
Modeling Workflows, Interaction Patterns, Web
Services and Business Processes: The

ASM-Based Approach

Egon Börger1 and Bernhard Thalheim2

1 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

2 Chair for Information Systems Engineering, Department of Computer Science,
University of Kiel D-24098 Kiel

thalheim@is.informatik.uni-kiel.de

Abstract. We survey the use of the Abstract State Machines (ASM)
method for a rigorous foundation of modeling and validating web ser-
vices, workflows, interaction patterns and business processes. We show in
particular that one can tailor business process definitions in application-
domain yet rigorous terms in such a way that the resulting ASM models
can be used as basis for binding contracts between domain experts and IT
technologists. The method combines the expressive power and accuracy
of rule-based modeling with the intuition provided by visual graph-based
descriptions. We illustrate this by an ASM-based semantical framework
for the OMG standard for BPMN (Business Process Modeling Notation).
The framework supports true concurrency, heterogeneous state and mod-
ularity (compositional design and verification techniques). As validation
example we report some experiments, carried out with a special-purpose
ASM simulator, to evaluate various definitions proposed in the literature
for the critical OR-join construct of BPMN.1

1 Introduction

Over the last five years the Abstract State Machines (ASM) method has been
used successfully in various projects concerning modeling techniques for web
services, workflow patterns, interaction patterns and business processes.

An execution semantics for (an early version of) the Business Process Execu-
tion Language for Web Services (BPEL) has been provided in terms of ASMs
in [19,23] and has been reused in [17,18]. In [4] one finds a survey of recent appli-
cations of the ASM method to design, analyze and validate execution models for
service behavior mediation [3], service discovery [2,20] and service composition
techniques [22], three typical themes concerning Service Oriented Architectures

1 The work of the first author is supported by a Research Award from the Alexander
von Humboldt Foundation (Humboldt Forschungspreis), hosted by the Chair for
Information Systems Engineering of the second author at the Computer Science
Department of the University of Kiel/Germany.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 24–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modeling Workflows, Interaction Patterns, Web Services 25

(SOAs). In [22] multi-party communication is viewed as an orchestration prob-
lem (“finding a mediator to steer the interactions”). A systematic analysis, in
terms of ASMs, of complex communication structures built from basic service
interaction patterns has been carried out in [5]. The workflow patterns collected
in [27,24], which are widely considered in the literature as paradigms for business
process control structures, have been shown in [10] to be instances of eight (four
sequential and four parallel) basic ASM workflow schemes.

Recently, we have adopted the ASM method for a systematic study of business
process modeling techniques [14,13,12]. As authoritative reference for basic con-
cepts and definitions we have chosen the OMG standard for BPMN [15], which
has been defined to reduce the fragmentation of business process modeling nota-
tions and tools. In the following we describe the salient methodological features
of this work and report our experience in applying the ASM framework [11] to
provide a transparent accurate high-level definition of the execution semantics
of the current BPMN standard (version 1.0 of 2006).

The paper is organized as follows. In Sect. 2 we explain how ASM models
for business processes can serve as ground model and thus as basis for a precise
software contract, allowing one to address the correctness question for a business
process description with respect to the part of the real-world it is supposed to
capture. In Sect. 3 we list the main methodological principles which guided us
in defining a succinct modularized ASM that constitutes an abstract interpreter
for the entire BPMN standard. In Sect. 4 we formulate the ASM rule pattern
that underlies our feature-based description of specific workflow behaviors. In
Sect. 5 we show how this scheme can be instantiated, choosing as example BPMN
gateways. In Sect. 6 we illustrate by a discussion of the critical BPMN OR-join
construct how one can put to use an appropriate combination of local and global
state components in ASMs. We report here some results of an experimental
validation, performed with a special-purpose ASM interpreter [25] that integrates
with current graphical visualization tools, of different definitions proposed for
the OR-Join in the literature. In Sect. 7 we point to some directly related work
and research problems.

2 Building ASM Ground Models for Business Processes

To guarantee that software does what the customer expects it to do involves
first of all to accurately describe those expectations and then to transform their
description in a controlled way to machine code. This is a general problem for
any kind of software, but it is particularly pressing in the case of software-driven
business process management, given the large conceptual and methodological
gap between the business domain, where the informal requirements originate,
and the software domain, where code for execution by machines is produced. The
two methodologically different tasks involved in solving the problem have been
identified in [9] as construction of ground models, to fully capture the informal
requirements in an experimentally validatable form, and their mathematically
verifiable stepwise detailing (technically called refinement) to compilable code.

