
A Distributed Ontological Approach as a Basis

for Software in the Context of Academic
Programs

Richard Hackelbusch and H.-Jürgen Appelrath

Carl von Ossietzky Universität Oldenburg,
Escherweg 2, 26121 Oldenburg, Germany

hackelbusch@uni-oldenburg.de

http://www-is.informatik.uni-oldenburg.de/

Abstract. The implementation of a computer understandable represen-
tation of the semantics of academic programs is complex. That’s why
academic institutions struggle in implementing pervasive information
systems that offer services to help all actors in this context. These ser-
vices are demanded by, e. g., students who want to plan their curricula
correctly, or who want to know which courses can be used for a dif-
ferent academic program or at a different academic institution. In this
paper, we introduce a distributed ontological approach to represent the
semantics of academic programs and their examination regulations, the
universities’ supply, and individual results. It allows academic institu-
tions to implement applications that offer the demanded services and
that use these ontologies as a common basis.

1 Introduction

Written in a legal language, academic institutions release examination regula-
tions and subsidiary documents that describe their academic programs. Because
legal language is very hard to comprehend by humans and in this form not in-
terpretable by computers, a great demand for decision support exists. In this
context, unfortunately, there is only little automatic help — like decision sup-
port systems — realized. Results of this situation, e. g., are that students often
do not understand the whole descriptions of academic programs or even do not
try to read them. Thus, they have questions concerning good and correct ways
in planning and realizing their individual curricula. Examples are which offered
courses they can take at best or which of them can be used for a different aca-
demic program, e. g., in the case of a minor subject. Another interesting question
is, e. g., which courses can be taken for academic programs of another academic
institution. Besides the computer-understandable representation of the seman-
tics of examination regulations, another challenge is the distributed structure of
academic institutions and of clusters of them. Information concerning academic
programs and their examination regulations, the universities’ supply of courses
and the individual results of the students is often created and stored separately

P. Dillenbourg and M. Specht (Eds.): EC-TEL 2008, LNCS 5192, pp. 122–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www-is.informatik.uni-oldenburg.de/

A Distributed Ontological Approach as a Basis for Software 123

by, e. g., faculties and institutions (see [1]). It has to be merged in order to be
able to offer decision support applications.

In this paper, we introduce an ontological approach for the representation of
academic programs and their examination regulations, the universities’ supply
of courses and the individual results of the students. This approach allows a
distributed representation that fits to the structure of academic institutions. We
explain that our approach is a very applicable basis to implement applications
offering decision support in the context of academic programs.

2 The Ontological Approach

In order to represent the semantics of academic programs and their examination
regulations, we have identified two important aspects: On the one hand, there is
a static representation needed which defines the concepts of entities of academic
programs — a conceptual model. An exemplary representation would be, e. g.,
modules that can contain a couple of courses and examinations; courses can
be used for certain modules, deal with specific topics and so on. These entities
can be structured very heterogeneously comparing different academic programs
(see [2]). On the other hand, there is a dynamic representation needed which
defines a possible order of concrete entities in the course of a study. In addition,
it defines conditions that regulate the possibilities in taking certain of these
concrete entities. It also defines, how an entity (like a module) can be successfully
passed, e. g., by taking a couple of courses and calculating the average grade
which has to be better than a specific grade.

The static representation can be modeled well using an object-oriented or an
entity-relation based representation. It is a conceptualization that describes the
static structure of all possible instances. The availability of a common shared
conceptualization would be very useful because we have to deal with a distributed
structure of academic institutions (and of clusters of them). Then, different fac-
ulties or institutions can instantiate these concepts, e. g., modeling their own
supply and share this information with other faculties or institutions on the
web. In addition, the examination offices could use the conceptualization and
these instances for representing the individual results of their students. Beside
others, these aspects motivate our decision to use ontologies to represent the
static representation of academic programs. The dynamic representation covers
rules in taking and passing instantiations of the concepts that have been defined
in the course of the conceptual modeling of the static representation. To do so,
academic programs and their examination regulations can be represented as a
kind of process (see [3]).

Our ontological approach contains a general meta-model (implemented in
OWL-DL) with a set of business-rules and a software framework (see [4]). We
call the approach Curricula Mapping Ontology (CMO). The framework includes
a library that uses the JENA-framework (http://jena.sourceforge.net/). It can
interpret instantiations of the meta-model and it ensures that they stick to the
business-rules. The meta-model is a conceptual model that defines concepts that

