chartering procedures.

6 Conclusions

Designing a MAS system is a very complex and difficult task. This is particularly true
for open MAS that are populated by heterogeneous and self-interested agents. Using
frameworks like the EIDE [11][12] we managed to effectively design and develop
electronic institutions for an open MAS system. EIs define the rules and the con-
straints for the agent societies, by specifying what is allowed and what is forbidden
for them.

The resulting benefits from using the EIDE tools are the shortest design and devel-
opment cycle and the low cost implementation and execution.

This paper presented and analyzed an EI design, presenting also the development
of the suggested solution using EIDE. Using the tools in the design phase, and in
specific the ISLANDER editor, we managed to describe all the aspects involved in
the e-Chartering scenes, specifying the dialogical framework, scenes and transitions,
the performative structure, and the normative rules.

These specifications plentiful supply design details that will be used in our research
towards characterizing and checking the development and deployment methodologies,
for complex infrastructures as the e-Chartering MAVCM.

References

1. Guinchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development Methodol-
ogy: Processes, Models and Diagrams. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.)
AOSE 2002. LNCS, vol. 2585. Springer, Heidelberg (2003)

2. Juan, T., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia Methodology for Com-
plex Open Systems. In: Proceedings of Autonomous Agents and Multi-Agent Systems –
AAMAS 2002, pp. 3–10, Bologna, Italy (2002)

3. Sardis, M., Maglogiannis, I.: Agents Methodologies for e-Chartering Market design. In:
4th IFIP Conference on Artificial Intelligence Applications & Innovations (AIAI), Athens,
Greece, pp. 175–185 (2007)

4. Dellarocas, C., Klein, M.: Civil agent societies: Tools for inventing open agent-mediated
electronic marketplaces. In: Proceedings ACM Conference on Electronic Commerce (EC
1999) (1999)

5. Diller, A.: An introduction to Formal Methods, 1st edn. John Wiley & Sons, Inc, Chiches-
ter (1990)

6. Esteva, M., de la Cruz, D., Sierra, C.: ISLANDER: an electronic institutions, editor. In:
Proceedings of the First International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2002), Bologna, Italy, pp. 1045–1052 (2002)

106 M. Sardis and G. Vouros

7. Esteva, M.: Electronic Institutions: from specification to development. IIIA Ph.D. Mono-
graphs, vol. 19 (2003)

8. Esteva, M., Rodriguez-Aguilar, J.A., Arcos, J.L., Sierra, C., Garcia, P.: Institutionali-sing
open multi-agent systems, A formal approach. Technical report, Artificial Intelligence Re-
search Institute, Spanish Council for Scientific Research, IIIA Research Report 2001-01
(2001) (2000), http://www.iiia.csic.es/Publications/Reports/2000

9. Esteva, M., Rodriguez-Aguilar, J.A., Rosell, B., Arcos, J.L.: AMELI: An agent-based
middleware for electronic institutions. In: Jennings, N., R., Sierra, C., Sonenberg, L.,
Tambe, M. (eds.). Proc. of the Third International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2004), pp. 236–243 (2004)

10. Noriega, P., Sierra, C.: Towards layered dialogical agents. In: Third International Work-
shop on Agent Theories, Architectures and Languages, ATAL 1996 (1996)

11. Noriega, P.: Agent-mediated auctions: the fishmarket metaphor. IIIA Ph.D. Monographs,
vol. 8 (1997)

12. Rotriguez-Aguilar, J.A., Noriega, P., Sierra, C., Padget, J.: A java-based electronic auction
house. In: Second International Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology (PAAM 1997), pp. 207–224 (1997)

13. Partsakoulakis, I., Vouros, G.: Agent-Enhanced Collaborative Activity in Organized Set-
tings. International Journal of Cooperative Information Systems (IJCIS) 15(1), 119–154
(2006)

14. Gutknecht, O., Ferber, J.: The MadKit agent platform architecture. In: Agents Workshop
on Infrastructure for Multi-Agent Systems, pp. 48–55 (2000)

15. Pynadath, D.V., Tambe, M.: An automated teamwork infrastructure for heterogeneous
software agents and domains. Autonomous Agents and Multi-Agent Systems 7(1-2), 71–
100 (2003)

16. Hubner, J.F., Sichman, J.S., Boissier, O.: S-MOISE: A middleware for developing Organ-
ized Multi Agent Systems. In: Proc. of the AAMAS 2005 workshop: From Organizations
to Organization Oriented Programming (OOOP) (2005)

17. JADE: Java Agent Development Framework, http://jade.tilab.com/
18. Dignum, V., Meyer, J.J., Weigand, H., Dignum, F.: An organization-oriented model for

agent societies. In: Proceedings of RASTA workshop (AAMAS) (2002)
19. Odell, J., Van Dyke Parunak, H., Fleischer, M.: The Role of Roles in Designing Effective

Agent Organizations. In: Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A.,
Castro, J. (eds.) Software Engineering for Large-Scale Multi-Agent Systems. LNCS,
vol. 2603. Springer, Heidelberg (2003)

20. Vazquez-Salceda, J., Dignum, V., Dignum, F.: Organizing Multiagent Systems. Autono-
mous Agents and Multi-Agent Systems 11(3), 307–360 (2005)

21. Grosz, B.J., Kraus, S.: Collaborative plans for complex group action. Artificial Intelli-
gence 86(2), 269–357 (1996)

22. Khalil-Ibrahim, I., Kotsis, G., Kronsteiner, R.: Substitution Rules for the Verification of
Norm-Compliance in Electronic Institutions. In: Proceedings of the 13th IEEE Interna-
tional Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WET ICE 2004), 1524-4547/04 (2004)

23. Purvis, M., Savarimuthu, S., de Oliveira, M., Purvis, M.: Mechanisms for Cooperative be-
haviour in Agent Institutions. In: Proceedings of the IEEE/WIC/ACM International Con-
ference on Intelligent Agent Technology (IAT 2006), 0-7695-2748-5/06 (2006)

24. Arcos, J.L., Esteva, M., Noriega, P., Rodriquez-Aguilar, J.A., Sierra, C.: Engineering open
environments with electronic institutions. In: Engineering Applications of Artificial Intel-
ligence 18, pp. 191–204. Elsevier, Amsterdam (2005)

 Electronic Institutions Infrastructure for e-Chartering 107

25. Partsakoulakis, I.: Team-oriented behaviour in dynamic agent organizations. PhD Disserta-
tion in Greek (2007)

26. Vazquez, J., Dignum, F.: Modeling electronic organizations. In: Mařík, V., Müller, J.P.,
Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 584–593. Springer,
Berlin (2003)

27. Rodríguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Electronic
Institutions. IIIA Phd Monographs, Universitat Autonoma de Barcelona, Vol. 14 (2001)

28. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: The gaia
methodology. ACM Transactions on Software Engineering and Methodology 12(3), 317–
370 (2003)

29. Sierra, C., Jennings, N.R., Noriega, P., Parsons, S.: A Framework for Argumentation-
based Negotiation. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS,
vol. 1365, pp. 177–192. Springer, Heidelberg (1998)

30. Rahwan, I., Sonenberg, L., McBurney, P.: Bargaining and Argument-Based Negotiation:
Some Preliminary Comparisons. In: Rahwan, I., Moraïtis, P., Reed, C. (eds.) ArgMAS
2004. LNCS (LNAI), vol. 3366, pp. 176–191. Springer, Heidelberg (2005)

31. FIPA-The Foundation for Intelligent Physical Agents (March 2003),
 http://www.fipa.org

32. REPAST, http://repast.sourceforge.net
33. FIPA-Agent UML (2005), http://www.auml.org
34. Bauer, B., et al.: Agent UML: A Formalism for Specifying Multiagent Interaction. In: Ci-

ancarini, P., Wooldridge, M. (eds.) Agent-Oriented Software Engineering, pp. 91–103.
Springer, Berlin (2001)

35. The Digital Ship, http://www.thedigitalship.com/DSmagazine/digital
%20ship%20archive/digital%20ship%20nov/echartering.htm#_Toc5
28400402

36. Batrinca, G.: E-chartering web based platforms between success and failure. In: TRANS-
NAV 2007, Gdynia, Polland (2007)

37. Maritime e-Commerce Association, “Standards of E-chartering”,
 http://www.meka.org.uk/standards.asp?standardsID=2

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 108–123, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Multi-agent Simulation to Implementation: A Practical
Engineering Methodology for Designing Space Flight

Operations

William J. Clancey1, Maarten Sierhuis2, Chin Seah3, Chris Buckley4,
Fisher Reynolds4, Tim Hall5, and Mike Scott3

1 NASA Ames Research Center, Intelligent Systems Division, Moffett Field,
CA 94035, USA

2 RIACS, NASA Ames Research Center
3 QSS, NASA Ames Research Center
4 USA, NASA Johnson Space Center

5 NASA Johnson Space Center
{William.J.Cancey,Maarten.Sierhuis-1,Christopher.B.Buckley,

f.f.reynolds,Timothy.A.Hall}@NASA.Gov, CSeah@mail.arc.nasa.gov,
mscott@ptolemy.arc.nasa.gov

Abstract. OCAMS is a practical engineering application of multi-agent systems
technology, involving redesign of the tools and practices in a complex, distrib-
uted system. OCAMS is designed to assist flight controllers in managing
interactions with the file system onboard the International Space Station. The
“simulation to implementation” development methodology combines ethnogra-
phy, participatory design, multiagent simulation, and agent-based systems inte-
gration. We describe the model of existing operations and how it was converted
into a future operations simulation that embeds a multiagent tool that automates
part of the work. This hybrid simulation flexibly combines actual and simulated
systems (e.g., mail) and objects (e.g., files) with simulated people, and is vali-
dated with actual data. A middleware infrastructure for agent societies is thus
demonstrated in which agents are used to link arbitrary hardware and software
systems to distributed teams of people on earth and in space—the first step in
developing an interplanetary multiagent system.

Keywords: Work Systems Design, Work Practice Simulation, Decision Sup-
port System, Multi-Agent System, Agent-based Systems Integration, Space
Flight Operations.

1 Introduction

OCAMS (Orbital Communications Adapter Mirroring System) is a practical engineer-
ing application of multi-agent systems technology, using the Brahms modeling and
simulation tool [1-6], involving redesign of the tools and practices in a complex, dis-
tributed system. The purpose of the project was to automate some of the tasks in-
volved in mission operations at the Mission Control Center (MCC) at NASA Johnson
Space Center (JSC), supporting the International Space Station (ISS).

 Multi-agent Simulation to Implementation: A Practical Engineering Methodology 109

The combination of people and systems involved in JSC mission operations sup-
port is complex and distributed [7]. When long-term complex programs like ISS
evolve, new systems and processes are introduced that interact with legacy systems.
This creates a growing distributed systems environment that can be taxing on the
flight controllers and introduce more risk of human error. The OCAMS solution
bridges these complex distributed systems and automates processes that are repetitive
and time consuming. This simplification helps improve operator productivity and
safety and reliability by reducing the chances of human error.

The OCAMS tool is complex because it is embedded in the infrastructure of geo-
graphically and temporally distributed people and systems for which it facilitates
communication:

1) People and Organizations: Flight controllers, “backroom” support teams,
and customers (planners, human factors specialists, etc.) located in different
rooms at MCC and at other NASA centers in other states; and the crew on-
board ISS.

2) Computer Systems: File servers, PCs communicating with the ISS, support
PC, the PC that mirrors the ISS file directories (MirrorLAN), and PC laptops
onboard ISS.

3) Communication Media: Voice communications system (“voice loop”) at
MCC, telephone, email, “flight notes,” “change requests,” and log documents.

4) Space Communication Network: Communication between ground and ISS
using the TDRS satellite system is short-term, periodic and irregular (from
human perspective).

5) Out of this world geographic distribution:
a) Multiple NASA centers
b) In Houston: Highly secure Mission Control Center with flight control

rooms and support backrooms; offices in different buildings at JSC
c) International partners’ (Russia, Europe, Japan) control rooms and offices
d) ISS orbiting earth about every 90 minutes.

6) Regulations relating to safety and control have over time produced dis-
connected, legacy systems:
a) no ISS link to earth’s Internet
b) no cell phones in MCC
c) no network connection between MirrorLAN and MCC file servers
d) multiple versions of operating systems and file generation and handling

programs at different NASA centers and onboard ISS.
7) Work Practices and Protocols:

a) Diversity of methods for delivering files, notifying support personnel
(called “officers”) of work to be done (see Communication Media), and
notifying customers (usually “flight controllers”) of completed tasks and
problems

b) Continuous 24-7 coverage in three shifts (called “orbits”)
c) Shift handovers relying on detailed logs created manually documenting

the work done on the previous shift, anticipated work, and ongoing
issues.

110 W.J. Clancey et al.

The OCAMS tool was designed in a collaboration between two NASA centers,
JSC (an operations center) and Ames Research Center (ARC). The objectives in-
cluded: 1) Developing new mission operations design and automation capabilities that
would reduce the need for ISS ground support on a 24-7 schedule, and 2) Shifting
MCC’s concept of operations from controlling systems directly onboard the ISS to
supporting astronauts living and working in space.

The project approach was to automate tasks to improve operator productivity, in-
crease accuracy of the process, and eventually enable consolidation of this position
into other console disciplines. A year was allowed to demonstrate a new methodology
and automation capability, in which we would use a multiagent system to simulate
and implement an automation tool. This paper describes the methodology and pre-
sents the results of the project in the first half year, including partial implementation
of a prototype tool within a simulation of the new work system (called a “future op-
erations simulation”).

More broadly, in terms of engineering agent societies, this project illustrates the
following themes:

1) Highly-interdisciplinary methodology for the engineering of complex dis-
tributed applications

a) Ethnography
b) Mission Operations (flight controllers & protocols)
c) IT Administration: tools and constraints (OCA–Orbital Communications

Adapter wireless card, servers, FTP, email, multiple networks, security, file
types, mirroring, GUI, agents)

d) Brahms: Work Practice Simulation
e) MA: Agent-based Systems Integration
f) Java platform

2) Analysis, Design, Development & Verification of Agent System
The simulation to implementation methodology enables dealing with complexity
by using a simulation to design and largely implement a tool that is integrated
with a simulation of the work setting and practices:

a) The future tool is embedded in the Future Operations Simulation
i) Simulated people (Brahms agents)
ii) Actual software agents (e.g., personal agents)
iii) Actual external systems (e.g., email, FTP, file system, office tools)
iv) External system APIs used by Brahms Communication (COM) Agents

b) The work system design and tool is tested with actual data
i) Simulation is driven by the same inputs used by the future tool
ii) Develop using part of the data set (e.g., a month’s input)
iii) Continue to test during the implementation phase by using new data as it

becomes available.
3) Middleware infrastructures for agent societies: Use of Brahms agents and

external system APIs to link arbitrary hardware/software to teams of people
Brahms provides a promising candidate for answering the question: How will we
build practical complex agent systems on a variety of platforms using arbitrary
external software and hardware devices?

 Multi-agent Simulation to Implementation: A Practical Engineering Methodology 111

This paper describes the OCAMS project’s origin and scope, the Current Operations
Model and simulation output and the consequential design and partial implementation
of a multiagent tool (OCAMS) that automates operations in what we call the Future
Operations Simulation. Conclusions review how the development of OCAMS pro-
vides methods and insights for engineering agent societies.

2 Simulation to Implementation Approach

Our methodology makes multiagent simulation of work practices an integral part of
creating agent software, an approach we call “simulation to implementation” (Fig. 1).
The approach starts with the creation of a Current Work Practice Simulation Model
(CSM), using the Brahms language. The purpose of this simulation is to help frame an
organization’s problems and prioritize relationships and trade-offs. For example, how
will the functionality of NASA’s new spacecraft vehicle—the CEV—impact mission
operations, and how will the vehicle to ground split in functionality impact communi-
cations and in turn performance? Framing the problem to be addressed, metrics and
scenarios are developed to create a work practice model in Brahms. Simulating the
model in Brahms will generate simulation data that can be used to interpret the out-
come and validate the answers to the framing questions. One important additional
aspect is the use of such a simulation to generate new ideas for formulating the prob-
lem, and ultimately identifying solutions to the problems that can be addressed in the
next design phase. Methods used in this phase are work practice observation (includ-
ing videotaping and still photography), collaborative modeling with the workers from
the organization, and interview techniques [8].

In the Participatory Design of Future Work System phase we work closely with the
workers from the organization to design a solution to the problems identified in the
current work practice simulation [9]. In this phase we generate user-driven require-
ments and turn these requirements into a functional and technical design of a multi-
agent workflow tool. Following a principle of participatory design—transforming
current practices rather than believing one can start from scratch—leads to the Future
Work System Simulation Model (FSM) phase, in which the CSM model is adapted to
include the proposed tool(s). The data, metrics. and scenarios from Phase 1 are used
to drive the future work simulation, allowing comparison of the CSM with the FSM
models and validating the improvements of the new design. Because the future tool is
embodied in the FSM model, from the workers’ perspective it is actually a prototype
tool that runs in an automatic mode driven by historical data, simulating human ac-
tions. By providing interactive control of the simulation in a prototype GUI, the tool’s
operation can be demonstrated and its automatic features inspected and hence refined.

In the Work System Implementation phase we transform the Brahms FSM model
into a distributed real-time multi-agent system (MAS). The Brahms simulation engine
in runtime mode will shift the discrete event simulation from being driven by an in-
ternal clock to being coupled to the time and events in the real world, thus transform-
ing simulated agents into real-time software agents. Brahms can both simulate or
execute its agent models over the internet, enabling a seamless transformation from an
agent-based simulation environment to a distributed multi-agent system environment.

112 W.J. Clancey et al.

Fig. 1. Simulation to Implementation Approach

 Multi-agent Simulation to Implementation: A Practical Engineering Methodology 113

3 Project Origin and Scope

One purpose of this project was to demonstrate the use of an agent-based simulation-
to-implementation methodology in Mission Control at NASA’s Johnson Space
Center. Program management chose the Orbital Communications Adapter (OCA)
backroom group, which provides file transfer support to the ground team and astro-
nauts onboard the ISS.

Applying the simulation-to-implementation methodology to the OCA setting in-
volved the following activities:

1) Observation of OCA operations and interviews with OCA officers
2) Creation of a baseline simulation of current operations using Brahms
3) Collaborative redesign of the work system (documented in a functional speci-

fication)
4) Creation of a future operations simulation that embeds an agent-based work-

flow automation tool, implementing the functional specification (documented
in a technical design)

5) Validation of the tool and revised work processes by driving the simulation
with actual data

6) Integration of the agent-based workflow tool in the MOD work environment.

In this methodology, multiagent simulations serve multiple roles for understanding,
communication, formalization, specification, validation, and implementation.

The purpose of the OCA current operations model was to create a baseline under-
standing and formal description of an aspect of the OCA work process that could be
redesigned. Early observations of OCA operations and discussions with OCA officers
indicated that mirroring of ISS files was a good candidate for improvement. Given
time constraints and modelers available, our strategy in developing the current opera-
tions model was to understand and simulate enough of the system to provide confi-
dence that we could develop a functional specification for automating the mirroring
process. Consequently, the simulation does not attempt to capture any of the timings
or activities of the OCA officer in any detail, except for the mirroring activity. The
simulation showed that the OCA officers spend about 6% of their work time on the
mirroring activity.

The development of a current operations simulation has also served as tool for
management to understand the Brahms agent-based architecture and to grasp how a
future operations simulation could be converted into a workflow tool. The future
operations simulation is described at the end of this paper. By virtue of formalizing
the future design with a prototype GUI, it serves the additional role of a management
decision support tool for redesigning mission operations.

4 Model of the OCA Current Operations Work System

This section provides an overview of the OCA current operations model, which repre-
sents the typical actions of OCA officers during a shift. The activity model describes
what the OCA officer does during the shift; only the mirroring activity is modeled in
any detail in this current operations simulation. The main components of the model

114 W.J. Clancey et al.

Fig. 2. Agents and Objects in the OCA Current Operations Model

Table 1. Example of Kfx Summary Log data that drives the current operations simulation

Up/Down Downlink Uplink

GMT 300/23:59:00 301/00:00:05

Bytes 1,364 40,539,150

FileName
d:\oca-

down\Updates.log
U:\COSS\ILRT\Ref CD42\

TrainingManuals\English\01(0)T0008E.pdf

Extension log Pdf

Client Plan D Plan B

Year 2006 2006

are: OCA Officers, the OCA computers and drives, Building 30S (the MCC) work
areas, computer files and folders, and work schedules. Fig. 2 shows the agents and
main flow of data and commands between the agents and objects in the OCA current
operations model. For simplicity, the folders are represented as geographic areas
(shown as clouds).

To drive the simulation, we used a spreadsheet provided by an OCA officer,
KfxSummary_Nov2006.xls, which had been derived using macros from a log created
automatically by the ISS uplink/downlink software of the November 2006 file trans-
fers. Table 1 shows an entry from the spreadsheet.

Referring to Fig. 2 notice that a special agent, called the OCA Excel Com Agent
(Excel CA, hereafter ECA) provides information about what files were transferred
during a particular shift (as shown in Table 1). The simulated OCA Officer agent
determines whether a given file needs to be mirrored based on its type. The ECA
simulates the file being placed in the location FolderOnPF1. The OCA Officer agent
then operates on the file using PF1, the USB Drive, and the MirrorLAN.

 Multi-agent Simulation to Implementation: A Practical Engineering Methodology 115

1. The OCA Officer agent sends the ECA its shift information at the beginning of its
shift just after handover:

• GMT Date, e.g. 305 is Nov 1st
• GMT Start/Stop Hour and Minute

2. ECA sends file information back to OCA agent:

• File Extension, e.g. pdf, xml, zip
• File Name without Path, e.g. nfhWednesday.pdf
• File Path, e.g. /BHPG/Crew/News/
• File Direction (Uplink or Downlink, where “up” means to the ISS)

3. OCA Officer agent applies thoughtframes that use file type information and sends
back to ECA: Decision to mirror or not (true or false) and File Type symbol, e.g.
OSTPV_Snapshot_File_Type.

4. If the file is being mirrored, the ECA then puts the file in the location
FolderOnPF1, and informs the OCA Officer agent of the location and File Type
symbol.

This part of the simulation is not a model of work practice, but rather a method of
driving the simulation to use actual file transfer data. The effect is that the simulated
OCA Officer agent will mirror the same files during a given simulated shift that were
mirrored in the corresponding actual shift, by virtue of processing the files listed for
that time period in the Kfx Summary Log file.

The simulation constitutes a model of work practice (i.e., has fidelity) by virtue of
including the following:

• Data about file transfers that can be derived from the Kfx logs, including file
names, paths, sizes, and transfer direction.

• Relationship between file path/name and type of file (Table 1), e.g., ACKBAR
files, BEV updates files, DOUG files.

• OCA officer activities of transferring files from PF1 to USB Drive to Mirror-
LAN, in which the duration of these activities is estimated by the actual byte
size of the files being transferred at any time.

• OCA officer activities of monitoring file processing by services running on the
MirrorLAN, in which the duration of these activities were estimated by OCA
officers, based on file type.

Consequently, statistics can be generated from the model regarding how much time
the OCA agent spends mirroring files. Furthermore, by virtue of recognizing file
types, procedures for handling different types (e.g., providing notification) can be
modeled more easily in the Future Operations Simulation.

The Brahms Current Operations model completely describes an OCA shift. How-
ever, only the shift handover, file transfer, mail synchronization, and mirroring opera-
tions are modeled in any detail. The behaviors of people (modeled as Brahms agents),
systems (modeled as Brahms objects), and software agents (modeled as Brahms
agents) are represented as Brahms workframes and thoughtframes.

Here is an example of one of the actions performed by the OCA Officer agent be-
ginning the shift (ReadOCAHandoverLog is abbreviated ROHL):

116 W.J. Clancey et al.

workframe Read_OCA_Handover_Log {
 variables:
 forone(int) maxTime; minTime; actPriority;
 when(
 knownval(current.currentIndividualAct = ROHL) and
 knownval(ROHL.isDone = false) and
 knownval(maxTime = ROHL.maxDuration) and
 knownval(minTime = ROHL.minDuration) and
 knownval(actPriority = ROHL.activityPriority))
 do {
 moveToIndividualActivityLocation();
 ROHL(actPriority, minTime, maxTime,
 Statistics_Understanding);
 conclude((ROHL.isDone = true), fc:0);}
} // workframe Read_OCA_Handover_Log

In the conditional or “when” part of the workframe, the durations are read from the

activity schedule object ReadOCAHandoverLog. In the action or “do” part of the
workframe the agent does the following: 1) moves to an appropriate location, 2) reads
the log (a primitive activity performed for the specified time), and 3) concludes that
the activity of reading the log has been done. (Such propositions become part of the
individual agent’s model of the world and are called beliefs, contrasted with the
Brahms global model of the world, consisting of facts, which are only accessible to
agents via uncertain observables that occur during activities [1][5].)

Reading the log is defined as a primitive activity as follows:

primitive_activity ReadOCAHandoverLog(int priorityNum,
int minDuration, int maxDuration, Statistics statObj) {
 display: "Read OCA Handover Log";

 priority: priorityNum; random: true;
 min_duration: minDuration; max_duration: maxDuration;
 resources: statObj; }

The resources property indicates that statistical information about this activity

should be logged by the simulation engine. See Section 4.2 below on Statistical
Charts. The min_duration, max_duration and random facets of the activity definition
specify a random duration at runtime.

5 OCA Current Operations Simulation Output

The Current Operations model was run for 31 simulated days, corresponding to the
OCA officers’ shifts in November 2006. The simulation result can be verified and
validated using two methods, the AgentViewer and statistical charts.

5.1 AgentViewer

A Brahms simulation produces a history file in the form of a database that can
be diagramed and studied in the AgentViewer. This allows us to understand the be-
havior of agents and objects during the simulation. Fig. 3 shows agent behaviors
chronologically as activities; Workframes (darker shade) shown with “wf”, Primitive

 Multi-agent Simulation to Implementation: A Practical Engineering Methodology 117

Fig. 3. Simulated OCA agent’s actions during Orbit 3 (starting 5:50 PM CST; each white mark
is a clock tick = 5 minutes). Behaviors are modeled as workframes with composite activities
(CA) that invoke workframes, ending in primitive activities, such as communications (shown as
vertical lines connecting to file objects that are not visible here).

Actions (at the bottom) shown with “pa:”, Composite Activities (light shade) shown
with “ca:”, Communications (vertical lines), and Thoughtframe conclusions (light
bulbs). Locations appear in the bar above the black timeline for each agent or object.

The agent is transferring files to a USB drive (sitting at ISS MAS client area) and
then mirroring the files to the MirrorLAN (at the MirrorLAN area). Labels that won’t
fit are shown as three dots (…). One communication has been selected, causing de-
tails to pop up. Light bulbs may also be selected for details about the belief concluded
by a Thoughtframe.

5.2 Statistical Charts

A Brahms simulation can be “instrumented” by defining a resources property for
primitive activities (i.e. actions). For example, the communication action SelectFile has
the resources property Statistics_Transferring_Files, an object. The primitive activity
DraggingFile has the resources property “file,” which is the object being manipulated.
When the Brahms executive (simulation engine) encounters a resources property, it
logs data about the agents, objects, and durations during which that resource was
worked on. The current operations model is annotated by 20 statistics categories. These
categories represent general work “chunks” classifying the different activities of the
OCA officer for which we want the simulation to generate decision-metrics. Fig. 4
illustrates the kinds of charts that can be generated from the resulting statistics.

Analysis of such charts revealed that the OCA Officer spends most of the shift log-
ging and verifying file transfers. Our design has therefore focused on automating the

118 W.J. Clancey et al.

OCA Mirroring Activities Breakdown By Shift For Nov 2006

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

Com
m

un
ica

tin
g

Con
fig

ur
ing

 R
es

ou
rc

e

Dele
tin

g

Lo
gg

ing

Mov
ing

Sea
rch

ing

Tra
ns

fe
rri

ng
 F

ile
s

Ver
ify

ing

Activities

OCA Orbit 1
OCA Orbit 2
OCA Orbit 3

Fig. 4. Example of simulation results for mirroring subactivities. Note: Not definitive data;
these charts represent work in progress. They are not necessarily accurate and do not reflect
later changes made to the model.

mirroring activity in such a way that these subactivities in the future do not have to be
performed by the OCA officer. Besides eliminating a manual error-prone process,
automating the mirror activity will result in the OCA officer saving time and poten-
tially enable the position to be given less tedious responsibilities.

More specific charts compare shifts according to the percent of total files trans-
ferred to the percentage of files in a given shift (called an orbit) that are mirrored. For
example, Orbit 2 (the daytime shift) processed 36% of the files transferred between
ground and ISS during November 2006. Of the files that Orbit 2 transferred about
31% were mirrored. Thus, on average about a third of the files processed by an OCA
officer are mirrored. This represents a significant workload (about 2500 files manu-
ally manipulated) and further justifies automation.

In developing the future operations simulation, which will change the work design
by including a workflow tool for mirroring, we could choose to model additional
activities, such as communications with flight controllers, and instrument these events
to gather statistics from the simulation. These statistics can then be compared to ob-
servations we make of OCA operations, leading us to refine the model or gain confi-
dence in the simulation’s predictions. In particular, we could use the simulation to
predict that the OCA officer could take on other responsibilities, and include these in
another future operations simulation. In this way, we proceed through observation,
collaborative design, simulation, and redesign to incrementally improve how the work
is done, gaining efficiency and reliability.

6 Creating a Future Operations Simulation

The steps in creating an OCA future operations simulation include: 1) Creating a func-
tional design of the revised OCA work system, including automation of mirroring,

 Multi-agent Simulation to Implementation: A Practical Engineering Methodology 119

2) Revising the current operations model to more accurately represent the aspects of
work pertinent to mirroring automation, 3) Implementing the functional design as
Brahms agents, revised OCA Officer agent activities, and a simulated GUI for human-
agent interactions, 4) Validating the simulation using existing Kfx Summary logs and
carrying out “what if” simulations that introduce problems (e.g., unavailable systems
or errors during mirroring).

At the time of this writing, the project is in step 3, implementing the revised work
system design as a Future Operations Simulation. The simulation will include ap-
proximately 80% of the OCAMS tool. Using the tool, the work process is modified,
such that the OCA Officer will perform the following operations:

1. Select files to mirror (reviewing Mirroring Decision Agent’s selections)
2. Submit session (a batch) of files to mirror
3. Review and verify results; delete session of mirrored files
4. Handle files not mirrored by OCAMS manually
5. Handle files with MirrorLAN errors identified by OCAMS
6. Review mirrored files automatically logged in handover document
7. Notify flight controllers mirroring completed.

Fig. 5 shows the first version of the future operations simulation. It shows the flow
of shift information between the OCA Officer, the Mirroring Decision Agent, and the
Monitoring Agent. Files to be mirrored are transmitted by FTP to a staging area on a
separate computer where the Monitoring Agent individually moves files to the Mir-
rorLAN (via a drive mapping) and inspects the outcome of batch file execution.

Fig. 5. Future Operations Model, derived from Current Operations Model (Fig. 2)

120 W.J. Clancey et al.

Through collaboration among the ARC project team, JSC OCA officers, and man-
agement, the Future Operations Simulation will be modified to adjust the design of
the OCA work system (e.g., as may be required for implementation in the MCC).
After it is agreed that the design is complete and validated through simulations, a
runtime distributed Brahms agent system can be extracted from the Future Operations
Simulation and packaged as the OCAMS tool, to run in the Brahms virtual machine
on computers and the network in the OCA backroom area of the MCC. A certification
process, to be defined, might include constructing a mockup of this network and
operations.

Continuing ethnographic observations of OCA operations will be a key part of our
work while simulating the future operations to verify the simulations and to under-
stand how mirroring operations interact with other aspects of work practice, such as
notification to other flight controllers. Furthermore, we know from observation that
mirroring is a useful training ground for new OCA officers. Therefore, we want to
implement the system in such a way that manual operations on the MirrorLAN are
still possible and that automated processes adapt accordingly. Similarly, after imple-
mentation of the OCAMS tool, an important new phase of observation will begin to
understand changes to the work practice, emergent uses of the tool, and ways to
improve it.

7 Related Work

In this section we compare and contrast the Brahms simulation framework to Work-
flow Management Systems and Agent-Based Modeling and Simulation (ABMS) to
show the modeling requirements of the simulation to implementation approach.

7.1 Workflow Management Systems

Workflow Management Systems (WfMS) have evolved from business management,
business process reengineering, business process modeling and simulation, and to a
lesser extent artificial intelligence. OCAMS is a WfMS, where the automated process
is not a business, but mission operations.

Recently, workflow modeling languages and tools have been developed as industry
standards. For example, Business Process Execution Language (BPEL) is an XML-
based language with structured, executable programming concepts that can be inte-
grated with web services. The most common language in academia is the Petri-Net
language [10, 11], which uses complex state transition diagrams to model programs
and parallel processes such as concurrent tasks. A multi-agent system can be modeled
as parallel Petri-Nets.

Workflow models are based on a functional flow-based abstraction of the work,
modeling defined tasks and operations such as those formalized in business proce-
dures. In contrast, Brahms’ activity-based approach [2] enables modeling the
complexity of activities, communication practices, relationships, and circumstantial
details of coordination and workarounds, together constituting work practice, by
which functions are accomplished [12] [9]. Although I-X [13] also uses the concept of
an activity, its framework uses a task-planning approach. A Brahms activity is a

 Multi-agent Simulation to Implementation: A Practical Engineering Methodology 121

broader concept, including more than goal-directed problem solving, such as resting
by informally conversing with co-workers [2].

In systems with run-time capabilities, the work process model is or can be auto-
matically transformed into an executable language. For example, BPNM, IDEF3,
colored Petri-Net and YAWL languages are imperative programming languages. In
contrast, Brahms is an agent-oriented Belief-Desire-Intention (BDI) language which
represents processes as an organization of agents with individual beliefs, coordinating
group and agent-specific activities represented as situation-action rules [14]. Rather
than only expressing functional transformations, Brahms enables representing roles,
points of view, habits, temporal rhythms of behavior, contextual factors, communica-
tion media, tools, conversations, etc. This level of specificity enables a Brahms agent
that automates work to fit into the practices of the people who must interact with it, an
understanding encouraged by and enabling the embodiment of participatory design
within a simulation-to-implementation engineering approach.

7.2 Agent-Based Modeling and Simulation

Agent-based Modeling and Simulation (ABMS) is a term mostly used by researchers
in complex adaptive systems to model systems of relatively simple agents that derive
their emergent behavior from the system as a whole, instead of from complexity
within the agents themselves. Tools for ABMS such as Swarm [15] and Repast [16]
are not based on any particular human behavior theory and are not BDI languages;
agent methods are driven by a global scheduler. In contrast, Brahms models cognitive
agents; their internal state (possible and incomplete activities, plus beliefs, which can
represent plans and goals) combined with a complex modeled environment deter-
mines the agents’ next behaviors. Thus the Brahms language is both a BDI agent
language and an ABMS language, which is important for example in representing
decision making in mirroring files and handling errors.

In the category of BDI languages [17], Brahms is distinguished from systems such
as Jason and AgentsSpeak by its use of a subsumption-based architecture [18] for
representing an agent’s conceptualization of activities as parallel-hierarchical proc-
esses [1, 2]. This allows modeling how activities are like identities that blend and
contextually change what is perceived, how communications are interpreted, and how
tasks are prioritized. See [14] for additional comparisons to agent-oriented languages.

8 Conclusions

The OCAMS agent system is designed to automate workflow deterministically, under
OCA officer control to develop trust, enable customization, manage problems/
shortcomings, and retain a manual approach for use in training. A key aspect of this
practical engineering project is the highly interdisciplinary team that partners opera-
tions personnel with researchers and combines specialized knowledge from computer
science, anthropology, spaceflight operations, and work systems design.

The use of Brahms demonstrates how agents can be used in a “simulation to im-
plementation” methodology by which a model of current operations is converted into
a future operations model that incorporates both essential aspects of an agent-based
tool and a simulation of how the tool interacts with people and other systems. This

122 W.J. Clancey et al.

hybrid simulation enables flexible, incremental development of an implementation,
such that actual systems (e.g., email, FTP, files) replace simulated systems and ob-
jects. The simulations are driven by logs of the actual work performed in the past, and
the future operations simulation operates upon the actual files manipulated by the
OCA officers. By running the simulation subsequently with data from other months,
we can validate the generality of the mirroring rules and special handling designed
into the tool.

OCAMS is one of the first steps in developing an interplanetary multiagent system
that integrates people on earth and astronauts with a diversity of hardware and soft-
ware systems. The combination of agent-based simulation and systems integration
enables great efficiency in designing, validating, and deploying practical tools.

Acknowledgments. Brahms was originally developed 1992-1997 as a joint project
between NYNEX Science & Technology and The Institute for Research on Learning
[1, 5], and reengineered in Java at ARC from 1998-2001. The runtime form of
Brahms was developed in the Mobile Agents project [10]. We are grateful to Tom
Diegelman at NASA JSC for promoting applications of Brahms to mission operations
design and securing seed funding for this project in 2006 [11]; Brian Anderson, Den-
nis Webb, and Ernie Smith also provided essential support. Several other OCA offi-
cers not listed as co-authors reviewed and commented on the OCAMS specifications,
including Skip Moore and Karen Wells. This project has been supported in part by
funding from NASA’s Constellation Program.

References

1. Clancey, W.J., Sachs, P., Sierhuis, M., van Hoof, R.: Brahms: Simulating Practice for
Work Systems Design. International Journal on Human-Computer Studies 49, 831–865
(1998)

2. Clancey, W.J.: Simulating Activities: Relating Motives, Deliberation, and Attentive Coor-
dination. Cognitive Systems Research 3(3), 471–499 (2002)

3. van Hoof, R., Sierhuis, M.: Brahms Language Reference (2000), http://www.
agentisolutions.com/documentation/language/ls_title.htm

4. Seah, C., Sierhuis, M., Clancey, W.J.: Multi-agent Modeling and Simulation Approach for
Design and Analysis of MER Mission Operations. SIMCHI: Human-computer interface
advances for modeling and simulation, January 2005, pp. 73-78 (2005)

5. Sierhuis, M.: Modeling and Simulating Work Practice; Brahms: A Multiagent Modeling
and Simulation Language for Work System Analysis and Design. In: Dissertation in Social
Science Informatics (SWI), The Netherlands. SIKS Dissertation 10, University of Amster-
dam, Amsterdam (2001)

6. Sierhuis, M., Clancey, W.J., Seah, C., Trimble, J.P., Sims, M.H.: Modeling and Simulation
for Mission Operations Work System Design. Journal of Management Information Sys-
tems 19(4), 85–129 (2003)

7. Sierhuis, M., Clancey, W.J., Seah, C., Acquisti, A., Bushnell, D., Damer, B., Dorighi, N.,
Edwards, L., Faithorn, L., Flueckiger, L., van Hoof, R., Lees, D., Nandkumar, A., Neu-
kom, C., Scott, M., Sims, M., Wales, R., Wang, S.-Y., Wood, J., Zhang, B.: Agent-based
Mission Modeling and Simulation. In: Agent Directed Simulation 2006; part of the 2006
Spring Simulation Multiconference, Huntsville, AL (2006)

 Multi-agent Simulation to Implementation: A Practical Engineering Methodology 123

8. Blomberg, J., Giacomi, J., Mosher, A., Swenton-Wall, P.: Ethnographic Field Methods and
Their Relation to Design. In: Schuller, A.N.D. (ed.) Participatory Design: Principles and
Practices, pp. 123–155. Lawrence Erlbaum Associates, Hillsdale (1993)

9. Greenbaum, J., Kyng, M. (eds.): Design at Work: Cooperative design of computer sys-
tems, Hillsdale. Lawrence Erlbaum, NJ (1991)

10. van der Aalst, W.M.P.: Putting Petri Nets to Work in the Workflow Arena. In: van der
Aalst, J.M.C.W., Kordon, F., Kotsis, G., Moldt, D. (eds.) Petri Net Approaches for Model-
ling and Validation (pp, pp. 125–143. Lincom Europa, Munich (2003)

11. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language.
Information Systems 30(4), 245–275 (2005)

12. Sachs, P.: Transforming Work: Collaboration, Learning, and Design. Communications of
the ACM 38(9), 36–44 (1995)

13. Wickler, G., Tate, A., Hansberger, J.: Supporting Collaborative Operations within a Coali-
tion Personnel Recovery Center. In: Paper presented at the International Conference on In-
tegration of Knowledge Intensive Multi-Agent Systems, Waltham, MA (2007)

14. Sierhuis, M.: It’s not just goals all the way down – It’s activities all the way down. In: En-
gineering Societies in the Agents World, Seventh International Workshop (ESAW 2006).
Springer, Dublin (in press, 2006)

15. Minar, M., Burkhart, R., Langton, C.: Swarm Development Group (1996),
 http://www.swarm.org

16. Tatara, E., North, M.J., Howe, T.R., Collier, N.T., Vos, J.R.: An Introduction to Repast
Modeling by Using a Simple Predator-Prey Example. In: Agent 2006 Conference on So-
cial Agents: Results and Prospects, Argonne National Laboratory, Argonne, IL (2006)

17. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds.): Multi-Agent Programming:
Languages, Platforms and Applications. Springer Science+Business Media, Inc, New York
(2005)

18. Brooks, R.A.: A Robust Layered Control System for a Mobile Robot. IEEE Journal of Ro-
botics and Automation 2(1), 14–23 (1986)

19. Clancey, W.J., Sierhuis, M., Alena, R., Berrios, D., Dowding, J., Graham, J.S., Tyree,
K.S., Hirsh, R.L., Garry, W.B., Semple, A., Buckingham Shum, S.J., Shadbolt, N., Rupert,
S.: Automating CapCom Using Mobile Agents and Robotic Assistants. In: American Insti-
tute of Aeronautics and Astronautics 1st Space Exploration Conference, Orlando, FL
(2005)

20. Sierhuis, M., Diegelman, T.E., Seah, C., Shalin, V., Clancey, W.J., Selvin, A.M.: Agent-
based Simulation of Shuttle Mission Operations. In: Agent-Directed Simulation 2007; part
of the 2007 Spring Simulation Multiconference, Norfolk, VA, pp. 53–60 (2007)

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 124–141, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Progress Appraisal as a Challenging Element of
Coordination in Human and Machine Joint Activity

Paul J. Feltovich, Jeffrey M. Bradshaw, William J. Clancey, Matthew Johnson,
and Larry Bunch

Florida Institute for Human & Machine Cognition (IHMC)
40 South Alcaniz Street, Pensacola, FL 32502 USA

{pfeltovich,jbradshaw,wclancey,mjohnson,lbunch}@ihmc.us

Abstract. Joint activity, as we define it, is a mutually interdependent social
endeavor that requires sufficient predictability among participating parties to
enable coordination. Coordination, in turn, sometimes requires the parties to
appraise the state of progress of their activities so that, if necessary, they can
adjust their actions to meet coordination needs and communicate their status to
others as appropriate. A significant impediment as yet precluding the full
participation of automation in joint activity with people is its inability to sense
and communicate aspects of its state that would allow other participants to
meaningfully assess progress toward (or anticipate failure with respect to)
mutual objectives. In the current article, we address various issues associated
with “progress appraisal” and the challenges it poses for human-machine
systems. We point to promising directions for future work.

Keywords: Coordination, culture, human-agent-robotic systems, joint activity,
ontology, policy, predictability, regulation, teamwork, progress appraisal,
common ground.

1 Introduction

“How are things going?” or “How’re you doing?” or even just, “Hello,” may seem to
be meaningless, perfunctory exchanges among friends and strangers as they pass on
the street. But in reality they are more than what they seem. In our ongoing study of
interaction among groups of humans and machines, we have come to realize that
these deeply-reinforced conventions of decorum serve as simple probes to test the
friendliness and predictability of the people in the environment, functioning as rough
gauges to the safety of the moment or, on the other hand, to possible cooperative
opportunity [23; 43]. With such a perspective in mind, think of what it indicates
when, instead of the usual reply of “Fine, thanks,” one receives an unaccommodating
rebuff, “That’s none of your business!”

In situations where people actually do join to engage in cooperative work, more
complex forms of mutual probes can take on real importance as participants try to
assess periodically how the shared work is progressing, especially with regard to
interdependent aspects of that work. When machines join people in such endeavors, it

 Progress Appraisal as a Challenging Element of Coordination 125

is important that they also be able to participate in these ongoing, social processes of
probing and appraisal [7, 11, 26, 27].

As automation becomes increasingly pervasive in the ordinary social situations of
life, the need for devices capable of such “mixed-initiative” interaction will become
ever greater. Although the pursuit of fully autonomous systems is a worthy goal,
in many situations coordination with people can improve performance (e.g., [25]). In
other situations, agents1 cannot yet be trusted to perform critical tasks on their own
and must be teleoperated by one or more people [12]. Despite these realizations,
today’s automation is too often implemented as what Sarter, Woods, and Billings call
“strong, silent systems” [41] with only two modes: fully automatic and fully manual.
In practice this can lead to situations of human “underload,” with the humans having
very little to do when things are going along as planned, followed by situations of
human “overload,” when extreme demands may be placed on the human in the case of
sudden, unanticipated failure.

This essay explores some of the challenges that progress appraisal poses for joint
activity involving humans and machines. We first introduce some of the
characteristics of social activity and joint activity. Then, in Section 3, we discuss
“progress” within human activity. In Section 4, we take up the special role of time,
both as a way to specify and to indicate progress. In Section 5, we reach the heart of
the matter, as we examine the many factors involved in progress appraisal for humans
and machines. These aspirations for machines should be considered desiderata rather
than current accomplishments. In Section 6, we describe some of our ongoing
explorations of these ideas within mixed human-agent-robotic systems, and offer
some tentative conclusions.

2 Activity and Joint Activity

Human beings partition the flux of the world into personally meaningful units that
researchers have referred to as “activities” [14, 16, 36]. The nature of these activities
can usually be revealed by asking a person at any moment, “What are you doing?”
The answer will likely be something like “I’m shopping” for a person in a department
store, or, from a college professor, “I am giving my lecture in my class,” or “I’m
preparing my lecture for tomorrow’s class.” The response will not likely be “I am
breathing” or “I am standing on my feet.” For observers of conventional scenes
involving people doing things, there is usually pretty good agreement about what
activity is going on and when one activity has ended and another one has started [37].
Despite such rough consensus in everyday life, what constitutes an activity (as well as
its beginning and ending points) is not an objective “thing in the world,” but is, rather,
a context-sensitive “conceptualization” [14] or “construal” [31, 32] generated by the
participants involved. If our professor’s attention is absorbed by the painful physical
effects he is suffering as a result of his long lecture, he may respond: “I have been
standing on my feet too long.”

1 We use the term “agent” in an unqualified way to refer to autonomous or semi-autonomous

entities such as software agents, robots, and similar technology.

126 P.J. Feltovich et al.

Previously, we have discussed the nature of joint activity as a generalization of
that concept proposed by Herbert Clark [20, 34, 35]. Joint activity occurs when
people come together to try to accomplish something as a group. We have argued that
“The essence of joint activity is interdependence—that what party “A” does depends
on what party “B” does, and vice versa (e.g., “One if by land, two if by sea” in
Longfellow’s account of Paul Revere’s famous ride). As soon as there is
interdependence, there is often need for coordination in time (e.g., timing a live,
multi-party phone call) and/or space (e.g., designating a drop-off point), which in turn
requires some amount of predictability and order” [24].

We have also proposed that predictability and order derive from highly diverse
regulatory systems that play an essential role in human cultures [23]. These systems
can range widely, from devices such as formal law to ethnic folkways to
organizational and work norms and practices to informal codes of courtesy and good
manners that are meant to govern many aspects of everyday interactions [24]. These
can apply to activities (e.g., driving), products (e.g., codes for household electrical
wiring), or the social roles (e.g., squad leader) assigned to or adopted by actors.

3 Aspects of Progress

The concept of “progress” itself is, of course, not objective but must be related to the
context and aims of individuals. For instance, members of winning and losing
baseball teams within a game will have different appraisals of their progress toward
victory. On the other hand, they will be more likely to share similar views with
respect to clocks and landmarks (e.g., innings) that serve as indicators of the
remaining time left to play. Two members of the same team may, in turn, appraise
progress differently because they are concerned with their own piece of the overall
joint activity in addition to the more global perspective. A good example of
discrepancy in appraisal comes from a commentary on the ethnic turmoil in the
Balkans, showing how different stakeholders can judge progress differently—in this
case by attending to different components:

The omens before the March pogrom did not all auger ill. Political
officers in the UN mission who had been monitoring inter-ethnic
tolerance were seeing progress. Returns of displaced Serbs had
increased… Talks between Belgrade and Pristina about a variety of
practical issues of mutual interest had recently begun… Minority
representation in the Kosovo Police Service had improved… But
there were also signs that tensions were reaching breaking point…
The Kosovo Assembly, the territory’s elected parliament, had
marginalized the significant number of minority members… The
official opening of the Assembly’s refurbished hall was marred by
Kosovo Serb’s understandable complaints about murals depicting
scenes that reflected only the Albanian’s view of history… [33, p. 7]

If the world could be completely objective and predictable, there might be little need
to monitor the progress of the multiple efforts involved in a joint activity. Consider,
for instance, two individuals who are involved in independent activities for the

 Progress Appraisal as a Challenging Element of Coordination 127

afternoon (estimating the time needed for all of them) and then plan to meet at a
certain place and time that evening. If everything goes as expected, they will simply
meet at the appointed place and time, without having to consider their intermediate
progress. But disruptions of various kinds often impinge in such situations (e.g., one
of the parties is delayed by traffic or an emergency at home), and so, to successfully
accomplish their coordination aim, they will need to communicate their status at
critical junctures and adjust accordingly.

We note that even assessing one’s own status regarding progress can be challenging.
In the case of machines, though they may have excruciatingly detailed access to
aspects of their internal functions, they are typically oblivious to the future
implications of their current state or to important aspects of the world around them that
may affect their ability to perform. It has long been a complaint about automation that
it cannot make or broadcast these kinds of high level, reflective judgments and that this
limitation often causes situations to unravel helplessly, as machines fail without
warning or report trouble too late to enable corrective measures [5, 13, 39, 41]. This
article addresses the kinds of requirements that must be met if machines were to have
significant capability for judging their own progress and, perhaps, being able to offer
reliable warnings regarding deviations from expected progress or, in the worst case,
an advance notice of impending failure. Time is an important dimension for these
kinds of assessments—a topic we take up next.

4 Time as a Special Dimension

Time serves many roles as part of progress appraisal. For instance, it can function as
constraint (“I have—or estimate that I have—thirty minutes to complete the task”), a
planning factor (“Given the time I have, I will try doing the task this particular way”),
or more purely as an indicator of progress (“This is taking way too long, I’m not
going to make it in time”).

Time, along with the degree of tightness in the coupling of the interdependent
activities, is often a central factor in judging progress. In general, shorter time and
tighter coupling reduce the margins of error in joint activities and allow less time for
appraisal and the making of any necessary adjustments. In any form, progress
appraisals will need to be made in different kinds of contexts that involve timing:

• Deterministic: Designed, Fixed Timing. These situations involve fixed deadlines
that a process must meet, such as a final date for submitting a research proposal or
making a reservation. These deadlines are set in order to coordinate with the
processes of others (e.g., the review and handling procedures by the respective
organizations involved) in a fashion that has been specifically designed to minimize
surprises and to allow the deadlines (coordination points) to be planned, stable, and
public. In some instances adjustments are possible, as in extensions, but there is
often fixed procedure (and set times) for making these, too. A key characteristic of
such situations is the desire for predictability (and relative stability) of both the
processes involved in the coordination and the timing of the interdependencies
among the parties. For example, sub-process relations, causal influences, and causal
effects are deterministic.

128 P.J. Feltovich et al.

• Emergent Internal Relations: Contingent Inter-Process, Fluid Timing. In this
kind of coordination, a deadline is not fixed as a time, but, rather, is dependent on
the progress of other interdependent processes (see section on “Other activities”
below). For example, a coauthor on a scientific article cannot make progress on her
part of the writing until some data are analyzed by another colleague (with both
authors, perhaps, subject to a fixed deadline for completing their overall project). In
such cases, both interdependent processes must somehow be made aware of (or
estimate) progress within the other. When all goes “as planned,” they may
coordinate through a pre-set schedule or plan. But perhaps more often, they will
need to communicate their progress to one another as they move forward.

• Emergent External Influences: Timing Imposed from Indirect Influences.
Many influences external to the main joint activity affect the efficiency of its
completion. For example, available resources may be germane, as when a pilot is
waved off from a scheduled landing site and needs to find an emergency site that is
reachable with his available fuel. Loss of primary communication modes slows (or
prevents) interdependent progress. Local regulations may impinge, unanticipated
obstacles (or affordances) pop up, the weather change, and so forth. Surprises, in
general, seem particularly relevant in this category.

• Emergent External Effects: Timing Imposed by the Half-life (Perishability) of
the Usefulness of Components. Elements may only “work” for some purpose for a
limited window of time. For example, a photograph of an active battlefield,
provided by a higher command to an officer on the ground, will likely have a
shorter span of usefulness than a weather report pertaining to the same locale, or an
even more stable geological survey. The value of work performed, or information
provided, may plummet to zero if it does not appear until after the “usefulness
deadline” has passed. More positively, partial products will sometimes suffice for
the coordinating party to be able to make some progress, even if less than the full
product would allow. The parties involved have a number of options if they
determine that a usefulness deadline may be missed. For example, they can
intervene by providing more resources to the activity, or they can seek the product
from an alternative source.

To summarize, the necessary timing of a process (always subject to need for
adjustment) is determined in advance (a schedule) or emergent. Emergent timing is
contingent on sub-process relations of variable duration and on external factors.
External factors include 1) causal influences on the process that may change before
the process is complete and 2) causal effects of the process (e.g., functional value of
its products) whose timing affects the external factors. Because timing is inherent in
causal processes—whether parallel or sequential—the temporal nature of the process
provides information for specifying or indicating how the process is progressing.

5 Factors Affecting Progress and Progress Appraisal

Many other factors affect progress and its appraisal in interdependent human-machine
systems. We will now discuss some of these and give examples to clarify the nature of
the factors and to provide ideas about how they might be addressed. While the
particular factors presented have been stimulated by some of our own experiences in

 Progress Appraisal as a Challenging Element of Coordination 129

developing human-agent-robotic systems over many years, as well as those reported by
others (e.g., the criticality of communications), we make no claim to exhaustiveness. In
this sense, the factors discussed can function as a stimulus to further investigation and
reporting.

Communication. Coordination without some form of communication is challenging
for humans and agents alike. In critical situations with a high degree of mutual
interdependence, a loss of communication can spell danger. This has been a major
lesson from almost all recent international responses to disaster, as reflected in pleas,
contained in many after-action reports, for “bullet-proof” and interoperable
communication devices and networks (e.g. [22]).

Beyond the mere availability of communication, the quality and timeliness of
progress reports play a key role. Reports that arrive later than planned because of a
downed system can handicap the activities of others who are dependent on them. The
negative effect often ripples outward in a variety of ways, impacting available time to
adjust or to consult with others to get assistance. Messages that deceptively or
inaccurately report progress have similar effects. Over-messaging can also have
deleterious effects on progress and its appraisal [40].

Human Example: Joe and a colleague, who will arrive first at the airport, agree to
meet at the AJAX car rental desk where they will share a ride. Upon arriving at “the”
desk, Joe discovers that this particular airport has four AJAX desks, one in each of
three terminals and one outside the terminal. His partner is not there. He tries to call
his partner from his cell phone but finds that he has no signal at this spot. After some
time, he decides to ask the agent at the nearest AJAX desk to call the other desks to
look for his partner. They finally connect and successfully co-locate.

Agent Teamwork Example: A human-agent team could incorporate a policy that
causes regular checks on all agents. If they do not respond, one knows that either the
communication has failed—or worse. At a specified heartbeat rate, a probe assigned
to each agent could automatically test capability without interfering with the ongoing
work of the agents (cf. [2]). Also desirable would be a system of back-up
communication that could be engaged when first-line devices fail or are suspect, and
an agreed upon “safe” mode or default behavior to which each agent would revert if
communication becomes impossible.

Landmarks. These are recognizable entities, including partial products, that should
be seen or produced if acceptable progress is being made.

Human Example: Knowing the general distance from the airport to his hotel and the
current flow rate of traffic, Joe believes that he should have seen the bridge on his
map by now. He becomes concerned that he may have made a wrong turn somewhere
and starts comparing the street signs he can see around him with street names on the
map. Having determined his current location, he adjusts his route accordingly.

Agent Teamwork Example: Landmarks encountered, goals achieved, or results
produced during a process can be indicators of current state in comparison to
observables, that is, to detectables known to reflect degree of progress toward goal
states. Physical metrics, such as distance from a physical destination, are one kind of
indicator. But it is also important to be able to track more abstract indicators. For

130 P.J. Feltovich et al.

example, if there is a simple plan that contains two steps, it would count as progress
when the first step was completed.

Successful use of landmarks clearly depends on familiarity with an activity. One
needs to have expectations of what kinds of things appear or are revealed, get
produced, or are consumed, as a process develops to completion. This can be
supported by actual experience and learning, or by various sorts of props that
represent vicarious experience (e.g., maps, plans, guides, checklists). Examples of
landmarks include goals achieved or steps completed in a plan, entities encountered or
revealed in relation to those expected, computational results produced in comparison
to those required, resource use in relation to average consumption, and actual time
intervals between two events in comparison with “normal” intervals.

Helps, Obstacles, and Affordances. By these we mean all the diverse elements that aid,
hinder, or merely allow progress. Some of these may be of long standing, while others
pop-up unexpectedly (e.g., summer-long bridge construction vs. a traffic accident).

Human Example: On his drive from the hotel to the airport, Joe discovers that his
intended exit from the highway has been closed that day for repairs. He checks his
map to see how far he is from the next exit.

Agent Teamwork Example: Policy can require agents to notify other team members
of helps, obstacles, and potential affordances that will affect their individual
performance—or that of the team. Such an obligation recalls the teamwork heuristic,
developed by Cohen and Levesque, that required agents to tell team members when a
team goal was achieved or became impossible or irrelevant [21]. This generic
approach saved developers from having to write numerous special purpose exception
handling procedures for specific situations [44]. Degree of anticipation is an
important factor in dealing with helps, obstacles, and affordances. Anticipated
obstacles, e.g., increased crowds at restaurants around lunch hour, can be planned for
(block out more time) or worked around (go earlier of later). Accuracy in anticipation,
again, depends on familiarity and learning.

Resources. Resources range from such things as energy and bandwidth to necessary
artifacts and tools (e.g., a hammer, a car [and energy for the car], a map). What stands
as a resource is relational, that is, “This A serves as a resource for this B in context C.”
Thus, just about anything can serve as a resource for something else in the right context.

Human Example: Joe runs out of gasoline in his car and stalls. He tries to use his cell
phone to call for help, but he discovers his phone battery is dead.

Agent Teamwork Example: Levels of necessary consumables and achievability of
enabling conditions for actions can be monitored. For example, batteries,
communications, and other resources can often be monitored—and perhaps reasoned
about (e.g., “Do I have enough gasoline to make it to my destination?”). Enabling
conditions for the execution of actions can also be investigated (e.g., “Do I have a
hammer if I need to pound a nail, a vehicle if I need to make a trip?”).

Knowledge. Included here are basic knowledge of requirements for an activity and
also the means for addressing these, including alternative means, routes, geography,
places to acquire consumable resources (e.g., gas and food), people who can help, the

 Progress Appraisal as a Challenging Element of Coordination 131

roles of team members, knowledge of pertinent regulations, access routes, and so
forth. Experience with a joint activity aids progress appraisal in at least two ways.
First, with time the parties involved build up norms for how much time component
activities usually take and the likely impediments that may arise. This helps detection
of unusual time delays and allows preplanning and workarounds for many known
potential impediments. Second, with experience, team members get to know each
other’s roles, habits and manners, for example, leadership, timeliness, trustworthiness,
work-habits, and degree of communication availability. If a team facing a hard
deadline needs a deliverable from a team member by a certain time, they will appraise
the situation differently if the partner is reliable and always comes through, versus
another colleague whose delivery patterns are spotty.

Human Example: Joe, a visitor, runs out of cash in Japan and, to no avail, tries to
find ATM machines or banks to help him. He does not know that in Japan many of
the functions carried out by banks in other countries are, instead, handled by post
offices. A local resident tries to explain this situation to Joe, but Joe cannot
understand Japanese.

Agent Teamwork Example: Agent planning capabilities generally address problems
concerning what knowledge, actions, and resources are necessary to complete a given
task. Typically, however, such planners are limited in their ability to be self reflective,
let alone being able to reason effectively about coordination issues involving other
human and agent team members. Our research group is working on collaborative
planning approaches that take as a premise that people are working in parallel
alongside (more or less) autonomous systems, and, hence, adopt the stance that the
processes of understanding, problem solving, and task execution are necessarily
incremental, subject to negotiation, and always tentative [1, 6]. In this way, agents
and robots can work with people in a mixed-initiative mode—doing as much as they
can autonomously based on their own knowledge, but also being aware of when they
need to take direction or ask for help from others.

Mistakes. These are actions other than those intended, including “slips” [15, 38].
When recognized, mistakes should trigger attempts to recoup and re-estimate progress
(e.g., how much time, relative to the previously expected time, the process may now
take for completion, given the mistake).

Human Example: Joe arrives at his departure gate for a connecting flight. Just as the
final call is being made, he considers whether he has time to visit the restroom. He
decides he has just enough time. Upon exiting the restroom, he turns down the hall
and starts walking. Suddenly, he realizes he went the wrong direction. Since he
caught the mistake quickly, he turns around and walks at a regular pace. Had he
walked farther before noticing the error, he may have had to quicken his step.

Agent Teamwork Example: Unlike obstacles, mistakes are the result of the agent’s
own choices. Effects of these choices can be monitored. When a mistake is detected,
the agent can abandon the plan, retrace back to the intended path and then continue,
ask for help, or construct a new path. Teng (IHMC) has developed an initial version of
Kab (KAoS abstract backup), a new special-purpose planner that works in conjunction
with the KAoS Kaa component (see below) to help agents and agent teams formulate

132 P.J. Feltovich et al.

and select appropriate generic backup plans for such situations. Unlike typical
approaches for this problem, Kab relies on a small number of human-compatible
strategies for plan repair based on our observations of teamwork-in-practice, rather
than a collection of general-purpose formalisms grounded in logic alone.

Regulatory Devices. These include any rules, regulations, customs, or other constraints
(and affordances) that apply to the activity at hand (e.g., speed limits, rights of way,
policies) or to the roles of team members (e.g., associated restrictions, rights,
obligations).

Human Example: Not having planned well, Joe finds himself with less than ample
time to get to the airport. On the map, he sees an alternative route that looks shorter
and more direct. He takes this route and soon discovers that the speed limit on this
road is low. He also reads on a sign that the fines for speeding at this particular time
are doubled because there are workers doing maintenance on the road. He considers
tracing back to his original route or trying to find yet another one.

Agent Teamwork Example: This involves the detection of impedance to progress due
to the enforcement of a regulatory mechanism (e.g., a policy, rule, or role
responsibility/obligation). To the extent these situations can be represented by
(computational) policy, this is straightforward (e.g., having a policy to prevent entry
to a restricted area). Kaa is an adjustable autonomy capability that uses decision-
theoretic reasoning to determine how to adjust policies, resources, or circumstances to
assist in the achievement of team objectives [9].

Conflicts. Because resources such as time and attention are finite, conflicts regarding
their allocation sometimes occur. These include conflicts among alternative activities,
goals, obligations, and allegiances.

Human Example: Not only must Joe board his flight in time, he also needs to finish
off a piece of writing before boarding (finishing it after the flight would be too late) to
send to a colleague back home who is completing submission of a grant proposal
under deadline. He decides to move close to the airplane entrance door, not board
when first called, and work on the writing up until the last moment before the
airplane door is closed.

Agent Teamwork Example: Conflicts can be handled by agents in several ways. One
is to split the team, if possible, to cover the different duties (differential
reassignment). For example one agent covers one task, and another covers the other.
Their work can also be prioritized—a kind of triaging. Alternatively, they might do a
merely adequate, rather than a superb, job on each task so they create time for both.
They might just speed up. Policies can specify priorities for competing demands and
can also constrain what alternatives are available for re-tasking and delegation.

Changes of Plans. Sometimes in the midst of the conduct of a planned joint activity,
events evolve that cause overall aims to change. This may happen for many reasons, for
example, a more pressing need/objective has emerged, elements of the current operation
have failed so badly that the original aim must simply be aborted, or an opportunity has
arisen that enables achievement of a higher priority goal. The effect on progress will
depend on how discrepant the new objective and plan are from the original one.

 Progress Appraisal as a Challenging Element of Coordination 133

Human Example: Joe is in a distant town for a three-day academic workshop. At the
end of the first day, he receives a call from his wife back home reporting that there
has been a family emergency. He immediately starts making arrangements to return
home, recruiting a colleague to deliver his paper at the workshop.

Agent Teamwork Example: The topic of this essay, progress appraisal, is pertinent to
judging whether an activity is progressing acceptably, with change of plan being a
recurrent theme (e.g., as the result of a surprise). In that sense, the whole article
involves suggestions for building this capability in agents. One approach utilizes
“back-up” plans, both contingency (worked out in advance) plans and dynamic re-
planning (see brief discussion of the development of Kab, above).

Other Activities. This category is particularly pertinent to interdependent activities.
We are interested in joint activity, so how well one activity “is going” is not
independent to that activity, but is contextually related to how other processes are
progressing, especially regarding their points of interdependency (e.g. how fast one
participant must complete its activity depends on how fast some other process needs
the output to accomplish its part of the joint activity).

Human Example: At their destination airport, Joe and a colleague, who is coming
from a different city but is scheduled to arrive about the same time as Joe, are to join
each other and to share a rental car to their hotel. Joe’s flight experiences a moderate
delay in departure, and he calls his friend to tell him his flight will be late. Because
the delay will be relatively short, the friend says he will get something to eat at the
airport and wait for Joe. Had the estimated delay been long, the friends might have
decided just to make their own ways to the hotel.

Fig. 1. Overview of Coordinated Operations Exercise Components

134 P.J. Feltovich et al.

Agent Teamwork Example: Any evidence, reported by an agent or solicited from an
agent, indicating that some process in which it is involved is progressing differently
from expected, especially with reduced progress, is important. One approach is for
agents involved in joint activity to monitor each other’s progress and to make
adjustments as needed along the way.

6 Applications to Human-Agent-Robotic Teamwork

Our group is applying the ideas presented in this article to facilitate joint activity in
mixed human-agent-robot teams.2 We have developed the KAoS HART (Human-
Agent-Robot Teamwork) Services framework as a means to flexibly specify, analyze,
enforce, and adapt policy constraints to facilitate team coordination [8, 45]. KAoS
policies, represented in OWL (W3C’s Web Ontology Language, http://www.w3.org/
2004/OWL), are of two types: authorizations (constraints that permit or forbid some
action in a given context) and obligations (constraints that require some action or waive
a pre-existing requirement). More complex teamwork policies are built out of these
primitive types. To more adequately represent some of the subtleties of joint action, we
are augmenting the policy ontology with a broader Ontology of Regulation [24].

In the context of human-agent-robot teams, we have been involved in domains such
as space exploration, disaster response, and military operations [9, 17, 18, 28, 42]. A
recent field exercise, particularly germane to the present essay, involved complex
coordinated operations of a team consisting of two humans and seven robots (Fig. 1)
[30]. In this demonstration, the team had to perform reconnaissance of a port facility to
determine the presence of underwater obstacles, explosives, structural soundness of
pier facilities, and the nature and extent of any armed resistance. In the course of this
surveying, an intruder was detected, and the team then needed to secure the boundaries
to prevent escape, and to search the area to find and apprehend the intruder. The team
consisted of two humans: a remote commander and a lieutenant in the field interacting
locally with the robots. The robots included an unmanned air vehicle, an unmanned
water surface vehicle, a highly mobile IHMC “tBot” robot, and four Pioneer 3AT
ground vehicles, variously equipped with sonar, GPS, cameras, and SICK lasers.

6.1 Progress Appraisal in the Coordinated Operations Exercise

Members of the human-robot teams were strongly associated with roles. Roles can be
thought of as ways of packaging rights and obligations that go along with the
necessary parts that people play in joint activities [10, 29]. Knowing one’s own role

2 We realize that there are important differences between human teams and the mixed teams of

which we write. Even the authors of this paper have had lively debate as to whether the use of
the term “team” is appropriate in this context and whether machines and software can
appropriately be classed as “team members.” While recognizing the significant—and perhaps
insurmountable—differences between the contributions that technology and people can make
to joint activity, a large segment of the research community uses “team” as a rough way of
characterizing the ideal forms of interaction to which we aspire. For snapshots of this ongoing
debate, see [3, 4, 18].

 Progress Appraisal as a Challenging Element of Coordination 135

and the roles of others in a joint activity establishes expectations about how others are
likely to interact with us, and how we think we should interact with them. In addition,
progress is often associated with the duties of a role. When roles are well understood
and regulatory devices are performing their proper function, observers are likely to
describe the activity as highly-coordinated. On the other hand, violations of the
expectations associated with roles and regulatory structures can result in confusion,
frustration, anger, and a breakdown in coordination.

Collections of roles are often grouped to form organizations such as teams. In
addition to regulatory considerations at the level of individual roles, organizations
themselves may also add their own rules, standards, traditions, and so forth, in order
to establish a common culture that will smooth interaction among parties.

The lesson here for mixed human-agent-robot teams is that the various roles that
team members assume in their work must include more than simple names for the role
and algorithmic behavior to perform their individual tasks. They must also, to be
successful, include regulatory structures that define the additional work of coordination
associated with that role.

Consistent with this role-based orientation, coordination of search and apprehen-
sion activities was facilitated by five sets of KAoS policies addressing chain of
command, acknowledgement, and progress appraisal issues as they relate to the
requestor, the team leader, and other team members. The particular policy sets chosen
for initial implementation are related to core components of our developing Progress
Appraisal investigations. Some are directly related to progress appraisal as indicated
by their titles. Two others, Chain of Command and Acknowledgement, are important
auxiliary components. The first puts into play a central set of regulatory constraints
that can aid or impede progress in our particular domain of application, a military
operation (see section on “Regulatory Devices” above). The latter is a basic set of
communication policies for supporting the basic progress appraisal process (see
section on “Communications” above). We note the similarities of some aspects of our
work to Winograd’s Coordinator [46].

6.1.1 Chain of Command
This policy set enforces a hierarchical, military-style chain of command and consists
of four policies:

• A Robot is not authorized to perform Action requests from just any
Requestor EXCEPT

• A Robot is authorized to perform Actions requested by its Team Leader
• A Robot is authorized to Accept Actions requested by a higher authority
• A Robot is authorized to Accept Actions that are self-initiated

These policies support the norms of authority in a military operation. Here, we
focus on the role of a leader in relationship to subordinates (e.g., the robots, above).