26 E. Börger and B. Thalheim

Ground models represent accurate “blueprints” of the piece of “real world”
(here a business process) one wants to implement, a system reference documen-
tation that binds all parties involved for the entire development and maintenance
process. The need to check the accuracy of a ground model, which is about a not
formalizable relation between a document and some part of the world, implies
that the model is described in application domain terms one can reliably relate
to the intuitive understanding by domain experts of the involved world phenom-
ena. Ground models are vital to reach a firm understanding that is shared by
the parties involved, so that a ground model has to serve as a solid basis for
the communication between the (in our case three) parties: business analysts
and operators, who work on the business process design and management side,
information technology specialists, who are responsible for a faithful implemen-
tation of the designed processes, and users (suppliers and customers). We refer
for a detailed dicussion of such issues to [9] and limit ourselves here to illustrate
the idea by three examples of a direct (i.e. coding-free, abstract) mathematical
representation of business process concepts in ASM ground models. The exam-
ples define some basic elements we adopted for the abstract BPMN interpreter
in [13].

Example 1. Most business process model notations are based on flowcharting
techniques, where business processes are represented by diagrams at whose nodes
activities are executed and whose arcs are used to contain the information on
the desired execution order (so-called control information). We therefore base
our BPMN model on an underlying graph structure, at whose nodes ASM rules
are executed which express the associated activity and the intended control flow.

Furthermore, usually the control flow is formulated using the so-called token
concept, a program counter generalization known from the theory of Petri nets.
The idea is that for an activity at a target node of incoming arcs to become
executable, some (maybe all) arcs must be Enabled by a certain number of
tokens being available at the arcs; when executing the activity, these tokens are
Consumed and possibly new tokens are Produced on the outgoing arcs. This
can be directly expressed using an abstract dynamic function token associating
(multiple occurrences of) tokens—elements of an abstract set Token—to arcs2:

token : Arc → Multiset(Token)

The use of an abstract predicate Enabled and abstract token handling ma-
chines Consume and Produce allows us to adapt the token model to different
instantiations by a concrete token model. For example, a frequent understand-
ing of Enabled is that of an atomic quantity formula, stating that the number
of tokens currently associated to an arc incoming into a given node is at least a
quantity inQty(in) required at this arc.

Enabled(in) = (| token(in) |≥ inQty(in))

2 In programming language terms one can understand f (a1, . . . , an) for a dynamic
function f as array variable.

Modeling Workflows, Interaction Patterns, Web Services 27

With such a definition one can also specify further the abstract control related
operations, namely to Consume (inQty(in) many occurrences of) a token t on
in and to Produce (outQty(out) many occurrences of) t on an arc outgoing
from the given node.

Consume(t , in) = Delete(t , inQty(in), token(in))
Produce(t , out) = Insert(t , outQty(out), token(out))

We express the data and events, which are relevant for an execution of the ac-
tivity associated to a node and belong to the underlying database engine respec-
tively to the environment, by appropriate ASM locations : so-called controlled
(read-and-write) locations for the data and monitored (only read) locations for
the events. Any kind of whatever complex value an application needs for data
or events is allowed to be stored in an ASM location, directly, corresponding
to the given level of abstraction, avoiding any encoding a later refinement to
implementable data structures may require.

This approach allows us to combine the visual appeal of graph-based notations
with the expressivepower and simplicity of abstract-state and rule-basedmodeling:
we can paraphrase the informal explanations in the BPMN standard document of
“how the graphical elements will interactwith each other, including conditional in-
teractionsbasedonattributes thatcreatebehavioralvariationsof theelements” [15,
p.2] by corresponding ASM rules, which address issues the graphical notation does
not clarify. More generally speaking, (asynchronous) ASMs can be operationally
understood as extension of (locally synchronous and globally asynchronous [21])
Finite State Machines to FSMs working over abstract data. Therefore a domain ex-
pert, when using graphical design tools for FSM-like notations, can reason about
the graphical elements in terms of ASMs whenever there is some need for an exact
reference model to discuss semantically relevant issues.

Example 2. In business process design it is usual to distinguish between a busi-
ness process (the static diagram) and its instances (with specific token marking
and underlying data values). This distinction is directly reflected in the ASM
model in terms of instantiations of the underlying parameters, which appear
abstractly but explicitly in the ASM model. For example a token is usually
characterized by the process ID of the process instance pi to which it belongs
(via its creation at the start of the process instance), which allows one to distin-
guish tokens belonging to different instances of one process p. It suffices to write
tokenpi to represent the current token marking in the process diagram instance
of the process instance pi a token belongs to. In this way tokenpi(arc) denotes
the token view of process instance pi at arc, namely the multiset of tokens cur-
rently residing on arc and belonging to process instance pi . BPEL uses this for
a separation of each process instance by a separate XML document.

