

Lecture Notes in Computer Science 5238
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Egon Börger Michael Butler
Jonathan P. Bowen Paul Boca (Eds.)

Abstract
State Machines,
B and Z

First International Conference, ABZ 2008
London, UK, September 16-18, 2008
Proceedings

13

Volume Editors

Egon Börger
Università di Pisa
Dipartimento di Informatica
Pisa, Italy
E-mail: boerger@di.unipi.it

Michael Butler
University of Southampton
School of Electronics and Computer Science
Highfield, Southampton, UK
E-mail: mjb@ecs.soton.ac.uk

Jonathan P. Bowen
London South Bank University
Faculty of BCIM
London, UK
E-mail: jpbowen@gmail.com

Paul Boca
London South Bank University
Faculty of BCIM
London, UK
E-mail: paul.boca@googlemail.com

Library of Congress Control Number: 2008934655

CR Subject Classification (1998): D.2.1, D.2.2, D.2.4, D.3.1, H.2.3, F.3.1, F.4.2-3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-87602-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87602-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12518180 06/3180 5 4 3 2 1 0

Preface

The ABZ 2008 conference was held in London during September 16–18, 2008.
The conference aimed at contributing to the cross-fertilization of three rigorous
methods that share a common conceptual foundation and are widely used in
both academia and industry for the design and analysis of hardware and soft-
ware systems, namely, abstract state machines, B, and Z. It followed on from the
Dagstuhl seminar on Rigorous Methods for Software Construction and Analy-
sis, which was organized in May 2006 by Jean-Raymond Abrial (ETH Zürich,
Switzerland) and Uwe Glässer (Simon Fraser University – Burnaby, Canada),
and brought together researchers from the ASM and the B community (see:
http://www.dagstuhl.de/06191).

The conference simultaneously incorporated the 15th International ASM
Workshop, the 17th International Conference of Z Users and the 8th Interna-
tional Conference on the B Method, which were present with separate Program
Committees to select the papers published in separate tracks (see Chapters 2–4
of these proceedings). The conference covered a wide range of research spanning
from theoretical and methodological foundations to tool support and practical
applications. It was split into three main parts:

– A one-day common program of four invited lectures, see Chap. 1 of these pro-
ceedings, and the presentation of three papers selected among the submitted
contributions

– Two days of contributed research papers and short presentations of work
in progress, of industrial experience reports and of tool demonstrations, as
documented in Chap. 2–5 of these proceedings

– Two tutorials on the ASM and B simulator tools CoreAsm and Pro-B

The conference was preceded by a UK EPSRC-funded Verified Software
Repository Network (VSR-net) workshop on Monday, September 15, organized
by Jim Woodcock and Paul Boca. This is reported in Chap. 6 of these proceed-
ings, which includes an invited talk by Cliff Jones along with an overview of
other technical talks at the VSR-net workshop covering progress on verification
challenges.

We wish to thank the members of the three Program Committees and the
numerous reviewers for their work, Springer for publishing the proceedings, and
the sponsors for substantial financial support. In particular, the British Com-
puter Society hosted the conference at their offices in central London, through
the support of the BCS-FACS Specialist Group on Formal Aspects of Com-
puting Science. Formal Methods Europe sponsored Wolfram Buettner’s atten-
dance, Nokia provided welcome financial sponsorship and two devices which were
awarded as best-paper prizes, and Praxis High Integrity Systems sponsored the
conference bags. The EPSRC VSR-net Network enabled the VSR-net workshop

VI Preface

to be held free for attendees. London South Bank University provided access
to the Union Jack Club for convenient accommodation for conference delegates.
The Easychair system was used for management of the submission and reviewing
process.

Further information on the ABZ2008 conference may be found online at:
http://www.abz2008.org

Egon Börger
Michael Butler

Jonathan P. Bowen
Paul Boca

Organization

Program Chairs

Paul Boca
Egon Börger
Jonathan P. Bowen
Michael Butler

Local Organization

Paul Boca

ASM Program Committee

Egon Börger (Chair)
Alessandra Cavarra
Andreas Friesen
Uwe Glaesser
Susanne Graf
Kristina Lundqvist
Andreas Prinz
Elvinia Riccobene
Klaus-Dieter Schewe
Anatol Slissenko
Jan Van den Bussche
Margus Veanes
Charles Wallace

B Program Committee

Christian Attiogbé
Richard Banach
Juan Bicarregui
Michael Butler (Chair)
Dominique Cansell
Daniel Dolle
Marc Frappier
Jacques Julliand
Regine Laleau
Michael Leuschel
Annabelle McIver

VIII Organization

Dominique Mery
Louis Mussat
Marie-Laure Potet
Ken Robinson
Steve Schneider
Emil Sekerinski
Bill Stoddart
Elena Troubitsyna
Mark Utting

Z Program Committee

Jonathan P. Bowen (Chair)
John Derrick
Leo Freitas
Martin Henson
Mike Hinchey
Randolph Johnson
Yves Ledru
Steve Reeves
Mark Utting
Sergiy Vilkomir
Jim Woodcock

VSR Day Organizers

Paul Boca
Jim Woodcock (Chair)

External Reviewers

Roozbeh Farahbod
Frederic Gervais
Stefan Hallerstede
Thai Son Hoang
Angel Robert Lynas
Hassan Mountassir
Martin Ouimet
Abdolbaghi Rezazadeh
Patrizia Scandurra
Laurent Voisin

Table of Contents

Chapter 1. ABZ Invited Talks

Complex Hardware Modules Can Now be Made Free of Functional
Errors without Sacrificing Productivity . 1

Wolfram Büttner

The High Road to Formal Validation: Model Checking High-Level
Versus Low-Level Specifications . 4

Michael Leuschel

Modeling Workflows, Interaction Patterns, Web Services and Business
Processes: The ASM-Based Approach . 24

Egon Börger and Bernhard Thalheim

Refinement of State-Based Systems: ASMs and Big Commuting
Diagrams (Abstract) . 39

Gerhard Schellhorn

Chapter 2. ASM Papers

Model Based Refinement and the Tools of Tomorrow 42
Richard Banach

A Concept-Driven Construction of the Mondex Protocol Using Three
Refinements . 57

Gerhard Schellhorn and Richard Banach

A Scenario-Based Validation Language for ASMs . 71
Alessandro Carioni, Angelo Gargantini, Elvinia Riccobene, and
Patrizia Scandurra

Data Flow Analysis and Testing of Abstract State Machines 85
Alessandra Cavarra

A Verified AsmL Implementation of Belief Revision 98
Christoph Beierle and Gabriele Kern-Isberner

Direct Support for Model Checking Abstract State Machines by
Utilizing Simulation . 112

Jörg Beckers, Daniel Klünder, Stefan Kowalewski, and
Bastian Schlich

Chapter 3. B Papers

On the Purpose of Event-B Proof Obligations . 125
Stefan Hallerstede

X Table of Contents

Generating Tests from B Specifications and Test Purposes 139
Jacques Julliand, Pierre-Alain Masson, and Régis Tissot

Combining Scenario- and Model-Based Testing to Ensure POSIX
Compliance . 153

Frédéric Dadeau, Adrien De Kermadec, and Régis Tissot

UseCase-Wise Development: Retrenchment for Event-B 167
Richard Banach

Towards Modelling Obligations in Event-B . 181
Juan Bicarregui, Alvaro Arenas, Benjamin Aziz,
Philippe Massonet, and Christophe Ponsard

A Practical Single Refinement Method for B . 195
Steve Dunne and Stacey Conroy

The Composition of Event-B Models . 209
Michael Poppleton

Reconciling Axiomatic and Model-Based Specifications Reprised 223
Ken Robinson

A Verifiable Conformance Relationship between Smart Card Applets
and B Security Models . 237

Frédéric Dadeau, Julien Lamboley, Thierry Moutet, and
Marie-Laure Potet

Modelling Attacker’s Knowledge for Cascade Cryptographic
Protocols . 251

Nazim Benäıssa

Using EventB to Create a Virtual Machine Instruction Set
Architecture . 265

Stephen Wright

Chapter 4. Z Papers

Z2SAL - Building a Model Checker for Z . 280
John Derrick, Siobhán North, and Anthony J.H. Simons

Formal Modeling and Analysis of a Flash Filesystem in Alloy 294
Eunsuk Kang and Daniel Jackson

Unit Testing of Z Specifications . 309
Mark Utting and Petra Malik

Autonomous Objects and Bottom-Up Composition in ZOO Applied to
a Case Study of Biological Reactivity . 323

Nuno Amálio, Fiona Polack, and Jing Zhang

Table of Contents XI

Chapter 5. ABZ Short Papers

Integrating Z into Large Projects: Tools and Techniques 337
Anthony Hall

A First Attempt to Express KAOS Refinement Patterns with
Event B . 338

Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau

Verification and Validation of Web Service Composition Using Event B
Method . 339

Idir Ait-Sadoune and Yamine Ait-Ameur

Stability of Real-Time Abstract State Machines under
Desynchronization . 341

Joelle Cohen and Anatol Slissenko

XML Database Transformations with Tree Updates 342
Qing Wang, Klaus-Dieter Schewe, and Bernhard Thalheim

Dynamic Resource Configuration & Management for Distributed
Information Fusion in Maritime Surveillance . 343

Roozbeh Farahbod and Uwe Glässer

UML-B: A Plug-in for the Event-B Tool Set . 344
Colin Snook and Michael Butler

BART: A Tool for Automatic Refinement . 345
Antoine Requet

Model Checking Event-B by Encoding into Alloy
(Extended Abstract) . 346

Paulo J. Matos and João Marques-Silva

A Roadmap for the Rodin Toolset . 347
Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and
Laurent Voisin

Exploiting the ASM Method for Validation & Verification of Embedded
Systems . 348

Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra

Tool Support for the Circus Refinement Calculus . 349
Alessandro Cavalcante Gurgel, Cristiano Gurgel de Castro, and
Marcel Vinicius Medeiros Oliveira

Separation of Z Operations . 350
Ramsay Taylor

XII Table of Contents

BSmart: A Tool for the Development of Java Card Applications with
the B Method . 351

David Déharbe, Bruno Gomes, and Anamaria Moreira

From ABZ to Cryptography (Abstract) . 353
Eerke A. Boiten

Using ASM to Achieve Executability within a Family of DSL 354
Ileana Ober and Ali Abou Dib

Using Satisfiability Modulo Theories to Analyze Abstract State
Machines (Abstract) . 355

Margus Veanes and Ando Saabas

Formal Verification of ASM Models Using TLA+ . 356
Hocine El-Habib Daho and Djilali Benhamamouch

DIR 41 Case Study: How Event-B Can Improve an Industrial System
Specification . 357

Christophe Metayer and Mathieu Clabaut

FDIR Architectures for Autonomous Spacecraft: Specification and
Assessment with Event-B . 358

Jean-Charles Chaudemar, Charles Castel, and Christel Seguin

Object Modelling in the SystemB Industrial Project 359
Helen Treharne, Edward Turner, Steve Schneider, and Neil Evans

Chapter 6. VSR Day

Splitting Atoms with Rely/Guarantee Conditions Coupled with Data
Reification . 360

Cliff B. Jones and Ken G. Pierce

ABZ2008 VSR-Net Workshop . 378
Jim Woodcock and Paul Boca

Author Index . 381

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 1–3, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Complex Hardware Modules Can Now be Made Free of
Functional Errors without Sacrificing Productivity

Wolfram Büttner

Prinzregentenstr. 74
81675 München, Germany

wolfram.buettner@email.de

Abstract. Complementary to the systems and software focus of the conference,
this presentation will be about chips and the progress that has been made in
their functional verification. Common ground will be high-level, still cycle-
accurate, state-based models of hardware functionalities called Abstract RT. RT
stands for register transfer descriptions of hardware such as VHDL or Verilog.
An Abstract RT model is a formal specification which permits an automated
formal comparison with its implementation, thus detecting any functional
discrepancy between code and formal specification.

The first part of the presentation will sketch the big picture: Moore‘s Law still
holds and permits building huge chips comprising up to hundreds of millions of
gates. Under the constraints of shrinking budgets and development times, these
so-called systems-on-chip (SoC) can no longer be developed from scratch but
must largely be assembled from pre-designed, pre-verified design components
such as processors, controllers, a plethora of peripherals and large amounts of
memories. Therefore, getting a SoC right depends to a large extent on the quality
of these design components – IP for short. At stake are critical errors making it
into silicon. These may cost millions of Euros due to delayed market entry,
additional engineering and re-production efforts. Hence, the lion’s share of
today’s verification efforts goes into the functional verification of such IP.

Current functional verification practice for IP is based on simulation and
employs a mix of handcrafted directed tests and automatically generated
constrained random tests whose outcomes are compared with those obtained by
running the tests through functionally equivalent C-models. Simulation traces
are inspected by assertions and progress of verification is measured by coverage
analysis. The underlying philosophy is largely black box testing: Test scenarios
are developed from a specification and verification engineers intentionally
avoid insight into details of a design. This practice has been around for almost
20 years and its high degree of automation has allowed putting much higher test
loads on designs than what could be achieved with handcrafted tests only. It
would be a miracle, though, if a basically black-box approach would reliably
find the intricate errors that can hide in complex functionalities. While
engineers have enjoyed the comfort of constrained random search over quite
some time, they now start to feel the limitations of the approach: A confidence
gap regarding detection of critical errors in deeply buried logic, the vast amount
of hardware and software infrastructure required by the approach and the
inability to adapt random tests driven by constraints to design changes other
than by tweaking these constraints. Most importantly, the cost of verification of

2 W. Büttner

a complex hardware module or IP now by far exceeds the cost of designing it.
Hence, the often quoted design gap, saying that chips keep growing much faster
than the ability to fill them with functionality, is better described as a
verification gap.

Therefore, it has been widely recognized in industry that effective
verification of IP and hardware modules require that more design insight be
made available to the verification process. There are first attempts to
automatically extract some design insight from code and use it to link test
scenarios to be analyzed with choosing effective tests – thus closing the loop
that black-box testing lacks. However, the mainstream event for bringing more
design insight into simulation-based verification has been the advent of
standardized verification languages such as System Verilog Assertions (SVA).
In practice, such a (designer) assertion captures local design intent of a designer
and typically is written by him. The designer can simulate his assertions and –
to some extent – formally verify them with a suitable model checker. While
SVA brings about a big step forward, its current usage does not yet bridge the
verification gap mentioned above, because the complex interaction of code
fragments can not be captured by isolated designer assertions – think of
instructions processed by pipelines which may conflict with newly inserted
instructions.

This kind of interaction, however, is what makes functional verification so
difficult. Real progress requires moving within the framework of SVA from
partial models of IP capturing local design intent to models which capture full
design intent –including interaction of functionalities. The key features of such
a model are the assertions that it employs, its ability to compose such assertions
and capabilities to check that the model indeed captures all behavior of the
implementation of the IP. For any given IP, the assertions required to build the
IP‘s model must formalize in an intuitive and compact fashion the operations
that the IP can execute – such as read or write operations in its various modes or
arithmetic instructions or many more operations. As any computation of the IP
is the result of chaining suitable operations, respective assertions must provide
information allowing a check that they connect seamlessly. Finally, algorithms
that check that the IP‘s assertions indeed constitute a full model of the IP are
required. At IP 07, I named such models “Abstract RT” and I believe this name
fits well the intentions of this conference. Currently, the main application of
Abstract RT for a given IP is an automated formal comparison with its
implementation, thus detecting any functional discrepancy between code and
formal specification. This equivalence check implements on a higher level what
standard equivalence checking has been doing for many years to ensure correct
design refinement from RT to gate level. Both comparisons yield best possible
quality. But while the objects of the latter comparison are provided fully by the
design process, the higher level comparison requires an additional activity,
namely building an Abstract RT model.

The second part of the presentation will take a closer look at Abstract RT: A
first example will show how to build the Abstract RT model of a small
controller and provide an intuitive understanding of Abstract RT. This will be
followed by a description of the various tasks required to build and verify
Abstract RT for a given IP. These tasks fall into three categories:

 Complex Hardware Modules Can Now Be Made Free of Functional Errors 3

Identifying operations from specification and code, formalizing these
operations by suitable assertions and then ensuring compliance regarding code
and specification. The first can be done with bounded property checking
techniques, while the latter amounts to a manual review.

Grouping suitable operations in single processes each describing
‘interesting’ subfunctionalities. The central verification task here must ensure
that any behavior of such a process is captured as a sequence of operations.
Upon completion of certain checks, such a process is called complete in the
terminology of OneSpin Solutions GmbH holding respective patents.

The full functionality of the design then is a collection of complete processes
consisting of correct operations. Each of these processes has constraints
regarding its legal inputs and makes assertions about its outputs. It remains to
check whether the network of these constraints and assertions creates no
additional behavior to that of the (isolated) processes.

Writing ‘good’ RT code is a creative and challenging activity and the same
holds for writing Abstract RT. Methodology, therefore, is key for guiding
practitioners to become good ‘Abstract RT designers’.

The third part of the presentation considers the perspectives of Abstract RT:
Proven Abstract RT is a compact, functionally equivalent model of the
implementation of some IP. As has been mentioned above, chip designs largely
emerge by connecting IP’s. System exploration and verification is too slow if
performed on the RT representation of the chip. Rather, one wishes to rapidly
simulate on higher levels still capturing the chips full functionality. A chip
model composed of Abstract RT models of the chips IP’s could provide such a
simulation model with the added benefit that ‘what you simulate is what you
provably get’.

Probably the largest impact of Abstract RT would be that of a platform
interleaving specification, implementation and verification. Respective
speculations will conclude the presentation.

Keywords: Design Process, Formal Verification, Abstract State Machine.

The High Road to Formal Validation:

Model Checking High-Level Versus Low-Level
Specifications

Michael Leuschel

Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de

Abstract. In this paper we examine the difference between model check-
ing high-level and low-level models. In particular, we compare the ProB

model checker for the B-method and the SPIN model checker for Promela.
While SPIN has a dramatically more efficient model checking engine, we
show that in practice the performance can be disappointing compared to
model checking high-level specifications with ProB. We investigate the
reasons for this behaviour, examining expressivity, granularity and SPIN’s
search algorithms. We also show that certain types of information (such as
symmetry) can be more easily inferred and exploited in high-level models,
leading to a considerable reduction in model checking time.

Keywords: B-Method, Tool Support, Model Checking, Symmetry Re-
duction, SPIN

1.

1 Introduction

Model checking [11] is a technique for validating hardware and software systems
based on exhaustively exploring the state space of the system. Model checking
has been hugely successful and influential, culminating in the award of the Turing
Prize to Clarke, Emerson and Sifakis.

Most model checking tools work on relatively low-level formalisms. E.g., the
model checker smv [9, 29] works on a description language well suited for speci-
fying hardware systems. The model checker SPIN [5, 19, 21] accepts the Promela
specification language, whose syntax and datatypes have been influence by the
programming language C. Recently, however, there have also been model check-
ers which work on higher-level formalisms, such as ProB [24, 27] which accepts
B [1]. Other tools working on high-level formalisms are, for example, fdr [16]
for CSP and alloy [23] for a formalism of the same name (although they both
are strictly speaking not model checkers).
1 This research is being carried out as part of the DFG funded research project

GEPAVAS and the EU funded FP7 research project 214158: DEPLOY (Indus-
trial deployment of advanced system engineering methods for high productivity and
dependability).

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 4–23, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The High Road to Formal Validation 5

It is relatively clear that a higher level specification formalism enables a more
convenient modelling. On the other hand, conventional wisdom would dictate
that a lower-level formalism will lead to more efficient model checking. In this
paper we try to establish that this is not necessarily the case; sometimes it can
even be considerably more efficient to directly validate high-level models.

In this paper we concentrate on comparing two formalisms: the high-level B-
method and the more low-level specification language Promela, as well as the
associated model checkers ProB and SPIN.

Indeed, SPIN is one of the most widely used model checkers. SPIN is an im-
pressive feat of engineering and has received the ACM System Software Award
in 2001. A lot of research papers and tools [3, 7, 10, 18, 31, 32, 35] translate
other formalisms down to Promela and use SPIN. Against SPIN we pit the model
checker ProB, which directly works on a high-level specification language,2 but
has a much less tuned model checking engine.

In Section 2 we first examine the granularity and expressivity of both for-
malisms, and explain what can go wrong when translating a high-level formalism
down to Promela. In Section 3 we examine the problems that can arise when us-
ing SPIN on systems with a very large state space (such as typically encountered
when model checking software). In Section 4, we look at one piece of information
(symmetry) that can be more easily extracted from high-level models, and its
impact on the performance of model checking.

2 Granularity and Expressivity

B being at a much higher-level than Promela, it is clear that a single B expression
can sometimes require a convoluted translation into Promela. As an example,
take the following B operation to sort an array a of integers:

Sort = ANY p WHERE p:perm(dom(a)) &
!(i,j).(i:1..(size(a)-1) & j:2..size(a) & i<j

=> a(p(i)) <= a(p(j))) THEN
a := (p;a) END;

The sorting operation is specified as choosing any permutation p such that
after applying the permutation the array is sorted. Note that (p ; a) corre-
sponds to relational composition, and (p;a)(i) = a(p(i)). Promela does not
have such a powerful non-deterministic construct. Basically, sorting will have to
be encoded in Promela by actually implementing a sorting algorithm, which will
take up considerably more space and time to write than the above B specification
(see, e.g., the merge sort example accompanying the book [4]).

But even less extreme examples are sometimes surprisingly difficult to model
in Promela. Take, e.g., the B statement x::1..n, which non-deterministically
sets x to a value between 1 and n. In Promela, we have to encode this using an
if-statement as follows:
2 See [2] which argues that formal verification tools should tie directly to high-level

design languages.

6 M. Leuschel

if
:: x=1
:: x=2
(...)
:: x=n

fi

This translation is not very concise, and moreover can only be performed if
we statically know the value of n. In case n is a variable, we have to encode
x::1..n in Promela as follows (see, Section 4.6.2 in [5]):

x = 1;
do

:: (x<nn) -> x++
:: ((x>=1)&&(x<=nn)) -> break

od

This translation is more concise (for larger n) than using an if-statement, but
still adds unnecessary state and behaviours to the model. Figure 1 shows on the
left the behaviour of the B model, starting from a state where the variable x has
the value 2 and supposing that n = 4. On the right we see the behaviour of our
Promela translation, which has n = 4 additional intermediate states.

x=2

x=1

x=2

x=3

x=4

x=2

x=1

x=2

x=3

x=4

x=1

x=2

x=3

x=4

Fig. 1. B and Promela state space for non-deterministic choice x::1..n with n = 4

In [21] on page 462 another translation is suggested, which produces a more
random distribution when animating. However, this translation has the disad-
vantage that the do loop may not terminate (which can cause a problem with
verification; see below).

The situation depicted in Figure 1 is actually quite typical: by translating a
specification from B to Promela we add new intermediate states and additional
internal behaviour. As another example, take the B predicate x:ran(f), where
f is a total function.3 In Promela, we could encode the function as an array,
supposing for simplicity that the domain of the function is 0..n− 1 for some n.
Evaluating the predicate x:ran(f) again requires a loop in Promela:

3 This is actually taken from our small case study in Section 4.2.

The High Road to Formal Validation 7

byte i = 0;
do

:: (i<n && f[i]!=x) -> i++
:: (i<n && f[i]==x) -> break /* not(x:ran(f)) */
:: (i==n) -> break /* x:ran(f) */

od;

Again, additional intermediate states appear in the Promela model. Note,
that in the presence of concurrency, these additional states can quickly lead to a
blow-up in the number of states compared to the high-level model. E.g., if we run
four copies of the B machines from Figure 1 in parallel, we get 54 = 625 states.
If we run four copies of the Promela specification from Figure 1 in parallel, we
get 94 = 6561 states.

A similar picture arises for the x:ran(f) example. Supposing we have n = 7
and that we have 4 processes, the B model would have, for a given function
f , 24 = 16 states (before and after evaluating the predicate). The Promela
model will have in the worst case (where the predicate x:ran(f) is false for all
processes) 104 = 10, 000 states. Also, we have the problem that the new variable
i is now part of the state. In the Promela model we should ensure that i is reset
to some default value after being used; otherwise a further blow-up of the state
space will ensue.

Luckily, Promela provides the atomic construct, which can be used to avoid
the additional blow-up due to internal states. However, the atomic construct
does have some restrictions (e.g., in the presence of channel communications).
Also, care has to be taken when placing an atomic around do loops: if the
loop does not necessarily terminate, then exhaustive verification with SPIN will
become impossible (the “search depth too small” error will be systematically
generated). If by accident the loop does not terminate at all, as in the following
example, then SPIN itself will go into an infinite loop, without generating an
error message or warning:

atomic{ do
:: x<10 -> x++
:: x>0 -> x--

od }

In summary, translating high-level models into Promela is often far from triv-
ial. Additional intermediate states and additional state variables are sometimes
unavoidable. Great care has to be taken to make use of atomic (or even dstep)
and resetting dead temporary variables to default values. However, restrictions
of atomic make it sometimes very difficult to hide all of the intermediate states.

As far as an automatic translation is concerned, it is far from clear how B could
be automatically translated into Promela;4 it is actually already very challenging
to write an interpreter in Prolog for B [24, 27].

4 This process was actually attempted in the past — without success — within the
EPSRC funded project ABCD at the University of Southampton.

8 M. Leuschel

A Small Empirical Study

[36] studies the elaboration of B-models for ProB and Promela models for SPINon
ten different problems. With one exception (the Needham-Schroeder public key
protocol), all B-models are markedly more compact than the corresponding
Promela models. On average, the Promela models are 1.85 longer (counting
the number of symbols). The time required to develop the Promela models was
about 2-3 times higher than for the B models, and up to 18 times higher in ex-
treme cases. No model took less time in Promela. Some models could not be fully
completed in Promela. The study also found that in practice both model check-
ers ProB and SPIN were comparable in model checking performance, despite
ProB working on a much higher-level input language and being much slower
when looking purely at the number of states that can be stored and processed.
In the remainder of this paper, we will investigate the possible reasons for this
surprising fact, which we have ourselves witnessed on repeated occasions, e.g.,
when teaching courses on model checking or conducting case studies.

3 Searching for Errors in Large State Spaces

In this section we will look at a simple problem, with simple datatypes, which
can be easily translated from B to Promela, so that we have a one-to-one corre-
spondence of the states of the models. In such a setting, it is obvious to assume
that the SPIN model checker for Promela will outperform the B model checker by
several orders of magnitude. Indeed, SPIN generates a specialised model checker
in C which is then compiled, whereas ProB uses an interpreter written in Pro-
log. Furthermore, SPIN has accrued many optimisations over the years, such as
partial order reduction [22, 30] and bitstate hashing [20]. (ProB on its side does
have symmetry reduction; but we will return to this issue in the next section.)

The simple Promela example in Fig. 2 can be used to illustrate this speed
difference. The example starts with an array in descending order, and then allows
permutation at some position i, with i cycling around the array. The goal is to
reach a state where the array starts with [1,2,3]. On a MacBook Pro with a 2.33
GHz Core2 Duo, SPIN (version 4.2.9 along with XSpin 4.28) takes 0.00 seconds
to find a solution for the Promela model (plus about six seconds compilation
time on XSpin and 40 seconds to replay the counter example which is 1244
steps long). ProB (version 1.2.7) takes 138.45 seconds for the same task on
an equivalent B model. This, however, includes the time to display the counter
example, which is in addition also only 51 steps long. Still, the model checking
speed is dramatically in favour of SPIN (and the difference increases further when
using larger arrays).

However, it is our experience that this potential speed advantage of SPIN

often does not translate into better performance in practice in real-life sce-
narios. Indeed—contrary to what may be expected—we show in this section
that SPIN sometimes fares quite badly when used as a debugging tool, rather
than as verification tool. Especially for software systems, verification of infinite

The High Road to Formal Validation 9

#define SZ 8
active proctype flipper () {

byte arr[SZ]; byte i,t;
do
:: i==SZ -> break
:: i<SZ -> arr[i] = SZ-i; i++

od;
i = 0;
do
:: i<SZ-1 -> i++
:: i==SZ-1 -> i=0
:: i<SZ-1 -> t = arr[i]; arr[i]=arr[i+1]; arr[i+1]=t; t=0; i++
:: (arr[0]==1 && arr[1]==2 && arr[2]==3)

-> assert(false) /* found solution */
od

}

Fig. 2. Flipping adjacent entries in an array in Promela

state systems cannot be done by model checking (without abstraction). Here,
model checking is most useful as a debugging tool: trying to find errors in a very
large state space.

3.1 An Experiment

Let us model a simple ticket vending machine, each ticket costing five euros.
Those tickets can either be paid using a credit card or with coins. If no more
tickets are available the machine should no longer accept coins or credit cards.
Figure 3 depicts a low-level Promela specification of this problem. For simplicity,
the machine requires the user to insert the exact amount (i.e., no change is given)
and we have not yet specified a button which allows a user to recover inserted
money. In the model we have also encoded that before issuing a ticket (via
ticket--), the number of available tickets is greater or equal than 1.

Figure 3 actually contains an error: the credit card number (for simplicity
always 1) is not reset after a ticket has been issued. This can lead to an assertion
violation. An equivalent specification in the high-level B formalism is depicted in
Figure 4. The same error is reproduced there, leading to an invariant violation.

Both models can also deadlock, namely when all tickets have been issued.
Both problems have been fixed in adapted models. In the Promela version the
cardnr variable is now reset to 0 after being used and the following line has
been added as the last branch of the do loop:

:: (ticket==0) -> ticket = 2 /* reload ticket machine */

Similarly, in the B model the withdraw ticket from card has been corrected
to reset the cardnr and the following operation has been added:

resupply = PRE ticket = 0 THEN ticket := 2 END;

10 M. Leuschel

active proctype user () {
byte c10 = 0; byte c20 = 0; byte c50 = 0;
byte c100 = 0; byte c200 = 0; byte cardnr = 0;
byte ticket = 2;
do

:: (cardnr==0 && ticket>0) -> c10++
:: (cardnr==0 && ticket>0) -> c20++
:: (cardnr==0 && ticket>0) -> c50++
:: (cardnr==0 && ticket>0) -> c100++
:: (cardnr==0 && ticket>0) -> c200++
:: (c10+c20+c50+c100+c200==0 && ticket>0) -> cardnr = 1
:: ((c10+2*c20+5*c50+10*c100+20*c200)==500)

-> assert(ticket>0);
atomic{ticket--; c10=0; c20=0; c50=0; c100=0; c200=0}

:: (cardnr>0) -> assert(ticket>0); ticket--
/* forgot to reset cardnr */

od
}

Fig. 3. A nasty ticket vending machine in Promela

MACHINE NastyTicketVending
DEFINITIONS SET_PREF_MAXINT == 255
VARIABLES
c10,c20,c50,c100,c200, cardnr, ticket

INVARIANT
c10:NAT & c20:NAT & c50:NAT & c100:NAT & c200:NAT & cardnr:NAT & ticket:NAT

INITIALISATION
c10,c20,c50,c100,c200, cardnr, ticket := 0,0,0,0,0, 0,2

OPERATIONS
insert_10cents = PRE cardnr=0 & ticket>0 THEN c10 := c10 + 1 END;
insert_20cents = PRE cardnr=0 & ticket>0 THEN c20 := c20 + 1 END;
insert_50cents = PRE cardnr=0 & ticket>0 THEN c50 := c50 + 1 END;
insert_100cents = PRE cardnr=0 & ticket>0 THEN c100 := c100 + 1 END;
insert_200cents = PRE cardnr=0 & ticket>0 THEN c200 := c200 + 1 END;
insert_card = PRE c10+c20+c50+c100+c200=0 & ticket>1 THEN cardnr := 1 END;
withdraw_ticket_from_coins = PRE c10+2*c20+5*c50+10*c100+20*c200=50 THEN

c10,c20,c50,c100,c200, cardnr, ticket := 0,0,0,0,0, 0,ticket-1
END;
withdraw_ticket_from_card = PRE cardnr>0 THEN

ticket := ticket -1 /* forgot to reset cardnr */
END

END

Fig. 4. A nasty ticket vending machine in B

Both models have also been enriched with an additional constraint, namely
that not more than 70 coins should be inserted at any one time. The models do
not yet ensure these constraints, hence the model checkers should again uncover
assertion violations.

The High Road to Formal Validation 11

We now compare using SPIN (version 4.2.9 along with XSpin 4.28) on the
Promela model against using ProB (version 1.2.7) on the B model. All tests
were again run on a MacBook Pro with a 2.33 GHz Core2 Duo.

The original Promela specification from Fig. 3 actually also had an additional,
unintentional error: it contained assert(ticket>=0) instead of assert(ticket>0)
for the last branch of the do loop. This surprisingly meant that SPIN could not
find an assertion violation, as bytes are by definition always positive (0−1 = 255
for bytes in Promela).

After fixing this issue, a series of experiments were run using SPIN. The results
can be found in Table 1. The model checking times are those displayed by SPIN

(user time), and do not include the time to generate and compile the pan file
(which takes about 6 seconds with XSpin). The very first line shows the use
of SPIN on the model from Fig. 3, when used in default settings. As one can
see, it took SPIN 40 seconds before aborting with an “out of memory” error.
No counter-example was found. After that we successively adapted various of
the (many) SPIN’s parameters. It can be seen that even with bitstate hashing
enabled, no error was detected. However, after turning on breadth-first search,
an assertion violation was finally found.

We now turned to the second model, where the two problems of the first model
were corrected. We started off with the setting that was successful for the first
model; but this time this setting proved incapable of detecting the new error
in the second model. Only after reverting back to a depth-first search was an
assertion violation detected. (Note that it took XSpin several minutes to replay
the counter example containing over 65000 steps.)

In summary, for the first deadlocking model (Fig. 3) it took us about 1000
seconds of CPU time and an afternoon to realise that the initial version of the
model was wrong. After that it took us about 800 seconds (adding up the various

Table 1. SPIN experiments on the nasty vending machine

Search Memory Partial Bitstate Breadth Time Result
Depth MB Order Hashing First (sec)

Deadlocking model from Fig. 3

10,000 128 yes no no 40.00 out of memory †
10,000 512 yes no no 580.26 out of memory †
10,000 512 yes yes no 89.59 †

100,000 512 yes yes no 91.51 †
1,000,000 512 yes yes no 97.04 †

100,000 512 yes yes yes 0.00 error found

Non-deadlocking model with ticket resupply

100,000 512 yes no yes 64.26 out of memory
100,000 512 yes yes yes 47.23 out of memory
100,000 512 yes yes no 0.17 error found

† = search depth too small.

12 M. Leuschel

runs of SPIN in the upper half of Table 1) of CPU time and 45 minutes in total
to locate an error in the model.5 For the equivalent high-level B specification
in Fig. 4, ProB took 0.2 seconds to find an invariant violation (with default
settings). The counter-example consisted of 4 steps: one insert card, followed
by 3 withdraw ticket from card events.6

For the non-deadlocking model, it took us in all about 111 seconds of CPU
time and three attempts to uncover the error with SPIN. For the equivalent B
model, ProB takes 24 seconds to find the invariant violation, again in default
settings. Observe that the counter example consists of the minimally required
70 steps; SPIN’s counter example consists of over 65000 steps.

3.2 Explanation of the Experimental Results

What can explain this poor performance of SPIN compared to ProB? The spec-
ification is quite simple, and the Promela and B models are very similar in size
and complexity. On the technology side, SPIN compiles the Promela models to C
and can crunch hundreds of thousands of states per second. ProB uses a Prolog
interpreter to compute the state space of the B specification. SPIN uses partial
order reduction, ProB does not (and symmetry does not apply here).

Let us first examine the characteristics of the models. The deadlocking model
has a very large state space, where there is a systematic error in one of the opera-
tions of the model (as well as a deadlock when all tickets have been withdrawn).
To detect the error, it is important to enable this operation and then exercise
this operation repeatedly. It is not important to generate long traces of the sys-
tem, but it is important to systematically execute combinations of the individual
operations. This explains why depth-first behaves so badly on this model, as it
will always try to exercise the first operation of the model first (i.e., inserting
the 10 cents coin). Note that a very large state space is a typical situation in
software verification (sometimes the state space is even infinite).

In the corrected non-deadlocking model the state space is again very large,
but here the error occurs if the system runs long enough; it is not very critical
in which order operations are performed, as long as the system is running long
enough. This explains why for this model breadth-first was performing badly, as
it was not generating traces of the system which were long enough to detect the
error.

In order to detect both types of errors with a single model checking algorithm,
ProB has been using a mixed depth-first and breadth-first search [27]. More
precisely, at every step of the model checking, ProB randomly chooses between
a depth-first and a breadth-first step. This behaviour is illustrated in Fig. 5,

5 This shows that one should be very careful about experimental results for a tool
with many parameters: if only the successful runs get published (i.e., experiment 6
in Table 1 for the deadlocking model) the reader can get a very misleading picture
of the real-life performance of a tool, as all the time and expertise required to tune
the parameters is ignored.

6 Depending on the run, a deadlock can also be found. We return to this later.

The High Road to Formal Validation 13

initialise_machine(0,0,0,0,0,0,2)n

insert_10centsnsert_10cent insert_20centsrt_20c insert_50cents50 insert_100centscentscents 0 insert_200cents0cents0cents 200 insert_cardntsntsert_c

insert_10cents_10 insert_20cents20

insert_50centsinsert_50cents

00centsinseinseinsert_10i0cents0cents00 0_200centsinserinserinsert_200_200 insert_10centst_10cinsert_20centsentsents _20 insert_50cents_5000centsinsert_100cents0cents00 0 200centsinsertinsertinsert_20200
_10cents_insert_10sertt_10c

insert_20cents2 insert_50centscentsents 50 insert_100centscentscents _100
insert_200cents
centst

_200c

insert_10cents_10 insert_20centsentsents _20 insert_50centscentsents 5 insert_100centscentscents 10 insert_200centscentscents_200

initialise_machine(0,0,0,0,0,0,2)n

insert_10centsnsert_10cent insert_20centst_20c insert_50cents50insert_100centscentscents 0 insert_200cents0cents0cents 200 insert_cardss ert_ca

insert_10cents1 insert_20centsntsnts 20

insert_50centsert_50ce

insert_100cents_100 200centsinsert_insertinsert_200cents0cents 20

entsntsei t50cent50cen50c50csert_

insert_20cents20 insert_50centsentsents _50

00centsentsntsinsert 100c1010cents10centstsstss10ce10cetsstss10cent10cert_100ce

00centsinseinseinsert_200

sert_10cents_insert_10cetrtinsert_10cen

insert_20cents20 insert_50centscentscents 50 insert_100centscentscents 100insert_200centscentscents_200

insert_cardi t_

withdraw_ticket_from_cardke

initialise_machine(0,0,0,0,0,0,2)n

insert_10centsert_10ce insert_20cents_20 insert_50centscentscents 50insert_100centscentscents 0 insert_200cents0cents0cents 200 insert_cardntsntsert_c

insert_10centst_10c insert_20cents_20insert_50centsentsents _50insert_100centscentscents 0 00centsinsertinsertinsert_200cents0cents 20 insert_10cents_10insert_20centscentscents 2 insert_50centsentsents 50 insert_100centscentscents 100
insert_200cents
centst

_200

insert_10cents10 insert_20centst_20cinsert_50centscentscents 50 100centsinsinsinsert_10centscents 100200centsinsertinsertinsert_20_200 insert_10cents_10c insert_20centsntsnts _20 insert_50centscentscents 5 insert_100centscentscents 10 insert_200centscentscents_200

Fig. 5. Three different explorations of ProB after visiting 5 nodes of machine in Fig. 4

where three different possible runs of ProB are shown after exploring 5 nodes
of the B model from Fig. 4.

The motivation behind ProB’s heuristic is that many errors in software mod-
els fall into one of the following two categories:

– Some errors are due to an error in a particular operation of the system; hence
it makes sense to perform some breadth-first exploration to exercise all the
available functionality. In the early development stages of a model, this kind
of error is very common.

– Some errors happen when the system runs for a long time; here it is often not so
important which path is chosen, as long as the system is running long enough.
An example of such an error is when a system fails to recover resources which
are no longer used, hence leading to a deadlock in the long run.

One may ask whether the random component of ProB’s algorithm can lead to
large fluctuations in the model checking time. Figure 6 shows the result of a small
experiment, where we have timed 16 runs for the above deadlocking machine
from Fig. 4. The average runtime was 0.46 seconds, the standard deviation was

14 M. Leuschel

Fig. 6. 16 Runtimes for model checking Fig. 4; a deadlock was found in runs 3,4,8,12

0.36. As can be seen, in all cases an error was found reasonably quickly, the
worst time being 1.31 seconds.

In summary, if the state space is very large, SPIN’s depth-first search can per-
form very badly as it fails to systematically test combinations of the various opera-
tions of the system. Even partial order reduction and bitstate hashing do not help.
Similarly, breadth-first can perform badly, failing to locate errors that require the
system to run for very long. We have argued that ProB’s combined depth-first
breadth-first search with a random component does not have these pitfalls.

The aspect we have discussed in this section does not yet show a fundamen-
tal difference between model checking high-level and low-level models. Indeed,
recently there has been considerable interest in directed model checking, using in-
formed search strategies with heuristic functions such as A* or best-first-search,
see, e.g. [37] leading to [14, 15] in the context of Promela. However, for a low
level formalism, one is probably much more reluctant to adopt those techniques
as they may noticeably slow down the verification when not needed. (Indeed,
the above mentioned techniques have not yet found their way into the official
distribution of SPIN.) For high-level models, the overhead of adopting a more
intelligent search algorithm is less pronounced, as processing individual states
takes up considerably more time. Hence, there is scope for considerably more
refined search algorithms when model checking high-level models.7

4 Exploiting Symmetry in High-Level Models

In the previous section we encountered a scenario were complete verification was
impossible (as the state space was too large), and model checking was used as a
debugging tool. In this section we return to the verification scenario (although
the points should also be valid for a debugging scenario), and show that even
there it can be much more efficient to model check a high-level model than a
low-level one. The reason is that in the high-level model certain properties, such

7 Within the DFG-funded project GEPAVAS we are actually investigating adding
heuristics when model checking B specifications.

The High Road to Formal Validation 15

as symmetries, can be detected much more easily than in a low-level model.
Exploiting those properties in the model checker then leads to a considerably
reduced state space.

For example in B, symmetries are induced by the use of deferred sets, as every
element of such a set can be substituted for every other element [26]. The use of
deferred sets is very common in B, and hence many B models exhibit symmetry
which can be exploited by ProB [26, 28, 33, 34].

4.1 First Experiment: Scheduler

For a first experiment we have used the scheduler1.ref machine from [25] (also
used in [26] and contained in Appendix B). Here PROC is a deferred set (of process
identities) and the translation can be found in Appendix A. Comparing differ-
ent tools and formalisms is always a difficult task. We have obtained the help of
Promela/SPIN experts to construct a faithful Promela counterpart of the B model.
We have taken extreme care to translate this B specification into the best Promela
code possible (with the help of Alice Miller and Alastair Donaldson) and have en-
sured that both models exhibit the same number of states (in the absence of sym-
metry reduction and partial order reduction). Also, the example is not artificially
chosenor constructed so as to make our tool behave better. It was chosenbecause it
was a relatively simple B model, that could still be hand translated with reasonable
effort into an equivalent Promela model (it also has the property that symmetry in
the B model can be translated into symmetry of process identifiers in the Promela
model; something which will no longer be true for more complicated models, e.g.,
from [28] or the model we present later in Section 4.2).

Still, this is just one example and we do not claim that the phenomena uncov-
ered here is universal. Indeed, as we have already seen in Section 3, if one takes
a B model with no deferred sets (and hence no symmetry exploitable by ProB),
then complete verification with SPIN will be substantially faster than our tool
(provided the B model can be translated into Promela). But our intuition is
that, for some application domains, working at a higher level of abstraction (B
vs. Promela) can be beneficial both for the modelling experience of the user (less
effort to get the model right) and for the model checking effort.

In the experiments below, we have used the same setup as before in Section 3.
This time we have incorporated the ProB and SPIN results in the single Table 2.
To exploit the symmetry in ProB we have used the technique from [33] based on
the nauty graph canonicalisation package. In addition to timings reported by the
two tools, we have also used a stopwatch to measure the user experience (these
timings were rounded to the nearest half second). For SPIN, default settings were
used, except where indicated by the following symbols: c1 means compression
(c1) was used, � meaning bitstate hashing (DBITSTATE) was used, 1GB means
that the allocated memory was increased to 1 GB of RAM, > signifies that the
search depth was increased to 100,000, � that the search depth was increased
to 1,000,000, and ≫ that search depth was increased to 10,000,000. The ProB

time includes time to check the invariant. Only deadlock and invalid end state
checking is performed in SPIN.