6.1.2 Acknowledgment
This policy set enforces acknowledgment of all commands, except those that are
directly observable:

136 P.J. Feltovich et al.

• A Robot is obligated to Acknowledge when the Robot Accepts an
Action EXCEPT

• A Robot is not obligated to Acknowledge Teleoperation requests
• A Robot is not obligated to Acknowledge Query requests

“Acknowledgement” means, “I (e.g., a robot) got your message,” prior to acting
on it. Simply acting on it, when the act’s execution is visible, usually obviates the
need for pre-acknowledgement, as Clark has written about regarding his “Joint Action
Ladder” [20].

6.1.3 Requested Action Progress Appraisal
This policy set enforces communication norms between a requestor and requestee,
based on progress:

• For Continuous Actions, A Robot is obligated to notify the requestor when
the Status of the requested Action changes

• A Robot is obligated to notify the Requestor when requested Action is
Finished (includes statuses of Completed, Aborted, and Failure)

EXCEPT Certain types of commands are directly observable and do not require
feedback unless something goes wrong.

• A Robot is not obligated to notify the Requestor when a requested
Teleoperation Action is Completed successfully

• A Robot is not obligated to notify the Requestor when a requested Query
Action is Completed successfully

These help provide the requestor with progress appraisal information for execution
of the specific action requested, except when progress can be assessed more directly,
e.g. can be seen.

6.1.4 Leader Progress Appraisal
This policy set enforces communication norms with a team leader based on progress:

• A Robot is obligated to notify its Team Leader when an Action is requested
by a higher authority (higher than the team leader)

• A Robot is obligated to notify Its Team Leader when starting a self-initiated
Action

• A Robot is obligated to notify its Team Leader when a self-initiated Action
is Finished (includes statuses of Completed, Aborted, and Failure)

These policies serve much like those of 6.1.3, except that the role of “leader”
demands some special kinds of notices, compared to a general Requester (role).

6.1.5 Group Peer Progress Appraisal
This policy set enforces communication norms between members on the same team
based on progress:

• A Robot is obligated to notify other participants in a Joint Task when the
Joint Task is Finished (includes statuses of Completed, Aborted, and Failure)

 Progress Appraisal as a Challenging Element of Coordination 137

• A Robot is obligated to notify its Team Members if the Team Goal is
Aborted and no longer applicable

Again, these policies support appraisal of progress among members of the working
group, but in some ways differently from the like support provided to a “Leader
(role).”

6.2 Further Policy Considerations

Each of the operative policies helps to maintain common ground (mutual
understanding) by enabling the robotic agents to coordinate with their human
counterparts in a manner consistent with human norms and expectations [19, 34, 35].
As a simple example, when asked to perform a task, the robots will acknowledge the
request (simply saying that it has received the message; acknowledgement in this
sense does not refer to its possible subsequent actions taken). However, for
teleoperation, the requests are numerous and the effect, the resulting action, is directly
observable, so acknowledgement would become annoying and detrimental. Therefore
we waive this requirement. Similarly, if the lieutenant is in charge of a robot, and his
commander overrides his authority and tasks the same robot, we ensure the lieutenant
is informed, rather than leave the lieutenant in a state of confusion about the
unexpected actions of the robot.3 Another example of progress appraisal is that when
a robot is tasked to search for something and it finds (or loses) it, the robot tells the
requestor of this status change—something obvious to humans but typically not
considered explicitly in robot operations.

We have previously noted the need to design-in collaborative capabilities in robots
at a more basic level than is typically done [28]. One area we are focusing on for the
future is determining how to code robots in a manner that allows for a finer grained
progress appraisal. It would be useful, not only to know if an action is completed or
aborted, but also if the robot is struggling or delayed. We have been working on
several examples of robotic behavior where we can provide this type of information.

A final challenge is dealing with the more subjective aspects of progress appraisal
(see Section 3). We note, for example, the difference in difficulty between assessing
progress on a more objective task that depends on closing a known distance between a
robot and its target and a more subjective task that depends on aggregating a number of
imperfectly known estimates, perhaps even reflecting different points-of view or
conceptualizations of the meaning of the activity. This will be a daunting problem [24].

7 Conclusions

Complex operations involving mixed teams of humans, software agents, and robots,
require strong tools to support coordination of the interdependencies among the
activities of the components. Since, in the real world, activities usually do not play out
exactly as expected, successful coordination often requires that adjustments in
planned activities be made to accommodate disturbances in progress within the

3 The Commander has higher authority in this case; extant policy automatically detects the

conflict in commands and de-conflicts according to chain of command.

138 P.J. Feltovich et al.

coordinating activities. This, in turn, requires that agents have an understanding of
their progress so that they can convey this to other participants. Historically, this kind
of assessment of progress (with associated warnings of impending trouble) has been a
critical limitation of automation, and this lack has contributed to some automation
disasters. Our research group is confronting this specific kind of limitation. The work
is just beginning, but we are optimistic that important progress can be made.

Acknowledgements

Our thanks to the following individuals for their substantial contributions: James
Allen, Maggie Breedy, Marco Carvalho, Tom Eskridge, Lucian Galescu, Hyuckchul
Jung, James Lott, Robin Murphy, Jerry Pratt, Anil Raj, Signe Redfield, Richard
Smith, Niranjan Suri, Choh Man Teng, and Andrzej Uszok. The research was
supported in part by grants and contracts from the U.S. Air Force Office of Scientific
Research to Dartmouth College through subcontract (5-36195.5710), the Office of
Naval Research (N00014-06-1-0775), and the U.S. Army Research Laboratory
through the University of Central Florida under Cooperative Agreement Number
W911NF-06-2-0041. William J. Clancey has been supported in part by funding from
NASA’s Constellation Program. The article does not necessarily reflect the views of
any of these agencies. We also thank the fine reviewers and the editors of this volume.

References

1. Allen, J.F., Ferguson, G.: Human-machine collaborative planning. In: Proceedings of the
NASA Planning and Scheduling Workshop, Houston, TX (2002)

2. Arkin, R.C.: Homeostatic control for a mobile robot: Dynamic replanning in hazardous
environments. Journal of Robotic Systems 9(2), 197–214 (1992)

3. Biever, C.: Bots as peers: It’s all a matter of teamwork. San Francisco Chronicle, San
Francisco, CA, May 6 (2007) (accessed September 15, 2007), http://sfgate.com/
cgi-bin/article.cgi?f=/c/a/2007/05/06/ING9GPK9U71.DTL

4. Biever, C.: If you’re happy, the robot knows it. The New Scientist 193(2596), 30–31
(March 24, 2007) (accessed September 15 (2007),

 http://technology.newscientist.com/article/mg19325966.500-if-
 youre-happy-the-robot-knows-it.html

5. Bradshaw, J.M., Sierhuis, M., Acquisti, A., Feltovich, P., Hoffman, R., Jeffers, R.,
Prescott, D., Suri, N., Uszok, A., Van Hoof, R.: Adjustable autonomy and human-agent
teamwork in practice: An interim report on space applications. In: Hexmoor, H., Falcone,
R., Castelfranchi, C. (eds.) Agent Autonomy, pp. 243–280. Kluwer Academic Publishers,
Dordrecht (2003)

6. Bradshaw, J.M., Acquisti, A., Allen, J., Breedy, M.R., Bunch, L., Chambers, N., Feltovich,
P., Galescu, L., Goodrich, M.A., Jeffers, R., Johnson, M., Jung, H., Lott, J., Olsen Jr.,
D.R., Sierhuis, M., Suri, N., Taysom, W., Tonti, G., Uszok, A.: Teamwork-centered
autonomy for extended human-agent interaction in space applications. In: AAAI 2004
Spring Symposium, 22-24 March, 2004. Stanford University, CA (2004)

 Progress Appraisal as a Challenging Element of Coordination 139

7. Bradshaw, J.M., Feltovich, P., Jung, H., Kulkarni, S., Taysom, W., Uszok, A.: Dimensions of
adjustable autonomy and mixed-initiative interaction. In: Nickles, M., Rovatsos, M., Weiss,
G. (eds.) AUTONOMY 2003. LNCS (LNAI), vol. 2969. Springer, Heidelberg (2004)

8. Bradshaw, J.M., Feltovich, P.J., Jung, H., Kulkarni, S., Allen, J., Bunch, L., Chambers, N.,
Galescu, L., Jeffers, R., Johnson, M., Sierhuis, M., Taysom, W., Uszok, A., Van Hoof, R.:
Policy-based coordination in joint human-agent activity. In: Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, The Hague, Netherlands,
October 10-13 (2004)

9. Bradshaw, J.M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., Bunch, L.,
Chambers, N., Galescu, L., Jeffers, R., Suri, N., Taysom, W., Uszok, A.: Toward
trustworthy adjustable autonomy in KAoS. In: Falcone, R. (ed.) Trusting Agents for
Trustworthy Electronic Societies. Springer, Berlin (2005)

10. Bradshaw, J.M., Feltovich, P., Johnson, M., Bunch, L., Breedy, M.R., Jung, H., Lott, J.,
Uszok, A.: Coordination in Human-Agent Teamwork. Invited Paper and Presentation. In:
AAAI Fall Symposium, November 8-10 (2007)

11. Bruemmer, D.J., Marble, J.L., Dudenhoeffer, D.D.: Mutual initiative in human-machine
teams. In: Proceedings of the 2002 IEEE 7th Conference on Human Factors and Power
Plants, vol. 7, pp. 22–30 (2002)

12. Burke, J.J., Murphy, R.R., Coovert, M., Riddle, D.L.: Moonlight in Miami: A field study
of human-robot interaction in the context of an urban search and rescue disaster response
training exercise. Human-Computer Interaction 19(1-2), 85–116 (2004)

13. Christofferson, K., Woods, D.D.: How to make automated systems team players. In: Salas,
E. (ed.) Advances in Human Performance and Cognitive Engineering Research, vol. 2. JAI
Press, Elsevier (2002)

14. Clancey, W.J.: Situated Cognition: On Human Knowledge and Computer Representations.
Cambridge University Press, Cambridge (1997)

15. Clancey, W.J.: Conceptual Coordination: How the Mind Orders Experience in Time.
Lawrence Erlbaum, Hillsdale (1999)

16. Clancey, W.J.: Simulating activities: Relating motives, deliberation, and attentive
coordination. Cognitive Systems Review (2002);Special issue on Situated and Embodied
Cognition

17. Clancey, W.J.: Automating Capcom: Pragmatic operations and technology research for
human exploration of Mars. In: Cockell, C. (ed.) Martian Expedition Planning. AAS
Science and Technology Series, vol. 107, pp. 411–430 (2004)

18. Clancey, W.J.: Roles for agent assistants in field science: Understanding personal projects
and collaboration. IEEE Transactions on Systems, Man, and Cybernetics—Part C:
Applications and Reviews 32(2) (2004)

19. Clancey, W.J., Sierhuis, M., Damer, B., Brodsky, B.: Cognitive modeling of social
behavior. In: Sun, R. (ed.) Cognition and Multi-Agent Interaction: From Cognitive
Modeling to Social Simulation. Cambridge University Press, New York City (2005)

20. Clark, H.H.: Using Language. Cambridge University Press, Cambridge (1996)
21. Cohen, P.R., Levesque, H.J.: Teamwork. SRI International, Menlo Park (1991)
22. Davis, L.E., Rough, J., Ceccine, G., Gareban-Schaefer, A., Zeman, L.L.: Hurricane

Katrina: Lessons for Army Planning and Operations. Rand Corporation, Santa Monica
(2007)

23. Feltovich, P., Bradshaw, J.M., Jeffers, R., Suri, N., Uszok, A.: Social order and
adaptability in animal and human cultures as an analogue for agent communities: Toward a
policy-based approach. In: Omacini, A., Petta, P., Pitt, J. (eds.) Engineering Societies for
the Agents World IV. LNCS, vol. 3071, pp. 21–48. Springer, Berlin (2004)

140 P.J. Feltovich et al.

24. Feltovich, P., Bradshaw, J.M., Clancey, W.J., Johnson, M.: Toward and Ontology of
Regulation: Socially-based Support for Coordination in Human and Machine Joint
Activity. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2007.
LNCS (LNAI), vol. 4457, pp. 175–192. Springer, Heidelberg (2007)

25. Fong, T.W., Thorpe, C., Baur, C.: Robot as partner: Vehicle teleoperation with
collaborative control. In: Workshop on Multi-Robot Systems, Naval Research Laboratory,
Washington, DC (March 2002)

26. Fong, T.W., Nourbaksh, I., Ambrose, R., Simmon, R., Scholtz, J.: The peer-to-peer
human-robot interaction project. In: AIAA Space 2005 (September 2005)

27. Goodrich, M.A., Olsen Jr., D.R., Crandall, J.W., Palmer, T.J.: Experiments in adjustable
autonomy. In: Proceedings of the IJCAI_01 Workshop on Autonomy, Delegation, and
Control: Interacting with Autonomous Agents, Seattle, WA (August 2001)

28. Johnson, M., Bradshaw, J.M., Feltovich, P., Jeffers, R., Uszok, A.: A semantically-rich
policy-based approach to robot control. In: Proceedings of the International Conference on
Informatics in Control, Automation, and Robotics, Lisbon, Portugal (2006)

29. Johnson, M., Feltovich, P.J., Bradshaw, J.M., Bunch, L.: Human-robot coordination
through dynamic regulation. In: Proceedings of the International Conference on Robotics
and Automation (ICRA), Pasadena, CA (in press, 2008)

30. Johnson, M., Intlekofer Jr., K., Jung, H., Bradshaw, J.M., Allen, J., Suri, N., Carvalho, M.:
Coordinated operations in mixed teams of humans and robots. In: Marik, V., Bradshaw,
J.M., Meyer, J. (eds.) Proceedings of the First IEEE Conference on Distributed Human-
Machine Systems (DHMS 2008), Athens, Greece (in press, 2008)

31. Kelly, G.A.: The Psychology of Personal Constructs. Two vols. Norton, New York (1955)
32. Kelly, G.A.: A Theory of Personality. W. W. Norton & Co, New York City (1963)
33. King, I., Mason, W.: Peace at Any Price: How the World Failed Kosovo. Cornell

University Press, Ithaca (2006)
34. Klein, G., Feltovich, P.J., Bradshaw, J.M., Woods, D.D.: Common ground and

coordination in joint activity. In: Rouse, W.B., Boff, K.R. (eds.) Organizational
Simulation, pp. 139–184. John Wiley, New York City (2004)

35. Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R., Feltovich, P.: Ten challenges for
making automation a team player in joint human-agent activity. IEEE Intelligent
Systems 19(6), 91–95 (2004)

36. Leont’ev, A.N.: The problem of activity in psychology. In: Wertsch, J.V. (ed.) The
Concept of Activity in Soviet Psychology. M. E. Sharpe, Armonk (1979)

37. Newtson, D.: Attribution and the unit of perception of ongoing behavior. Journal of
Personality and Social Psychology 28, 28–38 (1973)

38. Norman, D.A.: Categorization of action slips. Psychological Review 88, 1–15 (1981)
39. Norman, D.A.: The ‘problem’ with automation: Inappropriate feedback and interaction,

not ‘over-automation’. In: Broadbend, D.E., Reason, J., Baddeley, A. (eds.) Human
Factors in Hazardous Situations, pp. 137–145. Clarendon Press, Oxford (1990)

40. Patterson, E.S., Watts-Perotti, J., Woods, D.D.: Voice loops as coordination aids in Space
Shuttle Mission Control. Computer Supported Cooperative Work 8, 353–371 (1999)

41. Sarter, N., Woods, D.D., Billings, C.E.: Automation surprises. In: Salvendy, G. (ed.)
Handbook of Human factors/Ergonomics, 2nd edn. John Wiley, New York (1997)

42. Sierhuis, M., Bradshaw, J.M., Acquisti, A., Van Hoof, R., Jeffers, R., Uszok, A.: Human-
agent teamwork and adjustable autonomy in practice. In: Proceedings of the Seventh
International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-
SAIRAS), Nara, Japan, May 19-23 (2003)

 Progress Appraisal as a Challenging Element of Coordination 141

43. Smith, W.J.: The biological bases of social attunement. Journal of Contemporary Legal
Issues 6, 361–371 (1995)

44. Tambe, M., Shen, W., Mataric, M., Pynadath, D.V., Goldberg, D., Modi, P.J., Qiu, Z.,
Salemi, B.: Teamwork in cyberspace: Using TEAMCORE to make agents team-ready. In:
Proceedings of the AAAI Spring Symposium on Agents in Cyberspace, Menlo Park, CA
(1999)

45. Uszok, A., Bradshaw, J.M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., Aitken, S.: KAoS
policy management for semantic web services. IEEE Intelligent Systems 19(4), 32–41
(2004)

46. Winograd, T.: A language/action perspective on the design of cooperative work. Human-
Computer Interaction 3(1), 3–30 (1987-1988)

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 142–157, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automated Web Services Composition with the
Event Calculus*

Onur Aydın1, Nihan Kesim Cicekli2, and Ilyas Cicekli3

1 Microsoft Corporation, Seattle, USA
2 Department of Computer Engineering, METU, Ankara, Turkey

3 Department of Computer Engineering, Bilkent University, Ankara, Turkey
onura@microsoft.com, nihan@ceng.metu.edu.tr,

ilyas@cs.bilkent.edu.tr

Abstract. As the web services proliferate and complicate it is becoming an
overwhelming job to manually prepare the web service compositions which de-
scribe the communication and integration between web services. This paper
analyzes the usage of the Event Calculus, which is one of the logical action-
effect definition languages, for the automated preparation and execution of web
service compositions. In this context, abductive planning capabilities of the
Event Calculus are utilized. It is shown that composite process definitions in
OWL-S can be translated into Event Calculus axioms so that planning with ge-
neric process definitions is possible within this framework.

Keywords: Event Calculus, Web Service Composition, Planning.

1 Introduction

Web services can be described as a set of related functionalities that can be program-
matically accessed through the web protocols [2]. The distribution of the functions of
the business through web services helped a lot to integrate services of different com-
panies. However as the web applications flourished and the number of web services
increase another difficulty appeared in the horizon. Application integrators now are
concerned with finding the correct web service that meets the demands of the
customer while building the applications. In such a dynamic domain, automatic inte-
gration or composition of web services would be helpful since the unknowns of the
demands are too much or too diverse. This brings us to the problem of automatic web
services composition.

Given a repository of service descriptions and a service request, the web service com-
position problem involves finding multiple web services that can be put together in cor-
rect order of execution to obtain the desired service. Finding a web service that can fulfill
the request alone is referred to as web service discovery problem. When it is impossible
for one web service to fully satisfy the request, one the other hand, one has to compose
multiple web services, in sequential or parallel, preferably in an automated fashion.

* This work is supported by the Scientific and Technical Research Council of Turkey, METU-

ISTEC Project No: EEEAG 105E068.

 Automated Web Services Composition with the Event Calculus 143

However, automated composition of services is a hard problem and it is not en-
tirely clear which techniques serve the problem best. One family of techniques that
has been proposed for this task is AI planning. The general assumption of such kind
of methods is that each Web service can be specified by its preconditions and effects
in the planning context. The preconditions and effects are the input and the output pa-
rameters of the service respectively. In general, if the user can specify the precondi-
tions and effects required by the composite service, a plan or process is generated
automatically by logical theorem prover or AI planners. The automation of web ser-
vices composition may mean two things: either the method can generate the process
model automatically, or the method can locate the correct services if an abstract proc-
ess model is given [18]. In this paper we are concerned with defining an abstract
process model.

Recently, a considerable amount of work has investigated the potentials and
boundaries of applying AI planning techniques to derive web service processes that
achieve the desired goals [7,10,12,15,17,18,24]. As mentioned in [17], the event cal-
culus [6] is one of the convenient techniques for the automated composition of web
services. In this paper we aim to demonstrate how the event calculus can be used in
the solution of this problem. Our goal is to show that the event calculus can be used to
define an abstract composite process model and produce a user specific composition
(plan). Abductive planning of the event calculus [21] is used to show that when
atomic services are available, the composition of services that would yield the desired
effect is possible. The problem of matching the input/output parameters to find a web
service in a given repository is out of the scope of this work. We assume that these
matching tasks are pre-processed and selected.

The idea of using the event calculus in the context of web services and interactions
in multiagent systems is not new [4,19,23,25]. In [4], an event calculus based planner
is used in an architecture for automatic workflow generation on the Web/Grid. This
work is closely related to our work, however since the details of the formalism is not
given it is not possible to compare it with ours. In [19] the event calculus has been
used in verifying composed web services, which are coordinated by a composition
process expressed in WSBPEL. Here the aim is to verify a composed service, not
generating the composition itself. The work in [23] attempts to establish a link be-
tween agent societies and semantic web-services, but uses another version of the
event calculus which avoids abduction and stick to normal logic programs. In [25] an
approach for formally representing and reasoning about commitments in the event
calculus is developed. This approach is applied and evaluated in the context of proto-
cols, which represent the interactions allowed among communicating agents.

In this paper our aim is to contribute the research along this direction by presenting
a formal framework that shows how generic composition procedures are described in
the event calculus to produce specific plans for the requested goals. Our main contri-
bution is the translation of OWL-S to event calculus and demonstrating how planning
with complex actions is done within this framework. We present the event calculus
framework as an alternative approach for building agent technology, based on the no-
tion of generic procedures and customizing user constraints.

The rest of the paper is organized as follows. Section 2 gives insight information
about current technologies, the web service composition problem and techniques used to
solve the problem. In Section 3, the event calculus as a logical formalism and its abduc-

144 O. Aydın, N.K. Cicekli, and I. Cicekli

tive implementation are explained. In Section 4, we present the use of abductive event
calculus in the solution of automated web services composition problem. Section 5
presents a translation of OWL-S service descriptions to the event calculus and how the
abductive event calculus can be used to define abstract process model needed for com-
position. Finally, Section 6 presents conclusions and possible future work.

2 Related Work

Building composite Web services with an automated or semi-automated tool is a criti-
cal and hard task. This problem has received a lot of attention recently [18]. In the lit-
erature, AI planning algorithms have been widely used to automatically compose web
services [9,10,17,24]. Most apparent reason behind this preference is the great simi-
larities between these two fields.

Both the planning problem and composition problem seek a (possibly partially) or-
dered set of operations that would lead to the goal starting from an initial state (or
situation). Operations of the planning domain are actions (or events) and operations of
the composition domain are the web services. Like actions, Web services have pa-
rameters, preconditions, results and effects hence they are very attractive to be used in
conventional planning algorithms.

Viewing the composition problem as an AI planning problem, different planners
are employed for the solution. An excellent survey of modern planning algorithms
and their application to web service composition problem can be found in [17]. Here
we highlight some of the existing work that is most relevant to our approach.

Estimated-regression is a planning technique in which the situation space is
searched with the guide of a heuristic that makes use of backward chaining in a re-
laxed problem space [10]. In this approach, the composition problem is seen as a
PDDL planning problem and efforts are condensed to solve the problem in PDDL
domain referring to the common difficulties of Web Services domain. In fact, a trans-
lator [11] has been written which converts DAML-S (former version of OWL-S) and
PDDL into each other. This shows that the composition problem can be (informally)
reduced to a planning problem and in that sense working in PDDL domain is not
much different indeed.

In [12], web service composition problem is assumed to be the execution of
generic compositions with customizable user constraints. GOLOG [8], which is a
situation calculus implementation with complex actions, is used to write the generic
processs model (complex action). It is said to be generic since it is not executable
without user constraints. After the user specifies the constraints, it is executed and the
solver tries to generate the plan according to the runtime behavior of the services. The
output of this method is a running application which satisfies the user requests.

Hierarchical Task Network (HTN) planning has been applied to the composition
problem to develop software to automatically manipulate DAML-S process defini-
tions and find a collection of atomic processes that achieve the task [24]. SHOP2, an
HTN planner, is used to generate plans in the order of its execution. This work has re-
cently been extended into another planning algorithm called Enquirer, which provides
information gathering facilities during planning [7].

 Automated Web Services Composition with the Event Calculus 145

In [15], a taxonomy is presented for the classification of the web service composi-
tion problem. This taxonomy is used to help select the right solution for the composi-
tion problem at hand. According to this classification, the Event Calculus based
approach falls in the category of AI planning methods that best suits to the solution of
small scale and simple operator based automated web service compositions.

3 Event Calculus

Event calculus [6] is a general logic programming treatment of time and change. The
formulation of the event calculus is defined in first order predicate logic like the situa-
tion calculus. Likewise, there are actions and effected fluents. Fluents are changing
their valuations according to effect axioms defined in the theory of the problem do-
main. However there are also big differences between both formalisms. The most im-
portant one is that in the event calculus, narratives and fluent valuations are relative to
time points instead of successive situations. The most appearing advantage of this ap-
proach is the inherent support for concurrent events. Events occurring in overlapping
time intervals can be deduced. Inertia is an assumption, which accounts a solution to
the frame problem together with other techniques and it is saying that a fluent pre-
serves its valuation unless an event specified to affect (directly or indirectly) the flu-
ent occurs.

Each event calculus theory is composed of axioms1. A fluent that holds since the
time of the initial state can be described by the following axioms [20]:

holdsAt(F, T) ← initially(F) ∧ ¬clipped(t0, F, T)
holdsAt(¬F, T) ← initially(¬F) ∧ ¬declipped(t0, F, T)

Axioms below are used to deduce whether a fluent holds or not at a specific time.

holdsAt(F, T) ←
 happens(E, T1, T2) ∧ initiates(E, F, T1) ∧ ¬clipped(T1, F, T) ∧ T2 < T
holdsAt(¬F, T) ←
 happens(E, T1, T2) ∧ terminates(E, F, T1) ∧ ¬declipped(T1, F, T) ∧ T2 < T

The predicate clipped defines a time frame for a fluent that is overlapping with the time
frame of an event which terminates this fluent. Similarly declipped defines a time
frame for a fluent which overlaps with the time frame of an event that initiates this flu-
ent. The formula initiates(E, F, T) means that fluent F holds after event E at time T.
The formula terminates(E, F, T) denotes that fluent F does not hold after event E at
time T. The formula happens(E, T1, T2) indicates that event E starts at time T1 and end
at time T2. The instantaneous events are described as happens(E, T1, T1).

clipped(T1, F, T4) ↔ (∃ E,T2, T3) [happens(E, T2, T3) ∧
 terminates(E, F, T2) ∧ T1 < T3 ∧ T2 < T4]

declipped(T1, F, T4) ↔ (∃ E,T2, T3) [happens(F, T2, T3) ∧
 initiates(E, F, T2) ∧ T1 < T3 ∧ T2 < T4]

1 Variables begin with upper-case letters, while function and predicate symbols begin with

lower-case letters. All variables are universally quantified with maximum possible scope
unless otherwise indicated.

146 O. Aydın, N.K. Cicekli, and I. Cicekli

3.1 Abductive Event Calculus

Abduction is logically the inverse of deduction. It is used over the event calculus axi-
oms to obtain partially ordered sets of events. Abduction is handled by a second order
abductive theorem prover (ATP) in [21]. ATP tries to solve the goal list proving the
elements one by one. During the resolution, abducible predicates, i.e. < (temporal or-
dering) and happens, are stored in a residue to keep the record of the narrative. The
narrative is a sequence of time-stamped events, and the residue keeping a record of
the narrative is the plan.

In this paper, the predicate ab is used to denote the theorem prover. It takes a list of
goal clauses and tries to find out a residue that contains the narrative. For each spe-
cific object level axiom of the event calculus, a meta-level ab solver rule is written.
For example an object level axiom in the form:

AH ← AB1 ∧ AB2 ∧ … ∧ ABN

is represented with the predicate axiom in the ATP theory and it is translated to:

axiom(AH, [AB1, AB2, …, ABN])

During the resolution process axiom bodies are resolved by the ab which populates
the abducibles inside the residue. A simplified version of ab solver is as follows.

ab([],RL,RL,NL).
ab([A|GL],CurrRL,RL,NL) ← abducible(A), NewRL = [A|CurrRL],
 consistent(NL,NewRL), ab(GL,NewRL,RL,NL).
ab([A|GL],CurrRL,RL,NL) ← axiom(A,AL), append(AL,GL,NewGL),
 ab(NewGL,CurrRL,RL,NL).
ab([not(A)|GL],CurrRL,RL,NL) ← irresolvable(A,CurrRL),
 ab(GL,CurrRL,RL,[A|NL]).

In this definition GL denotes the goal list, RL represents the residue list, NL repre-
sents the residue of negated literals, A is the axiom head and AL is the axiom body. In-
tuitively, the predicate abducible checks if the axiom is abducible. If it is so, it is
added to the residue. If it is an axiom then its body is inserted into the goal list to be
resolved with other axioms. Negated literals are proven by negation as failure (NAF).
However as the residue grows during the resolution, the negative literals, which were
previously proven, might not be proven anymore. This situation may occur when
negative literals were proven due to the absence of contradicting evidence; however
the newly added literals might now allow the proof of the positive of literals, invali-
dating the previous negative conclusions. For that reason, whenever the residue is
modified, previously proven negated literals should be rechecked. The predicate ir-
resolvable checks whether the negated literal is resolvable with the current residue or
not. The negative literal in question might also mention a non-abducible predicate. In
this case it needs to be resolved with the axioms not the residue. This possibility is
studied in [21]. The predicate consistent checks that none of the negated literals is re-
solvable with the current narrative residue using the predicate irresolvable for each
negated literal.

 Automated Web Services Composition with the Event Calculus 147

4 Web Services Composition with Abductive Planning

The event calculus can be used for planning as it is theoretically explained in [21].
The planning problem in the event calculus is formulated in simple terms as follows:
Given the domain knowledge (i.e. a conjunction of initiates, terminates), the Event
Calculus axioms (i.e. holdsAt, clipped, declipped) and a goal state (e.g. holdsAt(f,t)),
the abductive theorem prover generates the plan which is a conjunction of happens
i.e. the narrative of events, and temporal ordering predicates, giving the partial order-
ing of events.

4.1 Web Services

In the event calculus framework, the web services are modeled as events with input
and output parameters. For instance, if a web service returns the availability of a flight
between two locations, its corresponding event is given in Fig.1.

-- web service description
<message name=’GetFlight_Request’>
<part name=’Origin’ type=’xs:string’>
<part name=’Destination’ type=’xs:string’>
<part name=’Date’ type=’xs:date’>
</message>
<message name=’GetFlight_Response’>
<part name=’FlightNum’ type=’xs:string’>
</message>

-- event
getFlight(Origin, Destination, Date, FlightNum)

Fig. 1. Web Service to Event Translation

The web service operation GetFlight is translated to the event getFlight. The inputs
and outputs of the web service are translated as parameters of the event. The invoca-
tion of the web service is represented with the predicate happens:

happens(getFlight(Origin,Destination,Date,FlightNum), T1, T1) ←
 ex_getFlight(Origin, Destination, Date, FlightNum).

The parameters of the event are populated with help of the predicate ex_getFlight
which is a call to the actual web service. This predicate is used as a precondition for
the event and it is invoked anytime it is added to the plan. In order to resolve literals
which are non-axiomatic assertions such as conditions or external calls ab is extended
to contain the following rule:

ab([L|GL], CL, RL, NL) ← ¬axiom(L) ∧ L ∧ ab(GL, CL, RL, NL)

In this rule L, GL, RL and NL denote, respectively, the non-axiomatic literal, the goal
list, the narrative residue and the negation residue. If a non-axiomatic literal is en-
countered then ab directly tries to prove the literal and if it is successful it continues
with rest of the goal list.

148 O. Aydın, N.K. Cicekli, and I. Cicekli

In ATP implementation, the external call bindings like the predicate ex_getFlight
are loaded from an external module that is written in C++ programming language. Af-
ter invoking the associated service, flight number is unified with FlightNum, the last
parameter of getFlight event.

Let us assume that we have the following specific axioms for a very simple travel
domain.

axiom(happens(getFlight(Origin,Dest,Date,FlightNum), T, T),

 [ex_getFlight(Origin,Dest,Date,FlightNum)]).

axiom(initiates(getFlight(Origin,Dest,Date,FlightNum),

at_location(Dest),T),

 [holdsAt(at_location(Origin),T), Origin \== Dest]).

axiom(terminates(getFlight(Origin,Dest,Date,FlightNum),

at_location(Origin),T),

 [holds_at(at_location(Origin),T), Origin \== Dest]).

axiom(initially(at_location(ankara)), []).

There are two non-axiomatic literals, namely \== and ex_getFlight in the bodies of
the axioms. The predicate \== checks whether two bound variables are different or
not. The predicate ex_getFlight represents an external web service operation, and it
returns the flight number for the given origin and destination cities. Thus, the parame-
ters of the getFlight event are populated. The initiates and terminates axioms describe
how the fluent at_location is affected by getFlight event. The initially axioms says
that our initial location is the city ankara. Let us assume that, we only have the fol-
lowing three flights in our travel domain, and the predicate ex_getFlight returns these
flights one by one.

getFlight(ankara, izmir, tk101).
getFlight(ankara, istanbul, tk102).
getFlight(istanbul, izmir, tk103).

In order to find the possible plans for the goal of being in izmir, the abductive theorem
prover is invoked with the goal ab([holdsAt(at_location(izmir), t)], [],RL,[]). The
theorem can find the following two plans one by one.

plan1: [happens(getFlight(ankara, izmir, tk101), t1, t1), t1 < t]
plan2: [happens(getFlight(ankara,istanbul,tk102),t2,t2),
 happens(getFlight(istanbul,izmir,tk103), t1, t1), t2 < t1, t1 < t]

Here each plan contains the time stamped happens predicates and temporal order-
ing between these time stamps. The time constants in the plan (t1 and t2) are gener-
ated by the abductive reasoner. The abductive planner binds the given time parameter
to a unique constant if the time parameter is an unbound variable.

4.2 Plan Generation

ATP returns a valid sequence of time stamped events that leads to the goal. If there
are several solutions they are obtained with the help of backtracking of Prolog. Multi-
ple solutions could be thought as different branches of a more general plan. For
instance, assume that the following event sequence is generated after a successful
resolution process.

 Automated Web Services Composition with the Event Calculus 149

happens(E1, T1 , T1). happens(E2, T2, T2). happens(E3, T3 , T3). T1 < T2 < T3

It can be concluded that when executed consecutively, the ordered set {E1, E2, E3}
generates the desired effect to reach the goal. In addition to this plan, alternative solu-
tions could be examined. In order to do such a maneuver, the executer should have a
tree like plan where proceeding with alternative paths is possible. Assume that the fol-
lowing totally ordered sequences of events also reach the same goal.

{E1, E5, E4}, {E1, E2, E4}, {E6, E7}

When these separate plans are combined, a graph which describes several composi-
tions of web services, is formed (see Fig. 2). In this graph the nodes represent the
events (web services) and CS is the start of composition (i.e. the initial state). The
nodes with the label Exclusive-Or-Split (XOr) represent alternative branches among
which only one could be chosen. Also several alternative paths are joined in the nodes
with the label XOr-Join. XOr-Joins mandate that only one of the branches is active at
the joining side. This graph contains all plans (i.e. composite services) generated by
the planner. This graph is used to evaluate the composed services according to the
non-functionality values such as cost, quality and response time, and the best plan can
be chosen afterwards, which will be executed by the execution engine.

CS

E5

E3

E2

E6E1

E7

XOr
Split

XOr
Split

XOr
Join

E4

Goal

Fig. 2. All generated compositions

4.3 Concurrency of Events

The narratives generated by the ATP are partially ordered set of events. Due to the
partial ordering, events, for which a relative ordering is not specified, can be thought
to be concurrent. For instance, assume ATP has generated the following narrative:

happens(E1, T1 ,T1). happens(E2, T2 , T2). happens(E3, T3, T3).
happens(E4, T4 ,T4). T1 < T2 < T4 , T1 < T3 < T4

Since there is no relative ordering between E2 and E3 they are assumed to be concur-
rent. If this is the only narrative generated by the ATP then the plan can be shown as
in Fig. 3.

150 O. Aydın, N.K. Cicekli, and I. Cicekli

CS

E2

E3

E1
And
Split

And
Join E4 Goal

Fig. 3. Concurrent Composition

In this graph, concurrent events are depicted as And-Split since both of the
branches should be taken after the event E1. Before the event E4 And-Join is required
since both of E2 and E3 should be executed.

5 Web Services Composition with Generic Process Definition

In the literature, one of the most promising leaps on automating the Web Service
Composition is taken with the OWL-S language [16]. In OWL-S, Web Services are
abstracted, composed and bound to concrete service providers. Web Services are
composed by a series of operations, which atomically provide certain functions. Ser-
vice interactions can be as simple as a single operation invocation (e.g.
http://www.random.org returns random numbers with a single Web Service opera-
tion). They can be as complicated as a multi-department electronic commerce site for
shopping, where catalog browsing, item selection, shipment arrangements and pay-
ment selection are accomplished by invoking a series of operations. (e.g. Amazon
Web Service http://www.amazon.com).

Several atomic processes constitute a Composite Process when connected with the
flow control constructs of OWL-S. If an automated system requires the provided ser-
vice it should execute the composite processes as they are defined in the OWL-S,
supplying the intermediate inputs to the atomic services nested under them.

The Event Calculus framework can be used to define composite processes (i.e.
complex goals) and ATP can be used to generate a plan which corresponds to the user
specific composition of the web service. Composite processes will correspond to
compound events in the Event Calculus [3]. Like the composite processes, compound
events provide the grouping of sub-events. In the following sections, first, an OWL-S
to event calculus translation scheme is presented to show that OWL-S composition
constructs can be expressed as event calculus axioms2. Then an example application
will be presented to illustrate the use of generic process definition and its use in the
abductive event calculus planner.

5.1 OWL-S to Event Calculus Translation

Composite processes are composed of control constructs which closely resemble to
standard workflow constructs. Since further composite processes can be used inside a

2 For readability purposes, we will omit axiom predicate in the rest of the paper and present ob-

ject level axioms only. However, note that they are converted into the axiom predicate in the
implementation.

 Automated Web Services Composition with the Event Calculus 151

composite process, the translation is recursively applied until all composite processes
are replaced with the corresponding axioms that contain atomic processes. Here we
present an OWL-S to event calculus translation scheme. The automatic mapping is
possible, but we have not implemented it yet.

5.1.1 Atomic Processes
Atomic processes are translated into simple events of the Event Calculus. An abstract
representation of an atomic process of OWL-S is given in Fig. 4.

Atomic Process<A, V, P, E, O, EC, OC>
 A : Atomic Process Functor
 V : Set of Inputs: {V1, V2, ..., VN}
 P : Preconditions: Conjunction of Literals (P1 ∧ P2 ∧ ... ∧ PM)
 E : Effects: Conjunction of Literals (E1 ∧ E2 ∧ ... ∧ EK)
 O : Outputs: Set of Outputs {O1, O2, ..., OL}
 EC : Conditional Effects: Set of literals {EC1, E

C
2, ..., E

C
R}

 where each ECi has a condition such as
 ECi ← BECi : BE

C
i are conjunction of literals

 OC : Conditional outputs

Fig. 4. Atomic Process Definition of OWL-S

This definition is translated to the Event Calculus as an event with the same name
as the atomic process A and the effect axioms are defined according to the precondi-
tions and effects. The translation is given in Fig. 5.

initiates(A(V, O), Ei, T) ← holdsAllAt(P, T) ∧ invoke(A, V, O, T)
 where Ei ∈ E+ (positive literals of E)
terminates(A(V, O), Ei, T) ← holdsAllAt(P, T) ∧ invoke(A, V, O, T)
 where Ei ∈ E- (negative literals of E)

initiates(A(V, O), ECi, T) ← holdsAllAt(P, T) ∧
 holdsAllAt(BECi, T) ∧ invoke(A, V, O, T)
 where ECi ∈ EC+
terminates(A(V, O), ECi, T) ← holdsAllAt(P, T) ∧
 holdsAllAt(BECi, T) ∧ invoke(A, V, O, T)
 where ECi ∈ EC-
holdsAllAt({F1, F2, ..., FZ}, T) ↔ holdsAt(F1, T) ∧
 holdsAt(F2, T) ∧ ... ∧ holdsAt(FZ, T)

Fig. 5. Atomic Process Translation

The meta predicate holdsAllAt has an equivalent effect of conjunction of holdsAt
for each fluent that holdsAllAt covers. The predicate invoke is used in the body of ef-
fect axioms to generate the desired outputs (it corresponds to the invocation of exter-
nal calls through the happens clause as illustrated in the example in Section 4.1). It
takes the name of the atomic process, input parameters and unifies the outputs with
the results of the corresponding Web Service operation invocation.

5.1.2 Composite Process Translation
Composite processes combine a set of processes (either atomic or composite) with differ-
ent control constructs. An example composition which is composed of nested structures

152 O. Aydın, N.K. Cicekli, and I. Cicekli

is given in Fig. 6. Split, Join and Repeat-While control constructs are used in this com-
posite process. It is necessary to be able to express such control constructs in the event
calculus framework. This problem has been studied earlier in different contexts [3,5]. For
the purpose of the web services composition problem, OWL-S constructs should be
translated into compound events in the event calculus framework.

Composition
Start

Sequence

Split+Join

Atomic
Process 1

Atomic
Process 2

Atomic
Process 3

Atomic
Process 4

Repeat While

Atomic
Process 1

Atomic
Process 5

Composition
End

πCond

¬πCond

Fig. 6. Example of a Composite Process

The translation of some of the flow control constructs into the Event Calculus axi-
oms is summarized in the following. Others can be found in [1]. Constructs are origi-
nally defined in XML (to be more precise in RDF) document structure however since
they are space consuming only their abstract equivalents will be given.

Sequence
The Sequence construct contains the set of all component processes to be executed in
order. The abstract OWL-S definition of the composite process containing a Sequence
control construct and its translation into an Event Calculus axiom is given in Fig 7.
The translation is accomplished through the use of compound events in the Event
Calculus which contains sub-events. The sequence of events are triggered from the
body of the compound event and the ordering between them is ensured with the
predicate < (precedes).

Sequence Composite Process<C, V, P, S>
C : Composite Process Functor
V : Set of Inputs {V1, V2, ..., VN}
P : Preconditions (P1 ∧ P2 ∧ ... ∧ PM)
S : Sequence of Sub-Processes
Ordered set of {S1, S2, ..., SK}

happens(C, T1, TN) ←
holdsAllAt(P, T1) ∧
happens(S1, T2, T3) ∧
happens(S2, T4, T5) ∧ ... ∧
happens(SK, T2K, T2K+1) ∧
T1 < T2 ∧ T3 < T4 ∧ ... ∧
 T2K-1 < T2K ∧ T2K+1 < TN

Fig. 7. Sequence Composite Process

 Automated Web Services Composition with the Event Calculus 153

If-Then-Else
If-Then-Else construct contains two component processes and a condition. Its struc-
ture and translation are given in Fig. 8. Two happens axioms are written for both
cases. With the help of notholdsAllAt which is logically the negation of holdsAllAt,
the second axiom is executed when the else-case holds.

If-Then-Else Composite Process
<C, V, P, π, Sπ, S¬π>

C : Composite Process Functor
V : Set of Inputs {V1, V2, ..., VN}
P : Preconditions (P1 ∧ P2 ∧ ... ∧ PM)
π : If condition (π1 ∧ π2 ∧ ... ∧ πK)
Sπ : If condition Sub-Process
S¬π : Else condition Sub-Process

happens(C, T1, TN) ←
 holdsAllAt(P, T1) ∧
 holdsAllAt(π, T1) ∧
 happens(Sπ, T2, T3) ∧
 T1 < T2 ∧ T3 < TN

happens(C, T1, TN) ←
 holdsAllAt(P, T1) ∧
 notholdsAllAt(π, T1) ∧
 happens(S¬π, T2, T3) ∧
 T1 < T2 ∧ T3 < TN

notholdsAllAt({F1,F2,...,FP},T)
↔ holdsAt(¬F1, T) ∨
 holdsAt(¬F2, T) ∨ ... ∨
 holdsAt(¬FN, T)

Fig. 8. If-Then-Else Composite Process

Repeat-While and Repeat-Until

Repeat-While and Repeat-Until constructs contain one component process and a loop
controlling condition. The loop iterates as long as the condition holds for Repeat-
While and does not hold for Repeat-Until. They have a common structure and it is
given in Fig. 9. The figure presents the translation of Repeat-While only, since the
translation of the other is similar. Two happens_loop axioms are written for both
states of the loop condition. The composite event is triggered when preconditions
hold. The body of the loop is recursively triggered as long as the loop condition per-
mits. The preconditions and the loop condition are checked at time T1. If they hold,
the component process is invoked at a later time T2.

Repeat-While/Unless Composite Proc-
ess <C, V, P, π, Sπ>
 C : Composite Process Functor
 V : Set of Inputs {V1, V2, ..., VN}
 P : Preconditions (P1 ∧ P2 ∧...∧ PM)
 π : Loop condition (π1 ∧ π2 ∧...∧ πK)
 Sπ : Loop Sub-Process

happens(C, T1, TN) ←
holdsAllAt(P, T1) ∧
happens_loop(C, π, T1, TN).

happens_loop(C, π, T1, TN) ←
holdsAllAt(π, T1) ∧
happens(Sπ, T2, T3) ∧
happens_loop(C, π, T4, T5) ∧
T1 < T2 ∧ T3 < T4 ∧ T5 < TN

happens_loop(C, π, T1, T1) ←
notholdsAllAt(π, T1)

Fig. 9. Repeat-While/Unless Composite Process

154 O. Aydın, N.K. Cicekli, and I. Cicekli

In the given abstract translations, it may seem that the set of inputs are not used,
but the actual translations spread out the contents of the set of inputs as the appropri-
ate parameters of the component processes. This is illustrated in the example given in
Section 5.2.

5.2 Example of a Composition

In this section we illustrate the use of the abductive event calculus in generating com-
positions from a given composite procedure. The example illustrates how one can de-
scribe a complex goal and find a plan to achieve that goal.

The implementation of the traveling problem given in [12] is formulated in the
Event Calculus. In [12], a generic composition is presented for the traveling arrange-
ment task. In this procedure, the transportation and hotel booking are arranged and then
mail is sent to the customer. Finally an online expense claim is updated. The transpor-
tation via air is selected with the constraint that it should be below the customer’s
specified maximum price. If the destination is close enough to drive by car then instead
of air transportation, car rental is preferred. The customer specifies a maximum drive
time for this purpose. If the air transportation is selected then a car is arranged for local
transportation. Also a hotel is booked for residence at the destination.

Compound events are used to express generic compositions in the Event Calculus
in a similar way that they have been used in OWL-S translation. The whole operation
is decomposed into smaller tasks which are separately captured with other compound
events [1]. The Event Calculus translation is given in Fig. 10.

happens(travel(O, D, D1, D2), T1, TN) ←
 [[happens(bookFlight(O, D, D1, D2), T2, T3) ∧
 happens(bookCar(D, D, D1, D2), T4, T5) ∧ T3 < T4] ∨
 happens(bookCar(O, D, D1, D2), T2, T5)] ∧
 happens(bookHotel(D, D1, D2), T6, T7) ∧
 happens(SendEmail, T8) ∧
 happens(UpdateExpenseClaim, T9) ∧
 T5 < T6 ∧ T7 < T8 ∧ T8 < T9 ∧ T9 < TN

happens(bookFlight(O, D, D1, D2), T1, TN) ←
 ex_GetDriveTime(O, D, Tm) ∧
 Tm > userMaxDriveTime ∧
 ex_SearchForFlight(O, D, D1, D2, Id) ∧
 ex_GetFlightQuote(Id, Pr) ∧
 Pr < UserMaxPrice ∧
 ex_BookFlight(Id)

happens(bookCar(O, D, D1, D2), T1, TN) ←
 [[ex_GetDriveTime(O, D, Tm) ∧
 Tm < userMaxDriveTime] ∨ O = D] ∧
 ex_BookCar(O, D, D1, D2)

where O : Origin, D : Destination, D1 : Traveling Start Date, D2 : Traveling End Date

Fig. 10. Generic Composition in the Event Calculus

 Automated Web Services Composition with the Event Calculus 155

In this translation userMaxDriveTime and userMaxPrice are the user preference
values which alter the flow of operations. Based on traveling inputs and user prefer-
ences the traveling arrangement is accomplished with the help of external Web Ser-
vice calls (in Fig. 10 they are represented with predicates with ex_ prefix). When this
composition is implemented in the ATP, a residue which contains the sequence of
events to arrange a travel will be returned as the plan. For instance let us assume that
we have the definitions of several external web services for the atomic processes like
GetDriveTime, SearchForFlight, GetFlightQuote etc.), and we have the following ini-
tiates axiom:

initiates(travel(O,D,SDate,EDate), travelPlanned(O,D,SDate,EDate),T).

If we want to find a travel plan from Ankara to Athens between the dates October
22 and October 24, we can invoke the ATP with the following goal:

ab([holdsAt(travelPlanned(ankara,athens,october22,october24), t)], R)

The variable R will be bound to a plan, for instance, of the following form:

[hapens(updateExpenseClaim, t7, t7),
 happens(sendEmail, t6, t6),
 happens(bookHotel(athens, october22, october24), t5, t5),
 happens(bookCar(athens, athens, october22, october24), t4, t4),
 happens(bookFlight(ankara, athens, october22), t3, t3),
 happens(travel(ankara, athens, october22, october24), t1, t2)
 t7 < t2, t6 < t7, t5 < t6, t4 < t5, t3 < t4, t1 < t3, t2 < t].

The plan shows which web services must be invoked for the composition and also

the temporal ordering among them.

6 Conclusions

In this paper, the use of the event calculus has been proposed for the solution of web
service composition problem. It is shown that when a goal situation is given, the event
calculus can find proper plans as web service compositions with the use of abduction
technique. It is also shown that if more than one plan is generated, the solutions can
be compiled into a graph so that the best plan can be chosen by the execution engine.

In [24], SHOP2 is used to translate DAML-S process model into SHOP2 operators.
This translation assumes certain constraints for the process model to be converted.
The first assumption in SHOP2 translation is that the atomic processes are assumed to
be either output generating or effect generating but not both. Atomic processes with
conditional effects and outputs are not converted at all. Our translation supports
atomic processes with outputs, effects and conditional effects. Another limitation of
SHOP2 translation is the support for concurrent processes. Since SHOP2 cannot han-
dle parallelism the composite constructs Split and Split+Join cannot be translated. On
the other hand, our translation supports for these constructs since event calculus is in-
herently capable of handling concurrency.

Both the event calculus and GOLOG can be used to express composite process
models. The most important difference between the Event Calculus and GOLOG is
the syntax of the languages. GOLOG provides extra-logical constructs which ease the
definition of the problem space as it is given in [12] for the same example above.

156 O. Aydın, N.K. Cicekli, and I. Cicekli

These constructs can be easily covered with Event Calculus axioms too. Furthermore,
since the event calculus supports time points explicitly, it is easier to model concur-
rency and temporal ordering between actions in the Event Calculus. Therefore it is
more suitable to the nature of web services composition problem with respect to ex-
pressiveness and ease of use.

As a future work, the results that are theoretically expressed in this paper will be
put into action and implemented within a system which works in a real web environ-
ment. It would be helpful if a language is developed for the event calculus framework,
in order to define common control structures of web service compositions in a more
direct way. In fact, there has been already some efforts along this direction, i.e. ex-
tending the event calculus with the notions of processes [3,5].

Evaluation and execution of the generated plans are the final phases of automatic
web service composition. These phases are left out of the scope of this paper. How-
ever, in a realistic implementation, these issues and other aspects like normative ones
need to be studied. It would be interesting to formalise the rights, responsibilities, li-
abilities that are created by composing different web services [9].

As another further work, it is worth trying event calculus planners that employ
SAT solvers for efficiency reasons.

References

1. Aydin, O.: Automated web service composition with the event calculus, M.S. Thesis,
Dept. of Computer Engineering, METU, Ankara (2005)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American Maga-
zine (May 2001)

3. Cicekli, N.K., Cicekli, I.: Formalizing the specification and execution of workflows using
the event calculus. Information Sciences (to appear)

4. Chen, L., Yang, X.: Applying AI Planning to Semantic Web Services for workflow Gen-
eration. In: Proc. of the 1st Intl. Conf. on Semantics, Knowledge and Grid (SKG 2005)
(2005)

5. Jacinto, J.D.: REACTIVE PASCAL and the event calculus: A platform to program reac-
tive, rational agents. In: Proc. of the Workshop at FAPR 1995: Reasoning about Actions
and Planning in Complex Environments (1996)

6. Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation Com-
puting 4(1), 67–95 (1986)

7. Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during planning
for web service composition. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298. Springer, Heidelberg (2004)

8. Levesque, H., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.: GOLOG: A Logic program-
ming language for dynamic domains. Journal of Logic Programming 31(1-3), 59–84
(1997)

9. Marjanovic, O.: Managing the normative context of composite e-services. In: ICWS-
Europe, pp. 24–36 (2003)

10. McDermott, D.: Estimated-regression planning for interactions with Web Services. In:
Sixth International Conference on AI Planning and Scheduling. AAAI Press, Menlo Park
(2002)

 Automated Web Services Composition with the Event Calculus 157

11. McDermott, D.V., Dou, D., Qi, P.: PDDAML, An Automatic Translator Between PDDL
and DAML,

 http://www.cs.yale.edu/homes/dvm/daml/pddl_daml_translator1.html
12. McIlraith, S.A., Son, T.: Adapting Golog for composition of semantic Web services. In:

Proceedings of Eight International Conference on Principles of Knowledge Representation
and Reasoning, pp. 482–493 (2002)

13. McIlraith, S.A., Son, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems,
March/April (2001)

14. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the se-
mantic web. The VLDB Journal 12(4), 333–351 (2003)

15. Oh, S.G., Lee, D., Kumara, S.R.T.: A comparative Illustration of AI planning-based web
services composition. ACM SIGecom Exchanges 5, 1–10 (2005)

16. OWL-S: Semantic Markup for Web Services Version 1.1, November 2004. Publish of Se-
mantics Web Services Language (SWSL) Committee (Last Accessed: 17 September
2005), http://www.daml.org/services/owl-s/1.1/overview/

17. Peer, J.: Web Service Composition as AI Planning- a Survey*, Technical report, Univ. of
St. Gallen, Switzerland (2005), http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf

18. Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Proceed-
ings of First International Workshop on Semantic Web Services and Web Process Compo-
sition (July 2004)

19. Rouached, M., Perrin, O., Godart, C.: Towards formal verification of web service compo-
sition. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102.
Springer, Heidelberg (2006)

20. Shanahan, M.P.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J.
(eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Hei-
delberg (1999)

21. Shanahan, M.P.: An abductive event calculus planner. Journal of Logic Program-
ming 44(1-3), 207–240 (2000)

22. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic Composition of Web Services using Se-
mantic Descriptions. In: Web Services: Modeling, Architecture and Infrastructure work-
shop in conjunction with ICEIS 2003 (2002)

23. Stathis, K., Lekeas, G., Kloukinas, C.: Competence checking for the global e-service soci-
ety using games. In: O’Hare, G., O’Grady, M., Dikinelli, O., Ricci, A. (eds.) Proceedings
of Engineering Societies in the Agents World (ESAW 2006) (2006)

24. Wu, D., Sirin, E., Parsia, B., Hendler, J., Nau, D.: Automatic web services composition us-
ing SHOP2. In: Proceedings of Planning for Web Services Workshop, ICAPS 2003 (June
2003)

25. Yolum, P., Singh, M.: Reasoning About Commitments in the Event Calculus: An Ap-
proach for Specifying and Executing Protocols. Annals of Mathematics and AI 42(1-3)
(2004)

OPERAS: A Framework for the Formal

Modelling of Multi-Agent Systems and Its
Application to Swarm-Based Systems

Ioanna Stamatopoulou1, Petros Kefalas2, and Marian Gheorghe3

1 South-East European Research Centre, Thessaloniki, Greece
istamatopoulou@seerc.org

2 Department of Computer Science, CITY College, Thessaloniki, Greece
kefalas@city.academic.gr

3 Department of Computer Science, University of Sheffield, UK
M.Gheorghe@dcs.shef.ac.uk

Abstract. Swarm-based systems are a class of multi-agent systems
(MAS) of particular interest because they exhibit emergent behaviour
through self-organisation. They are biology-inspired but find themselves
applicable to a wide range of domains, with some of them characterised
as mission critical. It is therefore implied that the use of a formal frame-
work and methods would facilitate modelling of a MAS in such a way
that the final product is fully tested and safety properties are verified.
One way to achieve this is by defining a new formalism to specify MAS,
something which could precisely fit the purpose but requires significant
period to formally prove the validation power of the method. The alter-
native is to use existing formal methods thus exploiting their legacy. In
this paper, we follow the latter approach. We present OPERAS, an open
framework that facilitates formal modelling of MAS through employing
existing formal methods. We describe how a particular instance of this
framework, namely OPERASXC , could integrate the most prominent
characteristics of finite state machines and biological computation sys-
tems, such as X-machines and P Systems respectively. We demonstrate
how the resulting method can be used to formally model a swarm system
and discuss the flexibility and advantages of this approach.

1 Introduction

Despite the counter arguments which justifiably raise concerns about formal
methods, there is still a strong belief by the academic community that the de-
velopment of mission critical systems demands the use of such methods for mod-
elling, verification and testing. Opposition puts forward a significant drawback;
the more complex a system is, the more difficult the modelling process turns
out to be and, in consequence, the less easy it is to ensure correctness at the
modelling and implementation level. Correctness implies that all desired safety
properties are verified at the end of the modelling phase and that an appropri-
ate testing technique is applied to prove that the implementation has been built

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 158–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

OPERAS: A Framework for the Formal Modelling 159

in accordance to the verified model. The formal methods community has made
significant progress towards the development of correct systems.

On the other hand, multi-agent systems (MAS) are complex software systems
by default. Especially when the agent society grows, interaction and communi-
cation increase within a complex structure which involves variety of knowledge,
abilities, roles and tasks. Nature seems to have found ways to deal with complex
structures quite effectively. Consider, for example, biological systems from the
smallest living elements, the cells, and how they form tissues in organisms to en-
tire ecosystems and how they evolve [1]. There is growing interest in investigating
ways of specifying such systems. The intention is to create software that mimics
the behaviour of their biological counterparts. Examples of biological systems of
interest also include swarm-based systems, such as social insect colonies.

The promising feature is that these systems can be directly mapped to MAS
by considering each entity as an agent, with its own behavioural rules, knowledge,
decision making mechanisms and means of communication with the other entities
and with the environment. The overall system’s behaviour is merely the result of
the agents’ individual actions, the interactions among them and between them
and the environment. This also points to the issue of self-organisation and how
collective behavioural patterns emerge as a consequence of individuals’ local
interactions in the lack of knowledge of the entire environment or global control.

An additional key modelling aspect of swarm-based systems is their dynamic
nature and how their structure is constantly mutated. By structure we imply:
the changing number of agents, and either their physical placement in the envi-
ronment or, more generally, the structure that is dictated by the communication
channels among them. Other classes of MAS also exhibit reorganisational change,
characterised as behavioural or structural change [2].

Existing wide-spread formal methods fail to provide the appropriate features
in order to model such dynamic system organisation —most of them assume a
fixed, static structure that is not realistic (e.g. cellular and communicating au-
tomata), since communication between two agents may need to be established or
ceased at any point and also new agents may appear in the system while existing
ones may be removed. It is fairly recently that the issue of structural change is
attempted to be in essence dealt with, and this poses a kind of dilemma: should
a completely new formal notation be devised or should existing ones be used
and possibly be improved? Both approaches have complementary advantages; a
new formal method will directly tackle the problem of modelling of change but
existing ones will carry the legacy of formal testing and verification.

In this paper, we deal with the latter approach. The next section introduces the
OPERAS formal definition as a framework for modelling MAS, while Section 3
presents an instance of this framework, namely OPERASXC , which utilises ex-
isting formal methods. A brief description of a representative case study dealing
with a swarm-based system follows in Section 4 which also deals with the formal
model for the case problem in question. Finally, Section 5 discusses issues arising
from our attempt and concludes the paper.

160 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

2 OPERAS: Formal Modelling of MAS

2.1 Background and Related Work

In an attempt to formally model each individual agent as well as the dynamic be-
haviour of the overall system, a formal method should be capable of rigorously
describing all the essential aspects, i.e. knowledge, behaviour, communication
and dynamics. There is a number of trade-offs on the use of formal methods
for MAS. To name a few: (a) the level of abstraction should be appropriate
enough to lead toward the implementation of a MAS but also be appropriate
enough to mathematically express specifications that can lead to formal verifi-
cation and complete testing, (b) there should be accompanying toolkits which
make their adoption wider by researchers and industry but at the same time
the tools provided should not deviate from the theoretical framework, (c) they
ought to provide means to efficiently define complex knowledge but also be able
to describe control over individual agent as well as MAS states, (d) they need to
be able to easily model individual agents but also to focus on the concurrency
and communication among them.

In agent-oriented software engineering, several approaches using formal meth-
ods have been proposed, each one focusing on different aspects of MAS devel-
opment. For example, with respect to the issue of organisation, there is a large
number of approaches employing formal methods in modelling MAS and fo-
cusing on organisational reconfiguration [3, 4, 5], specificational adaptation at
run time [6] and formal methodologies to engineer organisation-based MAS [7].
Other efforts have been directed toward moving to the implementation of a MAS
through refinement of the specification and developing proof theories for the ar-
chitecture [8], capturing the dynamics of an agent system [9], putting emphasis
on capturing and controlling the system dynamics and acting behaviour of MAS
[10]. Other approaches formally specify MAS and then directly execute the spec-
ification while verifying important temporal properties [11] or guide through a
prototyping process [12]. Less formal approaches, which accommodate the dis-
tinctive requirements of agents, have been proposed [13]. Additionally, there is
a set of general principles for capturing the organisational structure of MAS
[14] which are however linked more to implementation [15] rather than formal
modelling.

On the other hand, from a purely software engineering view, a plethora of for-
mal methods are provided (Z, VDM, FSM, Petri-Nets, CCS, CSP), with none of
them alone satisfying all the above mentioned criteria for MAS, but with a rich
legacy on specification, semantics, testing and verification. Other formal meth-
ods, such as π-calculus, mobile ambients and P Systems with mobile membranes
[16, 17, 18, 19], successfully deal with the dynamic nature of systems and con-
currency of processes but lack intuitiveness when it comes to the modelling of an
individual agent (lack of primitives and more complex data structures). Lately,
new computation approaches as well as programming paradigms inspired by bi-
ological processes in living cells, introduce concurrency as well as neatly tackle
the dynamic structure of multi-component systems (P Systems, Brane Calculus,

OPERAS: A Framework for the Formal Modelling 161

Gamma, Cham, MGS) [20, 21, 22]. An interesting comparison of various formal
methods for the verification of emergent behaviours in swarm-based systems is
reported in [23], where an asteroid exploration scenario by autonomous space-
crafts is considered. We will use the same scenario in order to benchmark our
approach.

2.2 OPERAS Definition

Our aim is to define a framework in which we can use existing formal meth-
ods to model classes of MAS where self-organisation and emergent behaviour
is achieved through a number of changes in their structure. As said in the pre-
vious section, none of the existing formal methods qualify to deal equally well
with individual agent modelling as well as dynamics of the system. We believe
that the problem will be solved by combining formal methods. But for doing so,
we should somehow distinguish between the modelling of the individual agents
(behaviour) and the rules that govern the change in the structure of the collec-
tive MAS (structure mutation). This distinction, which would greatly assist the
modeller by breaking down the work into two separate and independent activi-
ties, may be achieved by considering that each agent is wrapped by a separate
mechanism: a structural mutator. Extending an agent with a kind of a wrapper
is not a novel idea in MAS engineering though it has been primarily used for
communication purposes and not in the context of formal specification. In this
case, we refer to a structural mutator as the independent part of the agent that
is responsible for checking an agent’s internal computation state and its local
environment in order to determine whether a structural change in the system has
to take place, might that be the addition/removal of communication channels or
other agents.

In general terms, when modelling a MAS, one should specify a number of
agents, the environment in which they operate, the stimuli provided from the
environment as percepts to the agents, the agents abilities and roles, the agents
grouping and organisation and communication between them. A Multi-Agent
System model in its general form, as it is perceived from a formal modelling
perspective can be defined by the tuple (O, P, E, R, A, S) containing:

– a set of reconfiguration rules, O, that define how the system structure evolves
by applying appropriate reconfiguration operators;

– a set of percepts, P , for the agents;
– the environment’s model / initial configuration, E;
– a relation, R, that defines the existing communication channels;
– a set of participating agents, A, and
– a set of definitions of types of agents, S, that may be present in the system.

The definition is general enough not to restrict any organisational structure
that might be considered for the implementation of a MAS. In addition, the
definition could be further extended to include protocols or other features of
MAS that a modeller would wish to formally specify. For now, OPERAS fits
our purpose, that of modelling swarm-based systems. More particularly:

162 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

– the rules in O are of the form condition ⇒ action where condition refers
to the computational state of agents and action involves the application of
one or more of the operators that create / remove a communication channel
between agents or introduce / remove an agent into / from the system;

– P is the distributed union of the sets of percepts of all participating agents;
– R : A × A with (Ai, Aj) ∈ R, Ai, Aj ∈ A meaning that agent Ai may send

messages to agent Aj ;
– A = {A1, . . . An} where Ai is a particular agent defined in terms of its

individual behaviour and its local mechanism for structure mutation;
– Sk = (Behaviourk, StructureMutatork) ∈ S, k ∈ Types where Types is

the set of identifiers of the types of agents, Behaviourk is the part of the
agent that deals with its individual behaviour and StructureMutatork is
the local mechanism for structure reconfiguration; each participating agent
Ai of type k in A is a particular instance of a type of agent: Ai = (Behk,
StrMutk)i.

2.3 OPERAS as an Open Framework

The general underlying idea is that an agent formal model consists of two parts,
its behaviour and its structural mutator. The behaviour of an agent can be mod-
elled by a formal method with its computation being driven by percepts from the
environment. The structural mutator can be modelled by a set of reconfiguration
rules which given the computation states of agents can change the structure of
the system. The MAS structure is determined through the relation that defines
the communication between the agents. The set of participating agents are in-
stances of agent types that may participate in the system. This deals with the
fact that an agent may be present at one instance of the system but disappear at
another or that a new agent or a new role comes into play during the evolution
of the MAS. This assumes that all agent types and roles that may participate
in the system should be known in advance.

There are still some open issues which, however, make the OPERAS ap-
proach a framework rather than a formal method. These are: (i) Which formal
method may we use in order to model the agents’ behaviour? (ii) Which formal
method may we use in order to model the structural mutator? (iii) Could the
methods in (i) and (ii) be different? (iv) Should the formal method used in (i), for
modelling behaviour, provide features for communication directly or indirectly
(implicitly through percepts from the environment) among agents’ behaviours?
(v) Should the formal method used in (ii), for modelling structure mutation,
provide features for communication directly or indirectly (through the environ-
ment)among agents’ structure mutators? (vi) Which method chosen from (i) or
from (ii) drives the computation of the resulting system? There is no unique an-
swer to these questions but the choice of formal methods which are considered
suitable to model either behaviour or structure mutation may affect the final
model developed.

It is therefore implied that there are several options which could instantiate
OPERAS into concrete modelling methods. Regarding the modelling of each

OPERAS: A Framework for the Formal Modelling 163

type of agent Sk, there are more than one options to choose from in order to
specify its behavioural part and the same applies for its structure mutation
mechanism. We have long experimented with two formal methods, which are X-
machines with its communicating counterpart and Population P Systems (PPS)
with active cells. We use X-machines because they demonstrated considerable
power in modelling reactive systems and most importantly they are accompanied
by two distinctive features: a complete testing strategy and a well-defined model
checking methodology. We chose Population P systems because of their theo-
retically sound way to model computation taking place inside a membrane-like
dynamic system. Ad hoc integration of these two methods [24, 25, 26] gave us
some preliminary results which led us to the current combined approach we take
for OPERAS. It is interesting to notice that none of the two formal methods
by itself could successfully (or at least intuitively) model a MAS [24, 25]. This is
also true, although with better results, if we use only PPSs under the OPERAS
framework (OPERASCC) [27]. The problem still exists for other formal meth-
ods too, which means the current framework gives the opportunity to combine
those methods that may be best suited to either of the two modelling tasks. In
the following, we present an instance of OPERAS, named OPERASXC , that
uses Communicating X-machines and features from PPSs.

3 OPERASXC

3.1 Modelling Behaviour

X-machines (XM), a state-based formal method introduced by Eilenberg [28], are
considered suitable for the formal specification of a system’s components. Stream
X-machines, in particular, were found to be well-suited for the modelling of re-
active systems. Since then, valuable findings using the X-machines as a formal
notation for specification, communication, verification and testing purposes have
been reported [29, 30, 31]. An X-machine model consists of a number of states and
also has a memory, which accommodates mathematically defined data structures.
The transitions between states are labelled by functions. More formally, a stream
X-machine is defined as the 8-tuple (Σ ,Γ , Q, M,Φ, F, q0, m0) where:

– Σ and Γ are the input and output alphabets respectively;
– Q is the finite set of states;
– M is the (possibly) infinite set called memory;
– Φ is a set of partial functions ϕ that map an input and a memory state to

an output and a possibly different memory state, ϕ : Σ × M → Γ × M ;
– F is the next state partial function, F : Q×Φ → Q, which given a state and

a function from the type Φ determines the next state. F is often described
as a state transition diagram;

– q0 and m0 are the initial state and initial memory respectively.

X-machines can be thought to apply in similar cases where StateCharts and
other similar notations do. In principle, X-machines are considered a generalisa-
tion of models written in such formalisms.

164 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

In addition to having stand-alone X-Machine models, communication is fea-
sible by redirecting the output of one machine’s function to become input to
a function of another machine. The structure of a Communicating X-machines
(CXM) system is defined as the graph whose nodes are the components and
edges are the communication channels among them (Fig. 1). A formal definition
of CXMs can be found in [24].

Fig. 1. An abstract system consisting of two CXM components. Communication is
established by redirecting the output of a function (� symbol) to another machine’s
function which takes it as input (• symbol).

CXMs provide a straightforward way for dealing with an agent’s behaviour,
however, the structure of a communicating system must be known beforehand
and fixed throughout the computation.

