

Lecture Notes in Computer Science 5131
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

H. Jaap van den Herik Xinhe Xu
Zongmin Ma Mark H. M. Winands (Eds.)

Computers and Games

6th International Conference, CG 2008
Beijing, China, September 29 - October 1, 2008
Proceedings

13

Volume Editors

H. Jaap van den Herik
Tilburg centre for Creative Computing (TiCC)
Tilburg University
Tilburg, The Netherlands
E-mail: H.J.vdnHerik@uvt.nl

Xinhe Xu
College of Information Science and Engineering
Northeastern University
Shenyang, China
E-mail: xuxinhe@ise.neu.edu.cn

Zongmin Ma
College of Information Science and Engineering
Northeastern University
Shenyang, China
E-mail: mazongmin@ise.neu.edu.cn

Mark H. M. Winands
Maastricht ICT Competence Centre (MICC)
Maastricht University
Maastricht, The Netherlands
E-mail: m.winands@micc.unimaas.nl

Library of Congress Control Number: 2008934730

CR Subject Classification (1998): G, I.2.1, I.2.6, I.2.8, F.2, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-87607-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87607-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12517534 06/3180 5 4 3 2 1 0

Preface

This book contains the papers of the 6th Computers and Games Conference
(CG 2008) held in Beijing, China. The conference took place from September 29
to October 1, 2008 in conjunction with the 13th International Computer Games
Championship and the 16th World Computer Chess Championship.

The Computers and Games conference series is a major international forum
for researchers and developers interested in all aspects of artificial intelligence
and computer game playing. The Beijing conference was definitively character-
ized by fresh ideas for a large variety of games. Earlier conferences took place in
Tsukuba, Japan (1998), Hamamatsu, Japan (2000), Edmonton, Canada, (2002),
Ramat-Gan, Israel (2004), and Turin, Italy (2006).

The Programme Committee (PC) received 40 submissions. Each paper was
initially sent to at least two referees. If conflicting views on a paper were reported,
it was sent to an additional referee. Out of the 40 submissions, one was withdrawn
before the final decisions were made. With the help of many referees (listed after
the preface), the PC accepted 24 papers for presentation at the conference and
publication in these proceedings.

The above-mentioned set of 24 papers covers a wide range of computer games.
Twelve of the games are played in practice by human players, viz., Go, West-
ern Chess, Chinese Chess (Xiangqi), Japanese Chess (Shogi), Amazons, Chinese
Checkers, Hearts, Hex, Lines of Action, Othello, Siguo, and Spades. Moreover,
there was one puzzle, viz., SameGame, and two theoretical games, viz., Synchro-
nized Domineering and multi-player Can’t Stop.

The papers deal with many different research topics including cognition, com-
binatorial game theory, search, knowledge representation, and optimization.

We hope that the readers will enjoy the research efforts of the authors. Below
we provide a brief outline of the 24 contributions, in the order in which they are
printed in the book.

“Single-Player Monte-Carlo Tree Search,” by Maarten Schadd, Mark Winands,
Jaap van den Herik, Guillaume Chaslot, and Jos Uiterwijk, proposes a new
Monte-Carlo Tree Search variant, called Single-Player Monte-Carlo Tree Search
(SP-MCTS). The method is tested on the puzzle SameGame. It gained the high-
est score so far on the standardized test set of 20 positions.

“Amazons Discover Monte Carlo” is authored by Richard Lorentz. He incor-
porated the basic ideas of MC/UCT into the Amazons program InvaderMC
and then made improvements to create a hybrid MC/UCT program. This hybrid
version is considerably stronger than minimax-based Invader.

“Monte-Carlo Tree Search Solver,” by Mark Winands, Yngvi Björnsson, and
Jahn-Takeshi Saito, investigates the application of MCTS for the game Lines of
Action (LOA). A new MCTS variant, called MCTS-Solver, has been designed
to improve playing narrow tactical lines in sudden-death games such as LOA.

VI Preface

“An Analysis of UCT in Multi-player Games” is written by Nathan Sturte-
vant. It provides an analysis of the UCT algorithm in multi-player games, show-
ing that UCT is computing a mixed-strategy equilibrium, as opposed to Maxn,
which computes a pure-strategy equilibrium. The author shows that UCT per-
forms as well or better than existing algorithms.

“Multi-player Go” by Tristan Cazenave addresses the application of Monte-
Carlo Tree Search to multi-player Go. A straightforward and effective heuristic
is defined. It is used in the playouts, which models coalitions of players.

“Parallel Monte-Carlo Tree Search” is authored by Guillaume Chaslot, Mark
Winands, and Jaap van den Herik. It discusses three parallelization methods for
MCTS: leaf parallelization, root parallelization, and tree parallelization. Exper-
iments in 13 × 13 Go reveal that in the program Mango root parallelization
leads to the best results.

“A Parallel Monte-Carlo Tree Search Algorithm,” by Tristan Cazenave and
Nicolas Jouandeau, presents a parallel Master-Slave algorithm for Monte-Carlo
Tree Search. The algorithm is tested on a network of computers using various
configurations.

“Using Artificial Boundaries in the Game of Go,” by Ling Zhao and Martin
Müller, describes a new general framework for finding boundaries in such a way
that existing local search methods can be used. By applying a revised local
UCT search method, it is shown experimentally that this framework increases
performance on local Go problems with open boundaries.

“A Fast Indexing Method for Monte-Carlo Go,” written by Keh-Hsun Chen,
Dawei Du, and Peigang Zhang, proposes a direct indexing approach to build
and use a complete 3×3 pattern library. Testing results show that their method
increases the winning rates of Go Intellect against GNU Go on 9× 9 games
by over 7%, taking the tax on the program speed into consideration.

“An Improved Safety Solver in Go Using Partial Regions” is a contribution by
Xiaozhen Niu and Martin Müller. The authors introduce a new technique that
is able to prove that parts of large regions are safe. Experimental results show
that the new technique significantly improves the performance of their previous
state-of-the-art safety-of-territory solver.

“Whole-History Rating: A Bayesian Rating System for Players of Time-
Varying Strength” is written by Rémi Coulom. The author proposes whole-
history rating (WHR), a new method to estimate the time-varying strengths of
players involved in paired combats. Experiments demonstrate that, in compar-
ison to Elo, Glicko, TrueSkill, and decayed-history algorithms, WHR produces
better predictions.

“Frequency Distribution of Contextual Patterns in the Game of Go” is a joint
effort by Zhiqing Liu, Qing Dou, and Benjie Lu. They show that the Zipfian
frequency distribution of Go patterns in professional games is deliberate by re-
jecting the null hypothesis that the frequency distribution of patterns in random
games exhibits a Zipfian frequency distribution.

“A New Proof-Number Calculation Technique for Proof-Number Search” is
a contribution by Kazuki Yoshizoe. The paper proposes a new straightforward

Preface VII

calculation technique for proof numbers. It is called dynamic widening. Its per-
formance is tested on capturing problems of Go on 19×19 boards.

“About the Completeness of Depth-First Proof-Number Search,” written by
Akihiro Kishimoto and Martin Müller, resolves the question of completeness of
df-pn: its ability to solve any finite boolean-valued game tree search problem in
principle, given unlimited amounts of time and memory. The main results are
that df-pn is complete on finite directed acyclic graphs (DAG) but incomplete
on finite directed cyclic graphs (DCG).

“Weak Proof-Number Search,” by Toru Ueda, Tsuyoshi Hashimoto, Junichi
Hashi-moto, and Hiroyuki Iida, introduces a new search idea using proof number
and branching factor as search estimators. It is called weak proof-number search.
The experiments performed in the domain of shogi and Othello show that the
proposed search algorithm is potentially more powerful than the original proof-
number search and its depth-first variants.

“Cognitive Modeling of Knowledge-Guided Information Acquisition in Games”
is written by Reijer Grimbergen. The paper argues that Marvin Minsky’s soci-
ety of mind theory is a good candidate for a cognitive theory to define chunks
and to explain the relation between chunks and problem-solving tasks. A repro-
duction experiment is performed in shogi showing that perception is guided by
knowledge in long-term memory.

“Knowledge Inferencing on Chinese Chess Endgames” is a contribution by Bo-
Nian Chen, Pangfeng Liu, Shun-Chin Hsu, and Tsan-sheng Hsu. They propose
a novel strategy that applies a knowledge-inferencing algorithm on a sufficiently
small database to determine whether endgames with a certain combination of
material are advantageous to a player. Their experimental results show that the
performance of the algorithm is good and reliable.

“Learning Positional Features for Annotating Chess Games: A Case Study,”
by Matej Guid, Martin Možina, Jana Krivec, Aleksander Sadikov, and Ivan
Bratko, points out certain differences between the computer programs, which are
specialized for playing chess, and their own program, which is aimed at providing
quality commentary. Through a case study, the authors present an application
of argument-based machine learning in order to provide their annotating system
with an ability to comment on various positional intricacies of positions in chess.

“Extended Null-Move Reductions” is a contribution by Omid David-Tabibi
and Nathan Netanyahu. The authors review several versions of null-move prun-
ing, and present their enhancement null-move reductions (NMR), which allows
for a deeper search with greater accuracy. Experimental results using their own
chess program, Falcon, show that NMR outperforms the conventional methods.
Here we see that the tactical benefits of a deeper search outweigh the deficiencies.

“GTQ: A Language and Tool for Game-Tree Analysis,” by Jónheiður Ísleifs-
dóttir and Yngvi Björnsson, presents the game tree query language (GTQL), a
query language specifically designed for analyzing game trees. Moreover, the
authors discuss the design and implementation of the game tree query tool
(GTQT), a program that allows efficient execution of GTQL queries on game-
tree log files.

VIII Preface

“Probing the 4-3-2 Edge Template in Hex,” written by Philip Henderson and
Ryan Hayward, introduces path-domination and neighborhood-domination, two
refinements of domination in Hex, and uses these notions to find conditions under
which probes of an opponent 4-3-2 edge template are inferior moves that can be
ignored in the search for a winning move.

“The Game of Synchronized Domineering” is a contribution by Alessandro
Cincotti and Hiroyuki Iida. For the game of Synchronized Domineering, the
paper presents the solutions for all the m×n boards with m ≤ 6 and n ≤ 6. The
authors also give results for the n × 3 boards, n × 5 boards, and some partial
results for the n × 2 boards.

“A Retrograde Approximation Algorithm for Multi-player Can’t Stop,” by
James Glenn, Haw-ren Fang, and Clyde Kruskal, studies the computational so-
lution of multi-player Can’t Stop, and presents a retrograde approximation algo-
rithm to solve it by incorporating the multi-dimensional Newton’s method with
retrograde analysis. Results on small versions of three- and four-player Can’t
Stop are given.

“AWT: Aspiration with Timer Search Algorithm in Siguo” is a joint effort by
Hui Lu and ZhengYou Xia. The paper proposes a modified alpha-beta aspiration
search algorithm, which is called alpha-beta aspiration with timer algorithm
(AWT).

This book would not have been produced without the help of many persons.
In particular, we would like to mention the authors and the referees for their
help. Moreover, the organizers of the three events in Beijing (see the beginning
of this preface) contributed substantially by bringing the researchers together.
The work by the committees of CG 2008 was essential for this publication.
Finally, the editors happily acknowledge the generous sponsors Beijing Longlife
Group, Chinese Association for Artificial Intelligence, Northeastern University,
Beijing University of Posts and Telecommunications, Universiteit Maastricht,
ChessBase, ICGA, and IFIP WG 14.4 Games & Entertainment Computing.

July 2008 Jaap van den Herik
Xinhe Xu

Zongmin Ma
Mark Winands

Organization

Executive Committee

Editors H. Jaap van den Herik
Xinhe Xu
Zongmin Ma
Mark H.M. Winands

Program Co-chairs H. Jaap van den Herik
Xinhe Xu
Zongmin Ma
Mark H.M. Winands

Organizing Committee

Xinhe Xu (Chair) Zhiqing Liu (Co-chair)
Johanna W. Hellemons H. Jaap van den Herik
Mark H.M. Winands

Sponsors

Main Sponsor Beijing Longlife Group
Institutional Sponsors Chinese Association for Artificial Intelligence

Northeastern University
Beijing University of Posts and Telecommunications
Universiteit Maastricht
ChessBase, Hamburg, Germany
ICGA

Technical Sponsor IFIP WG 14.4 Games & Entertainment Computing

Programme Committee

Yngvi Björnsson
Bruno Bouzy
Ivan Bratko
Michael Buro
Tristan Cazenave
Keh-Hsun Chen
Paolo Ciancarini
Rémi Coulom

Jeroen Donkers
Haw-ren Fang
Aviezri Fraenkel
James Glenn
Pedro Gonzalez-Calero
Michael Greenspan
Reijer Grimbergen
Tsuyoshi Hashimoto

Guy Haworth
Ryan Hayward
Jaap van den Herik
Shun-Chin Hsu
Tsan-sheng Hsu
Ming Huang
Hiroyuki Iida
Wijnand IJsselsteijn

X Organization

Graham Kendall
Akihiro Kishimoto
Clyde Kruskal
Hans Kuijf
Jong Weon Lee
Yibo Li
Shun-Shii Lin
Zhiqing Liu
Ulf Lorenz

Zongmin Ma
Frans Morsch
Martin Müller
Anton Nijholt
Jacques Pitrat
Christian Posthoff
Matthias Rauterberg
Jonathan Schaeffer
Pieter Spronck

Nathan Sturtevant
Gerald Tesauro
Jos Uiterwijk
Mark Winands
I-Chen Wu
Xinhe Xu
Shi-Jim Yen
Jan van Zanten

Referees

Vadim Anshelevich
Ronald Bjarnason
Yngvi Björnsson
Marc Boule
Bruno Bouzy
Ivan Bratko
Michael Buro
Arthur Cater
Tristan Cazenave
Guillaume Chaslot
Keh-Hsun Chen
Paolo Ciancarini
Alessandro Cincotti
Rémi Coulom
Omid David-Tabibi
Arie de Bruin
Jeroen Donkers
Peter van Emde Boas
Gunnar Farnebäck
Haw-ren Fang
Aviezri Fraenkel
James Glenn
Pedro Gonzalez-Calero
Reijer Grimbergen
Matej Guid
Dap Hartmann
Tsuyoshi Hashimoto

Guy Haworth
Ryan Hayward
Philip Henderson
Shun-Chin Hsu
Tsan-sheng Hsu
Hiroyuki Iida
Graham Kendall
Akihiro Kishimoto
Levente Kocsis
Clyde Kruskal
Hans Kuijf
Jong Weon Lee
Robert Levinson
Alvin Levy
Łukasz Lew
Shun-Shii Lin
Zhiqing Liu
Richard Lorentz
Ulf Lorenz
Zongmin Ma
Stefan Meyer-Kahlen
Frans Morsch
Martin Müller
Xiaozhen Niu
Kohei Noshita
Gian-Carlo Pascutto
Wim Pijls

Jacques Pitrat
Christian Posthoff
Eric Postma
Jean-François Raskin
Matthias Rauterberg
Kees van Reeuwijk
Jeff Rollason
Aleksander Sadikov
Jahn-Takeshi Saito
Maarten Schadd
Jonathan Schaeffer
David Silver
Stephen Smith
Pieter Spronck
Renze Steenhuisen
Nathan Sturtevant
Pascal Tang
Gerald Tesauro
Jos Uiterwijk
Erik van der Werf
Jan Willemson
Thomas Wolf
I-Chen Wu
Xinhe Xu
Shi-Jim Yen

Table of Contents

Single-Player Monte-Carlo Tree Search . 1
Maarten P.D. Schadd, Mark H.M. Winands, H. Jaap van den Herik,
Guillaume M.J.-B. Chaslot, and Jos W.H.M. Uiterwijk

Amazons Discover Monte-Carlo . 13
Richard J. Lorentz

Monte-Carlo Tree Search Solver . 25
Mark H.M. Winands, Yngvi Björnsson, and Jahn-Takeshi Saito

An Analysis of UCT in Multi-player Games . 37
Nathan R. Sturtevant

Multi-player Go . 50
Tristan Cazenave

Parallel Monte-Carlo Tree Search . 60
Guillaume M.J.-B. Chaslot, Mark H.M. Winands, and
H. Jaap van den Herik

A Parallel Monte-Carlo Tree Search Algorithm . 72
Tristan Cazenave and Nicolas Jouandeau

Using Artificial Boundaries in the Game of Go . 81
Ling Zhao and Martin Müller

A Fast Indexing Method for Monte-Carlo Go . 92
Keh-Hsun Chen, Dawei Du, and Peigang Zhang

An Improved Safety Solver in Go Using Partial Regions 102
Xiaozhen Niu and Martin Müller

Whole-History Rating: A Bayesian Rating System for Players of
Time-Varying Strength . 113

Rémi Coulom

Frequency Distribution of Contextual Patterns in the Game of Go 125
Zhiqing Liu, Qing Dou, and Benjie Lu

A New Proof-Number Calculation Technique for Proof-Number
Search . 135

Kazuki Yoshizoe

About the Completeness of Depth-First Proof-Number Search 146
Akihiro Kishimoto and Martin Müller

XII Table of Contents

Weak Proof-Number Search . 157
Toru Ueda, Tsuyoshi Hashimoto, Junichi Hashimoto, and
Hiroyuki Iida

Cognitive Modeling of Knowledge-Guided Information Acquisition in
Games . 169

Reijer Grimbergen

Knowledge Inferencing on Chinese Chess Endgames 180
Bo-Nian Chen, Pangfeng Liu, Shun-Chin Hsu, and Tsan-sheng Hsu

Learning Positional Features for Annotating Chess Games: A Case
Study . 192

Matej Guid, Martin Možina, Jana Krivec, Aleksander Sadikov, and
Ivan Bratko

Extended Null-Move Reductions . 205
Omid David-Tabibi and Nathan S. Netanyahu

GTQ: A Language and Tool for Game-Tree Analysis 217
Jónheiður Ísleifsdóttir and Yngvi Björnsson

Probing the 4-3-2 Edge Template in Hex . 229
Philip Henderson and Ryan B. Hayward

The Game of Synchronized Domineering . 241
Alessandro Cincotti and Hiroyuki Iida

A Retrograde Approximation Algorithm for Multi-player Can’t Stop . . . 252
James Glenn, Haw-ren Fang, and Clyde P. Kruskal

AWT: Aspiration with Timer Search Algorithm in Siguo 264
Hui Lu and ZhengYou Xia

Author Index . 275

Single-Player Monte-Carlo Tree Search

Maarten P.D. Schadd, Mark H.M. Winands, H. Jaap van den Herik,
Guillaume M.J.-B. Chaslot, and Jos W.H.M. Uiterwijk

Games and AI Group, MICC, Faculty of Humanities and Sciences,
Universiteit Maastricht, Maastricht, The Netherlands

{maarten.schadd,m.winands,herik,g.chaslot,uiterwijk}@micc.unimaas.nl

Abstract. Classical methods such as A* and IDA* are a popular and
successful choice for one-player games. However, they fail without an accu-
rate admissible evaluation function. In this paper we investigate whether
Monte-Carlo Tree Search (MCTS) is an interesting alternative for one-
player games where A* and IDA* methods do not perform well. Therefore,
we propose a new MCTS variant, called Single-Player Monte-Carlo Tree
Search (SP-MCTS). The selection and backpropagation strategy in SP-
MCTS are different from standard MCTS. Moreover, SP-MCTS makes
use of a straightforward Meta-Search extension. We tested the method on
the puzzle SameGame. It turned out that our SP-MCTS program gained
the highest score so far on the standardized test set.

1 Introduction

Recently, Monte-Carlo (MC) methods have become a popular approach for in-
telligent play in games. MC simulations have first been used as an evaluation
function inside a classical search tree [4,5]. In this role, MC simulations have
been applied to Backgammon [23], Clobber [18], and Phantom Go [6]. Due to
the costly evaluation, the search is not able to investigate the search tree suffi-
ciently deep in some games [4].

Therefore, the MC simulations have been placed into a tree-search context
in multiple ways [9,10,17]. The resulting general method is called Monte-Carlo
Tree Search (MCTS). It is a best-first search where the MC simulations guide
the search. Especially in the game of Go, which has a large search space [3],
MCTS methods are successful [9,10].

So far, MCTS has been applied rarely in one-player games. The only example
we know of is the Sailing Domain [17]. There, it is applied on a game with
uncertainty. So, to the best of our knowledge, MCTS has not been used in a one-
player game with perfect information (a puzzle1). The traditional approaches to
puzzles [16] are applying A* [14] or IDA* [19]. These methods have been quite
successful for solving puzzles. The disadvantage of the methods is that they need
an admissible heuristic evaluation function. The construction of such a function
1 Although it is somewhat arbitrary, we will call these one-player games with perfect

information for the sake of brevity puzzles [16].

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 1–12, 2008.
c© IFIP International Federation for Information Processing 2008

2 M.P.D. Schadd et al.

can be difficult. Since MCTS does not need an admissible heuristic, it may be an
interesting alternative. In this paper we will investigate the application of MCTS
to a puzzle. We introduce a new MCTS variant called SP-MCTS. The puzzle
SameGame [20] will be used as a test domain in the remainder of this paper.

In Sect. 2 we present the background and rules of SameGame. In Sect. 3
we discuss why classical approaches are not suitable for SameGame. Then we
introduce our SP-MCTS approach in Sect. 4. Experiments and results are given
in Sect. 5. Section 6 shows our conclusions and indicates future research.

2 SameGame

Below, we first present some background information on SameGame, in Subsec-
tion 2.1. Subsequently we explain the rules in Subsection 2.2.

2.1 Background

SameGame is a puzzle invented by Kuniaki Moribe under the name Chain Shot!
in 1985. It was distributed for Fujitsu FM-8/7 series in a monthly personal
computer magazine called Gekkan ASCII [20]. The puzzle was afterwards re-
created by Eiji Fukumoto under the name of SameGame in 1992. So far, the
best program for SameGame has been developed by Billings [24].

By randomly playing 106 puzzles, we estimated the average length of the game
to be 64.4 moves and the average branching factor to be 20.7, resulting in a game-
tree complexity of 1085. Moreover, we computed the state-space complexity of
the game to be 10159.

2.2 Rules

SameGame is played on a rectangular vertically placed 15×15 board initially filled
with blocks of 5 colors at random. A move consists of removing a group of (at least
two) orthogonally adjacent blocks of the same color. The blocks on top of the re-
moved group will fall down. As soon as an empty column occurs, the columns to
the right of the empty column are shifted to the left. Therefore, it is impossible
to create separate subgames. For each removed group points are rewarded. The
amount of points is dependent on the number of blocks removed and can be com-
puted by the formula (n − 2)2, where n is the size of the removed group.

We show two example moves in Fig. 1. When the ‘B’ group in the third
column with a connection to the second column of position 1(a) is played, it
will be removed from the game. In the second column the CA blocks will fall
down and in the third column the ‘C’ block will fall down, resulting in position
1(b). Because of this move, it is now possible to remove a large group of ‘C’
blocks (n=6). Owing to an empty column the two columns at the right side of
the board are shifted to the left, resulting in position 1(c).2 The first move is
worth 1 point; the second move is worth 16 points.
2 Shifting the columns at the left side to the right would not have made a difference

in points. For consistency, we will always shift columns to the left.

Single-Player Monte-Carlo Tree Search 3

(a) Playing ‘B’ in the
center column

(b) Playing ‘C’ in the
center column

(c) Resulting position

Fig. 1. Example SameGame moves

The game is over if no more blocks can be removed. This happens when either
the player (1) has removed all blocks or (2) is left with a position where no adjacent
blocks have the same color. In the first case, 1,000 bonus points are rewarded. In
the second case, points will be deducted. The formula for deducting is similar to
the formula for awarding points but now iteratively applied for each color left on
the board. Here it is assumed that all blocks of the same color are connected.

There are variations that differ in board size and the number of colors, but
the 15×15 variant with 5 colors is the accepted standard. If a variant differs in
scoring function, it is named differently (e.g., Jawbreaker, Clickomania) [1,21].

3 Classical Methods: A* and IDA*

The classical approach to puzzles involves techniques such as A* [14] and IDA*
[19]. A* is a best-first search where all nodes have to be stored in a list. The
list is sorted by an admissible evaluation function. At each iteration the first
element is removed from the list and its children are added to the sorted list.
This process is continued until the goal state arrives at the start of the list.

IDA* is an iterative deepening variant of A* search. It uses a depth-first
approach in such a way that there is no need to store the complete tree in
memory. The search will continue depth-first until the cost of arriving at a leaf
node and the value of the evaluation function pass a certain threshold. When
the search returns without a result, the threshold is increased.

Both methods are heavily dependent on the quality of the evaluation func-
tion. Even if the function is an admissible under-estimator, it still has to give
an accurate estimation. Classical puzzles where this approach works well are the
Eight Puzzle with its larger relatives [19,22] and Sokoban [15]. Here a good under-
estimator is the well-known Manhattan Distance. The main task in this field of re-
search is to improve the evaluation function, e.g., with pattern databases [11,12].

These classical methods fail for SameGame because it is not easy to make an
admissible under-estimator that still gives an accurate estimation. An attempt

4 M.P.D. Schadd et al.

to make such an evaluation function is by just awarding points to the groups on
the board without actually playing a move. However, if an optimal solution to
a SameGame problem has to be found, we may argue that an “over-estimator”
of the position is needed. An admissible “over-estimator” can be created by
assuming that all blocks of the same color are connected and would be able to
be removed at once. This function can be improved by checking whether there is
a color with only one block remaining on the board. If this is the case, the 1,000
bonus points for clearing the board may be deducted because the board cannot
be cleared completely. However, such an evaluation function is far from the real
score on a position and does not give good results with A* and IDA*. Tests have
shown that using A* and IDA* with the proposed “over-estimator” result in a
kind of breadth-first search. The problem is that after expanding a node, the
heuristic value of a child is significantly lower than the value of its parent, unless
a move removes all blocks with one color from the board. We expect that other
Depth-First Branch-and-Bound methods [25] suffer from the same problem.

Since no good evaluation function has been found yet, SameGame presents
a new challenge for the puzzle research. In the next section we will discuss our
SP-MCTS.

4 Monte-Carlo Tree Search

This section first gives a description of SP-MCTS in Subsection 4.1. Thereafter
we will explain the Meta-Search extension in Subsection 4.2.

4.1 SP-MCTS

MCTS is a best-first search method, which does not require a positional evalu-
ation function. MCTS builds a search tree employing Monte-Carlo evaluations
at the leaf nodes. Each node in the tree represents an actual board position and
typically stores the average score found in the corresponding subtree and the
number of visits. MCTS constitutes a family of tree-search algorithms applica-
ble to the domain of board games [9,10,17].

In general, MCTS consists of four steps, repeated until time has run out [7].
(1) A selection strategy is used for traversing the tree from the root to a leaf.
(2) A simulation strategy is used to finish the game starting from the leaf node
of the search tree. (3) The expansion strategy is used to determine how many
and which children are stored as promising leaf nodes in the tree. (4) Finally,
the result of the MC evaluation is propagated backwards to the root using a
back-propagation strategy.

Based on MCTS, we propose an adapted version for puzzles: Single-Player
Monte-Carlo Tree Search (SP-MCTS). Below, we will discuss the four corre-
sponding phases and point out differences between SP-MCTS and MCTS.

Selection Strategy. Selection is the strategic task to select one of the children
of a given node. It controls the balance between exploitation and exploration.
Exploitation is the task to focus on the move that led to the best results so

Single-Player Monte-Carlo Tree Search 5

far. Exploration deals with the less promising moves that still may have to be
explored, due to the uncertainty of their evaluation so far. In MCTS at each node
starting from the root, a child has to be selected until a leaf node is reached.
Several algorithms have been designed for this setup [9,10].

Kocsis and Szepesvári [17] proposed the selection strategy UCT (Upper Confi-
dence bounds applied to Trees). For SP-MCTS, we use a modified UCT version.
At the selection of node N with children Ni, the strategy chooses the move,
which maximizes the following formula.

X + C ·

√
ln t (N)
t (Ni)

+

√∑
x2 − t (Ni) · X2

+ D

t (Ni)
. (1)

The first two terms constitute the original UCT formula. It uses the number
of times t (N) that node N was visited and the number of times t (Ni) that child
Ni was visited to give an upper confidence bound for the average game value
X. For puzzles, we added a third term, which represents a possible deviation of
the child node [8,10]. It contains the sum of the squared results so far

(∑
x2

)
achieved in the child node corrected by the expected results t (Ni) · X

2
. A high

constant D is added to make sure that nodes, which have been rarely explored,
are considered uncertain. Below we describe two differences between puzzles and
two-player games, which may affect the selection strategy.

First, the essential difference between puzzles and two-player games is the
range of values. In two-player games, the results of a game is denoted by loss,
draw, or win, i.e., {−1, 0, 1}. The average score of a node will always stay
within [−1,1]. In a puzzle, an arbitrary score can be achieved that is not by
definition in a preset interval. In SameGame there are positions, which result in
a value above 4,000 points. As a solution to this issue we may set the constants
(C,D) in such a way that they are feasible for the interval [0, 5000]. A second
solution would be to scale the values back into the above mentioned interval
[−1,1], given the maximum score of approximately 5,000 for a position. When
the exact maximum score is not known a theoretical upper bound can be used.
For instance, in SameGame a theoretical upper bound is to assume that all
blocks have the same color. A direct consequence of such a high upperbound is
that the game scores will be located near to zero. It means that the constants C
and D have to be set with completely different values compared to two-player
games. We have opted for the first solution in our program.

A second difference is that puzzles do not have any uncertainty on the op-
ponent’s play. It means that the line of play has to be optimized without the
hindrance of an opponent.

Here we remark that Coulom [10] chooses a move according to the selection
strategy only if t (N) reaches a certain threshold (we set this threshold to 10).
Before we cross the threshold, the simulation strategy is used. The latter is
explained below.

6 M.P.D. Schadd et al.

Simulation Strategy. Starting from a leaf node, random moves are played until
the end of the game. In order to improve the quality of the games, the moves
are chosen pseudo-randomly based on heuristic knowledge.

In SameGame, we have designed two static simulation strategies. We named
these strategies “TabuRandom” and “TabuColorRandom”. Both strategies aim
at making large groups of one color. In SameGame, making large groups of blocks
is advantageous.

“TabuRandom” chooses a random color at the start of a simulation. It is not
allowed to play this color during the random simulations unless there are no
other moves possible. With this strategy large groups of the chosen color will be
formed automatically.

The new aspect in the “TabuColorRandom” strategy with respect to the
previous strategy is that the chosen color is the color most frequently occurring
at the start of the simulation. This may increase the probability of having large
groups during the random simulation.

Expansion Strategy. When a leaf node is reached, the expansion strategy
decides on which nodes are stored in memory. Coulom [10] proposed to expand
one child per simulation. With his strategy, the expanded node corresponds to
the first encountered position that was not present in the tree. This is also the
strategy we used for SameGame.

Back-Propagation Strategy. During the back-propagation phase, the result
of the simulation at the leaf node is propagated backwards to the root. Several
back-propagation strategies have been proposed in the literature [9,10]. The best
results that we have obtained was by using the plain average of the simulations.
Therefore, we update (1) the average score of a node. Additional to this, we
also update (2) the sum of the squared results because of the third term in the
selection strategy (see Formula 1), and (3) the best score achieved so far for
computational reasons.

The four phases are iterated until the time runs out.3 When this happens,
a final move selection is used to determine which move should be played. In
two-player games (with an analogous run-out-of-time procedure) the best move
according to this strategy will be played by the player to move and the opponent
then has time to calculate his response. But in puzzles this can be done differ-
ently. In puzzles it is not needed to wait for an unknown reply of an opponent.
Because of this, it is possible to perform one large search from the initial position
and then play all moves at once. With this approach all moves at the start are
under consideration until the time for SP-MCTS runs out.

4.2 Meta-search

A Meta-Search is a search method that does not perform a search on its own but
uses other search processes to arrive at an answer. For instance, Gomes et al.
3 In general, there is no time limitation for puzzles. However, a time limit is necessary

to make testing possible.

Single-Player Monte-Carlo Tree Search 7

[13] proposed a form of iterative deepening to handle heavy-tailed scheduling
tasks. The problem was that the search was lost in a large subtree, which would
take a large amount of time to perform, while there are shallow answers in other
parts of the tree. The possibility exists that by restarting the search a different
part of the tree was searched with an easy answer.

We discovered that it is important to generate deep trees in SameGame (see
Subsection 5.2). However, by exploiting the most-promising lines of play, the
SP-MCTS can be caught in local maxima. So, we extended SP-MCTS with a
straightforward form of Meta-Search to overcome this problem. After a certain
amount of time, SP-MCTS just restarts the search with a different random seed.
The best path returned at the end of the Meta-Search is the path with the highest
score found in the searches. Subsection 5.3 shows that this form of Meta-Search
is able to increase the average score significantly.

5 Experiments and Results

Subsection 5.1 shows tests of the quality of the two simulation strategies Tabu-
Random and TabuColorRandom. Thereafter, the results of the parameter tuning
are presented in Subsection 5.2. Next, in Subsection 5.3 the performance of the
Meta-Search on a set of 250 positions is shown. Finally, Subsection 5.4 com-
pares SP-MCTS to IDA* and Depth-Budgeted Search (used in the program by
Billings [2]).

5.1 Simulation Strategy

In order to test the effectiveness of the two simulation strategies we used a test
set of 250 randomly generated positions.4 We applied SP-MCTS without the
Meta-Search extension for each position until 10 million nodes were reached in
memory. These runs typically take 5 to 6 minutes per position. The best score
found during the search is the final score for the position. The constants C and
D were set to 0.5 and 10,000, respectively. The results are shown in Table 1.

Table 1 shows that the TabuRandom strategy has a significant better average
score (i.e., 700 points) than plain random. Using the TabuColorRandom strategy
the average score is increased by another 300 points. We observe that a low
standard deviation is achieved for the random strategy. In this case, it implies
that all positions score almost equally low.

Table 1. Effectiveness of the simulation strategies

Random TabuRandom TabuColorRandom

Average Score 2,069 2,737 3,038
StdDev 322 445 479

4 The test set can be found at www.cs.unimaas.nl/maarten.schadd/TestSet.txt

8 M.P.D. Schadd et al.

5.2 SP-MCTS Parameter Tuning

This subsection presents the parameter tuning in SP-MCTS. Three different
settings were used for the pair of constants (C; D) of Formula 1, in order to
investigate which balance between exploitation and exploration gives the best
results. These constants were tested with three different time controls on the
test set of 250 positions, expressed by a maximum number of nodes. The three
numbers are 105, 106 and 5 × 106. The short time control refers to a run with a
maximum of 105 nodes in memory. In the medium time control, 106 nodes are
allowed in memory, and in long time control 5 × 106 nodes are allowed. We have
chosen to use nodes in memory as measurement to keep the results hardware-
independent. The parameter pair (0.1; 32) represents exploitation, (1; 20,000)
performs exploration, and (0.5; 10,000) is a balance between the other two.

Table 2 shows the performance of the SP-MCTS approach for the three time
controls. The short time control corresponds to approximately 20 seconds per
position. The best results are achieved by exploitation. The score is 2,552. With
this setting the search is able to build trees that have on average the deepest
leaf node at ply 63, implying that a substantial part of the chosen line of play
is inside the SP-MCTS tree. Also, we see that the other two settings are not
generating a deep tree.

In the medium time control, the best results were achieved by using the bal-
anced setting. It scores 2,858 points. Moreover, Table 2 shows that the average
score of the balanced setting increased most compared to the short time control,
viz. 470. The balanced setting is now able to build substantially deeper trees
than in the short time control (37 vs. 19). An interesting observation can be
made by comparing the score of the exploration setting in the medium time

Table 2. Results of SP-MCTS for different settings

Exploitation Balanced Exploration
105 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,552 2,388 2,197
Standard Deviation 572 501 450

Average Depth 25 7 3
Average Deepest Node 63 19 8

106 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,674 2,858 2,579
Standard Deviation 607 560 492

Average Depth 36 14 6
Average Deepest Node 71 37 15

5 × 106 nodes (0.1; 32) (0.5; 10,000) (1; 20,000)

Average Score 2,806 3,008 2,901
Standard Deviation 576 524 518

Average Depth 40 18 9
Average Deepest Node 69 59 20

Single-Player Monte-Carlo Tree Search 9

Fig. 2. The average score for different settings of the Meta-Search

control to the exploitation score in the short time control. Even with 10 times
the amount of time, exploring is not able to achieve a significantly higher score
than exploiting.

The results for the long experiment are that the balanced setting again achieves
the highest score with 3,008 points. Now its deepest node on average is at ply 59.
However, the exploitation setting only scores 200 points fewer than the balanced
setting and 100 fewer than exploration.

From the results presented we may draw two conclusions. First we may con-
clude that it is important to have a deep search tree. Second, exploiting local
maxima can be more advantageous than searching for the global maxima when
the search only has a small amount of time.

5.3 Meta-search

This section presents the performance tests of the Meta-Search extension of
SP-MCTS on the set of 250 positions. We remark that the experiments are time
constrained. Each experiment could only use 5×105 nodes in total and the Meta-
Search distributed these nodes fairly among the number of runs. It means that a
single run can take all 5×105 nodes, but that two runs would only use 2.5×105

nodes each. We used the exploitation setting (0.1; 32) for this experiment. The
results are depicted in Fig. 2.

Figure 2 indicates that already with two runs instead of one, a significant per-
formance increase of 140 points is achieved. Furthermore, the maximum average
score of the Meta-Search is at ten runs, which uses 5 × 104 nodes for each run.
Here, the average score is 2,970 points. This result is almost as good as the best
score found in Table 2, but with the difference that the Meta-Search used one
tenth of the number of nodes. After ten runs the performance decreases because
the generated trees are not deep enough.

5.4 Comparison

The best SameGame program so far has been written by Billings [2]. This pro-
gram performs a non-documented method called Depth-Budgeted Search (DBS).

10 M.P.D. Schadd et al.

Table 3. Comparing the scores on the standardized test set

Position no. IDA* DBS SP-MCTS Position no. IDA* DBS SP-MCTS

1 548 2,061 2,557 11 1,073 2,911 3,047
2 1,042 3,513 3,749 12 602 2,979 3,131
3 841 3,151 3,085 13 667 3,209 3,097
4 1,355 3,653 3,641 14 749 2,685 2,859
5 1,012 3,093 3,653 15 745 3,259 3,183
6 843 4,101 3,971 16 1,647 4,765 4,879
7 1,250 2,507 2,797 17 1,284 4,447 4,609
8 1,246 3,819 3,715 18 2,586 5,099 4,853
9 1,887 4,649 4,603 19 1,437 4,865 4,503

10 668 3,199 3,213 20 872 4,851 4,853

Total: 22,354 72,816 73,998

When the search reaches a depth where its budget has been spent, a greedy sim-
ulation is performed. On a standardized test set of 20 positions5 his program
achieved a total score of 72,816 points with 2 to 3 hours computing time per
position. Using the same time control, we tested SP-MCTS on this set. We used
again the exploitation setting (0.1; 32) and the Meta-Search extension, which ap-
plied 1,000 runs using 100,000 nodes for each search process. For assessment, we
tested IDA* using the evaluation function described in Sect. 3. Table 3 compares
IDA*, DBS, and SP-MCTS with each other.

SP-MCTS outperformed DBS on 11 of the 20 positions and was able to achieve
a total score of 73,998. Furthermore, Table 3 shows that IDA* does not perform
well on this puzzle. It plays at human beginner level. The best variants discovered
by SP-MCTS can be found on our website.6 There we see that SP-MCTS is able
to clear the board for all 20 positions. This confirms that a deep search tree is
important for SameGame as was seen in Subsection 5.2.

By combining the scores of DBS and SP-MCTS we computed that at least
75,152 points can be achieved for this set.

6 Conclusions and Future Research

In this paper we proposed a new MCTS variant called Single-Player Monte-Carlo
Tree Search (SP-MCTS). We adapted MCTS by two modifications resulting in
SP-MCTS. The modifications are (1) the selection strategy and (2) the back-
propagation strategy. Below we provide three observations and subsequently two
conclusions.

First, we observed that our TabuColorRandom strategy significantly increased
the score of the random simulations in SameGame. Compared to the pure ran-
dom simulations, an increase of 50% in the average score is achieved.
5 The positions can be found at www.js-games.de/eng/games/samegame
6 The best variations can be found at

http://www.cs.unimaas.nl/maarten.schadd/SameGame/Solutions.html

Single-Player Monte-Carlo Tree Search 11

Next, we observed that it is important to build deep SP-MCTS trees. Exploit-
ing works better than exploring at short time controls. At longer time controls
the balanced setting achieves the highest score, and the exploration setting works
better than the exploitation setting. However, exploiting the local maxima still
leads to comparable high scores.

Third, with respect to the extended SP-MCTS endowed with a straightfor-
ward Meta-Search, we observed that for SameGame combining a large number
of small searches can be more beneficial than doing one large search.

From the results of SP-MCTS with parameters (0.1; 32) and with Meta-
Search set on a time control of around 2 hours we may conclude that SP-MCTS
produced the highest score found so far for the standardized test set. It was able
to achieve 73,998 points, meanwhile breaking Billings’ record by 1,182 points.

A second conclusion is that we have shown that SP-MCTS is applicable to a
one-person perfect-information game. SP-MCTS is able to achieve good results
in SameGame. So, SP-MCTS is a worthy alternative for puzzles where a good
admissible estimator cannot be found.

In the future, more techniques will be tested on SameGame. We mention
three of them. First, knowledge can be included in the selection mechanism. A
technique to achieve this is called Progressive Unpruning [7]. Second, this paper
demonstrated that combining small searches can achieve better scores than one
large search. However, there is no information shared between the searches. This
can be achieved by using a transposition table, which is not cleared at the end
of a small search. Third, the Meta-Search can be parallelized asynchronously to
take advantage of multi-processor architectures.

Acknowledgments. This work is funded by the Dutch Organisation for Scien-
tific Research (NWO) in the framework of the project TACTICS, grant number
612.000.525.

References

1. Biedl, T.C., Demaine, E.D., Demaine, M.L., Fleischer, R., Jacobsen, L., Munro,
I.: The Complexity of Clickomania. In: Nowakowski, R.J. (ed.) More Games of
No Chance, Proc. MSRI Workshop on Combinatorial Games, pp. 389–404. MSRI
Publ., Berkeley. Cambridge University Press, Cambridge (2002)

2. Billings, D.: Personal Communication. University of Alberta, Canada (2007)
3. Bouzy, B., Cazanave, T.: Computer Go: An AI-Oriented Survey. Artificial Intelli-

gence 132(1), 39–103 (2001)
4. Bouzy, B., Helmstetter, B.: Monte-Carlo Go Developments. In: van den Herik,

H.J., Iida, H., Heinz, E.A. (eds.) Proceedings of the 10th Advances in Computer
Games Conference (ACG-10), The Netherlands, pp. 159–174. Kluwer Academic,
Dordrecht (2003)

5. Brügmann, B.: Monte Carlo Go. Technical report, Physics Department, Syracuse
University (1993)

6. Cazenave, T., Borsboom, J.: Golois Wins Phantom Go Tournament. ICGA Jour-
nal 30(3), 165–166 (2007)

12 M.P.D. Schadd et al.

7. Chaslot, G.M.J.-B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.,
Bouzy, B.: Progressive strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation 4(3), 343–357 (2008)

8. Chaslot, G.M.J.B., de Jong, S., Saito, J.-T., Uiterwijk, J.W.H.M.: Monte-Carlo
Tree Search in Production Management Problems. In: Schobbens, P.Y., Vanhoof,
W., Schwanen, G. (eds.) Proceedings of the 18th BeNeLux Conference on Artificial
Intelligence, Namur, Belgium, pp. 91–98 (2006)

9. Chaslot, G.M.J.B., Saito, J.-T., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik,
H.J.: Monte-Carlo Strategies for Computer Go. In: Schobbens, P.Y., Vanhoof, W.,
Schwanen, G. (eds.) Proceedings of the 18th BeNeLux Conference on Artificial
Intelligence, Namur, Belgium, pp. 83–91 (2006)

10. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006.
LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

11. Culberson, J.C., Schaeffer, J.: Pattern databases. Computational Intelligence 14(3),
318–334 (1998)

12. Felner, A., Zahavi, U., Schaeffer, J., Holte, R.C.: Dual Lookups in Pattern
Databases. In: IJCAI, Edinburgh, Scotland, pp. 103–108 (2005)

13. Gomes, C.P., Selman, B., McAloon, K., Tretkoff, C.: Randomization in Backtrack
Search: Exploiting Heavy-Tailed Profiles for Solving Hard Scheduling Problems.
In: AIPS, Pittsburg, PA, pp. 208–213 (1998)

14. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on Systems Science and Cyber-
natics 4(2), 100–107 (1968)

15. Junghanns, A.: Pushing the Limits: New Developments in Single Agent Search.
PhD thesis, University of Alberta, Alberta, Canada (1999)

16. Kendall, G., Parkes, A., Spoerer, K.: A Survey of NP-Complete Puzzles. ICGA
Journal 31(1), 13–34 (2008)

17. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

18. Kocsis, L., Szepesvári, C., Willemson, J.: Improved Monte-Carlo Search (2006),
http://zaphod.aml.sztaki.hu/papers/cg06-ext.pdf

19. Korf, R.E.: Depth-first iterative deepening: An optimal admissable tree search.
Artificial Intelligence 27(1), 97–109 (1985)

20. Moribe, K.: Chain shot! Gekkan ASCII, (November 1985) (in Japanese)
21. PDA Game Guide.com. Pocket PC Jawbreaker Game. The Ultimate Guide to PDA

Games, Retrieved 7.1.2008 (2008),
http://www.pdagameguide.com/jawbreaker-game.html

22. Sadikov, A., Bratko, I.: Solving 20 × 20 Puzzles. In: van den Herik, H.J., Uiterwijk,
J.W.H.M., Winands, M.H.M., Schadd, M.P.D. (eds.) Proceedings of the Computer
Games Workshop 2007 (CGW 2007), The Netherlands, pp. 157–164. Universiteit
Maastricht, Maastricht (2007)

23. Tesauro, G., Galperin, G.R.: On-line policy improvement using Monte Carlo search.
In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information
Processing Systems, vol. 9, pp. 1068–1074. MIT Press, Cambridge (1997)

24. University of Alberta GAMES Group. GAMES Group News (Archives) (2002),
http://www.cs.ualberta.ca/∼games/archives.html

25. Vempaty, N.R., Kumar, V., Korf, R.E.: Depth-first versus best-first search. In:
AAAI, Anaheim, California, USA, pp. 434–440. MIT Press, Cambridge (1991)

http://zaphod.aml.sztaki.hu/papers/cg06-ext.pdf
http://www.pdagameguide.com/jawbreaker-game.html
http://www.cs.ualberta.ca/~games/archives.html

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 13–24, 2008.
© IFIP International Federation for Information Processing 2008

Amazons Discover Monte−Carlo

Richard J. Lorentz

Department of Computer Science,
California State University,

Northridge CA 91330-8281, USA
lorentz@csun.edu

Abstract. Monte-Carlo algorithms and their UCT-like successors have recently
shown remarkable promise for Go-playing programs. We apply some of these
same algorithms to an Amazons-playing program. Our experiments suggest that a
pure MC/UCT type program for playing Amazons has little promise, but by using
strong evaluation functions we are able to create a hybrid MC/UCT program that
is superior to both the basic MC/UCT program and the conventional minimax-
based programs. The MC/UCT program is able to beat INVADER, a strong
minimax program, over 80% of the time at tournament time controls.

1 Introduction

Amazons is a fairly new game, invented in 1988 by Walter Zamkauskas of Argentina
and is a trademark of Ediciones de Mente. Amazons has attracted attention in the game-
programming community because of its simple rules and its difficulty of play. On
average there are more than 1,000 legal moves at any given position. Typically many
hundreds of these legal moves seem quite reasonable [1]. A game lasts a maximum of
92 moves but is usually decided by about move 40, so games can be completed in a
reasonable amount of time. Most people view Amazons as intermediate in difficulty
between Chess and Go. Thus, Amazons provides a natural test bed for games research.

To date, most strong Amazons programs use traditional minimax-based algorithms.
Two such programs are INVADER [1] and AMAZONG [12, 13]. However, Monte-Carlo
(MC)-based algorithms have recently been used extremely effectively in Go
programming [5, 9]. In fact, MC-based programs now completely dominate in the arena
of 9×9 Go, and are beginning to do the same in 19×19 Go. It seems natural to test
similar techniques in Amazons programming. Kloetzer, Iida, and Bouzy were the first to
try this with their Amazons program CAMPYA [10]. We have modified INVADER, our
Amazons playing program, to create INVADERMC, an MC-based Amazons program.

In the following we discuss the details of our approach. We explain how MC was
added to INVADER and describe improvements to the basic MC algorithm that proved
useful to INVADERMC. These include forward pruning and stopping MC simulations
early. We then explain how UCT is added and discuss improvements that include
finding the proper evaluation function, progressive widening, choosing the correct
moment to stop a random simulation, and other tuning issues. We show the level of
success we have achieved, and how the techniques we used in INVADERMC compare
to those used in CAMPYA.

14 R.J. Lorentz

In the next section we review the rules of Amazons. We then summarize the main
features of MC algorithms and briefly describe the UCT enhancement. Our emphasis
throughout is on how these algorithms apply to Amazons programming. Section 3
provides all the details of our approach. We focus on the techniques that proved
particularly effective for INVADERMC. We conclude in Sect. 4 with a summary of
what we accomplished, a description of techniques that surprised us as not being
particularly effective, and suggestions for further research.

2 The Game of Amazons and the Monte-Carlo Approach

This section provides basic background information. We explain the rules of
Amazons and briefly describe the MC and UCT algorithms.

2.1 The Rules of Amazons

Amazons is usually played on a 10×10 board where each player is given 4 amazons that
are initially placed as shown in Fig. 1(a). Although the game may be played with other
board sizes and with different numbers and different initial placements of amazons, this
version is considered standard and so will be the only version discussed here.

A move comprises two steps: first an amazon is moved like a chess queen through
unoccupied squares to an unoccupied square. Then from this new location the amazon
“throws an arrow”, again like a chess queen, across unoccupied squares to an
unoccupied square where it stays for the remainder of the game. The arrow now
occupies that square, acting as a barrier through which neither amazons nor thrown
arrows can pass. From the initial position shown in Fig. 1(a), one of White’s 2,176
possible moves is to move the amazon from square D1 to square D8 and then throw
an arrow to square B6, where the arrow must stay for the remainder of the game. This
move is denoted D1-D8(B6) and is shown in Fig. 1(b). White moves first and passing
is not allowed. The last player to move wins.

 (a) (b)

Fig. 1. The initial position and a typical first move

 Amazons Discover Monte−Carlo 15

Fig. 2. MC algorithm failure

The concept of territory is important in Amazons. Territory concerns regions of the
board that are under the complete control of one player, thus allowing that player to
be the only player to be moving amazons and throwing arrows there. For example, in
Fig. 2 below, if White moves J5-I5(J5) White will have complete control of the upper
right region and this region will be considered White’s territory. White can make 16
undisturbed moves there. The upper left side of the board in Fig. 2 appears likely to
become eventually Black’s territory and so we might say that Black has
approximately seven squares of potential territory there. Obviously acquiring territory
is an important aspect of the game since the side with the most territory should be
able to make the last move and win the game.

2.2 Monte-Carlo Programming

The MC approach to game programming is well known and has been used in Go, for
example, with varying degrees of success for more than 10 years [2]. The basic idea is
that the best move is found by repeatedly sampling all possible moves either
iteratively, random uniformly, or more cleverly. For each move sampled a random
game is played to the end. This random game is sometimes referred to as a simulation.
The wins and losses of the various simulations are tabulated and eventually the move
that reports the highest winning percentage is played. In Amazons, as with Go, this
simple algorithm can be surprisingly effective. If more random games are played, more
information is acquired, so the speed of playing out random games is significant.

It is important to understand that a pure MC approach has a fatal flaw as can be
seen in a game that was played by our first version of INVADERMC. The critical
position is shown in Fig. 2 where INVADERMC is White.

From the position in Fig. 2, White made the move G6-C6(G6). This loses immedi-
ately because Black can now play H3-I4(I6) closing off White’s potential territory in
the upper right. But that is the only move that wins for Black, so White still wins the
vast majority of the random games after making that faulty move. If instead White
plays a move like J5-I5(J5), White will be winning, but the game is actually quite
close. So White wins fewer of the random games and this winning move actually
appears less desirable to INVADERMC.

16 R.J. Lorentz

2.3 The UCT Algorithm

One popular solution to this problem is referred to as UCT [11] and stands for “upper
confidence bounds extended for trees”. The idea is that instead of just keeping a list of
candidate moves and running random games for each of them, we maintain a search
tree where each node of the tree keeps track of the winning record for that particular
position. We call this a UCT tree. Starting at the root of the UCT tree a path is found
to a leaf node by proceeding down the tree, choosing nodes that have the highest
expansion value. The method for calculating the expansion value is described below.
A random simulation is then run from the position corresponding to this leaf node and
this leaf may then be expanded, adding its children to the UCT tree. The decision to
expand a leaf node is usually based on how many times that node was visited.

The expansion value of a node is equal to the winning percentage of all simulations
that have passed through that node plus a bias value. The bias value allows nodes that
have not been visited very often to obtain a share of the simulations and is calculated
using the formula

countnode

countparent
k

_

)_log(⋅ (1)

In this formula parent_count corresponds to the number of simulations that have
passed through the parent of the node, node_count is the number of simulations that
have passed through the node, and k is a constant that is tuned according to the
particular application. A small value for k means moves that have been performing
well will continue to be expanded with high likelihood (exploitation) while a large
value means more moves tend to be tried at each level (exploration) [8].

For example, when using UCT from the position in Fig. 2, the node in the tree
corresponding to the move G6-C6(G6) will have child nodes corresponding to each of
Black’s follow-ups. Since the child node corresponding to the move H3-I4(I6) will
win most of its simulations, that path down the tree will be the one taken most often,
meaning that the top node G6-C6(G6) will start losing more games, eventually
showing it to be undesirable. Meanwhile, because of the bias value, another move like
J5-I5(J5), will eventually be explored frequently to obtain a higher winning
percentage and UCT will continue to grow the tree and confirm that that move (or
something similar) is the better move in this position.

In the next section we explain in detail how we incorporated the basic ideas of
MC/UCT into INVADERMC and then made improvements to create a hybrid MC/UCT
program. This hybrid version is considerably stronger than minimax-based INVADER.

3 The Hybrid MC/UCT Approach

INVADER, our strong minimax-based Amazons program, has competed in numerous
Computer Olympiads and has finished second or third every time. We used INVADER
as the basis for creating INVADERMC, our MC/UCT based program. We will
summarize the various basic algorithms and modifications to these algorithms we used
and how they affected playing quality to show how we ultimately created a strong
MC/UCT-based hybrid program. Unless otherwise stated all tests were 100-game

 Amazons Discover Monte−Carlo 17

matches where each game of the match began with a different two-move opening.
Games were played at tournament speeds, i.e., at the rate of 30 minutes for the entire
game per player.

3.1 Adding MC to INVADER

Our experiments began with a pure MC-based version of INVADER. The idea was to
see how strong our program could become by using only the MC-based idea, that is,
by not building any trees as is required by more sophisticated techniques such as
UCT. The most basic version simply repeatedly iterated over all legal moves, ran a
random game from each such position, and kept track of the results. The main
obstacle that needed to be overcome was to find a way to run random games quickly.
There are usually over 1,000 legal moves in a typical Amazons position. So, finding a
random move without bias among all the possibilities can be quite time consuming.
Since an amazon’s move is comprised of two parts, the move and the throw, we first
select a random move uniformly among all the possible amazon moves and then from
that move select a random throw. This is the same technique used in CAMPYA [10]. It
does add a slight bias towards amazon moves that have fewer throws available, i.e.,
amazons that are in more restricted positions. But the cost of generating all possible
legal moves slowed the random generation by more than a factor of 10 and so was
deemed too slow for any further study.

There is an obvious way to speed this up even more. We can first randomly select
one of the four amazons, then randomly select one of its moves, and finally select a
throw from there. Moves produced using this method were of conspicuously lower
quality and almost no test games were won using this approach. So, we immediately
rejected this approach. All further tests were done using the two-step move generation
process. This basic MC program did surprisingly well, winning 15% of the games in a
test match against our min-max-based INVADER.

With MC-based programs the more simulations we can generate the more
information we can gain. So, it is beneficial to be as efficient as possible. Subsections
3.2 and 3.5 deal with some other efficiency-related topics. However, we refrain from
any discussion or tests concerning low-level efficiency concerns such as bit string
board representations.

3.2 Stopping the MC Simulation Early

The basic MC program did quite well, but there are a number of things that can be
done to improve the quality of its moves. The first has to do with choosing the correct
time to end a simulation. Instead of waiting until a player loses because it has no legal
moves we can stop a game as soon as all amazons have been completely isolated from
its enemies. This gives a more precise and earlier determination but comes at a price
of forcing us to check for this property during the simulations, thus slowing them
down. It improved performance but suggested an even more important improvement.

The point of a random simulation is to provide statistical evidence about the
strength of a move. Instead of simulating to the end of the game we can invoke an
evaluation function earlier to help us determine whether the simulation is leading to a
winning or a losing position. INVADER has a fairly strong evaluation function. So, it is

18 R.J. Lorentz

easy to test this premise by using it in INVADERMC. Note that this approach is never
used in MC Go programming because evaluation functions are notoriously poor in
Go. In Go the random simulations to the end of the game provide better information
than an evaluation function.

When using the evaluation function we have a choice of recording either the
presumed margin of victory, or simply who won. We choose the latter. In other
words, only the sign of the evaluation is actually used at the end of the simulation.
Though CAMPYA programmers claim to find advantage in using the margin of victory
[10], so far we have been unable to improve on using the simple win/loss results.

But when is the correct time to invoke the evaluation function? The two obvious
choices are: (1) after a certain stage of the game (e.g., after move number 30) has
been reached; or (2) after a certain number of random moves have been played. Early
experiments indicated that choice (2) produces a better INVADERMC, winning more
than twice as many games against INVADER than various versions trying the other
approach. Applying the evaluation after 6 random moves appears best. Waiting until
10 moves caused INVADERMC to win 10% fewer games and waiting until 14 moves
dropped the win rate about 30%. Also, applying the evaluation after only 4 moves had
a similar negative effect, dropping the win rate 25%. CAMPYA [10] does something
similar, though it is not clear exactly how deep into the simulation they invoke their
evaluation function.

3.3 Forward Pruning with MC

A second possible use for the evaluation function is to do (unsafe) forward pruning.
Rather than waste time and space building the UCT tree for all legal moves we can
use the evaluation to select the moves that are most likely to be good. With some
tuning we found that selecting the top 400 moves for MC simulation seemed to give
good results. More detailed tuning in the UCT case also found 400 to be a good
choice. For example, our optimal UCT program that keeps the top 400 moves wins
80% of its games against normal INVADER. Instead, keeping the top 800 moves
produces a slightly lower win rate, but when keeping 1,200 moves the win rate drops
to 57%. Also, keeping only the top 200 moves shows a similar drop, winning only
61% of its games.

Extending this forward pruning idea, even among these 400 moves we select, we
prefer gaining information about moves that are likely to be good and only occasion-
ally simulate moves that appear to be weak, giving them a chance to prove themselves
if necessary. We implemented this technique by essentially doing a depth-1 UCT
search. We used the UCT bias values to determine which move we would simulate,
but we never extended the search tree beyond its initial depth of 1.

Using these algorithms INVADERMC played at nearly the level of INVADER,
winning 40% of its games. However, as pointed out in Sect. 2, there is a limit to how
well we can expect a pure MC program to play.

3.4 Adding UCT

UCT extends the MC algorithm by creating a search tree of moves so that nodes
(moves) that are performing well create child nodes beneath them and then the more

 Amazons Discover Monte−Carlo 19

promising children are given more simulations. Where MC tends to concentrate on
promising moves (nodes), UCT concentrates on promising variations (tree paths). The
basic algorithms for UCT are straightforward but a great deal of care is needed to
make the best use of UCT.

As mentioned in Subsection 2.3, it is important to choose the proper exploitation/
exploration constant k. Experimental results indicate that in the case of INVADERMC,
choosing the constant so that the UCT tree created ultimately ends up with a maxi-
mum depth of around 8 (assuming normal tournament time controls of 30 minutes per
game) seems optimal. Setting k = .35 achieves this kind of result.

Attempts at deeper exploitation miss too many important refutations while more
exploration does not give sufficient time for the best moves to reveal themselves. We
compared various choices of k using our best INVADERMC which wins 80% of its
games against INVADER. If we divide k by 2 the UCT tree now grows to depths of
around 10 or 11, but INVADERMC only wins 63% of its games. If we multiply k by 2
the UCT depths tend to be around 6 but we obtain results very similar to those using
the original k. This version won 78% of its games. However, if we multiply k by 4 we
obtain a drastic change. This version has UCT tree depths of around 4 or 5 and only
wins 25% of its games against INVADER.

By way of comparison, minimax-based INVADER is usually not able to play beyond
depth 3 in the early stages of the game and can sometimes reach depth 8 or 9, but only
at the latest stages. Minimax INVADER is, of course, implemented with most of the
usual improvements including alpha-beta pruning, the killer heuristic, etc. It also
prunes all but the best 400 moves at each node of the minimax tree. Since it is not
clear what the relationship is between UCT depths and minimax depths this
comparison is presented simply as a point of interest.

Also mentioned in Subsection 2.3, we need to decide when to expand leaf nodes in
the tree. The idea to not necessarily expand a leaf the first time it is visited was first
mentioned by Coulom in a slightly different context and is frequently used in
MC/UCT Go programming [5]. There are a number of reasons why it is not prudent
to expand immediately in the case of Amazons. First, to expand a node takes a great
deal of time since all possible moves need to be generated and all of these moves need
to then be evaluated. Experiments and intuition suggest this time might be better spent
doing more simulations. A second reason is that even though we employ forward
pruning and expand leaf nodes to have only 400 children, 400 is sufficiently large to
cause the UCT tree to grow quite fast and can quickly exhaust available memory.
Third, a single random Amazons simulation does not necessarily provide that much
information about the likelihood that a given node is favorable for White or Black.
We need to gather more data. Again, experiments with our best version of
INVADERMC indicate that a leaf should not be expanded until it has been visited
around 40 times. Dropping that value to 20 reduces the win rate by a small amount.
Dropping it to 5 produces a program whose win rate is only 65% compared with 80%
for our best INVADERMC. Raising the value to 120 has a similar negative effect.

By adding these basic UCT features to INVADERMC we have created a program
that outperforms INVADER. This version of INVADERMC is able to beat INVADER
approximately 60% of the time. We now describe further enhancements that move us
closer to our best version that achieves a win rate of 80% against INVADER.

20 R.J. Lorentz

3.5 Choosing the Proper Evaluation Function

As is the case with most game-playing algorithms, the speed of the evaluation
function is critical. Not only does an evaluation take place with every simulation, but
every time a UCT tree node is expanded there will typically be on the order of 1,000
evaluations to perform corresponding to the average number of legal moves from a
position. All of these nodes need evaluating so that we can select the top 400. There is
an obvious tradeoff here: the faster the evaluation, the less information it provides so
the more simulations we will need. But a faster evaluation also allows more
simulations in the same amount of time. Our experience shows that very fast yet naïve
evaluations allow significantly more simulations, but the lost information makes for a
poorer player. Nevertheless, we were able to achieve some success by creating less
precise but faster evaluation functions.

INVADER uses some quite complicated calculations to estimate accurately the
territories of the players. One of the most time-consuming aspects involves doing a
flood fill type calculation in each area of potential territory. We then rate the value of
this potential territory based on factors such as the calculated size and the number of
external access points to this potential territory.

By being less careful about the exact sizes and likelihoods of the players acquiring
territory, but still taking territory into account on a rougher scale, we are able to
evaluate a board in about two thirds of the time the normal evaluation takes. We do
this by simply saying that a group of contiguous squares constitutes potential territory
if every square in the group requires fewer queen moves to reach a friendly amazon
than it takes to reach an enemy one. With this added speed INVADERMC is able to
create a larger UCT tree while still evaluating reasonably accurately. INVADERMC
using this faster evaluation function improves considerably, winning 67% of its test
games against INVADER. It is worth noting that using the new evaluation function in
the normal INVADER program makes INVADER weaker. It only won 30% of the games
in a test against INVADER with its original evaluation. Also, our best INVADERMC
program wins 89% of its games against INVADER using the new function. So the new
evaluation benefits INVADERMC but harms INVADER.

3.6 Evaluation Parity Effect

Our simulations make a fixed number of random moves, usually 6, before the
evaluation function is invoked. Since these simulations can commence from any leaf
in the UCT tree, depending where we are in the tree, the simulation might terminate
with either White or Black to play. This parity problem is particularly problematic
with INVADERMC because its evaluation values swing quite widely according to
whose turn it is to move. This ultimately causes the values that propagate up the UCT
tree to be unnecessarily undependable. A useful fix is to terminate all random
simulations with the same player to move. This means that, for example, when we are
doing 6-move simulations we actually do 6 and 5-move simulations, depending on
where in the tree we are relative to the starting position. This enhancement produces a
significant improvement in the playing strength of INVADERMC. Our best
INVADERMC without this enhancement only wins 73% of its games.

 Amazons Discover Monte−Carlo 21

3.7 Progressive Widening

The final important enhancement has many names. We choose the term “progressive
widening.” The basic idea is to give UCT a little assistance by first considering only
the “best” children of a node and then gradually adding the other children until at
some point all children of a node are actually being examined by the UCT algorithm
[3, 4, 6]. There are many ways to implement this, some quite sophisticated. We have
implemented a very basic version. We see how many times a node has been visited
and if this number is small only some of the children will be examined. As the node is
visited more often, we gradually add more child nodes to be considered by UCT until
we eventually end up considering all 400 children when the node has been visited
sufficiently often. To give a sense of the actual values, on our machine INVADERMC
usually constructs a UCT tree of about 1,500 nodes under normal time controls. Until
a node has been visited 1,000 times (recall that leaves do not expand until they have
been visited 40 times) we only consider 5 children. We increase the number of
children by increments of 5 for every 1,000 visits and all 400 nodes are not
considered until the node has been visited 80,000 times. Without this improvement
our best INVADERMC wins fewer than 70% of its games against INVADER.

3.8 Minor Tuning

There are two other minor tuning issues that are interrelated and deserve mention.
Though individually they do not contribute significantly to the strength of the
program, combined they do seem to have a small positive effect. In most games,
including Amazons, it is important to get off to a good start early. Therefore, many
game programs, especially MC based programs, allocate more time for moves in the
early stages of the game. INVADERMC does this in a primitive, but still useful way.
Given the time control, we calculate how much time is available per move and then
allow triple this base time for the first 10 moves, double for the next 10 moves, 1.5
times the base time for the next 10, the base time for the next 10 moves, and then
allocate the remaining time to the remaining moves. However, the time allocated to
these final moves is so small that often the UCT algorithm does not have time to build
a sufficiently big tree to find a decent move. So, for these last moves we switch over
to our basic minimax engine.

INVADERMC configured with all of the above features is significantly stronger than
basic INVADER. After playing 400 games between the two, INVADERMC wins about
80% of the games.

4 Summary of Our Findings and Future Work

We have found that by adding a hybrid UCT structure to our Amazons playing
program, INVADER, the new program, INVADERMC, is significantly stronger and is
able to beat INVADER 80% of the time. It is not a pure UCT approach, because we
prune (in an unsafe manner) child nodes and we run the random games for only about
6 moves. But our use of progressive widening and our tuning of the UCT depth and
node visits per leaf expansion variables is standard when using UCT. Figure 3 below

22 R.J. Lorentz

Pure MC INVADER 15%
MC with eval. func. based pruning INVADER 40%
Basic hybrid UCT INVADER 60%
Basic hybrid with improved evaluation INVADER 67%
Hybrid UCT with all improvements INVADER 80%
Hybrid UCT w/o parity adjustment INVADER 73%
Hybrid UCT w/o progressive widening INVADER 70%
INVADER with new evaluation INVADER 38%
Hybrid UCT with all improvements INVADER with new evaluation 89%

Fig. 3. Summary of test results

summarizes the test results where all tests were done with at least 100 games and the
total time per game per player was set to 30 minutes. The first program’s winning
percentage over the second is shown in the third column. The first five rows show
how INVADERMC performs against minimax INVADER as algorithmic features are
added. The next two rows show the effect of removing one of the later enhancements.
The last two rows demonstrate that the new evaluation function actually hurts the
minimax INVADER, though it was a significant help for INVADERMC.

We tried a number of other techniques that seemed promising on paper but when
implemented did not deliver. After UCT appeared on the Go scene and proved useful,
the next big step was the use of “heavy playouts”, that is, guiding the random
simulations so that more natural looking random games are played [7]. All efforts to
incorporate heavy playouts in INVADERMC have so far been disappointing, resulting
in weaker play. Since this has had such a significant positive impact on Go-playing
programs we feel that additional work in this area is critical.

INVADER has a strong and presumably reasonably accurate evaluation function. So,
it seemed natural to try to eliminate completely the random simulations and simply
use the evaluation function to judge the probability of winning from a given position.
We were unsuccessful with this approach, suggesting that the sign of the evaluation
does a good job of suggesting who is winning but converting the value of the
evaluation into a winning probability is quite difficult.

It has been suggested that having the UCT tree maximize the scores rather than the
winning percentages might be advantageous [10]. In Go programming, it has been
shown that this is not the case [9]. Likewise, our experience with INVADERMC
indicates it is best to maximize the winning percentages.

We still find it mysterious that random simulations of length 6 work so well.
Adding to the mystery is the fact that a change of 2 in either direction immediately
hurts the winning percentage by at least 5%. We need to understand better the
mechanisms involved. We also still hope to find a way to convert or modify the
evaluation function so that it can better express the actual probability of a win. An
effective way of doing this will surely produce a much stronger program.

One idea to tweak the current program that might produce an improvement has to
do with the UCT constant k that dictates the depth of the growing tree. It might prove
beneficial to modify k as the game proceeds. For example, since later in the game
there are usually fewer potential good moves we might want to change the constant to
allow deeper trees to grow at the expense of possibly missing an unlikely looking
move that ultimately turns out to be strong.

 Amazons Discover Monte−Carlo 23

It is well known that self-testing is not the ideal way to test a game-playing
program. However, the dearth of Amazons-playing programs, combined with the near
nonexistence of publicly available programs, and the fact that the one accessible
strong program known to us (AMAZONG) cannot be easily configured to play long test
sets with INVADERMC make this approach necessary for now. As a kind of sanity
check we registered on a game-playing Web site and entered an Amazons ladder. All
moves made were those suggested by INVADERMC after approximately 10 minutes of
thinking. Under this configuration INVADERMC went undefeated with a score of 9 and
0, and eventually landed at the top of the ladder. This result at least suggests that we
are not going down the completely wrong path. Time constraints have prevented us
from playing many games against AMAZONG (fast games are too much of a
disadvantage for MC/UCT based programs), yet the few games we have played have
produced a winning percentage for INVADERMC.

Acknowledgments. We want to thank the anonymous referees for their careful,
thoughtful, and thorough comments and for pointing out our too frequent lapses. This
paper is greatly improved as a result. We would also especially like to thank HLL for
all the guidance, support, and inspiration she provided over the years.

References

1. Avetisyan, H., Lorentz, R.: Selective Search in an Amazons Program. In: Schaeffer, J.,
Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 123–141. Springer,
Heidelberg (2003)

2. Brügmann, B.: Monte Carlo Go. Technical report, Physics Department, Syracuse
University (1993)

3. Cazenave, T.: Iterative widening. In: In 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001), pp. 523–528 (2001)

4. Chaslot, G.M.J.-B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J., Bouzy,
B.: Progressive strategies for Monte-Carlo Tree Search. New Mathematics and Natural
Computation 4(3), 343–357 (2008)

5. Coulom, R.: Efficient selectivity and back-up operators in Monte-Carlo Tree Search. In:
van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS,
vol. 4630. Springer, Heidelberg (2007)

6. Coulom, R.: Computing “Elo Ratings” of Move Patterns in the Game of Go. ICGA
Journal 30(4), 198–208 (2007)

7. Drake, P., Uurtamo, S.: Move Ordering vs Heavy Playouts: Where Should Heuristics Be
Applied in Monte Carlo Go? In: Proceedings of the 3rd North American Game-On
Conference (2007)

8. Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for Monte-Carlo Go. In:
Twentieth Annual Conference on Neural Information Processing Systems (2006)

9. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT for Monte-Carlo Go.
Technical Report 6062, INRIA (2006)

10. Kloetzer, J., Iida, H., Bouzy, B.: The Monte-Carlo approach in Amazons. In: van den
Herik, H.J., Uiterwijk, J.W.H.M., Winands, M.H.M., Schadd, M.P.D. (eds.) Computer
Games Workshop 2007, Amsterdam, The Netherlands, pp. 185–192 (2007)

24 R.J. Lorentz

11. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006)

12. Lieberum, J.: An Evaluation Function for the Game of Amazons. Theoretical Computer
Science 349(22), 230–244 (2005)

13. Lorentz, R.: First-time Entry AMAZONG wins Amazons Tournament. ICGA
Journal 25(3), 182–184 (2002)

Monte-Carlo Tree Search Solver

Mark H.M. Winands1, Yngvi Björnsson2, and Jahn-Takeshi Saito1

1 Games and AI Group, MICC, Faculty of Humanities and Sciences,
Universiteit Maastricht, Maastricht, The Netherlands

{m.winands,j.saito}@micc.unimaas.nl
2 School of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland

yngvi@ru.is

Abstract. Recently, Monte-Carlo Tree Search (MCTS) has advanced
the field of computer Go substantially. In this article we investigate the
application of MCTS for the game Lines of Action (LOA). A new MCTS
variant, called MCTS-Solver, has been designed to play narrow tacti-
cal lines better in sudden-death games such as LOA. The variant differs
from the traditional MCTS in respect to backpropagation and selection
strategy. It is able to prove the game-theoretical value of a position given
sufficient time. Experiments show that a Monte-Carlo LOA program us-
ing MCTS-Solver defeats a program using MCTS by a winning score
of 65%. Moreover, MCTS-Solver performs much better than a program
using MCTS against several different versions of the world-class αβ pro-
gram MIA. Thus, MCTS-Solver constitutes genuine progress in using
simulation-based search approaches in sudden-death games, significantly
improving upon MCTS-based programs.

1 Introduction

For decades αβ search has been the standard approach used by programs for
playing two-person zero-sum games such as chess and checkers (and many oth-
ers). Over the years many search enhancements have been proposed for this
framework. However, in some games where it is difficult to construct an accurate
positional evaluation function (e.g., Go) the αβ approach was hardly success-
ful. In the past, Monte-Carlo (MC) methods have been used as an evaluation
function in a search-tree context [1,6,7]. A direct descendent of that approach is
a new general search method, called Monte-Carlo Tree Search (MCTS) [10,14].
MCTS is not a classical tree search followed by a MC evaluation, but rather a
best-first search guided by the results of Monte-Carlo simulations. In the last
two years MCTS has advanced the field of computer Go substantially. Moreover,
it is used in other games as well (Phantom Go [8], Clobber [15]), even for games
where there exists already a reasonable evaluation function (e.g., Amazons [13]).
Although MCTS is able to find the best move, it is not able to prove the game-
theoretic value of (even parts of) the search tree. A search method that is not
able to prove or estimate (quickly) the game-theoretic value of a node may run
into problems. This is especially true for sudden-death games, such as chess,
that may abruptly end by the creation of one of a prespecified set of patterns

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 25–36, 2008.
c© IFIP International Federation for Information Processing 2008

26 M.H.M. Winands, Y. Björnsson, and J.-T. Saito

[2] (e.g., checkmate in chess). In this case αβ search or a special endgame solver
(i.e., Proof-Number Search [3]) is traditionally preferred above MCTS.