16 M. Leuschel

Table 2. Experimental results for scheduler1

Card Tool States Time Stopwatch

2 ProB 17 0.04 s < 0.5 s
ProB + nauty 10 0.03 s < 0.5 s
SPIN (default) 17 0.02 s 6 s

4 ProB 321 1.08 s 1.5 s
ProB+ nauty 26 0.15 s < 0.5 s
SPIN (default) 321 0.00 s 6 s

8 ProB+ nauty 82 1.18 s 1.5 s
SPIN (default) † 483980 2.50 s 6.5 s
SPIN (> c1) † 545369 5.84 s 11 s
SPIN (�) 595457 3.75 s 6 s
SPIN (� c1) 595457 7.47 s 11 s

12 ProB+ nauty 170 4.90 s 5.5 s
SPIN (� c1) †1.7847e+06 17.92 s 22 s
SPIN (≫ c1 1GB) ∝ † 1.1877e+07 135.60 s 140 s
SPIN (≫ c1 1GB �) † 4.0181e+07 295.71 s 302 s

† = search depth too small, ∝ = out of memory.

One can observe that for 2 and 4 processes ProB with symmetry reduction
is actually quite competitive compared to SPIN with partial order reduction,
despite the much higher-level input language. Furthermore, if we look at the
total time taken to display the result to the user measured with a stopwatch,
ProB is faster (for SPIN there is the overhead to generate and compile the C
code). For 8 processes, ProB is about three times faster than SPIN. Note that
it took us considerable time to adjust the settings until SPIN was able to fully
check the model for 8 processes.8 For 12 processes we were unable to exhaustively
check the model with SPIN, even when enabling bitstate hashing. Attempts to
further increase the search depth led to “command terminated abnormally.”
ProB checked the model for 12 processes in 5.5 seconds.

Of course, in addition to partial order reduction, one could also try and use
symmetry reduction for SPIN, e.g., by using the SymmSPIN tool [6] or TopSPIN

tool [13]. To use TopSPIN a minor change to the Promela model is required,
after which the model with 8 processes can be verified in 0.09 s with combined
partial order reduction and symmetry (not counting the compilation overhead).
However, compared to ProB’s approach to symmetry, we can make the following
observations:

1. In Promela the user has to declare the symmetry: if he or she makes a mistake
the verification procedure will be unsound; (there is, however, the work [12]
which automatically detects some structural symmetries in Promela). In B
symmetries can be inferred automatically very easily.

8 The development of the model itself also took considerable time (and several email
exchanges with Alice Miller and Alastair Donaldson); the first versions exhibited
much worse performance when used with SPIN.

The High Road to Formal Validation 17

2. Symmetry is much more natural and prevalent in B and ProB can take
advantage of partial symmetries (see, e.g., the generic dining philosophers
example in [28]) and one can have multiple symmetric types (for SPIN typi-
cally only a single scalarset, namely the process identifiers, is supported).
In TopSPIN all processes must be started in an atomic block; in B constants
can be used to assign different tasks or behaviours to different deferred set
elements; the partial symmetries can still be exploited.

3. Using and installing the symmetry packages for SPIN is not always straight-
forward (the packages patch the C output of SPIN). TopSPIN cannot as of
now be downloaded.

To further illustrate point 2, we now show a model with multiple deferred
sets. To the best of our knowledge, this model cannot be put into a form so that
TopSPIN can exploit the symmetries.

4.2 Second Experiment: Multiple Symmetric Datatypes

Figure 7 contains a small B model of a server farm, with two deferred sets mod-
elling the users and the servers. Individual servers can connect and disconnect
from the system, and the system routes user requests to an available server
via the UserRequest operation, trying to maintain the same server for the same
user on later occasions (unless a timeout occurs). The time to develop and model
check the model with ProB was about 10 minutes.

MACHINE ServerFarm
SETS USERS;SERVER
VARIABLES active, serving
INVARIANT active <: SERVER & serving: active >+> USERS
INITIALISATION active,serving := {},{}
OPERATIONS
ConnectServer(s) = PRE s:SERVER & s/: active THEN

active := active \/ {s} END;
DisconnectServer(s) = PRE s:SERVER & s:active THEN

active := active - {s} || serving := {s} <<| serving END;
s <-- UserRequest(u) = PRE u:USERS THEN

IF u:ran(serving) THEN
s := serving~(u)

ELSE
ANY us WHERE us:SERVER & us : active & us /: dom(serving) THEN

s:= us || serving(us) := u END
END

END;
UserTimeout(u) = PRE u:USERS & u:ran(serving) THEN

serving := serving |>> {u} END
END

Fig. 7. A server farm model in B

18 M. Leuschel

chan connect = [0] of { byte } ;
chan disconnect = [0] of { byte } ;
chan request = [0] of { byte } ;
#define SERVERS 8
#define USERS 8

active[SERVERS] proctype server () { /* pids from 0.. SERVERS-1 */
do
:: connect!_pid -> disconnect!_pid

od
}
active[USERS] proctype user () { /* pids start at SERVERS */

do
:: request!_pid

od
}
active proctype mserver () {

bit sactive[SERVERS];
byte serving[SERVERS];
byte x = 0;
do
:: atomic{connect?x -> assert(sactive[x]==0) ->

assert(serving[x]==0) -> sactive[x]=1 ->x=0}
:: atomic{disconnect?x -> assert(sactive[x]==1) ->

sactive[x]=0 -> serving[x]=0-> x=0}
:: atomic{request?x;

byte i = 0;
do
:: (i<SERVERS && serving[i]!=x) -> i++
:: (i<SERVERS && serving[i]==x) -> break
:: (i==SERVERS) -> break

od;
if
:: (i==SERVERS) -> i=0 -> do

:: (i<SERVERS && (sactive[i]==0 || serving[i]!=0)) -> i++
:: (i<SERVERS && sactive[i]!=0 & serving[i]==0)

-> serving[i] = x -> break
:: (i==SERVERS) -> printf("no server available") -> break
od;

:: (i<SERVERS) -> printf("already connected")
fi;
x = 0;i=0 /* reset x,i to avoid state explosion */
}

od
}

Fig. 8. A server farm model in Promela

The High Road to Formal Validation 19

Table 3. SPIN on the server farm from Fig. 8

Card Search Memory Partial Bitstate Breadth Time Result
Depth MB Order Hashing First (sec)

6 100,000 512 yes no no 1.74 †
1,000,000 512 yes no no 2.26 ok

7 1,000,000 512 yes no no 22.71 †
10,000,000 512 yes no no 32.21 ok

8 10,000,000 512 yes no no 82.05 †
100,000,000 512 yes no no - error
10,000,000 512 yes yes no 279.37 †

100,000,000 512 yes yes no - error
† = search depth too small; err = “command terminated abnormally”.

Figure 8 contains a Promela version of the same problem. The Promela model
was actually simplified: the second do loop always takes the first available server
rather than non-deterministically choosing one.9

It took about one hour and a half until we had a model which could be
checked for cardinality 6 (local variables had to be reset to 0; errors had crept
up in the loops to find server machines, etc.). In Table 3 we show the results of
our experiments with SPIN. Observe that for cardinality of 8 we did not manage
to verify the model using SPIN. Complete model checking with ProB for the
same cardinality takes 3.48 seconds with nauty and 0.77 seconds with the hash
marker method from [28]. For a cardinality of 9, ProB takes 21.04 seconds with
nauty and 1.16 seconds with the hash marker method.

It may be possible to further improve the Promela model (but note that we
have already put about 10 times the effort into the Promela model than into
the B model). In summary, the symmetry that can be inferred in the high-level
model again leads to a dramatic reduction in model checking time.

5 Conclusion

SPIN is an extremely useful and very efficient model checking tool. Still, over
the years, we have accumulated a certain amount of anecdotal evidence which
shows that using a model checker for high-level models can quite often give much
better results in practice. In this paper we have investigated the reasons for this
counterintuitive behaviour.

In Section 2 we have studied the granularity and expressivity of Promela
versus B, and have shown that the Promela counterpart of a B model may
have a large number of additional internal states. If those internal states are

9 One solution would be not to force the loop to chose the first available server.
However, to avoid deadlocks, one should then also allow decrementing i. But then
Spin will never be able to exhaustively check the model, unless we remove the atomic
surrounding the loop. I.e., the proper solution would be to adapt the data structure,
e.g., remembering also how many servers are still available.

20 M. Leuschel

not hidden using Promela’s atomic construct, an explosion of the state space
can ensue. Seasoned Promela users will not fall into this trap, but especially
newcomers and students are likely to encounter this problem.

Another reason, which we have examined in Section 3, is that SPIN’s fast but
naive depth-first search fares very badly in the context of debugging systems
with a very large (or infinite) state space. The mixed depth-first and breadth-
first strategy of ProB can give much better results in such a setting.

Finally, in Section 4, we have shown that by exploiting symmetries in a high-
level model, the model checking time can be dramatically reduced. For two
examples, the ProB model checker performs verification in substantially less
time than SPIN with partial order reduction and bitstate hashing.

Looking to the future, we believe there is a big potential for applying more
intelligent model checking techniques to high-level formalisms. In particular, we
believe that the potential for techniques such as heuristics-directed or parallel
model checking is much more pronounced for a high-level formalism such as B
than for a low-level formalism such as Promela.

In conclusion, due to the inherent exponential blow-up of the state space, it
is often not that relevant whether a model checking tool can treat 100,000 or
10,000,000 states; it can be much more important how cleverly the tool treats
those states and whether it can limit the exponential blow-up through techniques
like symmetry reduction.

Acknowledgements. We would like to thank Alastair Donaldson, Alice Miller,
Daniel Plagge, Harald Wiegard, and Dennis Winter for insightful comments and
contributions to this paper.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Arvind, N.D., Katelman, M.: Getting formal verification into design flow. In:

Cuéllar, J., Maibaum, T.S.E., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 12–32.
Springer, Heidelberg (2008)

3. Basin, D.A., Friedrich, S., Gawkowski, M., Posegga, J.: Bytecode model checking:
An experimental analysis. In: Bosnacki and Leue [8], pp. 42–59

4. Ben-Ari, M.: Principles of Concurrent and Distributed Programming, 2nd edn.
Addison-Wesley, Reading (2006)

5. Ben-Ari, M.: Principles of the Spin Model Checker. Springer, Heidelberg (2008)
6. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric Spin. STTT 4(1), 92–106

(2002)
7. Bosnacki, D., Dams, D., Holenderski, L., Sidorova, N.: Model checking SDL with

Spin. In: Graf, S., Schwartzbach, M.I. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
363–377. Springer, Heidelberg (2000)

8. Bošnački, D., Leue, S. (eds.): SPIN 2002. LNCS, vol. 2318. Springer, Heidelberg
(2002)

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2), 142–170
(1992)

The High Road to Formal Validation 21

10. Chen, J., Cui, H.: Translation from adapted uml to promela for corba-based appli-
cations. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 234–251.
Springer, Heidelberg (2004)

11. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

12. Donaldson, A.F., Miller, A.: Automatic symmetry detection for model checking
using computational group theory. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A.
(eds.) FM 2005. LNCS, vol. 3582, pp. 481–496. Springer, Heidelberg (2005)

13. Donaldson, A.F., Miller, A.: Exact and approximate strategies for symmetry re-
duction in model checking. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM
2006. LNCS, vol. 4085, pp. 541–556. Springer, Heidelberg (2006)

14. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Partial-order reduction and trail im-
provement in directed model checking. STTT 6(4), 277–301 (2004)

15. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with
hsf-spin. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer,
Heidelberg (2001)

16. Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2 User
Manual (version 2.8.2)

17. Godefroid, P. (ed.): SPIN 2005. LNCS, vol. 3639. Springer, Heidelberg (2005)
18. Guelfi, N., Mammar, A.: A formal semantics of timed activity diagrams and its

promela translation. In: APSEC, pp. 283–290. IEEE Computer Society, Los Alami-
tos (2005)

19. Holzmann, G.J.: The model checker Spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

20. Holzmann, G.J.: An analysis of bitstate hashing. Formal Methods in System De-
sign 13(3), 289–307 (1998)

21. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, Reading (2004)

22. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Hogrefe,
D., Leue, S. (eds.) FORTE. IFIP Conference Proceedings, vol. 6, pp. 197–211.
Chapman & Hall, Boca Raton (1994)

23. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology 11, 256–290 (2002)

24. Leuschel, M., Butler, M.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

25. Leuschel, M., Butler, M.: Automatic refinement checking for B. In: Lau, K.-K.,
Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 345–359. Springer, Heidelberg
(2005)

26. Leuschel, M., Butler, M., Spermann, C., Turner, E.: Symmetry reduction for B
by permutation flooding. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS,
vol. 4355, pp. 79–93. Springer, Heidelberg (2006)

27. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

28. Leuschel, M., Massart, T.: Efficient approximate verification of B via symmetry
markers. In: Proceedings International Symmetry Conference, pp. 71–85 (January
2007)

29. McMillan, K.L.: Symbolic Model Checking. PhD thesis, Boston (1993)
30. Peled, D.: Combining partial order reductions with on-the-fly model-checking. In:

Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 377–390. Springer, Heidelberg
(1994)

22 M. Leuschel

31. Prigent, A., Cassez, F., Dhaussy, P., Roux, O.: Extending the translation from sdl
to promela. In: Bosnacki and Leue [8], pp. 79–94

32. Rothmaier, G., Kneiphoff, T., Krumm, H.: Using Spin and Eclipse for optimized
high-level modeling and analysis of computer network attack models. In: Godefroid
[17], pp. 236–250

33. Spermann, C., Leuschel, M.: ProB gets nauty: Effective symmetry reduction for
B and Z models. In: Proceedings Symposium TASE 2008, Nanjing, China, June
2008, pp. 15–22. IEEE, Los Alamitos (2008)

34. Turner, E., Leuschel, M., Spermann, C., Butler, M.: Symmetry reduced model
checking for B. In: Proceedings Symposium TASE 2007, Shanghai, China, June
2007, pp. 25–34. IEEE, Los Alamitos (2007)

35. Wachter, B.D., Genon, A., Massart, T., Meuter, C.: The formal design of distrib-
uted controllers with dsl and Spin. Formal Asp. Comput. 17(2), 177–200 (2005)

36. Wiegard, H.: A comparison of the model checker ProB with Spin. Master’s thesis,
Institut für Informatik, Universität Düsseldorf (to appear, 2008)

37. Yang, C.H., Dill, D.L.: Validation with guided search of the state space. In: DAC,
pp. 599–604 (1998)

A Scheduler.Prom

The following is a manual translation (and slight simplification) of the scheduler1.ref
machine into Promela (with 2 processes).

chan readyq = [2] of { byte } ; bool activef=0;
proctype user () {

bool created=0; bool idle=0; bool ready=0; bool act=0;
label1:
do
:: atomic{(created==0) -> created = 1; idle = 1}
:: atomic{(created==1 && idle==1) -> created = 0; idle=0}
:: atomic{idle==1 -> idle=0; ready=1; label2:readyq!_pid }
:: atomic{(readyq?[eval(_pid)] && ready==1 && activef==0) ->

readyq?eval(_pid);ready = 0 ->
activef=1 -> act = 1 }

:: atomic{act==1 -> idle = 1; act = 0; activef = 0}
od;

}
/* initialize flags and start the processes */
init { atomic{ run user(); run user(); }; printf("init\n")}

B Scheduler1.Ref

REFINEMENT scheduler1_improved
REFINES scheduler0
VARIABLES proc, readyq, activep, activef, idleset
INVARIANT proc : POW(PROC) & /* created */

readyq : seq(PROC) & activep : POW(PROC) &
activef : BOOL & idleset : POW(PROC)

The High Road to Formal Validation 23

INITIALISATION
proc:={} || readyq:={} ||
activep:={} || activef := FALSE || idleset := {}

OPERATIONS
new(p) = PRE p : PROC - proc THEN

idleset := idleset \/ {p} || proc := proc \/ {p} END;
del(p) = PRE p : PROC & p : idleset THEN

proc := proc-{p} || idleset := idleset - {p} END;
ready(p) = PRE p : idleset THEN

readyq:=readyq<-p || idleset := idleset - {p} END;
enter(p) = PRE p : PROC & readyq/=<> &

p = first(readyq) & activef=FALSE THEN
activep:={p} || readyq := tail(readyq) ||
activef:=TRUE END;

leave(p) = PRE p : PROC & activef=TRUE & p : activep THEN
idleset := idleset \/ {p} || activef := FALSE ||
activep := {} END

END

Modeling Workflows, Interaction Patterns, Web

Services and Business Processes: The
ASM-Based Approach

Egon Börger1 and Bernhard Thalheim2

1 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

2 Chair for Information Systems Engineering, Department of Computer Science,
University of Kiel D-24098 Kiel

thalheim@is.informatik.uni-kiel.de

Abstract. We survey the use of the Abstract State Machines (ASM)
method for a rigorous foundation of modeling and validating web ser-
vices, workflows, interaction patterns and business processes. We show in
particular that one can tailor business process definitions in application-
domain yet rigorous terms in such a way that the resulting ASM models
can be used as basis for binding contracts between domain experts and IT
technologists. The method combines the expressive power and accuracy
of rule-based modeling with the intuition provided by visual graph-based
descriptions. We illustrate this by an ASM-based semantical framework
for the OMG standard for BPMN (Business Process Modeling Notation).
The framework supports true concurrency, heterogeneous state and mod-
ularity (compositional design and verification techniques). As validation
example we report some experiments, carried out with a special-purpose
ASM simulator, to evaluate various definitions proposed in the literature
for the critical OR-join construct of BPMN.1

1 Introduction

Over the last five years the Abstract State Machines (ASM) method has been
used successfully in various projects concerning modeling techniques for web
services, workflow patterns, interaction patterns and business processes.

An execution semantics for (an early version of) the Business Process Execu-
tion Language for Web Services (BPEL) has been provided in terms of ASMs
in [19,23] and has been reused in [17,18]. In [4] one finds a survey of recent appli-
cations of the ASM method to design, analyze and validate execution models for
service behavior mediation [3], service discovery [2,20] and service composition
techniques [22], three typical themes concerning Service Oriented Architectures

1 The work of the first author is supported by a Research Award from the Alexander
von Humboldt Foundation (Humboldt Forschungspreis), hosted by the Chair for
Information Systems Engineering of the second author at the Computer Science
Department of the University of Kiel/Germany.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 24–38, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modeling Workflows, Interaction Patterns, Web Services 25

(SOAs). In [22] multi-party communication is viewed as an orchestration prob-
lem (“finding a mediator to steer the interactions”). A systematic analysis, in
terms of ASMs, of complex communication structures built from basic service
interaction patterns has been carried out in [5]. The workflow patterns collected
in [27,24], which are widely considered in the literature as paradigms for business
process control structures, have been shown in [10] to be instances of eight (four
sequential and four parallel) basic ASM workflow schemes.

Recently, we have adopted the ASM method for a systematic study of business
process modeling techniques [14,13,12]. As authoritative reference for basic con-
cepts and definitions we have chosen the OMG standard for BPMN [15], which
has been defined to reduce the fragmentation of business process modeling nota-
tions and tools. In the following we describe the salient methodological features
of this work and report our experience in applying the ASM framework [11] to
provide a transparent accurate high-level definition of the execution semantics
of the current BPMN standard (version 1.0 of 2006).

The paper is organized as follows. In Sect. 2 we explain how ASM models
for business processes can serve as ground model and thus as basis for a precise
software contract, allowing one to address the correctness question for a business
process description with respect to the part of the real-world it is supposed to
capture. In Sect. 3 we list the main methodological principles which guided us
in defining a succinct modularized ASM that constitutes an abstract interpreter
for the entire BPMN standard. In Sect. 4 we formulate the ASM rule pattern
that underlies our feature-based description of specific workflow behaviors. In
Sect. 5 we show how this scheme can be instantiated, choosing as example BPMN
gateways. In Sect. 6 we illustrate by a discussion of the critical BPMN OR-join
construct how one can put to use an appropriate combination of local and global
state components in ASMs. We report here some results of an experimental
validation, performed with a special-purpose ASM interpreter [25] that integrates
with current graphical visualization tools, of different definitions proposed for
the OR-Join in the literature. In Sect. 7 we point to some directly related work
and research problems.

2 Building ASM Ground Models for Business Processes

To guarantee that software does what the customer expects it to do involves
first of all to accurately describe those expectations and then to transform their
description in a controlled way to machine code. This is a general problem for
any kind of software, but it is particularly pressing in the case of software-driven
business process management, given the large conceptual and methodological
gap between the business domain, where the informal requirements originate,
and the software domain, where code for execution by machines is produced. The
two methodologically different tasks involved in solving the problem have been
identified in [9] as construction of ground models, to fully capture the informal
requirements in an experimentally validatable form, and their mathematically
verifiable stepwise detailing (technically called refinement) to compilable code.

26 E. Börger and B. Thalheim

Ground models represent accurate “blueprints” of the piece of “real world”
(here a business process) one wants to implement, a system reference documen-
tation that binds all parties involved for the entire development and maintenance
process. The need to check the accuracy of a ground model, which is about a not
formalizable relation between a document and some part of the world, implies
that the model is described in application domain terms one can reliably relate
to the intuitive understanding by domain experts of the involved world phenom-
ena. Ground models are vital to reach a firm understanding that is shared by
the parties involved, so that a ground model has to serve as a solid basis for
the communication between the (in our case three) parties: business analysts
and operators, who work on the business process design and management side,
information technology specialists, who are responsible for a faithful implemen-
tation of the designed processes, and users (suppliers and customers). We refer
for a detailed dicussion of such issues to [9] and limit ourselves here to illustrate
the idea by three examples of a direct (i.e. coding-free, abstract) mathematical
representation of business process concepts in ASM ground models. The exam-
ples define some basic elements we adopted for the abstract BPMN interpreter
in [13].

Example 1. Most business process model notations are based on flowcharting
techniques, where business processes are represented by diagrams at whose nodes
activities are executed and whose arcs are used to contain the information on
the desired execution order (so-called control information). We therefore base
our BPMN model on an underlying graph structure, at whose nodes ASM rules
are executed which express the associated activity and the intended control flow.

Furthermore, usually the control flow is formulated using the so-called token
concept, a program counter generalization known from the theory of Petri nets.
The idea is that for an activity at a target node of incoming arcs to become
executable, some (maybe all) arcs must be Enabled by a certain number of
tokens being available at the arcs; when executing the activity, these tokens are
Consumed and possibly new tokens are Produced on the outgoing arcs. This
can be directly expressed using an abstract dynamic function token associating
(multiple occurrences of) tokens—elements of an abstract set Token—to arcs2:

token : Arc → Multiset(Token)

The use of an abstract predicate Enabled and abstract token handling ma-
chines Consume and Produce allows us to adapt the token model to different
instantiations by a concrete token model. For example, a frequent understand-
ing of Enabled is that of an atomic quantity formula, stating that the number
of tokens currently associated to an arc incoming into a given node is at least a
quantity inQty(in) required at this arc.

Enabled(in) = (| token(in) |≥ inQty(in))

2 In programming language terms one can understand f (a1, . . . , an) for a dynamic
function f as array variable.

Modeling Workflows, Interaction Patterns, Web Services 27

With such a definition one can also specify further the abstract control related
operations, namely to Consume (inQty(in) many occurrences of) a token t on
in and to Produce (outQty(out) many occurrences of) t on an arc outgoing
from the given node.

Consume(t , in) = Delete(t , inQty(in), token(in))
Produce(t , out) = Insert(t , outQty(out), token(out))

We express the data and events, which are relevant for an execution of the ac-
tivity associated to a node and belong to the underlying database engine respec-
tively to the environment, by appropriate ASM locations : so-called controlled
(read-and-write) locations for the data and monitored (only read) locations for
the events. Any kind of whatever complex value an application needs for data
or events is allowed to be stored in an ASM location, directly, corresponding
to the given level of abstraction, avoiding any encoding a later refinement to
implementable data structures may require.

This approach allows us to combine the visual appeal of graph-based notations
with the expressivepower and simplicityof abstract-state and rule-basedmodeling:
we can paraphrase the informal explanations in the BPMN standard document of
“how the graphical elements will interactwith each other, including conditional in-
teractionsbasedonattributes thatcreatebehavioral variationsof theelements” [15,
p.2] by corresponding ASM rules, which address issues the graphical notation does
not clarify. More generally speaking, (asynchronous) ASMs can be operationally
understood as extension of (locally synchronous and globally asynchronous [21])
Finite State Machines to FSMs working over abstract data. Therefore a domain ex-
pert, when using graphical design tools for FSM-like notations, can reason about
the graphical elements in terms of ASMs whenever there is some need for an exact
reference model to discuss semantically relevant issues.

Example 2. In business process design it is usual to distinguish between a busi-
ness process (the static diagram) and its instances (with specific token marking
and underlying data values). This distinction is directly reflected in the ASM
model in terms of instantiations of the underlying parameters, which appear
abstractly but explicitly in the ASM model. For example a token is usually
characterized by the process ID of the process instance pi to which it belongs
(via its creation at the start of the process instance), which allows one to distin-
guish tokens belonging to different instances of one process p. It suffices to write
tokenpi to represent the current token marking in the process diagram instance
of the process instance pi a token belongs to. In this way tokenpi(arc) denotes
the token view of process instance pi at arc, namely the multiset of tokens cur-
rently residing on arc and belonging to process instance pi . BPEL uses this for
a separation of each process instance by a separate XML document.

Correspondingly one has to further detail the above predicate Enabled by the
stipulation that only tokens belonging to one same process instance have to be
considered:

Enabled(in) = (| tokenpi(in) |≥ inQty(in) forsome pi)

28 E. Börger and B. Thalheim

The reader will notice that the use of abstract Insert and Delete operations
in defining the macros Produce and Consume for tokens, instead of directly
updating token(a, t), comes handy: it makes the macros usable in a concurrent
context, where multiple agents, belonging to multiple process instances, may
want to simultaneously operate on the tokens on an arc. Note that it is also
consistent with the special case that in a transition with both Delete(in, t)
and Insert(out , t) one may have in = out , so that the two operations are not
considered as inconsistent, but their cumulative effect is considered.

Thus the ASM model of the given business process represents the scheme of
the process, statically defined by its rules; its instances are the scheme instanti-
ations obtained by substituting the parameters by concrete values belonging to
the given process instance pi . In accordance with common practice, one can and
usually does suppress notationally the process instance parameter pi , as we did
when explaining the function token above, as long as it is clear from the context
or does not play a particular role.

Example 3. This example is about the need for global data or control struc-
tures in various business process constructs, e.g. synchronization elements owned
by cooperating process agents or more generally speaking data shared by local
processes. They can be directly expressed in terms of global locations of possi-
bly asynchronous ASMs, thus avoiding detours one has to invent in frameworks
where transitions can express only local effects. For an illustration we refer again
to the definition of the BPMN standard in [15]. It uses a predominantly local
view for task execution and step control, although some constructs such as splits
and joins, multi-instance processes, gotos (called links) , and sub-processes are
bound by context integrity constraints.

For example splits can be intimately related by such integrity constraints to
joins and thus their execution is not free of side (read: not local) effects. For an il-
lustration see the discussion of the OR-join gateway construct of BPMN in Sect. 6.

Another example are data dependencies among different processes, whose de-
scription in [15] seems to be relegated to using associations, but really need global
or shared locations to appropriately represent their role for the control flow.

3 Separation of Different Concerns

For design and analysis of business processes it turned out to be crucial that the
ASM method supports to first explicitly separate and then smoothly combine the
realization of different concerns, based upon appropriate abstractions supporting
this form of modularization. We list some of the main separation principles,
which we have used with advantage for the definition of the execution semantics
for BPMN by ASMs.

Separation Principle 1. This principle is about the separation of behavior
from scheduling. To cope with the distributed character of cooperating business
processes, one needs descriptions that are compatible with various strategies to
realize the described processes on different platforms for parallel and distributed

Modeling Workflows, Interaction Patterns, Web Services 29

computing. This requires the underlying model of computation to support most
general scheduling schemes, including true concurrency.

In general, in a given state of execution of a business process, more than one
rule could be executable, even at one node. We call a node Enabled in a state
(not to be confused with the omonymous Enabledness predicate for arcs) if at
least one of its associated rules is Fireable at this node in this state.3

We separate the description of workflow behavior from the description of the
underlying scheduling strategy in the following way. We define specific business
process transition rules, belonging to a set say WorkflowTransition of such rules,
to describe the behavioral meaning of any workflow construct associated to a node.
Separately, we define an abstract scheduling mechanism, to choose at each mo-
ment an enabled node and at the chosen node a fireable transition, by two not fur-
thermore specified selection functions, say selectNode and selectWorkflowTransition

defined over the sets Node of nodes respectively WorkflowTransition. These func-
tions determine how to choose an enabled node and a fireable workflow transition
at such a node for its execution. We then can combine behavior and scheduling
by a rule scheme WorkflowTransitionInterpreter, which expresses how
scheduling (together with the underlying control flow) determines when a partic-
ular node and rule (or an agent responsible for applying the rule) will be chosen
for an execution step.
WorkflowTransitionInterpreter =
let node = selectNode({n | n ∈ Node and Enabled(n)})
let rule = selectWorkflowTransition({r | r ∈WorkflowTransition and Fireable(r ,node)})

rule

Separation Principle 2. The second principle is about the separation of
orthogonal constructs. To make ASM workflow interpreters easily extensible
and to pave the way for modular and possibly changing workflow specifica-
tions, we adopted a feature-based approach, where the meaning of workflow
concepts is defined elementwise, construct by construct. For each control flow
construct associated to a node we provide a dedicated rule (or set of rules)
WorkflowTransition(node), belonging to the set WorkflowTransition in the
WorkflowTransitionInterpreter scheme of the previous example, which
abstractly describe the operational interpretation of the construct. We illustrate
this in Sect. 5 by the ASM rules defining the execution behavior of BPMN gate-
ways, which can be separated from the behavioral description of BPMN event
and activity nodes.

Another example taken from BPMN is the separation of atomic tasks from
non-atomic subprocesses and from activities with an iterative structure. BPMN
distinguishes seven kinds of tasks:

TaskType = {Service,User ,Receive,Send ,Script ,Manual ,Reference,None}
3 We treat the fireability of a rule (by an agent) as an abstract concept, because its

exact interpretation may vary in different applications. For business process diagrams
it clearly depends on the Enabledness of the incoming arcs related to a rule at the
given node, but typically also on further to be specified aspects, like certain events
to happen, on the (degree of) availability of needed resources, etc.

30 E. Börger and B. Thalheim

These task types are based on whether a message has been sent or received or
whether the task is executed or calls another process. The execution semantics
for task nodes is given by one ASM rule (scheme) [13], which uses as interface
abstract machines to Send or Receive messages and to Call or Execute
processes.

A third example from the BPMN standard is the separation of cyclic from
acyclic processes, whe we use for the discussion of the OR-join gateway in Sect. 6.

Separation Principle 3. The third principle is the separation of different model
dimensions like control, events, data and resources. Such a separation is typical
for business process notations, but the focus of most of these notations on control
(read: execution order, possibly influenced also by events) results often in leav-
ing the underlying data or resource features either completely undefined or only
partly and incompletely specified. The notion of abstract state coming with ASMs
supports to not simply neglect data or resources when speaking about control, but
to tailor their specification to the needed degree of detail, hiding what is consid-
ered as irrelevant at the intended level of abstraction but showing explicitly what
is needed. We illustrate this in Sect. 4 by the four components for data, control,
events and resources in WorkflowTransition, which constitute four model di-
mensions that come together in the ASM scheme for workflow interpreter rules.
These four components are extensively used in the BPMN standard, although the
focus is on the control flow, which is represented by the control flow arcs, relegating
interprocess communication (via message flow arcs between processes) and data
conditions and operations to minor concerns. For an enhanced specification of in-
terprocess communication see the orchestration of processes in [28].

Separation Principle 4. The fourth principle, whose adoption helps to reduce
the description size of abstract models, is the separation of rule schemes and
concrete rules, where the concrete rules may also be specialized rule schemes. It
exploits the powerful abstraction mechanisms ASMs offer for both data and op-
erations, whether static or dynamic. We illustrate this by the ComplexGate-

Transition in Sect. 5.1, a scheme from which one can easily define the behavior of
the otherBPMN gateways by instantiating some of the abstractions (see Sect. 5.2).

Separation Principle 5. The fifth example is about the separation of design,
experimental validation and mathematical verification of models and their prop-
erties. In Sect. 6 we illustrate an application of this principle by an analysis of the
OR-join gateway, where for a good understanding of the problem one better sep-
arates the definition of the construct from the computation or verification of its
synchronization behavior. Once a ground model is defined, one can verify proper-
ties for diagrams, separating the cases with or without cyclces and in the former
case showing which cycles in a diagram are alive and which ones may result in a
deadlock. In addition, the specialized ASM workflow simulator [25] allows one to
trace and to experimentally validate the behaviour of cyclic diagrams.

The principle goes together with the separation of different levels of detail at
which the verification of properties of interest can take place, ranging from proof
sketches over traditional or formalized mathematical proofs to tool supported

Modeling Workflows, Interaction Patterns, Web Services 31

proof checking or interactive or automated theorem proving, all of which can
and have been used for ASM models (see [11, Ch.8,9] for details).

Separation Principle 6. This pinciple is about the separation of responsibil-
ities, rights and roles of users of BPMN diagrams. To represent different roles
of users BPMN diagrams can be split into so-called pools, between which mes-
sages can be exchanged. Furthermore user actions can be separated by so-called
swimlanes. Such a separation of user actions depending on the user’s role within
a diagram is supported in a natural way by the ASM concept of rule executing
agents: one can associate different and even independent agents to sets of user
rules; moreover these agents could be supervised by a user superagent coming
with his own supervising rules, which leads to more general interaction patterns
than what is foreseen by the BPMN standard (see [5]).

In the next section we show how from a combination of the separation princi-
ples formulated above one can derive an orthogonal high-level interpretation of
the basic concepts of BPMN.

4 The Scheme for Workflow Interpreter Rules

For everyworkfloworBPMNconstructassociatedtoanode, itsbehavioralmeaning
can be expressed by a guarded transition rule WorkflowTransition(node) ∈
WorkflowTransition of the general form defined below. Every such rule states
upon which events and under which further conditions—typically on the control
flow, the underlying data and the availability of resources—the rule can fire to
execute the following actions:

perform specific operations on the underlying data (‘how to change the in-
ternal state’) and control (‘where to proceed’),
possibly trigger new events (besides consuming the triggering ones),
operate on the resource space to handle (take possession of or release) re-
sources.

In the scheme, the events and conditions in question remain abstract, the
same as the operations that are performed. This allows one to instantiate them
by further detailing the guards (expressions) respectively the submachines for
the description of concrete workflow transitions.4

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

4 We remind the reader that by the synchronous parallelism of single-agent ASMs, in
each step all applicable rules are executed simultaneously, starting from the same
state to produce together the next state.

32 E. Börger and B. Thalheim

WorkflowTransition(node) represents an abstract state machine, in fact
a scheme (sometimes also called a pattern) for a set of concrete machines that
can be obtained by further specifying the guards and the submachines for each
given node. In the next section we illustrate such an instantiation process to
define the behavior of BPMN gateways by ASM rules taken from the high-level
BPMN interpreter defined in [13].

5 Instantiating WorkflowTransition for BPMN
Gateways

In this section we instantiate WorkflowTransition for BPMN gateways,
nodes standing for one of the three types of BPMN flow objects. The other
two types are event and activity nodes, whose behavior can be described by
similar instantiations, see [13] for the details. We start with the rule for so-called
complex gateway nodes, from which the behavior of the other BPMN gateway
constructs can be defined as special cases.

5.1 ComplexGateTransition

Gateways are used to describe the convergence (also called merging) and/or
divergence (also called splitting) of control flow, in the sense that tokens can
‘be merged together on input and/or split apart on output’ [15, p.68]. For both
control flow operations one has to determine the set of incoming respectively
outgoing arcs they are applied to at the given node. The particular choices de-
pend on the node, so that we represent them by two abstract selection functions,
namely to

– selectConsume the incoming arcs where tokens are consumed,
– selectProduce the outgoing arcs where tokens are produced.

Both selection functions come with constraints: selectConsume is required to
select upon each invocation a non-empty set of enabled incoming arcs, whose
firingTokens are to be consumed in one transition.5 selectProduce is constrained to
select upon each invocation a non-empty subset of outgoing arcs o satisfying an
associated OutCond(o). On these arcs complxGateTokens are produced, whose
particular form may depend on the firingTokens. We skip that in addition, as
(part of) DataOp(node), multiple assignments may be ‘performed when the
Gate is selected’ [15, Table 9.30 p.86] (read: when the associated rule is fired).

5 A function firingToken(A) is used to express a structural relation between the con-
sumed incoming and the produced outgoing tokens, as described in [15, p.35]. It is
assumed to select for each element a of an ordered set A of incoming arcs some
of its token(a) to be Consumed. For the sake of exposition we make the usual as-
sumption that inQty(in) = 1, so that we can use the following sequence notation:
firingToken([a1, . . . , an]) = [t1, . . . , tn] denotes that ti is the token selected to be fired
on arc ai .

Modeling Workflows, Interaction Patterns, Web Services 33

ComplexGateTransition(node) =
let

I = selectConsume(node)
O = selectProduce(node)

in WorkflowTransition(node, I ,O)
where

CtlCond(node, I) = (I �= ∅ and forall in ∈ I Enabled(in))
CtlOp(node, I ,O) =

if O �= ∅ and O ⊆ {o ∈ outArc(node) | OutCond(o)} then
ProduceAll({(complxGateToken(firingToken(I), o), o) | o ∈ O})
ConsumeAll({(ti , ini) | 1 ≤ i ≤ n}) where

[t1, . . . , tn] = firingToken(I), [in1, . . . , inn] = I

5.2 Instantiating ComplexGateTransition

The BPMN standard defines and names also special gateways, which can all be
obtained by specializing the selection functions in ComplexGateTransition.
To describe these instantiations here more clearly, we assume without loss of
generality that these special gateways never have both multiple incoming and
multiple outgoing arcs. Thus the so-called split gateways have one incoming
and multiple outgoing arcs, whereas the so-called join gateways have multiple
incoming and one outgoing arc.

For AND-split and AND-join gateway nodes, selectProduce and selectConsume

are required to yield all outgoing resp. all incoming arcs.
For OR-split nodes two cases are distinguished: selectProduce chooses exactly

one (exclusive case, called XOR-split) or at least one outgoing arc (called in-
clusive OR or simply OR-split). For the exclusive case a further distinction is
made depending on whether the decision is ‘data-based’ or ‘event-based’, mean-
ing that OutCond(o) is a DataCond(o) or an EventCond(o). For both cases it
is required to select the first out ∈ outArc(node), in the given order of gates,
satisfying GateCond(out).

Similarly also for OR-join nodes two versions are distinguished, an exclu-
sive and data-based one—the event-based XOR is forbidden by the standard
to act only as a Merge—and an event-based inclusive one. In the latter case
selectConsume is required to yield a subset of the incoming arcs with associated
tokens ‘that have been produced upstream’ [15, p.80], but no indication is given
how to determine this subset, which is a synchronization problem. We discuss
this very much disputed issue further in the next section.

6 OR-Join Gateway: Global versus Local Description
Elements

The OR-join concept is present in many workflow and business process modeling
languages and is used with different understandings advocated in the literature,
in different commercial workflow systems and by different users. Part of this

34 E. Börger and B. Thalheim

situation stems from the fact that in dealing with the OR-join concept, often two
things are mixed up that should be kept separate, namely a) how the intended
meaning of the concept is defined (question of semantics) and b) how properties
of interest for the construct (most importantly its fireability in a given state)
can be computed, validated (at run time) or verified (at design time) (question
of computation, validation and verification methods).

It could be objected that an algorithm to compute the fireability of the OR-
join rules defines the crucial synchronization property and thus the semantics
of the OR-join. Speaking in general terms this is true, but then the question is
whether there is agreement on which algorithm to use and whether the algorithm
is understandable enough to serve as a behavioral specification the business
process expert can work with. However, looking at the literature there seems to
be no agreement on which algorithm should be used and the complexity of the
proposed ones makes them unfit to serve as satisfactory semantical specification
for the workflow practitioner.

The semantical issue disputed in the literature is the specification of the
selectConsume functions, which incorporate the critical synchronization condi-
tions. selectConsume(node) plays the role of an interface for triggering for a set
of to-be-synchronized incoming arcs the execution of the rule at the given node.
Unfortunately, most proposals for an OR-join semantics in one way or the other
depend on the framework used for the definition. This is particularly evident
in the case of Petri-net-based definitions, where, to circumvent the restrictions
imposed by the local nature of what a Petri net transition can express, either the
diagrams are restricted (to the possible dislike of a business process practitioner)
or ad hoc extensions of Petri nets are introduced that are hard to motivate in
application domain terms (see for example [33,31,32]). A side problem is that
the BPMN standard document seems to foresee that the function is dynamic
(run-time determined), since the following is required:

Process flow SHALL continue when the signals (Tokens) arrive from all
of the incoming Sequence Flow that are expecting a signal based on the
upstream structure of the Process . . . Some of the incoming Sequence
Flow will not have signals and the pattern of which Sequence Flow will
have signals may change for different instantiations of the Process. [15,
p.80]

We refer to [12] for a detailed discussion of OR-join variations and ways to
define and compute the underlying synchronization functions selectConsume . We
restrict our attention here to report some experiments Ove Soerensen has made
with various alternatives we considered to come up with a practically accept-
able definition that could serve for the standard, in particular in connection
with diagrams that may contain cycles. For this purpose Soerensen has built a
specialized ASM workflow simulator [25] that is interfaced with standard graph
representation tools, so that the token flow and the unfolding of a diagram cycle
triggered by applying ASM OR-join rules can be visualized.

One alternative we considered is to a) pass at runtime every potential syn-
chronization request from where it is originated (a split gateway node) to each

Modeling Workflows, Interaction Patterns, Web Services 35

downstream arc that enters a join gateway node and to b) delete this request
each time the synchronization possibility disappears due to branching. Assume
for the moment that the given diagram contains no cycles and assume without
loss of generality that there is a unique start node. Then it suffices to operate
the following refinement on our BMPN model.

– Split gate transition refinement. When due to an incoming token t
at a split node a new token t .o is produced on an arc o outgoing node,
a computation path starts at o that may need to be synchronized with
other computation paths started simultaneously at this node, so that also a
synchronization copy is produced and placed on each downstream arc that
enters a join node, i.e. an arc entering a join node to which a path leads from
o. We denote the set of these join arcs by AllJoinArc(o). Simultaneously the
synchronization copy of t is deleted from all such arcs that are reachable from
node.

– Join gate transition refinement. We consume the synchronization tokens
that, once the to-be-synchronized tokens have been fired, have served their
purpose, and produce new synchronization tokens for the tokens the join
produces. To CtlCond(node, I) we add the synchronization condition that I
is a synchronization family at node, which means a set of incoming arcs
with non-empty syncToken sets such that all other incoming arcs (i.e. those
not in I) have empty syncToken set (read: are arcs where no token is still
announced for synchronization so that no token will arrive any more (from
upstream) to enable such an arc).

It is not difficult to formulate this idea as a precise refinement (in the sense
of [8]) of our ASMs for BPMN split and join rules (see [12]). To extend this
approach to the case of diagrams with cycles (more generally subprocesses),
one can refine the AllJoinArc function to yield only arcs of join nodes up to
and including the next subprocess entry node; inside a subprocess AllJoinArc is
further restricted to only yield join nodes that are inside the subprocess.6 The
production of synchronization tokens by the transition rule for join gate nodes
that enter a subprocess is postponed to the exit node rule(s) of the subprocess.

There are obviously various other possibilities, with all of which one can ex-
periment using the work that will be reported in [25].