3.2 Modelling Structure Mutation

A Population P System [32] is a collection of different types of cells evolving
according to specific rules and capable of exchanging biological / chemical sub-
stances with their neighbouring cells (Fig. 2). More formally, a PPS is defined
as a construct P = (V, K, γ, α, wE , C1, C2, . . . , Cn, R) where:

– V is a finite alphabet of symbols called objects;
– K is a finite alphabet of symbols, which define different types of cells;
– γ = ({1, 2, . . . n}, A), with A ⊆ {{i, j} | 1 ≤ i �= j ≤ n }, is a finite undirected

graph;
– α is a finite set of bond-making rules;
– wE ∈ V ∗ is a finite multi-set of objects initially assigned to the environment;
– Ci = (wi, ti), for each 1 ≤ i ≤ n, with wi ∈ V ∗ a finite multi-set of objects,

and ti ∈ K the type of cell i;
– R is a finite set of rules dealing with object transformation, object commu-

nication, cell differentiation, cell division and cell death.

Transformation rules replace an object within a cell. Communication rules
allow the exchange of objects between neighbouring cells, or a cell and the envi-
ronment, according to the cell type and the existing bonds among the cells. Cell

OPERAS: A Framework for the Formal Modelling 165

Fig. 2. An abstract example of a Population P System; Ci: cells, Ri: sets of rules
related to cells; wi: multi-sets of objects associated to the cells.

differentiation rules change a cell, transforming it into a cell of a new type. Cell
division rules divide a cell into two cells. Cell death rules cause the removal of a
cell from the system.

At each computation cycle, all rules regarding the transformation and commu-
nication of objects that may be applied in a cell are applied. Additionally, one out
of the applicable cell differentiation, division or death rules, non-deterministically
chosen, is also applied in each cell. When computation in all cells has finished,
the graph is decomposed and restructured according to the specified bond-making
rules in α that define the conditions under which two cells are able to communicate.

PPS provide a straightforward way for dealing with the change of a system’s
structure, however, the rules specifying the behaviour of the individual cells
(agents) are more commonly of the simple form of rewrite rules which are not
sufficient for describing the behaviour of the respective agent.

3.3 Definition of OPERASXC

We may now move on to a more formal OPERASXC definition that uses
both a CXM (indicator subscript X) and PPS-cell-inspired construct (indica-
tor subscript C) for specifying each of the agents. An abstract example of an
OPERASXC model consisting of two agents is depicted in Fig. 3.

For the following, we consider that the computation state of a CXM describing
the behaviour of an agent is a 3-tuple Q × M × Φ that represents the state the
XM is in (qi), its current memory (mi) and the last function that has been
applied (ϕi).

A MAS in OPERASXC is defined as the tuple (O, P, E, R, A, S) where:

– The rules in O are of the form condition ⇒ action where condition is a con-
junction of (q, m, ϕ) and action involves the application of one or more of the
operators attachmentATTanddetachmentDET, which reconfigure the com-
munication channels among existing CXMs and generationGEN and destruc-
tion DES, which generate or destroy an agent in/from the system. Additional

166 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Fig. 3. An abstract example of a OPERASXC consisting of two agents

communication rules also exist, as in PPS, so that there is indirect communi-
cation (through the environment) between the structural mutators (cells);

– P = PB ∪ PSM is the set of percepts of all participating agents, where
PB = Σ1 ∪ . . . ∪ Σt is the set of inputs perceived by the XM model of the
behaviour (subscript B) and PSM = (Q1×M1×Φ1)∪ . . .∪ (Q1×Mt×Φt) is
the set of objects (alphabet) of the PPS mechanism that captures structure
mutation (subscript SM), t being the number of types of agents;

– E = {(q, m, ϕ)i|1 ≤ i ≤ n, q ∈ Qi, m ∈ Mi, ϕ ∈ Φi} holding information
about the initial computation states of all the participating agents;

– R : CXM × CXM (CXM : the set of CXMs that model agent behaviour);
– A = {A1, . . . , An} where Ai = (CXMk, Ck)i is a particular agent of type k

defined in terms of its individual behaviour (CXMk) and its local structural
mutator cell for controlling reconfiguration (Ck). The structural mutator cell
is of the form Ck = (wi, ok) where wi is the multi-set of objects it contains and
ok ⊂ O is the set of rules that correspond to the particular type of agent, k;

– S = {(XTk, Ck)|∀k ∈ Type}, where XTk is an XM type (no initial state and
memory).

The above mentioned operators attachment ATT and detachment DET have
the same effect as the bond-making rules of a PPS, while the operators generation
GEN and destruction DES, have the same effect as cell division an cell death
of a PPS respectively. Formal definitions of these operators can be found in [33].

In this model, each structural mutator cell implicitly knows the computation
state (q, m, ϕ) of the underlying XM that models behaviour. Environmental in-
put is directed straight to the agent’s behavioural part. In each computation
cycle an input triggers a function of the behaviour CXM and the updated infor-
mation about the agent’s current computation state is updated in the structural
mutator cell. A copy of the object is placed in the environment for other agents
in the local environment to have access to it. Objects from the environment
representing the computation states of neighbouring agents are imported and fi-
nally, all the reconfiguration rules in O of the type of the particular cell are being
checked and if necessary applied. Since the model follows the computation rules

OPERAS: A Framework for the Formal Modelling 167

of a CXM system (triggered by the behaviour component’s input, asynchronously
for the different participating agents), computation of the behaviour-driven ver-
sion of OPERASXC is asynchronous. In another version of OPERASXC , the
computation is cell-driven, and therefore synchronous. A detailed and more for-
mal analysis of the two versions, however, falls outside the scope of this paper.
In addition, as said previously, other instances of OPERAS using these two
methods, such as OPERASCC , OPERASXX and OPERASCX are possible
but rather cumbersome.

4 OPERASXC for a Swarm-Based System

4.1 Autonomous Spacecrafts for Asteroid Exploration

A representative example of a system which clearly possesses all the afore-
mentioned characteristics of a dynamic MAS is the NASA Autonomous Nano-
Technology Swarm (ANTS) system [23]. The NASA ANTS project aims at the
development of a mission for the exploration of space asteroids with the use of
different kinds of unmanned spacecrafts. Though each spacecraft can be consid-
ered as an autonomous agent, the successful exploration of an asteroid depends
on the overall behaviour of the entire mission, as the latter emerges as a result
of self-organisation. We chose this case study because correctness of the system
has been identified as a primary requirement. Relevant work on the particular
project included research on and comparison of a number of formal methods
[23, 34], including CXMs.

The ANTS mission uses of three kinds of unmanned spacecrafts: leaders, L,
(or rulers or coordinators), workers, W , and messengers, M (Fig. 4). The leaders
are the spacecrafts that are aware of the goals of the mission and have a non-
complete model of the environment. Their role is to coordinate the actions of
the spacecrafts that are under their command but by no means should they be
considered to be a central controlling mechanism as all spacecrafts’ behaviour
is autonomous. Depending on its goals, a leader creates a team consisting of a
number of workers and at least one messengers. Workers and messengers are
assigned to a leader upon request by (i) another leader, if they are not necessary
for the fulfilment of its goals, or (ii) earth (if existing spacecrafts are not sufficient
in number to cover current needs, new spacecrafts are allocated to the mission).

A worker is a spacecraft with a specialised instrument able, upon request
from its leader, to take measurements from an asteroid while flying by it. It also
possesses a mechanism for analysing the gathered data and sending the analysis
results back to its leader in order for them to be evaluated. This in turn might
update the view of the leader, i.e. its model of the environment, as well as its
future goals.

The messengers, finally, are the spacecrafts that coordinate communication
among workers, leaders and the control centre on earth. While each messenger
is under the command of one leader, it may also assist in the communication of
other leaders if its positioning allows it and conditions demand it.

168 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Fig. 4. An instance of the ANTS mission, L: Leader, W :Worker, M :Messenger

What applies to all types of spacecrafts is that in the case that there is a
malfunctioning problem, their superiors are being notified. If the damage is ir-
reparable they need to abort the mission while on the opposite case they may
“heal” and return back to normal operation.

4.2 Leader: Formal Modelling of Behaviour in OPERASXC

The leader agent L can be modelled as an XM, whose state transition diagram
FL is depicted in Fig. 5. QL = {Processing, Malfunctioning, Aborting} is the
set of states a leader may be in. Its memory contains information about its
current status (i.e. position and operational status), the IDs and statuses of
the messengers and workers under its command, the analysis results up to this
point, its current model of the surroundings as well as its goals: ML : Status ×
P(M × Status) × P(W × Status) × AnalysisResults × Model × Goals where
Status : (Z × Z × Z) × {QL} (Z being the set of positive integers, the 3-tuple
denoting a position), P stands for power-set, M is the set of messengers, W is
the set of workers and so forth.

The input set for the leader XM is ΣL = {abrt, problem, remedy} ∪ (W ×
Status)∪(W×Measurements)∪({request, requestFromEarth, requestedFor}
× Instrument), where abrt, problem, remedy, request, requestedFor are con-
stants and Instrument is the set of containing the different types of installed
instruments of the workers. The output set ΓL is a set of informative messages.

Indicatively, some of the functions in the ΦL set (functions are of the form:
function(input, memory tuple) = (output, memory tuple′)) are:

acceptRequestForWorker ((requestedFor, instr), (, , workers, , ,)) =
(′reassigned worker′, (, , workers′, , ,))
if (wi, (, , instr)) ∈ workers
and isWorkerNeeded(wi) == false
where workers′ = workers\(wi, (, , instr))

receiveWorker(wi, (, , workers, , ,)) =
(′received worker′, (, , workers ∪ (wi), , ,))

OPERAS: A Framework for the Formal Modelling 169

Fig. 5. State transition diagram of the Leader X-machine

As aforementioned, we used XMs for agent formal modelling because they fa-
cilitate formal verification and testing. These operations are crucial in developing
mission critical systems. XmCTL , an extension of CTL for XMs, can be used to
verify models against the requirements, since it can prove that certain properties
are true. Such properties are implicitly encoded in the memory structure of the
XM model [30]. For example, the property “there exists a computation path in
which a leader will accomplish all its goals and in all previous states the leader
was employing at least one worker” is specified in XmCTL as:

E[Mx(memL(3) �= ∅) U Mx(memL(6) = ∅)]

where memL(i) indicates the i-th element in the memory tuple of the leader
model. Additionally, it is possible under certain well defined conditions, to pro-
duce a complete test set out of an XM model. The test set guarantees to deter-
mine the correctness of the implementation of each agent [31].

4.3 Worker: Formal Modelling of Behaviour in OPERASXC

The state transition diagram of the worker XM is depicted in Fig. 6. The in-
ternal states in which a worker may be are QW = {Measuring, Analysing,
Malfunctioning, Aborting} and its memory holds information about its current
status (i.e. position, operational status and installed instrument), the identity
and status of its commanding leader, the messengers which assist its commu-
nication, the target asteroid, the data received from the measurements and the
results of the data analysis: MW : Status × (L × Status) × P(M × Status) ×
T arget ×Measurements×AnalysisResults.

The input set is ΣW = {measure, analyse, send, abrt, problem, remedy} ∪
(L × Status), where abrt, problem, remedy, measure, analyse and send are
constants. The output set ΓW is a set of informative messages.

170 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

Fig. 6. State transition diagram of the Worker X-machine

Indicatively, some of the functions in the ΦW set are:
produceResults(analyse, (, , , , meas, analysisResults)) =

(′analysed′, (, , , , ∅, analysisResults′)),
where analysisResults′ = analysisMechanism(meas) :: analysisResults

sendResults(send, (, , , , , res :: analysisResults)) =
(′sent results′, (, , , , , analysisResults))

leaveCurrentLeader((newLeader, st), (, (leader, st0), , , ,)) =
(′been reassigned′, (, newLeader, , , ,))
The model of the messenger agent is similarly created.

4.4 Formal Modelling of Structure Mutation in OPERASXC

According to OPERASXC , for the definition of the given system as a dynamic
MAS, we need to assume an initial configuration. To keep the size restricted for
demonstrative purposes, let us consider an initial configuration that includes one
leader L1, one messenger M1 and two workers W1, W2.

The set O contains the following reconfiguration rules regarding: (a) genera-
tion of a new worker when the control centre on earth decides it should join the
mission, (b) the destruction (i.e. removal from the system) of any kind of agent
in the case it must abort the mission, (c) the establishment of a communication
channel between a leader and a newly assigned to it worker, and (d) the removal
of a communication channel between a leader and a worker when the latter is
being reassigned to a new leader.

More particularly O contains the following rules:
If there is a need for an additional worker and earth can allocate one than a

new agent appear in system ANTS:
(, , requestWorkerFromEarth)Li ∧ earthHasAvailableWorkers() == true
⇒ GEN(Wi, q0i , m0i , ANTS)L

If an agent aborts the mission then the agent is removed from system ANTS:
(aborting, ,)∗this

⇒ DES(∗this, ANTS)∗

OPERAS: A Framework for the Formal Modelling 171

If a worker agent looses its contact with its leader then the communication
channels between the two agents are broken:
(, (, , Li, , , ,), leaveCurrentLeader)Wi

⇒ DET(Wi, Li,DET(Li, Wi, ANTS))W

If a worker agent is assigned with a new leader then a new communication
channel is established:
(, (, , newLeader, , , ,), joinNewLeader)Wi

⇒ ATT(Wi, newLeader, ANTS)W

If a leader agent is assigned with a new worker (either from another leader or
from earth) then a new communication channel is established:
(, (, , newWorker :: workers, , ,), receiveWorker)Li

⇒ ATT(Li, newWorker, ANTS)L

(, (, , newWorker :: workers, , ,), receiveWorkerFromEarth)Li

⇒ ATT(Li, newWorker, ANTS)L

where * stands for any type of agent.
The set of percepts of all agents is:

P = ΣL ∪ΣW ∪ΣM ∪ (QL×ML×ΦL)∪ (QW ×MW ×ΦW)∪ (QM ×MM ×ΦM).

Because all reconfiguration rules per type of agent rely only on conditions de-
pendent on the computation state of the agent itself (and not other agents),
the model needs not to communicate computation states among the different
agents and there are, therefore, no additional communication rules. A direct
consequence of this is that there is no need for the environment to play the role
of communication mediator between the participating entities and as such no
need for it to hold any computation state objects: E = ∅.

Since in the assumed initial configuration we consider to have one group of
spacecrafts under the command of one leader, all agents should be in communi-
cation with all others and so:

R = {(L1, W1), (L1, W2), (L1, M1), (M1, L1), (M1, W1), (M1, W2), (W1, L1),
(W1, M1), (W2, L1), (W2, M1)}

The set that contains all the agent instances becomes: A = {L1, W1, W2, M1)}
where L1 = (CXML1, CL1), Wi = (CXMWi , CWi), 1 ≤ i ≤ 2 and M1 =
(CXMM1 , CM1).

Finally, the set S that contains the “genetic codes” for all agent types is:

S = {(XTL, CL), (XTW , CW), (XTM , CM)} where L, W, M are the XMs defined
previously.

5 Conclusions and Further Work

We presented OPERAS, a framework, with which one can formally model the
behaviour and control over the internal states of an agent as well as formally
describe the mutations that occur in the structure of a MAS, as two separate

172 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

components. Driven by a formal methods perspective, we employed CXMs and
ideas from PPSs to define OPERASXC , a particular instance of the framework.
These gave us the opportunity to combine the advantages that XMs have in terms
of modelling the behaviour of an agent, testing it and verifying its properties
with the advantages that PPSs have in terms of defining the mutation of the
structure of a MAS. We have experimented with modelling of various biological
and biology-inspired systems. In this paper we presented the OPERASXC model
of a swarm-based system of a number of autonomous spacecrafts, a case which
has been used by researchers for comparative study of formal methods.

We would like to continue the investigation of how OPERAS could employ
other formal methods that might be suitable for this purpose. In the near future,
we will focus on theoretical aspects of the framework, in order to demonstrate its
usefulness towards developing correct agent societies (i.e. complete testing and
verification). Although work on verification and testing has been done with XMs
[30, 31], it is important to investigate to what extent this could be inherited in a
hybrid system, like OPERASXC . Towards this direction, we are also currently
working on various types of transformations that could prove its power for formal
modelling as well as address legacy issues with respect to correctness [35]. These
developments are mainly of interest to the formal method community.

On the other hand, the MAS community might be interested in how OPE-
RASXC can facilitate the implementation of agent systems. Towards this end,
we started our efforts to achieve integration of existing development tools on
XMs and PPSs in order to come up with a new tool that will be able to initially
animate OPERASXC specified models. The integration of the necessary features
of these two tools into one will allow us to gain a deeper understanding of the
modelling issues involved in engineering agent societies with OPERASXC and
help us investigate the practicability of our approach.

Acknowledgements

The authors would like to thank the reviewers for their valuable initial and
additional comments as well as the Hellenic Artificial Intelligence Society for
funding our participation to the ESAW 2007 workshop.

References

[1] Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F.: Case studies for self-
organization in computer science. Journal of Systems Arch. 52, 443–460 (2006)

[2] Dignum, V., Dignum, F.: Understanding organizational congruence: Formal model
and simulation framework. In: Proceedings of the Agent-Directed Simulation Sym-
posium (ADS 2007), Norfolk, USA (March 2007)

[3] Dignum, V., Dignum, F.: A logic for agent organization. In: Proceedings of the
Workshop on Formal Approaches to Multi-Agent Systems Durham, September
3-7 (2007)

OPERAS: A Framework for the Formal Modelling 173

[4] Hoogendoorn, M., Schut, M.C., Treur, J.: Modeling decentralized organizational
change in honeybee societies. In: Almeida e Costa, F., Rocha, L.M., Costa, E.,
Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 615–
624. Springer, Heidelberg (2007)

[5] Charrier, R., Bourjot, C., Charpillet, F.: Deterministic nonlinear modeling of ant
algorithm with logistic multiagent system. In: Proceedings of the 6th international
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007).
ACM, New York (2007)

[6] Matson, E., DeLoach, S.: Formal transition in agent organizations. In: Proceedings
of the International Conference on Integration of Knowledge Intensive Multi-Agent
Systems, pp. 235–240 (2005)

[7] DeLoach, S.A.: Engineering organization-based multiagent systems. In: Garcia, A.,
Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS
2005. LNCS, vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

[8] dInverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dMARS
architechure: A specification of the distributed multi-agent reasoning system. Au-
tonomous Agents and Multi-Agent Systems 9, 5–53 (2004)

[9] Rabinovich, Z., Rosenschein, J.S.: Dynamics based control: Structure. In: Work-
shop on Multi-Agent Sequential Decision Making in Uncertain Domains, at The
5th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, Hakodate, Japan, pp. 148–161 (2006)

[10] Luck, M., d’Inverno, M.: Formal methods and agent-based systems. In: Rouff, C.,
Truszkowski, M.H.J.R.J., Gordon-Spears, D. (eds.) NASA Monographs in Systems
and Software Engineering. Springer, Heidelberg (2006)

[11] Fisher, M., Wooldridge, M.: On the formal specification and verification of multi-
agent systems. International Journal of Cooperating Information Systems 6, 37–65
(1997)

[12] Hilaire, V., Koukam, A., Gruer, P., Müller, J.P.: Formal specification and proto-
typing of multi-agent systems. In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.)
ESAW 2000. LNCS (LNAI), vol. 1972, pp. 114–127. Springer, Heidelberg (2000)

[13] Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for agents. In: Proceed-
ings of the Agent-Oriented Information Systems Workshop at the 17th National
Conference on Artificial Intelligence, pp. 3–17 (2000)

[14] Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multiagent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

[15] Gutknecht, O., Ferber, J.: MadKit: a generic multi-agent platform. In: Proc. of
the 4th International Conference on Autonomous Agents, pp. 78–79 (2000)

[16] Chopra, A.K., Mallya, A.U., Desai, N.V., Singh, M.P.: Modeling flexible business
processes. In: AAMAS 2004 (2004)

[17] Krishna, S.N., Păun, G.: P systems with mobile membranes. Natural Computing:
an international journal 4, 255–274 (2005)

[18] Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.
LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

[19] Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I. Information
and Computation 100, 1–40 (1992)

[20] Păun, G.: Computing with membranes. Journal of Computer and System Sci-
ences 61, 108–143 (2000); Also circulated as a TUCS report since (1998)

[21] Banatre, J., Le Metayer, D.: The gamma model and its discipline of programming.
Science of Computer Programming 15, 55–77 (1990)

174 I. Stamatopoulou, P. Kefalas, and M. Gheorghe

[22] Berry, G., Boudol, G.: The chemical abstract machine. Journal of Theoretical
Computer Science 96, 217–248 (1992)

[23] Rouf, C., Vanderbilt, A., Truszkowski, W., Rash, J., Hinchey, M.: Verification of
NASA emergent systems. In: Proceedings of the 9th IEEE International Confer-
ence on Engineering Complex Computer Systems (ICECCS 2004), pp. 231–238
(2004)

[24] Stamatopoulou, I., Kefalas, P., Gheorghe, M.: Modelling the dynamic structure of
biological state-based systems. BioSystems 87, 142–149 (2007)

[25] Kefalas, P., Stamatopoulou, I., Gheorghe, M.: A formal modelling framework
for developing multi-agent systems with dynamic structure and behaviour. In:
Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI),
vol. 3690, pp. 122–131. Springer, Heidelberg (2005)

[26] Stamatopoulou, I., Kefalas, P., Gheorghe, M.: Specification of reconfigurable MAS:
A hybrid formal approach. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plex-
ousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 592–595. Springer,
Heidelberg (2006)

[27] Stamatopoulou, I., Kefalas, P., Gheorghe, M.: OPERASCC : An instance of a for-
mal framework for MAS modelling based on Population P Systems. In: Elefther-
akis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007.
LNCS, vol. 4860, pp. 551–566. Springer, Heidelberg (2007)

[28] Eilenberg, S.: Automata, Languages and Machines. Academic Press, London
(1974)

[29] Kefalas, P., Eleftherakis, G., Kehris, E.: Communicating X-machines: A practi-
cal approach for formal and modular specification of large systems. Journal of
Information and Software Technology 45, 269–280 (2003)

[30] Eleftherakis, G.: Formal Verification of X-machine Models: Towards Formal De-
velopment of Computer-based Systems. PhD thesis, Department of Computer
Science, University of Sheffield (2003)

[31] Holcombe, M., Ipate, F.: Correct Systems: Building a Business Process Solution.
Springer, London (1998)

[32] Bernandini, F., Gheorghe, M.: Population P Systems. Journal of Universal Com-
puter Science 10, 509–539 (2004)

[33] Kefalas, P., Eleftherakis, G., Holcombe, M., Stamatopoulou, I.: Formal modelling
of the dynamic behaviour of biology-inspired agent-based systems. In: Gheorghe,
M. (ed.) Molecular Computational Models: Unconventional Approaches, pp. 243–
276. Idea Publishing Inc. (2005)

[34] Rouff, C., Vanderbilt, A., Hinchey, M., Truszkowski, W., Rash, J.: Properties of
a formal method for prediction of emergent behaviors in swarm-based systems.
In: Procedings of the 2nd International Conference on Software Engineering and
Formal Methods, pp. 24–33 (2004)

[35] Kefalas, P., Stamatopoulou, I., Gheorghe, M.: Principles of transforming Commu-
nicating X-machines to Population P Systems. In: Proceedings of the International
Workshop on Automata for Cellular and Molecular Computing (ACMC 2007)
(2007); Also to appear in the International Journal of Foundations of Computer
Science

The Acquisition of Linguistic Competence for

Communicating Propositional Logic Sentences�

Josefina Sierra1 and Josefina Santibáñez2

1 Departamento de Lenguajes y Sistemas Informáticos
Universidad Politécnica de Cataluña, Spain

jsierra@lsi.upc.edu
2 Departamento de Ciencias de la Educación

Universidad de La Rioja, Spain
josefina.santibanez@unirioja.es

Abstract. We describe some experiments which show how a language
expressive enough to allow the communication of meanings of the same
complexity as propositional logic formulas can emerge in a population of
autonomous agents which have no prior linguistic knowledge. We take an
approach based on general purpose cognitive capacities, such as invention,
adoption and induction, and on self-organisation principles applied to a
particular type of linguistic interaction known as a language game.

These experiments extend previous work by considering a larger pop-
ulation and a much larger search space of grammar rules. In particular
the agents are allowed to order the expressions associated with the con-
stituents of a logical formula in arbitrary order in the sentence. Previ-
ous work assumed that the expressions associated with the connectives
should be always placed in the first position of the sentence. Another
difference is that communication is considered successful in a language
game if the meaning interpreted by the hearer is logically equivalent to
the meaning the speaker had in mind. In previous experiments the mean-
ings of speaker and hearer were required to be syntactically equal. This
allows us to observe how a less strict grammar in terms of word order
emerges through the self-organisation process, which minimizes the learn-
ing effort of the agents by imposing only those order relations among the
components of a sentence that are necessary for language understanding.

1 Introduction

This paper addresses the problem of the acquisition of a language (i.e., a lexicon
and a grammar) expressive enough to allow the communication of meanings that
can be represented by propositional logic formulas. We take an approach based on
general purpose cognitive capacities, such as invention, adoption and induction.
Coordination of the linguistic knowledge acquired by the individual agents is
achieved through a self-organisation process of the linguistic interactions that
take place between pairs of agents of the population.
� This work is partially funded by the DGICYT TIN2005-08832-C03-03 project

(MOISES-BAR).

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 175–192, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

176 J. Sierra and J. Santibáñez

We describe some experiments which show how a shared set of preferred lexical
entries, syntactic categories and grammatical constructions (i.e., a language) can
emerge in a population of autonomous agents which have no prior linguistic knowl-
edge.This shared language is expressive enough to allow theagents to communicate
any meaning that can be represented by a propositional logic formula.

These experiments extend previous work [1] by considering a larger popula-
tion and a much larger search space of grammar rules. In particular the agents
are allowed to order the expressions associated with the constituents of a logi-
cal formula in arbitrary order in the sentence. Previous work assumed that the
expressions associated with the connectives should be always placed in the first
position of the sentence. The branching factor of the search space of grammar
rules that can be used for expressing formulas constructed with binary connec-
tives is extended thus from two to six.

Another difference is that communication is considered successful in a lan-
guage game if the meaning interpreted by the hearer is logically equivalent to
the meaning the speaker had in mind. In previous experiments both meanings
were required to be syntactically equal, i.e., the same formula. This allows us to
observe how a less strict grammar in terms of word order emerges through the
self-organisation process, which minimizes the learning effort of the agents by
imposing only those order relations among the components of a sentence that
are necessary for language understanding.

To understand how a population of autonomous agents might be able to come
up with a language expressive enough to communicate propositional logic formu-
las is a problem of practical and theoretical interest. The important role of logic
as a formalism for knowledge representation and reasoning [2] is well known in
artificial intelligence. Much of the knowledge used by artificial intelligent agents
today is represented in logic. In particular the recent development of efficient
algorithms for checking satisfiability (SAT solvers) is increasing the number of
practical applications that use propositional logic as its knowledge representation
formalism. Logic is relevant as well for computational and cognitive linguistics,
because it is the standard formalism used in these fields for representing seman-
tic information (i.e., the meanings of words and sentences). On the other hand
logical connectives and logical constructions are themselves a fundamental part
of natural language, and they play a very important role in the development of
intelligence and deductive reasoning [3,4,5,6]. Therefore from a scientific point
of view it is necessary to understand how an agent can both conceptualise and
communicate logical constructions to other agents.

The research presented in this paper assumes previous work on the conceptu-
alisation of logical connectives [7,8]. In [9] a grounded approach to the acquisition
of logical categories (i.e., logical connectives) based on the discrimination of a
“subset of objects” from the rest of the objects in a given context is described.
The “subset of objects” is characterized by a logical formula constructed from
perceptually grounded categories. This formula is satisfied by the objects in the
subset and not satisfied by the rest of the objects in the context. In this paper
we only focus on the problem of the acquisition of a language (a vocabulary and

The Acquisition of Linguistic Competence 177

a grammar) suitable for expressing propositional logic formulas. Future work
will address the complete problem with which children are faced which consists
in acquiring both the semantics and the syntax of the logical constructions and
connectives that are used in natural language.

The rest of the paper is organised as follows. First we introduce the formalism
used for representing the grammars constructed by the agents. Then we describe
the particular type of language game played by the agents, focusing on the main
cognitive processes they use for constructing a shared lexicon and a grammar:
invention, adoption, induction and co-adaptation. Next we present the results
of some experiments in which a population of autonomous agents constructs
a language that allows communicating propositional logic formulas. Finally we
summarize some related work and the contributions of the paper.

2 Grammatical Formalism

The formalism used for representing the grammars constructed by the agents
is Definite Clause Grammar. In particular non-terminals have three arguments
with the following contents: (1) semantic information; (2) a score in the interval
[0, 1] that estimates the usefulness of the rule in previous communication; and
(3) a counter that records the number of times the rule has been used.

Let us consider some examples of grammars the agents could use to express
the propositional formula right ∧ light1. The first grammar consists of a single
rule which states that ’andrightlight’ is a valid sentence meaning right ∧ light.

s([and, right, light]), S) → andrightlight, {S is 0.01} (1)

The same formula could be expressed as well using the following compositional,
recursive grammar: s is the start symbol, c2 is the name of a syntactic category
associated with binary connectives. Like in Prolog, variables start with a capital
letter and constants with a lower case letter.

The number that appears in first place on the right hand side of a grammar
rule (see rule 5) indicates the position of the expression associated with the
connective in the sentence: The number 1 indicates that the expression associated
with the connective is a prefix (first position), number 2 that it is an infix (second
position), and number 3 that it is a suffix (third position). We use this convention
because Prolog does not allow the use of left recursive grammar rules.

s(light, S) → light, {S is 0.70} (2)
s(right, S) → right, {S is 0.25} (3)
c2(and, S) → and, {S is 0.50} (4)

1 Notice that we use Prolog grammar rules for describing the grammars. The se-
mantic argument of non-terminals uses Lisp like (prefix) notation for representing
propositional formulas (e.g., the Prolog list [and, [not, right], light] is equivalent to
¬right∧ light). The third argument (the use counter) of non-terminals is not shown
in the examples.

178 J. Sierra and J. Santibáñez

s([P, Q, R], S) → 2, c2(P, S1), s(Q, S2), s(R, S3),
{S is S1 · S2 · S3 · 0.01} (5)

This grammar breaks down the sentence ’rightandlight’ into subparts with in-
dependent meanings. The whole sentence is constructed concatenating these
subparts. The meaning of the sentence is composed combining the meanings of
the subparts using the variables P, Q and R.

The agents can invent a large number of grammars to express the same for-
mula, because they can associate different words with the propositional constants
and connectives of the formula, and they can concatenate the expressions asso-
ciated with the constituents of the formula in any order. The following grammar
uses the sentence ’claroderechay’ for expressing the same formula right ∧ light.

s(light, S) → claro, {S is 0.60} (6)
s(right, S) → derecha, {S is 0.40} (7)

c2(and, S) → y, {S is 0.50} (8)
s([P, Q, R], S) → 3, c2(P, S1), s(R, S2), s(Q, S3),

{S is S1 · S2 · S3 · 0.01} (9)

Coordination of the grammars constructed by the individual agents is therefore
not a trivial task, because in order to understand each other the agents must use
a common vocabulary and must order the constituents of compound sentences
in sufficiently similar ways as to avoid ambiguous interpretations.

3 Language Games

Language acquisition is seen thus as a collective process by which a population
of autonomous agents constructs a common language that allows them to com-
municate some set of meanings. Such an agreement on the agents’ vocabularies
and individual grammars is achieved through a process of self-organisation of
the linguistic interactions that take place among the agents in the population.

In the experiments described in this paper the agents interact with each other
playing language games. A language game [10,11], which is played by a pair of
agents randomly chosen from the population, consists of the following actions:

1. The speaker chooses a formula (i.e., a meaning) from a given propositional
language, generates or invents a sentence that expresses this formula, and
communicates that sentence to the hearer.

2. The hearer tries to interpret the sentence communicated by the speaker. If it
can parse it using its lexicon and grammar, it extracts a meaning (i.e., a for-
mula) which can be logically equivalent or not to the formula intended by the
speaker. If the hearer cannot parse the sentence, the speaker communicates

The Acquisition of Linguistic Competence 179

the formula it had in mind to the hearer, and the hearer adopts an association
between the formula and the sentence used by the speaker2.

3. Depending on the outcome of the language game both agents adjust their
grammars in order to become more successful in future language games.

3.1 Invention

The agents in the population start with an empty lexicon and grammar. There-
fore they cannot generate sentences for most meanings at the early stages of
a simulation run. In order to allow language to get off the ground, they are
allowed to invent new sentences for those meanings they cannot express using
their lexicons and grammars in the first step of a language game.

The invention algorithm generates a sentence E for a propositional formula F
as follows. If F is atomic, it invents a new word E3. If F is a formula constructed
using a connective (it is of the form ¬A or A ⊗ B), it generates an expression
for the connective and for each subformula of F using the agent’s grammar if it
can, or inventing a new one if it cannot, and it concatenates these expressions
randomly in order to construct a sentence E for the whole meaning F.

As the agents play language games they learn associations between expressions
and meanings, and induce linguistic knowledge from such associations in the
form of grammatical rules and lexical entries. Once they can generate sentences
for expressing a particular meaning using their own grammars, they select the
sentence with the highest score and communicate that sentence to the hearer.
The algorithm for computing the score of a sentence from the scores of the
grammatical rules used in its generation is explained in detail later.

3.2 Adoption

In the second step of a language game the hearer tries to interpret the sentence
communicated by the speaker. If it can parse it using its lexicon and grammar it
extracts a meaning, and checks whether its interpretation is right or wrong (i.e.,
it is logically equivalent to the meaning intended by the speaker) in the third
step of the language game. However at the early stages of a simulation run the
agents usually cannot parse the sentences communicated by the speakers, since
they have no prior linguistic knowledge. In this case the speaker communicates
the formula F it had in mind to the hearer, and the hearer adopts an association
between that formula and the sentence E used by the speaker adding a new rule
of the form s(F, S) → E, {S is 0.01} to its grammar4.

At later stages of a simulation run it usually happens that the grammars and
lexicons of speaker and hearer are not consistent, because each agent constructs

2 A language game succeeds if the hearer can parse the sentence communicated by the
speaker and it extracts a meaning (i.e., a formula) that is logically equivalent to the
formula the speaker had in mind; otherwise the language game fails.

3 New words are sequences of one to three letters randomly chosen from the alphabet.
4 The score of the rules generated using invention, adoption or induction is initialized

to 0.01.

180 J. Sierra and J. Santibáñez

its own grammar from the linguistic interactions in which it participates, and
it is very unlikely that speaker and hearer share the same history of linguistic
interactions unless the population consists only of these two agents. In this case
the hearer may be able to parse the sentence generated by the speaker, but its
interpretation of that sentence might be different from the meaning the speaker
had in mind. The strategy used to coordinate the grammars of speaker and
hearer when this happens is to decrease the score of the rules used by speaker
and hearer in the processes of generation and parsing, respectively, and allow the
hearer to adopt an association between the sentence and the meaning used by
the speaker. Adoption however does not always take place in this case, because
it is possible that the hearer knows the grammatical rules used by the speaker,
but the scores of these rules are not higher than the scores of the rules it used for
interpretation. The hearer adopts only an association between a sentence and a
meaning if it cannot generate such an association using its lexicon and grammar.

3.3 Induction

Besides inventing and adopting associations between sentences and meanings,
the agents can use some induction mechanisms to extract generalizations from
the grammar rules they have learnt so far [12,13]. The induction mechanisms
used in this paper are based on the rules for simplification and chunk in [14,15],
although we have extended them so that they can be applied to grammar rules
which have scores and which mark with a number the position of the connective
in the sentence. We use the approach proposed in [16] for computing the scores
of sentences and meanings from the scores of the rules used in their generation.

The induction rules are applied whenever the agents invent or adopt a new
association to avoid redundancy and increase generality in their grammars.

Simplification. Let r1 and r2 be a pair of grammar rules such that the semantic
argument of the left hand side of r1 contains a subterm m1, r2 is of the form
n(m1, S) → e1, {S is C1}, and e1 is a substring of the terminals of r1. Then
simplification can be applied to r1 replacing it with a new rule that is identical
to r1 except that: (1) m1 is replaced with a new variable X in the semantic
argument of the left hand side; (2) e1 is replaced with n(X, S) on the right hand
side; and (3) the arithmetic expression {R is E · C2} on the right hand side of
r1 is replaced with a new arithmetic expression of the form {R is E · S · 0.01},
where C1 and C2 are constants in the range [0,1], and E is the product of the
score variables that appeared on the right hand side of r1.

Let us see how simplification works with an example. Suppose an agent’s gram-
mar contains rules 2 and 3. It plays a language game with another agent, and
invents or adopts the following rule.

s([and, light, right], S) → lightandright, {S is 0.01}. (10)

It could apply simplification to rule 10 (using rule 3) and replace it with 11.

s([and, light, R], S) → lightand, s(R, SR), {S is SR · 0.01} (11)

The Acquisition of Linguistic Competence 181

Now rule 11 could be simplified again, replacing it with 12 which contains
specific information about the position of the connective in the sentence.

s([and, Q, R], S) → 2, and, s(Q, SQ), s(R, SR), {S is SQ · SR · 0.01} (12)

If later on the agent invents or adopts a rule that associates the sentence
’lightorright’ with the formula [or, light, right] and applies simplification, then its
grammar would contain the following rules that are compositional and recursive,
but which do not use a syntactic category for binary connectives.

s([and, Q, R], S) → 2, and, s(Q, SQ), s(R, SR), {S is SQ · SR · 0.01} (13)
s([or, Q, R], S) → 2, or, s(Q, SQ), s(R, SR), {S is SQ · SR · 0.01} (14)

Chunk I. Let r1 and r2 be a pair of rules with the same left hand side category
symbol. If the semantic arguments of the left hand sides of the rules differ only
in one subterm m1 and m2, and there exist two strings of terminals e1 and e2
that, if replaced with the same non-terminal, would make the right hand sides of
the rules identical, chunk can be applied as follows. A new category symbol c is
created and the following new rules are added to the grammar.

c(m1, S) → e1, {S is 0.01} c(m2, S) → e2, {S is 0.01}

Rules r1 and r2 are replaced by a single rule that is identical to r1 except
that: (1) m1 is replaced with a new variable X in the semantic argument of the
left hand side; (2) e1 is replaced with c(X, S) on the right hand side; and (3)
the arithmetic expression {R is E · C1} on the right hand side of r1 is replaced
with a new arithmetic expression of the form {R is E · S · 0.01}, where C1 is
a constant in the range [0,1] and E is the product of the score variables that
appeared on the right hand side of r1.

The agent of previous examples could apply chunk I to rules 13 and 14 generating
a new syntactic category c2 for binary connectives as follows.

s([P, Q, R], S) → 2, c2(P, S1), s(Q, S2), s(R, S3),
{S is S1 · S2 · S3 · 0.01} (15)

c2(and, S) → and, {S is 0.01} (16)
c2(or, S) → or, {S is 0.01} (17)

Rules 13 and 14 would be replaced with rule 15, which generalises them be-
cause it can be applied to formulas constructed using any binary connective, and
rules 16 and 17, which state that the expressions and and or belong to c2 (the
syntactic category of binary connectives5), would be added to the grammar.

5 The syntactic category c2 is in fact more specific, as we shall see in section 4. It cor-
responds to binary connectives whose expressions are placed in the second position
of the sentence, preceded by the expression associated with their first argument, and
followed by the expression associated with their second argument.

182 J. Sierra and J. Santibáñez

Chunk II. If the semantic arguments of the left hand sides of two rules r1 and
r2 can be unified applying substitution X/m1 to r1, and there exists a string of
terminals e1 in r2 that corresponds to a nonterminal c(X, S) in r1, then rule r2
can be replaced by a new rule of the form c(m1, S) → e1, {S is 0.01}.

Suppose the agent of previous examples adopts or invents the following rule.

s([iff, light, right], S) → lightiffright, {S is 0.01} (18)

Simplification of rule 18 with rules 2 and 3 would replace rule 18 with 19.

s([iff, Q, R], S) → 2, iff, s(Q, SQ), s(R, SR),
{S is SQ · SR · 0.01} (19)

Then chunk II, applied to 19 and 15, would replace rule 19 with rule 20.

c2(iff, S) → iff, {S is 0.01} (20)

3.4 Co-adaptation

Coordination of the grammars constructed by the individual agents is not a
trivial task, because in order to understand each other the agents must use a
common vocabulary and must order the constituents of compound sentences in
sufficiently similar ways as to avoid ambiguous interpretations. Such an agree-
ment on the agents’ vocabularies and on their individual grammars is achieved
through a process of self-organisation of the linguistic interactions that take place
among the agents in the population.

It is necessary to coordinate the agents’ grammars because different agents
can invent different expressions for referring to the same propositional constants
and connectives, and because the invention process uses a random order to con-
catenate the expressions associated with the components of a given meaning. Let
us consider an example that illustrates the problem. Imagine that an agent has
invented or adopted the following rules for expressing the meaning [if,light,right].

s([if, light, right], S) → lightrightif, {S is 0.01}
s([if, light, right], S) → rightlightif, {S is 0.01}

Simplification with rules 2 and 3 would replace them with the following rules
which not only cannot be used for generating a syntactic category for implica-
tions (because they do not satisfy the preconditions of chunk I), but that are in
fact incompatible because they associate the same sentence with two meanings
which are not logically equivalent (they reverse the direction of the implication).

S([if, X, Y], SC) → 3, if, s(X, SX), s(Y, SY),
{SC is SX · SY · 0.01}

S([if, X, Y], SC) → 3, if, s(Y, SY), s(X, SX),
{SC is SY · SX · 0.01}

The Acquisition of Linguistic Competence 183

The agent would be forced thus to make a choice between one of these two
rules in order to express implications in a consistent manner, and would try to
choose the rule that is understood by most agents in the population.

Self-organisation mechanisms help to coordinate the agents’ grammars in such
a way that they prefer to use the rules that are used more often by other agents
[17,18,19,20]. Coordination in the experiments takes place at the third stage of a
language game, when the speaker communicates the meaning it had in mind to
the hearer. Depending on the outcome of a language game speaker and hearer
take different actions. We have explained some of them already (invention and
adoption), but they co-adapt their grammars as well adjusting the scores of their
rules in order to become more successful in future language games.

We consider first the case in which the speaker can generate a sentence for
the meaning using the rules in its grammar. If the speaker can generate several
sentences for expressing that meaning, it chooses the sentence with the highest
score. The rest of the sentences are called competing sentences.

The score of a sentence (or a meaning) generated using a grammar rule is com-
puted using the arithmetic expression on the right hand side of that rule. Con-
sider the generation of a sentence for expressing the meaning [and, right, light]
using the following rules.

s(light, S) → light, {S is 0.70} (21)
s(right, S) → right, {S is 0.25} (22)
c2(and, S) → and, {S is 0.50} (23)

s([P, Q, R], S) → 1, c2(P, S1), s(Q, S2), s(R, S3),
{S is S1 · S2 · S3 · 0.01} (24)

The score S of the sentence andrightligth, generated by rule 24, is computed
multiplying the score of that rule (0.01) by the scores of the rules 23, 22 and 21
which generate the substrings of that sentence (0.50, 0.25 and 0.70, respectively).
The score of a grammar rule is the last number of the arithmetic expression that
appears on the right hand side of that rule.

Suppose the hearer can interpret the sentence communicated by the speaker.
If the hearer can obtain several meanings for that sentence, the meaning with the
highest score is selected. The rest of the meanings are called competing meanings.

If the meaning interpreted by the hearer is logically equivalent to the meaning
the speaker had in mind, the game succeeds and both agents adjust the scores of
the rules in their grammars. The speaker increases the scores of the rules it used
for generating the sentence communicated to the hearer and decreases the scores
of the rules it used for generating competing sentences. The hearer increases the
scores of the rules it used for obtaining the meaning the speaker had in mind and
decreases the scores of the rules it used for obtaining competing meanings. This
way the rules that have been used successfully get reinforced, and the rules that
have been used for generating competing sentences or meanings are inhibited.

If the meaning interpreted by the hearer is not logically equivalent to the mean-
ing the speaker had in mind, the game fails, and both agents decrease the scores

184 J. Sierra and J. Santibáñez

of the rules they used for generating and interpreting the sentence, respectively.
This way the rules that have been used without success are inhibited.

The scores of grammar rules are updated using the scheme proposed in [10].
The rule’s original score S is replaced with the result of evaluating expression
25 if the score is increased, and with the result of evaluating expression 26 if the
score is decreased. The constant μ is a learning parameter which is set to 0.1.

minimum(1, S + μ) (25)
maximum(0, S − μ) (26)

A mechanism for forgetting rules that have not been useful in past language
games is introduced to simplify the agents’ grammars and avoid sources of am-
biguity. Every ten language games the rules which have been used more than
thirty times and have scores lower than 0.01 are removed from the grammars.

4 Experiments

We describe the results of some experiments in which a population of five agents
constructs a common vocabulary and a grammar that allows communicating a
set of meanings which corresponds to all the formulas of a propositional logic
language.

In the experiments we have taken an incremental learning approach in which
the agents first play 10010 language games about propositional constants, and
then they play 15010 language games about logical formulas constructed using
unary or binary connectives. At the end of a typical simulation run all the
agents prefer the same expressions for naming the propositional constants of the
language. The individual grammars built by the agents at the end of a typical
simulation run (see table 1), although different, are compatible enough to allow
total communicative success. That is, the agents always generate sentences that
are correctly understood by the other agents.

All the agents have recursive rules for expressing formulas constructed with
unary and binary connectives. Agents a2 and a5 have invented a syntactic cat-
egory for unary connectives (see table 1). The other agents have specific rules
for formulas constructed using negation, which use the same word ’f’ preferred
by the former agents for expressing negation. The grammar rules used for ex-
pressing negation place the word associated with the connective in the second
position of the sentence. This is indicated by the number that appears in first
place on the right hand side of a grammar rule. For example agent a1 would use
the sentence ’ywf’ to express the formula ¬u, assuming it associates the word
’yw’ with the propositional constant u.

Thus the number 1 indicates that the expression associated with the connec-
tive is located in the first position of the sentence, the number 2 that it is located
in the second position of the sentence, and the number 3 that it is located in the
third position of the sentence. We use this convention in order to be able to rep-
resent two different types of grammar rules for expressing formulas constructed

The Acquisition of Linguistic Competence 185

Table 1. Grammars constructed by the agents in a particular simulation run

Grammar a1

s([not, Y], R)→ 2, f, s(Y,Q), {R is Q · 1}
s([and, Y, Z], T)→ 3, dyp, s(Z,Q), s(Y,R), {T is Q ·R · 1}
s([X, Y, Z], T)→ 3, c3(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}

c3(or, X) → yi, {X is 1}
c3(iff, X) → iaj, {X is 1}

s([X, Y, Z], T)→ 1, c1(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}
c1(if, X) → bqi, {X is 1}

Grammar a2

s([X,Y],R)→ 2, c1(X,P), s(Y,Q), {R is P ·Q · 1}
c1(not, X) → f, {X is 1}

s([X, Y, Z], T)→ 3, c2(X, P), s(Z,Q), s(Y,R), {T is P ·Q ·R · 1}
c2(and, X) → dyp, {X is 1}
c2(or, X) → yi, {X is 1}
c2(iff, X) → iaj, {X is 1}

s([X, Y, Z], T)→ 1, c3(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}
c3(if, X) → bqi, {X is 1}

Grammar a3

s([not, Y], R)→ 2, f, s(Y,Q), {R is Q · 1}
s([X, Y, Z], T)→ 3, c1(X, P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}

c1(and, X) → dyp, {X is 1}
c1(or, X) → yi, {X is 1}
c1(iff, X) → iaj, {X is 1}

s([X, Y, Z], T)→ 1, c2(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}
c2(if, X) → bqi, {X is 1}

Grammar a4

s([not, Y], R)→ 2, f, s(Y,Q), {R is Q · 1}
s([X, Y, Z], T)→ 3, c4(X, P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}

c4(and, X) → dyp, {X is 1}
s([X, Y, Z], T)→ 3, c7(X, P), s(Z,R), s(Y,Q), {T is P ·R ·Q · 1}

c7(or, X) → yi, {X is 1}
c7(iff, X) → iaj, {X is 1}

s([if, Y, Z], T)→ 1, bqi, s(Y,Q), s(Z,R), {T is Q ·R · 1}
Grammar a5

s([X,Y],R)→ 2, c1(X,P), s(Y,Q), {R is P ·Q · 1}
c1(not, X) → f, {X is 1}

s([X, Y, Z], T)→ 3, c4(X, P), s(Z,Q), s(Y,R), {T is P ·Q ·R · 1}
c4(and, X) → dyp, {X is 1}
c4(or, X) → yi, {X is 1}

s([X, Y, Z], T)→ 3, c2(X, P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}
c2(iff, X) → iaj, {X is 1}

s([if, Y, Z], T)→ 1, bqi, s(Y,Q), s(Z,R), {T is Q ·R · 1}

using unary connectives (which place the expression associated with the con-
nective in the first and the second position of the sentence, respectively) and
six different types of grammar rules for expressing formulas constructed using

186 J. Sierra and J. Santibáñez

binary connectives6. This is so because a grammar rule for expressing formulas
constructed using binary connectives must specify the position of the expression
associated with the connective in the sentence, and the relative positions of the
expressions associated with the arguments of the connective in the sentence.

Consider the second and fourth grammar rules of agent a4. Both rules place
the expression associated with the connective in the third position of the sen-
tence, but differ in the positions in which they place the expressions associated
with the arguments of the connective.

s([X, Y, Z], T) → 3, c4(X, P), s(Y, Q), s(Z, R), {T is P · Q · R · 1}
s([X, Y, Z], T) → 3, c7(X, P), s(Z, R), s(Y, Q), {T is P · R · Q · 1}

The second rule places the expression associated with the first argument of
the connective (variable Y) in the first position of the sentence, the expression
associated with the second argument (variable Z) in the second position, and
the expression associated with the connective in the third position. The fourth
rule places the expression associated with the second argument of the connective
(variable Z) in the first position in the sentence, the expression associated with
the first argument (variable Y) in the second position, and the expression asso-
ciated with the connective in the third position. Observe the order in which the
non-terminals s(Y,Q) and s(Z,R) appear on the right hand sides of both rules.

When analyzing the grammar rules built by the agents we distinguish be-
tween commutative and non-commutative binary connectives. Because in order
to communicate formulas constructed with commutative connectives, the agents
only have to agree on a common vocabulary and on the position in which they
place the expression associated with the connective in the sentence.

Consider the case in which two agents agree on a common vocabulary and on
the position in which they place the expression associated with a commutative
connective in a sentence. Even if both agents differ in the positions in which they
place the expressions associated with the arguments of such a connective in the
sentence, they will always generate correct interpretations of the sentences gen-
erated by each other. Because the difference on the positions of the expressions
associated with the arguments of the connective in the sentence can only gen-
erate a formula which uses the same connective and which inverts the order of
the arguments of such a connective with respect to the formula intended by the
speaker. But such a formula will be logically equivalent to the one intended by
the speaker, because we are assuming that it is constructed using a commutative
connective.

We can observe in table 1 that in fact all agents place in the same position of
the sentence (third) the expressions associated with the connectives ’and’, ’or’
and ’iff’, and that they use the same words (’dyp’, ’yi’ and ’iaj’, respectively) for
expressing them. But that they do not place in the same positions the expressions
associated with the arguments of commutative connectives.

6 The induction rules (simplification and chunk) have been extended appropriately to
deal with this convention.

The Acquisition of Linguistic Competence 187

Table 2. Grammar rules constructed by every agent for expressing disjunctions (i.e.,
formulas of the form Y ∨ Z)

Grammar rules constructed for expressing disjunctions: Y ∨ Z

Agent a1
s([X, Y, Z], T)→ 3, c3(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}

c3(or, X) → yi, {X is 1}
Agent a2

s([X, Y, Z], T)→ 3, c2(X,P), s(Z,Q), s(Y,R), {T is P ·Q ·R · 1}
c2(or, X) → yi, {X is 1}

Agent a3
s([X, Y, Z], T)→ 3, c1(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}

c1(or, X) → yi, {X is 1}
Agent a4

s([X, Y, Z], T)→ 3, c7(X,P), s(Z,R), s(Y,Q), {T is P ·R ·Q · 1}
c7(or, X) → yi, {X is 1}

Agent a5
s([X, Y, Z], T)→ 3, c4(X,P), s(Z,Q), s(Y,R), {T is P ·Q ·R · 1}

c4(or, X) → yi, {X is 1}

Table 3. Grammar rules constructed by every agent for expressing implications (i.e.,
formulas of the form Y → Z)

Grammar rules constructed for expressing implications: Y → Z

Agent a1
s([X, Y, Z], T)→ 1, c1(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}

c1(if, X) → bqi, {X is 1}
Agent a2

s([X, Y, Z], T)→ 1, c3(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}
c3(if, X) → bqi, {X is 1}

Agent a3
s([X, Y, Z], T)→ 1, c2(X,P), s(Y,Q), s(Z,R), {T is P ·Q ·R · 1}

c2(if, X) → bqi, {X is 1}
Agent a4

s([if, Y, Z], T)→ 1, bqi, s(Y,Q), s(Z,R), {T is Q ·R · 1}
Agent a5

s([if, Y, Z], T)→ 1, bqi, s(Y,Q), s(Z,R), {T is Q ·R · 1}

For example, agents a1 and a3 place the expression associated with the first
argument of the connective or in the first position of the sentence (see table 2),
while agents a2, a4 and a5 place it in the second position of the sentence.

The positions in which the expressions associated with the arguments of non-
commutative connectives are placed in a sentence determine however the mean-
ing of the sentence. If the positions of the arguments of a connective in a formula
are inverted during the process of interpretation, the formula interpreted by the
hearer will not be logically equivalent to the formula intended by the speaker.
Differences in the positions of the expressions associated with the arguments of

188 J. Sierra and J. Santibáñez

non-commutative connectives prevent therefore correct communication, and are
thus eliminated by the self-organisation process.

We can observe that all agents use the word ’bqi’ for expressing the connective
’if’, that they all place it in the first position of the sentence, and that all of
them place the expressions associated with the antecedent and the consequent
of an implication in the same positions of the sentence (see table 3).

All agents have created syntactic categories for commutative connectives, al-
though the extent of such categories differs from one agent to another depending
on the positions in which they place the expressions associated with the argu-
ments of the connectives ’and’, ’or’ and ’iff’ in the sentence. Agents a1, a2 and
a3 have created syntactic categories for non-commutative connectives, whereas
agents a4 and a5 have specific grammar rules for expressing implications.

There are no alternative words for any connective in the agents’ grammars,
because the mechanism for forgetting rules that have not been useful in past
language games has removed such words from the grammars.

We can conclude then that the self-organisation process minimizes the learning
effort of the agents by imposing only those order relations among the components
of a sentence that are necessary for language understanding.

Figure 1 shows the evolution of the communicative success, averaged over
ten simulation runs with different initial random seeds, for a population of five
agents. The communicative success is the average of successful language games
in the last ten language games played by the agents. We can observe that the

0

0,2

0,4

0,6

0,8

1

1,2

1 58 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970 1027 1084 1141 1198 1255 1312 1369 1426 1483

Fig. 1. Evolution of the communicative success in experiments performed using a popu-
lation of five agents, 10010 language games about propositional constants (not shown),
and 15010 language games about formulas constructed using logical connectives

The Acquisition of Linguistic Competence 189

agents reach a communicative success of 100% in 10800 language games. That
is, after each agent has played on average 2160 language games about logical
formulas and 2000 games about propositional constants.

5 Related Work

The emergence of recursive communication systems in populations of autonomous
agents which have no prior linguistic knowledge has been studied by other authors
[14,18,21]. The research presented in [18] addresses the problem of the emergence
of recursive communication systems in populations of autonomous agents, as we
do. It differs from the work described in the present paper by focusing on learning
exemplars rather than grammar rules. These exemplars have costs, as our gram-
mar rules do, and their costs are reinforced and discouragedusing self-organization
principles as well. The main challenge for the agents in the experiments described
in [18] is to construct a communication system that is capable of naming atomic
formulas and, more importantly, marking the equality relations among the argu-
ments of the different atomic formulas that constitute the meaning of a given sen-
tence. This task is quite different from the learning task proposed in this paper
which focusses on categorizing propositional sentences and connectives, and mark-
ing the scope of each connective using the order of the constituents of a sentence.

The most important difference between our work and that presented in [14] is
that the latter focusses on language transmission over generations. Rather than
studying the emergence of recursive communication systems in a single genera-
tion of agents, as we do, it shows that the bottleneck established by language
transmission over several generations favors the propagation of compositional
and recursive rules because of their compactness and generality. In the experi-
ments described in [14] the population consists of a single agent of a generation
that acts as a teacher and another agent of the following generation that acts as
a learner. There is no negotiation process involved, because the learner never has
the opportunity to act as a speaker in a single iteration. We consider however
populations of five agents which can act both as speakers and hearers during the
simulations. Having more than two agents ensures that the interaction histories
of the agents are different from each other, in such a way that they have to ne-
gotiate in order to reach agreements on how to name and order the constituents
of a sentence.

The induction mechanisms used in the present paper are based on the rules
for chunk and simplification in [14], although we have extended them so that
they can be applied to grammar rules which have scores and which mark with
a number the position of the connective in the sentence. Finally the meaning
space used in [14] (a restricted form of atomic formulas of second order logic)
is different from the meaning space considered in the present paper (arbitrary
formulas from a propositional logic language), although both of them require the
use of recursion.

190 J. Sierra and J. Santibáñez

6 Conclusions

We have described some experiments which show how a language expressive
enough to allow the communication of meanings of the same complexity as
propositional logic formulas can emerge in a population of autonomous agents
which have no prior linguistic knowledge. This language although simple has
interesting properties found in natural languages, such as recursion, syntactic
categories for propositional sentences and connectives, and partial word order
for marking the scope of each connective.

An approach based on general purpose cognitive capacities, such as invention,
adoption and induction, and on self-organisation principles applied to a partic-
ular type of linguistic interaction known as a language game has been taken.

These experiments extend previous work by considering a larger population
and a much larger search space of grammar rules. In particular the agents are
allowed to order the expressions associated with the constituents of a logical
formula in arbitrary order in the sentence. Previous work assumed that the ex-
pressions associated with the connectives should be always placed in the first
position of the sentence. The branching factor of the search space of grammar
rules that can be used for expressing formulas constructed with binary connec-
tives has been extended thus from two to six.

Another difference is that communication is considered successful in a lan-
guage game if the meaning interpreted by the hearer is logically equivalent to
the meaning the speaker had in mind. In previous experiments [1] both meanings
were required to be syntactically equal, i.e., the same formula. This has allowed
us to observe how a less strict grammar in terms of word order emerges through
the self-organisation process, which minimizes the learning effort of the agents
by imposing only those order relations among the components of a sentence that
are necessary for language understanding.

In particular the grammar rules built by different agents for communicating
formulas constructed using commutative connectives (see table 1) agree on the
expression used to refer to each connective and on the position in which the
expression associated with each connective is placed in the sentence, but differ
on the positions in which the expressions associated with the arguments of the
connectives are placed in the sentence. All agents use the expressions dyp, yi
and iaj for referring to the logical connectives and, or and iff, respectively. The
expressions associated with these connectives are placed in the third position in
the sentence by all agents as well. But the expression associated with the first
argument of these three connectives is placed in the different positions of the
sentence by agents a3 and a2. This difference in the order of some constituents
of a sentence has not been eliminated by the self-organisation process, because
it is perfectly compatible with correct understanding.

Acknowledgments

This work is partially funded by the DGICYT TIN2005-08832-C03-03 project
(MOISES-BAR).

The Acquisition of Linguistic Competence 191

References

1. Sierra, J.: Propositional logic syntax acquisition. In: Vogt, P., Sugita, Y., Tuci, E.,
Nehaniv, C.L. (eds.) Symbol Grounding and Beyond. LNCS (LNAI), vol. 4211, pp.
128–142. Springer, Heidelberg (2006)

2. McCarthy, J.: Formalizing Common Sense. Papers by John McCarthy. Ablex.
Edited by Vladimir Lifschitz (1990)

3. Piaget, J.: The Equilibration of Cognitive Structures: the Central Problem of In-
tellectual Development. University of Chicago Press, Chicago (1985)

4. Santibáñez, J.: Relación del rendimiento escolar en las áreas de lectura y escrit-
ura con las aptitudes mentales y el desarrollo visomotor. Universidad Nacional de
Educación a Distancia, D.L., Madrid (1984) ISBN 84-398-2486-6

5. Santibáñez, J.: Variables psicopedagógicas relacionadas con el rendimiento en
E.G.B. Instituto de Estudios Riojanos, ISBN 84-87252-00-1, Logroño (1988)

6. Santibáñez, J.: La evaluación de la escritura: test de escritura para el ciclo inicial,
T.E.C.I. CEPE, D.L. Madrid (1989) ISBN 84-86235-87-1

7. Sierra, J.: Grounded models as a basis for intuitive reasoning. In: Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence, pp. 401–406
(2001)

8. Sierra, J.: Grounded models as a basis for intuitive and deductive reasoning: The
acquisition of logical categories. In: Proceedings of the European Conference on
Artificial Intelligence, pp. 93–97 (2002)

9. Sierra, J.: Grounded models as a basis for intuitive reasoning: the origins of logical
categories. In: Papers from AAAI–2001 Fall Symposium on Anchoring Symbols to
Sensor Data in Single and Multiple Robot Systems. Technical Report FS-01-01,
pp. 101–108. AAAI Press, Menlo Park (2001)

10. Steels, L.: The Talking Heads Experiment. Words and Meanings, vol. 1. LABO-
RATORIUM, Antwerpen (1999) (Special Pre-edition)

11. Steels, L., Kaplan, F., McIntyre, A., V Looveren, J.: Crucial factors in the origins
of word-meaning. In: The Transition to Language, pp. 252–271. Oxford University
Press, Oxford (2002)

12. Steels, L.: The origins of syntax in visually grounded robotic agents. Artificial
Intelligence 103(1-2), 133–156 (1998)

13. Steels, L.: The emergence of grammar in communicating autonomous robotic
agents. In: Proceedings of the European Conference on Artificial Intelligence, pp.
764–769. IOS Publishing, Amsterdam (2000)

14. Kirby, S.: Learning, bottlenecks and the evolution of recursive syntax. In: Linguistic
Evolution through Language Acquisition: Formal and Computational Models, pp.
96–109. Cambridge University Press, Cambridge (2002)

15. Stolcke, A.: Bayesian Learning of Probabilistic Language Models. PhD thesis, Univ.
of California at Berkeley (1994)

16. Vogt, P.: The emergence of compositional structures in perceptually grounded lan-
guage games. Artificial Intelligence 167(1-2), 206–242 (2005)

17. Steels, L.: The synthetic modeling of language origins. Evolution of Communica-
tion 1(1), 1–35 (1997)

18. Batali, J.: The negotiation and acquisition of recursive grammars as a result of
competition among exemplars. In: Linguistic Evolution through Language Acquisi-
tion: Formal and Computational Models, pp. 111–172. Cambridge U.P, Cambridge
(2002)

192 J. Sierra and J. Santibáñez

19. Steels, L.: Constructivist development of grounded construction grammars. In:
Proc. Annual Meeting of Association for Computational Linguistics, pp. 9–16
(2004)

20. Steels, L., Wellens, P.: How grammar emerges to dampen combinatorial search in
parsing. In: Vogt, P., Sugita, Y., Tuci, E., Nehaniv, C.L. (eds.) Symbol Grounding
and Beyond. LNCS (LNAI), vol. 4211, pp. 76–88. Springer, Heidelberg (2006)

21. Hurford, J.: Social transmission favors linguistic generalization. In: The Evolution-
ary Emergence of Language: Social Function and the Origins of Linguistic Form,
pp. 324–352. Cambridge University Press, Cambridge (2000)

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 193–207, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Contextualizing Behavioural Substitutability and
Refinement of Role Components in MAS

Nabil Hameurlain

LIUPPA Laboratory, Avenue de l’Université, BP 1155, 64013 Pau, France
nabil.hameurlain@univ-pau.fr
http://www.univ-pau.fr/~hameur

Abstract. In this paper we focus on a new approach for the definition of con-
text-based behavioural substitutability and refinement of roles in MAS. First,
we introduce two flexible roles compatibility relations depending on the context
of use (environment). Then, our formal framework is enhanced with the defini-
tion of two flexible behavioral subtyping relations related to the principle of
substitutability. We show the existing link between compatibility and substitut-
ability, and namely the preservation of the proposed compatibility relations by
substitutability. Finally, we study the action as well as the state-based refine-
ments of roles and investigate the links between the substitutability and the
refinements of roles. We show that the proposed behavioural substitutability re-
lations are preserved under the roles refinement.

1 Introduction

Roles are basic buildings blocks for defining the behavior of agents and the require-
ments on their interactions. Modeling interactions by roles allows a separation of
concerns by distinguishing the agent-level and system-level concerns with regard to
interactions. Usually, it is valuable to reuse roles previously defined for similar appli-
cations, especially when the structure of interaction is complex. To this end, roles
must be specified in an appropriate way, since the composition of independently de-
veloped roles can lead to the emergence of unexpected interaction among the agents.

Although the concept of role has been exploited in several approaches [2, 3, 14] in
the development of agent-based applications, no consensus has been reached about
what is a role and namely how it should be specified and implemented. In our previ-
ous work [5], we have shown that the facilities brought by the Component Based
Development (CBD) approach [13] fit well the issues raised by the use of roles in
MAS, and defined RICO (Role-based Interactions COmponents) model for specifying
complex interactions based on the roles. RICO proposes a specific definition of role,
which is not in contrast with the approaches mentioned above, but is quite simple and
can be exploited in specifications and implementations. In the RICO model, when
an agent intends to take a role, it creates a new component (i.e. an instance of the
component type corresponding to this role) and this role-component is linked to its
base-agent. Then, the role is enacted by the role-component and it interacts with the
role-components of the other agents.

194 N. Hameurlain

In [6], a Petri-net based formal specification for RICO is given together with their
compatibility and substitutability semantics. In this paper, we focus on a new ap-
proach to the definition of more flexible roles behavioural substitutability/refinement
relations depending on the context of use (environment). The proposed approach uses
the concept of usability of roles and then provides a formal framework for modeling
usable role-components and their composition. This paper extends the work presented
in [7] and the contributions are: (1) to provide sufficient conditions for deducing
emergent properties by role’s composition. These sufficient conditions are defined
upon more flexible roles compatibility relations, (2) to show the existing link between
compatibility and substitutability of roles, and namely the preservation of the pro-
posed compatibility relations by substitutability, (3) to study the (action and state-
based) refinement of roles and investigate the compatibility of the substitutability
principle with the refinement, which seems to be necessary when we deal with incre-
mental design of role-based complex interactions.

The structure of the paper is as follows. Section 2 presents our Role-based Interac-
tions COmponents (RICO) specification model which is based on the Components-nets
formalism that combines Petri nets with the component-based approach. In section 3
we introduce the notion of role’s usability and based on that we provide two flexible
compatibility relations for roles taking into account the property preservation such as
the completion and the proper termination of roles. In section 4, according to the prin-
ciple of substitutability [11], we study two new behavioural subtyping relations be-
tween roles and show that the proposed roles compatibility relations are preserved by
substitutability. In this section we also address the consistency of the proposed substi-
tutability relations w.r.t the action and state-based refinements. In section 5 we present
conclusion and related approaches.

2 Role-Based Interaction Components Modeling

2.1 The Component-Nets Formalism (C-Nets)

Backgrounds on Labelled Petri nets. A marked Petri net N = (P, T, W, MN) consists
of a finite set P of places, a finite set T of transitions where P ∩ T = ∅, a weighting
function W : P × T ∪ T × P → N, and MN : P ⎯→ N is an initial marking. The preset
of a node x ∈ P ∪ T is defined as ●x = {y ∈ P ∪ T, W(y, x) ≠ 0}, and the postset of x
∈ P ∪ T is defined as x● = {y ∈ P ∪ T, W(x, y) ≠ 0}. Let M: P ⎯→ N be a marking
of the Petri net. A transition t ∈ T is enabled under a marking M, noted M[t >, if W(p,
t) ≤ M(p), for each place p. In this case t may occur, and its occurrence yields the
follower marking M', where M'(p) = M(p) - W(p, t) + W(t, p), noted M[t> M'. The
enabling of a sequence of transitions σ ∈ T* and its occurrence are defined induc-
tively, noted for simplicity M[σ> M'. We denote as LN = (P, T, W, MN, l) the
(marked, labelled) Petri net in which the events represent actions, which can be ob-
servable. It consists of a marked Petri net N = (P, T, W, MN) with a labelling function
l: T ⎯→ A ∪ {λ}. Let ε be the empty sequence of transitions, l is extended to an
homomorphism l*: T* ⎯→ A* ∪ {λ} in the following way: l(ε) = λ where ε is the
empty string of T*, and l*(σ.t) = l*(σ) if l(t) ∈ {λ}, l*(σ.t) = l*(σ).l(t) if l(t) ∉ {λ}. In
the following, we denote l* by l, LN by (N, l), and if LN = (P, T, W, MN, l) is a Petri

 Contextualizing Behavioural Substitutability and Refinement of Role Components 195

net and l' is another labelling function of N, (N, l') denotes the Petri net (P, T, W, MN,
l'), that is N provided with the labelling l'. A sequence of actions w ∈ A* ∪ {λ} is
enabled under the marking M and its occurrence yields a marking M', noted M[w>>
M', iff either M = M' and w = λ or there exists some sequence σ ∈ T* such that l(σ) =
w and M[σ> M'. The first condition accounts for the fact that λ is the label image of
the empty sequence of transitions. For a marking M, Reach (N, M) = {M'; ∃ σ ∈ T*;
M[σ> M'} is the set of reachable markings of the net N from the marking M.

Components nets (C-nets). The Component-nets formalism [6] combines Petri nets
with the component-based approach. Semantically, a Component-net involves two
special places: the first one is the input place for instance creation of the component,
and the second one is the output place for instance completion of the component. A
C-net (as a server) makes some services available to the nets and is capable of render-
ing these services. Each offered service is associated to one or several transitions,
which may be requested by C-nets, and the service is available when one of these
transitions, called accept-transitions, is enabled. On the other hand it can request (as a
client) services from other C-net transitions, called request-transitions, and needs
these requests to be fulfilled. These requirements allow focusing either upon the
server side of a C-net or its client side.

Definition 2.1 (C-net)
Let CN = (P ∪ {I, O}, T, W, MN, lProv, lReq) be a labelled Petri net. CN is a Compo-
nent-net (C-net) if and only if:

1. The labelling of transitions consists of two labelling functions lProv and lReq, such
that: lProv : T ⎯→ Prov ∪ {λ}, where Prov ⊆ A is the set of provided services, and
lReq : T ⎯→ Req ∪ {λ}, where Req ⊆ A is the set of required services.

2. The set of places contains a specific Input place I, such that ●I = ∅ (Instance creation),
3. The set of places contains a specific Output place O, such that O● = ∅ (Instance

completion).