Correspondingly one has to further detail the above predicate Enabled by the
stipulation that only tokens belonging to one same process instance have to be
considered:

Enabled(in) = (| tokenpi(in) |≥ inQty(in) forsome pi)

28 E. Börger and B. Thalheim

The reader will notice that the use of abstract Insert and Delete operations
in defining the macros Produce and Consume for tokens, instead of directly
updating token(a, t), comes handy: it makes the macros usable in a concurrent
context, where multiple agents, belonging to multiple process instances, may
want to simultaneously operate on the tokens on an arc. Note that it is also
consistent with the special case that in a transition with both Delete(in, t)
and Insert(out , t) one may have in = out , so that the two operations are not
considered as inconsistent, but their cumulative effect is considered.

Thus the ASM model of the given business process represents the scheme of
the process, statically defined by its rules; its instances are the scheme instanti-
ations obtained by substituting the parameters by concrete values belonging to
the given process instance pi . In accordance with common practice, one can and
usually does suppress notationally the process instance parameter pi , as we did
when explaining the function token above, as long as it is clear from the context
or does not play a particular role.

Example 3. This example is about the need for global data or control struc-
tures in various business process constructs, e.g. synchronization elements owned
by cooperating process agents or more generally speaking data shared by local
processes. They can be directly expressed in terms of global locations of possi-
bly asynchronous ASMs, thus avoiding detours one has to invent in frameworks
where transitions can express only local effects. For an illustration we refer again
to the definition of the BPMN standard in [15]. It uses a predominantly local
view for task execution and step control, although some constructs such as splits
and joins, multi-instance processes, gotos (called links) , and sub-processes are
bound by context integrity constraints.

For example splits can be intimately related by such integrity constraints to
joins and thus their execution is not free of side (read: not local) effects. For an il-
lustration see the discussion of the OR-join gateway construct of BPMN in Sect. 6.

Another example are data dependencies among different processes, whose de-
scription in [15] seems to be relegated to using associations, but really need global
or shared locations to appropriately represent their role for the control flow.

3 Separation of Different Concerns

For design and analysis of business processes it turned out to be crucial that the
ASM method supports to first explicitly separate and then smoothly combine the
realization of different concerns, based upon appropriate abstractions supporting
this form of modularization. We list some of the main separation principles,
which we have used with advantage for the definition of the execution semantics
for BPMN by ASMs.

Separation Principle 1. This principle is about the separation of behavior
from scheduling. To cope with the distributed character of cooperating business
processes, one needs descriptions that are compatible with various strategies to
realize the described processes on different platforms for parallel and distributed

Modeling Workflows, Interaction Patterns, Web Services 29

computing. This requires the underlying model of computation to support most
general scheduling schemes, including true concurrency.

In general, in a given state of execution of a business process, more than one
rule could be executable, even at one node. We call a node Enabled in a state
(not to be confused with the omonymous Enabledness predicate for arcs) if at
least one of its associated rules is Fireable at this node in this state.3

We separate the description of workflow behavior from the description of the
underlying scheduling strategy in the following way. We define specific business
process transition rules, belonging to a set say WorkflowTransition of such rules,
to describe the behavioral meaning of any workflow construct associated to a node.
Separately, we define an abstract scheduling mechanism, to choose at each mo-
ment an enabled node and at the chosen node a fireable transition, by two not fur-
thermore specified selection functions, say selectNode and selectWorkflowTransition

defined over the sets Node of nodes respectively WorkflowTransition. These func-
tions determine how to choose an enabled node and a fireable workflow transition
at such a node for its execution. We then can combine behavior and scheduling
by a rule scheme WorkflowTransitionInterpreter, which expresses how
scheduling (together with the underlying control flow) determines when a partic-
ular node and rule (or an agent responsible for applying the rule) will be chosen
for an execution step.
WorkflowTransitionInterpreter =
let node = selectNode({n | n ∈ Node and Enabled(n)})
let rule = selectWorkflowTransition({r | r ∈ WorkflowTransition and Fireable(r ,node)})

rule

Separation Principle 2. The second principle is about the separation of
orthogonal constructs. To make ASM workflow interpreters easily extensible
and to pave the way for modular and possibly changing workflow specifica-
tions, we adopted a feature-based approach, where the meaning of workflow
concepts is defined elementwise, construct by construct. For each control flow
construct associated to a node we provide a dedicated rule (or set of rules)
WorkflowTransition(node), belonging to the set WorkflowTransition in the
WorkflowTransitionInterpreter scheme of the previous example, which
abstractly describe the operational interpretation of the construct. We illustrate
this in Sect. 5 by the ASM rules defining the execution behavior of BPMN gate-
ways, which can be separated from the behavioral description of BPMN event
and activity nodes.