7 Related and Future Work

There are two specific papers we know on the definition of a formal semantics of a
subset of BPMN. In [16] a Petri net model is developed for a core subset of BPMN
which however; it is stated there that due to the well-known lack of high-level
concepts in Petri nets, this Petri net model “does not fully deal with: (i) parallel
multi-instance activities; (ii) exception handling in the context of subprocesses
that are executed multiple times concurrently; and (iii) OR-join gateways. ”

6 In Soerensen’s tool this is realized by spanning a new diagram copy of the subprocess.

36 E. Börger and B. Thalheim

In [30] it is shown “how a subset of the BPMN can be given a process semantics
in Communicating Sequential Processes”, starting with a formalization of the
BPMN syntax using the Z notation and offering the possibility to use the CSP-
based model checker for an analysis of model-checkable properties of business
processes written in the formalized subset of BPMN. The execution semantics
for BPMN defined in [13] covers every standard construct and is defined in
the form of if Event and Condition then Action rules of Event-Condition-
Action systems, which are familiar to most analysts and professionals trained in
process-oriented thinking. Since ASMs assign a precise mathematical meaning to
abstract (pseudo) code, for the verification and validation of properties of ASMs
one can adopt every appropriate accurate method, without being restricted to,
but allowing one to use, appropriate mechanical (theorem proving or model
checking) techniques.

In [29] an inclusion of process interaction and resource usage concerns is ad-
vocated for the forthcoming extension BPMN 2.0 of BPMN. It could be worth
to investigate how the ASM models defined in [5] for the interaction patterns
in [1] can be included into the current ASM model for BPMN, extending the
current communication means in BPMN—event handling, message exchange
between pools and data exchange between processes—to richer forms of inter-
action between multiple processes. Also a rigorous analysis of scheduling and
concurrency mechanisms would be interesting, in particular in connection with
concerns about resources and workload balancing that play a crucial role for
efficient implementations.

The feature-based definition of workflow concepts in this paper is an adap-
tation of the method used in a similar fashion in [26] for an instructionwise
definition, verification and validation of interpreters for Java and the JVM. This
method has been developed independently for the definition and validation of
software product lines [7], see [6] for the relation between the two methods.

References

1. Barros, A., Dumas, M., Hofstede, A.: Service interaction patterns. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

2. Altenhofen, M., Börger, E., Friesen, A., Lemcke, J.: A high-level specification for
virtual providers. International Journal of Business Process Integration and Man-
agement 1(4), 267–278 (2006)

3. Altenhofen, M., Börger, E., Lemcke, J.: A high-level specification for mediators
(virtual providers). In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812,
pp. 116–129. Springer, Heidelberg (2006)

4. Altenhofen, M., Friesen, A., Lemcke, J.: ASMs in service oriented architectures.
Journal of Universal Computer Science (2008)

5. Barros, A., Börger, E.: A compositional framework for service interaction patterns
and communication flows. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS,
vol. 3785, pp. 5–35. Springer, Heidelberg (2005)

Modeling Workflows, Interaction Patterns, Web Services 37

6. Batory, D., Börger, E.: Modularizing theorems for software product lines: The
Jbook case study. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS,
vol. 4932, pp. 1–4. Springer, Heidelberg (2008)

7. Batory, D., O’Malley, S.: The design and implementation of hierarchical software
systems with reusable components. In: ACM TOSEM. ASM (October 1992)

8. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15, 237–
257 (2003)

9. Börger, E.: Construction and analysis of ground models and their refinements as
a foundation for validating computer based systems. Formal Aspects of Comput-
ing 19, 225–241 (2007)

10. Börger, E.: Modeling workflow patterns from first principles. In: Storey, V.C., Par-
ent, C., Schewe, K.-D., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 1–20.
Springer, Heidelberg (2007)

11. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

12. Börger, E., Thalheim, B.: Experiments with the behavior of or-joins in business
process models. J. Universal Computer Science (submitted, 2008)

13. Börger, E., Thalheim, B.: A high-level BPMN interpreter (submitted)
14. Börger, E., Thalheim, B.: A method for verifiable and validatable business pro-

cess modeling. In: Advances in Software Engineering. LNCS, Springer, Heidelberg
(2008)

15. BPMI.org. Business Process Modeling Notation Specification. dtc/2006-02-01
(2006), http://www.omg.org/technology/documents/spec catalog.htm

16. Dijkman, R.M., Dumas, M., Ouyang, C.: Formal semantics and analysis of BPMN
process models using Petri nets. Technical Report 7115, Queensland University of
Technology, Brisbane (2007)

17. Fahland, D.: Ein Ansatz einer Formalen Semantik der Business Process Execu-
tion Language for Web Services mit Abstract State Machines. Master’s thesis,
Humboldt-Universität zu Berlin (June 2004)

18. Fahland, D., Reisig, W.: ASM semantics for BPEL: the negative control flow. In:
Beauquier, D., Börger, E., Slissenko, A. (eds.) Proc. ASM 2005, Université de Paris,
vol. 12, pp. 131–152 (2005)

19. Farahbod, R., Glässer, U., Vajihollahi, M.: Specification and validation of the Busi-
ness Process Execution Language for web services. In: Zimmermann, W., Thalheim,
B. (eds.) ASM 2004. LNCS, vol. 3052, pp. 78–94. Springer, Heidelberg (2004)

20. Friesen, A., Börger, E.: A high-level specification for semantic web service dis-
covery services. In: ICWE 2006: Workshop Proceedings of the Sixth International
Conference on Web Engineering (2006)

21. Lavagno, L., Sangiovanni-Vincentelli, A., Sentovitch, E.M.: Models of computation
for system design. In: Börger, E. (ed.) Architecture Design and Validation Methods,
pp. 243–295. Springer, Heidelberg (2000)

22. Lemcke, J., Friesen, A.: Composing web-service-like Abstract State Machines
(ASMs). In: Workshop on Web Service Composition and Adaptation (WSCA
2007); IEEE International Conference on Web Service (ICWS 2007) (2007)

23. Farahbod, U.G.R., Vajihollahi, M.: An Abstract Machine Architecture for Web
Service Based Business Process Management. Int. J. Business Process Integration
and Management 1(4), 279–291 (2006)

24. Russel, N., ter Hofstede, A., van der Aalst, W.M.P., Mulyar, N.: Workflow control-
flow patterns: A revised view. BPM-06-22 (July 2006),
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

http://www.omg.org/technology/documents/spec_catalog.htm
http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/

38 E. Börger and B. Thalheim

25. Sörensen, O.: Diplomarbeit. Master’s thesis, University of Kiel, forthcoming (2008),
www.is.informatik.uni-kiel/∼thalheim/ASM/MetaProgrammingASM

26. Stärk, R.F., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer, Heidelberg (2001)

27. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(3), 5–51 (2003)

28. Weske, M.: Business Process Management. Springer, Heidelberg (2007)
29. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A., Russel, N.: On

the suitability of BPMN for business process modelling. In: The 4th Int. Conf. on
Business Process Management (2006)

30. Wong, P.Y.H., Gibbons, J.: A process semantics fo BPMN. Oxford University
Computing Lab (preprint, July 2007),
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmn extended.pdf

31. Wynn, M., van der Aalst, W., ter Hofstede, A., Edmond, D.: Verifying workflows
with cancellation regions and OR-joins: an approach based on reset nets and reacha-
bility analysis. In: Dustdar, S., Fiadeiro, J.L., Seth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 389–394. Springer, Heidelberg (2006); Previous versions edited as
BPM-06-16 and BPM-06-12

32. Wynn, M., Verbeek, H.M.W., van der Aalst, W., ter Hofstede, A., Edmond, D.:
Reduction rules for reset workflow nets. Technical Report BPM-06-25, BPMcen-
ter.org (2006)

33. Wynn, M., Verbeek, H.M.W., van der Aalst, W., ter Hofstede, A., Edmond, D.:
Reduction rules for YAWL workflow nets with cancellation regions and OR-joins.
Technical Report BPM-06-24, BPMcenter.org (2006)

www.is.informatik.uni-kiel/~thalheim/ASM/MetaProgrammingASM
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmn_extended.pdf

Refinement of State-Based Systems:
ASMs and Big Commuting Diagrams

(Abstract)

Gerhard Schellhorn

Lehrstuhl für Softwaretechnik und Programmiersprachen,
Universität Augsburg, D-86135 Augsburg, Germany

schellhorn@informatik.uni-augsburg.de

Effective and efficient support for the incremental development of verified implemen-
tations from abstract requirements has always been of central importance for the suc-
cessful application of formal methods in practice.

Effective means first, that a modelling language is available that allows an adequate
problem specification. Second, a refinement theory must be available that preserves the
relevant properties of the abstract specification.

Efficient means, that the refinement theory reduces the problem to the essential proof
obligations necessary, and that the theorem prover provides powerful deduction support.

The talk discusses the topic from the experience we have gained from formalizing
various refinement theories [1], [2] with the interactive theorem prover KIV [3], as well
as from the correctness proofs for various case studies involving refinement.

Predominantly, we have uses Abstract State Machines (ASM, [4], [5]) and ASM
Refinement [6], [7], [8], [9] in our case studies, but occasionally we also used data
refinement [10], [11] and refinement preserving noninterference [12].

ASM refinement was originally developed for the verification of 12 refinements [13],
[14], [15] of the Prolog compiler given in [16]. We will relate the definition of ASM
refinement to various other refinement definition for state-based systems that have been
defined: data refinement [17] and its various instances (the contract approach [18] used
in Z, the behavioral approach [19] used in Object-Z or the variation used in Event-B
[20]), refinement of IO automata [21] and refinement in the Abadi-Lamport [22] setting.

One important lesson learned from this case study was that the use of ”‘big commut-
ing diagrams”’ can often simplify proofs enormously. Such big diagrams relate several
(m) abstract steps to several (n) concrete steps (m:n diagrams). They generalize forward
(also called downward) simulations from data refinement which relates one abstract to
one concrete step. Various generalization of data refinement (e.g. stuttering forward
simulation from IO refinement [21], weak forward simulation [23] and coupled refine-
ment [24]) can be shown to be special cases [8]. A recent result is that generalized
forward simulations alone are a complete proof system [2] together with using choice
functions as proposed in [25] and [5]. A similar result, that also considers fairness, has
been derived earlier for the Abadi-Lamport setting by Wim Hesselink [26].

Big commuting diagrams are natural in compiler verification: some source code in-
structions are either implemented by some assembler instructions or optimized to a
shorter sequence of instructions. We found that such diagrams can be used in other

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 39–41, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 G. Schellhorn

application areas too: one example is security protocol verification [27], [28], [29],
where one abstract action (like data transfer) is implemented by running an n-step pro-
tocol (1:n diagram). An additional difficulty compared to compiler verification is that
protocol runs are interleaved with other protocol runs and actions of an attacker. Our
current research [10], [30] focusses on the verification of lock-free algorithms. These
implements an atomic actions on a data type (such as a push or pop on a stack) by
programs working on pointer structures. Like security protocols the programs are in-
terleaved and we report on experiments using big commuting diagrams to simplify the
verification task.

References

1. Boiten, E., Derrick, J., Schellhorn, G.: Relational concurrent refinement part ii: Internal op-
erations and ouputs. In: FAC (2008)

2. Schellhorn, G.: Completeness of asm refinement. In: Proceedings of REFINE 2008. ENTCS
(to appear, 2008)

3. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive
proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction—A Basis for Ap-
plications. Systems and Implementation Techniques, vol. II, pp. 13–39. Kluwer Academic
Publishers, Dordrecht (1998)

4. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specification and
Validation Methods, pp. 9–36. Oxford Univ. Press, Oxford (1995)

5. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level System Design
and Analysis. Springer, Heidelberg (2003)

6. Schellhorn, G.: Verification of ASM Refinements Using Generalized Forward Sim-
ulation. Journal of Universal Computer Science (J.UCS) 7(11), 952–979 (2001),
http://www.jucs.org

7. Börger, E.: The ASM Refinement Method. Formal Aspects of Computing 15(1–2), 237–257
(2003)

8. Schellhorn, G.: ASM Refinement and Generalizations of Forward Simulation in Data Refine-
ment: A Comparison. Journal of Theoretical Computer Science 336(2-3), 403–435 (2005)

9. Schellhorn, G.: ASM Refinement Preserving Invariants. In: Proceedings of the 14th In-
ternational ASM Workshop, ASM 2007, Grimstad, Norway (2008); JUCS (to appear),
http://ikt.hia.no/asm07/

10. Derrick, J.: Mechanizing a refinement proof for a lock-free concurrent stack. In: Barthe,
G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 78–95. Springer, Heidelberg
(2008)

11. Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mondex Electronic Purses
with KIV: From Transactions to a Security Protocol. Formal Aspects of Computing 20(1)
(January 2008)

12. Schellhorn, G., Reif, W., Schairer, A., Karger, P., Austel, V., Toll, D.: Verification of a Formal
Security Model for Multiapplicative Smart Cards. special issue of the Journal of Computer
Security 10(4), 339–367 (2002)

13. Schellhorn, G., Ahrendt, W.: Reasoning about Abstract State Machines: The WAM
Case Study. Journal of Universal Computer Science (J.UCS) 3(4), 377–413 (1997),
http://www.jucs.org

14. Schellhorn, G., Ahrendt, W.: The WAM Case Study: Verifying Compiler Correctness for Pro-
log with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated Deduction — A Basis for Applica-
tions. Applications, vol. III, pp. 165–194. Kluwer Academic Publishers, Dordrecht (1998)

http://www.jucs.org
http://ikt.hia.no/asm07/
http://www.jucs.org

Refinement of State-Based Systems: ASMs and Big Commuting Diagrams 41

15. Schellhorn, G.: Verification of Abstract State Machines. PhD thesis, Universität Ulm,
Fakultät für Informatik (1999),
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/
publications/

16. Börger, E., Rosenzweig, D.: The WAM—definition and compiler correctness. In: Beierle, C.,
Plümer, L. (eds.) Logic Programming: Formal Methods and Practical Applications. Studies in
Computer Science and Artificial Intelligence, vol. 11, pp. 20–90. North-Holland, Amsterdam
(1995)

17. Jifeng, H., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm,
R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196. Springer, Heidelberg (1986)

18. Woodcock, J.C.P., Davies, J.: Using Z: Specification, Proof and Refinement. Prentice Hall
International Series in Computer Science (1996)

19. Bolton, C., Davies, J., Woodcock, J.: On the refinement and simulation of data types and
processes. In: Araki, K., Galloway, A., Taguchi, K. (eds.) Proceedings of the International
conference of Integrated Formal Methods (IFM), pp. 273–292. Springer, Heidelberg (1999)

20. Abrial, J.R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Discrete Mod-
els: Application to Event-B. Fundamenta Informaticae 21 (2006)

21. Lynch, N., Vaandrager, F.: Forward and Backward Simulations – Part I: Untimed systems. In-
formation and Computation 121(2), 214–233 (1995); also: Technical Memo MIT/LCS/TM-
486.b, Laboratory for Computer Science, MIT

22. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Sci-
ence 2, 253–284 (1991); Also appeared as SRC Research Report 29

23. Derrick, J., Boiten, E.A., Bowman, H., Steen, M.: Weak Refinement in Z. In: Bowen, J.,
Hinchey, M. (eds.) ZUM 1997. LNCS, vol. 1212, pp. 369–388. Springer, Heidelberg (1997)

24. Derrick, J., Wehrheim, H.: Using Coupled Simulations in Non-atomic Refinement. In: Bert,
D., Bowen, J., King, S., Walden, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 127–147. Springer,
Heidelberg (2003)

25. Stärk, R.F., Nanchen, S.: A Complete Logic for Abstract State Machines. Journal of Univer-
sal Computer Science (J.UCS) 7 (11), 981–1006 (2001)

26. Hesselink, W.H.: Universal extensions to simulate specifications. Information and Computa-
tion 206, 106–128 (2008)

27. Schellhorn, G., Grandy, H., Haneberg, D., Moebius, N., Reif, W.: A Systematic Verification
Approach for Mondex Electronic Purses using ASMs. In: Abrial, J.-R., Glässer, U. (eds.)
Dagstuhl Seminar on Rigorous Methods for Software Construction and Analysis. LNCS,
vol. 5115, Springer, Heidelberg (2008)

28. Banach, R., Schellhorn, G.: On the refinement of atomic actions. In: Proceedings of REFINE
2007. ENTCS (2007)

29. Schellhorn, G., Banach, R.: A concept-driven construction of the mondex protocol using
three refinements. In: Proceedings of ABZ conference 2008, vol. 5238. Springer, Heidelberg
(2008)

30. Bäumler, S., Schellhorn, G., Balser, M., Reif, W.: Proving linearizability with temporal logic
(submitted, draft available from the authors)

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/

Model Based Refinement and the Tools of Tomorrow

Richard Banach

School of Computer Science,
University of Manchester,
Manchester, M13 9PL, UK
banach@cs.man.ac.uk

Abstract. The ingredients of typical model based development via refinement
are re-examined, and some well known frameworks are reviewed in that light,
drawing out commonalities and differences. It is observed that alterations in se-
mantics take place de facto due to applications pressures and for other reasons.
This leads to a perspective on tools for such methods in which the proof obliga-
tions become programmable and/or configurable, permitting easier co-operation
between techniques and interaction with an Evidential Tool Bus. This is of intrin-
sic interest, and also relevant to the Verification Grand Challenge.

Keywords: Model Based Development, Refinement, Configurable Proof Oblig-
ations, Tools, Verification Grand Challenge.

1 Introduction

Refinement, as a model based methodology for developing systems from abstract spec-
ifications, has been around for a long time [1]. In this period, many variations on the
basic idea have arisen, to the extent that an initiate can be bewildered by the apparently
huge choice available. As well as mainstream refinement methodologies such as ASM,
B, Z, etc., which have enjoyed significant applications use, there are a myriad other re-
lated theories in the literature, too numerous to cite comprehensively. And at a detailed
theoretical level, they are all slightly different.

From a developer’s point of view, this variety can only be detrimental to the wider
adoption of formal techniques in the real world applications arena — in the real world,
developers have a host of things to worry about, quite removed from evaluating the
detailed technical differences between diverse formal techniques in order to make the
best choice regarding which one to use. In any event, such choice is often made on quite
pragmatic grounds, such as the ready access to one or more experts, and crucially these
days, availability of appropriate tool support. Anecdotally, the choice of one or another
formalism appears to make little difference to the outcome of a real world project using
such techniques — success seems to be much more connected with proper requirements
capture, and with organising the development task in a way that is sympathetic to both
the formal technique and to the developers’ pre-existing development practices.

In this paper we examine closely what goes into a typical notion of model based re-
finement by examining a number of cases. As a result, we can extract the detailed simi-
larities and differences, and use this to inform a view on how different techniques ought
to relate to one another. This in turn forms a perspective on how different techniques

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 42–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Based Refinement and the Tools of Tomorrow 43

can meet a contemporary environment in which verification techniques and their tools
can increasingly address mainstream industrial scale problems — determining how to
address the spectrum of technical differences between techniques, in the face of a wider
world prone to see them as intrinsically divisive, remains a significant challenge. In this
paper, we contend that techniques in this field can be viewed as comprising a number
of features, amongst which, the commonly occuring ones ought to be emphasised, and
the more specific ones deserve to be viewed more flexibly. This line is developed to the
point that a landscape can be imagined, in which different techniques, and their tools,
can ultimately talk to one another.

The rest of the paper is as follows. In Section 2 we cover the common features of
model based formalisms. In Section 3 we show how these generalities are reflected in a
number of specific well known approaches. Section 4 reflects on the evidence accumu-
lated in the previous one and draws some appropriate conclusions. Section 5 takes the
preceding material and debates the implications for tools. It is suggested that increased
programmability can substantially help to bridge the gaps between techniques, and the
way that programmability features in some recent tools is discussed. These thoughts are
also in sympathy with the SRI ‘Evidential Tool Bus’ idea [2], and can contribute posi-
tively towards the current Verification Grand Challenge [3,4,5]. Section 6 concludes.

2 Model Based Refinement Methods: Generalities

A typical model based formal refinement method, whose aim is to formalise how an
abstract model may be refined to a more concrete one, consists of a number of elements
which interact in ways which are sometimes subtle. In this section we bring some of
these facets into the light; the discussion may be compared to a similar one in [6].

Formal language. All formal refinement techniques need to be quite specific about
the language in which the elements of the technique are formalised. This precision
is needed for proper theoretical reasoning, and to enable mechanical tools with well
defined behaviour to be created for carrying out activities associated with the method.
There are inevitably predicates of one kind or another to describe the properties of
the abstract and concrete models, but technical means are also needed to express state
change within the technique. Compared with the predicates used for properties, there is
much more variety in the linguistic means used for expressing state change, although
each has a firm connection with the predicates used for the modelling of properties.

Granularity and naming. All formal refinement techniques depend on relating con-
crete steps (or collections of steps) to the abstract steps (or collections of steps) which
they refine. Very frequently, a single concrete step is made to correspond to a single ab-
stract one, but occasionally more general schemes (in which sequences of abstract and
concrete steps figure) are considered. The (1, 1) scheme is certainly convenient to deal
with theoretically, and it is often captured by demanding that the names of operations
or steps that are intended to correspond at abstract and concrete levels are the same.
However, in many applications contexts, such a simple naming scheme is far removed
from reality, and if naively hardwired into the structure of a tool, makes the tool much
less conveniently usable in practice.

44 R. Banach

Concrete-abstract fidelity. All formal refinement techniques demand that the concrete
steps relate in a suitable manner to abstract ones. Almost universally, a retrieve rela-
tion (also referred to as a refinement mapping, abstraction relation, gluing relation, etc.)
is used to express this relationship. It is demanded that the retrieve relation holds be-
tween the before-states of a concrete step (or sequence of steps) and the abstract step
(or sequence of steps) which simulates it; likewise it must hold for the after-states of
the simulating pair. In other words (sequences of) concrete steps must be faithful to (se-
quences of) abstract steps. (A special case, simple refinement, arises when the retrieve
relation is an identity.)

Concrete-abstract fidelity is the one feature that can be found in essentially the same
form across the whole family of model based formalisms. It is also the case that this
fidelity —usually expressed using a proof obligation (PO), the fidelity PO— is often de-
rived as a sufficient condition for a more abstract formulation of refinement, concerning
the overall behaviour of ‘whole programs’. These sufficient conditions normally form
the focus of the theory of model based refinement techniques, since they offer what is
usually the only route to proving refinement in practical cases.

Notions of correctness. One of the responsibilities of a formal refinement technique
is to dictate when there should be concrete steps that correspond to the existence of
abstract ones. This (at least implicitly) is connected with the potential for refinement
techniques to be used in a black-box manner. Thus if an abstract model has been drawn
up which deals adequately with the requirements of the problem, then any refinement
should guarantee that the behaviour expressed in the abstract model should be reflected
appropriately in more concrete models, and ultimately in the implementation, so that
the requirements coverage persists through to code.

There is much variation among refinement techniques on how this is handled, par-
ticularly when we take matters of interpretation into account. Although the mainstream
techniques we discuss below are reasonably consistent about the issue, some variation
is to be found, and more variety can be found among refinement variants in the litera-
ture. The formal content of these perspectives gets captured in suitable POs, and often,
the policy adopted has some impact on the fidelity PO too. A similar impact can be felt
in initialisation (and finalisation) POs.

Interpretation. The preceding referred (rather obliquely perhaps) to elements of model
based refinement theories that are expressed in the POs of the theory, i.e. via logic.
However, this does not determine how the logical elements relate to phenomena in the
real world. If transitions are to be described by logical formulae (involving before and
after states, say), then those formulae can potentially take the value false as well as
true. And while determining how the logical formulae correspond to the real world is
usually fairly straightforward in the true case, determining the correspondence in the
false case can be more subtle. These matters of logical-to-real-world correspondence
constitute the interpretation aspects of a formal development technique.

Trace inclusion. Trace inclusion, i.e. the criterion that every execution sequence of the
system (i.e. the concrete model) is as permitted by the specification (i.e. the abstract
model), is of immense importance in the real world. When an implemented system

Model Based Refinement and the Tools of Tomorrow 45

behaves unexpectedly, the principal post hoc method of investigation amounts to deter-
mining how the preceding behaviour failed to satisfy the trace inclusion criterion. This
importance is further underlined by the role that trace inclusion plays in model check-
ing. The ‘whole program’ starting point of the derivation of many sufficient conditions
for refinement is also rooted in trace inclusion. Two forms of trace inclusion are of inter-
est. Weak trace inclusion merely states that for every concrete trace there is a simulating
abstract one. Strong trace inclusion goes beyond that and states that if Asteps simulates
Csteps and we extend Csteps to Cstepso

9Cnxt, then Asteps can be extended to Astepso
9Anxt

which also simulates. With weak trace inclusion, we might have to abandon Asteps and
find some unrelated Astepsdifferent to recover simulation of Csteps o

9 Cnxt.

Composition. It is a given that large systems are built up out of smaller components, so
the interaction of this aspect with the details of a refinement development methodology
are of some interest, at least for practical applications. Even more so than for notions
of correctness, there is considerable variation among refinement techniques on how
compositionality is handled — the small number of techniques we review in more detail
below already exhibit quite a diversity of approaches to the issue.

3 ASM, B, Event-B, Z

In this section, we briefly review how the various elements of model based methods
outlined above are reflected in a number of specific and well-known formalisms. For
reasons of space, we restrict to the ASM, B (together with the more recent Event-B)
and Z methodologies. We also stick to a forward simulation perspective throughout. It
turns out to be convenient to work in reverse alphabetical order.

3.1 Z

Since Z itself [7] is simply a formal mathematical language, one cannot speak defini-
tively of the Z refinement. We target our remarks on the formulations in [8,9].

Formal language: Z uses the well known schema calculus, in which a schema con-
sists of named and typed components which are constrained by a formula built up using
the usual logical primitives. This is an all-purpose machinery; ‘delta’ schemas enable
before-after relations that specify transitions to be defined; other schemas define re-
trieve relations, etc. The schema calculus itself enables schemas to be combined so as
to express statements such as the POs of a given refinement theory.

Granularity and naming: Most of the refinement formulations in [8,9] stick to a (1, 1)
framework. Purely theoretical discussions often strengthen this to identity on ‘indexes’
(i.e. names) of operations at abstract and concrete levels, though there is no insistence
on such a close tieup in [10,11].

Concrete-abstract fidelity: In the above context for Z refinement, the fidelity PO
comes out as follows, which refers to the contract interpretation without I/O (while the
behavioural interpretation drops the ‘pre AOp’):

∀ AState; CState; CState ′ • pre AOp∧ R∧ COp ⇒ ∃ AState ′ • R ′ ∧ AOp (1)

46 R. Banach

where AState, CState are (abstract and concrete) state schemas (primes denote after-
states), AOp, COp are corresponding operations, R is the retrieve relation, and ‘pre AOp’,
the precondition, in fact denotes the domain of AOp.

Notions of correctness: In Z, an induction on execution steps is used in the (1, 1) frame-
work to derive trace inclusion. To work smoothly, totality (on the state space) of the
relations expressing operations is assumed. To cope with partial operations, a ⊥ ele-
ment is added to the state space, and totalisations of one kind or another, of the rela-
tions representing the operations, are applied. The consequences of totalisation (such as
(1)), got by eliminating mention of the added parts from a standard forward simulation
implication, constitute the POs of, and embody the notion of correctness for, the total-
isation technique under consideration. These turn out to be the same for both contract
and behavioural approaches, aside from the difference in (1) noted above.

Interpretation: The two main totalisations used, express the contract and behavioural
interpretations. In the former, an operation may be invoked at any time, and the con-
sequences of calling it outside its precondition are unpredictable (within the limits of
the model of the syntax being used), including ⊥, nontermination. In the latter, ⊥ is
guaranteed outside the precondition (usually called the guard in this context, but still
defined as the domain of the relevant partial relation), which is typically interpreted by
saying the operation will not execute if the guard is false.

Trace inclusion: Trace inclusion has been cited as the underlying derivation technique
for the POs, and since an inductive approach is used, it is strong trace inclusion. How-
ever, the ‘fictitious’ transitions of operations introduced by totalisation are treated on an
equal footing to the original ‘honest’ ones, so many spurious traces, not corresponding
to real world behaviour, can be generated. For instance a simulation of a concrete trace
may hit a state (whether abstract or concrete) that is outside the ‘natural’ domain of
the next partial operation. Then, in the contract interpretation, the trace can continue
in a very unrestricted manner, despite the different way that one would view the con-
stituent steps from a real world perspective. Things look a bit better in the behavioural
interpretation, since such a trace is thereafter confined to ⊥.

Composition: One prominent composition mechanism to be found in Z is promotion.
In promotion, a component which is specified in a self-contained way is replicated via
an indexing function to form a family inside a larger system; this interacts cleanly with
refinement [8,9]. However, the schema calculus in general is not monotonic with respect
to refinement without additional caveats [12].

3.2 B

The original B Method was described with great clarity in [13], and there are a number
of textbook treatments eg. [14,15,16].

Formal language: Original B was based on predicates for subsets of states, written in
a conventional first order language, and on weakest precondition predicate transform-
ers (wppts) for the operations. The use of predicate transformers obviates the need for
explicitly adjoining⊥ elements to the state spaces.

Model Based Refinement and the Tools of Tomorrow 47

Granularity and naming: Original B adheres to a strict (1, 1) framework; ‘strict’ in the
sense that tools for original B demand identical names for operations and their refine-
ments. Abstract models of complex operations can be assembled out of smaller pieces
using such mechanisms as INCLUDES, USES, SEES. However once the complete ab-
stract model has been assembled, refinement proceeds monolithically towards code.
The last step of refinement to code, is accomplished by a code generator which plugs
together suitably designed modules that implement the lowest level B constructs.

Concrete-abstract fidelity: This is handled via the predicate transformers. Adapting the
notation of [13] for ease of comparison with (1), the relevant PO can be written:

AInv ∧ CInv ∧ trm AOp ⇒ [COp] ¬ [AOp] ¬ CInv (2)

In this, AInv and trm AOp are the abstract invariant and termination condition (the latter
being the predicate of the precondition), while CInv is the concrete invariant, which in
original B, involves both abstract and concrete variables and thus acts also as a retrieve
relation; all of these are predicates. [AOp] and [COp] are the wppts for the abstract
and concrete operations, so (2) says that applying the concrete and ‘doubly negated’
abstract wppts to the after-state retrieve relation yields a predicate (on the before-states)
that is implied by the before-state quantities to the left of the implication.

Notions of correctness: In original B, precondition (trm) and guard (fis) are distinct
concepts (unlike Z), albeit connected by the implication ¬ trm ⇒ fis , due to the de-
tails of the axiomatic way that these two concepts are defined. Moreover, trm ∧ ¬ fis
can hold for an operation, permitting miracles, a phenomenon absent from formalisms
defined in a purely relational manner. In original B, trm is a conjunct of any opera-
tion’s definition, so outside trm, nothing is assumed, and when interpreted relationally,
it leads to something like a ‘totalisation’ (though different from the Z ones). During
refinement, the precondition is weakened and the guard is strengthened, the former of
which superficially sounds similar to Z, though it is again different technically.

Interpretation: The interpretation of operation steps for which trm and fis both hold
is the conventional unproblematic one. Other steps fire the imagination. If trm is false
the step aborts, i.e. it can start, but not complete normally; modelled relationally by
an unconstrained outcome, a bit like contract Z. If fis is false the step does not start
normally, but can complete; a miracle indeed, usually interpreted by saying that the
step will not take place if fis is false.

Trace inclusion: In original B, trace inclusion is not addressed directly, but as a conse-
quence of monotonicity. Refinement is monotonic across the B constructors, including
sequential composition. This yields a notion of weak trace inclusion, since the trm and
fis of a composition are an output of a composition calculation, not an input, and in
particular, cannot be assumed to be the trm and fis of the first component, as one would
want if one were extending a simulation by considering the next step. And even though
the sufficient condition for fidelity (2) is a strengthening of the natural B refinement
condition, it does not lead to an unproblematic strong trace inclusion, since in a re-
lational model, we have the additional transitions generated by the ‘totalisation’, and
miracles do not give rise to actual transitions.

48 R. Banach

Composition: In original B, the interaction of refinement and composition is not a real
issue. The earlier INCLUDES, USES, SEES mechanisms are certainly composition
mechanisms, but they just act at the top level. Only the finally assembled complete
abstract model is refined, avoiding the possibility of Z-like nonmonotonicity problems.
The IMPORTS mechanism allows the combination of independent developments.

3.3 Event-B

Event-B [17,18,19] emerged as a focusing of original B onto a subset that allows for
both more convenient practical development, and also an avoidance of the more coun-
terintuitive aspects of the original B formalism, such as miracles.

Formal language: Event-B is rooted in a traditional relational framework, derived by
restricting original B operations (henceforth called events) to have a trm which is true,
and controlling event availability purely via the guard, which is the domain of the event
transition relation, as in Z. Distinguishing between guard and event in the syntax enables
event transitions to be defined via convenient notations (such as assignment) which are
more widely defined than the desired guard. Formally, the more exotic possibilities
afforded by predicate transformers are no longer needed.

Granularity and naming: Event-B relaxes the strict (1, 1) conventions of original B. As
in original B, the syntax of the refinement mechanism is embedded in the syntax of the
refining machine, so an abstraction can be refined in more than one way, but not vice
versa. However, a refining event now names its abstract event, so an abstract event can
have several refinements within the same refining machine. New events in a refining
machine are implicitly understood to refine an abstract skip, something which needed
to be stated explicitly in original B, cluttering incremental development.

Concrete-abstract fidelity: The absence of the more exotic aspects of predicate trans-
formers gives the Event-B fidelity PO a quite conventional appearance:

∀ u, v, v′ • AInv ∧ CInv ∧ GCEv ∧ CEv ⇒ ∃ u′ • AEv ∧ CInv′ (3)

This says that assuming the abstract invariant and the concrete invariant (which is again
a joint invariant i.e. retrieve relation) and the concrete guard and concrete transition re-
lation for the before-states, yields the existence of an abstract event which re-establishes
the joint invariant in the after-states.

Notions of correctness: The absence of preconditions distinct from guards simplifies
matters considerably. The previous ‘weakening of the precondition’ during refinement
of an operation, is now taken over by ‘disjunction of concrete guard with guards of all
new events is weaker than the abstract guard’. This is a quite different criterion, which
nevertheless guarantees that if something can happen at the abstract level, a ‘suitable’
thing is enabled at the concrete level. This is also combined with guard strengthening
in the refinement of individual events, and a well foundedness property to prevent new
events from being always enabled relative to old events. Totalisations are no longer
present in any form, which has an impact on trace inclusion (see below).

Model Based Refinement and the Tools of Tomorrow 49

Interpretation: The absence of preconditions distinct from guards simplifies interpreta-
tional matters considerably. There is a firm commitment to the idea that events which
are not enabled do not execute, avoiding the need to engage with miracles and with
spurious transitions generated by totalisation.

Trace inclusion: In the Event-B context, trace inclusion wins massively. Since for a
refined event, the concrete guard implies the abstract one, the implication has the same
orientation as the implication in (3), so the two work in harmony to enable any concrete
step joined to an appropriate abstract before-state, to be unproblematically simulated,
a phenomenon not present in formalisms mentioned earlier — simulated moreover, by
a ‘real’ abstract event, not a fictitious one introduced via totalisation. New events do
not disturb this, since they are by definition refinements of skip, which can always
effortlessly simulate them. So we have genuine, uncluttered, strong trace inclusion.

Composition: Event-B takes a more pro-active approach to composition than original
B. Event-B’s top-down and incremental approach means that system models start out
small and steadily get bigger. This allows composition to be instituted via decomposi-
tion. As a system model starts to get big, its events can be partitioned into subsystems,
each of which contains abstractions of the events not present. These abstractions can
capture how events in different subsystems need to interact, allowing for independent
refinement, and avoiding the non-monotonicity problems mentioned earlier.

3.4 ASM

The Abstract State Machine approach developed in a desire to create an operationally
based rigorous development framework at the highest level of abstraction possible. A
definitive account is given in [6].

Formal language: Among all the methodologies we survey, ASM is the one that de-
emphasises the formality of the language used for modelling the most — in a laudable
desire to not dissuade users by forcing them to digest a large amount of technical de-
tail at the outset. System states are general first order structures. These get updated by
applying ASM rules, which modify the FO structures held in one or more locations. In
a departure from the other formalisms reviewed, all rules with a true guard are applied
simultaneously during an update.

Granularity and naming: The ASM approach tries as hard as it can to break the shack-
les of imposing, up front, any particular scheme of correspondence between abstract
and concrete steps during refinement. Since a retrieve relation has to be periodically
re-established, a practical technique that breaks a pair of simulating runs into (m, n) di-
agrams of m abstract steps and n concrete ones (for arbitrary finite m + n > 0), without
any preconceptions about which steps occur, is minimally demanding.

Concrete-abstract fidelity: In striving to be as unrestrictive as possible, ASM does not
prescribe specific low level formats for establishing refinement. However, one tech-
nique, generalised forward simulation, established by Schellhorn [20] (see also [21]),
has become identified as a de facto standard for ASM refinement. This demands that
the (m, n) diagrams mentioned above are shown to be simulating by having a ‘working’

50 R. Banach

retrieve relation ≈, which implies the actual retrieve relation ≡, which itself is referred
to as an equivalence. The ≈ relation is then used in implications of the form (1)-(3),
except that several abstract or concrete steps (or none) can be involved at a time. As
many (m, n) diagram simulations as needed to guarantee coverage of all cases that arise
must then be established.

Notions of correctness: It has already been mentioned that ≡ is referred to as an equiv-
alence. While almost all retrieve relations used in practice are in fact partial or total
equivalences [22], knowing this a priori has some useful consequences. It leads to
a simple relationship between the guards of the run fragments in simulating (m, n)
diagrams, subsuming guard strengthening, and eliminating many potential complica-
tions. Refinement is defined directly via a trace-inclusion-like criterion (periodic re-
establshment of ≡), and for (0, n) and (m, 0) diagrams, there is a well foundedness
property to prevent permanent lack of progress in one or other system in a refinement.
The analogue of ‘precondition weakening’ (though we emphasise that there is no sepa-
rate notion of precondition in ASM) is subsumed by the notion of ‘complete refinement’
which demands that the abstract model refines the concrete one (as well as vice versa),
thus ensuring that any time an abstract run is available, so is a suitable concrete one,
yielding persistence of coverage of requirements down a refinement chain. Of course
not all refinements need to be complete, permitting convenient underspecification at
higher levels, in a similar manner to Event-B.

Interpretation: Since states and transitions are defined directly, there are no subtle issues
of interpretation associated with them. Also, ASM rule firing is a hardwiring of the
‘transitions which are not enabled do not execute’ convention into the formalism.

Trace inclusion: The (m, n) diagram strategy of ASM modifies the notion of trace in-
clusion that one can sustain. The ASM (m, n) notion, at the heart of the ASM correct
refinement criterion, can be viewed as a generalisation of the Event-B (1, 1) strategy.

Composition: With the major focus being on identifying the ground model, and on its
subsequent refinement (rather as in original B), the composition of independent refine-
ments is not prominent in [6,21]. On the other hand, if ≡ really is an equivalence (or
as we would need to have it between two state spaces which are different, a regular
relation a.k.a. a difunctional relation), there is a beneficial effect on any prospective
composition of refinements. Many of the issues noted in [12] arise, because incom-
patible criteria about abstract sets (of states, say) which are unproblematic due to the
abstract sets’ disjointness, can become problematic due eg. to precondition weakening
when the sets’ concrete retrieve images become non-disjoint via a non-regular retrieve
relation. A regular retrieve relation does much to prevent this, facilitating composition
of refinements.

4 Configurable Semantics

The preceding sections very briefly surveyed a few well known refinement paradigms.
Although it might not be as apparent as when one examines more of the details in
each case, it is easy to be struck by how so many of the issues we have highlighted,

Model Based Refinement and the Tools of Tomorrow 51

turn out merely to be design decisions that happen to have been taken, about some
particular feature, in the context of one or other formalism. Although some such design
decisions are interrelated, one can very easily imagine, that in many cases, a given
design decision about some aspect of a refinement methodology, could just as easily
have been implemented in the context of a methodology different from the one in which
we happen to find it. Here are a few examples.

• Regarding Z, one could easily imagine its notion(s) of correctness being substi-
tuted by the ones from Event-B or ASM. Its notion of trace inclusion would then
be replaced by one not requiring the use of ‘fictitious’ transitions generated by to-
talisation.

• For B, one could easily imagine adding ⊥ elements to state spaces etc. in order to
obtain a different relational semantics, with fewer ‘fictitious’ transitions.

• For Event-B and ASM one could imagine bringing in some aspects of the Z mod-
elling, though it appears that little would be gained by doing so.

Of course such ideas are not new. In many cases, for mature methodologies, alternatives
of one kind or another have been investigated, whether in the normal research literature
or as student research projects — making an even moderately comprehensive list of the
cases covered would swell the size of this paper unacceptably.

Semantic modifications of the kind hinted at can serve a more serious purpose than
mere curiosity. In ProB [23], a model checker and animator for the B-Method first im-
plemented for original B, the original B preconditions are re-interpreted as (i.e. given
the semantics of) additional guards. The reason for this is that preconditions are weak-
ened during refinement, whereas guards are strengthened. As already noted in Section
3.3, the orientation of the latter implication is the same as that in the fidelity PO, so the
two collaborate in establishing trace inclusion. Precondition weakening is in conflict
with this, so the ProB adaptation is necessary to ensure that the theoretical construc-
tions at the heart of model checking remain valid.

Commenting from a real world developer’s perspective, the fewer the extraneous
and counterintuitive elements that a formalism contains, the more appealing it becomes
for real world use. For example, if an applications sphere features operations that are
intrinsically partial, then that is all that there ought to be to the matter, and consequently,
the approach of totalising such operations becomes an artificial distraction, potentially
even a misleading one if the fictitious transitions could be mistaken for real ones.

Such techniques as totalisation can be seen as making the task of setting up the se-
mantics of a formal framework simpler. However, the real world developer’s priorities
are more focused on accurate modelling of the application scenario, and this can moti-
vate a modification of the semantics, albeit at the price of additional formal complexity.
In the Météor Project [24], the semantics of original B was modified to explicitly check
well-definedness conditions for applications of (partial) functions, using techniques go-
ing back to Owe [25], in recognition of this application need. Event-B, a more recent
development, has such checks built in ab initio, and its semantics fits model checking
needs much better too, as already noted.

The above thoughts, assembled with the wisdom of hindsight, drive one to the con-
clusion that the semantics of formal development notations would be better designed

52 R. Banach

in a more flexible, or configurable way. The idea that a single pre-ordained semantic
framework can cover all cases in all needed application scenarios is hard to sustain.

Such a viewpoint has consequences of course, both theoretical and practical. The-
oretically, one would have to structure the theory of a particular formalism so that
contrasting design decisions could be adopted straightforwardly, in a way that avoided
confusing the reader, and so that the consequences of adopting alternatives could easily
be imagined. Moreover, doing this would not constitute a huge overhead since theo-
retical work is relatively cheap. Practically though, it is a different matter. Practically,
formalisms, such as the ones we have discussed, are embodied in tools; and creating
a good tool requires a considerable investment. We discuss the wider consequences of
our perspective for tools in the next section.

A final thought on the topic of semantic flexibility. One cannot help notice from the
above brief discussion, that the places where semantic modifications have been imposed
on a technique in order to satisfy application development methodology needs, have all
occurred in the ‘notions of correctness’ and ‘interpretation’ areas. Notably free from
interference has been the ‘concrete-abstract fidelity’ area. This indicates a strong con-
sensus among approaches that simulation (in one form or another) is the key criterion
that techniques must establish. Other issues from Section 2, such as ‘formal language’,
‘granularity and naming’ and ‘trace inclusion’, ‘composition’, can be seen as either
enablers for setting up a framework, or derivable consequences of the design decisions
taken. This in turn suggests a scheme for organising theories in this field: one sets up the
linguistic machinery, one sets up concrete-abstract simulation, one chooses additional
correctness and accompanying concepts, and then one derives whatever additional prop-
erties of interest follow from the preceding choices. And when comparing or combining
one formalism with another, it is the intersection of features rather than their union that
is of greatest importance.

5 Issues for Tools

The considerations of the preceding sections have implications for tool design, as al-
ready noted. Up to now, most tools in this arena have been based on a commitment to
a particular set of design decisions about various semantic issues, and these decisions,
howsoever arrived at, have been hardwired into the structure of the tool, making tools
somewhat monolithic. This has the advantage that with each tool, one knows exactly
what one is getting. However, it also has the disadvantage that it isolates tools from
each other, and makes tool interoperability difficult or impossible.