Notation. We denote by [I] and [O], which are considered as bags, the markings of
the Input and the Output place of CN, and by Reach (CN, [I]), the set of reachable
markings of the component-net CN obtained from its initial marking MN within one
token in its Input place I. Besides, when we deal with the graphical representation of
the C-nets, we use ! and ? keywords for the usual sending (required) and receiving
(provided) services together with the labeling function l instead of the two labeling
functions lProv and lReq.

Definition 2.2 (soundness)
Let CN = (P ∪ {I, O}, T, W, MN, l) be a Component-net (C-net). CN is said to be
sound iff the following conditions are satisfied:

1. Completion option: ∀ M ∈ Reach(CN, [I]), [O] ∈ Reach(CN, M).
2. Reliability option: ∀ M ∈ Reach(CN, [I]), M ≥ [O] implies M = [O].

Completion option states that, if starting from the initial state, i.e. activation of the C-
net, it is always possible to reach the marking with one token in the output place O.

196 N. Hameurlain

Reliability option states that the moment a token is put in the output place O corre-
sponds to the termination of a C-net without leaving dangling references.

Refinement of C-nets. We are interested in place and action (service) refinements of
C-nets. Place-refinement consists in replacing a place of the C-net by another C-net.
Then the Input (resp. Output) place has exactly the same output (resp. input) transi-
tions as the refined place in the refined net. Whereas the action-based refinement
consists of replacing an action of the C-net by another C-net. Then, the output (resp.
input) transition of the Input (resp. Output) place may have more than one arc from
(resp. to) the abstract C-net. These two (canonical) refinements ensure that the output
transitions of the Input place fire before the input transitions of the Output place in the
refined C-net. Our proposals differ from those found in the context of (high level)
Petri nets [10] where the substitution of transitions or places, for instance, is like mac-
ros or textual substitution. There, they maintain structural compatibility but there is no
concept of abstract behaviour. Therefore our proposals are more constrained than
textual substitution, since they require behavioural consistency between a refinement
and its corresponding abstraction.

Definition 2.3 (place and action -refinement of C-nets)
Let CN = (P ∪ {I, O}, T, W, MN, l), a ∈ A be an abstract-action of CN, and CN' = (P'
∪ {I', O'}, T', W', M'N, l'). Let CN' = (P', T', W', M'N, l') be the component CN' with-
out its Input and Output place.

1. The (place-) refinement of a place p ∈ P by CN' in CN, noted [p/ CN'] CN, is the
Component-net [p/ CN'] CN obtained by the substitution of the place p by CN' in
the component-net CN. We say that [p/ CN'] CN is a place-refinement of CN.

2. The (action-) refinement of an action a by CN' in CN, noted [a/ CN'] CN, is the
Component-net [a/ CN'] CN obtained by the substitution of all the transitions t such
l(t) = a, by CN' in the component-net CN. We say that [a/ CN'] CN is an action-
refinement of CN.

Asynchronous (parallel) composition of C-nets. The parallel composition of C-
nets, noted ⊕ : C-net × C-net ⎯→ C-net, is made by communication places allowing
interaction through observable services in an asynchronous way. Given a client C-net
and a server C-net, it consists in connecting, through the communication places, the
request and the accept transitions having the same service names: for each service
name, we add one communication-place for receiving the requests/replies of this
service. Then, all the accept-transitions labeled with the same service name are pro-
vided with the same communication-place, and the client C-net is connected with the
server C-net through these communication places by an arc from each request-
transition towards the suitable communication-place and an arc from the suitable
communication-place towards each accept-transition. In order to achieve a syntacti-
cally correct compound C-net C = A ⊕ B, it is necessary to add new components for
initialization and termination: two new places (an Input and Output place), noted {Ic,
Oc}, and two new not observable transitions, noted {ti, to}, for interconnecting the
input place {Ic} to the original two input places via the first new transition {ti}, and
the two original output places to the output place {Oc} via the second new transition

 Contextualizing Behavioural Substitutability and Refinement of Role Components 197

{to}. Thus, the composition of two C-nets is also a C-net, and this composition is
commutative and associative.

2.2 Specification of Roles Components and Their Composition/Refinement

In our RICO model [5], a role component is considered as a component providing
a set of interface elements (either attributes or operations, which are provided or
required features necessary to accomplish the role’s tasks), a behavior (interface ele-
ments semantics), and properties (proved to be satisfied by the behavior). In this pa-
per, since we are interested in behavioural compatibility and substitutability of roles,
when we deal with role components, we will consider only theirs behavioural inter-
faces; that is the set of (provided and required) services together with the behaviours.

Definition 2.4 (Role Component)
A Role Component (for simplicity) for a role ℜ, noted RC, is a 2-tuple RC = (Behav,
Serv), where,

• Behav is a C-net describing the life-cycle of the role ℜ.
• Serv is an interface, a set of public elements, through which RC interacts with

other role components, for instance messaging interface. It is a pair (Req, Prov),
where Req is a set of required services, and Prov is the set of provided services by
RC, and more precisely by Behav.

Since the life-cycle of roles is specified by C-nets, we say that a component role
satisfies the completion (resp. terminates successfully) if and only if its behaviour that
is its underlying C-net satisfies the completion (resp. terminates successfully).

Definition 2.5 (Role Components composition)
A Role (Component), RC = (Behav, Serv), can be composed from a set of (primitive)
Role-Components, RCi = (Behavi, , Servi), i = 1, …, n, noted RC = RC1 ⊗… ⊗RCn,
as follows:

• Behav = Behav1⊕ …⊕ Behavn.
• Serv = (Req, Prov) such that Req = ∪ Reqi, and Prov = ∪ Provi, i=1, …, n.

The composition of two role-components is also a role-component, and this composi-
tion is commutative and associative. Besides, we note that the composition operator ⊗
allows composition of many instances of a same role, for instance, one instance of the
buyer and many instances of the sellers in an auction protocol [5, 6].

Property 2.1 (Role’s composition and property preservation)
Let RC1 = (Behav1, Serv1), and RC2 = (Behav2, Serv2), be two role components.
RC = RC1 ⊗ RC2 satisfies the completion option

⇒ RCi, i=1,2 satisfies the completion option.

Example 1. Let’s take the example of the ticket service and the customer. Figure 1
shows RC1 representing the behaviour of the customer, and RC2 the behaviour of the
Ticket-service. The Ticket service initiates the communication by sending one Ticket

198 N. Hameurlain

RC1 = Customer RC2 = Ticket-service RC = RC1 RC2

a?

b!

a!

b?

ti

a?

b!

a!

b?

pa

pb

to

Ic

Oc

l(a)=Ticket,
l(b)=Visa

Fig. 1. RC1 = (Behav1, Serv1), RC2 = (Behav2, Serv2), RC = RC1 ⊗ RC2 = (Behav, Serv), where
l(a)= Ticket, l(b) = Visa1, Serv1 = ({Visa}, {Ticket}), Serv2 = ({Ticket}, {Visa}), and Serv =
({Visa, Ticket}, {Ticket, Visa})

and waits for the payment (Visa). By receiving the Ticket, the customer makes the
payment of the ticket by Visa. The result of the composition of the behaviours of RC1

and RC2, RC = RC1 ⊗ RC2, is shown in figure 1. These two roles as well as their com-
posed role terminate successfully.

Abstraction/Refinement of roles. Abstraction and refinement are often used together
in specification, and validation of large, complex, and open MAS. The abstraction
concept is derived from its ability to hide irrelevant details reducing the complexity of
interactions, and the refinement is a crucial component in the production of provably
reliable software. In the context of open role-based interactions components, the de-
signer tends to start with abstract view of the role, and progressively refines that
specification by adding more detail. In this section we use the concept of abstraction/
refinement to design open role based-interactions components. We are interested in
both state and action-refinement of roles.

Definition 2.6 (state and action-based Refinement of Roles)
Let RC1 = (Behav1, Serv1) and RC’ = (Behav’, Serv’) be two role components such
that Serv1 = (Req1, Prov1) and Serv’ = (Req’, Prov’). Let p be a place of Behav1 and s
∈ Serv1 be a service.

1. The refinement of p by RC’ in RC1 is a role component RC2 = (Behav2, Serv2),
noted RC2 = [p/ RC’] RC1, such that Behav2 = [p/ Behav’] Behav1 (definition 2.3),
and Serv2 = Serv1 ∪ Serv’. We say that RC2 is a state refinement of RC1.

1 The names of transitions are drawn into the box.

 Contextualizing Behavioural Substitutability and Refinement of Role Components 199

RC’1 = Abstract-customer RCv= Visa-payment RC1= [s/ RCv] RC’1

a?

b!

Oa

Ia

a?

t

Oa

Ia

b!

Ia’

Oa’

l(a)=Ticket,
l(b)=Visa,
l(t) = s

Fig. 2. RC1= [s/ RCv] RC’1 is an action refinement of the abstract-customer RC’1

RC’2 =Abstract-T-service RCp = Visa-Wait-payment RC2 = [Wait_Pay/ RCp] RC’2

Wait_Pay

b?

Ia’

Oa’

a!

b?

Oa’

Ia

a!

Ia

Fig. 3. RC2 = [Wait_Pay/ RCp] RC’2 is a place refinement of the abstract-T-service RC’2

2. The refinement of s by RC’ in RC1 is a role component RC2 = (Behav2, Serv2),
noted RC2 = [s/ RC’] RC1, such that Behav2 = [s/ Behav’] Behav1 (definition 2.3),
and Serv2 = (Serv1 \ s) ∪ Serv’. We say that RC2 is an action refinement of RC1.

Example 2. Figure 2 shows RC’1 representing the behaviour of an abstract-customer,
and RCv the behaviour of the Visa-payment. The refinement of the service s by the
Visa-payment RCv in the abstract-customer RC’1 is the customer component RC1= [s/
RCv] RC’1. Besides, figure 3 shows RC’2 representing the behaviour of an abstract-
Ticket-service, and RCp the behaviour of the Visa-wait-payment. The refinement of
the place Wait_pay by the role RCp in the abstract-Ticket-service RC2’ is the ticket-
service component RC2 = [Wait_pay/ RCp] RC9.

Property 2.2 (Role’s refinement and property preservation)
Let RC = (Behav, Serv), and RC’ = (Behav’, Serv’), be two role components. Let p be
a place of Behav and s ∈ Serv be a service.

200 N. Hameurlain

1. RC and RC’ satisfy the completion option (resp. terminate successfully) ⇒
[p/ RC’] RC satisfies the completion option (resp. terminates successfully).

2. RC and RC’ satisfy the completion option (resp. terminate successfully) ⇒
[s/ RC’] RC satisfies the completion option (resp. terminates successfully).

3 Context-Based Behavioral Compatibility of Role Components

In component-based software engineering, classical approaches for components com-
patibility deal with components composition together with their property preservation
[1]. In our previous work, we have used this approach for role-based interactions
components and propose two compatibility relations [6]. The first one deals with the
correctness of the composition of roles when reasoning about the completion option,
and the second deals with the proper (or successful) termination of the composed role.
In this paper, we will consider explicitly the context of use of roles that is their envi-
ronment in the definition of role-components compatibility relations. The proposed
compatibility relations [7], called optimistic compatibility relations, are then more
flexible. First, let define the notion of the environment of a role.

Definition 3.1 (Environment)
Let RC1 = (Behav1, Serv1) and RC2 = (Behav2, Serv2), be two roles such that Servi =
(Reqi, Provi), i=1, 2.

RC2 is called an environment-role (or environment for simplicity) of RC1, and vice
versa, iff Req1 = Prov2, Req2 = Prov1.

We let ENV(RC), the set of environments of the role component RC.

Definition 3.1 expresses that for two role components RC1 = (Behav1, Serv1) and RC2
= (Behav2, Serv2), such that both sets of interfaces Serv1 and Serv2 completely match,
i.e. Req1 = Prov2 and Req2 = Prov1, the role component RC1 is considered a role-
environment (or environment for simplicity) of RC2 - and vice versa.

Given a role-component and its environment, it is possible to reason about the
completion and the proper termination of their composition. Based on that, we define
two notions of usability: the first one, called weak usability, deals with the completion
option, and the second one, which is more restrictive than the weak usability, deals
with the successful termination property.

Definition 3.2 (Weak and Strong usability)
1. RC is weakly usable iff ∃ Env ∈ ENV(RC), Env ⊗ RC satisfies the completion

option. We say that Env weakly utilizes RC.
2. RC is strongly usable iff ∃ Env ∈ ENV(CR), Env ⊗ RC terminates successfully.

We say that Env strongly utilizes RC.

Example 3. Let take again the example of the ticket service and the customer. Now,
the Ticket service initiates the communication by sending (two) Tickets and waits
of their payment (VISA and/or eCash). Figure 4 shows RC3 representing the be-
haviour of the customer, and RC4 the behaviour of the Ticket-service. By receiving
the Tickets, the customer determines the kind of payment of these two tickets. It

 Contextualizing Behavioural Substitutability and Refinement of Role Components 201

a !

b ? c ?

2
a ?

b ! c !

2

RC3 =Customer RC4=Ticket-service

l(a)=Ticket,
l(b)=Visa,
l(c)=eCash

Fig. 4. RC3 weakly utilizes RC4, where Serv3 = ({Visa, eCash}, {Ticket}), Serv4 = ({Ticket},
{Visa, eCash})

is easy to prove that roles RC3 and RC4 are weakly usable, since RC3 weakly utilizes
RC4 and vice versa. The role RC3 is not strongly usable since, its unique (and weakly
usable) environment is the role RC4, and RC3 ⊗ RC4 satisfies the completion option
but does not terminate successfully.

Example 4. In figure 5, the ticket service RC7 initiates the communication by sending
one Ticket and wait of the payment (either Visa or eCash). The role compo-
nents RC5 and RC6 are then two examples of the customer’s behaviour. By receiving
the Ticket, they solve an internal conflict and determine the kind of payment. The
roles R53 and RC7 (resp. RC6 and RC7) are strongly usable, since for instance RC5
strongly utilizes RC7 (resp. RC6 strongly utilizes RC7) and vice versa. Last but not
least, let us take the ticket service RC’ shown in figure 6. RC’ is not weakly usable
since there is no environment which can weakly utilize it. Indeed, roles RC5 and RC6

are the two possible role-environments of RC’ (according to the behaviour of RC’

described by the language {Ticket!.Visa?, Ticket!.eCash?}), nevertheless
RC5 ⊗ RC’ (as well as RC6 ⊗ RC’) yields to a deadlock, since for instance the se-
quence {Ticket!.Ticket?.eCash!} in RC5 ⊗ RC’ (as well as in RC6 ⊗ RC’)
yields to a deadlock- marking, that is a marking where no transition is enabled. This is
because of an error in role-component RC’: an internal decision (either Visa? or
eCash?)is made, when sending the Ticket, and not communicated properly to
the environment [1].

We are finally ready to give adequate definitions for roles behavioural optimistic
compatibility, which are based on the weak and the strong usability.

Definition 3.3 (Weak and strong optimistic compatibility)
Let RC1 and RC2 be two weakly (resp. strongly) usable roles.

RC1 and RC2 are Weakly (resp. Strongly) Optimistic Compatible, noted RC1 ≈WOC
RC2 (resp. RC1 ≈SOC RC2), iff RC1 ⊗ RC2 is weakly (resp. strongly) usable.

202 N. Hameurlain

a ?

c !

a ?

b !

a ?

b ! c !

a !

b ? c ?

RC5 = Customer RC6 = Customer RC7 =Ticket-service

Fig. 5. RC5 strongly utilizes RC7, RC6 strongly utilizes RC7, where Serv5 = Serv6 = ({Visa,
eCash}, {Ticket}) and Serv7 = ({Ticket}, {Visa, eCash})

a !

c ?

a !

b ?

RC’= Ticket-service

Fig. 6. RC’ is not weakly usable, where Serv’ = ({Ticket}, {Visa, eCash})

Property 3.1 (Hierarchy of compatibility relations)
Optimistic compatibility relations form a hierarchy: ≈SOC ⇒ ≈WOC

Example 5. As an example, roles RC3 and RC4, shown in figure 6, are weakly (but not
strongly) optimistic compatible that is RC3 ≈WC RC4 holds since RC3 ⊗ RC4 is weakly
usable. Indeed, RC3 ⊗ RC4 satisfies the completion option. Besides, the two roles RC5

and RC7 shown in figure 5 are strongly optimistic compatible that is RC5 ≈SOC RC7

holds since RC5 ⊗ RC7 is strongly usable. Indeed, RC5 ⊗ RC7 terminates successfully.

Property 3.2 (Emergent property by Role’s composition)
Let RC1 = (Behav1, Serv1), and RC2 = (Behav2, Serv2), be two weakly (resp. strongly)
compatible role components. Let RC = RC1 ⊗ RC2.

 Contextualizing Behavioural Substitutability and Refinement of Role Components 203

RCi, i =1,2 satisfies the completion option (resp. terminates successfully) ⇒ ∃ Env
∈ ENV(RC), Env ⊗ RC satisfies the completion option (resp. terminates successfully).

4 Behavioural Substitutability and Refinements of Role
Components

Our main interest is to define behavioural subtyping relations (reflexive and transi-
tive) capturing the principle of substitutability [11] and taking into account the con-
text of use (environment). First, we define two subtyping relations between roles that
are based upon the preservation of the (weakly or strongly) utilisation of the former
role by any role of its environment. Then we show the existing link between compati-
bility and substitutability concepts, and namely their combination, which seems nec-
essary, when we deal with incremental design of usable role components. Finally, we
investigate the links between substitutability and (action as well as the state-based)
refinements of roles.

Definition 4.1 (Weak and Strong optimistic substitutability)
Let RC1 = (Behav1, Serv1), RC2 = (Behav2, Serv2), and Servi = (Reqi, Provi), i=1, 2,
such that: Prov1 ⊆ Prov2, Req1 ⊆ Req2.

1. RC2 is less equal to RC1 w.r.t Weak Substitutability, denoted RC2 ≤WOS RC1, iff ∀
Env ∈ ENV(RC1), Env weakly utilizes RC1 ⇒ Env weakly utilizes RC2.

2. RC2 is less equal to RC1 w.r.t Weak Substitutability, denoted RC2 ≤SOS RC1, iff ∀
Env ∈ ENV(RC1), Env strongly utilizes RC1 ⇒ Env strongly utilizes RC2.

The Weak (resp. Strong) Substitutability guarantees the transparency of changes of
roles to their environment. Namely, the weak (resp. strong) compatibility between the
former role and its environment should not be affected by these changes. In both weak
and strong subtyping relations, the (super-) role component RC1 can be substituted by
a (sub-) role component RC2 and the environment of the former role RC1 will not be
able to notice the difference since: (a) the sub-role has a larger set of required and
provided services (Req1 ⊆ Req2 and Prov1 ⊆ Prov2) than the super-role, and (b) any
environment that weakly (resp. strongly) utilizes the former role is also able to weakly
(resp. strongly) utilize the new role.

Example 6. As an example, consider the roles RCv and RC’v given in the figure 7. It
is easy to check that RC’v ≤SOS RCv since ENV (RCv) = {RCp} given in figure 3 and
RCp that strongly utilizes RCv also strongly utilizes RC’v. Besides, consider the roles
RC3 and RC6. RC3 ≤WOS RC6 holds since the unique environment that strongly (and
then weakly) utilizes CR6 is the role RC7, and RC7 ⊗ RC3 satisfies the completion
option. These two roles RC3 and RC6 are not related by the strong subtyping relation
that is RC3 ≤SOS RC6 does not hold, since RC3 ⊗ RC7 does not terminate successfully.
Last but not least, consider the roles RC5 and RC6; RC5 ≤SOS RC6 holds since the role
RC7 (which is the unique environment) that strongly utilizes RC6 also strongly utilizes
RC5. Indeed RC5 ⊗ RC7 terminates successfully.

204 N. Hameurlain

RCv= Visa-payment RC’v = Visa-eCash-payment

Oa’

b!

Ia’

c!
b!

Ia

Oa

Fig. 7. RC’v is strongly subtyping RCv, where Serv = {{Visa}, ∅) and Serv’ = ({Visa, eCash}, ∅)

Property 4.1 (Hierarchy of subtyping relations)
Let ℜC = {RC1, …, RCn} be the set of role components in the system. The relations
≤H, H ∈ {WOS, SOS}, are preorder (reflexive and transitive) on ℜC and form a hier-
archy: ≤SOS ⇒ ≤WOS.

The following core theorem of this paper states two fundamental properties of proto-
cols substitutability and their compatibility. First, substitutability is compositional: in
order to check if Env ⊗ RC2 ≤H Env ⊗ RC1, H ∈{WOS, SOS}, it suffices to check
RC2 ≤H RC1, since the latter check involves smaller roles and it is more efficient.
Second, substitutability and compatibility are related as follows: we can always sub-
stitute a role RC1 with a sub-role RC2, provided that RC1 and RC2 are connected to the
environment Env by the same provided services that is: Req ∩ Prov2 ⊆ Req ∩ Prov1.
This condition is due to the fact that if the environment utilizes services provided by
RC2 that are not provided by RC1, then it would be possible that new incompatibilities
arise in the processing of these provided services.

Theorem 4.1 (compositionality and compatibility preservation)
Let RC1 = (Behav1, Serv1), RC2 = (Behav2, Serv2) be two roles where Servi = (Reqi,
Provi), i = 1, 2. Let Env = (Behav, Serv) such that Req ∩ Prov2 ⊆ Req ∩ Prov1.

1. Env ≈WOC RC1 and RC2 ≤WOS RC1 ⇒ Env ≈WOC RC2 and Env ⊗ RC2 ≤WOS Env ⊗
RC1.

2. Env ≈SOC RC1 and RC2 ≤SOS RC1 ⇒ Env ≈SOC RC2 and Env ⊗ RC2 ≤SOS Env ⊗
RC1.

Example 7. Let take again the roles RC7, RC3 and RC6. We have RC7 ≈WOC RC6 and
RC3 ≤WOS RC6. Then, according the above theorem, we can deduce that RC7 ≈WOC RC3

and RC7 ⊗ RC3 ≤WOS RC7 ⊗ RC6. Besides, we have RC7 ≈SOC RC6 and RC5 ≤SOS RC6.
According the second part of the above theorem, we can deduce that RC7 ≈WOC RC5

and RC7 ⊗ RC5 ≤WOS RC7 ⊗ RC6.

The following two theorems address one key issue of component based software de-
velopment of roles, consistency; that is the compatibility of the substitutability's prin-
ciple with the role Components (state and action) refinement. First, the weak and
strong optimistic substitutability relations are preserved by state refinement of roles.

 Contextualizing Behavioural Substitutability and Refinement of Role Components 205

Second, these two substitutability relations are compositional for the action refinement
of roles. These two results are necessary for designing complex and open role-based
interactions components in an incremental way, since substitutability (and then com-
patibility, according to the theorem 4.1) between role components specifications and/
or between roles specifications and their implementations are preserved.

Theorem 4.2 (preservation of substitutability by state refinement)
Let RC = (Behav, Serv) and RC’ = (Behav’, Serv’) be two role components such that
Serv = (Req, Prov), Serv’ = (Req’, Prov’) and Serv ∩ Serv’ = ∅. Let p be a place of
Behav.

1. RC’ weakly usable ⇒ [p/ RC’] RC ≤WOS RC,
2. RC’ strongly usable ⇒ [p/ RC’] RC ≤SOS RC.

Theorem 4.3 (preservation of substitutability by action refinement)
Let RC1, RC2 be two usable Role Components such that: Prov1 ⊆ Prov2, Req1 ⊆ Req2.
Let s ∈ Prov1 ∪ Req1. Let RC’1, RC’2 be two usable Role Components such that:
Prov’1 ⊆ Prov’2, Req’1 ⊆ Req’2, and Serv1 ∩ Serv’1 = Serv2 ∩ Serv’2 = ∅. Then:

1. RC2 ≤WOS RC1 and RC’2 ≤WOS RC’1 ⇒ [s/ RC’2] RC2 ≤WOS [s/ RC’1] RC1,
2. RC2 ≤SOS RC1 and RC’2 ≤SOS RC’1 ⇒ [s/ RC’2] RC2 ≤SOS [s/ RC’1] RC1.

Example 8. As an example, consider for instance the roles RC’2, RCp and RC2 =
[Wait_Pay/ RCp] RC’2, given in figure 3. We can check that RCp is strongly (and then
weakly) usable, and deduce according to the theorem 4.2 that RC2 ≤SOS RC’2. Besides
let take the roles RCv and RC’v given in the figure 7. We have RC’v ≤SOS RCv, and
according to the theorem 4.3, we can deduce that [s/ RC’v] RC'1 = RC1 ≤SOS [s/ RCv]
RC’1 = RC6, where RC’1 is the role given in figure 2.

5 Conclusion and Related Work

The aim of this paper is to present a new approach to the definition of context-based
behavioural substitutability and refinement for role-components in MAS. The paper
provides a framework for modelling usable role-components together with their com-
position. This framework is discussed in terms of compatibility and substitutability
checks. We proposed two new and flexible compatibility relations together with two
subtyping relations between role-components taking into account the non-determinism,
the composition mechanism of role-components, as well as the property preservation
such as the completion and the proper termination of roles. We furthermore investi-
gated some properties related to our substitutability and compatibility relations, namely
the preservation of the compatibility by substitutability as well as the compositionality
of the proposed substitutability relations. Finally, we studied the behavioural refine-
ment of roles and investigated the existing links between roles substitutability and
refinement by showing the consistency of the proposed substitutability relations w.r.t.
(state and action) refinement of roles.

206 N. Hameurlain

Related work. The idea of optimistic approach to the definition of components com-
patibility has been originally introduced in [1] for interface automata. Unlike tradi-
tional uses of automata, the authors proposed an optimistic approach to automata
composition. Two interface automata are (optimistic) compatible, if they are compos-
able and there exists a legal environment for these two automata, i.e. an environment
such that no deadlock state is reachable in the automata obtained by the composition
of the two interface automata and that environment. This work is close to ours, since
our weak optimistic compatibility relation for role-components is related to the opti-
mistic compatibility relation defined for automata composition. Besides, our approach
can be seen as an extension of this work, since the existing link between the proposed
compatibility and subtyping relations is studied. In [8], the concept of usability is used
for analyzing web service based business processes. The authors defined the notion of
usability of workflow modules, and studied the soundness of a given web service,
considering the actual environment it will be used in. Based on this formalism to-
gether with the notion of usability, the authors present compatibility and equivalence
definitions of web services. This approach is close to ours, since the compatibility of
two workflow modules is related to our strong optimistic compatibility of role-
components. Furthermore, in that work, the notion of equivalence of web services is
defined upon the usability notion, but it is not linked to the compatibility. Whereas in
our work, we define in addition the notion of weak optimistic compatibility, which is
less restrictive than the strong optimistic compatibility, and the substitutability of
role-components was addressed together with the preservation of compatibility by
substitutability. In [2], authors define the notion of compatibility and consistency
between components of the agents and role: the agent is compatible with a role if the
agent (sub) goals are subset of (sub) goals of the role. Conversely a role is compatible
with the agent if the (sub) goals of the role are a subset of the agent (sub) goals. This
compatibility relation indicates that the agent is highly suitable to fulfil the role. Nev-
ertheless such a match between the agent and roles is not always possible. Then, the
authors introduce a weaker relation, called consistency, which indicates that the goals
of the agent and the roles do not conflict. This approach is close to the compatibility
relations that have been proposed in our previous work [6], since it is related explic-
itly to the property preservation, and then one of the limitations is that these two rela-
tions are very strong. Whereas in the approach presented in this paper, we have
proposed more flexible behavioural compatibility relations taking into account the
environment in which the agent-roles are involved. Finally, in [4], the authors contex-
tualize commitment protocols by adapting them, via different transformations, on
context and the agent’s preferences based on that context. A protocol is transformed
by composing its specification with a transformer specification, and the contextualiza-
tion is characterized operationally by relating the original and transformed protocols
according to protocol substitutability relations. There, the semantics of protocol sub-
stitutability relations are based on state similarity to compare states occurring in runs
of protocols. This approach is close to ours, since the proposed protocols transforma-
tions are related to our (state) refinement. Nevertheless, in practice, checking state-
similarity between protocols is not quite easy, since the runs of protocols are needed
for that purpose. In contrast, our approach which is related to the composition and

 Contextualizing Behavioural Substitutability and Refinement of Role Components 207

refinement of roles, like others proposed in [9, 12] for protocols, proposed structural
(state and action based-) refinement of role-based interactions components, ensuring
correctness guarantees w.r.t their usability; that is the preservation of the utilizing of
that roles by their environment.

References

1. De Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc of ESEC/FSE. Software En-
gineering Notes, vol. 26(5), pp. 109–120. ACM, New York (2001)

2. Dastani, M., Dignum, V., Dignum, F.: Role Assignment in Open Agent Societies. In:
AAMAS 2003, pp. 489–495. ACM, New York (2003)

3. Cabri, G., Leonardi, L., Zambonelli, F.: BRAIN: a Framework for Flexible Role-based In-
terations in Multi-agent Systems. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS
2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 145–161. Springer, Heidel-
berg (2003)

4. Chopra, A.-K., Singh, M.P.: Contextualizing Commitment Protocols. In: 5th International
Joint Conference on Autonomous Agents and Multi-agent Systems (AAMAS), pp. 1345–
1352. ACM, New York (2006)

5. Hameurlain, N., Sibertin-Blanc, C.: Specification of Role-based Interactions Components
in MAS. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SELMAS 2004.
LNCS, vol. 3390, pp. 180–197. Springer, Heidelberg (2005)

6. Hameurlain, N.: Formalizing Compatibility and Substitutability of Role-based Interactions
Components in Multi-agent Systems. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.)
CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 153–162. Springer, Heidelberg (2005)

7. Hameurlain, N.: Formalizing Context-Based Behavioural Compatibility and Substitutabil-
ity of Roles in MAS. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z.
(eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 153–162. Springer, Heidelberg
(2007)

8. Martens, A.: Analyzing Web Service Based Business. In: Cerioli, M. (ed.) FASE 2005.
LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

9. Mazouzi, H., El Fallah Seghrouchni, A., Haddad, S.: Open Protocol Design for Complex
Interactions in MAS. In: AAMAS 2002, pp. 517–526. ACM, New York (2002)

10. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proc. of the IEEE 77(4),
541–580 (1989)

11. Liskov, B.H., Wing, J.M.: A Behavioral Notion of Subtyping. ACM Trans. on Programing
Languages and Systems 16(6), 1811–1841 (1994)

12. Vitteau, B., Huget, M.-P.: Modularity in Interaction Protocols. In: Dignum, F.P.M. (ed.)
ACL 2003. LNCS (LNAI), vol. 2922, pp. 291–309. Springer, Heidelberg (2004)

13. Szyperski, C.: Component Software-Beyond Object-Oriented Programming. Addison-
Wesley, Reading (2002)

14. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing Multiagent Systems: The Gaia
Methodology. ACM TOSEM 12(3), 317–370 (2003)

Amongst First-Class Protocols

Tim Miller1 and Jarred McGinnis2

1 Department of Computer Science
University of Liverpool, Liverpool, L69 7ZF

tim@csc.liv.ac.uk
2 Department of Computer Science

Royal Holloway, University of London, Egham, Surrey TW20 0EX
jarred@cs.rhul.ac.uk

Abstract. The ubiquity of our increasingly distributed and complex
computing environments have necessitated the development of program-
ming approaches and paradigms that can automatically manage the nu-
merous tasks and processes involved. Hence, research into agency and
multi-agent systems are of more and more interest as an automation solu-
tion.Coordinationbecomesacentral issue in these environments.Themost
promising approach is the use of interaction protocols. Interaction proto-
cols specify the interaction or social norms for the participating agents.
However the orthodoxy see protocols as rigid specifications that are defined
a priori. A recent development in this field of research is the specification of
protocols that are treated as first-class computational entities. This paper
explores the most prominent approaches and compares them.

1 Introduction

Research into multi-agent systems aims to promote autonomy and intelligence
into software agents. Intelligent agents should be able to interact socially with
other agents, and adapt their behaviour to changing conditions. Despite this,
research into interaction in multi-agent systems is focused mainly on the doc-
umentation of interaction protocols a priori. We identify three significant dis-
advantages with this approach: 1) it strongly couples agents with the protocols
they use — something which is unanimously discouraged in software engineering
— therefore requiring agent code be changed with every change in a protocol;
2) agents can only interact using protocols that are known at design time, a
restriction that seems out of place with the goals of agents being intelligent and
adaptive; and 3) agents cannot compose protocols at runtime to bring about
more complex interactions, therefore restricting them to protocols that have
been specified by human designers — again, this seems out of place with the
goals of agents being intelligent and adaptive. An important corollary of these
points is that the protocol is internalised within the individual agents. There
is no possibility to communicate, inspect or verify the protocols by the agent
or others. Not to mention a repetition of effort for each agent engineer as each
agent must be encoded with the same protocol.

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 208–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Amongst First-Class Protocols 209

Recent research into multi-agent system protocols has begun to focus on first-
class protocols, which were first defined in [11]. By first-class, we mean that
a protocol exists as a computational entity in a multi-agent system that can
be shared between agents, referenced, invoked, and composed, in contrast to
hard-coded protocols, which exist merely as abstractions that emerge from the
messages sent by the participants. Agents in the system read the definition of
a protocol to learn its rules and meanings, and then structure their interaction
from this definition.

Authors of such work envisage systems in which agents have access to libraries
of protocols. Agents can search through these libraries at runtime to find pro-
tocols that best suit the goal they are trying to achieve, and can share these
protocol specifications with possible future participants. If no single protocol is
suitable for the agent, runtime composition of these may offer an alternative.

This paper explores the current state-of-the-art in first-class protocol lan-
guages, and compares these. We look at the following approaches:

1. In Section 3, we explore commitment machines [17], a socially-centric ap-
proach that uses commitment to define the meaning of messages and pro-
tocols. We review three different approaches [4,5,18], all of which share the
common feature of using Yolum and Singh’s commitment machines frame-
work [17].

2. In Section 4, we explore a normative approach to defining protocols [2], which
using obligations, permissions, and prohibitions to specify protocols.

3. In Section 5, we explore the Lightweight Coordination Calculus (LCC), a
protocol language described in [13], based on process algebra and logic pro-
gramming.

4. In Section 6, we explore the RASA language [11], which combines process
algebra and constraint languages.

5. In Section 7, we explore an approach [3] that extends Petri Nets to specify
message sequencing and message meaning.

In Section 8, we compare and contrast the above approaches, outlining the
relative advantages and strengths of the approaches, and in Section 9, we briefly
present some approaches that resemble first-class protocol languages, and discuss
why they are not.

2 First-Class Protocols — A Definition

Our notion of first-class protocol is comparable to the notion of first-class ob-
ject/entity in programming languages [15]. That is, a first-class protocol is a
referencable, sharable, manipulable entity that exists as a runtime value in a
multi-agent system. From the definition of a first-class protocol, participating
agents should be able to inspect the definition to learn the rules and effects of
the protocol by knowing only the syntax and semantics of the language, and the
ontology used to describe rules and effects.

210 T. Miller and J. McGinnis

To this end, we define four properties that constitute a first-class protocol
language:

– Formal: The language must be formal to eliminate that possibility of am-
biguity in the meaning of protocols, to allow agents to reason about them
using their machinery, and to allow agents to pass and store the protocol
definitions as values.

– Meaningful: The meaning of messages must be specified by the protocol,
rather than simply specifying arbitrary communication actions whose se-
mantics are defined outside the scope of the document. Otherwise, one may
encounter a communicative action of which they do not know the definition,
rendering the protocol useless.

– Inspectable/executable: Agents must be able to reason about the protocols
at runtime in order to derive the rules and meaning of the protocol, so that
they can determine the actions that best achieve their goals, and compare
the rules and effects of different protocols.

– Dynamically composable: If an agent does not have access to a protocol that
helps to achieve its goals, then it should be able to compose new protocols
that do at runtime, possibly from existing protocols. This new protocol must
also form a first-class protocol in its own right.

This definition of first-class protocol eliminates many of the protocol spec-
ification languages that have been presented in the literature. We emphasise
here that first-class does not equal global. By global, we mean languages that
specify the protocol from a global view of the interaction, rather than from the
view of the individual participants. Therefore, languages such as AgentUML
and FSM-based languages are not first-class, as is commonly commented, even
though they are global. AgentUML is not meaningful (although one could adapt
it quite easily to make it meaningful), and the composability at runtime could
also be difficult, if possible at all. FSM approaches could also add meaning, but
the authors are not aware of any current FSM approaches that are executable
and support dynamic composition.

3 Commitment Machines

Yolum and Singh [17] present commitment machines, which are used to for-
mally represent the social relationships that exists between autonomous agents
in the form of commitments. A conditional commitment for debtor a to bring
about condition q when p is satisfied is represented using the constraint
CC(a, b, p, q), in which b is the creditor of the commitment. Non-conditional
commitments (or base-level commitments) are written C(a, b, p), which is equiv-
alent to CC(a, b, true, p). In commitment machines, agents participating in a
protocol create and manipulate commitments as a result of sending particular
messages. Agents are programmed to understand the meaning of commitments,
and can therefore reason about protocols whose meaning is specified using com-
mitment machines.

Amongst First-Class Protocols 211

Winikoff [16] presents a mapping from commitment machines to an abstract
programming language for agents called the Simple Abstract Agent Program-
ming Language (SAAPL). This approach is somewhat different to our idea of
first-class protocol languages in that the agents do not inspect protocols to de-
cide their course of action, but are instead implemented as a mapping from the
commitment machine into a SAAPL program.

Several approaches have used the idea of commitment machines for specifying
first-class protocols. In this section, we present these approaches.

3.1 Commitment Machines in the Event Calculus

Yolum and Singh [18] use the Event Calculus for specifying commitment ma-
chines. The Event Calculus is a logical language for specifying at which time-
points actions occur, and the effect that those actions have. Yolum and Singh’s
approach uses the Event Calculus to specify message sending as actions, and the
effect that message sending has is specified as the creation or manipulation of
commitments.

Two predicates in the Event Calculus are the most used for specifying proto-
cols. The Happens predicate specifies that an event, e, happens at the time t,
written Happens(e, t). The HoldsAt predicate specifies that a property, p, holds
at time t, written HoldsAt(p, t). The set of time points is a partially ordered
set, with the relation <, therefore, one can specify the occurrence of messages
using Happens, and order them using <. For example,

Happens(m1, t1) ∧ Happens(m2, t2) ∧ t1 < t2

specifies that the message m1 occurs before the message m2. To specify further
that the sending of m2 commits agent a to perform p for agent b, we add to the
above predicate, the following:

HoldsAt(t2, C(a, b, p)).

Yolum and Singh present a set of axioms relating communicative acts and
commitments, discuss the use of an abductive planner for agents to plan their
execution paths.

3.2 Commitment Machines in OWL-P

Desai et al. present OWL-P [4], an ontology used for modelling protocols —
specifically business protocols —, which is encoded in the OWL web ontology
language. The ontology defines concepts such as message, protocol, roles, propo-
sition, and commitment. Commitments are specified as discussed above, and
therefore, a protocol specified using OWL-P is a commitment machine. An ad-
ditional ontology is presented for protocol composition — that is, composing
protocols that achieve a single business goal into protocols that achieve multiple
business goals. The axioms that define the composition must be specified by the
protocol designer themselves.

212 T. Miller and J. McGinnis

3.3 Commitment Machines in MAD-P

Desai and Singh [5] present MAD-P, an extension of the C+ language. The
MAD-P approach is similar to that of the Event Calculus approach discussed in
Section 3.1. Message passing is specified as actions occurring at particular time
points, and the meaning of message passing is specified using commitments, with
the relation causes linking particular messages to their meaning, for example,

m1 causes cancel(C(a, b, p)).

Sequencing of messages is specified using the before relation, used in the context

m1 before m2

meaning that message m1 occurs before message m2.
Desai and Singh present a set of axioms for composing new protocols from

existing protocols.

3.4 Discussion

The approaches outlined in this section are all different ways of specifying com-
mitment machines. We note the following properties of all of these approaches:

– Protocols are specified from a global rather than local perspective.
– Message sequencing is specified in a declarative manner, rather than an

algebraic/operational manner.
– The languages used for specifying the message sequences and the meaning

of messages are the same. That is, the language, for example, the Event
Calculus, is used to specify the order in which messages can occur, as well
as the preconditions and effects of messages.

– All of the approaches assume some form of state — mainly the existence of
commitments between agents.

– The OWL-P and MAD-P approaches support protocol composition, how-
ever, composition axioms are at a different level to protocol specification.
The Event Calculus approach presented in [18] does not discuss composi-
tion, but it seems likely that composition axioms could be defined.

4 Normative Systems

Artikis et al. [2] propose an approach similar to commitment machines, especially
the commitment machines based on C+, which Artikis et al. also use, however,
the approach implements normative constraints rather than social commitments.

The normative approach distinguishes valid behaviour — behaviour that an
agent had the power to perform at the time — from invalid behaviour — anything
else. Interaction protocols are specified as actions, in which, for an agent Ag,
and an action Act, Ag is permitted to perform Act, written Permitted(Ag, Act),

Amongst First-Class Protocols 213

prohibited to perform Act, written ¬Permitted(Ag, Act), and obliged to perform
Act, written Obliged(Ag, Act).

Similar to the commitment machines approach, agents create and manipulate
norms as a result of sending messages, thus giving meaning to the protocol using
norms. The Causal Calculator is used in [2] to execute the specifications.

We note the following properties of this approach

– Protocols are specified from a global rather than local perspective.
– Message sequencing is specified in a declarative manner, rather than an

algebraic/operational manner.
– The language used for specifying the message sequences and the meaning of

messages are the same.
– There is some form of state — mainly the norms associated with actions.
– Artikis et al. do not discuss composition, but it seems likely that composition

axioms could be defined.

5 Lightweight Coordination Calculus

The Lightweight Coordination Calculus (LCC) [13] is a process-algebra based
language for first-class protocol specification. A protocol consists of a protocol
definition, and a set of axioms, K, keeping track of the common information
known to all participants. A protocol definition consists of a set of at least two
agent clauses, A{n}, with each clause defining the agents from a local partici-
pant’s view. An agent clause is defined using the format agent(R, Id) ::= op,
in which R is a role name, Id is an agent identifier, and op is an operation.
Operations define the protocol that an agent must adhere to, and their syntax
is defined as follows:

op ∈ Operation :: no op
| (M ⇒ agent(R, Id)) ← ψ (Send)
| ψ ← (M ⇐ agent(R, Id)) (Receive)
| op1 then op2 (Sequence)
| op1 or op2 (Choice)
| agent(R, Id) (Substitution)

M ∈ Message :: 〈m,P〉

We briefly discuss this definition. ‘no op’ is an empty operation, meaning that
the agent does nothing. The send and receive operations define the sending of
a message M to the agent defined by clause agent(R, Id), provided that the
proposition ψ is satisfiable from the common knowledge, K, and the receiving
of a message M from the agent agent(R, Id), which results in ψ being added to
the common knowledge, K. Omitting ψ ← and ← ψ is equivalent to specifying
that ψ is true. A message is defined as a tuple 〈m,P〉, in which m is the message
content, and P is the protocol definition (written using the LCC language) that
remains to be executed and the axioms of common knowledge. Composition
of protocols is defined using the composition operators, then and or, which

214 T. Miller and J. McGinnis

represent sequential composition (the left operation must occur before the right),
and choice (one and only one operation should occur). Finally, one can reference
the name of an agent class agent(R, Id), and the corresponding definition (if
it exists) is substituted for agent(R, Id). Intuitively, this represents an agent
adopting the role R.

Constraints can fortify or clarify semantics of the protocols. Those occurring
on the left of the ‘←’ are postconditions and those occurring on the right are
preconditions. For example, an agent receiving a protocol with the constraint to
believe a proposition s upon being informed of s can infer that the agent sending
the protocol has a particular semantic interpretation of the act of informing other
agents of propositions. This operation, (M ⇒ agent(R, Id)) ← ψ, is understood
to mean that message M is being sent to the agent defined as agent(R, Id) on
the condition that ψ is satisfiable. This operation, ψ ← (M ⇐ agent(R, Id)),
means that once the message M is received from agent agent(R, Id), ψ holds.
These together represent the meaning of the sending and receiving of individual
messages. The meaning of a composite protocol is derived from the meaning of
the messages that comprise it.

The properties of the LCC language are summarised below.

– LCC is based on the process calculus, CSP, a formal model for modelling
concurrent systems. This makes LCC well suited as a language for interaction
protocols and the concurrency found in multi-agent systems.

– There is long pedigree of process calculi for use as a high-level description
of interactions. Besides facilitating human readability, there is a wealth of
research to draw upon and apply to the field of agent coordination.

– Protocol specifications in LCC are local, rather than global.
– Although the framework provides the representation of the trace of messages

occurring, there is no explicit labelling of states.
– The language for specifying message sequencing is independent of the un-

derlying communication language.
– Constraints are declarations, not definitions.
– Designed to have a light-weight engineering requirement.
– Requires a meta-level operations to be composable.

6 RASA

The RASA [11] language, part of the larger RASA framework, combines con-
straints and process algebra to model interaction protocols as first-class entities.
The process algebra in the language is used to specify the sequencing of messages
in a protocol, while the underlying constraint language is used to describe the
meaning of messages and the message content. The meaning of entire protocols
can be compositionally determined from combining the two.

Similar to LCC, RASA’s protocol specification language resembles that of
many process algebras, and in fact, the RASA syntax and semantics were influ-
enced by LCC.

Amongst First-Class Protocols 215

Let φ represent constraints defined in the constraint language, c communi-
cation channels, N protocol names, and x a sequence of variables. Protocol
definitions adhere to the following grammar.

π ::= φ → ε | φ
c(i,j).φ−−−−−→ φ | π; π | π ∪ π | N(x) | varφ

x·π
We use π as a meta-variable to refer to protocols; subscripts and superscripts
are used to denote distinct meta-variables. φ → ε represents the empty protocol,
in which no message is sent and there is no change to the protocol state, but

only if φ holds in the current state. A protocol of the format φ
c(i,j).φm−−−−−−→ φ′ is

an atomic protocol. It represents that i can send the constraint φm to j over
channel c only if the precondition φ holds in the current state, in which i and j
are values in the constraint language. After the message is sent, the new state
of the protocol is updated using the postcondition φ′. This is used to specify
meaning of protocols: the precondition represents a rule for a protocol because
φm can only be sent if this precondition is true; and the postcondition represents
the effect that sending φm has on the state.

The protocol π1; π2 denotes the sequential composition of two protocols, such
that all of protocol π1 is executed, then protocol π2. The protocol π1∪π2 denotes
a choice of two protocols. N(x) denotes a reference to a protocol π named N(y),
with variables y renamed to x, such that any occurrence of N is equivalent to its
definition, π. The protocol varφ

x·π denotes the declaration of a local variable x,
with the constraints φ on x. The scope of x is limited to the protocol π, and the
constraints on x do not change throughout its scope; that is, x is a constant.

A protocol specification is defined as a set of definitions of the form:

N(y1, . . . , yn) =̂ π

in which N, y1, . . . , yn are variable names from the underlying constraint lan-
guage, and π is a protocol definition. Protocol definitions can reference other
protocols in the specification using their names.

The reader may have already noted several properties of RASA:

– The use of a process algebra inherits many of the benefits stated in Section 5.
– Protocol specifications in RASA are global, rather than local.
– The language for specifying message sequencing is algebraic, rather than

declarative; a design decision which was made to simplify protocol composi-
tion — especially runtime composition.

– The underlying language for specifying meaning is declarative.
– The language for specifying message sequencing is independent of the un-

derlying communication language.
– RASA specifications maintain a state, which is not explicitly sent in messages

(unless this is specified as part of the messages themselves).
– The operators for protocol composition have the same syntax and semantics

at all levels of dialog. That is, atomic protocols are protocols in their own
right, and composing them together brings about compound protocols, which
can be further composed using the same operators.

216 T. Miller and J. McGinnis

7 Petri Nets

De Silva et al. [3] have experimented with specification of first-class interac-
tion protocols using Petri Nets. Petri Nets are graph structures with additional
annotations. The approach proposed by De Silva et al. models protocols by rep-
resenting the arcs of a Petri Net as possible messages, and the nodes as states
between messages. Petri Nets were chosen rather than similar approaches such
as finite state automata due to their ability to model concurrency.

In addition to representing messages, the approach enables the specification
of internal actions, also using Petri Nets, which specify the actions other than
message sending that agents can use. These actions include the functions an
agent should execute, which variables to update after a transition, and which
conditions the agent must test before sending a message. As such, these actions
are used to specify the rules of the protocol, and the meanings of messages.

A local-view approach is taken in the modelling of the protocols, although it
is straightforward to see how Petri Nets could also be used to specify a global
view. For the local view, four types of actions (two external and two internal)
are available for specifying protocols: the internal actions, Send and Recv, for
sending and receiving messages respectively; and the external actions, Action,
for reading and writing variables and executing functions, and Pred, which are
boolean functions. These are defined as templates, and each must adhere to the
following format:

Send[Sender,Performative,Receiver,Content]

Recv[Receive,Performative,Sender,Content]

Action[Label,Type,Act,Args]

Pred[Boolean]

The templates for Send, Recv, and Pred are straightforward to follow. For
Action, Label is a unique label identifying the action, Type is execute for func-
tions read or write for variables, and Args specifies the arguments to the func-
tion, or the values for the variables.

De Silva et al. do not discuss the language that is used to specify the message
content, the boolean functions, or the arguments, though from examples in [3],
one infers that they use some form of propositional logic. Because there appears
to be no restriction on the language, it seems reasonable to say that any language
capable of expressing boolean expressions could be used.

We note the following properties of this approach:

– Protocol specifications are local rather than global.
– The language for specifying message sequencing is operational, rather than

declarative.
– Specifying the meaning of messages is done using a declarative language.
– Petri Nets for specifying message sequencing are independent of the under-

lying communication language.
– It appears that the specification must maintain state, although there is not

discussion of this by De Silva et al. .

Amongst First-Class Protocols 217

8 Comparisons

The approaches to first-class protocols described in the previous sections share
the properties of being formally defined, meaningful, inspectable, executable and
dynamically composable. However there are issues of design in which they differ.
The point of this comparison is not to declare one approach as the winner but
to highlight the advantages and disadvantage each. No disadvantage should be
considered fatal, but merely a consideration that must be taken. It is unlikely
any first-class protocol language will be the panacea to all the ills of agent
communication. By highlighting the issues and differences, it is hoped that the
system designer can make an informed decision when choosing to take advantage
of the first-class protocol approach.

8.1 Declarative vs Algebraic/Operational

Singh [14] and Winikoff [16] both present good arguments for the benefits of
declaratively specifying protocols, stating that this allows for a more flexible
interaction. They argue that specifying what rather than how gives permits a
more flexible approach to interaction. For example, one can specify that three
events, a, b, and c, occur, and that b must occur before c, but with no other
constraints. The interacting agents are free to choose the sequence of these mes-
sages as long as they obey the one constraint, which allows flexible interaction.
For an algebraic language to specify this, one would likely have to specify all
the possible sequences, which could lead to a larger expression. It is difficult to
envisage an example that would be straightforward using a declarative language,
but complex in an algebraic language, however, it is clear that a further level of
abstraction provides the usual benefits associated with abstraction.

Another difference between the two approaches is the computational aspects.
Adapting a declarative language would likely have the benefit that the language
has tool support for automated reasoning and execution. While LCC and RASA
are both executable if the agents can execute the underlying language, one must
implement an agent to understand the process algebra in each. Furthermore,
LCC and RASA were both designed to be quite generic, so there is no commit-
ment to an underlying language, and tool support would be difficult to provide
without committing to a particular underlying language. However, computation-
ally, the declarative approach would be more demanding. Calculating the set of
possible dialogs is straightforward in algebraic languages: simply traverse the
tree that is formed by the definition. Using a declarative language, one would
have to solve the paths as a constraint, which, for protocols of more than a few
messages, could prove demanding. Winikoff [16] avoids this problem by imple-
menting agents as a mapping from the protocols, however, Yolum and Singh’s
agents [18] reason by calculating all possible interactions.

The authors believe that a key benefit to using algebraic languages is the
human readability. Despite the motivations behind first-class protocols being
machine readable, it is clear that human designers will need to read and reason
about these as well. An algebraic formalism is at a level that is more inline with

218 T. Miller and J. McGinnis

the way humans think about interaction. One only has to look at existing work
on dialogue games [9], abstract models of interaction [7], and token-based ap-
proaches such as AgentUML to see that operational-based approaches are the
favoured approach for protocol specification and design. Even outside of com-
puter science, instructions that are meant to be read by humans, such as recipes
and installation instructions, are presented in a step-by-step manner. From the
literature, it seems that declarative approaches (whether first-class or otherwise)
are considerably more verbose than algebraic/operational approaches. This is
not surprising, because one is specifying the semantics of sequential composi-
tion, choice, etc., each time they specify such a composition. As an example of
the verbosity of declarative approaches, consider the model of the Contract-Net
Protocol using Social Integrity Constraints in [1]. This model consists of 17 rules,
which is verbose for such a straightforward protocol, especially as the messages
contain no meaning.

Finally, we note that LCC, RASA, and the Petri Nets approach all have
the advantage of not mixing the communication language with the language for
message sequencing. Adapting a declarative language for modelling interaction
enforces the restriction that message meaning must be specified in that language.
Considering that the meaning of the message is tied in with the message itself,
this further implies that all communication would also be in this language —
an unfortunate restriction. This reduces the application of the language and any
protocols specified in it, as demonstrated by the commitment machines approach
being implemented in three different languages, the Event Calculus [18], OWL-P
[4], and MAD-P [5], all by the same research group.

8.2 Local vs Global

This dichotomy is between the perspective from which the protocols are defined.
Local protocols define clauses with respect to the dialogical activities of a single
actor. For agents to communicate they must each have a set of complementary
protocols –e.g. For a message being sent in one protocol, there is a message being
received in another. Global protocols are defined as one protocol for the actions
of every participant.

There are advantages and disadvantages that must be considered with re-
spect to the perspective used by the protocol language. Local protocols have the
advantage of simplicity of use for the individual agents. They do not need to
sift through the protocol to determine what roles and actions apply to them.
However this can obscure the activities of dialogical partners. This shortcoming
can be overcome, as is done in LCC, by sending all agent clauses to an indi-
vidual agent and not just the clause it is meant to execute. Conversely, global
representations give a more complete representation of the conversation space,
but the agent will have protocol steps that are irrelevant to it. The choice of
perspective is also influenced by the model of interaction that exists within the
multi-agent system. For example mediated or managed interaction would need
a global protocol. Whereas, peer-to-peer interactions would be facilitated by a
local representation.

Amongst First-Class Protocols 219

Regarding the approaches in this paper, LCC and the Petri Nets approach
specify protocols from a local view, while the rest specifying protocols from a
global view.

8.3 Composability

Dynamic protocols are a leap that few system designers are brave enough to
take. There are a number of reasons for this. Most engineers take refuge with in-
teraction protocols for the reliability and certainty they can provide their agent
interactions. They forgive the rigidity and fragility for the safety they provide.
However, as the agent paradigm matures a few researchers have recognised the
inevitability and benefits of protocols that can be composed automatically at
run-time. There are inherit drawbacks to allowing composability such as issues
of trust (e.g. who should be allowed to make changes). However, the inclusion of
this functionality does not weaken any of the composable first-class protocol lan-
guages described. Indeed there are numerous frameworks where the modification
of its first-class protocols is disallowed.

Although not explicitly explored, it is imaginable that a set of meta-rules
could be defined over the normative approach and commitment machines to
produce the composition. The same is true of the Petri Net approach. However
at the current time, this has not been explored as far as the authors are aware.

LCC, although not initially designed for the purpose, has been shown suitable
for dynamic composition of protocols using a number of approaches. Using dia-
logue games as a semantic model for composition, [10] composes the protocols for
atomic dialogue games to create more complex games according to the rules of
iteration, sequencing, parallelism and embedding proposed in [8]. Additionally,
in [10], using adjacency pairs, composition is done at the individual message level
rather than for whole protocols. The RASA language, in reaction to dynamic
LCC, was designed with dynamic composition as a fundamental feature of the
language. As a consequence, there is a much more methodical application and
execution of dynamic composition in this language.

From the authors’ view, we believe that algebraic languages are far more suited
for composition. In algebraic languages, the start and end of a protocol and its
sub-protocols are straightforward to identify. We assert that this makes compo-
sitions easier to define, and their meaning more straightforward to calculate.

8.4 Top-Down vs Bottom-Up

The top-down vs bottom-up debate is merely an issue of taste. Nonetheless, we
believe that it is an important point to note, and there are good reasons why the
different approaches are taken. RASA’s bottom-up approach is a consequence
of it being purposefully designed for dynamic composition, and LCC’s top-down
design comes from its pedigree of trying to execute electronic institutions in a
more peer to peer manner. The commitment machines approaches are declara-
tively specified, so they adopt neither approach.

220 T. Miller and J. McGinnis

8.5 State vs No State

LCC is the only language that does not specify the meaning of messages as
the alteration of a state. Instead, LCC agents explicitly pass around any such
information as part of each message. The benefits of this are clear: all partici-
pants are aware of any information they need, and there is no chance that the
participants view of the state can become inconsistent with each other. We see
no restriction in other approaches that would prevent protocol designers from
enforcing that agents send the state with each message. However, the approach
is more straightforward in LCC. Two obvious disadvantages of passing the state
with every message is that there is an extra overhead, and that it becomes more
laborious to model protocols in which the participants should have different
information.

State is important for composition. To clearly define the meaning of a com-
pound protocol, one must relate the meaning between its sub-protocols. It seems
that some form state is the only way to do. Whether this in the form of a state
itself, or whether it is information that is passed, as in LCC, does not appear to
be important.

8.6 Expressiveness

A comparison of expressiveness is non-trivial, because no formal framework exists
for comparing the expressiveness of protocol languages. However, we note some
interesting aspects of the expressiveness of first-class protocol languages.

Regarding message sequencing, the languages are quite similar. Each of them
specifies a set of possible interactions, in which each interaction is a sequence of
messages with preconditions and meaning. The only aspect that we see as dif-
ferent is regarding parallel message sending. Versions of LCC and RASA define
parallelism as the interleaving of messages, not as messages being sent at the
same time. Declarative approaches do not suffer this restriction, because mes-
sages can be declared to be sent at the same time. For example, using the Event
Calculus, one can specify that messages m1 and m2 are sent simultaneously:

Happens(m1, t) ∧ Happens(m2, t)

How this is enforced in the final system, and how straightforward it would be
for agents to reason about such behaviour, is an implementation detail, and is
out of the scope of this paper. In the Petri Net approach, the authors of [3] state
that they specifically use Petri Nets because of its ability to handle concurrent
behaviour.

The second aspect of expressiveness relates to the expressiveness of messages
and their meaning. The normative approach and the different commitment ma-
chine approaches can express any messages and meaning that can be expressed
in the Event Calculus, OWL, or C+ respectively, and only those messages and
meaning. In contrast, the RASA, LCC, and Petri Nets approaches do not specify
a particular underlying language. This provides a greater amount of flexibility in
specifying meaning compared to the other approaches, because one can choose

Amongst First-Class Protocols 221

to model protocol meaning using different underlying languages, and are flexible
enough to model commitment machines and norms.

However, the fact the one can under-specify the message sequencing implies
that, for flexible protocol execution, the expressiveness of declarative languages
are better suited than algebraic/operational languages.

8.7 Discussion

As a reader of this paper, one may be wishing to decide which first-class protocol
approach they would should use. We refrain from making any definite recommen-
dations because the approach used is dependent on the application in which the
protocols will be used, and different engineers will have different views. However,
we use the results in this section to highlight three aspects of these approaches
that stand out:

Local vs. Global: For a peer-to-peer interactions with two-parties, we believe
a local approach is best suited. For mediated interactions, or interactions
with more than two parties, we believe a global approach is best suited.

Flexible interaction: Declarative approaches seem better suited for flexible
interaction; that is, under-specifying the protocol, and having agents calcu-
late the allowable sequences.

Runtime composition: We recommend an algebraic approach if runtime com-
position is an important theme in an application.

9 Other Approaches

Several other approaches exist for agent interaction specification that resemble
first-class protocols, but which we do not consider to be first-class approaches. In
this section, we briefly introduce some of the most closely related approaches, and
discuss why they do not fall into the category of first-class protocol specification
languages.

Social Integrity Constraints (SICs) [1] are rules specifying actual and expected
behaviour. SICs are not considered as first-class protocols because there is no
meaning to the messages. The rules specify only which messages can occur,
and the order they can occur in. In [1], the authors envisage systems in which
participating agents inherently know the meaning of communicative actions,
which first-class protocols aim to prevent. We believe that it would be possible for
consequents of the rules to carry additional information that specified meaning,
and agents could reason over this information. However, SICs do not include the
notion of state, therefore, a new semantics would have to be specified, and would
have to take into account message meaning, such as when two messages occur
one after the other, but with conflicting outcomes.

Fornara and Colombetti [6] propose a method for defining the semantics of
agent communication languages using commitments. Their notion of commit-
ment is similar to that used in commitment machines, described in Section 3.
Though the motivation for social commitments is similar to first-class protocols,

222 T. Miller and J. McGinnis

it is used to define the semantics of performative-based agent communication
languages, rather than protocols. Composition is obtained using interaction di-
agrams, and the semantics of this composition is not defined formally.

10 Conclusions

The purpose of this paper was to bring more coherence to the emerging research
on first-class protocols. By the comparison of the most prominent approaches,
we tease out their commonalities and their differences. As this approach to agent
communication inevitably attracts more interest it is conceivable that new lan-
guages will be developed, but no matter how exotic, they will have the properties
described in Section 2, as well as falling on one side or the other the comparison
criteria.

Though we have focused on agent communication and first-class protocols
for the expression of norms of agent societies, in addition to the advantages
outline in the introduction, there is another point that should be stressed. The
beauty of first-class protocols is that they are generically applicable. In [12], the
authors show the use of RASA for hybrid interactions between agents and web-
service for workflow execution in the e-science domain. This is due to the power
and expressiveness of first-class protocols. Social semantics are no longer held
internally. They are rewritten modularly and separate from the computational
entities that would make use of them. Other research has shown how web-services
can follow LCC protocols for determining message passing sequences without
needing to understand the social semantics of the messages being sent.

Acknowledgements

The work presented in this paper was supported by the EU projects, ARGU-
GRID, (ArguGRID-IST-035200), and PIPS (EC-FP6-IST-507019).

References

1. Alberti, M., Daolio, D., Torroni, P., Gavanelli, M., Lamma, E., Mello, P.: Specifi-
cation and verification of agent interaction protocols in a logic-based system. In:
SAC 2004: Proceedings of the 2004 ACM symposium on Applied computing, pp.
72–78. ACM Press, New York (2004)

2. Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the Causal
Calculator. In: Giunchiglia, F., Odell, J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 1–15. Springer, Heidelberg (2003)

3. de Silva, L.P., Winikoff, M., Liu, W.: Extending agents by transmitting protocols in
open systems. In: Proceedings of the Challenges in Open Agent Systems Workshop,
Melbourne, Australia (2003)

4. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: OWL-P: A methodology for
business process modeling and enactment. In: Workshop on Agent Oriented Infor-
mation Systems, pp. 50–57 (July 2005)

Amongst First-Class Protocols 223

5. Desai, N., Singh, M.P.: A modular action description language for protocol com-
position. In: Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, pp. 962–967. AAAI Press, Menlo Park (2007)

6. Fornara, N., Colombetti, M.: A commitment-based approach to agent communica-
tion. Applied Artificial Intelligence 18(9–10), 853–866 (2004)

7. Johnson, M.W., McBurney, P., Parsons, S.: A mathematical model of dialog. Elec-
tronic Notes in Theoretical Computer Science 141(5), 33–48 (2005)

8. McBurney, P., Parsons, S.: Games that agents play: A formal framework for di-
alogues between autonomous agents. Journal of Logic, Language and Informa-
tion 11(3), 315–334 (2002)

9. McBurney, P., van Eijk, R., Parsons, S., Amgoud, L.: A dialogue-game protocol
for agent purchase negotiations. Journal of Autonomous Agents and Multi-Agent
Systems 7(3), 235–273 (2002)

10. McGinnis, J.: On the mutability of protocols. Phd thesis, University of Edinburgh,
Edinburgh, Scotland (2006)

11. Miller, T., McBurney, P.: Using constraints and process algebra for specification of
first-class agent interaction protocols. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J.,
Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 245–264. Springer,
Heidelberg (2007)

12. Miller, T., McBurney, P., McGinnis, J., Stathis, K.: First-class protocols for agent-
based coordination of scientific instruments. In: 5th International Workshop on
Agent-based Computing for Enterprise Collaboration (ACEC) Agent-Oriented
Workflows and Services (to appear,2007)

13. Robertson, D.: Multi-agent coordination as distributed logic programming. In: Pro-
ceedings for International Conference on Logic Programming (2004)

14. Singh, M.P.: A social semantics for agent communication languages. In: Dignum, F.,
Greaves, M. (eds.) Issues in Agent Communication, pp. 31–45. Springer, Heidelberg
(2000)

15. Strachey, C.: Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation 13(1), 11–49 (2000)

16. Winikoff, M.: Implementing commitment-based interactions. In: Durfee, E.H.,
Yokoo, M., Huhns, M.N., Shehory, O. (eds.) 6th International Joint Conference
on Autonomous Agents and Multiagent Systems, IFAAMAS, p. 128 (2007)

17. Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M.
(eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 235–247. Springer, Heidelberg
(2002)

18. Yolum, P., Singh, M.P.: Reasoning about commitments in the event calculus:
An approach for specifying and executing protocols. Annals of Mathematics and
AI 42(1–3), 227–253 (2004)

Simulation of Negotiation Policies in Distributed

Multiagent Resource Allocation

Hylke Buisman, Gijs Kruitbosch, Nadya Peek, and Ulle Endriss

Artificial Intelligence Programme
University of Amsterdam

{hbuisman,gkruitbo,npeek,ulle}@science.uva.nl

Abstract. In distributed approaches to multiagent resource allocation,
the agents belonging to a society negotiate deals in small groups at a local
level, driven only by their own rational interests. We can then observe and
study the effects such negotiation has at the societal level, for instance in
terms of the economic efficiency of the emerging allocations. Such effects
may be studied either using theoretical tools or by means of simulation.
In this paper, we present a new simulation platform that can be used
to compare the effects of different negotiation policies and we report
on initial experiments aimed at gaining a deeper understanding of the
dynamics of distributed multiagent resource allocation.

1 Introduction

Many complex application domains can be modelled as multiagent systems in
which agents of varying capabilities interact. Building such artificial societies
of autonomous software agents and devising suitable interaction mechanisms
presents a formidable research challenge. Within such a society, agents will have
to negotiate on a number of issues, including the best possible distribution of
the resources available in the system amongst the individual agents. The field of
multiagent resource allocation [1] is concerned with the design and analysis of
mechanisms for finding a suitable assignment of resources to agents, given the
individual interests of the agents as well as any technical constraints imposed
by the system. In distributed approaches to multiagent resource allocation, the
computational burden of the process of allocating resources is shared by all
the agents in the society. In centralised approaches, notably combinatorial auc-
tions [2], on the other hand, the task of computing the optimal allocation is
relegated to an external entity (e.g. an auctioneer). Here we concentrate on dis-
tributed approaches, which provide a particularly rich setting in which to study
interaction in multiagent systems.

The specific resource allocation framework we adopt has previously been stud-
ied by a number of authors [3, 4, 5]. It assumes that a finite number of indivisible
goods needs to be allocated to a finite number of agents. Goods cannot be shared
by more than one agent, and we assume that some initial allocation is given to
begin with. Each agent expresses their preferences in terms of a valuation func-
tion mapping bundles of goods to the (positive) reals, and will only accept deals

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 224–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simulation of Negotiation Policies 225

(possibly involvingmonetary side-payments) resulting in a strict increase in utility
for themselves (so-called myopic individual rationality). Detailed definitions will
be given in Section 2. We are interested in the effects such locally conducted and
individually rational deals have on the agent society as a whole. In particular, we
seek to understand under what circumstances a sequence of deals will converge to
an allocation that would be considered optimal in view of a particular aggregation
of the individual agent preferences. Here we consider both measures for economic
efficiency, such as Pareto optimality or the sum of individual utilities, and notions
of fairness, such as envy-freeness or the level of utility enjoyed by a society’s poor-
est member [1, 6, 7].

Previous work has studied such convergence properties mostly from a theo-
retical point of view [3, 4]. Where it is possible to derive general theorems on
(guaranteed) convergence to a socially desirable allocation, this seems indeed the
best approach. However, for many realistic scenarios some of the assumptions on
which the correctness of such theorems rests simply will not hold. The amount
of time available to negotiate in will be limited, and therefore perhaps not suffi-
cient to attain an optimal state. To allow any kind of deal includes allowing very
complex deals involving many agents and resources, which is computationally
expensive. To be able to find convergence trends, it then becomes interesting
to simulate many runs of a distributed negotiation process, under similar condi-
tions, to see whether it may be possible to make empirically founded predictions.
Previous work along these lines includes that of Andersson and Sandholm [8] and
Estivie and colleagues [9, 10]. The former have studied the effects of sequencing
different types of deals (such as deals involving only a single resource at a time,
or deals involving the swapping of two items), while the latter have concentrated
on understanding under what circumstances we can expect to see fair allocations
emerge when rational agents negotiate. These works offer interesting insights into
the dynamics of distributed multiagent resource allocation. However, what has
been missing so far is a generic simulation platform that would allow the experi-
menter to vary a wide range of parameters, to run simulations for different types
of agent valuations and different negotiation policies, and to evaluate outcomes
with respect to a range of different efficiency and fairness criteria.

In order to fill this gap, we have developed a simulation platform called the
MultiAgent Distributed Resource Allocation Simulator (MADRAS). Using this
platform, a user can easily generate a scenario with given numbers of agents and
resources, in which the agents have their own preferences. The agents are able to
negotiate amongst themselves to establish trades using money. Using such a sce-
nario, the user is able to run a variety of experiments to see under what circum-
stances the agents most beneficially manage to reallocate their resources. Finally
the platform provides possibilities for visualising several experiment statistics.
In this paper, we introduce the MADRAS platform and report on a set of initial
experiments that we have conducted using the platform.

The remainder of this paper is organised as follows: Section 2 briefly maps out
the formal resource allocation framework we use and recalls a relevant result from
the literature regarding the convergence of negotiation processes to a socially

226 H. Buisman et al.

optimal allocation. Then Section 3 describes the MADRAS platform, which
consists of three modules: the generation of resource allocation scenarios (in
particular the generation of valuation functions); the simulation of negotiation
processes conforming to a chosen negotiation policy for the agents; and an ex-
perimentation support module for evaluating and visualising the data produced
during simulation. A selection of the experiments we have run using MADRAS
are documented in Section 4. Section 5 concludes with a brief discussion of pos-
sible directions for future work.