Another example taken from BPMN is the separation of atomic tasks from
non-atomic subprocesses and from activities with an iterative structure. BPMN
distinguishes seven kinds of tasks:

TaskType = {Service,User ,Receive,Send ,Script ,Manual ,Reference,None}
3 We treat the fireability of a rule (by an agent) as an abstract concept, because its

exact interpretation may vary in different applications. For business process diagrams
it clearly depends on the Enabledness of the incoming arcs related to a rule at the
given node, but typically also on further to be specified aspects, like certain events
to happen, on the (degree of) availability of needed resources, etc.

30 E. Börger and B. Thalheim

These task types are based on whether a message has been sent or received or
whether the task is executed or calls another process. The execution semantics
for task nodes is given by one ASM rule (scheme) [13], which uses as interface
abstract machines to Send or Receive messages and to Call or Execute
processes.

A third example from the BPMN standard is the separation of cyclic from
acyclic processes, whe we use for the discussion of the OR-join gateway in Sect. 6.

Separation Principle 3. The third principle is the separation of different model
dimensions like control, events, data and resources. Such a separation is typical
for business process notations, but the focus of most of these notations on control
(read: execution order, possibly influenced also by events) results often in leav-
ing the underlying data or resource features either completely undefined or only
partly and incompletely specified. The notion of abstract state coming with ASMs
supports to not simply neglect data or resources when speaking about control, but
to tailor their specification to the needed degree of detail, hiding what is consid-
ered as irrelevant at the intended level of abstraction but showing explicitly what
is needed. We illustrate this in Sect. 4 by the four components for data, control,
events and resources in WorkflowTransition, which constitute four model di-
mensions that come together in the ASM scheme for workflow interpreter rules.
These four components are extensively used in the BPMN standard, although the
focus is on the control flow, which is represented by the control flow arcs, relegating
interprocess communication (via message flow arcs between processes) and data
conditions and operations to minor concerns. For an enhanced specification of in-
terprocess communication see the orchestration of processes in [28].

Separation Principle 4. The fourth principle, whose adoption helps to reduce
the description size of abstract models, is the separation of rule schemes and
concrete rules, where the concrete rules may also be specialized rule schemes. It
exploits the powerful abstraction mechanisms ASMs offer for both data and op-
erations, whether static or dynamic. We illustrate this by the ComplexGate-

Transition in Sect. 5.1, a scheme from which one can easily define the behavior of
the otherBPMN gatewaysby instantiating some of the abstractions (see Sect. 5.2).

Separation Principle 5. The fifth example is about the separation of design,
experimental validation and mathematical verification of models and their prop-
erties. In Sect. 6 we illustrate an application of this principle by an analysis of the
OR-join gateway, where for a good understanding of the problem one better sep-
arates the definition of the construct from the computation or verification of its
synchronization behavior. Once a ground model is defined, one can verify proper-
ties for diagrams, separating the cases with or without cyclces and in the former
case showing which cycles in a diagram are alive and which ones may result in a
deadlock. In addition, the specialized ASM workflow simulator [25] allows one to
trace and to experimentally validate the behaviour of cyclic diagrams.

The principle goes together with the separation of different levels of detail at
which the verification of properties of interest can take place, ranging from proof
sketches over traditional or formalized mathematical proofs to tool supported

Modeling Workflows, Interaction Patterns, Web Services 31

proof checking or interactive or automated theorem proving, all of which can
and have been used for ASM models (see [11, Ch.8,9] for details).

Separation Principle 6. This pinciple is about the separation of responsibil-
ities, rights and roles of users of BPMN diagrams. To represent different roles
of users BPMN diagrams can be split into so-called pools, between which mes-
sages can be exchanged. Furthermore user actions can be separated by so-called
swimlanes. Such a separation of user actions depending on the user’s role within
a diagram is supported in a natural way by the ASM concept of rule executing
agents: one can associate different and even independent agents to sets of user
rules; moreover these agents could be supervised by a user superagent coming
with his own supervising rules, which leads to more general interaction patterns
than what is foreseen by the BPMN standard (see [5]).

In the next section we show how from a combination of the separation princi-
ples formulated above one can derive an orthogonal high-level interpretation of
the basic concepts of BPMN.