In this article we introduce a new MCTS variant, called MCTS-Solver, which
has been designed to prove the game-theoretical value of a node in a search tree.
This is an important step towards being able to use MCTS-based approaches
effectively in sudden-death like games (including chess). We use the game Lines of
Action (LOA) as a testbed. It is an ideal candidate because its intricacies are less
complicated than those of chess. So, we can focus on the sudden-death property.
Furthermore, because LOA was used as a domain for various other AI techniques
[5,12,20], the level of the state-of-the-art LOA programs is high, allowing us to
look at how MCTS approaches perform against increasingly stronger evaluation
functions. Moreover, the search engine of a LOA program is quite similar to the
one of a chess program.

The article is organized as follows. Section 2 explains briefly the rules of
LOA. In Sect. 3 we discuss MCTS and its application to Monte-Carlo LOA. In
Sect. 4 we introduce MCTS-Solver. We empirically evaluate the method in Sect.
5. Finally, Sect. 6 gives conclusions and an outlook on future research.

2 Lines of Action

Lines of Action (LOA) [16] is a two-person zero-sum connection game with per-
fect information. It is played on an 8 × 8 board by two sides, Black and White.
Each side has twelve pieces at its disposal. The black pieces are placed in two
rows along the top and bottom of the board, while the white pieces are placed in
two files at the left and right edge of the board. The players alternately move a
piece, starting with Black. A move takes place in a straight line, exactly as many
squares as there are pieces of either color anywhere along the line of movement.
A player may jump over its own pieces. A player may not jump over the oppo-
nent’s pieces, but can capture them by landing on them. The goal of a player is
to be the first to create a configuration on the board in which all own pieces are
connected in one unit (i.e., the sudden-death property). In the case of simulta-
neous connection, the game is drawn. The connections within the unit may be
either orthogonal or diagonal. If a player cannot move, this player has to pass.
If a position with the same player to move occurs for the third time, the game
is drawn.

3 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [10,14] is a best-first search method that does
not require a positional evaluation function. It is based on a randomized ex-
ploration of the search space. Using the results of previous explorations, the
algorithm gradually builds up a game tree in memory, and successively becomes
better at accurately estimating the values of the most promising moves.

MCTS consists of four strategic steps, repeated as long as there is time left.
The steps are as follows. (1) In the selection step the tree is traversed from the

Monte-Carlo Tree Search Solver 27

root node until we reach a node E, where we select a position that is not added
to the tree yet. (2) Next, during the play-out step moves are played in self-play
until the end of the game is reached. The result R of this “simulated” game is
+1 in case of a win for Black (the first player in LOA), 0 in case of a draw, and
−1 in case of a win for White. (3) Subsequently, in the expansion step children
of E are added to the tree. (4) Finally, R is propagated back along the path
from E to the root node in the backpropagation step. When time is up, the move
played by the program is the child of the root with the highest value.

3.1 The Four Strategic Steps

The four strategic steps of MCTS are discussed in detail below. We will demon-
strate how each of these steps is used in our Monte-Carlo LOA program.

Selection. Selection picks a child to be searched based on previous gained
information. It controls the balance between exploitation and exploration. On
the one hand, the task often consists of selecting the move that leads to the best
results so far (exploitation). On the other hand, the less promising moves still
must be tried, due to the uncertainty of the evaluation (exploration).

We use the UCT (Upper Confidence Bounds applied to Trees) strategy [14],
enhanced with Progressive Bias (PB [9]). UCT is easy to implement and used in
many Monte-Carlo Go programs. PB is a technique to embed domain-knowledge
bias into the UCT formula. It is successfully applied in the Go program Mango.
UCT with PB works as follows. Let I be the set of nodes immediately reachable
from the current node p. The selection strategy selects the child k of the node p
that satisfies Formula 1:

k ∈ argmaxi∈I

(
vi +

√
C × ln np

ni
+

W × Pc

ni + 1

)
, (1)

where vi is the value of the node i, ni is the visit count of i, and np is the visit
count of p. C is a coefficient, which has to be tuned experimentally. W×Pc

ni+1 is the
PB part of the formula. W is a constant, which has to be set manually (here
W = 100). Pc is the transition probability of a move category c [17].

For each move category (e.g., capture, blocking) the probability that a move
belonging to that category will be played is determined. The probability is called
the transition probability. This statistic is obtained from game records of matches
played by expert players. The transition probability for a move category c is
calculated as follows:

Pc =
nplayed(c)

navailable(c)
, (2)

where nplayed(c) is the number of game positions in which a move belonging to
category c was played, and navailable(c) is the number of positions in which moves
belonging to category c were available.

The move categories of our Monte-Carlo LOA program are similar to the
ones used in the Realization-Probability Search of the program MIA [21]. They

28 M.H.M. Winands, Y. Björnsson, and J.-T. Saito

are used in the following way. First, we classify moves as captures or non-
captures. Next, moves are further sub-classified based on the origin and des-
tination squares. The board is divided into five different regions: the corners, the
8×8 outer rim (except corners), the 6×6 inner rim, the 4×4 inner rim, and the
central 2 × 2 board. Finally, moves are further classified based on the number
of squares traveled away from or towards the center-of-mass. In total 277 move
categories can occur according to this classification.

This selection strategy is only applied in nodes with visit count higher than a
certain threshold T (here 50) [10]. If the node has been visited fewer times than
this threshold, the next move is selected according to the simulation strategy
discussed in the next strategic step.

Play-out. The play-out step begins when we enter a position that is not a part
of the tree yet. Moves are selected in self-play until the end of the game. This
task might consist of playing plain random moves or – better – pseudo-random
moves chosen according to a simulation strategy. It is well-known that the use of
an adequate simulation strategy improves the level of play significantly [11]. The
main idea is to play interesting moves according to heuristic knowledge. In our
Monte-Carlo LOA program, the move categories together with their transition
probabilities, as discussed in the selection step, are used to select the moves
pseudo-randomly during the play-out.

A simulation requires that the number of moves per game is limited. When
considering the game of LOA, the simulated game is stopped after 200 moves and
scored as a draw. The game is also stopped when heuristic knowledge indicates
that the game is probably over. The reason for doing this is that despite the
use of an elaborate simulation strategy it may happen that the game-theoretical
value and the average result of the Monte-Carlo simulations differ substantially
from each other in some positions. In our Monte-Carlo LOA program this so-
called noise is reduced by using the MIA 4.5 evaluation function [23]. When the
evaluation function gives a value that exceeds a certain threshold (i.e., 1,000
points), the game is scored as a win. If the evaluation function gives a value that
is below a certain threshold (i.e., -1,000 points), the game is scored as a loss. For
speed reasons the evaluation function is called only every 3 plies, determined by
trial and error.

Expansion. Expansion is the strategic task that decides whether nodes will be
added to the tree. Here, we apply a simple rule: one node is added per simulated
game [10]. The added leaf node L corresponds to the first position encountered
during the traversal that was not already stored.

Backpropagation. Backpropagation is the procedure that propagates the re-
sult of a simulated game k back from the leaf node L, through the previously tra-
versed node, all the way up to the root. The result is scored positively (Rk = +1)
if the game is won, and negatively (Rk = −1) if the game is lost. Draws lead to
a result Rk = 0. A backpropagation strategy is applied to the value vL of a node.
Here, it is computed by taking the average of the results of all simulated games
made through this node [10], i.e., vL = (

∑
k Rk)/nL.

Monte-Carlo Tree Search Solver 29

Fig. 1. White to move

4 Monte-Carlo Tree Search Solver

Although MCTS is unable to prove the game-theoretic value, in the long run
MCTS equipped with the UCT formula is able to converge to the game-theoretic
value. For a fixed termination game like Go, MCTS is able to find the optimal
move relatively fast [25]. But in a sudden-death game like LOA, where the main
line towards the winning position is narrow, MCTS may often lead to an erro-
neous outcome because the nodes’ values in the tree do not converge fast enough
to their game-theoretical value. For example, if we let MCTS analyze the posi-
tion in Fig. 1 for 5 seconds, it selects c7xc4 as the best move, winning 67.2% of
the simulations. However, this move is a forced 8-ply loss, while f8-f7 (scoring
48.2%) is a 7-ply win. Only when we let MCTS search for 60 seconds, it selects
the optimal move. For a reference, we remark that it takes αβ in this position
less than a second to select the best move and prove the win.

We designed a new variant called MCTS-Solver, which is able to prove the
game-theoretical value of a position. The backpropagation and selection mecha-
nisms have been modified for this variant. The changes are discussed in Subsec-
tions 4.1 and 4.2, respectively. Moreover, we discuss the consequences for final
move selection in Subsection 4.3. The pseudo-code of MCTS-Solver is given in
Subsection 4.4.

4.1 Backpropagation

In addition to backpropagating the values {1,0,−1}, the search also propagates
the game-theoretical values ∞ or −∞.1 The search assigns ∞ or −∞ to a won or
lost terminal position for the player to move in the tree, respectively. Propagating
the values back in the tree is performed similar to negamax in the context of
minimax searching in such a way that we do not need to distinguish between
MIN and MAX nodes. If the selected move (child) of a node returns ∞, the node

1 Draws are in general more problematic to prove than wins and losses. Because draws
only happen in exceptional cases in LOA, we took the decision not to handle proven
draws for efficiency reasons.

30 M.H.M. Winands, Y. Björnsson, and J.-T. Saito

is a win. To prove that a node is a win, it suffices to prove that one child of that
node is a win. Because of negamax, the value of the node will be set to −∞.
In the minimax framework it would be set to ∞. In the case that the selected
child of a node returns −∞, all its siblings have to be checked. If their values
are also −∞, the node is a loss. To prove that a node is a loss, we must prove
that all its children lead to a loss. Because of negamax, the node’s value will be
set to ∞. In the minimax framework it would have been set to −∞. In the case
that one or more siblings of the node have a different value, we cannot prove the
loss. Therefore, we will propagate −1, the result for a lost game, instead of −∞,
the game-theoretical value of a position. The value of the node will be updated
according to the backpropagation strategy as described in Subsection 3.1.

4.2 Selection

As seen in the previous subsection, a node can have the game-theoretical value
∞ or −∞. The question arises how these game-theoretical values affect the
selection strategy. Of course, when a child is a proven win, the node itself is a
proven win, and no selection has to take place. But when one or more children
are proven to be a loss, it is tempting to discard them in the selection phase.
However, this can lead to overestimating the value of a node, especially when
moves are pseudo-randomly selected by the simulation strategy. For example, in
Fig. 2 we have three one-ply subtrees. Leaf nodes B and C are proven to be
a loss, indicated by −∞; the numbers below the other leaves are the expected
pay-off values. Assume that we select the moves with the same likelihood (as
could happen when a simulation strategy is applied). If we would prune the loss
nodes, we would prefer node A above E. The average of A would be 0.4 and 0.37
for E. It is easy to see that A is overestimated because E has more good moves.

If we do not prune proven loss nodes, we run the risk of underestimation.
Especially, when we have a strong preference for certain moves (because of a
bias) or we would like to explore our options (because of the UCT formula), we
could underestimate positions. Assume that we have a strong preference for the
first move in the subtrees of Fig. 2. We would prefer node I above A. It is easy
to see that A is underestimated because I has no good moves at all.

Based on preliminary experiments, selection is here performed in the following
way. In case Formula (1) is applied, child nodes with the value −∞ will never
be selected. For nodes of which the visit count is below the threshold, moves are
selected according to the simulation strategy instead of using Formula (1). In
that case, children with the value −∞ can be selected. However, when a child
with a value −∞ is selected, the search is not continued at that point. The results
are propagated backwards according to the strategy described in the previous
subsection.

For all the children of a leaf node (i.e., the visit count equals one) we check
whether they lead to a direct win for the player to move. If there is such a move,
we stop searching at this node and set the node’s value (negamax: −∞; minimax:
∞). This check at the leaf node must be performed because otherwise it could

Monte-Carlo Tree Search Solver 31

A

B C D

E

F G H

I

J K L

- - 0.4 0.3 0.4 0.4 -0.1 -0.1 -0.1

Fig. 2. Monte-Carlo Subtrees

take many simulations before the child leading to a mate-in-one is selected and
the node is proven.

4.3 Final Move Selection

For standard MCTS several ways exist to select the move finally played by the
program in the actual game. Often, it is the child with the highest visit count,
or with the highest value, or a combination of the two. In practice, there is
no significant difference when a sufficient amount of simulations for each root
move has been played. However, for MCTS-Solver it does matter. Because of the
backpropagation of game-theoretical values, the score of a move can suddenly
drop or rise. Therefore, we have chosen a method called Secure child [9]. It is
the child that maximizes the quantity v + A√

n
, where A is a parameter (here, set

to 1), v is the node’s value, and n is the node’s visit count.
Finally, when a win can be proven for the root node, the search is stopped

and the winning move is played. For the position in Fig. 1, MCTS-Solver is able
to select the best move and prove the win for the position depicted in less than
a second.

4.4 Pseudo Code for MCTS-Solver

A C-like pseudo code of MCTS-Solver is provided in Fig. 3. The algorithm is
constructed similar to negamax in the context of minimax search. select(Node
N) is the selection function as discussed in Subsection 4.2, which returns the
best child of the node N . The procedure addToTree(Node node) adds one more
node to the tree; playOut(Node N) is the function which plays a simulated
game from the node N , and returns the result R ∈ {1, 0, −1} of this game;
computeAverage(Integer R) is the procedure that updates the value of the
node depending on the result R of the last simulated game; getChildren(Node
N) generates the children of node N .

32 M.H.M. Winands, Y. Björnsson, and J.-T. Saito

Integer MCTSSolver(Node N){

if(playerToMoveWins(N))

return INFINITY

else (playerToMoveLoses(N))

return -INFINITY

bestChild = select(N)

N.visitCount++

if(bestChild.value != -INFINITY AND bestChild.value != INFINITY)

if(bestChild.visitCount == 0){

R = -playOut(bestChild)

addToTree(bestChild)

goto DONE

}

else

R = -MCTSSolver(bestChild)

else

R = bestChild.value

if(R == INFINITY){

N.value = -INFINITY

return R

}

else

if(R == -INFINITY){

foreach(child in getChildren(N))

if(child.value != R){

R = -1

goto DONE

}

N.value = INFINITY

return R

}

DONE:

N.computeAverage(R)

return R

}

Fig. 3. Pseudo code for MCTS-Solver

Monte-Carlo Tree Search Solver 33

5 Experiments

In this section we evaluate the performance of MCTS-Solver. First, we matched
MCTS-Solver against MCTS, and provide results in Subsection 5.1. Next, we
evaluated the playing-strength of MCTS and MCTS-Solver against different
versions of the tournament LOA program MIA, as shown in Subsection 5.2.
All experiments were performed on a Pentium IV 3.2 GHz computer.

5.1 MCTS vs. MCTS-Solver

In the first series of experiments MCTS and MCTS-Solver played 1,000 games
against each other, playing both colors equally. They always started from the
same standardized set of 100 three-ply positions [5]. The thinking time was
limited to 5 seconds per move.

Table 1. 1,000-game match results

Score Win % Winning ratio

MCTS-Solver vs. MCTS 646.5 - 353.5 65% 1.83

The results are given in Table 1. MCTS-Solver outplayed MCTS with a win-
ning score of 65% of the available points. The winning ratio is 1.83, meaning
that it scored 83% more points than the opponent. This result shows that the
MCTS-Solver mechanism improves the playing strength of the Monte-Carlo LOA
program.

5.2 Monte-Carlo LOA vs. MIA

In the previous subsection, we saw that MCTS-Solver outperformed MCTS. In
the next series of experiments, we further examine whether MCTS-Solver is su-
perior to MCTS by comparing the playing strength of both algorithms against
a non-MC program. We used three different versions of MIA, considered being
the best LOA playing entity in the world.2 The three different versions were
all equipped with the same latest search engine but used three different eval-
uation functions (called MIA 2000 [19], MIA 2002 [22], and MIA 2006 [23]).
The search engine is an αβ depth-first iterative-deepening search in the En-
hanced Realization-Probability Search (ERPS) framework [21] using several for-
ward pruning mechanisms [24]. To prevent the programs from repeating games,
a small random factor was included in the evaluation functions. All programs
played under the same tournament conditions as used in Subsection 5.1. The
results are given in Table 2. Each match consisted of 1,000 games.

In Table 2 we notice that MCTS and MCTS-Solver score more than 50%
against MIA 2000. When competing with MIA 2002, only MCTS-Solver is able
2 The program won the LOA tournament at the eighth (2003), ninth (2004), and

eleventh (2006) Computer Olympiad.

34 M.H.M. Winands, Y. Björnsson, and J.-T. Saito

Table 2. 1,000-game match results

Evaluator MIA 2000 MIA 2002 MIA 2006

MCTS 585.5 394.0 69.5

MCTS-Solver 692.0 543.5 115.5

to outperform the αβ program. Both MC programs are beaten by MIA 2006,
although MCTS-Solver scores a more respectable number of points. Table 2 in-
dicates that MCTS-Solver when playing against each MIA version significantly
performs better than MCTS does. These results show that MCTS-Solver is a
genuine improvement, significantly enhancing MCTS. The performance of the
Monte-Carlo LOA programs in general against MIA — a well-established αβ
program — is quite impressive. One must keep in mind the many man-months
of work that are behind the increasingly sophisticated evaluation functions of
MIA. The improvement introduced here already makes a big leap in the playing
strength of the simulation-based approach, resulting in MCTS-Solver even win-
ning the already quite advanced MIA 2002 version. Admittedly, there is still a
considerable gap to be closed for MTCS-Solver before it will be a match for the
MIA 2006 version. Nonetheless, with continuing improvements it is not unlikely
that in the near future simulation-based approaches may become an interesting
alternative in games that the classic αβ approach has dominated. This work is
one step towards that goal being realized.

6 Conclusion and Future Research

In this article we introduced a new MCTS variant, called MCTS-Solver. This
variant differs from the traditional MC approaches in that it can prove game-
theoretical outcomes, and thus converges much faster to the best move in nar-
row tactical lines. This is especially important in tactical sudden-death-like
games such as LOA. Our experiments show that a MC-LOA program using
MCTS-Solver defeats the original MCTS program by an impressive winning
score of 65%. Moreover, when playing against a state-of-the-art αβ-based pro-
gram, MCTS-Solver performs much better than a regular MCTS program. Thus,
we may conclude that MCTS-Solver is a genuine improvement, significantly en-
hancing MCTS. Although MCTS-Solver is still lacking behind the best αβ-based
program, we view this work as one step towards that goal of making simulation-
based approaches work in a wider variety of games. For these methods, to be
able to handle proven outcomes is one essential step to make. With continu-
ing improvements it is not unlikely that in the not so distant future enhanced
simulation-based approaches may become a competitive alternative to αβ search
in games dominated by the latter so far.

As future research, experiments are envisaged in other games to test the per-
formance of MCTS-Solver. One possible next step would be to test the method in
Go, a domain in which MCTS is already widely used. What makes this a some-
what more difficult task is that additional work is required in enabling perfect

Monte-Carlo Tree Search Solver 35

endgame knowledge - such as Benson’s Algorithm [4,18] - in MCTS. We have seen
that the performance of the Monte-Carlo LOA programs against MIA in general
indicates that they could even be an interesting alternative to the classic αβ
approach. Parallelization of the program using an endgame specific evaluation
function instead of a general one such as MIA 4.5 could give a performance boost.

Acknowledgments. The authors thank Guillaume Chaslot for giving valuable
advice on MCTS. Part of this work is done in the framework of the NWO Go
for Go project, grant number 612.066.409.

References

1. Abramson, B.: Expected-outcome: A general model of static evaluation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 12(2), 182–193 (1990)

2. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. PhD thesis,
Rijksuniversiteit Limburg, Maastricht (1994)

3. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-number search. Artificial
Intelligence 66(1), 91–123 (1994)

4. Benson, D.B.: Life in the Game of Go. In: Levy, D.N.L. (ed.) Computer Games,
vol. 2, pp. 203–213. Springer, New York (1988)

5. Billings, D., Björnsson, Y.: Search and knowledge in Lines of Action. In: van
den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games 10:
Many Games, Many Challenges, pp. 231–248. Kluwer Academic Publishers, Boston
(2003)

6. Bouzy, B., Helmstetter, B.: Monte-Carlo Go Developments. In: van den Herik, H.J.,
Iida, H., Heinz, E.A. (eds.) Advances in Computer Games 10: Many Games, Many
Challenges, pp. 159–174. Kluwer Academic Publishers, Boston (2003)

7. Brügmann, B.: Monte Carlo Go. Technical report, Physics Department, Syracuse
University (1993)

8. Cazenave, T., Borsboom, J.: Golois Wins Phantom Go Tournament. ICGA Jour-
nal 30(3), 165–166 (2007)

9. Chaslot, G.M.J.-B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.,
Bouzy, B.: Progressive strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation 4(3), 343–357 (2008)

10. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006.
LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

11. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Ghahra-
mani, Z. (ed.) Proceedings of the International Conference on Machine Learning
(ICML). ACM International Conference Proceeding Series, vol. 227, pp. 273–280.
ACM, New York (2007)

12. Helmstetter, B., Cazenave, T.: Architecture d’un programme de Lines of Action.
In: Cazenave, T. (ed.) Intelligence artificielle et jeux, pp. 117–126. Hermes Science
(2006) (in French)

13. Kloetzer, J., Iida, H., Bouzy, B.: The Monte-Carlo Approach in Amazons. In: van
den Herik, H.J., Uiterwijk, J.W.H.M., Winands, M.H.M., Schadd, M.P.D. (eds.)
Proceedings of the Computer Games Workshop 2007 (CGW 2007), pp. 185–192.
Universiteit Maastricht, Maastricht (2007)

36 M.H.M. Winands, Y. Björnsson, and J.-T. Saito

14. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

15. Kocsis, L., Szepesvári, C., Willemson, J.: Improved Monte-Carlo Search (2006),
http://zaphod.aml.sztaki.hu/papers/cg06-ext.pdf

16. Sackson, S.: A Gamut of Games. Random House, New York (1969)
17. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithm based

on realization probability. ICGA Journal 25(3), 132–144 (2002)
18. van der Werf, E.C.D., van den Herik, H.J., Uiterwijk, J.W.H.M.: Solving Go on

small boards. ICGA Journal 26(2), 92–107 (2003)
19. Winands, M.H.M.: Analysis and implementation of Lines of Action. Master’s thesis,

Universiteit Maastricht, Maastricht (2000)
20. Winands, M.H.M.: Informed Search in Complex Games. PhD thesis, Universiteit

Maastricht, Maastricht (2004)
21. Winands, M.H.M., Björnsson, Y.: Enhanced realization probability search. New

Mathematics and Natural Computation 4(3), 329–342 (2008)
22. Winands, M.H.M., Kocsis, L., Uiterwijk, J.W.H.M., van den Herik, H.J.: Temporal

difference learning and the Neural MoveMap heuristic in the game of Lines of
Action. In: Mehdi, Q., Gough, N., Cavazza, M. (eds.) GAME-ON 2002, Ghent,
Belgium, pp. 99–103. SCS Europe Bvba (2002)

23. Winands, M.H.M., van den Herik, H.J.: MIA: a world champion LOA program. In:
The 11th Game Programming Workshop in Japan (GPW 2006), pp. 84–91 (2006)

24. Winands, M.H.M., van den Herik, H.J., Uiterwijk, J.W.H.M., van der Werf, E.C.D.:
Enhanced forward pruning. Information Sciences 175(4), 315–329 (2005)

25. Zhang, P., Chen, K.: Monte-Carlo Go tactic search. In: Wang, P., et al. (eds.)
Proceedings of the 10th Joint Conference on Information Sciences (JCIS 2007),
pp. 662–670. World Scientific Publishing Co. Pte. Ltd, Singapore (2007)

http://zaphod.aml.sztaki.hu/papers/cg06-ext.pdf

An Analysis of UCT in Multi-player Games

Nathan R. Sturtevant

Department of Computing Science, University of Alberta,
Edmonton, AB, Canada, T6G 2E8

nathanst@cs.ualberta.ca

Abstract. The UCT algorithm has been exceedingly popular for Go,
a two-player game, significantly increasing the playing strength of Go
programs in a very short time. This paper provides an analysis of the
UCT algorithm in multi-player games, showing that UCT, when run in
a multi-player game, is computing a mixed-strategy equilibrium, as op-
posed to maxn, which computes a pure-strategy equilibrium. We analyze
the performance of UCT in several known domains and show that it
performs as well or better than existing algorithms.

1 Introduction

Monte-Carlo methods have become popular in the game of Go over the last few
years, and even more so with the introduction of the UCT algorithm [3]. Go is
probably the best-known two-player game in which computer players are still
significantly weaker than humans. UCT works particularly well in Go for several
reasons. First, in Go it is difficult to evaluate states in the middle of a game, but
UCT only evaluates endgames states, which is relatively easy. Second, the game
of Go converges for random play, meaning that it is not very difficult to get to
an end-game state.

Multi-player games are also difficult for computers to play well. First, it is
more difficult to prune in multi-player games, meaning that normal search algo-
rithms are less effective at obtaining deep lookahead. While alpha-beta pruning
reduces the size of a game tree from O(bd) to O(bd/2), the best techniques in
multi-player games only reduce the size of the game tree to O(b

n−1
n d), where n is

the number of players in the game [6]. A second reason why multi-player games
are difficult is because of opponent modeling. In two-player zero-sum games op-
ponent modeling has never been shown to be necessary for high-quality play,
while in multi-player games, opponent modeling is a necessity for robust play
versus unknown opponents in some domains [9].

As a result, it is worth investigating UCT to see how it performs in multi-
player games. We first present a theoretical analysis, where we show that UCT
computes a mixed-strategy equilibrium in multi-player games and discuss the im-
plications of this. Then, we analyze UCT’s performance in a variety of domains,
showing that it performs as well or better as the best previous approaches.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 37–49, 2008.
c© IFIP International Federation for Information Processing 2008

38 N.R. Sturtevant

1

2 2

3 3 3 3

(3, 7, 2) (5, 3, 4) (2, 5, 5)(6, 5, 1)

(a)
(3, 7, 2)

(b)
(6, 5, 1)

(6, 5, 1)

Fig. 1. A sample maxn tree

2 Background

The maxn algorithm [4] was developed to play multi-player games. Maxn searches
a game tree and finds a strategy which is in equilibrium. That is, if all players
were to use this strategy, no player could unilaterally gain by changing their
strategy. In every perfect information extensive form game (e.g., tree search)
there is guaranteed to be at least one pure-strategy equilibrium, that is, one
that does not require the use of mixed or randomized strategies.

We demonstrate the maxn algorithm in Fig. 1, a portion of a 3-player maxn

tree. Nodes in the tree are marked with the player to move at that node. At the
leaves of the tree each player’s payouts are in a n-tuple, where the ith value is
the payoff for the ith player. At internal nodes in a maxn tree the player to play
selects the move that leads to the maximum payoff. So, at the node marked (a),
Player 2 chooses (3, 7, 2) to get a payoff of 7 instead of (5, 3, 4) to get a payoff of
3. At the node marked (b) Player 2 can choose either move, because they both
lead to the same payoff. In this case Player 1 chooses the leftmost value and
returns (6, 5, 1). At the root of the tree Player 1 chooses the move which leads
to the maximum payoff, (6, 5, 1).

While the maxn algorithm is simple, there are several complications. In real
games players rarely communicate explicitly before the beginning of a game. This
means that they are not guaranteed to be playing the same equilibrium strategy,
and, unlike in two-player games, maxn does not provide a lower bound on the
final payoff in the game when this occurs [8]. In practice it is not always clear
which payoffs should be used at leaf nodes. The values at the leaves of a tree may
be scores, but can also be the utility of each payoff, where the opponents’ utility
function is not known a priori. For instance, one player might play a riskier
strategy to increase the chances of winning the game, while a different player
may be content to take second place instead of risking losing for the chance of a
win. While the first approach may be better from a tournament perspective [1],
you cannot guarantee that your opponents will play the best strategies possible.
This might mean, for instance, that in Fig. 1 Player 2 has a different preference
at node (b). If Player 2 selects (2, 5, 5) at node (b), Player 1 should choose to
move to the left from the root to get (3, 7, 2).

An Analysis of UCT in Multi-player Games 39

Two algorithms have been introduced that attempt to deal with imperfect
opponent models. The soft-maxn algorithm [9] uses a partial ordering over game
outcomes to analyze games. It returns sets of maxn values at each node, with
each maxn value in the set corresponding to a strategy that the opponents might
play in a subtree. The prob-maxn algorithm [5] uses sets of opponent models and
with probabilistic weights which are used for back-up at each node according to
current opponent models. Both algorithms have learning mechanisms for updat-
ing opponent models during play. In the game of Spades, these approaches were
able to mitigate the problems associated with an unknown opponent. We will
discuss these results more in our experimental section.

2.1 UCT

UCT [3] is one of several recent Monte-Carlo-like algorithms proposed for game-
playing. The algorithm plays games in two stages. In the first stage a tree is built
and explored. The second stage begins when the end of the UCT tree is reached.
At this point a leaf node is expanded and then the rest of the game is played out
according to a random policy. The UCT tree is built and played out according
to a greedy policy. At each node in the UCT tree, UCT selects and follows the
move i for which

X̄i + C

√
ln T

Ti

is maximal, where X̄i is the average payoff of move i, T is the number of times the
parent of i has been visited, and Ti is the number of times i has been sampled. C
is a tuning constant used to trade off exploration and exploitation. Larger values
of C result in more exploration. In two-player games the move/value returned
by UCT converges on the same result as minimax.

3 Multi-player UCT

The first question we address is what computation is performed by UCT on a
multi-player game tree. For this analysis we assume that we are searching on a
finite tree and that we can perform an unlimited number of UCT samples. In
this limit the UCT tree will grow to be the size of the full game tree and all leaf
values will be exact.

Returning to Fig. 1 we can look to see what UCT would compute on this tree.
At node (a) Player 2 will always get a better payoff by taking the left branch to
get (3, 7, 2). In the limit, for any value of C, the value at node (a) will converge
to (3, 7, 2). At branch (b), however, both moves lead to the same payoff. Initially,
they will both be explored once and have the same payoff. On each subsequent
visit to branch (b), the move which has been explored least will be explored next.
As a result, at the root of the sub-tree rooted at (b) will return (6, 5, 1) half of
the time and (2, 5, 5) the other half. The average payoff of the move towards
node (b) will then be (4, 5, 3). The resulting strategy for the entire tree is for

40 N.R. Sturtevant

1

2 2

3 3 3 3

(100, 0, 0) (0, 0, 100) (50, 50, 0)(0, 0, 100)

(a)
(50, 0, 50)

(b)
(50, 50, 0)

(50, 25, 25)

Fig. 2. Mixed equilibrium in a multi-player game tree

the player at the root to move to the right towards node (b) to get an expected
payoff of 4.

The final strategy is mixed, in that Player 2 is expected to randomize at
node (b). Playing a mixed strategy makes the most sense in a repeated game,
where over time the payoffs will converge due to the mixing of strategies. But,
in a one-shot game this makes less sense, since a player cannot actually receive
the equilibrium value. Many games are repeated, however, although random
elements in the game result in different game trees in each repetition (e.g., from
the dealing of cards in a card game). In this context randomized strategies still
make sense, as the payoffs will still average out over all the hands. Randomized
strategies can also serve to make a player more unpredictable, which will make
the player harder to model.

Theorem 1. UCT computes an equilibrium strategy, which may be mixed, in
a multi-player game tree.

Proof. We have demonstrated above that in some trees UCT will produce a
mixed strategy. In the limit of infinite samples UCT returns a strategy that is
in equilibrium in a finite tree because it selects the maximum possible value at
each node in the UCT tree. This means that there is no other move that the
player could choose at this node to unilaterally improve their payout. ��

UCT will always compute an evenly mixed strategy at the leaves of the tree.
But, there is no guarantee that in practice it will compute the expected mixed
strategy at internal nodes in the tree. If ties are always broken from left to right,
in Fig. 2 the value of node (a) for Player 1 will converge on 50 from above, while
the value of node (b) for Player 1 will converge on 50 from below. As a result,
depending on the number of samples and the value of C, UCT may not end up
evenly mixing strategies higher up in the game tree. The maxn algorithm will
never mix strategies like UCT, although it is not hard to modify it to do so. But,
the biggest strength of UCT is not its ability to imitate maxn, but its ability
to infer an accurate evaluation of the current state-based samples of possible
endgame states.

An Analysis of UCT in Multi-player Games 41

4 Experiments

Given the theoretical results presented in the last section, we run a variety of
experiments to compare the performance of UCT to previous state-of-the-art
programs in three domains. These experiments cover a variety of game types
and give insight into the practical performance of UCT in multi-player games.

Most experiments reported here are run between two different player types
(UCT and an existing player) in either a 3-player or 4-player game. In order
to reduce the variance of the experiments, they are repeated multiple times for
each possible arrangement of player types in a game. For instance, in a 3-player
game there are eight ways to arrange two players. Two of these arrangements
contain all of a single type of player, so we remove these arrangements, resulting
in the configurations shown in Table 1. Playing duplicate matches in this way
makes it easier to measure statistical significance.

4.1 Chinese Checkers

Our first experiments are in the game of Chinese Checkers. A Chinese Checkers
board is shown in Fig. 3. In this game the goal is to get your pieces across the board
and into a symmetric position from the start state as quickly as possible. Chinese
Checkers can be played with anywhere from two to six players. We experiment
with the three-player version here. Chinese Checkers can be played on different

Table 1. 6 ways to arrange two player types in a 3-player game

Player 1 Player 2 Player 3

Type A Type A Type B
Type A Type B Type A
Type A Type B Type B
Type B Type A Type A
Type B Type A Type B
Type B Type B Type A

Fig. 3. A 3-player Chinese Checkers board

42 N.R. Sturtevant

Table 2. Experiments in the game of Chinese Checkers

UCT (Random) 100 500 2500 10000 50000

Average Distance 9.23 4.21 2.08 1.95 2.29

Wins 1% 13% 43% 44% 34%

UCT (e-greedy) 100 500 2500 10000 50000

Average Distance 4.12 2.36 1.63‡ 1.43† 0.90

Wins 14% 33% 42% 50% 73%

sized boards with different numbers of checkers. We use a slightly smaller board
than is most commonly used, because this allows us to use a stronger evaluation
function. This evaluation function for the opponent, a maxn player, is based on
a lookup table containing the optimal distance from any state to the goal state
given that no other players’ pieces are on the board. A player using this evaluation
function will play strong openings and perfect endgames. Because the evaluation
function ignores the opponents’ pieces, it is not quite as strong during the mid-
game phase when the middle of the board can get congested.

We used two versions of UCT for these experiments. For both versions, we
disallowed backwards moves; otherwise the game will not progress and the ran-
domly sampling fails. The first version of UCT uses purely random playouts. The
second version uses an epsilon-greedy playout policy that takes the best greedy
move (the one that moves a piece the farthest distance) with 95% probability,
and plays randomly 5% of the time. We compared these policies by playing 100
games in each of the configurations from Table 1. (Thus there were 600 total
games played with each player type playing 900 times.)

When comparing these policies, given 500 samples each, the epsilon-greedy
policy won 81% of the games. When the game ended, the epsilon-greedy player
was, on average, 0.94 moves away from the goal state. In contrast, the random-
playout player was 2.84 moves away from the goal state. The player that wins is
averaged in as 0 moves away from the goal state. These distances were computed
using the maxn player’s evaluation function.

A comparison of the two UCT players against the maxn player is found in
Table 2. In these experiments C was fixed at 4.0, and we varied the number
of samples that UCT was allowed, recording the percentage of wins against the
maxn player as well as the average distance from the goal at the end of the game.
The player with random playouts never won more than 44% of the games played.
The epsilon-greedy player, however, performed on a par with the maxn player
when given 10,000 samples, and beat it by a large margin when given 50,000
samples. In both of these situations, the UCT player was closer to the goal at
the end of the game. All results are statistically significant with 99% confidence
except for those marked † which are only significant at 95%. The results marked
‡ are not statistically significant.

It is interesting to note that the epsilon-greedy player’s performance monoton-
ically increases as we increase the number of playouts, but the random-playout
player does not exhibit this same tendency. In particular, the player with 50k

An Analysis of UCT in Multi-player Games 43

simulations plays markedly worse than the player with 10k simulations. It seems
that this occurs because there are so many bad moves that can be made during
random playout. Thus, the random playouts are not reflective of how the game
will actually be played, and may lead towards positions which are likely to be
won in random play, but not in actual play.

In these experiments the UCT player has a computation advantage over the
maxn player, which only looks ahead 4-ply, although the maxn player has a sig-
nificant amount of information available in the evaluation function. To make
this more concrete, at the start of the game there are 17,340 nodes in the 4-ply
tree given pruning in maxn, but there are 61 million nodes in the 7-ply tree. By
the fourth move of the game there are 240 million nodes in the 7-ply tree. This
is important because the only significant gains in performance in a three-player
game come with an additional 3-ply of search, when the first player in the search
can see an additional1 move of his own moves ahead. On a 2.4Ghz Intel Core 2
Duo, we can expand 250k nodes per second, so a 7-ply search takes about 1000
seconds. Our UCT implementation plays about 900 games per second, so it takes
about a minute to do 50k samples. Thus, while the UCT computation is more
expensive than the maxn computation, the maxn player will not see an improve-
ment in playing strength unless it is allowed significantly more time to search.

If we were looking to refine the player here, the database lookups used by the
maxn player could be used as an endgame database by the UCT player and might
further increase its strength or speed. Regardless, we have shown that UCT is
quite strong in the game of Chinese Checkers, when given sufficient time for play.

4.2 Spades

Our next experiments are in the card game Spades. A game in Spades is divided
into multiple hands which are played semi-independently. The first player to reach
300 points over all hands wins. In Spades players bid on the number of tricks which
they expect to take. There is a large, immediate penalty for taking fewer tricks
than bid. If, over a period of time, a player takes too many extra tricks (overtricks),
there is also a large penalty. Thus, the best strategy in the game is to ensure that
you make your bid, but then to avoid extra tricks after that.

Previous work in Spades [5,9] demonstrated that the selection of an opponent
model is very important. A superior strategy may only be better if you have an
accurate opponent model. We duplicate these experiments here to demonstrate
that while UCT is strong, it does not avoid the need for opponent modeling.
Then, we compare the prob-maxn algorithm to UCT.

These experiments were played open-handed so that all players could see other
players’ cards. In real play, we can sample many possible opponent hands and
solve them individually to find the best move, as has been done in Bridge [2]. But,
in our experiments, open-handed results have always been highly correlated with
a sampling approach, so we only perform the open-handed experiments, which
are much cheaper.

1 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

44 N.R. Sturtevant

Table 3. UCT performance in Spades

Algorithm 1 Algorithm 2 Avg. Score Alg. 1 Avg. Score Alg. 2 Algorithm 1 win %

A mOTmOT mOTmOT 245.91 - -
B MTMT MTMT 202.71 - -

C mOTMT MTmOT 231.84 171.48 67%
D mOTMT MTMT 214.33 209.30 51.5%
E mOTmOT MTmOT 203.72 188.96 55%
F mOTmOT MTMT 179.19 212.76 43%

G mOTgen mOTMT 243.14 238.65 51%
H mOTgen mOTmOT 240.06 245.70 48.5%
I mOTgen MTmOT 235.41 181.54 64%
J mOTgen MTMT 215.72 207.17 51.5%

K mOTgen prob-maxn 214.58 198.21 52.8%
L mOTgen prob-maxn (learn) 212.60 202.67 53.2%

Each player was given 7 cards, and the game was played with 3 players, so
the total depth of the tree was 21 ply. This means that the full game tree can
be analyzed by prob-maxn. Again, each game was repeated multiple times ac-
cording to the configurations in Table 1. There are two player types in these
experiments. The mOT player tries to make their bid and minimize overtricks
(minimize OverTricks). The MT player attempts to maximize the number of
tricks taken (Maximize Tricks), irrespective of the bid. Player types are sub-
scripted by the opponent model that is being used. So, mOTMT is a player that
tries to minimize their overtricks and believes that their opponents are trying to
maximize the number of tricks they are taking.

Experimental results for Spades are in Table 3. All experiments are run with
UCT doing 10,000 samples per move with C = 2.0. There are no playout rules;
all playouts beyond the UCT tree are purely random. Lines A and B show the
performance of each player when playing against itself. mOT players average
245.91 points per game, clearly better than the MT player which only averages
202.71 points per game.

Lines C-F demonstrate what happens when a mOT player has correct (C-D)
or incorrect (E-F) opponent models. The most interesting line here is line F.
When mOT has the wrong opponent model and MT does as well, mOT has a
lower average score than MT and only wins 43% of the games. As stated pre-
viously, these results have been observed before with maxn. These experiments
serve to confirm these results and show that, in this situation, the mixed equilib-
rium computed by UCT is not inherently better than the equilibrium computed
by maxn. The discrepancy in performance can be partially resolved by the use
of generic opponent models, which just assume that the opponent is trying to
make their bid, but nothing else. Using the model, in lines G-J, the mOTgen

player beats every opponent except a mOTmOT opponent.
Finally, in lines K-L we compare UCT using the mOT strategy and a generic

opponent model to prob-maxn. In line K the prob-maxn player does not do any
learning, while in line L it does. The results in line K are significant with 99%

An Analysis of UCT in Multi-player Games 45

Table 4. Detailed comparison of UCT and prob-maxn

Algorithm Player 1 Avg Player 2 Avg Player 3 Avg

K mOTgen 211.7 219.2 212.8
K prob-maxn 227.2 220.3 147.1
L mOTgen 208.6 218.0 211.2
L prob-maxn (learn) 227.7 228.1 152.3

confidence, but in line L they are only significant with 95% confidence. At first
glance, it seems that the UCT player is better than prob-maxn, but this is not
entirely true.

When breaking down these results into per-player performance, we notice an
interesting trend. The player which plays last (the third player) almost always
scores worse than the other players. This is the case in lines A-J for the UCT
player and in K-L for the prob-maxn player. There are two reasons why this is
not surprising. The player who moves last has extra constraints on their possible
bids, meaning they may be forced to under- or over-bid. The player moving last
also has less control over the game.

We break-down the results by player position in Table 4. Here, we can see what
is happening more clearly. The prob-maxn player outplays UCT when playing
as Player 1 with 99% confidence or Player 2 by a small margin, but loses badly
as Player 3. As stated before, this is not a feature of prob-maxn, but of other
algorithms as well. So, the novel aspect of this situation is that the UCT player
manages to avoid playing poorly against prob-maxn when in the third position.
We do not have a systematic explanation of this effect, but have noticed that
these types of inconsistencies are common in multi-player games. We are working
on further analysis.

One may be tempted to think that the comparison here has been bogged down
by opponent modeling issues. In fact, the opposite is true. The experiments show
that opponent modeling is the issue in many multi-player domains, especially
one with such sharp changes in the evaluation function, as is the case in Spades.

4.3 Hearts – Shooting the Moon

Our third domain is the card game, Hearts. The goal of Hearts is to take as few
points as possible. Like Spades, a game of Hearts is made up of multiple hands;
a game ends when a player’s score reaches or exceeds 100 points, and the player
with the lowest score wins. We experiment on the 4-player version of Hearts
here, which is most common. We play these games with all the cards face up,
for the same reasons as in Spades.

One of the difficulties of Hearts is that there are two conflicting ways to play
the game. The normal goal is to take as few points as possible. But, if a player
manages to take all the points, called ‘shooting the moon’, this player will get
0 points instead, and the other players will get 26 each. Thus, good players are
willing to take a few points to keep other players from shooting the moon.

46 N.R. Sturtevant

Table 5. Shooting the moon in Hearts

Algorithm Comparisons
UCT Self-trained UCT-trained Random play Simple maxn

total 250 312 362 411 1377

perc. 7.70% 9.62% 11.16% 12.67% 42.45%

UCT Parameter Comparisons
0.0 0.2 0.4 0.6 0.8 1.0

total 444 310 285 292 315 332

perc. 13.69% 9.56% 8.79% 9.00% 9.71% 10.23%

0.0 / 0.4 0.2 / 0.4 0.0 / 0.6 0.2 / 0.6 0.4 / 0.6

total 250 285 273 298 303

perc. 7.70% 8.79% 8.42% 9.19% 9.34%

To measure the skill of different players in this aspect of the game, we cre-
ated a library of games in which one player could possibly shoot the moon. These
games were found by playing 10,000 games with two player types. In these games
the ith player would try to take all the points, and the remaining players would
try to avoid taking points. Out of 40,000 possibilities (10,000 games times 4
possible hands in each game) we found 3,244 hands in which a player might be
able to shoot the moon. We then ran a set of different algorithms against this
shooting player in the 3,244 hands. In Table 5 we report how many times the
opponent was able to shoot the moon against each search algorithm.

A simple maxn player which does not explicitly attempt to stop the oppo-
nents from shooting was only able to stop the opponent from shooting 1867
times, leaving 1377 times when the opponent shot. A random player was able to
stop the opponent from shooting in all but 411 games. This player does not play
hearts well, but as a result is able to disrupt the normal play of the game. Two
players which learned to play hearts through self-play and play against UCT
stopped the opponents from shooting in all but 312 and 362 cases, respectively.
The best algorithm in this comparison was UCT, which only had the opponent
shoot 250 times when using 50,000 samples.

We experimented with a wide variety of UCT parameters here, and we sum-
marize the results in the bottom part of Table 5. First, we varied C from 0.0 to
1.0 by increments of 0.2. In these experiments, values of 0.4 and 0.6 produced the
best performance, stopping all but 285 and 292 situations, respectively. We then
tried a new approach, where we used one value of C for all nodes where the player
at the root is to play, and used a different value at all other nodes. The intuition
behind this approach is that a player should quickly find the best move for it-
self, but explore the opponents’ responses more thoroughly. Using a value of 0.0
for the player at the root and 0.4 for other players produced the best behavior,
better than the results produced when either 0.0 or 0.4 was used for all players.

This experiment is interesting because UCT has to find the specific line of
play an opponent might use to shoot the moon in order to stop it. Using a lower
value of C increases the depth of the UCT tree, which helps ensure that a safe

An Analysis of UCT in Multi-player Games 47

line of play is found. However, this does not necessarily guarantee that the best
line of play is found. In some sense this can randomize play slightly without too
large a penalty.

4.4 Hearts – Quality of Play

To test the quality of play, we played repeated games of Hearts. That is, a given
configuration of players played multiple hands of Hearts until one player’s score
reached 100. The final score for an algorithm is the average score of all players
using that algorithm at the end of the game. We also report the standard de-
viation of the final score, as well as the percentage of games in which a given
player had the highest score at the end of the game. Experimental results are in
Table 6. All results are statistically significant with 99% confidence.

The current state-of-the-art players in Hearts use a learned evaluation func-
tion [10]. We trained three players to play Hearts using methods similar to, but
more efficient than those described in [10]. Whether we trained through self-play
or against UCT players of varying strength, the learned players had essentially
identical performance in the full game, scoring 20 points more on average than
the UCT player. (Lower scores are better.) The results were stable both for the
different learned players and against UCT with up to 50,000 samples per turn;
we report results against UCT with 5000 samples. For comparison, an older,
hand-tuned, player [7] averaged 88.31 points per game against UCT, just better
than the random player, which averaged 89.23 points a game. However, UCT’s
average score against the random player, 16.31, is much better than against the
hand-tuned player, 51.77.

In the bottom part of Table 6 we experiment with different numbers of play-
outs. Here we played UCT with k playouts against UCT with 2k playouts. The
player with more playouts consistently averages 4-5 points better than the player
with fewer playouts. This shows that UCT does improve its performance as the
number of simulations increases.

In all these experiments, UCT is doing purely random playouts. We exper-
imented with various playout policies, but there were no simple policies which

Table 6. Performance of UCT against various opponents

Learned Hand-tuned Random

UCT 5000 46.12 (30.6) 51.77 (27.2) 16.31 (13.7)
Opponent 67.30 (43.1) 88.31 (24.5) 89.23 (24.1)
loss perc. 83.9% 88.0% 100%

k = 100 250 500 1000 2000 4000 8000

UCT k 79.46 77.69 77.18 76.49 76.25 76.47 76.59
(std dev) (26.95) (26.78) (27.07) (27.38) (26.65) (27.06) (26.76)
loss perc. 66.4% 59.4% 58.7 57.1% 55.5% 58.3% 56.7%

UCT 2k 67.07 69.92 71.40 71.52 72.04 71.91 72.17
(std dev) (27.69) (27.86) (27.35) (27.63) (27.11) (26.84) (26.80)

48 N.R. Sturtevant

increased the strength of play. For instance, a simple policy for play is to play
always the highest card that will not win the trick. As a game-playing policy, this
is stronger than random play, but makes a poorer playout module than random.

In these experiments we used a value of C = 0.4. When compared to the
alternating values of C used in the previous section C = 0.4 provided the best
performance. Here is to remark that both players always beat the learned play-
ers. The learned players tested are not nearly as aggressive about attempting to
shoot the moon as the player in the last section. This means that the ‘insurance’
paid to keep one’s opponent from shooting the moon is less likely to payoff in
these experiments.

5 A Summary of Findings and Future Work

This paper provides a foundation for future work on UCT in multi-player games.
It shows theoretically that UCT computes a mixed-strategy equilibrium, unlike
the traditional computation performed by maxn. UCT, given a strong playout
policy and sufficient simulations, is able to beat a player that uses a very strong
evaluation function in the game of Chinese Checkers. In other domains, UCT
plays on a par with existing programs in the game of Spades, and slightly better
than existing programs in Hearts.

These results are promising and suggest that UCT has the potential to richly
benefit multi-player game-playing programs. However, UCT in itself is not a
panacea. UCT does not offer any solution to the problem of opponent modeling,
and will need to be combined with opponent-modeling algorithms if we want to
achieve expert-level play in these programs.

Additionally, the card games we experimented with in this paper were all
converted into perfect-information games for the experiments here. We are con-
tinuing to work on issues related to imperfect information. For instance, UCT
can be modified to handle some situations in imperfect information games that
cannot be solved by the simple approaches discussed here, but the exact appli-
cation of these techniques is still a matter of future research.

References

1. Billings, D.: On the importance of embracing risk in tournaments. ICGA
Journal 29(4), 199–202 (2006)

2. Ginsberg, M.: Gib: Imperfect information in a computationally challenging game.
Journal of Articial Intelligence Research 14 (2001)

3. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Proceedings
of the 17th European Conference on Machine Learning, pp. 282–293. Springer,
Heidelberg (2006)

4. Luckhardt, C., Irani, K.: An algorithmic solution of N-person games. In: AAAI
1986, vol. 1, pp. 158–162 (1986)

5. Sturtevant, N., Zinkevich, M., Bowling, M.: Probmaxn: Opponent modeling in
n-player games. In: AAAI 2006, pp. 1057–1063 (2006)

An Analysis of UCT in Multi-player Games 49

6. Sturtevant, N.R.: Last-branch and speculative pruning algorithms for maxn. In:
IJCAI 2003, pp. 669–678 (2003)

7. Sturtevant, N.R.: Multi-Player Games: Algorithms and Approaches. PhD thesis,
Computer Science Department, UCLA (2003)

8. Sturtevant, N.R.: Current challenges in multi-player game search. In: van den
Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp.
285–300. Springer, Heidelberg (2006)

9. Sturtevant, N.R., Bowling, M.H.: Robust game play against unknown opponents.
In: AAMAS 2006 (2006)

10. Sturtevant, N.R., White, A.M.: Feature construction for reinforcement learning in
hearts. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG
2006. LNCS, vol. 4630, pp. 122–134. Springer, Heidelberg (2007)

Multi-player Go

Tristan Cazenave

LIASD, Université Paris 8, 93526, Saint-Denis, France
cazenave@ai.univ-paris8.fr

Abstract. Multi-player Go is Go played with more than two colors.
Monte-Carlo Tree Search is an adequate algorithm to program the game
of Go with two players. We address the application of Monte-Carlo Tree
Search to multi-player Go.

1 Introduction

The usual algorithm for multi-player games is maxn [11,13]. In this contribution,
we propose alternative UCT (UCT stands for Upper Confidence bounds applied
to Trees) based algorithms for multi-player games. We test the algorithms on
multi-player Go.

We start admitting that two-player Go is already a complex game which is
difficult to program [1]. However, recent progress in Monte-Carlo Tree Search
makes it easier and gives better results than previous algorithms. Going from
two-player Go to multi-player Go makes the game more complex. Yet, the sim-
plicity and the strength of Monte-Carlo Tree Search algorithms may help to
manage multi-player Go, and may result in effective programs.

The course of this paper is as follows. Section 2 presents recent research on
Monte-Carlo Tree Search. Section 3 explains some subtleties of multi-player Go.
Section 4 details the different algorithms that can be used to play multi-player
Go. In Sect. 5 we give experimental results. Section 6 provides a summary of
findings.

2 Monte-Carlo Tree Search

This section gives an overview of Monte-Carlo Tree Search. First we discuss
search and Monte-Carlo Go (2.1) and then we explain the RAVE algorithm (2.2).

2.1 Search and Monte-Carlo Go

Monte-Carlo Go started as a simulated annealing on the list of possible moves [2].
Then a straightforward sampling method consisting of playing random playouts
replaced it. Nowadays, the programs develop a tree before they start the playouts
[5,8]. Mogo [6,7] and Crazy Stone [5] are good examples of the success of these
methods. The UCT algorithm [8] is currently the standard algorithm used for
Monte-Carlo Go programs.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 50–59, 2008.
c© IFIP International Federation for Information Processing 2008

Multi-player Go 51

2.2 RAVE

The RAVE (Rapid Action Value Estimation) algorithm [6] improves on UCT by
using a rapid estimation of the value of moves when the number of playouts of a
node is low. It uses a constant k and a parameter β that progressively switches
from the rapid estimation heuristic to the normal UCT value. The parameter
β is computed using the formula: β =

√
k

3×games+k . β is then used to bias the
evaluation of a move in the tree with the formula: vali = β × heuristic + (1.0 −
β) × UCT .

The rapid estimation consists in computing statistics on all possible moves at
every node of the UCT tree. After each playout, every move in the node, which
has the same color in the node and in the playout is updated with the result
of the playout. For example, the last move of a playout is used to update the
statistics of the corresponding move in the nodes of the UCT tree that start
the playout. The value of the heuristic is the mean value of the move computed
using these statistics. It corresponds to the mean result of the playouts where
the move has been played.

3 Multi-player Go

Multi-player Go is sometimes played for fun at Go tournaments or at Go clubs.
In this section we explain some subtleties that are specific to multi-player Go.
We use three colors, Black, White, and Red, who play in that order. In the
figures, Red stones are the stones marked by squares.

The first board of Fig. 1 shows a particular way to live in three-player Go. The
black stones are alive, provided Black does not play at H8. White cannot play
at H8, and if Red plays at H8 and captures the White stone, Black immediately
recaptures the Red stone and gets two eyes.

black is alive implicit coalition

Fig. 1. Some particularities of multi-player Go

52 T. Cazenave

The second board shows an implicit coalition. It is White to play. In normal
two-player Go, the semeai between Black and Red in the upper left corner is
won by Black. However, here it is profitable to White to kill Black as it will
enable him to expand its territory, and it is of course also profitable to Red to
kill Black as it will give him chances to live. So, in this situation, even if Black
is better in its semeai against Red, it will lose it because White will play at G8,
and Red will play at D6 just after and capture Black.

If we define for each player that the goal of multi-player Go is to be the winner
of the game, we define a queer game [10], since it means that in some positions,
no player can force a win. A main problem with this definition is that a player
who is losing in the game can decide who will be the winner. For example, in
three-player Go, if a player P1 has a small group surrounded by player P2, and if
P2 wins if the small group is captured, but loses if the small group lives, P1 can
either always pass and let P2 win, or make his group alive and let P3 win. When
we implemented and tested three-player Go with the above definition, similar
situations often happened and P2 was always passing because all the moves were
losing moves, letting the weaker player win.

To avoid queer games, we decided to define the goal of multi-player Go as to
score as many points as possible, using Chinese rules. Every stone of a player
counts as one point in the end of a game. Moreover, every empty intersection
completely surrounded by only one player also counts as one point. A game ends
when all the players have consecutively passed.

A second possibility would have been to use Japanese rules and to remove
a string solely if it is surrounded by one color only. Not removing a string sur-
rounded by more than one color would be a very strong bias on the game since it
would make weak surrounded strings alive, and the game would be much different
from usual Go. Using Chinese rules is natural for Monte-Carlo based programs
and Japanese rules would be even more complicated for multi-player Go.

4 Multi-player Algorithms

In this section, we describe different algorithms for multi-player games. We start
with maxn, the algorithm currently used in most multi-player games. Then we
briefly discuss UCT, Coalitions of players, Paranoid UCT, UCT with alliance,
and eventually variations on Confident UCT.

4.1 Maxn

The usual algorithm for multi-player games is maxn [13] which is the extension
of Minimax to multi-player games. Some pruning techniques can be used with
maxn [9,12]. We did not test this algorithm on Go for two reasons: (1) build-
ing an evaluation function for Go is difficult and (2) the UCT framework is
straightforward and powerful in itself.

Multi-player Go 53

4.2 UCT

Multi-player UCT behaves the same as UCT except that instead of having one
result for a playout, the algorithm uses an array of scores with one result for each
player which is the number of points of each player at the end of the playout.
When descending the UCT tree, the player uses the mean result of its scores,
not taking into account the scores of the other players.

4.3 Coalitions of Players

In multi-player games, in contrast to two-player games, players can collaborate
and form coalitions. In order to model a coalition between players, we have used
a simple rule: it consists in not filling an empty intersection that is surrounded
by players of the same coalition, provided that none of the surrounding strings
is in atari. Of course, this rule only applies for players of the same coalition.

We also defined the Allies’ scoring algorithm which is different from the Nor-
mal scoring algorithm. In Normal scoring, an empty intersection counts as a
point for a player if it is completely surrounded by stones of the player’s color.
In Allies’ scoring, an empty intersection is counted as territory for a player if it
is surrounded by stones that can be either of the color of the player or of the
color of any of its allies.

The third scoring algorithm we have used is the Joint scoring algorithm, it
consists in counting allied eyes as well as allied stones as points for players in a
coalition.

4.4 Paranoid UCT

The paranoid algorithm consists in considering that all the other players form
a coalition against the player. The UCT tree is traversed in the usual way, but
the playouts use the coalition rules for the other players.

The algorithm has links with the paranoid search of Sturtevant and Korf [14]
as it considers that all the other players are opponents.

In the design of the Paranoid UCT, we choose to model paranoia modifying
the playouts. A second possibility is to model it directly in the UCT tree. In this
case, the other players choose the move that minimizes the player mean instead
of choosing the move that maximizes their own mean when descending the UCT
tree. It could also be interesting to combine the two approaches.

4.5 UCT with Alliances

The alliance algorithm models an explicit coalition of players. The playouts of
the players in the alliance use the coalition rule. The playouts can be scored
either using the Normal, the Allies’, or the Joint scoring algorithm.

4.6 Confident UCT

Confident UCT algorithms dynamically form coalitions depending on the situa-
tion on the board. Below we discuss three different types of confident algorithms.

54 T. Cazenave

The first one is the Confident algorithm. At each move it develops as many
UCT trees as there are players. Each UCT tree is developed assuming a coalition
with a different player. This includes developing a UCT tree with a coalition with
itself, which is equivalent to the normal UCT algorithm. Among all these UCT
trees, it chooses the one that has the best mean result at the root, and plays
the corresponding move. The idea of the confident algorithm is to assume that
the player, who is the most interesting to cooperate with, will cooperate. In
case of the paranoid algorithm, it will never be the case. Even in the case of
other confident algorithms, it is not always the case, since the other confident
algorithm can choose to cooperate with another player, or not to cooperate.

Second, to address the shortcomings of the Confident algorithm, we devised
the Symmetric Confident algorithm. It does run the confident algorithm for each
player. So for each player we have the mean result of all coalitions with all players.
We can then find for each player the best coalition. If the best coalition for the
player to move is also the best coalition for the other player of the coalition, then
the player to move chooses the move of the UCT tree of the coalition. If this is
not the case, the player chooses the move of a coalition that is better than no
coalition if the other player of the coalition has its best coalition with the player.
In all other cases, it chooses the move of the UCT tree without coalition.

The third confident algorithm is the Same algorithm. In contrast to the two
previous algorithms, it assumes that it knows who the other Same algorithms
are. It consists in choosing the best coalition among the other Same players,
including itself (choosing itself is equivalent to no coalition).

5 Experimental Results

The experiments consist in playing the algorithms against each other. All our
results use 200 9 × 9 games experiments.

5.1 UCT

The Surrounded algorithm always avoids playing on an intersection which has
all its adjacent intersections of the same color as the player to move. It is a
simple rule used in the playouts. The Eye algorithm also verifies the status of
the diagonals of the intersection in order to avoid playing on virtual eyes during
playouts.

Table 1 provides the results of three-player games. Each line gives the mean
number of points of each algorithm playing 200 9 × 9 games against the other
algorithms.

Given the first line that only contains Surrounded algorithms, and the lines
that only contain the RAVE algorithm (lines 7 and 8), we can see that the value
of komi is low in three-player Go (approximately one point for White and two
points for Red given the RAVE results for 10,000 playouts). This is our first
surprising result, we expected the third player to be more at a disadvantage
than only two points.

Multi-player Go 55

Table 1. Results for different UCT algorithms

Playouts Black Black points White White points Red Red points

1 1,000 Surrounded 29.78 Surrounded 25.02 Surrounded 26.20
2 1,000 Eye 26.80 Surrounded 27.76 Surrounded 26.42
3 1,000 Surrounded 27.91 Eye 28.66 Eye 24.44
4 1,000 Pattern 24.46 Surrounded 33.31 Surrounded 23.23
5 1,000 Surrounded 23.63 Pattern 23.82 Surrounded 33.56
6 1,000 RAVE 36.40 Surrounded 21.34 Surrounded 23.26
7 1,000 RAVE 27.94 RAVE 26.74 RAVE 26.32
8 10,000 RAVE 28.27 RAVE 27.13 RAVE 25.60

The first three lines of Table 1 compare (1) algorithms that use surrounded
intersections as the avoiding rule, and (2) algorithms that use real eyes as the
avoiding rule. In two-player Go, using virtual eyes is superior to using surrounded
intersections [3]. Surprisingly, it is not the case in three-player Go as can be seen
from the first three lines of the table. I feel uneasy giving explanations about
the strength of playout policies as it is a very non-intuitive topic, it has been
observed that a better playout player (i.e., one that often wins playouts against
a simple one) can give worse results than straightforward playout players when
used in combination with tree search. In all the following algorithms we have
used the Surrounded rule.

The fourth and fifth lines of Table 1 test an algorithm using Mogo patterns in
the playouts [7]. It uses exactly the same policy as described in the report. Friend
stones in the patterns are matched to friend stones on the board, and enemy
stones in the patterns can be matched with all colors different from the color of
friend stones on the board. In contrast to two-player Go, Mogo’s patterns give
worse results than no pattern, and tend to favor the player following the player
using patterns. A possible explanation for the bad results of patterns may be
that in multi-player Go moves are less often close to the previous move than in
usual Go. The algorithms of Subsections 5.2 to 5.4 do not use patterns in the
playouts.

The lines 6 to 8 of Table 1 test the RAVE algorithm. When matched again two
Surrounded UCT-based algorithms, it scores 36.40 points which is much better
than standard UCT. When three RAVE algorithms are used, the results come
close to the results of the standard UCT algorithms. All the following algorithms
(of Subsections 5.2 to 5.4) use the RAVE optimization.

5.2 Paranoid UCT

Table 2 gives the results of the Paranoid algorithm matched against the RAVE
algorithm. Paranoid against two RAVE algorithms has better results than both
of them. Two Paranoid algorithms against one RAVE algorithm have also better
results. When three Paranoid algorithms are matched, the scores come back to
the equilibrium. So in these experiments, Paranoid is better than RAVE.

56 T. Cazenave

Table 2. Results for the Paranoid algorithm

Playouts Black Black points White White points Red Red points

1,000 Paranoid 31.71 RAVE 26.89 RAVE 22.38
1,000 Paranoid 29.82 Paranoid 28.48 RAVE 22.67
1,000 Paranoid 29.11 Paranoid 26.85 Paranoid 25.04

5.3 Alliance UCT

Table 3 gives the results of the Alliance algorithm with different scoring systems
for the playouts. When using Normal scoring, Alliance is not much beneficial
against Paranoid, but has better results against RAVE.

Using the Allies’ scoring gives better results for the Alliance and much worse
results for Paranoid and RAVE. The best results for the Alliance are obtained with
Joint scoring, in this case Paranoid only scores 1.57 on average and RAVE 0.30.

Table 3. Results for the Alliance algorithms

Playouts Black Black points White White points Red Red points

1,000 Alliance(Normal) 28.69 Alliance(Normal) 25.09 Paranoid 24.58
1,000 Alliance(Normal) 32.15 Alliance(Normal) 30.44 RAVE 14.56
1,000 Alliance(Allies) 30.78 Alliance(Allies) 29.85 Paranoid 6.91
1,000 Alliance(Allies) 32.88 Alliance(Allies) 30.55 RAVE 2.64
1,000 Alliance(Joint) 34.38 Alliance(Joint) 33.12 Paranoid 1.57
1,000 Alliance(Joint) 35.61 Alliance(Joint) 34.01 RAVE 0.30

5.4 Confident UCT

Below we address the various confident algorithms. In our tests, we used 1,000
playouts for each tree developed by the various confident algorithms. Table 4
gives the results of the Confident algorithms against the RAVE and the Paranoid
algorithms. The Paranoid and the RAVE algorithms are clearly better than the
confident algorithm, and Paranoid is slightly better than RAVE.

Table 4. Results for the Confident algorithm

Playouts Black Black points White White points Red Red points

1,000 Confid(Normal) 18.08 Confid(Normal) 23.84 Paranoid 39.08
1,000 Confid(Normal) 17.75 Confid(Normal) 24.86 RAVE 38.40
1,000 Confid(Allies) 14.22 Confid(Allies) 17.67 Paranoid 48.11
1,000 Confid(Allies) 10.99 Confid(Allies) 22.24 RAVE 45.97

Table 5 gives the results of the Symmetric Confident algorithms against the
RAVE and the Paranoid algorithms. Here again, Paranoid and RAVE are better
than Symmetric Confident, and Paranoid is slightly better than RAVE.

Multi-player Go 57

Table 5. Results for the Symmetric Confident algorithm

Playouts Black Black points White White points Red Red points

1,000 Sym(Normal) 19.94 Sym(Normal) 16.67 Paranoid 42.97
1,000 Sym(Normal) 18.97 Sym(Normal) 19.54 RAVE 39.85

Table 6. Results for the Same algorithm

Playouts Black Black points White White points Red Red points

1,000 Same(Normal) 25.38 Same(Normal) 32.21 RAVE 23.34
1,000 Same(Normal) 25.61 Same(Normal) 27.59 Paranoid 27.79
1,000 Same(Allies) 32.53 Same(Allies) 37.76 RAVE 4.73
1,000 Same(Allies) 30.83 Same(Allies) 34.03 Paranoid 10.28
1,000 Same(Allies) 35.78 Same(Allies) 22.74 Same(Allies) 17.92
1,000 Same(Joint) 35.32 Same(Joint) 34.32 RAVE 0.58
1,000 Same(Joint) 33.62 Same(Joint) 34.06 Paranoid 1.70
1,000 Same(Allies) 64.96 Same(Joint) 7.95 Paranoid 4.76

In Table 6 two types of Same algorithms are tested against the Paranoid and
RAVE algorithms. When the Same algorithm uses Normal scoring at the end of
the playouts, playing two Same algorithms against a paranoid algorithm is not
much more beneficial and even slightly worse than using paranoid algorithms
as can be seen by comparing the results of Table 6 with those of Table 2. So,
cooperation with Normal playout scoring is not much beneficial. However, when
the playouts are scored according to the Allies’ scoring, cooperation becomes
much more interesting and the paranoid algorithm obtains much worse results
(10.28 instead of 27.79). The RAVE algorithm is in this case even worse with only
4.73 points. For all these results, the games were scored with the Normal scoring
algorithm. Only the playouts can be scored with the Allies’ scoring algorithm.
This is why the games played by the Same(Allies) algorithms do not sum up
to 81 points, the Allies’ algorithm stops playing when empty intersections are
surrounded by allies, but the game is scored with the normal scoring and the
empty intersections that are surrounded by more than one color are not counted.

When three Same(Allies) algorithms play together, the results favor the first
player.

The next two lines of Table 6 give the results of the Same algorithm with
Joint scoring of the playouts. The Same algorithm gives even better results in
this case, and Paranoid and RAVE often end the games with no points at all.

When Same(Allies) plays against/with Same(Joint) and Paranoid, it scores
extremely well. Paranoid is beaten when the two Same algorithms decide to
make an alliance, and Same(Allies) beats Same(Joint) since it continues to make
territory for itself at the end of the game when Same(Joint) considers it common
territory.

58 T. Cazenave

5.5 Techniques Used in the Algorithms

Table 7 gives an overview of the techniques used for each algorithm.

Table 7. Techniques used for each algorithm

Algorithm Playout policy Search Scoring function

Surrounded Surrounded by player UCT stones + eyes
Eye Eye by player UCT stones + eyes

Pattern Surrounded by player + Patterns UCT stones + eyes
RAVE Surrounded by player RAVE stones + eyes

Paranoid Surrounded by coalition RAVE stones + eyes
Alliance(Normal) Surrounded by coalition RAVE stones + eyes

Alliance(Allies) Surrounded by coalition RAVE stones + common eyes
Alliance(Joint) Surrounded by coalition RAVE common stones + common eyes

Confid(Normal) Surrounded by coalition RAVE stones + eyes
Confid(Allies) Surrounded by coalition RAVE stones + common eyes
Sym(Normal) Surrounded by coalition RAVE stones + eyes

Same(Normal) Surrounded by coalition RAVE stones + eyes
Same(Allies) Surrounded by coalition RAVE stones + common eyes
Same(Joint) Surrounded by coalition RAVE common stones + common eyes

6 A Summary of Findings

We addressed the application of UCT to multi-player games, and more specif-
ically to multi-player Go. We defined a simple and effective heuristic, used in
the playouts, that models coalitions of players. This heuristic has been used in
the Alliance algorithm and can be also effective when used with the appropriate
scoring of the playouts. The Paranoid algorithm, which assumes a coalition of
the other players plays better than the usual RAVE algorithm. Confident algo-
rithms, such as Confident and Symmetric Confident, that choose to cooperate
when it is most beneficial are worse than the Paranoid algorithm when they
are not aware of the other players algorithms. However, when the players’ al-
gorithms are known, as in the Same algorithm, they become better than the
Paranoid algorithm.

If a multi-player Go tournament were organized, the best algorithm would
be dependent on the available information on the competitors. Future work will
address the extension of coalition algorithms to more than three players, the
effects of communications between players as well as the parallelization of the
algorithms [4].

References

1. Bouzy, B., Cazenave, T.: Computer Go: An AI-Oriented Survey. Artificial Intelli-
gence 132(1), 39–103 (2001)

2. Brügmann, B.: Monte Carlo Go. Technical report, Physics Department, Syracuse
University (1993)

Multi-player Go 59

3. Cazenave, T.: Playing the right atari. ICGA Journal 30(1), 35–42 (2007)
4. Cazenave, T., Jouandeau, N.: On the parallelization of UCT. In: Computer Games

Workshop 2007, Amsterdam, The Netherlands, June 2007, pp. 93–101 (2007)
5. Coulom, R.: Efficient selectivity and back-up operators in monte-carlo tree search.

In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006.
LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

6. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: ICML,
pp. 273–280 (2007)

7. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns
in monte-carlo go. Technical Report 6062, INRIA (2006)

8. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

9. Korf, R.E.: Multi-player alpha-beta pruning. Artif. Intell. 48(1), 99–111 (1991)
10. Loeb, D.E.: Stable winning coalitions. In: Games of No Chance, vol. 29, pp. 451–471

(1996)
11. Luckhart, C., Irani, K.B.: An algorithmic solution of n-person games. In: AAAI,

pp. 158–162 (1986)
12. Sturtevant, N.R.: Last-branch and speculative pruning algorithms for maxn. In:

IJCAI, pp. 669–678 (2003)
13. Sturtevant, N.R.: Current challenges in multi-player game search. In: van den

Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846,
pp. 285–300. Springer, Heidelberg (2006)

14. Sturtevant, N.R., Korf, R.E.: On pruning techniques for multi-player games. In:
AAAI/IAAI, pp. 201–207 (2000)

Parallel Monte-Carlo Tree Search

Guillaume M.J.-B. Chaslot, Mark H.M. Winands, and H. Jaap van den Herik

Games and AI Group, MICC, Faculty of Humanities and Sciences,
Universiteit Maastricht, Maastricht, The Netherlands
{g.chaslot,m.winands,herik}@micc.unimaas.nl

Abstract. Monte-Carlo Tree Search (MCTS) is a new best-first search
method that started a revolution in the field of Computer Go. Paral-
lelizing MCTS is an important way to increase the strength of any Go
program. In this article, we discuss three parallelization methods for
MCTS: leaf parallelization, root parallelization, and tree parallelization.
To be effective tree parallelization requires two techniques: adequately
handling of (1) local mutexes and (2) virtual loss. Experiments in 13×13
Go reveal that in the program Mango root parallelization may lead to
the best results for a specific time setting and specific program parame-
ters. However, as soon as the selection mechanism is able to handle more
adequately the balance of exploitation and exploration, tree paralleliza-
tion should have attention too and could become a second choice for
parallelizing MCTS. Preliminary experiments on the smaller 9×9 board
provide promising prospects for tree parallelization.

1 Introduction

For decades, the standard method for two-player games such as chess and check-
ers has been αβ search. Nevertheless, in 2006 Monte-Carlo Tree Search (MCTS)
[4, 6, 7, 8, 10, 12] started a revolution in the field of Computer Go. At this mo-
ment (January 2008) the best MCTS 9 × 9 Go programs are ranked 500 rating
points higher than the traditional programs on the Computer Go Server [2]. On
the 19×19 Go board, MCTS programs are also amongst the best programs. For
instance, the MCTS program Mogo won the Computer Olympiad 2007 [9], and
the MCTS program Crazy Stone has the highest rating amongst programs on
the KGS Go Server [1].

MCTS is not a classical tree search followed by a Monte-Carlo evaluation, but
rather a best-first search guided by the results of Monte-Carlo simulations. Just
as for αβ search [11], it holds for MCTS that the more time is spent for selecting
a move, the better the game play is. Moreover, the law of diminishing returns
that nowadays has come into effect for many αβ chess programs, appears to be
less of an issue for MCTS Go programs. Hence, parallelizing MCTS seems to be a
promising way to increase the strength of a Go program. Pioneer work has been
done by Cazenave and Jouandeau [3] by experimenting with two parallelization
methods: leaf parallelization and root parallelization (original called single-run
parallelization).

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 60–71, 2008.
c© IFIP International Federation for Information Processing 2008

Parallel Monte-Carlo Tree Search 61

In this article we introduce a third parallelization method, called tree paral-
lelization. We compare the three parallelization methods (leaf, root, and tree)
by using the Games-Per-Second (GPS) speedup measure and strength-speedup
measure. The first measure corresponds to the improvement in speed, and the
second measure corresponds to the improvement in playing strength. The three
parallelization methods are implemented and tested in our Go program Mango

[5] (mainly designed and constructed by Guillaume Chaslot), running on a multi-
core machine containing 16 cores. An earlier version of the program - using more
modest hardware - participated in numerous international competitions in 2007,
on board sizes 13 × 13 and 19 × 19. It was ranked in the first half of the partici-
pants at all these events [1, 9].