2 Preliminaries

In this section, we briefly review the basic definitions of the resource allocation
framework we adopt and we recall a fundamental convergence result linking
the negotiation behaviour of individual agents and the emergence of optimal
allocations at the societal level. Full details are available elsewhere [4].

2.1 Formal Framework

Let A = {1, . . . , n} be a set of agents, and let R = {r1, . . . , rm} be a set of
resources (or goods). An allocation A : A → 2R is a division of the resources in R
amongst the agents in A. Any allocation A has to assign each resource to exactly
one agent. Agents may have different preferences dictating which resources they
want, and how much they want them. A valuation function v : 2R → R maps any
given bundle of resources to a value in real numbers (this may be restricted to
the positive reals and zero). We write vi(A) for vi(A(i)), the valuation assigned
by agent i to the bundle it receives in allocation A.

A deal δ = (A, A′) is defined by the transition between two allocations
(before/after). This model allows for any number of resources being reallo-
cated amongst any number of agents within a single deal. Deals may be paired
with monetary side payments. These are modelled using a payment function
p : A → R, satisfying

∑
i∈A p(i) = 0. A positive p(i) indicates that agent i has

to pay, while a negative p(i) means that i will receive money. The utility enjoyed
by an agent i in a given negotiation state is computed by subtracting the sum
of previous payments made by i from the valuation i assigns to the bundle of
resources it currently holds (quasi-linear utility).

Whether an agent will accept a given deal (including side payments) depends
entirely on whether that deal seems rational to the agent. There are a number
of different rationality criteria that we could consider [7]. In this paper we shall
concentrate on a myopic form of individual rationality [3]. A deal δ = (A, A′) is
called individually rational (and considered acceptable) iff it increases the utility
of each of the agents involved. That is, we require vi(A′)−vi(A) > p(i) for every
agent i involved in the deal (non-involved agents may receive money, but cannot
be required to pay anything).

In the most general case, we assume that there are no restrictions on time or
computational resources: any deal that is individually rational may eventually be
identified and implemented. For more realistic scenarios, besides the restriction

Simulation of Negotiation Policies 227

imposed by the agents’ rationality requirements, we may also impose structural
restrictions on deals. In this paper, we are going to be interested in two such
classes of deals. The class of 1-resource deals is the class of deals involving the
reallocation of a single item only (and hence only two agents). The class of
bilateral deals is the class of deals involving only two agents (but any number of
resources at a time).

2.2 Convergence

Given this framework, the question arises what kinds of allocations we can expect
agents to negotiate. We are interested in assessing the quality of an allocation in
terms of various criteria for economic efficiency and fairness, borrowed from the
literature on social choice theory and welfare economics [6, 11]. Several examples
will be given in Section 3.3. For now, let us just recall the notion of utilitarian
social welfare. The utilitarian social welfare swu(A) of an allocation A is given
by the sum of individual agent valuations:

swu(A) =
∑
i∈A

vi(A)

Observe that taking past payments into account does not affect this definition
(as they always add up to zero). High social welfare implies high average utility,
which justifies this as a metric for assessing the quality of an allocation.

Now, what is the connection between the local concept of individual rationality
driving negotiation and the global concept of social welfare? An important result
establishes that any sequence of individually rational deals will eventually result
in an allocation with maximal utilitarian social welfare [3]. That is, no central
point of control is required. We can let agents negotiate in a distributed manner
following only their own selfish interests and still guarantee that the system will,
at some point, reach a state that would be considered optimal from a social
point of view. While this may seem surprising at first, it is actually not difficult
to prove. They key insight is that, in fact, a deal turns out to be individually
rational iff it increases social welfare [4]. However, we stress that the above
convergence result holds only if we do not place any structural restrictions on
deals. For instance, if agents will only negotiate individually rational bilateral
deals, then the social optimum may not be reachable.

3 The MADRAS Platform

This section explains the functionality of the MADRAS simulation platform for
distributed resource allocation. The platform consists of three modules:

1. The scenario generator is used to generate problem instances, characterised
by sets of agents and resources, valuation functions for these agents, and an
initial allocation of resources. Scenarios may be defined manually or gen-
erated automatically (using user-defined constraints). We have also defined
an XML-based language to store and communicate scenario descriptions.

228 H. Buisman et al.

Section 3.1 discusses the most challenging task falling under this module,
namely the automatic generation of valuation functions.

2. The module for negotiation simulation reads in a scenario description and
then simulates a negotiation process. How this works exactly is determined
by the chosen negotiation policy. Such a policy fixes choices regarding the
rationality criterion used by the agents, structural restrictions imposed on
deals, and the search algorithms used to identify the next deal meeting the
specified requirements. This will be discussed in Section 3.2. The module can
save a record of the resulting negotiation process on file.

3. The experimentation support module reads in one or several files document-
ing particular negotiation runs and can produce a wide range of experimenta-
tion statistics from this data. In particular, it can be used to plot how social
welfare and similar metrics develop as negotiation progresses. Examples are
given in Section 3.3.

3.1 Generating Agent Valuations

We have opted for a logic-based representation of valuation functions based on
weighted propositional formulas [1, 12]. In this representation, agents may ex-
press goals as propositional formulas over the set of atomic propositions given
by the resource names {r1, . . . , rm}. For example, the goal r1∧(r2∨r3) indicates
that the agent in question desires to obtain r1 and at least one of r2 and r3.
Furthermore, agents assign numerical weights to these goals. An agent’s valua-
tion for a given bundle R is then given by the sum of the weights of the goals
that are satisfied by R.1 For example, if an agent has the weighted goals (r1, 3)
and (r1 ∧ r2, 1), then they will assign value 3 to the bundle {r1}, value 4 to the
bundle {r1, r2}, and value 0 to both {r2} and the empty bundle. This logic-based
representation is not only very flexible and natural, but also fully expressive and
often allows for representing interesting valuation functions in a concise man-
ner. As far as the automatic generation of valuation functions is concerned, the
current implementation is restricted to goals that are conjunctions of atomic
propositions. This is isomorphic to the so-called k-additive form of representing
valuation functions [1, 13].

After having specified the number of agents and resources in the scenario
generation module of MADRAS, the user can initiate the automatic generation
of valuations. To this end, the user may manipulate the following parameters:

– The maximum length k (number of atoms in a conjunction) for all goals
in the valuation function. Either a precise value can be given, or k can be
taken from a user-specified uniform or normal distribution. This parameter
determines the degree of synergy between different resources.

– A function specifying the number of the goals of a given length that will actu-
ally be generated. This parameter determines the range of different bundles
that an agent may wish to obtain.

– A distribution from which to pick the numerical weights for our goals.

1 Here we interpret bundles R as models of propositional logic: an atomic proposition
r is taken to be true in a model characterised by R iff r is an element of R.

Simulation of Negotiation Policies 229

We stress that a choice of different parameters would have been possible as
well. While the present implementation gives the experimenter a good degree
of control and allows for the generation of a wide range of scenarios, further
research is required to establish useful guidelines for generating interesting and
application-relevant sets of valuations.

Similar problems have been addressed in the context of research on combinato-
rial auctions, in particular for the development of the combinatorial auction test
suite CATS [14]. Like for our logic-based language, bids in combinatorial auctions
are symbolic expressions for encoding valuation functions. CATS can generate
such bids. It is intended to model realistic bidding behaviour, for different types
of real-world scenarios (such as spectrum auctions or temporal scheduling), and
has been developed for testing the performance of winner determination algo-
rithms for combinatorial auctions. Unfortunately, this data cannot (at least not
immediately) be used for simulating distributed multiagent resource allocation.
One problem is the fact that CATS does not label bids with the name of the
agent bidding (the reason being that this information is not relevant from the
viewpoint of testing the performance of winner determination algorithms).2

3.2 Simulating Negotiation Policies

We emphasise that our aim has not been to build negotiating agents. We are only
interested in simulating negotiation by generating sequences of deals that would
be acceptable to the agents (given their valuation functions) and to evaluate
how these deals affect social welfare. An important aspect for a simulation is the
negotiation policy used. This is determined by the following parameters:

– Rationality criterion: What rationality criterion do agents use to decide
whether a given deal is acceptable to them? At this stage, only individual
rationality has been implemented.

– Payment functions: Are side payments allowed? If so, and if the payments
are not uniquely determined by the rationality criterion, what are the exact
payments that agents have to make for a given deal? At this stage, we have
implemented two simple payment functions, the globally uniform payment
function and the locally uniform payment function [10].

– Structural restrictions: What types of deals are possible? We have imple-
mented 1-resource deals and (a particular form of) bilateral deals.

– Search algorithms: Given the structural and rationality-related restrictions,
how do we actually find a deal to implement? This requires a search algo-
rithm. For 1-resource deals, this is not difficult: we simply search through
pairs of agents (i, j) and resources r (owned by i or j) and check whether real-
locating r from from one to the other agent would be individually rational (or
conformant to whichever rationality criterion we wish to apply). For bilateral
deals (between two randomly chosen agents i and j), we have implemented

2 For a discussion of exploiting CATS in the context of distributed multiagent resource
allocation we refer to Estivie [9].

230 H. Buisman et al.

a search algorithm that determines an optimal partial reallocation (OPR)
of the union of the resources currently held by i and j amongst these two
agents. This will be described in more detail below.

Running a simulation for a given scenario requires choosing a negotiation policy
and specifying how long the simulation should run for. This could be done by
providing a time limit, an upper bound on the number of new allocations, or an
upper bound on the number of attempts of forging a deal (and hence moving to
a new allocation). In MADRAS, we have opted for the latter. While running,
the system will record the sequence of allocations encountered, as well as the
payments made along the way. This data can later be used to calculate social
welfare and other experiment statistics.

In the remainder of this section we shall outline our approach to implementing
the search algorithm for the OPR negotiation policy. After having selected a
pair of agents (i, j) at random, this policy attempts to find the best possible
bilateral deal between i and j. That is, it will try to find a reallocation of the
items held by i and j that would maximise the sum of the valuations of i and
j. To find an optimal partial reallocation, we use the A* algorithm [15]. This
approach is inspired by work of Sandholm on optimal algorithms for the winner
determination problem in combinatorial auctions [16].

When using A*, one must define the set of states making up the search space,
the range of moves between states, the goal states, and a heuristic for moving
through the state space effectively. In our case, a state is characterised by the
set of resources for which we have already made a decision as to which of the
two agents should receive it. Initially, all resources are unallocated. Each move
assigns another resource to one of the agents, and the goal state is reached when
there are no more resources to allocate.

A* refers to two functions: The function g maps each state to the value (sum
of valuations of the two agents) we get for the resources already allocated in
that state. The heuristic function h estimates the additional value we can still
expect to generate by allocating also the remaining items. A* maintains a so-
called fringe of states in the search space, and will always pursue the state s
from the fringe which maximises g(s) + h(s). By a classical result, A* will be
guaranteed to find the optimal allocation provided the heuristic function h is
admissible [15]. In our context, admissibility means that h never underestimates
the real additional value still obtainable. For the heuristic function we are using
the following formula (for a state s and agents i and j):

h(s) =

⎛
⎝ ∑

(G,α)∈Γi(s)

α

⎞
⎠ +

⎛
⎝ ∑

(G,α)∈Γj(s)

α

⎞
⎠

Here Γi(s) is the set of weighted goals in the representation of the valuation
function of agent i that are not yet satisfied in state s, but that could still
be satisfied in a follow-up state (if i were to receive all remaining resources,
for instance). Formally, if s(i) is the set of resources allocated to i in state s and if

Simulation of Negotiation Policies 231

U(s) is the set of resources not allocated to anyone in state s, then (G, α) ∈ Γi(s)
iff s(i) �|= G and s(i)∪U(s) |= G. That is, for the heuristic we are computing the
marginal valuation for each individual agent in the most optimistic manner and
then sum these up without regard for possible conflicts. As we are restricting
ourselves to positively weighted conjunctions of atomic propositions, it is not
difficult to see that this constitutes an admissible heuristic for A*. While being
simplistic (and certainly still subject to improvements), our heuristic already
results in a very significant speed-up in comparison to a simple breadth-first
search and allows us to run interesting experiments.

3.3 Evaluating and Visualising Results

The third module is a grapher that can be used to visualise the results obtained
during simulation. Specifically, we can plot the social welfare of a sequence of al-
locations passed through during a simulation run. This allows the experimenter
to evaluate and compare different negotiation policies in view of different desider-
ata. As far as the quality of allocations is concerned, MADRAS allows for plotting
graphs visualising the following concepts:

– Utilitarian social welfare: As explained in Section 2.2, this is given by the
sum of individual utilities, and is a good measure for economic efficiency.

– Egalitarian social welfare: This is an alternative way of defining social wel-
fare, emphasising fairness rather than efficiency. The egalitarian social wel-
fare of a negotiation state (possibly involving past payments) is the utility
assigned to that state by the least happy agent [11].

– Elitist social welfare: This is defined as the utility of the happiest agent [7].
– Envy: Another fairness criterion is envy-freeness [17]. An agent i is said

to envy another agent j iff agent i would prefer to own agent j’s bundle
of resources. Envy-free allocations are difficult to obtain through distributed
negotiation, and may not even exist at all. MADRAS can plot how the degree
of envy develops as negotiation progresses, for different interpretations of
that concept. For instance, we can plot the maximum or the average envy
experienced by any one agent, or we can plot the number of envious agents
in the society.

MADRAS can also generate graphs showing the number of resources held by
each agent across allocations. The closer the system gets to an optimal state,
the more difficult it becomes to find a possible deal. To visualise such effects,
MADRAS can plot graphs showing the number of implemented reallocations per
amount of attempts at finding a deal between two randomly chosen agents.

Fig. 1 is an example for the kind of graphs generated by MADRAS. It shows
how three different kinds of social welfare develop as negotiation progresses. For
this particular example, we have created 50 resources and only 2 agents, and
the chosen negotiation policy requires agents to negotiate individually rational
1-resource deals using the locally uniform payment function (which means that
payments are arranged so as to evenly distribute the social surplus generated by
a deal amongst the participating agents [10]).

232 H. Buisman et al.

Fig. 1. Comparing utilitarian, egalitarian and elitist social welfare

Note that for the special case of a society with only two agents, the utilitarian
social welfare is actually the sum of the egalitarian and the elitist social welfare,
and this is clearly visible in Fig. 1. Furthermore, we can see that utilitarian social
welfare monotonically increases over time, as predicted by the aforementioned
result linking individual rationality and utilitarian social welfare [4]. Egalitarian
and elitist social welfare are computed with respect to utility (rather than valu-
ation, meaning that previous side payments are taken into account). Hence, as
each deal is individually rational, also these must increase monotonically. Due to
our particular choice of payment function, they furthermore increase at exactly
the same rate. Hence, while egalitarian social welfare does increase, negotiation
does not affect the relative fairness of the allocation: the difference in utility
between the two agents does not change.

4 Experiments

In this section we report on a couple of initial experiments which we have carried
out using MADRAS.

4.1 Comparing Negotiation Policies in Modular Domains

This first experiment is aimed at comparing the two negotiation policies currently
implemented in MADRAS in view of reaching an allocation that maximises
utilitarian social welfare when all agents are known to have modular valuation

Simulation of Negotiation Policies 233

Fig. 2. Social welfare using 1-resource vs. OPR deals in modular domains

functions. Recall that a valuation function v is called modular iff it satisfies
v(R1∪R2) = v(R1)+v(R2)−v(R1∩R2) for all R1, R2 ⊆ R. That is, in modular
domains an agent’s valuation for a given bundle R can be computed by adding
up its valuations for the elements of R.

It is known that any sequence of individually rational 1-resource deals will
eventually result in an allocation with maximal utilitarian social welfare, pro-
vided that all agents use modular valuation functions [4]. Given that the bilateral
OPR policy subsumes the 1-resource deal policy,3 the same must be true for the
former. That is, both negotiation policies guarantee optimal outcomes in mod-
ular domains. The question is which policy does so faster.

Intuition suggests that the OPR policy should be faster in the sense that
fewer deals are required to reach the optimum (as each individual deal can be
expected to result in a greater increase in overall utility). What is not clear
is how significant the difference is, and whether that advantage would not be
outweighed by the fact that finding an individual deal under the OPR policy is
considerably more complex than under the 1-resource deal policy (NP-complete
as opposed to linear).

Fig. 2 confirms our intuitions. This experiment involves 10 agents with
modular valuations over 50 resources, with each agent assigning a positive
weight drawn from a uniform distribution over [1..100] to 20 randomly selected

3 The bilateral OPR policy subsumes the 1-resource deal policy in the sense that
whenever there is a 1-resource deal that would be applicable between two agents,
the OPR policy will either implement that same deal or a deal that is even better.

234 H. Buisman et al.

resources. The graphs show an average of 20 experiment runs from one scenario
description. Fig. 2 shows that convergence is in fact much faster for full bilateral
negotiation using the OPR policy than for 1-resource deals, at least if “time”
is measured in terms of the number of attempts made at forging an acceptable
deal. Additionally, data not shown in Fig. 2 suggests that the real time required
for reaching the optimum is of a similar order of magnitude for both negotiation
policies. It appears that the high complexity of the search involved in comput-
ing an optimal partial reallocation in the bilateral scheme is traded off against
the overhead in search required to find matching trading partners under the
1-resource policy. Of course, our findings regarding real-time performance need
to be interpreted with some care: they are strongly dependent on the specific
implementation choices made in the MADRAS system.

4.2 Comparing Negotiation Policies for Varying Degrees of Synergy

Our second set of experiments is aimed at comparing the performance of our two
negotiation policies for varying degrees of synergy in the agent valuations. Mod-
ular valuations (as studied in Section 4.1) are representable as sets of weighted
goals, each of which has length k = 1. If we allow proper conjunctions in the
goals (of length k > 1), then this may be understood as synergies between the
items occurring together in the same conjunction. For instance, if an agent has
the goal (r1 ∧ r2, 5), they will only receive the value of 5 if they own both of r1

and r2 together ; the individual items by themselves may have no value at all.
We have produced two groups of experiments for valuation functions repre-

sented by sets of goals of length ≤ k, with k ranging from 1 to 6. The results
are shown in Figures 3 and 4, respectively. As before, there are 10 agents and
50 resources. For each value of k, we have generated 3 different scenarios and
run 10 simulations for each of the two negotiation policies for each such scenario
(so each of the curves shown represents the average of 30 runs). The only differ-
ence between the two groups of experiments, corresponding to Figures 3 and 4,
concerns the number of weighted goals generated for each agent. In the case of
Fig. 3, we have generated 20 goals of each of the required lengths for each agent.
So, for instance, if k = 3 then an agent will have 20 goals of length 1, 20 goals
of length 2, and 20 goals of length 3. All weights are drawn independently from
a uniform distribution over [1..100]. In the case of Fig. 4, we have generated 30
goals in total for each agent (32 in the case of k = 4). For instance, for k = 2 we
have generated 15 goals of length 1 and 15 goals of length 2; while for k = 3 we
have generated only 10 goals of each length. For each pair of curves, the upper
curve (better performance) corresponds to the OPR policy, and the other one to
the 1-resource policy. In Fig. 4 the pairs are clearly visible as such; in Fig. 3 we
have included some additional markers, which also indicate the maximum level
of utilitarian social welfare achieved by each policy.

The experiments reveal some very interesting, and arguably surprising, effects.
We know that for k = 1 (modular valuations), both negotiation policies will
reach the same (optimal) state and that the OPR policy can be expected to
get there in fewer steps than the 1-resource deal policy. This is visible in both

Simulation of Negotiation Policies 235

Fig. 3. Results when the number of goals per agent is proportional to k

figures. Now, as k increases (as valuations move further away from the simple
modular case), we would have expected that the much more sophisticated OPR
policy would outperform 1-resource negotiation even more significantly. For both
policies, we would not expect to be able to reach an optimal state anymore (and
this is indeed the case; data not shown here), but we would expect OPR deals to
typically converge to a state with (maybe much) higher utilitarian social welfare
than is attainable through 1-resource deals alone. As it turns out, this is the
case only to a very limited extent. In Fig. 3, we can see that the gap between
OPR and 1-resource increases as k increases up to k = 3, but then it becomes
smaller again. So besides the expected trend described above, there must also
be a second trend causing this gap to decrease again for larger values of k.

Our hypothesis is that this trend can be explained by the fact that the longer
a goal, the lower the probability that all the required resources can be found in
the set of items owned by the two agents supposed to forge a deal. Hence, having
large amounts of long goals available in addition to the short goals present in all
the scenarios actually has very little effect on the outcomes. In fact, the presence
of long goals may even be detrimental to achieving high social welfare (at least
if the weights for goals of any length are drawn from the same distribution, as
is the case for our experiments). The reason is that satisfying a single long goal
may prevent a whole set of shorter goals (of other agents) from being satisfied.

236 H. Buisman et al.

Fig. 4. Results when the total number of goals per agent is constant

In Fig. 4, the reduction in the gap between the two policies is less visible,
but in any case it is still surprisingly small for larger values of k. Here we can
also clearly observe a second effect: the attainable social welfare goes down as k
increases. We expect this to be a consequence of there being fewer short goals in
the scenarios with larger k (for Fig. 4 the total number of goals is constant, so
the more different lengths there are, the fewer goals there are per length). These
short goals are the easiest to satisfy, so the more there are the higher the sum of
utilities. Indeed, further analysis of our data reveals that goals of length greater
than 3 practically never get satisfied in the final allocation, and that for goals
of length 3 typically no more than 1–2% get satisfied. This means that, really,
what matters are the short goals of length 1 and 2.

A tentative conclusion based on these experiments would be that any form
of bilateral negotiation (even if as seemingly sophisticated as OPR) is unlikely
to be able to reach allocations that would satisfy goals that involve three or
more resources. The reason for this is that chances are low that all the required
resources would be present in the set of items jointly held by a particular pair
of agents before negotiation between them starts. And those improvements over
the status quo that are possible by means of bilateral negotiation then also seem
to be achievable by means of its most basic form, namely 1-resource negotiation.
Still, the OPR policy tends to achieve those moderate results in significantly
fewer negotiation steps than the 1-resource policy (in terms of the number of
deals attempted).

Simulation of Negotiation Policies 237

5 Conclusion

Dividing resources amongst a society of agents who have varying preferences can
become a very complex task. Approaching this problem in a distributed man-
ner and having the agents share the computational burden of the task seems
promising on the one hand, but also raises serious challenges in terms of design-
ing suitable interaction protocols. To be able to let the agents find an optimal
allocation, there are many practical issues to consider. For instance, which nego-
tiation policies are the fastest and still guarantee convergence to an optimum?
How do behavioural criteria of individual agents influence the evolution of the
system? A simulation platform such as MADRAS can be useful to test hypothe-
ses about these issues. In this paper we have presented the basic functionality
of MADRAS and explained the underlying principles. We have also reported
on a number of experiments carried out using MADRAS. These experiments
were aimed at comparing the performance of two negotiation policies in view of
reaching a state with high utilitarian social welfare. In the first policy, agents
negotiate individually rational deals that involve reallocating a single resource
at a time. In the second policy, pairs of agents negotiate the best possible re-
allocation of the resources they own together amongst themselves. Despite the
limited scope of these experiments, we can offer two tentative conclusions:

– Optimal partial reallocations between two agents tend to achieve the same
or a higher level of social welfare than one-resource-at-a-time negotiation,
and the former tend to do so in fewer steps than the latter.

– Even sophisticated forms of bilateral negotiation (such as optimal partial re-
allocations) are not well adapted to negotiation in domains with high degrees
of synergies between large numbers of resources. In fact, in such domains the
most basic form of negotiation (1-resource deals) can often achieve results
very similar to those achieved by more sophisticated bilateral negotiation
(although requiring a higher number of negotiation steps).

Even when studying the theoretical aspects of multiagent resource allocation
closely, we are often surprised by the data that MADRAS generates. To fully
understand the implications of varying any of the parameters incorporated into
MADRAS we have to both analyse them theoretically and be able to explain
the behaviour they generate in practice.

Our approach may be described as a middle-way between purely theoretical
studies of convergence in multiagent resource allocation [3, 4, 5, 7] and work in
agent-based computational economics [18, 19]. Epstein and Axtell [18], for in-
stance, also study the emergence of various phenomena, but they do not specifi-
cally seek to understand the mathematical laws underlying such phenomena (and
indeed, these may often be too complex to be easily understood or described).
Here, on the contrary, we still see a mathematical explanation of emergent phe-
nomena as an important goal, but the simulation of negotiation processes can
serve as a tool for discovering the laws of distributed resource allocation mecha-
nisms. Understanding these laws, in turn, will allow us to build better and more
robust multiagent systems.

238 H. Buisman et al.

We should stress that certain design choices and features of the implemen-
tation of MADRAS are likely to have influenced (some of) our experimental
results. To what extent this is the case will require further analysis. For in-
stance, the heuristic we use for optimal partial reallocations is very important.
Using the A* algorithm does not per se determine how to allocate goods that
are not desired by either one of the agents involved in a bilateral deal. In our
current implementation these uncontested resources remain with the agent they
were initially allocated to, but other solutions such as random redistribution over
the two agents involved are possible as well. The specific choices made during
implementation in this regard may unwillingly influence not only the runtime of
the algorithm but also the quality of the final allocation. Aspects such as these
will require further study before we can fully bridge the gap between theoretical
findings and implementation.

In addition to the above, a large number of interesting experiments remain to
be done. Future work should further explore the constraints on preferences and
agent rationality that are necessary to guarantee social optima. We conclude
by giving three examples for specific directions of research that are being made
possible by the availability of a simulation platform such as MADRAS:

– Pigou-Dalton transfers [7, 11, 20] are deals used in attempts at reducing in-
equality between agents.4 However, it is known that, in the case of indivisible
resources, using Pigou-Dalton transfers alone cannot guarantee convergence
to an allocation with maximal egalitarian social welfare [4]. Using MADRAS
would allow us to conduct research aimed at identifying constraints under
which an egalitarian optimum will be found.

– MADRAS provides extensive possibilities for customising the agents’ prefer-
ences. An interesting course of research would be to systematically examine
the influence of certain classes of valuation functions on the reachability of
certain social optima. For instance, while theoretical research has provided
a good understanding of convergence behaviour in either the fully general
case or the very simple case of modular valuations [4], little is known about
convergence by means of structurally simple deals in case of valuations that
are subjected to severe restrictions other than modularity.

– MADRAS also provides for another research approach which would not be
possible without such a platform. This approach is to run many “arbitrary”
experiments and examine these to form hypotheses (possibly using machine
learning techniques). An approach of this type may produce findings which
are not intuitive and would otherwise not be encountered easily.

Acknowledgements

This work has been carried out in the context of the BSc Artificial Intelligence
Honours Programme at the University of Amsterdam. MADRAS is available at
http://madras.infosyncratic.nl.
4 A Pigou-Dalton transfer is a deal between two agents that results in a transfer of

utility from the stronger to the weaker agent, without reducing their sum of utilities.

http://madras.infosyncratic.nl

Simulation of Negotiation Policies 239

References

1. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemâıtre, M., Maudet, N.,
Padget, J., Phelps, S., Rodŕıguez-Aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica 30, 3–31 (2006)

2. Cramton, P., Shoham, Y., Steinberg, R. (eds.): Combinatorial Auctions. MIT
Press, Cambridge (2006)

3. Sandholm, T.W.: Contract types for satisficing task allocation: I Theoretical re-
sults. In: Proc. AAAI Spring Symposium: Satisficing Models (1998)

4. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Negotiating socially optimal alloca-
tions of resources. Journal of Artificial Intelligence Research 25, 315–348 (2006)

5. Dunne, P.E., Wooldridge, M., Laurence, M.: The complexity of contract negotia-
tion. Artificial Intelligence 164, 23–46 (2005)

6. Arrow, K.J., Sen, A.K., Suzumura, K. (eds.): Handbook of Social Choice and Wel-
fare. North-Holland, Amsterdam (2002)

7. Endriss, U., Maudet, N.: Welfare engineering in multiagent systems. In: Engineer-
ing Societies in the Agents World IV. LNCS (LNAI), vol. 3071. Springer, Heidelberg
(2004)

8. Andersson, M., Sandholm, T.W.: Contract type sequencing for reallocative negoti-
ation. In: Proc. 20th International Conference on Distributed Computing Systems
(ICDCS 2000). IEEE Press, Los Alamitos (2000)

9. Estivie, S.: Allocation de Ressources Multi-Agent: Théorie et Pratique. PhD thesis,
Université Paris-Dauphine (2006)

10. Estivie, S., Chevaleyre, Y., Endriss, U., Maudet, N.: How equitable is rational
negotiation? In: Proc. 5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2006). ACM Press, New York (2006)

11. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press,
Cambridge (1988)

12. Lang, J.: Logical preference representation and combinatorial vote. Annals of
Mathematics and Artificial Intelligence 42(1–3), 37–71 (2004)

13. Grabisch, M.: k-order additive discrete fuzzy measures and their representation.
Fuzzy Sets and Systems 92, 167–189 (1997)

14. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for
combinatorial auction algorithms. In: Proc. 2nd ACM Conference on Electronic
Commerce. ACM Press, New York (2000)

15. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2),
100–107 (1968)

16. Sandholm, T.W.: Optimal winner determination algorithms. In: Cramton, P.,
Shoham, Y., Steinberg, R. (eds.) Combinatorial Auctions. MIT Press, Cambridge
(2006)

17. Brams, S.J., Taylor, A.D.: Fair Division: From Cake-cutting to Dispute Resolution.
Cambridge University Press, Cambridge (1996)

18. Epstein, J.M., Axtell, R.L.: Growing Artificial Societies: Social Science from the
Bottom Up. MIT Press, Cambridge (1996)

19. Tesfatsion, L., Judd, K. (eds.): Handbook of Computational Economics: Agent-
Based Computational Economics. Elsevier, Amsterdam (2006)

20. Dunne, P.E.: Extremal behaviour in multiagent contract negotiation. Journal of
Artificial Intelligence Research 23, 41–78 (2005)

Collective-Based Multiagent Coordination:

A Case Study

Matteo Vasirani and Sascha Ossowski

University Rey Juan Carlos, Madrid, Spain
{matteo.vasirani,sascha.ossowski}@urjc.es

Abstract. In this paper we evaluate Probability Collectives (PC) as a
framework for the coordination of collectives of agents. PC allows for effi-
cient multiagent coordination without the need of explicit acquaintance
models. We selected Distributed Constraint Satisfaction as case study
to evaluate the PC approach for the well-known 8-Queens problem. Two
different architectural structures have been implemented, one centralized
and one decentralized. We have also compared between the decentralized
version of PC and ADOPT, the state of the art in distributed constraint
satisfaction algorithms.

1 Introduction

In a multi-agent system (MAS) the term coordination refers to the process in
which agents reason about their local actions and the (anticipated) actions of
other agents in order to ensure that the community acts in a coherent manner [7],
i.e. satisfy a global requirement/objective function.

While in micro-coordination, the objective of the designer is to build an agent
that is able to coordinate with the existing ones, in order to satisfy its own
utility, in macro-coordination the designer of the MAS has a systemic vision,
and the main interest is some sort of global utility maximization.

In the case that there is a unique designer of the system, who has complete
control over the agents’ internal structure, the agents are said to be cooperative,
and the MAS is a sort of problem solving system. Stigmergic coordination [9]
and collective intelligence [12] fall in this category.

Even in the case of cooperative MASs (e.g. a swarm of explorer robots),
the task of building a coherent, global utility maximizing system, starting from
individual autonomous agents, is not so trivial. The fact that the designer has
the control over each agent utility function and action space, is not enough to
assure that the resulting system is optimal from a global perspective. It is well
known that if the agents try to maximize their utilities in a greedy way (i.e.
without considering the externalities of its actions), this can lead to very poor
performances of the whole system (the so-called Tragedy of the Commons [6]).

The aim is so providing agents with well-designed private utilities, so that
the selfish optimization of each agent utility leads to increased performance of
the global utility of the collective as a whole. Thus, it is a matter of reverse

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 240–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Collective-Based Multiagent Coordination: A Case Study 241

engineering: the objective is to define suitable private utility functions for the
individual agents, so that they “coordinate and cooperate unintentionally” and
optimize the world utility.

The aim of this paper is to evaluate the characteristics of COllective INtelli-
gence (COIN) [18,19,20] and its variation Probability Collectives (PC) [21], as
coordination framework for cooperative multiagent systems. The paper is struc-
tured as follows: in section 2 we introduce the theory of Probability Collectives;
in section 3 we take Distributed Constraint Satisfaction Problems (DisCSP) [15]
as an example of distributed cooperative coordination; in section 4 we evaluate
a centralized version of the collective to solve the 8-Queens DisCSP, while in
section 5 we evaluate a decentralized version of the collective; finally in section 6
some conclusions and future works ideas are outlined.

2 Background: Probability Collectives

The problem of coordination in systems of autonomous (self-interested) agents
can be easily modelled in terms of utility functions. Each agent is given a private
utility function, which maps each action that the agent can take into the real
numbers. The aim of the agent is to locally optimize this function. Furthermore
there is a notion of global utility that represents the effectiveness of the system
as a whole, regarding its design goals. The aim is to provide agents with well-
designed private utilities, so that the selfish optimization of each agent’s utility
leads to increased performance of the global utility of the collective as a whole.

Recently, there have been studies aimed at developing guidelines regarding the
properties that such private utilities functions need to meet. The theory of COl-
lective INtelligence (COIN), developed by Wolpert et al. [18,19,20]), for instance,
requires local utility functions to be aligned with the global utility G (i.e. if the
private utility grows, the global utility does the same), as well as easily learnable
(i.e. they enable the agent to distinguish its contribution to the global utility).

Once the collective designer has defined the private utilities, many methods
are available for supporting the agents’ decision making and optimization of
their private utility functions. These may include evolutionary computation [1]
or multiagent reinforcement learning [17]. Still, all these methods are based on
some kind of search for the best action within the space of local actions. In
this paper we will draw upon a novel method called Probability Collectives
(PC) [21], which has been developed within the COIN framework, in which the
optimization across possible actions is replaced with the optimization across the
space of probability distributions of possible actions. In this way, PC allow for the
distributed optimization of objective functions that are not smooth and variables
that are discrete, continuous or mixed.

Generally speaking, a collective can be formalized as a set of n agents. In the
simplest version, each agent i controls one system variable, xi, which can take
on finite number of values from the set Xi. So these |Xi| possible values constitute

242 M. Vasirani and S. Ossowski

the possible moves of the i’th agent. The variable of the joint set of n agents
describing the system is x = {x1, x2, . . . , xn} ∈ X , with X = X1×X2× ...×Xn.
Each agent is given a private utility function, gi(x), which it aims at optimizing.
We remark that such utility is a function of x, the joint action of the collective,
that is the utility of agent i depends also on the actions of all the agents other
than i (x1, . . . , xi−1, xi+1, . . . , xn). The utility of a joint action x at the system
level is modelled by a global utility function G over X , which the collective
designer aims at optimizing.

Unlike many optimization methods, in PC the underlying x is not manipulated
directly, rather a probability distribution over that variable is manipulated. The
ultimate goal of this approach is to induce a product distribution q =

∏
i qi(xi)

that is highly peaked around the x optimizing the objective function of the
problem, and then obtaining the optimized solution x by sampling q.

When X is finite, q is a vector in an Euclidean space with real-valued compo-
nents, so finding the q optimizing the expectation value Eq(G) means optimizing
a real-valued function of a real-valued vector. Furthermore, the PC formalism
can be used for essentially any X , be it continuous, discrete or mixed [2].

2.1 Maxent Lagrangian

Since the agents do not have any explicit symbolic model of its acquaintances
in the collective, the available prior knowledge is limited to their private utility
functions and their expected utility values. The main result of PC is that the
best estimation of the distribution qi that generates those expected utility values
is the distribution with maximum entropy. Formally, the minimum value of the
global utility function1 can be found by considering the maxent Lagrangian
equation for each agent:

Li(qi) = Eq[gi(xi, x−i)] − T · S(qi) =

=
∑

xi
Eq−i [gi(xi, x−i)] · qi − T · S(qi)

(1)

where qi is the probability distribution over agent i’s actions xi; T is an in-
verse Lagrangian multiplier, or a “temperature” that defines the balance be-
tween “exploitation” and “exploration”; Eq[gi(xi, x−i)] is the expected value
of the utility function, which is subjected also to all the other agents’ ac-
tions, x−i; and S(qi) is the Shannon entropy associated with the distribution
qi, S(qi) = −

∑
xi

qi(xi) ln[qi(xi)].

2.2 Minimizing the Maxent Lagrangian

Since the maxent Lagrangian is a real-valued function, it is possible to use search
methods for finding function extrema, such as gradient descent or Newton meth-
ods. These techniques minimize a function by making small steps in the direction
1 Without loss of generality, the global utility function G is considered as a “cost” to

be minimized.

Collective-Based Multiagent Coordination: A Case Study 243

of function derivative (i.e. gradient). Nearest Newton update has been proved to
be one of the most effective descent rule. Each agent’s probability distribution
at time t + 1 is obtained by:

qt+1
i = qt

i − αqt
i × {Eq[gi|xi] − Eq[gi]

T
+ S(qt

i) + ln[qt
i]} (2)

where Eq[gi] is the expected utility, Eq[gi|xi] is the expected utility associated
with each of the agent i’s possible actions, and α is the update step.

Equation 2 shows how the agents should modify their distributions in order
to jointly implement a step in the steepest descent of the Maxent Lagrangian.
At any time step t, each agent i knows qt

i exactly, and therefore knows ln[qt
i],

but it might not know the other agents’ distributions. In such cases, it is not
able to evaluate any expected value of gi, since it depends on the probability
distributions of all the agents.

One way to circumvent this problem is to have those expectation values be
simultaneously estimated by repeated Monte Carlo sampling of the distribution
q to produce a set of (x; gi(x)) pairs. These pairs can then be used by each agent
i to estimate the values Eq[gi|xi], for example by uniform averaging of the gi

values of the samples associated with each xi.
The basic algorithmic framework is explained in algorithm 1 [8]. The start-

ing temperature depends on the problem, while the initial q is the maximum
entropy distribution, i.e. the uniform distribution over the action space X . The
temperature is lowered accordingly to a schedule determined by the function up-
dateT (e.g. every C iterations). The minimization of L for a fixed temperature
is accomplished by repeatedly determining all the conditional expected utility
values Eq[gi|xi] (function evalConditionalExpectations) and then using these in
the Nearest Newton update rule (function updateQ). Also the convergence cri-
teria depends on the problem, but in general the algorithm stops if the change
in the probability distribution q falls below a threshold.

Algorithm 1. PC framework

01: T <- initializeT

02: q <- initializeQ

03:

04: while not converged

05: m <- MCsample

06: ce <- evalConditionalExpectations(m)

07: q <- updateQ(ce)

08: T <- updateT

09: end while

10:

11: return mostProbableJointMove

244 M. Vasirani and S. Ossowski

3 The Problem: DisCSP as Cooperative Coordination

In this section we relate the problem addressed by PC to Distributed Con-
straint Satisfaction Problems (DisCSP) [15]. In DisCSPs, a set of variables is
distributed among agents, each of which can take a value from a specific do-
main. The variables are connected by constraints which constitute predicates
over certain variables, defining the set of admissible assignments of values to
variables. The search algorithm for solving these problems is a distributed algo-
rithm, run by agents that communicate by sending and receiving messages. In
general, messages contain information about assignments of values to variables
and refutations of assignments.

We chose the 8-Queens problem as example of DisCSP. The problem can be
formalized as follows:

– Let V be the set of variables, V = {v1, . . . , v8}, each of them corresponding
to a row in the chessboard.

– Each variable vi can take a value from the domain Di = {1, . . . , 8}, where
each value corresponds to a column of the chessboard where it is possible to
place a queen.

– The constraints among variables are
• vi �= vj

• vi − vj �= i − j
• vi − vj �= j − i

The mapping of this problem into a collective is straightforward. The collective
is composed of 8 agents, x1, . . . , x8. Each agent xi controls the corresponding
row of the chessboard, by putting a queen in one of the 8 columns. So the moves
space of each agent is Xi = {1, . . . , 8}. Since the system goal is to minimize the
number of violated constraints2, each agent’s utility function must reward the
agent moves that imply few (or no) attacked queens. We remark that we use
the term “utility” although it is actually a “cost” to be minimized, so along this
paper low values of g correspond to good utility values.

Each agent’s private utility is the so called Wonderful Life Utility (WLU).
The value of the WLU for the agent xi is defined as

gi(x) = WLUi(x) = G(x) − G(CLi(x)) (3)

where x if the joint action of the collective and CLi(x) is the “virtual” joint
action formed by replacing the i-component of x to an arbitrary fixed value, e.g−→
0 . In this way WLU is equivalent to the world utility minus the world utility
that would have arisen if agent xi “had never existed”.

Such an utility has been demonstrated [18] to be both highly learnable and
aligned with the global utility. Since the second term in equation 3 does not
depend on the action that takes agent i, any action that improves WLUi(x) also
improves the global utility G(x).
2 We remark that we allow also non-complete (suboptimal) solution to the problem,

differently from traditional constraint satisfaction.

Collective-Based Multiagent Coordination: A Case Study 245

In the case of the 8-Queens problem, the WLU for agent xi is defined as
follows:

gi(x) = WLUi(x) = G(x) − G(CLi(x)) = μ · eμ − μ̂ · ebμ (4)

where μ is the number of attacked queens in the chessboard configuration that
results from the joint action of the collective, and μ̂ is the number of attacked
queens if xi “disappears” from the collective, i.e. it doesn’t put its queen on
the chessboard. The best value for a so designed utility is 0, i.e. the number of
attacked queens doesn’t change if agent xi disappears from the collective. This
means that agent xi did the best possible move, that is placing its queen without
attacking any other queen.

4 Centralized Implementation

In this section we show how the basic algorithmic framework (see algorithm 1)
can be applied to our scenario. As said in section 2, in order to implement a
collective, several design parameters need to be fixed, like the initial tempera-
ture T , the annealing policy, the update step α of the Nearest Newton scheme.
Furthermore, a key point in the implementation is the architectural structure
of the agents, i.e. the structure that enables the agent to construct the set of
sampled joint moves. In literature, the typical implementation is letting all the
agents at time t contribute to the creation of the sampled joint moves set, by
sampling its own distribution, and then using the sampled joint moves set to
update their distribution.

This architectural structure doesn’t require explicit synchronization, in the
sense that no agents can be idle, or waiting for synchronization messages from
other agents. However, even if all the agents are simultaneously active, it is
necessary that they share the same “clock”. So the collective as a whole can
be seen as a two state automaton, switching between a sampling phase and a
distribution update phase, and all the agents are simultaneously in the same
phase.

For our purposes, we deployed a system (see figure 1), based on Jade3, com-
posed of the collective agents and a shared environment. The agents can access
the environment both in “write” and “read” mode, that is they write when they
put their samples in the shared environment, while they read when they evaluate
the joint moves.

In the initialization phase, all the agents set the temperature T to the same
value, and they initialize their own distributions qi to the uniform one.

At each iteration, the agents put their samples in the shared environment and
use the joint moves to update their distribution, following the Nearest Newton
update rule (see section 2.2).

The annealing policy was multiplying the temperature by an annealing rate
between 0 and 1 after a fixed number of iterations, where values close to 0
determine a higher annealing rate.

3 http://jade.tilab.com

246 M. Vasirani and S. Ossowski

Fig. 1. Centralized implementation

The algorithm stops if one of these four conditions are met:

– The actual most probable joint move corresponds to a configuration with no
attacked queens

– One of the sampled joint move corresponds to a configuration with no at-
tacked queens

– The average mean squared difference between the old agents’ probability
distributions and the updated ones falls below a threshold

– The average temperature of the agents falls below a threshold.

4.1 Experimental Results

As said in section 2, the implementation of the collective depends on several
design parameters, like the initial temperature T , the annealing rate, and the
update step α of the Nearest Newton update rule.

The aim of the experiments was finding the parameterization that gives the
best results, in terms of iterations to the convergence and quality of the solutions
found by the collective, expressed by the number of attacked queens.

Along all the experiments, we kept fixed the convergence criterion and the
initial temperature, while we made tests with different combinations of the an-
nealing rate and the update step α.

The first experimental setup (Test 1) was characterized by an annealing rate
of 0.5 and an update step of 0.2. The average number of iterations to the con-
vergence was 78.3 and the average global utility (expressed as the number of
attacked queens) was 0.6.

The second experimental setup (Test 2) was characterized by an annealing
rate of 0.1 and an update step of 0.8. The average number of iterations to the

Collective-Based Multiagent Coordination: A Case Study 247

Fig. 2. Average number of iterations to convergence and average number of attacked
queens for the 3 configurations

convergence was much lower, 32.15, but the quality of the solutions found was
worse, since the the average average global utility was 2.55.

This kind of result was expected because this parameters setup is equivalent to
a “higher” speed in the update rule. For example, with a lower annealing rate, the
temperature decreases more rapidly. As seen in equation 2, high temperatures in-
duces small changes in the probability distributions, guaranteeing “exploration”
of the moves space and avoidance of local minima, but also slower convergence.

Similar considerations can be done for the update step α. With low values
of this parameter, only a small part of the distribution update is added (or
subtracted) to the old distribution, while a higher value of α provokes greater
modifications to the probability distribution.

Given the effect of the combination of annealing rate and update step, we tried
a third experimental setup (Test 3), with an annealing rate of 0.5 and an update
step of 0.2 for all the agents except two, which have been parameterized with
an annealing rate of 0.1 and an update step of 0.8. With this configuration, the
average number of iterations to the convergence was lower than the first configu-
ration, with a value of 55.85, while the quality of the solutions found was better,
since the the average global utility was 0.45. Figure 2 summarizes the results.

The introduction of a certain degree of “heterogenicity” in the collective has
resulted in an improvement of both the speed and the quality of the algorithm.
This can be explained by the fact that the simultaneous update of the distribu-
tions may confound each other, especially if this update is only a smooth change
to each agent’s probability distribution.

Conversely, the fact that two agents descend the function surface more rapidly
along two directions, benefited the whole collective. With the third configuration,
the collective is able to find a solution for the 8-Queens problem in the 80% of
the cases, with an average of 55.85 iterations per agent.

248 M. Vasirani and S. Ossowski

Fig. 3. How the agents’ distributions change

In figure 3 we plotted the probability distributions of the 8 agents at different
stages of an experiment. At the beginning, each agent has a uniform distribution
over the possible moves, and then these distributions change during the execution
of the experiment. The objective of the collective is inducing a probability distri-
bution highly peaked in correspondence of the best moves, that is the moves that
generates the best chessboard configuration. It is also possible to notice how the
distributions of agent 3 and 5 change more rapidly then the other distributions,
due to the aforementioned higher “speed” in the distribution update.

5 Decentralized Implementation

The aforementioned implementation requires a central entity to gather and suc-
cessively evaluate the sampled joint moves. Furthermore, all the agents need to
share the same “clock” in order to jointly create a set of sampled moves to up-
date their distribution. However, alternative logical structures of the agents can
be taken in consideration. For example in [16], the set of sampled joint moves is
built using a token-ring message passing architecture.

In the second architectural structure that we implemented (see figure 4), each
agent runs its program without any common “clock”, and asynchronously re-
quests to all the other agents to sample their distributions in order to create a
set of joint moves and use them to update its distribution. This approach enables
the samples set to be generated in a distributed manner.

Collective-Based Multiagent Coordination: A Case Study 249

Fig. 4. Decentralized implementation

Table 1. Centralized vs decentralized implementation

PC centralized PC decentralized

Iterations per agent 55.85 44.52

Attacked queens 0.45 0.34

Due to the asynchronous nature of the architectural structure, it is possible
that some disalignments between the agent states occur (e.g. the convergence
criteria can be met by agent i but not by agent j).

Table 1 summarizes the results obtained with the centralized and decentralized
implementations. We can see how the decentralized version produces on average
better solutions than the centralized one. Also the number of iterations executed
on average by each agent is lower than in the centralized version.

This can be explained by the fact that in the centralized version, all the agents
update their distribution at time t on the basis of the probability distributions
of the other agents at time t − 1. So at time t, the information that an agent
uses to take its decision is going to go out-of-date.

On the other hand, in the decentralized version, since the agents run their
program asynchronously, it is reasonable to think that when an agent takes a
decision at time t, the information that it uses is still valid (see figure 5).

To better evaluate the decentralized implementation, we have compared it
with ADOPT [10], a distributed algorithm explicitly designed for distributed
constraint satisfaction problems. We compared the quality of the solutions that
the two algorithms are able to find, and the number of messages exchanged by
the agents.

ADOPT is a quality guaranteeing algorithm, i.e. it always finds a solution
to the problem, and needs the agents exchange the same number of messages,
which in the case of the 8-Queens problem is 2792. This value depends on the

250 M. Vasirani and S. Ossowski

Fig. 5. Centralized vs decentralized implementation

Table 2. Comparison between ADOPT and collective coordination

ADOPT PC average PC best PC worst

Exchanged messages 2792 2676.4 176 6864

Attacked queens 0 0.34 0 2

initial configuration of the chessboard, which has been fixed to the configuration
with all the queens in the first column4.

Due to the probabilistic nature of the collective-based approach, we reported
the average, best and worst case. Results are summarized in table 2.

We can see how ADOPT needs to exchange slightly more messages in order to
reach a minimum, although it guarantees to reach a global one. On average the
collective exchanges a similar number of messages, and is able to find a complete
solution in the 86.7% of the cases. In the best case it finds a global minimum
by exchanging only the 6.3% of the messages needed by ADOPT, while in the
worst case it stucks in a local minimum.

In figure 6 we plotted the number of attacked queens as a function of the mes-
sages exchanged by the agents. As expected, it is possible to appreciate how the
collective progressively optimizes the objective function during the execution of
the algorithm. On the other hand, ADOPT shows a trend typical of a backtrack-
ing algorithm; every time a local minimum is reached, the agents change their
configuration, increasing the number of attacked queens, up to find a solution of
the problem.

A strength of PC is that the communication and computational load is equally
distributed among all the agents, while with ADOPT, few agents send the ma-
jority of the messages. The number of messages exchanged by each agent on

4 This initial configuration is somehow equivalent to assign uniform probability dis-
tributions to the collective agents (and not starting with biased, i.e. “peaked”, dis-
tributions).

Collective-Based Multiagent Coordination: A Case Study 251

Fig. 6. How the number attacked queens decreases with the exchange of messages

average is 334.55, while the highest number of messages exchanged by a single
agent is 387.2, that is only 15.74% above the average.

Furthermore the collective doesn’t rely on any rigid, preprocessed structuring
of the agents, and doesn’t have a single point of failure. For example, even a
failing agent can be easily considered as an agent that simply doesn’t update its
probability distribution. All these characteristics make PC robust and potentially
suitable for noisy, real-world problems.

6 Conclusions

In this paper we evaluated Probability Collectives (PC) as a promising frame-
work for the coordination of collectives of agents. We conducted experiments
with the 8-Queens problem, to test the effectiveness of the coordination frame-
work. In particular we implemented two different architectural structures, one
centralized and one decentralized, and we made experiments to measure the
iterations to convergence and the solutions quality.

We also make comparisons between the decentralized version and ADOPT,
the state of the art in distributed constraint satisfaction algorithms, and we saw
how the collective-based approach, with a similar number of exchanged messages
respect to ADOPT, finds a complete solution in the 86.7% of the cases.

PC is a very general framework for agent coordination and distributed opti-
mization, and it is not limited to DisCSP problems. This makes it not at the same
level of distributed algorithms especially tailored for DisCSP, like the aforemen-
tioned ADOPT and Asynchronous Weak-commitment Search [14]. A strength
of PC is that it can address a broader class of problems, from distributed opti-
mization to distributed control [3].

PC can also be related to distributed problem solving system, like TÆMS [4]. A
distributed problem solving system is a distributed network of semi-autonomous
processing nodes that work together to solve a single problem. The advantage of

252 M. Vasirani and S. Ossowski

PC respect to such systems is that the agents are not structured accordingly to
an a priori task decomposition, neither they need to be provided with an explicit
model of the other agents goals, plans or tasks.

PC has already been applied to several real-world problems, like distributed
control [3], distributed data fusion in sensor networks [16] and clustering in ad-
hoc networks [13]. Our future works will be applying the coordination framework
to a challenging, large-scale problem, like traffic management systems [11], since
it is reasonable to expect great benefits over existing approaches, especially if the
problem has a dynamic nature and involves noise and uncertainty. We will extend
the framework to support multiple actions for each agent, in order to make PC
widely applicable. We will also explore different techniques to estimate expected
utility values, not only from statistics but also from the multi-agent world.

Acknowledgments

We would like to thank David Wolpert and Dev Rajnarayan for their help and
the profitable discussions relating to Probability Collectives algorithms.

This research was partially supported by the Spanish Ministry of Science and
Education through projects “THOMAS” (TIN2006-14630-C03-02) and “AT”
(CONSOLIDER CSD2007-0022, INGENIO 2010).

References

1. Back, T., Schwefel, H.: Evolutionary Computation: An Overview. In: International
Conference on Evolutionary Computation, pp. 20–29 (1996)

2. Bieniawski, S., Kroo, I., Wolpert, D.: Discrete, continuous, and constrained opti-
mization using collectives. In: Proc. 10th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Albany, New York (2004)

3. Bieniawski, S.: Distributed Optimization and Flight Control Using Collectives,
PhD Thesis, Stanford University (September 2005)

4. Decker, K.: TÆMS: A Framework for Environment Centered Analysis & Design
of Coordination Mechanisms. In: Foundations of Distributed Artificial Intelligence,
ch. 16, pp. 429–448 (1996)

5. Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973)
6. Hardin, G.: The Tragedy of the Commons. Science 162, 1243–1248 (1968)
7. Jennings, N.R.: Coordination Techniques for Distributed Artificial Intelligence. In:

O’Hare, G.M.P., Jennings, N.R. (eds.) Foundations of Distributed Artificial. John
Wiley and Sons, Chichester (1996)

8. Macready, W., Wolpert, D.: Distributed Constrained Optimization with Semico-
ordinate Transformations. Journal of Operations Research (submitted, 2005)

9. Mamei, M., Vasirani, M., Zambonelli, Z.: Self-Organizing Spatial Shapes in Mobile
Particles: The TOTA Approach. Engineering Self-Organising Systems, 138–153
(2004)

10. Modi, P., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed
constraint optimization with quality guarantees. AIJ 161, 149–180 (2005)

11. Ossowski, S.: Constraint-based coordination of autonomous agents. Electronic
Notes in Theoretical Computer Science 48, 211–216 (2001)

Collective-Based Multiagent Coordination: A Case Study 253

12. Tumer, K., Wolpert, D.: Coordination in Large Collectives. In: Fifth International
Conference on Complex Systems. Perseus Books (2006)

13. Ryder, G.S., Ross, K.: A Probability Collectives Approach to Weighted Clustering
Algorithms for Ad Hoc Networks. Communications and Computer Networks, 94–99
(2005)

14. Yokoo, M.: Asynchronous Weak-commitment Search for Solving Distributed Con-
straint Satisfaction Problems. In: Proceedings of the First International Conference
on Principles and Practice of Constraint Programming, pp. 88–102. Springer, Hei-
delberg (1995)

15. Yokoo, M.: Distributed constraint satisfaction: foundations of cooperation in multi-
agent systems. Springer, Heidelberg (2001)

16. Waldock, A., Nicholson, D.: Cooperative Decentralised Data Fusion Using Proba-
bility Collectives. In: First International Workshop on Agent Technology for Sensor
Networks (ATSN 2007), AAMAS 2007 (2007)

17. Weiss, G.: MAAMAW 1997. LNCS, vol. 1237. Springer, Heidelberg (1997)
18. Wolpert, D., Tumer, K.: An introduction to COllective INtelligence. Technical

Report NASA-ARC-IC-99-63, NASA Ames Research Center (1999)
19. Wolpert, D., Wheeler, K.R., Tumer, K.: General principles of learning-based multi-

agent systems. In: Etzioni, O., Müller, J.P., Bradshaw, J.M. (eds.) Proceedings of
the Third Annual Conference on Autonomous Agents (AGENTS 1999), pp. 77–83.
ACM Press, New York (1999)

20. Wolpert, D., Tumer, K.: Optimal payoff functions for members of collectives. Ad-
vances in Complex Systems (2001)

21. Wolpert, D.: Information Theory - The Bridge Connecting Bounded Rational Game
Theory and Statistical Physics. ArXiv Condensed Matter e-prints (2004)

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 254–269, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Tag Mechanisms Evaluated for Coordination in Open
Multi-Agent Systems

Isaac Chao1, Oscar Ardaiz2, and Ramon Sanguesa1

1 Informatics Department, Polytechnic University of Catalonia, Spain
{ichao,sanguesa}@lsi.upc.edu

2 Informatics Department, Public University of Navarra, Spain
oscar.ardaiz@unavarra.es

Abstract. Tags are arbitrary social labels carried by agents. When agents
interact preferentially with those sharing the same Tag, groups are formed
around similar Tags. This property can be used to achieve desired group
coordination by evolving agent’s Tags through a group selection process. In this
paper Tags performance is for the first time compared by simulation with
alternative mechanisms for coordinated learning in multi-agent systems
populations. We target open systems, hence we do not make costly assumptions
on agent capabilities (rational or computational). It is a requirement that
coordination strategies prove simple to implement and scalable. We build a
simulator incorporating competition and cooperation scenarios modeled as one-
shot repeated games between agents. Tags prove to be a very good coordination
mechanism in both, cooperation building in competitive scenarios and agent
behavior coordination in fully cooperative scenarios.

Keywords: Tags, group selection, multi-agent systems, coordination, prisoner’s
dilemma, cooperative games.

1 Introduction

Tag-based coordination has already been evaluated for the Iterated Prisoner’s
Dilemma, (IPD) game and one-shot PD contexts. In this paper we contribute to evolve
the state of art in Tag-based coordination in a twofold manner. First, we build a
simulator for the TagWorld [1] model for the one-shot PD, and we evaluate the
performance of Tags compared with alternative algorithms for multiagent systems
(MAS) coordination. Second, we evaluate the Tag mechanism in a different scenario:
A pure cooperation game, accomplishing the same comparative study as for the PD.
The results here can be useful for researchers aiming to use Tags as a coordination
mechanism for engineering purposes.

An open system can be defined as one in which the structure of the system itself is
subject to changing. The characteristics of such a system are that its components are not
known in advance, can change over time and can consist of highly heterogeneous agents
implemented by different people, at different times, with different software tools and
techniques [2]. The models that this paper deal with, i.e. one-shot PD and one-shot pure
cooperation game, deal with open systems incorporating high uncertainty.

 Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems 255

1.1 Tag Mechanisms

The problem of coordination arises in multi-agent systems (MAS) due to the
distributed nature of the control exercised by the agents. Complexity and heterogeneity
issues apply in open MAS, increasing enormously the costs of coordination. High
dynamicity levels are also common in open systems, with agents entering and leaving
the system continuously (e.g. P2P systems), affecting scalability as well. High levels
of autonomy required by the agents are also in permanent conflict with coordination
mechanisms. Distributed system technologies (e.g. P2P, Grids) evolve more and more
into open MAS systems, inheriting this problematic. We provide a coordination
mechanism relevant for both selfish and cooperative agents in large, open MAS.

Recent trends in both distributed systems and MAS try to tackle the problem of
coordination in MAS from a bottom-up point of view, studying the global properties
that emerge from component/agent interaction. Tags can be used as a powerful
emergent-coordination mechanism for MAS populations. Holland [3] first proposed
the concept of Tags as markings, or social cues, attached to individuals (agents) and
observable by others. Agents maintain and modify Tags on themselves and a team is
formed by collaborating with agents with the same Tag or that satisfy a specific
condition. It is important not to mistake this concept of Tags with the collaborative
Tagging phenomena [4], so fashionable nowadays. The Tags we refer to in this paper
are arbitrary social labels which do not convey any explicit meaning. Real-life
examples of that kind of Tags are gang signals, native tongue and accent, skin color,
etc. The Tags referred to in collaborative Tagging conveys meaning and are used to
annotate semantically items to simplify further Tag-based search.

Riolo [5] has described a number of Tagging approaches to address the IPD. Riolo
outlines basic forms of Tagging: Fixed-bias Tagging, variable-bias Tagging and
evolved-bias Tagging. Tags promote the emergence of cooperation between agents
even in the single round PD scenario [1]. These techniques are attractive since they
don’t require centralized or third party reputation systems, the monitoring of neighbor
behavior, or the explicit programming of incentives. They can also be used in highly
dynamic environments. The results from the single round PD scenario are especially
interesting for the engineering of large-scale open distributed systems, since this
situation is closer to a real highly dynamic open system, where heterogeneous agents
are continuously entering and leaving the system, potentially accounting just for short
term interactions.

In a basic Tag model simulation (TagWorld, [1]), each agent maintains a strategy and
a Tag (both can be initialized at random). Interaction involves pairs of agents playing a
single round of PD. The Tag variable needs to have a quite big space available for
variation (a full integer range suffices). This variable has no direct effect on the PD
actions selected by the agent but is observable by all other agents. In this setting, a very
simple algorithm is applied through a number of rounds: First agents interact
preferentially with other agents sharing the same Tag; then agents evolve following an
evolutionary algorithm which preferentially reproduces agent’s strategies that have
collected bigger payoffs. Probabilistic mutation factors on both Tag and action variables
are applied. The evolution of the population interacting following the prescribed
mechanism precipitates a kind of “group selection” process in which those groups (each
group being defined by a Tag) which are more cooperative tend to predominate but still

256 I. Chao, O. Ardaiz, and R. Sanguesa

die out as they are invaded by non cooperative agents. By constantly changing the Tag
variable value (by reproduction of those with higher payoffs) the agents produce a
dynamic process that leads to high levels of cooperative actions.

Notice that agents remain free to choose the actions “cooperate” or “defeat”. They
still act in a selfish manner pursuing their own interest. However they commit to apply
and respect the Tag algorithm. For more discussion elaborating on the implications of
such a requirement, see [6] and [7]. Extensive experimentation varying a number of
parameters showed that for a big enough Tag space, high levels of cooperation quickly
predominated in the population. Additionally, the fact that the system can recover from
a state of total non-cooperative actions to almost total cooperative actions (under
conditions of constant mutation) demonstrates high robustness. The Tag-based
mechanism produces an efficient, scalable and robust solution based on very simple
individual learning methods (modeled as reproduction and mutation).

1.2 Objectives and Motivation for Research

Provided the huge amount of work on MAS learning mechanisms, and the growing
literature on Tag mechanisms, this section states the motivation and contributions of
this paper. The paper aim is to further investigate the performance and the
applicability of emergent coordination mechanisms based on Tags. Most of Tag-based
related work is concerned with cooperation building in IPD settings (see all the papers
in section 2). A few exceptions target applications of Tags in scenarios others than
this. Notably, applications into realistic P2P scenarios are shown in the work by Hales
[8], [9], [10]. Also other tentative applications are query-routing and processing for
Peer-to-Peer web search [11], preventing free-riding in Grid Virtual Organizations
coordination [12], and modeling the dynamics of firms [13].

We identify two important features missing in all this previous work. First, all the
scenarios are targeting either cooperation building/free-riding controlling (all the IPD-
based studies and the work on P2P systems by Hales) or competitive scenarios where
agents have incentives to behave in opposition to the interest of the rest of the agents
in the system (the rest of applications). What can we expect about the applicability of
Tags into fully cooperative domains? Are Tags useful in those cases? Second, most of
the Tag studies have been conducted relatively aside of the related body of work in
MAS. Agent systems community has developed a number of learning algorithms
which prove simple enough to be used by reactive agents in open systems
environments. What knowledge about tag mechanism can we derive by comparing
their performance with existent MAS learning algorithms?

The importance of exploring the behavior of Tag mechanism in fully cooperative
settings can be realized in practical applications such is Grids. While free-riding is an
important concern in P2P systems [8], this issue is not the most relevant in other
scenarios such as the huge scientific collaborations in Grids [14]. In these settings, free
riding can be controlled through the solid accounting and security mechanisms already
implemented. The most relevant issues in this type of systems come from the complex
management of workflows, resource management policies and so on, all of which are
coordination based tasks, and do not involve necessarily cooperation building.

 Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems 257

The results of the simulations show good performance for the Tag mechanism
compared with alternatives, in both the cooperation and competition games. The
contributions are twofold: We extend the knowledge of Tags in competitive settings (PD)
by comparing their performance with other learning algorithms, and we identify a novel
potential for the Tag mechanism, namely improved scalability of fully cooperative MAS
settings. This opens a new path of applications of the Tag mechanisms, improving the
scalability of cooperative learning agents, just by structuring the population of agents in
groups and evolving these groups following the Tag algorithm (that is applying a process
of group selection).

The rest of the paper structures as follows. Section 2 evaluates related work,
relating its contributions to this paper. Section 3 details experimentation settings, the
Tag mechanism model and the alternative learning mechanisms simulated. Section 4
shows the core results: presents the experimental setup and the performance results on
Tags compared with the alternative coordination mechanisms in both competitive and
cooperative scenarios. A final subsection discussing the results and its applications is
provided. Section 5 concludes the paper and outlines future work.

2 Related Work

In addition to the seminal research by Holland [3], by Riolo [5] in the IPD setting, and
by Hales [1] in the one-shot PD setting, several recent papers have studied in-depth
different aspects of Tag models. We present a summary of the most important
conclusions and compare their contribution to ours.

In [15], the emergence of cooperation in simple Tag models incorporating IPD is
studied by simulation. The results signal the importance of population viscosity
(understood as static populations) in promoting cooperation between agents. Their
simulation also proves that high Tag spaces are required for the emergence of
cooperation. Although the number of Tag values used by the agents fall significantly
after the initial generations, the large number of Tags in the beginning is essential.
The Tag mechanism has the ability to marginalize non cooperative behaviors over the
initial populations

In the models from [6], it is confirmed by simulation that cooperation in Tag models
is evolved based on fitness if sufficient number of new groups are created via mutation.
There has to be enough groups such that the rate of destruction via invasion by
defectors is less than the formation of new groups by mutation. More interestingly,
they build a partial theoretical characterization of this model, throwing the conclusion
that Tag systems are merely promoting mimicry, rather than cooperation. In order to
test this hypothesis, they build a model with agents playing a pure anti-coordination
game instead of the PD. They conclude that when cooperation requires complementary
agents Tags do not lead to cooperation. However, simulations by Hales [16] and
Edmonds [17] show that some level of specialization can be derived between agents
using Tags.

The two papers evaluated so far give a comprehensive evaluation on basic Tag
mechanism behavior in PD settings (as pioneered by Riolo and Hales) but contrary to
our paper, they do not provide any comparison with alternative learning mechanisms.
Also they focus on competitive scenarios and do not target fully cooperative games.

258 I. Chao, O. Ardaiz, and R. Sanguesa

Research in [18] extends the use of Tags to interaction between groups, and not
just to segment the population on groups of interacting agents as in previous models.
The results of the simulations show that Tags incorporate some level of reciprocity
between groups. In [19] they present a Tag model incorporating sexual reproduction
(recombination) of agents. Analyzing this model they find occasional formation of
very stable cooperative societies, able to resist invasion of mimics (defecting agents
with the Tag of a cooperative agent). Both models present extensions of Tag
mechanisms, but no comparison with alternatives is present.

Perhaps the work which can be considered closer to this paper is presented in [20].
Here, a wide comparison between many interaction-biasing processes is performed,
including several topology-based, others based on random networks of neighbors and
also Tags. The extensive simulation includes strategy variations and adaptation process
variations for each of the interaction-biasing processes. As in our case, they approach
the study of the performance of Tags under many different settings and compared with
many other mechanisms. The important result they achieve is that context-preservation,
topologically-based or not, is essential in promoting cooperation. Tags are shown to
perform in-between full context preservation topological-based interaction processes
and no context preservation process. In the Tag interaction process neighbors will tend
to be chosen from a pool of like-Tagged agents, which is much smaller sized than the
whole population of agents. This leads to an increasing probability of context
preservation. This confirms the hypothesis by Howley [15] on viscosity requirements in
Tag mechanisms, coming back to the findings on biological population’s viscosity by
Hamilton [21].

However, there are several important differences between the approach in [20] and
the one in this paper. First, in their simulations they use IDP whereas we use one-shot
PD. As we mentioned earlier, this change is motivated by our intention to approach
fully open systems. Also, in their study, performance comparison is targeted towards
interaction processes analysis, rather than coordination as in our case. I.e., they
approach Tags at the level of agents, acting as an interaction mechanism, while we
approach Tags as a coordination mechanism for the whole system. This makes both
comparative examinations complementary.

3 System Model and Learning Mechanisms

3.1 System Model: Cooperation and Competition Models

We use two fundamental games of game theory in order to represent the two basic
scenarios: These are cooperation, where roughly individual and social welfare match,
and competition of conflicting interests, where this is not necessarily the case (e.g.
social dilemmas). The pure cooperation game and the prisoner’s dilemma respectively
abstract these scenarios.

The PD (Table 1) is a type of non-zero-sum game in which two players try to get
rewards by cooperating with or betraying the other player. In the PD, cooperation is
strictly dominated by defection (i.e., betraying one's partner). Since in any situation
defection is more beneficial than cooperation, all rational players will defect (Nash
Equilibrium). The unique Nash equilibrium for this game is a Pareto-suboptimal

 Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems 259

Table 1. PD Game

 P2 cooperates P2 defects
P1 cooperates R,R S,T
P1 defects T,S P,P

Table 2. Pure Cooperation Game

 P2 action 1 P2 action 2
P1 action 1 A,A B,B
P1 action 2 C,C D,D

solution—that is, rational choice leads the two players to defect even though each
player's individual reward would be greater if they both decide to cooperate. The
challenge is to provide incentives in the repeated game for the agents to achieve the
Pareto optimal solution maximizing population welfare, mutual cooperation. Let T
stand for Temptation to defect, R for Reward for mutual cooperation, P for
Punishment for mutual defection and S for Sucker's payoff. The following inequality
must hold in a PD: T > R > P > S. If the game is iterated or repeated, the mutual
cooperation total payment must exceed the temptation total payment: 2 R > T + S.

The pure cooperation game is symmetric, two players, two strategies, with payoff
matrix as given in Table 2. In the coordination game the following holds: A>C and
D>B. Players in the game must agree on one of the two strategies in order to receive a
high payoff. If the players do not agree, they receive a lower payoff. This game
represents a common scenario in MAS systems when many agents’ goals are to be
aligned, leading to very suboptimal outcomes when this is not the case.