These days, it is more and more recognised that to best address the risks inherent
in the whole process of a system development, it is desirable to utilise a range of tech-
niques and to interconnect them. A consequence of the isolation between tools is that
it is difficult to simultaneously capitalise on the strengths of more than one. It also
means that when an advance is made in one tool, other tools have to duplicate the work
involved before similar ideas can be used in the other contexts. One way of address-
ing this difficulty is to not only make the various theoretical frameworks flexible and
configurable, as recommended earlier, but to also make the tools that support them more

Model Based Refinement and the Tools of Tomorrow 53

configurable and programmable. We now discuss three approaches to this as exempli-
fied within three different tool environments.

The Rodin Toolset [18] for supporting the Event-B methodology, is built on Eclipse
[26], a flexible platform for software development which manages dependencies be-
tween development artifacts and supports a GUI for displaying them. The semantic
content of a methodolgy supported by an Eclipse-based tool is captured via a collec-
tion of Eclipse plugins. Rodin is thus a collection of plugins for introducing Event-B
machines and contexts, editing them, checking them, generating POs, supporting PO
proof, and general housekeeping. Other plugins exist for LATEX printing, ProB support,
and support for additional development activities to aid Event-B development is planned
or can easily be envisaged. Since the source of Rodin is in the public domain, one can
integrate such additional activities by simply writing more plugins of one’s own. If
one wished to actually alter specific semantic elements of Event-B for any reason, one
might well have to replace an existing plugin by a different one, since the standard
semantics of Event-B is hardwired into the plugins, if not into Eclipse. This, although
possible, is not trivial, since writing Eclipse plugins, especially ones that would have to
collaborate closely with other existing ones, is not an easy task. Counter to this relative
inflexibility, we note that a certain limited amount of semantic flexibility has been built
into Rodin ab initio, since one can configure certain attributes of events, eg. whether
they are ordinary, convergent, etc. This influences the verification conditions that are
generated.

The Frog tool [27,28] is an experimental tool, originally designed for mechani-
cally supporting retrenchment [29], whose inbuilt flexibility addresses our concerns
very well. In Frog, much of what is hardwired in typical existing proof-driven devel-
opment tools is programmable. Thus there is an intermediate language (Frog-CCL) for
declaring the structure of the clauses that comprise the usual syntactic constructs that
constitute a typical formal development framework. Paradigmatically, one has machine
definitions, relationships between machines and the like. In Frog, the mathematical in-
gredients of all the constructs are specified using Z schemas, thus exploiting Z’s essence
as a general purpose formal mathematical notation. Since relationships between con-
structs, such as refinements, are themselves syntactic constructs, the precise nature of
what constitutes a refinement (in terms of the POs that characterise it), can be pre-
cisely specified and configured using Frog-CCL scripts. Designing a complete formal
development methodology in Frog is thus a matter of writing several Frog-CCL scripts,
rather than a major development task. At least that is so in principle. Due to limited time
during Simon Fraser’s doctorate, certain things are still hardwired in Frog, such as: the
use of Z as mathematical language, the use of the Isabelle theorem prover [30], and a
strict (1, 1) naming convention for operations. Evidently, more flexibility could easily
be contemplated for these aspects.

Of course the maximum flexibility for adapting the semantic and/or any other aspects
of a methodology whilst still within a tool environment, is to work with a fairly gen-
eral purpose theorem prover. There are essentially no constraints when one takes this
approach, since, regardless of what features are taken as constituting the foundations
of a given formal development methodology (and there is considerable variation on
what is regarded as fundamental among different methodologies), the verification that a

54 R. Banach

particular development is correct with respect to that particular methodology, always
reduces to constructing proofs (of a fairly conventional kind) of a number of posited
properties of the development, the verification conditions. The flexibility of the general
purpose theorem prover approach has been demonstrated with great success in deploy-
ing the KIV Theorem Prover [31] to address system development in the ASM method-
ology (and others). The web site [32] gives full details of the mechanical verification of
a number of substantial developments, carried out under mechanical formalisations of
a variety of detailed refinement formalisms. The approach has enjoyed particular suc-
cess in the context of the mechanical verification of Mondex [33,34]. The generality of
KIV enabled previously investigated refinement strategies to be quickly adapted to the
details of Mondex, and the whole of the verification, done in competition with several
international groups, to be accomplished in record time.

6 Conclusions

In this paper, we have examined some key features of a small number of well known re-
finement methodologies, and commented on their similarities and differences. We noted
that many of their features were not especially specific to the methodologies in which
they were found, and that we could just as easily transplant them into others. We also
observed that applications considerations can influence and adapt such methodologies,
irrespective of first principles, belying the view that their semantics are sacrosanct.

The same considerations impact tool support, but more deeply, given the investment
needed to create a good tool. Accordingly, we turned our attention to strategies for
achieving greater tool flexibility: from Rodin’s plugins, to Frog’s scripting approach, to
theorem proving using eg. KIV. While the last of these undoubtedly offers the greatest
flexibility, it also requires the greatest expertise, and for more everyday development en-
vironments, some tool-imposed discipline is probably necessary. The question is how to
achieve an adequate level of tool supervision without compromising openness, interop-
erability and flexibility. In the author’s view, the Frog approach offers great promise for
quick adaptability of the semantic details of a formal methodology, without demanding
a huge investment in reprogramming the tool. It is easy to imagine that in a tool such
as Frog, for industrial application, the programmable semantic aspects can be made ed-
itable only by senior personnel, and the majority of the development team see a tool
which behaves as though its semantics was conventionally hardwired. In any event, all
the approaches outlined above certainly offer promise, and further experimentation is
to be expected in the near future.

All of the above is certainly in harmony with the call for an Evidential Tool Bus
(ETB) [2], over which tools could communicate. In the ETB, tools are no longer en-
visaged as monolithic entities, isolated from each other, but rather as members of a
community, each responsible for a subset of, or for a particular approach to, the overall
verification task. Tools on the bus could make use of the (partial) evidence for correct-
ness established by other tools on the bus, to enhance what they themselves would be
able to achieve — they in turn publishing their own results on the bus for successor
tools to benefit from. Thus the community could achieve, by cooperation, far more, far
more cheaply, than any one tool could achieve on its own.

Model Based Refinement and the Tools of Tomorrow 55

The preceding is also in harmony with the currently active Verification Grand Chal-
lenge [3,4,5]. This has many aims, from promoting formal techniques in the mainstream
(on the basis of their by now well established capacity to deliver, to standard, on time,
on budget, and overall more cheaply than by the use of conventional techniques), to
establishing cadres of formally verified applications in a repository (as further evidence
to encourage their uptake, and perhaps to provide thereby collections of reusable for-
mally verified components), to encouraging the harmonisation and cooperation of for-
mal techniques. This last aim is squarely aligned with our motivations for carrying out
the analysis of refinement techniques given in this paper.

References

1. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their
Comparison. C.U.P (1998)

2. Rushby, J.: Harnessing Disruptive Innovation in Formal Verification. In: Proc. IEEE SEFM
2006, pp. 21–28. IEEE Computer Society Press, Los Alamitos (2006)

3. Jones, C., O’Hearne, P., Woodcock, J.: Verified Software: A Grand Challenge. IEEE Com-
puter 39(4), 93–95 (2006)

4. Woodcock, J.: First Steps in the The Verified Software Grand Challenge. IEEE Com-
puter 39(10), 57–64 (2006)

5. Woodcock, J., Banach, R.: The Verification Grand Challenge. Communications of the Com-
puter Scociety of India (May 2007)

6. Börger, E., Stärk, R.: Abstract State Machines. A Method for High Level System Design
and Analysis. Springer, Heidelberg (2003)

7. ISO/IEC 13568: Information Technology – Z Formal Specification Notation – Syntax,
Type System and Semantics: International Standard (2002), http://www.iso.org/
iso/en/ittf/PubliclyAvailableStandards/c021573 ISO IEC 13568
2002(E).zip

8. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. PHI (1996)
9. Derrick, J., Boiten, E.: Refinement in Z and Object-Z. FACIT. Springer, Heidelberg (2001)

10. Spivey, J.: The Z Notation: A Reference Manual, 2nd edn. PHI (1992)
11. Cooper, D., Stepney, S., Woodcock, J.: Derivation of Z Refinement Proof Rules. Technical

Report YCS-2002-347, University of York (2002)
12. Groves, L.: Practical Data Refinement for the Z Schema Calculus. In: Treharne, H., King,

S., C. Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 393–413. Springer,
Heidelberg (2005)

13. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. C.U.P (1996)
14. Lano, K., Haughton, H.: Specification in B. Imperial College Press (1996)
15. Habrias, H.: Specification Formelle avec B. Hermes Sciences Publications (2001)
16. Schneider, S.: The B-Method. Palgrave (2001)
17. Abrial, J.R.: Event-B (to be published)
18. Rodin. European Project Rodin (Rigorous Open Development for Complex Systems) IST-

511599, http://rodin.cs.ncl.ac.uk/
19. The Rodin Platform, http://sourceforge.net/projects/rodin-b-sharp/
20. Schellhorn, G.: Verification of ASM Refinements Using Generalised Forward Simulation.

J.UCS 7(11), 952–979 (2001)
21. Börger, E.: The ASM Rrefinement Method. Form. Asp. Comp. 15, 237–257 (2003)
22. Banach, R.: On Regularity in Software Design. Sci. Comp. Prog. 24, 221–248 (1995)

http://www.iso.org/
iso/en/ittf/PubliclyAvailableStandards/c021573_I SO_IEC_13568_
2002(E).zip
http://rodin.cs.ncl.ac.uk/
http://sourceforge.net/projects/rodin-b-sharp/

56 R. Banach

23. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003)

24. Behm, P., Benoit, P., Faivre, A., Meynadier, J.M.: Météor: A Successful Application of B
in a Large Project. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 369–387. Springer, Heidelberg (1999)

25. Owe, O.: Partial Logics Reconsidered: A Conservative Approach. F.A.C.S. 3, 1–16 (1993)
26. The Eclipse Project, http://www.eclipse.org/
27. Fraser, S., Banach, R.: Configurable Proof Obligations in the Frog Toolkit. In: Proc. IEEE

SEFM 2007, pp. 361–370. IEEE Computer Society Press, Los Alamitos (2007)
28. Fraser, S.: Mechanized Support for Retrenchment. PhD thesis, School of Computer Science,

University of Manchester (2008)
29. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and Theoretical Underpin-

nings of Retrenchment. Sci. Comp. Prog. 67, 301–329 (2007)
30. The Isabelle Theorem prover,

http://www.cl.cam.ac.uk/research/hvg/Isabelle/
31. The Karlsruhe Interactive Verifier,

http://i11www.iti.uni-karlsruhe.de/∼kiv/KIV-KA.html
32. KIV: KIV Verifications on the Web,

http://www.informatik.uni-augsburg.de/swt/projects/
33. Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex Challenge: Machine

Checked Proofs for an Electronic Purse. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.)
FM 2006. LNCS, vol. 4085, pp. 16–31. Springer, Heidelberg (2006)

34. Mondex KIV: Web presentation of the Mondex case study in KIV,
http://www.informatik.uni-augsburg.de/swt/projects/
mondex.html

http://www.eclipse.org/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://i11www.iti.uni-karlsruhe.de/~kiv/KIV-KA.html
http://www.informatik.uni-augsburg.de/swt/projects/
http://www.informatik.uni-augsburg.de/swt/projects/mondex.html
http://www.informatik.uni-augsburg.de/swt/projects/mondex.html

A Concept-Driven Construction of the Mondex Protocol
Using Three Refinements

Gerhard Schellhorn1 and Richard Banach2

1 Lehrstuhl für Softwaretechnik und Programmiersprachen,
Universität Augsburg, D-86135 Augsburg, Germany

schellhorn@informatik.uni-augsburg.de
2 School of Computer Science, University of Manchester,

Oxford Road, Manchester, M13 9PL, U.K.
banach@cs.man.ac.uk

Abstract. The Mondex case study concerns the formal development and verifi-
cation of an electronic purse protocol. Several groups have worked on its spec-
ification and mechanical verification, their solutions being (as were ours previ-
ously), either one big step or several steps motivated by the task’s complexity.
A new solution is presented that is structured into three refinements, motivated
by the three concepts underlying Mondex: a message protocol to transfer money
over a lossy medium, protection against replay attacks, and uniqueness of trans-
fers using sequence numbers. We also give an improved proof technique based
on our theoretical results on verifying interleaved systems.

1 Introduction

Mondex smart cards implement an electronic purse [1]. They were the target of one
of the first ITSEC evaluations at level E6 [2] (now EAL7 of Common Criteria [3]),
which requires formal specification and verification. The formal specifications were
given in [4] using Z [5], together with manual correctness proofs. Two models of elec-
tronic purses were defined: an abstract one which models the transfer of money between
purses as elementary transactions, and a concrete level that implements money trans-
fer using a communication protocol that can cope with lost messages using a suitable
logging of failed transfers.

Mechanizing the security and refinement proofs of [4] was recently proposed as a
challenge for theorem provers (see [6] for more information on the challenge and its
relation to ’Grand Challenge 6’). Several groups took up the challenge. For a survey see
[7] — more details on some are given in Section 7. Results to date have been focused
on solving the problem either as closely as possible to the original, or by adapting the
problem to fit the style of the tool, thereby simplifying it.

The first author works in the Augsburg group, which uses KIV. This has derived so-
lutions for both styles. [8] gives a solution that formalizes the original data refinement
theory of [9] and uses the original backward simulation. Alternatively, since KIV sup-
ports the Abstract State Machines (ASM, [10], [11]) style of specifying operations, we
have also given a solutions using ASMs in [12], as one refinement that uses general-
ized forward simulations of ASMs ([13], [14], [15], [16], [17]). This solution simplified

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 57–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 G. Schellhorn and R. Banach

the deduction problem by using purse-local invariants (inspired by [18]), and by using
big commuting diagrams for full protocol runs, a technique used previously in ASM
refinements. This approach also uncovered a weakness of the original protocol, which
can be resolved by a small change. Still, the proof is monolithic, consisting of a single
refinement.

Other authors, particularly [19] and [20], have tried to modularize the refinement into
several to make deduction simpler, but from our point of view they have not isolated
the Mondex concepts into separate refinements, allowing a clean explanation. However,
their work has strongly influenced ours.

Isolating the Mondex concepts is a necessity when explaining the Mondex protocol
live to an audience. This prompted the attempt to formalize them as separate refine-
ments. The essential concepts of the Mondex protocol are the following:

• Implementing transfers by sending messages over a lossy transport medium.
• Adding checks that protect against replay attacks.
• A challenge-response system to ensure uniqueness of protocol runs.
• Choosing suitably strong cryptographic functions to encrypt messages.

This paper explains the first three concepts by putting them into three successive refine-
ments. The fourth was absent in the original Mondex work: the Mondex concrete level
assumes that suitable cryptography can be used to protect messages. Elsewhere [21],
we have shown that suitable cryptography can indeed be added using another refine-
ment, and that as an instance of a model-driven approach [22] the resulting ASM can
be implemented using Java [23], so we do not repeat this here.

The next section recalls the Mondex abstract specification, and we then explain each
of the refinements in turn in the following three sections. We also explain some of the sim-
ulation relations and invariants that are needed to verify each refinement with KIV (full
details of all specifications and proofs are available at [24]). A final technical refinement,
that slightly changes notation to be compatible with the original definitions completes
the development. Finally, Section 7 gives related work and Section 8 concludes.

2 The Abstract Specification

The main protocol of Mondex implements electronic cash transfer, using either a device
(wallet) with two slots, or an internet connection. Since the key idea is cash, the main
security concern is that, even in a hostile environment, money cannot be created or
destroyed (satisfying the security concerns of the bank and the customer, respectively).

The abstract specification formalizes atomic money transfer: a function balance :
name → IN gives the current balance of each named purse (type name). A predicate
authentic distinguishes legitimate purses from impostors. Successful money transfer
is described by the TRANSFEROK rule below. This rule chooses the two authentic
participating purses from and to and the amount value to transfer, which should be
less or equal than balance(from), and modifies the balances according to a successful
money transfer.

A Concept-Driven Construction of the Mondex Protocol Using Three Refinements 59

TRANSFEROK =
choose from, to, value
with authentic(from) ∧ authentic(to) ∧ from �= to ∧ value ≤ balance(from)
in balance(from) := balance(from)− value

balance(to) := balance(to) + value

In reality, transfers may fail, since power can fail, card memory can run out, and cards
may detach from the protocol prematurely. According to the security requirement no
money should be lost, so a mechanism must be implemented which saves information
about failed transfers. The definition of this information will be the task of the first
refinement. At the abstract level, it is simply assumed that there is another field lost:
name → IN on each card, which saves all outgoing money that is lost in failed transfer
attempts, so that it can subsequently be recovered. The rule for failed transfer attempts
is then simply

TRANSFERFAIL =
choose from, to, value
with authentic(from) ∧ authentic(to) ∧ from �= to ∧ value ≤ balance(from)
in balance(from) := balance(from)− value

lost(from) := lost(from) + value

With this rule it is obvious that the sum of all balance and lost values of all authentic
purses never changes, so money can neither be created nor truly lost and the security
goal is satisfied. This completes the description of the abstract specification. Runs of
the system repeatedly apply ARULE = TRANSFEROK ∨ TRANSFERFAIL which
chooses nondeterministically between the two possibilities.

3 From Atomic Transfers to Messages

The first refinement towards the Mondex protocol is concerned with implementing
atomic transfer using a protocol that sends messages between the two purses, despite
the fact that these messages may get lost for any number of reasons.

Sending a single Val(from,value) message from the from purse to the to purse con-
taining the value and its sender will not do, since the message could be lost, and neither
party would be able to prove that this happened.

An additional Ack(to,value) message acknowledging that the to purse has received
the money improves matters: if the to purse sends this message when receiving money,
but the from purse does not receive it, the from purse can write an exception log proving
that something did not work: either the Val message was not processed properly or the
Ack was lost. Dually, if the to purse sends a Req(to,value) message that requests the
money, and the from purse only sends Val on receiving it, then the to purse can know
that something did not work: either the request was not processed properly, or the Val
was lost. Using all three messages enables detection of Val(from,value) message loss
by inspecting both cards: the Val(from,value) message has been lost iff both purses
have a suitable log entry.

Being able to detect failed transfers by checking both purse logs has one caveat:
the two log entries must reliably belong to the same transfer. Otherwise a first attempt

60 G. Schellhorn and R. Banach

could lose the Ack(to,value) message, creating a from log entry, and a second attempt
could lose the Req(to,value) message, creating a fictitious “matching” pair. Therefore
we will assume that each attempt to transfer money is equipped with a unique transfer
identifier tid. The implementation of tid by sequence numbers is deferred to the third
refinement; in this refinement we just assume there is a global finite set tids : set(tid)
that stores the used identifiers and that it is always possible to choose a fresh one.

So, for the protocol we need messages Req(to, value, tid),Val(from, value, tid) and
Ack(to, value, tid). Triples consisting of a name, a value and a tid are called payment
details. They form the content of messages. Payment details are also remembered in ex-
ception logs which now replace the lost component. The logs are functions exLogfrom
: name → set(paydetails) and exLogto : name → set(paydetails). To compute
the abstract lost(from) we have to sum all values of payment details (to,value,tid) ∈
exLogfrom(from) for which a matching (from,value,tid) in exLogto(to) exists (and
this is already the main information needed for the simulation relation).

To allow message exchange, each purse now has a “message box” of messages await-
ing processing. This is the function inbox : name → set(message). We first tried an
inbox that contained one rather than several messages, but this turned out to be too
restrictive, enforcing message sequencing between purses. Losing messages is realized
by the following simple rule which may be invoked at any time by a purse receiver:

LOSEMSG =
choose msgs with msgs ⊆ inbox(receiver) in inbox(receiver) := msgs

Finally, a purse has to know which message it sent last so as to react to missing answers
appropriately; function outbox : name → message does this. An outbox that is not
in the middle of a protocol run, can contain either the last sent Ack, or the special value
none, when it has not yet sent a message or successfully received an Ack. Both cases
are checked with the predicate isNone.

With these data structures, we derive four rules: for sending requests (STARTTO),
for receiving a request and sending a value (REQ), for receiving a value and sending
an acknowledgement (VAL), and finally for receiving an acknowledgement (ACK).

Like LOSEMSG above, the STARTTO and REQ rules assume that an authentic
purse receiver has been chosen to execute the rule. Note that STARTTO chooses a
new transfer identifier and is possible only when the purse is currently not involved in a
protocol (i.e. when isNone(outbox(receiver))). Postfix selectors msg.pd, msg.value,
msg.tid select the full payment details, the value and the tid contained in a message. seq
is ASM notation to indicate sequential execution (usually all assignments are executed
in parallel).

STARTTO =
if isNone(outbox(receiver))
then choose na, value, tid
with tid �∈ tids ∧ authentic(na) ∧ na �= receiver
in inbox(na) := inbox(na) ∪ {Req(receiver, value, tid)}

outbox(receiver) := Req(na, value, tid)
tids := tids ∪ {tid}

A Concept-Driven Construction of the Mondex Protocol Using Three Refinements 61

REQ =
choose msg
with msg ∈ inbox(receiver) ∧ isReq(msg) ∧ authentic(msg.na)

∧ msg.na �= receiver ∧ msg.value ≤ balance(receiver)
∧ isNone(outbox(receiver)) in

inbox(msg.na) := inbox(msg.na) ∪ {Val(receiver, msg.value, msg.tid)}
outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver)− msg.value seq
inbox(receiver) := inbox(receiver) \ {msg}

The VAL rule is similar to REQ: the input is checked to be a Val(pd) message, where
the outbox must be Req(pd) with the same payment details pd, and the sent message
placed in inbox(msg.na) is an Ack. Also msg.value is added to the balance instead
of subtracted. The ACK rule is similar too, but does not change the balance, does not
write any output message and sets the outbox to none.

VAL =
choose msg
with msg ∈ inbox(receiver) ∧ isVal(msg) ∧ isReq(outbox(receiver))

∧ msg.pd = outbox(receiver).pd in
inbox(msg.na) := inbox(msg.na) ∪ {Ack(receiver, msg.value, msg.tid)}
outbox(receiver) := Ack(msg.pd)
balance(receiver) := balance(receiver) + msg.value seq
inbox(receiver) := inbox(receiver) \ {msg}

ACK =
choose msg
with msg ∈ inbox(receiver) ∧ isAck(msg) ∧ isVal(outbox(receiver))

∧ msg.pd = outbox(receiver).pd in
outbox(receiver) := none
inbox(receiver) := inbox(receiver) \ {msg}

Finally, a purse can abort a protocol (for whatever reason); it then executes

ABORT =
if isReq(outbox(receiver))
then exLogto(receiver) := exLogto(receiver) ∪ {outbox(receiver).pd} seq
if isVal(outbox(receiver))
then exLogfrom(receiver) := exLogfrom(receiver) ∪ {outbox(receiver).pd} seq
outbox(receiver) := none

The full specification chooses an authentic receiver and nondeterministically executes
one of the above rules

IRULE = choose receiver with authentic(receiver) in
LOSEMSG ∨ STARTTO ∨ REQ ∨ VAL ∨ ACK ∨ ABORT

In [12], [17] we have proposed the use of purse-local simulation relations and invari-
ants to verify refinements that split up an atomic action into several protocol steps. The
approach described there for the simulation relation could be used unchanged. The in-
variants used in the approach state that “each purse has executed some (maybe no) steps
into the protocol”. Such invariants are easily expressible in KIV’s Dynamic Logic.

62 G. Schellhorn and R. Banach

Our research in [25,26] has established a general framework, that suggests invariants
should be protocol-local, not purse-local. Therefore we generalized the approach to use
the following idea for invariants:

“For every protocol already running (identified by a tid ∈ tids), there are two
purses from and to that have executed some of the steps of the protocol. These
steps determine the part of the state involving tid”

To get a formal definition involving ASM rules we have to do two things. Firstly, we
have to formalize “some protocol steps”. For the Mondex protocol these are

(1) no step.
(2) STARTTO and possibly an ABORT of the to purse.
(3) STARTTO, then REQ, then possibly ABORT(from) or ABORT(to) or both.
(4) STARTTO, REQ, and VAL and then possibly ABORT(from).
(5) The full protocol STARTTO, REQ, VAL and ACK.

The states reached by executing some steps of the protocol therefore correspond directly
to the final states st1 of the nondeterministic program

SOMESTEPS(st,from,to) =
(1) skip ∨
(2) STARTTO; {skip ∨ ABORT(to) ∨
(3) REQ; {{skip ∨ ABORT(to)};{skip ∨ ABORT(from)} ∨
(4) VAL; {skip ∨ ABORT(from) ∨
(5) ACK}}}

when started some initial state st, where tid was still unused (tid �∈ tids). Note that
the parameters from and to were dropped where it was obvious: STARTTO is really
STARTTO(to), i.e. the to purse is used in the STARTTO rule in place of receiver. The
fact, that st1 is a final state of some terminating run of SOMESTEPS is expressed,
using Dynamic Logic [27] in KIV, as

〈SOMESTEPS(st,from,to)〉 st = st1

but the approach is not tied to the ASM formalism and Dynamic Logic: using a rela-
tional encoding of ASM rules, a relation somesteps could be defined similarly to the
SOMESTEPS program above, using relational composition instead of compounds.
The Dynamic Logic formula would then be equivalent to

somesteps(st,from,to,st1)

Secondly, we have to give a formal equivalent of the assertion “the protocol steps deter-
mine the part of the state involving tid”. The part of the state that involves tid is easy to
define. It consists of those messages in in- and outboxes, and those exception logs, that
have tid in their payment details. To define what it means for the protocol steps to deter-
mine the part of the state that involves tid, we define a predicate eqtid(tid,st1,st2).
This predicate compares two states. The first state st1 is the final state of running
just the protocol steps involving tid from some initial state. It is a possible result of
running SOMESTEPS. The second state st2 is the result of running these protocol

A Concept-Driven Construction of the Mondex Protocol Using Three Refinements 63

steps interleaved with an arbitrary number of protocol steps of other protocol instances.
eqtid(tid,st1,st2) specifies that indeed the parts of the state involving tid of st1 and
st2 are equal, since other protocol instances cannot interfere with the current proto-
col instance. There are two small exceptions: LOSEMSG may delete messages from
inboxes, and a final Ack-message in an outbox may be overwritten after the current
protocol has finished.

Putting together the SOMESTEPS program and the eqtid predicate we get the fol-
lowing invariant that encodes the informal idea given above:

INV(st2)↔
∀ tid ∈ tids2. ∃ from, to, st, st1.

tid �∈ tids ∧ 〈SOMESTEPS(st)〉 st = st1 ∧ eqtid(tid,st1,st2)

The formula states, that for every protocol currently running (tid ∈ tids2) there was an
initial state st before the protocol was started and two participants from,to, such that
the current part of the state involving tid is nearly the same (eqtid) as the state resulting
from some terminating run of SOMESTEPS(st).

This is already the full invariant that is needed, except for the trivial invariant stating
that no messages in inboxes, outboxes or exception logs, mention a tid that is not yet in
tids.

The invariance proof reduces to proofs for every single protocol instance (i.e. for
every tid), and for every protocol step. It has two cases: either the protocol step executed
is one of the steps of the protocol instance for tid or it is a step of some other protocol
instance. In the first case we essentially get trivial proof obligations, since “some steps
of the protocol have been executed” is trivially invariant when executing yet another
step. Essentially these proof obligations check that SOMESTEPS indeed encodes all
possible protocol runs. For the second case we have to prove that steps of other protocol
instances will not create messages or exception logs involving tid. The proof obligations
check that eqtid correctly captures all potential interference from the other protocol
instances.

Compared to the earlier proof of the full refinement in one step [12], which used
purse-local invariants (which already simplified the many invariants needed for the
original proof [4] that we used in [21]), the invariant has again been simplified: the
purse-local approach required predicate logic properties that related the two states of
the from and to purses participating in a protocol run. These are not needed any more.

4 Protection against Replay Attacks

Our next refinement is concerned with protection against replay attacks. The original
development assumed that Req, Val, Ack messages are cryptographically protected, so
we do the same. So an attacker cannot create such messages.

But even with this assumption, an attacker could destroy money on a from purse by
saving and replaying Req and Ack messages. Indeed our first protocol is vulnerable
to such an attack. For the new level, we assume an attacker who can intercept (and/or
delete) messages, save them, and replay them. To model this formally, we assume a
global set of messages ether : set(message) that contains at most all messages that

64 G. Schellhorn and R. Banach

were sent so far. Since the union of all inboxes is a subset of ether, we can delete
the inboxes altogether from the ASM state and let purses pick a message directly from
ether. This corresponds to the attacker’s ability to intercept and replace the message
sent to a purse. Placing messages into a global ether instead of the inbox of the recipient
has as immediate consequence: the intended recipient of the message must now be a
component of the payment details of messages, and must be checked to be correct by
the actual recipient. Otherwise the attacker could redirect messages from one purse to
another. Since the attacker can still delete messages and messages might still be lost,
LOSEMSG becomes

LOSEMSG = choose msgs with msgs ⊆ ether in ether := msgs

To protect against replay attacks the states of purses must be enhanced with usedTids
: name → set(tid), which gives the tids a purse receiver has seen previously. When
a purse receives a Req, it saves the tid, and subsequently rejects messages with these
transfer ids. Note that it is not necessary to add the tid of a Val message to the usedTids:
accepting such a message only when the last sent message was a Req with the same
payment details (and which must therefore have had a new tid!) is enough. This gives
the following new rules for sending and receiving messages:

STARTTO =
choose na, value, tid with tid �∈ tids ∧ authentic(na) ∧ na �= receiver in
if isNone(outbox(receiver))
then ether := ether ∪ {Req(na, receiver, value, tid)}

outbox(receiver) := Req(na, receiver, value, tid)
tids := tids ∪ {tid}

REQ =
choose msg with msg ∈ ether in
if isReq(msg) ∧ msg.from = receiver ∧ authentic(msg.to)
∧ msg.to �= receiver ∧ msg.value ≤ balance(receiver)
∧ msg.tid �∈ usedTids(receiver) ∧ isNone(outbox(receiver))

then ether := ether ∪ {Val(msg.pd)}
outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver)− msg.value
usedTids(receiver) := usedTids(receiver) ∪ {msg.tid}

VAL =
choose msg with msg ∈ ether in
if isVal(msg) ∧ isReq(outbox(receiver)) ∧ msg.pd = outbox(receiver).pd
then ether := ether ∪ {Ack(msg.pd)}

outbox(receiver) := Ack(msg.pd)
balance(receiver) := balance(receiver) + msg.value

ACK =
choose msg with msg ∈ ether in
if isAck(msg) ∧ isVal(outbox(receiver)) ∧ msg.pd = outbox(receiver).pd
then outbox(receiver) := none

A Concept-Driven Construction of the Mondex Protocol Using Three Refinements 65

Aborting can now be simplified slightly: since the payment details contain the names of
both purses, there is no further need to distinguish exLogfrom and exLogto. A single
exLog: name → paydetails will do, and ABORT becomes

ABORT = if isReq(outbox(receiver)) ∨ isVal(outbox(receiver))
then exLog(receiver) := exLog(receiver) ∪ {outbox(receiver).pd} seq
outbox(receiver) := none

All together we have:

ERULE = choose receiver with authentic(receiver) in
LOSEMSG ∨ STARTTO ∨ REQ ∨ VAL ∨ ACK ∨ ABORT

Whereas the previous refinement splits atomic steps into a protocol, this one is a typical
data refinement: abstract and concrete rules correspond pairwise.

The simulation relation needed for verification consists of three parts:

• The union of all inboxes is always a subset of the ether.
• All requests in ether can only be in an inbox, if they have a tid that is not in

usedTids(from) of the from purse that this message is sent to.
• Enhancing the union of the two logs exLogfrom(receiver) and exLogto(receiver)

with “receiver” as a new component of the payment details gives exLog(receiver)
for each authentic purse receiver.

Three invariants are needed for the concrete level:

• ether contains only messages with authentic names of different purses.
• tid’s saved in the outbox-, exLog- or usedTids- field of an authentic purse are always

also in tids.
• outbox(receiver) has payment details enhanced with “receiver” as to/from compo-

nent for Req and Ack/Val.

5 Sequence Numbers as Challenges

The next refinement guarantees the uniqueness of protocol runs without using the global
data structure tids. Instead we use a challenge-response scheme, like session keys, to
ensure uniqueness. Mondex uses sequence numbers, which are used only once and
then incremented. An alternative design decision would be to use random numbers
(“nonces”). The state is now enhanced with a new component nextSeqNo : name →
IN, while the global set tids and the usedTids of each purse are removed. To be secure,
both purses participating in a protocol run provide and increment their nextSeqNo,
guaranteeing that each abstract tid is implemented by a unique (fromseqno(tid), tose-
qno(tid)) pair; the two functions fromseqno and toseqno are the essence of the sim-
ulation relation. To ensure no faked sequence numbers get used, we need to send the
sequence number as a challenge to both purses. For the from purse, Req can be used
for the purpose. For the to purse a new message startTo(from,nextSeqNo(from),to,
nextSeqNo(to),value), which is assumed to be encrypted too, is needed. On receiving
a startTo/Req message, the to/from purse must check whether it contains the correct
sequence number; both checks together guarantee, that Req and Val are never sent

66 G. Schellhorn and R. Banach

on faked sequence numbers. Finally, for the from purse to send startTo, we need a
startFrom(to,nextSeqNo(to),value) message, that sends nextSeqNo(to) to the from
purse. This comes from the terminal, when the transfer amount has been entered. It need
not be encrypted; at worst an invalid startTo message gets rejected by the to purse. For
our ASM, we assume all startFrom messages are in the ether initially, modelling the
ability of the attacker to generate such messages at will.

Note that this model deviates slightly from the original Mondex protocol [4], which
assumes an unencrypted startTo, sent together with the startFrom, from the terminal.
The original protocol cannot guarantee that a Req contains a correct nextSeqNo(to),
and leads to the weakness described in [12].

The ASM of the resulting protocol is:

SRULE =
choose receiver with authentic(receiver) in

LOSEMSG∨STARTFROM∨STARTTO∨REQ∨VAL∨ACK∨ABORT

STARTFROM =
choose msg, n with msg ∈ ether ∧ nextSeqNo(receiver) < n in
if isStartFrom(msg) ∧ authentic(msg.name) ∧ msg.name �= receiver
∧ msg.value ≤ balance(receiver) ∧ isNone(outbox(receiver))

then outbox(receiver) :=
startTo(receiver, nextSeqNo(receiver)

msg.name, msg.nextSeqNo, msg.value)
nextSeqNo(receiver) := n
ether := ether ∪ {outbox(receiver)}

STARTTO =
choose msg, n with msg ∈ ether ∧ nextSeqNo(receiver) < n in
if isStartTo(msg) ∧ authentic(msg.from) ∧ msg.from �= receiver
∧ msg.to = receiver ∧ msg.tono = nextSeqNo(receiver)
∧ isNone(outbox(receiver))

then outbox(receiver) := Req(msg.pd)
nextSeqNo(receiver) := n
ether := ether ∪ {Req(msg.pd)}

REQ =
choose msg with msg ∈ ether in
if isReq(msg) ∧ isStartTo(outbox(receiver))
∧ outbox(receiver).pd = msg.pd

then outbox(receiver) := Val(msg.pd)
balance(receiver) := balance(receiver)− msg.value
ether := ether ∪ {Val(msg.pd)}

VAL =
choose msg with msg ∈ ether in
if isVal(msg) ∧ isReq(outbox(receiver)) ∧ outbox(receiver).pd = msg.pd
then outbox(receiver) := Ack(msg.pd)

balance(receiver) := balance(receiver) + msg.value
ether := ether ∪ {Ack(msg.pd)}

A Concept-Driven Construction of the Mondex Protocol Using Three Refinements 67

ACK =
choose msg with msg ∈ ether in
if isAck(msg) ∧ isVal(outbox(receiver)) ∧ outbox(receiver).pd = msg.pd
then outbox(receiver) := none

ABORT =
choose n with nextSeqNo(receiver)≤ n in
if isReq(outbox(receiver)) ∨ isVal(outbox(receiver))
then exLog(receiver) := exLog(receiver) ∪ {outbox(receiver).pd} seq

nextSeqNo(receiver) := n
outbox(receiver) := none

LOSEMSG =
choose newether with newether ⊆ ether in ether := newether

The rules are largely unchanged except that tid’s are replaced by pairs of sequence
numbers. ABORT is now allowed to increment nextSeqNo to conform to the final
Mondex protocol.

To verify the refinement we consider 1:1 diagrams for the common operations. The
new STARTFROM step implements an abstract skip. The simulation relation asserts
that two functions fromseqno and toseqno with domain = tids exist with the following
three properties:

• outboxes, messages in ether and exception logs of the concrete level have tid re-
placed with fromseqno(tid) and toseqno(tid). There are two exceptions: an outbox
of the concrete level may already contain a startTo of a new protocol run when the
abstract outbox still satisfies isNone. The concrete ether may contain additional
startFrom and startTo messages.
• If tid1 and tid2 appear in payment details of the abstract level with the same

purses from and to, then fromseqno(tid1) �= fromseqno(tid2) or toseqno(tid1) �=
toseqno(tid2). This guarantees that every protocol run between the same two purses
uses a different pair of sequence numbers.
• If on the concrete level outbox(receiver) = startTo(pd) and Req(pd) ∈ ether, then

there is a corresponding Req(pd) (with tid instead of sequence numbers) in the ab-
stract ether and it’s tid is not in usedTids(receiver). This property describes the new
situation after sending a startTo message.

The concrete ASM also needs an invariant stating:

• outboxes never contain startFrom messages.
• The nextSeqNo of each purse is larger than any sequence number contained in any

payment details in messages, inboxes, outboxes and exLogs.
• If outbox(receiver) contains a startTo, then the value of the message is less than or

equal to balance(receiver).

6 Renaming to Use the Original Data Structures

The final refinement step is a purely technical one. It adjusts two small differences
between SRULE and the final Mondex protocol. Since the full ASM was already given
earlier in [12], we just give a short description of the differences.

68 G. Schellhorn and R. Banach

In the real protocol, the outbox information is split into two: a pdAuth component
which stores the payment details, and a status field, which stores the type of the last
sent message: epr (“expecting request”) for a startTo message, epv (“expecting value”)
for a Req message, epa (“expecting acknowledge”) for a Val message, idle for an Ack
message or none.

The second difference is a small change in control structure: nondeterministic choice
between SRULE’s disjuncts is replaced by deterministic choice over the type of mes-
sage; if the test of the rule fails, an ABORT is executed. Finally, losing messages is
done while adding a message to ether.

7 Related Work

The work of this paper is heavily based on the original work in [4] and the mechanized
proofs in [7]. Several of the solutions described therein are monolithic (including our
own); however, two structured the development into several refinements.

We first discuss the work of M. Butler and D. Yadav [19], since it is closest to ours.
Their development uses Event-B, which like ASMs uses an operational style of speci-
fication (in contrast to the original Z which is relational). Event-B is based on the idea
of structuring a development into many small steps to achieve a high degree of automa-
tion. So [19] used 9 refinements to develop a Mondex-like protocol. One key idea in
their work is to view Mondex protocol runs as instances of transactions, viewing the
state of all the purses as a kind of database (our work in [25,26] also picks up on this
idea). Because of this, their first refinements do not introduce messages (like ours), but
define transactions and status information. This leads to an elegant development with
small steps and a high degree of automation, but the price to pay is that intermediate
levels use concepts (like a purse being in several transactions simultaneously), which
are not present in the Mondex protocol.

Our goal in this paper was different: we wanted to cleanly separate the concepts
present in the original Mondex protocol, and made no attempt to generalize. We also
did not attempt to automate proofs further than in our earlier work. In fact, the effort for
proving the 4 refinements of this paper was slightly higher than for the single refinement
[12], due to revisions of intermediate levels.

Despite the different aims of these papers, there is one key idea we also used: abstract
tid’s to identify protocol runs (or transactions), since it abstracts nicely from the use of
sequence numbers to identify protocol runs. Use of tid’s leads to similarities between
the Event-B machines and our ASMs. Although there are differences (no startTrans in
our development; at this stage, our protocol has three messages), the biggest similarities
are between the Event-B machines derived after around 6 refinements, and the one that
our first refinement derives. This agrees with our experience, that the first refinement
is still the most complex to verify. Also, their refinements 6 and 7 introduce sequence
numbers, which we define in the third refinement.

The other work on Mondex that uses a structured development is the one of C.
George and A.E. Haxthausen [20]. The work is based on the RAISE specification lan-
guage and derives the Mondex protocol using two refinements, starting from a speci-
fication that can be viewed as a first refinement of our abstract specification. The key

A Concept-Driven Construction of the Mondex Protocol Using Three Refinements 69

idea of this specification is: to transfer money from one purse to another there has to
be a sending step (called transferLeft which either puts money “in transit” or moves it
to lost), a successful receiving step (called transferRight, which moves money from in
transit to balance(to)), and a step which moves money from in transit to lost (called
Abort). The two steps of the refinement then show that all steps of the Mondex proto-
col implement one of these steps (e.g. REQ, that sends the Val message, implements
transferLeft). This development has the advantage that the propagation of the security
goals to the refined machines becomes easy. However the resulting refinement steps are
rather different from the ones we give here.

8 Conclusion

In this paper we have analyzed the core concepts of the Mondex protocol, and we have
shown that it is possible to place each concept into one concept-specific refinement.
We have also given a slight improvement of the technique of purse-local invariants, ex-
plained in [17], by using protocol-local simulation relations, as suggested by our recent
results on a framework for interleaved protocols [25]. This has led to the verification of
each protocol run as one big commuting diagram, which moves much of the complexity
of the first refinement into generic theory. The generic framework has now been verified
in KIV [26], and holds promise for further extension and application.

Acknowledgement. We would like to thank Bogdan Tofan, who has done many of the
KIV proofs that ensure correctness of this work.