The article is organized as follows. In Sect. 2 we present the basic structure of
MCTS. In Sect. 3, we discuss the different methods used to parallelize an MCTS
program. We empirically evaluate the three parallelization methods in Sect. 4.
Section 5 provides the conclusions and describes future research.

2 Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) [7, 12] is a best-first search method that does
not require a positional evaluation function. It is based on randomized explo-
rations of the search space. Using the results of previous explorations, the algo-
rithm gradually grows a game tree in memory, and successively becomes better
at accurately estimating the values of the most promising moves.

MCTS consists of four strategic phases, repeated as long as there is time left.
The phases are as follows. (1) In the selection step the tree is traversed from the
root node until it selects a leaf node L that is not added to the tree yet.1 (2)
Subsequently, the expansion strategy is called to add the leaf node L to the tree.
(3) A simulation strategy plays moves in a self-play mode until the end of the

Selection Expension Simulation Backpropagation

The selection function is applied
recursively

One (or more) leaf
nodes are created

The result of this game is
backpropagated in the tree

One simulated
game is played

Selection Expansion Simulation Backpropagation

The selection function is
applied recursively until

the end of the tree

One (or more) leaf nodes
are created

The result of this game is
backpropagated in the tree

One simulated
game is played

 Repeated X times

Fig. 1. Scheme of Monte-Carlo Tree Search

1 Examples of such a strategy are UCT, OMC, BAST, etc. [4, 6, 7, 12]. All experiments
have been performed with the UCT algorithm [12] using a coefficient Cp of 0.35.

62 G.M.J.-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

game is reached. The result R of such a “simulated” game is +1 in case of a win
for Black (the first player in Go), 0 in case of a draw, and −1 in case of a win for
White. (4) A backpropagation strategy propagates the results R through the tree,
i.e., in each node traversed the average result of the simulations is computed.
The four phases of MCTS are shown in Fig. 1.

When all the time is consumed, the move played by the program is the root
child with the highest visit count. It might be noticed that MCTS can be stopped
anytime. However, the longer the program runs, the stronger the program plays.
We show in Sect. 4 that the rating of our program increases nearly linearly with
the logarithm of the time spent.

3 Parallelization of Monte-Carlo Tree Search

In this article, we consider parallelization for a symmetric multiprocessor (SMP)
computer. We always use one processor thread for each processor core. One of the
properties of a SMP computer is that any thread can access the central (shared)
memory with the same (generally low) latency. As a consequence, parallel threads
should use a mutual exclusion (mutex) mechanism in order to prevent any data
corruption, due to simultaneous memory access. This could happen when several
threads are accessing the MCTS tree (i.e., in phase 1, 2 or 4). However, the simu-
lation phase (i.e., phase 3) does not require any information from the tree. There,
simulated games can be played completely independently from each other. This
specific property of MCTS is particularly interesting for the parallelization pro-
cess. For instance, it implies that long simulated games make the parallelization
easier. We distinguish three main types of parallelization, depending on which
phase of the Monte-Carlo Tree Search is parallelized: leaf parallelization, root par-
allelization, and tree parallelization.

3.1 Leaf Parallelization

Leaf parallelization introduced by Cazenave and Jouandeau [3] is one of the easi-
est ways to parallelize MCTS. To formulate it in machine-dependent terms, only
one thread traverses the tree and adds one of more nodes to the tree when a leaf
node is reached (phase 1 and 2). Next, starting from the leaf node, independent
simulated games are played for each available thread (phase 3). When all games
are finished, the result of all these simulated games is propagated backwards
through the tree by one single thread (phase 4). Leaf parallelization is depicted
in Fig. 2a.

Leaf parallelization seems interesting because its implementation is easy and
does not require any mutexes. However, two problems appear. First, the time
required for a simulated game is highly unpredictable. Playing n games using n
different threads takes more time in average than playing one single game using
one thread, since the program needs to wait for the longest simulated game.
Second, information is not shared. For instance, if 16 threads are available, and
8 (faster) finished games are all losses, it will be highly probable that most games

Parallel Monte-Carlo Tree Search 63

Fig. 2. (a) Leaf parallelization (b) Root parallelization (c) Tree parallelization with
global mutex (d) and with local mutexes

will lead to a loss. Therefore, playing 8 more games is a waste of computational
power. To decrease the waiting time, the program might stop the simulations that
are still running when the results of the finished simulations become available.
This strategy would enable the program to traverse the tree more often, but
some threads would be idle. Leaf parallelization can be performed inside an
SMP environment, or even on a cluster using MPI (Message Passing Interface)
communication.

3.2 Root Parallelization

Cazenave proposed a second parallelization under the name “single-run” par-
allelization [3]. In this article we will call it root parallelization to stress the
part of the tree for which it applies. The method works as follows. It consists of
building multiple MCTS trees in parallel, with one thread per tree. Similar to
leaf parallelization, the threads do not share information with each other. When
the available time is spent, all the root children of the separate MCTS trees
are merged with their corresponding clones. For each group of clones, the scores
of all games played are added. The best move is selected based on this grand
total. This parallelization method only requires a minimal amount of commu-
nication between threads, so the parallelization is easy, even on a cluster. Root
parallelization is depicted in Fig. 2b.

3.3 Tree Parallelization

In this article we introduce a new parallelization method called tree paralleliza-
tion. This method uses one shared tree from which several simultaneous games
are played. Each thread can modify the information contained in the tree; there-
fore mutexes are used to lock from time to time certain parts of the tree to

64 G.M.J.-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

prevent data corruption. There are two methods to improve the performance of
tree parallelization: (1) mutex location and (2) “virtual loss”.

Mutex location. Based on the location of the mutexes in the tree, we distin-
guish two mutex location methods: (1) using a global mutex and (2) using several
local mutexes.

The global mutex method locks the whole tree in such a way that only one
thread can access the search tree at a time (phase 1, 2, and 4). In the meantime
several other processes can play simulated games (phase 3) starting from different
leaf nodes. This is a major difference with leaf parallelization where all simulated
games start from the same leaf node. The global mutex method is depicted
in Fig. 2c. The potential speedup given by the parallelization is bounded by
the time that has to be spent in the tree. Let x be the average percentage of
time spent in the tree by one single thread. The maximum speedup in terms of
games per second is 100/x. In most MCTS programs x is relatively high (say
between 25 to 50%), limiting the maximum speedup substantially. This is the
main disadvantage of this method.

The local mutexes method makes it possible that several threads can access
the search tree simultaneously. To prevent data corruption because two (or more)
threads access the same node, we lock a node by using a local mutex when it is
visited by a thread. At the moment a thread departs the node, it is unlocked.
Thus, this solution requires to frequently lock and unlock parts of the tree. Hence,
fast-access mutexes such as spinlocks have to be used to increase the maximum
speedup. The local mutexes method is depicted in Fig. 2d.

Virtual loss. If several threads start from the root at the same time, it is
possible that they traverse the tree for a large part in the same way. Simulated
games might start from leaf nodes, which are in the neighborhood of each other.
It can even happen that simulated games begin from the same leaf node. Because
a search tree typically has millions of nodes, it may be redundant to explore
a rather small part of the tree several times. Coulom2 suggests to assign one
“virtual loss” when a node is visited by a thread (i.e., in phase 1). Hence, the
value of this node will be decreased. The next thread will only select the same
node if its value remains better than its siblings’ values. The virtual loss is
removed when the thread that gave the virtual loss starts propagating the result
of the finished simulated game (i.e., in phase 4). Owing to this mechanism,
nodes that are clearly better than others will still be explored by all threads,
while nodes for which the value is uncertain will not be explored by more than
one thread. Hence, this method keeps a certain balance between exploration and
exploitation in a parallelized MCTS program.

4 Experiments

In this section we compare the different parallelization methods with each other.
Subsection 4.1 discusses the experimental set-up. We show the performance of
2 Personal Communication.

Parallel Monte-Carlo Tree Search 65

leaf parallelization, root parallelization, and tree parallelization in Subsection
4.2, 4.3, and 4.4, respectively. An overview of the results is given in Subsection
4.5. Root parallelization and tree parallelization are compared under different
conditions in Subsection 4.6.

4.1 Experimental Set-Up

The aim of the experiments is to measure the quality of the parallelization pro-
cess. We use two measures to evaluate the speedup given by the different par-
allelization methods. The first measure is called the Games-Per-Second (GPS)
speedup. It is computed by dividing the number of simulated games per second
performed by the multithreaded program, by the number of games per second
played by a single-threaded program. However, the GPS speedup measure might
be misleading, since it is not always the case that a faster program is stronger.
Therefore, we propose a second measure: called strength-speedup. It corresponds
to the increase of time needed to achieve the same strength. For instance, a mul-
tithreaded program with a strength-speedup of 8.5 has the same strength as a
single-threaded program, which consumes 8.5 times more time.

In order to design the strength-speedup measurement, we proceed in three
steps. First, we measure the strength of our Go program Mango on the 13× 13
board against GNU Go 3.7.10, level 0, for 1 second, 2 seconds, 4 seconds, 8
seconds, and 16 seconds. For each time setting, 2, 000 games are played. Figure 3
reports the strength of Mango in terms of percentage of victory. In Fig. 4, the
increase in strength in term of rating points as a function of the logarithmic time
is shown. This function can be approximated accurately by linear regression,
using a correlation coefficient R2 = 0.9922. Second, the linear approximation
is used to give a theoretical Go rating for any amount of time. Let us assume

Fig. 3. Scalability of the strength of Mango with time

66 G.M.J.-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

Fig. 4. Scalability of the rating of Mango vs. GNU Go with time. The curve represents
the data points, and the line is a trend-line for this data.

that Et is the level of the program in rating points, T is the time in seconds
per move. Linear regression gives us Et(T) = A · log2T + B with A = 56.7 and
B = −175.2. Third, the level of play of the multithreaded program is measured
against the same version of GNU Go, with one second per move. Let Em be
the rating of this program against GNU Go. The strength-speedup S is defined
by: S ∈ R|Et(S) = Em.

The experiments were performed on the supercomputer Huygens, which has
120 nodes, each with 16 cores POWER5 running at 1.9 GHz and having 64
Gigabytes of memory per node. Using this hardware the single-threaded version
of Mango was able to perform 3, 400 games per second in the initial board
position of 13 × 13 Go. The time setting used for the multithreaded program
was 1 second per move.

4.2 Leaf Parallelization

In the first series of experiments we tested the performance of plain leaf paral-
lelization. We did not use any kind enhancement to improve this parallelization
method as discussed in Subsection 3.1. The results regarding winning percent-
age, GPS speedup, and strength-speedup for 1, 2, 4, and 16 threads are given
in Table 1. We observed that the GPS speedup is quite low. For instance, when
running 4 simulated games in parallel, finishing all of them took 1.15 times longer
than finishing just 1 simulated game. For 16 threads, it took two times longer
to finish all games compared by finishing just one. The results show that the
strength-speedup obtained is rather low as well (2.4 for 16 processors). So, we
may conclude that plain leaf parallelization is not a good way for parallelizing
MCTS.

Parallel Monte-Carlo Tree Search 67

Table 1. Leaf parallelization

Number of Winning Number Confidence GPS Strength
threads percentage of games interval Speedup speedup

1 26.7 % 2000 2.2 % 1.0 1.0
2 26.8 % 2000 2.0 % 1.8 1.2
4 32.0 % 1000 2.8 % 3.3 1.7

16 36.5 % 500 4.3 % 7.6 2.4

4.3 Root Parallelization

In the second series of experiments we tested the performance of root paralleliza-
tion. The results regarding winning percentage, GPS speedup, and strength-
speedup for 1, 2, 4, and 16 threads are given in Table 2.

Table 2 indicates that root parallelization is a quite effective way of paralleliz-
ing MCTS. One particularly interesting result is that, for four processor threads,
the strength-speedup is significantly higher than the number of threads used (6.5
instead of 4). This result implies that, in our program Mango, it is more ef-
ficient to run four independent MCTS searches of one second than to run one
large MCTS search of four seconds. It might be that the algorithm stays for quite
a long time in local optima. This effect is caused by the UCT coefficient setting.
For small UCT coefficients, the UCT algorithm is able to search more deeply in
the tree, but also stays a longer time in local optima. For high coefficients, the
algorithm escapes more easily from the local optima, but the resulting search is
shallower. The optimal coefficient for a specific position can only be determined
experimentally. The time setting also influences the scalability of the results. For
a short time setting, the algorithm is more likely to spend too much time in lo-
cal optima. Hence, we believe that with higher time settings, root parallelization
will be less efficient. In any case, we may conclude that root parallelization is a
simple and effective way to parallelize MCTS.

Table 2. Root parallelization

Number of Winning Number Confidence GPS Strength
threads Percentage of games interval speedup speedup

1 26.7 % 2000 2.2 % 1 1.0
2 38.0 % 2000 2.2 % 2 3.0
4 46.8 % 2000 2.2 % 4 6.5

16 56.5 % 2000 2.2 % 16 14.9

4.4 Tree Parallelization

In the third series of experiments we tested the performance of tree paralleliza-
tion. Below, we have a closer look at the mutexes location and virtual loss.

68 G.M.J.-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

Table 3. Tree parallelization with global mutex

Number of Percentage Number Confidence GPS strength
threads of victory of games interval speedup speedup

1 26.7 % 2000 2.2 % 1.0 1.0
2 31.3 % 2000 2.2 % 1.8 1.6
4 37.9 % 2000 2.2 % 3.2 3.0

16 36.5 % 500 4.5 % 4.0 2.6

Table 4. Tree parallelization with local mutex

Number of Percentage Number Confidence GPS Strength
threads of victory of games interval speedup speedup

1 26.7 % 2000 2.2 % 1.0 1.0
2 32.9 % 2000 2.2 % 1.9 1.9
4 38.4 % 2000 2.2 % 3.6 3.0

16 39.9 % 500 4.4 % 8.0 3.3

Table 5. Using virtual loss for tree parallelization

Number of Winning Number Confidence GPS Strength
threads percentage of games interval speedup speedup

1 26.7 % 2000 2.2 % 1.0 1.0
2 33.8 % 2000 2.2 % 1.9 2.0
4 40.2 % 2000 2.2 % 3.6 3.6

16 49.9 % 2000 2.2 % 9.1 8.5

Mutexes location. First, the global mutex method was tested. The results are
given in Table 3. These results show that the strength-speedup obtained up to 4
threads is satisfactory (i.e., strength-speedup is 3). However, for 16 threads, this
method is clearly insufficient. The strength-speedup drops from 3 for 4 threads
to 2.6 for 16 threads. So, we may conclude that the global mutex method should
not be used in tree parallelization.

Next, we tested the performance for the local mutexes method. The results
are given in Table 4. Table 4 shows that for each number of threads the local
mutexes has a better strength-speed than global mutex. Moreover, by using
local mutexes instead of global mutex the number of games played per second
is doubled when using 16 processor threads. However, the strength-speedup for
16 processors threads is just 3.3. Compared to the result of root parallelization
(14.9 for 16 threads), this result is quite disappointing.

Using virtual loss. Based on the previous results we extended the global
mutexes tree parallelization with the virtual loss enhancement. The results of
using virtual loss are given in Table 5.

Table 5 shows that the effect of the virtual loss when using 4 processor threads
is moderate. If we compare the strength-speedup of Table 4 we see an increase

Parallel Monte-Carlo Tree Search 69

Fig. 5. Performance of the different parallelization methods

from 3.0 to 3.6. But when using 16 processor threads, the result is more im-
pressive. Tree parallelization with virtual loss is able to win 49.9% of the games
instead of 39.9% when it is not used. The strength-speedup of tree paralleliza-
tion increases from 3.3 (see Table 4) to 8.5. Thus, we may conclude that virtual
loss is important for the performance of tree parallelization when the number of
processor threads is high.

4.5 Overview

In Fig. 5 we have depicted the performance of leaf parallelization, root paral-
lelization, and tree parallelization with global mutex or with local mutexes. The
x-axis represents the logarithmic number of threads used. The y-axis represents
the winning percentage against GNU Go. For comparison reasons, we have plot-
ted the performance of the default (sequential) program when given more time
instead of more processing power. We see that root parallelization is superior
to all other parallelization methods, performing even better than the sequential
program.

4.6 Root Parallelization vs. Tree Parallelization Revisited

In the previous subsection we saw that on the 13× 13 board root parallelization
outperformed all other parallelization methods, including tree parallelization. It
appears that the strength of root parallelization lies not only in an more effective
way of parallelizing MCTS, but also in preventing that MCTS stays too long in
local optima. The results could be different for other board sizes, time settings,
and parameter settings. Therefore, we switched to a different board size (9 × 9)
and three different time settings (0.25, 2.5, and 10 seconds per move). Using 4

70 G.M.J.-B. Chaslot, M.H.M. Winands, and H.J. van den Herik

Table 6. 9 × 9 results for root and tree parallelization using 4 threads

Time (s) Winning percentage
Root parallelization Tree parallelization

0.25 60.2 % 63.9 %
2.50 78.7 % 79.3 %
10.0 87.2 % 89.2 %

processor threads, root, and tree parallelization played both 250 games against
the same version of GNU Go for each time setting. The results are given in
Table 6. For 4 threads, we see that root parallelization and tree parallelization
perform equally well now. Nevertheless, the number of games played and the
number of threads used is not sufficient to give a definite answer which method
is better.

5 Conclusions and Future Research

In this article we discussed the use of leaf parallelization and root parallelization
for parallelizing MCTS. We introduced a new parallelization method, called tree
parallelization. This method uses one shared tree from which games simultane-
ously are played. Experiments were performed to assess the performance of the
parallelization methods in the Go program Mango on the 13×13 board. In order
to evaluate the experiments, we propose the strength-speedup measure, which
corresponds to the time needed to achieve the same strength. Experimental re-
sults indicated that leaf parallelization was the weakest parallelization method.
The method led to a strength-speedup of 2.4 for 16 processor threads. The sim-
ple root parallelization turned out to be the best way for parallelizing MCTS.
The method led to a strength-speedup of 14.9 for 16 processor threads. We saw
that tree parallelization requires two techniques to be effective. First, using local
mutexes instead of global mutex doubles the number of games played per second.
Second, virtual loss increases both the speed and the strength of the program
significantly. By using these two techniques, we obtained a strength-speedup of
8.5 for 16 processor threads.

Despite the fact that tree parallelization is still behind root parallelization, it
is too early to conclude that root parallelization is the best way of paralleliza-
tion. It transpires that the strength of root parallelization lies not only in an
more effective way of parallelizing MCTS, but also in preventing that MCTS
stays too long in local optima. Root parallelization repairs (partially) a problem
in the UCT formula used by the selection mechanism, namely handling the is-
sue of balancing exploitation and exploration. For now, we may conclude that
root parallelization lead to excellent results for a specific time setting and spe-
cific program parameters. However, as soon as the selection mechanism is able
to handle more adequately the balance of exploitation and exploration, we be-
lieve that tree parallelization could become the choice for parallelizing MCTS.

Parallel Monte-Carlo Tree Search 71

Preliminary experiments on the smaller 9×9 board suggest that tree paralleliza-
tion is at least as strong as root parallelization.

In this paper we limited the tree parallelization to one SMP-node. In future
research, we will focus on tree parallelization and determine under which circum-
stances tree parallelization outperforms root parallelization. We believe that the
selection strategy, the time setting, and the board size are important factors.
Finally, we will test tree parallelization for a cluster with several SMP-nodes.

Acknowledgments. The authors thank Bruno Bouzy for providing valuable
comments on an early draft of this paper. This work is financed by the Dutch
Organization for Scientific Research (NWO) for the project Go for Go, grant
number 612.066.409. The experiments were run on the supercomputer Huygens
provided by the Nationale Computer Faciliteiten (NCF).

References

1. KGS Go Server Tournaments, http://www.weddslist.com/kgs/past/index.html
2. Computer Go Server (2008), http://cgos.boardspace.net
3. Cazenave, T., Jouandeau, N.: On the parallelization of UCT. In: van den Herik,

H.J., Uiterwijk, J.W.H.M., Winands, M.H.M., Schadd, M.P.D. (eds.) Proceedings
of the Computer Games Workshop 2007 (CGW 2007), The Netherlands, pp. 93–
101. Universiteit Maastricht, Maastricht (2007)

4. Chaslot, G.M.J.-B., Saito, J.-T., Bouzy, B., Uiterwijk, J.W.H.M., van den Herik,
H.J.: Monte-Carlo Strategies for Computer Go. In: Schobbens, P.-Y., Vanhoof, W.,
Schwanen, G. (eds.) Proceedings of the 18th BeNeLux Conference on Artificial
Intelligence, pp. 83–90 (2006)

5. Chaslot, G.M.J.-B., Winands, M.H.M., Uiterwijk, J.W.H.M., van den Herik, H.J.,
Bouzy, B.: Progressive strategies for Monte-Carlo Tree Search. New Mathematics
and Natural Computation 4(3), 343–357 (2008)

6. Coquelin, P.-A., Munos, R.: Bandit algorithms for tree search. In: proceedings of
Uncertainty in Artificial Intelligence, Vancouver, Canada (to appear, 2007)

7. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search.
In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006.
LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

8. Gelly, S., Wang, Y.: Exploration Exploitation in Go: UCT for Monte-Carlo Go. In:
Twentieth Annual Conference on Neural Information Processing Systems (NIPS
2006) (2006)

9. Gelly, S., Wang, Y.: Mogo wins 19×19 go tournament. ICGA Journal 30(2), 111–
112 (2007)

10. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modifications of UCT with Patterns
in Monte-Carlo Go. Technical Report 6062, INRIA (2006)

11. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artificial Intelli-
gence 6(4), 293–326 (1975)

12. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

http://www.weddslist.com/kgs/past/index.html
http://cgos.boardspace.net

A Parallel Monte-Carlo Tree Search Algorithm

Tristan Cazenave and Nicolas Jouandeau

LIASD, Université Paris 8, 93526, Saint-Denis, France
{cazenave,n}@ai.univ-paris8.fr

Abstract. Monte-Carlo Tree Search is a powerful paradigm for the
game of Go. In this contribution we present a parallel Master-Slave algo-
rithm for Monte-Carlo Tree Search and test it on a network of computers
using various configurations: from 12,500 to 100,000 playouts, from 1 to
64 slaves, and from 1 to 16 computers. On our own architecture we ob-
tain a speedup of 14 for 16 slaves. With a single slave and five seconds
per move our algorithm scores 40.5% against GNU Go, with sixteen
slaves and five seconds per move it scores 70.5%. At the end we give the
potential speedups of our algorithm for various playout times.

1 Introduction

So far, contributions on parallelization in games are mostly about the paralleliza-
tion of the Alpha-Beta algorithm [2]. Here we address the parallelization of the
UCT algorithm (Upper Confidence bounds applied to Trees). This contribution
is an improvement over our previous work on the parallelization of UCT [3],
where we tested three different algorithms. We summarize them below. (1) The
single-run algorithm uses not much communication, it consists in having each
slave computing its own UCT tree independently of the others. When the think-
ing time is elapsed, it combines the results of the different slaves to choose its
move. (2) The multiple-runs algorithm periodically updates the trees with the
results of the other slaves. (3) The at-the-leaves algorithm computes multiple
playouts in parallel at each leaf of the UCT tree.

In this paper we propose a different parallel algorithm that develops the UCT
tree in the master part and performs the playouts in the slaves in parallel, it
is close to the algorithm we presented orally at the Computer Games Work-
shop 2007 and that we used at the 2007 Computer Olympiad in Amsterdam. In
passing we remark that Monte-Carlo Go has recently improved and is now able
to compete with the best Go programs [4,6,7]. We show that it can be further
improved using parallelization.

Section 2 describes related work. Section 3 presents the parallel algorithm.
Section 4 provides experimental results. Section 5 gives a summary of findings.

2 Related Work

In this section we discuss some related work on Monte-Carlo Go. We first explain
basic Monte-Carlo Go as implemented in Gobble in 1993. Then we address the
combination of search and Monte-Carlo Go, followed by the UCT algorithm.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 72–80, 2008.
c© IFIP International Federation for Information Processing 2008

A Parallel Monte-Carlo Tree Search Algorithm 73

2.1 Monte-Carlo Go

The first Monte-Carlo Go program is Gobble [1]. It uses simulated annealing
on a list of moves. The list is sorted by the mean score of the games where the
move has been played. Moves in the list are switched with their neighbor with a
probability dependent on the temperature. The moves are tried in the playouts
in the order of the list. At the end, the temperature is set to zero for a small
number of games. After all playouts have been played, the value of a move is the
average score of the playouts in which the move has been played as first move.
Gobble-like programs have a good global sense but lack tactical knowledge. For
example, they often play useless Ataris, or try to save captured strings.

2.2 Search and Monte-Carlo Go

An effective way to combine search with Monte-Carlo Go has been found by
Rémi Coulom and implemented in his program Crazy Stone [4]. It consists in
adding a leaf to the tree for each simulation. The choice of the move to develop in
the tree depends on the comparison of (1) the results of the previous simulations
that went through this node, with (2) the results of the simulations that went
through its sibling nodes.

2.3 UCT

The UCT algorithm has been introduced recently [8], and it has been applied
with success to Monte-Carlo Go in the program Mogo [6,7] among others.

When choosing a move to explore, there is a balance between exploitation
(exploring the best move so far), and exploration (exploring other moves to see
if they can be proved to be better). The UCT algorithm addresses the explo-
ration/exploitation problem. UCT consists in exploring the move that maximizes

µi + C ×
√

log(games)
childi→games . The mean result of the games that start with the ci

move is µi, the number of games played in the current node is games, and the
number of games that start with move ci is childi → games.

The C constant can be used to adjust the level of exploration of the algorithm.
High values favor exploration and low values favor exploitation.

3 Parallelization

In this section, we present the run-time environment used to execute processes
on a cluster. Then we present and comment the master part of the parallel
algorithm. Eventually, we present the slave part of the parallel algorithm.

3.1 The Parallel Run-Time Environment

To improve search, we choose message passing as parallel programming model,
which is implemented in the standard MPI, also supported by Open MPI [5].

74 T. Cazenave and N. Jouandeau

Open MPI is designed to achieve high performance computing on heterogeneous
clusters. Our cluster is constituted with classical personal computers and with
an SMP head node that has four processors. The resulting cluster is a private
network connected with a TCP Gigabit network. Both communications are done
only with the global communicator MPI COMM WORLD. Each hyper-threaded
computer that allows to work on two threads at once, supports of one to four
nodes of our parallel computer. Each node runs one task with independent data.
Tasks are created at the beginning of the program’s execution, via the use of
the master-slave model. The SMP head node is always the master. All Go Text
Protocol read and write commands are realized from and to the master. Slaves
satisfy computing requests.

3.2 The Master Process

The master process is responsible for descending and updating the UCT tree.
The slaves do the playouts that start with a sequence of moves sent by the
master.

The master starts sending the position to each slave. Then it develops the
UCT tree once for each slave and sends them an initial sequence of moves. Then
it starts its main loop (called MasterLoop) which repeatedly receive from a slave
the result of the playout starting with the sent sequence, update the UCT tree

1 Master ()
2 MasterLoop(board[], color, ko, time);
3 for(s ← 0; s < nbSlaves; s++)
4 send(s, END LOOP);
5 return bestUCTMove ();

6 MasterLoop(board[], color, ko, time)
7 for(s ← 0; s < nbSlaves; s++)
3 send(s, board[], color, ko);
4 seq[s][] ← descendUCTTree ();
5 send(s, seq[s][]);
6 while(moreTime(time))
7 s ←receive();
8 result[s] ←receive();
9 updateUCTTree(seq[s][], result[s]);
10 seq[s][] ← descendUCTTree ();
11 send(s, seq[s][]);
12 for(i ← 0; i < nbSlaves; i++)
13 s ←receive();
14 result[s] ←receive();
15 updateUCTTree(seq[s][], result[s]);

Algorithm 1. Master Algorithm

A Parallel Monte-Carlo Tree Search Algorithm 75

with this result, create a new sequence descending the updated UCT tree, and
sends this new sequence to the slave.

The master finishes the main loop when no more time is available or when the
maximum number of playouts is reached. Before stopping, it receives the results
from all the children that are still playing playouts until no more slave is active.

The master part of the parallel algorithm is given in Algorithm 1.

3.3 The Slave Process

The slave process loops until the master stops it with an END GAME message,
otherwise it receives the board, the color to play, and the ko intersection, and
starts another loop in order to do playouts with this board configuration.

In this inner loop four actions are performed: (1) it starts receiving a sequence
of moves, (2) it plays this sequence of moves on the board, (3) it completes a
playout, and (4) it sends the result of the playout to the master process.

The slave part of the parallel algorithm is given in Algorithm 2.

1 SlaveLoop()
2 id ←slaveId()
3 while(true)
4 if(receive(board[], color, ko) == END GAME)
5 break;
6 state ← CONTINUE;
7 while(state == CONTINUE)
8 state ← SlavePlayout();
9 return;

10 SlavePlayout()
11 if(receive(sequence[]) == END LOOP)
12 return END LOOP ;
13 for(i ← 0; i < sequence.size(); i++)
14 playMove(sequence[i]);
15 result ← playRandomGame();
16 send(id);
17 send(result);
18 return CONTINUE;

Algorithm 2. Slave Algorithm

4 Experimental Results

Tests are run on a simple network of computers running LINUX 2.6.18. The
network includes 1 Gigabit switches, 16 computers with 1.86 GHz Intel dual
core CPUs with 2 GB of RAM. The master process is run on the server which
is a 3.20 GHz Intel Xeon with 4 GB of RAM.

76 T. Cazenave and N. Jouandeau

Table 1. Results against GNU Go for 5 seconds per move

1 slave 40.50%
16 slaves 70.50%

Table 2. Results of the program against GNU Go 3.6

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves 64 slaves

100,000 playouts 70.0% 69.0% 73.5% 70.0% 71.5% 65.0% 58.0%
50,000 playouts 63.5% 64.0% 65.0% 67.5% 65.5% 56.5% 51.5%
25,000 playouts 47.0% 49.5% 54.0% 56.0% 53.5% 48.5% 42.0%
12,500 playouts 47.5% 44.5% 44.0% 45.5% 45.0% 36.0% 32.0%

In our experiments, UCT uses µi + 0.3 ×
√

log(games)
childi→games to explore moves.

The random games are played using the same patterns as in Mogo [7] near
the last move. If no pattern is matched near the last move, the selection of moves
is the same as in Crazy Stone [4].

Table 1 gives the results (% of wins) of 200 9×9 games (100 with black and
100 with white, with komi 7.5) against GNU Go 3.6 default level. The time
limit is set to five seconds per move. The first program uses one slave, it scores
40.5 % against GNU Go. The second program uses sixteen slaves, it scores 70.5
% against GNU Go.

Table 2 gives the results (% of wins) of 200 9×9 games (100 with black and 100
with white, with komi 7.5) for different numbers of slaves and different numbers
of playouts of the parallel program against GNU Go 3.6 default level.

Table 2 can be used to evaluate the benefits from parallelizing the UCT algo-
rithm. For example, in order to see if parallelizing on 8 slaves is more interesting
than parallelizing with 4 slaves, we can compare the results of 100,000 playouts
with 8 slaves (70.0%) to the results of 50,000 playouts with 4 slaves (65.0%). In
this case, parallelization is beneficial since it gains 5.0% of wins against GNU

Go 3.6. We compare 8 slaves with 100,000 playouts with 4 slaves with 50,000
playouts since they have close execution times (see Table 3).

To determine the gain of parallelizing with 8 slaves over not parallelizing at
all, we compare the results of 12,500 playouts with 1 slave (47.5%) to the results
of 100,000 playouts with 8 slaves (70.0%). In this case, the results are quite
convincing. So, our conclusion is that parallelizing is beneficial.

A second interesting conclusion we may draw from the table is that the gain
of parallelizing starts to decrease at 32 slaves. For example 100,000 playouts with
32 slaves wins 65.0% when 50,000 playouts with 16 slaves wins 65.5%. So, going
from 16 slaves to 32 slaves does not help much.

Therefore, our algorithm is very beneficial until 16 slaves, but it is much less
beneficial to go from 16 slaves to 32 or 64 slaves.

Table 3 gives the mean over 11 runs of the time taken to play the first move
of a 9 × 9 game, for different numbers of total slaves, different numbers of slaves

A Parallel Monte-Carlo Tree Search Algorithm 77

Table 3. Time in seconds of the first move

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves 64 slaves

1 slave per computer
100,000 playouts 65.02 32.96 16.78 8.23 4.49 — —
50,000 playouts 32.45 17.05 8.56 4.08 2.19 — —

2 slaves per computer
100,000 playouts — 35.29 17.83 9.17 4.61 3.77 —
50,000 playouts — 16.45 9.23 4.61 2.25 1.74 —

4 slaves per computer
100,000 playouts — — 20.48 13.13 5.47 3.77 3.61
50,000 playouts — — 10.33 6.13 2.82 1.83 1.75

Table 4. Time-ratio of the first move for 100,000 playouts

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves 64 slaves

1 slave per computer 1.00 1.97 3.87 7.90 14.48 — —
2 slaves per computer — 1.84 3.65 7.09 14.10 17.25 —
4 slaves per computer — — 3.17 4.95 11.89 17.25 18.01

Table 5. Time-ratio of the first move for 50,000 playouts

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves 64 slaves

1 slave per computer 1.00 1.90 3.79 7.95 14.82 — —
2 slaves per computer — 1.97 3.52 7.04 14.42 18.65 —
4 slaves per computer — — 3.14 5.29 11.51 17.73 18.54

per computer, and different numbers of playouts. The values were computed on
an homogeneous network of dual cores. The associated variances are very low.

We define the speedup for n slaves as the division of the time for playing the
first move with one slave by the time for playing the first move with n slaves.

Table 4 gives the speedup for the different configurations and 100,000 play-
outs, calculated using Table 3. Table 5 gives the corresponding speedups for
50,000 playouts. The speedups are almost linear until 8 slaves with one slave per
computer. They start to decrease for 16 slaves (the speedup is then roughly 14),
and stabilize near to 18 for more than 16 slaves.

A third conclusion we may draw from these tables is that it does not make
a large difference running one slave per computer, two slaves per computer or
four slaves per computer (even if processors are only dual cores).

In order to test if the decrease in speedup comes from the client or from the
server, we made multiple tests. The first one consists in not playing playouts in
the slaves, and sending a random value instead of the result of the playout. It
reduces the time processing of each slave to almost zero, and only measures the
communication time between the master and the slaves, as well as the master
processing time.

78 T. Cazenave and N. Jouandeau

Table 6. Time in seconds of the first move with random slaves

1 slave 2 slaves 4 slaves 8 slaves 16 slaves 32 slaves

1 slave per computer
100,000 playouts 25.00 12.50 6.25 4.44 4.10 —

2 slaves per computer
100,000 playouts — 12.49 6.94 4.47 4.48 3.93

4 slaves per computer
100,000 playouts — — 6.26 4.72 4.07 3.93

Table 7. Time in seconds of the random master

100,000 playouts 2.60

50,000 playouts 1.30

The results are given in Table 6. We see that the time for random results
converges to 3.9 seconds when running on 32 slaves, which is close to the time
taken for the slaves playing real playouts with 32 or more slaves. Therefore the
3.9 seconds limit is due to the communications and to the master processing
time and not to the time taken by the playouts.

In order to test the master processing time, we removed the communication.
We removed the send command in the master, and replaced the reception com-
mand with a random value. In this experiment the master is similar to the
previous experiment, except that it does not perform any communication. Re-
sults are given in Table 7. For 100,000 playouts the master processing time is
2.60 seconds, it accounts for 78% of the 3.3 seconds limit we have observed in
the previous experiment.

Further speedups can be obtained by optimizing the master part, and from
running the algorithm on a shared memory architecture to reduce significantly
the communication time.

Table 8 gives the time of the parallel algorithm for various numbers of slaves,
with random slaves and various fixed playout times. In this experiment, a slave
sends back a random evaluation when the fixed playout time is elapsed. The
first column of the table gives the fixed playout time in milliseconds. The next
columns gives the mean time for the first move of a 9 × 9 game, the numbers
in parentheses give the associated variance, each number corresponds to ten
measures.

We see in Table 8 that for slow playout times (greater than two milliseconds)
the speedup is linear even with 32 slaves. For faster playout times the speedup
degrades as the playouts go faster. For one millisecond and half a millisecond, it
is linear until 16 slaves. The speedup is linear until 8 slaves for playout time as
low as 0.125 milliseconds. For faster playout times it is linear until 4 slaves.

Slow playouts policies can be interesting in other domains than Go, for ex-
ample in General Game Playing. Concerning Go, we made experiments with a
fast playout policy, and we succeeded parallelizing it playing multiple playouts

A Parallel Monte-Carlo Tree Search Algorithm 79

Table 8. Time of the algorithm with random slaves and various playout times

time 1 slave 4 slaves 8 slaves 16 slaves 32 slaves

10 1026.8 (6.606) 256.2 (0.103) 128.1 (0.016) 64.0 (0.030) 32.0 (0.020)

2 224.9 (0.027) 56.3 (0.162) 28.1 (0.011) 14.0 (0.005) 7.0 (0.002)

1 125.0 (0.081) 31.2 (0.006) 15.6 (0.001) 7.8 (0.006) 4.3 (0.035)

0.5 75.0 (0.026) 18.8 (0.087) 9.4 (0.001) 4.8 (0.034) 4.0 (0.055)

0.25 50.0 (0.005) 12.5 (0.024) 6.2 (0.001) 4.1 (0.019) 3.9 (0.049)

0.125 37.5 (0.021) 9.4 (0.001) 4.7 (0.007) 4.1 (0.222) 3.9 (0.055)

0.0625 25.0 (0.012) 6.6 (0.013) 4.4 (0.013) 4.0 (0.023) 3.8 (0.016)

0.03125 25.0 (0.007) 6.3 (0.004) 4.5 (0.110) 4.2 (0.0025) 4.0 (0.054)

0.01 25.0 (0.007) 6.3 (0.004) 4.5 (0.110) 4.5 (0.025) 4.0 (0.054)

Table 9. Results of the 8-slaves program against 16-slaves program

8-slaves with 50,000 playouts against 16-slaves with 100,000 playouts 33.50%
8-slaves with 25,000 playouts against 16-slaves with 50,000 playouts 27.00%
8-slaves with 12,500 playouts against 16-slaves with 25,000 playouts 21.50%

at each leaf. For 19× 19 Go, playouts are slower than for 9× 9 Go, therefore our
algorithm should better apply to 19 × 19 Go.

The last experiment tests the benefits of going from 8 slaves to 16 slaves
assuming linear speedups. Results are given in Table 9. There is a decrease in
winning percentages as we increase the number of playouts.

5 A Summary of Findings

We have presented a parallel Monte-Carlo Tree Search algorithm. Experimental
results against GNU Go 3.6 show that the improvement in level is efficient until
16 slaves. Using 16 slaves, our algorithm is 14 times faster than the sequential
algorithm. On a cluster of computers the speedup varies from 4 to at least 32 de-
pending on the playout speed. Using 5 seconds per move the parallel program im-
proves from 40.5% with one slave to 70.5% with 16 slaves against GNU Go 3.6.

References

1. Brügmann, B.: Monte Carlo Go. Technical report, Physics Department, Syracuse
University (1993)

2. Campbell, M., Hoane Jr., A.J., Hsu, F.-h.: Deep Blue. Artifial Intelligence 134(1-2),
57–83 (2002)

3. Cazenave, T., Jouandeau, N.: On the parallelization of UCT. In: Computer Games
Workshop 2007, Amsterdam, The Netherlands, June 2007, pp. 93–101 (2007)

4. Coulom, R.: Efficient selectivity and back-up operators in Monte-Carlo tree search.
In: CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2006)

80 T. Cazenave and N. Jouandeau

5. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, pp. 97–104 (September 2004)

6. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: ICML, pp.
273–280 (2007)

7. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with patterns in
Monte-Carlo Go. Technical Report 6062, INRIA (2006)

8. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

Using Artificial Boundaries in the Game of Go

Ling Zhao and Martin Müller

Department of Computing Science, University of Alberta,
Edmonton, AB, Canada, T6G 2E8
{zhao,mmueller}@cs.ualberta.ca

Abstract. Local search in the game of Go is easier if local areas have
well-defined boundaries. An artificial boundary consists of temporarily
added stones that close off an area. This paper describes a new gen-
eral framework for finding boundaries in a way such that existing local
search methods can be used. Furthermore, by using a revised local UCT
search method, it is shown experimentally that this framework increases
performance on local Go problems with open boundaries.

1 Introduction

A local problem in Go assumes that (1) a goal defined on a closely related area
is independent from the rest of the board, and (2) local search can be performed
within this area in order to find the best moves for the goal. For example, such
goals can be life and death of a group, connection of two blocks, or expansion of
territory.

When local areas are not closed off, soft boundaries, which may contain empty
points, have been used in many Go programs to define local Go problems. A soft
boundary only defines the area relevant for the local problem. However, empty
points on the boundary cause difficulties for local search. Some search extensions
such as quiescence search may go beyond such a boundary on a contingency
basis [1,2]. No general methods to define good soft boundaries for local problems
have been found yet. A too tight boundary may make originally safe stones look
dead due to reduced eye space, and a too loose one might make the local problem
too big to solve in a reasonable time.

Some well-defined search problems such as capturing races [9], tsumego [7,12],
and safety of territory [10] require a hard boundary consisting only of safe stones
(there are certain extensions to allow external liberties). A hard boundary en-
sures that the local area is surrounded completely by safe stones. However, this
happens rarely in real Go games, typically only in a very late phase of a game.

If a local area does not have a hard boundary, local search has to decide how
to deal with points on the boundary of the area which have unknown safety
status. By default, any blocks connected to an empty point or a stone of the
same color on the boundary would be considered safe, since local search cannot
go beyond the boundary, and any stones not killed at the end of local search are
assumed safe. This naive approach does not work well in practice.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 81–91, 2008.
c© IFIP International Federation for Information Processing 2008

82 L. Zhao and M. Müller

Original position. Local group stones are marked by �.

Modified position with artificial boundary added. The boundary is marked by ×.
Shaded stones are added as an artificial boundary.

Fig. 1. Example of an artificial boundary

One solution to this problem is to temporarily add stones to the boundary in
order to convert a soft boundary to a hard one by occupying all empty boundary
points, or at least to reduce the number of empty points on a boundary as much
as possible. Local search can be performed on this modified local problem with
the assumption that all stones on the boundary are safe. After the search is
finished, the added stones are removed to restore the original state. Figure 1
shows an example. To the authors’ knowledge, this concept of artificial boundary
is novel.

Artificial boundaries provide a general framework for utilizing existing local
search methods that depend on a fixed, well-defined boundary. They can be used
with traditional mini-max search, df-pn search [6], or UCT search [8]. In our ex-
periments, we have successfully incorporated a local UCT search method into the
artificial boundary framework to solve local groupproblemswith openboundaries.

The remaining part of this paper is organized as follows. Section 2 describes the
methods to find boundaries for a local area, and generate an artificial boundary
if necessary. Section 3 introduces a revised local UCT search method designed to

Using Artificial Boundaries in the Game of Go 83

work with artificial boundaries. Section 4 presents the experimental results, and
Sect. 5 concludes the paper and discusses some possible future improvements.

2 Boundary and Artificial Boundary

In this section, we consider the following boundary problem in Go. Given a set of
points and a goal related to it, find a boundary to surround the points such that
the best moves for the goal can be found by a local search within the boundary.
Stones added as an artificial boundary are assumed safe.

Figure 2 presents an algorithm FindBoundary() for finding a boundary for a
set of points S. The method relies on an oracle such as an existing Go program
that classifies groups and identifies their safety status.

1. // Input: S (point set)
2. // Output: OB, AB, EB (occupied, artificial, and empty boundaries)
3. // Preset parameters: InsidePointsLimit, RoundLimit

4. // BlockAt(p) returns the block which the occupied point p belongs to
5. FindBoundary(S, &OB, &AB, &EB)
6. {
7. I = φ; round = 0; // I: inside points, round: expansion round
8. while (Size(I) ≤ InsidePointsLimit)
9. {

10. S′ = S; round++;
11. Expand(S); // expand S outwards once in 4 directions
12. Se = S - S′; // expanded points
13. if (IsEmpty(Se)) break;
14. foreach (p in Se) // examine every point in Se

15. {
16. if (Occupied(p) && InSafeGroup(p, &group))
17. OB[group.Color()] += p; // to occupied boundary
18. else if (NotOccupied(p) && InAtari(BlockAt(p)))
19. I += BlockAt(p); // to inside points
20. else if (NotOccupied(p) && InSafeGroup(p, &group)
21. && round ≥ RoundLimit

22. && NotAdjacentToStonesIn(I)
23. && NotAdjacentToOppStones(group.Color()))
24. AB[group.Color()] += p; // to artificial boundary
25. else I += p; // to inside points
26. } // foreach
27. } // while
28. EB = FindEmptyBoundary(I); // to empty boundary
29. VerifyBoundaries(&OB, &AB, &EB, &I);
30. }

Fig. 2. Procedure to create boundaries

84 L. Zhao and M. Müller

S

I

OB

AB

EB

Fig. 3. Illustration of original area S, inside points I , and boundaries

The sets OB, AB, and EB contain the occupied, artificial, and empty points
of the resulting boundary, respectively. The whole boundary B is represented by
OB ∪ AB ∪ EB. The set of inside points I is situated in the space between the
original area S and the boundary B. S ∪ I contains all the points surrounded by
the boundary B. Their relations are illustrated in Fig. 3. The following subsec-
tions explain technical details of FindBoundary().

2.1 Weak Stones

The fate of a set of points S is related to the fate of neighboring weak stones W
of either color. Although the life and death status of S might not depend on W ,
if S can live independently, the amount of territory to occupy certainly will. Any
weak or unstable stones encountered during the expansion process are added to
the inside points I. Blocks with a small number of liberties are included in I
as well, because sente moves against them may be available and may affect the
result of the original area.

2.2 Distance Conditions

Three distance conditions are enforced for an empty point p in an artificial
boundary AB. First, p must be a minimum distance of RoundLimit (a parame-
ter) away from S (see Line 21 of Fig. 2). This condition guarantees a reasonable
space between the original area and its enclosing boundary. It is designed to pre-
vent the boundary from reducing the eye space too much, and to avoid giving
blocks in S an easy connection to friendly stones on the boundary. The method
also provides a level of fault tolerance in the case of wrong status evaluation of p
by the oracle. Misclassifications on a closer boundary are far more severe than on
a boundary many intersections away. For the same reason, the second condition
enforces that points in AB are never adjacent to stones in I (see Line 22), and

Using Artificial Boundaries in the Game of Go 85

the third condition makes sure no point in AB is adjacent to enemy stones on
the board (see Line 23).

2.3 Expansion Stopping Conditions

In wide open problems, the expansion steps can easily include almost all points
on the board, which contradicts the original purpose of localizing the problem. A
hard limit (InsidePointsLimit) on the number of inside points is used to stop the
expansion (see Line 8). In experiments, 40 seems to work well for local problems
in 19×19 middle-game positions. If an expansion is stopped abruptly, the bound-
ary might contain empty points, and they belong to the empty boundary EB. All
points on EB are assumed to be safe, so any block reaching EB is treated as safe
in the local problem. Figure 4 shows an example of an empty boundary.

An empty boundary models the escape option for a partially enclosed group.
Once it jumps out of the gap represented by the empty boundary, it is assumed
to be safe. If a local search method requires a hard boundary, EB can be filled
by a series of stones of alternating color.

2.4 Boundary Verification

The last step in the algorithm is to verify the boundary. For example, a point that
is originally classified as a boundary point might become an inside point later

Left: Original position. Local group stones are marked by �.
Right: Modified position with artificial and empty boundaries created. The boundary
is marked by ×. Shaded stones are added as an artificial boundary. Empty boundary
is denoted by �.

Fig. 4. Example of an empty boundary

86 L. Zhao and M. Müller

on. Similarly, a point considered as an inside point would become a boundary
point if the expansion stops after the current round finishes. The condition at
Line 23 ensures any artificially added stone has liberties, and thus adding stones
of an artificial boundary is always legal.

3 Local UCT Search

UCT [8] is a Monte-Carlo sampling-based tree search algorithm that has become
the backbone of the current best Go programs [4], and works especially well on
small boards such as 9 × 9. UCT is usually used for global search. The local
UCT search method is based on a standard MoGo-style UCT search [4]. The
following two modifications are made.

1. Moves can only be generated within the area surrounded by the boundary.
Thus random move generation must come from the area, and moves gener-
ated from heuristics such as atari moves or pattern moves need to be verified
before being played out.

2. In global UCT, the evaluation of a terminal position is simply an overall win
or loss. For local problems, the evaluation can be changed in two possible
ways:
(a) keep the win/loss evaluation, but evaluate whether a local goal is fulfilled

or not;
(b) use territory evaluation to measure the percentage of a player’s points

in the local area.

4 Experimental Results

All the experiments below were run on a Linux machine with a single core
3.4GHz Pentium CPU and 512M memory. Due to the stochastic nature of UCT,
all results of local UCT search are the average of 10 runs.

4.1 Testing Local UCT Search – Tsumego

The default setting uses territory percentage to evaluate terminal positions in
local UCT. Like the winning percentage in standard UCT, it is in the range
of [0,1]. The performance of local UCT search is evaluated using a set of 50
tsumego problems created by Thomas Wolf’s GoTools [11]. These problems are
considered easy by brute-force solvers, taking less than one second per problem
with a df-pn-based solver [7]. Local UCT search solves about 30 problems on
average with 80,000 simulations, and it spent roughly 6 seconds per problem on
average. Both win/loss and territorial evaluation yield similar results. The test
set contains many ko fights, which is a disadvantage for purely local UCT search
that lacks knowledge of external ko threats.

Using Artificial Boundaries in the Game of Go 87

4.2 Testing Local UCT Search – Computer Go Game Positions

This test uses a collection of 50 test cases taken from Computer Go matches.
They are all 19 × 19 middle-game full-board positions, and contain interesting
local problems with open boundaries. The test set covers a range of local Go
problems including life and death, connection, expansion, and seki problems.
The test set can be found at [14].

The default settings in the experiments are as follows: InsidePointsLimit =
40, RoundLimit = 4, 10,000 simulations for local UCT with territorial evalua-
tion being used. The Go program Explorer functions as the oracle to identify
groups and estimate their status. Explorer is set to Level 1 which uses mainly
static evaluation and no goal-directed search.

Average measurements over the 50 test cases are as follows: the size of S is
17.5, the size of I is 38.4, the whole area S ∪ I ∪ B has a size of 77.4, and the
number of empty points in the whole area is 38.8. The boundary length is 21.5,
with 50.3% occupied, 32.2% artificial boundary, and 17.5% empty boundary.
Artificial boundary helps to enclose 28 originally open local problems completely,
and 22 problems still have empty boundaries present. There are 6 problems that
have no artificial boundary at all.

For comparison purposes, we use the Go programs Explorer and GNU Go

3.6 [5] in their default settings. They both have special commands to restrict gen-
erated moves to a given list of points. The whole area enclosed by the boundary
computed by our program is used to form such a restricted point list.

AB+UCT is the program that uses both an artificial boundary and local UCT
search. To measure AB+UCT against similar approaches, we use two extreme
settings on local UCT for comparisons. NOAB+UCT measures how the program
performs with artificial boundary disabled, but moves are still restricted within
a certain area. It can be viewed as using the FindBoundary() procedure in Fig. 2
with RoundLimit set to infinity, so that no artificial boundary is generated when
a boundary is created to surround a local area. NOAB+GUCT is the setting
where UCT runs simulations on the whole board if no hard boundary can be
found, but the evaluation of terminal positions is based on the territory score of
the original area, not the full board. It is done by setting both RoundLimit and
InsidePointsLimit to infinity in FindBoundary().

Table 1 below shows the results of solving local problems from 5 different
approaches. Default settings were used, and the results were averaged over 10
runs. The AB+UCT approach had a comparable performance with GNU Go,

Table 1. Results of solving 50 local problems

Program #Solved Solved % time (sec)

AB+UCT 40.4 80.8% 87.6
NOAB+UCT 36.9 73.8% 95.3

NOAB+GUCT 35.3 70.6% 462.6
Explorer 28 56.0% 453.4
GNU Go 43 86.0% 183.8

88 L. Zhao and M. Müller

Local group stones are marked with � with black to play. The best move and the move
preferred by local UCT are marked with ◦ and × respectively.

Fig. 5. Example of a failed case

but it spent significantly less time. The table also demonstrates that the artificial
boundary has a positive impact on localizing the problem, which in turns helps
to make the problem solvable by local UCT.

In the experiments, 16 problems were always solved, but there were no prob-
lems unsolved by all approaches. For AB+UCT, 4 problems failed consistently,
and there were a total of 19 problems that failed in the 10 runs. For NOAB+UCT
however, 7 problems always failed (including the 4 problems that always failed
in AB+UCT), and 21 problems failed in some run. Of the 4 always failed cases
in the AB+UCT experiment, one could be solved when the number of simu-
lations is over 40,000, and two problems could be solved when the parameter
InsidePointsLimit is increased to 50 and 70 respectively. For the remaining
problem, as shown in Fig. 5, local UCT could never find the optimal move
within 80,000 simulations.

The number of simulations has great impact on the strength of UCT. Figure 6
shows a parameter study varying the number of simulations. Since NOAB+GUCT
takes too much time, it is not a practical method and was not included for this
experiment. According to the first graph in Fig. 6, the number of simulations is
closely tied to the strength of the program. An increase of simulations almost
always results in an increase of the performance. In the case of AB+UCT, the
increase became much less when the number of simulations reached 10,000. The
performance also stabilized after that data point, where the standard deviations
of the number of solved cases were below 1.2. The second graph in Fig. 6 clearly
shows that AB+UCT spent negligible time creating the boundary, and the time
it used was almost linear with the number of simulations in local UCT.

Experiments were run to determine the parameters InsidePointsLimit and
RoundLimit in Fig. 2, and the results are summarized in Table 2. An increase
of InsidePointsLimit or RoundLimit results in the increase of the area the
boundary encloses, and as a result, local UCT spends more time if the number
of simulations is fixed. For parameter InsidePointsLimit, values greater than

Using Artificial Boundaries in the Game of Go 89

 25

 30

 35

 40

 45

 50

 0 10000 20000 30000 40000 50000 60000 70000 80000

N
um

be
r

of
 p

ro
bl

em
 s

ol
ve

d

Number of simulations

AB+UCT
NOAB+UCT

GNUGo

 0

 200

 400

 600

 800

 1000

 0 10000 20000 30000 40000 50000 60000 70000 80000

S
ol

vi
ng

 ti
m

e

Number of simulations

AB+UCT
NOAB+UCT

GNUGo

Fig. 6. Results of local problems w.r.t. the number of simulations

Table 2. Experiments on InsidePointsLimit and RoundLimit

Limit 10 20 30 40 50 60 70 80 90 100

#Solved 26.2 30.4 34.6 40.4 40.0 40.0 40.8 39.4 39.4 40.4

Time (sec) 42.4 58.08 71.7 87.6 97.38 102.76 111.56 115.32 121.04 126.0

Solving results w.r.t. InsidePointsLimit

Limit 1 2 3 4 5 6

#Solved 35.8 36.0 40.6 40.4 36.2 38.0

Time (sec) 68.32 73.26 79.6 87.6 89.9 91.7

Solving results w.r.t. RoundLimit

90 L. Zhao and M. Müller

or equal to 40 yielded a similar performance in terms of the number of problems
solved. For parameter RoundLimit, 3 and 4 achieved the best results.

One interesting discovery is about the area to be scored at terminal nodes of
UCT. There are two choices for defining such an area: the original area S that
denotes the local problem, or the whole local area S ∪ I ∪ B. Our experimental
results on the test set strongly favor the first choice. Using the whole area to
score resulted in a big degradation of performance on the test set. Note that this
option only affects the evaluated area, and moves are generated for the whole
area in both cases. We believe the main reason that evaluating S only works
better on the test set is because the test set is made of partially enclosed local
problems from middle-game positions.

Rapid Action Value Estimation (RAVE) [3] is an enhancement of UCT similar
to the history heuristic that works very well in standard UCT. However, it did
not work with local UCT. The number of unsolved cases increased from 9.6 to
about 15 with 10,000 simulations. This requires further study.

5 Conclusions and Future Work

This paper investigated hard and soft boundaries for local Go problems, and intro-
duced the concepts of occupied boundary, artificial boundary, and empty bound-
ary. We then proposed a new general framework to create artificial boundaries for
local Go problems that are not enclosed completely. From the experimental find-
ings we provisionally may conclude that the artificial boundary framework com-
bined with a local UCT search contributes to the progress of search techniques in
computer Go in the future.

Artificial boundaries help to find a hard boundary to enclose the local prob-
lem completely, or decrease the number of empty points on the boundary to
reduce uncertainty, so that local search methods can be used more effectively. In
the experiments, Explorer was used for group identification and safety eval-
uation, and a local UCT search method was employed to find the best moves.
Although artificial boundaries did have positive impact on the performance in
the experiments, the AB+UCT approach still had many failed cases, since both
Explorer and local UCT are far from perfect. It would be interesting to see
if a domain-independent method can take Explorer’s role in this approach,
so that the artificial boundary framework can be applied in a broader domain.
In addition, we would like to use the framework in conjunction with other local
search methods, such as life-and-death and safety solvers, to conquer problems
with open boundaries.

For future work, we would like to apply this framework to full board positions
using a divide and conquer approach. Then it can utilize the probabilistic combi-
natorial game model [13] to focus on maximizing the overall winning probability
when combining local results.

Acknowledgments. The authors would like to thank Markus Enzenberger for
his implementation of the global UCT search and helpful discussions, and the

Using Artificial Boundaries in the Game of Go 91

anonymous referees for many constructive comments. This research was finan-
cially supported by NSERC, the Natural Sciences and Engineering Research
Council of Canada, the Alberta Ingenuity Fund and iCORE, the Alberta Infor-
matics Circle of Research Excellence.

References

1. Cazenave, T.: A generalized threats search algorithm. In: Schaeffer, J., Müller, M.,
Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 75–87. Springer, Heidelberg
(2002)

2. Fotland, D.: Learning: Chess programs versus Go programs. Computer Go Mailing
List (2004)

3. Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Interna-
tional Conference on Machine Learning (ICML 2007) (2007)

4. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modifications of UCT with patterns
in Monte-Carlo Go. Technical Report 6062, INRIA (2006)

5. GNU Go webpage, http://www.gnu.org/software/gnugo/
6. Kishimoto, A., Müller, M.: Df-pn in Go: An application to the one-eye problem. In:

Advances in Computer Games, vol. 10, pp. 125–141. Kluwer Academic Publishers,
Dordrecht (2003)

7. Kishimoto, A., Müller, M.: Search versus knowledge for solving life and death
problems in Go. In: Twentieth National Conference on Artificial Intelligence (AAAI
2005), pp. 1374–1379 (2005)

8. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

9. Müller, M.: Race to capture: Analyzing semeai in Go. In: Game Programming
Workshop in Japan 1999, vol. 99(14). IPSJ Symposium Series, pp. 61–68, Tokyo,
Japan (1999)

10. Niu, X., Müller, M.: An improved safety solver for computer Go. In: van den Herik,
H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 97–112.
Springer, Heidelberg (2006)

11. Wolf, T.: Gotools webpage, http://lie.math.brocku.ca/GoTools/
12. Wolf, T.: Forward pruning and other heuristic search techniques in tsume Go.

Special issue of Information Sciences 122(1), 59–76 (2000)
13. Zhao, L., Müller, M.: Solving probabilistic combinatorial games. In: van den Herik,

H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M(J.) (eds.) CG 2005. LNCS, vol. 4250,
pp. 225–238. Springer, Heidelberg (2006)

14. Zhao, L., Müller, M.: Artificial boundary test set for Go (2008),
http://www.cs.ualberta.ca/∼games/go/abtest.zip

http://www.gnu.org/software/gnugo/
http://lie.math.brocku.ca/GoTools/
http://www.cs.ualberta.ca/~games/go/abtest.zip

A Fast Indexing Method for Monte-Carlo Go

Keh-Hsun Chen, Dawei Du, and Peigang Zhang

Department of Computer Science, University of North Carolina at Charlotte,
Charlotte, NC 28223, USA

{chen,ddu,pzhang1}@uncc.edu

Abstract. 3×3 patterns are widely used in Monte-Carlo (MC) Go pro-
grams to improve the performance. In this paper, we propose a direct
indexing approach to build and use a complete 3×3 pattern library. The
contents of the immediate 8 neighboring positions of a board point are
coded into a 16-bit string, called surrounding index. The surrounding
indices of all board points can be updated incrementally in an efficient
way. We propose an effective method to learn the pattern weights from
forty thousand professional games. The method converges faster and per-
forms equally well or better than the method of computing “Elo ratings”
[4]. The knowledge contained in the pattern library can be efficiently ap-
plied to the MC simulations and to the growth of MC search tree. Testing
results showed that our method increased the winning rates of Go In-

tellect against GNU Go on 9× 9 games by over 7% taking the tax on
the program speed into consideration.

1 Introduction

The positional evaluation difficulty and the large branching factor have made Go
the most challenging board game for AI research. MC tree search with the UCT
algorithm [5,7] is the most effective approach known today in playing Go by a
computer. Pattern knowledge is proven to be very helpful in both classical Go
programs and MC Go programs. Almost all Go programs deal with patterns in
some form. Several efforts on automatic local Go pattern generation and learn-
ing research have been made [1,2,8,9]. They typically concentrated on dealing
with good/urgent patterns and ignored the vast majority other patterns. Most
of those pattern libraries are intended to be used directly by the move decision
of the actual program. However, they cannot provide sufficiently fast access for
the MC simulation routines. To improve the quality of the simulation in MC
Tree Search, Coulom [4] used an “Elo rating” computation approach to obtain
the relative weights of different features of the candidate moves. Moreover, Gelly
and Silver significantly improved the performance of the UCT algorithm [5,7] by
combining online and offline knowledge [6]. In this paper, we perform offline pat-
tern mining from forty thousand professional Go game records to create libraries
of weights/urgencies of all local patterns in Go under a given restricted template,
with 3 × 3 being the initial template size. Since we intend to use these weights
in Monte-Carlo simulations, the pattern matching speed needs to be extremely

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 92–101, 2008.
c© IFIP International Federation for Information Processing 2008

A Fast Indexing Method for Monte-Carlo Go 93

fast. We design a direct indexing approach to access the weight information.
The surrounding index of each board point is updated incrementally as moves
are executed. We start by computing the adoption ratios of surrounding in-
dices through processing forty thousand professional 19 × 19 Go game records.
These pattern adoption ratios, taking rotations and symmetries into consider-
ation, serve as the initial pattern urgency estimates. The pattern urgencies, or
weights, are computed through additional iterations of non-uniform adoption
rewards based on the urgency estimation values in the previous iteration of the
competing points until the sequence of values converge. These weights are used
in the MC simulations and in guiding the growth of the MC search tree. Testing
results showed that this approach increased the winning rates of Go Intellect

against GNU Go in 9 × 9 games by about 7.5% after the adjustment on the
tax to the program speed due to the extra processing on the surrounding index
information.

In Sect. 2, we introduce our surrounding index scheme. Sections 3 and 4
discuss details of our pattern mining. Section 5 shows the top patterns learned.
Our method is compared with Coulom’s computing “Elo ratings” method [4]
in Sect. 6. We show how the new pattern knowledge is used in simulations in
Sect. 7 and in guiding MC tree search in Sect. 8. Section 9 presents experimental
results demonstrating the merits of the surrounding indexed weights. In Sect.
10, we discuss surrounding indices for some larger pattern templates. Section 11
concludes the paper with work in progress and future work.

2 Surrounding Index

Our goal is to create libraries of weights/urgencies of all local patterns in Go
under a given restricted template with fast direct indexing access, so we can use
the information to improve the play-outs and to help guiding the growth of the
MC search tree. We implemented it first for a 3 × 3 pattern template. We use
two bits to code the contents of a board point: empty (00), black (01), white
(10), or border (11). The immediate surrounding pattern of a board point is a
sequence of 8 2-bit codes from the north neighbor, the northeast diagonal, the
east neighbor, etc., to the northwest diagonal, which can be coded as a 16-bit
binary string called surrounding index (SI). After initialization, the surrounding
indices of all board points can be updated incrementally as moves are executed.
When a stone is added, it only affects the surrounding indices of its 8 immediate
neighbors. For each of the 8 neighbors, the updating involves changing certain
two 0-bits (empty) to the code for the color of the new stone. Similarly, when
a stone is removed, certain 2 bits, coding the old color, will be reset to 00. We
are only interested in the surrounding indices of empty board points, but we
have to keep track of the surrounding indices of all board points since stones
could be captured and their points become available empty points thereafter.
The above updating can be implemented efficiently in the program’s execute
move and undo move routines with just a small overhead, 8% in our case, on
the processing time. The above indexing framework can be extended to any

94 K.-H. Chen, D. Du, and P. Zhang

local pattern template. For example, we have also created 24-bit surrounding
indices for neighbors within Manhattan distance 2. The time cost for updating
surrounding indices increases only linearly to the template size. The resource
bottleneck is the exponential memory space requirement, because we need to
keep track of arrays of size 22s where s is the number of neighboring points
in the template. In the next section, we discuss calculating adoption ratios for
surrounding indices.

3 Adoption Ratios

We start our pattern-mining procedure by obtaining the adoption ratios for each
possible surrounding index (local pattern) from professional Go game records.
We use two arrays NuOccurrences[] and NuAdoptions[], both indexed by a
surrounding index and initialized to 0. We put all game records to be processed
in one directory, then load and process them one at a time. For each game
record, we step through the moves played one move at a time with surround-
ing indices automatically updated. We compute the initial adoption ratios from
black’s point of view. So if black is to play, we increment NuOccurrences[i] by
1 for all surrounding indices i of legal points of the current board configuration
and increment NuAdoptions[j] by one for the surrounding index j of the move
chosen in the record. If White is to play, all the indices go through a procedure
flipBW, which produces the corresponding surrounding index with black and
white reversed.

We normally give capturing related moves higher weights than surrounding
indexed weights in the overall move ranking. We do not count into the adoption
ratio statistics if the chosen move is a capturing move, atari move, or an extension
or connection move after a block being ataried, since those moves were played
due to the urgencies of capture/escape, not because of the urgencies of the
local patterns. We do not want our pattern weights to be distorted by capturing
related moves, the small 3×3 template cannot tell whether it is a capture/escape
case or not. Our MC simulation procedure treats capture/escape separately with
higher priority before performing selection by surrounding indexed weights.

Each pattern has 8 equivalent patterns under rotations and symmetries (not
counting the color flipping). We use a loop to add counts from equivalent patterns
together to be shared by all patterns (surrounding indices) in the same equivalent
class. The adoption ratio of a pattern is calculated as the number of adoptions
divided by the number of occurrences of the corresponding surrounding index:

AdoptionRatio[i] = NuAdoptions[i]/NuOccurrences[i] for each SI i . (1)

The adoption ratios form our initial weights.

4 Pattern Weights

A pattern (surrounding index) with high adoption ratio is not necessarily an
urgent pattern. It may occur when the competing patterns on the board are

A Fast Indexing Method for Monte-Carlo Go 95

all weak, then a number of adoptions is registered, but they may not be really
urgent. In contrast when the board has several urgent patterns occurring, we
wish to award the adopted pattern a higher credit for “beating” those tough
competitions. So, we do a second pass, this time for each pattern selected to
play according to the game record. Its weight is increased by the adoption ratios
of those other patterns that occurred in the board configuration, which means
when the move with SI i is selected to play:

Wnew(i) =
∑

j �=i and j occurs on the board
Wold(j) (2)

At the end of a pass, we share weights within an equivalent class of patterns.
Each member obtains the sum of the pattern weights within the class. After each
weight is divided by the pattern equivalent class occurrence count, we normalize
the new weights by making their total 64K. We repeat this process many times
until the weights converge, i.e., they do not change much from one iteration to
the next. We view a weight distribution over all surrounding indices as a point in
the 22s dimensional space. When the distance d =

√∑
i(wi − w′

i)2 between two
consecutive passes is less than a threshold (which we set to 1), where wi and w′

i

are the weights of surrounding index i at two consecutive passes, the weights are
considered stabilized. We apply this method to the collection of forty thousand
professional games. After initializing the weights to adoption ratios, it took just
4 iterations for the weights to converge. Each iteration took about 20 minutes.
Experiments showed the converged weights perform better than the original
adoption ratios.

5 Top Patterns

Our pattern mining calculates the weights of all 64K surrounding indices. Among
them, only 7857 indices correspond to legal 3×3 patterns with an empty point in
the center. We have 38 indices with the center point away from the edges of the
board, 35∗4 indices with the center on line 1 & not a corner, and 33∗4 indices for
the corners. 7208 of the 7857 legal surrounding indices actually occurred in the
forty thousand professional games. The 649 legal surrounding indices that never
occurred in the 40 thousand professional games were given a very low default
weight.

Figure 1 shows the top 10 pattern groups of highest weights. Only one rep-
resentative is listed from any equivalent pattern group. The top row shows the
10 patterns with highest adoption ratios. The leftmost one on the top row has a
slightly higher than one forth adoption ratio in the professional game set. After
four iterations, the final top ten patterns are on the bottom row. The high-
est weight pattern, the leftmost pattern in Fig. 1, has a weight 122.5; the 10th

highest weight pattern, the rightmost pattern in Fig. 1 has a weight 72.39.
In the next section, we shall consider an alternative way to learn the pattern

weights.

96 K.-H. Chen, D. Du, and P. Zhang

6 “Elo Ratings”

In our model for computing “Elo ratings”, the surrounding indices that occurred
on a board configuration are considered in a multi-way competition and the SI
of the move played in the game by the professional player is the winner of the
competition. We do not have the complex situation of teams of features as in
Coulom’s paper [4] to deal with. The minorization-maximization formula in [4]
can now be simplified to the following weight updating formula.

Wnew(i) =
NuAdoptions(i)

P
i occurs on the board

1P

p is a legal point on the board Wold(SI(p))

(3)

Originally we assume all SI having a weight 1. Then the first-round calcula-
tion computes

Wnew(i) = NuAdoptions(i)
P

i occurs on the board 1/Number legal moves on the board

The top 10 of this set of weights are shown on the top row of Fig. 2. It took 9 ad-
ditional iterations to converge (weight vector distance to the weight vector from
previous run less than 1). The time needed for each iteration is about the same
as our method. The final top-10 patterns are shown in the bottom row of Fig. 2.

Comparing Figs. 1 and 2, we can see that the two sets of leading patterns
are surprisingly similar. The two sets of the initial top 10s have 9 patterns in
common and the two sets of the final top 10s are the same, just with orders
slightly rearranged.

Fig. 1. The 10 patterns with highest weights/urgencies based on the 8 immediate sur-
roundings. We list one representative from an equivalent class. It took only 4 iterations
to converge. All patterns are 3× 3 with Black to play in the center X. The weights are
marked above the patterns. The dark shades mark the border, which means that the
two black stones just above the dark shades are on line 1.

A Fast Indexing Method for Monte-Carlo Go 97

Fig. 2. Calculating “Elo rating” takes 9 iterations to converge

Before we compare their performances in Sect. 9, we shall discuss how we
use the surrounding indexed weights in Go Intellect. We discuss their use in
simulation play-outs in Sect. 7 and in guiding the MC Tree Search in Sect 8.

7 Monte-Carlo Simulation

We explored many different ways to use these local surrounding weights in the
simulations for Monte-Carlo Tree Search. We found that the following priority
order on move generators performed the best.

1. Handling urgent capture and escape.
2. Play urgent pattern move near the last opponent move.
3. Play based on the weights indexed by the surrounding indices.
4. Random sweeping with neighborhood replacement.

Urgent capture and escape is our top priority item in the simulation. The
capture/escape situation is checked only for the last move itself and its adjacent
opponent blocks. Pseudo ladders are performed to determine the urgencies. The
second priority is given to the urgent pattern moves near the last move. The third
priority relies on our fast indexing method (see below). The random sweeping
is the last resort in generating a move. It randomly picks a board point as the
starting point, and then sequentially scans every empty point encountered and
plays at the first legal point encountered. The neighborhood replacement allows
it to replace an obvious bad move by a more reasonable one, such a move on an
empty neighbor or diagonally legal point. For details of these move generators, we
refer to [3]. Now, we shall discuss the move generator based on the surrounding
indexed weights. First a linear search is performed to find the highest weight for
legal points on the board. If the highest weight is less than the cutoff weight of
(4) then go to generator 4. Otherwise we use the 90% of the highest weight as a
threshold. Subsequently, we select up to 10 candidate moves. If the highest weight
is less than 10, up to 10 empty moves are added as candidates. Then we randomly

98 K.-H. Chen, D. Du, and P. Zhang

pick a move from the set of candidates. If an empty move is picked then generator
4 will generate a move. The cutoff weight, the threshold, and the limited number
of candidate moves were determined after tedious experiments and tuning over
time. It is very important to append empty choices to increase the randomness.
Without empty choices, the program performance drops significantly.

8 Monte-Carlo Tree Search

We use the surrounding indexed weights in guiding the MC Tree Search in two
ways: (1) as contributing to move ordering and (2) as a prior knowledge [6].

When we expand a node in the MC search tree it is desirable to add child
nodes in priority order. Capturing and local urgent patterns can select the top
few children. After that, the surrounding indexed weights play a deciding role in
ordering the rest moves.

We also use surrounding indexed weights along with weights from captur-
ing/escape and urgent patterns around last move to form prior knowledge about
a move [6]. We modified the UCT algorithm as follows. In stead of selecting
the child node i maximizing wi/ni +

√
lg(p)/(C ∗ ni) where wi is the number

of winning simulations passing through child node i, ni is the total number of
simulations passing through child node i, p is the total number of simulations
passing through the parent node, and C is a constant (we use 5), we select the
child node i maximizing (wi + nq)/(ni + np) +

√
lg(p)/(C ∗ ni).

Intuitively, based on prior knowledge we treat the child node i as if there were
np extra games already played and winning nq of them. After some experiments,
we selected 30 to be np. Let nq be dynamically determined by (1) the grandparent
winning rates, (2) the parent winning rates, and (3) the relative weight of the
move to the max weight among all the siblings.

9 Experimental Results

We ran three performance comparison tests against GNU Go 3.6 on three ver-
sions of Go Intellect based on the UCT algorithm with MC Tree Search.

GI0 - using move generators 1, 2, & 4
GIS - using move generators 1, 2, 3, & 4 with the converged weights
GIE - using move generators 1, 2, 3, & 4 with the “Elo ratings”

Each version played at least 1200 9 × 9 games against GNU Go 3.6 level 10
with various upper limits on the number of simulations per move. Adding move
generator 3 slowed down the simulation play-outs by about 28% including the
cost of updating surrounding indices and extra processing cost of move generator
3. We test GI0 with the following number of simulation limits: 12.5K, 50K, 100K,
200K, and 400K. To make it a fair test, we tightened the limits for GIS and
GIE by 28% to the actual settings of 9K, 18K, 36K, 72K, 144K, and 288K,
respectively. Each program played Black half of the times and White the other

A Fast Indexing Method for Monte-Carlo Go 99

Fig. 3. Comparison of the performances of three versions of Go Intellect: (1) GI0
does not use SI, (2) GIS uses SI with weights learned by our algorithm, and (3) GIE
uses “Elo ratings”. We reduced the limit of the number of simulations per move by 28%
in GI1 and GI2 to make it a fair comparison since GIS and GIE need 28% overhead
in keeping track of SI and using its weights. For example, in the first set GIS and GIE
had the limit of the number of simulations per move set at 9000 to compare GI0 with
12,500 simulations per move.

half of the times. We ran our experiments mostly on a 136-node cluster; each
node is a PowerPC G5 at 2.33GHz. Figure 3 compares the performances of the
3 versions of Go Intellect against GNU Go on 9 × 9 games.