4 The Scheme for Workflow Interpreter Rules

ForeveryworkfloworBPMNconstructassociatedtoanode, itsbehavioralmeaning
can be expressed by a guarded transition rule WorkflowTransition(node) ∈
WorkflowTransition of the general form defined below. Every such rule states
upon which events and under which further conditions—typically on the control
flow, the underlying data and the availability of resources—the rule can fire to
execute the following actions:

perform specific operations on the underlying data (‘how to change the in-
ternal state’) and control (‘where to proceed’),
possibly trigger new events (besides consuming the triggering ones),
operate on the resource space to handle (take possession of or release) re-
sources.

In the scheme, the events and conditions in question remain abstract, the
same as the operations that are performed. This allows one to instantiate them
by further detailing the guards (expressions) respectively the submachines for
the description of concrete workflow transitions.4

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

4 We remind the reader that by the synchronous parallelism of single-agent ASMs, in
each step all applicable rules are executed simultaneously, starting from the same
state to produce together the next state.

32 E. Börger and B. Thalheim

WorkflowTransition(node) represents an abstract state machine, in fact
a scheme (sometimes also called a pattern) for a set of concrete machines that
can be obtained by further specifying the guards and the submachines for each
given node. In the next section we illustrate such an instantiation process to
define the behavior of BPMN gateways by ASM rules taken from the high-level
BPMN interpreter defined in [13].

5 Instantiating WorkflowTransition for BPMN
Gateways

In this section we instantiate WorkflowTransition for BPMN gateways,
nodes standing for one of the three types of BPMN flow objects. The other
two types are event and activity nodes, whose behavior can be described by
similar instantiations, see [13] for the details. We start with the rule for so-called
complex gateway nodes, from which the behavior of the other BPMN gateway
constructs can be defined as special cases.

5.1 ComplexGateTransition

Gateways are used to describe the convergence (also called merging) and/or
divergence (also called splitting) of control flow, in the sense that tokens can
‘be merged together on input and/or split apart on output’ [15, p.68]. For both
control flow operations one has to determine the set of incoming respectively
outgoing arcs they are applied to at the given node. The particular choices de-
pend on the node, so that we represent them by two abstract selection functions,
namely to

– selectConsume the incoming arcs where tokens are consumed,
– selectProduce the outgoing arcs where tokens are produced.

Both selection functions come with constraints: selectConsume is required to
select upon each invocation a non-empty set of enabled incoming arcs, whose
firingTokens are to be consumed in one transition.5 selectProduce is constrained to
select upon each invocation a non-empty subset of outgoing arcs o satisfying an
associated OutCond(o). On these arcs complxGateTokens are produced, whose
particular form may depend on the firingTokens. We skip that in addition, as
(part of) DataOp(node), multiple assignments may be ‘performed when the
Gate is selected’ [15, Table 9.30 p.86] (read: when the associated rule is fired).

5 A function firingToken(A) is used to express a structural relation between the con-
sumed incoming and the produced outgoing tokens, as described in [15, p.35]. It is
assumed to select for each element a of an ordered set A of incoming arcs some
of its token(a) to be Consumed. For the sake of exposition we make the usual as-
sumption that inQty(in) = 1, so that we can use the following sequence notation:
firingToken([a1, . . . , an]) = [t1, . . . , tn] denotes that ti is the token selected to be fired
on arc ai .

Modeling Workflows, Interaction Patterns, Web Services 33

ComplexGateTransition(node) =
let

I = selectConsume(node)
O = selectProduce(node)

in WorkflowTransition(node, I ,O)
where

CtlCond(node, I) = (I �= ∅ and forall in ∈ I Enabled(in))
CtlOp(node, I ,O) =

if O �= ∅ and O ⊆ {o ∈ outArc(node) | OutCond(o)} then
ProduceAll({(complxGateToken(firingToken(I), o), o) | o ∈ O})
ConsumeAll({(ti , ini) | 1 ≤ i ≤ n}) where

[t1, . . . , tn] = firingToken(I), [in1, . . . , inn] = I

5.2 Instantiating ComplexGateTransition

The BPMN standard defines and names also special gateways, which can all be
obtained by specializing the selection functions in ComplexGateTransition.
To describe these instantiations here more clearly, we assume without loss of
generality that these special gateways never have both multiple incoming and
multiple outgoing arcs. Thus the so-called split gateways have one incoming
and multiple outgoing arcs, whereas the so-called join gateways have multiple
incoming and one outgoing arc.

For AND-split and AND-join gateway nodes, selectProduce and selectConsume

are required to yield all outgoing resp. all incoming arcs.
For OR-split nodes two cases are distinguished: selectProduce chooses exactly

one (exclusive case, called XOR-split) or at least one outgoing arc (called in-
clusive OR or simply OR-split). For the exclusive case a further distinction is
made depending on whether the decision is ‘data-based’ or ‘event-based’, mean-
ing that OutCond(o) is a DataCond(o) or an EventCond(o). For both cases it
is required to select the first out ∈ outArc(node), in the given order of gates,
satisfying GateCond(out).