3.2 Tag Mechanism Model

The proposed Tag model (see algorithm in figure 1) is close to TagWorld [1], except
a few details: We bootstrap the agents randomly into a number of groups (identified
by a Tag) from the beginning, as opposed to Hales model where agents begin each
one with a randomly given Tag. This initial bootstrapping is motivated to model real
scenarios where organizations are already in some specific configuration; as expected,
we did not find any impact for the two games analyzed of this initial bootstrapping.
The second difference is that we explicitly forbid agent operation outside the group.
In the case of not finding a suitable mate in its group the agent just skips operation in
this round and goes directly to the evolution phase. This is motivated by making the
group as the scope of agent’s operation. This should not make a big difference since
isolated agents tend to migrate to other groups looking for bigger payoffs. The last
difference is that we mutate just Tags and do not introduce mutation in strategies.
This is unnecessary for the emergence of cooperation/coordination (contrarily to Tag
mutation). Equivalent effect to action mutation can be attained by introducing noise in
the game play (e.g. consider that the action is wrongly interpreted in 1% of the cases,
this will be equivalent to a 1% of mutation in action). We refer to Hales [1] for an
analysis of action mutation impact and the robustness of the Tag mechanisms to it.

260 I. Chao, O. Ardaiz, and R. Sanguesa

Bootstrapagents in groups

LOOP a number of rounds

LOOP each group

LOOP each agent in the group ((operationphase)

Interact with another agent from the group(i.e. same Tag)

Collect Payoff

ENDLOOP

ENDLOOP

LOOP each agent in the population (evolutionphase)

Select partner agentsin the population

If partner outperformsagent

Then copy partner Tag (migrate to its group) and action

Mutate: agent applies probabilistic Tag mutation

ENDLOOP

ENDLOOP

Bootstrapagents in groups

LOOP a number of rounds

LOOP each group

LOOP each agent in the group ((operationphase)

Interact with another agent from the group(i.e. same Tag)

Collect Payoff

ENDLOOP

ENDLOOP

LOOP each agent in the population (evolutionphase)

Select partner agentsin the population

If partner outperformsagent

Then copy partner Tag (migrate to its group) and action

Mutate: agent applies probabilistic Tag mutation

ENDLOOP

ENDLOOP

Fig. 1. Proposed Tag algorithm

The interaction involves Tag-biased mate selection (i.e. within the group) and
bilateral playing of the game. The corresponding payoff is collected by the initiator
agent. The evolution phase is ruled by evolutionary learning, replication of the fittest.
This is common in all Tag models from Riolo to Hales and others. Summarizing, the
Tag mechanism model is very close to the one by Hales, except several details. The
difference comes from the type of interactions; we will test the performance in pure
cooperation scenarios, and not only in social dilemma games such as PD.

An implicit assumption of the Tag mechanism is that agents are capable of
comparing utilities and relating them to actions. This is the case for the proposed
games given that the agents know the payoff matrix. Different applications than the
games tested here may require adequate services to assess/compare utilities. Another
assumption is the existence of a reliable discovery mechanism that allows agents to
locate other agents sharing the same Tag (i.e. belonging to the same group). Also,
agents are able to communicate exchanging information. Scalability issues arising in
practical applications from this assumption can be mitigated by sorting agents in
groups following their Tags, reducing the search space.

3.3 MAS Learning Algorithms Selection

In order to achieve scalability in opens systems, we limit the type of the coordination
mechanism allowed, to those meeting a set of conditions and practical issues: Being
simple to implement (i.e. deploy and use) in real systems; not imposing computational
or other expensive requirements on the agents; not requiring a central coordination
component (i.e. be self-organizing). Properties are expected to emerge at the system
level from individual agent’s interaction. We exclude team learning and coalition

 Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems 261

formation literature from the set of mechanisms selected. Traditionally, most of the
coalition formation algorithms are rather theoretical models based on deliberative
agents. Limitations of these algorithms that render them inapplicable to large scale
distributed systems are a high computational complexity, and unrealistic assumptions
regarding the availability of information [22]. Some novel coalition formation
mechanism could be incorporated in a simulation with more different scenarios [23]
[24], though this is left for future work.

From the set of possible MAS mechanisms to include in the simulation complying
with the characteristics above, we have selected two important agent strategies
emerging from game theory IPD tournaments, namely TFT and the Pavlov strategy
(also called win stay, loose shift). We have introduced a simple Reinforcement Learning
(RL) algorithm based on the extensions on the Pavlov strategy. Still in the camp of RL,
we consider a basic Q-Learning algorithm. The last learning mechanism we have
incorporated is a simple genetic algorithm for the whole population, with mimicry of the
fittest alternative. It is important to notice that the proposed Tag algorithm incorporates
the same evolutionary algorithm, with the only difference of splitting the population in
groups. We use the following alternative learning mechanisms for the comparison:

- Generalized TFT, with random initialization of the action. This differs from the
original TFT definition [25], but this is normal if we consider that the strategy is
applied to the whole population, which would render a trivial game by starting all
agents from cooperation. For the PD scenario TFT means a player defect just if the
previous partner (the previous agent with whom he played) did so. Here TFT is applied
to successive one-shot interactions with different agents, which is a big difference from
typical TFT applied in IPD tournaments: There, each interaction partner is maintained
for a definite period before switching to a new partner. The purpose is to show how the
population effectively converges to coordinated outcomes under this simple strategy,
even in one-shot interactions. For the pure cooperation game, TFT means to blindly
copy previous partner agents, in the hope of having the whole population converging
via this heuristic. Though this is of improbable success, we keep all learning
mechanisms in both games to render some symmetry in the comparison.

 - WSLS (Win stay, loose shift) or Pavlov strategy [26]. Here an agent defects only if
both players do not agree on the previous move. It is a kind of TFT complement. The
idea behind WSLS is to allow agents to use their previously-experienced utilities in
order to decide next action, rather than partner’s previous moves as it is done TFT.
This makes the agents more reactive to their own experiences. The intuition is that
emergence of coordination will be harder in one-shot scenarios than in IPD, since
agents will have harder time relating utility to actions leading to payoff increases.

- RL (Basic Reinforcement Learning algorithm). Reinforcement Learning has been
widely studied in agent theory (mostly in static environments) and in MAS settings.
However the body of work in multi-agent RL is still small, contrasting with the
literature on single-agent learning, as well as the literature on learning in game theory
[27]. It has been problematic extending convergence results to stochastic games.
Consider for example the algorithm in [28]: The RL formula for the agent internal
state (Equation 1) can be explained as follows: We have for the agent an internal

262 I. Chao, O. Ardaiz, and R. Sanguesa

state, h, representing its satisfaction level. The learning player plays C (cooperation)
when h>0, otherwise D (defection). If C is played and the resulting score f is larger
than s (a fixed constant aspiration level), h increases. If f is smaller than s, then h
decreases. Conversely, successful D decreases h and vice-versa. The constant
aspiration level s is taken in the interval 1≤ s ≤3. Specifically, we set s to 2. The
interested reader may see more details about how this relates with the payoffs we use
for the PD in [28]. As for the pure cooperation game, we expect a good performance
of this algorithm.

Δh = a ⋅sgn(f − s) ⋅sgn(h) (1)

- Q-Learning. The Q-learning [29] is a form of RL algorithm that does not need a
model of its environment and can be used on-line. Its convergence conditions have
been widely studied, but convergence results in MAS have been always hard to
achieve, rendering most of the advances to plausible heuristics [30]. We chose the
simpler Q-learning available with typical values for the parameters, including e-
greedy selection. Again, a good performance for the coordination game is expected.
For the PD, we have precedent studies showing good results for the IPD [31].
However the performance in one-shot PD might differ from the one in IPD scenarios.
We use the formula given in Equation 2 for updating the Q-value. In this formula, α is
the learning rate: The bigger the learning rate the more important is the impact of
environment reinforcement. We set up a learning rate of 0.5. As for the Q-value
selection, we use an e-greedy policy with a probability of 0.1 of exploring randomly
and a probability of 0.9 of exploiting the highest Q-value.

Qi,t+1 ← Qi,t + α(r − Qi,t) (2)

- Evolutionary Learning (Evo). Applying the most basic evolutionary learning, agents
reproduce asexually copying the action played by the fittest partner they find. In our
setting each agent chooses a partner randomly and copies its action if the agent
outperforms him. In the same way that previous strategies (TFT and WSLS) and
learning from reward mechanisms (basic RL, Q-learning) are used to decide and
evolve the agent’s next action, the evolutionary learning mechanisms (Evo and Tags)
are used to derive next actions. What gets copied are agents actions (e.g. cooperate or
defect for the PD, 0 or 1 for the pure cooperation game) and not strategies (e.g. RL
strategy, TFT strategy, etc). Since the evolutionary algorithm is also used in the Tag
mechanism itself, the comparison can be used to further evaluate which building
blocks from typical Tag mechanisms are promoting cooperation/coordination and
how. For a full theoretical evaluation of this type evolutionary algorithm in a varied
range of mutation levels, the interested reader may see [32].

4 Experimental Results and Discussion

Given a population of N agents playing repeatedly one-shot PD and the pure
cooperation game, we want to compare the performance of several coordination
mechanisms in order to maximize social welfare.

 Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems 263

4.1 Experimental Setup

We build a simulator in java enabling the implementation of different agent coordina-
tion protocols. Relevant parameters for the simulator are shown in Table 3. We fix a
population of 100 agents, a representative size big enough to consider emergence in
Tag-based coordination. Each experiment run is composed of 500 rounds to be able to
average results over long runs. Tag mutation rate is fixed in the comparison with
alternative MAS coordination mechanisms to m=0.01 (cf. Table 3), a normal value in
TagWorld, high enough to promote variability without fully destabilizing the system.
This is a typical value widely used in previous studies.

Table 3. Experimental parameters

NAME VALUE

NUMBER OF ROUNDS 500 (fixed)

AGENT POPULATION 100 (fixed)

TAG MUTATION PROBAB m 0.001, 0.01, 0.1

Agents are initialized with random actions in all cases, and given an initial Tag (in
the case of the Tag mechanism). We instantiate the matrices for the PD and co-
ordination games as shown in Table 4. The payoffs for the pure cooperation game are
the canonical ones.

Table 4. Payoff Matrix instantiation

PD Cooperate Defect // COORD Action 1 Action 2
Cooperate 3,3 1,4 // Action 1 1 -1
Defect 4,1 1,1 // Action 2 -1 1

4.2 Performance Comparison in the PD Game

For the PD game we measure two scores: Cooperation Level, the population percentage
cooperating; varies on the range 0 to 1, and Average Utility: Social Welfare; the
population average utility. The bounds are 1 (Sucker payoff) and 4 (Temptation payoff).
We are interested in the long term behavior of the Tag mechanism compared to the rest
of mechanisms. We calculate on each round the average of the property (Cooperation
Level or Average Utility) over the total number of rounds (500). We repeat the
experiment for each parameters configuration 10 times and calculate the average with
standard deviation as result of the experiment for each setting. The results are shown in
Table 5. We provide an additional graphical display of a sample experiment run in
figure 2.

Figure 2 shows, in the long run, similar performance of TFT and Tags in emerging
total cooperation in the PD, but several rounds before in Tag-based models. The same
stable pattern holds in rounds 200-500m which is not shown here. From the long run
tabular results (Table5) we see a higher variance on the TFT mechanism in reaching

264 I. Chao, O. Ardaiz, and R. Sanguesa

Table 5. Performance comparison for the PD. Mean and standard deviation over 10 experiment runs

PD GAME
MECHANISM

COOP
LEVEL
MEAN

COOP
LEVEL
SD

///// PD GAME
MECHANISM

AV
UTILITY
MEAN

AV
UTILITY
SD

TFT 0,87 ± 0,32 ///// TFT 2,72 ± 0,42

WSLS 0,5 ± 0,01 ///// WSLS 2,23

± 0,01

RL 0,20 ± 0,23 ///// RL 1,72

± 0,48

QL 0,52 ± 0,01 ///// QL 2,37

± 0,01

EVO 0,02 ±0,01 ///// EVO 1,27

±0,03

TAGS (m=0.01) 0,98 ± 0,01 ///// TAGS (m=0.01) 2,84

± 0,02

Cooperation Level
(PD GAME)

0

0,2

0,4

0,6

0,8

1

0 50 100 150 200

Round

C
o
o
p
er

at
io

n
 L

ev
el

TFT WSLS

RL QL

EVO TAGS

Fig. 2. Performance results for a PD Game

cooperation, i.e. more unstable. Pavlov strategy (WSLS) is just able to maintain the
initial random distribution of strategies, and never converges to any pure cooperation or
defection. The simple RL mechanism performs badly; the one-shot PD is a harder
scenario than the IPD for coordination. The Q-Learning mechanism maintains a stable
equilibrium between cooperative and non cooperative agents but is not able to promote
further cooperation. From the tabular results in table 5 we can see an important
difference on the variance, much higher in RL, proving a better stability on the Q-
Learning. The evolutionary mechanism is not able to sustain cooperation. This confirms
that niches formed by dividing the population in groups sharing Tag are essential in
promoting cooperation (the context preservation referred in [20]).

4.3 Performance Comparison in the Pure Cooperation Game

For the Coordination Game we measure the Average Utility or Social Welfare. The
bounds are 1(total coordination) and -1 (total uncoordinated behavior).

 Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems 265

Table 6. Performance comparison for the Coordination Game. Mean and standard deviation
over 10 experiment runs.

COORD GAME MECHANISM AV UTILITY MEAN AV UTILITY SD
TFT -0,01 ± 0,01
WSLS -0,01 ± 0,01
RL -0,00 ± 0,01
QL 0,05 ± 0,01
EVO 0,94 ±0,01
TAGS (m=0.01) 0,95 ± 0,01

Average Utility
(COORD GAME)

-1

-0,5

0

0,5

1

0 50 100 150 200

Round

A
ve

ra
g
e
U
ti
li
ty

TFT WSLS

RL QL

EVO TAGS

Fig. 3. Performance results for the Coordination Game

Considering the pure cooperation game (Table 6, figure 3), TFT and WSLS are not
helpful (as expected). The RL does not achieve any important improvement. The
more elaborate Q-Learning algorithm is able to evolve a small level of coordination.
This result is unexpected since reinforcement learning agents should achieve good
performance in a so simple coordination game. However, again we recall multiagent
RL literature on the controversy of convergence results in multiagent settings [33].
Our simulation shows two (basic) reinforcement learning mechanisms not converging
on the PD and pure cooperation game scenarios. In contrast, Tags are able to
coordinate the population. The evolutionary algorithm also performs very well. We
conclude that it is the evolutionary aspect from Tag mechanisms which is mostly
provoking the convergence of actions in fully cooperative domains.

4.4 Discussion and Applications

We summarize here the most important conclusions of this comparative study. First,
the Tag mechanism shows a very good performance in both scenarios: The PD and the
pure cooperation game. This confirms in the broader scope of previous work in MAS,
Riolo, Hales and others (see section 2) and extends the state of the art of the Tag
mechanisms applied to fully cooperative domains. This expands Tag mechanisms from
just social dilemmas and competitive settings to a full range of MAS applications,

266 I. Chao, O. Ardaiz, and R. Sanguesa

bridging its application to both competitive and cooperative multiagent learning fields
[34]. Second, we show how simple MAS learning mechanisms have worst
performance in both competitive and cooperative scenarios, in the repeated one-shot
games settings. It has been surprisingly found a bad performance of the reinforcement
learning agents (simple RL and Q-Learning) in both games; especially surprising in the
case of the pure cooperation game. We propose two plausible reasons for this to
happen: First the problems of RL with convergence in MAS settings anticipated in
literature [33]. Second the fact that interactions are not iterated, rendering a much more
unpredictable context for agents interactions. In such environment, simple model-free
reinforcement learning agents get a hard time coordinating actions.

Tag mechanisms are a very promising mechanism for evolving swarms of agents
into optimized outcomes. The applications of these results are varied in open MAS, in
demanding scenarios where alternative learning mechanisms might fail or prove
inapplicable due to computational requirements limitations. The most compelling are
those envisaged for coordination purposes in Service Oriented Architectures and Next
Generation Computational Grids [14]. In this latter scenario, the management of first
level system entities, Virtual Organizations (VOs), can be mapped directly to the
concept of a group (identified by a Tag). In fact, most of the slight variations we
introduced on the TagWorld model (see section 3.2) target the full alignment with the
original VO concept in Grids. A research agenda has been outlined in [12], and
partially addressed the form of an application to automatic alignment of resource
management policies in VOs [35].

5 Conclusions and Future Work

In this paper Tags are for the first time compared by simulation with alternative
mechanisms for coordinated learning in MAS populations. We target open MAS,
hence we do not make costly assumptions on agent rational or computational
capabilities. It is a requirement for us that coordination strategies prove simple and
scalable. Tags are simple, requiring from the agents to maintain a marker visible to
the rest of the agents. They show equal or better performance in the two games than
any other of the mechanisms tested. Tags still remain loosely coupled with the
system, which enables for combination with other MAS coordination mechanisms.
An example of this complementarily can be found in [36], showing a mechanism
which uses Tags optimizing decentralized Grid markets.

As we have reviewed in section 2, many related work has evaluated Tag
mechanism internals for the IPD. Direct relation of the emergence of cooperation with
mechanism parameters such as Tag space length and mutation rate is clearly
identified and analyzed. However no prior study has evaluated how Tag mechanism
performs in one-shot PD, compared to the alternative MAS learning algorithms. With
the experiments from section 4, we have addressed this lack of comparability. We
have found that Tags effectively work as indirect reciprocity enabler. Most of the
algorithms had a hard time stabilizing their learning in the one-shot PD setting.
Reciprocity built on repeated interaction with a same partner (as for TFT in IDP
settings) or static contexts (as in single agent reinforcement learning) reveal crucial
factors for the rest of the mechanisms in order to achieve accurate learning. The basic

 Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems 267

strength of Tag mechanism is that it shows robust behavior in a demanding setting
where other single MAS coordination mechanisms fail. Apart from reputation
mechanisms, there are very few mechanisms addressing indirect reciprocity. Tags
generate indirect reciprocity without the need of complex, system dependent
reputation management, and perform well compared with alternatives. A partially
theoretical analysis of all the mechanisms enabling indirect reciprocity (including the
group selection process behind Tag mechanism) can be found in [37].

As for the pure cooperation game, Tags achieve a good performance while the rest
of the mechanisms again have problems coping with short-term interaction. The
evolutionary mechanism is the exception, achieving a comparable performance. It is
the evolutionary learning present in the Tag mechanism the main driver of
performance increase in this scenario. An important open issue for state-of-the-art
Tag models is how to achieve coordination between complementary policies, which is
difficult since Tags promote basically mimicry [6]. A solution to this issue may
involve changes in the evolution of agent strategies when entering new groups, or
alternatively, trying more elaborate Tag similarity measures for interaction biasing.

Future work will comprise three basic areas. The first area is Tag mechanism
extension to multiple Tags per agent and variations on the learning, using alternatives
to evolutionary learning. Complementing the simulation approach with theoretical
analysis, such as proposed in [38] can elucidate better simulation scenarios, leading to
improved accuracy. The second area consists on extending the comparison to more
general coordination and organizational mechanisms, such as decentralized markets
[39], and explore combinations between them (Tags are highly modular hence bear
easy integration with existent mechanisms). Scalable coalition-formation mechanisms
[22] could also be included in this area of research. A third area of improvement is on
realistic models, beyond coordination games. In such models payoffs are based on real
tasks execution modeling [40] and not in an abstract matrix. Deployment of Tags in a
real prototype can lead to a performance evaluation of Tags in real networks settings.

References

1. Hales, D. (2000) Cooperation without Space or Memory: Tags, Groups and the Prisoner’s
Dilemma. In Moss, S., Davidsson, P. (Eds.) Multi-Agent-Based

2. Sycara, K.: Multiagent Systems. AI Magazine 10(2), 79–93 (1998)
3. J. Holland. The effects of labels (Tags) on social interactions. Working Paper Santa Fe

Institute 93-10-064 (1993)
4. Golder, S.A., Huberman, B.A.: The Structure of Collaborative Tagging Systems. Information

Dynamics Lab, HP Labs (Visited November 24, 2005)
5. Riolo, R.: The efects of Tag-mediated selection of partners in evolving populations playing

the iterated prisoners dilemma. Nature 414, 441–443 (2000)
6. McDonald, A., Sen, S.: The Success and Failure of Tag Mediated Evolution of

Cooperation. In: Tuyls, K., ’t Hoen, P.J., Verbeeck, K., Sen, S. (eds.) LAMAS 2005.
LNCS (LNAI), vol. 3898, pp. 155–164. Springer, Heidelberg (2006)

7. Arteconi, S., Hales, D., Babaoglu, O.: Greedy Cheating Liars and the Fools Who Believe
Them. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS
(LNAI), vol. 4335. Springer, Heidelberg (2007)

268 I. Chao, O. Ardaiz, and R. Sanguesa

8. Hales, D.: From Selfish Nodes to Cooperative Networks – Emergent Link-based
Incentives in Peer-to-Peer Networks. In: Proceedings of The Fourth IEEE International
Conference on Peer-to-Peer Computing (p2p2004), Zurich, Switzerland, August 25-27,
2004. IEEE Computer Society Press, Los Alamitos (2004)

9. Hales, D., Patarin, S.: Feature: Computational Sociology for Systems In the Wild: The
Case of BitTorrent. IEEE Distributed Systems Online 6(7) (2005)

10. Hales, D., Babaoglu, O.: Towards Automatic Social Bootstrapping of Peer-to-Peer
Protocols. ACM SIGOPS Operating Systems Review (Special Issue on Self-Organizing
Systems) 40(3) (July 2006)

11. Weikum, G., Triantafillou, P., Hales, D., Schindelhauer, C.: Towards Self-Organizing
Query Routing and Processing for Peer-to-Peer WebSearch. In: Proceedings of the
European Conference on Complex Systems (ECCS 2005), Paris, France, November 14,
2005. i6doc, Belgium (2005) (in press)

12. Chao, I., Ardaiz, O., Sanguesa, R.: Tag Mechanisms Applied to Open Grid Virtual
Organizations Management. In: Anthony, R., Butler, A., Ibrahim, M., Eymann, T., Veit,
D.J. (eds.) Proceedings of the Joint Smart Grid Technologies (SGT) and Engineering
Emergence for Autonomic Systems (EEAS) Workshop, Dublin, Ireland, pp. 22–29 (2006)

13. Mollona, E., Hales, D.: Modeling Firm Skill-Set Dynamics as a Complex System. In:
Proceedings of the European Conference on Complex Systems (ECCS 2005), Paris,
France, November 14, i6doc, Belgium (in press, 2005)

14. Next Generation Grids Expert Group Report 3, Future for European Grids: GRIDs and
Service Oriented Knowledge Utilities

15. Howley, E., O’Riordan, C.: The Emergence of Cooperation among Agents using Simple
Fixed Bias Tagging. In: IEEE Congress on Evolutionary Computation, September 2-5
(2005)

16. Hales, D.: The Evolution of Specialization in Groups. In: Lindemann, G., Moldt, D.,
Paolucci, M. (eds.) RASTA 2002. LNCS (LNAI), vol. 2934. Springer, Heidelberg (2004)

17. The Emergence of Symbiotic Groups Resulting from Skill-Differentiation and Tags, Bruce
Edmonds. JASSS 9(1), January 31(2006)

18. Zohar, A., Rosenschein, J.S.: Using Tags to Evolve Trust and Cooperation Between
Groups. In: The Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, Utrecht, July 2005, The Netherlands, pp. 1199–1200 (2005)

19. Floortje Alkemade, D.D.B., van Bragt, J.A.: La Poutré: Stabilization of Tag-mediated
interaction by sexual reproduction in an evolutionary agent system. Inf. Sci. 170(1), 101–
119 (2005)

20. Cohen, M., Riolo, R., Axelrod, R.: The emergence of social organization in the Prisoner’s
Dilemma: how context-preservation and other factors promote cooperation Santa Fe
Institute Working Paper 99-01-002 (1999)

21. Hamilton, W.D.: Man and Beast: Comparitive Social Behaviour. In: Eisenberg, J.F.,
Dillon, W.S. (eds.). Smithsonian Press, Washington (1971)

22. Coalition Formation: Towards Feasible Solutions. Fundamenta Informaticae 63(2-3), 107–124
(2004)

23. Lerman, K., Shehory, O.: Coalition formation for large-scale electronic markets. In: Proc.
of ICMAS 2000, Boston, MA, pp. 167–174 (2000)

24. Kraus, S., Shehory, O., Taase, G.: Coalition formation with uncertain heterogeneous
information. In: Proc. Of AAMAS 2003, Melbourne, Australia, pp. 1–8 (2003)

25. Axelrod, R.: The Evolution of Cooperation. Science 211(4489), 1390–1396 (1981)
26. Nowak, M., Sigmund, K.: A strategy of winstay,lose-shift that outperforms tit-for-tat in the

prisoner’sdilemma game. Nature 364, 56–58 (1993)

 Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems 269

27. Shoham, Y., Grenager, T., Powers, R.: Multi-agent reinforcement learning: A critical
survey. Tech.rep., Stanford University (2003)

28. Wakano, J.Y., Yamamura, N.: A Simple Learning Strategy that Realizes Robust
Cooperation Better than Pavlov in Iterated Prisoners’ Dilemma. J. Ethology 19, 9–15
(2001)

29. Watkins, C.: Learning from Delayed Rewards, Thesis, University of Cambidge,England
(1989)

30. de Cote, J.E.M., Lazaric, A., Restelli, M.: Learning to cooperate in multi-agent social
dilemmas. In: AAMAS 2006, pp. 783–785 (2006)

31. Sandholm, T., Lesser, V.: Coalitions Among Computationally Bounded Agents. Artificial
Intelligence, special issue on principles of multiagent systems 94(1) (1997)

32. Willensdorfer, M., Nowak, M.A.: Mutation in evolutionary games can increase average
fitness at equilibrium. J. theor. Biol. 237, 355–362 (2005)

33. Bowling, M.: Convergence problems of general-sum multia-gent reinforcement learning.
In: Proceedings of the Seventeenth International, Conference on Machine Learning, pp.
89–94 (2000)

34. Durfee, E.H., Rosenschein, J.S.: Distributed Problem Solving and Multi-Agent Systems:
Comparisons and Examples. In: Proc. 13th Int’l Distributed Artificial Intelligence
Workshop, pp. 94–104 (1994)

35. Chao, I., Ardaiz, O., Sanguesa, R.: A Group Selection Pattern for agent-based Virtual
Organizations coordination in Grids. In: International Conference on Grid computing,
High-Performance and Distributed Applications (GADA 2007), Vilamoura, Algarve,
Portugal, November 29- 30 (2007)

36. Chao, I., Ardaiz, O., Sanguesa, R.: A Group Selection Pattern Optimizing Job Scheduling
in Decentralized Grid Markets. Poster accepted to the International Conference on Grid
computing, High-Performance and Distributed Applications (GADA 2007), Vilamoura,
Algarve, Portugal, November 29 - 30 (2007)

37. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)
38. Gotts, N.M., Polhill, J.G., Law, A.N.R.: Agent-based simulation in the study of social

dilemmas. Artificial Intelligence Review 19, 3–92 (2003)
39. Eymann, T., Reinicke, M., Streitberger, W., Rana, O., Joita, L., Neumann, D., Schnizler,

B., Veit, D., Ardaiz, O., Chacin, P., Chao, I., FreiTag, F., Navarro, L., Catalano, M.,
Gallegati, M., Giulioni, G., Schiaffino, R.C., Zini, F.: Catallaxy-based Grid Markets. In:
Veit, D.J., Eymann, T., Jennings, N.R., Müller, J.P. (eds.) Multiagent and Grid Systems
Issue: Smart Grid Technologies & Market Models, vol. 1(4), pp. 297–307 (2005)

40. Galstyan, A., Czajkowski, K., Lerman, K.: Resource Allocation in the Grid with Learning
Agents. Journal of Grid Computing 3(1–2), 91–100 (2005)

Toward a Probabilistic Model of Trust

in Agent Societies

Federico Bergenti

Dipartimento di Matematica
Università degli Studi di Parma

Viale G. P. Usberti, 53/A – 43100 Parma, Italy
federico.bergenti@unipr.it

Abstract. The literature about trust in societies of agents collects a
huge number of works that analyse almost any facets of this concept
from nearly every point of view. Nevertheless, an accepted and stable
formal model of trust in agent societies is lacking. In this paper, we ad-
dress this remarkable flaw of the current research by introducing a proba-
bilistic model of trust capable of capturing two-party interactions, either
direct of mediated by a Guarantor. Some interesting properties of this
model are demonstrated and the final result of this work is an estimation
(upper-bound) of the improvements that we expect from the inclusion of
a Guarantor in a two-party interaction. In details, after an introductory
section, Section 2 provides the foundations of our model and quantifies
the increment of the utility that agents perceive because of the medi-
ation of a Guarantor. Then, Section 3 deals with the decision-making
strategies of rational agents and it shows a worst-case specialization of
our model that justifies why agents are more likely choosing Guarantor-
mediated interactions. Section 4 describes the overall results of this work
in terms of bounds and evaluation of performances of the effects of me-
diation in interactions. Finally, Section 5 summarizes the main outcome
of this work and outline some future lines of development.

1 Introduction

Interaction is a key feature of agenthood (maybe “the” key feature) and secure,
trusted and privacy-aware interactions are what we truly want from real-world
agent societies [4]. While it is easy to identify a minimum set of requirements ca-
pable of providing guarantees of security in multi-party interactions, e.g., autho-
rization and authentication, we are not yet ready to identify similar requirements
for trusted and privacy-aware interactions.

This work is along the lines of the research that is trying to identify a set
of abstractions and mechanisms to guarantee trust and privacy-awareness in
multi-agent interactions. In particular, the objective of this work is to develop
a quantitative and probabilistic model of trust in order to show a sound proof
of the convenience of Guarantor-mediated interactions over direct interactions.
This objective is addressed taking into account a toy scenario that counts agent

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 270–283, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Toward a Probabilistic Model of Trust in Agent Societies 271

X and agent Y only (two-party interaction). X is interested in signing a contract
with Y and it is in the process of deciding whether to do it directly or through
the mediation of a middleman, the Guarantor G. We take a rational standpoint
and we assume that X discriminates between direct and mediated interaction
on the basis of a utility function. Moreover, we take an incomplete information
assumption and we say that X cannot take a fully-informed decision; rather it
has to deal with a risky situation, which immediately turns our model into a
probabilistic one.

The main results of the study of this toy scenario are based on a worst-case
analysis of a much more general model and they provide a sound proof of why
rational agents are more likely choosing Guarantor-mediated interactions rather
then direct interactions.

This paper is organized as follows: next section provides the foundations of
our model and it quantifies the increment of the utility that agents perceive af-
ter the inclusion of a Guarantor in a two-party interaction. Section 3 deals with
the decision-making strategies of rational agents and it quantitatively shows
why agents are more likely choosing Guarantor-mediated interactions. Section 4
describes the result of this work in terms of bounds and evaluation of perfor-
mances of the effects of mediation in interactions. Finally, Section 5 summarizes
the overall results of this work and outline some future lines of development.

2 A Model of Guarantor-Mediated Interactions

This section presents a set of abstractions and accounts for their relationships
in order to setup a probabilistic model of interactions between agent X, agent Y
and (possibly) Guarantor G. It is worth noting that this model is symmetrical
for X and Y.

2.1 Abstractions

A very basic assumption that we take in the discussion of our model is that,
from the point of view of security, trust and privacy, we can always reduce a
two-party interaction to the act of signing of a contract. Therefore, from now
on, we always refer to the joint act of signing a contract as a means to study
any other form of two-party interaction.

Trust. The problem of providing a quantitative definition of trust in societies
of rational agents has been addressed in many different ways [14]. While we
recognize the importance of cognitive models of trust, e.g., [5], we date back
to the abstract and coarse-grained definition of trust given in [9] to come to a
probabilistic interpretation this notion.

In particular, if “Trust is the subjective probability by which an individual, A,
expects that another individual, B, performs a given action on which its welfare
depends,” it is quite reasonable to model trust as an estimation of the prob-
ability by which B will perform the target action. Many factors contribute to
this estimation [11,13]; nonetheless we prefer to discard all these factors and we

272 F. Bergenti

adopt a blackbox approach in which we model trust as a random variable t in
an interval [tmin, tmax].

The only assumption that we take in our model is that we require such an es-
timation to be performed by a rational agent A with some reasonable amount of
information regarding B and its intentions of performing the action. This guar-
antees that the real probability of B performing the action lays in [tmin, tmax],
with both tmin and tmax reasonably strict around it.

Our model of two-party interactions relies on the following quantities, where
X and Y are agents and c is a contract:

– pc,X : the probability that X would carry out successfully all the obligations
stated in c.

– tc,X,Y : the level of trust X has in Y with respect to c, i.e., an estimation of
pc,Y from the point of view of X.

Since trust expresses the estimation of a probability, it is clear that tmin

and tmax are both between zero and one. The assumption tmax ≥ tmin is not
restrictive.

Contract. The study of all different forms of contract is subject of a large lit-
erature and even restricting to the types of contract that we normally consider
in societies of agents [3], the diversity of possibilities is impressive. We acknowl-
edge this literature, but for the sake of simplicity and for the need of quantitative
tractability, we stick on a very simple model of contract. This model involves
only two signers, X and Y, and it is totally described by two triples: each signer
knows only one of the two triples.

From the point of view of agent X (but the notation is symmetrical for Y),
a contract c is described by a triple, that we call subjective evaluation, that
contains:

– A reward Rc,X that agent X receives upon success of contract c;
– An investment Ic,X that agent X makes in contract c, i.e., a certain assured

value that it gives up when signing contract c; and
– A penalty Pc,X that agent X receives if the contract fails because of the other

party.

Such values are not restricted to be monetary quantifications, rather they quan-
tify of the level of satisfaction of X. All in all, such quantities are subjective
and therefore we cannot assess any mathematical relations between values of
the triples of two different agents, even though they refer to the same contract.

More in details, a contract c has the following properties from the point of
view of X :

– If the contract is honoured, agent X will receive Rc,X with probability one;
and

– If the contract fails because of agent Y, agent X will receive Pc,X with
probability one.

Toward a Probabilistic Model of Trust in Agent Societies 273

Another assumption concerns the relative ordering of reward, investment and
penalty in a single subjective evaluation. We are interested in contracts whose
parameters are ordered as follows:

Pc,X ≤ Ic,X ≤ Rc,X

This inequality captures the essence of risky contracts. Moreover, it implies that
we are interested in agents that sign contracts with the intent of honouring
them. Any failure in honouring a contract turns into a loss of utility (see later
on): Ic,X −Pc,X . Furthermore, agents in our model do not consider their failure
in honouring a contract, they assume that they can honour all contracts they
sign; nevertheless the uncertainty about the other signer remains.

Guarantor. The abstraction of Guarantors was introduced and discussed in
details in [1,2]. For the sake of completeness, we can simply say that here Guar-
antors are sources of highly trusted information and they are trust catalysts. If
agent X requests a piece of information to Guarantor G, it assigns a correct-
ness probability of one to the received response. Nevertheless, we introduce some
failure probability in order to account for the idea that the use of additional in-
formation, i.e., the information that Guarantor provides, always introduces some
risk, even though the information source is highly trusted and reliable.

2.2 Expectation of the Utility of Agents

The rest of this section analyses the utility that agents estimate in the process
of signing a contract. This utility is formalised with and without the mediation
of a Guarantor, and then such two cases are compared.

Direct interaction. Taking into account the previous definitions, we can ex-
plicitly write the expected value of the utility that agent X receives from a
contract with agent Y :

U
r

X,c = Rc,X · pc,Y + Pc,X · (1 − pc,Y)

where the superscript “r” indicates that the real probability is used in this equa-
tion, and not an estimation of its value. This utility is not available to any agent
since pc,Y is not observable. Instead, agent X estimates the expected utility using
its trust in the other party (agent Y):

U
e

X,c = Rc,X · tc,X,Y + Pc,X · (1 − tc,X,Y)

Taking into account that agent X invests a certain value when it signs the
contract, and that any contract has some probability ps

c,X of being finally signed,
the total average utility that agent X perceives is:

U
r

X = U
r

X,c · ps
c,X + Ic,X · (1 − ps

c,X) =
= [Rc,X · pc,Y + Pc,X · (1 − pc,Y)] · ps

c,X + Ic,X · (1 − ps
c,X)

As before, the agent can only estimate the total utility, obtaining:

U
e

X = U
e

X,c · ps
c,X + Ic,X · (1 − ps

c,X) =
= [Rc,X · tc,X,Y + Pc,X · (1 − tc,X,Y)] · ps

c,X + Ic,X · (1 − ps
c,X)

274 F. Bergenti

Guarantor-mediated interaction. We can adapt the previous equations to
the case in which the contract is evaluated using additional information obtained
from a Guarantor.

In this case, the failure probability that we associate with a Guarantor has to
be considered. This failure probability accounts for the possible uncertainty of
the information that the Guarantor provides.

In particular, we assume that an error of a Guarantor may cause a failure of
the contract. In this case agent X receives Pc,X . This risk is acceptable if we
assume that in the case of an error, the Guarantor itself, and not contractors,
pays the penalty.

Under this assumption, the new expected value of the utility of signing con-
tract c is:

U
G,r

X,c = Rc,X · P{c honoured} + Pc,X · P{c not honoured}

where the G superscript indicates that some information from the Guarantor is
considered when signing the contract.

Under the assumption that pG
k is the probability of the Guarantor to provide

erroneous information and that any error of the Guarantor immediately causes
the contract to fail, it is possible to express the total contract success and failure
probabilities:

P{c honoured} = pc,Y · pG
k (1)

P{c not honoured} = P{c not honoured|Guarantor succeeds} +
+ P{c not honoured|Guarantor fails}
= (1 − pc,Y) · pG

k + 1 − pG
k = 1 − pc,Y · pG

k (2)

This allows rewriting the previous Equation (1) as:

U
G,r

X,c = Rc,X · pc,Y · pG
k + Pc,X · (1 − pc,Y · pG

k)

Then, exploiting this equality in (1) we obtain the total average utility of signing
the contract using information from a Guarantor as:

U
G,r

X = U
G,r

X,c · ps
c,X + Ic,X · (1 − ps

c,X) =

= [Rc,X · pc,Y · pG
k + Pc,X · (1 − pc,Y · pG

k)] · ps
c,X +

+Ic,X · (1 − ps
c,X)

Since agents give a trust of one to their Guarantors, most of the estimations
of agent X are not changed by the mediation. In particular, the estimation of
the contract success probability remains unchanged; therefore the estimation of
the average utility of the contract does not change. Also, the estimation of the
expected utility as a function of the probability of signing (1) is not influenced. As
explained later on, the mediation of the Guarantor influences only the decision
making strategy.

Toward a Probabilistic Model of Trust in Agent Societies 275

3 Decision Making Strategy

In this section, we introduce a rationality principle in our model by means of a
decision making strategy that exploits utility to discriminate on the inclusion of
the mediation of a Guarantor into an interaction.

3.1 Probability Density Function of Trust and the Risk Factor

As we said in Section 2, we model trust from the point of view of an agent as the
estimation of the probability of having a contract honoured by its counterpart.
An underlying assumption of this definition is that this estimation, and the real
probability of the contract being honoured, both lie in the interval [tmin, tmax]. In
essence, trust is a random variable t whose Probability Density Function (PDF)
depends on decision making strategies of the agents involved in the contract.

Taking the variable t and a rationality principle into account, it is easy to
define the probability that agent X would sign a given contract c.

In particular, this reasonable rationality principle mentioned above states
that:

X decides to sign a contract c with Y if the estimated expected utility that it
perceives is greater than the investment required to sign the contract

Which, in formal terms, is:

ps
c,X

.= P{Ue

X,c > Ic,X} =
= P{Rc,X · tc,X,Y + Pc,X · (1 − tc,X,Y) > Ic,X}

A further simple elaboration of this equation yields:

ps
c,X = P{tc,X,Y · (Rc,X − Pc,X) > Ic,X − Pc,X} =

= P

{
tc,X,Y >

Ic,X − Pc,X

Rc,X − Pc,X

}

Where we supposed that Rc,X − Pc,X is not zero. Now, if we define:

κc,X
.=

Ic,X − Pc,X

Rc,X − Pc,X

it is possible to express ps
c,X as:

ps
c,X = P{tc,X,Y > κc,X} (3)

This last equation indicates that agent X signs contract c if its trust in the
counterpart with respect to c exceeds κc,X , that we call risk factor. This factor
depends only on X ’s subjective evaluation of contract c and it describes the
risk that X perceives in signing contract c. This, allows to rephrase the decision
making strategy as:

276 F. Bergenti

Agent X signs a contract c with a counterpart Y if and only if its trust in Y for
contract c is greater then the risk factor of c.

It is worth noting that risk factor κc,X is a number between zero and one.
Furthermore, it is the quotient of two quantities that have a precise meaning on
their own:

– The numerator Nc,X = Ic,X − Pc,X expresses the gain that agent X obtains
when rejecting contract c, in comparison to the case in which the contract
is accepted but actually not honoured.

– The denominator Hc,X = Rc,X − Pc,X represents the gain that the contract
yields in case of success with respect to failure.

Then, e.g., if we consider the boundary cases:

– κc,X = 1 means that the contract will never be signed, because the invest-
ment equals the utility, but the first is guaranteed while the second is not.

– κc,X = 0 means that the contract has no risk, since the investment equals
the penalty (which is assured with probability one). Therefore the contract
will always be accepted.

In particular, if κc,X ≤ tmin the contract is always rejected, while if tmax ≤
κc,X the contract is always accepted. This consideration accounts also for the
boundary cases analysis exposed above.

Having introduced the risk factor κc,X , it is possible to rewrite Equation (1)
putting some emphasis on it. In particular:

U
r

X = [Rc,X · pc,Y + Pc,X · (1 − pc,Y)] · ps
c,X + Ic,X · (1 − ps

c,X) =
= [(Rc,X − Pc,X)pc,Y + Pc,X] · ps

c,X + Ic,X(1 − ps
c,X).

Now, explicitly showing ps
c,X and subsequently (Rc,X − Pc,X):

U
r

X = [(Rc,X − Pc,X)pc,Y + Pc,X − Ic,X] · ps
c,X + Ic,X =

= (Rc,X − Pc,X) · (pc,Y − κc,X) · ps
c,X + Ic,X .

This last equation gives the possibility to draw some interesting considerations.
First, U

r

X is bounded between Pc,X and Rc,X . Furthermore, U
r

X is a linear
function of ps

c,X , and its slope is (Rc,X −Pc,X) ·(pc,Y −κc,X). Since (Rc,X −Pc,X)
is non negative because of (2.1), the sign of the slope is influenced by (pc,Y −κc,X)
only. This ultimately means that the risk factor is an indicator of convenience
in terms of average utility:

– If the success probability of the contract is greater than κc,X , then the aver-
age utility (of X) increases with the probability of signing the contract, i.e.,
the contract is advantageous.

– If the risk factor is lower than κc,X , the contract is disadvantageous and the
average utility decreases with ps

c,X .
– If κc,X ≡ pc,Y , the average utility is constant.

Toward a Probabilistic Model of Trust in Agent Societies 277

3.2 Role of the PDF of Trust

The only working assumption that we took up to now is that t is a random
variable bound by tmin and tmax. In this section, we further elaborate on trust
as a random variable and, without breaking our blackbox approach, we go for the
worst case and we assume that t is uniformly distributed in interval [tmin, tmax].
This new assumption allows us to study the influence of the mediation of a
Guarantor on the average utility perceived by agents.

In accordance with Equation (3), we can express the signing probability as
the probability that tc,X,Y ≥ κc,X . Therefore:

ps
c,X = P{tc,X,Y > κc,X} =

∫ +∞

κc,X

f(tc,X,Y) dtc,X,Y (4)

Then,

ps
c,X =

⎧⎨
⎩

1 κc,X ≤ tmin
tmax−κc,X

tmax−tmin
tmin < κc,X < tmax

0 tmax ≤ κc,X

(5)

Figure 1 shows a pictorial description of this last equation.
Now, we focus our analysis of the utility on the case in which tmin ≤ κc,X ≤

tmax, i.e., we exclude the edge cases. Moreover, we assume symmetric PDF of t.
Introducing (5) in (4) we obtain the average utility as a function of tmin and

tmax:

U
r

X = (Rc,X − Pc,X) · (pc,Y − κc,X) · tmax − κc,X

tmax − tmin
+ Ic,X . (6)

Then, using a symmetric PDF of t with width δ it is possible to rewrite (5) as:

ps
c,X =

⎧⎨
⎩

1 κc,X ≤ tmin
tmax−κc,X

tmax−tmin
tmin < κc,X < tmax

0 tmax ≤ k

(7)

Signing probability: ps
c,X

10 tmaxκc,Xtmin pc,Y

f(tc,X,Y)

Fig. 1. The process of estimation of trust and its influence in decision making

278 F. Bergenti

And then:

ps
c,X =

⎧⎨
⎩

1 κc,X ≤ tmin
pc,Y +δ−κc,X

2δ tmin < κc,X < tmax

0 tmax ≤ k

that expresses ps
c,X as a function of δ. Substituting this equation in Equation

(6) and excluding the edge cases yields to:

U
r

X = (Rc,X − Pc,X) · (pc,Y − κc,X) · pc,Y + δ − κc,X

2δ
+ Ic,X . (8)

This equation expresses the average utility as a function of the width of the
probability density function of t. Since the utility is a hyperbolic function of δ,
any small decrease of δ implies a much higher increase in the average utility and
vice versa. This introduces one of the main considerations of the paper:

If the information provided by a Guarantor linearly narrows the width of the
PDF of t, then a hyperbolic increase of the average utility of having the contract
signed occurs.

Regarding the edge cases, when κc,X ≤ tmin or tmax ≤ κc,X , the probabili-
ties of signing the contract are one and zero respectively (5), and the utility is
constant with respect to δ. Figure 2 shows the behaviour of the average util-
ity for an increasing value of δ. The first plateau expresses the case in which
κc,X ≤ tmin, and consequently ps

c,X equals one.
Equation (8) has the following interesting consequence on the behaviour of the

utility. If agent X takes its decisions on signing a contract c using a symmetric

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

9.5U
r
X

δ

Fig. 2. Hyperbolic decrease of U
r
X(δ)

Toward a Probabilistic Model of Trust in Agent Societies 279

PDF for t centred in pc,Y and if the contract does not fail because of X, then
∀δ ∈ R : δ ≥ 0, tmin − δ ≥ 0, tmax + δ ≤ 1, U

r

X(δ) is non-increasing. In fact, U
r

X

is piecewise differentiable and the differentiation of (8) for tmin < κc,X < tmax

yields to:

∂U
r

X

∂δ
= (Rc,X − Pc,X) · (pc,Y − κc,X) · 2δ − 2(pc,Y − κc,X + δ)

4δ2
=

= − (Rc,X − Pc,X) · (pc,Y − κc,X)2

2δ2

Taking into account that a subjective evaluation is well formed if Rc,X ≥ Pc,X ,
the partial derivative is always non-positive, i.e., any enlargement of the esti-
mation (which introduces uncertainty), worsen the performance of the agent’s
decision strategy and its relative utility.

The explicit choice of a PDF for trust t allows elaborating on the inclusion
of mediation into an interaction. The two parameters κc,X and pc,Y are kept
fixed, since the mediation of a Guarantor does not change or influence them. On
the contrary, the total error probability is modified to account for the additional
probability of error that the Guarantor brings. Using Equation (1), it is possible
to directly substitute pc,Y with pc,Y pG

k to express the total success and failure
probabilities, thus obtaining the equivalent of (8) for the case of Guarantor-
mediated interactions. To stress the fact that the width of the estimation is
different when introducing a Guarantor in the interaction, we use δG instead of δ:

U
G,r

X =

⎧⎨
⎩

Hc,X · MG + Ic,X κc,X ≤ tmin

Hc,X · MG · pc,Y +δG−κc,X

2δG + Ic,X tmin < κc,X < tmax

Ic,X tmax ≤ κc,X

(9)

Where we defined (see next section) MG = (pc,Y pG
k − κc,X).

However, it is important to note that this estimation is always centred around
pc,Y , since agent X accords a trust of one to its Guarantor.

4 Results and Bounds

In this section we study the effects of mediation in our model. In order to do
so, we recall that our working assumption is that Guarantors provide additional
information to agents, thus allowing for a more precise (narrower) estimation
of probability pc,Y . Anyway, Guarantors, although highly reliable, introduce ad-
ditional error probability, that must be compensated by improvements in the
estimation of trust.

In order to quantify the performance of a Guarantor as a middleman in an
interaction between agent X and Y, we calculate the amount of additional in-
formation that a Guarantor needs to provide in order to keep the average utility
of agent X fixed.

The comparison of the two utilities expressed in Equations (8) and (9) allows
to calculate the width of Guarantor-mediated estimation of trust for which the

280 F. Bergenti

utility equals the case without mediation. If we introduce δ̂G, a function of δ
and pG

k , as:

δ̂G .= δG ∈
[
0,

1
2

]
: U

r

X(δ , pc,Y) = U
G,r

X (δG , pc,Y · pG
k)

we can compare Equations (8) and (9) to obtain:

(pc,Y − κc,X) · pc,Y + δ − κc,X

δ
= (pc,Y pG

k − κc,X) · pc,Y + δ̂G − κc,X

δ̂G

where we subtracted Ic,X on both sides and multiplied by 2
Rc,X−Pc,X

. Then,
introducing M = (pc,Y − κc,X) and MG = (pc,Y pG

k − κc,X) :

M · δ + M

δ
= MG · δ̂G + M

δ̂G

and dividing by MG yields:

M

MG
· δ + M

δ
=

δ̂G + M

δ̂G
.

This last equation allows to make δ̂G explicit:

δ̂G =
M

M
MG · δ+M

δ − 1
=

M MG δ

M(δ + M)MG δ

that holds if MG �= 0.
It should be quite clear that δ̂G is the breakeven point that makes agent X

choose to go for a mediated interaction rather than for a direct interaction:

– If the Guarantor provides enough information to restrict the estimation of
trust to a width less than 2 δ̂G, the use of the mediation is advantageous.

– If the estimation remains larger than 2 δ̂G, the error probability introduced
by the Guarantor decreases the average utility.

It is worth noting that this decision strategy is purely ideal because agent X
does not know pG

k . Anyway, Figure 3 provides an ideal means for evaluating the
zone of convenience for choosing mediated interactions.

In order to ground our model to everyday experience, we recall that we are
interested in Guarantors that introduce a very low probability of error, and
therefore we study the behaviour of δ̂G as pG

k tends to one. What we obtain
from this study is that if agent X makes its decisions using a symmetric PDF
and that the contract does not fail because of X, ∀δ ∈ R : 0 ≤ δ ≤ 1

2 , δ − δ̂G

tends to zero in an hyperbolic way as pG
k tends to one. Due to the lack of space

Toward a Probabilistic Model of Trust in Agent Societies 281

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

δ

δG = δ

δ̂G(δ)

Lower Utility

Higher Utility

δG

Fig. 3. Zone of convenience for mediated interactions

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35δ̂G

δ

pG
k = 0.91

pG
k = 0.93

pG
k = 0.95

pG
k = 0.97

pG
k = 0.99

pG
k = 1

Fig. 4. δ̂G as a function of δ for different values of pG
k

in this paper, we cannot go in the details of the demonstration of this result,
anyway it is worth saying that the demonstration is divided into four steps:

– Proof that δ̂G is a hyperbolic function of pG
k ;

– Proof that δ̂G is increasing from a certain value of pG
k on, excluding the edge

cases;

282 F. Bergenti

– Proof that its maximum value is δ;
– Proof for the edge cases.

This result shows that if a Guarantor introduces a (sufficiently) low probability of
error, the use of its mediation is advantageous and the advantages that it brings
are fast increasing as the probability of error decreases. As a further evidence of
the convenience of using Guarantor-mediated interaction, the behaviour of the
zone of convenience with respect to pG

k is shown in Figure 4.

5 Conclusions

The aim of this work is to provide a sound demonstration that the development
of Guarantor-mediated infrastructures is extremely beneficial to support secure,
trusted and privacy-aware interactions in real-world societies of agents. In par-
ticular, such infrastructures provide notable features that are not discussed here,
but that play a fundamental role from the point of view of scalability, reliabil-
ity and traceability (see [1,2]). Then, in many cases, the additional utility that
mediation provides to agents is considerable even through Guarantors are not
error-free.

This work is not meant to be conclusive and many points remain open. One of
the major planned developments regards the study of concrete trust estimators,
and the introduction of the resulting PDFs in our model. Another very important
open point regards the study of the effects of delegation of tasks and goals
through a chain of delegated Guarantors.

Furthermore, the study of one of the main features of Guarantors, i.e., the pos-
sibility of anonymising interactions, is still in search of a formalization (and of a
probabilistic model), even though its characteristics and possible uses are clearly
understood [1]. This kind of interaction allows to prevent unwanted spread of
sensible information; as such, its study remains central in the evaluation of the
agent’s benefits from the Guarantor infrastructure.

Acknowledgements

This work is partially supported by project CASCOM (FP6-2003-IST-2/511632).
The CASCOM consortium is formed by DFKI (Germany), TeliaSonera AB (Swe-
den), EPFL (Switzerland), ADETTI (Portugal), URJC (Spain), EMA (Finland),
UMIT (Austria), and FRAMeTech (Italy). The authors would like to thank all
partners for their contributions.

References

1. Bergenti, F., Bianchi, R., Fontana, A.: Secure and Trusted Interactions in Soci-
eties of Electronic Agents. In: Proceedings of The 4th Workshop on the Law and
Electronic Agents (LEA 2005), Bologna, Italy, pp. 1–12. Wolf Legal Publishers
(2005)

Toward a Probabilistic Model of Trust in Agent Societies 283

2. Bianchi, R., Fontana, A., Bergenti, F.: A Real–World Approach to Secure and
Trusted Negotiation in MASs. In: Proceedings of the 4th International Joint Con-
ference on Agents and Multi-Agents Systems (AAMAS), pp. 1163–1164. ACM
Press, New York (2005)

3. Bons, R.W.H.: Designing Trustworthy Trade Procedures for Open Electronic Com-
merce. Ph.D.diss., EURIDIS and Faculty of Business Administration, Erasmus
University, Rotterdam, The Netherlands (1997)

4. CASCOM Web site, http://www.ist-cascom.org
5. Castelfranchi, C., Falcone, R.: Principles of Trust for MAS: Cognitive Anatomy,

Social Importance, and Quantification. In: Proceedings of the International Con-
ference of Multi-agent Systems (ICMAS), pp. 72–79. ACM Press, New York (1998)

6. Debenham, J., Sierra, C.: An Information-based Model for Trust. In: Proceedings of
the 5th International Conference on Autonomous Agents and Multiagent systems
(AAMAS), Utrecht, The Netherlands, pp. 497–504 (2005)

7. Ellison, C.: SPKI Requirements. IETF RFC 2692 (1999)
8. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI

Certificate Theory. IETF RFC 2693 (1999)
9. Gambetta, D. (ed.): Trust: Making and Breaking Co-operative Relations. Basil

Blackwell, Inc., Malden (1988)
10. JENA Web site, http://jena.sourceforge.net
11. Jennings, N.R., Parsons, S., Sierra, C., Faratin, P.: Automated Negotiation. In:

Proceedings of the 5thInternational Conference on the Practical Application of
Intelligent Agents and Multi-Agents Systems (PAAM 2000), Manchester, UK, pp.
23–30 (2000)

12. Jøsang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for
Online Service Provision. Decision Support Systems 43(2), 618–644 (2007)

13. Marsh, S.: Formalising Trust as a Computational Concept. Ph.D. diss., Department
of Mathematics and Computer Science, University of Stirling, Stirling, UK (1994)

14. MINDSWAP Team. A Definition of Trust for Computing with Social Networks
Technical report, University of Maryland, College Park (February 2005)

15. OWL Web site, http://www.w3.org/2004/OWL
16. Racer Web site, http://www.racer-systems.com
17. Yu, B., Singh, M.: Searching Social Network. In: Proceedings of The 2nd Interna-

tional Joint Conference On Autonomous Agents and Multiagent Systems. ACM
Press, New York (2003)

http://www.ist-cascom.org
http://jena.sourceforge.net
http://www.w3.org/2004/OWL
http://www.racer-systems.com

Arguing about Reputation: The LRep Language

Isaac Pinyol and Jordi Sabater-Mir

IIIA - Artificial Intelligence Research Institute
CSIC - Spanish Scientific Research Council

Bellaterra, Barcelona, Spain
{ipinyol,jsabater}@iiia.csic.es

Abstract. Since electronic and open environments became a reality,
computational models of trust and reputation have attracted increasing
interest in the field of multi-agent systems (MAS). In virtual societies of
human actors very well-known mechanisms are already used to control
non normative agents, for instance, the eBay scoring system. In virtual
societies of artificial and autonomous agents, the same necessity arises,
and several computational trust and reputation models have appeared
in literature to cover this necessity. Typically, these models provide eval-
uations of agents’ performance in a specific context, taking into account
direct experiences and third party information. This last source of in-
formation is the communication of agents’ own opinions. When dealing
with cognitive agents endowed with complex reasoning mechanisms, we
would like that these opinions could be justified in a way such that the
resulting information was more complete and reliable. In this paper we
present LRep, a language based on an existing ontology of reputation
that allows building justifications of communicated social evaluations.

1 Introduction

The field of multiagent systems has experienced an important growth and evo-
lution in the past few years. These systems can be seen as virtual societies
composed of autonomous agents where there is a need to interact with other
members of the society to achieve their goals. As in human societies, these in-
teractions usually involve an exchange of information. The problem of partners
selection via the detection of good or bad potential partners, or how agents eval-
uate the credibility of received information, arises in a scenario like this. Human
societies, throughout history, have been using trust and reputation mechanisms
for this purpose. These powerful social control artifacts have been studied from
different perspectives, such as psychology (Bromley [1], Karlins et al. [2]), soci-
ology (Buskens [3]), philosophy (Plato [4], Hume [5]) and economics (Marimon
et al. [6], Celentani et al. [7]).

In multiagent systems the interest in these mechanisms has considerably in-
creased and, as a consequence, numerous computational trust and reputation
models have appeared in the literature. E-Commerce sites already use some of
them (eBay [8], Amazon [9], OnSale [10]). These models consider reputation as
a centralized global property. So, the reputation of each agent is public and all

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 284–299, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Arguing about Reputation: The LRep Language 285

agents perceive the same reputation value. More sophisticated models ([11], [12],
[13], [14], [15], [16], [17]) consider reputation as a subjective property. Therefore
every agent has its own reputation system that provides evaluations of other
agents calculated from external communication and direct experience, giving
the agent its own vision of the society. Furthermore, other models (see [18], [19])
take into account social information when providing these evaluations.

One of these models is Repage [17], a computational system based on a cog-
nitive theory of reputation. This model is designed to be part of a cognitive
agent,i.e., an agent endowed with beliefs, desires and intentions. Like other rep-
utation models, Repage uses social evaluations obtained from direct experiences
and communicated social evaluations as source for calculations. However, this
communication is quite simple and very limited, allowing only the exchange of
single values associated with a reliability measure. In a real environment and for
an agent that is able to make complex reasoning, an opinion without being justi-
fied can be very weak and not as useful as a fully justified opinion that points out
where the information is coming from. With agents using a complex reputation
model like Repage, it can be as important to know the followed procedure and
the sources used to calculate the final value, as the final value itself.

In this paper we present LRep, a simple language that can be used with a
model like Repage to elaborate justifications of calculated values. These justifi-
cations can have different levels of detail. So, agents can decide the amount of
extra information and the level of detail of them when there are communicating
social evaluations.

In Section 2 we briefly introduce Repage and its theory framework. Following
this, in Section 3 we introduce an ontology of reputation and its specification
using description logics. This ontology will be used to define the semantics of
LRep. Afterwards, in Section 4 we define the syntax and semantics of LRep. In
Section 5 we present several situations where the use of LRep and justification
helps to improve the performance of cognitive agents. Finally, Section 6 presents
the conclusions and future work.

2 The Repage System

In order to present the Repage system it is necessary to get in touch with the
theoretical framework upon which it is based. This framework is a cognitive
theory of reputation developed by Conte and Paolucci in [20]. In this book they
study the impact of the transmission of social evaluations in artificial societies,
pointing out the important difference between information that is thought to be
true and information that is said.

This theory describes a model of imAGE, REPutation and their interplay.
Although both are social evaluations, image and reputation are distinct objects.
Image is a simple evaluative belief; it tells that the target is “good” or “bad”
with respect to a norm, a standard, or a skill. Reputation is a belief about the
existence of a communicated evaluation. Consequently, to assume that a target
t is assigned a given reputation implies only to assume that t is reputed to be

286 I. Pinyol and J. Sabater-Mir

“good” or “bad”, i.e., that this evaluation circulates, but it does not imply to
share the evaluation.

To select good partners, agents need to form and update own social evalua-
tions; hence, they must exchange evaluations with one another. If agents should
transmit only believed image, the circulation of social knowledge would be bound
to stop soon. On the other side, agents that believe all the informations that
they receive would be no more autonomous; in order to preserve their auton-
omy, agents need to decide independently whether to share or not and whether
to believe or not others’ evaluations of a given target. Hence, they must:

– Form both evaluations (image) and meta-evaluations (reputation), keeping
distinct the representation of own and others’ evaluations, before

– Deciding whether or not to integrate reputation with their own image of a
target.

Unlike other current systems, in Repage reputation does not coincide with image.
Indeed, agents can either transmit their own image of a given target, which they
hold to be true, or report on what they have “heard” about the target, i.e. its
reputation, whether they believe this to be true or not. Of course, in the latter
case, they will neither commit to the information truth value nor feel responsible
for its consequences. Consequently, agents are expected to transmit uncertain
information, and a given positive or negative reputation may circulate over a
population of agents even if its content is not actually believed by the majority.

2.1 The Repage Architecture

The Repage architecture (see figure 1) was designed to reflect the distinction
between image and reputation. It has three main elements: a memory, a set of
detectors and the analyzer. The memory is composed of a set of inter-connected
predicates that are conceptually organized in different levels of abstraction. Each
predicate that belongs to one of the main types, the ones showed in figure 1,
contains a probabilistic evaluation that refers to a certain target agent in a
specific role. For instance, an agent may have an image of agent T (target) as
a seller (role), and a different image of the same agent T as informant. The
evaluation consist of a probability distribution over the discrete sorted set of
labels: {Very Bad, Bad, Normal, Good, Very Good}.

The network of dependences specifies which predicates contribute to the values
of others. In this sense, each predicate has a set of antecedents and a set of
consequents. The detectors, inference units specialized in each particular kind of
predicate, receive notifications from predicates that changes or that appear in
the system and uses the dependences to recalculate the new values or to populate
the memory with new predicates.

Each predicate has associated a strength that is a function of its antecedents
and of the intrinsic properties of each kind of predicate. As a general rule, pred-
icates that resume or aggregate a bigger number of predicates will hold a higher
strength.

Arguing about Reputation: The LRep Language 287

Fig. 1. The Repage architecture

At the first level of the Repage memory we find a set of predicates not eval-
uated yet by the system. Contracts are agreements on the future interaction
between two agents. Their result is represented by a Fulfillment. Communica-
tions is information that other agents may convey, and may be related to three
different aspects: the image that the informant has about a target, the image
that, according to the informant, a third party agent has on the target, and the
reputation that the informant has about the target.

In level two we have two kind of predicates. Valued communication is the
subjective evaluation of the communication received that takes into account, for
instance, the image the agent may have of the informant as informant. Commu-
nications from agents whose credibility is low will not be considered as strong as
the ones coming from well reputed informants. An outcome is the agent’s subjec-
tive evaluation of a direct interaction, built up from a fulfillment and a contract.

At the third level we find two predicates that are only fed by valued commu-
nications. On the one hand, a shared voice will hold the information received
about the same target and same role coming from communicated reputations.
On the other hand, shared evaluation is the equivalent for communicated images
and third party images.

288 I. Pinyol and J. Sabater-Mir

Shared voice predicates will finally generate candidate reputation; shared eval-
uation together with outcomes will generate candidate image. Newly generated
candidate reputation and image aren’t usually strong enough; new communi-
cations and new direct interactions will contribute to reinforce them until a
threshold, over which they become full-fledged image or reputation. We refer to
[17] for a much more detailed presentation.

From the point of view of the agent structure, integration with the other
parts of our deliberative agents is straightforward. Repage memory links to the
main memory of the agent that is fed by its communication and decision making
module, and at the same time, this last module, the one that contain all the
reasoning procedures uses the predicates generated by Repage to make decisions.

3 The Ontological Dimension of Reputation

As we have shown so far, reputation mechanisms play a crucial role in the way
we conceive agents’ societies. But social evaluations are more than simple ra-
tio scores. In cognitive agents the fact of acknowledging certain reputation or
image of other agents imply a mental state, a set of beliefs about the future
performance of target agents, but at the same time, the formation of such a high
level predicates, require several intermediate cognitive steps, that generate a full
taxonomy of interrelated predicates. From this point of view, it is easy to think
about an ontology of reputation and image showing this structure. A possible
ontology is defined in [21].

The concepts that appear in this ontology are very similar to the typology
of predicates that Repage defines. In [21] we define a mapping between Repage
predicates and the ontology (that is almost direct). Still though, we want to
use as source of information this common ontology, since is not linked to any

Fig. 2. The taxonomy, membership relations and components of evaluative beliefs

Arguing about Reputation: The LRep Language 289

Fig. 3. The main classes and components of a social evaluation and voice

particular reputation model. A graphical representation of it is shown in Figure 2
and 3. Nevertheless, we need a more formal approach. Because LRep language is
based on this ontology we need a formalism that allows us to refer instances of its
concepts. For that, we decided to use description logics (DL). As we will explain,
DL offers an elegant way to represent application domains, and its concepts have
been used for the semantic web (in term of the language OWL DL) to describe
ontologies. Furthermore, its syntax and semantics are very well defined (see [22]).
In this section we first make a short introduction to what is a description logic
system and why it is a good option to use as an ontology formalism. Afterwards,
we give a description of the ontology using this formalism.

3.1 Description Logic

Description Logic (DL) is a knowledge representation formalism used to repre-
sent the application domain, the world. Its power relies on the formal logic-based
semantics and the reasoning engine with which it is equipped. A DL system has
two differentiate submodules, TBox and ABox.

On the one hand, the TBox contains a set of expressions in one of the lan-
guages of the AL-languages family (see [22]), that define the terminology of
the domain (the classes). This family of languages can be seen as fragments of
first-order Logic(FOL) [22]1, but its expressiveness simplifies the formulas and is
specially suited for the definition of concepts. On the other hand, the ABox con-
tains assertions about named individuals in terms of the terminology defined in
the TBox, the state of the world. In general, a knowledge representation system
based on DL provides facilities to set and update knowledge bases, to manipulate
it and to reason over it.
1 So, all formulas of AL-languages can be expressed as FOL formulas keeping the same

semantic.

290 I. Pinyol and J. Sabater-Mir

Because DL systems use segments of FOL, the set of predicates contain im-
plicit knowledge, that can be made explicit using inference. Thus, the concept
of satisfiability is defined in the classical way (see [22]). Having a DL system D,
a concept C and an individual element a , we say that D |= C(a) iff C(a) can
be inferred from D. In this case this is deducible using some of the reason algo-
rithms defined for DL systems (Structural Subsumption Algorithm or Tableau
Algorithm, for instance)[22].

Nowadays, the interest in DL systems has considerably increased due to
the popularity of ontologies for the semantic web and specifically, because of
the OWL language. The semantic web uses as standard the OWL language to
structure knowledge contained in web sites, so, to describe ontologies. This lan-
guage(OWL) has three variants, one of them is OWL DL, a language that uses
the concepts of description logic we have explained in this section.

3.2 A DL Version of the Ontology

The ontology showed in Figures 2 and 3 defines a taxonomy of evaluative be-
liefs, that represents beliefs that have some social evaluations. We divided them
into SimpleBelief and MetaBelief. This division is conceptually important when
talking about cognitive agents. An agent holding a simple belief acknowledges
the evaluation that the belief contains. This is not necessary in a Metabelief,
since it is a belief about other agents beliefs, an interpretation of what other
agents think. Therefore, an agent holding a Metabelief do not need to believe
the nested evaluation. For instance, I can believe that my friend thinks that his
car is nice, but I don’t necessary agree with this opinion. Then, we consider an
Image, Direct Experiences and a SharedVoice as simple beliefs, and Reputation
and Shared Images as Metabeliefs (see [21] for the details of this decision). The
meaning of these objects is the same with the ones we have described in Repage.
A direct experience should be understood as an outcome predicate in Repage.

These concepts are located in the bottom part of the taxonomy. A system
using this ontology will have instances of these concepts. All them have, at
least, one attribute that is an object Evaluation containing information about
the evaluation itself. Part of this information is the value of the evaluation, the
representation of goodness and badness. In literature there are several possible
representations, from simple boolean with bad/good, to probability distributions
over some sorted set, like in the case of Repage. In [21] the authors describe four
representation types, including transformation operations between them. For the
sake of simplicity, in this first approach we will use a simple sorted labeled set,
VB, B, N, G, VG meaning, Very Bad, Bad, Neutral, Good and Very Good.

At this point we have all the elements to understand a description of the
ontology, that corresponds with the TBox of a DL system2:

2 The semantics of (≤ nR) and (= nR) is defined as (≤ nR)I = {a ∈

Iwhere|{b|(a, b) ∈ RI}| ≤ n} and (= nR)I = {a ∈
Iwhere|{b|(a, b) ∈ RI}| = n},
where I is an interpretation,
I the domain of the interpretation, and RI the inter-
pretation of the relation R.

Arguing about Reputation: The LRep Language 291

Entity ≡ SingleAgent� Group � Institution
Focus ≡ Skill � Standard � Norm

Evaluation ≡ ≤ 1hasSource.Entity� = 1hasTarget.Entity�
≡ � = 1hasContext.Focus ≤ 1hasStrength.IR�
≡ � ≤ 1hasV alue.V alue

V oice ≡ ≤ 1hasGossiper.Entity� ≤ 1hasRecipient.Entity�
≡ = 1hasEval.Evaluation

Image ≡ SimpleBelief� = 1hasEval.Evaluation
DExperience ≡ SimpleBelief� = 1hasEval.Evaluation� = 1hasT rans.IR

ShV oice ≡ SimpleBelief� = 1hasV oice.V oice � ∃hasGossiper.Entity
ShImage ≡ MetaBelief� = 1hasEval.Evaluation� ∃hasSource.Entity

Reputation ≡ MetaBelief� = 1hasV oice.V oice

In this case we consider as primitive concepts SingleAgent, Group, Institution,
Skill, Standard and Norm. The concept Value is used to define the predicates
Value(VB), Value(B),Value(N),Value(G) and Value(VG), as axioms of the sys-
tem. All other concepts are defined using the ALUN -language (see [22]).