The contribution of the surrounding index scheme is significant. It improves
the winning rates against GNU Go in 9 × 9 games by over 7% on average with
the converged weights. Our weights slightly outperform “Elo ratings”, but the
difference is within the margin of statistical error. Therefore, we will say they
perform equally well.

We also tried to use the weights as a probability distribution to pick a move
(semi) randomly. This increased the winning rates on a given limit on the number
of simulations per move, but it further slowed down the simulation speed by
another 50% and it took twice as long to make a move decision.

10 Extended Surrounding Indices

We explored several extensions to the 16-bit surrounding index. One natural
extension is to use the template of all points within a Manhattan distance of
2 (MD2), which add 4 extra points to the pattern template and extend the
surrounding index to 24 bits. We use similar methods to update incrementally
the 24-bit surrounding index of all board points and to compute the indexed

100 K.-H. Chen, D. Du, and P. Zhang

Fig. 4. Top six MD2 patterns. Dark shade marks border.

weights. Figure 4 shows the top 6 MD2 patterns after the weight convergence.
The result was not nearly as good as the simple 16 bit surrounding index. We
then modified the scheme to use the extra 8 bits with 2 bits in a group to code
the number of liberties of an immediate neighbor (00: 1 liberty, 01: 2 liberties, 10:
3 liberties, 11: 4 or more liberties or two solid eyes). If the immediate neighbor is
empty then we use the two bits to code the contents of the board point further
away at MD2. We still could not achieve good results. The reality is that changing
from 16-bit indices to 24-bit indices, the number of indices under consideration
increased 256 fold but we did not have 256 times as many professional games
to process with and to learn from - we only had the same 40 thousand game
records. Each surrounding index has much lower frequency of occurrences, which
makes weight leaning difficult.

We also tried a compromise: a 20-bit surrounding index scheme. Using each
of the extra 4 bits to code the number of the liberties of an immediate neighbor
(1: 4 or more liberties or 2 or more solid eyes, 0 otherwise). If the immediate
neighbor is empty, it indicates whether the further away neighbor is empty or
not. Here, we introduced some weight inference rules. For example, with the
same pattern stone layout, lower number of liberties implies higher urgency. As
a heuristic rule, the higher urgency SI gets to increase its weight by the weight
of the lower urgency SI with the same stone layout. The situation here is not
nearly as sparse as 24 bits. But since it needs to access continuously the liberty
count information, it further slows down the simulation by an additional 25 to
30%. The experimental results still do not compare favorably to those from the
simple 16-bit surrounding index scheme.

11 Conclusion and Future Work

Two lessons learned from the surrounding index project are that in a Monte-
Carlo simulation, (1) simplicity has its merit and (2) randomness is important.
Accessing local Go patterns, learned from professional Go games, through fast
accessing and updating surrounding indexing is an effective way in improving
the strength of MC-Go programs. Testing on a 13 × 13 and a 19 × 19 Go is the
next item on our agenda.

Using the surrounding indexed weights in progressive widening [4] will be
investigated in the near future. Since the surrounding indexed weights provide
reasonable urgency estimates on all legal moves. We could take advantage of it in
the progressive widening scheme that as the number of simulation games passing

A Fast Indexing Method for Monte-Carlo Go 101

through the parent node grows, we increase total child weight limit instead of
total child count limit.

When combined with additional parameters, such as the distance to the board
edge, the stage of the game, the number of liberties of a candidate move, and
the distance to the last move, we can hopefully further unleash the potential
power of the surrounding index scheme. We are accumulating computer testing
games, so in the future we can have a sufficiently large volume of game records
to support a larger indexing scheme.

References

1. Bouzy, B., Chaslot, G.M.J.-B.: Bayesian Generation and Integration of K-nearest
neighbor Patterns for 19 × 19 Go. In: Kendall, G., Lucas, S. (eds.) IEEE 2005
Symposium on Computational Intelligence in Games, Essex, UK, pp. 176–181 (2005)

2. Bouzy, B., Chaslot, G.M.J.-B.: Monte-Carlo Go Reinforcement Learning Experi-
ments. In: IEEE 2006 Symposium on Computational Intelligence in Games, Reno,
USA, pp. 187–194 (2006)

3. Chen, K., Zhang, P.: Monte-Carlo Go with Knowledge-guided Simulations. ICGA
Journal 31(2), 67–76 (2008)

4. Coulom, R.: Computing “Elo Ratings” of Move Patterns in the Game of Go. ICGA
Journal 30(4), 198–208 (2007)

5. Gelly, S., Wang, Y., Munos, R., Teytaud, O.: Modification of UCT with Patterns in
Monte-Carlo Go. Technical Report 6062, INRIA (2006)

6. Gelly, S., Silver, D.: Combining Online and Offline Knowledge in UCT. In: Ghahra-
mani, Z. (ed.) Proceedings of the International Conference of Machine Learning
(ICML 2007), pp. 273–280 (2007)

7. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

8. Silver, D., Sutton, R.S., Müller, M.: Reinforcement Learning of Local Shape in the
Game of Go. In: 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), pp. 1053–1058 (2007)

9. Stern, D., Herbrich, R., Graepel, T.: Bayesian Pattern Ranking for Move Prediction
in the Game of Go. In: Proceedings of the 23rd International Conference on Machine
Learning, Pittsburgh, PA (2006)

An Improved Safety Solver in Go

Using Partial Regions

Xiaozhen Niu and Martin Müller

Department of Computing Science, University of Alberta,
Edmonton, AB, Canada, T6G 2E8

{xiaozhen,mmueller}@cs.ualberta.ca

Abstract. Previous safety-of-territory solvers for the game of Go have
worked on whole regions surrounded by stones of one color. Their appli-
cability is limited to small to medium-size regions. We describe a new
technique that is able to prove that parts of large regions are safe. By
using pairs of dividing points, even huge regions can be divided into
smaller partial regions that can be proven much easier and faster. Our
experimental results show that the new technique significantly improves
the performance of our previous state of the art safety-of-territory solver.
Especially in earlier game phases, the solver utilizing the new technique
outperforms the previous solver by a large margin.

1 Introduction

Evaluating the safety of territories is one of the most important components of a
Go program. The previous work in [4,5,6] introduces several search-based safety-
of-territory solvers that can determine the correct safety status of a given region.
One weakness of the previous solvers is that their applicability is limited to small
to medium-size regions. The reason is that the search space grows exponentially
with region size. In real games, most often a board contains very large regions.
When more and more stones are played, these large regions are gradually divided
into smaller regions. Therefore the safety-of-territory solver can only be applied
in the late stage of a game.

This paper introduces a new technique that can prove the safety of parts of
large regions. By applying a miai strategy to pairs of dividing points, a large
region can be divided conceptually into smaller partial regions. Separate safety
searches can then be performed on each of these smaller partial regions. The
experimental results show that the partial proving module improves the perfor-
mance of a state of the art safety-of-territory solver. Even early in games, when
there are only large regions on the board, the current system can prove the safety
of many partial regions and their surrounding blocks.

The structure of this paper is as follows. Section 2 briefly discusses related
work. Section 3 explains details of the partial proving module. Section 4 discusses
experimental results, and the final section provides conclusions and further re-
search directions.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 102–112, 2008.
c© IFIP International Federation for Information Processing 2008

An Improved Safety Solver in Go Using Partial Regions 103

2 Related Work

There are many successful approaches for safety recognition proposed in the
literature. The classical algorithm due to Benson statically recognizes uncon-
ditionally alive blocks and regions on board [1]. A number of papers address
the question of eye shape of a region surrounded by a single block. Vilà and
Cazenave’s static classification rules evaluate many such regions of size up to
7 points as safe [7]. Dyer’s eye shape library contains eye shapes up to size 7
[2]. Wolf and Pratola extend the analysis to size 11 regions, and compute many
interesting properties of such regions such as ko status [9].

Müller identifies regions that are safe by alternating play [3]. The work intro-
duces the notion of miaipairs for statically proving the safety of regions that can
make two eyes in two independent ways. Van der Werf presents a learning system
for high-accuracy heuristic scoring of final positions in the game of Go [8].

The current work extends the safety solvers described in [4,5]. SAFETY
SOLVER 1.0 is the previously best solver for evaluating the safety of completely
enclosed regions. It can solve regions with size up to 18 empty points in reason-
able time. SAFETY SOLVER 2.0, described in [5], can handle open boundary
regions. Its board partitioning is based on open boundary zones. Its size limi-
tation is similar. The current paper focuses on recognizing safe partial regions
inside large regions with no size limitation.

3 Using Partial Regions for Safety Recognition

This section describes the four major processing steps and the related algorithms
that are implemented to prove partial regions safe.

3.1 Find Dividing Miaipairs

To prove parts of a region R as safe, it must first be divided into reasonable
chunks. A simple miai strategy is utilized for this purpose. A miaipair [3] is a
pair of two empty points inside R, such that the defender playing at either of
these two points would split R into two subregions. A defender miai strategy
applied to these two points forces the defender to occupy at least one of these
points: whenever the attacker plays one point and the other one is still empty,
the attacker is forced to reply there.

This paper focuses on miaipairs containing two adjacent points which are also
adjacent to defender boundary stones. Let L(R) be the set of all splitting points
inside R which are liberties of boundary blocks of the region. In the example
on the left of Fig. 1, L(R) = {c1, e1, f1, j1}. The only miaipair is {e1, f1}. The
black region on the right of Fig. 1 contains two overlapping miaipairs {d1, e1}
and {e1, f1}.

3.2 Dividing a Single Region Using One Miaipair

The simplest approach uses a single miaipair to divide a region R. Figure 2
shows a large black region R with miaipair P = {o1, p1}. By following the miai

104 X. Niu and M. Müller

7
6 � � � �
5 � � � � � � � � �
4 � � � � � � � � � � �
3 � � � � � � �
2 � � � � � �
1 � �

a b c d e f g h j k l m n

7 � � � �
6 � � � �
5 � �
4 � � � � � � �
3 � � � � � � �
2 � � � � � �
1 � � �

a b c d e f g h j k l

Fig. 1. Examples of miaipairs inside black regions

7
6 � � � � � � � � �
5 � � � � � � � � � � � �
4 � � � � � � � � � �
3 � � � � � �
2 � � � � A � � B
1 � � � � �� ��

f g h j k l m n o p q r s t

7
6 � � � � � � � � �
5 � � � � � � � � � � � �
4 � � � � � � � � � �
3 � � � � � �
2 � � � � A � � B
1 � � � � �� ��

f g h j k l m n o p q r s t

Fig. 2. Single region dividing by using miaipair {o1, p1}

strategy, Black can divide R into two subregions, A on the left and B on the
right.

Assume a region R is divided into two open boundary subregions A and B by
a miaipair M = {pA, pB}, such that pA is adjacent to A and pB is adjacent to B.
Local safety searches are performed for A ∪ M and B ∪ M . The safety search in
an open boundary region is similar to the one described in [6], but constrained
by the miai strategy outlined above as follows (shown for A ∪ M).

1. The attacker can select any legal move in A ∪ M , as long as both points in
M are empty.

2. The defender checks whether a forced miai reply exists. If the attacker just
occupied either pA or pB and the other miai point is still open, the defender
immediately replies there.

3. Otherwise, the defender can choose any legal move in A∪{pA} (but not pB).

For example, when searching A in Fig. 2, White as the attacker can select any
move in A as well as both moves from the miaipair {o1, p1}. Black can choose the
same moves except p1. If White plays first at o1 or p1, Black must take the other.
However if Black plays o1 first, the miai strategy is fulfilled and conditions need
not be checked in the future. The move p1 is also removed from White’s options.

The basic algorithm to prove that a dividable single region R is safe by using a
miaipair-constrained safety solver is shown below. The algorithm takes another
parameter S, the set of points (possibly including boundary blocks) previously
shown to be safe by using other regions.

An Improved Safety Solver in Go Using Partial Regions 105

1. Use miaipair M to divide region R into two open boundary subregions A
and B.

2. Run solver for A and compute new set of safe points: newS=solve(A, {M}, S).
3. A was proven safe iff newS �= S.

(a) If newS �= S, then use newS to try to prove subregion B:
S = solve(B, {M}, newS).

(b) If newS = S, then run solver on B: newS = solve(B, {M}, S).
If B is safe, then try to use the newly proven boundary blocks of B to
prove A again: S = solve(A, {M}, newS).

The result can be summarized as follows.

– If both A and B were proven safe, then R and all its boundary blocks are
proven safe.

– Otherwise, if exactly one subregion is proven safe, then that region, its sur-
rounding blocks, and the closer miai point are marked as safe. In the example,
if only A were proven safe, then A, its boundary blocks, and pA = o1, (a
total of 30 points) would be marked as safe.

– If both local searches fail, nothing is proven safe.

For the example in Fig. 2, both sides and therefore the whole region can be
proven safe by our system. In Fig. 3, the original large black region (size: 31) is
divided into two subregions by miaipair {o1, p1}. Only the subregion in the right
corner can be proven as safe. Its territory is marked by S and the safe boundary
block is marked by triangles.

7
6 � � � � �
5 � � � � � � � � � � � � �
4 � � � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � S
2 � � � � � � � S S S S
1 � � S S S S S

a b c d e f g h j k l m n o p q r s t

Fig. 3. Part of region is proven safe

3.3 Dividing a Single Region by Multiple Miaipairs

The basic method of Subsection 3.2 is restricted to single miaipairs within a
region. Regions with multiple miaipairs can potentially be subdivided in many
different ways. The easy case is independent miaipairs, where no two pairs are
adjacent or overlap.

Figure 4 shows an example. The black region R of size 40 contains two in-
dependent miaipairs P1 = {f1, g1} and P2 = {o1, p1} that divide R into three
partial regions, A to the left of P1, B between P1 and P2, and C to the right
of P2. Since B is bounded by two miaipairs, both will be passed to the search

106 X. Niu and M. Müller

8
7 � �
6 � � � � � � � � �
5 � � � � � � � � �
4 � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � �
2 � � � � � � � � � � �
1

a b c d e f g h j k l m n o p q r s t

Fig. 4. First case of using multiple miaipairs together to divide a large region

19 � � � � �
18 � � � � � � � �
17 � � � � � � � � � � � � � � � �
16 � � � � � � � � � � � � �
15 � � � �
14 � � � � � �
13 � � � � �
12 � � � � �
11 � � � � � �
10 � � � � �
9 � � � �
8 � � � � � �
7 � � � � �
6 � � � � �
5 � � � � � �
4 � � � � � � � � � � � � � � �
3 � � � � � � � � � � � � � � � � �
2 � � � � � � � �
1

a b c d e f g h j k l m n o p q r s t

Fig. 5. Using 10 miaipairs to prove safety of a large black region

solve(B, {P1, P2}, S). In general, a partial region bounded by n independent mi-
aipairs is divided into n+1 partial regions that can be searched separately. Every
time a partial region is proven safe, S is updated to include the region and its
safe boundary. Then, subregion searches continue until no further updates can
be made.

Figure 5 shows an extreme case from our test set, a huge black region of size
174. It contains 10 independent miaipairs. No previous search method can prove
its safety. Using only a single miaipair at a time, just two small partial regions
at the ends can be proven safe. The complete method proves the safety of the
whole region.

If miaipairs are adjacent to each other or overlap, they cannot all be used. For
example in the right of Fig. 1, the two miaipairs P1 = {d1, e1} and P2 = {e1, f1},
cannot divide the region into three subregions. In this case the current imple-
mentation first computes clusters of miaipairs which are adjacent or overlapping,

An Improved Safety Solver in Go Using Partial Regions 107

then selects a single pair from each cluster. The selection is originally biased to-
wards miaipairs that minimize the size of the largest subregion, but can be
modified by backtracking if subproblems fail. In this example, miaipair P1 is
chosen first to find the largest possible safe area. If the whole region cannot be
proven as safe by using P1, then other miaipairs in this cluster will be tried.

3.4 Dividing a Merged Region

A set of strongly or weakly related regions can be merged into a large region, as
described in [5]. After dividing a region, the resulting subregions may need to be
merged with their respective strongly or weakly related regions. Figure 6 shows
an example from the test set.

8 � �
7 � � � � � � � �
6 � � � � � � � � � � �
5 � � � � � � � � � � � �
4 � � � � � � � � � � � � �
3 � � � � � � � � � � � �
2 � � � � � � �
1 � � � � �

a b c d e f g h j k l m n o p q

Fig. 6. Dividing a merged region

The original algorithm from [5] merges the regions r1 at a1, r2 at l3, and r3

at m4 into a single region. r1 contains the only miaipair {f1, g1}. The current
algorithm first splits r1 into subregions A on the left and B on the right. At this
point related regions need to be merged. In the example, A has no related regions
and can be tested on its own, but since B is strongly related to subregions r2 and
r3, the (sub)regions B, r1, and r2 are merged into a new partial region for testing.

4 Experimental Results

SAFETY SOLVER 3.0 enhances the previous SAFETY SOLVER 1.0 and SAFE-
TY SOLVER 2.0 with the new partial-region proving module.

There are two test sets for experiments to test the performance of SAFETY
SOLVER 3.0. The first set contains 21 test positions. Each position contains
either a large single region or a large merged region [5]. 17 of these test positions
are taken from master games. The remaining 4 positions were created by the
authors to test extreme cases with many miaipairs. The second test set is the
collection of 67 master games introduced in [6]. The test sets are available at:
http://games.cs.ualberta.ca/go/partial.

All experiments were performed on a Pentium IV/1.7GHz machine with 1 Gb
memory. The following abbreviations for the solvers and enhancements are used
in the text.

http://games.cs.ualberta.ca/go/partial

108 X. Niu and M. Müller

BENSON. Benson’s algorithm, as in [3].
STATIC. Static safety-of-territory solver from [6].
SOLVER 1.0. Search-based safety-of-territory solver as described in [5]. It uses

regions for board partitioning.
SOLVER 1.0 + P. Solver 1.0 + partial-region proving module.
SOLVER 2.0. Open boundary safety-of-territory solver as described in [6].
SOLVER 3.0. Solver 2.0 + partial-region proving module, the full solver.

4.1 Experiment One: Partial Region Solving

The purpose of this experiment is to test the performance improvements of the
partial-region proving module in SOLVER 1.0. Since SOLVER 2.0 uses heuris-
tically computed open boundary zones for board partitioning, many positions in
this experiment cannot be recognized. Therefore SOLVER 2.0 is not compared in
this subsection. For all 21 positions, the time limit is set to 200 seconds per search.

The only test position not solved by SOLVER 1.0 + P is shown in Fig. 7. The
white region (size: 25) can be nicely divided into two small subregions A (size:
11) and B (size: 12) by using miaipair {k19, l19}. However, neither subregion
can be proven safe due to the conservative assumption that no external liberties
of boundary blocks may be used to establish safety. For example, when searching
subregion A on the left, after move sequence (B : k19, W : l19) White’s boundary
block at k18 is considered to be in atari by the solver because the external
liberties at m18 and m19 may not be used. The situation for proving subregion
B is analogous.

For the remaining 20 positions, SOLVER 1.0 + P finds at least some safe par-
tial regions. Most of these 20 positions have size larger than 18 points. SOLVER
1.0 can only prove 4 of them safe within 200 seconds. For a further analysis of
the performance improvements, we divide these 20 positions into three groups.

Group 1 contains the 4 test positions that can be proven safe by both SOLVER
1.0 and SOLVER 1.0 + P. Table 1 compares the solution time and number of
expanded nodes for both solvers. In all 4 positions, the partial-proving module
greatly improves the solver’s performance. For example, Fig. 8 shows Position 21
at the top left corner and Position 11 at the bottom right corner. SOLVER 1.0
+ P is over 61 times faster than SOLVER 1.0. However when solving Position 21
(size: 18), SOLVER 1.0 + P is only 3.3 times faster. The partial-region proving
module first finds the most evenly dividing miaipair {r1, s1}, then performs

19 � �
18 � � � � � � � � � � �
17 � � � � � � � � � � � � � � � � � � �
16 � � � � � � � � � � � � � � �
15

a b c d e f g h j k l m n o p q r s t

Fig. 7. The only position in set 1 that can not be proven safe

An Improved Safety Solver in Go Using Partial Regions 109

Table 1. Comparison of performance improvements

Position SOLVER 1.0 SOLVER 1.0 + P

Name Size Time (Seconds) Nodes Expanded Time (Seconds) Nodes Expanded

No.2 15 8.5 25,993 2.10 1,785

No.8 16 25.55 70,133 1.64 1,752

No.11 18 120.13 236,786 35.7 45,123

No.21 18 156.57 232,332 2.53 3,506

19 � � �
18 � � � � � � � � � �
17 � � � � � � � � �
16 � � � � � � �
15 � � �
14 � � �
13 � � � �
12 � � � �
11 � � �
10 � � � � � � � � �
9 � � �
8 � �
7 � � � � �
6 � � � � �
5 � � � � � � �
4 � � � � � � � � � �
3 � � � � � � � � �
2 � � � � � � � �
1 � � �

a b c d e f g h j k l m n o p q r s t

Fig. 8. Examples from group 1

safety searches to prove the whole region safe in 35.7 seconds. Our conclusion
is that by using the miaipair {b19, c19}the division in Position 21 is quite even,
each partial region has a similar small size. Therefore each local search is very
fast. In contrast, the division in Position 11 is not that even. When using the
most evenly dividing miaipair {p1, q1}, the left and right partial regions have
the sizes of 4 and 12. Therefore the local search in the right partial region still
requires longer time.

Group 2 contains the 6 test positions that can only be proven partially safe by
SOLVER 1.0 + P. The top of Fig. 9 shows a real game position from this group.
The program cannot prove the whole black region (size: 50) safe. However, by
using the miaipair {p19, q19} it proves that the partial region S at the top right
corner and its boundary blocks (marked by triangles) are safe in 0.47 seconds.

Group 3 contains 10 test positions with either a large single region or a large
merged region. SOLVER 1.0 + P can prove the whole region safe for every
position. The bottom of Fig. 9 shows a real game position from this group. The
black merged region contains two subregions r1 at b2 and r2 at e3. The size

110 X. Niu and M. Müller

19 � � � S S S S
18 � � � � � � � S S
17 � � � � � � � � � � S � S
16 � � � � � � � � � � � � � S S
15 � � � � � � � � � � � � � �
14 � � � � � � � � � � � � �
13 � � � � � � � � � � � �
12 � � � � � � � � �
11 � � � � � � � �
10 � � � � � � � � �
9
8
7
6 � � � � � �
5 � � � � � � � � � � � � �
4 � � � � � � � � � � � � �
3 � � � � � � � � �
2 � � � �
1 � �

a b c d e f g h j k l m n o p q r s t

Fig. 9. Examples from group 2 and 3

of the merged region is 28. By using the miaipair {d1, e1}, SOLVER 1.0 + P
proves it safe in 72 seconds. A second example from this group is the position
shown in Fig. 5, which contains a huge region (size: 174) with multiple miaipairs.
SOLVER 1.0 + P proves this extreme case safe in 63 seconds.

4.2 Experiment Two: Comparison of Solvers

This experiment compares the performance of solvers BENSON, STATIC, SOL-
VER 1.0, SOLVER 2.0, SOLVER 1.0 + P and SOLVER 3.0 on 67 completed
games. The time limit is set to 20 seconds per search. As in [6], each solver com-
putes the proven safe points starting from the end of the game, then backwards
every 25 moves. Table 2 shows the total number of proven safe points for all six
solvers.

Table 2. Comparison of solvers on 67 games

Game Phases End-100 End-75 End-50 End-25 End

BENSON 19 63 257 600 2,571
STATIC 106 242 587 1,715 5,584

SOLVER 1.0 234 462 1,138 3,189 10,285
SOLVER 2.0 594 838 1,651 3,653 10,815

SOLVER 1.0 + P 292 540 1,704 3,765 11,299
SOLVER 3.0 606 884 2,179 4,227 11,725

An Improved Safety Solver in Go Using Partial Regions 111

SOLVER 3.0 can prove the most points safe in all game phases. Interestingly,
in earlier game phases such as End - 100 and End - 75, the open boundary
SOLVER 2.0 beats SOLVER 1.0 + P by a large margin. It seems that in such
early stages, there are not enough miaipairs. Thus the open boundary solver is
more useful. By End - 50, SOLVER 1.0 + P has caught up to SOLVER 2.0’s
performance. The combined SOLVER 3.0 proves 27% more safe points than
SOLVER 2.0. In End - 25 and End stages, the improvements of SOLVER 3.0
are 15% and 8% respectively.

5 Conclusions and Future Work

In this paper we have presented a partial-region safety-proving technique. From
the experimental results presented above we may concluded that SAFETY SOL-
VER 3.0 enhanced with this technique significantly outperforms previous solvers.

Below we provide two promising ideas for further enhancements.

1. Generalize region splitting techniques. The current technique is limited to
adjacent miaipairs. (1a) An extension would be utilizing all possible single
splitting points to divide a region. For example, in the left of Fig. 1, all four
splitting points at c1, e1, f1 and j1 could be used in the safety search. (1b)
A second extension would be to divide a region by other, larger gaps such
as diagonal and one point jumps.

2. The aim of the current safety solver is to prove the safety status of territories.
Applying the prover to real game playing and building a quick and strong
heuristic safety analyzer for attacking or defending territory is a second
interesting topic.

References

1. D.B. Benson. Life in the game of Go. Information Sciences, 10(2),17–29, 1976; Levy,
D.N.L. (ed.): Reprinted in Computer Games, Vol. II, pp. 203-213. Springer, New
York (1988)

2. Dyer, D.: An eye shape library for computer Go,
http://www.andromeda.com/people/ddyer/go/shape-library.html

3. Müller, M.: Playing it safe: Recognizing secure territories in computer Go by using
static rules and search. In: Matsubara, H. (ed.) Game Programming Workshop in
Japan 1997, Tokyo, Japan, pp. 80–86. Computer Shogi Association (1997)

4. Niu, X., Kishimoto, A., Müller, M.: Recognizing seki in computer Go. In: van den
Herik, H.J., Hsu, S.-C., Hsu, T.-s., Donkers, H.H.L.M(J.) (eds.) CG 2005. LNCS,
vol. 4250, pp. 88–103. Springer, Heidelberg (2006)

5. Niu, X., Müller, M.: An improved safety solver for computer Go. In: van den Herik,
H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 97–112.
Springer, Heidelberg (2006)

6. Niu, X., Müller, M.: An open boundary safety solver in computer Go. In: van den
Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630,
pp. 37–49. Springer, Heidelberg (2007)

http://www.andromeda.com/people/ddyer/go/shape-library.html

112 X. Niu and M. Müller

7. Vilà, R., Cazenave, T.: When one eye is sufficient: a static classification. In: van
den Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games 10, pp.
109–124. Kluwer, Dordrecht (2003)

8. van der Werf, E.C.D.: AI techniques for the game of Go. PhD thesis, Maastricht
University (2005)

9. Wolf, T., Pratola, M.: A library of eyes in Go, II: Monolithic eyes, In: Games of No
Chance 3 (to appear, 2006)

Whole-History Rating: A Bayesian Rating

System for Players of Time-Varying Strength

Rémi Coulom

Université Charles de Gaulle, INRIA SEQUEL, CNRS GRAPPA, Lille, France
Remi.Coulom@univ-lille3.fr

Abstract. Whole-History Rating (WHR) is a new method to estimate
the time-varying strengths of players involved in paired comparisons. Like
many variations of the Elo rating system, the whole-history approach is
based on the dynamic Bradley-Terry model. But, instead of using incre-
mental approximations, WHR directly computes the exact maximum a
posteriori over the whole rating history of all players. This additional ac-
curacy comes at a higher computational cost than traditional methods,
but computation is still fast enough to be easily applied in real time to
large-scale game servers (a new game is added in less than 0.001 second).
Experiments demonstrate that, in comparison to Elo, Glicko, TrueSkill,
and decayed-history algorithms, WHR produces better predictions.

1 Introduction

Institutions that organize competitive activities, such as sports or games, often
rely on ratings systems. Rating systems provide an estimation of the strength of
competitors. This strength estimation makes it possible to set up more balanced
matches, motivate competitors by providing them with a measurement of their
progress, and make predictions about the outcomes of future competitions.

Almost every institution designed its own rating system, so many algorithms
exist. The following discussion summarizes the main kinds of rating systems.

Static Rating Systems. Static rating systems do not consider the variation
in time of the strengths of players. They are appropriate for rating humans
over a short period of time, or for rating computers. An effective method for a
static rating system consists in using Bayesian inference with the Bradley-Terry
model [1]. But static rating systems are not adapted to situations where players
may make significant progress.

Incremental Rating Systems. Incremental rating systems, such as the FIDE
rating system [4], Glicko [7], or TrueSkill [8] store a small amount of data for each
player (one number indicating strength, and sometimes another indicating uncer-
tainty). After each game, this data is updated for the participants in the game.
The rating of the winner is increased, and the rating of the loser is decreased.

Incremental rating systems can handle players of time-varying strength, but
do not make optimal use of data. For instance, if two players, A and B, enter the

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 113–124, 2008.
c© IFIP International Federation for Information Processing 2008

114 R. Coulom

rating system at the same time and play many games against each other, and
none against established opponents, then their relative strength will be correctly
estimated, but not their strength with respect to the other players. If player A
then plays against established opponents, and its rating changes, then the rating
of player B should change too. But incremental rating systems would leave B’s
rating unchanged.

Decayed-history Rating Systems. In order to fix the deficiencies of incre-
mental rating systems, a static rating algorithm may be applied, limited to recent
games. This idea may be refined by giving a decaying weight to games, either
exponential or linear1. With this decay, old games are progressively forgotten,
which allows to measure the progress of players.

This decayed-history approach solves some problems of incremental rating
systems, but also has some flaws. The main problem is that the decay of game
weights generates a very fast increase in the uncertainty of player ratings. This
is unlike incremental systems that assume that rating uncertainty grows like
the square root of time. With the decayed-history approach, players who stop
playing for a while may experience huge jumps in their ratings when they start
playing again, and players who play very frequently may have the feeling that
their rating is stuck. If players do not all play at the same frequency, there is no
good way to tune the speed of the decay.

Accurate Bayesian Inference. An approach that may be more theoretically
sound than decayed history consists in using the same model as incremental algo-
rithms, but with fewer approximations. The weakness of algorithms like Glicko
and TrueSkill lies in the inaccuracies of representing the probability distribu-
tion with just one value and one variance for every player, ignoring covariance.
Authors of incremental algorithms already proposed to correct inaccuracies by
running several passes of the algorithm forward and backward in time [2,5,7,10].
Edwards [3], with Edo ratings, proposed a method to estimate directly the max-
imum a posteriori on the exact model.

The WHR algorithm presented in this paper is similar in principle to Edo
ratings, although the numerical method is different (Edo uses MM [9], whereas
WHR uses the more efficient Newton’s method). On his web site, Edwards wrote
that “Edo ratings are not particularly suitable to the regular updating of current
ratings”. Experiments presented in this paper clearly indicate that he underesti-
mated his idea: evaluating ratings of the past more accurately helps to evaluate
current ratings: the prediction rate obtained with WHR outperforms decayed
history and incremental algorithms. Also, the WHR algorithm allows to update
rapidly ratings after the addition of one game, making it suitable for large-scale
real-time estimation of ratings.

Paper Outline. Section 2 presents the dynamic Bradley-Terry model, Sect. 3
is the WHR algorithm, and Sect. 4 presents experimental results on data of the
KGS Go server.
1 This idea is often credited to Ken Thompson (for instance, by Sonas [14]).

Whole-History Rating: A Bayesian Rating System for Players 115

2 The Dynamic Bradley-Terry Model

This section briefly presents the dynamic Bradley-Terry model [6] that is the
basis for the WHR system.

2.1 Notations

– Player number: i ∈ {1, . . . , N}, integer index
– Elo rating of player i at time t: Ri(t), real number.
– γ rating of player i at time t: γi(t), defined by γi(t) = 10

Ri(t)
400 .

– Natural rating of player i at time t: ri(t) = ln γi(t) = Ri(t) ln 10
400 .

Elo ratings are familiar to chess players, but are on a rather arbitrary and
inconvenient scale. Natural ratings will be used most of the time in this paper,
because they make calculations easier.

2.2 Bradley-Terry Model

The Bradley-Terry model for paired comparisons gives the probability of winning
a game as a function of ratings:

P (player i beats player j at time t) =
γi(t)

γi(t) + γj(t)
.

The Bradley-Terry model may be generalized to handle draws, advantage of
playing first, teams, and multi-player games [9]. In this paper, only the simple
formulation will be used, but it would be straightforward to generalize the WHR
algorithm to those more complex situations.

2.3 Bayesian Inference

The principle of Bayesian Inference consists in computing a probability distribu-
tion over player ratings (γ) from the observation of game results (G) by inverting
the model thanks to Bayes formula:

p(γ|G) =
P (G|γ)p(γ)

P (G)
.

In this formula, p(γ) is a prior distribution over γ (lower-case p is used
for probability densities), and P (G) is a normalizing constant. P (G|γ) is the
Bradley-Terry model described in the previous section. p(γ|G) is called the pos-
terior distribution of γ. The value of γ that maximizes p(γ|G) is the maximum a
posteriori, and may be used as an estimation of the strengths of players, derived
from the observation of their game results.

116 R. Coulom

2.4 Prior

In the dynamic Bradley-Terry model, the prior has two roles. First, a prior
probability distribution over the range of ratings is applied. This way, the rating
of a player with 100% wins does not go to infinity. Also, a prior controls the
variation of the ratings in time, to avoid huge jumps in ratings.

In the dynamic Bradley-Terry model, the prior that controls the variation of
ratings in time is a Wiener process:

ri(t2) − ri(t1) ∼ N
(
0, |t2 − t1|w2

)
.

w is a parameter of the model that indicates the variability of ratings in time.
The extreme case of w = 0 would mean static ratings.

Some realizations of a Wiener process are plotted on Fig. 1. The Wiener
process is a model for Brownian motion, and can be simulated by adding an
independent normally-distributed random value at each time step. This means
that the variance increases linearly with time, so the confidence interval grows
like the square root of time. A Wiener process is said to be memoryless (or
Markovian), that is to say, if t1 < t2 < t3,

p
(
r(t3)

∣∣r(t1), r(t2)) = p
(
r(t3)

∣∣r(t2)) ,

p
(
r(t1)

∣∣r(t2), r(t3)) = p
(
r(t1)

∣∣r(t2)) .

t

r

Fig. 1. Three realizations of a Wiener process, with r(0) = 0. The dashed line indicates
the 95% confidence interval for p(r(t)|r(0) = 0).

3 Algorithm

The WHR algorithm consists in computing, for each player, the γ(t) function
that maximizes p(γ|G). Once this maximum a posteriori has been computed,
the variance around this maximum is also estimated, which is a way to estimate
rating uncertainty.

Whole-History Rating: A Bayesian Rating System for Players 117

r

t

(a) History of a player

r2

r3

(b) optimizing one by one

r2

r3

(c) Newton’s method

Fig. 2. Newton’s method applied to the history of one player. (a) The rating history
of a player who has played 4 games is defined by 4 ratings r1, r2, r3, and r4, at the
four times of the four games. (b) Two ratings that are close in time, such as r2 and r3,
are strongly correlated. So, methods such as MM [9] that optimize parameters one by
one, are very inefficient. (c) Since the optimized function is very similar to a quadratic
form, Newton’s method is extremely efficient.

3.1 Optimization Method

The first step of the WHR algorithm consists in computing the maximum a
posteriori for all the γi(t). Since γi are functions of time, this is an infinite-
dimensional optimization problem. But it is easy to reduce it to a finite-dimen-
sional problem, since knowing the values of γ at the times of games is sufficient.
Rating estimation between two consecutive games may be done by interpolation
formulas provided in Appendix C.

Figure 2 illustrates how optimization is performed by Newton’s method. Since
the Wiener process is Markovian, the Hessian matrix

(
∂2 log p

∂r2

)
is tridiagonal, so

Newton’s method has a cost linear in the number of ratings. Formally, Newton’s
method consists in updating the rating vector r of one player (the vector of
ratings at times when that player played a game) according to this formula:

r ← r −
(

∂2 log p

∂r2

)−1
∂ log p

∂r

The complete details of how to perform this update are provided in Appendices
A and B. Since p is very similar to a Gaussian, log p is very similar to a quadratic
form, so only one iteration of Newton’s method is sufficient to obtain a very good
value of r. The overall optimization algorithm consists in applying this Newton
update to every player in turn, and iterate until convergence.

3.2 Incremental Updates

The global optimization algorithm described in the previous section may take a
few minutes to converge on a big database of games (see Sect. 4). So, it may be
too slow to restart the algorithm from scratch in order to estimate new ratings
when one new game is added to the database.

In order to let WHR work in real time when one new game is added, a simple
solution consists in keeping the rating estimations obtained before the addition,
and applying Newton’s method once to every player of this game. This is orders

118 R. Coulom

of magnitude faster, although a little less accurate. If computation time allows,
more iterations of Newton’s method may be applied from time to time. For
instance, in experiments of incremental WHR described in the next section, one
iteration was run on every player every 1000 games.

3.3 Estimating Rating Uncertainty

Once the maximum a posteriori has been found, rating uncertainty may be
estimated. Since the posterior probability is similar to a Gaussian, its covariance
matrix may be approximated by the opposite of the inverse of the Hessian.

In practice it is not possible to compute the whole covariance matrix for all
the parameters at the same time. But rating uncertainty of one player can be
estimated by considering the Hessian of the ratings of this player only, assuming
opponents have a fixed rating equal to the maximum a posteriori. The detailed
formulas for this operation can be found in Appendix B.2.

This numerical algorithm is extremely similar to a technique developed by
physicists to estimate functions from noisy observations [11,12].

4 Experiments in the Game of Go

4.1 Speed of Convergence

The WHR algorithm was tested on the database of games of the KGS Go server.
This database contains all rated games since 2000 and until October, 2007. It
contains 213,426 players, and 10.8 million games. Computations were performed
on an Intel Core2 Duo at 2.4 GHz (using only one thread), and took about
7 minutes for 200 iterations. The prior was one virtual win and one virtual
loss against a virtual player of rating zero, on the day of the first game. The
Wiener process had a variance of w2 = 60 Elo2 per day (see Table 1, optimal
parameters).

680000

690000

700000

710000

720000

730000

740000

750000

760000

0 50 100 150 200 250 300 350 400 450
time(seconds)

log-likelihood

Fig. 3. Speed of optimization. One point is plotted every 10 iterations. Log-likelihood
is the difference between the current log-likelihood and the initial log-likelihood, when
all ratings were set to zero.

Whole-History Rating: A Bayesian Rating System for Players 119

-400

-300

-200

-100

0

100

200

300

400

2600 2700 2800 2900 3000 3100 3200 3300

E
lo

Day

maximum a posteriori
confidence bound

Fig. 4. Whole-History Rating estimation of player Crazy Stone. Dots indicate days
when games were played.

Figure 3 shows the convergence speed of the log-likelihood. Figure 4 presents
the result of Crazy Stone, a program that made considerable progress in the
year 2007. This figure shows that rating uncertainty increases slowly during long
periods of inactivity.

4.2 Prediction Ability

The prediction ability of WHR was compared experimentally with the basic
Elo algorithm [4], TrueSkill [8], Glicko [7], Bayeselo [1], and decayed history.
Bayeselo may be considered as a special case of WHR, with w2 = 0, or a spe-
cial case of decayed history, with an infinitely long decay. Decayed history was
implemented with an exponential decay, that is to say each game was weighted
with a coefficient e(t−t0)/τ , where τ is a parameter of the algorithm.

Bayeselo, WHR, and decayed history all used the same scheme for incremental
update of ratings: after each addition of a game, the ratings of the two partici-
pants were optimized with one step of Newton’s method. Before each prediction
of the outcome of a game, the ratings of the two participants were optimized,
too. Every 1000 games, the ratings of all participants were optimized, one by one.

The method to compare algorithms consisted in measuring their prediction
rates over a database of games. The prediction rate is the proportion of games of
which the most likely winner was predicted correctly (when two players have the
same rating, this counts as 0.5 correct prediction). Parameters of the algorithm
were first tuned to optimize the prediction rate over a training database, then
the prediction rate was measured on a different test database.

The training set was made of the 726,648 rated even games with komi 6.5
played on KGS between 2000-11-07 and 2005-05-20. The test set consisted of
the 2,331,757 rated even games with komi 6.5 played between 2005-05-21 and
2007-10-01. The time resolution of the database is one day, so if a player played
several games in one day, they were considered as simultaneous.

120 R. Coulom

Table 1. Prediction performance of some rating algorithms. Prior = 1 means one
virtual win and one virtual loss against a player of rating zero. 95% confidence of
superiority is obtained with a difference in prediction rate of 0.163% in the training set,
and 0.091% in the test set. Since the same data was used to measure the performances of
all algorithms, there is some variance reduction, so differences may be more significant.
Time was measured on the training set.

Algorithm Time Training Test Optimal parameters

Elo 0.41 s 56.001% 55.121% k = 20
Glicko 0.73 s 56.184% 55.522% σ0 = 150 Elo, w2 = 20 Elo2/day
TrueSkill 0.40 s 56.212% 55.536% β2 = 1, σ2

0 = 0.5, w2 = 0.000975/game
Bayeselo 88.66 s 56.216% 55.671% prior = 1
Decayed history 89.86 s 56.260% 55.698% prior = 1, τ = 400 days
WHR 252.00 s 56.356% 55.793% prior = 1.2, w2 = 14 Elo2/day

Results are summarized in Table 1. It shows that WHR significantly out-
performs the other algorithms. Algorithms that remember all the game results
outperform the fast incremental methods.

Performance on the test set is inferior to performance on the training set.
This probably cannot be explained by overfitting alone. Because these two sets
of games correspond to different periods of time, they do not have the same
statistical properties. It may be that the KGS rating system improved, and
since matches are automatically balanced by the server, recent games are more
balanced, so they are more difficult to predict.

A remarkable aspect of these results is that parameters that optimize predic-
tion rate give a very low variance to the Wiener process. The static Bayeselo
algorithm even outperformed incremental algorithms on the test set. This is sur-
prising, because many players on KGS are beginners, and made very big progress
during the 2.5 years of the test set. The high number of experienced players prob-
ably outweighed beginners. This is, by the way, an important inaccuracy in the
dynamic Bradley Terry model: it does not take those different abilities to make
progress into consideration.

5 Conclusion

WHR is a new rating algorithm that directly computes player ratings as a func-
tion of time. From the above results we may conclude that (1) it is computation-
ally more costly than incremental and decayed-history algorithms, but (2) more
accurate, and fast enough to be applied in real time to large-scale game servers.

A research direction would be to apply WHR to more data sets, and compare
it empirically to more alternative rating algorithms, such as Edo, and TrueSkill
Through Time (TTT). It is likely that WHR would not outperform Edo and
TTT in terms of prediction rate, since their models are almost identical. But
the main difference may be in computation time. Previous experiments with Edo
and TTT were run with a time resolution of one year, whereas WHR operates

Whole-History Rating: A Bayesian Rating System for Players 121

with a time resolution of one day. Such a short time period between ratings
induces a very strong correlation between parameters, which Newton’s method
may handle more efficiently than MM or approximate message passing.

A second research direction would be to improve the model. An efficient ap-
plication of WHR to Go data would require some refinements of the dynamic
Bradley-Terry model, which the KGS rating algorithm [13] already has. In par-
ticular, it should be able to

– Take handicap, komi, and time control into consideration,
– Deal with outliers,
– Handle the fact that beginners make faster progress than experts.

Acknowledgments. I thank William Shubert for providing KGS data. I am
also very grateful to the referees, whose remarks helped to improve this paper
considerably.

References

1. Coulom, R.: Bayeselo (2005), http://remi.coulom.free.fr/Bayesian-Elo/
2. Dangauthier, P., Herbrich, R., Minka, T., Graepel, T.: TrueSkill through time:

Revisiting the history of chess. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.
(eds.) Advances in Neural Information Processing Systems 20, Vancouver, Canada,
MIT Press, Cambridge (2007)

3. Edwards, R.: Edo historical chess ratings (2004), http://members.shaw.ca/edo1/
4. Elo, A.E.: The Rating of Chessplayers, Past and Present. Arco Publishing, New

York (1978)
5. Fahrmeir, L., Tutz, G.: Dynamic stochastic models for time-dependent or-

dered paired comparison systems. Journal of the American Statistical Associa-
tion 89(428), 1438–1449 (1994)

6. Glickman, M.E.: Paired Comparison Model with Time-Varying Parameters. PhD
thesis, Harvard University, Cambridge, Massachusetts (1993)

7. Glickman, M.E.: Parameter estimation in large dynamic paired comparison exper-
iments. Applied Statistics 48(33), 377–394 (1999)

8. Herbrich, R., Graepel, T.: TrueSkillTM: A Bayesian skill rating system. Technical
Report MSR-TR-2006-80, Microsoft Research (2006)

9. Hunter, D.R.: MM algorithms for generalized Bradley-Terry models. The Annals
of Statistics 32(1), 384–406 (2004)

10. Knorr-Held, L.: Dynamic rating of sports teams. The Statistician 49(2), 261–276
(2000)

11. Rybicki, G.B., Hummer, D.G.: An accelerated lambda iteration method for multi-
level radiative transfer. Astronomy and Astrophysics 245(1), 171–181 (1991)

12. Rybicki, G.B., Press, W.H.: Interpolation, realization, and reconstruction of noisy,
irregularly sampled data. The Astrophysical Journal 398(1), 169–176 (1992)

13. Shubert, W.M.: Details of the KGS rank system (2007),
http://www.gokgs.com/help/rmath.html

14. Sonas, J.: Chessmetrics (2005), http://db.chessmetrics.com/CM2/Formulas.asp

http://remi.coulom.free.fr/Bayesian-Elo/
http://members.shaw.ca/edo1/
http://www.gokgs.com/help/rmath.html
http://db.chessmetrics.com/CM2/Formulas.asp

122 R. Coulom

A Gradient and Hessian Matrix for One Player

A.1 Terms of the Bradley-Terry Model

The result of one game Gj may be written as:

P (Gj) =
Aijγi + Bij

Cijγi + Dij
,

where Aij , Bij , Cij , and Dij are constants that do not depend on γi.
W (i) is the set of games that i won, and L(i) the set of games that i lost.

r = ln γ, so dr = dγ
γ .

ln P =
∑

j∈W (i)

ln(Aijγi) +
∑

j∈L(i)

ln(Bij) −
∑

j

ln(Cijγi + Dij)

∂ ln P

∂ri
= |W (i)| − γi

∑
j

Cij

Cijγi + Dij

∂2 ln P

∂r2
i

= −γi

⎛
⎝∑

j

−C2
ijγi

(Cijγi + Dij)2
+

Cij

Cijγi + Dij

⎞
⎠

= −γi

∑
j

CijDij

(Cijγi + Dij)2

A.2 Terms of the Wiener Prior

These terms are added to the Hessian for every pair of consecutive ratings, with
σ2 = |t2 − t1|w2.

∂ ln p

∂ri(t1)
= −ri(t1) − ri(t2)

σ2

∂2 ln p

∂ri(t1)2
= − 1

σ2

∂2 ln p

∂ri(t1)∂ri(t2)
=

1
σ2

B LU Decomposition of the Hessian Matrix

H = (hij) = LU =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
a2 1 0 . . . 0
0 a3 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . an 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

d1 b1 0 . . . 0
0 d2 b2 . . . 0
0 0 d3 . . . 0
...

...
...

. . . bn−1

0 0 0 . . . dn

⎞
⎟⎟⎟⎟⎟⎠

Whole-History Rating: A Bayesian Rating System for Players 123

Algorithm (i ≥ 2):

d1 = h11

b1 = h12

ai = hii−1/di−1

di = hii − aibi−1

bi = hii+1 .

B.1 Computing H−1G

The problem is to find vector X so that LUX = G. The first step of the algorithm
consists in finding Y so that LY = G (i ≥ 2):

y1 = g1

yi = gi − aiyi−1 .

Then, find X , so that UX = Y (i < n):

xn = yn/dn

xi = (yi − bixi+1)/di .

Since hii+1 > 0 and hii < −(hii−1 + hii+1), −1 < ai < 0 and di < −hii+1, so
this algorithm has no division by zero. In order to ensure numerical stability,
0.001 is subtracted to all diagonal elements of H .

B.2 Computing Diagonal and Sub-diagonal Terms of H−1

The covariance matrix for the full history of one player is approximated by

Σ = −H−1 =

⎛
⎜⎜⎜⎝

σ2
1 σ12 . . . σ1n

σ12 σ2
2 . . . σ2n

...
...

. . .
...

σ1n σ2n . . . σ2
n

⎞
⎟⎟⎟⎠ .

In order to compute the confidence envelope around rating histories, only the
diagonal and sub-diagonal terms of the reverse of H are needed. This can be
done in cost linear in n [11]. The trick consists in doing the UL decomposition
as well as the LU decomposition:

H = (hij) = U ′L′

⎛
⎜⎜⎜⎜⎜⎝

1 a′
1 0 . . . 0

0 1 a′
2 . . . 0

0 0 1 . . . 0
...

...
...

. . . a′
n−1

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

d′1 0 0 . . . 0
b′2 d′2 0 . . . 0
0 b′3 d′3 . . . 0
...

...
. . .

. . .
...

0 0 . . . b′n d′n

⎞
⎟⎟⎟⎟⎟⎠ .

124 R. Coulom

Algorithm (i < n):

d′n = hnn

b′n = hnn−1

a′
i = hii+1/d′i+1

d′i = hii − a′
ib

′
i+1

b′i = hii−1 .

In order to solve HX = G, first solve U ′Y ′ = G (i < n):

y′
n = gn

y′
i = gi − a′

iy
′
i+1 .

Then, solve L′X = Y ′ (i > 1):

x1 = y′
1/d′1

xi = (y′
i − b′ixi−1)/d′i .

The i-th term of the diagonal of the inverse of H , σ2
i , is xi, computed with

gj = δij . It can be computed by using the two decompositions at the same time:

xi = (yi − bixi+1)/di

xi+1 = (y′
i+1 − b′i+1xi)/d′i+1 .

Since yi = 1, and y′
i+1 = 0, we get (i < n):

σ2
i = −xi = d′i+1/(bib

′
i+1 − did

′
i+1)

σ2
n = −1/dn .

Sub-diagonal elements may be computed with

σii−1 = −aiσ
2
i .

C Interpolation Formulas

The mean, µ, and variance, σ2, of a Wiener process at time t may be interpolated
between two times t1 and t2, assuming that the means at t1 and t2 are µ1 and
µ2, and the covariance matrix is Σ =

(σ2
1 σ12

σ12 σ2
2

)
, with the following formulas:

µ =
µ1(t2 − t) + µ2(t − t1)

t2 − t1
,

σ2 =
(t2 − t)(t − t1)

t2 − t1
w2 +

(t2 − t)2σ2
1 + 2(t2 − t)(t − t1)σ12 + (t − t1)2σ2

2

(t2 − t1)2
.

Frequency Distribution of Contextual Patterns

in the Game of Go

Zhiqing Liu, Qing Dou, and Benjie Lu

BUPT-JD Computer Go Research Institute,
Beijing University of Posts and Telecommunications,

Beijing, China, 100876
zhiqing.liu@gmail.com

Abstract. In this paper, we present two statistical experiments on the
frequency distribution of patterns in the game of Go. In these exper-
iments, we extract contextual patterns of Go as spatial combinations
of moves. An analysis of a collection of 9447 professional game records
of Go shows that the frequency distribution of contextual patterns in
professional games displays a Mandelbrot fit to Zipf’s law. Additionally,
we show that the Zipfian frequency distribution of Go patterns in pro-
fessional games is deliberate by rejecting the null hypothesis that the
frequency distribution of patterns in random games exhibits a Zipfian
frequency distribution.

1 Introduction

Computer games has been a part of the core of artificial intelligence since it
became a field of study; and the game of Go is one of its grand challenges [12].
The purpose of this paper is to investigate the frequency distribution of patterns
in the game of Go. More, specifically, this paper is to investigate whether the
statistical distribution of frequency of occurrence of Go patterns exhibits certain
regularities as in the case of natural language.

One of the most obvious universal features in natural languages is the statis-
tical distribution of word frequency of occurrence, which exhibits a prominent
regularity. If words in a corpus of sample texts are sorted decreasingly by their
frequency of occurrence, the frequency of a word, denoted as f , is a power law
function of its rank, denoted as r, in the form of f ∼ 1/re with the exponent e
close to unity [17]. This regularity in natural languages was first observed in the
English language by Harvard linguistics professor George Kingsley Zipf, and is
now commonly referred to as Zipf’s law. Mandelbrot has extended Zipf’s law into
the more general form of f = P (r + ρ)B where P , B, and ρ are constants [10].

Two primary contributions of this paper are the following.

1. Patterns extracted from professional Go game records as spatial combinations
of moves are shown statistically to exhibit a Zipfian frequency distribution.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 125–134, 2008.
c© IFIP International Federation for Information Processing 2008

126 Z. Liu, Q. Dou, and B. Lu

2. Because random sources always generate statistically consistent results [11],
frequency distribution from a random source can be regarded as a null hypoth-
esis. In this sense, the Zipfian frequency distribution of Go patterns is shown
to be deliberate and not accidental by a rejection of the null hypothesis.

The remainder of this paper is organized as follows. Section 2 gives a brief
introduction of necessary background of the game and reviews related works on
computer Go. Following that, two statistical experiments are presented. Section
3 presents frequency distribution of patterns extracted automatically from the
same collection of professional games, which has a good Mandelbrot fit to Zipf’s
law. Section 4 analyzes the frequency distribution of patterns similarly extracted
from a collection of randomly generated game records such that the null hypoth-
esis is rejected. Section 5 concludes this paper with a summary of results and a
discussion of future works.

2 The Game of Go and Computer Go

Some essential knowledge of the game is necessary. Go is a zero-sum and perfect-
information board game of two players, who play the game by alternately placing
stones of her color (black or white) on an empty crossing on a board of the
game, which consists of a 19-by-19 grid. We, following the tradition of Chess,
shall refer to a stone placed on the game board as a move. A game record of
Go is, in addition to some supplemental information such as identification of the
players and the result, just a sequence of moves, each of which is denoted as a
two-dimension coordinate representing the position of the game board on which
a stone is placed by the move. In general, the stone of a move can be placed at
any empty crossing on the game board, subject to certain rules of the game such
as the rule of no-suicide and the rule of ko.

Computer Go has been studied since 1969, when the first paper on this subject
was published by Zobrist [18]. Many important progresses on computer Go have
since been made, and some of the most influential works include [3]. However,
all these works are still elusive with respect to the ultimate goal of defeating
top-level human players in Go. The reasons are well recognized: key computer
techniques for successful play of other games such as Chess do not apply to Go.
One of the key techniques is an accurate static evaluation of the game board
integrated with an efficient search of the game tree. However, this technique is
almost useless in computer Go because of the following two complications of the
game.

1. Go has a significantly larger search space than other games due to its much
larger branching factor.

2. An accurate and static evaluation of the game board is not tractable [13].

Patterns are extensively used by both human and computer Go players. A
pattern in Go is a well established sequence of moves that can be accepted by
both players. It is believed in the Go community that patterns, which define rela-
tionships among moves, are of much more importance than the individual moves

Frequency Distribution of Contextual Patterns in the Game of Go 127

themselves [7]. In other words, it is relationships among individual moves that
effectively determine a player’s a player’s skills of Go playing. Effective recog-
nition of patterns and their competent use are crucial for both human players
as well as computer programs. To this end, dictionaries of patterns at different
stages of the game have been compiled, and pattern databases of various forms
are used by almost all competent Go programs. The patterns used are either
translated from pattern dictionaries directly, acquired through machine learning
[2], generated by enumeration with urgency determined by static analysis [6], by
human expertise [15], or by reinforcement learning [5], or extracted from game
records statistically [9,14].

Although occasionally used in computer Go, statistical methods have not been
used for investigation of frequency distribution of moves and patterns in Go.
Besides for pattern extraction as reviewed above, statistical methods are used
mostly in Monte-Carlo game evaluation and move generation in computer Go [4].
Monte-Carlo evaluation in computer games was formalized in a framework by
Abramson [1], in which the expected outcome of a game position was estimated
to be the average of the outcomes of N random games from the position given.
In this paper we analyze the pattern frequency distribution of random games in
order to study and reject the null hypothesis. To this end, we generate a large
number of random games as in Monte-Carlo Go.

3 Frequency Distribution of Contextual Patterns in
Professional Games

Our first statistical experiment is to investigate the frequency distribution of
patterns in a collection of game records of professional players. The professional
game collection used is provided by Yu Ping, the Chinese six-dan professional Go
player, who has used the collection in his study of Go. The study is completely
unrelated to the work reported in this paper. The collection has 9447 unique
professional game records, consisting of 2,040,888 individual moves in total.

Patterns used in our experiments are not derived from pattern dictionaries,
because dictionary patterns have different physical properties such as shape,
area, and size, making study of their frequency of occurrence meaningless. In-
stead, we specify a fixed area of the game board serving as the region in which
patterns are defined. We shall refer to such defined patterns as contextual pat-
terns. The fixed area is a 5-by-5 square, centered by the stone of the current
move. Similar results occur for patterns extracted from larger squares such as
7-by-7 and 9-by-9. When the stone is played close to an edge or a corner of the
game board, the region for the pattern definition is naturally reduced to its re-
maining part. In our definition of patterns and in the subsequent study of their
frequency of occurrence, equivalent shapes are combined into one single pattern
by elimination of symmetry properties of the shapes. Shapes are considered to be
equivalent if they are the same with respect to rotation and/or flipping. Shapes
are also considered to be equivalent with respect to color switch.

128 Z. Liu, Q. Dou, and B. Lu

Fig. 1. Top twenty contextual patterns with highest frequency of occurrence in the
professional games

Given the above definitions of a pattern and a shape, we are now ready to
investigate contextual patterns and their frequency of occurrence to be extracted
automatically from game records, because a pattern occurs with each move
played. A scan of the collection of professional game records extracts 980,771
unique contextual patterns as defined above. The top twenty patterns with the
highest frequency of occurrence are shown in Fig. 1. It is obvious when having
some knowledge of Go that all of these patterns are important and are played
frequently by professional players. For example, the most frequent pattern shows
playing a stone on a third line of the game board, an important move often played
at early stages of the game.

Table 1 shows, for the top twenty high-frequency contextual patterns, their
numbers of frequency of occurrence (f), orders (r) sorted based on frequency
of occurrence, percentages of frequency of occurrence, and products of f and r.
The products of f and r appear to be around the constant 50000.

Frequency Distribution of Contextual Patterns in the Game of Go 129

Table 1. Numbers of frequency of occurrence (f), orders (r), percentages of frequency,
and the products of f × r of top twenty high-frequency contextual patterns in the
professional games

Order (r) Frequency (f) Percentage f × r

1 39885 1.955% 39885

2 36599 1.792% 73198

3 24091 1.181% 72273

4 12961 0.635% 51844

5 11955 0.586% 59775

6 10049 0.493% 60294

7 5502 0.270% 38514

8 5045 0.247% 40360

9 4962 0.243% 44658

10 4707 0.231% 47070

11 4593 0.225% 50523

12 4143 0.203% 49716

13 3775 0.185% 49075

14 3512 0.172% 49168

15 3385 0.166% 50775

16 3308 0.162% 52928

17 3122 0.153% 53074

18 2806 0.138% 50508

19 2725 0.134% 51775

20 2627 0.129% 52540

Figure 2 shows in a diagram the Zipf curve of the pattern frequency distribu-
tion in the collection of professional game records and a Mandelbrot fit to the
Zipf’s curve. The parameters of the Mandelbrot fitting curve are P = 50000, B =
0.91, and ρ = 0.5, making it almost a straight line, fitting Zipf’s law very well.

In summary, frequency of occurrence of 5-by-5 contextual patterns extracted
from the collection of professional game records clearly exhibits Zipfian
distribution. Additionally, high-frequency patterns are all important and are
commonly played by professional players.

4 Frequency Distribution of Contextual Patterns in
Random Game Records

Our second statistical experiment is to investigate the frequency distribution
of patterns similarly extracted from a collection of randomly generated game
records. This experiment is inspired by the works on frequency distribution of
random text [8], and its purpose is to reject the null hypothesis that patterns
in random games exhibit a Zipfian frequency distribution. The random games
used in this experiment are generated through self-play by a random computer

130 Z. Liu, Q. Dou, and B. Lu

Fig. 2. Mandelbrot fit to a pattern frequency distribution in the professional games.
The dots represent the relationships between frequency and order of patterns on a log-
log scale, and the line represents the curve of the Mandelbrot formula f = P (r + ρ)B

where P = 50000, B = 0.91, and ρ = 0.5.

Go player. Similar to random players commonly used in Monte-Carlo Go [5],
our random computer Go player is assumed to have very little knowledge of
the game, and plays completely randomly from all legal moves on the board,
excluding only those that are its own eyes.1 During such a self-play game, the
random player keeps on playing randomly until no valid move is available and
the game is then scored using the Chinese rules. This random game collection
has 3553 records with 1,629,069 individual moves in total. The mean of number
of moves in each of the random games is 458.5.

As in the previous experiment, the same definition of 5-by-5 contextual patterns
with symmetry elimination is used in this experiment. A scan of the collection
of random games extracts 474,117 unique contextual patterns. The top twenty
contextual patterns with highest frequency of occurrence are shown in Fig. 3.

Below we give three characteristics of the patterns.

1. All of the contextual patterns have either one stone or two stones.
2. The contextual patterns seen as a set, denoted by S1 (see Fig. 1), is signif-

icantly different from the set of contextual patterns obtained in the second
1 In general, an eye is an empty crossing on the game board that is surrounded by

stones of one color.

Frequency Distribution of Contextual Patterns in the Game of Go 131

Fig. 3. Top twenty contextual patterns with highest frequency of occurrence in the
random games

experiment, denoted by S2 (see Fig. 3). They only have six patterns in
common.

3. With some knowledge of Go it is obvious that the patterns in S1 and S2
typically are not important and appear rarely in professional games. For
example, the second most frequent pattern in random games shows a stone
played on a first line with an empty surrounding area, reflecting a very
ineffective move at early stages of the game.

Fig. 4 shows in a diagram the Zipf curve of contextual pattern frequency
distribution in the random games. It is evident from the diagram that the con-
textual pattern frequency distribution does not fit Zipf’s law well. There are
a number of irregularities. First of all, the curve is far from a straight line as
required in Zipf’s law. More importantly, the frequency of low-order patterns in
random games is significantly higher than what is required by Zipf’s law.

132 Z. Liu, Q. Dou, and B. Lu

Fig. 4. Contextual pattern frequency distribution in the random games. The dots rep-
resent the relationships between frequency and order of patterns on a log-log scale.

5 Discussion and Conclusion

From the two statistical experiments presented above we may draw two conclu-
sions. The primary conclusion is that the game of Go, at the level of contextual
pattern, shows clear structures that resemble those of natural languages at the
lexical level, because both exhibit Zipfian frequency distribution. However, the
result of the Zipfian frequency distribution of Go contextual patterns in profes-
sional games is stronger than that of the natural language words in a corpus. The
reason is straightforward, unlike the case of random texts, contextual patterns of
randomly generated Go games do not exhibit a Zipfian frequency distribution.
This shows that the Zifpian frequency distribution of Go patterns in professional
games is deliberate by rejecting the null hypothesis.

The second conclusion is that the Zipfian pattern frequency distribution in the
game of Go has important consequences in practical work. The most prevailing
consequence is data sparseness because of the Zipfian nature of the frequency
distribution. Regardless of the size of a game collection, most of the patterns oc-
curring in the games have a very low frequency and a small set of high-frequency
patterns constitutes a large majority of occurrence in the game collection. Data
sparseness may cause many problems. We mention two of them. First, precise
usage of a pattern may not be adequately determined unless the pattern has a
reasonably large number of occurrences. As an example in lexicology, Sinclair

Frequency Distribution of Contextual Patterns in the Game of Go 133

suggested that at least 20 instances of an unambiguous word need to be in-
spected in order to obtain an idea of its behavior [16]. Second, data sparseness
dictates that it is statistically impossible to sample all patterns in Go, and it is
almost certain that new patterns will be encountered in a new game. This may
make statistics-based pattern-analysis methods ineffective, because they violate
the randomness assumption, which is at the core of statistical modeling.

Acknowledgments. The author is indebted to Professor Jintong Lin, the Pres-
ident of Beijing University of Posts and Telecommunications for helping establish
the BUPT-JD Research Institute of Computer Go, which makes this work pos-
sible. The author thanks Yu Ping for insightful discussions of the game and for
providing the game records of professional players used in this paper.

References

1. Abramson, B.: Expected-outcome: a general model of static evaluation. IEEE
Transactions on PAMI 12, 182–193 (1990)

2. Abramson, M., Harry, W.: A distributed reinforcement learning approach to pat-
tern inference in Go. In: International Conference on Machine Learning Applica-
tions, Los Angeles, CA (2003)

3. Benson, D.B.: Life in the game of Go. Information Sciences, 10(2), 17-29, 1976;
Levy D.N.L., (ed.). Reprinted in Computer Games Vol. II pp. 203-213. Springer,
New York (1988)

4. Bouzy, B., Helmstetter, B.: Monte-Carlo Go Developments. In: van den Herik, H.J.,
Iida, H., Heinz, E.A. (eds.) Advances in Computer Games, Many Games, Many
Challenges, pp. 159–174 (2003)

5. Bouzy, B., Chaslot, G.: Monte-Carlo Go reinforcement learning experiments. In:
IEEE 2006 Symposium on Computational Intelligence in Games, Reno, USA (2006)

6. Cazenave, T.: Generation of patterns with external conditions for the game of Go.
In: Advances in Computer Games Conference, Paderborn (1999)

7. Cho, C.: Go: A Complete Introduction to the Game. Kiseido Publishing Co (1997)
8. Li, W.: Random texts exhibit Zipf’s-law-like word frequency distribution. IEEE

Transactions on Information Theory 38(6), 1842–1845 (1992)
9. Liu, Z., Dou, Q.: Automatic Pattern Acquisition from game Records in Go. Journal

of China Universities of Posts and Telecommunications 14(1), 100–105 (2007)
10. Mandelbrot, B.B.: Simple games of strategy occurring in communication through

natural languages. In Symposium on Statistical Methods in Communication En-
gineering (1954); Also appeared in Transactions of IRE (professional groups on
information theory), 3, 124-137 (1954)

11. Miller, G.A., Chomsky, N.: Finitary models of language users. In: Luce, R.D., Bush,
R., Galanter, E. (eds.) Handbook of Mathematical Psychology, vol. 2. Wiley, New
York (1963)

12. Müller, M.: Computer Go. Artificial Intelligence 134(1-2), 145–179 (2002)
13. Müller, M.: Position Evaluation in Computer Go. ICGA Journal 25(4), 219–228

(2002)
14. Nakamura, T.: Acquisition of move sequence patterns from game record database

using n-gram statistics. In: Game Programming Workshop 1997(1997) (in
Japanese)

134 Z. Liu, Q. Dou, and B. Lu

15. Schaeffer, J., van den Herik, H.J.: Games, Computers, and Artificial Intelligence.
Artificial Intelligence 134(1-2), 1–7 (2002)

16. Sinclair, J.: Corpus and text: Basic principles. In: Wynne, M. (ed.) Guide to good
practice in developing linguistic corpora (2005)

17. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley
Press, Cambridge (1949)

18. Zobrist, A.: A model of visual organization for the game of go. In: Proceedings
AFIPS 34, pp. 103–112 (1969)

A New Proof-Number Calculation Technique for

Proof-Number Search

Kazuki Yoshizoe

Quantum Computation and Information Project ERATO-SORST,
Japan Science and Technology Agency, Tokyo, Japan

yoshizoe@acm.org

Abstract. We propose a new simple calculation technique for proof
numbers in Proof-Number Search. Search algorithms based on (dis)proof
numbers are known to be effective for solving problems such as tsumego,
tsume-shogi, and checkers. Usually, the Proof-Number Search expands
child nodes with the smallest (dis)proof number because such nodes
are expected to be the easiest to (dis)prove the node. However, when
many unpromising child nodes exist, (dis)proof numbers are not always
a suitable measure for move ordering because unpromising nodes tem-
porarily increase the (dis)proof numbers. For such cases, we propose the
use of only some child nodes (instead of all child nodes) for calculating
(dis)proof numbers. We call this technique Dynamic Widening.

We combined Dynamic Widening with the Depth-first Proof-Number
Search (df-pn) algorithm and tested its performance on capturing prob-
lems of Go on 19×19 boards. Our results show that the approach is
more than 30 times faster than normal df-pn when we generate almost
all legal moves (about 300 moves on average). The required time for pro-
cessing remained approximately four times as long as that of df-pn using
heuristic pruning (about 20 moves on average), but the correctness of
the search result is guaranteed.

1 Introduction

Search algorithms based on proof numbers are known to be effective for AND/OR
tree searches. Depth-first Proof-Number Search (df-pn [6]) is a depth-first version
of Proof-Number Search (PNS [1]), which uses both proof numbers and disproof
numbers. In fact, df-pn has been useful for solving tsume-shogi [6], tsumego [3],
and checkers [7,9] problems.

However, one of its weaknesses is that it is not effective against problems
for which the assumption of “a smaller (dis)proof number is promising” does
not hold. The initial values of (dis)proof numbers are derived directly from the
number of legal moves. Therefore, an intuitive explanation of the proof-number
search algorithm is that it is intended to minimize the number of opponent’s
legal moves.

In tsume-shogi, (dis)proof numbers are extremely useful for move ordering
because, after playing a promising move, the number of the opponent’s legal

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 135–145, 2008.
c© IFIP International Federation for Information Processing 2008

136 K. Yoshizoe

moves is typically few. Nevertheless, it is more difficult to solve tsumego because
there is usually only a small difference in the number of an opponent’s legal
moves, whichever move the player chooses. It is difficult even for today’s best
tsumego solvers [3,12] to solve open-border tsumego problems. Normally, a hu-
man player must modify the problems to enclosed problems. If we try to solve
open-border tsumego problems, the legal moves are vastly numerous. They ap-
pear to be similar no matter which move we choose. For that reason, the initial
values of (dis)proof numbers do not reflect the benefits of the moves.

Here, we propose a simple technique, named Dynamic Widening, to address
this difficulty. Our method is to use only the few best moves to calculate (dis)proof
numbers. Its premise is that, even given numerous legal moves, only the few best
moves are important to evaluate the goodness of nodes.

We combined this approach with df-pn+ [6] and measured the performance
for Go capturing problems on 19×19 boards. The results showed that it was
more than 30 times faster than normal df-pn+ when searching all legal moves.
Nevertheless, this approach was not effective when we used heuristic pruning.
Searching all legal moves with df-pn+ and Dynamic Widening took 4.1 times
longer than using normal df-pn+ with heuristics. However, the advantage of our
system is that we can guarantee the correctness of the answers because 3% of
the answers from heuristic pruning were wrong.

Section 2 describes related works in this area. The Proof-Number Search basics
are described in Sect. 3. Our method is explained in Sect. 4. Section 5 presents
the results. Finally, Sect. 6 provides the conclusion of this paper. For information
about the game of Go, we refer to http://www.usgo.org/.

2 Related Work

GoTools [12] was developed by Thomas Wolf in the early 1990s. It remained the
best tsumego solver for more than a decade.

Moreover, df-pn [6] and its variants have been useful for many problems includ-
ing tsume-shogi solvers, tsumego solver [3], and back-end provers of checkers [9].
A brief explanation of various proof-number search algorithm is given in Sect. 3.

However, neither GoTools nor df-pn variants can solve open-border tsumego
problems. Problems must be modified to enclosed problems before being solved
by existing solvers. The required size of the enclosed area is becoming larger,
but it is still far smaller than a full Go board.

3 Proof-Number Search

In an AND/OR tree, let a proof be a win for the first player (corresponding to
an OR node) and a disproof be a win for the opponent (represented by an AND
node). Allis et al. [1] introduced proof and disproof numbers as estimates of the
difficulty of finding proofs and disproofs in a partially expanded AND/OR tree.

http://www.usgo.org/

A New Proof-Number Calculation Technique for Proof-Number Search 137

Fig. 1. Calculation of proof/disproof numbers

The proof number of node n, pn(n) is defined as the minimum number of leaf
nodes that must be proven to find a proof for n, where the disproof number
dn(n) is the minimum number of leaf nodes that must be disproven to find a
disproof for n. In addition, let pn(n) = 0 and dn(n) = ∞ for a proven terminal
node n, and pn(n) = ∞ and dn(n) = 0 for a disproven terminal node. It is also
assumed that pn(n) = dn(n) = 1 is assigned to any unproven leaf. Let n1, · · · , nk

be children of interior node n. Proof and disproof numbers of an OR node n are
calculated as follows (shown in Fig. 1).

pn(n) = min
i=1,···,k

pn(ni), dn(n) =
k∑

i=1

dn(ni).

For an AND node n proof and disproof numbers are

pn(n) =
k∑

i=1

pn(ni), dn(n) = min
i=1,···,k

dn(ni).

Proof-Number Search (PNS) is a best-first search algorithm that maintains
proof and disproof numbers for each node. Actually, PNS finds a leaf node from
the root by selecting the child with the smallest proof number at each OR node
and the child with the smallest disproof number at each AND node. It then
expands that leaf and updates all affected proof and disproof numbers along
the path back to the root. This process continues until it finds either a proof or
disproof for the root.

Depth-First Proof-Number Search (df-pn) [6] is a depth-first reformulation of
PNS that re-expands fewer interior nodes and can run in a space that is limited
by the size of the transposition table. Thresholds for proof and disproof numbers
are incremented gradually and are used to limit a depth-first search, similar to
Recursive Best-First Search [5].

Df-pn+ is used in the best tsume-shogi solver [6]. Df-pn(r) is used for the best
tsumego solver [4], and as the back-end prover for solving checkers [8]. Lambda
df-pn [13] is a combination of Lambda Search [11] and df-pn. Lambda df-pn was
tested for Go capture problems.

138 K. Yoshizoe

4 Proposed Method

4.1 Problem

As explained in Sect. 3, proof-number-based search algorithms expand the nodes
with the smallest (dis)proof number. Immediately after the expansion of a node,
usually (dis)proof numbers are simply proportional to the number of candidate
moves. Negative effects are often observed on move ordering based on (dis)proof
numbers when there are numerous (typically unpromising) candidate moves.

For problems such as those of tsume-shogi, proof numbers are quite effective
because moves which limit an opponent’s legal moves often turn out to be good.
However, for problems in games such as Go, the number of an opponent’s legal
moves does not vary much whichever move the player chooses. Additionally,
it is rather difficult to do theoretically safe forward pruning. For example, in
capturing problems of Go, heuristic pruning greatly improves the search speed,
but the correctness of the result is not guaranteed.

Henceforth, we call a player who tries to prove the tree an attacker; the other
player is a defender.

For OR nodes, if numerous attacker’s candidate moves exist, the disproof
number would be large. In such cases, immediately after expansion of nodes, the
difference between disproof numbers would be simply the difference of the num-
ber of candidate moves. A technique which delays the generation of unpromising
moves is used in existing solvers if it is possible to distinguish unpromising moves
from other moves. For tsume-shogi solvers, defensive dropping moves1 are typi-
cally delayed. For tsumego, searching for a pass move is often delayed. Therefore,
these moves are not included in the calculation of (dis)proof numbers unless other
promising moves are disproved.