Similarly also for OR-join nodes two versions are distinguished, an exclu-
sive and data-based one—the event-based XOR is forbidden by the standard
to act only as a Merge—and an event-based inclusive one. In the latter case
selectConsume is required to yield a subset of the incoming arcs with associated
tokens ‘that have been produced upstream’ [15, p.80], but no indication is given
how to determine this subset, which is a synchronization problem. We discuss
this very much disputed issue further in the next section.

6 OR-Join Gateway: Global versus Local Description
Elements

The OR-join concept is present in many workflow and business process modeling
languages and is used with different understandings advocated in the literature,
in different commercial workflow systems and by different users. Part of this

34 E. Börger and B. Thalheim

situation stems from the fact that in dealing with the OR-join concept, often two
things are mixed up that should be kept separate, namely a) how the intended
meaning of the concept is defined (question of semantics) and b) how properties
of interest for the construct (most importantly its fireability in a given state)
can be computed, validated (at run time) or verified (at design time) (question
of computation, validation and verification methods).

It could be objected that an algorithm to compute the fireability of the OR-
join rules defines the crucial synchronization property and thus the semantics
of the OR-join. Speaking in general terms this is true, but then the question is
whether there is agreement on which algorithm to use and whether the algorithm
is understandable enough to serve as a behavioral specification the business
process expert can work with. However, looking at the literature there seems to
be no agreement on which algorithm should be used and the complexity of the
proposed ones makes them unfit to serve as satisfactory semantical specification
for the workflow practitioner.

The semantical issue disputed in the literature is the specification of the
selectConsume functions, which incorporate the critical synchronization condi-
tions. selectConsume(node) plays the role of an interface for triggering for a set
of to-be-synchronized incoming arcs the execution of the rule at the given node.
Unfortunately, most proposals for an OR-join semantics in one way or the other
depend on the framework used for the definition. This is particularly evident
in the case of Petri-net-based definitions, where, to circumvent the restrictions
imposed by the local nature of what a Petri net transition can express, either the
diagrams are restricted (to the possible dislike of a business process practitioner)
or ad hoc extensions of Petri nets are introduced that are hard to motivate in
application domain terms (see for example [33,31,32]). A side problem is that
the BPMN standard document seems to foresee that the function is dynamic
(run-time determined), since the following is required:

Process flow SHALL continue when the signals (Tokens) arrive from all
of the incoming Sequence Flow that are expecting a signal based on the
upstream structure of the Process . . . Some of the incoming Sequence
Flow will not have signals and the pattern of which Sequence Flow will
have signals may change for different instantiations of the Process. [15,
p.80]

We refer to [12] for a detailed discussion of OR-join variations and ways to
define and compute the underlying synchronization functions selectConsume . We
restrict our attention here to report some experiments Ove Soerensen has made
with various alternatives we considered to come up with a practically accept-
able definition that could serve for the standard, in particular in connection
with diagrams that may contain cycles. For this purpose Soerensen has built a
specialized ASM workflow simulator [25] that is interfaced with standard graph
representation tools, so that the token flow and the unfolding of a diagram cycle
triggered by applying ASM OR-join rules can be visualized.

One alternative we considered is to a) pass at runtime every potential syn-
chronization request from where it is originated (a split gateway node) to each

Modeling Workflows, Interaction Patterns, Web Services 35

downstream arc that enters a join gateway node and to b) delete this request
each time the synchronization possibility disappears due to branching. Assume
for the moment that the given diagram contains no cycles and assume without
loss of generality that there is a unique start node. Then it suffices to operate
the following refinement on our BMPN model.

– Split gate transition refinement. When due to an incoming token t
at a split node a new token t .o is produced on an arc o outgoing node,
a computation path starts at o that may need to be synchronized with
other computation paths started simultaneously at this node, so that also a
synchronization copy is produced and placed on each downstream arc that
enters a join node, i.e. an arc entering a join node to which a path leads from
o. We denote the set of these join arcs by AllJoinArc(o). Simultaneously the
synchronization copy of t is deleted from all such arcs that are reachable from
node.

– Join gate transition refinement. We consume the synchronization tokens
that, once the to-be-synchronized tokens have been fired, have served their
purpose, and produce new synchronization tokens for the tokens the join
produces. To CtlCond(node, I) we add the synchronization condition that I
is a synchronization family at node, which means a set of incoming arcs
with non-empty syncToken sets such that all other incoming arcs (i.e. those
not in I) have empty syncToken set (read: are arcs where no token is still
announced for synchronization so that no token will arrive any more (from
upstream) to enable such an arc).