124 R. Hackelbusch and H.-J. Appelrath

cmo:Process_
Element

subClassOf

cmo:Condition

subClassOf

*

predecessor
0..1

successor

*
predecessor

cmo:Process

*has

fulfilled

1

has
Postcondition

0..1
0..1

0..1

hasPostcondition

hasPrecondition

cmo:Availability

cmo:Result

0..1
definesWildcard

0..1
hasResult

forElement 0..1

cmo:Annotation

*

hasAnnotation

*hasAnnotation

cmo:Grade
withGrade

0..1

cmo:Internal
_Process

cmo:Connector
has

*
*

1

isPattern

canBeReplacedBy

cmo:Process_Step

subClassOf

Fig. 1. Basic process and wildcard concepts of the CMO

allow the instantiation of processes including conditions that represent very com-
plex rules — if needed. These processes represent academic programs and their
examination regulations. It is intended to extend specific concepts of the general
meta-model. This extended conceptual model is the static representation of aca-
demic programs. Instantiations of this individually extended meta-model form
the dynamic representation of academic programs including their examination
regulations. They also form representations of the universities’ supply, and the
individual results of the students. Given a set of individual results of a single
student, the model-interpreting framework can, e. g., show the possibilities of
the student in continuing his academic program. Our approach is conceptual-
ized that way that nearly arbitrary extensions of the general meta-model are
allowed to define the static representation of an academic program without the
need of adapting the model-interpreting framework. As long as the business-rules
of the general meta-model are fulfilled, the framework can interpret all possi-
ble instantiations (the dynamic representations) of such extended meta-models
synchronizing it with a set of individual results of a student.

The general meta-model of the CMO defines concepts to represent processes
(see figure 1 — we use the namespace shortcut “cmo”). A process contains a
set of process elements (the class Process Element is not intended to be instan-
tiated directly; it has to be specialized — this is shown by shadows). These
elements can be conditions or process steps. Each element can have predecessors
and successors in order to be able to create an order/a process. Conditions can
be interpreted as TRUE or as FALSE depending on the type of their special-
ization and the values of their preceding elements. They can be, e. g., simple
logical conditions like AND — known from logic gates. They also can be more
complex conditions that include the comparison of aggregations of certain values
of attributes of their preceding elements with other values. An example is: “the
number of passed elements > 6”. It is also possible to aggregate values of the
preceding elements that are self-defined within the static representation and use
it in connection with a comparison like “the sum of workload > 16” (see [4]).

Each process step references a specialization of Availability as a so-called wild-
card (property “definesWildcard”). Availability is the super class of concepts of
entities of an academic program which can be defined in the course of the static
modeling (like course, examination, etc.). The wildcard-reference defines which
kind of individual results of a student can be assigned to the corresponding pro-
cess step. Each result of a student therefore references an instance of Availability,
too. In order to be able to assign an individual result with a certain process step,

A Distributed Ontological Approach as a Basis for Software 125

this referenced instance of the result must be of the same specialization of Avail-
ability as the instance that is referenced by the process step as a wildcard. In
addition, it must reference at least the same object- and datatype properties.
Additional referenced properties are allowed, too. With this methodology, it is
easy to model that an entity of the academic program only has to have, e. g.,
a certain title: A process step has to reference an instance of a specialization of
Availability as wildcard. In addition, this instance only has to reference a certain
title. Then, it is defined that every result that references an entity of the same
concept as the wildcard can be used for this process step if this entity references
at least this certain title, too. A process step can be interpreted as successfully
passed or not if a result is assigned to it that references an element that fits to
the wildcard as described above. It has to be interpreted as successfully passed
if the grade of the result fits to its grade scale rules (see [4]). In addition, each
process step and each result can reference a couple of instances of specializations
of Annotation. These specializations are also part of the flexible extension of the
meta-model of the CMO. For example, date and term can be defined and then
be used in connection with conditions to model rules like “in the average period
of a study, an additional try is allowed”. The classes Availability and Annota-
tion can be arbitrarily extended in the course of the static modeling of academic
programs.

A central part of the dynamic representation of academic programs is the
arrangement of process elements of a process building an order. Doing this,
possible sequences and rules that describe pre- and postconditions for taking
these process steps can be modeled. But some major aspects can be modeled
only intricately without modular composition of processes (see requirements in
[5]). These are aspects like rules to retry a step, the inner part of a step (like the
inner part of a module), minor subjects, or rules to calculate the grade of the final
degree. In order to be able to model these dynamic aspects of academic programs
smartly, the CMO defines the concept of internal processes. An internal process
is a process that can be used instead of a couple of process steps. If a process
step references such a specific internal process, it is possible to replace it with
the internal process instead of assigning an individual result with it.

As a normal process — introduced in figure 1 — an internal process has a
couple of process elements with a specific order. In addition, it has a process step
that is used as a so-called “pattern” (property “isPattern”). While replacing a
concrete process step with an internal process, the framework replaces this step
with the pattern. Using a connector concept, the pattern is connected with
other steps of the internal process in order to map the wildcard-reference of
the replaced step to specific steps of the internal process (direction: pattern →
steps). In the other direction, it is used to map a result (and, e. g., a calculated
grade) to the result of the replaced step (direction: pattern-result ← results of
the steps). By connecting the pattern instead of directly connecting the concrete
replaced step, a single instance of an internal process can be used in order to
replace a number of process steps and function as a template.