References

1. MasterCard International Inc.: Mondex, http://www.mondex.com
2. UK ITSEC Certification Body: UK ITSEC Scheme Certification Report No. P129 MON-

DEX Purse. Technical report (1999),
http://www.cesg.gov.uk/site/iacs/itsec/media/certreps/
CRP129.pdf

3. CCIB: Common Criteria for Information Technology Security Evaluation, Version 3.1 (ISO
15408) (November 2007), http://csrc.nist.gov/cc

4. Stepney, S., Cooper, D., Woodcock, J.: An Electronic Purse: Specification, Refinement,
and Proof. Technical monograph PRG-126, Oxford University Computing Lab (2000),
http://www-users.cs.york.ac.uk/susan/bib/ss/z/monog.htm

5. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. PHI (1992)
6. Woodcock, J.: First Steps in the Verified Software Grand Challenge. IEEE Computer 39(10),

57–64 (2006)
7. Jones, C., Woodcock, J. (eds.): Formal Aspects of Computing, vol. 20 (1). Springer, Heidel-

berg (January 2008)
8. Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.: The Mondex Challenge: Machine

Checked Proofs for an Electronic Purse. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM
2006. LNCS, vol. 4085, pp. 16–31. Springer, Heidelberg (2006)

9. Cooper, D., Stepney, S., Woodcock, J.: Derivation of Z Refinement Proof Rules. Technical
Report YCS-2002-347, University of York (2002),
http://www-users.cs.york.ac.uk/susan/bib/ss/z/zrules.htm

http://www.mondex.com
http://www.cesg.gov.uk/site/iacs/itsec/media/certreps/CRP129.pdf
http://www.cesg.gov.uk/site/iacs/itsec/media/certreps/CRP129.pdf
http://csrc.nist.gov/cc
http://www-users.cs.york.ac.uk/susan/bib/ss/z/monog.htm
http://www-users.cs.york.ac.uk/susan/bib/ss/z/zrules.htm

70 G. Schellhorn and R. Banach

10. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specification and
Validation Methods, pp. 9–36. Oxford Univ. Press, Oxford (1995)

11. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level System Design
and Analysis. Springer, Heidelberg (2003)

12. Schellhorn, G., Grandy, H., Haneberg, D., Moebius, N., Reif, W.: A Systematic Verification
Approach for Mondex Electronic Purses using ASMs. In: Dagstuhl Seminar on Rigorous
Methods for Software Construction and Analysis. LNCS, Springer, Heidelberg (2008); (older
version available as Techn. Report 2006-27 at [24])

13. Börger, E., Rosenzweig, D.: The WAM—Definition and Compiler Correctness. In: Logic
Programming: Formal Methods and Practical Applications. Studies in CS and AI, vol. 11,
pp. 20–90. North-Holland, Amsterdam (1995)

14. Schellhorn, G.: Verification of ASM Refinements Using Generalized Forward Simulation.
J.UCS 7(11), 952–979 (2001)

15. Börger, E.: The ASM Refinement Method. FAC 15 (1-2), 237–257 (2003)
16. Schellhorn, G.: ASM Refinement and Generalizations of Forward Simulation in Data Re-

finement: A Comparison. TCS 336, 403–435 (2005)
17. Schellhorn, G.: ASM Refinement Preserving Invariants. In: Proceedings of the ASM work-

shop 2007, Grimstad, Norway (2008) (to appear in J.UCS)
18. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the Purse: The Balance

Enquiry Quandary, and Generalised and (1,1) Forward Refinements. Fund. Inf. 77, 29–69
(2007)

19. Butler, M., Yadav, D.: An Incremental Development of the Mondex System in Event-B.
FAC 20(1) (January 2008)

20. Haxthausen, A., George, C.: Specification, Proof, and Model Checking of the Mondex Elec-
tronic Purse using RAISE. FAC 20(1) (January 2008)

21. Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mondex Electronic Purses
with KIV: From Transactions to a Security Protocol. Formal Aspects of Computing 20(1)
(January 2008)

22. Moebius, N., Haneberg, D., Schellhorn, G., Reif, W.: A Modeling Framework for the
Development of Provably Secure E-Commerce Applications. In: International Confer-
ence on Software Engineering Advances (ICSEA). IEEE Press, Los Alamitos (2007),
http://ieeexplore.ieee.org

23. Grandy, H., Bischof, M., Schellhorn, G., Reif, W., Stenzel, K.: Verification of Mondex Elec-
tronic Purses with KIV: From a Security Protocol to Verified Code. In: Cuellar, J., Maibaum,
T.S.E. (eds.) FM 2008. LNCS, vol. 5014. Springer, Heidelberg (2008)

24. Mondex KIV: Web presentation of the Mondex case study in KIV,
http://www.informatik.uni-augsburg.de/swt/projects/
mondex.html

25. Banach, R., Schellhorn, G.: On the Refinement of Atomic Actions. In: Proceedings of RE-
FINE 2007. ENTCS, vol. 201, pp. 3–30 (2007)

26. Banach, R., Schellhorn, G.: Atomic Actions, and their Refinements to Isolated Protocols. In:
FAC (2008)

27. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

http://ieeexplore.ieee.org
http://www.informatik.uni-augsburg.de/swt/projects/mondex.html
http://www.informatik.uni-augsburg.de/swt/projects/mondex.html

A Scenario-Based Validation Language for ASMs

A. Carioni2, A. Gargantini1, E. Riccobene2, and P. Scandurra2

1 Dip. di Ing. Informatica e Metodi Matematici, Università di Bergamo, Italy
angelo.gargantini@unibg.it

2 Dip. di Tecnologie dell’Informazione, Università di Milano, Italy
{carioni,riccobene,scandurra}@dti.unimi.it

Abstract. This paper presents the AValLa language, a domain-specific
modelling language for scenario-based validation of ASM models, and its
supporting tool, the AsmetaVvalidator. They have been developed ac-
cording to the model-driven development principles as part of the
asmeta(ASM mETAmodelling) toolset, a set of tools around ASMs. As a
proof-of-concepts, the paper reports the results of the scenario-based val-
idation for the well-known LIFT control case study.

1 Introduction

The success of developing complex systems depends on the use of a pertinent
method for identifying the requirements on the target system and to make sure
that the produced system will actually meet these requirements. Validation is in-
tended as the process of investigating a model (intended as formal specification)
with respect to its user perceptions, in order to ensure that the specification
really reflects the user needs and statements about the application, and to de-
tect faults in the specification as early as possible with limited effort. Validation
should precede the application of more expensive and accurate methods, like for-
mal requirements analysis and verification of properties, that should be applied
only when a designer has enough confidence that the specification captures all
informal requirements. Techniques for validation include scenarios generation,
development of prototypes, animation, simulation, and also testing [28].

In [21], we defined the AsmetaL language as concrete syntax to write Abstract
State Machine (ASM) models and the AsmetaS simulator to execute AsmetaL
programs. In order to validate AsmetaL specifications, we here investigate the
scenario-based approach for system validation. In this context, scenarios describe
the behavior of a system from a global perspective by looking at the observ-
able interactions between the system and its environment in specific situations.
Scenarios are useful to ensure correct capture of informal requirements and to
explore system functionalities and alternative design solutions. To make this ap-
proach effective by allowing the designer to interact with the specification, we
define a language, called AValLa (ASM Validation Language), which provides
suitable commands to express, at ASM model level, the interaction between a
system and its environment (in the sense of UML use-cases) and the interaction

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 71–84, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 A. Carioni et al.

between a system and an external observer who likes to play with the system
model and check the system state.

AValLa has been developed according to the model-driven language engi-
neering principles which require the abstract syntax of a language be defined in
terms of an (object-oriented) model, called metamodel, characterizing syntax el-
ements and their relationships. A concrete notation can be then (automatically)
derived from the abstract syntax. The language semantics is given in terms of
ASMs, here used as formal semantic framework to express the operational se-
mantics of metamodel-based languages.

AValLa is supported by the AsmetaV (ASM Validator) tool to execute
AValLa scenarios. Both have been developed within the asmeta(ASM mETA-
modelling) tool-set [17,19,4] by exploiting the metamodelling approach.

In this paper, we first motivate in Sect. 2 our work on scenario-based system
validation in relation to other similar approaches. In Sect. 3, we present our
basic idea on how targeting validation in the ASM context. In Sect. 4 we present
the AValLa language to build scenarios for ASM models, and we describe how
AValLa has been defined following the model-driven engineering process. In
Sect. 5, we provide the semantics of the AValLa constructs exploiting the ASM-
based semantic framework for metamodel-based languages. Our scenario-based
validator AsmetaVis presented in Sect. 6, while Sect. 7 presents a case study.
Conclusions are given in Sect. 8.

2 Motivations and Related Work

The scenarios technique has been applied in different research areas and a variety
of definitions, ways of use and ways of interaction with the user are given. In
particular, scenarios have been used in the area of Software Engineering [33,2,32],
Business-process reengineering [3], User Interface Design [9], Documentation and
demonstration of software and many more. In addition, the term “script” used in
Artificial Intelligence [35] and in Object-behavior Analysis [36], is very similar
to the various definitions of scenarios.

Authors in [8] classify scenarios according to their use in systems development
ranging from requirements analysis, user-designer communication, examples to
motivate design rationale, envisionment (imagined use of a future design), soft-
ware design, through to implementation, training and documentation.

The telecommunication system development is one of the main field where
scenarios have been successfully applied [1]. Message Sequence Charts (MSCs)
[31] is one of the most used (graphical) notation by telecommunications compa-
nies and standard bodies. MSCs can be adapted to describe embedded systems
and software, although, for software, UML notations are more used. The Life Se-
quence Charts (LSCs) [11] extend the MSCs by providing the "clear and usable
syntax and a formal semantics" MSCs lack of.

In the object-oriented community, scenarios are intended as instances of a use
case [39] defining a goal-oriented set of interactions between external actors (i.e.
parties outside the system that interact with the system) and the system under

A Scenario-Based Validation Language for ASMs 73

consideration. The system is treated as a black box, and the interactions with it,
including system responses, are perceived as outside the system. A complete set
of use cases specifies all different ways to use the system, and therefore defines
all required behavior, bounding the scope of the system. For complex systems,
the complete set of use cases might be unfeasible, and in this case it is useful to
proceed in an incremental way.

The idea of using scenarios as a means for validating a specification has been
extensively adopted in the past, but its application has been mostly of infor-
mal nature. [37] provides a mini tutorial explaining the concepts and process of
scenario-based requirements engineering. The relationships between scenarios,
specifications and prototypes are explored, and the SCRAM method (Scenario-
based Requirements Analysis Method), where scenarios are used with early pro-
totypes to elicit requirements in reaction to a preliminary design, is presented.
In [26], a systematic way to analyze and validate requirements is proposed and
applied to a simple PBX system. This formal-approach to scenario analysis views
the user as the starting point to form scenarios and uses prototyping in order
to validate the scenarios and refine the specifications. In [27], a case study is
presented to show how functional requirements can be successfully decomposed
and analyzed using scenarios. In [30], authors show the CineVali approach in
which scenarios are formal and automatically generated by the user and by the
analyst in accordance with their purposes.

The main obstacles to an effective use of scenarios for formal validation are
mainly due to the non executable nature of formal models, or in the case of ex-
ecutable specifications, due to the lack of simulation engines and suitable tools
allowing the designer to interact with the (complete or only sketched) specifica-
tion in order to observe the system behavior and/or check the system states.

A method for constructing a formal description of the system from scenarios
expressing the stakeholders’ requirements, is presented in [25]. The authors use
the Albert II formal language and scenarios are represented by MSCs. A re-
quirements validation tool that stakeholders can use to explore different possible
behaviors of the system to develop, is presented. These behaviors are automati-
cally checked against the formal requirements specification.

In the context of ASMs, the authors in [22,5] show how SpecExplorer and its
language Spec#, can be applied for scenario-oriented modelling. They describe
how Spec# models can be instrumented for validation purposes by a set of in-
structions, which allow SpecExplorer to execute scenarios. They also describe
scenarios in an algorithmic way with the ultimate goal to have a tailored no-
tation, like MSCs, as front-end for scenarios description. Grieskamp et al. also
provide an engine within the SpecExplorer tool for checking conformance of
implementation against models.

Our approach is targeted to build scenarios for ASM ground models written
in AsmetaL. We like to keep the algorithmic vision of building scenarios as in
Spec#/SpecExplorer, since we consider this view closer to the view of program-
ming and able to show the temporal sequence of steps between the system and
its external environment. We keep the view of scenarios as paths through the

74 A. Carioni et al.

use cases as inherited from the object-oriented community. Therefore, in our
view a scenario will express interaction sequences of external actor actions and
reactions of the machine to be analyzed.

From a practical point of view, we believe that a validation activity in which
the designer has a black box view of the system might be complemented by a
testing activity requiring an internal view of the system. As in [10], we argue
that a scenario notation should be also able to describe internal details of the
system. MSCs and LSCs are very useful to describe lengthy black-box interac-
tions between system components in a graphical way, while we want scenarios
to be also able of describing, by means of a textual notation, possibly white-box
interactions in a component independent way. To this regard our approach is
more similar to the classical unit testing. Note that several scenario notations
are derived form testing notations, for example the Use Case Maps, for which
and ASM based semantics exists [24], and Use Case Trees are strongly related
to the TTCN testing notation.

Therefore, in our scenario-based approach, we support two kinds of external
actors: the user, who has a black box view of the system, and the observer having,
instead, a gray box view. By allowing different actions to the two actors, we are
able to build scenarios useful for classical validation (those including user actions
and machine reactions), and scenarios useful for testing activity (those including
also observer actions) requiring the inspection of the internal configurations of
the machine. Therefore, our scenario-based validation approach goes behind the
UML use-cases it was inspired from, and has the twofold goal of model validation
and model testing.

3 Scenario-Based Validation of ASM Models

In our approach of scenario-based validation of ASM models, we start from the
idea of UML use-cases and their descriptions in terms of scenarios. A scenario
is a description of external actor actions and reactions of the system. The for-
malization (complete or incomplete) of the system behavior is given in terms of
an ASM specification. We extend the concept of actor (here called user actor)
in UML use-cases with the concept of observer actor (see Fig. 1(a)). A user
actor is able to interact with the system by setting the values of the external
environment, so asking for a particular service, waits for a step of the machine
as reaction to his/her request, and can check the values only of system outputs.
A user actor has, therefore, a black box view of the system. An observer actor
has the further capabilities of inspecting the internal state of the system (i.e.
values of machine functions and locations), to require the execution of particu-
lar system (sub-)services of the machine, and to check the validity of possible
invariants of a certain scenario. Therefore, an observer actor has a gray box view
of the system under development.

Use-cases are described by a set of scenarios and each scenario represents a
single path through the use case. Usually, in the UML, scenarios are depicted
using sequence diagrams describing the actor(s)-system interaction, but also the

A Scenario-Based Validation Language for ASMs 75

actor

< < O b s e r v e r > >

LIFT

External request

Internal request

set

check-out

check

exec

actor (A)

check floor(lift1) = 0;
// external request for UP
set existsCallFromTo(0, UP) := true;
// internal request to floor 4
set hasToDeliverAt(lift1, 4) := true;
// start moving
step
check ctlState(lift1) = MOVING;
check dir(lift1) = UP;
check existsCallFromTo(0, UP) = false;

(B)

Fig. 1. Use cases (A) and a scenario (B) for the Lift model

system components interaction to provide a certain service. We prefer to describe
scenarios in an algorithmic way as interaction sequences consisting of actions,
where each action in turn is an activity of a user actor who sets the environ-
ment (i.e. the values of monitored/shared functions) and checks for the machine
outputs (i.e. the values of out functions), possibly combined with an activity of
the observer actor who has the extra ability to check the machine (also internal)
state and ask for the execution of given transition rules, and an activity of the
machine which makes one step as reaction of the actor actions.

Fig. 1(b) shows a script relative to a scenario of the LIFT case study taken
from [6] and encoded in AsmetaL. The scenario shows the interaction between a
lift lying at ground floor and a user stating at the same floor and asking for the lift
to go up. Once getting into, he/she asks for reaching floor 4. The observer initially
checks (first check) that the lift is at the ground floor before the interaction
takes place, and upon the machine makes a step, he/she checks that the lift is
moving in the up direction and that the (external) request has been removed.
Note that existsCallFromTo(floor,dir) specifies an external request function
(reflecting the user action of pressing the up or down button outside the lift at
a certain floor), while hasToDeliverAt(lift,floor) formalizes an internal
request function (reflecting the user action of pressing a button inside the lift).

4 The AValLa Language

The AValLa language has been defined as a domain-specific language (DSL) in
the context of scenario-based validation of ASM models written in AsmetaL. As
required for model-driven language definition, the abstract syntax of AValLa
is defined in terms of an (object-oriented) model which is usually referred in the
MDE context [29] to as Domain Definition MetaModel (DDMM). The DDMM
represents concepts and their relations of the underlying domain and allows the
separation of the abstract syntax and semantics of the language constructs from
their different and alternative concrete notations (textual, visual, or mixed) for
various goals. A concrete syntax is usually defined by a transformation that maps
the DDMM onto a “display surface” metamodel (like XML, EBNF, etc.) [29].

76 A. Carioni et al.

Fig. 2. AValLa metamodel (MM)

Domain Definition Metamodel (abstract syntax). The MM (Meta Model)
of the AValLa is specified in EMF/Ecore [12]. Fig. 2 shows the metamodel using
a UML class diagram. This metamodel captures concepts and their relations of
the ASMs-based scenario modelling domain mentioned in Sect. 3.

An instance of the class Scenario represents a scenario of a provided ASM
specification. Basically, a scenario has an attribute name, an attribute spec de-
noting the ASM specification to validate, and a list of target commands of type
Command . Additionally, a scenario may contain the specification of some critical
properties, here referred to as scenario invariants, that should always hold (and
therefore verified) for the particular scenario – to not be confused with general
axioms one specifies for an ASM spec as invariants over functions or domains
constraining the ASM states. The composite associations between the Scenario
class (the whole) and its component classes (the parts) Invariant and Command
assures that each part is included in at most one Scenario instance.

The abstract class Command and its concrete sub-classes provide a classifi-
cation of scenario commands. The Set command updates monitored or shared
function values that are supplied by the user actor as input signals to the system.
Commands Step and StepUntil represent the reaction of the system, which can
execute one single ASM step and one ASM step iteratively until a specified con-
dition becomes true. The Check class represents commands supplied by the user
actor to inspect external property values and/or by the observer actor to further
inspect internal property values in the current state of the underlying ASM. Fi-
nally, an Exec command executes an ASM transition rule when required by the
observer actor.

Concrete Syntax. A concrete syntax for AValLa has been implemented as
textual notation according to the model-to-grammar mapping described in [16]
and already used for deriving the AsmetaL notation [4] from the ASM Meta-
model (AsmM) representing the abstract syntax of the ASM language as given
in [4,17]. A grammar (written in JavaCC) and a parser [4] are derived from the
AValLa MM to automatically parse textual scenario scripts into scenario mod-
els. Other tools, as TEF (Textual Editing Framework) [38] allowing creation of
textual editors for EMF-based languages, could be exploited for the same goal.
Table 1 reports the AValLa concrete syntax in a EBNF form, in which terminal

A Scenario-Based Validation Language for ASMs 77

Table 1. The AValLa textual notation

Abstract syntax Concrete syntax
Scenario scenario name

load spec_name
Invariant* Command*

spec_name is the spec to load; invariants and commands are the script content
Invariant invariant name ‘:’ expr ‘;’
expr is a boolean term made of function and domain symbols of the underlying ASM
Command (Set | Exec | Step | StepUntil | Check)
Set set loc := value ‘;’
loc is a location term for a monitored function, and value is a term denoting
a possible value for the underlying location
Exec exec rule ‘;’
rule is an ASM rule (e.g. a choose/forall rule, a conditional if, a macro call rule, ect.)
Step step ‘;’
StepUntil step until cond ‘;’
cond is a boolean-valued term made of function and domain symbols of the ASM
Check check expr ‘;’
expr is a boolean-valued term made of function and domain symbols of the ASM

symbols are in bold and elements in the first column represent non terminals.
Examples of scenario scripts are provided in Sect. 7 for the Lift case study.

5 The AValLa Semantics

Currently, metamodelling environments (like Eclipse/Ecore, GME/MetaGME,
AMMA/KM3, XMF-Mosaic/Xcore, etc.) allow to cope with most syntactic and
transformation definition issues in the specification of a DSL, but they lack of any
standard and rigorous support to provide the dynamic semantics of metamod-
els and metamodel-based languages, which is usually given in natural language
(the most well-known example is the UML [39]). Below, we briefly present the
approach we adopted to define the AValLa semantics.

An ASM-based semantic framework for DDMMs. A language has a
well-defined semantics if a semantic domain S is identified and a semantic
mapping MS from the language syntax to S is provided [23]. As semantic do-
main S, we assume the semantic domain SAsmM of the ASM language, namely
the first-order logic extended with a logic for function updates and for transi-
tion rule constructors formally defined in [6]. Therefore, the semantic mapping
MS : DDMM → SAsmM which associates a well-formed terminal model1 m
conforming to DDMM with its semantic model MS(m), can be defined as

MS = MSAsmM ◦M

1 According to the definition in [29], a terminal model is a model written in the lan-
guage L and conforming to the language metamodel.

78 A. Carioni et al.

where MSAsmM is the semantic mapping (of the ASM language) that associates
a theory conforming to the SAsmM logic with a model conforming to AsmM
(representing the abstract syntax of the ASM language), and the function

M : DDMM −→ AsmM

associating an ASM to a terminal model m. The M function hooks the semantics
of a metamodel to the SAsmM domain and, therefore, the problem of giving
the language semantics is reduced to define the function M . Exploiting this
approach, the semantics of a metamodel-based language is expressed in terms of
ASM transition rules.

Language Semantics. According to the approach explained above, to endow
the AValLa language with a semantics we have to define a function M : MM −→
AsmM associating an ASM (i.e. a model conforming to the AsmM metamodel)
with a scenario model m conforming to the AValLa MM. This ASM machine
is automatically induced from the elements of the source scenario model m and
their typing elements in the AValLa MM, and from the original ASM to validate
(which is linked to a scenario by its attribute spec). The resulting ASM is
obtained from the original ASM in the following way.

A scenario (instance of the Scenario class) is mapped into the original ASM
to validate (instance of the Asm class in AsmM), except that: monitored and
shared functions are turned into controlled functions; a new 0-ary controlled
function currentRule of Rule type is added to the signature to denote the
current rule of the original ASM being executed; for notifying check-command’s
property violations, a boolean-valued 0-ary function all_checks_OK is added to
the signature together with an axiom stating that flag all_checks_OK is always
true; the original initial state is extended to set currentRule to an initial rule
r_step_0 and for setting all_checks_OK to true; finally, the main rule consists
only into invoking the value of the currentRule.

Invariants and commands of the particular scenario are then taken into con-
sideration in order to further modify the structure of the ASM (see Table 2).
Scenario invariants are mapped into axioms of the final ASM. The commands list
is then partitioned into groups: each group is a block of consecutive commands
terminated with either a step-command, a step-group, or a stepUntil-command,
stepUntil-group. For each group one or two rules are added to the final ASM
according to the following directives. The i-th step-group [C1 . . . Cn step] is
mapped into a macro rule declaration of form:

r_step_i = seq
R1 . . . Rn

old_main[]
currentRule :=� r_step_i + 1�

endseq

(1)

where Ri are rules generated from the corresponding commands Ci, old_main
is the invocation of the main rule of the original ASM, and the last rule is the

A Scenario-Based Validation Language for ASMs 79

Table 2. Mapping from AValLa to AsmM

AValLa AsmM
A Invariant instance An Axiom instance
A Set instance l:=v An UpdateRule instance l:=v
A Check instance with expression expr A ConditionalRule with guard expr

and then-body all_checks_OK:=false
A Exec instance for a rule R A Rule instance
A step-group C1 . . . Cn step A MacroDeclaration instance r_step_i

as in (1)
A stepUntil-group C1 . . . Cn step until cond Two MacroDeclaration instances

r_step_i and r_step_i_until as in (2)

update for the currentRule variable. The i-th stepUntil-group [C1 . . . Cn step
until cond] leads to two rules of form:

r_step_i=
seq

R1 . . . Rn

r_step_i_until[]
endseq

r_step_i_until =
if cond then currentRule :=� r_step_(i + 1)�
else par

old_main[]
currentRule :=� r_step_i_until �

endpar
endif

(2)

where symbols Ri and old_main take the same meaning as above. Note that
the starting rule r_step_0 is produced by the first command group. The ASM
rules Ri for the remaining commands are produced as follows. A set-command is
directly mapped into an update rule. An exec-command is a request for executing
a rule R of the original ASM, and therefore it is mapped into an instance of Rule
class of AsmM . A check-command is mapped into a conditional rule having as
guard the expression to check and as then-body an update for setting the all_-
checks_OK flag to false (and therefore causing an axiom violation).

6 The AsmetaV Validator

The AsmetaV validator is a simple Java application based on a transformation
engine which automatically maps any scenario model conforming to the AValLa
metamodel into an AsmM instance as described in Sect. 5, and on the AsmetaS
simulator [18]. AsmetaV reads a scenario written by the user (see Fig. 3) in the
AValLa language, builds the scenario as instance of the AValLa metamodel
by means of the AValLa parser, and transforms the scenario and the AsmetaL
specification which the scenario refers to, to an executable AsmM model.

Then, AsmetaV invokes the interpreter to simulate the scenario. During sim-
ulation the user can pause the simulation and observe, through a watching win-
dow, the current state and value of the update set produced at every step. During

80 A. Carioni et al.

Fig. 3. AsmetaV validator

simulation, AsmetaV captures any check violation and if none occurs it finishes
with a “PASS” verdict.

Besides a “PASS”/“FAIL” verdict, AsmetaV collects also some information
about the coverage of the original model, obtained by running the scenario. Cur-
rently, AsmetaV keeps track of all the rules that have been called and evaluated
and it prints the list of them at the end. This is useful to check if the scenario
has exercised all transition rules of the original model. We plan to further refine
this feature in order to monitor also which rules have actually contributed to the
update set, which conditions in conditional rules have been tested true and/or
false and eventually to apply the definition of coverage criteria as in [14,13].

7 The LIFT Case Study

To illustrate the use of the AsmetaVtool to validate an ASM specification by
means of some input AValLa scenarios, we use the Lift example (see [6], Sect.
2.3) concerning the logic of moving n lifts between m floors.

For the sake of simplicity, we restrict to the case of one lift (lift1) for m = 5
floors. Moreover, we assume that the level of abstraction at which the Lift
ground model is defined includes also the refinement step for the request manip-
ulations (see [6], Sect. 2.3, pag. 57). In the intermediate model that we consider,
the monitored function hasToDeliverAt(L, floor) formalizes an internal request
(reflecting requirement 1 when inside the lift a button is pressed), while an exter-
nal request is modelled by the function existsCallFromTo(floor, dir) (reflecting
requirement 2 when on a floor outside the lift the up or down button is pressed).

Table 3. Some validation scenarios for the Lift control

Scenario Description Req. # Commands Inv. Coverage
s0 No requests at all 3 19 – 6/8
s1 An external request 1 24 – 7/8
s2 An external request plus an internal one 2.(a) 22 – 8/8
s3 All external buttons pushed 2.(a) 4 1 8/8

A Scenario-Based Validation Language for ASMs 81

These two functions are shared between the lift user (who sets them, being part
of the environment) and the lift control (which has to reset them in the Cancel-
Request macro to satisfy requirements 1 and 2). We do not consider, instead,
to handle exceptional cases when the given machine either has no well-defined
behavior or should be prevented from executing; we suppose therefore that the
machine describes the functionality of faultless behavior.

Table 3 summarizes some of the scenarios used to validate the ASM specifica-
tion of the Lift control. A more detailed description of these scenarios follows.

s0 Description: The lift is halted at ground floor (# 0) with no requests at all.
Requirements coverage: 3. The lift should remain in its final position.

1 // setting initial state
2 check floor(lift1) = 0;
3 check ctlState(lift1) = HALTING;
4 check dir(lift1) = UP;

6 step
7 check floor(lift1) = 0;
8 check ctlState(lift1) = HALTING;
9 check dir(lift1) = UP;

commands: set(14), check (4), step (1)
Rule coverage: 6/8 Verdict : PASS

s1 Description: The lift is halted at ground floor. A user gets into the lift and
asks for reaching floor 4.
Requirements coverage: 2. The lift should move in the up direction and the
external request at ground floor should be cancelled (as being satisfied). See
Fig. 1(b) in Sect. 3.
commands: set(16), check (5), step (3)
Rule coverage: 7/8 Verdict : FAIL (see remark below for explanation)

s2 Description: The lift is halted at ground floor. A user calls the lift at floor 4
and once getting into the lift he/she asks for reaching floor 2.
Requirements coverage: 2.(a) The lift satisfies the user request by reaching
floor 4 and then reaching floor 2. Once satisfied, the requests must be re-
moved:

1 // setting initial state
2 // An external request to floor 4
3 set existsCallFromTo(4, DOWN) := true;
4 // The lift goes to floor 4
5 step until ctlState(lift1) = HALTING
6 and floor(lift1) = 4;
7 // A request to floor 2
8 set hasToDeliverAt(lift1, 2) := true;
9 step

10 // must go down to floor 2, down dir
11 check dir(lift1) = DOWN;
12 // the request at floor 4 is cancelled
13 check not existsCallFromTo(4, DOWN);
14 // goes to floor 2
15 step until ctlState(lift1) = HALTING
16 and floor(lift1) = 2;
17 // request to floor 2 is cancelled
18 check not hasToDeliverAt(lift1, 2);

commands: set(16), check (3), step (1), step-until (2)
Rule coverage: 8/8 Verdict : PASS

s3 Description: The lift is halted at ground floor. All external buttons (UP and
DOWN) have been pushed.
Requirements coverage: 2.(a) The lift should move sequentially in the up
direction from the ground floor 0 to the top floor 4. After reaching floor 4,

82 A. Carioni et al.

all UP requests should be canceled, while the DOWN ones should be still
pending.
Scenario invariants : The lift should not change direction while going up:
dir(lift1) != DOWN;
commands: check (2), step-until(1), exec (1)
Rule coverage: 8/8 Verdict : FAIL (see remark below for explanation)

scenario s3
load lift.asm
invariant neverDown: dir(lift1) != DOWN;
exec //set floor requests (all external buttons UP and DOWN have been pushed)

forall $i in {0..4} do
par

hasToDeliverAt(lift1, $i) := false
if $i != top then existsCallFromTo($i, UP) := true endif
if $i != ground then existsCallFromTo($i, DOWN) := true endif
endpar;

//the lift goes up to floor 4, then goes down to complete existsCallFromTo(0, DOWN)
step until ctlState(lift1) = HALTING and floor(lift1) = 4;
check (forall $i in {0..4} with existsCallFromTo($i, DOWN) = true);
check (forall $i in {0..4} with existsCallFromTo($i, UP) = false);

Remark. Scenarios s1 and s3 fail since the Lift specification fails to cancel an
external request when it occurs at a given floor where the lift is halted, and
the lift has already the same requested direction. This fault can be corrected
either by constraining external requests, or by cancelling this kind of external
request when the lift departs. We preferred to include a CancelRequest rule
invocation within the Depart rule (see [6], Sect. 2.3), rather than to add further
constraints.

8 Conclusions

This work is part of our ongoing effort in developing a set of tool around ASMs
for model validation and verification. In this paper, we proposed a scenario-based
approach for ASM model validation.

We have been testing our validation methodology on case studies from the em-
bedded systems domain [20,7]. The ASMs are used as formal support to deliver
formal analysis techniques for visual models developed with the UML profile for
SystemC [34] – an UML extension for high-level modelling of embedded systems
on chip.

In the future, we plan to integrate AsmetaV with the ATGT tool [15] in order
to be able to automatically generate some scenarios by using ATGT and ask for
a certain type of coverage (rule coverage, fault detection, etc.).

A Scenario-Based Validation Language for ASMs 83

References

1. Amyot, D., Eberlein, A.: An evaluation of scenario notations and construction
approaches for telecommunication systems development. Telecommunication Sys-
tems 24(1), 61–94 (2003)

2. Anderson, J.S., Durney, B.: Using scenarios in deficiency-driven requirements en-
gineering. In: Proceedings of the International Symposium on Requirements Engi-
neering, pp. 134–141. IEEE, Los Alamitos (1993)

3. Anton, A.I., McCracken, W.M., Potts, C.: Goal decomposition and scenario anal-
ysis in business process reengineering. LNCS, vol. 811, pp. 94–104. Springer, Hei-
delberg (1994)

4. The Abstract State Machine Metamodel website (2006), http://asmeta.sf.net/
5. Barnett, M., Grieskamp, W., Schulte, W., Tillmann, N., Veanes, M.: Validating

use-cases with the asmL test tool. In: 3rd International Conference on Quality
Software (QSIC 2003), Dallas, TX, USA, November 6-7, 2003, pp. 238–246. IEEE
Computer Society, Los Alamitos (2003)

6. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

7. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: Scenario-based Valida-
tion of Embedded Systems. In: FDL 2008: Proceedings of Forum on Specification
and Design Languages (2008)

8. Carroll, J.M.: Five reasons for scenario-based design. Interacting with Comput-
ers 13(1), 43–60 (2000)

9. Carroll, J.M., Rosson, M.B.: Getting around the task-artifact cycle: How to make
claims and design by scenario. ACM Transactions on Information Systems 10(2),
181–212 (1992)

10. Chandrasekaran, P.: How use case modeling policies have affected the success of
various projects (or how to improve use case modeling). In: Addendum to the 1997
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lanu-
ages, and Applications, pp. 6–9 (1997)

11. Damm, W., Harel, D.: LCSs: Breathing life into message sequence charts. Formal
Methods in System Design 19(1), 45–80 (2001)

12. Eclipse Modeling Framework (2008), http://www.eclipse.org/emf/
13. Gargantini, A.: Using model checking to generate fault detecting tests. In: Gure-

vich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 189–206. Springer,
Heidelberg (2007)

14. Gargantini, A., Riccobene, E.: Asm-based testing: Coverage criteria and automatic
test sequence. J. of Universal Computer Science 7(11), 1050–1067 (2001)

15. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using spin to generate tests from
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003)

16. Gargantini, A., Riccobene, E., Scandurra, P.: Deriving a textual notation from
a metamodel: an experience on bridging Modelware and Grammarware. In:
3M4MDA 2006 workshop at the European Conference on MDA (2006)

17. Gargantini, A., Riccobene, E., Scandurra, P.: Metamodelling a Formal Method:
Applying MDE to Abstract State Machines. Technical Report 97, DTI Dept., Uni-
versity of Milan (2006)

18. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based simulator for
ASMs. In: Prinz, A. (ed.) Proceedings of the 14th International ASM Workshop
(2007)

http://asmeta.sf.net/
http://www.eclipse.org/emf/

84 A. Carioni et al.

19. Gargantini, A., Riccobene, E., Scandurra, P.: Ten reasons to metamodel ASMs.
In: Rigorous Methods for Software Construction and Analysis - Papers Dedicated
to Egon Börger on the Occasion of His 60th Birthday. LNCS, vol. 5115. Springer,
Heidelberg (2007)

20. Gargantini, A., Riccobene, E., Scandurra, P.: A Model-driven Validation & Verifi-
cation Environment for Embedded Systems. In: Proc. of the IEEE third Symposium
on Industrial Embedded Systems (SIES 2008). IEEE, Los Alamitos (2008)

21. Gargantini, A., Riccobene, E., Scandurra, P.: A language and a simulation engine
for abstract state machines based on metamodelling. In: JUCS (accepted, 2008)

22. Grieskamp, W., Tillmann, N., Veanes, M.: Instrumenting scenarios in a model-
driven development environment. Information & Software Technology 46(15),
1027–1036 (2004)

23. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of "semantics"?
IEEE Computer 37(10), 64–72 (2004)

24. Hassine, J., Rilling, J., Dssouli, R.: An ASM operational semantics for use case
maps. In: 13th IEEE International Conference on Requirements Engineering (RE
2005), Paris, France, August 29 - September 2, 2005, pp. 467–468. IEEE Computer
Society, Los Alamitos (2005)

25. Heymans, P., Dubois, E.: Scenario-based techniques for supporting the elaboration
and the validation of formal requirements. Requir. Eng. 3(3/4), 202–218 (1998)

26. Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., Chen, C.: Formal approach
to scenario analysis. IEEE Software 11(2), 33–41 (1994)

27. Kaindl, H., Kramer, S., Kacsich, R.: A case study of decomposing functional require-
ments using scenarios. In: 3rd International Conference on Requirements Engineer-
ing (ICRE 1998), pp. 156–163. IEEE Computer Society, Los Alamitos (1998)

28. Kemmerer, R.: Testing formal specifications to detect design errors. IEEE Trans.
Soft. Eng. 11(1), 32–43 (1985)

29. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks.
In: OOPSLA Companion, pp. 602–616 (2006)

30. Lalioti, V., Theodoulidis, B.: Visual scenarios for validation of requirements spec-
ification. In: SEKE 1995, The 7th Int. Conference on Software Engineering and
Knowledge Engineering, pp. 114–116. Knowledge Systems Institute (1995)

31. Message sequence chart (MSC). ITU-T Recommendation Z.120, International
Telecommunications Union (November 1996)

32. Nielsen, J.: Scenarios in discount usability engineering. In: Scenario-Based Design,
pp. 59–83. John Wiley & Sons, Chichester (1995)

33. Potts, C., Takahashi, K., Anton, A.I.: Inquiry-based requirements analysis. IEEE
Software 11(2), 21–32 (1994)

34. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: A UML 2.0 profile for Sys-
temC: toward high-level SoC design. In: EMSOFT 2005: Proceedings of the 5th
ACM international conference on Embedded software, pp. 138–141. ACM Press,
New York (2005)

35. Rich, E., Knight, K.: Artificial Intelligence. McGraw-Hill, New York (1991)
36. Rubin, K.S., Goldberg, A.: Object behavior analysis. Communications of the

ACM 35(9), 48–62 (1992)
37. Sutcliffe, A.: Scenario-based requirements engineering. In: 11th IEEE Joint Int.

Conference on Requirements Engineering (RE 2003), pp. 320–329 (2003)
38. Textual Editing Framework (2007),

http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
39. OMG. The Unified Modeling Language (UML), v2.1.2 (2007),

http://www.uml.org

http://www2.informatik.hu-berlin.de/sam/meta-tools/tef/tool.html
http://www.uml.org

Data Flow Analysis and Testing of Abstract

State Machines

Alessandra Cavarra

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD UK

alessandra.cavarra@comlab.ox.ac.uk

Abstract. This paper introduces an approach to apply data flow testing
techniques to Abstract State Machines specifications. Since traditional
data flow coverage criteria are strictly based on the mapping between a
program and its flow graph, they cannot be directly applied to ASMs. In
this context we are interested in tracing the flow of data between states
in ASM runs as opposed to between nodes in a program’s flow graph.
Therefore, we revise the classical concepts in data flow analysis and de-
fine them on two levels: the syntactic (rule) level, and the computational
(run) level. We also specify a family of ad hoc data flow coverage criteria
and introduce a model checking-based approach to generate automat-
ically test cases satisfying a given set of coverage criteria from ASM
models.

1 Introduction

Model-based testing is a technique for generating a suite of test cases from a
model encoding the intended behaviour of the system under test. This model
can reside at various levels of abstraction. Testers adopting this approach shift
their attention from hand-crafting individual tests to the model of the system
under test and a test generation infrastructure.

The aim of this paper is to use specifications written in the Abstract State
Machine language as oracles for data flow analysis and testing. The idea behind
data flow testing is to monitor the lifecycle of a piece of data, searching for
inappropriate definitions, use in predicates, computations and termination. Data
flow coverage criteria are based on the intuition that one should not feel confident
that a variable has been updated in a correct way at some stage in the program
if no test causes the execution of a computation path from the point where the
variable is assigned a given value to the point where such value is subsequently
used (in a predicate or computation).

This idea fits well the ASM approach where in a given state a number of
functions are updated and used to compute updates, provided that certain con-
ditions are satisfied. Nevertheless, to our knowledge, data flow coverage criteria
have never been defined for ASMs.

Methods using ASM models for automatic test generation exist in literature.
In particular, in [18] and [19] Gargantini et al. present a set of interesting cov-
erage criteria together with two model checking-based tools (using, respectively,

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 85–97, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

86 A. Cavarra

SMV [29] and SPIN [24]) to generate test suites that accomplish the desired
level of coverage. This approach focuses strictly on the structure of the ASM
specification, and can be considered as the equivalent of control flow testing for
ASMs. However, full coverage of all the rules and conditions in an ASM will
not guarantee that all the possible patterns of usage of a variable are exercised,
therefore missing the opportunity to find potential errors in the way the variable
is processed.

Classical data flow adequacy criteria are based on the one to one mapping
between the code and its control flow graph. However, while control flow is
usually explicitly defined in programming languages, it is only implicit in ASMs;
therefore, the notion of flow graphs is not applicable to ASMs and, consequently,
classical data flow adequacy criteria cannot be directly applied to ASMs.

In Section 2 of this paper we discuss how to address this problem by modifying
traditional data flow analysis concepts taking in consideration both the structure
of the machine (i.e. its rules) and its computations (i.e. the runs). Also, by
varying the required combinations of definitions and uses, we define a family
of test data selection and adequacy criteria based on those illustrated in [32].
In Section 3, we introduce an approach based on model checking to generate
automatically a collection of test cases satisfying a given set of coverage criteria.
Finally, in Section 4 we discuss our results, and related and future work.

Since this paper is intended for an expert audience, we do not provide a
description of Abstract State Machines. The interested reader can find a com-
prehensive introduction to ASMs in [21,3].

2 Data Flow Analysis

In this section we introduce the main concepts of data flow analysis, discuss the
obstacles to adapting them to the ASM paradigm, and define ad-hoc coverage
criteria for ASMs.

The goal of traditional data flow analysis is to detect data flow errors (in the
way data are processed and used) and anomalies. Data flow anomalies indicate
the possibility of program faults. For instance, two very common anomalies found
in a program are:

– d-u anomalies : they occur when a defined variable has not been referenced
before it becomes undefined (e.g. out of scope or the program terminates).
This anomaly usually indicates that the wrong variable has been defined or
undefined.

– d-d anomalies : they indicate that the same variable is re-defined without
being used, causing a hole in the scope of the first definition of the variable
(this anomaly usually occurs because of misspelling).

The major difficulty in adapting classical data flow analysis to ASMs is that
it is strictly based on flow graphs. Given a program P , the flow graph associated
to it is given by G = (ns, nf , N, E), where N is the set of nodes labeled by the
statements in P , ns and nf are respectively the start and finish nodes, and E is

Data Flow Analysis and Testing of Abstract State Machines 87

the set of edges representing possible flow of control between statements. Control
flow graphs are built using the concept of programming primes, i.e. sequential,
conditional, and loop statements.

While, in general, for any given program it is straightforward to derive its
corresponding flow graph (see Figure 1), this is clearly not the case for ASMs,
where all the statements in a rule are evaluated and executed simultaneously
and therefore there is no sequential flow between rules statements. (Although
rule R1 in Example 1 is syntactically equivalent to program P in Figure 1, we
know that semantically they are very different.)

P=
1. if x > 0 & z �= x then
2. y := y+1
3. if x = 0 then
4. y := 0
5. if y > 5 then
6. x := x -1

1
2

3
4

5

6

Fig. 1. A control flow graph

In the following, we provide our solution to this problem. We revise data flow
concepts and provide ad-hoc definitions at two different levels: at the syntactic
(rule) level and at the computational (run) level. We also provide a mapping
between the concepts at different levels.

The definitions provided in this paper apply to a simple class of ASMs con-
taining a finite set of rules and executed by a single agent (Self). Operators such
as seq (for sequential updates within a rule) and loop are dealt with correctly
by the current approach.

Our definitions are in terms of ASM functions, with variables simply being
nullary functions.

2.1 Data Flow Concepts at the Rule Level

Functions can appear in different contexts in ASM rules: they can be updated,
used in a guard, or used to compute a given value. In the following, we provide a
number of definitions formalising the role ASM functions can play within rules.

Let M be an ASM.

Definition 1. Wesay thata functionf(t1, . . . , tn) is defined—indicatedas“def”—
in a rule Ri ofM if it appears on the LHS of an assignment in Ri (i.e. the value of
f(t1, . . . , tn) is modified as a result of firing Ri).

88 A. Cavarra

We also define the following sets:

– defRi(f(t1, . . . , tn)) is the set of all the assignments of f(t1, . . . , tn) in Ri.
– defM(f(t1, . . . , tn)) contains all the assignments of f(t1, . . . , tn) across all the

rules inM, i.e. defM(f(t1, . . . , tn)) =
⋃

Ri∈M
defRi(f(t1, . . . , tn)).

An element of defM(f(t1, . . . , tn)) is indicated as df,j
Ri

, meaning that the func-
tion f(t1, . . . , tn) is in def in the statement j of Ri.

Function uses can be split into “c-use” and “p-use” according to whether the
function use occurs in a computation or a predicate.

Definition 2. We say that a function f(t1, . . . , tn) is in computation use—
indicated as “c-use”—in a rule Ri of M if f(t1, . . . , tn) is used in a computation
in Ri (i.e. it appears on the RHS of an assignment in Ri).
We also define the following sets:

– c-useRi(f(t1, . . . , tn)) is the set of statements in Ri where f(t1, . . . , tn) is in
c-use.

– c-useM(f(t1, . . . , tn)) =
⋃

Ri∈M
c-useRi(f(t1, . . . , tn)).

An element of c-useM(f(t1, . . . , tn)) is indicated as cf,j
Ri

, meaning that the
function f(t1, . . . , tn) is in c-use in the statement j of Ri.

Definition 3. We say that a function f(t1, . . . , tn) is in predicate use—indicated
as “p-use”—in a rule Ri of M if f(t1, . . . , tn) is used in a predicate of Ri (i.e.
f(t1, . . . , tn) appears in a boolean condition in Ri).
We also define the following sets:

– p-useRi(f(t1, . . . , tn)) is the set of statements in Ri where f(t1, . . . , tn) is in
p-use.

– p-useM(f(t1, . . . , tn)) =
⋃

Ri∈M
p-useRi(f(t1, . . . , tn).

An element of p-useM(f(t1, . . . , tn)) is indicated as pf,j
Ri

, meaning that the
function f(t1, . . . , tn) is in p-use in the statement j of Ri.