It is not difficult to formulate this idea as a precise refinement (in the sense
of [8]) of our ASMs for BPMN split and join rules (see [12]). To extend this
approach to the case of diagrams with cycles (more generally subprocesses),
one can refine the AllJoinArc function to yield only arcs of join nodes up to
and including the next subprocess entry node; inside a subprocess AllJoinArc is
further restricted to only yield join nodes that are inside the subprocess.6 The
production of synchronization tokens by the transition rule for join gate nodes
that enter a subprocess is postponed to the exit node rule(s) of the subprocess.

There are obviously various other possibilities, with all of which one can ex-
periment using the work that will be reported in [25].

7 Related and Future Work

There are two specific papers we know on the definition of a formal semantics of a
subset of BPMN. In [16] a Petri net model is developed for a core subset of BPMN
which however; it is stated there that due to the well-known lack of high-level
concepts in Petri nets, this Petri net model “does not fully deal with: (i) parallel
multi-instance activities; (ii) exception handling in the context of subprocesses
that are executed multiple times concurrently; and (iii) OR-join gateways. ”

6 In Soerensen’s tool this is realized by spanning a new diagram copy of the subprocess.

36 E. Börger and B. Thalheim

In [30] it is shown “how a subset of the BPMN can be given a process semantics
in Communicating Sequential Processes”, starting with a formalization of the
BPMN syntax using the Z notation and offering the possibility to use the CSP-
based model checker for an analysis of model-checkable properties of business
processes written in the formalized subset of BPMN. The execution semantics
for BPMN defined in [13] covers every standard construct and is defined in
the form of if Event and Condition then Action rules of Event-Condition-
Action systems, which are familiar to most analysts and professionals trained in
process-oriented thinking. Since ASMs assign a precise mathematical meaning to
abstract (pseudo) code, for the verification and validation of properties of ASMs
one can adopt every appropriate accurate method, without being restricted to,
but allowing one to use, appropriate mechanical (theorem proving or model
checking) techniques.

In [29] an inclusion of process interaction and resource usage concerns is ad-
vocated for the forthcoming extension BPMN 2.0 of BPMN. It could be worth
to investigate how the ASM models defined in [5] for the interaction patterns
in [1] can be included into the current ASM model for BPMN, extending the
current communication means in BPMN—event handling, message exchange
between pools and data exchange between processes—to richer forms of inter-
action between multiple processes. Also a rigorous analysis of scheduling and
concurrency mechanisms would be interesting, in particular in connection with
concerns about resources and workload balancing that play a crucial role for
efficient implementations.

The feature-based definition of workflow concepts in this paper is an adap-
tation of the method used in a similar fashion in [26] for an instructionwise
definition, verification and validation of interpreters for Java and the JVM. This
method has been developed independently for the definition and validation of
software product lines [7], see [6] for the relation between the two methods.

References

1. Barros, A., Dumas, M., Hofstede, A.: Service interaction patterns. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

2. Altenhofen, M., Börger, E., Friesen, A., Lemcke, J.: A high-level specification for
virtual providers. International Journal of Business Process Integration and Man-
agement 1(4), 267–278 (2006)

3. Altenhofen, M., Börger, E., Lemcke, J.: A high-level specification for mediators
(virtual providers). In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812,
pp. 116–129. Springer, Heidelberg (2006)

4. Altenhofen, M., Friesen, A., Lemcke, J.: ASMs in service oriented architectures.
Journal of Universal Computer Science (2008)

5. Barros, A., Börger, E.: A compositional framework for service interaction patterns
and communication flows. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 5–35. Springer, Heidelberg (2005)

Modeling Workflows, Interaction Patterns, Web Services 37

6. Batory, D., Börger, E.: Modularizing theorems for software product lines: The
Jbook case study. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS,
vol. 4932, pp. 1–4. Springer, Heidelberg (2008)

7. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. In: ACM TOSEM. ASM (October 1992)

8. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15, 237–
257 (2003)

9. Börger, E.: Construction and analysis of ground models and their refinements as
a foundation for validating computer based systems. Formal Aspects of Comput-
ing 19, 225–241 (2007)

10. Börger, E.: Modeling workflow patterns from first principles. In: Storey, V.C., Par-
ent, C., Schewe, K.-D., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 1–20.
Springer, Heidelberg (2007)

11. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

12. Börger, E., Thalheim, B.: Experiments with the behavior of or-joins in business
process models. J. Universal Computer Science (submitted, 2008)

13. Börger, E., Thalheim, B.: A high-level BPMN interpreter (submitted)
14. Börger, E., Thalheim, B.: A method for verifiable and validatable business pro-

cess modeling. In: Advances in Software Engineering. LNCS, Springer, Heidelberg
(2008)

15. BPMI.org. Business Process Modeling Notation Specification. dtc/2006-02-01
(2006), http://www.omg.org/technology/documents/spec catalog.htm

16. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using Petri nets. Technical Report 7115, Queensland University of
Technology, Brisbane (2007)

17. Fahland, D.: Ein Ansatz einer Formalen Semantik der Business Process Execu-
tion Language for Web Services mit Abstract State Machines. Master’s thesis,
Humboldt-Universität zu Berlin (June 2004)

18. Fahland, D., Reisig, W.: ASM semantics for BPEL: the negative control flow. In:
Beauquier, D., Börger, E., Slissenko, A. (eds.) Proc. ASM 2005, Université de Paris,
vol. 12, pp. 131–152 (2005)

19. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and validation of the Busi-
ness Process Execution Language for web services. In: Zimmermann, W., Thalheim,
B. (eds.) ASM 2004. LNCS, vol. 3052, pp. 78–94. Springer, Heidelberg (2004)

20. Friesen, A., Börger, E.: A high-level specification for semantic web service dis-
covery services. In: ICWE 2006: Workshop Proceedings of the Sixth International
Conference on Web Engineering (2006)

21. Lavagno, L., Sangiovanni-Vincentelli, A., Sentovitch, E.M.: Models of computation
for system design. In: Börger, E. (ed.) Architecture Design and Validation Methods,
pp. 243–295. Springer, Heidelberg (2000)

22. Lemcke, J., Friesen, A.: Composing web-service-like Abstract State Machines
(ASMs). In: Workshop on Web Service Composition and Adaptation (WSCA
2007); IEEE International Conference on Web Service (ICWS 2007) (2007)

23. Farahbod, U.G.R., Vajihollahi, M.: An Abstract Machine Architecture for Web
Service Based Business Process Management. Int. J. Business Process Integration
and Management 1(4), 279–291 (2006)

24. Russel, N., ter Hofstede, A., van der Aalst, W.M.P., Mulyar, N.: Workflow control-
flow patterns: A revised view. BPM-06-22 (July 2006),
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

http://www.omg.org/technology/documents/spec_catalog.htm
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

38 E. Börger and B. Thalheim

25. Sörensen, O.: Diplomarbeit. Master’s thesis, University of Kiel, forthcoming (2008),
www.is.informatik.uni-kiel/∼thalheim/ASM/MetaProgrammingASM

26. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

27. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(3), 5–51 (2003)

28. Weske, M.: Business Process Management. Springer, Heidelberg (2007)
29. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A., Russel, N.: On

the suitability of BPMN for business process modelling. In: The 4th Int. Conf. on
Business Process Management (2006)

30. Wong, P.Y.H., Gibbons, J.: A process semantics fo BPMN. Oxford University
Computing Lab (preprint, July 2007),
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmn extended.pdf

31. Wynn, M., van der Aalst, W., ter Hofstede, A., Edmond, D.: Verifying workflows
with cancellation regions and OR-joins: an approach based on reset nets and reacha-
bility analysis. In: Dustdar, S., Fiadeiro, J.L., Seth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 389–394. Springer, Heidelberg (2006); Previous versions edited as
BPM-06-16 and BPM-06-12

32. Wynn, M., Verbeek, H.M.W., van der Aalst, W., ter Hofstede, A., Edmond, D.:
Reduction rules for reset workflow nets. Technical Report BPM-06-25, BPMcen-
ter.org (2006)

33. Wynn, M., Verbeek, H.M.W., van der Aalst, W., ter Hofstede, A., Edmond, D.:
Reduction rules for YAWL workflow nets with cancellation regions and OR-joins.
Technical Report BPM-06-24, BPMcenter.org (2006)

www.is.informatik.uni-kiel/~thalheim/ASM/MetaProgrammingASM
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmn_extended.pdf

	Modeling Workflows, Interaction Patterns, Web Services and Business Processes: The ASM-Based Approach
	Introduction
	Building ASM Ground Models for Business Processes
	Separation of Different Concerns
	The Scheme for Workflow Interpreter Rules
	Instantiating WorkflowTransition for BPMN Gateways
	ComplexGateTransition
	Instantiating ComplexGateTransition

	OR-Join Gateway: Global versus Local Description Elements
	Related and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