126 R. Hackelbusch and H.-J. Appelrath

3 Distribution

To explain how this approach can be enriched applying it distributed, we take an
examination office as an example. At academic institutions, certain information
is often controlled at different places (see [1]). On the one hand, it is because
academic institutions have a distributed structure. On the other hand, it is be-
cause of privacy aspects (see [6]). In many institutions, the individual results
of the students, e. g., are only stored at the examination offices, the supply of
courses of the universities is often controlled by their faculties, and so on. Often,
the structure of data is not compatible among each other, or there exists no
integration. Thus, the employees of the examination offices might have to check
manually if a result of a student is creditable for his curriculum or if the student is
able to take certain examinations. Our approach supports the distributed struc-
ture and decision making of academic institutions: OWL and the URI-concept
allow applications to access unique concepts and instantiations worldwide —
even if they are stored distributed. The CMO meta-model is available under
http://www-is.informatik.uni-oldenburg.de/eustel/cmo.owl. Each academic in-
stitution can extend the meta-model of the CMO (or an extension of it, created
by, e. g., an appropriate ministry of education). It can stand for a basic static
representation of its academic programs (like basic definitions of, e. g., modules).
Finally, each institution can publish it on its website. Of course, it is also possi-
ble to use a common static representation or to extend an existing one. Each of
the faculties of the institutions, then, might extend such static representation,
instantiate it, and publish these dynamic representations of its academic pro-
grams on the web. In addition, each faculty can create and publish ontologies
containing its supply of courses. For this purpose, they have to instantiate the
static representation, too. These ontologies which contain the supply of courses,
e. g., can be used by web applications that generate semantic linked web pages
containing the calendar of events1. On the same basis, the examination office
can create private ontologies containing the status of each student. The entities
of these ontologies can reference entities of the dynamic representation of the
students’ academic program and the exact actual entities for that the respective
student has performed results. Using the model-interpreting framework, the in-
dividual possibilities of each student to continue his studies can be determined
automatically by software of the examination offices. Keeping the student ontolo-
gies private, the examination offices can offer, e. g., web services that allow the
implementation and connection of service applications like learning management
systems that offer individual curricula planning. Another very interesting aspect
is the option to model possibilities for students to integrate results/courses that
they have got at other academic institutions into curricula of programs of their
own institution in a very simple way. It is required that both institutions use an
extension of the CMO that stands for the static representation of their academic
programs. These static representations do not have to be the same. Then, it

1 An examplary implementation can be found at:
http://pixedia.de:8080/semaver/Show Modules.do

A Distributed Ontological Approach as a Basis for Software 127

is very easy to extend the dynamic representation of an academic program by
possibilities in taking entities of the program of the other institution. To do so,
one easy way is to simply add a process step that references an entity of the
other institution and define that a specific step can be replaced by this new one
via an internal process.

4 Evaluation and Outlook

In order to evaluate the CMO, we have on the one hand modeled concrete
academic programs with this ontological concept. On the other hand, we have
implemented the framework that is able to execute and to control the model
interpreting process. Our implementation uses the JENA-Framework in order to
reuse its ontological capabilities. To perform the model interpretation, a set of
individual results of a student has to be incrementally mapped with the process
steps of the modeled academic program. Doing this, the framework can detect for
each of these interpretation steps which process steps of the academic program
can be assigned with which individual results. If there are multiple possibilities
to do such assignment, the decision can be made manually or automatically —
depending on the kind of software that uses the framework. A planning assistance
tool based upon our approach that uses the framework is also under development.
It can help students that want to plan their individual curricula.

References

1. Schmees, M., Appelrath, H.J., Boles, D., Kleinefeld, N.: Erweiterung eines LMS um
hochschultypische Softwaresysteme. In: M. Gaedke, R. Borgeest (eds.): Integriertes
Informationsmanagement an Hochschulen: Quo vadis Universität 2.0?, Tagungs-
band zum Workshop IIM 2007, Universitätsverlag Karlsruhe, Karlsruhe, pp. 111–
127 (2007)

2. Hackelbusch, R.: Handling Heterogeneous Academic Curricula. In: Min Tjoa, A.,
Wagner, R.R. (eds.) Proceedings of the Seventeenth International Conference on
Databases and Expert Systems Applications (DEXA 2006), September 4-8, 2006,
pp. 344–348. IEEE Computer Society Press, Los Alamitos (2006)

3. Gumhold, M., Weber, M.: Internetbasierte Studienassistenz am Beispiel von SASy.
In: doIT Software-Forschungstag, Stuttgart, Fraunhofer IRB Verlag (2003)

4. Hackelbusch, R.: CMO – An Ontological Framework for Academic Programs and
Examination Regulations. In: Jaakkola, H., Kiyoki, Y., Tokuda, T. (eds.) Informa-
tion Modelling and Knowledge Bases XIX – Frontiers in Artificial Intelligence and
Applications, vol. 166, pp. 114–133. IOS Press, Amsterdam (2008)

5. Tattersall, C., Janssen, J., van den Berg, B., Koper, R.: Using IMS Learning Design
to Model Curricula. Interactive Learning Environments 15(2), 181–189 (2007)

6. Witt, B.C.: Datenschutz an Hochschulen. LegArtis Verlag (2004)

	A Distributed Ontological Approach as a Basis for Software in the Context of Academic Programs
	Introduction
	The Ontological Approach
	Distribution
	Evaluation and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