Example 1. Consider the following simple ASM M consisting of two rules, and
three controlled variables x,y,z : INT

R1 R2

1. if x > 0 & z �= x then 1. if z = x then
2. y := y+1 2. z:= x +y
3. if x = 0 then 3. y := y -1
4. y := 0 4 if z > y then
5. if y > 5 then 5. z := z -1
6. x := x -1

Data Flow Analysis and Testing of Abstract State Machines 89

Let us calculate the definition and use sets for the variables in M:

def R1(x) = {d6} def R1(y) = {d2, d4} def R1(z) = {}
defR2(x) = {} def R2(y) = {d3} def R2(z) = {d2, d5}
def M(x) = {d6

R1} def M(y) = {d2
R1 , d4

R1 , d3
R2} def M(z) = {d2

R2 , d5
R2}

p-useR1(x) = {p1, p3} p-useR1 (y) = {p5} p-useR1 (z) = {p1}
p-useR2(x) = {p1} p-useR2 (y) = {p4} p-useR2 (z) = {p1, p4}
p-useM(x) = {p1

R1 ,p3
R1 ,p

1
R2} p-useM(y) = {p5

R1 ,p
4
R2} p-useM(z) = {p1

R1 ,p1
R2 ,p

4
R2}

c-useR1 (x) = {c6} c-useR1 (y) = {c2} c-useR1 (z) = {}
c-useR2 (x) = {c2} c-useR2 (y) = {c2, c3} c-useR2 (z) = {c5}
c-useM(x) = {c6

R1 ,c2
R2} c-useM(y) = {c2

R1 ,c2
R2 ,c3

R2} c-useM(z) = {c5
R2}

Let’s see how Definitions 1-3 relate to the different types of ASM functions.
ASM functions are distinguished into basic and derived (defined in terms of basic
ones). These in turn can be static (whose value cannot be modified) or dynamic.
Finally, dynamic functions can be monitored (read-only functions whose value is
modified only by the “environment”) or controlled (whose value can be changed
by the ASM). In the case of derived functions the same definitions for p-use and
c-use apply, while we consider a derived function to be in def in a rule if the
value of one of the basic functions it is composed of is modified in that rule, i.e.
it is defined in it. Obviously, static functions are in def only in the initial state
of the machine, while the usual definitions for p-use and c-use apply. Things are
more complicated for monitored functions as their value is updated outside the
scope of the ASM, but used in it. As a convention here, we simply assume that
they are defined in the initial state of the ASM. This will enforce the creation of
tests checking the various usages of these functions in the ASM. A more accurate
treatment of monitored functions would require an inter-agent data flow analysis
which is matter for future work.

2.2 Data Flow Concepts at the State Level

After defining the possible roles of variables in a program, the next step in tra-
ditional data flow analysis would require tracing through the program’s control
flow graph to search for paths from nodes where a variable is assigned a given
value, to nodes where that value is used. Since, as discussed above, in this con-
text we cannot reason in terms of flow graphs, in this section we concentrate on
ASM computations.

Abstract State Machines define a state-based computational model, where
computations (runs) are finite or infinite sequences of states {si}, obtained from
a given initial state {s0} by repeatedly executing transitions (rules) δi:

s0
δ1−→ s1

δ2−→ s2 . . .
δn−→ sn

In the following we describe how the concepts of definition and computa-
tion/predicate use at the rule level relate to ASM states. For this purpose, we
need to revisit the definitions in the previous section in terms of ASM runs.

90 A. Cavarra

Definition 4. Let f(t1, . . . , tn) be a function in M. We say that

– f(t1, . . . , tn) is in def in a state s—indicated as “defstate”—if the value of
f(t1, . . . , tn) was modified by the transition leading to s, i.e. si results from
the application of an update in defM(f(t1, . . . , tn)).

– f(t1, . . . , tn) is in p-use in a state s—indicated as “p-usestate”—if there exists
a predicate in p-useM(f(t1, . . . , tn)) that evaluates to true in s.

– f(t1, . . . , tn) is in c-use in a state s—indicated as “c-usestate”—if the transi-
tion leaving s causes the execution of statements (updates) in c-useM(f(t1,
. . . , tn)).

In particular, we say that f is in defstate (respectively p-usestate, c-usestate)
in a state s w.r.t. df,l

Ri
(resp. pf,m

Rj
, cf,n

Rk
) if the statement df,l

Ri
(resp. pf,m

Rj
, cf,n

Rk
)

is executed in s.

Example 2. Consider again the ASM in Example 1. Let us initialise the variables
as follows: S0 = {x = 3, y = 6, z = 3} (see Fig. 2). Since predicates py,5

R1
∈

p-useM(y), px,1
R2

∈ p-useM(x), and pz,1
R2

∈ p-useM(z)1 are satisfied in S0, by
definition x, y, and z are in p-use in S0. Consequently, rules R1 and R2 are
enabled to fire. Since x, y, and z are all used in computations in the transition
leaving S0 (statements cx,6

R1
, cx,y,2

R2
, cy,3

R2
are executed), they are also in c-use in

S0. After R1 and R2 fire, they produce the state S1 = {x = 2, y = 5, z = 9}.
Since the values of x, y, and z were modified by the transition incoming S1,
according to the definition they are in def in S1.

x = 3 y = 6 z = 3
cx,6
R1

cx,y,2
R2

cy,3
R2

dx,6
R1

dy,3
R2

dz,2
R2

x = 2 y = 5 z = 9

S0 S1

x = 2 y = 6 z = 8

dy,2
R1

dz,5
R2

cy,2
R1

cz,5
R2

S2

py,5
R1

px,z,1
R2

px,z,1
R1

py,z,4
R2

2 5

px,z,1
R1

p,5
R1

py,z,4
R2

Fig. 2. A partial run of M

We say that a sub-run is def-clear(f(t1, . . . , tn)) if it contains only states where
f(t1, . . . , tn) is not re-defined, i.e. the value of f(t1, . . . , tn) is not updated in any
of the states of the sub-run.

Definition 5. For each assignment df,j
Ri
∈ defM(f(t1, . . . , tn)), consider a state s

such that f(t1, . . . , tn) is in defstate in s w.r.t. df,j
Ri

. We define two sets of states:

– dpu(s, f(t1, . . . , tn)) includes states s′ s.t. there is a def-clear(f(t1, . . . , tn))
sub-run from s to s′ and f(t1, . . . , tn) is in p-usestate in s′, i.e. there is a

1 When two different functions f and g are used in a predicate (resp. computation)
in the same statement i of a rule Rj , we often address both of them with the same
symbol, i.e. pf,g,i

Rj
(cf,g,i

Rj
). E.g. we refer to px,1

R2
and pz,1

R2
with px,z,1

R2
.

Data Flow Analysis and Testing of Abstract State Machines 91

computation that starts with an assignment to f(t1, . . . , tn), progresses while
not reassigning to f(t1, . . . , tn), and ends with a state where f(t1, . . . , tn) is
used within a predicate

– dcu(s, f(t1, . . . , tn)) includes states s′ s.t. there is a def-clear(f(t1, . . . , tn))
sub-run from s to s′ and f(t1, . . . , tn) is in c-usestate in s′.

2.3 Data Flow Coverage Criteria

In this section we adapt the family of coverage criteria based on data flow infor-
mation proposed by Rapps and Weyuker in [32] (and later extended in [15]). In
general, such criteria require the definition of test data which cause the traversal
of sub-paths from a variable definition to either some or all of the p-uses, c-uses,
or their combination, or the traversal of at least one sub-path from each variable
definition to every p-use and every c-use of that definition.

For each function f(t1, . . . , tn) ∈ M and for each state s such that f is in
def state in s, we say that

– a test suite T satisfies the all-defs criterion if it includes one def-clear(f)
run from s to some state in dpu(s, f(t1, . . . , tn)) or in dcu(s, f(t1, . . . , tn))

– a test suite T satisfies the all-p-uses (respectively, all-c-uses) criterion if it
includes one def-clear(f) run from s to each state in dpu(s, f(t1, . . . , tn))
(respectively, dcu(s, f(t1, . . . , tn)))

– a test suite T satisfies the all-c-uses/some-p-uses if it includes one def-
clear(f) run from s to each state in dcu(s, f(t1, . . . , tn)), but if dcu(s, f(t1,
. . . , tn)) is empty, it includes at least one def-clear(f) run from s to some
node in dpu(s, f(t1, . . . , tn))

– a test suite T satisfies the all-p-uses/some-c-uses criterion if it includes
one def-clear(f) run from s to each state in dpu(s, f(t1, . . . , tn)), but if
dpu(s, f(t1, . . . , tn)) is empty, it includes at least one def-clear(f) run from
s to some node in dcu(s, f(t1, . . . , tn))

– a test suite T satisfies the all-uses criterion if it includes one def-clear(f) run
from s to each state in dpu(s, f(t1, . . . , tn)) and to each state in dcu(d, f(t1,
. . . , tn))

– a test suite T satisfies the all-du-paths criterion if it includes all the def-
clear(f) runs from s to each state in dpu(s, f(t1, . . . , tn)) and to each state
in dcu(s, f(t1, . . . , tn))

Empirical studies [33,16] have shown that there is little difference in terms of
the number of test cases sufficient to satisfy the least demanding criterion, all-def,
and the most demanding criterion, all-du-paths. However, there is a hidden cost
in satisfying the all-du-paths criterion, in that it is substantially more difficult to
determine whether or not all-du-paths is actually satisfied: many definition-use
(du-)paths can actually be non-executable, and it is frequently a difficult and
time-consuming job to determine which du-paths are truly non-executable. For
this reason, the most commonly adopted data flow criterion is the all-uses.

92 A. Cavarra

3 Generating Test Cases from ASMs

In the previous section we have defined a family of data flow coverage criteria
for ASM specifications. We now address the problem of how to generate test
suites satisfying a given set of such criteria for an ASM model. Obviously, the
hardest problem we must tackle is the need to reason in terms of all the possible
computations of a given machine, i.e. to explore the state space of the machine.
In the following, we elucidate an approach we are currently investigating based
on model checking.

In the last decade connections between test case generation and model check-
ing have been widely explored. In [27] and [12] on-the-fly model checking algo-
ritms are applied to test generation. In [17] the capability of SMV and SPIN
to construct counterexamples is applied to generate test suites satisfying control
flow coverage criteria. In [2] an approach to mutation analysis on model checking
specifications is discussed.

Model Checking

The underlying idea of this approach is to represent data flow coverage criteria in
temporal logic so that the problem of generating test suites satisfying a specific
set of coverage criteria is reduced to the problem of finding witnesses for a set
of temporal formulas, as proposed in [25]. The capability of model checkers to
construct witnesses [9] enables the test generation process to be fully automatic.
In particular, in [25] the model checker SMV [29] is used.

When the model checker determines that a formula with an existential path
quantifier is true, it will find a computation path that demonstrates the success
of the formula (witness). For this specific problem, Hong et al. introduce a subset
of the existential fragment of CTL (ECTL) [8], called WCTL. An ECTL formula
f is a WCTL formula if (i) f contains only EX, EF, and EU, where E (“for
some path”) is an existential path quantifier, X (next time), F (eventually), and
U (until) are modal operators, and (ii) for every subformula of f of the form
f1 ∧ . . .∧ fn, every conjunct fi except at most one is an atomic proposition. For
a full description refer to [25].

Since the original approach is strongly based on control flow graphs, once
again we need to modify it in order to adapt it to ASMs. Given two statements
df,l

Ri
(a definition of function f in line l of rule Ri) and uf,m

Rj
(a computation–

cf,m
Rj

–or predicate–pf,m
Rj

–use of function f in line m of rule Rj), a pair (df,l
Ri

, uf,m
Rj

)
is a definition-use pair (for short, “du-pair”) if there is a def-clear(f) path from
state s to state s′ such that f is in def state in s with respect to df,l

Ri
, and in

p/c-usestate in s′ with respect to uf,m
Rj

(see Figure 3).
We want to check that there exist a path that contains a state s where the

value of f is modified, and from s there is a path in which f is not redefined until
we reach a state where the value of f is used (in a predicate or computation). In
ASM terms, this means that we are looking for a run such that at some point we

Data Flow Analysis and Testing of Abstract State Machines 93

s'

s df,l
Ri

uf,m
Rj

def-clear(f)

Fig. 3. A du-pair

reach a state where the predicate guarding the selected update df,l
Ri

evaluates to
true (therefore triggering a rule where the value of f is defined) and then all the
predicates guarding updates of f evaluate to false (so f is not redefined) until
we reach a state where, in case of predicate use the predicate pf,m

Rj
holds, in case

of computation use the condition guarding the statement cf,m
Rj

must be true.
This can be formalised in WCTL as:

wctl(df,l
Ri

, uf,m
Rj

) = EF(sdf
Ri
∧ EXE(¬sdf

M U suf
Rj

))

where
sdf

Ri
≡ guard(df,l

Ri
)

sdf
M ≡

∨
d∈defM(f)\{suf

Rj
}
guard(d)

suf
Rj

=

{
pf,m

Rj
if uf,m

Rj
is a predicate

guard(cf,m
Rj

) if uf,m
Rj

is a computation

Observe that sdf
Ri

actually identifies the state before the function is updated.
This is not a problem as we are guaranteed that, since the guard is true, in the
next state the update will take place. A similar remark holds for suf

Rj
when uf,m

Rj

is a computation. Moreover, we do not include the guard of uf,m
Rj

in the disjunct

sdf
M even when f is defined within its scope because it actually uses the current

value of f used before being redefined (see the characterisation of wctl(dy,3
R2

, cy,2
R2

)
in Example 3).

If a statement is in the scope of more than one guard, the predicate guard()
will denote the conjunction of all the guards it is nested into.

94 A. Cavarra

Example 3. Consider again the ASM in Example 1. Suppose we want to find runs
covering the pairs (dx,6

R1
, px,1

R2
) and (dy,3

R2
, cy,2

R2
). This is equivalent to searching for

witnesses for the following formulas

wctl(dx,6
R1

, px,1
R2

) = EF((y > 5) ∧EXE(¬(y > 5) U (z = x)))

wctl(dy,3
R2

, cy,2
R2

)=EF((z=x)∧ EXE(¬((x=0)∨ (x > 0 & z �= x)) U (z = x)))

Let us now describe how to generate a set of test sequences satisfying the all-defs
and all-uses criteria for a set of pairs (df,l

Ri
, uf,m

Rj
). Basically, we associate a for-

mula wctl(df,l
Ri

, uf,m
Rj

) with every pair (df,l
Ri

, uf,m
Rj

) and characterise each coverage

criterion in terms of witness-sets for the formulas wctl(df,l
Ri

, uf,m
Rj

). This reduces
the problem of generating a test suite to the problem of finding a witness-set
for a set of WCTL formulas. We say that Π is a witness-set for a set of WCTL
formulas if it consists of a set of finite paths such that, for every formula f in F
there is a finite path π in Π that is a witness for f .

All-defs. A test suite T satisfies the all-defs coverage criterion if, for every
definition df,l

Ri
and some use uf,m

Rj
, there is a test sequence in T covering some

def-clear(f) run from a state where f is in def state w.r.t. df,l
Ri

to a state where f

is in p/c-usestate w.r.t. uf,m
Rj

.
A test suite T satisfies the all-defs coverage criterion if and only if it is a

witness-set for

{
∨

uf,m
Rj

∈useM(f)

wctl(df,l
Ri

, uf,m
Rj

) | df,l
Ri
∈ defM(f)} for every function f in M}

where useM(f) = p-useM(f)
⋃

c-useM(f) denotes the sets of all uses in M.

All-uses. A test suite T satisfies the all-uses coverage criterion if, for every
definition df,l

Ri
and every use uf,m

Rj
, there is a test sequence in T covering some

def-clear(f) run from a state where f is in def state w.r.t. df,l
Ri

to a state where
f is in p/c-usestate w.r.t. uf,m

Rj
. A test suite T satisfies the all-uses coverage

criterion if and only if it is a witness-set for

{wctl(df,l
Ri

, uf,m
Rj

) | df,l
Ri
∈ defM(f), uf,m

Rj
∈ useM(f) for every function f in M}

Observe that, in the worst case, the number of formulas can be quadratic in
the size of statements in the ASM.

Example 4. Consider again the ASMM defined in Example 1. Suppose we want
to satisfy the all-defs criterion for variable z. This would involve to find a witness
for the following disjunctions

{wctl(dz,2
R2

, pz,1
R1

) ∨ wctl(dz,2
R2

, pz,1
R2

) ∨wctl(dz,2
R2

, pz,4
R2

) ∨wctl(dz,2
R2

, cz,5
R2

),
wctl(dz,5

R2
, pz,1

R1
) ∨ wctl(dz,5

R2
, pz,1

R2
) ∨wctl(dz,5

R2
, pz,4

R2
) ∨ wctl(dz,5

R2
, cz,5

R2
)}

Data Flow Analysis and Testing of Abstract State Machines 95

If we want to satisfy the all-uses criterion for variable z we need to find a
witness-set for the set of formulas

{wctl(dz,2
R2

, pz,1
R1

), wctl(dz,2
R2

, pz,1
R2

), wctl(dz,2
R2

, pz,4
R2

), wctl(dz,2
R2

, cz,5
R2

),
wctl(dz,5

R2
, pz,1

R1
), wctl(dz,5

R2
, pz,1

R2
), wctl(dz,5

R2
, pz,4

R2
), wctl(dz,5

R2
, cz,5

R2
)}

4 Discussion and Future Work

Data flow coverage criteria can be used to bridge the gap between control flow
testing and the ambitious and often unfeasible requirement to exercise every
path in a program. Originally, they were developed for single modules in pro-
cedural languages [28,31,32], but have since been extended for interprocedural
programs in procedural languages [23], object-oriented programming languages
[22], and modeling languages such as UML [4]. Tools to check the adequacy
of test cases w.r.t data flow coverage criteria are also being developed (see for
instance Coverlipse [11]).

In this paper we have presented a family of data flow coverage criteria for
Abstract State Machines based on those introduced in [32]. We have discussed
why such criteria could not be directly applied to ASMs, and modified them
accordingly. The criteria defined here focus on the interaction of portions of
the ASM linked by the flow of data rather than merely by the flow of control.
Therefore, they can also serve as a guide for a clever selection of critical paths
for testing.

We have also introduced a model checking-based approach to generate auto-
matically test suites satisfying the all-defs and all-uses criteria by formalising
such criteria in temporal logic. Our approach builds on the work in [25], which
for this purpose uses CTL as temporal logic and SMV as model checker.

We are not advocating that data flow coverage criteria should be applied to all
the variables in an ASM model, but to a subset of critical variables. Moreover,
to reduce the complexity of the model (and therefore its state space) it would be
interesting to investigate the effectiveness of the approach onto ASM slices [30].

At the moment there is no tool support for the theory illustrated in this paper.
In fact, although a formal mapping from ASMs to SMV has been defined [34], the
interface developed in [7] is linked to the Workbench tool [6] which unfortunately
is not maintained anymore. However, there are plans to adapt it to work with the
ASM tools currently available [13,1]; this will allow us to develop a testing tool
based on our approach and thus to evaluate its effectiveness and scalability by
applying it to a number of case studies. We also intend to explore the possibility
of adapting our data flow coverage criteria to work with the SPIN model checker,
exploiting the ASM to PROMELA mapping defined in [19,14].

For the purpose of this paper we have worked on a minimal class of ASMs.
However, we are extending our approach to support inter-agent data flow analy-
sis. Other data flow coverage criteria, such as those proposed by Ntafos [31] and
Laski and Korel [28] do not seem to be adaptable to ASMs, as they are intrinsi-
cally linked to control flow graphs (they are strictly based on static analysis and
observations of control flow graphs).

96 A. Cavarra

We are also interested in comparing our criteria to those proposed in [18,19]
with the aim of providing a subsumption hierarchy for coverage criteria for
ASMs, in line with that presented in [10], and possibly formulate a testing strat-
egy for ASMs.

Finally, we wish to investigate alternative approaches for data flow testing
ASM models. In particular, we want to study the problem of using finite state
machines (FSMs) generated from Abstract State Machine specifications for data
flow testing. The problem of producing FSMs from ASMs for test case generation
has been studied in [20,5] where algorithms are given to generate optimised
FSMs. Our idea would be to conduct data flow analysis and testing of ASMs by
adapting existing techniques for data flow testing FSMs [26,4].

References

1. ASMETA: a tool set for the ASM, http://sourceforge.net/projects/asmeta
2. Black, P.E., Okun, V., Yesha, Y.: Mutation operators for specifications. Auto-

mated Software Engineering, 81 (2000)
3. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level Sys-

tem Design and Analysis. Springer, Heidelberg (2003)
4. Briand, L.C., Labiche, Y., Lin, Q.: Improving statechart testing criteria using

data flow information. In: ISSRE, pp. 95–104 (2005)
5. Campbell, C., Veanes, M.: State Exploration with Multiple State Groupings. In:

Abstract State Machines, pp. 119–130 (2005)
6. Castillo, G.D.: The ASM Workbench - A Tool Environment for Computer-Aided

Analysis and Validation of Abstract State Machine Models Tool Demonstration.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 578–581.
Springer, Heidelberg (2001)

7. Castillo, G.D., Winter, K.: Model Checking Support for the ASM High-Level
Language. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785,
pp. 331–346. Springer, Heidelberg (2000)

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (1986)

9. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient Generation of
Counterexamples and Witnesses in Symbolic Model Checking. In: DAC, pp. 427–
432 (1995)

10. Clarke, L.A., Podgurski, A., Richardson, D.J., Zeil, S.J.: A formal evaluation of
data flow path selection criteria. IEEE Trans. Software Eng. 15(11), 1318–1332
(1989)

11. Coverlipse, http://coverlipse.sourceforge.net/index.php
12. de Vries, R.G., Tretmans, J.: On-the-fly conformance testing using spin.

STTT 2(4), 382–393 (2000)
13. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An Extensible ASM Execution

Engine. Fundam. Inform. 77(1-2), 71–103 (2007)
14. Farahbod, R., Glsser, U., Ma, G.: Model Checking CoreASM Specifications
15. Frankl, P.G., Weyuker, E.J.: An applicable family of data flow testing criteria.

IEEE Trans. Software Eng. 14(10), 1483–1498 (1988)
16. Frankl, P.G., Weyuker, E.J.: A formal analysis of the fault-detecting ability of

testing methods. IEEE Trans. Software Eng. 19(3), 202–213 (1993)

http://sourceforge.net/projects/asmeta
http://coverlipse.sourceforge.net/index.php

Data Flow Analysis and Testing of Abstract State Machines 97

17. Gargantini, A., Heitmeyer, C.L.: Using model checking to generate tests from
requirements specifications. In: ESEC/SIGSOFT FSE, pp. 146–162 (1999)

18. Gargantini, A., Riccobene, E.: ASM-Based Testing: Coverage Criteria and Auto-
matic Test Sequence. J. UCS 7(11), 1050–1067 (2001)

19. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using Spin to Generate Tests from
ASM Specifications. Abstract State Machines, 263–277 (2003)

20. Grieskamp, W., Gurevich, Y., Schulte, W., Veanes, M.: Generating finite state
machines from abstract state machines. In: ISSTA, pp. 112–122 (2002)

21. Gurevich, Y.: Specification and validation methods (1995)
22. Harrold, M.J., Rothermel, G.: Performing data flow testing on classes. In: SIG-

SOFT 1994: Proceedings of the 2nd ACM SIGSOFT symposium on Foundations
of software engineering, pp. 154–163. ACM, New York (1994)

23. Harrold, M.J., Soffa, M.L.: Interprocedual data flow testing. In: TAV3: Proceed-
ings of the ACM SIGSOFT 1989 third symposium on Software testing, analysis,
and verification, pp. 158–167. ACM, New York (1989)

24. Holzmann, G.J.: The model checker SPIN. Software Engineering 23(5), 279–295
(1997)

25. Hong, H.S., Cha, S.D., Lee, I., Sokolsky, O., Ural, H.: Data Flow Testing as Model
Checking. In: ICSE, pp. 232–243 (2003)

26. Hong, H.S., Kim, Y.G., Cha, S.D., Bae, D.-H., Ural, H.: A test sequence selection
method for statecharts. Softw. Test, Verif. Reliab. 10(4), 203–227 (2000)

27. Jéron, T., Morel, P.: Test generation derived from model-checking. In: Halbwachs,
N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 108–121. Springer, Hei-
delberg (1999)

28. Laski, J.W., Korel, B.: A data flow oriented program testing strategy. IEEE Trans.
Software Eng. 9(3), 347–354 (1983)

29. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

30. Nowack, A.: Slicing abstract state machines. In: Zimmermann, W., Thalheim, B.
(eds.) ASM 2004. LNCS, vol. 3052, pp. 186–201. Springer, Heidelberg (2004)

31. Ntafos, S.C.: On required element testing. IEEE Trans. Software Eng. 10(6), 795–
803 (1984)

32. Rapps, S., Weyuker, E.J.: Selecting software test data using data flow information.
IEEE Trans. Software Eng. 11(4), 367–375 (1985)

33. Weyuker, E.J.: More experience with data flow testing. IEEE Trans. Software
Eng. 19(9), 912–919 (1993)

34. Winter, K.: Model Checking for Abstract State Machines. J. UCS 3(5), 689–701
(1997)

A Verified AsmL Implementation of

Belief Revision�

Christoph Beierle1 and Gabriele Kern-Isberner2

1 Dept. of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
2 Dept. of Computer Science, TU Dortmund, 44221 Dortmund, Germany

christoph.beierle@fernuni-hagen.de,
gabriele.kern-isberner@cs.uni-dortmund.de

Abstract. Belief revision is a key functionality for any intelligent agent
being able to perceive pieces of knowledge from its environment and to
give back sentences she believes to be true with a certain degree of be-
lief. We report on a refinement of a previous, abstract ASM specification
of Condor, a system modeling such an agent, to a fully operational
specification implemented in AsmL. The complete AsmL implementa-
tion of various belief revision operators is presented, demonstrating how
using AsmL enabled a high-level implementation that minimizes the gap
between the abstract specification of the underlying concepts and the ex-
ecutable code in the implemented system. Based on ASM refinement and
verification concepts, a full mathematical correctness proof for different
belief revision operators realized in Condor@AsmL is given.

1 Introduction

The paradigm of an agent as an integrated system embedded in and communi-
cating with its environment has gained much attention and had a major impact
on many research areas particularly in AI. Belief revision is a key functionality
for any intelligent agent being able to perceive pieces of knowledge (general rules,
evidence, etc.) from its environment and to give back sentences she believes to
be true with a certain degree of belief (see e.g. [1,10,13,17]).

The Condor system represents an approach to model such an intelligent
agent. For the representation of knowledge, general conditionals viewed upon
as default rules are used. A conditional “if A then B” establishes a plausible,
probable, possible etc. connection between the antecedent A and the consequent
B, but still allows exceptions. Together with the given pieces of knowledge, the
agent’s epistemic state determines her reasoning and beliefs, and since the agent
is assumed to live in a dynamic environment, she must be able to update or
revise her own state of belief in the light of new information.

In [3] we developed a high-level ASM specification CondorASM for the
Condor system, enabling us to elaborate crucial interdependencies between

� The research reported here was partially supported by the Deutsche Forschungsge-
meinschaft (grants BE 1700/7-1 and KE 1413/2-1).

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 98–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Verified AsmL Implementation of Belief Revision 99

different aspects of knowledge representation, knowledge discovery, and belief
revision, and to precisely formalize central correctness requirements in the ASM
framework. For belief revision of epistemic states with conditionals, these are the
success postulate (revising or updating an epistemic state Ψ by a set of condi-
tionals R yields an epistemic state Ψ∗ where all conditionals in R are believed)
and the stability axiom (if already in Ψ all conditionals in R are accepted, then
Ψ∗ = Ψ) [14, p. 113, (CSR-1) and (CSR-2)]. In [3], we deliberately left various
universes and functions of CondorASM abstract, aiming at a broad applica-
bility of our approach. In particular, by leaving the universe Q of quantitative
and qualitative scales abstract, the specification applies to conditionals in both
quantitative logic (e.g. probabilistic logic [18]) and qualitative approaches (e.g.
[11,19]).

A refinement CondorASMO of CondorASM to qualitative conditionals
[1,11] equipped with the semantics of ordinal conditional functions (OCFs) [19]
is given in [4], where OCFs are used to represent the epistemic state of an
agent. The ASM methodology allowed us to precisely describe sophisticated
knowledge management tasks investigated in belief change [1,10,13,14,15] (for a
recent discussion, see [17]). For instance, we could elaborate the similarities and
delicate differences between update and genuine revision operators involving full
epistemic states and provide corresponding ASM specifications, relying on the
concept of so-called c-revisions [15] as a uniform core-methodology.

In this paper, we report on a refinement of CondorASMO to a fully oper-
ational specification Condor@AsmL using AsmL [2,12], enabling a high-level
implementation that minimizes the gap between the abstract specification of
the underlying concepts and the executable code in the implemented system.
We will demonstrate this aspect by presenting a complete implementation of the
sophisticated core function

cRevision : EpStateO × P(SenU)→ EpStateO

left abstract in [4]. Based on ASM refinement and verification concepts [7], we
will provide a full mathematical correctness proof for different belief revision
operators implemented in Condor@AsmL.

A first version of Condor@AsmL was developed in [16]; for a short system
description of the current version used in this paper see [5] where also a system
walk-through with examples of various reasoning tasks is provided.

Figure 1 shows the start menu of the system where the user can choose among
its top-level functionalities as they were already present in [3]; for convenience for
the user, additional items for interated revision and update [8] were added. Since
our focus was on a lean implementation, currently there is only a command line
and file I/O interface. This enables both an easy integration of Condor@AsmL
with other systems and also adding a graphical user interface in a modular way.

The rest of this paper is organised as follows: We briefly recall the basic no-
tions of qualitative conditional logic (Sec. 2) and the concepts of consistency
and c-revisions for this context (Sec. 3). After presenting the basic universes
and functions of Condor@AsmL (Sec. 4), the AsmL implementation of belief

100 C. Beierle and G. Kern-Isberner

** Experience Condor@AsmL **
** Vers. 2.2 (2008-02-17) **

Choose an action:
[0] Initialization
[1] Load
[2] Query
[3] Belief and Disbelief
[4] Revision and Update
[5] Iterated Revision
[6] Iterated Update
[7] Diagnosis
[8] What-if-Analysis
[9] Exit Program

Fig. 1. Start menu of the Condor@AsmL system

revision is described in detail in Sec. 5, along with a complete correctness proof.
Section 6 tells some experiences made using Condor@AsmL and contains con-
cluding remarks.

2 Background

We start with a propositional language L, generated by a finite set Σ of
atoms a, b, c, The formulas of L will be denoted by uppercase Roman letters
A, B, C, For conciseness of notation, we will omit the logical and -connective,
writing AB instead of A∧B, and overlining formulas will indicate negation, i.e.
A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken
here simply as the set of all propositional interpretations over L and can be
identified with the set of all complete conjunctions over Σ. For ω ∈ Ω, ω |= A
means that the propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set

(L | L) = {(B|A) | A, B ∈ L}

of conditionals over L. (B|A) formalizes “if A then B” and establishes a plausi-
ble, probable, possible etc connection between the antecedent A and the conse-
quent B. Here, conditionals are supposed not to be nested, that is, antecedent
and consequent of a conditional will be propositional formulas.

A conditional (B|A) is an object of a three-valued nature, partitioning the
set of worlds Ω in three parts: those worlds satisfying AB, thus verifying the
conditional, those worlds satisfying AB, thus falsifying the conditional, and those
worlds not fulfilling the premise A and so which the conditional may not be

A Verified AsmL Implementation of Belief Revision 101

applied to at all. This allows us to represent (B|A) as a generalized indicator
function going back to [9] (where u stands for unknown or indeterminate):

(B|A)(ω) =

⎧⎨⎩
1 if ω |= AB
0 if ω |= AB
u if ω |= A

To give appropriate semantics to conditionals, they are usually considered within
richer structures such as epistemic states. Besides certain (logical)knowledge, epis-
temic states also allow the representation of preferences, beliefs, assumptions of an
intelligent agent. Basically, an epistemic state allows one to compare formulas or
worlds with respect to plausibility, possibility, necessity, probability, etc.

Well-known qualitative, ordinal approaches to represent epistemic states are
Spohn’s ordinal conditional functions, OCFs, (also called ranking functions) [19],
and possibility distributions [6], assigning degrees of plausibility, or of possibility,
respectively, to formulas and possible worlds. In such qualitative frameworks, a
conditional (B|A) is valid (or accepted), if its confirmation, AB, is more plausible,
possible, etc. than its refutation, AB; a suitable degree of acceptance is calculated
from the degrees associated with AB and AB.

The concept underlying Condor@AsmL is based on Spohn’s OCFs [19]. An
OCF

κ : Ω → N

expresses degrees of plausibility of propositional formulas where a higher degree
denotes “less plausible”. At least one world must be regarded as being normal;
therefore, κ(ω) = 0 for at least one ω ∈ Ω. Each such ranking function can be
taken as the representation of a full epistemic state of an agent. Each such κ
uniquely extends to a function (also denoted by κ)

κ : SenU → N ∪ {∞}

mapping sentences and rules to N ∪ {∞} and being defined by

κ(A) =

{
min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

for sentences A ∈ FactU and by

κ((B|A)) =

{
κ(AB) − κ(A) if κ(A) �= ∞
∞ otherwise

for conditionals (B|A) ∈ RuleU .
The degree of belief of an agent being in epistemic state κ with respect to a

default rule (B|A) is determined by the satisfaction relation |=O for quantified
sentences (B|A)[m] defined by:

κ |=O (B|A)[m] iff κ(AB) + m < κ(AB) (1)

102 C. Beierle and G. Kern-Isberner

Thus, (B|A) is believed in κ with degree of belief m if the rank of AB (verify-
ing the unquantified conditional) is more than m smaller than the rank of AB
(falsifying the unquantified conditional).

The satisfaction relation for unquantified sentences (B|A) is obtained from
(1) by

κ |=O (B|A) iff κ(AB) < κ(AB) (2)

Hence κ accepts the conditional (B|A) iff κ |=O (B|A).

3 Consistency and C-Revisions

Since a rational agent will never believe both (B|A) and (B|A) at the same time,
not every set R of conditionals can be believed in some well-defined epistemic
state; this is guaranteed only if R is consistent.

Definition 1 (consistent). A set of conditionals R is consistent iff there exists
an OCF κ that accepts every r ∈ R.

The consistency of R in a qualitative framework can be characterized by the
notion of tolerance [11]:

Definition 2 (tolerate; ordered partition). A conditional (B|A) is toler-
ated by a set of conditionals R iff there is a world ω such that ω verifies (B|A)
(i.e. (B|A)(ω) = 1) and ω does not falsify any of the conditionals in R (i.e.
r(ω) �= 0 for all r ∈ R). A partition R0,R1, . . . ,Rk of R is an ordered partition
of R if each conditional in Rm is tolerated by

⋃k
j=mRj, 0 � m � k.

Theorem 1 (see [11]). A set R = {(B1|A1), . . . , (Bn|An)} of conditionals is
consistent iff there is an ordered partition of R.

C-revisions [15] transform an epistemic state κ and a (consistent) set of condi-
tionals R into a new epistemic state accepting these conditionals. A character-
ization theorem of [15] shows that every c-revision of κ and R can be obtained
by adding to each κ(ω) values for each rule ri ∈ R, depending on whether ω
verifies or falsifies ri. If R0,R1, . . . , Rk is an ordered partition of R, the fol-
lowing yields a c-revision [15]: Set successively, for each partitioning set Rm,
0 � m � k, starting with R0, and for each conditional ri = (Bi|Ai) ∈ Rm

κ−
i := 1 + min

ω |= AiBi

r(ω) �= 0, ∀r ∈ Rm ∪ . . . ∪ Rk

(κ(ω) +
∑

rj ∈ R0 ∪ . . . ∪ Rm−1
rj(ω) = 0

κ−
j) (3)

Finally, choose κ0 appropriately to make

κ∗(ω) = κ0 + κ(ω) +
∑

1 � i � n

ω |= AiBi

κ−
i (4)

an ordinal conditional function.

A Verified AsmL Implementation of Belief Revision 103

4 Basic Universes and Functions of Condor@AsmL

The central universes RuleU , P(RuleU) and EpStateO of [4] are implemented in
Condor@AsmL by

structure Rule
Conclusion as Formula
Premise as Formula

type RuleSet = Set of Rule
type State = Map of World to Integer

where, given a universe Σ of propositional variables, Formula is the type of all
propositional sentences over Σ (implementing FactU from [4]) and World is the
type of all possible worlds that can be distinguished using Σ (i.e. World is the
type of all complete conjuntions over Σ).

Since due to space restrictions we are not able to present the complete Con-

dor@AsmL code here, for the three auxiliary functions

verify(w as World, in_R as RuleSet) as RuleSet
falsify(w as World, in_R as RuleSet) as RuleSet
accept(kappa as State, in_R as RuleSet) as RuleSet

available in Condor@AsmL, we will tacitly assume the following assumptions
in the rest of this paper: For any world w in World, any set of rules R in RuleSet,
and any epistemic state kappa in State, Condor@AsmL computes

verify(w,R) = {r ∈ R | w verifies r} (5)
falsify(w,R) = {r ∈ R | w falsifies r} (6)

accept(kappa,R) = {r ∈ R | kappa accepts r} (7)

Note that (5)–(7) are ensured easily in Condor@AsmL by implementing some
fundamental primitives of propositional logic and simple basic operations on
State.

The AsmL variables

var CurrState as State = {->}
var StateBeforeUpdate as State = {->}
var NewRulesSinceUpdate as RuleSet = {}
var Omega as Seq of World = []
var Partition as Map of Integer to RuleSet = {->}

implement the nullary functions currstate, stateBeforeUpdate, newRulesSinceUp-
date of [4], Omega will contain all complete conjunctions over the propositional
variables Σ, and Partition will hold an ordered partition of a set of rules
checked for consistency.

104 C. Beierle and G. Kern-Isberner

5 Implementation of Belief Revision

In the following subsections, we will first present the AsmL code for the required
auxiliary functions, along with propositions that will be used for the proof of
the main theorem stating the correctness of Condor@AsmL’s implementation
of belief revision.

5.1 Computing an Ordered Partition

Figure 2 shows the AsmL code for computing an ordered partition. The binary
function buildPartition(in R,p) returns an ordered partition (i.e. a function
mapping natural numbers to sets of rules) of in R if it exists, and the empty map
otherwise. It takes a set of rules in R (still to be partitioned) and a partition p
(of those rules that have already been assigned to a particular partition set Rm).
Initially, in R contains all given rules and p is the empty function {->}.

buildPartition(in_R as RuleSet, in_partition as Map of Integer to RuleSet)
as Map of Integer to RuleSet

// recursively build proper partition
var rules as RuleSet = in_R
var partition as Map of Integer to RuleSet = in_partition

let tolerating_worlds = {w | w in Omega where falsify(w,rules) = {} }
let tolerated_rules = {r | w in tolerating_worlds, r in verify(w,rules)}
step
if tolerated_rules = {}
then partition := {->} // proper partition does not exist
else // extend current partition
let next_index = Size(partition) // next index, starts with 0
step partition := partition + {next_index -> tolerated_rules}

rules := rules - tolerated_rules
step if rules <> {} // partition remaining rules recursively

then partition := buildPartition(rules, partition)
step return partition

Fig. 2. AsmL code for determining an ordered partition of a set of rules

Proposition 1. For any given set of rules R, buildPartition(R,{->}) com-
putes an ordered partition if it exists, and the empty map {->} if no ordered
partition of R exists.

Proof. We will use the invariant INV(S, p) for recursive calls of
buildPartition(S, p), where S is a set of rules, and p is a partition of a
set of rules:

INV(S, p) : • R = S ∪
⋃

i→Ri∈p Ri

• p is an ordered partition of
⋃

i→Ri∈p Ri

• every rule r ∈ S is tolerated by
⋃

i→Ri∈p Ri

A Verified AsmL Implementation of Belief Revision 105

Let buildPartition(in R, in p) either denote the initial call
buildPartition(R,{->}) or any subsequent recursive call caused directly or
indirectly by this initial call. We will prove that INV(in R, in p) holds for any
of these calls and show that the conculsion of the proposition follows.

For the inital call, INV(in R, in p) holds trivially since in p is empty.
So let buildPartition(in R, in p) be any subsequent call and assume that
INV(in R, in p) holds for this call. The first two let-constructs in Fig. 2 ensure
that tolerating worlds contains all worlds that do not falsify any of the rules
in in R, and that tolerated rules contains all rules from in R verified by some
of these worlds. Using Def. 2, we thus have

tolerated rules = {r | r ∈ in R, r is tolerated by in R}

If tolerated rules is empty, no ordered partition of in R exists according to
Def. 2, and together with INV(in R, in p) we conclude that in p can not be
extended to an ordered partition of R. Thus, there is no ordered partition of R
and the initial call buildPartition(R,{->}) terminates, returning the empty
map.

If tolerated rules is not empty, in p is an ordered partion

{0→ R0, 1→ R1, . . . , m−1→ Rm−1}

where m = Size(in p). According to Fig. 2, partition and rules are set to

partition = {0→ R0, 1 → R1, . . . , m−1→ Rm−1, m → tolerated rules}
rules = in R \ tolerated rules

From INV(in R, in p) and Def. 2, we conclude that for these values INV(rules,
partition) holds. If rules is empty, the computation terminates and INV(rules,
partition) implies the conclusion of the proposition; if rules is not empty, the
invariant holds for the recursive call buildPartition(rules, partition).

It remains to be shown that buildPartition(R,{->}) terminates. This
follows from the fact that in each recursive invocation of buildPartition,
the set of rules in the first argument is decreased by at least one rule since
tolerated rules is checked to be non-empty. �

5.2 Checking Consistency

The AsmL code for inferring the consistency of a set of rules is now straightfor-
ward; it is given in Fig. 3.

isConsistent(in_R as RuleSet) as Boolean
step Partition := buildPartition(in_R, {->})
step return Partition <> {->} // consistent iff Partition is non-empty

Fig. 3. AsmL code for inferring the consistency of a set of rules

106 C. Beierle and G. Kern-Isberner

Corollary 1. For any given set of rules in R, isConsistent(in R) returns true
if in R is consistent, and false otherwise.

Proof. This is a direct consequence of Proposition 1 and Theorem 1 since
isConsistent(in R) calls buildPartition(in R,{->}), writes the result to
Partition and checks whether this is the empty map or not. �

5.3 Computation of Penalties κ−
i

For each rule (Bi|Ai), we call the value κ−
i from (3) the penalty value for this rule.

Figure 4 shows the AsmL code for computing all penalty values according to (3).

Proposition 2. For any world w, any set of rules R and any map kappaMinus :
Rule→ Integer let s = sumPenalty(w,R,kappaMinus). Then

s =
∑

rj∈R, rj(w)=0

kappaMinus(rj)

Proof. According to (6), falsify(w,{r}) = {r} says that the world w falsifies
r (i.e., r(w) = 0); thus, the proposition follows by a straightforward induction
on the size of R. �
Proposition 3. Let Partition be an ordered partition of a consistent rule set
R. For any epistemic state in kappa, getKappaMinus(in kappa) computes a
mapping kappaMinus : Rule → Integer such that for all rules (Bi|Ai) in R
and the given Partition of R,

κ−
i = kappaMinus((Bi|Ai))

is computed according to (3).