4.2 Dynamic Widening

In normal proof-number search algorithms, the disproof number of an OR node
is calculated as the sum of the disproof numbers of the children (Fig. 2).

Fig. 2. Dynamic Widening: Immediately after expansion (OR node example)

1 Reuse of captured opponent pieces.

A New Proof-Number Calculation Technique for Proof-Number Search 139

Fig. 3. Dynamic Widening: Search in progress (OR node example)

In this section, our explanation specifically addresses OR nodes, unless oth-
erwise mentioned explicitly. For AND nodes, algorithms are identical if proof
numbers and disproof numbers are exchanged.

The technique we propose in this paper is to sum the disproof number of
only the best group of the children. As shown in the right tree of the figure, we
calculate the disproof number using some child nodes. Figure 2 shows an OR
node immediately after the expansion. Initial values of (dis)proof numbers are
set to 1.

As the search continues, the (dis)proof numbers will be updated (Fig. 3).
Children are sorted according to the proof numbers before calculating the (dis)
proof numbers.

Let n be an OR node, and n1, · · · , nk be its children. For OR nodes, ni are
sorted according to their proof numbers in increasing order; only top j children
are used to calculate (dis)proof numbers. The (dis)proof number of the OR node
n would be

pn(n) = min
i=1,···,j

pn(ni), dn(n) =
j∑

i=1

dn(ni).

For an AND node, children are sorted in increasing order of disproof numbers.
The (dis)proof number will be

pn(n) =
j∑

i=1

pn(ni), dn(n) = min
i=1,···,j

dn(ni).

If a node is disproven, then the proof number will be set to ∞. After sorting,
the disproven node will be passed to the end of the list and another node will
become the target of disproof-number calculation. Therefore, the search order
will be changed, but the correctness of our technique is maintained.

There might be various ways of defining j. We implemented several methods
and measured the performance. Mainly, we compared the performance of the
following two methods.

– Set j to a fixed constant (TOPn)
– Set j as 1/n of all children (RATEn)

140 K. Yoshizoe

The search speed might also be improved by assigning small (dis)proof
numbers to promising moves, and large (dis)proof numbers to unpromising moves.
We combined our methods and this technique (proposed in df-pn+ [6]).

Using this combination, our algorithm will initially use only the promising
moves for (dis)proof number calculation. As the search progresses, the algo-
rithm will shift to less-promising moves. Techniques which gradually increase
the target scope of the search are called widening [2]. We call our technique Dy-
namic Widening because the scope for the search changes dynamically during
the search.

5 Results and Analysis

5.1 Experimental Conditions

We tested our algorithm for capturing problems of Go on a full 19×19 board.
We used the test problem sets distributed by Thomsen [10]. The problem sets
do not include problems which result in a Ko. Original problems include double-
goal problems (to capture block A or block B). For our purpose, we selected
single-goal problems, resulting in 434 problems. For all problems, only one move
was determined as the answer. Therefore, we sometimes added answer moves for
problems that had multiple answers.

Our algorithm was tested for move generators of two types. The first type
generates all legal moves except when the target block is in atari (it generates
300 moves on average). The other type is a heuristic move generator with forward
pruning (it generates 20 moves on average). The heuristic move generation uses
the idea of surrounding stones [11] and consists of (1) the liberties of up to

Fig. 4. Example of heuristic move candidates (left) and all legal move candidates
(right). The block marked with “a” is the capturing target.

A New Proof-Number Calculation Technique for Proof-Number Search 141

5-surrounding stones, (2) liberties of adjacent friend stones, and (3) some other
moves including second liberties of target stones.

Figure 4 portrays the difference of the candidate moves. The block marked
with an “a” is the target to capture. The intersections marked with a number
are used as candidate moves for Black. The number shows the initial value of
(dis)proof numbers used in df-pn+. Promising moves have smaller (dis)proof
numbers. Let the number in the figure be n. The actual initial (proof number,
disproof number) were, for OR nodes, (2(n−1), 1) for AND nodes, (1, 2(n−1)).

We limited the number of node expansions to 200,000 nodes. The nodes actu-
ally searched are fewer than the above limit because of re-expansion. The liberty
threshold to give up capturing was set to five.

5.2 Answering Ability

The answering abilities of methods are shown in Table 1. The first row shows the
move generation method. “All” means that all legal moves are searched (type 1),
“heuristic” means that the heuristic move generator is used (type 2). The second
row shows the method and parameter used for Dynamic Widening. Also, TOPn
means that the best n moves are used in (dis)proof number calculation, and
RATEn means that the top 1/n moves are used.

The row named “solved” shows the number of problems solved within 200,000
node expansions; “exceeded” represents the number of problems which were not
solved within the threshold. In addition, “miss” signifies the number of problems
for which the algorithm returned an answer that turned out to be a wrong move.
By searching all legal moves, the returned answers are always right.

The results of Table 1 show that Dynamic Widening is effective if we generate
all legal moves. Furthermore, TOPn is improved for smaller n until n = 5. How-
ever, for n = 2, the result is poor. For heuristic pruning, Dynamic Widening has
a negative effect. As n becomes smaller, the performance worsens. The heuristic
move generator tends to generate fewer candidate moves after promising moves.
So, the assumption of “a smaller (dis)proof number means promising” does hold.
Here we presume that the worsening performance results from the fact that Dy-
namic Widening merely neglects this information.

Table 1. Answering ability

cand. DW method solved miss exceeded

All none 31 0 403

All RATE2 37 0 397
All RATE5 50 0 384
All RATE10 81 0 353
All RATE20 124 0 310
All RATE40 131 0 303

cand. DW method solved miss exceeded

All TOP20 108 0 326
All TOP10 138 0 296
All TOP5 139 0 295
All TOP2 8 0 426

heuristic none 283 9 140

heuristic TOP20 253 9 172
heuristic TOP10 205 8 221
heuristic TOP5 166 9 259

142 K. Yoshizoe

101

102

103

104

105

 10 100 1000 10000 100000

N
or

m
al

 [n
od

es
]

Top 5 [nodes]

y=x
101

102

103

104

105

 10 100 1000 10000 100000

H
eu

ris
tic

 M
ov

es
 [n

od
es

]

All Legal Moves and Top 5 [nodes]

y=x

All legal Moves: Normal vs. TOP5 Heuristic vs. All Legal (TOP5)

Fig. 5. Performance comparison

5.3 Speed Comparison

For ease of comparison of the precise speed performance, we plotted the number
of node expansions needed to solve problems. The left chart in Fig. 5 shows a log-
log plot of the performance of normal df-pn+ and df-pn+ with TOP5 dynamic
widening. Each plot shows the number of node expansions necessary to obtain
the answer. Most plots are in the upper left area, which shows that, except for
a few problems, the TOP5 dynamic widening improves the speed performance
of df-pn+.

The right chart in Fig. 5 shows a performance comparison between df-pn+
with heuristic pruning, and TOP5 dynamic widening when all legal moves are
used. As this chart shows, the performance of the TOP5 all legal moves df-pn+
is still several times slower than heuristically forward pruned df-pn+.

5.4 Two Sorting Methods

In Table 1, the sorting algorithm for TOPn and RATEn merely considers proof
numbers for OR nodes (disproof numbers for AND nodes). Move ordering was
done according to the move coordinate when proof numbers were equal. We also
tested two slightly different sorting methods. The only difference is in the sorting
order when the first comparison is equal.

The first method is to compare the proof number; if the proof number is equal,
then select the node with the “greater” disproof numbers. We designate this as
the “less -> greater” method. The other is to select the node with a smaller
disproof number if the proof number is equal (“less -> less”). (For an explanation
of AND nodes, please reverse proof/disproof numbers in this explanation.)

The performance comparison is shown in Fig. 6. A great gap separates the
answering ability and the speed performance. At an OR node, a smaller proof
number is promising for the attacker; a greater disproof number is not promising

A New Proof-Number Calculation Technique for Proof-Number Search 143

sorting method solved

less -> greater 152
less -> less 128

answering ability

100

101

102

103

104

105

 1 10 100 1000 10000 100000

le
ss

 le
ss

 [n
od

es
]

less greater [nodes]

y=x

Fig. 6. Answering ability and speed comparison of the sorting method

for the defender. This result is explainable simply by the observation that selec-
tion of promising moves is the good strategy.

5.5 Overall Analysis

To compare the respective overall performances we took the three methods listed
below. We compared the total number of nodes needed to solve the set of prob-
lems which was solved using all three methods.

– Default df-pn+ (all legal)
– TOP5 dynamic widening df-pn+ (less − > greater)
– Forward pruned df-pn+

The result presented in Table 2 shows that TOP5 DW makes df-pn+ more
than 30 times faster, but it is still slower than df-pn+ using forward pruning.
Nevertheless, the advantage of Dynamic Widening is that it can confirm the
correctness of the returned answer. In this respect we remark that 3% of the
answers returned by the heuristic forward pruning version is wrong.

The children must be sorted before selecting the child to expand. However,
we need only sort the top j nodes. Once sorted, the order will not be disturbed
so much from the second time and thereafter. Therefore, we expect that sorting
is not so time consuming. In this experiment, the time needed for sorting was
0.1–0.2% of the total execution time.

Table 2. Overall performance

method total nodes rate1 rate2

df-pn+ (all legal) 2011312 37.4 156
TOP5 DW df-pn+ 53825 1.0 4.16
Forward Pruned df-pn+ 12934 0.240 1.0

144 K. Yoshizoe

In conclusion, Dynamic Widening is effective for capturing problems of Go if
all legal moves are considered. It can be implemented easily with only a small
overhead of execution time. It was not effective when combined with heuristic
forward pruning, but will be useful for problems with large branching factors
such as those of Go. Dynamic Widening is particularly effective in addressing
problems for which it is necessary to guarantee correctness or those for which
heuristic pruning is difficult.

6 Conclusions and Future Work

We proposed a simple technique for Proof-Number Search: Dynamic Widening.
Although it is tested for df-pn only, the method is expected to be effective for
other proof-number search variants such as PNS [1].

From the experimental results we may conclude that this method is effective
for capturing problems of Go if all legal moves are searched. We expect that
this method is suitable for other problems with large branching factors and that
theoretically safe forward pruning is difficult. Particularly, we expect that the
new method is useful to solve open-border tsumego problems.

In the future, more experiments should be performed for problems related
to other games and domains. Additionally, we plan to improve the speed and
combine this method with other algorithms to test the capabilities of Dynamic
Widening further.

References

1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-number search. Artificial
Intelligence 66(1), 91–124 (1994)

2. Cazenave, T.: Generalized widening. In: Proceedings of the 16th Eureopean Con-
ference on Artificial Intelligence (ECAI 2004), pp. 156–160 (2004)

3. Kishimoto, A.: Correct and Efficient Search Algorithms in the Presence of Repeti-
tions. PhD thesis, University of Alberta (March 2005)

4. Kishimoto, A., Müller, M.: Search versus knowledge for solving life and death prob-
lems in Go. In: Proc. of Twentieth National Conference on Artificial Intelligence
(AAAI 2005), pp. 1374–1379. AAAI Press, Menlo Park (2005)

5. Korf, R.E.: Linear-space best-first search. Artificial Intelligence 62(1), 41–78 (1993)
6. Nagai, A.: Df-pn Algorithm for Searching AND/OR Trees and Its Applications.

PhD thesis, University of Tokyo, Tokyo (2002)
7. Schaeffer, J.: Game over: Black to play and draw in checkers. ICGA Journal 30(4),

187–197 (2007)
8. Schaeffer, J., Björnsson, Y., Burch, N., Kishimoto, A., Müller, M., Lake, R., Lu,

P., Sutphen, S.: Solving checkers. In: Proc. of 19th International Joint Conference
on Artificial Intelligence (IJCAI 2005), pp. 292–297 (2005)

9. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu,
P., Sutphen, S.: Checkers is solved. Science 317(5844), 1518–1522 (2007)

10. Thomsen, T.: Madlab website, http://www.t-t.dk/madlab/problems/index.html

http://www.t-t.dk/madlab/problems/index.html

A New Proof-Number Calculation Technique for Proof-Number Search 145

11. Thomsen, T.: Lambda-search in game trees - with application to Go. ICGA Jour-
nal 23(4), 203–217 (2000)

12. Wolf, T.: Forward pruning and other heuristic search techniques in tsume go. Spe-
cial issue of Information Sciences 122(1), 59–76 (2000)

13. Yoshizoe, K., Kishimoto, A., Müller, M.: Lambda depth-first proof number search
and its application to go. In: Proc. of the 20th International Joint Conference on
Artificial Intelligence (IJCAI 2007), pp. 2404–2409 (2007)

About the Completeness of Depth-First

Proof-Number Search

Akihiro Kishimoto1 and Martin Müller2

1 Department of Media Architecture, Future University-Hakodate 116-2,
Kamedanakano, Hakodate, Hokkaido, 041-8655, Japan

kishi@fun.ac.jp
2 Department of Computing Science, University of Alberta,

Edmonton, AB, Canada, T6G 2E8
mmueller@cs.ualberta.ca

Abstract. Depth-first proof-number (df-pn) search is a powerful mem-
ber of the family of algorithms based on proof and disproof numbers.
While df-pn has succeeded in practice, its theoretical properties remain
poorly understood. This paper resolves the question of completeness of
df-pn: its ability to solve any finite boolean-valued game tree search prob-
lem in principle, given unlimited amounts of time and memory. The main
results are that df-pn is complete on finite directed acyclic graphs (DAG)
but incomplete on finite directed cyclic graphs (DCG).

1 Introduction

AND/OR tree search is a standard technique for determining the winner of a two-
player game. Research in tree search methods has led to remarkable progress over
the last 15 years, especially on algorithms based on proof and disproof numbers
[1]. Nagai’s depth-first proof-number search (df-pn) is a particularly attractive
method [6] which has been applied successfully in games such as shogi [6], Go
[5], and checkers [10].

One important open question concerns the completeness of df-pn. An algo-
rithm A to solve problems in domain D is called complete if A can eventually
solve any problem in D, and incomplete otherwise. Resolving the completeness
of df-pn is relevant both for theory and practical applications. Completeness
implies that there are no fundamental obstacles for solving increasingly hard
problems. This paper proves two main results.

1. Df-pn is complete on finite directed acyclic graphs (DAGs), given unlimited
amounts of time and memory.

2. Df-pn is incomplete on finite directed cyclic graphs (DCGs). There exist
problems that df-pn cannot solve. A concrete counterexample is given.

The structure of this paper is as follows. Sections 2 and 3 review terminology
for AND/OR trees, proof number search, and df-pn. Sections 4 and 5 prove the
completeness of df-pn on DAGs and its incompleteness on DCGs.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 146–156, 2008.
c© IFIP International Federation for Information Processing 2008

About the Completeness of Depth-First Proof-Number Search 147

2 AND/OR Trees and Graphs

An AND/OR tree contains two types of nodes that assume dual roles, namely
OR and AND nodes. In the standard model, all children of an OR node are
AND nodes, and vice versa. The root is the only node that has no parent. It is
assumed to be an OR node.

Each node can assume three kinds of values: true, false, and unknown. In
a solved AND/OR tree, the value of the root is either true or false. A terminal
node has no children. Its value must also be either true or false. A node with at
least one child is called an interior node. A leaf node has not yet been expanded.
It could be either terminal or interior. The phrase “a node is x” will be used as
a short form for “a node has value x”.

An interior OR node is true if at least one of its children is true, it is false
if all its children are false, and unknown otherwise. Likewise, an interior AND
node is false if at least one of its children is false, true if all children are true,
and unknown otherwise. A true node is also called a proven node, and a false
node is called disproven. A (dis)proof demonstrates that a node is (dis)proven. A
proof tree T provides a proof for a node n. It contains (1) n, (2) at least one child
of each interior OR node of T , and (3) all children of interior AND nodes of T .
All terminal nodes of T must be proven. Disproof trees are defined analogously.

In contrast to a tree, a directed acyclic graph (DAG) may contain more than
one path between two nodes. The value of each node is well-defined by applying
the same rules as for trees in a bottom-up manner. The other concepts defined
above for trees carry over to DAGs as well.

Cycles in a directed cyclic graph (DCG) potentially cause recursive dependen-
cies of a node value on itself. Therefore, values are usually defined in a game-
specific way that takes into account the history, the path taken to reach a node.
A node in a DCG implicitly represents the different paths taken to reach that
node. The game outcome may differ depending on which path was taken. This
phenomenon is known as the Graph History Interaction (GHI) problem [2,8].

3 Proof-Number Search and Df-pn

3.1 Proof-Number Search

Allis’ proof-number search (PNS) is a best-first search algorithm based on proof
and disproof numbers [1]. These numbers estimate how easy it is to prove or
disprove a node by further expanding an AND/OR tree. The (dis)proof number
pn(n) (dn(n)) of node n is the minimum number of leaf nodes that must be
(dis)proven to (dis)prove n.

Let n1, n2, · · · , nk be children of node n. Since only one proven child suffices
to prove an OR node, while all children must be proven to prove an AND node
(and vice versa for disproof), pn(n) and dn(n) are calculated as follows:

1. For a proven node n, pn(n) = 0 and dn(n) = ∞.
2. For a disproven node n, pn(n) = ∞ and dn(n) = 0.

148 A. Kishimoto and M. Müller

3. For an unknown leaf node n, pn(n) = dn(n) = 1.

4. For an interior OR node n, pn(n) = min
i=1,2,··· ,k

pn(ni), dn(n) =
k∑

i=1

dn(ni).

5. For an interior AND node n, pn(n) =
k∑

i=1

pn(ni), dn(n) = min
i=1,2,··· ,k

dn(ni).

PNS expands a most promising leaf node by selecting a child with smallest
(dis)proof number at OR (AND) nodes, starting from the root, then updates
proof and disproof numbers along the path back to the root. The process con-
tinues until either a proof or disproof of the root is found, or resources are
exhausted.

3.2 Depth-First Proof-Number Search

The depth-first proof-number (df-pn) search algorithm [6] is a depth-first variant
of PNS which expands fewer interior nodes and requires less memory than PNS.
Df-pn utilizes thresholds for proof and disproof numbers. If either pn(n) or
dn(n) exceeds its respective threshold, a most-promising node cannot exist in
the subtree below n. See [9] for a clear exposition of df-pn.

Figure 1, adapted from [6], presents pseudo-code of the df-pn algorithm1. The
code is written in negamax fashion to avoid two dual cases. For node n, φ(n)
and δ(n) are defined as follows:

φ(n) =
{

pn(n) (n is an OR node)
dn(n) (n is an AND node),

δ(n) =
{

dn(n) (n is an OR node)
pn(n) (n is an AND node).

The computation of φ(n) and δ(n) for an interior node n simply becomes:

φ(n) = min
i=1,2,··· ,k

δ(ni), δ(n) =
k∑

i=1

φ(ni).

Nagai proved that df-pn is equivalent to PNS in the sense that both algorithms
always expand a most promising node [6]. However, the proof requires the search
space to be a tree. If the search space is not a tree, no theoretical property such as
completeness has been shown. PNS is complete on a finite search space, because
it keeps traversing nodes until it either expands a leaf or detects a cycle. However,
df-pn may exceed the thresholds without reaching any leaf on DAGs or DCGs.
The next section describes this problem.

1 The original code in [6] saves the proof and disproof number thresholds of a node
in the transposition table before expanding that node. However, this step can be
omitted for efficiency [7].

About the Completeness of Depth-First Proof-Number Search 149

// Set up for the root node
// Note that the root is an OR node
int Df-pn(node r) {

r.φ = ∞; r.δ = ∞;
MID(r);
if (r.δ = ∞)

return true;
else

return false;
}
// Iterative deepening at each node
void MID(node n) {

TTlookup(n,φ,δ);
if (n.φ ≤ φ || n.δ ≤ δ) {

// Exceed thresholds
n.φ = φ; n.δ = δ;
return;

}
// Terminal node
if (IsTerminal(n)) {

Evaluate(n);
// Store (dis)proven node
TTstore(n,n.φ,n.δ);
return;

}
GenerateMoves(n);
// Iterative deepening
while (n.φ > ∆Min(n) &&

n.δ > ΦSum(n)) {
nc = SelectChild(n,φc,δc,δ2);
// Update thresholds
nc.φ = n.δ + φc - ΦSum(n);
nc.δ = min(n.φ,δ2 + 1);

(+) MID(nc);
}
// Store search results
n.φ = ∆Min(n); n.δ = ΦSum(n);
TTstore(n,n.φ,n.δ);

}

// Select the most promising child
node SelectChild(node n, int &φc,

int &δc, int &δ2) {
node nbest;
δc = φc = ∞;
for (each child nchild) {

TTlookup(nchild,φ,δ);
// Store the smallest and second
// smallest δ in δc and δ2

if (δ < δc) {
nbest = nchild;
δ2 = δc; φc = φ; δc = δ;

}
else if (δ < δ2)

δ2 = δ;
if (φ = ∞)

return nbest;
}
return nbest;

}
// Compute the smallest δ of
// n’s children
int ∆Min(node n) {

int min = ∞;
for (each child nchild) {

TTlookup(nchild,φ,δ);
min = min(min,δ);

}
return min;

}
// Compute sum of φ of n’s children
int ΦSum(node n) {

int sum = 0;
for (each child nchild) {

TTlookup(nchild,φ,δ);
sum = sum + φ;

}
return sum;

}

Fig. 1. Pseudo-code of the df-pn algorithm

4 Depth-First Proof-Number Search in DAGs

4.1 Problem Description

Although completeness on finite DAGs is a seemingly natural property of game
tree search algorithms, it is not a trivial question for the case of df-pn for the
following reason. If df-pn expands a node n via path p, it backs up proof and
disproof numbers only along p. Nodes along other paths to n are not updated

150 A. Kishimoto and M. Müller

A

B C

D E

F

G H I

A

B C

thpn(A)=
thdn(A)=

8
8

(1,1) (1,1)

A

B C

thpn(A)=
thdn(A)=

8
8

(1,1)

(1,1)

(1,1)

D E

thpn(B)=2<=pn(B)=2
thdn(B)=

8

-1

(a) (b) (c)

A

B C

thpn(A)=
thdn(A)=

8
8

(1,1)

(1,1)

(1,1)

D E

thpn(C)=3
thdn(C)= 8 -1

(2,1)

A

B C

thpn(A)=
thdn(A)=

8
8

(1,1)

(1,1)

(1,1)

D E

thpn(C)=3
thdn(C)=

8

-1
(2,1)

F

thpn(E)=3
thdn(E)=

8

-1

A

B C

thpn(A)=
thdn(A)=

8
8

(1,1)

(1,1)

(1,1)

D E

thpn(C)=3
thdn(C)=

8

-1
(2,1)

F

thpn(E)=3
thdn(E)=

8

-1

(1,1) (1,1)

G H I

thpn(F)=3<=pn(F)=3
thdn(F)= -1

8

(d) (e) (f)

A

B C

thpn(A)=
thdn(A)=

8
8

(1,1)

(3,1)

(1,1)

D E

thpn(B)=4
thdn(B)=

8

-1
(2,1)

F

(1,1) (1,1)

G H I

(3,1)

(3,1)

A

B C

thpn(A)=
thdn(A)=

8
8

(1,1)

(3,1)

(1,1)

D E

thpn(B)=4<=pn(B)=4
thdn(B)= 8 -1

F

(1,1) (1,1)

G H I

(3,1)

(3,1)

(g) (h)

Fig. 2. An example in which df-pn does not expand a leaf node

to become consistent with the changes in pn(n) and dn(n). This is a pragmatic
choice: there may be exponentially many such paths. While path length is typi-
cally logarithmic in game tree size S, the number of nodes on all paths to n may
be linear in S.

Because of inconsistent node values, a call of MID (see Fig. 1) in df-pn may
return without expanding a leaf node.

Figure 2 shows an example, with proof and disproof numbers written as pairs
(pn, dn). The DAG that df-pn explores is shown in Fig. 2(a). thpn(n) and
thdn(n) are the current thresholds for proof and disproof numbers. A dotted
line indicates that df-pn recomputes pn(n) and dn(n) by checking proof and
disproof numbers of n’s children. If n is a leaf node, a dotted line indicates that
df-pn expands n to recompute pn(n) and dn(n). Ties are broken in favor of the
leftmost node.

About the Completeness of Depth-First Proof-Number Search 151

In the example, the subtree below E is first explored through C as shown in
Figs. 2(b)-(f). Next, df-pn selects B with thpn(B) = 4 (see Fig. 2(g)). When
pn(B) is computed, B’s child E already has a proof number of 3. Therefore
pn(B) = 4 ≥ thpn(B) = 4 (Fig. 2(h)), and MID returns immediately without
reaching a leaf node.

4.2 Completeness of Depth-First Proof-Number Search

A search is complete if it is eventually able to find a (dis)proof of the root.
This is guaranteed if in the worst case the whole search space can be explored.
Whenever a leaf node is expanded, the unexplored part of the search space
shrinks. Therefore, the only potential problem is when df-pn exceeds a threshold
at an interior node and does not expand a leaf. This section shows that in this
case, df-pn makes progress with updating the proof and disproof numbers. They
become more consistent, which eventually leads to the expansion of a leaf node.
For brevity, DAG always stands for a finite DAG in this section.

Definition 1. (Consistent and inconsistent nodes) Interior node n of DAG
G with children n1, n2, · · · , nk is called consistent if φ(n) = min

i=1,2,··· ,k
δ(ni) and

δ(n) =
k∑

i=1

φ(ni), otherwise n is called inconsistent.

Definition 2. (Level) The level l(n) of node n in DAG G is the maximum length
of any path from the root to n in G.

Definition 3. (Consistent Graph) A DAG G is called consistent from level l,
or short l-consistent, if any interior node n with level l(n) ≥ l in G is consistent.
G is called consistent if it is 0-consistent.

Definition 4. (Inconsistency tuple) Let |Nl| be the number of inconsistent in-
terior nodes at level l in DAG G, and lmax be the maximum level of all interior
nodes. The inconsistency tuple IT (G) is defined as (|Nlmax |, |Nlmax−1|, · · · , |N0|).
We will write IT (G) = 0 short for IT (G) = (0, · · · , 0).

Note that G is consistent if and only if IT (G) = 0.

Definition 5. (<lex) Let i0, i1, · · · , il and j0, j1, · · · , jl be nonnegative integers.
The lexicographical order <lex is defined as follows:

(i0, i1, · · · , il) <lex (j0, j1, · · · , jl) ⇐⇒ ∃k s.t. i0 = j0, i1 = j1, · · · ,

ik−1 = jk−1 and ik < jk.

The following lemma guarantees that each run of MID that does not expand
a leaf node lexicographically decreases IT (G). Such a run changes at least one
inconsistent node to be consistent.

152 A. Kishimoto and M. Müller

Lemma 1. Assume that unproven DAG G is inconsistent and that df-pn is
about to call MID(nc) (see (+) in Fig. 1) for a child nc of node n. Let T and
U be the values of IT (G) before and after the run of MID(nc) respectively. If
MID(nc) expands no leaf node, then U <lex T .

Proof. Let thφ(n) and thδ(n) be the thresholds of φ and δ at node n. The run
of MID(nc) encounters at least one interior node m at which df-pn satisfies the
termination condition thφ(m) ≤ ∆Min(m) or thδ(m) ≤ ΦSum(m). Let o be an
interior node of which the level l(o) is largest among all such m. Let T and U be
(tlmax , tlmax−1, · · · , t0) and (ulmax , ulmax−1, · · · , u0) respectively. Because G is a
DAG, uk = tk holds for l(o) < k ≤ lmax. Moreover, since computing ∆Min(o)
and ΦSum(o) in Fig. 1 fixes the inconsistency at o, ul(o) < tl(o), which implies
U <lex T . ��

The following two lemmas prove properties of DAGs that are consistent from
level l.

Lemma 2. Let l = l(n), and thφ(n) and thδ(n) be the thresholds of φ and δ
at node n. Assume that df-pn is at interior node n with thφ(n) > φ(n) and
thδ(n) > δ(n) in unproven l-consistent DAG G. Then, df-pn selects a child nc

of n with thφ(nc) > φ(nc) and thδ(nc) > δ(nc).

Proof. Because G is l-consistent, φ(n) = min
i=1,2,··· ,k

δ(ni) and δ(n) =
k∑

i=1

φ(ni).

When df-pn recomputes δ(n) and φ(n) by retrieving proof and disproof numbers
of n’s children from the transposition table, δ(n) and φ(n) remain unchanged,
and df-pn still does not satisfy the termination condition. Let nc be a node of
which δ is the smallest and nsec be one of which δ is the second smallest. Note
that φ of n corresponds to δ of nc and nsec because of the duality of proof and
disproof numbers. Df-pn selects nc with the following thresholds:

thφ(nc) = thδ(n) + φ(nc) −
k∑

i=1

φ(ni), thδ(nc) = min(thφ(n), δ(nsec) + 1).

Because thδ(n) > δ(n) and δ(n) =
k∑

i=1

φ(ni), thφ(nc) > φ(nc) holds. Also, be-

cause δ(nsec)+1 > δ(nc) and thφ(n) > φ(n) = δ(nc), thδ(nc) > δ(nc) holds. ��

Lemma 3. Assume that df-pn is at the call MID(n) and l = l(n) in unproven
l-consistent DAG G. If thφ(n) > φ(n) and thδ(n) > δ(n), then df-pn finds and
expands a leaf.

Proof. Because G is l-consistent, Lemma 2 can be recursively applied to the
sequence of interior nodes that df-pn selects starting from n. Because G is finite,
this sequence must reach a leaf nleaf . By lemma 2, thφ(nleaf) > φ(nleaf) and
thδ(nleaf) > δ(nleaf). Hence, df-pn expands nleaf . ��

About the Completeness of Depth-First Proof-Number Search 153

Theorem 1. The df-pn algorithm is complete on any finite DAG.

Proof. We show that there exists no node that causes df-pn to loop forever in the
while loop of MID in Fig. 1.

Assume that such a node n exists in the current DAG G. The only case that
must be considered is when df-pn expands no leaf node below n and always satis-
fies thφ(n) > ∆Min(n) and thδ(n) > ΦSum(n). If df-pn expands a leaf reached
from n, the number of unexpanded nodes is reduced and the while loop will even-
tually be exited.

By Lemma 3, if no leaf is expanded, G can not be l(n)-consistent. Assume
that df-pn is at n and let T and U be the values of IT (G) before and after df-pn
calls MID on the line marked by (+) in Fig. 1. By applying Lemma 1, U <lex T
holds. This indicates IT (G) = 0 after a finite number of MID calls. Because
G eventually becomes consistent, it also becomes l(n)-consistent. By Lemma 3
df-pn expands a leaf node below n, which is a contradiction.

Because thφ(r) = ∞ and thδ(r) = ∞ at the root r and either φ(r) ≥ thφ(r) or
δ(r) ≥ thδ(r) holds after a finite number of steps, df-pn eventually solves r. ��

5 Depth-First Proof-Number Search in DCGs

5.1 Incompleteness of df-pn

Df-pn can only be used on DCGs when the Graph History Interaction (GHI)
problem [2,8] is handled. Even though a correct and efficient solution to GHI
exists [4], df-pn is not a complete algorithm.

Theorem 2. Df-pn is incomplete on DCGs.

Proof. We prove that in the problem shown in Fig. 3(a), which is simplified from
an example in [3], df-pn loops forever among nodes A-O and never expands P .
Figures 3(b)-(i) show the crucial steps in running df-pn. Let k be the number
of visits to node C in Fig. 3(a), l be a positive integer, and pnk(n), dnk(n) be
proof and disproof numbers of node n at the kth visit to C. As before, ties are
broken left to right.

Claim: the following equations hold:

pnk(X) = 1 for all k and all X ∈ {F, G, H, I, J, K, L, M, N, O, P}
dnk(X) = 1 for all k and all X ∈ {I, K, N, P}

dnk(F) =

⎧⎨
⎩

1, (for k = 1)
k, (for k = 2l)

k − 1, (for k = 2l + 1)

dnk(G) =
{

k, (for k = 2l − 1)
k − 1, (for k = 2l)

dnk(H) = dnk(L) =

⎧⎨
⎩

1, (for k = 1)
k − 1, (for k = 2l)
k − 2, (for k = 2l + 1)

154 A. Kishimoto and M. Müller

dnk(J) = dnk(O) =

⎧⎨
⎩

1, (for k = 1, 2)
k − 1, (for k = 2l + 1)
k − 2, (for k = 2l + 2)

dnk(M) =

⎧⎨
⎩

1, (for k = 1, 2, 3)
k − 2, (for k = 2l + 2)
k − 3, (for k = 2l + 3).

Proof: by induction on k.

– (Case k ≤ 5) Figures 3(b)-(i) give a trace of df-pn on the graph in Fig.
3(a). In this figure, (c), (e), (g), and (i) correspond to k = 1, 2, 3, and 4
respectively. P is not explored for k ≤ 4. By inspection, the claim holds for
each node in these figures. The analogous proof for the case of k = 5 is
omitted here for lack of space.

– Assume that the claim holds for k. It is proven for k+1 by tracing the search
graph.

• (Case k = 2l + 2) At the kth visit to C, pnk(F) = pnk(G) = 1 and
dnk(F) = k > dnk(G) = k−1. G is, therefore, chosen with thpn(G) = 1
and thdn(G) = k + 1. At G, thpn(G) = 2 ≥ min(pnk(J),pnk(K)) = 1
and thdn(G) = k + 1 ≥ dnk(J) + dnk(K) = k − 2 + 1 = k − 1, G is ex-
panded. Since pnk(J) = pnk(K) = 1, J is chosen with thpn(J) = 2 and
thdn(J) = k. At J , O is explored since thpn(J) = 2 ≥ min(pnk(O)) = 1
and thdn(J) = k ≥ dnk(O) = k − 2. Therefore, O is selected to expand
with thpn(O) = 2 and thdn(O) = k. However, the termination condition
is satisfied at O, because dnk(H)+dnk(P) = k−1+1 = k ≥ thdn(O) =
k. Thus, P is not explored and proof and disproof numbers are backed up
to C as follows:

pnk+1(O) = min(pnk(H),pnk(P)) = 1
dnk+1(O) = dnk(H) + dnk(P) = k

pnk+1(J) = pnk+1(O) = 1
dnk+1(J) = dnk+1(O) = k

pnk+1(G) = min(pnk+1(J),pnk(K)) = 1
dnk+1(G) = dnk+1(J) + dnk(K) = k + 1.

For the remaining nodes F , H, I, K, L, M , and N , proof and disproof
numbers remain the same. Thus, the claim is proven for k + 1.

• (Case k = 2l + 3) This case is proven with an analogous discussion.
At the kth visit to C, pnk(F) = pnk(G) = 1 and dnk(F) = k − 1 <
dnk(G) = k. F is chosen with thpn(F) = 2 and thdn(F) = k + 1.
C → F → H → L → M is explored. The termination condition at M
holds, since dnk(O) = k − 1 ≥ thdn(M) = k − 1. Proof and disproof
numbers are backed up to C and change as in the equations above.

P is never explored and df-pn loops forever. ��

About the Completeness of Depth-First Proof-Number Search 155

A

B C

D E

OR node AND node

F G

H

True

JI K

L

M N

O

P

Q

A

B C

D E

thpn(A)=
thdn(A)= 8

pn(D)= 1
dn(D)= 1

thpn(B)=
thdn(B)= 8

2
- 1

pn(C)= 1
dn(C)= 1

pn(E)= 1
dn(E)= 1

8

A

B C

D E F G

thpn(A)=
thdn(A)= 8

pn(B)= 2
dn(B)= 1

8

thpn(C)=
thdn(C)= 8

3
- 1

pn(G)= 1
dn(G)= 1

pn(I)= 1
dn(I)= 1

(a) (b) (c)

A

B C

D E F G

H I

thpn(A)=
thdn(A)= 8

pn(B)= 2
dn(B)= 1

8

thpn(C)=
thdn(C)= 8

3
- 1

pn(G)= 1
dn(G)= 1

pn(H)= 1
dn(H)= 1

pn(I)= 1
dn(I)= 1

thpn(F)=
thdn(F)=

2
2

A

B C

D E F G

H I

thpn(A)=
thdn(A)= 8

pn(B)= 2
dn(B)= 1

8

thpn(C)=
thdn(C)= 8

3
- 1

pn(G)= 1
dn(G)= 1

pn(H)= 1
dn(H)= 1

pn(I)= 1
dn(I)= 1

pn(F)= 1
dn(F)= 2

A

B C

D E F G

H JI K

O

P

thpn(A)=
thdn(A)= 8

pn(B)= 2
dn(B)= 1

8

thpn(C)=
thdn(C)= 8

3
- 1

pn(K)= 1
dn(K)= 1

pn(H)= 1
dn(H)= 1

pn(F)= 1
dn(F)= 2

pn(P)= 1
dn(P)= 1

thpn(J)= 2
thdn(J)= 2

thpn(G)= 2
thdn(G)= 3

thpn(O)= 2
thdn(O)= 2

(d) (e) (f)

A

B C

D E F G

H JI K

O

P

thpn(A)=
thdn(A)= 8

pn(B)= 2
dn(B)= 1

8

thpn(C)=
thdn(C)= 8

3
- 1

pn(K)= 1
dn(K)= 1

pn(I)= 1
dn(I)= 1

pn(F)= 1
dn(F)= 2

pn(P)= 1
dn(P)= 1

pn(J)= 1
dn(J)= 2

pn(G)= 1
dn(G)= 3

pn(O)= 1
dn(O)= 2

pn(H)= 1
dn(H)= 1

A

B C

D E F G

H JI K

O

P

thpn(A)=
thdn(A)= 8

pn(B)= 2
dn(B)= 1

8

thpn(C)=
thdn(C)= 8

3
- 1

pn(K)= 1
dn(K)= 1

pn(P)= 1
dn(P)= 1

pn(G)= 1
dn(G)= 3

pn(O)= 1
dn(O)= 2

thpn(F)= 2
thdn(F)= 4

pn(I)= 1
dn(I)= 1

L

N

thpn(H)= 2
thdn(H)= 3

M

pn(N)= 1
dn(N)= 1

thpn(L)= 2
thdn(L)= 3

thpn(M)= 2
thdn(M)= 2

A

B C

D E F G

H JI K

O

P

thpn(A)=
thdn(A)= 8

pn(B)= 2
dn(B)= 1

8

thpn(C)=
thdn(C)= 8

3
- 1

pn(K)= 1
dn(K)= 1

pn(P)= 1
dn(P)= 1

pn(G)= 1
dn(G)= 3

pn(O)= 1
dn(O)= 2

pn(F)= 1
dn(F)= 4

pn(I)= 1
dn(I)= 1

L

N

pn(H)= 1
dn(H)= 3

M
pn(N)= 1
dn(N)= 1

pn(L)= 1
dn(L)= 3

pn(M)= 1
dn(M)= 2

(g) (h) (i)

Fig. 3. An example in which df-pn loops forever

5.2 Df-pn(r)

Df-pn(r) [3] is an improved version of df-pn that avoids the looping behavior in
cases such as Fig. 3. It modifies the computation of proof and disproof numbers
by omitting so-called old children such as H when computing dn(O). Because

156 A. Kishimoto and M. Müller

only old nodes may lead to repetitions, this type of modification seems to be a
reasonable attempt towards designing a complete algorithm. While infinite loops
have never been observed when using df-pn(r), even on very complex problems
in Go and checkers [3], the question of completeness of this algorithm on DCGs
remains unresolved.

6 Conclusion and Future Work

This paper established the completeness properties of depth-first proof-number
search. The result that df-pn can solve any finite problem on DAGs is encourag-
ing. However, since df-pn is shown to be incomplete on finite DCGs, the search
for complete versions of the algorithm becomes urgent. Df-pn(r) seems to be a
strong candidate.

Acknowledgments. This research was financially supported by NSERC, the
Natural Sciences and Engineering Research Council of Canada and iCORE, the
Alberta Informatics Circle of Research Excellence.

References

1. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-number search. Artificial
Intelligence 66(1), 91–124 (1994)

2. Campbell, M.: The graph-history interaction: On ignoring position history. In: 1985
Association for Computing Machinery Annual Conference, pp. 278–280 (1985)

3. Kishimoto, A.: Correct and Efficient Search Algorithms in the Presence of Repeti-
tions. PhD thesis, Department of Computing Science, University of Alberta (2005)

4. Kishimoto, A., Müller, M.: A general solution to the graph history interaction
problem. In: 19th National Conference on Artificial Intelligence (AAAI 2004), pp.
644–649. AAAI Press, Menlo Park (2004)

5. Kishimoto, A., Müller, M.: Search versus knowledge for solving life and death
problems in Go. In: Twentieth National Conference on Artificial Intelligence (AAAI
2005), pp. 1374–1379. AAAI Press, Menlo Park (2005)

6. Nagai, A.: Df-pn Algorithm for Searching AND/OR Trees and Its Applications.
PhD thesis, Department of Information Science, University of Tokyo (2002)

7. Nagai, A.: Private communication (2005)
8. Palay, A.J.: Searching with Probabilities. PhD thesis, Carnegie Mellon University

(1983); Also published by Pitman (1985)
9. Pawlewicz, J., Lew, L.: Improving depth-first PN-search: 1 + ε trick. In: van den

Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS, vol. 4630,
pp. 160–171. Springer, Heidelberg (2007)

10. Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu,
P., Sutphen, S.: Checkers is solved. Science 317(5844), 1518–1522 (2007)

Weak Proof-Number Search

Toru Ueda, Tsuyoshi Hashimoto, Junichi Hashimoto, and Hiroyuki Iida

School of Information Science,
Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
{s0610013,t-hashi,j-hashi,iida}@jaist.ac.jp

Abstract. The paper concerns an AND/OR-tree search algorithm to
solve hard problems. Proof-number search is a well-known powerful search
algorithm for that purpose. Its depth-first variants such as PN*, PDS, and
df-pn work very well, in particular in the domain of shogi mating problems.
However, there are still possible drawbacks. The most prevailing one is
the double-counting problem. To handle this problem the paper proposes
a new search idea using proof number and branching factor as search es-
timators. We call the new method Weak Proof-Number Search. The ex-
periments performed in the domain of shogi and Othello show that the
proposed search algorithm is potentially more powerful than the original
proof-number search or its depth-first variants.

1 Introduction

In 1994, Allis developed the proof-number search (PN-search) algorithm [2] for
finding the game-theoretical value in game trees. PN-search is a best-first search,
in which the cost function used in deciding which node to expand next is given
by the minimum number of nodes that have to be expanded to prove the goal.
As such it is a successor of conspiracy-number search [11,19]. PN-search is ap-
propriate in cases where the goal is a well-defined predicate, such as proving a
game to be a first-player win.

PN-search can be a powerful game solver in various simple domains such as
connect-four and qubic. Its large disadvantage is that, as a genuine best-first
algorithm, it uses a large amount of memory, since the complete search tree has
to be kept in memory. To handle the memory disadvantage of PN-search, PN*
was proposed [22]. It is a search algorithm for AND/OR tree search, which is a
depth-first alternative for PN-search. The idea was derived from Korf’s RBFS
algorithm [10], which was formulated in the framework of single-agent search.

PN* transforms a best-first PN-search algorithm into an iterative-deepening
depth-first approach. The PN* algorithm was implemented in a tsume-shogi
(Japanese-chess mating-problem) program, and evaluated by testing it on 295
notoriously difficult tsume-shogi problems (one problem has a depth of search
of over 1500 plies). The experimental results were compared with those of other
programs. The PN* program showed by far the best results, solving all problems
but one.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 157–168, 2008.
c© IFIP International Federation for Information Processing 2008

158 T. Ueda et al.

PDS [13], meaning Proof-number and Disproof-number Search, is a straight
extension of PN* which uses only proof numbers. PDS is a depth-first algorithm
using both proof numbers and disproof numbers. Therefore, PDS is basically
more powerful than PN*. Moreover, Nagai [14] developed df-pn, meaning depth-
first proof-number search. It behaves similarly to PN-search [15], but is more
efficient in its use of memory. It solved all hard tsume-shogi problems quite
efficiently.

Since then, df-pn has successfully been applied in other domains such as Go
problems [9] and checkers [20,21]. However, we found a serious drawback when
applying df-pn in other complex domains such as Othello. The drawback is
known as the double-counting problem (see Subsection 2.3). Here we remark
that Müller [12] calls it the problem of overestimation.

In this paper, we therefore explore a new idea to improve proof-number-based
search algorithms and then propose a new search algorithm called Weak Proof-
Number Search. We evaluate the new algorithm by testing it on some tsume-shogi
problems and Othello endgame positions.

The contents of this paper are as follows. Section 2 presents a brief history of
the development of proof-number-based AND/OR-tree search algorithms in the
domain of mating search in shogi. Section 3 presents our new idea to improve
the PN-search. Experimental performance in the domain of shogi and Othello
are shown to evaluate the new search algorithm. Finally, concluding remarks are
given in Sect. 4.

2 Proof-Number Based AND/OR-Tree Search
Algorithms

Best-first algorithms are successfully transformed into depth-first algorithms,
such as PN*, PDS, and df-pn. Each of these algorithms aimed at solving hard
tsume-shogi problems [18]. The algorithms can be characterized as variants of
proof-number search. Note that PN* only uses proof numbers, while PDS and
df-pn use both proof numbers and disproof numbers. In this section, we give a
short sketch of proof-number-based AND/OR-tree search algorithms.

2.1 PN-Search

The well-known technique of PN-search was designed for finding the game-
theoretical value in game trees [2]. It is based on ideas derived from conspiracy-
number search [11] and its variants, such as applied cn-search and αβ-cn search.
While in cn-search the purpose is to continue searching until it is unlikely that the
minimax value of the root will change, PN-search aims at proving the true value
of the root. Therefore, PN-search does not consider interim minimax values. PN-
search selects the next node to be expanded using two criteria: (1) the potential
range of subtree values and (2) the number of nodes which must conspire to prove
or disprove that range of potential values. These two criteria enable PN-search to
deal efficiently with game trees with a non-uniform branching factor.

Weak Proof-Number Search 159

2.2 PN*, PDS, and df-pn

PN* [22] is a depth-first search using a transposition table, and a threshold for
the proof numbers. PN* searches in a best-first manner, and uses much less
working memory than the standard best-first searches.

Nagai proposed the PDS algorithm, that is, Proof-number and Disproof-
number Search, which is a straight extension of PN* [13,14]. This search uses a
threshold for the disproof number as well as the proof number when it selects
and expands the nodes. The nodes with the smaller proof number or the smaller
disproof number are searched first. If the proof number or the disproof number
exceeds the threshold in a certain node, PDS stops further searching this node.
When PDS fails to expand the root node, it increases one of the two threshold
values and restarts the search.

PDS performs multiple iterative deepening in both AND nodes and OR nodes,
while PN* does so only in OR nodes. Similarly to PN*, PDS’s search behavior
is in a best-first manner, while the search basically proceeds depth-first. From
this point, PDS could be recognized as a variant of the proof-number search [2].
Actually, PDS uses proof and disproof number asymptotically while PN-search
regards them fairly.

Nagai modified PDS and developed a new algorithm named df-pn [16]. The
algorithm df-pn first sets the thresholds of both proof and disproof numbers in
the root node to a certain large value that can be recognized as infinity. The
threshold values are distributed among the descendant nodes. In every node, the
multiple iterative deepening is performed in the same way as in PDS. Nagai [15]
proved that df-pn search behaves in the same way as PN-search in the meaning
that always a most-proving node will be expanded.

2.3 Possible Drawbacks of Proof-Number-Based Search Algorithms

PN-search has at least three possible bottlenecks [2]. The first is memory re-
quirement. The second is Graph-History Interaction (GHI). The third is Di-
rected Acyclic Graphs (DAGs). The answer to the first problem was df-pn, by
which it became possible to solve efficiently quite difficult problems such as a
shogi-mating problem with 1525 steps.

The GHI problem is a notorious problem that causes game-playing programs
to return occasionally incorrect solutions [4]. PN-search and its depth-first vari-
ants also have to suffer from it. Breuker et al. [3] provided a solution for the
best-first search. Later, Kishimoto and Müller [9] showed a practical method to
cure the GHI problem for the case of the df-pn search.

A well-known problem of PN-search is that it does not handle transpositions
very well. If the search builds a DAG instead of a tree, the same node can be
counted more than once, leading to incorrect proof numbers and disproof num-
bers (i.e., the double-counting problem). Thus, PN-search overestimates proof
numbers in case where DAGs occur. While there are exact methods for comput-
ing the proof numbers for DAGs [12], they are too slow to be practical. For some
practical applications, Nagai [15] and Kakinoki [8] proposed a domain-dependent

160 T. Ueda et al.

improvement, respectively. However, the DAGs problem is still a critical issue
when PN-search is applied in very hard domains.

2.4 AND/OR-Tree Search Taking Branching Factors into Account

A new search idea using the number of possibilities (i.e., branching factors) on a
path considered as an estimator for AND/OR-tree search, instead of proof/dis-
proof numbers, was proposed by Okabe [17]. It enables a solver to suffer relatively
little from the serious problem due to DAGs. Experimental results show that for
some very hard tsume-shogi problems with large DAGs, it outperforms df-pn.
However, in most cases df-pn outperforms Okabe’s search algorithm (named
Branch Number Search or BNS in short).

Okabe [17] shows that in an example graph, threshold n+1 or more is needed
to solve the graph by BNS, whereas 2n or more is needed to solve the graph by
df-pn. This indicates that for the number of n repeated DAGs a proof-number-
based search algorithms suffer exponentially, whereas BNS suffers linearly.

Moreover, df-pn (with Nagai’s improvement for DAGs) and BNS were com-
pared in the domain of Othello [23]. It shows that as the frequency of DAGs
grows, the performance of df-pn drastically decreases. Indeed, the frequency of
DAGs increases as the number of search plies becomes larger in the domain of
Othello. In the deeper search, therefore BNS outperforms df-pn in the execution
time as well as in the number of search nodes.

3 Weak Proof-Number Search

In this section we propose a new search algorithm using information both on
proof numbers and branching factors during search. First we present the basic
idea of our proposed search algorithm. Then, the performance of the solver, in
which the proposed idea is incorporated, is evaluated in the domain of tsume-
shogi and Othello problems.

3.1 The Basic Idea of Our Proposed Search Algorithm

Our proposed idea is similar to PN-search. Hence, the implementation is easy.
The only difference is, at an AND node, to use additional information (1) on
branching factors and (2) on proof numbers. The information is used as a search
indicator. In case where DAGs occur, the new search algorithm would better
estimate the correct proof number than PN-search that often overestimates it.

The proposed search indicator, calculated as the maximum of the successor’s
proof number plus branching factors (except the maximum successor and solved/
unsolvable successors) at an AND node, is somehow weaker (while underestimat-
ing it) than the proof number defined in PN-search. Therefore, we call it Weak
Proof-Number Search or WPNS in short. The detail of the WPNS algorithm is
shown in Appendix A. Note that procedure ΦMax(n) is its core part.

We expect WPNS to have two advantages: (1) when compared to proof-
number-based search algorithms for relatively simple domains in which the DAGs

Weak Proof-Number Search 161

problem is not so critical and (2) when compared to the BNS algorithm for com-
plex domains in which the DAGs problem occur frequently. Note that we usu-
ally have little knowledge about the DAGs issue for unknown target problems.
Therefore, such synergy of proof number and branching factor for AND/OR-tree
search would enable a program to be an all-round powerful solver.

In the case of a tsume-shogi problem [22], an OR node corresponds to a
position in which the attacker is to move, where any move that solves the problem
denotes a solution. The proof number then is the minimum proof number of its
children (i.e., the one potentially easiest to solve). If the attacker has no more
moves in the position, the problem is unsolvable from that position and the proof
number is set to ∞.

Likewise, an AND node corresponds to a position with the defender to move.
To solve the problem for the attacker all the defender’s children must be proven
to lead to the desired result, thus its proof number is the sum of the children’s
proof numbers. If the defender has no more legal moves (is mated), the goal is
reached and the proof number is set to 0. However, as mentioned in Subsection
2.3, a serious double-counting problem will happen when large DAGs occur.
Therefore, we propose a new search algorithm to use the weak proof number
instead of Allis’s proof number at AND nodes to avoid such a serious problem.

Let p(n) denote the weak proof number of a node n in an AND/OR tree, and
d(n) denote weak disproof number. They are calculated as follows:

1. If n is a leaf node, then
(a) if n is a terminal node and solved (i.e., OR wins), then

p(n) = 0, d(n) = ∞;
(b) else if n is a terminal and is unsolvable (i.e., OR does not win), then

p(n) = ∞, d(n) = 0;
(c) else n is an unsolved leaf node, then

p(n) = 1, d(n) = 1;
2. else if n is an OR node whose successor nodes are ni(1 ≤ i ≤ K), then1

p(n) = min1≤i≤K p(ni),
d(n) = max1≤i≤K d(ni) + (k − 1); 2

3. else if n is an AND node whose successor nodes are ni(1 ≤ i ≤ K), then
p(n) = max1≤i≤K p(ni) + (k − 1),
d(n) = min1≤i≤K d(ni).

For an easy-to-grasp example, see Fig. 1. In this example, the left-hand choice
from the root node takes PN=17 and WPN=9 while the right-hand one takes
PN=15 and WPN=11. This means that at the root node PN-search expands
first the right-hand move whereas WPNS does the left-hand move. Indeed, the
left-hand part is more plausible than the right-hand part in the sense of correct
proof numbers. It happens because of a DAG in the left-hand part.

The example indicates that as the branching factor increases, the double-
counting problem becomes more serious. We then argue that the performance of
1 K is the number of successor nodes which do not have terminal value such as 0 or
∞.

2 (K − 1) means the number of successor nodes which are not selected.

162 T. Ueda et al.

PN/WPN : AND node

: OR node

PN = 7 + 7 + 3

WPN = 7 + 1 + 1

PN = 9 + 3 + 3

WPN = 9 + 1 + 1

PN = 0 + 7

WPN = 7

0 + 7 + 0 + 3 = 10 9 + 3 + 3 = 15

DAG

7/7 7/7 3/3

32/12

0/0 7/7 0/0

9/9 3/3 3/3

15/1117/9

PN = 17 + 15

WPN = 11 + 1

Fig. 1. Proof number (PN) and weak proof number (WPN) compared in an AND/OR
tree with a DAG

PN-search decreases when solving a game with higher branching factors. How-
ever, the weak proof number is determined by the maximum proof number among
all its successors at an AND node, and the number of remaining successors (i.e.,
branching factor −1) is added. Thus, WPNS relatively suffers little from the
influence of DAGs.

3.2 Performance Evaluation

As mentioned in Sect. 2, proof-number-based search algorithms have remarkably
been improved in the domain of tsume-shogi. Moreover, the double-counting
problem of PN-search or its depth-first variants was found in the domain of
Othello. Therefore, it is reasonable to use test sets from the two domains for a
performance evaluation of the proposed idea.

WPNS, df-pn, and BNS in the Domain of Tsume-Shogi

In the first experiment, WPNS, df-pn, and BNS were compared in the domain
of tsume-shogi. The machine environment was a 3.4 GHz Pentium4 PC running
Windows XP and 2,000,000 entries of the transposition table used.

We selected a set of tsume-shogi problems from the book “Zoku-Tsumuya-
Tsumazaruya” used as a suite of benchmark problems [7]. It contains 203 num-
bered problems (200 problems, with 1 problem subdivided into 4 subproblems)
from the Edo era to the Showa era, created by 41 composers. The shortest prob-
lem is an 11-step problem and the longest one has a solution of 611 steps. The
set contains various types of problems. Generally, the book is considered a good
benchmark to measure the performance of a tsume-shogi solving program.

WPNS, df-pn, and BNS were implemented in Tacos that is a strong shogi-
playing program [6], in which tsume-shogi specific enhancements such as non-
pro-motion moves of major pieces are not incorporated. 113 problems were solved

Weak Proof-Number Search 163

10

100

1,000

10,000

100,000

1,000,000

10,000,000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Search Nodes (WPNS)

S
ea

rc
h
 N

o
d
es

 (
D

F
-P

N
,
B

N
S

)

vs BNS

vs DF-PN

y=x

Fig. 2. WPNS, df-pn, and BNS compared on 59 tsume-shogi problems with short
solutions

10

100

1,000

10,000

100,000

1,000,000

10,000,000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Search Nodes (WPNS)

S
ea

rc
h
 N

o
d
es

 (
D

F
-P

N
,
B

N
S

)

vs BNS

vs DF-PN

y=x

Fig. 3. WPNS, df-pn, and BNS compared on 54 tsume-shogi problems with relatively
longer solutions

by each algorithm, whereas df-pn, BNS, and WPNS solved 131, 126, and 123
problems, respectively. We note that the problem with the longest solution was
solved only by WPNS. The set of solved problems is categorized into two groups:
59 problems with short solutions (9 to 29 ply) and 54 problems with relatively
longer solutions (31 to 79 ply). Let us show, in Fig. 2 and Fig. 3, the experimental
results (i.e., the number of search nodes) on the first group and the second group,
respectively.

For the first group df-pn outperforms WPNS by a small margin 2%, whereas
for the second group WPNS outperforms df-pn by 6%. Moreover, for the first
group WPNS outperforms BNS by 38%, whereas for the second group WPNS
outperforms BNS by 66%.

164 T. Ueda et al.

WPNS, df-pn, and BNS in the Domain of Othello

In the second experiment, WPNS, df-pn, and BNS were compared in the domain
of Othello. The machine environment was a 3.4 GHz Pentium 4 PC running
Windows XP and 4,000,000 entries of the transposition table used. We obtained a
set of Othello endgame positions through many self-play games using WZEBRA
(Gunnar) [5], where each game started with a well-known opening position called
fjt1. It contains 86 positions. The shortest problem has a 15-ply solution to end
and the longest problem has a 20-ply solution.

Let us show, in Fig. 4, the experimental results. The results show that WPNS
outperforms BNS by a large margin and is slightly better than df-pn. For 64
positions (75%), WPNS searched fewer nodes than df-pn, whereas for 84 positons
(98%) WPNS searched fewer nodes than BNS.

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Search Nodes (WPNS)

S
ea

rc
h
 N

o
d
es

 (
D

F
-P

N
,
B

N
S

)

vs BNS

vs DF-PN

y = x

Fig. 4. WPNS, df-pn, and BNS compared on 86 Othello endgame positions

Discussion

From the experiments performed in the domains of tsume-shogi and Othello, we
may observe that WPNS basically outperforms df-pn and BNS. In the context
of the history of proof-number-based search algorithms, we may now state that
df-pn is the most powerful solver in complex domains with some degree such as
tsume-shogi problems with long solutions but relatively small branching factors.
df-pn drastically decreases its performance in the domain of games with higher
branching factors because of DAGs.

It is interesting to know that an average branching factor of tsume-shogi
and Othello is 5 [22] and 10 [1], respectively. As shown in Fig. 1, the influence
of double-counting problem due to DAGs becomes more serious in solving a
game with higher branching factors as well as larger solutions. The experiments
performed in the domain of tsume-shogi and Othello support our ideas. There-
fore, we claim that WPNS outperforms df-pn when solving complex games with
higher branching factors. The reason is that WPNS relatively suffers little from
the influence of DAGs and df-pn suffers seriously.

Weak Proof-Number Search 165

4 Conclusion

Proof-Number Search (PNS) is a powerful AND/OR-tree search algorithm for
efficiently solving a hard problem, although it has three possible bottlenecks
(memory requirements, the GHI problem, the DAGs). The first two of them have
already been improved. The last one is the double-counting problem discussed
above. As we noticed in solving Othello endgame positions using df-pn this
problem is the most notorious one when using a depth-first variant of PNS.

In this paper, we proposed a new AND/OR-tree search algorithm called Weak
Proof-Number Search (WPNS). WPNS is a fruit of the synergy of PN-search and
Branch Number Search (BNS). It takes an advantage of proof-number-based
search algorithm and avoids the disadvantage of double-counting problem due
to DAGs. Experiments performed in the domain of shogi and Othello show that
WPNS can be a more powerful solver than df-pn.

References

1. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. Ph.D.
Thesis, Computer Science Department, Rijksuniversiteit Limburg (1994)

2. Allis, L.V., van der Meulen, M., van den Herik, H.J.: Proof-number Search. Arti-
ficial Intelligence 66(1), 91–124 (1994)

3. Breuker, D.M., van den Herik, H.J., Allis, L.V., Uiterwijk, J.W.H.M.: A Solution
to the GHI Problem for Best-First Search. In: van den Herik, H.J., Iida, H. (eds.)
CG 1998. LNCS, vol. 1558, pp. 25–49. Springer, Heidelberg (1999)

4. Campbell, M.: The graph-history interaction: on ignoring position history. In: 1985
Association for Computing Machinery Annual Conference, pp. 278–280 (1985)

5. Gunnar, A.: ZEBRA, http://radagast.se/othello/
6. Hashimoto, J.: Tacos wins Shogi Tournament. ICGA Journal 30(3), 164 (2007)
7. K. Kadowaki. Zoku-Tsumuya-Tsumazaruya, Shogi-Muso, Shogi-Zuko. Heibon-Sha,

Toyo-Bunko, (1975) (in Japanese)
8. Kakinoki, Y.: A solution for the double-counting problem in shogi endgame. Tech-

nical report (2005) (in Japanese),
http://homepage2.nifty.com/kakinoki y/free/DoubleCount.pdf

9. Kishimoto, A., Müller, M.: Df-pn in Go: An Application to the One-Eye Problem.
In: Advances in Computer Games 10, pp. 125–141. Kluwer Academic Publishers,
Dordrecht (2003)

10. Korf, R.E.: Linear-space best-first search. Artificial Intelligence 62(1), 41–78 (1993)
11. McAllester, D.A.: Conspiracy numbers for min-max search. Artificial Intelli-

gence 35(3), 287–310 (1988)
12. Müller, M.: Proof-Set Search. In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG

2002. LNCS, vol. 2883, pp. 88–107. Springer, Heidelberg (2003)
13. Nagai, A.: A new AND/OR tree search algorithm using proof number and dis-

proof number. In: Proceedings of Complex Games Lab Workshop, pp. 40–45. ETL,
Tsukuba (1998)

14. Nagai, A.: A new depth-first-search algorithm for AND/OR trees. M.Sc. Thesis,
Department of Information Science, The University of Tokyo, Japan (1999)

15. Nagai, A.: Proof for the equivalence between some best-first algorithms and depth-
first algorithms for AND/OR trees. In: Proceedings of Korea-Japan Joint Work-
shop on Algorithms and Computation, pp. 163–170 (1999)

http://radagast.se/othello/
http://homepage2.nifty.com/kakinoki_y/free/DoubleCount.pdf

166 T. Ueda et al.

16. Nagai, A., Imai, H.: Application of df-pn+ to Othello Endgames. In: Game Pro-
gramming Workshop 1999, Hakone, Japan (1999)

17. Okabe, F.: About the Shogi problem solution figure using the number of course
part branches. In: 10th Game Programming Workshop, Hakone, Japan (2005) (in
Japanese)

18. Sakuta, M., Iida, H.: AND/OR-tree search algorithms in shogi mating search.
ICGA Journal 24(4), 231–235 (2001)

19. Schaeffer, J.: Conspiracy numbers. In: Beal, D.F. (ed.) Advances in Computer
Chess, vol. 5, pp. 199–218. Elsevier Science, Amsterdam (1989); Artificial Intelli-
gence, 43(1):67-84 (1990)

20. Schaeffer, J., Björnsson, Y., Burch, N., Kishimoto, A., Müller, M., Lake, R., Lu,
P., Sutphen, S.: Checkers Is Solved. Science 317(5844), 1518–1522 (2007)

21. Schaeffer, J.: Game Over: Black to Play and Draw in Checkers. ICGA Jour-
nal 30(4), 187–197 (2007)

22. Seo, M., Iida, H., Uiterwijk, J.W.H.M.: The PN*-search algorithm: Application to
tsume-shogi. Artificial Intelligence 129(4), 253–277 (2001)

23. Ueda, T., Hashimoto, T., Hashimoto, J.: Solving an Opening Book of Othello and
Consideration of Problem. In: 12th Game Programming Workshop, Hakone, Japan
(2007) (in Japanese)

Appendix A

The C++ like pseudo-code of Depth-First Weak Proof-Number Search (DF-
WPN) algorithm is given below. For ease of comparison we use similar pseudo-
code as given in [14] for the df-pn algorithm. DF-WPN is similar to df-pn. The
only difference is, at an AND node, to use additional information on branching
factors as well as proof numbers, which appears in line 78.

Below code φ and δ are used instead of WPN(n) and WDN(n), just as α
and β behave differently in the negamax algorithm compared to classical αβ
algorithm. These are defined as follows:

• φ =
{

WPN(n) if n is OR node
WDN(n) otherwise,

• δ =
{

WDN(n) if n is OR node
WPN(n) otherwise.

1 void df−wpn(root) {
2 root . thφ = ∞ ; r oot . thδ = ∞ ;
3 multiID (root) ;
4 }
5
6 void multiID (n) {
7 // 1 . l ook up t r an s p o s i t i o n t a b l e
8 r e t r i e v e (n , φ , δ) ;
9 i f (n . thφ ≤ φ | | n . thδ ≤ δ) {

10 return ;
11 }
12 // 2 . genera te l e g a l moves

Weak Proof-Number Search 167

13 i f (i s t e rm i n a l (n)) {
14 i f ((is AND(n) && eva luate (n) = true) | |
15 (is OR (n) && eva luate (n) = fa l se)) {
16 s t o r e (n , ∞ , 0) ; // cannot prove or d i sprove anymore
17 } else {
18 s t o r e (n , 0 , ∞) ;
19 }
20 return ;
21 }
22 generate moves () ;
23 // 3 . use t r a n s p o s i t i o n t a b l e to avoide cyc l e
24 s t o r e (n , φ , δ) ;
25 // 4 . mu l t i p l e i t e r a t i v e deepening
26 while (true) {
27 // s top i f φ or δ i s g r ea t e r or equa l to i t s t h r e sho l d
28 φ = ∆Min(n) ;
29 δ = ΦMax(n) ;
30 i f (n . thφ ≤ φ | | n . thδ ≤ δ) {
31 s t o r e (n , φ , δ) ;
32 return ;
33 }
34 ch i l d = s e l e c t (n , φc , δc , δ2)
35 ch i l d . thφ = n . thδ + φc − δ ;
36 ch i l d . thδ = min(n . thφ , δ2 + 1) ;
37 multiID (ch i l d) ;
38 }
39 }
40 // s e l e c t the most proving c h i l d node
41 NODE s e l e c t (n , &φc , &δc , &δ2) {
42 δc = ∞ ; δ2 = ∞ ;
43 for (each ch i l d node c) {
44 r e t r i e v e (c , φ , δ) ;
45 i f (δ < δc) {
46 best = c ;
47 δ2 = δc ; φc = φ ; δc = δ ;
48 } else i f (δ < δ2)
49 δ2 = δ ;
50 i f (φ = ∞)
51 return best ;
52 }
53 return best ;
54 }
55 // r e t r i e v e numbers from t r an s p o s i t i o n t a b l e
56 void r e t r i e v e (n , &φ , &δ) {
57 i f (n i s a l r eady recorded) {
58 φ = Table [n] . φ ; δ = Table [n] . δ ;
59 } else {
60 φ = 1 ; δ = 1 ;
61 }
62 }

168 T. Ueda et al.

63 // s t o r e numbers to t r a n s p o s i t i o n t a b l e
64 void s t o r e (n , φ , δ) {
65 Table [n] . φ = φ ; Table [n] . δ = δ ;
66 }
67 // c a l c u l a t e minimum δ o f the succ e s so r s (same as df−pn)
68 unsigned int ∆Min(node) {
69 minδ = ∞ ;
70 for (each ch i l d node c) {
71 r e t r i e v e (c , φ , δ) ;
72 minδ = min(minδ , δ) ;
73 }
74 return min ;
75 }
76 // c a l c u l a t e weak proof / d i s p roo f number
77 // df−pn uses ΦSum(n) i n s t ead o f t h i s f unc t i on
78 unsigned int ΦMax(n) {
79 maxφ = 0 ;
80 for (each ch i l d node c) {
81 r e t r i e v e (c , φ , δ) ;
82 maxφ = max(maxφ , φ) ;
83 }
84 return (maxφ + n . ChildNodeNum − 1) ;
85 }

Cognitive Modeling of Knowledge-Guided

Information Acquisition in Games

Reijer Grimbergen

Department of Informatics, Yamagata University, Yonezawa, Japan
grim@yz.yamagata-u.ac.jp

Abstract. Since Chase and Simon presented their influential paper on
perception in chess in 1973, the use of chunks has become the subject of
a number of studies into the cognitive behavior of human game players.
However, the nature of chunks has remained elusive, and the reason for
this lies in the lack of using a general cognitive theory to explain the
nature of chunks. In this paper it will be argued that Marvin Minsky’s
Society of Mind theory is a good candidate for a cognitive theory to
define chunks and to explain the relation between chunks and problem-
solving tasks. To use Minsky’s Society of Mind theory to model human
cognitive behavior in games, we first need to understand more about the
primitive agents dealing with the relation between perception and knowl-
edge in memory. To investigate this relation, a reproduction experiment
is performed in shogi showing that perception is guided by knowledge in
long-term memory. From the results we may conclude that the primitive
agents in a cognitive model for game-playing should represent abstract
concepts such as board, piece, and king rather than the perceptual fea-
tures of board and pieces.

1 Introduction

Game research has been a success story for the engineering approach, just like
many other research areas in Artificial Intelligence. Deep Blue, probably the
most famous of all game programs, searched between 100 million and 200 million
positions per second in its 1997 match against Kasparov [3]. Human players
clearly use a different approach, considering only a small number of positions
per second and a small number of candidate moves (between 3 and 5) in any
position [5].

In the past, there has been research by De Groot [5] into the behavior of chess
players. Also well-known is the work by Chase and Simon [4], who introduced the
idea of chunking of game knowledge to explain the difference between the per-
formance of expert players and beginners in memory tasks. The nature of these
chunks of game knowledge has been studied in other games such as Go [2,10],
but there is not much known about chunks in games other than that they exist.

The most important reason for this omission is that there has never been an
attempt to represent the essential game knowledge from the ground up. With-
out a proper understanding of how the most primitive building blocks of game

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 169–179, 2008.
c© IFIP International Federation for Information Processing 2008

170 R. Grimbergen

knowledge interact to become chunks, it seems quite difficult to find the true
nature of chunking. A general theory about human cognition is needed to define
these building blocks and the interaction between them. Marvin Minsky’s (1988)
inspiring Society of Mind theory [9] is such a theory and our research aims at
using Minsky’s theory to simulate the chunking behavior of human game players.

In this paper the results of a reproduction experiment are given. They have
important consequences for the content of the primitive agents and agencies
dealing with input that are a vital part of a cognitive model for game-playing
using Minsky’s theory. Shogi (Japanese chess) will be used because we have
performed earlier cognitive experiments in this game [6], but the results are
general and do not depend on any shogi specific knowledge.

The rest of this paper is built up as follows. In Sect. 2 the theory behind
the cognitive model for game-playing currently being built is explained. As a
starting point, the primitive agents dealing with perception need to be defined.
To investigate the nature of these primitive agents, in Sect. 3 a reproduction
experiment will be described. The results of this experiment are given in Sect. 4.
They show that perception in game playing is guided by game-specific knowledge
and not by the perceptual features of the game. Finally, in Sect. 5 the conclusions
and plans for future work are given.

2 A Cognitive Model for Perception in Games

To reproduce game positions, information about the positions must be stored
in memory. Memory storage is often represented using the three-stage memory
model proposed by Atkinson and Shiffrin [1]. This model states that human
cognition is the result of the interaction between three different types of memory:
sensory memory, short-term memory, and long-term memory (see Fig. 1). This
three-way memory model is also the basis for the perception model for chess
proposed by Simon and Chase [11], which will be partly followed.

Sensory memory

Information from

the outside world

Short-term memory

Selective attention

Output

Long-term

memory

Encoding

Retrieval

Environment

Fig. 1. Interaction between sensory memory, short-termmemory, and long-term memory

Cognitive Modeling of Knowledge-Guided Information Acquisition in Games 171

Fig. 2. Perception guided by knowledge

Sensory memory

Short-term memory
Long-term

memory

Environment

Fig. 3. Perception guided by knowledge in long-term memory

Sensory memory interacts with the environment by acquiring information
through the senses. This is a subconscious process and therefore it cannot be
guided. The amount of information that comes in through the senses is too high
to process, so selective attention is used to limit the amount of information
stored for further processing. This limited amount of storage is called short-
term memory. Information in short-term memory can then be used to store and
retrieve information from long-term memory or manipulate the environment.

Admittedly, this model of memory is too simplistic. However, it serves our
modeling purposes except for one important extension. This is the phenomenon
that we usually only see what we expect to see. For example, if we look at the
picture of Fig. 2 for the first time, without any hints about what is in the picture,
it is hard to see anything but a blur [7]. However, once we are told that the head
of a cow is in the left side of the picture the blur changes into a cow. Furthermore,
if we look at this picture again, we will find it very hard to “unsee” the cow.

The point of this example is to illustrate that perception seems to be guided
by knowledge in long-term memory. Therefore, the actual three stage memory
model used in our research is the one in Fig. 3, where knowledge from long-term
memory is transferred to short-term memory. This information is often only

172 R. Grimbergen

confirmed using sensory memory. In the example above, it means that by our
knowledge that there is a cow in the picture (long-term memory knowledge), we
just need to check that it is really there. When using this model, the task of short-
term memory is threefold: (1) gathering information, (2) guiding environment
interaction, and (3) confirming information.

Next, we explain how to build a cognitive model for games using the three-
stage memory model given in Fig. 3 by looking at the features of each type of
memory in more detail.

2.1 Sensory Memory

For each sense, there is a specific kind of sensory memory, but in games we only
need to consider iconic memory, which is sensory memory dealing with visual
stimuli. When we look at something, we fixate the central part of the eye (called
the fovea). Such a fixation lasts from 200ms to up to 500ms or longer and the
information gathered by a fixation is stored in iconic memory.

Experiments by Sperling [12] showed that iconic memory is like a snapshot
picture. Even though most information is gathered around the point of fixation,
we also have access to information further away. To avoid having to deal with all
this information at once, selective attention is used to transfer a limited amount
of information to short-term memory, where it can be used for further processing.

The content of iconic memory in games has been studied in detail by Ti-
chomirov and Poznyanskaya [13]. They tracked the eye movement of an expert
chess player during the first five seconds of trying to find the best move in a
given position. They established that in these 5 seconds there were about 20 eye
fixations. Most of these fixations were on squares occupied by pieces that could
be considered important for that position. There were almost no fixations at the
edges or corners of the board and also almost no fixations on empty squares.
Furthermore, the fixations moved between pieces that could be considered to
have a relation.

2.2 Short-Term Memory

Sperling’s experiments also showed that the capacity of short-term memory is
limited. The amount of information that can be stored was already known, be-
cause in 1956 Miller famously put a number on it: “The Magical Number Seven,
Plus or Minus Two” [8]. Miller also gave the unit of this capacity the name
chunk. A chunk is a piece of meaningful information, i.e., information that has
a relation to information in long-term memory. A chunk can be quite small, like
a single letter, but can also be much bigger. For example, a string of letters
representing the name of a friend can be handled as a single chunk in short-term
memory. As explained before, short-term memory has three different functions.
Therefore, short-term memory is overwritten often and it is hard to measure
exactly how long its storage capacity is. Estimates differ from 2 seconds to more
than a minute.