4 The LRep: A Language for Reputation and Image
Justification

In this section we define both the syntax and semantics of the LRep language.
The objective of this language is to provide a mechanism to represent not only the
evaluation of an image or reputation but also a justification of that value. This
justification should increase the richness of the exchanged information about
image and reputation and therefore, increase the effectiveness of spreading them.
That justification can be sometimes even more relevant than the evaluation itself
(see section 5).

First, we will define the syntax of the language giving an informal semantics.
Finally, we will give a formal semantics of the language.

4.1 Defining the Basis of LRep

Let A = {a1, . . . , an}, R = {r1, . . . , rm} and V = {V B, B, N, G, V G} be a set
of agents, a set of roles, and a sorted set of evaluation labels respectively. We
define the set Eval of all possible evaluations and evaluation as follows:

Eval = {< a, r, v > |a ∈ A, r ∈ R, v ∈ V } (1)

We define a set of predicate letters P, and a set of quantifier letters N

P = {I, R, ShI, ShV, DE, CI, CI1, . . . , CIn, CR, CR1, . . . , CRn} (2)

N = {N1, . . . , Nn} (3)

292 I. Pinyol and J. Sabater-Mir

Intuitively, the letters I, R, ShI and ShV refer to evaluations that are Image,
Reputation, Shared Image and Shared Voice. The predicates CI, and CR refer
to Communicated Image and Communicated Reputation. Concretely , CIi and
CRi reefer to a Communicated Image and Communicated Reputation from an
agent ai ∈ A. DE refers to a Direct Experience. Notice that in the ontology, this
predicate has an object evaluation and a real value. This second one refers to an
identification number of the transaction that produced the direct experience.

4.2 Simple Predicate Formula (SPF) and Extended Predicate
Formula (EPF)

Formulas in the LRep language are divided in SPF and EPF.
Let e ∈ Eval, t ∈ IR and 1 ≤ i ≤ n, then the following formulas are SPF:

– I(e), R(e), ShI(e), ShV (e)
– DE(e, t), CIi(e), CRi(e)

Let 1 ≤ i ≤ n and e ∈ Eval then

– ∅ (empty formula) is an EPF
– If α is SPF then α is EPF
– If α is SPF then Niα is EPF
– The formulas NiDE(e), NiCI(e) and NiCR(e) are EPF
– Inductively, if β and γ are EPF , then β; γ is EPF

Intuitively, NiX means that the agent has received at least i communicated
images or communicated reputations, or that the agent has had at least i direct
experiences3. The formal semantics of the quantifier is defined in Section 4.4.
Also, we say that all formulas that are SPF as well as the formulas NiDE(e),
NiCI(e) and NiCR(e) are atomic formulas.

4.3 Justification

We define a justification in terms of LRep language as follows. Let α be a SPF
and γ be an EPF , then a LRep formula is defined as:

{α : γ} (4)

The idea is that in the expression {α : γ} , the α predicate is the main element
to communicate, and it is justified by the formula γ, that in fact it is a list of
less generic predicates. For example we can have justifications like this:

{I(< a1, r1, V B >) : N5CI(< a1, r1, B >); N3DE(< a1, r1, V B >);
CIa3 (< a1, r1, V B >)}

3 We decide Ni to be a lower bound instead of an exact number because this second
case is too restrictive and leads to only an honest-liars communication, forgetting
the interesting option of telling a truth information but not exact. We have in mind
to include in the future negative connective that will allow setting upper and lower
bounds.

Arguing about Reputation: The LRep Language 293

The above expression means that the Image of a1 towards the role r1 is very
bad because we have received more than 5 communicated images saying that a1

in r1 is bad, we have experienced more that 3 times that the agent is very bad,
and because a3 communicated us that a1 in the role r1 is very bad. Of course, we
are not talking about neither the truth of the explanation, nor the truth of the
communication itself. Agents can lie, and of course can give partial information.

The syntax of LRep language can be defined using the following grammar.

LRep ::= {SPF : EPF}
SPF ::= I(E)|R(E)|ShI(E)|ShV (E)|DE(E, IN)|Comm

Comm ::= CIagent(E)|CRagent(E)
E ::= < Target, Context, V alue >

EPF ::= ∅|NINCI(E)|NIN CR(E)|NIN DE(E)|SPF |EPF ; EPF
Context ::= norm|standard|skill
T arget ::= agent|group|institution
V alue ::= V B|B|N |G|V G

4.4 Semantics of LRep

To define the formal semantics of the language we have to introduce the concept
of correctness within a LRep expression. Saying that I had more than 10 direct
experiences with a seller when I really had 2 is not correct taking into account
my state of the world (where I only had 2 direct experiences). So, the semantics
of LRep will be determined for the correctness of the expression towards certain
state of the world. Of course, this model of the world will be represented as an
instance of a DL system with the TBox defined in Section 3.2.

So, let F =< T, A > be a DL system describing the state of the world of an
agent, where T is the TBox of terminological terms composed of the concepts
defined in Section 3.2, and A the ABox with the assertions describing the state
of the world at certain moment of time. We say that a justification J = {α : γ}
is correct towards the system F , written as F ⊃ J iff each of the components of
J is correct towards F . More formally:

F ⊃ {α : γ} ↔ F ⊃ α and F ⊃ γ

Then, the correctness of formulas SPF and EPF is defined in terms of the
correctness of its atomic formulas. For instance, considering the atomic formula
DE(< y, r, v >, t) its correctness is defined as follows:

F ⊃ DE(< y, r, v >, t) ↔ ∃a, e such that
F |= DExperience(a), hasEval(a, e),
hasT rans(a, t) and evalF ine(e, y, r, v, F)

where we define the predicate evalF ine as follows:

evalF ine(e, y, r, v, F) = True ↔ F |= hasTarget(e, y) and
F |= hasContext(e, r) and
F |= hasV alue(e, v) and
F |= V alue(v), Focus(r), Entity(y)

294 I. Pinyol and J. Sabater-Mir

Following the same idea, the correctness of all atomic elements of LRep is
defined in the next table:

F ⊃ I(< y, r, v >) ↔ ∃a, e such that
F |= Image(a), hasEval(a, e),
and evalF ine(e, y, r, v, F)

F ⊃ CIx(< y, r, v >) ↔ ∃a, e such that
F |= ShImage(a), hasSource(a, x), hasEval(a, e)
and evalF ine(e, y, r, v, F)

F ⊃ CRx(< y, r, v >) ↔ ∃a, v, e such that
F |= ShV oice(a), hasGossiper(a, x)
hasV oice(a, v),hasEval(v, e)
and evalF ine(e, y, r, v, F)

F ⊃ R(< y, r, v >) ↔ ∃a, v, e such that
F |= Reputation(a), hasV oice(a, v)
hasEval(v, e) and evalF ine(e, y, r, v, F)

F ⊃ NiDE(< y, r, v >) ↔ |A| ≥ i where A = {DExperience(a)|∃e, t
such that F |= hasEval(a, e), hasT rans(a, t)
and evalF ine(e, y, r, v, F)}

F ⊃ NiCI(< y, r, v >) ↔ |A| ≥ i where A = {Entity(x)|∃a, e
such that F |= ShImage(a), hasSource(a, x)
hasEval(a, e) and evalF ine(e, y, r, v, F)}

F ⊃ NiCR(< y, r, v >) ↔ |A| ≥ i where A = {Entity(x)|∃a, e
such that F |= ShV oice(a), hasGossiper(a, x)
hasV oice(a, v), hasEval(v, e)
and evalF ine(e, y, r, v, F)}

Finally, let γ be an EPF formula, if γ ≡ ∅ then F ⊃ γ. If γ ≡ β1; β2 then,
F ⊃ γ ↔ F ⊃ β1 and F ⊃ β2.

5 Using LRep

In this section we apply LRep in a concrete scenario. Let A be the set of
agent names A ={John, Debra, Laura,. . .} and R a set of roles R ={seller,
informant, buyer}. In this environment, everybody can play the three roles. In
a typical transaction, an agent acting as a buyer, buys a specific product from
another agent that acts as a seller. Also, there is the possibility to exchange in-
formation about other agents’ performance, acting then as an informant. Agents
are cognitive and use the Repage model to deal with social evaluations. In this
case they evaluate agents as sellers (whether they sell the products with the

Arguing about Reputation: The LRep Language 295

maximum quality, as they claim) and as informants (since they may not provide
accurate information or even they may lie). Currently the exchange of social
evaluations is done in terms of Image or Reputation. As shown in Section 2
there is an implicit commitment sending an Image (since it is the agent’s own
opinion) that does not exists when sending Reputation.

After introducing the scenario, we expose several cases where by using a jus-
tification, ambiguous situations become clearer and communications richer.

5.1 Case 1: Discrimination between Weak and Strong Predicates

One of the main issues when exchanging social evaluations is the inherent
subjectivity that they are associated with. Check for instance, the following
communications:

C1:{I(< John, seller, V G >)}
C2:{I(< John, seller, V G >) : N2DE(< John, seller, V G >)}
C3:{I(< John, seller, V G >) : N20DE(< John, seller, V G >)}

The first communication, C1, indicates that the image the informant has of
John as a seller is V G (very good). However, it does not tell us anything about
the strength of it. Communications C2 and C3 show us some more details.
Assuming that agents send correct information towards its vision of the world
(in the sense we define in Section 4.4), we should agree that the justification in
C3 gives more reasons to belief the communicated image than C2. And in this
sense, communicated image in C3 is stronger than the one in C2 and of course
than the one in C1. In terms of reputation we can have similar situations.

C1:{R(< John, seller, V G >)}
C2:{R(< John, seller, V G >) : N2CR(< John, seller, V G >)}
C3:{R(< John, seller, V G >) : N20CR(< John, seller, V G >)}

5.2 Case 2: Avoiding Unreliable Information

Another case where the use of LRep helps in a better understanding of the
messages, is in the detection of information that should not be taken into account
because the justification contradicts the state of the world that the recipient has.
For instance, check the following justification:

{I(< John, seller, B >) : CILaura(< John, seller, B >);
CIDebra(< John, seller, V B >);
I(< Laura, informant, V G >);
I(< Debra, informant, V G >)}

In this case, the informant justifies its image of John as a seller pointing out
that he has received two communicated images, one from Laura and another
from Debra (that are considered very good informants), saying that John is
mostly bad. However, if the recipient of the message has an image of Laura and
Debra as informants that is very bad the image of John cannot be considered,
at least without further knowledge that could solve the contradiction.

296 I. Pinyol and J. Sabater-Mir

5.3 Case 3: Control of Granularity

One interesting property that LRep has is the granularity of its predicates. In
this sense, even in this first version it is already possible to give more and more
detailed information to properly justify a communication. For instance, let’s
consider the following communication:

{R(< Laura, seller, V G >) : ShV (< Laura, seller, G >);
ShV (< Laura, seller, V G >)}

Here, this agent is justifying a reputation by means of two shared voices that at
the same time are justified as follows:

{ShV (< Laura, seller, G >) : N1CR(< Laura, seller, G >)}
{ShV (< Laura, seller, V G >) : N2CR(< Laura, seller, V G >)}

Another possible and more detailed justification of the two shared voices could
be:

{ShV (< Laura, seller, G >) : CRDebra(< Laura, seller, G >)}
{ShV (< Laura, seller, V G >) : CRJohn(< Laura, seller, V G >);

CRJohn(< Jorge, seller, V G >)}

Therefore, this justification could have included some information about the
images of the informants, that supposedly are good. And these images, can be
justified with the detail that the agent considers appropriate. The point of this
discussion is to make the reader notice that using LRep, agents can reach the
level of detail they want in the justifications.

5.4 Case 4: Putting Everything Together: Dialogs

Finally, extending LRep by allowing questions we can establish dialogs between
two agents. In the following example we have agents A1 and A2 exchanging
information. Initially, A1 sends an image without any justification.

A1 → A2 : {I(< Laura, informant, V G >)}

At this point, A2 does not know A1 very well, then it asks for more information:

A2 → A1 : {I(< Laura, informant, V G >)?}
A1 → A2 : {I(< Laura, informant, V G >) :

CILaura(< Debra, seller, V B >); I(< Debra, seller, V B >)
CILaura(< John, seller, V G >); I(< John, seller, V G >)}

Again A2 is not satisfied. It wants to know how the images about Debra and
John where formed, so, it asks for it:

Arguing about Reputation: The LRep Language 297

A2 → A1 : {I(< Debra, seller, V B >)?}
A2 → A1 : {I(< John, seller, V G >)?}
A1 → A2 : {I(< Debra, seller, V B >) : N3DE(< Debra, seller, V B >)}
A1 → A2 : {I(< John, seller, V G >) : N2DE(< John, seller, V G >)}

Now, A2 knows that the original information about Laura as informant is
very good for A1, because it is based on the following: Laura gave information
about Debra and John as being very good and very bad sellers respectively. Fur-
thermore, A2 had an experience with both of them observing that they behaved
in the same way that Laura said.

Knowing this, the conclusions that A2 may get depend on its own state of the
world, its beliefs:

– Ignore the information: It may have already some direct experiences with
Debra and John and they behaved the opposite of what A1 claims. In this
case, the information that Laura as informant is very good is not reliable
for A2.

– Take the information as reliable: In this case, the evaluations of the
direct experiences that A2 and A1 had with Debra and John may coincide,
and then, A2 may consider the original information reliable.

– Need for more information: Another case may come out when for in-
stance, A2 does not have any information about John or Debra. In this case,
if for A2 the original information is important enough and have the chance to
do it, it may interact with both to acquire first hand experiences, or it may
ask another agent (with good image as informant) to contrast the received
information. The idea is that in justifications, every piece of information can
be contrasted, either by direct experiences or by communications. So, in this
example, the number of possible actions is quite high.

6 Conclusions and Future Work

As we stated from the beginning, we are dealing with cognitive agents. In our
case it means agents that have beliefs, desires, intentions and goals to accomplish
and that are able to reason about them. This is the context where a language
like LRep has sense. By exchanging not only simple image/reputation values
but justifications of these values, we are opening the possibility to reason about
the process the informant followed to build those values and not only about the
values themselves. Talking about image and reputation, and as we have shown
with some examples in section 5, that extra information can be as useful as the
value itself.

An important aspect of LRep is that the informant can decide how deep the
justification has to be. Agents can choose from a wide range of possibilities when:
From no justification at all to the exact details of the calculation. Furthermore,
the fact of using a common ontology of reputation for the LRep semantics, allows
to apply LRep in other reputation models.

298 I. Pinyol and J. Sabater-Mir

Future experiments are planned to be done using Repage and LRep. In a
scenario like the one described in [23], we have a set of buyers and sellers. Sell-
ers sell items with certain quality (from a predefined minimum and maximum),
and buyers want to buy always the maximum quality. Providing the agents with
Repage system, in [23] several experiments were run to observe the performance
of the buyers per turn, varying several parameters (like number of sellers or
buyers) and dealing with cheaters. The incorporation of the LRep language in
these simulations will require two parallel phases. On the one hand, design more
sophisticated decision making processes to take advantage of this new function-
ality, and on the other hand, study the impact, the creation and motivation of
sending false information in justifications.

Besides this, the LRep language is very simple, almost every atomic element
in LRep coincides with an element of the ontology. Only the quantifiers define
more sophisticate semantics. Extensions of LRep are expected, for instance, in-
cluding universal or existential quantifiers. Also, more sophisticates protocols of
communication should be taken into account.

Acknowledgments

This work was supported by the European Community under the FP6 pro-
gramme (eRep project CIT5-028575 and OpenKnowledge project FP6-027253)
and the project Autonomic Electronic Institutions (TIN2006- 15662-C02-01),
and partially supported by the Generalitat de Catalunya under the grant 2005-
SGR-00093. Jordi Sabater-Mir enjoys a Ramon y Cajal contract from the
Spanish Government.

References

1. Bromley, D.B.: Reputation, Image and Impression Management. John Wiley,
Chichester (1993)

2. Karlins, M., Abelson, H.I.: Persuasion, how opinion and attitudes are changed.
Crosby Lockwood & Son (1970)

3. Buskens, V.: The social structure of trust. Social Networks 20, 265–298 (1998)
4. Plato: The Republic (370BC). Viking Press (1955)
5. Hume, D.: A Treatise of Human Nature (1737). Clarendon Press, Oxford (1975)
6. Marimon, R., Nicolini, J.P., Teles, P.: Competition and reputation. In: Proceedings

of the World Conference Econometric Society, Seattle (2000)
7. Celentani, M., Fudenberg, D., Levine, D.K., Psendorfer, W.: Maintaining a repu-

tation against a long-lived opponent. Econometrica 64(3), 691–704 (1966)
8. eBay: eBay (2002), http://www.eBay.com
9. Amazon: Amazon Auctions (2002), http://auctions.amazon.com

10. OnSale: OnSale (2002), http://www.onsale.com
11. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: Pro-

ceedings of the Hawaii’s International Conference on Systems Sciences, Maui,
Hawaii (2000)

http://www.eBay.com
http://auctions.amazon.com
http://www.onsale.com

Arguing about Reputation: The LRep Language 299

12. Esfandiari, B., Chandrasekharan, S.: On how agents make friends: Mechanisms for
trust acquisition. In: Proceedings of the Fourth Workshop on Deception, Fraud
and Trust in Agent Societies, Montreal, Canada, pp. 27–34 (2001)

13. Schillo, M., Funk, P., Rovatsos, M.: Using trust for detecting deceitful agents in ar-
tificial societites. Applied Artificial Intelligence (Special Issue on Trust, Deception
and Fraud in Agent Societies) (2000)

14. Yu, B., Singh, M.P.: Towards a probabilistic model of distributed reputation man-
agement. In: Proceedings of the Fourth Workshop on Deception, Fraud and Trust
in Agent Societies, Montreal, Canada, pp. 125–137 (2001)

15. Carbo, J., Molina, J., Davila, J.: Trust management through fuzzy reputation. Int.
Journal in Cooperative Information Systems (2002) (in press)

16. Sen, S., Sajja, N.: Robustness of reputation-based trust: Boolean case. In: Proceed-
ings of the first international joint conference on autonomous agents and multiagent
systems (AAMAS 2002), Bologna, Italy, pp. 288–293 (2002)

17. Sabater, J., Paolucci, M., Conte, R.: Repage: Reputation and image among limited
autonomous partners. J. of Artificial Societies and Social Simulation 9(2) (2006)

18. Carter, J., Bitting, E., Ghorbani, A.: Reputation formalization for an information-
sharing multi-agent sytem. Computational Intelligence 18(2), 515–534 (2002)

19. Sabater, J., Sierra, C.: Regret: A reputation model for gregarious societies. In:
Proceedings of the Fourth Workshop on Deception, Fraud and Trust in Agent
Societies, Montreal, Canada, pp. 61–69 (2001)

20. Conte, R., Paolucci, M.: Reputation in artificial societies: Social beliefs for social
order. Kluwer Academic Publishers, Dordrecht (2002)

21. Pinyol, I., Sabater-Mir, J., Cuni, G.: How to talk about reputation using a com-
mon ontology: From definition to implementation. In: Proceedings of the Ninth
Workshop on Trust in Agent Societies, Hawaii, USA, pp. 90–101 (2007)

22. Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The description
logic handbook. Cambridge University Press, Cambridge (2003)

23. Pinyol, I., Paolucci, M., Sabater-Mir, J., Conte, R.: Beyond accuracy. reputation
for partner selection with lies and retaliation. In: Proceedings of the Eighth Inter-
national Workshop on Multi-Agent-Based Simulation, pp. 134–146 (2007)

From AO Methodologies to MAS

Infrastructures: The SODA Case Study

Ambra Molesini1,�, Enrico Denti1, and Andrea Omicini2

1 Alma Mater Studiorum—Università di Bologna
viale Risorgimento 2, 40136 Bologna, Italy

ambra.molesini@unibo.it, enrico.denti@unibo.it
2 Alma Mater Studiorum—Università di Bologna a Cesena

via Venezia 52, 47023 Cesena, Italy
andrea.omicini@unibo.it

Abstract. In the last years, research on agent-oriented (AO) method-
ologies and multi-agent system (MAS) infrastructures has developed
along two opposite paths: while AO methodologies have essentially un-
dergone a top-down evolution pushed by contributions from heteroge-
neous fields like human sciences, MAS infrastructures have mostly fol-
lowed a bottom-up path growing from existing and widespread (typically
object-oriented) technologies. This dichotomy has produced a conceptual
gap between the proposed AO methodologies and the agent infrastruc-
tures actually available, as well as a technical gap in the MAS engineering
practice, where methodologies are often built ad hoc out of MAS infras-
tructures, languages and tools.

This paper proposes a new method for filling the gap between method-
ologies and infrastructures based on the definition and study of the meta-
models of both AO methodologies and MAS infrastructures. By allow-
ing structural representation of abstractions to be captured along with
their mutual relations, meta-models make it possible to map design-time
abstractions from AO methodologies upon run-time abstractions from
MAS technologies, thus promoting a more coherent and effective prac-
tice in MAS engineering. In order to validate our method, we take an
AO methodology – SODA – and show how it can be mapped upon three
different MAS infrastructures using meta-models as mapping guidelines.

1 Introduction

Traditional software engineering approaches and metaphors fall short when ap-
plied to areas of growing relevance such as electronic commerce, enterprise re-
source planning, and mobile computing: such areas, in fact, generally call for
open architectures that may evolve dynamically over time so as to accommodate
new components and meet new requirements. This is probably one of the main
reasons why the agent metaphor and the agent-oriented paradigm are gaining
� Corresponding author.

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 300–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

From AO Methodologies to MAS Infrastructures: The SODA Case Study 301

momentum in these areas. At the same time, such a rapid paradigm shift dropped
technology behind: while in the past new abstractions used to come from pro-
gramming languages, and were later included in software engineering practice,
now it is often the case that technologies adopted for MAS development and
deployment do not support the novel abstractions adopted in the agent-oriented
software engineering (AOSE) analysis and design phases.

Such a gap mainly depends on AO methodologies and MAS infrastructures
having evolved along two parallel, yet somehow inverse, paths: a top-down evo-
lution for AO methodologies, a bottom-up path for multi-agent infrastructures.
In fact, on the one side, abstractions and metaphors (models and structures)
from human organisations have been used to analyse, model and design software
systems, leading to methodologies like Gaia [1,2], Tropos [3,4], PASSI [5,6] and
SODA [7,8]. There, modelling agent societies means to identify the global rules
that should drive the expected MAS evolution, and the roles that agents should
play. On the other side, MAS infrastructures have typically evolved out from ex-
isting (mainly, object-oriented) programming languages and development envi-
ronments, “stretching” the agent paradigm on top of more traditional paradigms
and technologies [9]. For instance, infrastructures such as TuCSoN [10,11], TOTA
[12,13] and CArtAgO [14,15] introduce specific agent-oriented abstractions (tu-
ple centres, co-fields, artifacts) to constructively constrain the design and fi-
nal architecture of MAS: yet, the imprint of the object-oriented paradigm is
still visible—for instance, in agents taking the form of Java threads. The above
gap can lead to inconsistencies between the design and the actual implemen-
tation of a system, as the agent-based concepts and metaphors adopted in the
analysis and design phases can not match the development tools used for sys-
tem implementation and deployment, which are often in the stage of academic
prototypes.

In this context, this paper is aimed at highlighting some guidelines for cor-
rectly mapping the abstractions adopted by an AO methodology onto the ab-
stractions supported by MAS infrastructures: we assume SODA as a case study,
and discuss how its design abstractions could be mapped onto three MAS in-
frastructures —TuCSoN, CArtAgO and TOTA. Accordingly, we first analyse and
compare the meta-models of the SODA methodology and of the chosen infras-
tructures, then exploit them to express both the structural representation of the
elements constituting the actual system, and their relationships [16].

Accordingly, the paper is structured as follows. Section 2 sketches a possible
classification of AO methodologies based on their relations with MAS technolo-
gies, and highlights the main advantages of their meta-model representation.
Then, Section 3 discusses the meta-models of the SODA methodology and of
the selected infrastructures, whereas Section 4 presents the mapping of SODA
abstractions onto such infrastructures and discusses the key guidelines. Section 5
reports an example of our approach mapping the SODA’s design onto a TuCSoN-
based implementation. Related work, conclusions and future works are reported
in Section 6 and Section 7.

302 A. Molesini, E. Denti, and A. Omicini

2 AOSE Methodologies: Technologies and Meta-models

MAS are a powerful paradigm for the implementation of complex computational
systems: the aim of AOSE is to effectively support the path from (an agent-
oriented) design to (an agent-based) deployment of the system. This is why
methodologies (and respective notations) have become central in AOSE research
as a key tool in the MAS analysis, design and development process.

Among the current methodologies, some are rooted in artificial intelligence
(AI), others emerge as an extension of object-oriented (OO) methodologies, fur-
ther try to merge the two approaches in some original way; finally, others are not
directly derived by previous approaches. So, an important classification criterion
is to distinguish methodologies that are neutral with respect to the implemen-
tation technologies (technology-neutral methodologies, or simply neutral ones in
the following), from those that are bound to specific infrastructures (technology-
biased methodologies, or simply biased ones in the following)—usually, due to
the choice of developing a CASE tool for supporting rapid prototyping and code
generation [17,18]. The first category includes methodologies like Gaia [1,2],
MESSAGE [19,20], INGENIAS [21], and SODA [7,8]: they all aim at guiding
the designer from the requirement analysis phase down to the design phase, yet
with no assumptions on the implementation and deployment phases—probably,
because of the lack of a recognised standard language and infrastructure that
could natively support agent-oriented concepts. Among biased methodologies,
Tropos [3,4] and PASSI [5,6] are both tied to the JADE [22,23] infrastructure,
and come with a set of development support tools.

Since there is currently no widely-acknowledged standard infrastructure for
MAS implementation, it is unclear whether committing to an infrastructure at
the methodological level may be better or worse than opting for technological
neutrality. In fact, even though neutral methodologies suffer from a deeper gap
with respect to the underlying technology, their models are general enough to
be potentially implemented over any infrastructure by just providing suitable
guidelines for mapping methodology abstractions onto infrastructure ones.

Apart from the technology neutrality matter, however, all AO methodologies
introduce some basic abstractions (agents, roles, behaviour, ontology, . . .) or-
ganised in a set of independent – but strongly correlated – models and phases.
The relationships between such entities and the models can then be expressed by
means of a meta-model [24,25], which becomes the key tool to compare method-
ologies with each other, identify families of (related) methodologies, and check
the consistency of a methodology when planning extensions or modifications.
So, a well-defined meta-model should address several different methodological
aspects—for instance, the process to be followed, the work products to be gen-
erated, who is responsible for each process phase (analysts, designers, . . .), etc.

Meta-models are also an important guide for integrating different methodolo-
gies avoiding several errors [24], such as assuming that differences of concern exist
when none exists, or assuming similarity of concern because of a common use
of terms—despite a different semantics. In the same way, infrastructure meta-
models associate each methodology concept to some suitable infrastructural

From AO Methodologies to MAS Infrastructures: The SODA Case Study 303

abstraction. So, we expect that studying and comparing methodologies with
infrastructures in terms of meta-models makes it possible to provide guidelines
for mapping the design model of a methodology onto its implementation.

3 Meta-models for the Case Study

In the following we first introduce and analyse the meta-models of of the SODA
methodology (Subsection 3.1) and of the three selected infrastructures—TuCSoN
(Subsection 3.2), CArtAgO (Subsection 3.3), and TOTA (Subsection 3.4).

Then (Section 4) we discuss the guidelines for mapping the SODA concepts
and metaphors onto such infrastructures, based on their meta-models.

3.1 SODA

SODA (Societies in Open and Distributed Agent spaces) [7,8,26,27] is an agent-
oriented methodology for the analysis and design of agent-based systems. Since
the original version [7], SODA has always focused on inter-agent issues, like the
engineering of agent societies and the environment for MAS: in this perspective,
it has recently been reformulated according to the A&A meta-model [28,29,30],
where artifacts take the form of computational devices that populate the agent
environment, and provide some kind of function or service used by agents [28].
Agents are used to model individual activities, while artifacts shape the MAS en-
vironment [29]. More generally, artifacts make it easier to enrich the MAS design
with social and organisational structures, as well as with complex security mod-
els: roles, permissions, policies, commitments, and the like can be represented
explicitly as first-class entities, and encapsulated within suitable artifacts. Many
sorts of artifacts are supported by SODA, even if in the meta-model we refer to
them simply as “artifact” without specify their typology. In particular, artifacts
used to mediate between individual agents and the MAS are called individual
artifacts, whereas social artifacts build up agent societies, and environmental
artifacts mediate between the MAS and an external resource [29].

SODA is organised in two phases, each structured in two sub-phases: the Anal-
ysis phase, which is composed of the Requirements Analysis and the Analysis
steps, and the Design phase, which is composed of the Architectural Design and
the Detailed Design steps. The meta-model that represents the abstract entities
adopted by SODA is depicted in Figure 1.

Requirement Analysis. Several abstract entities are introduced for requirement
modelling (see Figure 1 “requirement analysis” part): in particular, requirement
and actor are used for modelling the customers’ requirements and the require-
ment sources, respectively, while the external-environment notion is used as a
container of the legacy-systems that represent the legacy resources of the envi-
ronment. The relationships between requirements and legacy systems are then
modelled in terms of suitable relation entities.

304 A. Molesini, E. Denti, and A. Omicini

Requirement Analysis

Analysis

Architectural Design
Detailed Design

Society Aggregate

Act ion Operation

Interaction

*

*

*

*

*

*

*

*

Actor

Dependency

Requirement** **

Agent

0..n1..n 0..n1..n

Artifact

1..n1..n 1..n1..n use

0..n 1..n0..n 1..n

Environment

Resource

1..n

1..n

1..n

1..n

* ** *Role

1..n

1..n

1..n

1..n

** **

Task

*
*

*
*

partecipate

Workspace
1..n

1..n

1..n

1..n

perceive
*

*

*

*

is allocated

0..n0..n connect ion

1..n1..n

*

*

*

*

is allocated in

1..n

1..n

1..n

1..n

perceive

ExternalEnvironmentRelat ion

** **

Function

* ** *

partecipate

Topology *

*

*

*

affect

*

*

*

*influence

LegacySystem
*** ** *

Fig. 1. SODA Meta-model

Analysis. The Analysis step expresses the abstract requirement representation in
terms of more concrete entities such as tasks and functions (see Figure 1, “anal-
ysis” part). Tasks are activities requiring one or more competences, while func-
tions are reactive activities aimed at supporting tasks. The relations highlighted
in the previous step are now the starting point for the definition of dependencies
(interactions, constraints, etc.) among the abstract entities. The structure of the
environment is also modelled in terms of topologies, i.e. topological constraints
over the environment. Topologies are often derived from functions, but can also
constrain / affect task achievement.

Architectural Design. The main goal of this stage is to assign responsibilities of
achieving tasks to roles, and responsibilities of providing functions to resources
(see Figure 1, “architectural design” part). To this end, roles should be able
to perform actions, and resources should be able to execute operations provid-
ing one or more functions. The dependencies identified in the previous phase
become here interactions, i.e. “rules” enabling and bounding the entities’ be-
haviour. Finally, the topology constraints lead to the definition of workspaces,
i.e. conceptual places structuring the environment.

Detailed Design. Detailed Design is expressed in terms of agents, agent societies,
artifacts and artifact aggregates (see Figure 1 “detailed design” part). Agents
are intended here as autonomous entities able to play several roles, while soci-
eties are defined as the abstractions responsible for a collection of agents. The

From AO Methodologies to MAS Infrastructures: The SODA Case Study 305

resources identified in the previous step are now mapped onto suitable artifacts
(intended as entities providing some services), while aggregates are defined as
the abstractions responsible for a collection of artifacts. The workspaces defined
in the Architectural Design step take now the form of an open set of artifacts
and agents – that is, artifacts can be dynamically added to or removed from
workspaces, as well as agents can dynamically enter (join) or exit workspaces.

3.2 TuCSoN

TuCSoN (Tuple Centres Spread Over Networks) [10,11] is an infrastructure pro-
viding services for the communication and coordination of distributed / concur-
rent independent agents: its meta-model is depicted in Figure 2.

In detail, TuCSoN supports agent communication and coordination via tuple
centres coordination media [31]: these are shared & reactive information spaces,
distributed over the infrastructure nodes. In turn, this inducts a topology over the
network. Agents access tuple centres associatively, by writing (out), reading (rd,
rdp), and consuming (in, inp) tuples — i.e., ordered collections of heterogeneous
information chunks — via the above coordination primitives.

A tuple centre is a tuple space enhanced with the notion of behaviour spec-
ification. More precisely, a tuple centre is a coordination abstraction perceived
by the interacting entities as a standard tuple space [32], but whose behaviour
in response to events can be defined so as to embed the coordination laws.
So, defining a new behaviour for a tuple centre basically amounts at specifying
state transitions in terms of reactions to events [10]. In particular, reactions
are specified in TuCSoN via the ReSpecT (Reaction Specification Language) lan-
guage [30]: a reaction is defined as a set of non-blocking operations [10], and has
a success/failure transactional semantics: a successful reaction may atomically
produce effects on the tuple centre state, a failed reaction yields no result at all.
Typically, a tuple centre contains a set of reactions (reaction spec in Figure 2),

TopologyNetworkNode

Reaction

Tuple Centre
nn

runs

Event

Tuple
0..n0..n

stored

ACC

accesses

OrganisationRole
** **

Reaction Spec

nn

t riggers exectuion of

Agent

read/write
uses

negotiation/join

plays

programs

Events can be both
internally generated and
perceived from the tuple
centre.

Fig. 2. TuCSoN Meta-model

306 A. Molesini, E. Denti, and A. Omicini

each tied to a specific event: the same event could trigger multiple, different
reactions. Tuple centres are connected each other through link operations, hav-
ing the same form and a similar semantics as TuCSoN coordination primitives,
but invoked by successful reactions rather than by agents [30].

The Agent Coordination Context (ACC), introduced in [33] as the conceptual
place where to set the boundary between the agent and the environment, encap-
sulates the interface enabling agent actions and perceptions inside the environ-
ment. More precisely, an ACC (i) works as a model for the agent environment,
by describing the environment where an agent can interact, and (ii) enables and
rules the interactions between the agent and the environment, by defining the
space of the admissible agent interactions. The ACC dynamics is characterised
by two basic steps: negotiation and use. In fact, an ACC is meant to be first
negotiated by the agents with the MAS infrastructure, in order to start a work-
ing session inside an organisation. To this end, the agent specifies which roles
to activate: if the agent request is compatible with the (current) organisation
rules, a new ACC is created, configured according to the characteristics of the
specified roles, and is released to the agent for active playing inside the organ-
isation. The agent can then use the ACC to interact with other agents in the
organisation, and with the organisation environment, by performing the actions
and activating the perceptions made possible by the ACC.

3.3 CArtAgO

The abstract architecture of CArtAgO (Common Artifact for Agents Open en-
vironment) [14,15] is composed of three main elements (see Figure 3): (i) agent
bodies – as the entities that make it possible to situate agents inside the working

Topology

NetworkWorkplace Node

Usage

Workspace

governs
inducts

interesection/nesting

Usage Interface

Events
Construction

Operat ing Instruction

uses

Function Description

Selection

discovers

Role
**

Rules
**

Contract

Sensor

*

*

*

*

collects

Agent Body

**

**

generates

**

Agent

allocated in

sensing

uses

Action

performs

Effector**

*

*

*

*executes

Arti fact

*

*

*

*

allocated in

exposes

ables to observe

**

generates

constructs

exposes

exposes

Operation

acts on

**

**

provides

Fig. 3. CArtAgO Meta-model

From AO Methodologies to MAS Infrastructures: The SODA Case Study 307

environment; (ii) artifacts – as the basic building blocks to structure the working
environment; and (iii) workspaces – as the logical containers of artifacts, aimed
at defining the topology of the working environment.

Agent bodies. The agent body contains effectors to perform actions upon the
working environment, and a dynamic set of sensors to collect events from the
working environment. Agents interact with their working environment by “pi-
loting” their bodies: they execute actions to construct, select and use artifacts,
and perceive the observable events generated by artifacts.

Artifacts. Artifacts are the basic bricks managed by CArtAgO: agents use arti-
facts by triggering the execution of operations listed in the artifact usage inter-
face. The execution of an operation typically causes the update of the internal
state of an artifact, and the generation of one or more observable events: these
are then collected by the agent sensors and perceived by means of explicit sens-
ing actions. In order to support a rational exploitation of artifacts by intelligent
agents, each artifact is equipped with a function description, i.e. an explicit de-
scription of the functionalities it provides, and operating instructions, i.e. an
explicit description of how to use the artifact to get its function.

Workspaces. Artifacts are logically located in workspaces, which define the topol-
ogy of the working environment. A workspace is an open set of artifacts and
agents: artifacts can be dynamically added to or removed from workspaces by
agents, agents can dynamically enter (join) or exit workspaces. Workspaces make
it possible to structure agents and artifacts organisation & interaction: in par-
ticular, workspaces can function as scopes for event generation and perception,
as well as for artifact access and use. Articulated topologies can be created via
workspace intersection and nesting: in particular, intersection is supported by
allowing the same artifacts and agents to belong to different workspaces.

Workplaces, roles & contracts. In addition, CArtAgO also introduces the con-
cept of workplace as an organisational layer on top of workspaces. More pre-
cisely, a workplace is the set of roles and organisational rules being in force in a
workspace: there, contracts define the norms and policies that rule agent access
to artifacts and allow the generation of agent bodies. So, for instance, an agent
may or may not be granted permission to use some artifacts or to execute some
specific operations on selected artifacts depending on the role(s) that the agent
is playing inside the workplace [34].

3.4 TOTA

TOTA (Tuples On The Air)[12,13] is a middleware for multi-agent coordina-
tion, in distributed computing scenarios. A meta-model of the infrastructure is
presented in Figure 4. TOTA assumes the presence of a network of possibly mo-
bile nodes, each running a tuple space [31]: each agent is supported by a local
middleware and has only a local (one-hop) perception of its environment. Nodes
are connected only by short-range network links, each holding references to a

308 A. Molesini, E. Denti, and A. Omicini

Topology

Neighborough inducts

Network

Agent

NODE

runs

Content

TupleSpace runs

Tuple injects/senses

*

*

*

*

stored
executes

MigrationPropagation Rule

affects

*

*

*

*
accesses

inducts

The propagation rule could
induct a tuple migrat ion from
one node to another

Event

*

*

Maintance Rule

*

*

*

*

accesses

affec ts

triggers

occurs
*

*

Fig. 4. TOTA Meta-model

(limited) set of neighbour nodes: so, the topology of the network, as determined
by the neighbourhood relations, may be highly dynamic.

In TOTA, tuples are not associated to a specific node (or to a specific data
space) of the network: rather, they are “injected” in the network by an agent
from some node, then autonomously propagate hop-by-hop, diffuse, and evolve
according to specified propagation patterns. Thus, TOTA tuples form a sort
of spatially-distributed data structure, that can be used to acquire contextual
information about the environment and to support the mechanisms required for
stigmergic interaction [35]. More precisely, TOTA distributed tuples T=(C,P,M)
are characterised by a content C, a propagation rule P, and a maintenance rule
M: the content C is an ordered set of typed fields representing the information
carried by the tuple, the propagation rule P determines how the tuple propagates
across the network (called “migration” in the Figure 4) and how the tuple content
should change while the tuple is propagated; finally, the maintenance rule M
determines how a tuple distributed structure should react to events occurring
in the environment. Specifying the tuple propagation rule includes determining
the “scope” of the tuple and how such propagation is affected by the presence or
absence of other tuples in the system. In turn, events handled by the maintenance
rule can range from simple time alarms, to changes in the network structure:
the latter kind of events is of fundamental importance to preserve a coherent
structure of the environment properties represented by tuple fields.

4 From SODA to Infrastructures

This section presents some guidelines for mapping SODA design-level abstrac-
tions onto the infrastructural abstractions of TuCSoN (Subsection 4.1), CArtAgO

From AO Methodologies to MAS Infrastructures: The SODA Case Study 309

(Subsection 4.2) and TOTA (Subsection 4.3): the abstractions used in SODA
analysis phase are left aside, as they would be too high-level with respect to
infrastructures. Among the many MAS infrastructures available in literature,
we choose TuCSoN and TOTA because interaction – and coordination, in par-
ticular – is at the core of both infrastructures, in the same way as in SODA. In
addition, both infrastructures are not FIPA-compliant, and here we meant to
explore such a sort of infrastructures. Finally we choose CArtAgO because it is
the only infrastructure that natively supports the concepts of artifacts.

Such infrastructures are then compared so as to evaluate their support to
SODA abstractions (Subsection 4.4).

4.1 SODA and TuCSoN

Since SODA is defined on top of the A&A meta-model, the first step is to define
how agents and artifacts can be represented as TuCSoN abstractions.

Mapping the agent notion is straightforward, given TuCSoN native support for
this concept: so there is a one-to-one mapping between SODA agent abstraction
and TuCSoN one. However, the concept of agent action, explicitly considered
in the SODA meta-model, is more or less reduced to the notion of coordination
primitives, as performed by agents.

Mapping the artifact notion, instead, is less obvious, as SODA defines three
different artifact types – social, individual and environmental artifacts – each
requiring its own mapping. With respect to this issue, TuCSoN tuple centres
can be seen as a special case of social artifacts: they mediate and govern agent
interaction by encapsulating the laws of agent coordination. Such coordination
laws, expressed in terms of reactions to interaction events, are well suited to map
SODA interactions—i.e., the rules that enable and bound the entities’ behaviour.
In turn, the notion of individual artifact can be mapped onto the TuCSoN ACC
concept, since its purpose is precisely to represent the interface of an agent
towards the environment [36]. In fact, agents ask for an ACC specifying the
roles to be activated: the ACC is then negotiated with the infrastructure as the
agent joins the MAS organisation. If the negotiation is successful, the ACC is
created and released to the agent, which, henceforth, exploits it to access the
MAS services: the ACC redirects the agent invocations to the other artifacts in
the environment. Finally, the environmental artifact is not natively supported
by TuCSoN, so it must be developed if/when needed. Also, the notion of artifact
operation is reduced here to the notion of tuple centre operation, and has not
the generality required. Given that, link operations through tuple centres are
the way in which TuCSoN artifacts are somehow composed.

Widening the view, the organisation concept provided by TuCSoN is well
suited to represent SODA societies, in the same way as the TuCSoN role con-
cept can well represent the SODA role notion. From the topological viewpoint,
the SODA notion of workspace may be mapped onto the TuCSoN node concept,
which, indeed, represents an open set of agents, tuple centres and ACCs; as a
consequent step, TuCSoN network can be used to map SODA environments. On

310 A. Molesini, E. Denti, and A. Omicini

the other hand, workspace connection, as introduced by SODA, has no mapping
in TuCSoN, so it should be developed ad hoc when needed.

4.2 SODA and CArtAgO

CArtAgO and SODA share the same root in the A&A meta-model: so, quite
expectedly, CArtAgO abstractions can easily support all SODA concepts. In par-
ticular, CArtAgO provides the artifact notion as a first-class abstraction, which
can be used and easily specialised in social and environmental artifacts according
to the developer’s needs. Therefore, unlike TuCSoN, the SODA notion of arti-
fact operation is directly mapped onto the operation abstractions supported by
CArtAgO; the same holds for SODA agent action. Moreover, individual artifacts
can be more specifically mapped on CArtAgO agent body abstraction, instead of
using the generic artifact notion.

Composition of artifacts can also be easily realised, thanks to the linkability
property [29] natively supported by CArtAgO artifacts to scale up with envi-
ronment complexity. So, an artifact can be conceived and implemented as a
composition of linked, possibly non-distributed, artifacts – or, conversely, a set
of linked artifacts, scattered through a number of different physical locations,
can be seen altogether as a single distributed artifact.

In addition, SODA organisational structure, which is defined in terms of roles
and societies, can be easily translated on CArtAgO roles and workplaces. This
makes it possible to capture SODA interaction concept in a straightforward way:
in fact, interactions in SODA are aimed at enabling and constraining agent be-
haviour, which is precisely what the workplace rules and contract do – a CArtAgO
agent may or may not have the permission to use some artifacts or to execute
some specific operations on some specific artifacts depending on the role(s) that
the agent itself is playing inside the workplace.

Finally, CArtAgO workspace concept can be directly used to map the SODA
workspace concept, in the same way as CArtAgO workspace nesting supports
SODA workspace connection. The CArtAgO abstractions of node, network and
topology can be used to represent the SODA environment, too.

4.3 SODA and TOTA

TOTA provides a native support to the agent concept, while the artifact concept
is supported only in the case of social artifacts. So, SODA agents can be directly
mapped onto TOTA agents, while social artifacts are mapped onto TOTA tu-
ple spaces. Unlike tuple centres, tuple spaces provide only a fixed coordination
service: so, they are unable to support the SODA interaction concept. However,
SODA social rules can be mapped onto the maintenance rule and the propagation
rule associated to TOTA distributed tuples, exploiting the fact that propaga-
tion rules determine how tuples propagate through the network, and mainte-
nance rules determine how the tuple distributed structure reacts to environment
events. Of course, this mapping is less straightforward than in TuCSoN (whose
reactions map SODA interaction concept directly): indeed, a set of many tuples

From AO Methodologies to MAS Infrastructures: The SODA Case Study 311

must be used to describe a single SODA interaction – each tuple representing
one propagation and one maintenance rule. As a side effect of this one-to-many
mapping, maintaining coherency is quite a hard task, and the rules/interaction
mapping can often be very dispersive.

From the topology viewpoint, TOTA node concept maps SODA workspace
concept: each node holds references to a limited set of neighbour nodes, and
neighbourhood relations express the network topology. Such inter-node relations
can be exploited also to provide an abstraction for mapping the SODA workspace
connection concept. Finally, the TOTA network concept maps the SODA envi-
ronment, too. All the others SODA concept are not natively supported by TOTA,
and should therefore be developed in an ad hoc way when needed.

4.4 Discussion

Figure 5 highlights the SODA abstractions that are supported natively from
each of the three infrastructures. The agent and resource abstractions are both
omitted – the first because it is explicitly supported by each infrastructure, the
latter for the opposite reason.

Quite expectedly, CArtAgO provides the best support for SODA design ab-
stractions, as they are both rooted in the A&A meta-model: in particular, both
consider the environment as the key element, adopt artifacts as their basic build-
ing blocks for modelling the environment resources, and workspaces for struc-
turing the environment. Moreover, both SODA and CArtAgO support the MAS
organisational structure by explicitly enabling the specification of social rules.

TuCSoN and TOTA, instead, provide support for fewer SODA abstractions:
so, the developer needs to implement by himself the abstractions which are not
supported by the infrastructure natively. In particular, none of the two infras-
tructures supports environmental artifacts, while both support social artifacts:
this is not surprising, since they take both inspiration from coordination mod-
els, where interaction is typically mediated by some coordination media [31] (like

SODA TuCSoN CArtAgO TOTA

Role Role Role -

Action Coordination Primitive Action -

Interaction Reaction Specification Rules Maintenance Rule
Reaction Contract Propagation Rule

Operation Tuple Centre Operation Operation -

(Social) Artifact Tuple Centre Artifact Tuple Space, Tuples

(Individual) Artifact ACC Agent Body -

(Environmental) Artifact - Artifact -

Aggregate Linked Tuple Centres Artifact -

Society Organisation Workplace -

Workspace Node Workspace Node

Workspace Connection - Workspace Nesting Neighbourhood

Fig. 5. Abstractions Mapping

312 A. Molesini, E. Denti, and A. Omicini

a tuple space or a tuple centre) that could be easily seen as a special case of
social artifact. Individual artifacts, in their turn, find their counterpart only in
TuCSoN — namely, in the ACC abstraction. Moreover, SODA interaction ab-
straction, which represents the rules that enable and shape the agent behaviour,
can be expressed directly by TuCSoN reactions, and indirectly via TOTA mainte-
nance and propagation rules. Finally, as far as the organisational structure of the
MAS is concerned, TuCSoN provides explicit abstractions such as organisation,
role and ACC; on the other hand, TOTA does not provide any support for this
issue yet, so the developer must provide for managing the MAS organisations on
his/her own.

5 SODA and TuCSoN: An Example

In order to provide a concrete example of the effectiveness of our approach, we
present a sketch of the mapping from SODA to the TuCSoN infrastructure: the
complete case study can be found in [8]. Let us consider a Conference manage-
ment system [2]. In the Architectural Design step, three main roles are identified
(PC-chair, Author and PC-member): these can be mapped onto three corre-
sponding TuCSoN roles played by three different TuCSoN agents. Moreover, in
the Detailed Design step, each SODA agent is associated to an individual arti-
fact (PC-Chair Artifact, Author Artifact and PC-Member Artifact): so, three
TuCSoN ACCs have to be considered — one for each TuCSoN agent. Correspond-
ingly, the actions associated to roles (executed by agents) have to be mapped
onto suitable coordination primitives: for instance, the “write review” action,
that allows PC-member to write the reviews, can be mapped onto the “out”
coordination primitive [37].

On the other hand, since SODA’s environmental artifacts are not supported
by TuCSoN, these abstractions must be created ad hoc by developers — for
instance, exploiting TuCSoN tuple centres as interfaces for standardising the
access protocols to all the system resources. Then, as above, the operations
associated to the resources (and performed by artifacts) can be mapped onto
suitable tuple centre operations: for instance, the store review operation, that
supports the write review action, can be mapped as:

paperArt?out(review(paper_id, rev))

where paperArt is the name of the tuple centre that stores the information
about papers, and review is the name of the tuple posted in the tuple centre.
The tuple arguments are the paper id (paper id) and the review value (rev)
decided by the PC-member [30].

The interactions individuated in the Architectural Design step, and associated
to the social artifacts in the Detailed Design step, are consequently mapped onto
suitable reactions. For example, the PC-member’s action of downloading a paper
for review is potentially critical from the fairness viewpoint, since he/ she could
be one of the paper’s authors: to face this issue, the action is subject to the
Review-Rule managed by the paperArt social artifact. So, the PC-member just
invokes the operation:

From AO Methodologies to MAS Infrastructures: The SODA Case Study 313

paperArt?in(download(paper_id, Paper_link))

on the paperArt tuple centre, which, in turn, triggers the reactions:

reaction(in(download(Paper_id, Paper_link)),
(request, from_agent), (

current_source(Agent),
rd(association(Agent, PC_member)),
rd(authorised(PC_member, Paper_id)),
rd(link(Paper_id, Link)),
out(download(Paper_id, Link))

)).

reaction(in(download(Paper_id, Paper_link)),
(request, from_agent), (

current_source(Agent),
rd(association(Agent, PC_member)),
no(authorised(PC_member, Paper_id)),
out(download(Paper_id, nil))

)).

These perform the proper checks and either provide the PC-member access to
the paper – by emitting the download(paper id,link) tuple – or negate it—by
emitting the download(paper id,nil) tuple.

From the organisational viewpoint, the conference management system can
be seen in SODA as an agent society, which is naturally mapped onto a TuCSoN
organisation responsible for the creation and management of the ACCs repre-
senting the individual artifacts. Finally, since the SODA design specifies only one
workspace, a single TuCSoN node seems enough for the purpose.

6 Related Work

Model-Driven Architecture [38] (MDA) is another approach for filling the gap
among methodologies and infrastructures: its basic idea is to define first a Plat-
form Independent Model (PIM) and then iteratively make it more and more
platform-specific by a series of transformations, whose endpoint is the Platform
Specific Model (PSM). Current technologies, however, may not fully support
MDA complex transformation rules: for instance, UML, which is one of MDA
foundations, lacks the required precision and formalisation [39].

Further research efforts are being devoted to integrating MDA and AOSE
[39,40]. In [39], for instance, an agent architecture based on the human cognitive
model of planning, the Cognitive Agent Architecture (Cougaar), is integrated
with MDA. The resulting Cougaar MDA defines the models to be used, how
they should be prepared, and the relationships among them. The level of appli-
cation composition is thus elevated from individual components to domain-level
model specifications in order to generate software artifacts. The software ar-
tifacts generation is based on a meta-model: each component is mapped onto

314 A. Molesini, E. Denti, and A. Omicini

a UML structured component which is then converted into multiple artifacts—
Cougaar/Java code, documentation, and test cases. In [40], Amor et al. show how
the Model Driven Architecture (MDA) can be used to derive agent implemen-
tations from agent-oriented designs, independently from both the methodology
and the concrete agent platform. Their goal is to study how to bridge the gap be-
tween methodologies and infrastructures, so as to cover the whole MAS lifecycle.
Authors show how this problem can be naturally expressed in terms of MDA,
and how MDA mechanisms can be used for defining the mappings. By applying
the MDA ideas, the design model obtained from an agent-oriented methodology
can be considered as a PIM, the target MAS agent platform as the PSM, and
the mappings between the two can be given by the transformations defined for
the selected agent platform. The target models need to be expressed in terms of
their corresponding UML profiles, as indicated by MDA.

Since both methods imply the use of UML, its practical application requires
that the selected AOSE methodology adopts UML or AUML as its notation: if
this is not the case, like for many AOSE methodologies, an additional transfor-
mation from the methodology own notation to UML is necessary. As a result,
the overall application of this approach involves many transformations for each
mapping, and requires a PSM to be defined for each infrastructure.

7 Conclusions and Future Work

In this paper we adopted the SODA methodology as a running example for
mapping the methodological concepts onto infrastructural abstractions in the
case of three main agent infrastructures—TuCSoN, CArtAgO, and TOTA. To this
end, we first studied the agent-oriented methodologies from the point of view of
the connection with the implementation technologies, and classified them into
technology-neutral and technology-biased methodologies.

Starting from neutral methodologies, that currently seem more appealing be-
cause of their independence from the underlying non-standard technologies, we
then exploited meta-modelling as a tool to formalise the inner structure and the
composing relationships both for the methodology and the selected infrastruc-
tures. Accordingly, we developed and comparatively analysed the meta-models
of the SODA methodology and of CArtAgO, TuCSoN, and TOTA infrastruc-
tures, with double purpose of (a) providing guidelines for bridging the design
and implementation phases, and (b) evaluating the quality of the mapping of
SODA concepts onto infrastructural abstractions in terms of naturalness, clear-
ness, and directness of the mapping. Finally we presented an example of our
approach mapping the SODA’s design of a case study onto a TuCSoN-based
implementation.

Of course, this research is still in its early stage, so a lot of work remains
to do: the next steps will be devoted to develop meta-models for other MAS
infrastructures such as MARS [41], RETSINA [42] and JADE [22,23], and to

From AO Methodologies to MAS Infrastructures: The SODA Case Study 315

study how to map SODA concepts onto these infrastructures. In order to test our
method, we also plan to make the same experiments taking as a base another
neutral methodology, among Gaia [2], MESSAGE [19] or INGENIAS [21].

Acknowledgements

This work has been supported by the MEnSA project (Methodologies for the
Engineering of complex software Systems: Agent-based approach) funded by the
Italian Ministry of University and Research (MUR) in the context of the National
Research ‘PRIN 2006’ call.

References

1. Zambonelli, F., Jennings, N., Wooldridge, M.: Multiagent systems as computa-
tional organizations: the Gaia methodology. In: [43], ch. VI, pp. 136–171

2. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12, 317–370 (2003)

3. Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J.: Tropos: A requirements-driven
methodology for agent-oriented software. In: [43], ch. II, pp. 20–45

4. Tropos: Home page, http://www.troposproject.org/
5. Cossentino, M.: From requirements to code with the PASSI methodology. In: [43],

pp. 79–106
6. Cossentino, M., Sabatucci, L., Chella, A.: Patterns reuse in the PASSI methodology.

In: Omicini, A., Petta, P., Pitt, J. (eds.) ESAW 2003. LNCS (LNAI), vol. 3071,
pp. 294–310. Springer, Heidelberg (2004)

7. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000.
LNCS, vol. 1957, pp. 185–193. Springer, Heidelberg (2001)

8. SODA: Home page, http://soda.alice.unibo.it
9. Omicini, A., Rimassa, G.: Towards seamless agent middleware. In: IEEE 13th Inter.

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WET ICE 2004). 2nd Inter. Workshop “Theory and Practice of Open Computa-
tional Systems” (TAPOCS 2004), pp. 417–422. IEEE Computer Society Press, Los
Alamitos (2004)

10. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2, 251–269 (1999)

11. TUCSON: Home page at SourceForge, http://tucson.sourceforge.net
12. Mamei, M., Zambonelli, F.: Programming stigmergic coordination with the TOTA

middleware. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P.,
Wooldridge, M. (eds.) Proceedings of AAMAS 2005, pp. 415–422. ACM Press,
New York (2005)

13. Mamei, M., Zambonelli, F.: Programming modular robots with the tota middle-
ware. In: Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) 5th Inter. Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp.
485–487. ACM Press, New York (2006)

http://www.troposproject.org/
http://soda.alice.unibo.it
http://tucson.sourceforge.net

316 A. Molesini, E. Denti, and A. Omicini

14. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg
(2007)

15. CARTAGO: Home page, http://cartago.alice.unibo.it
16. Molesini, A., Denti, E., Omicini, A.: MAS meta-models on test: UML vs. OPM in

the SODA case study. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS
2005. LNCS (LNAI), vol. 3690, pp. 163–172. Springer, Heidelberg (2005)

17. PASSI: Toolkit web page, http://sourceforge.net/projects/ptk
18. TAOM4E: Home page, http://sra.itc.it/tools/taom4e/
19. Garijo, F.J., Gòmez-Sanz, J.J., Massonet, P.: The MESSAGE methodoly for agent-

oriented analysis and design. In: [43], ch. VIII, pp. 203–235
20. Caire, G., Coulier, W., Garijo, F.J., Gomez, J., Pavòn, J., Leal, F., Chainho, P.,

Kearney, P.E., Stark, J., Evans, R., Massonet, P.: Agent oriented analysis using
Message/UML. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001.
LNCS, vol. 2222, pp. 119–135. Springer, Heidelberg (2002)

21. Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
In: [43], ch. IX, pp. 236–276

22. JADE: Home page (2000), http://sharon.cselt.it/projects/jade/
23. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a

fipa-compliant agent framework. Softw., Pract. Exper. 31, 103–128 (2001)
24. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of

some multi-agent meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.)
AOSE 2004. LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005)

25. van Hillegersberg, J., Kumar, K., Welke, R.J.: Using metamodeling to analyze the
fit of object-oriented methods to languages. In: 31st Hawaii Inter. Conference on
System Sciences (HICSS 1998), Modeling Technologies and Intelligent Systems,
Kohala Coast, HI, USA, vol. 5, pp. 323–332. IEEE Computer Society Press, Los
Alamitos (1998)

26. Molesini, A., Omicini, A., Ricci, A., Denti, E.: Zooming multi-agent systems.
In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 81–93.
Springer, Heidelberg (2006)

27. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963,
pp. 49–62. Springer, Heidelberg (2006)

28. Omicini, A., Ricci, A., Viroli, M.: Coordination artifacts as first-class abstractions
for MAS engineering: State of the research. In: Garcia, A., Choren, R., Lucena, C.,
Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS, vol. 3914,
pp. 71–90. Springer, Heidelberg (2006)

29. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for
MAS. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. Electronic
Notes in Theoretical Computer Sciences, vol. 150, pp. 21–36 (2005)

30. Omicini, A.: Formal ReSpecT in the A&A perspective. Electronic Notes in Theo-
retical Computer Sciences 175, 97–117 (2007); Post-proceedings of 5th Inter. Work-
shop on Foundations of Coordination Languages and Software Architectures (FO-
CLASA 2006), CONCUR 2006, Bonn, Germany August 31 (2006)

31. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7, 80–112 (1985)

32. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
munications of the ACM 35, 97–107 (1992)

http://cartago.alice.unibo.it
http://sourceforge.net/projects/ptk
http://sra.itc.it/tools/taom4e/
http://sharon.cselt.it/projects/jade/

From AO Methodologies to MAS Infrastructures: The SODA Case Study 317

33. Omicini, A.: Towards a notion of agent coordination context. In: Marinescu, D.C.,
Lee, C. (eds.) Process Coordination and Ubiquitous Computing, pp. 187–200. CRC
Press, Boca Raton (2002)

34. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: An infrastructure for engineering com-
putational environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel,
F. (eds.) E4MAS 2006, pp. 102–119 (2006)

35. Parunak, H.V.D.: Go to the ant: Engineering principles from natural agent systems.
Annals of Operation Research 75, 69–101 (1997)

36. Viroli, M., Omicini, A., Ricci, A.: Engineering MAS environment with artifacts.
In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.) E4MAS 2005, pp. 62–77 (2006)

37. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. Advances in
Computers 46, 330–401 (1998)

38. OMG: Home page, http://www.omg.org/mda/
39. Gracanin, D., Singh, H.L., Bohner, S.A., Hinchey, M.G.: Model-driven architec-

ture for agent-based systems. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F.,
Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 249–261. Springer,
Heidelberg (2004)

40. Amor, M., Fuentes, L., Vallecillo, A.: Bridging the gap between agent-oriented
design and implementation using MDA. In: Odell, J.J., Giorgini, P., Müller, J.P.
(eds.) AOSE 2004. LNCS, vol. 3382, pp. 93–108. Springer, Heidelberg (2005)

41. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)

42. Sycara, K.P., Paolucci, M., Velsen, M.V., Giampapa, J.A.: The RETSINA MAS
infrastructure. Autonomous Agents and Multi-Agent Systems 7, 29–48 (2003)

43. Henderson-Sellers, B., Giorgini, P. (eds.): Agent Oriented Methodologies. Idea
Group Publishing, Hershey (2005)

 http://www.omg.org/mda/

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 318–332, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Model Driven Engineering for Designing Adaptive
Multi-Agents Systems

Sylvain Rougemaille, Frédéric Migeon, Christine Maurel, and Marie-Pierre Gleizes

IRIT – Paul Sabatier University – 118, Route de Narbonne
31062 Toulouse, Cedex 9, France

Tel.: +33 561 558456
{rougemaille,migeon,maurel,gleizes}@irit.fr

Abstract. A challenge for our days is to provide new efficient CASE (Computer
Aided Software Engineering) tools enabling MAS designers towards Model
Driven Engineering (MDE) approaches. The goal of MDE is to improve the de-
velopment process and the quality of the software produced. Our work focuses
on two different aspects of MAS. The functional one, which is application de-
pendent and close to the decision process of agents, and the operational one
related to elementary capabilities of agents. For each point of view, we have de-
fined specific meta-models. Our goal in this paper is to provide a mapping from
the functional meta-model to the operational that constitutes a specific platform
model. As we are interested in adaptive systems, we have to deal with adaptation
both at the agent and the system level. We address this problem by respectively
using the JavAct flexible architecture and the Adaptive MAS principles.

1 Introduction

A challenge for our days is to provide new efficient CASE (Computer Aided Software
Engineering) tools enabling MAS designers towards Model Driven Engineering
(MDE) approaches. The goal of MDE is to improve the development process and the
quality of the software produced. Basically, Model Driven Architecture (MDA) [1]
proposes to automatically generate the PSM (Platform Specific Model) by merging
early specifications expressed as the PIM (Platform Independent Model) and some
intermediary PM (Platform Model) by using several automated transformations.

The work presented in this paper consists of the enhancement of the existing
ADELFE methodology [2], based on the AMAS (Adaptive Multi-Agent Systems)
theory and dedicated to the design of self-organising systems. The aim is to enrich
ADELFE with a development phase providing tools based on MDE. In particular, we
want to focus on two aspects of a MAS: the functional aspect which is application
dependent and close to the decision process of agents, and the operational related to
elementary skills of agents. For each point of view, we have defined specific meta-
models, we support mapping from the functional meta-model to the operational one
avoiding the merging phase of a classical MDA approach.

Furthermore, systems we are interested in must be adaptive and we take into ac-
count the adaptation at both agent and system levels. We have developed the JavAct

 Model Driven Engineering for Designing Adaptive Multi-Agents Systems 319

agent-based middleware [3] whose agents are designed to be adaptive by the means of
a component-based flexible architecture and which is a particularly well suited target
for implementing an AMAS whose main principle is system self-adaptation. How-
ever, JavAct is used as an implementation platform for our work and is not in the
scope of this paper. We simply use its adaptation capabilities thanks to its architecture
and promote it at the model level.

In this paper, we advocate that the design of an agent must be realized by consider-
ing two different levels: an operational one and a functional one (Section 2). Once the
proposed approach is positioned in relation to existing works (Section 3), different
points of view of the meta-models, at the two levels previously determined, are de-
scribed (Section 4). Then, the mapping enabling the transformation from a functional
meta-model to an operational one is defined (Section 5). The paper ends with a dis-
cussion and a presentation of the perspectives of the proposed approach (Section 6).

2 Operational and Functional Adaptation

In living systems, adaptation is linked to the species’ learning and evolution capabili-
ties according to the Darwin’s theory [4]. Thus, adaptation is a process enabling
changing systems’ structure and\or behaviour in order for the species to survive. In
artificial systems, adaptation can occur as an off-line manner, for example when a
programmer stops the code execution, changes a line of code and launches it again.
But, the more complex and interesting concept of adaptation which is treated in this
paper, is self-adaptation in which the artificial system performs some internal
changes, during the execution to enable the system adaptation. The reason why an
artificial system has to self-adapt is explained in [5]. According to the DARPA defini-
tion, Robertson and al. said: “self-adaptive software evaluates its own behaviour and
changes behaviour when the evaluation indicates that it is not accomplishing what the
software is intended to do, or when better functionality or performance is possible”.

The systems that we are focusing on can be an agent or a MAS. So, to self-adapt an
agent or a MAS has to change; i.e. to modify its behaviour or a part of its structure.
For example, an artificial ant can learn that when it is in front of a wall, it has to turn
(behaviour) or if it possesses the adequate skills, it can self-add one leg (adding a
part). We can assume that, in general, the adaptation process starts by an interaction
between the system and its environment. As Maturana and Varela have shown, there
exists a coupling between the system and the environment [6], there exists a very
close relation between a system and the environment in which it is executed. This
relation is based on the system perceptions of its environment and the actions it makes
to deal with. Once deployed, the system has to react to its surrounding environment
stimuli, one way to react is, in particular, to self-adapt.

The designer must lead an analysis at the system (or global level), and at the agent
(or local level) in order to design a self-adaptive MAS. Most of the works on multi-
agent design agree that an agent follows the life cycle composed of three main steps:
perceive, decide and act. In each step, the agent design must take into account two
levels: an operational one and a functional one.

Considering the perceive-decide-act lifecycle, we understand those levels as follow.
The operational level is made up of all the tools or means which enable the perception

320 S. Rougemaille et al.

of the environment and the performance of actions such as moving, sending messages.
The functional level is related to all the means which enable the choice of an action to
perform such as “if there is an obstacle in front of me I have to turn left or right”, i.e.
the decision process. Those levels are detailed in the next sections.

2.1 Operational Point of View

The operational part of an application gathers everything which is independent of the
application layer. Therefore, operational adaptation can be seen as updating the sys-
tem to its execution environment, without altering its behaviour, so that it is more
efficient or simply compliant with it. For example, an agent entering an unsecured
zone could have its message sending protocol become encrypted, independently of its
functional behaviour.

For this purpose, we developed the JavAct middleware [3] where agents benefit
from a meta-level architecture. While the base-level contains the functional part of an
agent, the meta-level gives flexibility to this agent by means of interconnected micro-
components; each of them implements an operational skill of the agent (mobility,
message sending, environment perception, dynamic creation etc.). Consequently,
operational adaptation is obtained by changing a micro-component dynamically. Of
course, operational adaptation can be triggered by functional concerns and is defined
by the programmer at design time, i.e. concerns and conditions from the base level
imply meta-level modifications. For example, the encrypted communication could be
a small part of a complex and functional adaptation of an agent which perceives its
environment as unsecured and decides that encryption is the best way to adapt.

2.2 Functional Point of View

The functional behaviour can be viewed as the result produced by a system in an
applicative context. It is what the system can realize to achieve the requirements of an
application and usually is domain dependent. MAS adaptation can be due to change
either in individual behaviour of agents or in the collective behaviour of the system.
In this paper, we focus on functional adaptation at the system level.

At the agent level, the function is related to the result provided by the agent action
and self-adaptation consists in changing the decision process leading to another action,
or learning a new action to be done. The adaptation of its behaviour can be realized by
endowing the agent with a learning process. With this ability, the agent can act differ-
ently and can adapt its behaviour to subsequent events in its environment by using the
knowledge learnt from making previous decisions. The research community on agent
learning has produced a lot of work such as case-based reasoning, reinforcement learn-
ing, neural networks, etc. which are usually used in the MAS community.

System adaptation consists in changing the behaviour of the collective in response
to new or modified environments. In the AMAS (Adaptive Multi-Agent Systems)
approach [7], we have worked to highlight a generic behaviour which enables the
system to self-adapt. The AMAS theory provides a guide to design self-organising
systems. It is based on the observation that modifying interactions between the agents
of the system modifies also the global function and makes the system self-adapt to
changes in its environment. The local criterion used by agents to decide which kind of

 Model Driven Engineering for Designing Adaptive Multi-Agents Systems 321

action they perform, is the cooperative attitude. An agent behaviour is led by the two
following attitudes: a repairing one and an anticipative one. If no change appears in its
environment, an agent performs its nominal behaviour and if changes occur it analy-
ses the situation and chooses the most cooperative action related to its environment in
which other agents evolve.

According to the AMAS theory, every agent pursues an individual objective and
interacts with agents it knows by respecting cooperative techniques which lead to the
avoidance of Non Cooperative Situations (NCS) like conflict or concurrence. Faced
with a NCS, a cooperative agent acts to come back to a cooperative state and perma-
nently adapts itself to unpredicted situations while learning from others. The AMAS
theory is based on how an agent can avoid failures and this approach is an exceptions
handling mechanism at the agent level.

2.3 Adaptation Levels

As we have seen in this section, we have identified different kinds of adaptation but
also different levels of concerns. The following table sums up the idea:

 Functional Adaptation Operational Adaptation

Agent Classical learning approaches JavAct

System AMAS approach

Operational adaptation in JavAct mainly concerns the agent itself whereas the

AMAS approach fits functional adaptation of the system. However, it is easy to obtain
operational adaptation of the system by coordinating operational adaptation of agents
as well as functional adaptation of agents (such as learning for example), which can be
obtained from AMAS concerns. The operational mechanisms involved in the execu-
tion of an AMAS are at least, constituted by the set of the mechanisms used by each
type of agent. The complexity of the operational adaptation mechanism of the whole
system would depend on the heterogeneity of the agents of which it is composed. Each
agent is responsible of its own operational adaptation, thus the system operational
adaptation only depends on its agents. Furthermore, the consistency should be guaran-
teed by cooperation rules that insure for example the understanding of messages.