Proof. The AsmL code for getKappaMinus in Fig. 4 directly mimics the two
nested loops (“for each Rm”, “for each ri ∈ Rm”) in the definition of κ−

i given
in (3). Thus, we have to check that when executing
kappaMinus := kappaMinus union {r -> 1 + min x | w -> x in wk}

(cf. Fig. 4), the expression
1 + min x | w -> x in wk

defining the penalty value for rule r corresponds exactly to the defining expres-
sion for κ−

i in (3). By an easy induction on the size of the partition we can show
that when updating kappaMinus as above

r next =
⋃

l→Rl∈Partition, l∈{m,...,max index−1} Rl

r before =
⋃

l→Rl∈Partition, l∈{0,...,m−1} Rl

holds. Thus, using (5) and (6), ws contains exactly those worlds (verifying the
current rule and not falsifying any of the rules in the next partition parts) over
which the minimum in (3) is determined. From Proposition 2, we get that wk
associates to each world w in ws the sum given as argument to min in (3)
(i.e., in kappa(w) plus the sum of all penalty values of all rules in the pre-
vious partition parts falsified by w). By induction it follows that for every rule,
getKappaMinus computes the penalty values according to (3). �

A Verified AsmL Implementation of Belief Revision 107

getKappaMinus(in_kappa as State) as Map of Rule to Integer
var kappaMinus as Map of Rule to Integer = {->}
var r_before as RuleSet = {} // rules up to partition part r_m
var r_next as RuleSet = {} // rules from partition part r_m onwards

let max_index = Size(Partition) - 1

step for i = 0 to max_index
r_next := r_next + Partition(i) // initialize with all rules

step for m = 0 to max_index
let r_m = Partition(m) // current partition part is r_m

step foreach r in r_m
// determine worlds that verify r and do not falsify any rule
// of next parts:
let ws = {w | w in Omega where verify(w,{r}) = {r} and

falsify(w, r_next) = {}}
// for these worlds determine old kappa + sum of penalties for
// previous parts:
let wk = {w -> in_kappa(w) + sumPenalty(w, r_before, kappaMinus)

| w in ws}
// use minimum penalty to determine final penalty for r:
kappaMinus := kappaMinus union {r -> 1 + min x | w -> x in wk}

step r_next := r_next - r_m
step r_before := r_before + r_m

step return kappaMinus

sumPenalty(w as World, in_R as RuleSet, kappaMinus as Map of Rule
to Integer) as Integer

// sum up penalties of all rules falsified by given world
var s as Integer = 0
step foreach r in in_R

if falsify(w, {r}) = {r}
then s := s + kappaMinus(r)

step return s

Fig. 4. AsmL code computing the penalty values κ−
i for a (consistent) set of rules

5.4 Computation of a c-Revision

In [4] we used the abstract function

cRevision : EpStateO × P(SenU)→ EpStateO

constrained by the condition that (3) and (4) are respected. Figure 5 shows its
AsmL implementation.

108 C. Beierle and G. Kern-Isberner

cRevision(in_kappa as State, in_R as RuleSet) as State
// in_R must be consistent, Partition must contain its ordered partition
var kappa as State = {->}
step

if accept(in_kappa, in_R) = in_R // all rules accepted
then kappa := in_kappa // no change of in_kappa needed
else

let kappaMinus = getKappaMinus(in_kappa)
kappa := {w -> k + sumPenalty(w, in_R, kappaMinus) | w -> k in

in_kappa}
let kappaNull = min i | world -> i in kappa
if kappaNull > 0 // normalization required?
then kappa := {w -> k - kappaNull | w -> k in kappa}

step return kappa

Fig. 5. Computation of a cRevision of an epistemic state with respect to a set of rules

Proposition 4. For any epistemic state in kappa and any consistent rule set
in R with corresponding ordered Partition, cRevision(in kappa, in R) re-
turns an epistemic state kappa satisfying equation (4) if in kappa does not ac-
cept all rules in in R; otherwise, in kappa is returned.

Proof. If all rules in in R are already accepted by in kappa, the first if-condition
in Fig. 5 and (7) eunsure that in kappa is returned. Otherwise, the function
kappa is defined such that each world w is mapped to the sum of in kappa(w)
plus the sum of all penalty values of all rules in in R falsified by w, where the
penalty values have been determined by get kappaMinus(in kappa). If this
function kappa is not an OCF because no world is mapped to 0, kappa is up-
dated by subtracting the normalization constant kappaNull from each function
value. Together with Propositions 2 and 3, we conclude that the returned kappa
satisfies (4). Moreover, cRevision obvioulsy terminates since all called functions
terminate. �

5.5 Verification of Belief Revision

The different forms of belief revision realized in Condor@AsmL correspond
exactly to the forms of belief revision defined in CondorASMO [4].

The AsmL code for the two most important belief revision operators, update
and (genuine) revision, is shown in Fig. 6 and 7, where the nullary function

new_information() as RuleSet

provides the rules representing the new information to be taken into account.

Theorem 2 (Correctness of Update and Revision). The belief revision
operators “update” and “(genuine) revision” as implemented in Condor@AsmL
fulfil the success postulate and the stability axiom.

A Verified AsmL Implementation of Belief Revision 109

StateBeforeUpdate := CurrState
NewRulesSinceUpdate := new_information
step if isConsistent(new_information) = false

then error "NEW_INFORMATION for UPDATE inconsistent"
else CurrState := cRevision(CurrState, new_information)

Fig. 6. Update operation with respect to new information

NewRulesSinceUpdate := NewRulesSinceUpdate union new_information
step if isConsistent(NewRulesSinceUpdate) = false

then error "Set of rules for REVISE inconsistent"
else CurrState := cRevision(StateBeforeUpdate, NewRulesSinceUpdate)

Fig. 7. (Genuine) revision with respect to new information

Proof. We first consider the “update” case (Fig. 6). Let κ = CurrState be
any epistemic state and let R = new Information be any set of rules. If R is
inconsistent, this is detected by isConsistent(R) according to Corollary 1 and
an exception is raised. If R is consistent, let κ∗ be the epistemic state computed
by cRevision(κ,R). (Note that κ∗ is well defined since cRevision terminates
according to Proposition 4.) For the success postulate we have to show

∀ (B|A) ∈ R κ∗ |=O (B|A)

which follows from Propositions 1 – 4 and Theorems 2 and 3 in [15]. The stability
axiom

if ∀(B|A) ∈ R κ |=O (B|A) then κ∗ = κ

directly follows from Proposition 4.
Since “(genuine) revision” (Fig. 7) is implemented analogously to “update”

by calling cRevision after ensuring that the set of rules passed to cRevision is
consistent, for revision both the success postulate as well as the stability axiom
follow by an analogous argumentation. �

In [4] we also specified focussing in the context of diagnosis and hypothetical
reasoning. These functionalities also rely on the core function cRevision which in
any case is called only after a previous consistency check was successful. Hence,
Theorem 2 can easily be adapted to prove that also these forms of belief revision
implemented in Condor@AsmL fulfil the success postulate and the stability
axiom.

6 Experiences with Condor@AsmL and Conclusions

Both reasoning with conditionals and adapting complete epistemic states is a
cumbersome task even in small applications when doing it without the support
of a system. Hence, Condor@AsmL proved to be very helpful in carrying out

110 C. Beierle and G. Kern-Isberner

experiments and case studies. For this, having a correct implementation is of
course essential, which additionally motivated the request for verification.

Validating and verifying Condor@AsmL also helped us to detect a spe-
cial case which was not dealt with properly in the higher-up specification
CondorASMO in [4]: The rule for loading an epistemic state given in [4] must be
extended by updating the bookkeeping functions stateBeforeUpdate and newRu-
lesSinceUpdate (to the state loaded and {}, respectively) so that their correct
values are available for a subsequent (genuine) revision step.

Among the many unsettled issues in belief change there is the question how
to capture best the notion of minimal change (e.g. [1,8,10,14]). While c-revisions
are designed with this principle in mind [14,15], we are currently working on an
exact ASM characterization of it in the OCF framework as used in this paper.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, P.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50(2),
510–530 (1985)

2. AsmL webpage (2007), http://research.microsoft.com/foundations/asml/
3. Beierle, C., Kern-Isberner, G.: Modelling conditional knowledge discovery and be-

lief revision by Abstract State Machines. In: Börger, E., Gargantini, A., Riccobene,
E. (eds.) ASM 2003. LNCS, vol. 2589, pp. 186–203. Springer, Heidelberg (2003)

4. Beierle, C., Kern-Isberner, G.: An ASM refinement and implementation of the
Condor system using ordinal conditional functions. In: Prinz, A. (ed.) Proceed-
ings 14th International Workshop on Abstract State Machines (ASM 2007). Agder
University College, Grimstad, Norway (2007)

5. Beierle, C., Kern-Isberner, G., Koch, N.: A high-level implementation of a system
for automated reasoning with default rules (system description). In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) Proc. of the 4th International Joint Conference
on Automated Reasoning (IJCAR 2008). LNCS, vol. 5195, pp. 147–153. Springer,
Heidelberg (to appear, 2008)

6. Benferhat, S., Dubois, D., Prade, H.: Representing default rules in possibilistic
logic. In: Proceedings 3rd International Conference on Principles of Knowledge
Representation and Reasoning KR 1992, pp. 673–684 (1992)

7. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

8. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial Intelli-
gence 89, 1–29 (1997)

9. DeFinetti, B.: Theory of Probability, vol. 1,2. John Wiley & Sons, Chichester (1974)
10. Friedman, N., Halpern, J.Y.: Modeling belief in dynamic systems, Part II: Revison

and update. Journal of Artificial Intelligence Research 10, 117–167 (1999)
11. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief

revision, and causal modeling. Artificial Intelligence 84, 57–112 (1996)
12. Gurevich, Y., Rossman, B., Schulte, W.: Semantic essence of AsmL. Theoretical

Computer Science 343(3), 370–412 (2005)
13. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge

base and revising it. In: Proceedings Second International Conference on Principles
of Knowledge Representation and Reasoning, KR 1991, San Mateo, Ca., pp. 387–
394. Morgan Kaufmann, San Francisco (1991)

http://research.microsoft.com/foundations/asml/

A Verified AsmL Implementation of Belief Revision 111

14. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)

15. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-
vation in belief revision. Annals of Mathematics and Artificial Intelligence 40(1-2),
127–164 (2004)

16. Koch, N.: Repräsentation und Verarbeitung konditionalen Wissens mit AsmL. The-
sis, Master of Computer Science, FernUniversität in Hagen (2007) (in German)

17. Lang, J.: Belief update revisited. In: Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 2517–2522 (2007)

18. Paris, J.B., Vencovska, A.: In defence of the maximum entropy inference process.
International Journal of Approximate Reasoning 17(1), 77–103 (1997)

19. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states.
In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and
Statistics, II, pp. 105–134. Kluwer Academic Publishers, Dordrecht (1988)

Direct Support for Model Checking Abstract

State Machines by Utilizing Simulation

Jörg Beckers, Daniel Klünder, Stefan Kowalewski, and Bastian Schlich

Embedded Software Laboratory, RWTH Aachen,
Ahornstr. 55, 52074 Aachen, Germany

{beckers,kluender,kowalewski,schlich}@cs.rwth-aachen.de
http://www-i11.informatik.rwth-aachen.de

Abstract. This paper presents an approach to model checking abstract
state machines (ASMs) without the need for translation of the ASM
specification into the modeling language of an existing model checker.
Instead, our model checker [mc]square uses the simulation capabili-
ties of CoreASM to build the state space, thereby directly supporting
ASMs and circumventing a possible loss of expressiveness in a translation
process. This enables our approach to present counterexamples and wit-
nesses directly as sequences of ASM states and at the same time supports
the major features of CoreASM like distributed ASMs, n-ary functions
or extended rule forms. We show the applicability of this approach in
a case study that also reveals possible improvements desirable for mini-
mizing the duration needed for building the state space and its memory
consumption.

1 Introduction

The ever increasing presence of information technology along with the pervasion
of hardware and software into everyday life boosts the need for engineering meth-
ods and tools for the development of high quality systems. This trend is further
amplified by the rising complexity of such systems and their usage for safety
critical tasks. However, full or excessive testing is often not possible because of
time or budget constraints of the specific product.

It has long been recognized that formal methods can help to improve software
quality by providing means for finding and fixing errors as well as ambiguities.
Of special interest for this paper is the possibility to automatically prove certain
system properties: model checking is a formal method used for the automatic
verification of systems. It uses an exhaustive search over all reachable system
states to check whether the system (model) satisfies a given property (specifica-
tion). Among other things, the abstraction capabilities of abstract state machines
(ASMs) allow the verification to take place early in the design process, thereby
minimizing the costs introduced by fixing found errors. Furthermore, ASMS have
been shown to be an effective formal method for specification in an industrial
context as e. g. shown by Börger et al. [1].

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 112–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www-i11.informatik.rwth-aachen.de

Direct Support for Model Checking Abstract State Machines 113

In this paper we present a novel approach to automatically verifying dynamic
properties for given ASMs that takes advantage of the fact that ASMs are not
logical formulae, but machines coming with a notion of run [2]. We utilize the
simulation capabilities of CoreASM [3], adapting it to branch into all possi-
ble successor states instead of choosing a random successor when faced with
scheduling of distributed ASMs or nondeterministic choose. The so-built state
space can be model checked by querying the boolean values of the verification
formula’s atomic propositions from CoreASM.

The rest of this paper is structured as follows: the next section summarizes
related work, emphasizing the differences to the approach presented here. Sec-
tion 3 gives an introduction to the model checker [mc]square focusing on its
architecture which is the main reason for its applicability to the verification of
CoreASM models. The interaction of [mc]square and CoreASM as well as
the slight modifications to the latter are detailed in section 4 and evaluated in
a case study in section 5. Finally, section 6 concludes the paper and gives an
outlook to future work and possible improvements.

2 Related Work

There are several other publications on model checking of ASMs. Del Castillo and
Winter translate specifications written in the ASM Workbench [4] into the input
language of the SMV model checker [5,6]. Gargantini and Riccobenne produce
Promela specifications for the Spin model checker from the AsmGofer tool [7].
Bounded model checking of ASMs using Answer Set Programming is presented
by Tang and Ternovska [8]. An approach to model checking of AsmL is proposed
by Kardos [9]. More recently, Ouimet and Lundqvist showed the verification
of TASM models using UPPAAL by including information on time into ASMs
[10]. Farahbod et al. support the same ASM constructs as our approach by
translating CoreASM specifications into Promela and using Spin for model
checking [11,12].

The approach presented in this paper differs from the ones above by not trans-
lating a given ASM into some other language but rather using their simulation
in CoreASM to produce all possible states which are afterwards serialized and
checked in [mc]square [13]. Thereby it directly supports ASMs, avoiding pos-
sible losses of expressiveness in a translation process. The main advantages of
this approach are the ability to present counterexamples and witnesses of a ver-
ification as a sequence of ASM states and its direct support for the modeling
and simulation features of CoreASM including n-ary functions and extended
rule forms. Specifically, it also directly supports distributed ASMs and can be
naturally extended to new features of CoreASM. On the other hand, it suffers
from the representation of states in the data structures of CoreASM that were
built with the goals of comprehensiveness and extendibility in mind and hence
are not optimized for performance in a model checker.

114 J. Beckers et al.

3 [mc]square

[mc]square stands for Model Checking MicroController and is a discrete CTL
model checker that was built for verifying microcontroller assembly code of em-
bedded systems [13,14]. It supports several different microcontrollers and uses
a local CTL algorithm first introduced by Vergauwen and Lewi [15] and later
adapted by Heljanko [16]. Input models are accepted as assembly programs in
Executable and Linking Format (ELF) and checked versus a specification that
may contain propositions about registers, I/O registers, and variables. Addition-
ally, [mc]square checks for stack collisions, stack overflows, and non-intended
use of microcontroller features such as write access to reserved registers.

For this purpose, [mc]square utilizes simulators of the supported microcon-
trollers for state space building as well as for retrieving information about atomic
propositions. The simulator is asked to return either a serialized representation
of all possible successors given a starting state or the boolean values of certain
atomic propositions in that state which are part of the specification formula.
For lowering the state space size, serialized states are compressed and several
abstraction techniques are used. While the abstractions are not used in the cur-
rent implementation for model checking CoreASM files, some of them could
provide notable benefits in the future. Furthermore, for storing the created state
space [mc]square can transparently use either heap or hard disc memory.

Since model checking assembly code is inevitably hardware dependent, one
of the main design goals of [mc]square was easy extendibility for new mi-
crocontrollers and corresponding assembly instructions. As CoreASM offers
simulation capabilities for ASMs we plugged it into [mc]square as to represent
a new, virtual microcontroller. The next subsections give a short summary of
[17], detailing the important facts about the model checking process and the
architecture of [mc]square which enable this layout.

3.1 Model Checking in [ms]square

Fig. 1 illustrates the model checking process: the user provides a CTL formula
and a program (ELF file) which can be accompanied by the corresponding C file.
First, the formula is parsed and the ELF file is disassembled into an assembly
program. Afterwards, both are passed to the model checker which queries the
initial state from the state space and begins to check the formula.

As the model checker uses an on-the-fly algorithm, it asks the state space
for successor states whenever it needs them to check the current logical formula
or one of its subformulae. If the state space has not yet created the needed
successors of a state, it uses the simulator to create them on demand. The
simulator creates successors by simulating the effects of the current instruction
on the current state. If the model checker finds a state that does not satisfy the
formula, the algorithm aborts.

After model checking has been conducted the counterexample generator is
invoked and presents the counterexample or witness in the assembly code, in the
C code (if present), and as a state space graph.

Direct Support for Model Checking Abstract State Machines 115

[mc]square

Cf ile

assembly
code file

preprocessor model
checker

formulaparser

result

graph counterexample
generator

states pace
builder

simulator

elffile

Cfile

formula

Fig. 1. Model checking process in [mc]square used for the verification of microcon-
troller code

3.2 Architecture

Fig. 2 depicts the architecture of [mc]square as a UML class diagram. One of
the main quality requirements motivating this design was the ease of extend-
ing the tool to support new microcontrollers. The core classes ModelChecker,
StateSpace, and Simulator correspond to the equivalent components shown in
Fig. 1.

An object of class ModelChecker consists of the user provided Formula and
a StateSpace which in the beginning is filled just with the initial state provided
by the HardwareSimulator. To keep the state space hardware-independent, all
hardware-dependent information is stored in a byte array that is used by the
simulator to generate the real hardware state (processor state, contents of mem-
ory, etc.). All other information stored in the states is hardware-independent
(e.g. name, successors, and truth values of the subformulae).

A Simulator combines a microcontroller Program and a Hardware device that
are both implemented hardware-dependent. They represent the assembly in-
structions and the hardware features, like e.g memory and registers, respec-
tively. The effect of a single instruction on the hardware is simulated and re-
turned to the state space as an array of byte arrays each representing one pos-
sible successor state. The simulator also handles the non-determinism that is
involved, e. g. whenever inputs from the environment are read, by creating an
over-approximation of the real state space.

116 J. Beckers et al.

Formula ModelChecker StateSpace HardwareSimulator

GlobalCTLModelChecker LocalCTLModelChecker ATmegaSimulator CX16xSimulator

Hardware

Program

ATmegaProgram

XC16xProgram

ATmega
XC16x

1

*

Fig. 2. Architecture of [mc]square represented by a UML class diagram. The figure
only shows classes that are important to understand the general idea. Not all subclasses
are shown and some packages as e. g. GUI and utilities are omitted completely.

The changes that are needed to add new microcontrollers to [mc]square vary
depending on the microcontroller family. Currently the ATmega family as well
as the Infineon XC167 microcontroller are supported.

4 Verification of CoreASM Models Using [mc]square

We utilize CoreASM to introduce a new HardwareSimulator (c. f. Fig. 2) to
[mc]square, virtually representing an ASM microcontroller. A simulator encap-
sulates both a program and the hardware which are replaced by an ASM spec-
ification and the abstract machine it runs on, respectively. Hence, none of the
implementations of Formula, ModelChecker, or StateSpace have to be modified.
The following paragraphs describe the necessary modifications of CoreASM

and the glue code to connect it to the state space builder of [mc]square.

Serialization. As mentioned above, all hardware-dependent information of a
state, i. e. in the case of CoreASM all the universes, functions and rules of
an ASM state, has to be represented as an array of bytes by the simulator.
In CoreASM this information is stored in a so called AbstractStorage that
was designed to be comprehensive and easily extendible via CoreASM’s plugin
architecture.

We have chosen to transform a CoreASM state into a byte array and vice
versa using the native Java support for serialization and deserialization of ob-
jects. This technique is typically used for object persistence and does not demand

Direct Support for Model Checking Abstract State Machines 117

step

getInitialState

init engine

serializes tate

gets et of alla gents

generate alls uccessors

REPEAT over all
possibles etso fa gents

generate seto fa ll
possibilitiesf or

choose

REPEAT over all
possibilities

engineStep()

Fig. 3. Finding all successors of an ASM state with CoreASM for the initial state
and all successors

many modifications to CoreASM’s source code and facilitates the extension to
future plugins of CoreASM. On the other hand this method produces rather
big memory footprints and is one of the major areas for improvements in future
work.

Stepping. The most challenging modifications to CoreASM are due to the
fact that not only one but all possible successors of a state have to be produced
by a step of the CoreASM engine. This affects especially the scheduler that
determines the set of agents executing concurrently in a distributed ASM and the
choose plugin that introduces nondeterminism into the model. Nevertheless, the
implementation was eased by CoreASM’s thoughtful architecture. In particular
the possibility of extension via plugins allowed us to replace only those two parts
of the engine with our own versions.

While the original plugins randomly select a set of agents or one of a set of
values respectively we have to gather all possible sets of agents and all possible
values and execute each combination of the two. For each combination the origi-
nal state has to be recovered and the random selection has to be replaced by the
selected combination while at the same time paying attention to the consistency
of the update set. As is depicted in Fig. 3 this is done using an adopted version
of the CoreASM engine step.

Equality of States. One unexpected problem with the serialization described
above is the equality of states. A CoreASM state is internally constructed
from several orderless mappings. This can lead to a situation where apparently
equal states are considered to be different by [mc]square e. g. just because two

118 J. Beckers et al.

functions have switched places in the byte representation of the state. Therefore
we introduce an order relation for all state elements that is used to sort all
mappings right before serialization takes place.

Check Atomics. Finally, the CoreASM simulator in [mc]square has to
evaluate atomic propositions on the elements of a state given in its byte rep-
resentation. Such a state is therefore deserialized into its object representation
in CoreASM. Afterwards, all the elements of the state, its universes, rules,
and functions can be queried. This means that verification formulas can contain
propositions about all these elements including, e. g. the activity of a certain
agent, the values of certain locations, or the existence of certain elements in a
universe.

5 Case Study

In this section we analyze the applicability of our approach and compare its
results to those achieved with the other tools mentioned in section 2. Therefore,
the following subsections describe the performance reached when using [mc]-

square on the well-known algorithm for distributed termination detection by
Dijkstra et al. [18] as well as on the Flash cache coherence protocoll [19].

5.1 Distributed Termination Detection

The algorithm is to detect the termination of a distributed program running
on a network of computation nodes. Each node can be either in active or in
passive state. Only nodes in active state can send messages to other nodes to
transfer parts of their computation. After having received a message, a passive
node switches to active. The transition from active to passive state occurs when
a node finishes its computation. The state in which all nodes are passive and no
messages are on their way is the state which is to be detected by the algorithm.

Eschbach [20] gives the ASM specification of such an algorithm by Dijkstra
et al. [18] and manually proves some of its properties. A CoreASM version of
this algorithm is used by Ma [12] to analyze the translation of CoreASM to
Promela which limits the maximum number of messages each node may send. In
this case study we use Ma’s specification to verify the following CTL property:

AG (termination(.)=true ⇒ AF terminationDetected(.)=true)

It states that each termination will eventually be detected. Table 1 shows the
results when model checking this property for two nodes with a maximum of
one message per node. Compared, the translation from CoreASM to Promela
takes only one second [12].

Obviously, the runtime is clearly above those reached by earlier approaches.
Nevertheless, our approach shows its applicability and general functioning. The
number of states stored and the memory consumption thereof are remarkably
small compared to other model checking problems which is due to the level of
abstraction offered by ASMs.

Direct Support for Model Checking Abstract State Machines 119

Table 1. Verifying termination detection with [mc]square

number of states stored 89208

number of transitions 430787

number of states created 440952

runtime 15 hours. 14 minutes

memory consumption 261857 KB

5.2 Flash Cache Coherence Protocol

The Stanford Flash multiprocessor is an architecture for distributed processors
that share their memory [19]. This sharing is coordinated by the Flash cache
coherence protocol which was used by Winter [5] as well as Ma [12] to demon-
strate the capabilities of their aforementioned model checkers for ASMs. The
memory is distributed over all nodes of the processor network and divided into
lines which are associated to nodes. Each processor can have local copies of each
file and is assured by the coherence protocol that all files are up-to-date.

We use the CoreASM specification of this coherence protocol given by Ma
[12] to check the following two properties for a setup of two processors and one
memory line:

– safety (S):

AG !(CCState(a1,l1)=exclusive & CCState(a2,l1)=exclusive)

– liveness (L):

AG AF (CurPhase(a1,l1)=ready & CurPhase(a2,l1)=ready)

The safety condition expresses that the two nodes should never have access
two one single line at the same time while the liveness condition ensures that all
requests are processed at some time. Neither of these two properties is fullfilled by
the protocol. Table 2 shows the runtime needed for verification of a corresponding
ASM using the tools CoreASM2Promela and ASM2SMV as presented by Ma [12]
and table 3 shows the corresponding results reached using [mc]square.

Although the test runs have been conducted on different machines due to
the need for different operating systems it can be conducted that [mc]square

reaches a runtime performance comparable to those of CoreASM2Promela and
ASM2SMV. This is due to the fact that [mc]square uses an on-the-fly algorithm

Table 2. Runtime needed for verification of the Flash cache coherence protocol using
the tools CoreASM2Promela and ASM2SMV as presented by Ma [12]

Property S L

CoreASM2Promela [12] 43s 7s

ASM2SMV [5] 438s 921s

120 J. Beckers et al.

Table 3. Model checking of the Flash cache coherence protocol using [mc]square

property S L
number of states stored 873 173

number of transitions 2240 247

number of states generated 3011 323

runtime 339s 35s

memory consumption 3051 KB 13 KB

counterexample

number of states 91 7

number of transitions 140 7

which aborts state space building in case of an existing counterexample. Fig. 4
shows an extract from the graphical representation of the counterexample for
the liveness condition. This feature distinguishes [mc]square from the other
approaches as it shows the counterexample as an ASM state space.

5.3 Evaluation

The generation of all possible successor states by altering a step in CoreASM

works as described in section 4. State sizes depend on the ASM specification
used and are mainly influenced by the efficiency of serialization. During our
test runs we reached a maximum number of roughly 250.000 states stored in
the main memory of our test machine with 16 Gbytes of RAM. This number
can be further increased by using the hard disc for storing state spaces. But as
before, the available RAM limits the state space size, because it stores an index
to the state location on the hard disc. Since we use an on-the-fly model checking
algorithm, the time for building the state space can not be distinguished from
the time needed for verification.

The case studies show that our approach is applicable and supports the
promised features. Specifically the handling of nondeterminism and scheduling
of concurrent asynchronous ASMs was analyzed to work correctly. Furthermore,
the study sets the direction for future work which should concentrate on a more
efficient creation of CoreASM states.

We observed relatively large states but surprisingly little problems with mem-
ory consumption. This is in part due to the abstraction capabilities offered by
the ASM theory and on the other hand due to efficient state compression used
in [mc]square. Nevertheless, the size of each single state is one of the areas for
future improvement as discussed in section 6.

The main problem at present is the runtime performance of our approach.
Since [mc]square shows competitive performance results when used for model
checking assembly code we further analyzed its interaction with CoreASM.
When using different compression techniques for state space minimization, i. e.
zip compression vs. run-length encoding vs. no compression, we don’t observe any
runtime differences compared to differences up to a factor of ten when verifying

Direct Support for Model Checking Abstract State Machines 121

Fig. 4. Extract from the liveness counterexample

122 J. Beckers et al.

assembly code [13]. This indicates that the CPU idles during model checking
and can hence dabble in compression. We believe that this is due to a high
number of context switches while simulating a step using CoreASM. A state in
CoreASM is highly object-oriented and was designed to be comprehensive and
easily extendible. This leads to a very branched structure that is not optimal
for usage in our scenario. Nevertheless, we still believe that our approach can
reach competitive performance figures as a similar problem arose when we used
an existing microcontroller simulator for model checking assembly code using
[mc]square. Meanwhile our own optimized microcontroller simulator shows a
runtime improvement up to a factor of 1000.

When verifying invalid formulas [mc]square shows the advantage of its on-
the-fly algorithm which aborts state space building in case of an existing coun-
terexample. Additionally this counterexample can be represented as a trace of
the ASM state space, thereby eliminating the need to understand the mapping
from a counterexample presented in a language other than ASM.

6 Conclusion and Future Work

This paper introduces an approach to model checking ASM specifications and
is the first of its kind that offers direct support for ASMs. We have applied the
discrete CTL model checker [mc]square that uses microcontroller simulation
to verify hardware-dependent assembly code by adopting the CoreASM tool
as a simulator for a virtual ASM microcontroller. Therefore, we have enhanced
the normal simulation to include all possible successors of a state and serialized
those states into a byte representation. In a case study on a distributed termina-
tion detection algorithm as well as on the Flash cache coherence protocol the
approach has proven its applicability and shown beneficial directions for future
improvements.

This work has benefited enormously from the excellent designs of the two
combined tools: CoreASM and [mc]square. CoreASM’s plugin architecture
greatly supports its adaptability that enabled its usage in this context and [mc]-

square has shown its extendibility way beyond its original purpose.
The most promising modifications for the future deal with the optimization

of memory consumption and runtime performce needed for building the state
space. The first step in this direction clearly is the improvement of the serializa-
tion e. g. by using a mapping between state elements, all of which are currently
stored as Java Strings, and a smaller data type better adapted to its serialization.
Furthermore, static analyses could help to minimize the number of states gener-
ated. Especially, delayed nondeterminism, a technique introduce by [mc]square

for model checking microcontroller code, seems promising. Nondterministic lo-
cations split the state space at the very latest possibility, i. e. when they are first
read after their creation. Finally, one can imagine support for symbolic model
checking of ASMs, where regions of the state space are represented by first order
formulas as suggested in [2]. Runtime optimization can mainly be reached by
optimizing the time needed for simulation.

Direct Support for Model Checking Abstract State Machines 123

References

1. Börger, E., Päppinghaus, P., Schmid, J.: Report on a Practical Application of
ASMs in Software Design. In: Gurevich, Y., Kutter, P., Odersky, M., Thiele, L.
(eds.) ASM 2000. LNCS, vol. 1912, pp. 361–366. Springer, Heidelberg (2000)

2. Börger, E., Stärk, R.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

3. Farahbod, R., Gervasi, V., Glässer, U.: Coreasm: an extensible asm execution en-
gine. Fundamenta Informaticae 77, 71–103 (2007)

4. Castillo, G.D.: Towards comprehensive tool support for abstract state machines.
In: Hutter, D., Stephan, W., Traverso, P., Ullmann, M. (eds.) FM-Trends 1998.
LNCS, vol. 1641, pp. 311–325. Springer, Heidelberg (1999)

5. Winter, K.: Model Checking Abstract State Machines. PhD thesis, Technical Uni-
versity of Berlin, Germany (2001)

6. Castillo, G.D., Winter, K.: Model checking support for the asm high-level language.
In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 331–346.
Springer, Heidelberg (2000)

7. Gargantini, A., Riccobene, E.: ASM-based Testing: coverage criteria and auto-
matic tests generation. In: Moreno-Dı́az, R., Quesada-Arencibia, A. (eds.) Formal
Methods and Tools for Computer Science (Proceedings of Eurocast 2001), Canary
Islands, Spain, Universidad de Las Palmas de Gran Canaria, February 2001, pp.
262–265 (2001)

8. Tang, C.K.F., Ternovska, E.: Model checking abstract state machines with answer
set programming. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI),
vol. 3835, pp. 443–458. Springer, Heidelberg (2005)

9. Kardos, M.: An approach to model checking asml specifications. In: Proceedings of
the 12th International Workshop on Abstract State Machines, pp. 289–304 (2005)

10. Ouimet, M., Lundqvist, K.: The timed abstract state machine language: Abstract
state machines for real-time system engineering. In: Proceedings ASM 2007 (2007)

11. Farahbod, R., Glässer, U., Ma, G.: Model checking coreasm specifications. In: Pro-
ceedings ASM 2007 (2007)

12. Ma, G.Z.: Model checking support for coreasm: Model checking distributed ab-
stract state machines using spin. Master’s thesis, Simon Fraser University, Burn-
aby, Canada (2007)

13. Schlich, B., Kowalewski, S.: [MC]SQUARE: A model checker for microcontroller
code. In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proc. 2nd Int. Symp.
Leveraging Applications of Formal Methods, Verification and Validation (IEEE-
ISoLA). IEEE Computer Society, Los Alamitos (to appear, 2006)

14. Schlich, B., Salewski, F., Kowalewski, S.: Applying model checking to an automo-
tive microcontroller application. In: Proc. IEEE 2nd Int. Symp. Industrial Embed-
ded Systems (SIES), pp. 209–216. IEEE, Los Alamitos (2007)

15. Vergauwen, B., Lewi, J.: A linear local model checking algorithm for ctl. In: Best,
E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 447–461. Springer, Heidelberg (1993)

16. Heljanko, K.: Model checking the branching time temporal logic ctl. Research Re-
port A45, Helsinki University of Technology, Digital Systems Laboratory, Espoo,
Finland (May 1997)

17. Schlich, B., Kowalewski, S.: An extendable architecture for model checking
hardware-specific automotive microcontroller code. In: Schnieder, E., Tarnai, G.
(eds.) Proc. 6th Symp. Formal Methods for Automation and Safety in Railway
and Automotive Systems (FORMS/FORMAT), GZVB, Braunschweig, Germany,
pp. 201–212 (2007)

124 J. Beckers et al.

18. Dijkstra, E., Feijen, W., Gasteren, A.: Derivation of a Termination Detection Al-
gorithm for Distributed Computations. Information Processing Letters 16(5), 217–
219 (1983)

19. Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K.,
Chapin, J., Nakahira, D., Baxter, J., Horowitz, M., et al.: The Stanford FLASH
multiprocessor. In: Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R.,
Gharachorloo, K., Chapin, J., Nakahira, D., Baxter, J., Horowitz, M., et al. (eds.)
Proceedings the 21st Annual International Symposium on Computer Architecture,
pp. 302–313 (1994)

20. Eschbach, R.: A Termination Detection Algorithm: Specification and Verification.
In: Wing, J., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1720–
1737. Springer, Heidelberg (1999)

On the Purpose of Event-B Proof Obligations�

Stefan Hallerstede

University of Southampton
United Kingdom

sth@ecs.soton.ac.uk

Abstract. Event-B is a formal modelling method which is claimed to be suitable
for diverse modelling domains, such as reactive systems and sequential program
development. This claim hinges on the fact that any particular model has an ap-
propriate semantics. In Event-B this semantics is provided implicitly by proof
obligations associated with a model. There is no fixed semantics though. In this
article we argue that this approach is beneficial to modelling because we can
use similar proof obligations across a variety of modelling domains. By way of
two examples we show how similar proof obligations are linked to different se-
mantics. A small set of proof obligations is thus suitable for a whole range of
modelling problems in diverse modelling domains.

1 Introduction

Event-B [5] is a formal modelling method for discrete systems based on refinement
[8,9,10]. The main purpose of creating models in Event-B is to reason about them and
understand them. Reasoning about complex models should not happen accidentally but
needs systematic support within the modelling method. We insist that reasoning is an
essential part of modelling because it is the key to understanding complex models.
When we create a complex model, usually, our understanding of it is incomplete at
first; and the first duty of a modelling method is to help improve our understanding of
the model.

To reason about a model we consider its proof obligations. Proof obligations have
a two-fold purpose. On the one hand, they show that a model is sound with respect to
some behavioural semantics. On the other hand, they serve to verify properties of the
model. This goes so far that we only focus on the proof obligations and do not present a
behavioural semantics at all. This approach permits us to use the same proof obligations
for very different modelling domains, for instance: reactive, distributed and concurrent
systems [7], a probabilistic variant [16]; sequential programs [4]; or electronic circuits
[15]. All of this, without being constrained to semantics tailored to a particular do-
main. Event-B is a calculus for modelling that is independent of the various models of
computation.

In this article we present two examples of Event-B semantics showing the viability
of this approach. For this purpose, we introduce enabledness proof obligations into the

� This research was carried out as part of the EU research project DEPLOY (Industrial de-
ployment of system engineering methods providing high dependability and productivity)
http://www.deploy-project.eu/

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 125–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 S. Hallerstede

Event-B method. We go on to show how they are incorporated into relative deadlock-
freeness proofs with respect to the failures model of CSP [17] and into soundness proofs
of sequential program development [4]. The theoretical results as such are not new. In
[9] a temporal leadsto-operator and deadlock-freeness are introduced, where the lead-
sto-operator is modelled by means of a while-loop. In this article we discuss the use
the same (few) proof obligations to reason about different semantic models. We present
the derivation of the proof obligations from the semantic models to demonstrate what
is involved. The theory used in this article is more based on [11,21] than on [1,3]; the
latter are geared towards sequential program development.

A complication arises (by our choice), because the first semantics uses a relational
model [18] and the second set transformers [11,13]. This complication is hidden in
Event-B by means of its proof obligations: to the user of Event-B it all looks the
same. Simple restrictions on proof obligations achieve soundness in either case. Be-
cause Event-B models do not have a (behavioural) semantics a priori, we are free to
chose one and with it a set of appropriate proof obligations. If we were to fix some
semantics for Event-B, we would have difficulties applying it to the various domains
mentioned in the introduction.

Outline. Section 2 presents Event-B in terms of its proof obligations. In Sections 3
and 4 we relate a reactive systems semantics and a sequential program semantics to
proof obligations presented in Section 2. Sections 3 and 4 are somewhat technical. We
have chosen to present the material in this way to demonstrate how enabledness proof
obligations arise in the two cases. As a consequence of this decision there is no space to
present more examples. It is not our intention to present a complete list of semantics for
Event-B. That list is open-ended. In future, new applications of Event-B may emerge
that require new kinds of semantics. In the same sense, the two examples presented are
not intended be understood as fully representing the corresponding domains, reactive
systems modelling and sequential program modelling. The two seem reasonable based
on our experience. They could be adapted to fit particular modelling needs and devel-
opment processes. Whenever we want to use Event-B with some specific semantics we
can prove how Event-B suits that semantics.

2 Event-B

We present the core of Event-B in terms of its proof obligations concerned with refine-
ment and consistency. For the purposes of this article the proof obligations are only
stated as set-theoretic expressions. In order to make them easier to digest we introduce
some rudimentary notation of Event-B and define all employed sets and relations based
on the notation.

Behavioural aspects of Event-B models are expressed by means of machines. A ma-
chine M may contain variables, invariants, events, and variants. Variables v define the
state of a machine. They are constrained by invariants I(v). (Variables occurring free in
a formula are indicated in parentheses.) Possible state changes are described by means
of events Em, for m ∈ αM . (In the following sections it will prove useful to have
events associated with indices drawn from finite sets αM . We introduce them here to

On the Purpose of Event-B Proof Obligations 127

achieve a more coherent presentation.) Each event Em is composed of a guard Gm(v)
and an action v :| Sm(v, v′). We denote an event Em by

when Gm(v) then v :| Sm(v, v′) end.

A dedicated event that has true as its guard and v :| A(v′) as its action is used for
initialisation. (The predicate A(v′) does not refer to unprimed variables.)

The action v :| Sm(v, v′) describes the relationship between the state just before
the action has occurred (represented by unprimed variable names v) and the state just
after the action has occurred (represented by primed variable names v′).

The guard of an event states the necessary condition under which the event may
occur, and the action describes how the state variables evolve when the event occurs.

In order to simplify the main part of this article, we do not present local variables of
events here. For the same reason we state actions as single nondeterministic assignments
v :| Sm(v, v′). For a detailed description of events, actions and assignments see [8].

We assume familiarity with basic set-theoretic notation defining sets and relations
corresponding to all of the above:

Φ =̂ {v | � } 1

i =̂ {v | I(v)}
gm =̂ {v | Gm(v)}
sm =̂ {v �→ v′ | Sm(v, v′)}

a =̂ {v′ | A(v′)},

where Φ denotes the entire state space.

2.1 Machine Consistency

For each event Em of a machine M , feasibility must be proved:

i ∩ gm ⊆ s−1
m [Φ]. (1)

By proving feasibility, we ensure that Sm provides an after state whenever Gm holds.
This means that the guard indeed represents the enabling condition of the event.

Invariants are supposed to hold whenever variable values change. Obviously, this
does not hold a priori for any combination of events and invariants and, thus, needs to
be proved. The corresponding proof obligation is called invariant preservation:

(gm � sm)[i] ⊆ i. 2 (2)

Similar proof obligations are associated with the initialisation event of a machine: fea-
sibility of initialisation is a �= ∅ and invariant establishment is a ⊆ i.

1 Φ is the Cartesian product of the types ∆1, ∆2, . . . , ∆κ of the variables v1, v2, . . . , vκ . Writing
{v | � } we avoid introducing the component types ∆1, ∆2, . . . , ∆κ .

2 � denotes domain restriction: x �→ y ∈ (g � s) ≡ x ∈ g ∧ x �→ y ∈ S .

128 S. Hallerstede

2.2 Machine Refinement

Machine refinement provides a means to introduce more details about the dynamic prop-
erties of a model [8]. For more on the well-known theory of refinement, we refer to the
Action System formalism [10] that has inspired the development of Event-B.

A machine N can refine at most one other machine M . We call M the abstract
machine and N a concrete machine. The state of the abstract machine is related to the
state of the concrete machine by a gluing invariant J(v, w), where v are the variables
of the abstract machine and w the variables of the concrete machine.

Let Em, for m ∈ αM , be the abstract events; and let Fn, for n ∈ αN , with αN a
finite set and αM ⊆ αN , be the concrete events of the form:

when Hn(w) then w :| Tn(w, w′) end;

and let w :| B(w′) be the action of the initialisation.
The corresponding set-theoretic definitions are:

Ψ =̂ {w | � }
k =̂ {v �→ w | I(v) ∧ J(v, w)}
j =̂ {v �→ w | J(v, w)}

hn =̂ {w | Hn(w)
tn =̂ {w �→ w′ | Tn(w, w′)}
b =̂ {w′ | B(w′)}.

Each event Em of the abstract machine is refined by a concrete event Fm. Somewhat
simplified, we can say that Fm refines Em if the guard of Fm is stronger than the guard
of Em, and the gluing invariant J(v, w) establishes a simulation of Fm by Em:

k ; (hm � tm) ⊆ (gm � sm) ; j. 3 (3)

Using (2) we can infer from (3)

k ; (hm � tm) ⊆ (gm � sm) ; k. (4)

In the course of refinement, new events can be introduced into a model. New events
must be proved to refine the implicit abstract event skip that does nothing; that is, its
guard is true and its action is v :| v′ = v. In the notation used in this article new events
are just those with indices drawn from the set αN \ αM .

Convergence. Moreover, it may be proved that new events do not collectively diverge
by means of a well-founded relation r. We refer to the corresponding proof obligation
as progress:

k ; (hn � tn) ⊆ k ; r. (5)

A common choice for r is η−1 ; {x �→ y | x < y} ; η where η = (λw · w ∈ N | V (w))
and V (w) an integer expression, called variant, of N . We call events that satisfy (5)
convergent.

3 The corresponding proof obligation for the initialisation is: b ⊆ j[a] .

On the Purpose of Event-B Proof Obligations 129

Enabledness. Using (1) we infer from (3),

k � hm ⊆ gm � k, (6)

the guard of the abstract event may be strengthened during refinement. As a conse-
quence, it is sufficient if the guard of the concrete event is false, that is, hm = ∅ . This
means we could refine any abstract event by a concrete event with false as its guard.
Such an event can never occur. If we strengthen the guard less extremely, we still have
a concrete event that may occur less often than its abstract counterpart. If this is not
intended we need also to weaken the guard as discussed in the next paragraph.

Let m ∈ αM and L ⊆ αN . We may prove that whenever the abstract machine
may continue by means of event Em with guard Gm then the concrete machine may
continue by means of some F� for some
 ∈ L:

k[gm] ⊆ (
⋃

 ·
 ∈ L | h�) . (7)

By convention we assume that the guard hm of the concrete event that refines Em is
contained in the union on the right hand side, that is, m ∈ L . If L = {m}, then
combining (6) and (7) yields the equivalence of abstract guards to concrete guards under
the (gluing) invariant:

gm � k = k � hm.

If L contains a new event, the relationship gets more complicated; enabledness and
convergence interact. This is becomes apparent in our presentation of sequential pro-
grams later. In our presentation of reactive systems below this is less visible due to some
simplifications that we have made to keep it brief.

3 Reactive Systems Modelling

We base our presentation of reactive systems modelling on the semantics of the process
algebra CSP [17,22]. CSP was developed specifically for modelling of such systems
[18]. Its semantics is expressed in terms of finite and infinite traces, failures, and diver-
gences describing the behaviour of a system. We focus on failures: failures refinement
guarantees that we cannot introduce new deadlocks in a refined model. In Event-B this
is achieved by enabledness (7). In this section we show how failures and enabledness
are connected. The principle of this connection is not new [12,19]. For this reason, we
only present the essential formal ingredients and proofs. We assume that the machines
are free of divergences, proved by means of (5), and that all events are image-finite,
that is, finite(sm[gm]). As a consequence, the behaviour of machines can be described
purely in terms of failures, the component most relevant to our analysis of enabledness
proof obligations.