Cognitive Modeling of Knowledge-Guided Information Acquisition in Games 173

A well-known study into the nature of chunks in games is performed by Chase
and Simon [4]. They repeated earlier work by De Groot [5] in which chess play-
ers of different playing strength were asked to reproduce chess positions after
viewing them for 5 seconds. The important difference with De Groot’s work was
that they also provided random positions. There were big differences in the re-
construction ability of normal chess positions, but the reconstruction ability was
almost the same for random positions. The conclusion was that the difference
in reproduction was caused by the fact that stronger players have bigger chunks
of chess knowledge, so it is easier to fit a position having many pieces into the
limited storage capacity of short-term memory.

Therefore, short-term memory can be modeled as a string of seven codes or
link addresses to knowledge in long-term memory. The knowledge in long-term
memory that is represented by this code can be very complex. The observation
was already recognized by Simon and Chase [11] and implemented in their per-
ception model. They went on and tried to simulate the behavior of the experts
players from the Tichomirov and Poznyanskaya’s experiments. However, this be-
havior turned out too complex, illustrated by the low number of eye fixations,
indicating that a large amount of cognitive processing was involved. As a result,
the Simon and Chase model was able to simulate some of the behavior observed
by Tichomirov and Poznyanskaya, but failed to come up with a general frame-
work for human cognition in games. Rather than making a model that tries to
explain this complex behavior, it is better to start with the most basic behav-
ior that is the same for players of all playing strengths. Therefore, the research
presented here will first look in detail at the perception of board and pieces.

2.3 Long-Term Memory: The Society of Mind

Iconic memory and short-term memory are relatively well-understood, but this
is not the case for long-term memory. The only thing that is certain is that the
information in long-term memory lasts for decades and that its storage capac-
ity is big enough to last a lifetime. Chase and Simon used so-called inter-piece
interval times to investigate the nature of chunks in chess, but the jump from
these inter-piece interval times, which are the same for players of different play-
ing strength and chunks which are supposed to explain the differences between
players of different playing strength is not convincing. Therefore, instead of fol-
lowing Simon and Chase, the nature of chunks will be investigated from the
ground up.

Our approach for modeling long-term memory in games is to start with the
most primitive chunks using Marvin Minsky’s Society of Mind theory [9]. Minsky
sees the mind as a large number of specialized cognitive processes, each perform-
ing some type of function. The simplest type of cognitive process is performed
by an agent and the term agency is used to describe societies of agents that
perform more complex functions.

Minsky defines an agent as: “Any part or process of the mind that by itself
is simple enough to understand” [9]. It is important to realize that the cognitive
processing units in the brain need to be simple, in the order of agents recognizing

174 R. Grimbergen

color and shapes. Complicated behavior is the result of the interaction between
groups of simple agents. Minsky describes a number of ways in which such an
interaction can take place, the most important of which is the use of K-lines.

Minsky’s theory is much more diverse than just agents, agencies, and K-lines.
However, to use this theory for modeling game play, the first step is to understand
the most primitive building blocks. Therefore, we first need to know about the
agents that deal with input and output. The input for cognition in game-playing
is perception of the board and pieces, while the output is playing moves. In the
rest of this paper, it will be investigated how perceptual features of board and
pieces influence the content of memory. Once we know this relation between
perceptual features and cognition, the set of primitive agents can be decided.
For example, if bigger pieces are more easily remembered than smaller pieces,
we need an agency that can make a difference between pieces of different sizes.

To investigate the relation between perception and memory, a reproduction
experiment has been carried out. This reproduction experiment will be described
next.

3 Reproduction Experiment

To get a proper understanding of the fundamental agents dealing with per-
ception, a reproduction experiment has been performed in the game of shogi
(Japanese chess). Although the experiment has been done only for shogi, the
same experiment can be done for any board game; the results are not expected
to be game-specific. The main reason for this is that we made sure that no chunk-
ing was used. To achieve this, the reproduction experiment was performed using
randomly generated shogi positions. Moreover, the subjects were all beginners
at shogi, minimizing the amount of shogi-specific knowledge to guide perception
using shogi chunks.

The experiment was designed to test the following four hypotheses.

Hypothesis 1: It is easier to perceive one’s own pieces than the oppo-
nent’s pieces. This hypothesis was based on the fact that in shogi (like in Chi-
nese Chess), the name of the piece is written in Chinese characters on the piece.
The Chinese characters of the opponent’s pieces are thus seen upside down from
the viewpoint of the player and might therefore be more difficult to perceive.

Hypothesis 2: It is easier to perceive promoted pieces than pieces
that are not promoted. This hypothesis is based on the fact that the Chinese
characters for promoted pieces are simpler than the characters for non-promoted
pieces.

Hypothesis 3: Pieces closer to oneself are easier to perceive than pieces
further away. This is the general perception principle of information about
things near to oneself being more important than information about things that
are further away.

Cognitive Modeling of Knowledge-Guided Information Acquisition in Games 175

Fig. 4. Example of a position from the reproduction experiment

Hypothesis 4: Bigger pieces are easier to perceive than smaller pieces.
This is also a general perception principle of bigger things being more important
than smaller things.

The reproduction experiment to test these hypotheses was performed as fol-
lows (see Fig. 4). First, subjects were shown a shogi board without any pieces.
When they felt ready to be shown the position, they pushed a button and a
position would appear. This position would be shown for 5 seconds and then it
would disappear, being replaced by an empty board with pieces lined up at the
bottom of the screen. These pieces could then be moved to the board. There was
no time limit for the reproduction phase of the positions. When the subjects felt
that they had completed the task, they could click on a button and be shown
the next position.

There were two positions used to explain the experiment and no data for these
positions were recorded. In the experiment 10 randomly generated positions were
used. The experiment is similar to the reproduction experiments we performed
earlier [6], but with an important difference. The positions in our earlier exper-
iments were generated by playing randomly from the starting position. Because
of this, the generated position will have similarities with the well-known starting
position, thus risking the use of chunks by the subjects.

We used 11 subjects in this experiment, all in their early twenties. Nine of
the subjects had only a rudimentary knowledge of shogi, and two played a little
more seriously in elementary school, but without ever gaining an official grade.

4 Experimental Results

Below, the results of the reproduction experiment related to the hypotheses will
be presented.

Hypothesis 1: It is easier to perceive one’s own pieces than the oppo-
nent’s pieces. To test this hypothesis, data about the difference between the
reproduction of own pieces (Chinese characters on the pieces displayed in the

176 R. Grimbergen

0

20

40

60

80

100

120

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Subject

R
ep

ro
du

ce
d

pi
ec

e
nu

m
be

r

Own piece

Opponent piece

Fig. 5. Reproduction differences between own pieces and opponent pieces

normal way) and opponent pieces (Chinese characters displayed in reverse) was
collected. The results are given in Fig. 5. From these results it can be concluded
that in this experiment there was no data supporting the hypothesis. Only four
subjects reproduced more of their own pieces than pieces of their opponent and
only for subject S8 this difference seemed significant. Furthermore, the total
number of own produced pieces was 321 (30.7%), while the total number of
produced opponent pieces was 342 (31.7%).

Hypothesis 2: It is easier to perceive promoted pieces than pieces
that are not promoted. To test this hypothesis, the difference between the
reproduction of promoted pieces and non-promoted pieces was investigated. The
results of this comparison are given in Fig. 6. From these results it can be
concluded that non-promoted pieces are reproduced more than promoted pieces,
so the hypothesis must be rejected. However, there are a number of subjects
(S2, S3 and S11), who made an effort reproducing promoted pieces instead of
non-promoted pieces. This did not lead to better performance regarding the
correctness of the reproduced pieces, so this strategy seems to have no positive
effect on memory storage.

Hypothesis 3: Pieces closer to oneself are easier to perceive than pieces
further away. To test this hypothesis, a definition of nearness is needed. In
the experiment, nearness is defined as the rank of the piece on which a piece is
placed. The nearest pieces are therefore the pieces placed on the bottom rank,
i.e., the rank closest to the player. Each rank further away is considered to
be decreasing the nearness of the pieces. This assumption is consistent with
the normal way of sitting behind a board. The results of piece reproduction
according to this definition of nearness are given in Fig. 7. From this graph it
is clear that there is no obvious relation between nearness and the reproduced

Cognitive Modeling of Knowledge-Guided Information Acquisition in Games 177

0

20

40

60

80

100

120

140

160

180

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Subject

R
ep

ro
du

ce
d

pi
ec

e
nu

m
be

r

Non-promoted

Promoted

Fig. 6. Reproduction differences between promoted pieces and non-promoted pieces

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9

Board rank

R
ep

ro
du

ce
d

pi
ec

e
nu

m
be

r

Fig. 7. Comparison of piece reproduction and nearness. Rank 1 represents the rank of
the board closest to the subjects.

pieces and the hypothesis must therefore be rejected. In this case there was one
subject who seemed to use a memorizing strategy where nearness played a role,
but this subject reproduced pieces that were furthest away first, contradicting
the assumption in the hypothesis.

Hypothesis 4: Bigger pieces are easier to perceive than smaller pieces.
To test this hypothesis, data about the differences between the piece types of
the reproduced pieces was collected. The standard relative size of each piece is
given in Table 1. The pieces in the positions used in the experiment have the
same relative piece size.

178 R. Grimbergen

0

10

20

30

40

50

60

70

King

PrR
ook

Rook

PrB
ish

op

Bish
op

Gold

PrS
ilv

er

Silv
er

PrK
nig

ht

Knig
ht

PrL
an

ce
Lan

ce

PrP
aw

n
Paw

n

Piece

R
ep

ro
du

ct
io

n
ra

ti
o

(%
)

Fig. 8. Number of reproduced pieces for each piece type

Table 1. Piece sizes of shogi pieces in percentages relative to the size of the king. Note:
promoted pieces have the same size as their non-promoted versions.

Piece RelSize Piece RelSize

King 100 Silver 79

Rook 90 Knight 69

Bishop 90 Lance 59

Gold 79 Pawn 53

According to this table, the king should be reproduced more than the (pro-
moted) rook and (promoted) bishop, which should in turn be reproduced more
than gold and (promoted) silver, followed by (promoted) knight, (promoted)
lance, and (promoted) pawn. The results of reproduction by piece type are given
in Fig. 8. From this graph it may be concluded that there is no relation between re-
production ratio and piece size. Therefore, this hypothesis must also be rejected.

5 Conclusions and Future Work

In this paper it was explained why Marvin Minsky’s Society of Mind theory is a
good candidate for representing game-related knowledge in long-term memory.
The goal of our research is to make a cognitive model for game-playing based
on the Society of Mind theory. As a first step, in this paper a reproduction
experiment was presented to get a proper understanding about the nature of
the most primitive agents in the model, namely the agents that deal with the
perception of board and pieces.

The experiment showed that perceptual clues in board and pieces (such as
piece size) do not guide the knowledge stored in memory. This supports the

Cognitive Modeling of Knowledge-Guided Information Acquisition in Games 179

assumption that perception is guided by knowledge in long-term memory and
that perceptual clues are only used to trigger this knowledge. From these results
we may conclude that the primitive agents in our model do not need to represent
perceptual features directly. Rather, agents and agencies can be built around
primitive concepts such as board, piece, king and so on.

The next step is now to define the primitive concepts in a game and build
agents, agencies, and the K-lines between them to represent these primitive
concepts. This will require further reproduction experiments using beginners
where the task has to be changed from reproduction to finding the primitive
concepts among non-related information. For example, finding the king in a
randomly generated position. Also, the concepts (chunks) used by players of
different playing strength need to be investigated in order to understand how
agents and agencies develop over time.

References

1. Atkinson, R.C., Shiffrin, R.M.: Human memory: A proposed system and its control
processes. In: Spence, K.W., Spence, J.T. (eds.) The psychology of learning and
motivation: Advances in research and theory, vol. 2, pp. 89–195. Academic Press,
New York (1968)

2. Burmeister, J.: Memory Performance of Master Go Players. In: van den Herik,
H.J., Iida, H. (eds.) Games in AI Research, Van Spijk, Venlo, The Netherlands,
pp. 271–286 (2000)

3. Campbell, M., Hoane Jr., A.J., Hsu, F.-h.: Deep Blue. Artificial Intelligence 134(1–
2), 57–83 (2002)

4. Chase, W.G., Simon, H.A.: Perception in chess. Cognitive Psychology 4, 55–81
(1973)

5. De Groot, A.D.: Thought and Choice in Chess. Mouton & Co, The Hague (1965)
6. Ito,T., Matsubara H., Grimbergen R.: Cognitive Science Approach to Shogi Playing

Processes (1) – Some Results on Memory Experiments. Journal of the Information
Processing Society of Japan, 43(10), 2998–3011, (2002) (in Japanese)

7. McCracken, D., Wolfe, R.: User-Centered Website Development. Prentice-Hall,
New Jersey (2004)

8. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. Psychological Review 63(2), 81–97 (1956)

9. Minsky, M.: The Society of Mind. Simon and Schuster, New York (1988)
10. Reitman, J.: Skilled perception in Go: Deducing memory structures from inter-

response times. Cognitive Psychology 8(3), 336–356 (1976)
11. Simon, H.A., Chase, W.G.: Skill in Chess. American Scientist 61, 394–403 (1973)
12. Sperling, G.: The Information Available in Brief Visual Presentations. Psycholog-

ical Monographs: General and Applied 74(11, Whole No. 498), 1–29 (1960)
13. Tichomirov, G.K., Poznyanskaya, E.D.: An investigation of visual search as a means

of analyzing heuristics. Soviet Psychology, 5, 2–15 (Winter 1966-1967)

Knowledge Inferencing

on Chinese Chess Endgames

Bo-Nian Chen1, Pangfeng Liu1, Shun-Chin Hsu2, and Tsan-sheng Hsu3,�

1 Department of Computer Science and Information Engineering,
National Taiwan University, Taipei

{r92025,pangfeng}@csie.ntu.edu.tw
2 Department of Information Management,
Chang Jung Christian University, Tainan

schsu@mail.cjcu.edu.tw
3 Institute of Information Science, Academia Sinica, Taipei

tshsu@iis.sinica.edu.tw

Abstract. Several Chinese chess programs exhibit grandmaster playing
skills in the opening and middle game. However, in the endgame phase,
the programs only apply ordinal search algorithms; hence, they usually
cannot exchange pieces correctly. Some researchers use retrograde algo-
rithms to solve endgames with a limited number of attack pieces, but this
approach is often not practical in a real tournament. In a grandmaster
game, the players typically perform a sequence of material exchanges be-
tween the middle game and the endgame, so computer programs can be
useful. However, there are about 185 million possible combinations of ma-
terial in Chinese chess, and many hard endgames are inconclusive even to
human masters. To resolve this problem, we propose a novel strategy that
applies a knowledge-inferencing algorithm on a sufficiently small database
to determine whether endgames with a certain combination of material are
advantageous to a player. Our experimental results show that the perfor-
mance of the algorithm is good and reliable. Therefore, building a large
knowledge database of material combinations is recommended.

1 Introduction

Several Chinese chess programs are playing at a par with human masters or
grandmasters [14]. Most algorithms that are incorporated in Western computer-
chess programs are also suitable for Chinese chess programs. In the opening
game, the most popular strategy involves building an opening book, either by
collecting a large number of games or by inputting only master-level opening
moves. The strategy is successful, in particular for general opening play. If a po-
sition is not in the book, the most important component, the search engine, takes
over and computes the best move by evaluating hundreds of millions of positions.

� Corresponding author.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 180–191, 2008.
c© IFIP International Federation for Information Processing 2008

Knowledge Inferencing on Chinese Chess Endgames 181

Some programs can search more than 14 plies deep with today’s computers.
Although some computer-chess games end in the middle game, the endgame
tends to be the key phase for strong programs.

However, in the endgame, the search performance is not comparable to the
playing strength of master-level players. There are two reasons for this. The first
reason is that players need more moves to finish the game than the search depth
allotted to the program. The second reason is that the result of the endgame is
not always related to the amount of material. For example, KR and KGGMM
usually end in a draw, even though the former has the advantage of a rook. Hence,
a program that uses the material advantage as the main evaluation feature often
misinterprets it as a huge advantage to the attacking side.

To solve endgame problems, van den Herik and Herschberg suggested the
concept of the retrograde strategy in 1985 [1]. Subsequently, van den Herik,
Herschberg, and Nakad constructed a six-man endgame database of chess in
1987 [2]. Thompson proposed an improved retrograde algorithm in 1986 [6] and
solved 6-piece chess endgames in 1996 [7]. Subsequently, Schaeffer (2003) created
a 10-piece endgame database of Checkers [4]. Some games, like Checkers, used
the retrograde method successfully [8]. For instance, Gasser solved Nine-Men’s
Morris in 1996 [11]. For the full game of Western chess, which is a complex game,
the retrograde strategy has so far not been very successful. In 2000, Nalimov
used an efficient partitioning of subgames to build all 3-to-5-men endgames [9].
In summary, we may state that the endgame research is still in progress.

In Chinese chess, Fang used the retrograde method to construct an endgame
database in 2000 [3], and in 2002 Ren Wu [12] used a memory efficient strategy
to build large endgames, including KGMCPKGGMM. In 2006, Wu, Liu, and
Hsu proposed using an external-memory strategy for building a retrograde algo-
rithm for a large endgame database [10]. Nowadays, there are also web sites that
provide the exact values of endgame databases [5]. However, there are serious
time and space limitations when constructing a practical endgame database of
materials with sufficient attack pieces. The current largest endgame database of
Chinese chess comprises no more than two strong attack pieces on each side.
We remark that many useful endgames that contain two strong attack pieces on
both sides cannot be solved by retrograde strategies.

In a typical grandmaster game, before a grandmaster applies his1 endgame
knowledge, he usually performs a series of material exchanges at the end of the
middle game. In each material exchange, he gradually obtains an advantage.
The advantage may not derive from accumulating more materials, but from a
combination of materials that has proven to be better based on prior experiences.
For example, it is generally believed that a combination of one rook, one horse,
and one cannon is better than a combination of two horses and two cannons,
although their material values are roughly equal. The goal of this paper is to
determine whether a material combination is good by performing knowledge
inferencing on a small dataset of kernel knowledge. To this end, we define two
phases in the endgame: (1) the prior phase, during which many attack pieces are

1 For brevity we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

182 B.-N. Chen et al.

still in position and retrograde strategies cannot be applied to them; and (2) the
posterior phase, which can be solved completely by retrograde algorithms.

In particular, we propose a novel strategy that applies a knowledge-inferencing
mechanism on a small knowledge database of material combinations to generate
a database of material for the prior phase of a practical endgame.

The remainder of this paper is organized as follows. In Sect. 2, we describe the
knowledge database of material combinations and the implemented knowledge-
inferencing technique. In Sect. 3, we introduce a probabilistic model for predict-
ing unknown material states. In Sect. 4, we build a practical knowledge database
of material combinations. In Sect. 5, we take the data used by Contemplation

[15] as our experimental data and report the results of applying our model to it.
Then, in Sect. 6, we present our conclusions.

2 Constructing a Knowledge Database

To construct a practical knowledge database of material combinations, henceforth
called a material database, we first need to construct a basic database. Instead
of adding all data manually, we utilize knowledge-inferencing techniques in the
construction phase to reduce the workload and the time required for the task.

2.1 Knowledge Database of Material Combinations

The word material denotes all pieces that appear in a specific position in both
Western and Chinese chess. The material state of a position is an evaluation
measurement that only considers material in the given position, not with respect
to different locations.

For simplicity, we assume that two players in an endgame play either the
attacking role or the defending role. The attacking role, which is called the
attacking player, is defined as the player that has more attack power than the
player with the defending role, who is called the defending player. We define 5
categories of material states for a material combination.

WIN: The score when the attacking player usually wins.
EASY WIN: The score when the attacking player wins in many cases, but

draws in some cases.
CHANCE WIN: The score that ends in a draw in most cases, but the attack-

ing player wins in some cases.
HARD WIN: The score when the attacking player seldom wins.
UNKNOWN: The score when the attack power of either side is strong enough

to capture the king of the opposite side; hence information about the material
is not very useful.

A knowledge database of material combinations consists of the defending ma-
terials that players use. Each item of defending material is mapped to an attack
file that includes all possible attack materials. Attack material is defined as the
pieces that belong to the attacking player. The possible number of materials held

Knowledge Inferencing on Chinese Chess Endgames 183

by a player in Chinese chess can be computed by combinatorics as follows. First,
there are 27 combinations of strong pieces, including rooks, horses, and cannons.
Second, pawns are divided into three categories, as defined in Subsection 2.3. By
using combinations with repetition of all possible numbers of pawns, we retrieve
the combinations of all categories of pawns, which total 56. Third, there are
9 combinations of defending pieces, including guards and ministers. Totally, a
player can have 13,608 (= 27 × 56 × 9) possible material combinations; and the
total number of possible material combinations on both sides is 185 million.

We have designed two useful knowledge inferencing strategies. The first strat-
egy, redundant attacking material checking and elimination, which is described
in Subsection 2.2, can be applied when creating both the basic database and
database queries. The second strategy, called pawn inferencing, can only be used
when creating the basic database. It is described in Subsection 2.3.

2.2 Redundant Attacking Material Checking and Elimination

This knowledge-inferencing tool can find and remove all attack material that is
not necessary. The idea is that if we already know a material state is a WIN,
material states to which attack material is added by one or more pieces are also
WIN states because the attacking player has a bigger advantage in the WIN state.
Similarly, if a material state is a HARD WIN, material states from which attack
material is taken by one or more pieces are also at most HARD WIN states.

By using this algorithm, we can eliminate redundant attack materials when
creating the basic database. For database queries, the same concept is used
when there are some gaps between the attack power of two players. If the state
of attack material found in the database is a WIN and the material is a subset
of the query attack material, we can also report a WIN state. We call this
inferencing algorithm material state extension.

A knowledge database of material combinations is said to be complete if all the
database items that record defense materials have all the necessary information
about attack materials. Generally, the time complexity of a query is O(NM),
where N is the number of defending materials in the database, and M is the
maximum number of attacking materials among all defending materials in the
database. However, if we use a complete material database, we do not need to
search the whole database for the answer to a query. Instead, we only search the
desired attacking file so that the time complexity becomes O(M). We remark
that the time so saved leads to more computation when searching.

2.3 Pawn Inferencing

In Chinese chess, as in Western chess, it is illegal to move a pawn backwards, but
in Chinese chess a pawn is not promoted when reaching the final rank. Since the
opposite player’s king can only stay somewhere in the last 3 ranks, the distance
between a pawn and the final rank decides the pawn’s power. In the common
definition, there are three types of pawns:

184 B.-N. Chen et al.

1. Top-pawn: the pawn stays behind the river line or the pawn line of the
opposite side and has yet to cross the river. It moves forward 3 steps at
most.

2. Low-pawn: the pawn moves forward 4 or 5 steps.
3. Bottom-pawn: the pawn reaches the final rank. Note that a pawn must move

forward 6 steps to reach the final rank.

In general, a top-pawn is more useful than a low-pawn and a low-pawn is more
powerful than a bottom-pawn. Furthermore, if we know the state of material with
one bottom-pawn, we cannot obtain a better result by adding more bottom-
pawns in all cases.

There is a similar rule for low-pawns. If we know the state of material with
two low-pawns, we cannot obtain a better result by adding more low-pawns
in most cases. There are two possible reasons for this. First, if low-pawns can
win, then, based on past experience, only two low-pawns are sufficient to win.
Second, if low-pawns cannot move into the palace or are lower than the king,
adding low-pawns will not solve the problem. For example, the results of the
material combinations KPPKGGMM and KPPPKGGMM are a CHANCE WIN
when all pawns are low-pawns. In our basic database, there are 16,705 material
combinations where the attacking player has two low-pawns, and there are only
361 combinations where the result of corresponding material with three low-
pawns is different. However, when there is one top-pawn in the material, the
attacking player can always gain an advantage by adding another top-pawn.

The pawn-inferencing algorithm is a game-specific inferencing scheme that
is only suitable for Chinese chess. It uses the knowledge of bottom-pawns and
low-pawns. If we have the result of material containing one bottom-pawn or
two low-pawns, we can use the algorithm to copy the results to more bottom-
pawns or low-pawns until the number of bottom-pawns plus low-pawns equals
5. The algorithm reduces the work involved in creating the basic database by
almost half. This is because the combinations of materials with more than one
bottom-pawn or more than two low-pawns that can be generated automatically
are approximately equal to the combinations of materials with one bottom-pawn
or less than or equal to two low-pawns.

3 Predicting Unknown Material States

Although a large number of original unknown material states can be inferred
by methods stated in Sect. 2, we still need a systematic strategy for handling
arbitrary unknown materials. The algorithm that predicts arbitrary unknown
materials is called the unknown state predictor.

3.1 Human Evaluation of Unknown Positions

By exchanging pieces, human experts can accurately infer the results of material
combinations that were previously unheard of. For example, KHKGGMM is
generally a draw. When the result of the material combination KRHKRGGMM

Knowledge Inferencing on Chinese Chess Endgames 185

is in question, we may see the following: if the defending player has a rook, he
can exchange it directly with the rook of the attacking player, and the result
will be a draw. This strategy is called material reduction.

A second example is the material combination KRPKHGGMM. If the attack-
ing side exchanges a pawn for two guards of the defending player, the resulting
material KRKHMM can win easily, but it would not be an absolute win. How-
ever, if the pawn is exchanged for two ministers of the defending player, the
resulting material, KRKHGG would be an absolute win.

The two examples show that making a correct exchange of pieces is important
during the endgame phase.

3.2 Material Exchange Table

We have designed a probabilistic model that predicts the results of unknown
material states by exchanging pieces. Both sides can exchange pieces when nec-
essary. A material exchange table is introduced to compute the probabilities of
exchanging pieces.

The mobility of many types of pieces is different. The ability to exchange
a certain piece for pieces of another type is also different. A helper piece can
be any piece that is not being exchanged, but it can be used to facilitate an
exchange. Each player can select one piece as the helper piece. Generally, actively
exchanging pieces with the assistance of a helper piece will increase the player’s
exchange ability. Similarly, passively exchanging pieces with the aid of a helper
piece may reduce the chance of pieces being exchanged. Hence, we manually
construct a two-dimensional material exchange table to record the probabilities
of exchanging each type of piece with the assistance of helper pieces.

There are 6 types of pieces in addition to the king. To map a table to each
active/passive piece pair, we use 36 tables for all possible types. Each table
contains the probabilities of the specified active piece with all possible helper
pieces and the specified passive piece with all possible helper pieces.

3.3 Determining the Score of an Unknown Material State

For an unknown material combination, we can try to make any exchange and to
make a reference to the database for the material state. The strategy of an expert
player is to choose the possible best way to make an exchange. We can accept
an exchange that has a high probability, but we cannot accept an exchange with
a low probability.

An acceptable exchange is formally defined as an exchange of which the mate-
rial state is the most advantageous to the active player in all feasible situations
and of which the probability is higher or equal to a lower bound. To achieve an
acceptable probability of exchange and to avoid wasting time on searching for
exchanges with low probability, we define the probability lower bound, PLB, to
filter out situations with very low probability that seldom occur in practice. In
our test, the best value of PLB is 10%. After an exchange, we make a reference
to the database to retrieve the result of the reduced material. If two or more

186 B.-N. Chen et al.

exchanges result in the same material state, we choose the one with the highest
probability. If we cannot find the result in the database, the material state of
the specified material remains UNKNOWN.

The algorithm computes two acceptable exchanges: (1) the attacking player
exchanges pieces actively, and (2) the defending player exchanges pieces actively.
Each exchange reaches its own material state. We define five numerical score
values, 0, 1, 2, 3, and 4, which correspond to UNKNOWN, WIN, EASY WIN,
CHANCE WIN, and HARD WIN, respectively. If the material states of both
sides are known, the final score of the query material is computed by the formula
V = �(Va + Vd)/2�. The values Va and Vd represent the results of the attacking
player and the defending player exchanging pieces actively, respectively. V is
the final score. If one of the material states is unknown, we choose the known
state as our result. If both are unknown, the result remains unknown. This
formula simply computes the average of the two results. It is worth noting that,
because we use division on integers, the result leans towards WIN rather than
HARD WIN, due to the setting of the numerical scores.

4 Constructing a Practical Knowledge Database of
Material Combinations

We use two algorithms, material state extension and unknown state predictor,
to determine the advantage of unknown materials.

To construct a knowledge database of material combinations, we simply gen-
erate each material pair as input for the material state extension algorithm,
which can only be applied to WIN and HARD WIN in the basic database. If the
algorithm cannot find the answer, we input the material pair to the unknown
state predictor algorithm to retrieve an approximate result value.

However, the value of some materials may still be unknown after applying
the unknown state predictor algorithm. Finally, we use a heuristic algorithm
to identify the advantage or disadvantage of the input material. We compute
a player’s attack power by the formula 10 × Rook + 5 × (Horse + Cannon) +
1 × Pawn. In the formula, Rook, Horse, Cannon, and Pawn are the numbers of
the attacking pieces. The difference between the attack power of the two players
is calculated as the formula D = RedPower − BlackPower. RedPower is the
attack power of the attacking player, and BlackPower is that of the defending
player. When D is more than or equal to 10, we reduce the value of the material
state by one. When D is less than 7 and the predicted result is UNKNOWN,
we set it to be CHANCE WIN. This simple algorithm is used to fine tune the
materials when the attacking player has a clear advantage or the value of the
materials cannot be derived by the unknown state predictor algorithm.

The most practical usage of the knowledge database of material combinations
is to retrieve material scores as a part of the evaluation function during the
search phase. When a middle game position changes to an endgame position
due to piece exchange, the search algorithm can select better endgame positions
with the aid of our material database. However, there may be some positions

Knowledge Inferencing on Chinese Chess Endgames 187

where the attack power of both sides is strong; or one player is disadvantaged
in terms of material, but still represents a great threat to the opposite player’s
king. The former can be handled by assigning UNKNOWN states to the positions
when both sides are strong enough to attack each other’s kings. The latter can
be handled by increasing the weight of special locations of piece combinations
in the evaluation function.

5 Experiment Design and Results

To demonstrate the performance of our algorithm, we generate a basic database.
It is a complete database of defense materials with at most one strong attacking
piece plus one pawn and all defending pieces. We use a practical data set as our
test data and compare it with the results obtained by our algorithm.

5.1 Experiment Design

We use the endgame knowledge table used by Contemplation as our test data.
There are 17,038 combinations of materials that have been manually annotated
by a 4-Dan expert. Since the data is symmetric, that is, if a material combination
is in the database, information about exchanges between the attacking player
and the defending player is also in the database, the actual number of test data
combinations is 8,519. The scoring scheme used by the test data is different to
that of our method. The score of the test data is divided into 10 values. The
values 0 and 1 are mapped to WIN in our method, which means the attacking
player usually wins. The value 2 is mapped to EASY WIN, 3 is mapped to
CHANCE WIN, 4 is mapped to UNKNOWN, and 5 is mapped to HARD WIN.
The values from 6 to 9 indicate that the attacking player changes places with
the defending player. The value 6 is mapped to CHANCE WIN; 7 is mapped
to EASY WIN; and 8 and 9 are mapped to WIN. A second difference relates
to the definition of pawns. In the test data, all pawns are the same, with no
category information. As a result, our program must compute the approximate
values of materials and then compare them with the test data. Because bottom-
pawns are not considered by the test data, we only compute the approximate
values of materials with top-pawns and low-pawns. The approximation formula
is Vapp = �(Vtop + Vlow)/2�, where Vapp represents the approximated result; Vtop

represents the result of defining all pawns of both players as top-pawns; and
Vlow represents the result of replacing all pawns of the attacking player with
low-pawns. There are 6,396 entries that are not in our basic database. We use
the difference between the attack powers to filter out unreasonable annotations,
which means that the attacking player has less attack power than the defending
player, and is assigned the grade of better than or equal to CHANCE WIN.

There are 1,621 annotations where the attacking player, who has the ad-
vantage of at least CHANCE WIN, has less attack power than the defending
player. The remaining data, containing 4,775 entries, becomes our test set, called
END4775. We use two algorithms in the test: (1) material state extension, and

188 B.-N. Chen et al.

(2) unknown state predictor. The first experiment demonstrates the result of
combining the two algorithms. The second experiment demonstrates the result
of only using the unknown state predictor algorithm.

5.2 Experimental Results

In our results, we denote UNKNOWN by U, WIN by 1, EASY WIN by 2,
CHANCE WIN by 3, and HARD WIN by 4. The descriptions and results are
shown in Table 2. We define the following variables to measure our model’s perfor-
mance: (1) total correct number, which records the number of cases where the out-
put scores are equal to the transformed answer; (2) tolerant correct number, which
ignores the error between WIN and EASY WIN and also between CHANCE
WIN and HARD WIN; and (3) slight error number, which records the errors be-
tween WIN and EASY WIN and also between CHANCE WIN and HARD WIN.

For our algorithm, we need to choose a suitable value of PLB, described in
Subsection 3.3. Table 1 shows the relationship between different PLBs and the
ratio of tolerant correct number to the total number of data items, i.e., 4775.
This is the most important measurement, when using only the unknown state
predictor algorithm. As the results show, the value 10% is the best for our test
data. We suggest that users set the PLB value between 10% and to 30%.

The total correct number is 2,169 or 45.42%. The tolerant correct number is
4,200 or 87.96%. The slight error number is 2,031 or 42.53%.

In practical usage, the most importantmeasurement is tolerant correct number
because it identifies the categories of either WIN and EASY WIN, which are

Table 1. The relationships between PLBs from 0 to 100 and the corresponding ratio
of tolerant correct number to the total number of data items

PLB 0 10 20 30 40 50 60 70 80 90 100
% 82.07 84.50 84.13 83.12 82.28 81.53 80.04 76.04 65.13 39.25 39.04

Table 2. Comparison of human annotated answers and the algorithm generated results
for END4775. The horizontal axis represents the number of human annotated material
states. The vertical axis represents the number of material states generated by the
algorithm. U represents an unknown state.

U 1 2 3 4 Sum
U 0 35 55 195 40 325
1 0 990 402 52 0 1444
2 0 1278 663 120 17 2078
3 0 31 30 233 330 624
4 0 0 0 21 283 304

Sum 0 2334 1150 621 670 4775

Knowledge Inferencing on Chinese Chess Endgames 189

considered winning materials, or CHANCE WIN and HARD WIN, which are
considered draw materials. The value 87.96% indicates the percentage of how well
our algorithmfits a human expert’s endgame knowledge.Moreover, the percentage
shows the accuracy of the material part of the evaluation function used by a search
algorithm in prior phase of the endgame, as defined in Sect. 1. Hence, the result
shows that the search algorithm using our method will make as good an exchange
as Contemplation in most cases.

A material combination KCPGGKPPP in our test data is assessed as EASY
WIN by a human expert, but reported as HARD WIN by our algorithm. The
discrepancy is due to the different opinions about the defense ability of a de-
fending player who has three pawns. Since even masters have different opinions
about hard endgames, a slightly different human annotated answer is reasonable.

The performance of the individual algorithms is as follows. The number of
material combinations that can be inferred by the material state extension algo-
rithm is 2,614. The total correct number among 2,614 entries is 1,379 (52.75%);
the tolerant correct number is 2,562 (98.01%); and the slight error number is
1,183 (45.25%).

By using the heuristic strategy described in Sect. 4, we did not obtain any
unknown material states in this test. The number of the entries that could not be
handled by the material state extension is 2,152. However, they can be predicted
by our predictor algorithm or the heuristic algorithm. The total correct number
is 781 (36.29%); the tolerant correct number is 1,814 (84.29%); and the value of
slight error number is 1,033 (48.00%).

Although the ratio of total correctness is reduced by using the heuristic strat-
egy compared to that of combining two algorithms, we believe that our predictor
algorithm is reliable for the following three reasons. First, the input of 2,152
entries is the most complex data among all data sets. Second, the total correct-
ness ratio shows that, for the given material, the algorithm can distinguish the
true advantage or disadvantage in endgames. Third, even master players can-
not clearly identify the difference between WIN and EASY WIN and between
CHANCE WIN and HARD WIN based only on information about the material.
For example, Y. C. Xu, a Chinese chess grandmaster, gave his opinions about a
practical endgame in his publication “YinChang Chess Road.” He criticized his
opponent, G. L. Wu, who is also a Chinese chess grandmaster [13].

The human annotated answer for the material combination KHCPKHCM in
our test data is an EASY WIN; however, our algorithm reports CHANCE WIN,
which has different advantage. If a situation like this occurred during a real game,
a grandmaster would not usually exchange an attack piece with his opponent be-
cause any exchange would result in a draw. These kinds of material combination
problems cannot be solved by reducing the amount of material.

To evaluate the performance of using the unknown state predictor algorithm
alone, we apply it to all 4,775 material combinations. The detailed experimental
results are presented in Table 3.

The total correct number is 2,110 (44.19%); the tolerant correct number is
4,035 (84.50%) and the slight error number is 1,925 (40.31%).

190 B.-N. Chen et al.

Table 3. Results using only the unknown state predictor algorithm

U 1 2 3 4 Sum
U 0 76 30 188 31 325
1 0 1302 30 112 0 1444
2 0 1615 281 158 24 2078
3 0 35 80 261 248 624
4 0 4 2 32 266 304

Sum 0 3032 423 751 569 4775

Note that the ratios of the tolerant correct numbers to the total number of
data items are similar among the two tests, and so do the slight error number
values. This shows that the data input to the unknown state predictor algorithm
in the first experiment is really hard. The difference between the ratio of the
tolerant correct number to the total number of data items of the two experiments
is 3.46%. This indicates that the advantage predicted by our predictor algorithm
is still reliable, even for hard data.

The space used to store all defense materials up to one strong piece plus
a pawn and all combinations of defense pieces and their corresponding attack
materials is 2.44M bytes.

6 Conclusions

Endgame problems represent a difficult issue in both Western chess and Chi-
nese chess. The largest Chinese chess endgame database built by a retrograde
algorithm currently contains only two strong attack pieces on each side. How-
ever, the endgame results show that many strong attack pieces exist. We have
designed a knowledge inferencing scheme to build a practical material database
for the initial phase of the endgame. In addition, we use the material state
extension algorithm and the unknown state predictor algorithm to construct
endgames with many strong attack pieces. Our experimental results show that
the performance of our algorithms is good and reliable. When predicting the
advantage of a material combination with a large number of pieces, we may
conclude from the results above that our material state extension algorithm is
an effective approach. However, if the extension algorithm fails, the predictor
algorithm takes over and reports an inferred solution. This strategy can be used
to solve the problem when a complete knowledge database of an endgame with a
large amount of material cannot be built using conventional computer methods,
and only advantage information is required to know for the material state.

Acknowledgments. This research was partially supported by National Science
Council, Grants 95-2221-E-001-004 and 96-2221-E-001-004.

Knowledge Inferencing on Chinese Chess Endgames 191

References

1. van den Herik, H.J., Herschberg, I.S.: The construction of an omniscient endgame
data base. ICCA Journal 8(2), 66–87 (1985)

2. van den Herik, H.J., Herschberg, I.S., Nakad, N.: A six-men-endgame database:
KRP(a2)KbBP(a3). ICGA Journal 10(4), 163–180 (1987)

3. Fang, H.R., Hsu, T.S., Hsu, S.C.: Construction of Chinese chess endgame databases
by retrograde analysis. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063,
pp. 96–114. Springer, New York (2000)

4. Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building the
checkers 10-piece endgame databases. In: van den Herik, H.J., Iida, H., Heinz, E.A.
(eds.) Advances in Computer Games: Many Games, Many Challenges, vol. 10, pp.
193–210. Kluwer Academic Publishers, Dordrecht (2003)

5. Pai, J.T.: Chinese Chess Endgame Databases Query System,
http://lpforth.forthfreak.net/endgame.html

6. Thompson, K.: Retrograde analysis of certain endgames. ICCA Journal 9(3), 131–
139 (1986)

7. Thompson, K.: 6-piece endgames. ICCA Journal 19(4), 215–226 (1996)
8. Lake, R., Schaeffer, J., Lu, P.: Solving large retrograde analysis problems using

a network of workstations. In: Advances in Computer Chess 7, Maastricht, The
Netherlands, pp. 135–162 (1994)

9. Nalimov, E.V., Haworth, G.M., Heinz, E.A.: Space-efficient indexing of endgame
databases for chess. In: van den Herik, H.J., Monien, B. (eds.) Advances in Com-
puter Chess 9, pp. 93–113 (2001)

10. Wu, P.S., Liu, P.Y., Hsu, T.S.: An external-memory retrograde analysis algorithm.
In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS,
vol. 3846, pp. 145–160. Springer, Heidelberg (2006)

11. Gasser, R.: Solving nine men’s morris. In: Nowakowski, R. (ed.) Games of No
Chance. MSRI, vol. 29, pp. 101–113. Cambridge University Press, Cambridge
(1996)

12. Wu, R., Beal, D.F.: Fast, Memory-Efficient Retrograde Algorithms. ICGA Jour-
nal 24(3), 147–159 (2001)

13. Xu, Y.C.: YinChang Chess Road, Special Column 44-45. Yan Chen Ti Yu News-
paper Office (1997)

14. Yen, S.J., Chen, J.C., Yang, T.N., Hsu, S.C.: Computer Chinese Chess. ICGA
Journal 27(1), 3–18 (2004)

15. CONTEMPLATION, A Chinese chess program,
http://www.grappa.univ-lille3.fr/icga/program.php?id=112

http://lpforth.forthfreak.net/endgame.html
http://www.grappa.univ-lille3.fr/icga/program.php?id=112

Learning Positional Features for Annotating

Chess Games: A Case Study

Matej Guid, Martin Možina, Jana Krivec, Aleksander Sadikov, and Ivan Bratko

Artificial Intelligence Laboratory, Faculty of Computer and Information Science,
University of Ljubljana, Slovenia

matej.guid@fri.uni-lj.si

Abstract. By developing an intelligent computer system that will pro-
vide commentary of chess moves in a comprehensible, user-friendly, and
instructive way, we are trying to use the power demonstrated by the cur-
rent chess engines for tutoring chess and for annotating chess games. In
this paper, we point out certain differences between the computer pro-
grams which are specialized for playing chess and our program which
is aimed at providing quality commentary. Through a case study, we
present an application of argument-based machine learning, which com-
bines the techniques of machine learning and expert knowledge, to the
construction of more complex positional features, in order to provide
our annotating system with an ability to comment on various positional
intricacies of positions in the game of chess.

1 Introduction

The ever stronger chess programs are dangerous opponents to human grandmas-
ters - already surpassing them in many aspects. In spite of that, their capabilities
to explain why certain moves are good or bad in a language understandable to
humans are quite limited. So far, only little attention was paid to an automatic
intelligent annotation of chess games and consequently the progress made in this
field is negligible in comparison to the enormous progress in the power of chess
engines, which we have witnessed in the last decades. The typical “commentary”
in the form of best continuations and their numerical evaluations can hardly be
of much help to the chess-player who would like to learn the important concepts
that are hidden behind the suggested moves.

For several years, the scientific research in this field was limited only to chess
endgames, and the demonstrated concepts all had a common weakness - the
inability to extend annotations to the entire game of chess1. In 2006, we intro-
duced a new approach, which utilizes the power demonstrated by the current
chess engines to provide commentary of chess games during all the phases of
the game. Moreover, besides the ability of annotating tactical positions, the new
approach enables the program to comment on various strategic concepts in given
positions (see Sadikov et al. [5]). The main idea is to use the chess engine’s eval-
uation function’s features to describe the changes in the position when a move
1 An interested reader can find an overview of the related work in Sadikov et al. [5].

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 192–204, 2008.
c© IFIP International Federation for Information Processing 2008

Learning Positional Features for Annotating Chess Games: A Case Study 193

(or a sequence of moves) is made. The elementary features can later be combined
to form higher-level concepts understandable to humans. The descriptions can
be used both for the purpose of tutoring chess by providing knowledge-based
feedback to students, and for the purpose of annotating chess games.

As we intend to demonstrate, evaluation functions of the programs that are
aimed to play chess successfully do not need to be aware of all the concepts that
would otherwise be useful for commenting on chess games. Hence, introducing
additional positional features to the evaluation function of our annotating soft-
ware turned out to be important for obtaining comprehensible, user-friendly, and
instructive annotations.

Introducing new knowledge into the evaluation function of the program re-
quires knowledge elicitation from a chess expert. This proved to be a hard task.
Computer researchers usually find it hard to elicit useful knowledge from human
experts. This knowledge acquisition bottleneck occurs because the knowledge is
intuitive. The experts are quite capable of using their domain knowledge, but
they find it much harder to formalize it and describe it systematically. Over-
coming the knowledge acquisition bottleneck was of crucial importance and also
the key motivation for introducing machine learning to construct additional po-
sitional features. In this paper, we present an application of a recent approach
to machine learning - Argument Based Machine Learning (ABML, [2]) - by a
case study in learning the positional feature bad bishop in a form suitable for
annotating chess games. Such features may not always be suitable for evaluation
functions of chess-playing programs, where time spent on heuristic search is im-
portant (besides, appropriate weights of these features should be determined).
Nevertheless, they could serve well for annotation purposes.

The paper is organized as follows. In Sect. 2, we point out certain differences
between positional features of a program which is specialized for playing chess
and the program which is intended for providing quality commentary. In Sect. 3,
through a case study “The Bad Bishop”, we describe the construction process of
a more complex positional feature that enables our annotating software to detect
and comment on bad bishops. Section 4 provides conclusions and describes our
future work.

2 Positional Features for Annotating Chess Games

The programs that are aimed to play chess successfully do not need to be aware of
all the concepts that would otherwise be useful for giving instructive annotations.
There is always a dilemma how much knowledge to implement into evaluation
functions of the programs in order to achieve best tournament performances. The
more knowledge means less time for efficient search and vice versa. It is commonly
known that some programs have more knowledgeable evaluation functions, while
others rely more on efficient search algorithms that allow them to reach higher
search depths.

To illustrate our points, we will introduce a concept of the bad bishop. Watson
[6] gives the following definition as traditional one: “A bishop that is on the same

194 M. Guid et al.

Fig. 1. Classical example of a bad bishop

color of squares as its own pawns is bad, since its mobility is restricted by its own
pawns and it does not defend the squares in front of these pawns.” Moreover,
he puts forward that centralization of these pawns is the main factor in deciding
whether the bishop is bad or not. In the middle game, he continues, the most
important in this aspect are d and e pawns, followed by c and f pawns, while
the rest of the pawns on the same color of a square as the bishop, are irrelevant
(up to the endgame, where they might again become an important factor for
determining the goodness of the bishop).

The example in Fig. 1 is taken from the classic book by Aaron Nimzovich,
The Blockade [3]. The black bishop on c8 is bad, since its activity is significantly
hindered by its own pawns. Furthermore, these pawns are blockaded by the pieces
of his opponent, which makes it even harder for black to activate the bishop.

Looking at the chess programs, Crafty has several positional features that
are associated with the goodness of the bishops. However, they are insufficient
to fully describe this concept. They apply to both bishops for one side at the
same time, i.e., the values for both bishops are represented by one feature only.
Even if we arrange to obtain the feature values for each bishop separately, these
positional features are still not appropriate to describe the goodness of a bishop,
with the aim to annotate chess games in an instructive way.

Table 1 shows Crafty’s most relevant positional features for describing a
bad bishop. As it becomes clear from the descriptions of the features and their
deficiencies from the purpose of describing bad bishops, Crafty clearly could
not be aware of such a concept. For example, if we move pawns e6 and d5 to g6
and h7 (preserving the value of BLACK BISHOP PLUS PAWNS ON COLOR
- since pawns on the same color of the square as the bishop carry the same
penalty, regardless of their position) and the rook from a8 to d7 (the value of
BLACK BISHOPS MOBILITY even decreases, as the bishop is attacking one

Learning Positional Features for Annotating Chess Games: A Case Study 195

Table 1. Some Crafty’s positional features that have a potential for describing bad
bishops and their deficiencies for doing so successfully

Feature Description Deficiency for annotating

BLACK BISHOP
PLUS PAWNS
ON COLOR

a number of own pawns that
are on the same color of the
square as the bishop

all such pawns count the same, re-
gardless of their position and how
badly they restrict the bishop

BLACK BISHOPS
POSITION

an evaluation of the bishop’s
position based on predefined
values for particular squares

such predefined value is not the
actual value of the bishop’s place-
ment in a particular position

BLACK BISHOPS
MOBILITY

the number of squares that
the bishop attacks

the number of attacked squares
and the actual bishop’s mobility
are not necessarily the same thing

square less), the bishop clearly would not be bad, but in Crafty’s view it would
be even worse than in the given position.

In order to introduce a new positional feature (say BAD BISHOP) that would
allow commenting on such complex concepts, as is the concept of the bad bishop,
it is therefore essential first to obtain additional (simple) positional features, and
then combining them into some kind of rules that would allow to obtain the value
of the new (more complex) positional feature BAD BISHOP.

It should be noted that when annotating chess games, it is not necessary to
comment on a particular feature each time it occurs. When the annotator is not
sure about some feature in the position, it is better to say nothing at all than
giving wrong comments.

2.1 The Static Nature of Positional Features

Positional features are static in their nature - they describe the state of their
purposed issue for the current position only. It is heuristic search that enables
them to fulfil their purpose - contributing to the program finding the best moves.
For example, in the position in Fig. 1, if we moved the knight from e5 to h1,
and decided that black is to move, black would easily solve all his problems
by playing e6-e5, chasing the other white knight away and freeing both of his
pieces. The positional features from Table 1, among others, would contribute to
deciding for this freeing move, since the values of all three attributes become
more desirable soon along the principal variation (e.g., after e6-e5 and Bc8-f5,
there are less pawns on bishop’s square color, and the bishop itself is placed on a
square with a higher predefined value and also attacks more squares). Although
the mentioned positional features are not suitable for commenting on the bad
bishop, they nevertheless help it to become a good one.

It is also desirable for positional features for annotating chess games to be of
static nature. For example, it is up to the chess engine to determine whether the
freeing move e6-e5 is possible or not (e.g., in case of white king on f4 and the e5
knight still on h1 it would drop at least a pawn).

196 M. Guid et al.

3 Case Study: The Bad Bishop

In this case study, we demonstrate the construction of a static positional fea-
ture, BAD BISHOP (with possible values yes or no), which was designed for
commenting on bad bishops (possibly combined with some heuristic search).

In our domain, it turns out to be extremely difficult for a chess expert to
define appropriate rules, using typical positional features, for the program to
be able to recognize complex concepts, such as the bad bishop. Our domain
experts2 defined the rules, using Crafty’s positional features only, which in
their opinion described bad bishops in the best possible way (considering the
constraint of having only Crafty’s features at disposal). The rules were of the
following type:

IF (|BLACK_BISHOP_PLUS_PAWNS_ON_COLOR| > X)
AND (|BLACK_BISHOPS_MOBILITY| < Y) THEN BAD_BISHOP = yes

Three such rules were given, depending on the number of black pawns in the
position. The positional features and the values for X and Y were determined,
after the experts had become acquainted with the exact meaning of Crafty’s
positional features and had observed their values in several positions of various
types. However, after examining the outcome of these rules on various chess
positions, it turned out that the rules performed rather poorly, which was the
key motivation for introducing machine learning into the system’s development.

3.1 The Learning Dataset

The learning dataset consisted of middle game positions3 from real chess games,
where the black player has only one bishop. Based on the aforementioned expert-
crafted rules, positions were obtained automatically from a large database of
chess games. The bishops were a subject of evaluation by the experts.

When chess experts comment on concepts such as the bad bishop, they also
have dynamic aspects of a position in mind. Therefore, assessing bishops “stati-
cally” is slightly counter-intuitive from the chess-player’s point of view. After a
careful deliberation, the following rules were chosen for determining a bad bishop
from the static point of view.

The bishop is bad from the static point of view in some position, if:

1. Its improvement or exchange would notably change the evaluation of the
position in favor of the player possessing it,

2. The pawn structure, especially the one of the player with this bishop, notably
limits its chances for taking an active part in the game,

3. Its mobility in this position is limited or not important for the evaluation.

2 The chess expertise was provided by WGM Jana Krivec and FM Matej Guid.
3 While the concept of the bad bishop hardly applies to the early opening phase,

different rules for determining bad bishops apply in the endgames (see Watson’s
definition in Sect. 2). In all positions, the quiescence criterion was satisfied.

Learning Positional Features for Annotating Chess Games: A Case Study 197

These rules seem to be in line with the traditional definition of the bad bishop,
and in the experts’ opinion lead to sensible classification. In positions where as-
sessment from the static point of view differs from the one obtained from the
usual (dynamic) point of view, it seems likely that a possible implementation
of heuristic search, would lead to sensible judgment on whether to comment
on the bad bishop or not. In the implementation we would use the newly ob-
tained positional feature BAD BISHOP (such search could enable the program
to realize whether the bishop is more than just temporarily bad and thus worth
commenting on).

The learning dataset consisted of 200 positions4. We deliberately included
notably more bishops labeled as “bad” by the initial rules given by the experts,
due to our expectations (based on the unsuitability of Crafty’s positional fea-
tures) that many of the bishops labeled as “bad” will not be assessed so, after
the experts’ examination of the positions. After examination by the experts, 80
examples in the dataset obtained the class value yes (“bad”) and 120 examples
obtained the class value no (“not bad”).5 It turned out that only 59% of the
examples were correctly classified by the expert-crafted rules.

3.2 Machine Learning

As the expert-crafted rules scored only 59% classification accuracy on our dataset,
which is clearly insufficient for annotating purposes, there is a clear motivation for
the use of machine learning. However, as classification accuracy equally penalizes
false positives (“not bad” classified as “bad”) and false negatives, we should also
use precision, which measures the percentage of true “bad” bishops among ones
that were classified as “bad”. Remember, falsely commenting is worse than not
commenting at all.

From the many available machine-learning methods we decided to take only
those that produce understandable models, as it will be useful later to be able
to give an explanation why a bishop is bad and not only labeling it as such.
We chose standard machine-learning methods given in Table 2. We also give
accuracy and precision results of these methods on our learning set.

Table 2. The machine learning methods’ performance with Crafty’s features

Method Classification accuracy Precision

Decision trees (C4.5) 71% 64%

Logistic regression 80% 76%

Rule learning (CN2)6 73% 75%

4 This number was chosen as the most feasible one, considering limited available time
of the experts. The quality of the final model implies that the number of selected
positions in the learning dataset was sufficient.

5 An interested reader will find the learning dataset, and some other remarkable details
associated with this paper at the first author’s website: http://www.ailab.si/matej.

198 M. Guid et al.

All the accuracy and precision results were obtained through 10-fold cross
validation. All the methods achieved better accuracies than the rules given by the
experts, but the three methods are still too inaccurate for commenting purposes.

3.3 Argument Based Machine Learning

Argument Based Machine Learning (ABML, [2]) is machine learning extended
with some concepts from argumentation. Argumentation is a branch of artificial
intelligence that analyzes reasoning where arguments pro and con a certain claim
are produced and evaluated [4].

Arguments are used in ABML to enhance learning examples. Each argument
is attached to a single learning example only, while one example can have several
arguments. There are two types of arguments; positive arguments are used to
explain (or argue) why a certain learning example is in the class as given, and
negative arguments are used to explain why it should not be in the class as given.
We used only positive arguments in this work, as negatives were not required.
Examples with attached arguments are called argumented examples.

Arguments are usually provided by domain experts who find it natural to
articulate their knowledge in this manner. While it is generally accepted that
giving domain knowledge usually poses a problem, in ABML they need to focus
on one specific case only at a time and provide knowledge that seems relevant
for this case and does not have to be valid for the whole domain. The idea can
be easily illustrated with the task of commenting on chess games. It would be
hard to talk about chess moves in general to decide precisely when they are good
or bad. However, if an expert is asked to comment on a particular move in a
given position, he or she will be able to offer an explanation and provide relevant
elements of this position. Of course, in a new position the same argument could
be incorrect.

An ABML method is required to induce a theory that uses given arguments
to explain the examples. Thus, arguments constrain the combinatorial search
among possible hypotheses, and also direct the search towards hypotheses that
are more comprehensible in the light of an expert’s background knowledge. If an
ABML method is used on normal examples only (without arguments), then it
should act the same as a normal machine-learning method. We used the method
ABCN2 [2], an argument-based extension of the well-known method CN2 [1],
that learns a set of unordered probabilistic rules from argumented examples. In
ABCN2, the theory (a set of rules) is said to explain the examples using given
arguments, when there exists at least one rule for each argumented example that
contains at least one positive argument in the condition part7.

In addition to rules, we need an inference mechanism to enable reasoning
about new cases. Given the nature of the domain, we decided to learn only rules
for “bad” bishop and classify a new example as “bad” whenever at least one of
the learned rules triggered.
7 Due to space limitations, we only roughly described some of the properties of ABML

and ABCN2 (see [2] or/and the website http://www.ailab.si/martin/abml for precise
details).

Learning Positional Features for Annotating Chess Games: A Case Study 199

Asking experts to give arguments to the whole learning set is not likely to be
feasible, since it requires too much time and effort. The following loop describes
an iterative process for acquiring arguments and new attributes from experts:

1. Learn a set of rules.
2. Search for problematic cases in the data set; these are the examples that are

misclassified by the induced rules.
3. If no problematic examples are found, stop the process.
4. Select a problematic example and present it to experts. If the case is a

position with a “bad” bishop, then experts are asked to explain why this
bishop is “bad”. If it is a “not bad” bishop position, then we search for the
culpable rule predicting “bad” and ask experts to explain an example with
the class value yes (“bad”) from the set of examples covered only by this
rule. In the latter case, experts need to be careful to provide reasons that
are not true in the problematic position. Problematic positions with a “not
bad” bishop are called counter-examples.

5. Experts have three possibilities of responding to the presented case.
(a) They can give reasons why the bishop is “bad”. Reasons are added to

the example in the data set.
(b) If they cannot explain it with the given attributes, they may introduce

a new attribute (or improve an existing one), which is then added to the
domain.

(c) Experts can decide that this bishop is actually “good” and thus the class
of the example needs to be changed.

If experts are unable to explain the example, we select another one.
6. Return to step 1.

Table 3 shows the three rules induced in the first iteration of the aforemen-
tioned process, where only Crafty’s positional features were used and no argu-
ments have been given yet. The condition part of a rule is the conjunction of the
features indicated in the corresponding column. In the cases with no threshold
specified, the feature is not part of the corresponding rule. For example, the rule
#1 is: “IF BLACK BISHOP MOBILITY > -12 THEN BAD BISHOP = yes”.8

The distribution of positive and negative examples covered by each of the
rules speaks about the relatively poor quality of these rules - in particular that
of the last rule.

Figure 2 (left) shows the first problematic example selected by our algorithm.
The experts were asked to describe why the black bishop is bad. Based on their
answer, another attribute, BAD PAWNS, was added into the domain. The ex-
perts designed a look-up table (right) with predefined values for the pawns that
are on the color of the square of the bishop in order to assign weights to such

8 The negative values of BLACK BISHOP MOBILITY are the consequence of
Crafty using negative values for describing features that are good for Black. The
more squares this bishop is attacking, the more negative this value. For each attacked
square, the feature’s value is decreased by -4. For example, the value of -12 means
that the bishop is attacking three squares.

200 M. Guid et al.

Table 3. The rules for BAD BISHOP = yes, after the first iteration of the process

Positional feature #1 #2 #3

BLACK BISHOPS MOBILITY > -12 > -18 > -18

BISHOP PLUS PAWN ON COLOR > 12

BLACK BISHOP POSITION > 4

positive examples (“bad”) 40 44 67

negative examples (“not bad”) 4 7 25

Fig. 2. The experts were asked the question: “Why is the black bishop bad?” They
used their domain knowledge to provide the following answer: “The black bishop is
bad, since a lot of black pawns are on the same color as the bishop. Especially the
central pawns notably limit its chances for taking an active part in the game.” The
need for the attribute BAD PAWNS was identified. The experts designed a look-up
table with predefined values for the pawns that are on the color of the square of the
bishop in order to assign weights to such pawns.

pawns. According to Watson’s definition, centralization of the pawns has been
taken into account. Several other attributes that were added at later stages (see
Table 4) used this look-up table to assess heuristically an influence of such bad
pawns on the evaluation of the bishop.

Table 4 presents the list of attributes that were added to the domain dur-
ing the process. To give an example of how the values of these new attributes
are obtained, we calculate the value of the attribute BAD PAWNS AHEAD for
the position in Fig. 2. This attribute provides an assessment of pawns on the
same color of square as the bishop of which they are in front of. There are three
such pawns in that position: e6, d5, and a6. For each of these pawns their cor-
responding values are obtained from the look-up table, that is, 16, 24, and 2,
respectively. The sum of these values (16 + 24 + 2 = 42) represents the value
of the attribute BAD PAWNS AHEAD in that position.

Figure 3 shows an example how the argument given to some particular po-
sition could be improved by the expert, using some help by a machine-learning
method, which automatically suggests an appropriate counter-example. The

Learning Positional Features for Annotating Chess Games: A Case Study 201

Fig. 3. After iteration 6, the expert gave the following description why the bishop
is bad in position on the left: “The bishop is bad, because, taking the pawn
structure into account, only one square is accessible to it.” The argument “IM-
PROVED BISHOP MOBILITY=low” was added to this position, based on this de-
scription. However, in the next iteration, the machine-learning method selected the po-
sition on the right, where the bishop is classified as “not bad”, as the counter-example.
After the expert’s examination, the following significant difference between the two
positions was determined: in the position on the right, there are no bad pawns ahead
of the bishop. Based on that, the argument to the position on the left was improved
to “IMPROVED BISHOP MOBILITY=low AND BAD PAWNS AHEAD=high”.

Table 4. The new attributes, and iterations when they were added to the domain

Attribute Description It.

BAD PAWNS
pawns on the color of the square of the bishop -
weighted according to their squares (bad pawns)

2

BAD PAWNS AHEAD bad pawns ahead of the bishop 3

BLOCKED DIAGONAL bad pawns that block the bishop’s (front) diagonals 4

BLOCKED BAD PAWNS bad pawns, blocked by opponent’s pawns or pieces 5

IMPROVED BISHOP
MOBILITY

number of squares accessible to the bishop, taking
into account only pawns of both opponents

6

BLOCKED PAWNS
BLOCK DIAGONAL

bad pawns, blocked by opponent’s pawns or pieces,
that block the bishop’s (front) diagonals

12

counter-examples are another effective feature for overcoming the knowledge
acquisition bottleneck.

The final rules at the end of the process are presented in Table 5 (for the inter-
pretation of this presentation, see the description before Table 3). The obtained
rules for the new positional feature BAD BISHOP only cover positive examples,
have a pure distribution (no misclassified examples), and also appear sensible to
the experts.

Particularly valuable is that the rules enable not only commenting on whether
a bishop is bad, but also why it is bad. Formulation of the explanations is

202 M. Guid et al.

Table 5. The rules for BAD BISHOP = yes, obtained after the 14th (final) iteration

Positional feature #1 #2 #3 #4 #5 #6 #7

BAD PAWNS > 14 > 32

BAD PAWNS AHEAD > 20 > 18 > 26 > 28 > 12

BLOCKED DIAGONAL > 4 > 16 > 16

BLOCKED BAD PAWNS > 0

IMPROVED BISHOP MOBILITY < 3 < 4 < 4 < 2 < 5

BLOCKED PAWNS
BLOCK DIAGONAL

> 0

BLACK BISHOPS MOBILITY < -15

positive examples (“bad”) 46 46 42 38 38 36 31

negative examples (“not bad”) 0 0 0 0 0 0 0

Table 6. The machine-learning methods’ performance with the data, supplemented
by the newly obtained attribute values

Method Classification accuracy Precision

Decision trees (C4.5) 85% 85%

Logistic regression 89% 91%

Rule learning (CN2) 91% 94%

Rule learning with arguments (ABCN2) 94% 96%

provided in the expert module of our annotating system. For example, if the rule
#2 from Table 5 triggers in a particular position, the following comment could
be given: “Black bishop is bad, since black pawns on the same color of squares
ahead of it, and pawns of both opponents restrict its mobility.”

The machine-learning methods that were used on original Crafty’s posi-
tional feature values were again tested on the same data, supplemented by the
newly obtained attribute values. All the accuracy and precision results were
again obtained through 10-fold cross validation.

The results are presented in Table 6. They suggest that the performance of
other algorithms could also be improved by adding appropriate additional at-
tributes. However, using arguments (as with the method ABCN2), besides stimu-
lating the expert to identify the need for useful additional attributes, also guides
the method towards appropriate combinations of attributes, which is likely to
lead to even more accurate models.

4 Summary and Conclusions

We investigated a particular aspect in the development of a chess annotating
tool - the ability of making intelligent comments on the positional aspects of
a chess game. This task is made more difficult by the fact that the strength

Learning Positional Features for Annotating Chess Games: A Case Study 203

of the chess-playing programs mainly comes from search and not from subtle
positional knowledge which is necessary for generating positional comments.
Therefore, components of a chess program’s evaluation function are not suffi-
cient for making in-depth positional comments. Defining deep positional pat-
terns requires powerful knowledge-elicitation methods. Our study suggests that
argument-based machine learning enables such a method.

Our approach to the generation of positional comments makes use of ele-
ments of a chess evaluation function. However, more sophisticated positional
patterns have to be introduced in addition to the features contained in an evalu-
ation function. Defining such sophisticated positional patterns is often a difficult
knowledge-elicitation task.

In the presented case study, we considered the elicitation of the well-known
chess concept of the bad bishop. There is a general agreement in the chess litera-
ture and among chess players about the intuition behind this concept. However,
formalizing it in a way that would enable an annotating system to decide reli-
ably whether a bishop in a given position is bad turned out to be beyond the
practical ability of our chess experts (a master and a woman grandmaster). The
introduction of sophisticated positional concepts such as the bad bishop turned
out to be an intricate knowledge-elicitation problem.

To alleviate the knowledge-elicitation problem, we employed machine learning
from examples of good and bad bishops. We tried several standard machine-
learning techniques to induce definitions of the bad bishop from examples. This
did not produce satisfactory results. Finally, we successfully applied the recently
developed approach of Argument Based Machine Learning (ABML). The efficacy
of ABML comes from its unique ability to make use of expert’s arguments (or
justifications) for selected example cases. This approach is natural and effective
for the expert because he or she can concentrate on explaining concrete cases,
and does not have to construct general rules, which is more difficult. The method
also leads the expert to think about new relevant descriptive features, thereby
improving the description language that the learning program uses. In our case
study, we may conclude that the method worked well. The initial repertoire of
the attributes taken directly from Crafty’s evaluation function was extended
by another six attributes that the experts coined when explaining critical cases
selected automatically by the ABML-based knowledge-elicitation process.

Our future work will be associated with further improvements of our anno-
tation software. We intend to implement several additional positional features
into its evaluation function, in order to make the commentary more instructive.
In particular, the expert module of our annotation tool, which provides the user
with a commentary of chess games, and possibly with more detailed explana-
tions about particular features of chess positions, requires further attention. The
tool will be based on both learned and manually crafted positional features. As
part of future work, we intend to apply this knowledge-acquisition method to
the formalization of other positional concepts of fuzzy nature, such as weak or
strong pawn structures, “harmony among the pieces”, etc.

204 M. Guid et al.

References

1. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In:
Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg
(1991)

2. Možina, M., Žabkar, J., Bratko, I.: Argument based machine learning. Artificial
Intelligence 171(10/15), 922–937 (2007)

3. Nimzovich, A.: The Blockade. Republished by Hardinge Simpole Limited (2006)
4. Prakken, H., Vreeswijk, G.: Handbook of Philosophical Logic. In: chapter Logics for

Defeasible Argumentation, 2nd edn., vol. 4, pp. 218–319. Kluwer Academic Publish-
ers, Dordrecht (2002)

5. Sadikov, A., Možina, M., Guid, M., Krivec, J., Bratko, I.: Automated chess tutor. In:
van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.) (eds.) CG 2006. LNCS,
vol. 4630, pp. 13–25. Springer, Heidelberg (2006)

6. Watson, J.: Secrets of Modern Chess Strategy. Gambit Publications (1999)

Extended Null-Move Reductions

Omid David-Tabibi1 and Nathan S. Netanyahu1,2

1 Department of Computer Science, Bar-Ilan University,
Ramat-Gan 52900, Israel

mail@omiddavid.com, nathan@cs.biu.ac.il
2 Center for Automation Research, University of Maryland,

College Park, MD 20742, USA
nathan@cfar.umd.edu

Abstract. In this paper we review the conventional versions of null-
move pruning, and present our enhancements which allow for a deeper
search with greater accuracy. While the conventional versions of null-
move pruning use reduction values of R ≤ 3, we use an aggressive re-
duction value of R = 4 within a verified adaptive configuration which
maximizes the benefit from the more aggressive pruning, while limiting
its tactical liabilities. Our experimental results using our grandmaster-
level chess program, Falcon, show that our null-move reductions (NMR)
outperform the conventional methods, with the tactical benefits of the
deeper search dominating the deficiencies. Moreover, unlike standard
null-move pruning, which fails badly in zugzwang positions, NMR is
impervious to zugzwangs. Finally, the implementation of NMR in any
program already using null-move pruning requires a modification of only
a few lines of code.

1 Introduction

Chess programs trying to search the same way humans think by generating
“plausible” moves dominated until the mid-1970s. By using extensive chess
knowledge at each node, these programs selected a few moves which they consid-
ered plausible, and thus pruned large parts of the search tree. However, plausible-
move generating programs had serious tactical shortcomings, and as soon as
brute-force search programs such as Tech [17] and Chess 4.x [29] managed
to reach depths of 5 plies and more, plausible-move generating programs fre-
quently lost to brute-force searchers due to their tactical weaknesses. Brute-force
searchers rapidly dominated the computer-chess field.

The introduction of null-move pruning [3,13,16] in the early 1990s marked
the end of an era, as far as the domination of brute-force programs in com-
puter chess is concerned. Unlike other forward-pruning methods (e.g., razoring
[6], Gamma [23], and marginal forward pruning [28]), which had great tactical
weaknesses, null-move pruning enabled programs to search more deeply with mi-
nor tactical risks. Forward-pruning programs frequently outsearched brute-force
searchers, and started their own reign which has continued ever since; they have
won all World Computer Chess Championships since 1992. Deep Blue [18,21]

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 205–216, 2008.
c© IFIP International Federation for Information Processing 2008

206 O. David-Tabibi and N.S. Netanyahu

was probably the last brute-force searcher. Today almost all top-tournament
playing programs use forward-pruning methods, null-move pruning being the
most popular of them [14].

In this article we introduce our extended null-move reductions, and demon-
strate empirically its improved performance in comparison to standard null-move
pruning and its conventional variations. In Sect. 2 we review standard null-move
pruning and its enhancements, and in Sect. 3 we introduce extended null-move
reductions. Section 4 presents our experimental results, and Sect. 5 contains
concluding remarks.

2 Standard Null-Move Pruning

As mentioned earlier, brute-force programs refrained from pruning any nodes in
the full-width part of the search tree, deeming the risks of doing so as being too
high. Null-move [3,13,16] introduced a new pruning scheme which based its cutoff
decisions on dynamic criteria, and thus gained greater tactical strength in com-
parison with the static forward-pruning methods that were in use at that time.

Null-move pruning is based on the following assumption: in every chess posi-
tion, doing nothing (i.e., doing a null move) would not be the best choice even
if it were a legal option. In other words, the best move in any position is better
than the null move. This idea enables us easily to obtain a lower bound α on
the position by conducting a null-move search. We make a null move, i.e., we
merely swap the side whose turn it is to move. (Note that this cannot be done
in positions where that side is in check, since the resulting position would be
illegal. Also, two null moves in a row are forbidden, since they result in nothing
[13].) We then conduct a regular search with reduced depth and save the re-
turned value. This value can be treated as a lower bound on the position, since
the value of the best (legal) move has to be better than that obtained from the
null move. If this value is greater than or equal to the current upper bound (i.e.,
value ≥ β), it results in a cutoff (or what is called a fail-high). Otherwise, if it
is greater than the current lower bound α, we define a narrower search window,
as the returned value becomes the new lower bound. If the value is smaller than
the current lower bound, it does not contribute to the search in any way. The
main benefit of null-move pruning is due to the cutoffs, which result from the
returned value of null-move search being greater than the current upper bound.
Thus, the best way to apply null-move pruning is by conducting a minimal-
window null-move search around the current upper bound β, since such a search
will require a reduced search effort to determine a cutoff. A typical null-move
pruning implementation is given by the pseudo-code of Fig. 1.

There are positions in chess where any move will deteriorate the position, so
that not making a move is the best option. These positions are called zugzwang
positions. While zugzwang positions are rare in the middle game, they are not
an exception in endgames, especially endgames in which one or both sides are
left with King and Pawns. Null-move pruning will fail badly in zugzwang posi-
tions since the basic assumption behind the method does not hold. In fact, the

Extended Null-Move Reductions 207

#define R 2 // depth reduction value
int Search (alpha, beta, depth) {

if (depth <= 0)

return Evaluate(); // in practice, Quiescence() is called here
// conduct a null-move search if it is legal and desired
if (!InCheck() && NullOk()){

MakeNullMove();

// null-move search with minimal window around beta
value = -Search(-beta, -beta + 1, depth - R - 1);

UndoNullMove();

if (value >= beta) // cutoff in case of fail-high
return value;

}
// continue regular alphabeta/PVS search
. . .

}

Fig. 1. Standard null-move pruning

null-move search’s value is an upper bound in such cases. As a result, null-move
pruning is avoided in such endgame positions. Here we remark that in the early
1990s Diepeveen suggested a double null-move to handle zugzwang positions. It
is an unpublished idea [12].

As previously noted, the major benefit of null-move pruning stems from
the depth reduction in the null-move searches. However, these reduced-depth
searches are liable to tactical weaknesses due to the horizon effect [5]. A horizon
effect results whenever the reduced-depth search misses a tactical threat. Such
a threat would not have been missed, had we conducted a search without any
depth reduction. The greater the depth reduction R, the greater the tactical
risk due to the horizon effect. So, the saving resulting from null-move pruning
depends on the depth reduction factor, since a shallower search (i.e., a greater
R) will result in faster null-move searches and an overall smaller search tree.

In the early days of null-move pruning, most programs used R = 1, which
ensures the least tactical risk, but offers the least saving in comparison with
other R values. Other reduction factors that were experimented with were R = 2
and R = 3. Research conducted over the years, most extensively by Heinz [20],
showed that in his program, DarkThought, R = 2 performed better than
R = 1 and R = 3.

Donninger [13] was the first to suggest an adaptive rather than a fixed value
for R. Experiments conducted by Heinz in his article on adaptive null-move
pruning [20] showed that an adaptive rather than a fixed value can be selected
for the reduction factor. By using R = 3 in upper parts of the search tree and
R = 2 in its lower parts (close to the leaves) pruning can be achieved at a smaller
costs (as null-move searches will be shallower) while the overall tactical strength
will be maintained.

208 O. David-Tabibi and N.S. Netanyahu

Several methods have been suggested for enabling null-move pruning to deal
with zugzwang positions, but mostly at a heavy cost of making the search much
more expensive [16,24]. In our 2002 paper, we introduced verified null-move prun-
ing [10], which manages to cope with most zugzwang positions, with minimal
additional cost. In verified null-move pruning, whenever the shallow null-move
search indicates a fail-high, instead of cutting off the search from the current
node, the search is continued with reduced depth. Only if another null-move
fail-high occurs in the subtree of a fail-high reported node, then a cutoff will
take place. Using R = 3 in all parts of the search tree, our experimental re-
sults showed that the size of the constructed tree was closer to that of standard
R = 3 rather than R = 2 (i.e., considerably smaller tree in comparison to that
constructed by using standard R = 2), and greater overall tactical accuracy than
standard null-move pruning.