So, our aim is the providing of means to design self-adaptive MAS which enable
us to take into account in one tool the operational adaptation at the agent level and
functional adaptation at the system level. We have developed the ADELFE method
[8], to design AMAS but this method consists only of the three first steps of the de-
sign life cycle: Requirements, Analysis and Design Workflows. Our aim is to add the
development phase to ADELFE by taking into account the two previous levels of
adaptation. Because the objective is to reduce the design duration and the complexity
of the task for designers, they should only focus on the system functional adaptation
(NCS definition) and the agent definition while the operational adaptation should be
automatically handled by the JavAct middleware thanks to model transformations.
Mapping AMAS operational concerns to JavAct specific architecture (see section 5)
is the purpose of the presented work and is the first step to reach that goal.

322 S. Rougemaille et al.

3 Related Work

Currently, most of the existing agent-based methodologies [9], [10] have fully taken
into account the first phases of a software development life cycle: requirements,
analysis and design phases. The phases such as implementation, test, deployment and
maintenance are more or less treated in the following well-known methods ADELFE
[8], INGENIAS [11], PASSI [12], and TROPOS [13]. But an effort has been made on
these phases, notably in proposing new tools to facilitate code generation. In this
section, the main works using models transformation in order to design MAS are
reviewed and the main tools coming from MDE are analysed.

3.1 MAS Related Work

The first result to improve the agent-based software development is about meta-models
definition in MAS methods and the second is about the use of model transformations
coming from the MDA or MDE community in order to generate automatically the code
for a given platform.

3.1.1 MAS Meta-models
Since 2003, initiated by FIPA (Foundation for Intelligent Physical Agents) working
groups, several meta-models have been defined. The difficulty was to find a unique
and agreed meta-model, so several meta-models have been defined.

AALAADIN [14] is a meta-model based on agent, group and role concepts. It en-
ables principally the description of organisation; agents belong to groups in which
they handle roles. Agent are intentionally not detailed, thus, developers are free to
choose the one that better fit their requirements. A concrete adoption of AALAADIN
is used in the MadKit platform [14] in the requirements and design phases.

FAML [15] meta-model is a meta-model built to take into account every kind of
existing MAS. It is expressed in two layers: design-time and runtime, concerning both
the agent and the system point of views. At design level, the expressed concepts are
role, task, agent, plan, action, ontology and environment access points. At runtime,
environment, events, system access points, plans, action, message, desires, beliefs and
intention. At each level, the relationships between concepts are explained.

GAIA [16] meta-model highlights the notions of: role (which is refined in respon-
sibility, activity, permission concepts), agent, communication (with protocols), or-
ganisation (structure and rules) and environment (resource).

INGENIAS [11] meta-model integrates different results on multi-agent and agent
works. By consequence, it considers a MAS from five complementary viewpoints:

– Organization (workflow, group, agents, roles, resources, and applications),
– Agent (tasks, goals, mental states and roles),
– Tasks/goals which describes their decomposition and the consequences of their

execution in terms of: mental entity, interaction, resource, application,
– Interactions (agent, goal, role, task, specification),
– And environment (agent, application, resource).

 Model Driven Engineering for Designing Adaptive Multi-Agents Systems 323

PASSI meta-model [12] is composed of three domains: the solution, the agency
and the problem domains. The problem domain deals with the user's problem in terms
of scenarios, requirements, ontology and resources. In the agency domain, the main
concepts are agent, role, task and communication with AIP message. The implemen-
tation domain describes the structure of the code solution in the chosen FIPA-
compliant implementation platforms.

TROPOS [13] is a method organized in five phases: early requirements, late re-
quirements, architectural design, detailed design and implementation. The main con-
cepts enabling expression of intentional and social concepts are: actor, goal, plan,
resource and the relationships between them such as actor dependency goal decompo-
sition, plan decomposition, means-end and contribution relationships.

Some attempts have been made such as the gathering of ADELFE, GAIA and
PASSI meta-models [17] but the meta-model obtained was seen as being to complex
so that the authors didn’t pursue this work. It seems better to define different meta-
models in relation with the type of MAS to be designed. However, these works on
meta-models have given us a better understanding of the concepts used in the MAS
community and lead us to the use of MDA or MDE tools.

3.1.2 MAS and MDA/ MDE
Few works on MAS engineering have integrated tools coming from MDE, and the
most advanced are: INGENIAS1, MetaDIMA [18] and TROPOS [19].

MetaDIMA helps the designer to implement MAS on the DIMA platform using Me-
taGen which is a MDE tool dedicated to the definition of meta-models and models.
DIMA is a development and implementation platform developed in Java where agents
are seen as a set of dedicated modules (perception, communication etc.). MetaDIMA
provides a set of meta-models and a set of knowledge-based systems on top of DIMA
to ease the design of MAS by providing languages more specific than Java code.

In TROPOS (see 0), all the phases use different models which are described by
meta-models; it also uses UML notation and automatic transformations. For example,
it translates plan decomposition into a UML 2.0 activity diagram by using a transfor-
mation language based on the following three concepts: pattern definition, transfor-
mation rules and tracking relationships.

INGENIAS proposes to transform the MAS expressed in the INGENIAS meta-model
in code dedicated to a given platform using the modelling language of INGENIAS and
the implementation model of the platform. Its main originality consists in providing
evolutionary tools. Because tools used for transforming specification in code are based
on meta-models, if the meta-model specifications evolve the tools can also evolve.

Our work pursues the same objective as the works described previously although it
addresses the adaptation issue from both system and agent points of view. In fact, we
aim at taking it into account and providing design and generation tools to implement
such adaptive systems. For this purpose, we propose to generate an adapted execution
platform for AMAS, using MDE tools and principles as well as the flexibility of the
JavAct middleware.

1 http://grasia.fdi.ucm.es/ingenias/

324 S. Rougemaille et al.

3.2 MDE Tools

This section presents a brief overview of tools we have already used or foresee using
in the model driven scope.

3.2.1 Model Editing Tools
The eclipse IDE provides the EMF (Eclipse Modeling Framework) [20] which pro-
vides a meta-modelling language called Ecore (allowing description of meta-models)
and features to edit, handle and modify models. On top of this plug-in, we use Top-
cased [21] as an Ecore editor and a graphical editor generator, i.e. we define editors
for our different modelling languages thanks to its generative capabilities. With the
same purpose, we have compared Topcased to GMF (Graphical Modeling Frame-
work) which possesses more or less the same functionalities while adopting a differ-
ent approach for graphical editor description where each aspect of the editor is
described by a model.

3.2.2 Transformation Tools
We plan to use model to model transformations to implement our mapping (see
section 5.) and model to text transformations to generate JavAct code. Those trans-
formations have to be supported by tools and languages. We mainly focus on ATL
(Atlas Transformation Language) [22] and Kermeta [23] which both provide tools
based on EMF and are implemented as Eclipse plug-in. ATL is a hybrid language
providing declarative features while Kermeta is defined as a meta-programming lan-
guage close to OO programming languages. However, we plan to use their specifici-
ties respectively to implement transformations and to equip our modelling language
with execution capabilities (for simulation purpose).

4 Meta-models

The main idea of our work can be summed up as follow. On the one hand we have the
AMAS theory which intrinsically implies to deal with self-adaptation and on the other
one, we have the JavAct middleware whose agents are designed to be flexible and
adaptive (on the operational point of view). Our purpose is to bridge the gap between
them as automatically as possible. To achieve this task we assume to tackle this prob-
lem at the highest abstraction level, i.e. at meta-model level, and use model transfor-
mations to build that bridge.

To describe both JavAct agent model and AMAS in a model driven approach, we
have developed two dedicated modelling languages (DSML2) which are themselves
described by meta-models. Those meta-models can be seen as representations of the
main concepts and relationships we have identified for each of these particular do-
mains (AMAS and JavAct micro-architecture). Our idea is to map automatically agents
from an AMAS model to an adapted JavAct micro-Architecture model; this could be
done using model transformation languages as presented in the previous section. Thus,
it is necessary to describe as precisely as possible what are the key concepts of the two
domains. The following sections give a brief overview of those meta-models.

2 Domain Specific Modeling Language.

 Model Driven Engineering for Designing Adaptive Multi-Agents Systems 325

4.1 AMAS Meta-model

The AMAS meta-model was elaborated from the ADELFE meta-model [17] enriched
by three distinct logical points of view to describe an AMAS. Each of them represents
a specific part of the AMAS theory on which we want to put emphasis:

– System point of view: it is devoted to the description of the system and its
surroundings in terms of Entities which populate it (perceptible objects of the
“world”).

– Agent point of view: this part of the meta-model represents agent internal char-
acteristics.

– Cooperation point of view: it represents taxonomy of Non-Cooperative Situa-
tions an AMAS agent is likely to encounter.

In the context of this paper, we focus on the agent point of view.

4.1.1 AMAS Agent Point of View
An AMAS agent is made up of various modules, parts, managing a sector of its activi-
ties and life-cycle. Typically, the AMAS agent life-cycle is defined according to the
three phases: perception, decision and action. From these phases and the needs they
imply in terms of environmental interactions, knowledge representation, non-co-
operative situations avoidance, etc. we determine the following meta-model concepts:

– Environmental interactions are represented by Perception and Action on the
Entities as well as the means to carry them out (Actuator, Sensor). Communi-
cationAction consists of direct interaction with other agents by the means of
messages (Message) whose protocol is defined in the System point of view
(CommunicationProtocol).

– DecisionModule gathers the Aptitudes and the CooperationRules enabling an
agent to determine the next actions to lead. This decision is taken according to
agent knowledge and aptitudes as well as its cooperation rules which propose
actions to overcome possibly detected NonCooperativeSituations (NCS).
Without NCS detection, an agent carries out its local and nominal function de-
termined by its aptitudes.

– Knowledge represents what an agent possesses. It has self-Representations and
Representations of the medium surrounding it (Environment Entities, agents of
the system). It also possesses Skills and its Characteristics possibly perceptible
by other agents of the system (isPerceptible).

4.2 Micro-architecture Description Language (μADL) Meta-Model

μADL is a micro-architecture description language based on the previously expounded
principle of JavAct micro-architecture [6] (cf. section 2). It focuses on operational
mechanisms definition of JavAct agents in terms of micro-components. A new micro-
component assembly is called a micro-architecture and it constitutes a new agent “style”
which can be used in a JavAct application. Thus, µADL provides the concepts
of MuArchitecture, MuComponent and of Interface (see Figure 1). A MuArchitecture

326 S. Rougemaille et al.

Fig. 1. Micro-Architecture meta-model

is a composition of MuComponents connected to each other by the fact that they provide
or require Interfaces. We have defined two different MuComponents:

– StructuralComponents: corresponding to the micro-components that are not in-
tended to be redefined or to be substituted. According to the policy defined in
JavAct, they represent core concepts of the architecture that are used to
achieve reflection and delegation mechanisms.

– ChangeableComponents: conversely, they correspond to the micro-components
which could be replaced, modified, extended and so on.

Each JavAct micro-component is defined by the following fields:

– name: its name,
– description: a short informal description of its operating properties,
– level: the level in which it offers its services (base, meta, interaction),
– properties: data that could be necessary to achieve a particular service,
– services: the Services it implements.
– provided, required: the Services it requires and it offers to other MuCompo-

nents through Interfaces.

StructuralFeatures and DataType are both meta-classes that enable the definitions
of MuComponent properties which can be assimilated to typed attibutes in the Object
world.

 Model Driven Engineering for Designing Adaptive Multi-Agents Systems 327

JavAct micro-architectures are forced by the fact that they always have to delegate
services provided by the base level µComponents to the agent functional code. It
implies that the micro-architectures contain at least one Controller and one meta-
access component. This kind of constraint is verified with dedicated OCL rules.

5 The Mapping Process (Mapping AMAS Agents to the JavAct
Platform)

To instantiate a particular JavAct agent model for each agent within the AMAS
model, we have to map concepts from the AMAS meta-model to µADL ones. At this
time, we simply focus on environmental interactions of AMAS agent (i.e. Action,
Perception, etc.). Furthermore, we present an “informal” mapping that could be im-
plemented with model transformation languages.

5.1 Meta-models Mapping

The mapping takes place between the AMAS and the µADL meta-models, so we have
to specify which concepts have to be mapped to each others. Thus, the aim of this
mapping is to operationally adapt JavAct agent so that they become compatible with
the AMAS theory, that is to say: bring them to a higher degree of environmental in-
teraction and cooperation. This can be done by expressing intrinsic characteristics of
AMAS agents in terms of MuComponents. In other words, we focus on the opera-
tional aspects of AMAS agents and we try to describe them as a micro-architecture.
To express more conveniently this mapping, we provide an overview table which
represents µADL concepts for each AMAS meta-class (see Table 1).

Each muComponent has to provide at least one Interface containing at least one
Service of those implemented by the muComponent. This is a generic mapping rule:
we consider that Service providing is necessarily done through those muComponent
related interfaces.

Most of the AMAS meta-classes map to MuComponents, although there are excep-
tions to this rule. Those exceptions are related to particular implementation choices
we made. To illustrate those choices, consider the Knowledge meta-class and sub-
classes. Knowledge is a particularly important part of a cooperative agent because of
its implication in the decision process; thus, we decide to reify this concept in term of
a MuComponent. This MuComponent is related to two more specific Skill and Char-
acteristic MuComponents, which are designed to embody respectively all skills and
characteristics of cooperative agents as vectors.

Another important point of interest is the MuComponent level, which specifies the
scope of a MuComponent, i.e. whether it can be accessed by the functional code (base
level) or not (meta level). The Interaction level represents MuComponents dedicated
to agent external interactions. For example, the Action perform() service is used to
define reaction to NCS, which is the purpose of AMAS agent functional code; thus we
define Action as a base level MuComponent.

As we define a meta-level mapping between AMAS and µADL meta-models, the
next section presents what should be the result of a transformation at model level.
This is done using a simple and well-known AMAS example and focusing on envi-
ronmental interactions.

328 S. Rougemaille et al.

Table 1. Mapping AMAS meta-classes to µADL concepts

μADL
AMAS

MuComponent

Meta-class
name Name Level Services Provided Required Properties

Action Actions base performAc-
tion()

performAc-
tion() perform() -

actionList

Communica-
tion

Action

Communica-
tion base send()

receive()
send()

receive() - protocol

Message mes-
sageType

Perception Perception meta perceive() perceive() perceive() -

Actuator Actuator interac-
tion

Enabled
actions Enabled actions - -

Sensor Sensor interac-
tion

Enabled
perceptions

Enabled
perceptions - -

Knowledge Knowledge base
update()

getRepresenta-
tion()

update()
getRepresenta-

tion()

update()
getRepresenta-

tion()

Representation repList
(element)

Skill Skills meta

getAction()
update()

getRepresenta-
tion()

getAction()
update()

getRepresenta-
tion()

skillList
(element)

Characteristic Characteristics meta
update()

getRepresenta-
tion()

update()
getRepresenta-

tion()

characteris-
ticList

(element)

Decision
Module Decision meta decide() decide()

getRepresenta-
tion()

getAction()

Agent

M
ap

s t
o

LifeCycle base run() run()
perceive()
decide()

perform()

5.2 Model Mapping: Ants Example

This example comes from the ANTS project [24], whose purpose was to define soft-
ware ant-robots based on ethological observations concerning the foraging process of an
anthill. The aim was not to simulate the real process but use the available information

 Model Driven Engineering for Designing Adaptive Multi-Agents Systems 329

Fig. 2. Part of an ant agent µADL graphical model (informal mapping result)

coming from the biologists to implement robots which have to collect distributed
resources in an unknown environment.

In this part, we focus on the environmental interactions described with the AMAS
meta-model and what should be the result of the mapping in the µADL meta-model.
In other words, the µADL model specifies the appropriate operational mechanisms of
a JavAct cooperative ant-agent.

From an AMAS point of view, an ant agent possesses a SensibleCone which allows
it to perceive food, pheromones and other ants of the colony. This sensor is qualified
by properties limiting its scope (threshold area values for food, pheromones and ants).
Ants are also able to explore their environment (thanks to move action), to gather food
when they find some and if the load is not too heavy (gatherFood action) and to dis-
seminate pheromones on their way back to the nest (disseminatePheromon action).
All those actions are carried out by actuators. By focusing on this part of the AMAS
ant colony model and applying our mapping we obtain the following µADL model
(see Figure 2), in which all actuators have been mapped to micro-components (Paw,
Mandible and ExocrineGland) as sensor has been (SensibleCone).

JavAct micro-architecture enables dynamic operational adaptation by switching
two micro-components provided that they implement the same interface. Figure 2
presents a static vision of that capacity (µADL model). At runtime it is possible for an
ant JavAct agent to choose the more appropriate way to “sense” its environment. For
instance, a robot ant evolving on a real tangible terrain should use the Sensible-
ConeGPS micro-component in order to locate itself and its surroundings. But if the
GPS device is damaged JavAct enables the ant agent to switch the useless component
with the SensibleCone micro-component which uses a simulated environment.

330 S. Rougemaille et al.

6 Conclusion and Perspectives

In this paper, we present our work whose aim is to add the development phase to
ADELFE by considering two adaptation levels: a functional one for the system, and
an operational one for JavAct agents. As the goal is to reduce the duration and the
complexity of the design of AMAS, we investigated a MDE approach; this is based
on model transformations in order to facilitate code production for a given platform.

As we aim to provide JavAct agent version which be automatically fitted to the
Adaptive Multi-Agent System (AMAS), we have developed two dedicated modelling
languages (DSML) with meta-models which describe respectively JavAct agent and
AMAS.

As we have seen, adaptation is the central point of our methodology and tools. The
designer will be able to describe functional adaptation in models which conform to
the AMAS meta-model. The mapping described in the previous section will then
result in a model of a specific JavAct agent architecture. This model can be consid-
ered as a Platform description Model (PM) adapted to the nature of the application.
Therefore, the gain is two-fold. On the one hand, we combine functional adaptation of
AMAS and operational adaptation of JavAct agents. On the other one, we simplify the
complexity of design: details of implementation are hidden during early conception
phases. In continuation of this work, we are studying the different stages for imple-
menting a concrete prototype of the CASE tool. As was mentioned in section 3.2, we
have already used Topcased or GMF tools to generate automatically graphical editors
for the DSML defined. We hope now to be able to automate the production of these
editors from meta-models such as the AMAS one. Of course, this cannot be done
from the AMAS meta-model only. Some additional information must be collected in
order to automate to the generation of the editors.

Finally we have also some experiences in the production of JavAct code using an
ad-hoc generator we developed. This tool, called Agentφ, allows generation of JavAct
code from an assembly description. However, work has still to be done for generaliz-
ing its use and for integrating it in a MDE tool.

Acknowledgments

We would like to thank Carole Bernon, Thierry Millan and Pierre Glize for discus-
sions about the meta-models.

References

[1] OMG, MDA Guide, Object Management Group, Inc., Final Adopted Specification (2003)
[2] Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE, a Methodology for

Adaptive Multi-Agent Systems Engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F.
(eds.) ESAW 2002. LNCS (LNAI), vol. 2577. Springer, Heidelberg (2003)

[3] Leriche, S., Arcangeli, J.P.: Adaptive Autonomous Agent Models for Open Distributed
Systems. In: International Multi-Conference on Computing in the Global Information
Technology (ICCGI 2007), March 2007, pp. 19–24. IEEE Computer Society, Los Alami-
tos (2007)

 Model Driven Engineering for Designing Adaptive Multi-Agents Systems 331

[4] Darwin, C.: On the Origin of Species by Means of Natural Selection. John Murray, Lon-
don (1859)

[5] Robertson, P., Laddaga, R., Shrobe, H.: Introduction: the First International Workshop on
Self-Adaptive Software. In: Robertson, P., Shrobe, H.E., Laddaga, R. (eds.) IWSAS
2000. LNCS, vol. 1936, pp. 1–10. Springer, Heidelberg (2001)

[6] Varela, F., Maturana, H.: The Tree of Knowledge: The Biological Roots of Human Un-
derstanding. Shambhala Press, Boston (1998)

[7] Capera, D., Georgé, J.-P., Gleizes, M.-P., Glize, P.: The AMAS Theory for Complex
Problem Solving Based on Self-organizing Cooperative Agents. In: Proc. 12th IEEE In-
ternational Workshops on Enabling Technologies, Infrastructure for Collaborative Enter-
prises, Linz, Austria, June 9-11, pp. 383–388. IEEE Computer Society, Los Alamitos
(2003)

[8] Bernon, C., Gleizes, M.-P., Picard, G.: Enhancing Self-Organising Emergent Systems
Design with Simulation. In: International Workshop on Engineering Societies in the
Agents World (ESAW 2006), Dublin (September 2006)

[9] Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.): Methodologies and Software Engi-
neering for Agent Systems. Kluwer, Dordrecht (2004)

[10] Henderson-Sellers, B., Giorgini, P. (eds.): – Agent-Oriented Methodologies. Idea Group
Pub. (June 2005)

[11] Gomez Sanz, J., Fuentes, R.: Agent Oriented System Engineering with INGENIAS. In:
Fourth Iberoamerican Workshop on Multi-Agent Systems, Iberagents 2002 (2002)

[12] Cossentino, M.: From Requirements to Code with the PASSI Methodology. In: Hender-
son-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, June 2005, pp. 79–
106. Idea Group Pub. (2005)

[13] Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J.: Tropos: A Requirements-Driven Meth-
odology for Agent-Oriented Software. In: Henderson-Sellers, B., Giorgini, P. (eds.)
Agent Oriented Methodologies, pp. 20–45. Idea Group (2005)

[14] Gutknecht, O., Michel, F., Ferber, J.: The MadKit Agent Platform Architecture, Research
Report, LIRMM (April 2000)

[15] Beydoun, G., Gonzalez-Perez, C., Henderson-Sellers, B., Low, G.: Developing and
Evaluating a Generic Metamodel for MAS Work Products. In: Garcia, A., Choren, R.,
Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS,
vol. 3914, pp. 126–142. Springer, Heidelberg (2006)

[16] Cernuzzi, L., Juan, T., Sterling, L., Zambonelli, F.: The Gaia Methodology: Basic Con-
cepts and Extensions. In: Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.) Methodolo-
gies and Software Engineering for Agent Systems. Kluwer Academic Publishers,
Dordrecht (2004)

[17] Bernon, C., Cossentino, M., Gleizes., M.-P., Turci, P., Zambonelli, F.: A study of some
Multi-Agent Meta-Models. In: Giorgini, P., Mueller, J.P., Odell, J. (eds.) The Fifth Inter-
national Workshop on Agent-Oriented Software Engineering (AOSE 2004), New York,
USA, July 19 (2004)

[18] Guessoum., Z., Jarraya, T.: Meta-Models & Model-Driven Architectures, Contribution to
the AOSE TFG AgentLink3 meeting, Ljubljana (2005)

[19] Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modelling.
In: Proceedings of 6th International Workshop AOSE 2005, Utrecht, NL, July 25-26
(2005)

[20] Budinsky, F., Steinberg, D., Ellersick, R.: Eclipse Modeling Framework: A Developer’s
Guide. Addison-Wesley Professional, Reading (2003)

332 S. Rougemaille et al.

[21] Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma, D., Michel, P., Crégut, X.,
Pantel, M.: TOPCASED project: a Toolkit in OPen source for Critical Aeronautic Sys-
tEms Design. In: Embedded Real Time Software (ERTS) (2006)

[22] Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Proceedings of the Model
Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaic (2005)

[23] Muller, P., Fleurey, F., Jézéquel, J.: Weaving Executability into Object-Oriented Meta-
Languages. LNCS, Montego Bay, Jamaica. Springer, Heidelberg (2005)

[24] Topin, X., Fourcassié, V., Gleizes, M.-P., Théraulaz, G., Régis, C., Glize, P.: Theories
and experiments on emergent behaviour: From natural to artificial systems and back. In:
Proceedings on European Conference on Cognitive Science, Siena (1999)

Trace-Based Specification of Law and Guidance Policies
for Multi-Agent Systems�

Scott J. Harmon, Scott A. DeLoach, and Robby

Kansas State University, Manhattan KS 66506, USA
{harmon,sdeloach,robby}@ksu.edu

Abstract. Policies have traditionally been a way to specify properties of a sys-
tem. In this paper, we show how policies can be applied to the Organization
Model for Adaptive Computational Systems (OMACS). In OMACS, policies
may constrain assignments of agents to roles, the structure of the goal model
for the organization, or how an agent may play a particular role. In this paper,
we focus on policies limiting system traces; this is done to leverage the work
already done for specification and verification of properties in concurrent pro-
grams. We show how traditional policies can be characterized as law policies;
that is, they must always be followed by a system. In the context of multiagent
systems, law policies limit the flexibility of the system. Thus, in order to preserve
the system flexibility while still being able to guide the system into preferring
certain behaviors, we introduce the concept of guidance policies. These guidance
policies need not always be followed; when the system cannot continue with the
guidance policies, they may be suspended. We show how this can guide how the
system achieves the top-level goal while not decreasing flexibility of the system.
Guidance policies are formally defined and, since multiple guidance policies can
introduce conflicts, a strategy for resolving conflicts is given.

1 Introduction

As computer systems have been charged with solving problems of greater complexity,
the need for distributed, intelligent systems has increased. As a result, there has been a
focus on creating systems based on interacting autonomous agents. This investigation
has created an interest in multiagent systems and multiagent system engineering, which
proscribes formalisms and methods to help software engineers design multiagent sys-
tems. One aspect of multiagent systems that is receiving considerable attention is the
area of policies. These policies have been used to describe the properties of a multiagent
system–whether that be behavior or some other design constraints. Policies are essen-
tial in designing societies of agents that are both predictable and reliable [1]. Policies
have traditionally been interpreted as properties that must always hold. However, this
does not capture the notion of policies in human organizations, as they are often used
as normative guidance, not strict laws. Typically, when a policy cannot be followed in
a multiagent system, the system cannot achieve its goals, and thus, it cannot continue

� This work was supported by grants from the US National Science Foundation (0347545) and
the US Air Force Office of Scientific Research (FA9550-06-1-0058).

A. Artikis et al. (Eds.): ESAW 2007, LNAI 4995, pp. 333–349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

334 S.J. Harmon, S.A. DeLoach, and Robby

to perform. In contrast, policies in human organizations are often suspended in order to
achieve the overall goals of the organization. We believe that such an approach could be
extremely beneficial to multiagent systems residing in a dynamic environment. Thus,
we want to enable developers to guide the system without constraining it to the point
where it cannot function effectively or looses its autonomy.

The main contributions of this paper are: (1) a formal trace-based foundation for law
(must always be followed) and guidance (need not always be followed) policies, (2)
a conflict resolution strategy for choosing between which guidance policies to violate,
and (3) validation of our approach through a set of simulated multiagent systems.

The rest of the paper is organized as follows. In Section 2, we give some background
on multiagent systems policies along with two multiagent system examples. In Sec-
tion 3, we define the notion of system traces for a multiagent system, which are later
used to describe policies. Section 4 defines law policies as well as guidance policies; we
give examples and show how guidance policies are useful for multiagent systems and
describe a method for ordering guidance policies according to importance. Section 5
presents and analyzes experimental results from applying policies to the two multia-
gent system examples. Section 6 concludes and presents some future work.

2 Background

Policies have been considered for multiagent systems for some time. Efforts have been
made to characterize, represent, and reason [2] about policies in the context of mul-
tiagent systems. Policies have been referred to as laws in the past. Yoav Shoham and
Moshe Tennenholtz wrote in [3] about social laws for multiagent systems. They showed
how policies could help a system to work together, similar to how our rules of driving on
a predetermined side of the road help the traffic to move smoothly.There has also been
work on detecting global properties [4] of a distributed system, which could in turn
be used to suggest policies for that system. Policies have also been proposed as a way
to help assure that agents and that the entire multiagent system behave within certain
boundaries. They have also been proposed as a way to specify security constraints in
multiagent systems [5,6]. There has been work to define policy languages by defining a
description logic [7]. Policies have also been referred to as norms. Much work has been
done on the formal specification of these norms [8]. We are taking this formal approach
in our specification of guidance and law policies. Norms, however, are usually associ-
ated with open systems–while we are concerned with closed, cooperative systems. We
want to use formal methods to prove whether a given system will abide by the policies
as expected. Thus, we must give our guidance policies for multiagent societies a solid
formal foundation. In order to achieve this end, we borrow concepts that are widely used
in program analysis, in particular, model checking. Taking a model checking approach
to policies has been done [9] and is a natural extension of program analysis.

The multiagent systems model we are using for this paper is called the Organization
Model for Adaptive Computational Systems (OMACS) [10]. Figure 1 is a graphical
depiction of the OMACS model. OMACS defines standard multiagent system compo-
nents such as goals, roles, capabilities, and agents. Roles achieve goals, agents posses
capabilities, and agents are capable of playing roles depending on the capabilities they

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 335

requires

Organization

PolicyRoleGoal Agent

Capabilities

Domain
Model

uses

constrains

possesses

capableachieves

Fig. 1. Organization Model for Adaptive Computational Systems

posses. The organization, which represents the entire set of agents, decides which agents
to assign to what roles to achieve particular goals. When the organization makes an as-
signment of an agent to a particular role to achieve a specific goal, the organization is
constrained by agents capabilities as well as any applicable policies. To model goals,
we use the Goal Model for Dynamic Systems (GMoDS) as defined in [11]. Events may
occur while an agent is playing a role. These events may trigger (activate) goals. Only
active goals may be assigned to an agent.

2.1 Conference Management Example

A well known example in multiagent systems is the Conference Management [12,13]
example. The Conference Management example models the workings of a scientific
conference, for example, authors submit papers, reviewers review the submitted papers,
and certain papers are selected for the conference and printed in the proceedings. Fig-
ure 2 shows the complete goal model for the conference management example, which
we are using to illustrate our policies. In this example, a multiagent system represents
the goals and tasks of a generic conference paper management system. Goals of the
system are identified and are decomposed into subgoals.

The top-level goal, 0. Manage conference submissions, is decomposed into several
“and” subgoals, which means that in order to achieve the top goal, the system must
achieve all of its subgoals. These subgoals are then associated through precedence and
trigger relations. The precedes arrow between goals indicates that the source of the
arrow must be achieved before the destination can become active. The triggers arrow
indicates that the domain-specific event in the source may trigger the goal in the des-
tination. The occurs arrow from a goal to a domain-specific event indicates that while
pursuing that goal, said event may occur. A goal that triggers another goal may trigger
multiple instances of that goal.

Leaf goals are goals that have no children. The leaf goals in this example consist of
Collect papers, Distribute papers, Partition papers, Assign reviewers, Collect reviews,
Make decision, Inform accepted, Inform declined, Collect finals, and Send to printer.
For each of these leaf goals to be achieved, agents must play specific roles. The roles
required to achieve the leaf goals are depicted in Figure 3. The role model gives seven
roles as well as two outside actors. Each role contains a list of leaf goals that the role
can achieve. For example, the Assigner role can achieve the Assign reviewers leaf goal.

336 S.J. Harmon, S.A. DeLoach, and Robby

1.
1

C
ol

le
ct

 p
ap

er
s

1.
2

D
is

tri
bu

te

pa
pe

rs

2.
1

P
ar

tit
io

n
pa

pe
rs

4.
1

C
ol

le
ct

re

vi
ew

s
4.

2
M

ak
e

de
ci

si
on

«t
rig

ge
rs

»

«t
rig

ge
rs

»

«t
rig

ge
rs

»

cr
ea

te
d(

se
t)

«o
cc

ur
s»

as
si

gn
(p

,r)

«o
cc

ur
s»

«t
rig

ge
rs

»

ac
ce

pt
ed

(p
)

de
cl

in
ed

(p
)

«o
cc

ur
s»

«o
cc

ur
s»

«p
re

ce
de

s»
«p

re
ce

de
s»

«p
re

ce
de

s»

5.
2

S
en

d
to

pr

in
te

r

«t
rig

ge
rs

»

«a
nd

»

0.
 M

an
ag

e
co

nf
er

en
ce

su

bm
is

si
on

s

«a
nd

»

1.
 G

et
 p

ap
er

s «a
nd

»

2.
 A

ss
ig

n
pa

pe
rs

«a
nd

»

4.
 S

el
ec

t p
ap

er
s

3.
 R

ev
ie

w
 p

ap
er

p
 :

P
ap

er
r :

 R
ev

ie
w

er

«p
re

ce
de

s»
5.

2
In

fo
rm

 a
cc

ep
te

d

p
: P

ap
er

5
In

fo
rm

 a
ut

ho
rs

«a
nd

»

«a
nd

»

6.
 P

rin
t

pr
oc

ee
di

ng
s

«p
re

ce
de

s»

2.
2

A
ss

ig
n

re
vi

ew
er

s

se
t :

 P
ap

er
S

et

5.
1

C
ol

le
ct

 fi
na

ls

p
 :

P
ap

er

5.
1

In
fo

rm
 d

ec
lin

ed

p
: P

ap
er

F
ig

.2
.C

on
fe

re
nc

e
M

an
ag

em
en

t
G

oa
lM

od
el

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 337

make assignments

review papers
submit review

retrieve abstracts

get reviews

inform authors

submit paper

Reviewer

<<achieves>> review
paper

PaperDB
<<achieves>> collect papers
<<achieves>> distribute papers
<<achieves>> collect finals

retrieve paper

Assigner

<<achieves>> assigns
reviewers

Partitioner

<<achieves>> partition
papers

Review Collector

<<achieves>> collect
reviews

Author

submit final

Finals Collector

<<achieves>> send to
printer

Printer

print proceedings

retrieve finals

Decision Maker
<<achieves>> make decision
<<achieves>> inform accepted
<<achieves>> inform declined

Fig. 3. Conference Management Role Model

In GMoDS, roles only achieve leaf goals. The arrows between the roles indicates in-
teraction between particular roles. For example, once the agent playing the Partitioner
role has some partitions, it will need to hand off these partitions to the agent playing the
Assigner role. OMACS allows an agent to play multiple roles simultaneously, as long
as it has the capabilities required by the roles and it is allowed by the policies.

2.2 Robotic Floor Cleaning Example

Another example to illustrate the usefulness of the concept of guidance policies is the
Cooperative Robotic Floor Cleaning Company Example (CRFCC), which was first pre-
sented by Robby et al. in [14]. In this example, a team of robotic agents clean the floors
of a building. The team has a map of the building as well as indications of whether a
floor is tile or carpet. Each team member will have a certain set of capabilities (e.g.
vacuum, mop, etc). These capabilities may become defective over time. In their analy-
sis, Robby et al. showed how breaking up the capabilities affected a team’s flexibility to
overcome loss of capabilities. We have extended this example by giving the information
that the vacuum cleaner’s bag needs to be changed after vacuuming three rooms. Thus,
we want to minimize the number of bag changes. For this, we introduce a guidance
policy and show how it affects the performance of the organization.

The goal model for the CRFCC system is fairly simple. As seen in Figure 4, the
overall goal of the system (Goal 0) is to clean the floors. This goal is decomposed into
three conjunctive subgoals: 1. Divide Area, 2. Pickup, and 3. Clean. The 3. Clean goal is
decomposed into two disjunctive goals: 3.1 Sweep & Mop and 3.2 Vacuum. Depending
on the floor type, only one subgoal must be achieved to accomplish the 3. Clean goal.
If an area needs to be swept and mopped (i.e. it is tile), then goal 3.1 Sweep & Mop
is decomposed into two conjunctive goals: 3.1.1 Sweep and 3.1.2 Mop. After an agent
achieves the 1. Divide area goal, a certain number of 2. Pickup goals will become active

338 S.J. Harmon, S.A. DeLoach, and Robby

3.1 Sweep & Mop

a:area

«precedes»

«and»

0. Clean floors

t::totalArea

1. Divide area

t::totalArea

«or»

3. Clean

a:area

2. Pickup

a:area
«precedes»

3.2 Vacuum

a:area

3.1.1 Sweep

a:area

3.1.2 Mop

a:area

«and»

Fig. 4. CRFCC Goal Model

Role Name Req. Capabilities Goals Achieved
Organizer org 1. Divide Area
Pickuper search, move 2. Pickup
Sweeper sweep 3.1.1 Sweep
Mopper mop 3.1.2 Mop
Vacuummer vacuum 3.2 Vacuum

Fig. 5. CRFCC Role Model

(depending on how many pieces the area is divided into). After the 2. Pickup goals are
completed, a certain number of 3. Clean goals become active, again depending on how
many pieces the area was broken into. This then will activate goals for the tile areas
(3.1.1 Sweep and 3.1.2 Mop) as well as goals for the carpeted areas (3.2 Vacuum).

Figure 5 gives the role model for the CRFCC. In this role model, each leaf goal of the
system is achieved by a specific role. The role model may be designed many different
ways depending on the system’s goal, agent, and capability models. Thus, depending
on the agents and capabilities available, the system designer may choose different role
models. For this paper, we will look at just one of these possible role models. In the
role model in Figure 5, the only role requiring more than one capability is the Pickuper
role. This role will require both the search and move capability. Thus, in order to play
this role, an agent must possess both capabilities.

3 Multiagent Traces

There are several observable events in an OMACS system. A system event is simply an
action taken by the system. In this paper, we are concerned with specific actions that the
organization takes. For instance, an assignment of an agent to a role is a system event.

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 339

Event Definition
C(gi) goal gi has been completed.
T (gi) goal gi has been triggered.
A(ai, rj , gk) agent ai has been assigned

role rj to achieve goal gk.

(a) System Events

Property Definition
a.reviews the number of reviews

agent a has performed.
a.vacuumedRooms the number of rooms

agent a has vacuumed.

(b) Properties

Fig. 6. Events and Properties of Interest

The completion of a goal is also a system event. In an OMACS system, we can have the
system events of interest shown in Figure 6(a).

At any stage in a multiagent system, there may be certain properties of interest.
Some may be domain-specific (only relevant to the current system), while others may
be general properties such as the number of roles an agent is currently playing. State
properties that are relevant to the examples we are presenting in the next section are
shown in Figure 6(b).

3.1 System Traces

In order to describe multiagent system execution, we use the notion of a system trace.
An (abstract) system trace is a projection of system execution with only desired state
and event information preserved (role assignments, goal completions, domain-specific
state property changes, etc). In this paper, we are only concerned with the events and
properties given above and only traces that result in a successful completion of the sys-
tem goal. Let E be an event of interest and P be a property of interest. A change of
interest in a property is a change for which a system designer has made some policy.
For example, if a certain integer should never exceed 5, a change of interest would be
when that integer became greater than 5 and when that integer became less than 5. Thus
a change of interest in a property is simply an abstraction of all the changes in the prop-
erty. ΔP indicates a change of interest in property P . A system trace may contain both
events and changes of interest in properties. Changes of interest in properties may be
viewed as events, however, for simplicity we include both and use both interchangeably.
Thus, a system trace is defined as:

E1 → E2 → . . . (1)

As shown in equation 1, a trace is simply a sequence of events. An example subtrace of
a multiagent system, where g1 is a goal, a1 is an agent, and r1 is a role, might be:

. . . T (g1) → A(a1, r1, g1) → C(g1) . . . (2)

Formula 2 means that goal g1 is triggered, then agent a1 is assigned role r1 to achieve
goal g1, finally, goal g1 is completed.

We use the terms legal trace and illegal trace. An illegal trace is an execution we do
not want our system to exhibit, while a legal trace is an execution that our system may
exhibit. Intuitively, policies cause some traces to become illegal, while others remain
legal.

340 S.J. Harmon, S.A. DeLoach, and Robby

We are able to use the notion of system traces because the framework we are using
to build multiagent systems constructs mathematically specified models (e.g [10,11])
of various aspects of the system (goal model, role model, etc.). This can be leveraged
to formally specify policies as restrictions of system traces. Once we have a formal
definition of system traces, we can leverage existing research on property specification
and concurrent program analysis.

4 Policies

Policies may restrict or proscribe behaviors of a system. Policies concerning agent as-
signments to roles have the effect of constraining the set of possible assignments. This
can greatly reduce the search space when looking for the optimal assignment set [15].

Other policies can be used for verifying that a goal model meets certain criteria. This
allows the system designer to more easily state properties of the goal model that may
be verified against candidate goal models at design time. For example, one might want
to ensure that our goal model in Figure 2 will always trigger a Review Paper goal for
each paper submitted.

Yet, other policies may restrict the way that roles can be played. For example, when
an agent is moving down the sidewalk it always keeps to the right. These behavior
policies also restrict how an agent interacts with its environment, which in turn means
that they can restrict protocols and agent interactions. One such policy might be that an
agent playing the Reviewer role must always give each review a unique number. These
sort of policies rely heavily on domain-specific information. Thus it is important to have
an ontology for relevant state and event information prior to designing policies [16].

4.1 Language for Policy Analysis

To describe our policies, we use temporal formula with quantification similar to [17].
This may be converted into Linear Temporal Logic (LTL) [18] or Büchi automata [19]
for infinite system traces, or to something like Quantified Regular Expressions [20]
for finite system traces. The formulas consist of predicates over goals, roles, events,
and assignments (recall that an assignment is the joining of an agent and role for the
purpose of achieving a goal). The temporal operators we currently use are as follows:
�(x), meaning x holds always; �(x), meaning x holds eventually; and x U y, meaning
x holds until y holds.1 We use a mixture of state properties as well as events [21] to
obtain compact and readable policies. An example of one such policy formula is:

∀a1 : Agents, L :�(sizeOf(a1.reviews) ≤ 5) (3)

Formula 3 states that it should always be the case that each agent never review more than
five papers. The L : indicates that this is a law policy. The property .reviews can be
considered as part of the system’s state information. This is domain-specific and allows
a more compact representation of the property. This policy may be easily represented
by a finite automata as shown in Figure 7.

1 We only reason about bounded liveness properties because we only consider successful traces.

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 341

∀a : Agents, p : Papers

a.reviews ≤ 5 Bad

a.reviews > 5

a.reviews = 5 ∧ A(a, REV IEWER,Review(p))

*

a.reviews < 5 ∨ ¬A(a,REV IEWER,Review(p))

Fig. 7. No agent may review more than five papers

The use of the A() predicate in Figure 7 indicates an assignment of the Reviewer role
to achieve the Review paper goal, which is parametrized on the paper p. This automata
depicts the policy in Formula 3, but in a manner for a model checker or some other
policy enforcement mechanism to detect when violation occurs. The accepting state
indicates that a violation has occurred. Normally, this automata would be run alongside
the system, either at design time with a model checker [22], or at run-time with some
policy enforcement mechanism [23].

We would like to emphasize here that we do not expect the designer to specify their
policies by hand editing LTL. LTL is complex and designing policies in LTL would be
very error prone and thus could potentially mislead the designer into a false sense of
security or simply compose incorrect policies. There has been some work in facilitating
the creation of properties in LTL (and other formalisms) for program analysis such as
specification patterns [24]. There has also been work done to help system property spec-
ification writers to graphically create properties [25] (backed by LTL) by manipulating
automata and answering simple questions regarding elements of the property.

4.2 Law Policies

The traditional notion of a policy is a rule that must always be followed. We refer to
these policies as law policies. An example of a law policy with respect to our conference
management example would be no agent may review more than five papers. This means
that our system can never assign an agent to the Reviewer role more than five times. A
law policy can be defined as:

L :Conditions → Property (4)

Conditions are predicates over state properties and events, which, when held true,
imply that the Property holds true. The Conditions portion of the policy may be
omitted if the Property portion should hold in all conditions, as in Formula 3.

Intuitively, for the example above, no trace in the system may contain a subtrace in
which an agent is assigned to the Reviewer role more than five times. This will limit the
number of legal traces in the system. In general, law policies reduce the number of legal
traces for a multiagent system. The policy to limit the number of reviews an agent can
perform is helpful in that it will ensure that our system does not overburden any agent

342 S.J. Harmon, S.A. DeLoach, and Robby

with too many papers to review. This policy as a pure law policy, however, could lead to
trouble in that the system may no longer be able to achieve its goal. Imagine that more
papers than expected are submitted. If there are not sufficient agents to spread the load,
the system will fail since it is cannot assign more than five papers to any agent. This is a
common problem with using only law policies. They limit the flexibility of the system,
which we define as how well the system can adapt to changes [14].

4.3 Guidance Policies

While the policy in (3) is a seemingly useful policy, it reduces flexibility. To overcome
this problem, we have defined another, weaker type of policy called guidance policies.
Take for example the policy used above, but as a guidance policy:

∀a1 : Agents, G :�(sizeOf(a1.reviews) ≤ 5) (5)

This is the same as the policy as in (3) except for the G :, which indicates that it is
a guidance policy. In essence, the formalization for guidance and law policies are the
same, the difference is the intention of the system designer. Law policies should be used
when the designer wants to make sure that some property is always true (e.g. for safety
or security), while guidance policies should be used when the designer simply wants
to guide the system. This guidance policy limits our agents to reviewing no more than
five papers, when possible. Now, the system can still be successful when it gets more
submissions than expected since it can assign more than five papers to an agent. When
there are sufficient agents, the policy still limits each agent to five or fewer reviews.

Guidance policies more closely emulate how policies are implemented in human so-
cieties. They also provide a clearer and simpler construct for more easily and accurately
describing the design of a multiagent organization. In contrast to policy resolution com-
plexity of detecting and resolving policy contradictions in [2], our methodology of using
guidance policies present an incremental approach to policy resolution. That is, the sys-
tem will still work under conflicting policies; its behaviors are amenable to analysis,
thus allowing iterative policy refinement.

In the definition of guidance policies, we have not specified how the system should
choose which guidance policy to violate in a given situation. We propose a partial or-
dering of guidance policies to allow the system designer to set precedence relationships
between guidance policies. We arrange the guidance policies as a lattice, such that a
policy that is a parent of another policy in the lattice, is more-important-than its chil-
dren. By analyzing a system trace, one can determine a set of policies that were violated
during that trace. This set of violations may be computed by examining the policies and
checking for matches against the trace. When there are two traces that violate policies
with a common ancestor, and one (and only one) of the traces violate the common
ancestor policy, we mark the trace violating that common ancestor policy as illegal.
Intuitively, this trace is illegal because the system could have violated a less important
policy. Thus, if the highest policy node violated in each of the two traces is an ancestor
of every node violated in both traces, and that node is not violated in both traces, then
we know the trace violating that node is illegal and should not have happened.

Take, for example, the four policies in the Table 1. Let these policies be arranged in
the lattice shown in Figure 8(a). The lattice in Figure 8(a) means that policy P1 is more

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 343

Table 1. Conference Management Policies

Node Definition
P1 No agent should review more than 5 papers.
P2 PC Chair should not review papers.
P3 Each paper should receive at least 3 reviews.
P4 An agent should not review a paper from

someone whom they wrote a paper with.

P1

P2 P3

P4

(a) Possible Partial order of
Guidance Policies.

P1

P2 P3

P4

(b) Another possible order-
ing.

Fig. 8. Partial orders of Guidance Policies

important than P2 and P3, and P2 is more important than P4. Thus, if there is any trace
that violates any guidance policies other than P1 (and does not violate a law policy), it
should be chosen over one which violates P1.

When a system cannot achieve its goals without violating policies, it may violate
guidance policies. There may be traces that are still illegal, though, depending on the
ordering between policies. For every pair of traces, if the least upper bound of the
policies violated in both traces, let us call this policy violation P , is in one (and only
one) of the traces, the trace with P is illegal. For example, consider the ordering in
Figure 8(a), let trace t1 violate P1 and P2, while trace t2 violates P2 and P3. Round
nodes represent policies violated in t1, box nodes represent policies violated in t2, and
boxes with rounded corners represent policies violated in both t1 and t2. Since P1 is the
least upper bound of P1, P2, and P3 and since P1 is not in t2, t1 is illegal.

As shown in Figure 8(b), the policies may be ordered in such a way that the policy
violations of two traces do not have a least upper bound. If there is no least upper bound,
P , such that P is in one of the traces, the two traces cannot be compared and thus both
traces are legal. The reason they cannot be compared is that we have no information
about which policies are more important. Thus, either option is legal. It is important to
see here that all the guidance policies do not need to be ordered into a single lattice.
The system designer could create several unrelated lattices. These lattices then can be
iteratively refined by observing the system behaviors or by looking at metrics generated

344 S.J. Harmon, S.A. DeLoach, and Robby

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

S
ys

te
m

 S
uc

ce
ss

 P
er

ce
nt

ag
e

Capability Failure Percentage

Guidance Policy
No Policy

Law Policy

Fig. 9. The success rate of the system given capability failure

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 E

xt
ra

 V
ac

uu
m

 A
ss

ig
nm

en
ts

 (
>

3)

Capability Failure Rate

Guidance Policy
No Policy

Fig. 10. The extra vacuum assignments given capability failure

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 345

for a certain policy set and ordering (e.g., [14]). This allows the system designer to
influence the behavior of the system by making logical choices as to what paths are
considered better. Using the lattice in Figure 8(a), we may even have the situation where
P1 is not violated by either trace. In this case, the violation sets cannot be compared,
and thus, both traces are legal. In situations such as these, the system designer may want
to impose more ordering on the policies.

Intuitively, guidance policies constrain the system such that at any given state, tran-
sitions that will not violate a guidance policy are always chosen over transitions that
violate a guidance policy. If guidance policy violation cannot be avoided, a partial or-
dering of guidance policies is used to choose which policies to violate.

5 Evaluation

5.1 CRFCC

Using our CRFCC example and a modified simulator from [14], we collected results
running simulations with the guidance policy: no agent should vacuum more than three
rooms. We contrast this with the law policy: no agent may vacuum more than three
rooms. The guidance policy is presented formally in Equation 6.

∀a1 : Agents, G :�(a1.vacuumedRooms ≤ 3) (6)

For this experiment, we used five agents each having the following capabilities: a1,
org, search, and move; a2, search, move, and vacuum; a3, vacuum and sweep; a4, sweep
and mop; and a5, org and mop. These capabilities restrict the roles our simulator can
assign to particular agents. For example, the Organizer role may only be played by agent
a1 or agent a5, since those are the only agents with the org capability. In the simulation
we randomly choose capabilities to fail based on a probability given by the capability
failure rate.

For each experiment, the result of 1000 runs at each capability failure rate was aver-
aged. At each simulation step, a goal being played by an agent is randomly achieved.
Using the capability failure rate, at each step, a random capability from a random agent
may be selected to fail. Once a capability fails it cannot be repaired.

Figure 9 shows that while the system success rate decreases when we enforce the
law policy, it does not, however, decrease when we enforce the guidance policy. Fig-
ure 10 shows the total number of times the system assigned vacuuming to an agent who
already vacuumed at least 3 rooms for 1000 runs of the simulation at each failure rate.
With no policy, it can be seen that the system will in fact assign an agent to vacuum
more than 3 rooms quite often. With the guidance policy, however, the extra vacuum
assignments (> 3) stay minimal. The violations of the guidance policy increase as the
system must adapt to an increasing failure of capabilities until it reaches a peak. At the
peak, increased violations do not aid in goal achievement and eventually the system
cannot succeed even without the policy. Thus, the system designer may now wish to
purchase equipment with a lower rate of failure, or add more redundancy to the system
to compensate. The system designer may also evaluate the graph and determine whether
the cost of the maximum number of violations exceeds the maximum cost he is willing
to incur, and if not, make appropriate adjustments.

346 S.J. Harmon, S.A. DeLoach, and Robby

5.2 Conference Management System

We also simulated the conference management system described in Section 2.1. We
held the number of agents constant, while increasing the number of papers submitted
to the conference. The system was constructed with a total of 13 agents, 1 PC Member
agent, 1 Database agent, 1 PC Chair agent, and 10 Reviewer agents. The simulation ran-
domly makes goals available to achieve, while still following the constraints imposed
by GMoDS. Roles that achieve the goal are chosen at random as well as agents that
can play the given role. The policies are given priority using the more-important-than
relation as depicted in Figure 8(a).

Figure 11 shows a plot of how many times a guidance policy is violated versus the
number of papers submitted for review. For each set of paper submissions (from 1 to
100) we ran the simulation 1000 times and then took the average of the 1000 runs to
determine the average number of violations. In all the runs the system succeeded in
achieving the top level goal.

As seen by the graph in Figure 11, no policies are violated until around 17 papers
(this number is explained below). The two least important policies (P2 and P3) are
violated right away. The violation of P2, however, levels off since it is interacting with
P1. The violations of P3 is seen to grow at a much greater rate since it is the least
important policy.

We then changed all the guidance policies to law policies and re-ran the simulation.
For 17 or more submissions, the system always failed to achieve the top level goal. This
makes sense because we have only 10 Reviewer agents and we have the policies: the

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80 90 100

P
ol

ic
y

V
io

la
tio

ns

Papers Submitted for Review

P1 - No more than 5 papers should be reviewed by an agent
P2 - PC Chair should not review papers

P3 - Every paper receives at least 3 reviews (total reviews missing)

Fig. 11. Violations of the guidance policies as the number of papers to review increases

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 347

PC Chair should not review papers and no agent should review more than 5 papers. This
means the system can only produce 5× 10 = 50 reviews. But, since we have the policy
that each paper should have at least 3 reviews, 17 submissions would need 17× 3 = 51
reviews. For 16 or fewer papers submitted, the law policies perform identical to the
guidance policies.

5.3 Common Results

As the experimental results in Figure 9 show, guidance policies do not decrease the flexi-
bility of a system to adapt to a changing environment, while law policies do decrease the
flexibility of a system to adapt to a changing environment. Guidance policies, however,
do help guide the system and improve performance as shown in Figure 10 and Figure 11.
The partial ordering using the more-important-than relation helps a system designer put
priorities on what policies they consider to be more important and helps the system de-
cide which policies to violate in a manner consistent with the designer’s intentions.

6 Conclusions and Future Work

Policies have proven to be useful in the development of multiagent systems. However, if
implemented inflexibly, situations such as described in [26] will occur (a policy caused
a spacecraft to crash into an asteroid). Guidance policies allow a system designer to
guide the system while giving it a chance to adapt to new situations.

With the introduction of guidance policies, policies are an even better mechanism for
describing desired properties and behaviors of a system. It is our belief that guidance
policies more closely capture how policies work in human organizations. Guidance
policies allow for more flexibility than law policies in that they may be violated under
certain circumstances. In this paper, we demonstrated a technique to resolve conflicts
when faced with the choice of which guidance policies to violate. Guidance policies,
since they may be violated, can have a partial ordering. That is, one policy may be
considered more important than another. In this manner, we allow the system to make
better choices on which policies to violate. Traditional policies may be viewed as law
policies, since they must never be violated. Law policies are still useful when the system
designer never wants a policy to be violated–regardless of system success. Such policies
might concern security or human safety.

Policies may be applied in an OMACS system by constraining assignments of agents
to roles, the structure of the goal model for the organization, or how the agent may play
a particular role. Through the use of OMACS, the metrics described in [14], and the
policy formalisms presented here, we are able to provide an environment in which a sys-
tem designer may formally evaluate a candidate design, as well as evaluate the impact
of changes to that design without deploying or even completely developing the system.

Policies can dramatically improve run-time of reorganization algorithms in OMACS
as shown in [15]. Guidance policies can be a way to achieve this run-time improvement
without sacrificing system flexibility. The greater the flexibility, the better the chance
that the system will be able to achieve its goals.

Policies are an important part of a multiagent system. Future work is planned to ease
the expression and analysis of policies. Some work has already been done in this area

348 S.J. Harmon, S.A. DeLoach, and Robby

[24,25], but it has not been integrated with a multiagent system engineering framework.
Another area of work is to provide a verification framework from design all the way to
implementation. The goal would be to determine the minimum guarantees needed from
the agents to guarantee the overall system behavior specified by the policies. These min-
imum guarantees could then be checked against the agent implementations to determine
whether the implemented system follows the policies given.

Guidance policies add an important tool to multiagent policy specification. However,
with this tool comes complexity. Care must be taken to insure that the partial ordering
given causes the system to exhibit the behavior intended. Tools which can visually
depict the impact of orderings would be helpful to the engineer considering various
orderings. We are currently working on inferring new policies from a given set of poli-
cies. For example, if a system designer wanted to get their system to a state for which
they defined policy, we would automatically generate guidance policies. This could be
useful when the policies are defined as finishing moves in chess. That is they proscribe
optimal behavior, given a state. Thus, we would like to get to the state where we know
that optimal behavior. Another exciting area of research is to determine a method of
dynamically learning guidance policies, which would allow an organization to evolve
within its changing environment.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

2. Bradshaw, J., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M., Acquisti, A., Benyo,
B., Breedy, M., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott, J., Sierhuis, M.,
Van Hoof, R.: Representation and reasoning for DAML-based policy and domain services in
KAoS and Nomads. In: AAMAS 2003: Proceedings of the second international joint confer-
ence on Autonomous agents and multiagent systems, pp. 835–842. ACM Press, New York
(2003)

3. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line design.
Artificial Intelligence 73(1-2), 231–252 (1995)

4. Stoller, S.D., Unnikrishnan, L., Liu, Y.A.: Efficient detection of global properties in dis-
tributed systems using partial-order methods. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 264–279. Springer, Heidelberg (2000)

5. Kagal, L., Finin, T., Joshi, A.: A policy based approach to security for the semantic web. In:
Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 402–418.
Springer, Heidelberg (2003)

6. Paruchuri, P., Tambe, M., Ordóñez, F., Kraus, S.: Security in multiagent systems by policy
randomization. In: AAMAS 2006: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pp. 273–280. ACM Press, New York (2006)

7. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L., Johnson, M.,
Kulkarni, S., Lott, J.: Kaos policy and domain services: toward a description-logic approach
to policy representation, deconfliction, and enforcement. In: POLICY 2003: IEEE 4th Inter-
national Workshop on Policies for Distributed Systems and Networks, pp. 93–96. IEEE, Los
Alamitos (2003)

8. Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies. ACM
Transactions on Computational Logic (2007)

Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems 349

9. Viganò, F., Colombetti, M.: Symbolic Model Checking of Institutions. In: Proceedings of the
9th International Conference on Electronic Commerce (2007)

10. DeLoach, S.A., Oyenan, W., Matson, E.T.: A capabilities based theory of artificial organiza-
tions. Journal of Autonomous Agents and Multiagent Systems (2007)

11. Miller, M.: A goal model for dynamic systems. Master’s thesis, Kansas State University
(April 2007)

12. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational rules as an abstraction for the
analysis and design of multi-agent systems. International Journal of Software Engineering
and Knowledge Engineering 11(3), 303–328 (2001)

13. DeLoach, S.A.: Modeling organizational rules in the multi-agent systems engineering
methodology. In: Cohen, R., Spencer, B. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2338,
pp. 1–15. Springer, Heidelberg (2002)

14. Robby, DeLoach, S.A., Kolesnikov, V.A.: Using design metrics for predicting system flexi-
bility. In: Baresi, L., Heckel, R. (eds.) FASE 2006 and ETAPS 2006. LNCS, vol. 3922, pp.
184–198. Springer, Heidelberg (2006)

15. Zhong, C., DeLoach, S.A.: An investigation of reorganization algorithms. In: Proceedings of
the International Conference on Artificial Intelligence (ICAI 2006), Las Vegas, Nevada, pp.
514–517. CSREA Press (June 2006)

16. DiLeo, J., Jacobs, T., DeLoach, S.: Integrating ontologies into multiagent systems engi-
neering. In: Fourth International Conference on Agent-Oriented Information Systems (AIOS
2002), CEUR-WS.org (July 2002)

17. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: Expressing checkable properties of dynamic
systems: The bandera specification language. International Journal on Software Tools for
Technology Transfer (STTT) 4(1), 34–56 (2002)

18. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, Heidelberg (1991)

19. Büchi, J.R.: On a decision method in restricted second-order arithmetics. In: Proceedings of
International Congress of Logic Methodology and Philosophy of Science, Palo Alto, CA,
USA, pp. 1–12. Stanford University Press (1960)

20. Olender, K.M., Osterweil, L.J.: Cecil: A sequencing constraint language for automatic static
analysis generation. IEEE Transactions on Software Engineering 16(3), 268–280 (1990)

21. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/event-based software
model checking. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999,
pp. 128–147. Springer, Heidelberg (2004)

22. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
23. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-time se-

curity policies. In: International Journal of Information Security, vol. 4, pp. 2–16. Springer,
Heidelberg (2004)

24. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Proceedings of the 1999 International Conference on Software Engineering.
IEEE, Los Alamitos (1999)

25. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Propel: an approach supporting
property elucidation. In: ICSE 2002: Proceedings of the 24th International Conference on
Software Engineering, pp. 11–21. ACM Press, New York (2002)

26. Peña, J., Hinchey, M.G., Sterritt, R.: Towards modeling, specifying and deploying policies in
autonomous and autonomic systems using an AOSE methodology. EASE 0, 37–46 (2006)

Author Index

Ardaiz, Oscar 254
Aydın, Onur 142

Bergenti, Federico 270
Bradshaw, Jeffrey M. 124
Buckley, Chris 108
Buisman, Hylke 224
Bunch, Larry 124

Chao, Isaac 254
Cicekli, Ilyas 142
Clancey, William J. 108, 124

DeLoach, Scott A. 333
Denti, Enrico 300

Endriss, Ulle 224

Feltovich, Paul J. 124

Garćıa-Camino, Andres 55
Gheorghe, Marian 158
Gleizes, Marie-Pierre 318

Hall, Tim 108
Hameurlain, Nabil 193
Harmon, Scott J. 333

Johnson, Matthew 124

Kamara, Lloyd 72
Kefalas, Petros 158
Kesim Cicekli, Nihan 142
Kollingbaum, Martin J. 55
Kruitbosch, Gijs 224

Maurel, Christine 318
McGinnis, Jarred 208
Migeon, Frédéric 318
Miller, Tim 208
Molesini, Ambra 300

Neville, Brendan 72
Norman, Tim J. 55

Omicini, Andrea 300
Ossowski, Sascha 240

Peek, Nadya 224
Pinyol, Isaac 284
Pitt, Jeremy 72

Ramirez-Cano, Daniel 72
Reynolds, Fisher 108
Robby 333
Rougemaille, Sylvain 318

Sabater-Mir, Jordi 284
Sanguesa, Ramon 254
Santibáñez, Josefina 175
Sardis, Manolis 90
Scott, Mike 108
Seah, Chin 108
Sergot, Marek 1
Sierhuis, Maarten 108
Sierra, Josefina 175
Stamatopoulou, Ioanna 158

Vasconcelos, Wamberto W. 55
Vasirani, Matteo 240
Vouros, George 90

	Title Page
	Preface
	Organization
	Table of Contents
	Action and Agency in Norm-Governed Multi-agent Systems
	Introduction
	Labelled Transition Systems
	Preliminaries
	Norms and Coloured Transition Systems

	Example (Rooms)
	Agent-SpecificNorms
	Fully Compliant Behaviour
	Non-compliant Behaviours
	Sub-standard Behaviours

	Agent-Stranded Transition Systems
	A Modal Language for Agency in Transitions
	A Logic of Agent Strands
	A Logic of ‘Brings It about’
	Example: ‘The Others Made Me Do It’
	Bringing about and Sustaining

	Example (Rooms, Contd)
	Conclusion
	References

	Managing Conflict Resolution in Norm-Regulated Environments
	Introduction
	Norm-Governed Agency
	Norm Specification

	Norm Conflicts
	Conflict Detection
	Conflict Resolution
	An Implementation of Norm Curtailment
	Curtailment Policies

	Management of Normative States
	Norm Adoption
	Norm Removal

	Norm-Aware Agent Societies
	Indirect Conflicts
	Related Work
	Conclusions, Discussion and Future Work
	References

	Alternative Dispute Resolution in Virtual Organizations
	Introduction
	Background and Motivation
	Automated Legal Intelligent System
	Norm-Governed Multi-agent Systems
	Alternative Dispute Resolution

	Alternative Dispute Resolution Protocol: Specification
	Arbitration Protocol
	Arbitration Panel Composition
	Jury Decision-Making through Opinion Formation
	Alternative Mechanisms of Jury Decision-Making
	Voting Protocol

	Principles of Juries
	Summary and Conclusions
	References

	Electronic Institutions Infrastructure for e-Chartering
	Introduction
	Actual World Institutions for the e-Chartering Case Study
	Electronic Institutions Fundamental Concepts
	Electronic Institutions Structure
	Roles
	Dialogical Framework
	Scene
	Performative Structure and Transitions
	Normative Rules
	Policies

	Using EIDE for e-Chartering
	EI Design
	EI Verification
	EI Development
	EI Deployment

	Conclusions
	References

	Multi-agent Simulation to Implementation: A Practical Engineering Methodology for Designing Space Flight Operations
	Introduction
	Simulation to Implementation Approach
	Project Origin and Scope
	Model of the OCA Current Operations Work System
	OCA Current Operations Simulation Output
	AgentViewer
	Statistical Charts

	Creating a Future Operations Simulation
	Related Work
	Workflow Management Systems
	Agent-Based Modeling and Simulation

	Conclusions
	References

	Progress Appraisal as a Challenging Element of Coordination in Human and Machine Joint Activity
	Introduction
	Activity and Joint Activity
	Aspects of Progress
	Time as a Special Dimension
	Factors Affecting Progress and Progress Appraisal
	Applications to Human-Agent-Robotic Teamwork
	Progress Appraisal in the Coordinated Operations Exercise
	Further Policy Considerations

	Conclusions
	References

	Automated Web Services Composition with the Event Calculus
	Introduction
	Related Work
	Event Calculus
	Abductive Event Calculus

	Web Services Composition with Abductive Planning
	Web Services
	Plan Generation
	Concurrency of Events

	Web Services Composition with Generic Process Definition
	OWL-S to Event Calculus Translation
	Example of a Composition

	Conclusions
	References

	OPERAS: A Framework for the Formal Modelling of Multi-Agent Systems and Its Application to Swarm-Based Systems
	Introduction
	OPERAS: Formal Modelling of MAS
	Background and Related Work
	OPERAS Definition
	OPERAS as an Open Framework

	$OPERAS_{XC}$
	Modelling Behaviour
	Modelling Structure Mutation
	Definition of $OPERAS_{XC}$

	OPERASXC for a Swarm-Based System
	Autonomous Spacecrafts for Asteroid Exploration
	Leader: Formal Modelling of Behaviour in $OPERAS_{XC}$
	Worker: Formal Modelling of Behaviour in $OPERAS_{XC}$
	Formal Modelling of Structure Mutation in $OPERAS_{XC}$

	Conclusions and Further Work
	References

	The Acquisition of Linguistic Competence for Communicating Propositional Logic Sentences
	Introduction
	Grammatical Formalism
	Language Games
	Invention
	Adoption
	Induction
	Co-adaptation

	Experiments
	Related Work
	Conclusions
	References

	Contextualizing Behavioural Substitutability and Refinement of Role Components in MAS
	Introduction
	Role-Based Interaction Components Modeling
	The Component-Nets Formalism (C-Nets)
	Specification of Roles Components and Their Composition/Refinement

	Context-Based Behavioral Compatibility of Role Components
	Behavioural Substitutability and Refinements of Role Components
	Conclusion and Related Work
	References

	Amongst First-Class Protocols
	Introduction
	First-Class Protocols — A Definition
	Commitment Machines
	Commitment Machines in the Event Calculus
	Commitment Machines in OWL-P
	Commitment Machines in MAD-P
	Discussion

	NormativeSystems
	Lightweight Coordination Calculus
	\rasa
	PetriNets
	Comparisons
	Declarative vs Algebraic/Operational
	Local vs Global
	Composability
	Top-Down vs Bottom-Up
	State vs No State
	Expressiveness
	Discussion

	Other Approaches
	Conclusions
	References

	Simulation of Negotiation Policies in Distributed Multiagent Resource Allocation
	Introduction
	Preliminaries
	Formal Framework
	Convergence

	TheMADRASPlatform
	Generating Agent Valuations
	Simulating Negotiation Policies
	Evaluating and Visualising Results

	Experiments
	Comparing Negotiation Policies in Modular Domains
	Comparing Negotiation Policies for Varying Degrees of Synergy

	Conclusion
	References

	Collective-Based Multiagent Coordination: A Case Study
	Introduction
	Background: Probability Collectives
	Maxent Lagrangian
	Minimizing the Maxent Lagrangian

	The Problem: DisCSP as Cooperative Coordination
	Centralized Implementation
	Experimental Results

	Decentralized Implementation
	Conclusions
	References

	Tag Mechanisms Evaluated for Coordination in Open Multi-Agent Systems
	Introduction
	Tag Mechanisms
	Objectives and Motivation for Research

	Related Work
	System Model and Learning Mechanisms
	System Model: Cooperation and Competition Models
	Tag Mechanism Model
	MAS Learning Algorithms Selection

	Experimental Results and Discussion
	Experimental Setup
	Performance Comparison in the PD Game
	Performance Comparison in the Pure Cooperation Game
	Discussion and Applications

	Conclusions and Future Work
	References

	Toward a Probabilistic Model of Trust in Agent Societies
	Introduction
	A Model of Guarantor-Mediated Interactions
	Abstractions
	Expectation of the Utility of Agents

	Decision Making Strategy
	Probability Density Function of Trust and the Risk Factor
	Role of the PDF of Trust

	Results and Bounds
	Conclusions
	References

	Arguing about Reputation: The LRep Language
	Introduction
	The Repage System
	The Repage Architecture

	The Ontological Dimension of Reputation
	Description Logic
	A DL Version of the Ontology

	The LRep: A Language for Reputation and Image Justification
	Defining the Basis of LRep
	Simple Predicate Formula (SPF) and Extended Predicate Formula (EPF)
	Justification
	Semantics of LRep

	UsingLRep
	Case 1: Discrimination between Weak and Strong Predicates
	Case 2: Avoiding Unreliable Information
	Case 3: Control of Granularity
	Case 4: Putting Everything Together: Dialogs

	Conclusions and Future Work
	References

	From AO Methodologies to MASInfrastructures: The \soda{} Case Study
	Introduction
	AOSE Methodologies: Technologies and Meta-models
	Meta-models for the Case Study
	\soda{}
	\tucson{}
	cartago{}
	TOTA

	From \soda{} to Infrastructures
	\soda{} and \tucson{}
	\soda{} and \cartago{}
	\soda{} and TOTA
	Discussion

	\soda{} and \tucson{} : An Example
	Related Work
	Conclusions and Future Work
	References

	Model Driven Engineering for Designing Adaptive Multi-Agents Systems
	Introduction
	Operational and Functional Adaptation
	Operational Point of View
	Functional Point of View
	Adaptation Levels

	Related Work
	MAS Related Work
	MDE Tools

	Meta-models
	AMAS Meta-model
	Micro-architecture Description Language (μADL) Meta-Model

	The Mapping Process (Mapping AMAS Agents to the JavAct Platform)
	Meta-models Mapping
	Model Mapping: Ants Example

	Conclusion and Perspectives
	References

	Trace-Based Specification of Law and Guidance Policies for Multi-Agent Systems
	Introduction
	Background
	ConferenceManagement Example
	Robotic Floor Cleaning Example

	Multiagent Traces
	System Traces

	Policies
	Language for Policy Analysis
	Law Policies
	Guidance Policies

	Evaluation
	CRFCC
	ConferenceManagement System
	Common Results

	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