So far, all publications regarding null-move pruning considered at most a
reduction value of R = 3, and any value greater than that was considered far
too aggressive for practical use. In the next section we present our extended null
move reductions algorithm which uses an aggressive reduction value of R = 4,
by bringing together verified and adaptive principles.

3 Extended Null-Move Reductions

In this section we describe how we combine adaptive and verified null-move
pruning concepts into our extended null move reductions (NMR), which enable
us to use an aggressive reduction value of R = 4.

The greater the reduction value R is, the faster will the null-move search be,
which will have a large impact on the overall size of the search tree. Thus, using
R = 4 instead of the common values of R = 2 and R = 3 would construct a
smaller search tree, enabling the program to search more deeply. However, as
explained in the previous section, greater R values result in overlooking more
tactical combinations. In other words, the benefit of deeper search comes at the
cost of taking a greater risk of missing correct moves.

The basic idea behind NMR is using the null-move concept for reducing the
search depth only, instead of pruning it altogether. Whenever the null-move
search returns a value greater or equal to the upper bound, indicating fail-high
(value ≥ β), we reduce the depth and continue the normal search. This concept
is different from verified null-move pruning where a fail-high in the subtree of a
fail-high reported node results in an immediate cutoff, while in NMR, the subtree
is not treated any differently.

There are some similarities between NMR and Feldmann’s fail high reductions
(FHR) [15]. In FHR, in each node a static evaluation is applied, and if the
value is greater than or equal to β, the remaining depth is reduced by one
ply. The major difference between NMR and FHR is that in the former the
decision to reduce the depth is made after a dynamic search, while in the latter
the decision is static only. In other words, in subsequent iterations when we
revisit the current position, the null-move search will be deeper accordingly,

Extended Null-Move Reductions 209

while the static evaluation at the current position will always return the same
value, regardless of the search depth. As we mentioned in the Introduction, null-
move pruning succeeded where other forward-pruning methods failed, thanks to
basing the pruning decision on dynamic criteria.

Using the null-move concept for depth reduction instead of pruning has the
advantage of reducing the tactical weaknesses caused by the horizon effect, since
by continuing the search we may be able to detect threats which the shallow
null-move search overlooked. Additionally, since NMR does not cutoff based
on a fail-high, it is completely impervious to zugzwangs (while verified null-
move manages to deal successfully with most zugzwangs, it is not completely
impervious since the subtree of the fail-high node is searched normally). Thus,
NMR facilitates the usage of the null-move concept even in endgames where
zugzwangs are frequent.

Obviously, the disadvantage of NMR is that it has to search a larger tree in
comparison to standard null-move pruning with the same R value, as the latter
terminates the search at the node immediately upon a fail-high. Considering the
pros and cons, the success of NMR depends on the result of this cost benefit
analysis. Our experiments in the next section show that the benefit from the
reduced searches justifies their additional cost.

So far, we mentioned that whenever the null-move search indicates a fail-
high, in NMR we reduce the search depth and continue the normal search. The

// depth reduction values for null-move search
#define MAX R 4
#define MIN R 3
#define DR 4 // depth reduction value for normal search
int Search (alpha, beta, depth) {

if (depth <= 0)

return Evaluate(); // in practice, Quiescence() is called here
// conduct a null-move search if it is legal and desired
if (!InCheck() && NullOk()){

MakeNullMove();

R = depth > 6 ? MAX R : MIN R ;
// null-move search with minimal window around beta
value = -Search(-beta, -beta + 1, depth - R - 1);

UndoNullMove();

if (value >= beta) { // reduce the depth in case of fail-high
depth -= DR;
if (depth <= 0)

return Evaluate();
}

}
// continue regular alphabeta/PVS search
. . .

}

Fig. 2. Extended null-move reductions

210 O. David-Tabibi and N.S. Netanyahu

success of NMR depends on the depth reduction (DR) applied here. Reducing
the remaining depth by only one ply (DR = 1) is too conservative, as the
remaining search will still be expensive. Our experiments showed that together
with a reduction value of R = 4 for null-move search, the best reduction value for
the remaining search depth is also an aggressive reduction of 4 plies (DR = 4).
Reducing the remaining depth by a large number reduces the additional cost in
comparison to standard R = 4 where the search is cutoff immediately.

Finally, to make this aggressive configuration safer, we also incorporate the
adaptive null-move concept, i.e., we use a reduction value of R = 3 near leaf
nodes. Using this adaptive R = 3 ∼ 4 makes the null-move search less susceptible
to overlooking tactics, while keeping the search tree small enough to justify the
additional cost. Our results in the next section show that NMR with R = 3 ∼
4 and depth reduction of DR = 4 outperforms other variations of null-move
pruning. Implementation of our extended null-move reductions is very easy in a
program already using null-move pruning. Figure 2 shows our NMR implemented
around the existing standard null-move pruning code (additions are in bold).

4 Experimental Results

Before discussing the performance of NMR in comparison to other null-move
pruning variations, we would like to discuss briefly some basic issues about ex-
perimental results in computer chess. Most published papers compare various
search methods to each other using fixed depth tests. Usually both method A
and method B search the same test suites to fixed depths, and then the results
(and number of solved positions) are compared. If method A produces a smaller
tree (fewer nodes at the fixed depth) and also solves more positions, then it can
be safely concluded that method A outperforms method B. However, in many
cases the results will not be so clear. For example, comparing standard null-move
pruning with R = 2 and R = 3, the latter constructs a smaller tree, but solves
fewer positions at the fixed depth search.

Fixed time tests, in contrast to fixed depth tests, allow for an objective com-
parison of various methods. For example, method A can sometimes find the
correct move a ply or two later than method B (e.g., because it uses a more ag-
gressive pruning), but considering the elapsed time, method A finds the solution
faster. In this case, it would be correct to say that method A performs better,
even though in a fixed depth comparison method B solves more positions.

The second issue is which test suites to use. Traditionally, three standard test
suites have been used for measuring tactical strength, namely Encyclopedia of
Chess Middlegames (ECM), Win at Chess (WAC), and Winning Chess Sacrifices
(WCS). While for many years these three test suites posed serious challenges to
computer programs, today thanks to the fast hardware most of these positions
succumb to the processing power in a fraction of a second. This is natural, as
these three test suites were intended for testing humans not machines. Amongst
the abovementioned test suites, ECM is the only one which poses some challenge
to the engines, provided the time per position is limited to a small value. We

Extended Null-Move Reductions 211

Table 1. Number of ECM positions solved by each engine (time: 5s per position)

Junior 10 Fritz 8 Shredder 10 Hiarcs 9 Crafty 19 Falcon

681 640 639 642 593 644

Table 2. Total node count of standard R = 1, 2, 3, and 4 and NMR R = 3 ∼ 4 for
Crafty benchmark

Std R = 1 Std R = 2 Std R = 3 Std R = 4 NMR R = 3 ∼ 4

42,248,908 21,554,578 11,510,995 8,254,261 8,606,334
(+390.9%) (+150.45%) (+33.75%) (-4.09%) -

Table 3. Number of ECM positions solved by each method (time: 5s per position)

Std R = 2 Std R = 3 Std R = 4 Adpt R = 2 ∼ 3 NMR R = 3 ∼ 4

627 635 632 636 644

used the ECM test suite consisting of 879 positions, with 5 seconds per position.
To double check the results (and avoid external interferences with CPU time
allocations) we ran each test twice, to make sure the same results are obtained.

We conducted our experiments using Falcon, a grandmaster-level chess pro-
gram which has successfully participated in two World Computer Chess Cham-
pionships (7th place in 2004 World Computer Chess Championship, and 3rd
place in 2004 World Computer Speed Chess Championship). Falcon uses Ne-

gaScout/PVS [9,25] search, with enhancements like internal iterative deepen-
ing [2,27], dynamic move ordering (history+killer heuristic) [1,17,26], multi-cut
pruning [7,8], selective extensions [2,4] (consisting of check, one-reply, mate-
threat, recapture, and passed pawn extensions), transposition table [22,29], fu-
tility pruning near leaf nodes [19], and blockage detection in endgames [11].
Table 1 compares Falcon’s tactical performance to other top tournament-
playing engines. The results show that Falcon’s tactical strength is on par
with the strongest chess programs today.

Before we compare the tactical strength of various methods, we use a fixed
depth benchmark of six positions (Crafty benchmark, see Appendix A) to show
how significant the impact of the reduction value R is. Table 2 provides the total
node count, comparing standard null-move pruning with reduction values of R =
1, 2, 3, and 4, and NMR using R = 3 ∼ 4 and DR = 4. The results clearly show
that the R value has a critical role in determining the size of the constructed
search tree. The table further shows that as far as node count is concerned, NMR
with R = 3 ∼ 4 is close to standard null-move with R = 4. But as discussed
above, this table merely shows that the greater the R value is, the deeper the
engine will be able to search, saying nothing about the tactical strength.

To compare the overall tactical performance, we let standard R = 2, 3 and
4, adaptive R = 2 ∼ 3 and NMR R = 3 ∼ 4 process the ECM test suite with 5

212 O. David-Tabibi and N.S. Netanyahu

Table 4. Number of ECM positions solved by each method (time: 5s per position)

Std R = 4 Adpt R = 3 ∼ 4 NMR R = 4 NMR R = 3 ∼ 4

632 637 640 644

Table 5. Number of ECM positions solved by NMR using various DR values (time:
5s per position)

DR = 1 DR = 2 DR = 3 DR = 4

633 641 638 644

Table 6. 1000 self-play matches between two versions of Falcon using NMR R = 3 ∼ 4
and Adpt R = 2 ∼ 3, at 10 minutes per game (W% is the winning percentage, and RD
is the Elo rating difference)

Match Result Score W% RD

NMR R = 3 ∼ 4 vs. Adpt R = 2 ∼ 3 +309 -217 =474 546.0 - 454.0 54.6% +32

seconds per position. Table 3 provides the results. These results show that NMR
R = 3 ∼ 4 performs better than the others. We also see that standard R = 3
slightly outperforms both standard R = 2 and standard R = 4, with adaptive
R = 2 ∼ 3 faring about the same.

In order to see what contributes to the success of NMR R = 3 ∼ 4, we break
it down to its components. Table 4 shows a comparison of standard R = 4,
adaptive R = 3 ∼ 4, NMR R = 4, and NMR R = 3 ∼ 4. The results show that
both adaptive R = 3 ∼ 4 and NMR R = 4 outperform standard R = 4, which
explains why their combination, NMR R = 3 ∼ 4, provides the best outcome.

Finally, in all our results above we used a depth reduction value of 4 (DR = 4),
i.e., whenever a fail-high is indicated, the depth is reduced by 4 plies. Table 5
compares other values for DR. The results show that a value of 4 performs best.

The results so far showed that NMR R = 3 ∼ 4 solves more positions in
comparison to other methods, with adaptive R = 2 ∼ 3 coming second. To test
how NMR fares in practice, we ran 1000 self-play matches between two versions
of Falcon, one using NMR R = 3 ∼ 4 and the other using adaptive R = 2 ∼ 3,
at a time control of 10 minutes per game. Table 6 provides the results.

The results of 1000 self-play matches show that NMR R = 3 ∼ 4 outperforms
adaptive R = 2 ∼ 3 by about 32 Elo points (see Appendix B for calculation of
expected Elo difference for self-play matches). Even though this is a small rating
difference, the large number of games (1000) allows for obtaining a high level of
statistical confidence. At 95% statistical confidence (2 standard deviations), the
rating difference is 32±16 Elo, and at 99.7% statistical confidence (3 standard
deviations) the rating difference is 32±24 Elo. That is, NMR R = 3 ∼ 4 is
superior to adaptive R = 2 ∼ 3 with a statistical confidence of over 99.7%.

Extended Null-Move Reductions 213

8

7

6

5

4

3

2

1

A B C D E F G H

Fig. 3. 1. h3 mates in 15

Table 7. Analysis of the position in Fig. 3. All the engines are given infinite time until
they reach their maximum depth.

Junior 10 Fritz 8 Shredder 10 Hiarcs 9 Crafty 19 Falcon

Move (score) 1.h4 (0.00) 1.h3 (0.00) 1.h3 (#15) 1.h4 (0.00) 1.h4 (0.00) 1.h3 (#15)

Depth 62 60 31 30 60 30

Finally, in late endgames, where zugzwangs are abundant, standard null-move
pruning is completely crippled. In contrast, NMR can be safely applied to all
stages of the game. The position appearing in Fig. 3, while being a constructed
position unlikely to occur in a real game, shows how strong the effect of zugzwang
on null-move pruning can be. The only correct move in this position is 1. h3 re-
sulting in mate in 15. The other move 1. h4, results in a draw. Table 7 shows
what each engine plays in this position, given infinite time. Falcon and Shred-

der instantly declare mate in 15 with 1. h3 at the depth of 30 plies (this suggests
that Shredder is probably also applying some verification process to null-move
pruning). The other engines search to their maximum search depth, all of them
declaring a draw. Fritz produces the correct move 1. h3 but with a draw score,
suggesting that it has just randomly picked 1. h3 instead of 1. h4.

5 Conclusion

In this article we introduced extended null-move reductions, which outperformed
conventional null-move pruning techniques both in tactical tests and in long

214 O. David-Tabibi and N.S. Netanyahu

series of self-play matches. This method facilitates a safe use of the aggressive
reduction value of R = 4, which is widely considered as too aggressive for prac-
tical use. It results in a considerably smaller search tree, enabling the program
to search more deeply, thus improving its tactical and positional performance.
Moreover, NMR, by the fact that it does not prune based on fail-high, is imper-
vious to zugzwang, and so it can be safely employed in all stages of the game.

NMR and its modified versions have been evolving in Falcon for the past six
years, and the results have been promising. In this paper we provided a small frac-
tion of the experiments we have conducted during this period. However, despite
our success, we would like to be cautious with any generalization. Falcon has an
aggressively tuned king-safety evaluation, and uses many extensions in its search
that enable it to spot faster tactical combinations. As such, it is possible that our
aggressive method works in Falcon because other components of the engine are
tuned for detecting tactics, and they “cover” the blind spots of our NMR.

We believe the main contribution of this paper is that it presents a method
for successful incorporation of the seemingly impractical value of R = 4 within
the null-move search, and even if our method does not achieve exactly the same
result in another program, we believe trying other implementations using R = 4
is worthy of experimenting with, due to the high potential reward.

In this paper we presented one of the enhancements we have developed during
the past few years. It is very probable that our method, or improved incarnations
of it, are independently developed by the programmers of other top chess engines.

Acknowledgments. We would like to thank Vincent Diepeveen for his enlight-
ening remarks and suggestions. We would also like to thank the two anonymous
referees for their helpful comments.

References

1. Akl, S.G., Newborn, M.M.: The principal continuation and the killer heuristic. In:
Proceedings of the 5th Annual ACM Computer Science Conference, pp. 466–473.
ACM Press, Seattle (1977)

2. Anantharaman, T.S.: Extension heuristics. ICCA Journal 14(2), 47–65 (1991)
3. Beal, D.F.: Experiments with the null move. In: Beal, D.F. (ed.) Advances in

Computer Chess 5, pp. 65–79. Elsevier Science Publishers, Amsterdam (1989)
4. Beal, D.F., Smith, M.C.: Quantification of search extension benefits. ICCA Jour-

nal 18(4), 205–218 (1995)
5. Berliner, H.J.: Chess as Problem Solving: The Development of a Tactics Analyzer.

Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA (1974)
6. Birmingham, J.A., Kent, P.: Tree-searching and tree-pruning techniques. In:

Clarke, M.R.B. (ed.) Advances in Computer Chess 1, pp. 89–107. Edinburgh Uni-
versity Press, Edinburgh (1977)

7. Björnsson, Y., Marsland, T.: Multi-cut pruning in alpha-beta search. In: Proceed-
ings of the 1st International Conference on Computers and Games, pp. 15–24
(1998)

8. Björnsson, Y., Marsland, T.: Multi-cut alpha-beta-pruning in game-tree search.
Theoretical Computer Science 252(1-2), 177–196 (2001)

Extended Null-Move Reductions 215

9. Campbell, M.S., Marsland, T.A.: A comparison of minimax tree search algorithms.
Artificial Intelligence 20(4), 347–367 (1983)

10. David-Tabibi, O., Netanyahu, N.S.: Verified null-move pruning. ICGA Jour-
nal 25(3), 153–161 (2002)

11. David-Tabibi, O., Felner, A., Netanyahu, N.S.: Blockage detection in pawn endings.
In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS,
vol. 3846, pp. 187–201. Springer, Heidelberg (2006)

12. Diepeveen, V.: Private communication (2008)
13. Donninger, C.: Null move and deep search: Selective search heuristics for obtuse

chess programs. ICCA Journal 16(3), 137–143 (1993)
14. Feist, M.: The 9th World Computer-Chess Championship: Report on the tourna-

ment. ICCA Journal 22(3), 155–164 (1999)
15. Feldmann, R.: Fail high reductions. In: van den Herik, H.J., Uiterwijk, J.W.H.M.

(eds.) Advances in Computer Chess 8, pp. 111–128. Universiteit Maastricht (1996)
16. Goetsch, G., Campbell, M.S.: Experiments with the null-move heuristic. In: Mars-

land, T.A., Schaeffer, J. (eds.) Computers, Chess, and Cognition, pp. 159–168.
Springer, New York (1990)

17. Gillogly, J.J.: The technology chess program. Artificial Intelligence 3(1-3), 145–163
(1972)

18. Hammilton, S., Garber, L.: Deep Blue’s hardware-software synergy. IEEE Com-
puter 30(10), 29–35 (1997)

19. Heinz, E.A.: Extended futility pruning. ICCA Journal 21(2), 75–83 (1998)
20. Heinz, E.A.: Adaptive null-move pruning. ICCA Journal 22(3), 123–132 (1999)
21. Hsu, F.-h.: IBM’s DEEP BLUEchess grandmaster chips. IEEE Micro 19(2), 70–80

(1999)
22. Nelson, H.L.: Hash tables in CRAY BLITZ. ICCA Journal 8(1), 3–13 (1985)
23. Newborn, M.M.: Computer Chess. Academic Press, New York (1975)
24. Plenkner, S.: A null-move technique impervious to zugzwang. ICCA Journal 18(2),

82–84 (1995)
25. Reinefeld, A.: An improvement to the Scout tree-search algorithm. ICCA Jour-

nal 6(4), 4–14 (1983)
26. Schaeffer, J.: The history heuristic. ICCA Journal 6(3), 16–19 (1983)
27. Scott, J.J.: A chess-playing program. In: Meltzer, B., Michie, D. (eds.) Machine

Intelligence 4, pp. 255–265. Edinburgh University Press, Edinburgh (1969)
28. Slagle, J.R.: Artificial Intelligence: The Heuristic Programming Approach.

McGraw-Hill, New York (1971)
29. Slate, D.J., Atkin, L.R.: Chess 4.5 – The Northwestern University chess pro-

gram. In: Frey, P.W. (ed.) Chess Skill in Man and Machine, 2nd edn., pp. 82–118.
Springer, New York (1983)

Appendix

A Experimental Setup

Our experimental setup consisted of the following resources:

– 879 positions from Encyclopedia of Chess Middlegames (ECM).
– Falcon, Junior 10, Fritz 8, Shredder 10, Hiarcs 9, and Crafty 19

chess engines, running on AMD 3200+ with 1 GB RAM and Windows XP
operating system.

216 O. David-Tabibi and N.S. Netanyahu

– Fritz 8 interface for automatic running of test suites and self-play matches
(Falcon was run as a UCI engine).

– Crafty benchmark for fixed depth search, consisting of the following six
positions:

D=11: 3r1k2/4npp1/1ppr3p/p6P/P2PPPP1/1NR5/5K2/2R5 w - - 0 1 D=11:

rnbqkb1r/p3pppp/1p6/2ppP3/3N4/2P5/PPP1QPPP/R1B1KB1R w KQkq - 0 1

D=14: 4b3/p3kp2/6p1/3pP2p/2pP1P2/4K1P1/P3N2P/8 w - - 0 1 D=11:

r3r1k1/ppqb1ppp/8/4p1NQ/8/2P5/PP3PPP/R3R1K1 b - - 0 1 D=12:

2r2rk1/1bqnbpp1/1p1ppn1p/pP6/N1P1P3/P2B1N1P/1B2QPP1/R2R2K1 b - - 0 1

D=11: r1bqk2r/pp2bppp/2p5/3pP3/P2Q1P2/2N1B3/1PP3PP/R4RK1 b kq - 0 1

B Elo Rating System

The Elo rating system, developed by Prof. Arpad Elo, is the official system for
calculating the relative skill levels of players in chess. Given the rating difference
(RD) of two players, the following formula calculates the expected winning rate
(W , between 0 and 1) of the player:

W =
1

10−RD/400 + 1

Given the winning rate of a player, as is the case in our experiments, the
expected rating difference can be derived from the above formula:

RD = −400 log10(
1
W

− 1)

GTQ: A Language and Tool for Game-Tree
Analysis

Jónheiður Ísleifsdóttir and Yngvi Björnsson

School of Computer Science, Reykjavík University, Reykjavík, Iceland
{jonheiduri02,yngvi}@ru.is

Abstract. The search engines of high-performance game-playing pro-
grams are becoming increasingly complex as more and more enhance-
ments are added. To maintain and enhance such complex engines is a
challenging task, and the risk of introducing bugs or other unwanted be-
havior during modifications is substantial. In this paper we introduce the
Game Tree Query Language (GTQL), a query language specifically de-
signed for analyzing game trees. The language can express queries about
complex game-tree structures, including hierarchical relationships and
aggregated attributes over subtree data. We also discuss the design and
implementation of the Game Tree Query Tool (GTQT), a software tool
that allows efficient execution of GTQL queries on game-tree log files.
The tool helps program developers to gain added insight into the search
process of their engines, as well as making regression testing easier. Fur-
thermore, we use the tool to analyze and find interesting anomalies in
search trees generated by a competitive chess program.

1 Introduction

The development of high-performance game-playing programs for board games
is a large undertaking. The search engine and the position evaluator, the two
core parts of any such program, become quite sophisticated when all the neces-
sary bells and whistles have been added [1, 7, 8, 18]. To maintain and enhance
such complicated software is a challenging task, and the risk of introducing
bugs or other unwanted behavior during modifications is substantial. A stan-
dard software-engineering approach for verifying that new modifications do not
break existing code is to use regression testing. To a large extent that approach
is what game-playing program developers use. They keep around large suites of
test positions and verify that a modified program evaluates them correctly and
plays the correct move. Additionally, new program versions play a large number
of games against different computer opponents to verify that the newly added
enhancements result in genuine improvements. Nonetheless, especially when it
comes to the search, it can be difficult to detect abnormalities; they may stay
hidden for a long time without surfacing. They can be subtle things such as the
search extending useless lines too aggressively, or poor move ordering resulting
in unnecessarily late cutoffs. Neither of the above abnormalities result in erro-
neous results, but may instead degrade the efficiency of the search unnecessarily.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 217–228, 2008.
c© IFIP International Federation for Information Processing 2008

218 J. Ísleifsdóttir and Y. Björnsson

To detect these anomalies one must typically explore and gather statistics about
the search process.

In this paper we introduce Game-Tree Query Language (GTQL), a language
specifically designed for querying game trees, and expand on previous work [5] by
doing a thorough empirical analysis where GTQL queries are used to analyze and
look for anomalies in search trees generated by a third-party competitive chess
program. As demonstrated, the query language allows the game-program devel-
opers to gain better insight into the behavior of the search process of their pro-
grams and makes regression testing easier. The developer can now keep around a
set of pre-defined queries that check for various wanted or unwanted search behav-
iors (such as too aggressive extensions or large quiescence searches). When a new
program version is tested, it can be instructed to generate log files containing the
search trees. The queries are then run against the logs to verify that the search
is behaving in accordance with expectations. This has the potential of substan-
tially shorten the testing process as unwanted behaviors can be detected early, as
opposed to after playing hundreds of test games or, in the worst case, never.

The paper is organized as follows. In the next section we describe the syntax
and semantics of the language, followed by a section giving an overview of the
usage and implementation of Game-Tree Query Tool (GTQT), a tool for effec-
tively executing GTQL queries. The efficiency and scalability of the tool is then
empirically evaluated, and the tool used to detect anomalies in the search of the
chess program Fruit. Finally, we present conclusions and discuss future work.

2 The Game-Tree Query Language

A GTQL query consists of three parts: a node-expression part, a child-expression
part, and a subtree-expression part:

node:<node-expression>;
child:<child-expression>;
subtree:<subtree-expression>

The keywords node, child, and subtree indicate the type of the expression that
follows. The query parts must be listed in the order given above, separated by a
semi-colon, but any unwanted parts can be omitted.

2.1 Query and Expression Evaluation

To be valid, expressions must be formed such that they evaluate to either true
or false. By default a query returns the set of nodes in a game tree that fulfil the
query, that is, the nodes for which all query parts evaluate to true. An example
query is provided below:

node: type = PVNode;
child: count([]type = type) >= 5;
subtree: count(*) > 1000

GTQ: A Language and Tool for Game-Tree Analysis 219

Table 1. Operators listed by precedence

Operator Type Arity
[], [<] Hierarchical unary

& Attribute binary
<,>, >=, <=, =, ! = Relational binary

not Logical unary
and Logical binary
or Logical binary

The query asks for nodes where the principal variation (PV) of the search is
changing frequently (this could, e.g., be an indication of a bad move-ordering
mechanism). The node expression evaluates to true only at PV nodes; the child
expression counts the number of child nodes that are of the same type as the
parent (i.e., also PV nodes) and returns true if there are at least five such child
nodes; the subtree expression further limits the set of PV nodes that can fulfill
the query by demanding their subtree being of a minimum size — this is done
to exclude PV nodes close to the leaves where frequent PV changes may occur
naturally.

The language is case sensitive and its expressions consist of attributes, con-
stants, operators, and functions. Attributes refer to data fields associated with
the nodes stored in the game-tree file being queried. For each node several at-
tributes are stored, two of which are always present (node_id and last_move)
while others are optional. The optional attributes are typically algorithm and
domain dependent and may contain whatever information the users decide to
log in their game-playing programs (e.g., information about the search window
passed to a node, the value returned, the type of the node, etc.). In the above
example type is an attribute telling whether a node is a PV, CUT, or an ALL
node. Attribute names follow a naming convention where a name starts with
a letter and is then optionally followed by a series of characters consisting of
letters, digits, and the underscore character. Also, an attribute name may not
be the same as a reserved keyword in the language. Constants are either numeric
integral types (i.e., integer numbers) or user-defined names (e.g., PVNode in our
example query). The same naming convention is used for constant names as for
attribute names. Information about attribute and constant names available to a
query are stored in the game-tree file being queried.

The language operators fall into four categories: hierarchical, attribute, rela-
tional, and logical operators. They are listed in Table 1 in a decreasing order
of precedence. The evaluation of operators of equal precedence is left-to-right
associative. The hierarchical operators are used as prefixes to attribute names,
and identify the hierarchical relationship of the referenced node in relation to the
current node (the one being evaluated in the node expression). Currently, there
are two such operators defined, and they may be used only in child expressions.
The first operator, [], is prefix referring to the child node currently evaluated. In
our example, the child expression has such an operator for comparing the type
of the child nodes to the type of the node evaluated by the node expression (the

220 J. Ísleifsdóttir and Y. Björnsson

parent). The second hierarchical operator [<], not shown in the example, stands
for the previously evaluated child. It can be used to compare two consecutive
child nodes (e.g., to see if a node is being examined). The attribute operator,
&, is essentially an inclusive bitwise and, and is used to extract flag bits from
attribute fields. For example, a single node may be flagged simultaneously as a
quiescence node and as belonging to a null-move search. The relational opera-
tors test for equality or inequality of attributes, constants, function results, and
numbers, and the logical operators allow one to form arbitrarily complex ex-
pressions by combining Boolean expressions. Parentheses can be used to control
precedence and order of evaluation.

There is only one function in the language, the count(sub-expression) func-
tion, and it returns the number of nodes in the expression scope (i.e., tree, chil-
dren, or subtree) that evaluate to true. Functions cannot be used recursively,
that is, the expression inside count cannot contain a call to count. The wild-card
character * may be used within the function instead of an expression to refer to
the empty expression, which always evaluates to true. Note that because expres-
sions must evaluate to either true or false, the count function must be used with
a relational operator, e.g. count(*)>0. The only exception is when the function
is used stand-alone in a node expression. In that case, the query returns the
actual count as opposed to a set of nodes. This is useful for gathering statistics
about the tree, e.g., as in the example below where the total number of PV nodes
in the tree is being counted:

node: count(type = PVNode)

More query examples are provided later in the paper. However, for a more thor-
ough explanation of the syntax and semantics of GTQL, as well as for additional
query examples, we refer interested readers to [5, 14].

3 Game-Tree Query Tool

The Game-Tree Query Tool (GTQT) is a software for parsing and executing
GTQL queries. It is a console application that runs from a command line. It is
implemented in C++ and runs on both Linux and Windows (as well as other
platforms that support ANSI compliant C++ compilers).

Below we give a brief overview of the one-pass algorithm used for executing
the queries. The algorithm is capable of answering any single query, no matter
how complex, in a single traversal of the game tree. The input to the program
is a set of queries and a game-tree log file. In addition to the game-tree data
(the attribute values of the nodes) the file stores meta-data, such as the names
of the attributes and constants available to the query and information about the
layout of the file. The tool, after processing and validating the meta-data, parses
and syntactically checks the queries before executing them. For a more detailed
discussion of the query execution algorithm, the logging mechanism, and the
usage of the GTQL tool we refer readers to [14].

GTQ: A Language and Tool for Game-Tree Analysis 221

Fig. 1. An example parse tree

3.1 Parsing a Query

Queries are parsed using a recursive-decent parser. A separate parse tree is built
for each query. An example parse tree is shown in Fig. 1, along with the query
it represents. A parse tree consists of several different types of parse nodes, de-
pending on the type of operator (e.g., relational or logical), term, or expression
being evaluated. Most parse nodes return a Boolean value when evaluated, rep-
resenting whether the corresponding expression evaluated to true or false for any
given node in the game tree. Typically, the result of an evaluation on a game-
tree node depends on the attribute values stored with the node. For example, in
Fig. 1 the values of both the type and depth fields are required for evaluating the
query; for nodes where type is equal to PVNode and depth is greater or equal to
zero the query evaluates to true, but to false for all other nodes.

A special provision must be taken for queries containing the function count,
as it returns a count based on data accumulated over many nodes. Such queries
cannot be evaluated until after all data nodes in the expression scope have been
traversed. In that case, in addition to the attribute values, a special structure
containing count information accumulated over the scope (e.g., a subtree) of the
query must be provided. This structure is called a counter. Node-expressions can
only contain one count function, whereas both subtree- and child-expression can
contain many such functions; for such expressions a list of counter structures
is required. Note that the counter lists and counter structures are not stored
as a part of the parse tree because our query execution algorithm may have
to execute several counter based query instances concurrently. Instead multiple
instances of the query are created, each using its own set of counters (see later).

3.2 Executing a Query

Although the tool is used for post-processing game-tree logs, time is still of some
essence when evaluating large game trees. The query execution algorithm makes
only one pass through the game tree, during which it collects all information
needed to answer the query. The algorithm is presented as Algorithm 1. It first

222 J. Ísleifsdóttir and Y. Björnsson

Algorithm 1. DFT-QUERY-EVAL(node)
1: queryInst = null
2: if nodeExpr.evaluate(node) then
3: queryInst = new QueryInstance(subtreeExpr, childExpr)
4: queryInstStack.push(queryInst)
5: children = node.getChildren()
6: prev = null
7: for all child in children do
8: DFT-QUERY-EVAL(child)
9: evalCounterExprs(queryInst, node, child, prev)

10: prev = child
11: if not queryInstStack.empty() then
12: if queryInst == queryInstStack.top() then
13: if subtreeExpr.evaluate(queryInst) and childExpr.evaluate(queryInst) then
14: addToResult(node)
15: queryInstStack.pop()
16: delete queryInst
17: evalCounterExprs(queryInstStack, node)

Fig. 2. Subtree scope of different nodes in the same line

checks if the node expression evaluates to true (line 2), and if so a new query
instance is created and put onto a so-called query instance stack (line 4). The
stack keeps track of active query instances. A single query may have several
query instances active at the same time. More specifically, during the recursive
depth-first traversal (line 8) of the game tree, each node on the path from the
root to the current node where the node expression evaluates to true adds a new
query instance. The need for having many query instances open at the same time
is because separate counters are required for evaluating the child- and subtree-
expressions of each instance, as their subtree scopes differ as shown in Fig. 2.
Child- and subtree-expressions can be evaluated (line 13) only when the search
backtracks after their corresponding tree scope has been fully traversed. If both
expressions evaluate to true, the node is added to set of results (line 14) and the
query instance then popped off the stack (line 15). The subroutine evalCounter-
Exprs updates the counters associated with the count(<expr>) expressions. It
is called for both child expressions (line 9) and subtree expressions (line 17). In
the latter case, counters in all query instances on the stack are updated.

GTQ: A Language and Tool for Game-Tree Analysis 223

Fig. 3. Example of one-pass query evaluation

An example of the one-pass query-evaluation process is given in Fig. 3. The
node-expression part of the query looks for nodes with the color blue. In this
example we refer to the nodes by their node_id. The node with node_id=1
becomes Node1. The root is blue so a new query instance is created on the stack.
This instance contains two counters: one for the sub-expression color=Red and
one for value>0. The counter stores a pointer to the parse tree of the count sub-
expression, and a counter variable initialized to zero (the c field in the figure).
The traversal continues down the left branch, and because the node-expression
is also true for Node2, an instance is created on the stack for that node as well.
An instance is also added for Node3. Now, because a leaf has been reached, the
DFT-QUERY-EVAL algorithm evaluates the subtree-expression for Node3 based
on the instance (the evaluation is false in this case) and backtracks. However,
before backtracking the remaining query instances on the stack are updated
according to evaluation of Node3 (the counter for value>0 is increased by one
for both instances). The instances for Node1 and Node2 have now been updated
and the algorithm has backtracked to Node2. From there it continues to traverse
the children and explores Node4. This process continues until the entire tree has
been traversed. A snapshot of the query instance stack is shown in the figure
at selected points (text above the stacks in the figure). The rightmost snapshot
shows the stack when the algorithm backtracks back to Node1 for the last time.
We can see that the instance for Node1 is the only one left on the stack and its
counters have been updated several times. Node1 is now evaluated based on the
query instance, the subtree-expression is true, so the node is added to result.

4 Experiments

To demonstrate the potentials of GTQL we used it to analyze game-tree logs
generated by a competitive chess program. In this section we report our findings.

224 J. Ísleifsdóttir and Y. Björnsson

Table 2. Game trees used in the experiments

LCT II Position SD SSD Number of nodes
15 8 15 205,199
16 2 19 2,383
17 6 18 197,803
18 10 30 1,671,866
19 5 25 78,165
20 8 24 580,158
21 9 45 2,821,292
22 9 41 5,135,007
23 9 35 1,009,011

4.1 Experimental Setup

For our experiments we used the chess program Fruit [15], developed by Fabien
Letouzey. It was first released in March 2004, and subsequently made a strong
appearance in the 2005 World Computer Chess Championship held in Reykjavík
[6]. We used version 2.1 of the program, which is the strongest open-source chess
engine available (subsequent versions of the program were not open source). The
only modification we made to the program was to augment its search engine with
code for collecting attribute values and with calls to the game-tree log library.

The chess program was instructed to search nine tactical chess positions taken
from the LCT II test suite (positions number 15-23) [16]. This suite is one of
several frequently used standard test suites to measure chess programs’ perfor-
mance. On each of the problems the chess program was run until the correct
solution was found. For each position, a separate game-tree log was generated
for each search iteration. The solution (best move played) was found on itera-
tions varying from the second to the tenth ply, as shown in Table 2. The first
column indicates the position within the suite; the second column, SD, shows
the search depth of the iteration where the best move was first returned; the
third column, SSD, is the maximum search depth reached in that iteration; and
the final column is the number of nodes searched in that iteration. In our exper-
iments we used for each position the game-tree log from the iteration where the
solution was first found (SD). The experiments were run on a 3GHz Linux-based
computer with 2GB of main memory.

4.2 Processing Throughput

We start by measuring the throughput of the query tool. It can process around
500 to 600 thousand nodes per second from the game-tree log, depending on
the complexity of the query. The average time complexity of our one-pass query
algorithm is O(n ∗ log(n)) where n is the number of nodes, so the throughput
degrades only slightly with increasingly larger trees [14]. The throughput speed
is in the ballpark of how fast chess programs search and log the game trees.

GTQ: A Language and Tool for Game-Tree Analysis 225

Table 3. Ratio of node types in the game trees

Tree Num. of nodes PV nodes CUT nodes ALL nodes
Pos15 205,199 0.44% 69.71% 29.86%
Pos16 2,382 14.60% 63.58% 21.82%
Pos17 197,803 0.03% 74.25% 25.73%
Pos18 1,671,866 0.06% 75.87% 24.07%
Pos19 78,165 0.52% 73.32% 26.16%
Pos20 580,158 0.08% 73.19% 26.72%
Pos21 2,821,292 0.10% 72.10% 27.79%
Pos22 5,135,007 0.12% 76.93% 22.95%
Pos23 1,009,011 0.15% 67.52% 32.33%

4.3 Node Type Statistics

Next we asked queries for collecting statistics about the game trees, more specif-
ically the ratio of PV, CUT, and ALL nodes. The queries are shown below:

node: count(type = PVNode)
node: count(type = CUTNode)
node: count(type = ALLNode)

and the result in Table 3. The result looks as one would expect: very low ratio
of PV nodes, and 2 to 3 times more CUT than ALL nodes. The only deviation
from this is in Pos16 where there is a unusually high ratio of PV nodes, but
that is not much of a concern because of the fact that the tree is small (PV
changes are not too uncommon in shallow trees). This example, although not
providing much additional insight, is good for a sanity check to confirm the
expected behavior. The statistics were provided as a demonstration of the type
of statistics that can be collected. One must also be a little cautious when working
with accumulated statistics, as they may overlook individual anomalies. We thus
look more carefully at PV changes in the next subsection.

4.4 Principal Variation Changes

The query below was executed for different values on n:

node: type = PVNode;
child: count([]type = type) >= n

The result is shown in Table 4. As can be seen, frequent PV changes are uncom-
mon, although there are a few problematic nodes in Pos22 that might warrant
a further investigation (there are 5 positions with 9 or more PV child nodes).

4.5 Large Quiescence-Search Trees

Quiescence searches are essential in chess programs for evaluating unstable po-
sitions — such searches typically include selected captures and even checks.
However, because of the frequency of quiescence searches, it is important to

226 J. Ísleifsdóttir and Y. Björnsson

Table 4. Number of PV nodes in each tree with several PV node children

#pv-children Pos15 Pos16 Pos17 Pos18 Pos19 Pos20 Pos21 Pos22 Pos23
2 91 29 1 87 32 26 243 556 160
5 7 3 0 3 3 2 15 59 20
7 0 0 0 0 0 0 0 6 6
9 0 0 0 0 0 0 0 5 0

Fig. 4. Chess positions with a large quiescence search

keep their size under control, a process that takes a careful tuning. To obtain
more insight into the size of the quiescence searches of Fruit we executed the
following query for different values of n:

node: flags & QRootNode;
subtree: count(*) > n

The attribute flags is used in the chess program to mark various node properties,
such as whether a node belongs to a research, a null-move search, or a quiescence
search. The root of a quiescence search tree is marked as QRootNode.

For all positions except one, the quiescence searches were all under 200 nodes
(and most much smaller). In Pos18 (from the game Vanka - Jansa, Prag 1957),
however, four of the quiescence-search subtrees had more nodes. For example,
from the two positions shown in Fig. 4 the generated quiescence-search trees
were of size 840 and 486 nodes, respectively. This is quite excessive compared
to a normal search, and should raise a flag as something that warrants further
investigation. This is a good example of how the tool can be used to help identify
problems with the search performance.

5 Related Work

To the best of our knowledge GTQL is the first query language specifically
designed for game trees. However, several query languages for tree structures
exists, including XPath [10] for querying XML data. The navigational abilities
of XPath have been used in subsequent languages either by directly supporting

GTQ: A Language and Tool for Game-Tree Analysis 227

XPath like XQuery [9] does or extending its syntax like is done in LPath [2].
XSQuirrel [17] is a related language for making sub-documents out of existing
XML documents. None of the aforementioned languages are well suited for our
purpose and do for example not allow aggregation. However, there does exist
a chess-specific query language, Chess Query Language (CQL) [11], but it is
designed for matching chess positions, not tree structures.

On a further account, there do exist some tools that can be helpful in visu-
alizing game trees. Rémi Coulom presented a visualization technique for search
trees using treemaps [12]. Treemaps are based on the idea of taking a rectangle
and dividing it into sub-rectangles for each subtree. The first rectangle is split
vertically, one rectangle per child. Those rectangles are then split horizontally
for each of their children and so on. Although such a technique can give some
insight into where the search mainly spends it effort, it is insufficient for detect-
ing most search abnormalities. There do also exist browsers that allow one to
navigate through game-tree logs and look at resulting game positions [3, 4, 13].

6 Conclusions

From the above results we may fairly conclude that the new query language and
software can aid researchers and game-playing program developers in verifying
the correctness of their game-tree search algorithms. The syntax and semantics
of the language are explained in such terms that GTQL can be used by others.
The GTQ tool expresses queries about complex game-tree structures, including
hierarchical relationships and aggregated attributes over subtree data. Last but
not least, in this paper we demonstrated the usefulness of the GTQ tool by
analyzing and finding abnormalities in the search trees of the competitive chess
program Fruit. These are just a few examples of the usefulness of GTQ. The
tool is quite flexible as the users decide which information about the game trees
to log. For example, by logging static node evaluations one can envision the
tool being useful to researchers working on search, e.g., for finding pathological
behaviors or for measuring diminishing returns of deeper search.

GTQL is the first query language specifically designed for game trees. There
are still many additions and improvements that could be made in future ver-
sions of both GTQL and GTQT. For example, the expressiveness of the language
could be enhanced, e.g., to include parent relations (and more generally ances-
tor relations), as well as an extended sibling relation. Also, other functions like
min and max would be useful. Moreover, there are improvements to be made
to the implementation; the two most prominent ones are: (1) allowing many
queries to be answered simultaneously, and (2) introducing run-time compres-
sion/decompression to the game-tree log files as they can quickly grow large.
As of now, the tool cannot handle game trees built in parallel. This limitation
is worthwhile to be addressed in future versions as multi-core processors are
becoming mainstream.

Finally, it is our hope that this work will aid researchers in the field of search
algorithms with the tedious process of debugging and verifying the correctness

228 J. Ísleifsdóttir and Y. Björnsson

of their programs, thus saving them countless hours of frustration and grief. The
Game-Tree Query Tool is available for download at http://cadia.ru.is.

Acknowledgments. This research was supported by grants from The Icelandic
Centre for Research (RANNÍS) and by a Marie Curie Fellowship of the European
Community programme Structuring the ERA under contract MIRG-CT-2005-
017284. We also thank the anonymous referees for their insightful comments.

References

1. Billings, D., Björnsson, Y.: Search and knowledge in Lines of Action. In: van den
Herik, H.J., Iida, H., Heinz, E.A. (eds.) ACG. IFIP, vol. 263, pp. 231–248. Kluwer,
Dordrecht (2003)

2. Bird, S., Chen, Y., Davidson, S.B., Lee, H., Zheng, Y.: Extending XPath to support
linguistic queries. In: Proceedings of Programming Language Technologies for XML
(PLANX), Long Beach, California, January 2005, pp. 35–46. ACM Press, New York
(2005)

3. Björnsson, Y.: Selective Depth-First Game-Tree Search. PhD thesis, University of
Alberta, Canada (June 2002)

4. Björnsson, Y., Ísleifsdóttir, J.: Tools for debugging large game trees. In: Proceed-
ings of The Eleventh Game Programming Workshop, Hakone, Japan (2006)

5. Björnsson, Y., Ísleifsdóttir, J.: GTQL: A query language for game trees. In: Pro-
ceedings of The Twelfth Game Programming Workshop, Amsterdam, The Nether-
lands, pp. 205–216 (2007)

6. Björnsson, Y., van den Herik, H.J.: The 13th world computer-chess championship.
ICGA Journal 28(3), 162–175 (2005)

7. Buro, M.: How machines have learned to play Othello. IEEE Intelligent Sys-
tems 14(6), 12–14 (1999)

8. Campbell, M., Hoane Jr., A.J., Hsu, F.-h.: Deep blue. Artificial Intelligence 134(1-
2), 57–83 (2002)

9. Chamberlin, D.: XQuery: An XML query language. IBM Systems Journal 41(4),
597–615 (2002)

10. Clark, J., DeRose, S.: XML path language (XPath) 1.0. Technical report, W3C
Recommendation (1999)

11. Costeff, G.: The Chess Query Language: CQL. ICGA Journal 27(4), 217–225 (2004)
12. Coulom, R.: Treemaps for search-tree visualization. In: Uiterwijk, J.W.H.M. (ed.)

The 7th Computer Olympiad Computer-Games Workshop Proceedings (2002)
13. Fortuna, A.: Internet Resource, CHANT: A Tool to View Chess Game Trees (2003),

http://chessvortex.com/chant
14. Ísleifsdóttir, J.: GTQL: A Game-Tree Query Language. Master’s thesis, Reykjavik

University, Iceland (January 2008), http://www.ru.is/?PageID=7094
15. Letouzey, F.: Internet Resource, Fruit Chess (2005), http://www.fruitchess.com
16. Louguet, F.: La Puce Échiquéenne. Internet Resource, LCT II v. 1.21 (2007),

http://perso.orange.fr/lefouduroi/testlct2.htm
17. Sahuguet, A., Alexe, B.: Sub-document queries over XML with XSQirrel. In:

WWW 2005: Proceedings of the 14th international conference on World Wide
Web, pp. 268–277. ACM Press, New York (2005)

18. Schaeffer, J.: One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer, Heidelberg (1997)

http://chessvortex.com/chant
http://www.ru.is/?PageID=7094
 http://www.fruitchess.com
http://perso.orange.fr/lefouduroi/testlct2.htm

Probing the 4-3-2 Edge Template in Hex

Philip Henderson and Ryan B. Hayward

Department of Computing Science, University of Alberta,
Edmonton, AB, Canada, T6G 2E8
{ph,hayward}@cs.ualberta.ca

www.cs.ualberta.ca/∼{ph,hayward}

Abstract. For the game of Hex, we find conditions under which moves
into a 4-3-2 edge template are provably inferior.

1 Introduction

Hex, the two-player board game invented independently by Piet Hein [8] and
John Nash [4,11,12] in the 1940s, is played on a four-sided grid of hexagonal
cells. In alternating turns, each player colors an uncolored, or empty, cell with
her color (or, if each player has a set of colored stones, by placing a stone of
her color on an empty cell). A player wins by connecting her two sides via a
set of cells that have her1 color, as shown in Fig. 1. For more on Hex, see Ryan
Hayward and Jack van Rijswijck’s paper, Thomas Maarup’s webpage, Jack van
Rijswijck’s webpage, or Cameron Browne’s book [3,6,10,13].

Fig. 1. A Hex board state with a winning White connection

Given a player P (in this paper, B for Black or W for White) and an empty
cell c of a board state S, S + P [c] denotes the board state obtained from S by
P -coloring c, namely, by coloring c with P ’s color. See Fig. 2. We denote the
opponent of P by P .

A game state P (S) specifies a board position S and the player to move P .
With respect to a player P and game states Q(S1) and Q(S2), where Q can be
P or P , we write Q(S1) ≥P Q(S2) if Q(S1) is at least as good for P as Q(S2)
in the following sense: P has a winning strategy for Q(S1) if P has a winning
strategy for Q(S2). In this case, we say that Q(S1) P -dominates Q(S2).

1 For brevity we use ‘she’ and ‘her’ whenever ‘she or he’ and ‘her or his’ are meant.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 229–240, 2008.
c© IFIP International Federation for Information Processing 2008

230 P. Henderson and R.B. Hayward

a

a

b

b

c

c

d

d

e

e1

1

2

2

3

3

4

4

5

5 a

a

b

b

c

c

d

d

e

e1

1

2

2

3

3

4

4

5

5 a

a

b

b

c

c

d

d

e

e1

1

2

2

3

3

4

4

5

5

Fig. 2. State S (left), state T = S + W [b3], and state U = S + W [a5]

1

2
3

4

5
6

7
8

Fig. 3. Two virtual connections (left). A Black edge bridge and 4-3-2 (right).

Consider for example states T and U in Fig. 2. As the reader can check, Black
has a winning move in T but no winning move in U , so B(T) ≥B B(U). Draws
are not possible in Hex, so White has a second-player winning strategy for U
but not for T , so B(U) ≥W B(T).

We extend this terminology as follows: with respect to a player P and board
states S1 and S2, we write S1 ≥P S2 if P (S1) ≥P P (S2) and P (S1) ≥P P (S2).
In this case, we say that S1 P -dominates S2.

With respect to a game state P (S), an empty cell c1 is P -inferior to an
empty cell c2 if c2 is a P -winning move or c1 is a P -losing move (equivalently,
P (S + P [c2]) ≥P P (S + P [c1])). In this case, we say that c2 P -dominates c1.
Note that domination of game states, board states, and cells is reflexive and
transitive.

For example, let S be as shown in Fig. 2 with White to move. In S, b3 loses for
White since Black has a winning move in T , and a5 wins for White since Black
has no winning move in U . Thus for S, b3 is White-inferior to a5 (equivalently,
a5 White-dominates b3).

We write S ≡P T if S ≥P T and T ≥P S. Draws are not possible in Hex, so
S ≡P T if and only if S ≡P T , so we write ≡ in place of ≡P .

In the search for a winning move, an inferior cell can be pruned from consid-
eration as long as some cell that dominates it is considered. With respect to a
board state and a player P , a subset V of the set of empty cells U is P -inferior
if each cell in V is P -inferior to some cell of U − V .

With respect to a board state and a player P , a virtual connection is a subgame
in which P has a second-player strategy to connect a specified pair of cell sets;
thus P can connect the two sets even if P has the first move. We say that the cell
sets are virtually connected, and refer to the empty cells of the virtual connection

Probing the 4-3-2 Edge Template in Hex 231

as its carrier. The left diagram in Fig. 3 shows two virtual connections. The
smaller virtual connection, with a two-cell carrier, is often called a bridge.

A virtual connection between a set of P -colored cells and one of P ’s board
edges is an edge template for P . Two examples are the edge bridge and the edge
4-3-2, shown in Fig. 3. For more templates, see David King’s webpage [9].

Throughout this paper, we refer to an edge 4-3-2 simply as a 4-3-2, and we
refer to a 4-3-2’s eight carrier cells by the labels used in Fig. 3. Note that a 4-3-2
is indeed a virtual connection: if White plays at any of {2,5,6}, Black can reply
at 4; if White plays at any of {1,3,4,7,8}, Black can reply at 2. The reader can
check that a 4-3-2’s carrier is minimal: if any of the eight cells belongs to the
opponent, the player no longer has a virtual connection.

With respect to a particular virtual connection of a player, a probe is a move
by the opponent to a carrier cell; all other opponent moves are external. In this
paper, we explore the question: when are probes of a Black 4-3-2 inferior?

2 Dead, Vulnerable, Captured, and Capture-Dominated

For a board state and a player P , a set of empty cells C is a P -connector if
P -coloring its cells yields a winning connection; the set is minimal if no proper
subset is a P -connector. An empty cell is dead if it is not on any minimal P -
connector. See Fig. 4.

Note that each dead cell is Q-inferior to all other empty cells for both players
Q; also, coloring a dead cell an arbitrary color does not change a game state’s
win/loss value. An empty cell is P -vulnerable if some P -move makes it dead;
the cell of this move is a killer of the vulnerable cell. Thus, in the search for a
P -winning move, dead and P -vulnerable cells can be pruned from consideration.

A set of cells C is P -captured if P has a second-player strategy that makes
each cell in the set dead or P ’s color. Since the color of dead cells does not
matter, C can be P -colored without changing the value of the board position.
For example, the carrier of a Black edge bridge is Black-captured since, for each
of the two carrier cells, the cell can be killed by a Black reply at the other carrier
cell [5]. An empty cell is P -capture-dominated2 by another empty cell if playing
the latter P -captures the former.

Fig. 4. A Black-connector, a minimal Black-connector, and dead cells

2 Previous papers on dead cell analysis refer to this simply as domination [2,7]. In this
paper, we use the term domination in a more general sense.

232 P. Henderson and R.B. Hayward

Note that vulnerable, captured, and dominated are defined with respect to a
player; by contrast, dead is not. See Hex and Combinatorics [6] or Dead Cell
Analysis in Hex and the Shannon Game [2] for more on inferior cell analysis.

3 A Conjecture

As noted previously, the carrier cells of a Black edge bridge are Black-captured,
and so White-inferior to all empty cells. For a 4-3-2, things are not so simple.

As shown in Fig. 5, probes 1,2,4 can each be the unique winning move. Also,
as shown in Fig. 6, probes 3,5 can win when probes 1,2,4 do not; however, in
the example shown there is also a winning external move, and probes 3,5 merely
delay an eventual external winning move. We know of no game state in which
one of the probes 3,5,6,7,8 is the unique winning move, nor of a game state in
which one of the probes 6,7,8 wins but probes 1,2,4 all lose. Probes 1,2,4 seem
generally to be stronger than the others, so we conjecture the following:

Conjecture 1. Probes 3,5,6,7,8 of a Black 4-3-2 are White-inferior.

Thus, for a player P and a particular P -4-3-2, we conjecture that if P has a
winning move, then there is some P -winning move that is not one of the five
probes 3,5,6,7,8. In the rest of this paper we find conditions under which the
conjecture holds.

1
2

4

Fig. 5. Only White winning moves: probe 1, probe 2, probe 4

3

5

Fig. 6. Only White winning moves: probe 3, probe 5, or the dotted cell

4 Black Maintains the 4-3-2

In Hex, maintaining a particular 4-3-2 is often critical; in such cases, if the op-
ponent ever probes that 4-3-2, the player immediately replies by restoring the

Probing the 4-3-2 Edge Template in Hex 233

virtual connection. Under these conditions, described in the following theorem,
our conjecture holds (except possibly for probe 5, whose status we do not know).

Theorem 1. Consider a game state with a Black 4-3-2 and White to move.
Assume that Black responds to a White probe of this 4-3-2 by restoring the
virtual connection. Then each White probe in {3, 6, 7, 8} is White-inferior.

To prove the theorem, we will show that it is better for White to probe in {1, 2, 4}
than in {3, 6, 7, 8}. To begin, consider possible Black responses to White probes
1,2,4. Against White 1, every other carrier cell maintains the virtual connection;
however, Black 2 captures {3,5,6,7}, so {3,5,6,7} are Black-dominated by 2 and
need not be considered as Black responses; similarly, Black 4 captures {7,8}.
Thus, we may assume: after White 1, Black replies at one of {2,4}; after White
2, Black replies at one of {3,4}; after White 4, Black replies at 2.

We shall show that if White probes at any of {3,6,7,8}, then Black has a
response that maintains the 4-3-2 and results in a state where at least one of
the following holds: the state is Black-dominated by both states that result after
White probes at 1 and Black replies in {2,4}; the state is Black-dominated by
both states that result after White probes at 2 and Black replies in {3,4}; the
state is Black-dominated by the state that results after White probes at 4 and
Black replies at 2.

Our proof of Theorem 1 uses three kinds of arguments. The first two deal with
particular forms of domination, which we call path-domination and neighborhood-
domination. The third deals directly with strategies. Before presenting the proof,
we give some definitions and lemmas.

For a player P and a board state with empty cells c1 and c2, we say that c2

path-dominates c1 if every minimal P -connector that contains c1 also contains
c2. As the following lemma shows, path-domination implies domination.

Lemma 1. For a player P and empty cells c1, c2 of a board state S, assume
that c2 path-dominates c1. Then S + P [c2] ≥P S + P [c1].

Proof. A P -state is a state in which it is P ’s turn to move. We prove that S +
P [c2] is P -winning whenever S + P [c1] is P -winning. Thus, assume P has a win-
ning strategy tree T1 for S + P [c1]. By definition, T1 considers all possible P -
continuations for all P -states and specifies a unique P -winning response in each
P -state. Without loss of generality, assume that T1 continues play until the board
is completely filled, namely, it does not stop when a winning path is formed. Thus,
all leaves in T1 appear at the same depth and contain a P -winning path.

Construct a strategy tree T2 by replacing each occurrence of c2 in T1 with c1.
We claim that T2 is a P -winning strategy tree for S + P [c2].

First, note that in T2 the board is played until filled, and that all legal moves
for P are considered at each stage. Furthermore, a unique P -response is given
in each P -state. Thus, T2 is a valid strategy tree. It remains only to show that
each leaf of T2 has a P -connector.

By contradiction, assume that some leaf L2 in T2 has no P -connector. Consider
the corresponding leaf L1 in T1, attained via the same sequence of moves with

234 P. Henderson and R.B. Hayward

Fig. 7. Killing Black-vulnerable cells without path-domination. The White-dotted cell
kills the Black-dotted cell because of White-captured cells that include the shaded cells.

c1 replaced by c2. Since L1 has a P -connector, this connector must use cell c1,
as it is the only cell that can be claimed by P in L1 and not claimed by P in
L2. However, c1 is claimed by P in L2, so c2 is claimed by P in L1. This is a
contradiction, as our P -connector in L1 requires c2 as well as c1. Thus, each leaf
in T2 is P -winning. �

If c2 P -path-dominates c1, then c1 is P -vulnerable to c2. As Fig. 7 shows, the
converse does not always hold; it may be that cells captured by the killer are
needed to block all minimal connectors.

Lemma 1 yields the following corollary.

Corollary 1. Let S be a Hex state with empty cells c1, c2 such that c2 P -path-
dominates c1, and c1 P -path-dominates c2. Then S + P [c1] ≡ S + P [c2].

Proof. By Lemma 1, S + P [c1] ≥P S + P [c2] and S + P [c2] ≥P S + P [c1]. �

Using Lemma 1 and Corollary 1, as well as capturing cells near the edge, we
can determine many domination and equivalence relationships between states
obtained via the exchange of two moves within the 4-3-2 carrier. We summarize
these relationships in Fig. 8, and present two of their proofs as Lemmas 2 and
3. The omitted proofs are similar.

Black

White
1 3 5 6 7 82 4

2

3

4

Fig. 8. Some White-domination relations among exchange states. Each arc points from
a state to a White-dominating state. Bi-directional arcs indicate equivalent states. X
indicates an impossible exchange state. Arcs which follow by transitivity are not shown.

Probing the 4-3-2 Edge Template in Hex 235

Lemma 2. S + W [2] + B[3] ≡ S + W [5] + B[3].

Proof. B[3] forms an edge bridge, so cells 6 and 7 can be filled-in for Black
without changing the value of S + B[3]. It can then be seen that all minimal
White-connectors that use cell 2 require cell 5, and vice-versa. Thus the result
follows from Corollary 1. �

Lemma 3. S + W [1] + B[4] ≥W S + W [3] + B[4].

Proof. B[4] forms an edge bridge, so cells 7 and 8 can be filled-in for Black
without changing the value of S + B[4]. It can then be seen that all minimal
White-connectors that use cell 3 require cell 1. Now use Lemma 1. �

The P -neighborhood of a cell is the set of all neighbors that are empty or P -
colored. A cell c1 P -dominates a cell c2 when c1’s P -neighborhood contains
c2’s P -neighborhood; in this case, we say that c1 P -neighbor-dominates c2.
Neighborhood-domination implies domination, so we have the following.

Lemma 4. S + W [4] + B[2] ≥W S + W [3] + B[2].

Proof. In state S + B[2], cells 5 and 6 are Black-captured, so cell 4 White-
neighbor-dominates cell 3. �

Lemma 5. S + W [2] + B[4] ≥W S + W [6] + B[4].

Proof. In state S + B[4], cells 7 and 8 are Black-captured, so cell 2 White-
neighbor-dominates cell 6. �

To prove our final lemma, we explicitly construct a second-player strategy for
Black on the 4-3-2 carrier.

Lemma 6. S + W [1] + B[2] ≥W S + W [6] + B[4].

Proof. In state S + W [6] + B[4], Black adopts the following pairing strategy: if
White ever occupies one of {2,5}, Black immediately takes the other; Black does
this also with {1,3}. Note that cells 7 and 8 are already filled-in for Black due to
the edge bridge from B[4]. We will show that this pairing strategy always results
in a position White-dominated by S + W [1] + B[2].

Note that this pairing strategy maintains the 4-3-2 virtual connection. Thus,
via the carrier, White cannot connect cell 1 to either cell 2 or cell 5. Since the
pairing strategy prevents White from claiming both cell 2 and cell 5, then the
outcome will be that neither is on any minimal White-connector. Thus cells 2 and
5 are captured by Black via this strategy, so White cannot benefit from claiming
cell 3, as it is not on any minimal connector. So, without loss of generality we
assume White claims cell 1 and Black claims cell 3. But then the outcome of
this strategy will be equivalent to S + W [1] + B[2] + B[3] + B[4] + B[5] + B[6] +
B[7] + B[8], which is White-dominated by S + W [1] + B[2]. Thus, regardless of
White’s strategy in state S + W [6] + B[4], Black can ensure an outcome that is
White-dominated by S + W [1] + B[2]. �

236 P. Henderson and R.B. Hayward

2
5

Fig. 9. S + W [2] + B[4] �≥W S + W [5] + B[4]

We now prove Theorem 1.

Proof. As mentioned earlier, our assumptions imply that White 4 loses to Black
2. By Lemma 1 and neighbor-domination, S + W [4] + B[2] White-dominates
S + W [3] + B[2], S + W [7] + B[2], and S + W [8] + B[2]. Thus, White probes
3, 7, 8 also lose to Black 2.

Likewise, White 1 loses to Black 2 or Black 4. By Lemma 6, S+W [1]+B[2] ≥W

S + W [6] + B[4]; by Lemma 1, S + W [1] + B[4] ≥W S + W [6] + B[4]. Thus,
regardless of which move defeats White 1, White 6 loses to Black 4. �

Under the hypothesis of Theorem 1, we conjecture that probe 5 is also White-
inferior. Our arguments seem unlikely to resolve this, as it is not true for all
states S that S + W [2] + B[4] ≥W S + W [5] + B[4]. See Fig. 9.

Any state S in which probe 5 is not White-inferior must satisfy the following
conditions: S′ = S +W [6]+B[2] ≡ S +W [5]+B[2] (by Corollary 1), so S′ wins
for White; also, S + W [2] + B[4] loses for White, while S + W [2] + B[3] wins for
White (by Lemma 2).

5 Unconditional Pruning of the 4-3-2

Other than not knowing the status of probing at 5, we have so far confirmed
our conjecture under the added assumption that Black maintains the 4-3-2. In
this section we establish two theorems that apply without making this added
assumption.

Theorem 2 applies to a 4-3-2 that lies in an acute corner of the Hex board.
Theorem 3 applies to a state which, if it loses for White, implies that seven of
the eight 4-3-2 probes also lose.

A Black 4-3-2 can be aligned into an acute corner of the Hex board in two
ways, as shown in Fig. 10. When probing such 4-3-2s, the bordering White edge
makes capturing easier, yielding the following results.

Lemma 7. For a Black 4-3-2 as shown in Fig. 10(left), the set of probes {2, 3, 5}
is White-inferior.

Proof. (sketch) Probes 2 and 5 are capture-dominated by probe 6. Probe 3 can
be pruned as follows. First show that S+W [4] ≥W S+W [4]+B[1] ≡ S+W [4]+

Probing the 4-3-2 Edge Template in Hex 237

1 2
3

4
5

6
7

8

1

2
3

4

5
6

7
8

Fig. 10. Acute corner 4-3-2s

r
s

t
u

v

w
x

y
z

Fig. 11. Dotted cells Black-dominate undotted shaded cells in the acute corner (left).
Labels used in the proof of Theorem 2 (right).

W [3] + B[1]. It can then be shown that the White probe at 3 is reversible3 to a
Black response at 1, namely that S ≥W S + W [3] + B[1]. From this the desired
conclusion follows. We omit the details. �

Lemma 8. For a Black 4-3-2 as shown in Fig. 10(right), the set of probes {1,
3, 4, 5, 6, 7, 8} is White-inferior.

Proof. Given any White probe in {1,3,4,5,6,7,8}, Black can respond at cell 2 and
capture all cells in the 4-3-2 carrier by maintaining the 4-3-2. �

Theorem 2. Let S be a Hex state with the nine cells of a potential acute corner
Black 4-3-2 all empty, as in Fig. 11. Then each of the seven undotted cells is
Black-dominated by at least one dotted cell.

Proof. (sketch) Let S be a board state in which the nine cells of an acute corner
Black 4-3-2, labeled r, . . . , z as in Fig. 11, are all empty. We want to show that
each cell in the carrier is Black-dominated by at least one of r, t.

Cell t Black-capture-dominates cells u, v, w, x, y, z. The argument that cell
r Black-dominates cell s is more complex, as follows. Let Sr = S + B[r] and
Ss = S + B[s]; we want to show that Sr Black-dominates Ss.

First assume that from Ss or Sr, Black is next to move into the carrier. In Sr,
a Black move to t Black-captures all other carrier cells, so Sr +B[t] ≥B Ss+B[β]
for every possible β in the carrier, so we are done in this case.

Next assume that from Sr or Ss, White is next to move into the carrier. By
Lemma 8, from Sr White can do no better than Sr + W [t], so we are done if
White has some move from Ss that is at least as good, namely if, for some q in
3 A P -move is reversible if P has a response that leaves P in at least as good a position

as before the P -move. See Winning Ways, Volume I [1].

238 P. Henderson and R.B. Hayward

Fig. 12. State Ss + W [t] (left) White-dominates Sr + W [t] (right)

Fig. 13. A state S White-dominated by S + W [1] + W [2] + B[3]

the carrier, Ss + W [q] ≥W Sr + W [t]. We can show this for q = t; we omit the
details. See Fig. 12. �

By Theorem 2, if Black is searching for a winning move and the shaded cells of
Fig. 11 are all empty, then Black can ignore the undotted shaded cells.

Next, we consider a result that can be useful when White suspects that probing
a particular Black 4-3-2 is futile. We show a state which, if it loses for White,
guarantees that seven of the eight probes also lose.

Theorem 3. Let S be a state with a Black 4-3-2. If W (S +W [1]+W [2]+B[3])
is a White loss, then in W (S) each White probe other than 4 loses.

Proof. S + W [1] + W [2] + B[3] White-dominates both S + W [1] + B[3] and
S+W [2]+B[3], so White probes 1, 2 can be pruned. By Lemma 2, S+W [2]+B[3]
is equivalent to S + W [5] + B[3], so White 5 can be pruned. Against White
probes 3 or 7, strategy decomposition shows that Black wins by replying at cell
4. By Lemma 1 and Corollary 1 respectively, S + W [3] + B[4] White-dominates
S + W [6] + B[4], and S + W [7] + B[4] is equivalent to S + W [8] + B[4]. �

In terms of being able to prune probes of a 4-3-2, Theorem 3 is useful only if
S′ = S + W [1] + W [2] + B[3] loses. Not surprisingly, we gain less information
about the probes when S′ wins. For example, Fig. 13 shows a state S in which
White has a winning move from S′ but no winning move from S.

Probing the 4-3-2 Edge Template in Hex 239

6 Conclusions

We have introduced path-domination and neighborhood-domination, two refine-
ments of domination in Hex, and used these notions to find conditions under
which probes of an opponent 4-3-2 edge template are inferior moves that can be
ignored in the search for a winning move.

In particular, three of the eight probes can be unique winning moves and so
cannot in general be discounted; we conjecture that the other five probes are all
inferior. Since 4-3-2s arise frequently in Hex, confirming this conjecture would
allow significant pruning in solving game states.

We have confirmed the conjecture in various situations. For example, if the
player knows that the opponent’s immediate reply to a probe will be to restore
the template connection, then four of these five remaining probes are inferior.

External conditions might suggest that all probes of a particular 4-3-2 are los-
ing. We have found a state of which the loss implies that seven of the eight probes
are losing; establishing this result would allow the seven probes to be ignored.

Also, we have established some domination results that apply when the 4-3-2
lies in an acute corner.

It would be of interest to extend our results to consider the combined mainte-
nance of more than one critical connection, or to automate the inference process so
that similar results couldbeapplied to amore general family of virtual connections.

Acknowledgments. The authors thank the referees and the University of Al-
berta’s Hex and GAMES group members, especially Broderick Arneson, for their
feedback and constructive criticisms. The authors gratefully acknowledge the
support of AIF, iCORE, and NSERC.

References

1. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, vol. 1. Academic Press, London (1982)

2. Björnsson, Y., Hayward, R., Johanson, M., van Rijswijck, J.: Dead Cell Analysis
in Hex and the Shannon Game. In: Graph Theory in Paris, pp. 45–60. Birkhäuser
(2007)

3. Browne, C.: Hex Strategy – Making the Right Connections. A.K. Peters, Natick,
Mass (2000)

4. Gardner, M.: Mathematical Games. Scientific American 197, 145–150 (1957)
5. Hayward, R.: A Note on Domination in Hex (manuscript, 2003),

www.cs.ualberta.ca/∼hayward/publications.html
6. Hayward, R., van Rijswijck, J.: Hex and Combinatorics. Discrete Mathemat-

ics 306(19-20), 2515–2528 (2006)
7. Hayward, R., Björnsson, Y., Johanson, M., Kan, M., Po, N., van Rijswijck, J.:

Solving 7 × 7 Hex: Virtual Connections and Game-state Reduction. In: van den
Herik, H.J., Iida, H., Heinz, E.A. (eds.) Advances in Computer Games, pp. 261–278.
Kluwer Academic Publishers, Dordrecht (2003)

8. Hein, P.: Vil de laere Polygon? Politiken newspaper (December 26, 1942)

www.cs.ualberta.ca/~hayward/publications.html

240 P. Henderson and R.B. Hayward

9. King, D.: Hex templates (2001-2007),
http://www.drking.plus.com/hexagons/hex/templates.html

10. Maarup, I.: Thomas Maarup’s Hex page. maarup.net/thomas/hex/ (2005)
11. Nasar, S.: A Beautiful Mind. Touchstone Press (1998)
12. Nash, J.: Some games and machines for playing them. Rand Corp. Tech. Rpt.

D-1164 (1952)
13. van Rijswijck, J.: Hex webpage (2006), http://www.javhar.net/hex

http://www.drking.plus.com/hexagons/hex/templates.html
http://www.javhar.net/hex

The Game of Synchronized Domineering

Alessandro Cincotti and Hiroyuki Iida

School of Information Science,
Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
{cincotti,iida}@jaist.ac.jp

Abstract. In synchronized games players make their moves simultane-
ously rather than alternately. Synchronized Domineering is the synchro-
nized version of Domineering, a classic two-player combinatorial game.
We present the solutions for all the m×n boards with m ≤ 6 and n ≤ 6.
Also, we give results for the n×3 boards, n×5 boards, and some partial
results for the n × 2 boards. Future research is indicated.

1 Introduction

The game of Domineering, also known as Crosscram and Dominoes, is a typi-
cal two-player game with perfect information, proposed around 1973 by Göran
Andersson [2,7,8]. The two players, usually denoted by Vertical and Horizontal,
take turns in placing dominoes (2 × 1 tile) on a checkerboard. Vertical is only
allowed to place its dominoes vertically and Horizontal is only allowed to place
its dominoes horizontally on the board. Dominoes are not allowed to overlap
and the first player that cannot find a place for one of its dominoes loses. After
a time the remaining space may separate into several disconnected regions, and
each player must choose into which region to place a domino.

Berlekamp [1] solved the general problem for 2×n board for odd n. The 8×8
board and many other small boards were recently solved by Breuker, Uiterwijk
and van den Herik [3] using a computer search with an adequate transposition-
table scheme. Subsequently, Lachmann, Moore, and Rapaport solved the prob-
lem for boards of width 2, 3, 5, and 7 and other specific cases [9]. Finally, Bullock
solved the 10 × 10 board [4].

2 Synchronized Games

Initially, the concept of synchronism was introduced in the games of Cutcake [5]
and Maundy Cake [6] in order to study combinatorial games where players make
their moves simultaneously.

As a result, in the synchronized versions of these games there exist no zero-
games, i.e., games where the winner depends exclusively on the player that makes

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 241–251, 2008.
c© IFIP International Federation for Information Processing 2008

242 A. Cincotti and H. Iida

Table 1. The possible outcomes in Synchronized Domineering

Horizontal ls Horizontal ds Horizontal ws

Vertical ls G = V HD G = HD G = H
Vertical ds G = V D G = D -
Vertical ws G = V - -

the second move. Moreover, there exists the possibility of a draw, which is impos-
sible in a typical combinatorial game. In this work, we continue to investigate
synchronized combinatorial games by focusing our attention on the game of
Domineering.

In the game of Synchronized Domineering, a general instance and the legal
moves for Vertical and Horizontal are defined exactly in the same way as defined
for the game of Domineering. There is only one difference: Vertical and Hori-
zontal make their legal moves simultaneously, therefore, dominoes are allowed
to overlap if they have a 1×1 tile in common. We note that 1×1 overlap is only
possible within a simultaneous move. At the end, if both players cannot make
a move, then the game ends in a draw, else if only one player can still make a
move, then he/she is the winner.

In Synchronized Domineering, for each player there exist three possible out-
comes:

– The player has a winning strategy (ws) independently of the opponent’s
strategy, or

– The player has a drawing strategy (ds), i.e., he/she can always obtain a draw
in the worst case, or

– The player has a losing strategy (ls), i.e., he/she does not have a strategy
for winning or for drawing.

Table 1 shows all the possible cases. It is clear that if one player has a winning
strategy, then the other player has neither a winning strategy nor a drawing
strategy. Therefore, the cases ws − ws, ws − ds, and ds − ws never happen. As
a consequence, if G is an instance of Synchronized Domineering, then we have 6
possible legal cases.

– G = D if both players have a drawing strategy, and the game will always
end in a draw under perfect play, or

– G = V if Vertical has a winning strategy, or
– G = H if Horizontal has a winning strategy, or
– G = V D if Vertical can always obtain a draw in the worst case, but he/she

could be able to win if Horizontal makes a wrong move, or
– G = HD if Horizontal can always obtain a draw in the worst case, but

he/she could be able to win if Vertical makes a wrong move, or
– G = V HD if both players have a losing strategy and the outcome is totally

unpredictable.

The Game of Synchronized Domineering 243

3 Examples of Synchronized Domineering

The game

always ends in a draw, therefore G = D.

In the game

Vertical has a winning strategy moving in the central column, therefore G = V .

In the game

if Vertical moves in the first column we have two possibilities

or

therefore, either Vertical wins or the game ends in a draw. Symmetrically, if
Vertical moves in the third column we have two possibilities

or

therefore, either Vertical wins or the game ends in a draw. It follows G = V D.

In the game

each player has 4 possible moves. The 16 possible outcomes are shown below.

244 A. Cincotti and H. Iida

For every move by Vertical (i.e., every row) Horizontal can win or draw (and
sometimes lose); likewise, for every move by Horizontal (i.e., every column) Ver-
tical can win or draw (and sometimes lose). As a result it follows that G = V HD.

4 Main Results

Table 2 shows the results obtained using an exhaustive search algorithm for the
6 × 6 board and many other small boards.

Table 2. Outcomes for rectangles in Synchronized Domineering

1 2 3 4 5 6

1 D H H H H H
2 V D V D V D
3 V H D H H H
4 V D V D V D
5 V H V H D H
6 V D V D V D

Theorem 1. Let G = [n, 3] be a rectangle of Synchronized Domineering with
n ≥ 4. Then Vertical has a winning strategy.

Proof. In the beginning, Vertical will always move into the central column of
the board, i.e., (k, b), (k + 1, b) where k is an odd number, as shown in Fig. 1.
When Vertical cannot move anymore in the central column, let us imagine that
we divide the main rectangle into 2 × 3 sub-rectangles starting from the top of
the board (by using horizontal cuts). Of course, if n is odd, then the last sub-
rectangle will be of size 1 × 3, and Horizontal will be able to make one more
move. We can classify all these sub-rectangles into 5 different classes.

– Class A. Vertical is able to make two more moves in each sub-rectangle of
this class.

The Game of Synchronized Domineering 245

a b c
1
2

...
...

...

k
k + 1

...
...

...

n − 1
n

Fig. 1. G = [n, 3]

– Class B. Vertical is able to make one more move in each sub-rectangle of
this class.

or or or

– Class C. Horizontal is able to make one more move in each sub-rectangle
and Vertical is able to make at least �|C|/2� moves where |C| is the number
of sub-rectangles belonging to this class. The last statement is true under
the assumption that Vertical moves into the sub-rectangles of this class as
long as they exist before to move into the sub-rectangles of the other classes.

or or or

– Class D. In each sub-rectangle of this class, Horizontal has already made
two moves and Vertical is able to make one move.

or

– Class E. Neither Vertical nor Horizontal are able to make a move in the
sub-rectangles of this class.

or

We show that when Vertical cannot move anymore in the central column, he/she
can make a greater number of moves than Horizontal, i.e., moves(H)<moves(V).
We denote with |A| the number of sub-rectangles in the A class, with |B| the
number of sub-rectangles in the B class, and so on.

246 A. Cincotti and H. Iida

Both Vertical and Horizontal have placed the same number of dominoes, there-
fore

|A| = |C| + 2|D| + 2|E|
It follows that

moves(H) ≤ |C| + 1
= |A| − 2|D| − 2|E| + 1
≤ |A| + 1
< 2|A| + |B| + �|C|/2� + |D|
≤ moves(V)

The condition |A|+1 < 2|A|+ |B|+�|C|/2�+ |D| is always true, as shown below.

– If |A| = 0 then |C| = 0, |D| = 0, |E| = 0, and |B| ≥ 2 because by hypothesis
n ≥ 4,

– If |A| = 1 then |C| = 1, |D| = 0, |E| = 0,
– If |A| ≥ 2 then 1 + |A| < 2|A|.

Theorem 2. Let G = [n, 5] be a rectangle of Synchronized Domineering with
n ≥ 12. Then Vertical has a winning strategy.

Proof. In the beginning, Vertical will always move into the columns b and d of
the board, i.e., (k, b), (k + 1, b) and (k, d), (k + 1, d), where k is an odd number,
as shown in Fig. 2. When Vertical cannot make moves anymore in the columns b
and d, let us imagine that we divide the main rectangle into 2×5 sub-rectangles
starting from the top of the board (by using horizontal cuts). Of course, if n
is odd, then the last sub-rectangle will be of size 1 × 5 and Horizontal will be

a b c d e
1
2

...
...

...
...

...

k
k + 1

...
...

...
...

...

n − 1
n

Fig. 2. G = [n, 5]

The Game of Synchronized Domineering 247

able to make two more moves. We can classify all these sub-rectangles into 10
different classes according to:

– The number of vertical dominoes already placed in the sub-rectangle (vd),
– The number of horizontal dominoes already placed in the sub-rectangle (hd),
– The number of moves that Vertical is able to make in the worst case, in all

the sub-rectangles of that class (vm),
– The number of moves that Horizontal is able to make in the best case, in all

the sub-rectangles of that class (hm),

as shown in Table 3.

Table 3. The 10 classes for 2 × 5 sub-rectangles

Class vd hd vm hm Example

A 2 0 3|A| 0

B 2 1 2|B| 0

C 2 2 |C| 0

D 1 1 ∗ |D|

E 1 2 ∗ |E|

F 1 3 0 0

G 0 2 ∗ 2|G|

H 0 3 0 |H |

I 0 4 0 0

J 1 2 |J | |J |

248 A. Cincotti and H. Iida

We denote with |A| the number of sub-rectangles in the A class, with |B| the
number of sub-rectangles in the B class, and so on. The value of vm in all the
sub-rectangles belonging to the classes D, E, and G considered as a group is
|D| + �|D|/2 + |E|/2 + |G|/2�. The last statement is true under the assumption
that Vertical moves into the sub-rectangles of these classes (D, E, and G) as
long as they exist before to move into the sub-rectangles of the other classes.

When Vertical cannot move anymore in the columns b and d, both Vertical
and Horizontal have placed the same number of dominoes, therefore

2|A| + |B| = |E| + 2|F | + 2|G| + 3|H | + 4|I| + |J | (1)

Let us now prove by contradiction that Vertical can make a larger number of
moves than Horizontal.

Assume therefore moves(V) ≤ moves(H) using the data in Table 3

3|A| + 2|B| + |C| + |D|+
�|D|/2 + |E|/2 + |G|/2� + |J | ≤ |D| + |E| + 2|G| + |H | + |J | + 2

and applying Equation 1

|A| + |B| + |C| + |D|+
�|D|/2 + |E|/2 + |G|/2�+|J |+

|E| + 2|F | + 2|G| + 3|H | + 4|I| + |J | ≤ |D| + |E| + 2|G| + |H | + |J | + 2

therefore

|A| + |B| + |C| + �|D|/2 + |E|/2 + |G|/2� + 2|F | + 2|H | + 4|I| + |J | ≤ 2

which is false because

|A| + |B| + |C| + |D| + |E| + |F | + |G| + |H | + |I| + |J | = �n/2�

and by hypothesis n ≥ 12. So moves(V) ≤ moves(H) does not hold and conse-
quently moves(H) < moves(V).

By symmetry the following two theorems hold.

Theorem 3. Let G = [3, n] be a rectangle of Synchronized Domineering with
n ≥ 4. Then Horizontal has a winning strategy.

Theorem 4. Let G = [5, n] be a rectangle of Synchronized Domineering with
n ≥ 12. Then Horizontal has a winning strategy.

Theorem 5. Let G = [n, 2] be a rectangle of Synchronized Domineering. If n is
even then Vertical has a drawing strategy.

The Game of Synchronized Domineering 249

a b
1
2

...
...

k
k + 1

...
...

n − 1
n

Fig. 3. G = [n, 2]

Proof. In the beginning, Vertical will always move into the column a of the
board, i.e., (k, a), (k+1, a), where k is an odd number, as shown in Fig. 3. When
Vertical cannot move anymore in the column a, let us imagine that we divide the
main rectangle into 2 × 2 sub-rectangles starting from the top of the board (by
using horizontal cuts). We can classify all these sub-rectangles into 4 different
classes.

– Class A. Vertical is able to make one more move in each sub-rectangle of
this class.

– Class B. Neither Vertical nor Horizontal are able to make another move in
the sub-rectangles of this class.

or

– Class C. Horizontal is able to make one more move in each sub-rectangle of
this class.

or

– Class D. In each sub-rectangle of this class Horizontal has already made two
moves.

250 A. Cincotti and H. Iida

We show that when Vertical cannot move anymore in the column a, he/she
can make a greater or equal number of moves compared to Horizontal, i.e.,
moves(H) ≤ moves(V). We denote with |A| the number of sub-rectangles in
the class A, with |B| the number of sub-rectangles in the class B, and so on. We
observe that |A| = |C| + 2|D| because both Vertical and Horizontal have placed
the same number of dominoes. We have

moves(H) = |C|
= |A| − 2|D|
≤ |A|
≤ moves(V)

By symmetry the following theorem holds.

Theorem 6. Let G = [2, n] be a rectangle of Synchronized Domineering. If n is
even then Horizontal has a drawing strategy.

5 Further Research

The previous results suggest the following theorem.

Suggested Theorem 7. Let G be an m × n rectangle of Synchronized Domi-
neering. We can distinguish 7 different sub-cases:

– If m = n, then G = D,
– If m > n and n is odd, then G = V ,
– If m > n, n is even, and m is even, then G = D,
– If m > n, n is even, and m is odd, then G = H,
– If m < n and m is odd, then G = H,
– If m < n, m is even, and n is even, then G = D,
– If m < n, m is even, and n is odd, then G = V .

This theorem is supported by the previous theorems and the results for small
boards, but further efforts are necessary for a formal proof.

Acknowledgment. The authors wish to thank the anonymous referees for
helpful suggestions which improved the presentation of the paper. Also, we would
like to thank Mary Ann Mooradian for a careful reading of the manuscript.

References

1. Berlekamp, E.R.: Blockbusting and Domineering. Journal of Combinatorial Theory
Series A 49(1), 67–116 (1988)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical
Plays. Academic Press, San Diego (1982)

The Game of Synchronized Domineering 251

3. Breuker, D.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Solving 8×8 Domineering.
Theoretical Computer Science 230(1-2), 195–206 (2000)

4. Bullock, N.: Domineering: Solving Large Combinatorial Search Spaces. ICGA Jour-
nal 25(2), 67–84 (2002)

5. Cincotti, A., Iida, H.: The Game of Synchronized Cutcake. In: Proceedings of the
IEEE Symposium on Computational Intelligence and Games, pp. 374–379 (2007)

6. Cincotti, A., Iida, H.: The Game of Synchronized Maundy Cake. In: Proceedings
of the 7th Annual Hawaii International Conference on Statistics, Mathematics and
Related Fields, pp. 422–429 (2008)

7. Conway, J.H.: On Numbers and Games. Academic Press, San Diego (1976)
8. Gardner, M.: Mathematical games. Scientific American 230(2), 106–108 (1974)
9. Lachmann, M., Moore, C., Rapaport, I.: Who Wins Domineering on Rectangular

Boards. In: Nowakowski, R.J. (ed.) More Games of No Chance, vol. 42, pp. 307–315.
Cambridge University Press, Cambridge (2002)

A Retrograde Approximation Algorithm for

Multi-player Can’t Stop

James Glenn1, Haw-ren Fang2, and Clyde P. Kruskal3

1 Department of Computer Science, Loyola College in Maryland,
4501 N Charles St. Baltimore, MD 21210, USA

jglenn@cs.loyola.edu
2 Department of Computer Science and Engineering, University of Minnesota,

200 Union St. S.E., Minneapolis, Minnesota, 55455, USA
hrfang@cs.umn.edu

3 Department of Computer Science, University of Maryland,
A.V. Williams Building, College Park, Maryland 20742, USA

kruskal@cs.umd.edu

Abstract. An n-player, finite, probabilistic game with perfect informa-
tion can be presented as a 2n-partite graph. For Can’t Stop, the graph
is cyclic and the challenge is to determine the game-theoretical values
of the positions in the cycles. We have presented our success on tack-
ling one-player Can’t Stop and two-player Can’t Stop. In this article we
study the computational solution of multi-player Can’t Stop (more than
two players), and present a retrograde approximation algorithm to solve
it by incorporating the multi-dimensional Newton’s method with retro-
grade analysis. Results of experiments on small versions of three- and
four-player Can’t Stop are presented.

1 Introduction

Retrograde analysis has been successfully applied to convergent, deterministic,
finite, and two-player zero-sum games with perfect information [10], such as
checkers [13] and Awari [12]. In contrast, its application to probabilistic games
was generally limited to those with game graph representation being acyclic,
such as Yahtzee [6,14] and Solitaire Yahtzee [7]; Pig1 is a notable exception [11].
We consider the probabilistic games in graph representation with cycles, and
are particularly interested in Can’t Stop2. Our success of tackling one-player
and two-player Can’t Stop was presented in [8] and [9], respectively. This ar-
ticle presents our study of multi-player Can’t Stop that allows more than two

1 See, e.g., http://en.wikipedia.org/wiki/Pig (dice).
2 Can’t Stop was designed by Sid Sackson and marketed first by Parker Brothers and

now by Face 2 Face Games. It has won a Major Fun award from Majorfun.com and
received a Preferred Choice Award from Creative Child Magazine. The rules can be
found at http://en.wikipedia.org/wiki/Can’t Stop.

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 252–263, 2008.
c© IFIP International Federation for Information Processing 2008

A Retrograde Approximation Algorithm for Multi-player Can’t Stop 253

players. Our method can also be applied to the multi-player versions of some
other probabilistic games, such as Pig, Pig Mania3, and Hog4.

An n-player probabilistic game can be represented as a 2n-partite graph
G = (U1, . . . , Un, V1, . . . , Vn, E), where Ui corresponds to random events and
Vi corresponds to deterministic events for the ith players for i = 1, . . . , n, and
E = (

⋃n
i=1(Ui×Vi))∪(

⋃n
i=1 Vi×

⋃n
i=1 Ui). In some games, such as Can’t Stop, the

graph representation is cyclic, which causes difficulty in designing a bottom-up
retrograde algorithm. In this article we give a retrograde approximation algo-
rithm to solve n-player Can’t Stop, by incorporating the n-dimensional New-
ton’s method into a retrograde algorithm. This indeed is a generalization of the
method for two-player Can’t Stop [9,5].

The rest of this paper is organized as follows. Section 2 abstracts multi-player
probabilistic games. Section 3 gives a retrograde approximation algorithm to
solve multi-player Can’t Stop. Section 4 presents the indexing scheme. Section 5
summarizes the results of the experimental tests. Our findings are summarized
in Sect. 6.

2 Abstraction of Probabilistic Games

We use a game graph G = (U1, . . . , Un, V1, . . . , Vn, E) to represent an n-player
probabilistic game (n ≥ 2), where roll and move positions of the ith player
are in Ui and Vi, respectively, for i = 1, . . . , n, and E = (

⋃n
i=1 Ui × Vi) ∪

(
⋃n

i=1 Vi ×
⋃n

i=1 Ui). Each position u is associated with a vector of scores f(u) =
(f1(u), . . . , fn(u)) ∈ R

n, where fi(u) represents the expected score that the ith
player achieves in optimal play from u for i = 1, . . . , n. This mapping is denoted
by a function f :

⋃n
i=1 Ui ∪Vi → R

n, which is also called a database of the game.
For each non-terminal roll position u ∈

⋃n
i=1 Ui, each outgoing edge (u, v) has

a weight 0 < p((u, v)) ≤ 1 indicating the probability that the game in u will
change into move position v. Then

f(u) =
∑

∀v with (u,v)∈E

p((u, v))f(v). (1)

In optimal play, each player maximizes locally his score5. Consider the move
positions in Vi of the ith player. For all non-terminal move positions vi ∈ Vi,

f(vi) = f(argmax{fi(u) : (vi, u) ∈ E}). (2)

In other words, the ith player chooses the move to maximize his score at each
move position vi ∈ Vi. A database f that satisfies both conditions (1) and (2) is
called a solution to G.

First, we consider (1). In this paper we let fi(u) ∈ [0, 1] be the probability
that the ith player at position u will win the game in optimal play, although in
3 See, e.g., http://en.wikipedia.org/wiki/Pass the Pigs.
4 See, e.g., http://en.wikipedia.org/wiki/Pig (dice)#Rule Variations.
5 We use ‘he/his’ when both ‘she/her’ and ‘he/his’ are possible, respectively.

254 J. Glenn, H.-r. Fang, and C.P. Kruskal

general it can be from any scoring method. Note that we have no assumption
of the number of winners at the end of a game. It can be no winner or multiple
winners. If a game always ends with exactly one winner, then

∑n
i=1 fi(w) = 1

for all w ∈
⋃n

i=1 Ui ∪ Vi. If in addition n = 2, this model coincides with the
zero-sum two-player model presented in [9,5] by setting f2(u) = 1 − f1(u).

Then we consider (2). Ambiguity occurs if there is more than one maximizer of
fi(u) that results in a different f(u). In such a case two possible disambiguation
rules are listed as follows.

– Take the average of f(u) of all maximizers of fi(u), which means to choose
randomly a maximizer.

– Choose a maximizer according to additional assumptions (e.g., collusion be-
tween players).

If some ith player’s goal is not to maximize his own score but to attack some
jth player, then (2) is replaced by

f(vi) = f(argmin{fj(u) : (vi, u) ∈ E})

for vi ∈ Vi. Ambiguity, if present, can be handled in a similar way stated above.
We illustrate an example in Fig. 1, where u1, ū1 ∈ U1, v1, v̄1 ∈ V1, u2, ū2 ∈ U2,

v2, v̄2 ∈ V2, u3, ū3 ∈ U3, and v3, v̄3 ∈ V3. The three terminal vertices are ū1, ū2

and ū3 with position values f(ū1) = (1, 0, 0), f(ū2) = (0, 1, 0), and f(ū3) =

Fig. 1. An example of three-player game graph G = (U1, V1, U2, V2, U3, V3, E)

A Retrograde Approximation Algorithm for Multi-player Can’t Stop 255

(0, 0, 1). A cycle is formed by the edges between vertices u1, v1, u2, v2, u3, v3.
This example simulates the last stage of a game of three-player Can’t Stop. At
position u1, the first player has 50% chance of winning the game immediately,
and a 50% chance of being unable to advance and therefore making no progress
at this turn. The second and third players are in the same situation at position
u2 and u3, respectively. Let f(u1) = (x, y, z). By (1) and (2),

f(v2) = f(u3) = (
1
2
x,

1
2
y,

1
2
z +

1
2
),

f(v1) = f(u2) = (
1
4
x,

1
4
y +

1
2
,
1
4
z +

1
4
), (3)

f(v3) = f(u1) = (
1
8
x +

1
2
,
1
8
y +

1
4
,
1
8
z +

1
8
) = (x, y, z).

Solving the last equation in (3), we obtain x = 4
7 , y = 2

7 and z = 1
7 , the

winning probabilities of the three players when it is the first player’s turn to
move6. This example reveals that solving multi-player Can’t Stop is equivalent
to solving a system of piecewise linear equations. We give in Sect. 3 an approx-
imation algorithm to solve it by incorporating the multi-dimensional Newton’s
method with retrograde analysis.

Because of the potential ambiguity of (2), the existence and uniqueness of the
solution of multi-player Can’t Stop may need further assumptions, and hence
are not investigated in this paper.

Note that, however, if the number of players is two (i.e., n = 2) and the
position value f(u) = (f(u1), f(u2)) satisfies f1(u)+f2(u) = 1 for u ∈

⋃2
i=1 Ui ∪

Vi (i.e., always exactly one winner at the end), then no ambiguity of (2) would
occur. For two-player Can’t Stop we have proved the existence and uniqueness
of the solution in [5].

3 Retrograde Solution for Multi-player Can’t Stop

Can’t Stop is a game for up to four players. It can be generalized to allow even
more players. In this section we give a retrograde approximation algorithm for
n-player Can’t Stop, by incorporating the n-dimensional Newton’s method with
retrograde analysis. This is generalized from the result of the two-player version
game in [9]. We begin with acyclic game graphs for simplicity.

3.1 Game Graph Is Acyclic

For games with acyclic game graphs, such as multi-player Yahtzee, the bottom-
up propagation procedure is clear. Algorithm 1 gives the pseudocode to construct
the database for an acyclic game graph.

In Algorithm 1, 0(n) means a zero vector of size n, and −∞(n) follows the
same syntax. Assuming all terminal vertices are in

⋃n
i=1 Ui, the set S2 is initially

6 Another small example of simplified Parcheesi can be found in [3, Chapter 3].

256 J. Glenn, H.-r. Fang, and C.P. Kruskal

Algorithm 1. Construct database f for an acyclic game graph
Require: G = (U1, V1, . . . , Un, Vn, E) is acyclic.
Ensure: Program terminates with (1) and (2) satisfied.

∀u ∈ Sn
i=1 Ui, f(u) ← 0(n). � Initialization Phase

∀v ∈ Sn
i=1 Vi, f(v) ← −∞(n).

S1 ← {terminal positions in
Sn

i=1 Ui}
S2 ← {terminal positions in

Sn
i=1 Vi} � (†)

∀w ∈ S1 ∪ S2, set f(w) to be its position value.
repeat � Propagation Phase

for all u ∈ S1 and (v, u) ∈ E do
Determine i such that v ∈ Vi.
f(v) ← f(argmax{fi(w) : (v, w) ∈ E})
if all children of v are determined then � (*)

S2 ← S2 ∪ {v}
end if

end for
S1 ← ∅
for all v ∈ S2 and (u, v) ∈ E do

f(u) ← f(u) + p((u, v))f(v)
if all children of u are determined then � (**)

S1 ← S1 ∪ {u}
end if

end for
S2 ← ∅

until S1 ∪ S2 = ∅

empty and (†) is not required. However, it is useful for the reduced graph Ĝ in
Algorithms 2 and 3. We say a vertex is determined if its position value is known.
By (1) and (2), a non-terminal vertex cannot be determined until all its children
are determined. The sets S1 and S2 store all determined but not yet propagated
vertices. A vertex is removed from them after it is propagated. The optimal
playing strategy is clear: given v ∈ Vi, a position with the ith player to move,
always make the move (v, u) that maximizes fi(u).

In an acyclic graph, the level (the longest distance to the terminal vertices)
for each vertex is well-defined. In Algorithm 1, the position values are uniquely
determined level by level. Hence a solution exists. A non-terminal position has
its value determined whenever all its children are determined at (*) and (**) in
Algorithm 1. One can use a boolean array to trace the determined positions in the
implementation. The uniqueness of the solution is subject to the disambiguation
rule for (2). If all terminal positions w satisfy

∑n
i=1 fi(w) = 1, so do all the

positions, by recursively applying (1) and (2).
In Algorithm 1, an edge (u, v) can be visited as many times as the out-degree

of u because of (*) and (**). The efficiency can be improved as follows. We
associate each vertex with a number of undetermined children, and decrease the
value by one whenever a child is determined. A vertex is determined after the
number is decreased down to zero. As a result, each edge is visited only once

A Retrograde Approximation Algorithm for Multi-player Can’t Stop 257

and the algorithm is linear. This is called the children counting strategy. For
games like Yahtzee, the level of each vertex, the longest distance to the terminal
vertices, is known a priori. Therefore, we can compute the position values level
by level. Each edge is visited only once without counting the children. Note that
Algorithm 1, is related to dynamic programming. See, for example, [1] for more
information.

3.2 Game Graph Is Cyclic

If we apply Algorithm 1 to a game graph with cycles, then the vertices in the
cycles cannot be determined. A naive algorithm to solve the game is described as
follows. Given a cyclic game graph G = (U1, V1, . . . , Un, Vn, E), we prune some
edges so the resulting Ĝ = (U1, V1, . . . , Un, Vn, Ê) is acyclic, and then solve Ĝ by
Algorithm 1. The solution to Ĝ is treated as the initial estimation for G, denoted
by function f̂ . We approximate the solution to G by recursively updating f̂ using
(1) and (2). If f̂ converges, it converges to a solution to G. The pseudocode is
given in Algorithm 2.

Algorithm 2. A naive algorithm to solve a cyclic game graph
Ensure: If f̂ converges, it converges to a solution to G = (U1, V1, . . . , Un, Vn, E).

Obtain an acyclic graph G = (U1, V1, . . . , Un, Vn, Ê), Ê ⊂ E. � Estimation Phase
Compute the solution f̂ to Ĝ by Algorithm 1. � (†)
Use f̂ as the initial guess for G.
S1 ← {terminal positions of Ĝ in

Sn
i=1 Ui}.

S2 ← {terminal positions of Ĝ in
Sn

i=1 Vi}.
repeat � Approximation Phase

for all u ∈ S1 and (v, u) ∈ E do
Determine i such that v ∈ Vi.
f̂(v) ← f(argmax{f̂i(w) : (v, w) ∈ E}). � (*)

end for
S1 ← ∅
for all v ∈ S2 and (u, v) ∈ E do

f̂(u) ← P
∀w with (u,w)∈E

p((u, w))f̂(w) � (**)

S1 ← S1 ∪ {u}
end for
S2 ← ∅

until f̂ converges.

An example is illustrated by solving the game graph in Fig. 1. We remove
(v3, u1) to obtain the acyclic graph Ĝ, and initialize the newly terminal vertex v3

with position value (1, 0, 0). The solution for Ĝ has f̂(u1) = (5
8 , 1

4 , 1
8). The update

is repeated with f̂(u1) = (5
8 , 1

4 , 1
8), (37

64 , 9
32 , 9

32), . . . , (4·8k+3
7·8k , 2(8k−1)

7·8k , 8k−1
7·8k), . . . ,

which converges to (4
7 , 2

7 , 1
7), the correct position value of u1. Therefore f̂ con-

verges to the solution to G. Let ei(k) be the magnitude difference between f̂i(u1)
at the kth step and its converged value; then ei(k+1)

ei(k) = 1
8 for i = 1, 2, 3. Hence it

258 J. Glenn, H.-r. Fang, and C.P. Kruskal

converges linearly. This naive Algorithm 2 is related to value iteration. See, for
example, [2] for more information.

For computational efficiency, we split a given game graph into strongly
connected components, and consider the components in bottom-up order. For
multi-player Can’t Stop, each strongly connected component consists of all the
positions with a certain placement of the squares and various placement of the
at most three neutral markers for the player on the move. The roll positions
with no marker are the anchors of the component. When left without a legal
move, the game goes back to one of the anchors, and results in a cycle. The
outgoing edges of each non-terminal component lead to the anchors in the sup-
porting components. The terminal components are those in which some player
has won three columns. Each terminal component has only one vertex with po-
sition value in the form (0, . . . , 0, 1, 0, . . . , 0); the ith entry is 1 if the i player
wins, and otherwise it is 0.

Denote by a cyclic game graph G = (U1, V1, . . . , Un, Vn, E) a non-terminal
component of multi-player Can’t Stop and its outgoing edges to the supporting
components. Let Gi be the subgraph of G induced by Ui ∪ Vi for i = 1, . . . , n.
The following two properties hold.

P1. All the graphs Gi for i = 1, . . . , n are acyclic.
P2. There exist wi ∈ Ui, such that the edges from Gi to the other vertices

(i.e., not in Ui ∪ Vi) all end at wi+1 for i = 1, . . . , n, where we have defined
wn+1 ≡ w1 for notational convenience.

Properties (P1) and (P2) also hold in some other probabilistic games in
strongly connected components, such as Pig, Pig Mania, and Hog. Therefore,
the following discussion and our method are applicable to these games.

Let Ĝi = (Ui ∪ {wi+1}, Vi, Ei) be the induced bipartite subgraph of G for
i = 1, . . . , n. By property (P1), Ĝi is acyclic. All the terminal vertices in Ĝi

other than wi+1 are also terminal in G. By property (P2), the union of Ĝi for
i = 1, . . . , n forms G. Let xi+1 be the estimated position value of wi+1. Here
xn+1 ≡ x1 because of notational convenience wn+1 ≡ w1. We can construct a
database for Ĝi with xi+1 by Algorithm 1. Denote by ĝi(xi+1, w) the position
value of w ∈ Ui ∪ Vi that depends on xi+1. Given x2, . . . , xn+1, the values of
ĝi(xi+1, w) for w ∈ Ui ∪ Vi, i = 1, . . . , n constitute a solution to G, if and only if

ĝi(xi+1, wi) = xi, i = 1, . . . , n. (4)

The discussion above suggests to solve the system of equations (4) directly. An
example is illustrated with the game graph in Fig. 1 as follows. We treat u1, u2, u3

as the three anchors w1, w2, w3, and let x1, x2, x3 be the initial estimate of the
position values of them, respectively. The equations (4) are

x3 = 0.5x1 + (0, 0, 0.5);
x2 = 0.5x3 + (0, 0.5, 0); (5)
x1 = 0.5x2 + (0.5, 0, 0).

A Retrograde Approximation Algorithm for Multi-player Can’t Stop 259

The solution of this linear system is x1 = (4
7 , 2

7 , 1
7), x2 = (1

7 , 4
7 , 2

7) and x3 =
(2
7 , 1

7 , 4
7), which are the exact position values of u1, u2 and u3, respectively.

Solving (4) by propagation in value corresponds to the fixed point iteration
for computing fixed points of functions7, and therefore linear convergence can
be expected. In contrast, solution (3) inspires us to propagate in terms of the
position value x1 of w1. The resulting method corresponds to the n-dimensional
Newton’s method (see, e.g., [4, Chapter 5]). The pseudocode is given in
Algorithm 3.

Algorithm 3. An efficient algorithm to solve a cyclic game graph
Require: G = (U1, V1, . . . , Un, Vn, E) satisfies properties (P1) and (P2).
Ensure: If f̂ converges, it converges to a solution to G in the rate of Newton’s method.

{Estimation Phase:}
Denote the induced subgraphs Ĝi = (Ui∪{wi+1}, Vi, Ei) for i = 1, . . . , n; wn+1 ≡ w1.
{Note that all Ĝi are acyclic and

Sn
i=1 Ei = E}.

Estimate the position values of anchors wi ∈ Ui, denoted by xi for i = 1, . . . , n.
{Approximation Phase:}
Estimate the position value of wn+1 (i.e., w1); denote it by x1.
repeat

for all i = n, n−1 . . . , 1 do
Solve Ĝi based on xi+1 in terms of x1 by Algorithm 1.
{Propagation by (1) and (2) is done in terms of x1.}

end for
{We have the position value of w1 in Ĝ1 in terms of x1, denoted by h(x1).}
Solve h(x1) = x1 for new estimate x1.

until it converges (i.e., x1 is unchanged in value).

Note that Newton’s method needs only one iteration to solve a linear system.
Indeed, solution (3) is an illustration of applying Algorithm 3 to solve the small
example (5), where (x, y, z) in (3) plays the role of x1 in Algorithm 3. In this case
we obtain the solution by one iteration, since the system (5) is linear. In practice,
however, the equations (4) are piecewise linear. Hence, multiple iterations are
expected to reach the solution. In the experiments on simplified versions of three-
and four-player Can’t Stop, it always converged, although Newton’s method does
not guarantee convergence in general.

Consider Algorithm 3. In the estimation phase, the better the initial estimated
position value x1 of the anchors w1(≡ wn+1), the fewer iterations are needed to
reach the solution. Assuming the game always has exactly one winner at the end,
we may reduce one dimension by setting fn(u) = 1−

∑n−1
i=1 fi(u) for all positions

u ∈
⋃n

i=1 Ui ∪Vi. This change of Algorithm 3 results in a method corresponding
to the (n−1)-dimensional Newton’s method.

In Algorithm 3, the graphs Ĝ1, . . . , Ĝn are disjoint except for the anchors
w1, . . . , wn. Therefore, in the estimation phase, we may initialize the position
values x1, . . . , xn ∈ R

n of w1, . . . , wn. In the approximation phase, we propagate
7 See, for example, http://en.wikipedia.org/wiki/Fixed point iteration.

260 J. Glenn, H.-r. Fang, and C.P. Kruskal

for Ĝ1, . . . , Ĝn in terms of x2, . . . , xn+1 ∈ R
n (xn+1 ≡ x1), respectively and

separately. The resulting algorithm corresponds to the n2-dimensional Newton’s
method and is natively parallel on n processors. We illustrate an example by
solving the game graph in Fig. 1. The first Newton’s step results in the linear
system (5) of 9 variables, which leads to the solution of the game graph in one
iteration. (Note that here x1, x2, x3 ∈ R

3.) In general, the equations (4) are
piecewise linear and require multiple Newton’s iterations to reach the solution.

A more general model is that an n-player game graph G has m anchors
w1, . . . , wm (i.e., removing the outgoing edges of w1, . . . , wm results in an acyclic
graph), but does not satisfy properties (P1) and (P2). In this model the incor-
poration of mn-dimensional Newton’s method is still possible, but it may not be
natively parallel.

4 Indexing Scheme

We use two different indexing schemes for positions in n-player Can’t Stop: one
for anchors and another for non-anchors. Because we can discard the position
values of non-anchors once we have computed the position value of their anchors,
speed is more important than space when computing the indices of non-anchors.
Therefore, we use a mixed radix scheme like the one used for one-player Can’t
Stop [8] and two-player Can’t Stop [9] for non-anchor positions.

In this scheme, anchors are described by (x1
2, . . . , x

1
12, x

2
2, . . . , x

n
12, t) where

xp
c represents the position of player p’s square in column c, and t is whose

turn it is. Components and positions within components are described in the
same way, except that since a component includes n anchors that differ only in
whose turn it is, t may be omitted when describing a component, and within
a component we record the positions of neutral markers as if they are player
t’s squares (given the tuple describing a component and a tuple describing a
position with that component, we can easily determine where the neutral mark-
ers are). Therefore, a position within a component (x1

2, . . . , x
1
12, x

2
2, . . . , x

n
12, t) is

(y1
2 , . . . , y

1
12, y

2
2, . . . , y

n
12, t) where, for all c and p, yp

c = xp
c , except that in at most

three locations we may have yt
c > xt

c (player t may have advanced the neutral
markers in three columns). The yp

c and t are used as the digits in the mixed
radix system. The place value of the t digit is 1. The place value of the y1

2 digit
is v1

2 = 2, and in general vp
c = vp

c−1 · (1 + lc−1) if c > 2 and vp
c = vp−1

12 · (1 + l12)
if c = 2 and p > 1, where lc denotes the length of column c. The index of a
position is then (t − 1) +

∑n
p=1

∑12
c=2(y

p
c · vp

c).
Because the probability database for the anchors is kept, space is an important

consideration when indexing anchors. In the variant used in our experiments, an
anchor (x1

2, . . . , x
n
12, t) is illegal if xp

c = xp′
c > 0 for some p �= p′ (players’ squares

cannot occupy the same location with a column). Because some positions are
not valid anchors, the mixed radix system described above does not define a
bijection between anchors and any prefix of N. The indexing scheme therefore
maps some indices to nonexistent anchors.

A Retrograde Approximation Algorithm for Multi-player Can’t Stop 261

Furthermore, once a column is closed, the locations of the markers in that
column are irrelevant; only which player won matters. For example, an anchor
u with x1

5 = 9 and x2
5 = x3

5 = 0 also represents the positions with x2
5, x

3
5 ∈

{1, . . . , 8} and all other markers in the same places as u. If the probability
database is stored in an array indexed using the mixed radix system as for non-
anchors, then the array would be sparse: for the official 3-player game, over
99.9% of the entries would be wasted on illegal and equivalent indices.

In order to avoid wasting space in the array and to avoid the structural over-
head needed for more advanced data structures, a different indexing scheme is
used that results in fewer indices mapping to illegal, unreachable, or equivalent
positions.

We write each position as ((x1
2, . . . , x

n
2), . . . , (x1

12, . . . , x
n
12), t). Associate with

each n-tuple (x1
c , . . . , x

n
c) an index zc corresponding to its position on a list of

the legal n-tuples of locations in column c (i.e., on a list of n-tuples (y1
c , . . . , yn

c)
such that yi

c �= yj
c unless yi

c = yj
c = 0 or i = j, and if yi

c = lc then yj
c = 0 for

j �= i). For the three-player games and a column with lc = 2 this list would be
(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 2), (0, 2, 0), (2, 0, 0). Therefore, the anchor
((0, 0, 1), (2, 0, 0), (1, 0, 0), (0, 0, 0), . . . , (0, 0, 0), 1) (that is, the position in which
player 3 has a square in the first space of column 2, player 1 has squares two
spaces into column 3 and one space into column 4, and it is player one’s turn)
would be encoded as (1, 6, 3, 0, . . . , 0, 1). Those zc and t are then used as digits
in a mixed radix system to obtain the index

(t − 1) +
12∑

c=2

zc · 2
c−1∏
d=2

T (d),

where the T (d) term in the product is the number of legal, distinct tuples of
locations in column d; T (d) = n +

∑n
z=0

(
n
z

)
P (ld − 1, z). The list of n-tuples

used to define the zi’s can be constructed so that if component u is a supporting
component of v then the indices of u’s anchors are greater than the indices of
v’s and therefore we may iterate through the components in order of decreasing
index to avoid counting children while computing the solution.

There is still redundancy in this scheme: when columns are closed, what is
important is which columns have been closed and the total number won by
each player, but not which columns were won by each player. Before executing
Algorithm 3 on a component, we check whether an equivalent component has
already been solved. We deal with symmetric positions in the same way.

5 Experiments

The official version of three- and four-player Can’t Stop has over 1025 and 1032

components – too many to solve with currently available technology. As proof
of concept, we alternatively have solved simplified versions of multi-player Can’t
Stop. The simplified games use dice with fewer than six sides, may have shorter
columns than the official version, and may award a game to a player for complet-
ing fewer than 3 columns. Let (p, n, k, c) Can’t Stop denote the p-player game

262 J. Glenn, H.-r. Fang, and C.P. Kruskal

Table 1. Results of solving simple versions of Multi-player Can’t Stop

(p, n, k, c) Components Positions Time
P (win)

P1 P2 P3 P4

(3, 2, 1, 1) 13 207 0.375s 1.000 0.000 0.000
(3, 2, 2, 1) 340 7,410 1.72s 0.804 0.163 0.0332
(3, 2, 3, 1) 6,643 176,064 14.7s 0.717 0.217 0.0657
(3, 3, 1, 2) 74,302 7,580,604 34m45s 0.694 0.230 0.0760
(3, 3, 2, 2) 3,782,833 687,700,305 2d10h 0.592 0.277 0.130
(4, 3, 1, 1) 48,279 2,168,760 19m30s 0.920 0.0737 0.00591 0.000474

played with n-sided dice and columns of length k, k+2, . . . , k+2(n−1), . . . , k that
is won when a player completes c columns.

We have implemented Algorithm 3 in Java and solved (p, n, k, c) Can’t Stop
for six combinations of small values of p, n, k, and c. Note that, in all cases, if
n = 2 then c = 1 and if n = 3 then c = 2 because if we allow larger values of c
then the game may end with no player winning the required number of columns.
We used an initial estimate of (1

p , . . . , 1
p) for the position values of the anchors

within a component. We assume that, when a player has a choice of two or more
moves that would maximize his expected score but would have different effects
on the other players, he makes the same choice each time; exactly which choice
is made is determined arbitrarily by the internal ordering of the moves.

Table 1 shows, for the six examined versions of the game, the size of the game
graph, the time it took the algorithm to run, and the probability that the each
player wins, assuming that each player plays optimally. The listed totals for
components and positions within those components do not include the compo-
nents that were not examined because of equivalence to other components (for
(3,3,2,2) Can’t Stop there were 4,539,783 such components).

In the five most simplified versions listed in Table 1, the probability of winning
the game in a single turn is so high that the optimal strategy never chooses to
end a turn early. Colluding players also have the same strategy: in order to
prevent one player from winning it is best in these small versions to try to win
straightforwardly on the current turn. Because no player ever ends a turn with
partial progress in a column, there is never a question of whether or not to
avoid an otherwise desirable column to benefit an ally. For (3,3,2,2) Can’t Stop
there are a few circumstances in which players should end their turns early; this
allows a modest gain from collusion: players two and three can reduce player
one’s chance of winning by about 0.03%.

6 Our Findings

We used a 2n-partite graph to abstract an n-player probabilistic game. Given
a position u, its position value is a vector f(u) = (f1(u), . . . , fn(u)) ∈ [0, 1]n,
with fi(u) indicating the winning rate of the ith player for i = 1, . . . , n. We
investigated the game of multi-player Can’t Stop. To obtain the optimal solution,

A Retrograde Approximation Algorithm for Multi-player Can’t Stop 263

we generalized an approximation algorithm from [5,8,9] by incorporating the
n-dimensional Newton’s method with retrograde analysis. The technique was
then used to solve simplified versions of three- and four-player Can’t Stop. The
official versions of three- and four-player Can’t Stop have too many components
to solve with currently available technology. It may be possible to find patterns
in the solutions to the simplified games and use those patterns to approximate
optimal solutions to the official game.

References

1. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. I.
Athena Scientific (2005)

2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. II.
Athena Scientific (2007)

3. Binmore, K.: Playing for Real: A Text on Game Theory. Oxford University Press,
USA (2007)

4. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, USA, SIAM, Philadelphia (1996)

5. Fang, H.-r., Glenn, J., Kruskal, C.P.: Retrograde approximation algorithms for
jeopardy stochastic games. ICGA Journal 31(2), 77–96 (2008)

6. Glenn, J.: An optimal strategy for Yahtzee. Technical Report CS-TR-0002, Loyola
College in Maryland, 4501 N. Charles St, Baltimore MD 21210, USA (May 2006)

7. Glenn, J.: Computer strategies for solitaire yahtzee. In: IEEE Symposium on Com-
putational Intelligence and Games (CIG 2007), pp. 132–139 (2007)

8. Glenn, J., Fang, H.-r., Kruskal, C.P.: A retrograde approximate algorithm for one-
player Can’t Stop. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M(J.)
(eds.) CG 2006. LNCS, vol. 4630, pp. 148–159. Springer, Heidelberg (2007)

9. Glenn, J., Fang, H.-r., Kruskal, C.P.: A retrograde approximate algorithm for two-
player Can’t Stop. In: Glenn, J. (ed.) CGW 2007 Workshop, Amsterdam, The
Netherlands, pp. 145–156 (2007)

10. van den Herik, H.J., Uiterwijk, J.W.H.M., van Rijswijck, J.: Games solved: Now
and in the future. Artificial Intelligence 134(1–2), 277–311 (2002)

11. Neller, T., Presser, C.: Optimal play of the dice game Pig. The UMAP Jour-
nal 25(1), 25–47 (2004)

12. Romein, J.W., Bal, H.E.: Solving the game of Awari using parallel retrograde
analysis. IEEE Computer 36(10), 26–33 (2003)

13. Schaeffer, J., Björnsson, Y., Burch, N., Lake, R., Lu, P., Sutphen, S.: Building the
checkers 10-piece endgame databases. In: van den Herik, H.J., Iida, H., Heinz, E.A.
(eds.) Advances in Computer Games 10. Many Games, Many Challenges, USA,,
pp. 193–210. Kluwer Academic Publishers, Boston (2004)

14. Woodward, P.: Yahtzee: The solution. Chance 16(1), 18–22 (2003)

AWT: Aspiration with Timer Search Algorithm

in Siguo

Hui Lu and ZhengYou Xia

Department of Computer Science,
Nanjing University of Aeronautics and Astronautics, 210016, China

luhui1984@yahoo.com.cn, zhengyou xia@yahoo.com

Abstract. Game playing is one of the classic problems of artificial in-
telligence. The Siguo game is an emerging field of research in the area
of game-playing programs. It provides a new test bed for artificial in-
telligence with imperfect information. To improve search efficiency for
Siguo with more branches and the uncertain payoff in the game tree,
this paper presents a modified Alpha-Beta Aspiration Search algorithm,
which is called Alpha-Beta Aspiration with Timer Algorithm (AWT).
The AWT can quickly find a suboptimal payoff (acceptable value) from
the game tree by adjusting a window with a timer. The timer is con-
trolled by two parameters (M, N) that vary with the chess-board status
of Siguo. Experiments show that AWT achieves the goals of the improv-
ability of time efficiency, although it costs a little more memory and does
not lead to the best payoff, but to an acceptable payoff.

1 Introduction

Most successful game-playing programs are based on Alpha-Beta, a simple recur-
sive depth-first minimax search algorithm invented in the late 1950’s. There is
an exponential gap in the size of trees generated by Alpha-Beta [5,9]. This leads
to numerous enhancements to the basic algorithm, including Minimal Window
Search [2], Aspiration Search [4], Principal Variation Search (PVS) [6], MTD(f)
[7,8] and so on. These enhancements have improved the performance of depth-
first minimax search considerably.

Aspiration Search is a widely used enhancement. It increases tree-pruning
searches with a smaller search window. However, additional search-window re-
ductions run the risk that the program may not be able to find the best payoff.
If the search result lies outside the window, it is necessary to re-search with
the right window. In this case, the search efficiency will be lowered. So, how to
choose the window is an important problem. It is quite difficult in real game
playing.

The Siguo game (for an introduction we refer to [10]) is a popular game in
China. It provides a new experimental field for artificial intelligence. As a game
with imperfect information, the Siguo game has its own properties. First, the size
of the game tree built in Siguo is very large. In 1V1 mode, there are 150 moves
at a position on average. This is much larger than in Chess, which has about 35

H.J. van den Herik et al. (Eds.): CG 2008, LNCS 5131, pp. 264–274, 2008.
c© IFIP International Federation for Information Processing 2008

AWT: Aspiration with Timer Search Algorithm in Siguo 265

moves. Second, at the beginning of Siguo the prediction of the type of opponent’s
piece is not exact and the evaluation of a leaf node is not very precise. In this
case, we hope to find quickly a suboptimal payoff instead of the best payoff in
order to make the program ready for the middle game. For example, if we must
make a choice between achieving (1) the best payoff of 20 in 40 seconds and (2)
a payoff of 18 in 10 seconds, we may like to choose the second one.

The size of the initial window has to be accurate assuming that Alpha-Beta
Aspiration Search is implemented. However, Alpha-Beta Aspiration with a Timer
Algorithm (AWT) does not guess the initial size of the window, but adjusts the
window dynamically with timer during the search process. In the Alpha-Beta
Aspiration Search Algorithm it holds that if the best payoff lies outside the
initial window, a re-search is necessary. Since AWT uses the size of the window
that is dynamically adjusted, it does not need a re-search. Experiments show
that adjusting the window with a timer may improve the search efficiency. The
AWT algorithm is well implemented in a Siguo system [10,11,12].

The remainder of this paper is organized as follows. In Sect. 2 we first discuss
the motivation of the AWT algorithm and describe the working principle of
the AWT algorithm. We also discuss the efficiency and reliability of the AWT
algorithm in detail. Some parameters of the AWT algorithm to be implemented
in a Siguo system are proposed. In Sect. 3, we describe several experiments and
provide an adequate analysis. Our conclusion is given in Sect. 4 together with
future work.

2 AWT (Aspiration with Timer)

2.1 Motivation

Traditional methods for perfect-information games are not sufficient to play the
games Bridge and Siguo well. Many people design a heuristic search algorithm
for each imperfect-information game on the basis of its specific properties, such
as a distinct search in Bridge [3].

In the Siguo game the branches of the game tree are very large (computed by
Bud et al. [1]). Siguo is divided into two kinds of play mode: 1V1 and 2V2. There
are 150 moves in the mode of 1V1 and 90 moves in the mode of 2V2 on average
at a position. So, the minimax tree generated in the search is quite large. Siguo
is an imperfect-information game: though four players place all of the pieces on
the game board, each player is assumed to see only (1) his1 own pieces, (2) the
position of the opponent’s pieces, and (3) the position of the partner’s pieces.
However, players cannot see the types of pieces that the opponent and the partner
move. Since players cannot see their opponents’ types of pieces, the evaluation
of leaf nodes is not precise. At the opening and middle phases of Siguo, no more
information about the opponent’s pieces can be achieved. Therefore, the payoff
of leaf nodes is rather uncertain in the two phases. So, it is not worth to spend
plenty of time on searching the best payoff since it is not very certain. It is
1 For brevity, we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

266 H. Lu and Z. Xia

acceptable to achieve the suboptimal payoff by using a little time at the two
phases.

Based on the above discussion, we propose a modified Alpha-Beta Aspiration
Search Algorithm, which can achieve a suboptimal payoff by using a dynamical
adjusting window mechanism that is based on timer.

2.2 AWT: Aspiration with Timer

In an Alpha-Beta Aspiration Search algorithm, the size of the window is set in
advance. To avoid re-search aroused by a mistaken evaluation of the window
in the Alpha-Beta Aspiration Search algorithm, we do not guess the initial size
of the window and use the window of (-∞, +∞). To achieve the goal of causing
more cutoffs, we increase the lower bound (alpha) of the window by some velocity.
Some denotations are described below.

P: P is denoted as the payoff of a max node that is bigger than the lower bound
of the window during the search process.

M: M is the first parameter of adjusting the lower bound, where M>1. If we
can achieve the payoff(P) of a max node, with P bigger than the lower
bound(alpha) and the timer is not timeout during the search process, the
lower bound(alpha) is adjusted to P∗M.

N: N is the second parameter of adjusting the lower bound (alpha), where
1 < N < M . If we cannot achieve the payoff of the max node that is big-
ger than the lower bound(alpha) when the timer is not timeout, the lower
bound(alpha) is adjusted to P∗N. How to set the M and N parameters is
shown in Subsection 2.4.

The pseudo code of the AWT algorithm is shown in Fig. 1. We use an example
to introduce the search process of AWT. We assume that M=2, N=1.5 in the
AWT algorithm and use Fig. 2 as the game tree. The initial alpha and beta are
denoted by -∞ and +∞, respectively. We then arrive at the first payoff of a max
node that is bigger than alpha, which is leaf node D (payoff=2). According to the
AWT algorithm, we can set P=2 and alpha is updated to be P ∗ M = 2 ∗ 2 = 4.
The timer is set and begins to count. Assuming that the timer is not timeout
and the achieved payoff of node E is bigger than alpha, alpha is again updated to
be P ∗ M = 6 ∗ 2 = 12. Then C will return 6 to his parent node B. Subsequently
B continues to search with the window (-∞, 6). AWT is similar to the Alpha-
Beta algorithm, and node H is cutoff. Then B returns the value 6 to node A. A
continues to search with the window (2 ∗ 6, +∞). The timer is set and begins
to count. We assume that there is no better payoff of a max node that is bigger
than alpha when the timer is timeout. According to the mechanism of the AWT
algorithm, we update alpha and alpha becomes equal to P ∗ N = 6 ∗ 1.5 = 9.
The timer is reset and begins to count. We search the node I and node J with
the window (9, +∞). The value of node K is greater than alpha, so the window
of node J is updated to (2 ∗ 11, +∞). The timer is set and begins to count.
We continue to search the second child of J, node L. The value of node L is
smaller than alpha. So, J returns the value of 11 to node I. Node I continues to

AWT: Aspiration with Timer Search Algorithm in Siguo 267

/* Windows[]={M,N,1}, Represent the parameter of AWT */
/* istime is the symbol of timer */

AWT(n,alpha,beta)
{

if(n==Leaf) g =eval(n);
else if(n==MaxNode){

g= - ;
c=firstchild(n);
While (g<beta && c!=NULL){

x=AWT(c,alpha,beta);
if(x>alpha){

g= x;
windowsindex=0;

alpha=g*windows[windowsindex];
dwStart=GetTickCount();

istime=1;
}
else if(istime==1){

if((GetTickCount()-dwStart)>=searchtime&&windowsindex!=2){
windowsindex= windowsindex+1;

alpha=g*windows[windowsindex];
if(windowindex!=2) dwStart=GetTickCount ();

else istime=0;
}

}
c=nextbrother(c);

}
}
else{

g= + ;
c=firstchild(n);
while (g>alpha && c!=NULL){

x=AWT(c,alpha,beta);
if(x<g){ g= x; }
beta=min(g,beta);
c=nextbrother(c);

}
}
return g;

}

Fig. 1. The pseudo code of AWT algorithm

search with window (9, 11). Then we continue to search, node O will be cutoff.
Node I returns the value of 11 to node A. A searches with window (2 ∗ 11, +∞).
The timer is set and begins to count. Q returns 10 to node P. The return value

268 H. Lu and Z. Xia

Fig. 2. The example for AWT

is no greater than 22. So it causes a cutoff. The move of node P is no better than
node I. So the root A returns the value 11 (node K).

2.3 Efficiency and Reliability of AWT

In this subsection, we discuss the efficiency and reliability of AWT. We use
Fig. 3 as an example. In Fig. 3, the Alpha-Beta algorithm visits the nodes in
the following order: A− > B− > − > C − > D− >E− > F− > − > G− >
H− > I− > J . It finally returns the best payoff of node I (200). All the nodes in
Fig. 4 are visited and there is no cutoff in Alpha-Beta.

If we use the AWT algorithm to search the game tree in Fig. 3 (assume M=2,
N=1.5), we can achieve the following result: B returns a payoff 40 to its parent
A. According to the mechanism of the AWT algorithm, Alpha is updated to
P∗M = 40∗ 2 = 80. If the timer is not timeout when we visit node D, the payoff
of node D is 50 and lies out of the window. Node E and F are cut off.

Fig. 3. Example for efficiency of AWT

AWT: Aspiration with Timer Search Algorithm in Siguo 269

In contrast, if the timer is timeout when we visit node D, alpha will be updated
to be P ∗ N = 40 ∗ 1.5 = 60. This window also causes a cutoff because node D
lies outside the window. Node E and F are also cut off. It is obvious that AWT
seems to cause more cutoffs than the Aspiration algorithm.

In the Alpha-Beta Aspiration Search algorithm, the size of the window (alpha,
beta) is set in advance. If the best payoff is just in the window, it will cause more
cutoffs than that of the Alpha-Beta algorithm. However, if the best payoff lies
outside the window, then all we are told is that a bound on the best payoff is
found [5]. To find the true best payoff in this case, a re-search with the right
window is necessary. But in AWT, the algorithm starts searching with (-∞,
+∞). The window is adjusted dynamically and it has a fast convergent speed.
So, AWT will cause more cutoffs than the Aspiration algorithm.

The two parameters M and N in AWT also influence the effect of this algo-
rithm. If the value of M and N is larger, the speed of reducing the window size
is faster and this can cause more cutoffs. However, it makes the AWT algorithm
miss the best payoff. Of course, AWT can finally achieve the acceptable payoff.

Below we assume that the real best payoff of a game tree is denoted as BEST-
PAYOFF, and P is denoted as the payoff of max node that is bigger than the
lower bound of the window during the search process. FINPAYOFF is the result
by which the AWT algorithm completes its search and finally returns the end
value. BETA is the upper bound of the window. Five different situations may
occur. They will be discussed below.

1. Search with the window (P∗M, BETA). If BESTPAYOFF is just in this
window, the best payoff that is found in AWT is BESTPAYOFF. That is to
say: FINPAYOFF = BESTPAYOFF.

2. Search with the window (P∗M, BETA). If BESTPAYOFF is lower than the
lower bound, BESTPAYOFF will never appear in the subsequent search
process. That is to say, it misses the best payoff. Then the payoff of AWT is
in this bound: BESTPAYOFF/M < FINPAYOFF ≤ BESTPAYOFF.

3. Search with the window (P∗M, BETA). If BESTPAYOFF is lower than the
lower bound of the window and it does not find a better payoff when the
timer is timeout, the window will extend to (P∗N, BETA). If BESTPAY-
OFF appears in the subsequent search process and BESTPAYOFF is in
the window (P∗N, BETA), the best payoff found in AWT will be just that
BESTPAYOFF. That is to say: FINPAYOFF = BESTPAYOFF.

4. It does not find a better payoff in the search with window (P∗N, BETA).
BESTPAYOFF lies outside the window and it will never appear in the subse-
quent search process, in other words it will miss the best payoff. The payoff
that is finally found, is this bound: BESTPAYOFF/N < FINPAYOFF ≤
BESTPAYOFF.

5. It does not find a better payoff in the search with window (P∗N, BETA)
when the timer is timeout. The window is updated to be (P, BETA). If
BESTPAYOFF appears in the subsequent search process, the best payoff will
be just that BESTPAYOFF. That is to say: FINPAYOFF = BESTPAYOFF.

270 H. Lu and Z. Xia

Fig. 4. The reliability of AWT

To clarify the five situations, readers may consult Fig. 4. Using the AWT
algorithm, we may miss the best payoff in the previous search process. How-
ever, we may achieve this best payoff in the subsequent search process because
there are some different leaf nodes that may have the same payoff in the whole
game tree. Since the payoff of leaf nodes is evaluated by uncertain information
at the opening and middle phases of Siguo, it is acceptable to find a suboptimal
payoff when we do not achieve the best payoff. Based on the above discussion
and analysis, we may state that the bound of a suboptimal payoff is between
BESTPAYOFF/M and BESTPAYOFF. That is: BESTPAYOFF/M < Accept-
able value(FINPAYOFF) ≤ BESTPAYOFF.

From the above discussion and analysis it is clear that the parameters M and
N not only influence the speed of search, but also affect the payoff found in the
search. If M and N are larger, more cutoffs are caused. However, the difference
between BESTPAYOFF and FINPAYOFF may be very big. Therefore, the M
and N parameters of the AWT algorithm are the key factors that influence the
algorithm’s performance. We discuss their setting below.

2.4 M and N Parameters Setting

At the opening phase, players of Siguo can only obtain rather uncertain infor-
mation about the opponents. When the game goes on, players may obtain more
information. Therefore, the evaluation of the chess board becomes more accurate
during playing the game. In our Siguo system, the M and N parameters of the
AWT algorithm vary with the information status of the chess board.

We start ordering the twenty-five pieces of an opponent by their positions on
the board and label them with nodes Pi(1 ≤ i ≤ 25) [12]. We let the types of
pieces be T = (t1, . . . , t12), where t1, t2, t3, . . ., t12 are denoted as Sapper, Lieu-
tenant, Captain, . . ., Bomb, and Flag, respectively. Pi(T) = (P (t1)i, P (t2)i, . . .,
P (t12)i) is denoted as the type probability distribution of node Pi, where P (t1)i+
P (t2)i+ . . .+P (t12)i=1. Before we discuss how to set M and N, some notations
are defined below.

AWT: Aspiration with Timer Search Algorithm in Siguo 271

PieceEntroyi(s): Entropy values of opponent’s alive piece on the chess board
at turn s, where 1 ≤ i ≤ 25 and i is denotes the different pieces.

AverEntroy(s): Average entropy of all pieces of opponent’s at turn s. Aver-
Entroy (0) is the initial average entropy of the pieces of the opponent.

Totalnum(s): The number of opponent’s alive pieces on the chess board at
turn s.

M(s), N(s): the parameters of the AWT algorithm at turn s during playing a
game. M(0), N(0) represent the initial parameters.

We use equation 1 to compute the PieceEntroyi(s) of every piece.

PieceEntroyi(s) = −
12∑

j=1

Pi(tj) ∗ log(Pi(tj)) (1)

AverEntroy(s) represents the uncertainty of the chess board. If AverEntroy(s)
is bigger, the type of opponent’s pieces will be more uncertain. In contrast, if
AverEntroy(s) is smaller, the prediction of the type of the opponent’s pieces will
be more exact. We use equation 2 to update AverEntroy(s) of the chess board
at turn s.

AverEntroy(s) =
∑Totalnum(s)

i=1 PieceEntroyi(s)
Totalnum(s)

(2)

We set the initial value according to our experience, since the type of pieces
is uncertain at the beginning of the game. During game play, the player can
gradually achieve more information from the opponent, and predict the type of
opponent’ piece more and more accurately. AverEntroy(s) will become smaller
and smaller during the play. In a Siguo system, M and N should be adjusted
by the AverEntroy(s) of the board. If the AverEntroy(s) is larger, that is to
say the information of opponent’s pieces are more uncertain, the value of M(s)
and N(s) need to be set larger to improve the speed of search. In contrast, if
the information is comparatively rather certain, we should reduce the values of
M(s) and N(s) properly to make the payoff approach arrive at the better payoff.
According to many experiments performed, we propose to use M(0) = 2, N(0) =
1.1 at the initial setting of parameters. The M(s) and N(s) will be dynamically
updated by equation 3 and equation 4, respectively.

M(s) =
AverEntroy(s) ∗ M(0)

AverEntroy(0)
, s ≥ 1 (3)

N(s) =
AverEntroy(s) ∗ N(0)

AverEntroy(0)
, s ≥ 1 (4)

3 Experiment and Analysis

In the experiments, we build game trees of Siguo of 7 plies and 30 branches. The
evaluation value of the leaf nodes is between -1000 and 1000. The initial search
window is (-100,000, +100,000). To assess the different algorithms we use two

272 H. Lu and Z. Xia

1 1.5 2 2.5 3

x 1010

2

4

6

8

10

12

14
x 105

number of game tree's node

nu
m

be
r o

f v
is

ite
d

 le
af

 n
od

es

Alpha-Beta
Aspiration
AWT

Fig. 5. Comparison of visited nodes in Alpha-Beta, Aspiration and AWT

1 1.5 2 2.5 3

x 1010

0.5

1

1.5

2

2.5

3
x 107

number of game tree's nodes

m
em

or
y

co
st

(b
yt

e)

Alpha-Beta
Aspiration
AWT

Fig. 6. Comparison of memory in Alpha-Beta, Aspiration, and AWT

parameters: (1) the number of visited leaf nodes and (2) the storage efficiency.
We compare Alpha-Beta, Aspiration and AWT by investigating the different
sizes of the game trees of Siguo. We found that Alpha-Beta and Aspiration visit
more leaf nodes when the size of the game trees increases (see Fig. 5). Aspiration
Search explores fewer nodes than the Alpha-Beta Search. However, AWT visits

AWT: Aspiration with Timer Search Algorithm in Siguo 273

1.1 1.2 1.3 1.4 1.5
70

71

72

73

74

75

76

77

78

N (value)

P
A
Y
O
FF

Fig. 7. Performance of AWT for different parameters N

fewer leaf nodes than the Alpha-Beta Search and Aspiration algorithms. The
increasing trend is relatively slower.

In Fig. 6, we see that by increasing the size of the game tree, AWT, Alpha-Beta
and Aspiration Search need more memory. AWT takes a little more memory than
Alpha-Beta and Aspiration Search. The reason that AWT takes more memory is
that it spends some memory on dealing with the timer and the window bound.

Actually, we use a game tree of Siguo with 3 ∗ 108 different nodes (1V1 game
mode). We investigated the influence of different values of M and N on the payoff
that AWT returns after completing the search of this game tree. Before we use
the AWT algorithm, we use the Alpha-Beta algorithm to search this game tree
and obtain the best payoff of this game tree, which is 84. In Fig. 7, the payoff
that uses AWT to return is close to the best payoff (84) with different values of
M and N. Under a different value of N, it gets the different payoff. When N is 1.5,
payoff is 70. When N is 1.4, 1.3, and 1.2, payoff is 75.7. When N is 1.1, the payoff
is 77.5. All the payoff is in the bound [BESTPAYOFF/M, BESYPAYOFF]. The
timer is an important parameter. How to set the timer is a big problem. If the
value of the timer is too big, the search may omit some good payoff. However,
if the value of the timer is set too small, the change of the window has too a
high frequency. In our experiments, based on the experience gained previously,
we have set the value to 1.5.

4 Conclusion

We start to remark that the opening and middle phases of Siguo, no more in-
formation about the opponent’s pieces can be obtained. The payoff of the leaf
nodes is quite uncertain in these two phases. Therefore, it is not worth to spend
much time on searching for the best payoff since the value is not very certain.

274 H. Lu and Z. Xia

In the Alpha-Beta Aspiration Search algorithm, it holds that if the BESTPAY-
OFF lies outside the initial window (which is set in advance), it is necessary to
re-search the whole game tree. In this paper, we have made a small enhance-
ment based on the Aspiration Search algorithm, which is called Aspiration with
Timer algorithm (AWT). In AWT, we use a timer to adjust the window dynam-
ically instead of setting an initial window. This can improve the speed of search
considerably. However, when we use the AWT algorithm, we may miss the best
payoff. However, we will obtain the suboptimal payoff, which is acceptable dur-
ing play. From the analysis we conclude that our AWT algorithm can guarantee
that the suboptimal payoff is between BESTPAYOFF/M and BESTPAYOFF.
Experimental results show that the AWT algorithm definitely improves on the
speed of Alpha-Beta and Aspiration Search algorithms.

Acknowledgments. This paper is supported by the JiangSu Province Science
Technology Foundation under Grant No. BK2006567.

References

1. Bud, A., Albrecht, D., Nicholson, A., Zukerman, I.: Information-Theoretic Advisors
in Invisible Chess. In: AI and Statistics 2001, Eighth International Workshop on
Artificial Intelligence and Statistics (2001)

2. Campbell, M.S., Marsland, T.A.: A comparison of minimax tree search algorithms.
Artificial Intelligence 20(4), 347–367 (1983)

3. Ginsberg, M.L.: GIB: Imperfect information in a computationally challenging
game. Journal of Artificial Intelligence Research 14, 303–358 (2001)

4. Kaindl, H., Shams, R., Horacek, H.: Minimax Search Algorithms with and with-
out Aspiration Windows. IEEE Transactions on Pattern Analysis and Machine
Intelligence 13(12), 1225–1235 (1991)

5. Knuth, D.E., Moore, R.W.: An analysis of Alpha-Beta Pruning. Artificial Intelli-
gence 6(4), 293–326 (1975)

6. Marsland, T.A.: Relative Efficiency of Alpha-Beta Implementations. In: Pro-
ceedings of the 8th International Joint Conference on Artificial Intelligence (IJ-
CAI1983), pp. 763–766 (1983)

7. Plaat, A.: Research Re: search and Re-search. PhD thesis, Tinbergen Institute and
Department of Computer Science, Erasmus University Rotterdam, The Nether-
lands (1996)

8. Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: Best-First Fixed-Depth Game-
Tree Search in Practice. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp. 273–281 (1995)

9. Stockman, G.C.: A minimax algorithm better than Alpha-Beta? Artificial Intelli-
gence 12(2), 179–196 (1975)

10. Xia, Z., Zhu, Y., Lu, H.: Using the Loopy Belief Propagation in Siguo. ICGA
Journal 30(4), 209–220 (2007)

11. Xia, Z., Hu, Y., Wang, J., Jiang, Y.C., Qin, X.L.: Analyze and Guess Type of Piece
in the Computer Game Intelligent System. In: Wang, L., Jin, Y. (eds.) FSKD 2005.
LNCS (LNAI), vol. 3614, pp. 1174–1183. Springer, Heidelberg (2005)

12. Xia, Z., Zhu, Y., Lu, H.: Evaluation Function for Siguo Game Based on Two At-
titudes. In: The Third International Conference on Fuzzy Systems and Knowledge
Discovery, pp. 1322–1331 (2006)

Author Index

Björnsson, Yngvi 25, 217
Bratko, Ivan 192

Cazenave, Tristan 50, 72
Chaslot, Guillaume M.J.-B. 1, 60
Chen, Bo-Nian 180
Chen, Keh-Hsun 92
Cincotti, Alessandro 241
Coulom, Rémi 113

David-Tabibi, Omid 205
Dou, Qing 125
Du, Dawei 92

Fang, Haw-ren 252

Glenn, James 252
Grimbergen, Reijer 169
Guid, Matej 192

Hashimoto, Junichi 157
Hashimoto, Tsuyoshi 157
Hayward, Ryan B. 229
Henderson, Philip 229
Herik, H. Jaap van den 1, 60
Hsu, Shun-Chin 180
Hsu, Tsan-sheng 180

Iida, Hiroyuki 157, 241
Ísleifsdóttir, Jónheiður 217

Jouandeau, Nicolas 72

Kishimoto, Akihiro 146
Krivec, Jana 192
Kruskal, Clyde P. 252

Liu, Pangfeng 180
Liu, Zhiqing 125
Lorentz, Richard J. 13
Lu, Benjie 125
Lu, Hui 264

Možina, Martin 192
Müller, Martin 81, 102, 146

Netanyahu, Nathan S. 205
Niu, Xiaozhen 102

Sadikov, Aleksander 192
Saito, Jahn-Takeshi 25
Schadd, Maarten P.D. 1
Sturtevant, Nathan R. 37

Ueda, Toru 157
Uiterwijk, Jos W.H.M. 1

Winands, Mark H.M. 1, 25, 60

Xia, ZhengYou 264

Yoshizoe, Kazuki 135

Zhang, Peigang 92
Zhao, Ling 81

	Title Page
	Preface
	Organization
	Table of Contents
	Single-Player Monte-Carlo Tree Search
	Introduction
	SameGame
	Background
	Rules

	Classical Methods: A* and IDA*
	Monte-Carlo Tree Search
	SP-MCTS
	Meta-search

	Experiments and Results
	Simulation Strategy
	SP-MCTS Parameter Tuning
	Meta-search
	Comparison

	Conclusions and Future Research
	References

	Amazons Discover Monte−Carlo
	Introduction
	The Game of Amazons and the Monte-Carlo Approach
	The Rules of Amazons
	Monte-Carlo Programming
	The UCT Algorithm

	The Hybrid MC/UCT Approach
	Adding MC to INVADER
	Stopping the MC Simulation Early
	Forward Pruning with MC
	Adding UCT
	Choosing the Proper Evaluation Function
	Evaluation Parity Effect
	Progressive Widening
	Minor Tuning

	Summary of Our Findings and Future Work
	References

	Monte-Carlo Tree Search Solver
	Introduction
	Lines of Action
	Monte-Carlo Tree Search
	The Four Strategic Steps

	Monte-Carlo Tree Search Solver
	Backpropagation
	Selection
	Final Move Selection
	Pseudo Code for MCTS-Solver

	Experiments
	MCTS vs. MCTS-Solver
	Monte-Carlo LOA vs. MIA

	Conclusion and Future Research
	References

	An Analysis of UCT in Multi-player Games
	Introduction
	Background
	UCT

	Multi-playerUCT
	Experiments
	Chinese Checkers
	Spades
	Hearts – Shooting the Moon
	Hearts – Quality of Play

	A Summary of Findings and Future Work
	References

	Multi-player Go
	Introduction
	Monte-Carlo Tree Search
	Search and Monte-Carlo Go
	RAVE

	Multi-playerGo
	Multi-player Algorithms
	Max^{n}
	UCT
	Coalitions of Players
	Paranoid UCT
	UCT with Alliances
	Confident UCT

	Experimental Results
	UCT
	Paranoid UCT
	Alliance UCT
	Confident UCT
	Techniques Used in the Algorithms

	A Summary of Findings
	References

	Parallel Monte-Carlo Tree Search
	Introduction
	Monte-Carlo Tree Search
	Parallelization of Monte-Carlo Tree Search
	Leaf Parallelization
	Root Parallelization
	Tree Parallelization

	Experiments
	Experimental Set-Up
	Leaf Parallelization
	Root Parallelization
	Tree Parallelization
	Overview
	Root Parallelization vs. Tree Parallelization Revisited

	Conclusions and Future Research
	References

	A Parallel Monte-Carlo Tree Search Algorithm
	Introduction
	Related Work
	Monte-Carlo Go
	Search and Monte-Carlo Go
	UCT

	Parallelization
	The Parallel Run-Time Environment
	The Master Process
	The Slave Process

	Experimental Results
	A Summary of Findings
	References

	Using Artificial Boundaries in the Game of Go
	Introduction
	Boundary and Artificial Boundary
	Weak Stones
	Distance Conditions
	Expansion Stopping Conditions
	Boundary Verification

	Local UCT Search
	Experimental Results
	Testing Local UCT Search – Tsumego
	Testing Local UCT Search – Computer Go Game Positions

	Conclusions and Future Work
	References

	A Fast Indexing Method for Monte-Carlo Go
	Introduction
	Surrounding Index
	Adoption Ratios
	Pattern Weights
	Top Patterns
	“EloRatings”
	Monte-Carlo Simulation
	Monte-Carlo Tree Search
	Experimental Results
	Extended Surrounding Indices
	Conclusion and Future Work
	References

	An Improved Safety Solver in Go Using Partial Regions
	Introduction
	Related Work
	Using Partial Regions for Safety Recognition
	Find Dividing Miaipairs
	Dividing a Single Region Using One Miaipair
	Dividing a Single Region by Multiple Miaipairs
	Dividing a Merged Region

	Experimental Results
	Experiment One: Partial Region Solving
	Experiment Two: Comparison of Solvers

	Conclusions and Future Work
	References

	Whole-History Rating: A Bayesian Rating System for Players of Time-Varying Strength
	Introduction
	The Dynamic Bradley-Terry Model
	Notations
	Bradley-Terry Model
	Bayesian Inference
	Prior

	Algorithm
	Optimization Method
	Incremental Updates
	Estimating Rating Uncertainty

	Experiments in the Game of Go
	Speed of Convergence
	Prediction Ability

	Conclusion
	References

	Frequency Distribution of Contextual Patterns in the Game of Go
	Introduction
	The Game of Go and Computer Go
	Frequency Distribution of Contextual Patterns in Professional Games
	Frequency Distribution of Contextual Patterns in Random Game Records
	Discussion and Conclusion
	References

	A New Proof-Number Calculation Technique for Proof-Number Search
	Introduction
	Related Work
	Proof-Number Search
	ProposedMethod
	Problem
	Dynamic Widening

	Results and Analysis
	Experimental Conditions
	Answering Ability
	Speed Comparison
	Two Sorting Methods
	Overall Analysis

	Conclusions and Future Work
	References

	About the Completeness of Depth-First Proof-Number Search
	Introduction
	AND/OR Trees and Graphs
	Proof-Number Search and Df-pn
	Proof-Number Search
	Depth-First Proof-Number Search

	Depth-First Proof-Number Search in DAGs
	Problem Description
	Completeness of Depth-First Proof-Number Search

	Depth-First Proof-Number Search in DCGs
	Incompleteness of df-pn
	Df-pn(r)

	Conclusion and Future Work
	References

	Weak Proof-Number Search
	Introduction
	Proof-Number Based AND/OR-Tree Search Algorithms
	PN-Search
	PN*, PDS, and df-pn
	Possible Drawbacks of Proof-Number-Based Search Algorithms
	AND/OR-Tree Search Taking Branching Factors into Account

	Weak Proof-Number Search
	The Basic Idea of Our Proposed Search Algorithm
	Performance Evaluation

	Conclusion
	References

	Cognitive Modeling of Knowledge-Guided Information Acquisition in Games
	Introduction
	A Cognitive Model for Perception in Games
	Sensory Memory
	Short-Term Memory
	Long-Term Memory: The Society of Mind

	Reproduction Experiment
	Experimental Results
	Conclusions and Future Work
	References

	Knowledge Inferencing on Chinese Chess Endgames
	Introduction
	Constructing a Knowledge Database
	Knowledge Database of Material Combinations
	Redundant Attacking Material Checking and Elimination
	Pawn Inferencing

	Predicting Unknown Material States
	Human Evaluation of Unknown Positions
	Material Exchange Table
	Determining the Score of an Unknown Material State

	Constructing a Practical Knowledge Database of Material Combinations
	Experiment Design and Results
	Experiment Design
	Experimental Results

	Conclusions
	References

	Learning Positional Features for Annotating Chess Games: A Case Study
	Introduction
	Positional Features for Annotating Chess Games
	The Static Nature of Positional Features

	Case Study: The Bad Bishop
	The Learning Dataset
	Machine Learning
	Argument Based Machine Learning

	Summary and Conclusions
	References

	Extended Null-Move Reductions
	Introduction
	Standard Null-Move Pruning
	Extended Null-Move Reductions
	Experimental Results
	Conclusion
	References

	GTQ: A Language and Tool for Game-Tree Analysis
	Introduction
	The Game-Tree Query Language
	Query and Expression Evaluation

	Game-Tree Query Tool
	Parsing a Query
	Executing a Query

	Experiments
	Experimental Setup
	Processing Throughput
	Node Type Statistics
	Principal Variation Changes
	Large Quiescence-Search Trees

	Related Work
	Conclusions
	References

	Probing the 4-3-2 Edge Template in Hex
	Introduction
	Dead, Vulnerable, Captured, and Capture-Dominated
	AConjecture
	Black Maintains the 4-3-2
	Unconditional Pruning of the 4-3-2
	Conclusions
	References

	The Game of Synchronized Domineering
	Introduction
	SynchronizedGames
	Examples of Synchronized Domineering
	MainResults
	FurtherResearch
	References

	A Retrograde Approximation Algorithm for Multi-player Can’t Stop
	Introduction
	Abstraction of Probabilistic Games
	Retrograde Solution for Multi-player Can’t Stop
	Game Graph Is Acyclic
	Game Graph Is Cyclic

	Indexing Scheme
	Experiments
	Our Findings
	References

	AWT: Aspiration with Timer Search Algorithm in Siguo
	Introduction
	AWT (Aspiration with Timer)
	Motivation
	AWT: Aspiration with Timer
	Efficiency and Reliability of AWT
	M and N Parameters Setting

	Experiment and Analysis
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