3.1 Failure Semantics

We define failures directly in the set-theoretic notation of Section 2; similarly to [14].
Let M be a machine with initialisation a and events with guards gm and actions sm.

130 S. Hallerstede

For machine M and a sequence of event indices t we define the path of t by

pathM (〈〉) =̂ a � idΦ

pathM (t�〈m〉) =̂ pathM (t) ; (gm � sm).

A path describes the state transition corresponding to the occurrence of the t. If the path
of t is not empty, then t belongs to the behaviour of M ; we say such a t is a trace of M .
Failures are defined in terms of paths and of refusals introduced next. Being in a state
satisfying some refusal R, none of the events indexed by R can occur,

refusalM (R) =̂ (
⋂

m ·m ∈ R | Φ\gm) .

Failures are traces combined with refusals; the pair (t �→ R) is a failure of M if t is a
trace of M and after having engaged in t machine M may be in a state where all events
indexed by R are refused,

(t �→ R) ∈ failureM =̂ pathM (t) � refusalM (R) �= ∅

Failure semantics does not deal with fairness.

3.2 Failure Refinement

Let C = αN\αM be the indices of all new events, and for a trace t and a set of event
names L let t↑L be t with all event names in L removed. We say machine N failure-
refines machine M ,

(t �→ R ∪ C) ∈ failureN ⇒ (t↑C �→ R) ∈ failureM ,

if the failures of N are contained in the failures of M modulo the new events C. Note,
that this definition of failure refinement is not standard. We have combined the plain
refinement notion of [17] with hiding of new events in order to shorten the presentation.
The given refinement notion is still monotonic because hiding is monotonic. We do not
suggest that this is the notion of failures refinement one should be using in practice but
believe that it is sufficient to make our point about using Event-B for failure refinement
of machines. A variant of it has been used to model introduction of local channels in
stated based reactive models [12].

Failure-refinement is proved by relating traces and failures of the two machines [12].
Assume, by means of (4), we have

pathN (t) ⊆ pathM (t↑C) ; k. (8)

We observe

(t �→ R ∪ C) ∈ failureN { def. of failure }
≡ pathN (t) � refusalN (R ∪ C) �= ∅ { by (8) }
⇒ pathM (t↑C) ; k � refusalN (R ∪ C) �= ∅ { set theory }
⇒ pathM (t↑C) � k−1[refusalN (R ∪ C)] �= ∅ { see (9) below }
⇒ pathM (t↑C) � refusalM (R) �= ∅ { def. of failure }
≡ (t↑C �→ R) ∈ failureM .

On the Purpose of Event-B Proof Obligations 131

that N failure-refines M , provided

k−1[refusalN (R ∪ C)] ⊆ refusalM (R) (9)

holds. We observe:

k−1[refusalN (R ∪ C)] ⊆ refusalM (R) { def. refusal }
≡ k−1[(

⋂
n · n ∈ (R ∪ C) | Ψ\hn)] ⊆ (

⋂
m ·m ∈ R | Φ\gm) { set theory }

≡ k[(
⋃

m ·m ∈ R | gm)] ⊆ (
⋃

n · n ∈ (R ∪C) | hn) { set theory }
≡ (

⋃
m ·m ∈ R | k[gm]) ⊆ (

⋃
n · n ∈ (R ∪C) | hn) { set theory }

≡ ∀m ·m ∈ R⇒ (k[gm] ⊆ (
⋃

n · n ∈ (R ∪ C) | hn)) { set theory }
⇐ ∀m ·m ∈ R⇒ (k[gm] ⊆ (

⋃
n · n ∈ ({m} ∪ C) | hn)) .

Refusals are downward closed: if R is a refusal and m ∈ R then {m} is a refusal too.
Hence, the strengthening (

⋃
b ∈ (R ∪ C) · . . .) to (

⋃
b ∈ (C ∪ {a}) · . . .) in the last

step is not as severe as it may seem. The formula

k[gm] ⊆ (
⋃

 ·
 ∈ ({m} ∪ C) | h�)

in the last step of the calculation is just proof obligation (7) with L = {m} ∪ C.
When we model reactive systems in Event-B, we do not need to be aware of the

failures model. The proof obligations form a barrier that shields from the details and
complications of the semantic model.

Given the description of Event-B in the introduction it is tempting to interpret Event-
B always in the way presented in this section. After all, Event-B is a descendant of
Action Systems and has been conceived to model systems. However, the semantics of
Event-B is not fixed. We can think about any Event-B machine in terms of any appro-
priate semantics. In the next section we discuss Event-B for sequential program devel-
opment — with different semantics but with similar proof obligations to those of this
section.

4 Sequential Program Modelling

Event-B has been used for sequential program development [4]. We present a sound-
ness argument resulting from the “defect” of Event-B not to provide preconditions for
events: events are guarded and block execution when the guard is false. In sequential
program refinement preconditions are more common because they lead certainly to im-
plementable programs. This does not hold for guards. If we were to interpret event
guards as preconditions the problem would disappear. (In fact, this interpretation is
customary in Z [23,24].) We need an additional proof obligation to rectify this.

Given the problem described above: Why does Event-B not support preconditions
and guards? By contrast, this is supported by the B Method [1] but leads to more in-
tricate (and sometimes obscure) proof obligations. In Event-B simplicity of the proof
obligations is considered of major importance. It brings two strongly related benefits:
proof obligations are easy to understand, and more efficient and comprehensive tool
support is possible.

132 S. Hallerstede

In this section we present how enabledness proof obligations arise when proving loop
introduction correct in Event-B. We first present some set transformer theory. In the
remainder of this section we prove loop introduction correct with respect to (forward)
refinement of set transformers. The enabledness proof obligation will only appear at the
very end of the proof.

4.1 Set Transformers

The notions introduced in this section are intended to capture semantical properties of
sequential programs. This should not be confounded with the actual Event-B notation
that uses first-order predicate logic and set theory presented in Section 2. The model of
set transformers we use follows closely the type-theoretical model of [11]4. However,
instead of type theory we use set theory which is easier to relate to Event-B; see also
[21]. State spaces are Cartesian products denoted by the letters Φ and Ψ as introduced
in Section 2.

Set transformers5 are functions from sets to sets. Let g and ϕ be subsets of V and s
a relation. In this article we make use of the following set transformers6:⌊

g
⌋
(ϕ) =̂ g ∩ ϕ (assertion)⌈

g
⌉
(ϕ) =̂ (Φ \ g) ∪ ϕ (assumption)⌈

s
⌉
(ϕ) =̂ {v | s[{v}] ⊆ ϕ} . (demonic update)

For set transformers P we define precondition pre(P) and guard grd(P) by

pre(P) =̂ P (Φ)
grd(P) =̂ Φ \ P (∅).

Note, that (1) implies i∩grd(
⌈
gm

⌉
;
⌈
sm

⌉
) = i∩gm and i∩pre(

⌊
gm

⌋
;
⌈
sm

⌉
) = i∩gm.

The informal description of the meaning of a guard in the beginning of Section 2 leaves
us a choice for its interpretation. It can be read as an assertion or an assumption. The
standard reading of Event-B is as an assertion, that is, event Em corresponds to the set
transformer ⌈

gm

⌉
;
⌈
sm

⌉
. (10)

Based on set transformers, sequential programs are usually specified in terms of speci-
fication statements[11,20], namely, ⌊

gm

⌋
;
⌈
sm

⌉
, (11)

4 Our presentation is based on first-order set theory instead of higher-order logic. For this reason,
we use set transformers instead of predicate transformers.

5 We use the definitions of [11] over that of [1] because they seem to be easier to handle during
proof; to avoid a notational clash we use

⌊
·
⌋

instead of { · } and
⌈
·
⌉

instead of [·] .
6 Angelic update

⌊
s
⌋
(ϕ) =̂ {v | s[{v}] ∩ ϕ �= ∅} is missing from the list. We do not need it

in this article.

On the Purpose of Event-B Proof Obligations 133

where grd(
⌊
gm

⌋
;
⌈
sm

⌉
) = Φ would be required as a healthiness condition [13]. The

two simple laws ⌊
g
⌋
;
⌈
g
⌉

=
⌊
g
⌋

(12)⌈
g
⌉
;
⌊
g
⌋

=
⌈
g
⌉

(13)

permit us to switch between the two representations (10) and (11) in suitable contexts.

4.2 Refinement of Set Transformers

Denoting by � the ordering of set transformers

P � Q =̂ (∀ϕ · ϕ ⊆ Φ ⇒ P (ϕ) ⊆ Q(ϕ)),

an extensive refinement theory can be developed for set transformers [11,21]. For a
relation k let

⌈
k
⌉∼

be the left adjoint of the set transformer
⌈
k
⌉
. It has the following

simple characterisation [21]: ⌈
k
⌉∼(ϕ) = k[ϕ]. (14)

A set transformer P is said to be forward refined by a set transformer Q, denoted by
P �k Q, if ⌈

k
⌉∼ ; P � Q ;

⌈
k
⌉∼

.

Taking P and Q to be either of the form (10) or (11), forward refinement can be
rephrased in relational terms [11,21]:⌈

g
⌉
;
⌈
s
⌉
�k

⌈
h
⌉
;
⌈
t
⌉

⇔ k ; (h � t) ⊆ (g � s) ; k (15)⌊
g
⌋
;
⌈
s
⌉
�k

⌊
h
⌋
;
⌈
t
⌉

⇔ g � k ⊆ k � h ∧ g � (k ; t) ⊆ s ; k (16)

At its core refinement in Event-B corresponds to forward refinement of universally
conjunctive set transformers of the form (10). This is the interpretation used in Sec-
tion 3. But Event-B does not have to be interpreted in this way. This is discussed in
more detail in the remainder of this section:

We want to verify that introducing a loop as described in [4] in Event-B is sound.
Note that because of

g � k ⊆ k � h ∧ k ; (h � t) ⊆ (g � s) ; k ⇒ g � (k ; t) ⊆ s ; k

it is sufficient to prove just g � k ⊆ k � h on top of (15) so as to obtain (16). This
indicates where to begin with a theory of sequential program refinement in Event-B.
Matters get complicated by the presence of while loops and associated new events. We
consider only this case because the case where loops are not involved is quite trivial as
we have just seen.

134 S. Hallerstede

4.3 Introduction of a While Loop

Let m ∈ αM and n ∈ αN\αM . Our aim is to prove that the abstract event Em is
refined by a loop composed of the new event Fn followed by an assignment, the action
of the concrete event Fm:

while Hn do
Tn

end ;
Tm .

We model the loop by the least fix point (µX ·B(X)):⌊
gm

⌋
;
⌈
sm

⌉
�k (µX · B(X)) ;

⌈
tm

⌉
, (17)

where the body of the loop is given in terms of the new event Fn
7

B(X) =̂ (
⌈
hn

⌉
; (

⌊
hn

⌋
;
⌈
tn

⌉
) ; X) �

⌈
Ψ\hn

⌉
.

(Because of law (13), we can simplify B(X) to (
⌈
hn

⌉
;
⌈
tn

⌉
; X) �

⌈
Ψ\hn

⌉
. We

may not want to carry out this simplification, though, if Fn is refined further. In that
case we would want to replace

⌊
hn

⌋
;
⌈
tn

⌉
in the longer formula by whatever refines it.

In that case we would like a more concise loop guard than just the guard
⌈
hn

⌉
of the

new event. We are not concerned about the exact form of the loop guards here, however.
A systematic way of deriving them is presented in [4].)

Proof of (17). We assume event Fm refines event Em,⌈
gm

⌉
;
⌈
sm

⌉
�k

⌈
hm

⌉
;
⌈
tm

⌉
, (18)

and the loop (µX · B(X)) forward refines skip, that is,⌈
idΦ

⌉
�k (µX · B(X)), (19)

Note, that the update
⌈
idΦ

⌉
does not diverge, hence, the refinement (19) requires the

new concrete event Fn to be convergent. Now,

(17)

≡ { (14) and def. of
⌊
-
⌋

and �k }⌊
gm

⌋
;
⌈
sm

⌉
�k

⌊
k[gm]

⌋
; (µX · B(X)) ;

⌈
tm

⌉
≡ { (∗) }⌊

gm

⌋
;
⌈
sm

⌉
�k

⌊
k[gm]

⌋
; (µX · B(X)) ;

⌈
hm

⌉
;
⌈
tm

⌉
≡ { (12) }⌊

gm

⌋
;
⌈
gm

⌉
;
⌈
sm

⌉
�k

⌊
k[gm]

⌋
; (µX · B(X)) ;

⌈
hm

⌉
;
⌈
tm

⌉
⇐ {

⌊
gm

⌋
�k

⌊
k[gm]

⌋
}

(18) ∧ (19)

7 The operator � denotes demonic choice of set transformers: (P �Q)(ϕ) = P (ϕ) ∧Q(ϕ) .

On the Purpose of Event-B Proof Obligations 135

Only the inference marked by (∗) is missing. We close the gap by proving the fol-
lowing claim⌊

k[gm]
⌋
; (µX ·B(X)) ;

⌈
hm

⌉
=

⌊
k[gm]

⌋
; (µX · B(X)), (20)

permitting to eliminate the guard hm of the concrete event from the left hand side. This
is done in the next two sections: in Section 4.4 we prove two claims facilitating the
conclusion of the proof of (20) in the ensuing Section 4.5.

4.4 Analysing the While Loop

Our aim is to establish (20). In order to eliminate
⌈
hm

⌉
, propagating some information

through the loop seems a good idea. Hence, we have a closer look at the set transformer⌊
k[gm]

⌋
; (µX ·B(X)). Assuming the new event is convergent —as we do: (19)— we

can exchange the least against the greatest fix point [11,18]:⌊
k[gm]

⌋
; (µX · B(X)) =

⌊
k[gm]

⌋
; (νX ·B(X))

So we can carry out fix point calculations using the greatest fix point.

First, we show k[gm] ⊆ (νX · B(X))(k[gm]). We know that the abstract guard
gm is an invariant of the concrete action sn because the concrete event refines skip:

k[gm] ⊆
⌈
tn

⌉
(k[gm]) . (21)

We state without proof (compare [11, Lemma 21.9], for instance):

(νX ·B(X))(ϕ) = (νx · (hn ∩
⌈
tn

⌉
(x)) ∪ ((Ψ\hn) ∩ φ)). (22)

We prove that k[gm] is an invariant of the loop (νX · B(X)). We calculate:

(νX ·B(X))(k[gm]) { (22) }
= (νx · (hn ∩

⌈
tn

⌉
(x)) ∪ ((Ψ\hn) ∩ k[gm])) { see def. of b(x) below }

= (νx · b(x)) { see below }
⊇ k[gm].

We define b(x) by b(x) =̂ (hn∩
⌈
tn

⌉
(x)) ∪ ((Ψ\hn)∩k[gm]) and prove the remaining

claim k[gm] ⊆ (νx · b(x)); we insert k[gm] into b(x):

b(k[gm]) { def. of b(x) }
= (hn ∩

⌈
tn

⌉
(k[gm])) ∪ ((Ψ\hn) ∩ k[gm]) { (21) }

⊇ (hn ∩ k[gm]) ∪ ((Ψ\hn) ∩ k[gm]) { set theory }
= k[gm].

Using the fix point property (e.g. [11]),

φ ⊆ b(φ) ⇒ φ ⊆ (νx · b(x)) ,

we conclude k[gm] ⊆ (νx · b(x)) as desired.

136 S. Hallerstede

Second, (νX · B(X))((Ψ\hn) ∩ φ) = (νX · B(X))(φ). In other words, we
can also show that (νX ·B(X)) establishes the negated guard of the concrete event;
see [11]:

(νX · B(X))((Ψ\hn) ∩ φ) { (22) }
= (νx · (hn ∩

⌈
tn

⌉
(x)) ∪ ((Ψ\hn) ∩ (Ψ\hn) ∩ φ)) { set theory }

= (νx · (hn ∩
⌈
tn

⌉
(x)) ∪ ((Ψ\hn) ∩ φ)) { (22) }

= (νX · B(X))(φ).

4.5 Use of the Enabledness Proof Obligation

Combining the first and second claim of the preceding section, we have proved:⌊
k[gm]

⌋
; (µX ·B(X)) =

⌊
k[gm]

⌋
; (µX ·B(X)) ;

⌊
(Ψ\hn) ∩ k[gm]

⌋
. (23)

Finally, we can discharge (20) by means of (7):⌊
k[gm]

⌋
; (µX · B(X)) ;

⌈
hm

⌉
{ (23) }

=
⌊
k[gm]

⌋
; (µX · B(X)) ;

⌊
(Ψ\hn) ∩ k[gm]

⌋
;
⌈
hm

⌉
{ (∗) }

=
⌊
k[gm]

⌋
; (µX · B(X)) ;

⌊
(Ψ\hn) ∩ k[gm]

⌋
{ (23) }

=
⌊
k[gm]

⌋
; (µX · B(X)),

where the step marked by (∗) depends on

k[gm] ⊆ hm ∪ hn (24)

which corresponds to the enabledness proof obligation (7) with L = {m, n}. Using this
proof obligation, we have proved something about preconditions. If we were committed
to the failures semantics of Event-B, we would have had difficulties seeing this. Intu-
itively, deadlock-freeness appears quite distant from preconditions. The enabledness
proof obligations permit us to weaken preconditions as usual in sequential program
refinement [20]; we have k[gm] ⊆ hm ∪ hn but only k−1[hm] ⊆ gm .

Preservation of enabledness properties is achieved by simple rules governing their
refinement [9]; the guard of each abstract event must imply the guard of the concrete
event or the guard of some new event. This is just what we have shown to be necessary
in this section. Loop introduction is proved by refinement. If we continue in this way
correctness is preserved.

When developing sequential programs in Event-B we do not need to apply the pos-
sibly complex underlying theory directly but only know about the proof obligations of
the kind given in the introduction. We do not need to be aware of the theory while mod-
elling a program. We do not need to be aware of the theory while modelling other kinds
of system either but simply rely on the proof obligations presented to us. A large amount
of those proof obligations is shared among the the different kinds of system. This makes
it easy for the same person to create models in the different domains without having to
learn a new approach each time.

On the Purpose of Event-B Proof Obligations 137

4.6 Limitations

In standard situations a system model is based on a specific, usually, well-known se-
mantics. When using Event-B we only consider the kind of model created interesting,
within the scope of this article, a sequential program or a reactive system. However,
in these situations we do not worry too much by which means soundness was proved
with respect to the proof obligations. We simply rely on the proof obligations as they
are generated by some tool [6]. In standard situations we ought to be able to focus on
modelling, and writing a model become mere routine. However, it is also possible that
a model does not fit one of those situations. For instance, in the model described in
[2] some events that are newly introduced must be convergent and some need not be.
In that case one has to be aware of the semantics of the model justifying the presence
of proof obligations and the absence of proof obligations. This is the price of the lib-
erty one can have when modelling in Event-B. We can create models unconstrained by
some semantics. This may be particularly useful for experimentation. But we have to
be careful about what a model means and justify why we consider a particular model
reasonable. For such models the semantics can be considered to be part of the proper-
ties of the system modelled — it is no longer given a priori as is the case in standard
situations.

5 Conclusion

Event-B addresses various modelling domains among which reactive systems and se-
quential programs presented in this article. Event-B has a notation based on first-order
predicate logic and set theory. Event-B has a set proof obligations that are associated
with models.

What Event-B lacks is a behavioural semantics. And that is so intentionally. In fact,
it would be difficult to support all those modelling domains using one semantics that
would suit all. What we have seen, by way of two examples, is that the proof obligations
of Event-B can be used in a way to fit with some intended semantics, be it relational or
predicate transformer-based, be it for reactive systems or sequential programs. In some
sense, in Event-B semantics is replaced by proof obligations. Possible semantics are
characterised but not fixed.

The major advantage of this approach is that proof obligations can be used across the
different domains. From our experience we know that they have a lot in common and
seems a good idea to exploit this. For the different domains, though, proof obligations
can be proved sound with respect to appropriate semantics. We would still like a model
that is supposed to represent a sequential program, say, to have proof obligations that
are sound with respect to a semantics for sequential programs. And this can be achieved
in Event-B by linking the proof obligations to an appropriate semantic theory.

Acknowledgment. I want to thank Michael Butler and the second anonymous reviewer
for helpful remarks and suggestions that improved clarity of the presentation, and Jean-
Raymond Abrial for the productive discussions on this subject.

138 S. Hallerstede

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

2. Abrial, J.-R.: Event driven system construction (1999)
3. Abrial, J.-R.: Models of computations (1999)
4. Abrial, J.-R.: Event based sequential program development: Application to constructing a

pointer program. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 51–74. Springer, Heidelberg (2003)

5. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Univer-
sity Press, Cambridge (to appear, 2008)

6. Abrial, J.-R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for
Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer,
Heidelberg (2006)

7. Abrial, J.-R., Cansell, D., Méry, D.: A mechanically proved and incremental development of
IEEE 1394 tree identify protocol. Formal Aspects of Computing 14(3), 215–227 (2003)

8. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition and Instantiation of Discrete Mod-
els: Application to Event-B. Fundamentae Informatica 77(1-2) (2007)

9. Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.) B 1998.
LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

10. Back, R.-J.: Refinement Calculus II: Parallel and Reactive Programs. In: de Bakker, J.W.,
de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 67–93. Springer,
Heidelberg (1990)

11. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. In: Graduate
Texts in Computer Science. Springer, Heidelberg (1998)

12. Butler, M.J.: Stepwise refinement of communicating systems. Science of Computer Program-
ming 27(2), 139–173 (1996)

13. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
14. Fischer, C.: CSP-OZ: A combination of Object-Z and CSP. In: Bowmann, H., Derrick, J.

(eds.) FMOODS 1997, vol. 2, pp. 423–438. Chapman & Hall, Boca Raton (1997)
15. Hallerstede, S.: Parallel hardware design in B. In: Bert, D., Bowen, J.P., King, S., Waldén,

M.A. (eds.) ZB 2003. LNCS, vol. 2651, pp. 101–102. Springer, Heidelberg (2003)
16. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in event-B. In: Davies, J.,

Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer, Heidelberg (2007)
17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs

(1985)
18. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall, Englewood

Cliffs (1998)
19. Morgan, C.C.: Of wp and CSP. In: Feijen, W.H.J., van Gasteren, A.J.M., Gries, D., Misra,

J. (eds.) Beauty is Our Business: A Birthday Salute to Edsger W. Dijkstra, pp. 319–326.
Springer, Heidelberg (1990)

20. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice Hall, Englewood Cliffs
(1994)

21. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their
Comparison. Cambridge Tracts in Theoretical Computer Science 47. CUP (1998)

22. Roscoe, A.W.: Unbounded nondeterminism in CSP. Technical Monograph PRG-67, Pro-
gramming Research Group, Oxford University (1988)

23. Sekerinski, E.: A calculus for predicative programming. In: Bird, R.S., Morgan, C.C., Wood-
cock, J.C.P. (eds.) MPC 1993. LNCS. Springer, Heidelberg (1993)

24. Woodcock, J., Davies, J.: Using Z. Specification, Refinement, and Proof. Prentice-Hall, En-
glewood Cliffs (1996)

Generating Tests from B Specifications and Test

Purposes�

J. Julliand, P.-A. Masson, and R. Tissot

LIFC, Université de Franche-Comté
16, route de Gray F-25030 Besançon Cedex France
{julliand, masson, tissot}@lifc.univ-fcomte.fr

Abstract. This paper is about generating tests from test purposes, in
addition to structural tests. We present a method that re-uses a be-
havioural model and an abstract test concretization layer developed for
structural testing, and relies on additional test purposes. We propose,
in the B framework, a process of test generation that uses the symbolic
animation mechanisms of LTG (Leirios Test Generator) based on con-
straint solving, and guided by the test purposes. We build for that a
B animable model that is the synchronized product of a behavioural B
abstract model and a test purpose described as a labelled transition sys-
tem. We prove the correctness of this method, and illustrate it by means
of the IAS case study. IAS is a smart-card application dedicated to the
operations of Identification, Authentication and electronic Signature.

Keywords: Model-Based Testing, Test Purpose, IAS Case Study.

1 Introduction

B models are well suited for producing tests of an implementation by means of a
model based testing approach [UL06]. This approach proceeds by writing a formal
behavioural model (M) of the expected functionalities of a system. This model is
an abstraction of any real implementation, and is supposed to provide a reliable
view of the implementation under test (IUT). By applying selection criteria, a
test generation tool can automatically extract tests from the model. These tests
are particular “executions” of the model. They are sequences of operation calls of
the model, with the values of their parameters and their results as predicted by
the model. The tests are abstract since they have the same level of abstraction as
the model. They are concretized to execute them on the IUT by a concretization
layer (CL). Comparing the results returned by the IUT with the ones predicted
by the model allows delivering a verdict of the tests.

Structural testing uses static (syntactic) selection criteria, essentially providing
control flow and data coverage of the model. The tests exercise the functionalities
of the system by directly activating and covering the corresponding operations.

� Research partially funded by the French National Research Agency ANR (POSE
ANR-05-RNTL-01001) and the Région Franche-Comté.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 139–152, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 J. Julliand, P.-A. Masson, and R. Tissot

Industrial studies have proven the efficiency of the method to detect faults in an
implementation (see for example [EFHP02, BLLP04]). Writing M and CL is an im-
portant effort, but the cost is justified by the possibility to automatically compute
a great number of smart test cases. Nevertheless, static selection criteria appear
to be insufficient to exercise the IUT in tortuous situations. We think for example
of some elaborate scenarios of attack of systems requiring strong security guaran-
tees. Our objective is to benefit from M and CL to compute some additional tests
that use a particular scenario as a selection criterion.

The scenario can be described by means of a test purpose (TP), which we con-
sider as a dynamic (semantic) selection criteria that orchestrates the successive
calls of the operations of the model. The tests extracted from the model by means
of a test purpose are sequences of operation calls corresponding to the scenario.

The context of this work is the test generation from B models. We use
LTG [JL07], the test generator from Leirios1, to automatically extract abstract
tests from the model. LTG uses a constraint solver for computing the tests. LTG
produces structural tests by applying a static criterion to cover all the paths
of the control structure of every operation. Moreover, it is possible to assist
the generation of tests by providing LTG with sequences of operation calls that
describe the shape of the expected tests.

Our main contribution in this paper is to define in the B framework a process
that uses LTG for generating abstract tests, with a dynamic selection criterion
provided in the shape of a sequence of operations to LTG.

We give in Sec. 2 some preliminary definitions to our work. We present in
Sec. 3 our process for computing and executing tests from a B model and a
test purpose. Section 4 describes how to combine a behavioural model and a
test purpose to obtain a B model for the test generation. We present the IAS
case study and our experimentation in Sec. 5. We conclude and compare our
proposition to related works in Sec. 6.

2 Preliminaries

This section gives the background of the paper. First, we give in Sect. 2.1 general
notions about B abstract machines. We define the notions of B trace and B
execution. We also define the restrictions due to the targeted application class
and to the context of test generation. Section 2.2 defines a test purpose as a
special kind of labelled transition system. It also presents the notions of TP
trace and TP execution associated to the test purpose. The notion of trace is
used to guide the test generation tool LTG that computes several executions for
each trace.

2.1 B Abstract Machines

First introduced by J.-R. Abrial [Abr96], a B abstract machine defines an
open specification of a system by a set of operations. Intuitively, an operation
1 http://www.leirios.com

Generating Tests from B Specifications and Test Purposes 141

has a precondition and modifies the internal state variables by a generalized
substitution. An operation is provided with a list of parameters and can return
results.

We address a particular class of specifications of reactive systems. Our specifi-
cations are defensive, i.e. we assume that an operation terminates if it is invoked
with well typed parameters. That means that we consider environments that
respect a contract: they always call the operations with well typed parameter
values. We also assume that any operation returns a status word that codifies a
report of its execution. Therefore in the remainder of the paper, operations are
defined as in Def. 1.

For defining a B abstract machine, we need to remind the reader of the no-
tions of B predicates and B generalized substitutions. B predicates on a set
of variables x are denoted by P (x), R(x), I(x), T (x), . . . In the remainder of
this paper, the predicate I(x) denotes an invariant and T (p) denotes a typing
predicate on the parameter variables p. When there is no ambiguity on x, we
simply denote the predicates by P , R, I, . . . We denote by S the B generalized
substitutions and by E, F , . . . the B expressions. Given a substitution S and a
post-condition R we are able to compute the weakest precondition P , such that
if P is satisfied, then R is satisfied after the execution of S. The weakest precon-
dition, defined in [Abr96], is denoted by [S]R. We denote by 〈S〉R the expression
¬[S]¬R, intuitively meaning that if 〈S〉R is satisfied, then a computation of S
exists terminating in a state satisfying R. Given a B substitution S, a particular
predicate denoted by prdx(S) defines the relation between the values of the state
variables x before the execution of S and the values of the state variable x′ after
the execution of S. prdx(S) is the pre-post predicate of S. It is defined in Def. 2.
A B abstract machine is defined as in Def. 3.

Definition 1 (Operation). Let Si be a substitution. Let swi be a status word
and pi be a list of parameter names. Let Ti(pi) be a typing predicate on pi. An
operation named opi is defined as swi ← opi(pi) = PRE Ti(pi) THEN Si END.

Definition 2 (prdx). Let S be a substitution. The predicate prdx(S) is defined
as prdx(S) = 〈S〉(x = x′).

Definition 3 (B Abstract Machine). A B abstract machine M is a tuple
〈x, I, Init, OP 〉 where

– x is a set of state variables,
– I is an invariant predicate over x,
– Init is a substitution called initialization,
– OP is a set of operation definitions as in Def. 1.

We denote as XM (where X ∈ {x, I, Init, OP}) a component of the B model M.
If there is no ambiguity on the model that is considered, we simply denote it
by X . A model M defines a set AM of operation names and a set PredM of B
predicates over the state variables x of M.

The test cases are finite executions. We first define the notion of B trace of a B
abstract machine in Def. 4. Intuitively, a B trace is a finite sequence of operation
names starting after the initialization.

142 J. Julliand, P.-A. Masson, and R. Tissot

Definition 4 (B Trace). Let M = 〈x, I, Init, OP 〉 be a B abstract machine. A
trace is a finite sequence τM = Init; op1; op2; . . . ; opn where opi is the name of an
operation (∈ AM) defined in OP as in Def. 1.

Several executions can be associated to a B trace because, for any operation opi,
there are possibly several parameter values vi of pi that satisfy the typing predi-
cate Ti(pi). As can be seen in Def. 5, an execution is an instance of a B trace with
parameter values for every operation call that satisfy the precondition Ti(pi).

Definition 5 (B Execution). Let M = 〈x, I, Init, OP 〉 be a B abstract ma-
chine. Let τM = Init; op1; op2; . . . ; opn be a trace of M. σM = (op1(v1), w1);
(op2(v2), w2); . . . ; (opn(vn), wn) is an execution associated to τM, denoted by σM∈
ExecB(M, τM), if there is a sequence of state variable values u0; u1; u2; . . . ; un,
a sequence of status words w1; w2; . . . ; wn and a sequence of parameter values
v1; v2; . . . ; vn such that

– [x′ := u0]prdx(Init),
– for any i ∈ 1..n: [pi := vi]Ti(pi) ∧ [x, x′, swi, pi := ui−1, ui, wi, vi]prdx(Si).

Since we assume our specifications to be defensive, there is at least one execution
associated to a B trace if Ti(pi) is a satisfiable typing predicate. Thanks to that,
we assume that the executions respect the contract, i.e. the environment (simu-
lated by the test generator) always calls the operations with well-typed parameter
values. In other words, the typing precondition is interpreted as a guard in B event
systems, in such a way that the test generator chooses parameter values that sat-
isfy the guard, i. e. the typing predicate Ti(pi). Moreover, the operation call opi(vi)
from the state ui−1 gives the new state variable values ui and returns the status
word wi. ui−1, ui, wi and vi satisfy the pre-post predicate of Si.

2.2 Test Purpose

We have defined in [JMT08] a language for describing test purposes, that com-
bines operation calls and target state descriptions. Its semantics is given as a
labelled transition system as in Def. 6. A test purpose TP is bound to a B
abstract machine M that is the specification of the system under test. We say
that TP is defined on M. We give a unique name to any transition in a set
T = {t1, t2, . . . , tn}. The binding between TP and M is such that the transi-
tions of TP are labelled by the names of the operations of M in AM, and a state
predicate of PredM on the variables x of M is associated to any state of TP.

Definition 6 (Test Purpose). A test purpose on a model M is a tuple 〈Q, q0,
T, λ, Qf〉 where Q is a finite set of states, q0 ∈ Q is the initial state, Qf ⊆ Q is
the set of terminating states, T ∈ T → Q×AM×Q is a finite set of named and
labelled transitions denoted by ti �−→ qi−1

opi→ qi, and λ ∈ Q → PredM is a total
function that associates a state predicate, denoted by λ(qi), to every state.

A test purpose TP defines a set of finite traces that represents a set of symbolic
test cases. We call each trace a TP trace (see Def. 7). A TP trace is that of a finite

Generating Tests from B Specifications and Test Purposes 143

sequence of transitions that must be well formed w.r.t. the transition relation of
TP. These symbolic test cases must be instantiated as test cases (non symbolic),
called TP executions (see Def. 8) by a symbolic animator from a behavioural
model M and some coverage criteria. In Def. 8, an execution is a finite sequence
of pairs made of an operation call provided with the values of its parameters,
and the expected status word value returned by the operation call.

The executions are easy to compute by a test generator when the TP traces are
sequences of operations whose names have all been instantiated. Backtracking
may be necessary to satisfy the constraints set by the predicates for the states
to reach, and the enabling conditions of the operations.

Definition 7 (TP Trace). A finite sequence of transitions τTP = t1; t2; . . . ; tn
is a trace of a test purpose TP if there are qi ∈ Q and opi ∈ AM, 0 < i ≤ n, such
that for any i ∈ 1..n, ti �−→ qi−1

opi→ qi ∈ T and qn ∈ Qf .

Given a trace τTP, there are zero or many executions of τTP on the B abstract
machine on which TP is defined.

Definition 8 (TP Execution). Let M = 〈x, I, Init, OP 〉 be a B abstract ma-
chine. Let τTP = t1; t2; . . . ; tn be a trace of a test purpose TP = 〈Q, q0, T, λ, Qf〉
defined on M. σTP = (t1(v1), w1); (t2(v2), w2); . . . ; (tn(vn), wn) is an execution
associated to τTP, denoted by σTP ∈ ExecTP(M, τTP), if there are a sequence
of state values of TP q0; q1; q2; . . . ; qn, a sequence of state variable values of M
u0; u1; u2; . . . ; un, a sequence of status words values w1; w2; . . . ; wn and a se-
quence of parameter values v1; v2; . . . ; vn such that:

– [x′ := u0]prdx(Init),
– for any i ∈ 1..n: ti �−→ qi−1

opi→ qi ∈ T ,
– for any i ∈ 1..n: [pi := vi]Ti(pi) ∧ [x, x′, swi, pi := ui−1, ui, wi, vi]prdx(Si) ∧

[x := ui]λ(qi).

As for the B executions, several TP executions can be associated to a TP trace
for the same reasons. But in the TP executions, every operation call opi(vi)
must moreover lead to a state that satisfies the target state predicate λ(qi)
which is associated to the target state qi of the test purpose. For that, in
Def. 8, we have added the following condition for any i: [x := ui]λ(qi). Con-
sequently, it is also possible that no execution is associated to a TP trace if there
is no sequence u1; u2; . . . ; un of state variable values that satisfy the sequence
λ(q1), λ(q2), . . . , λ(qn) of target state properties.

3 Process of Property Based Testing

Our process for generating tests uses a test purpose as selection criterion and a
B behavioural model as oracle.

The complete process is described by Fig. 1. The left part of Fig. 1 shows how
the set of abstract test cases is first computed, whereas the right part shows how
these tests are finally executed on the IUT and the verdict is delivered.

144 J. Julliand, P.-A. Masson, and R. Tissot

Fig. 1. Process for Generating and Executing Tests from a B model and a Test Purpose

Computing the abstract test cases is obtained by a symbolic animation of the
TP traces on a B machine MTP that is the synchronized product between the B
model M and the test purpose TP. The synchronized product between M and
TP is computed according to the expression in B that is given in Sec. 4. The
result is a B machine MTP whose executions are the possible executions from
M that conform to TP. Besides, TP is unfolded as a finite set of TP traces (see
Def. 7) τTP, i.e. as sequences of transition names (each one labelled with an un-
parameterized operation call) defined according to TP, but without the target
states. This set computes all the TP traces whose last state is terminating, and
whose length is lower or equal to a maximum length defined by the tester.

We use LTG, the test generator from Leirios, to instantiate the TP traces.
LTG proceeds by symbolic animation. Notice that any other tool with similar
capabilities could be used for that purpose. The principle is to “guess” values for
the parameters of the operations that make it possible to execute the sequence
of operations as described by a particular trace τTP of the test purpose. In other
words, TP executions are computed from τTP and MTP. The parameter values
are computed in LTG by a constraint solver, that finds some values that make
the sequences of operations of τTP reach the target states given in the TP. No
execution is computed when the target states are impossible to reach. The status
words are also computed as expected by MTP for these parameters. Additionally,
from one TP trace τTP, LTG will try to compute a different TP execution for
each of the behaviours of the last operation of τTP: every branch of an operation
described as a control structure (such as a conditional structure) is called a
behaviour of the operation.

The tests computed by this procedure have the abstraction level of the model
M of the system. They can not be executed as such on the IUT. They have to
be concretized by the concretization layer CL which converts the instantiated

Generating Tests from B Specifications and Test Purposes 145

operation calls of the TP execution into a script executable on the IUT. This
computes a set of concrete tests. These concrete tests can then be executed
on the IUT, from which the output values (the status words) are observed. The
concretization layer also gives the correspondence between the status words from
the IUT and the ones from the model. This allows delivering the verdict of the
test by comparing the values really returned by the IUT with the ones predicted
by the model.

4 Combining a Model and a Test Purpose for Security
Test Generation

In Fig. 2, we define how to express in B the synchronized product MTP of a
behavioural model M described as a B abstract machine, and a test purpose
TP on M. MTP includes the abstract machine M so that it can read the state
variables x of M, and it can synchronize any transition t of TP with a call to
an operation of M labelled by t. The variable Cq represents the current state
reached by the last transition executed in the test purpose TP. The initial state
is q0. For any transition ti (such that T (ti) = qi−1

opi→ qi), we define an operation
also called ti in MTP. Its parameter values must satisfy the typing predicate
Ti(pi) of the operation opi that is called. This operation is enabled if the current
state is qi−1 and if there are state variable values x′ and a status word value
sw′

i after ti that satisfy the pre-post predicate of the body of the operation opi

and the target state predicate of the test purpose λ(qi). When these conditions
hold, the operation ti calls the operation of the test purpose opi and places the
system in the target state qi of the test purpose.

Theorem 1 establishes the soundness of the method. For a TP trace τTP =
t1; t2; . . . ; tn (see Def. 7), any B execution (see Def. 5) of the B composed abstract
machine MTP for the B trace τMTP = InitMTP ; t1; t2; . . . ; tn is a TP execution (see
Def. 8) of τTP on the abstract machine M. Theorem 2 establishes the method
completeness.

Theorem 1 (Soundness). Let MTP be the B composition of a B model M and
a test purpose TP on M as in Fig. 2, and let τTP be a TP trace then,

ExecB(MTP, InitMTP ; τTP) ⊆ ExecTP(M, τTP).

Proof. The proof relies on the fact that, the difference between the B executions
of the model M and the TP executions of M, is that, the target predicate λ(qi)
holds in every target state qi of the TP execution. This condition is also satis-
fied in the B execution of MTP since we add this condition in the guard of its
operations ti (see Fig. 2). Moreover, it is obvious that the B executions of MTP

and the TP executions of M compute the same sequence of states as TP, and
execute the same sequence of operation calls as M.

Theorem 2 (Completeness). Given a B composition MTP of a B model M, a
test purpose TP on M and a TP trace τTP,

ExecTP(M, τTP) ⊆ ExecB(MTP, InitMTP ; τTP).

146 J. Julliand, P.-A. Masson, and R. Tissot

MACHINE M
VARIABLES x
INVARIANT I
INITIALISATION Init
OPERATIONS

. . .
swi ← opi(pi) =

PRE Ti(pi) THEN Si END
. . .

END

MACHINE MTP

INCLUDES M
SETS Q = {q0, . . . , qn}
VARIABLES Cq
INVARIANT Cq ∈ Q

/* Cq : current state of TP */
INITIALISATION Cq := q0

OPERATIONS
/* for any ti �−→ qi−1

opi→ qi ∈ T */
/* we define an operation ti s.t. */

. . .
swi ← ti(pi) =
PRE Ti(pi) THEN

SELECT Cq = qi−1 ∧ ∃(x′, sw′
i) ·

(prdx(Si) ∧ [x := x′]λ(qi))
THEN swi ← opi(pi) || Cq := qi

END
END;
. . .

END

Fig. 2. Combination of a model M and a test purpose TP on M

The proof is straightforward.
Our implementation with LTG computes the B execution of MTP with the

semantics given in Def. 5. It is sound, but not complete because the constraint
solving algorithm is time limited.

5 Case Study

5.1 IAS Case Study

This work was done in the framework of the RNTL POSE project, that brings
together industrial (GEMALTO, LEIRIOS, SILICOMP/AQL) and academic
(LIFC/INRIA CASSIS project, LIG) partners. The problem is the validation
of a system conformity to its security policy, especially for smart cards.

Experiments have been made with a real size industrial application, the IAS
platform. Prior to the project, a behavioural model in B had been written by
the LIFC and Leirios, from which structural tests had been computed and ex-
ecuted on an IAS implementation by Gemalto. We have extended these tests
with security ones.

IAS is a standard for Smart Cards developed as a common platform for e-
Administration in France, and specified in [GIX04] by GIXEL. IAS provides
services to the other applications running on the card. IAS conforms to the
ISO 7816 standard.

The file system of IAS is illustrated with an example in Fig. 3. Files in IAS are
either Elementary Files (EF), or Directory Files (DF), e.g. file 01 and file 02

Generating Tests from B Specifications and Test Purposes 147

in Fig. 3. The file system is organized as a tree structure whose root is designed
as MF (Master File).

The Security Data Objects (SDO) are objects of an application that contain
highly sensitive data such as PIN codes (e.g. pin2 in Fig. 3) or cryptographic
keys, that can be used to restrict the access to some of the application data.

DF: file_02

DF: file_01

MF: (root)

PIN: pin2

DF: file_03

EF: file_04KEY: key1

Fig. 3. A sample IAS tree structure

The access to an object by an operation in IAS is protected by security rules
based on security attributes. The access rules can possibly be expressed as a
conjunction of elementary access conditions, such as Never (which is the rule
by default, stating that the command can never access the object), Always (the
command can always access the object), or User (user authentication: the user
must be authenticated by means of a PIN code).

Let us present the variables of the model that we use in an example of a test
purpose given in Sec. 5.2. Let X ID be a set of X identifiers, where X is either DF,
PIN, OBJ or SDO. The variable current DF (∈ DF ID) stores the current selected
DF. The variable pin2 dfParent (∈ PIN ID �→ DF ID) associates to a PIN the
DF where it is located. The variable rule 2 obj (∈ SDO ID ∪ {always, never}↔
OBJ ID) associates to a SDO the object that it protects. If the object is always
(resp. never) accessible, then the SDO is replaced by the value always (resp.
never). The variable pin authenticated 2 df (∈ PIN ID ↔ DF ID) associates
to a PIN the DF where the PIN is authenticated.

Consider for example the data structure shown in Fig. 3. pin2 �→ file 01 ∈
pin2 dfParent means that the PIN object pin2 is located in the DF file 01.
pin2 �→ file 02 ∈ rule 2 obj means that the access to the DF file 02 is
protected by a user authentication over the SDO pin2. If pin2 �→ file 02
∈ pin authenticated 2 df, then the access to the DF file 02 is authorized,
otherwise it is forbidden.

For creating objects, the commands are CREATE FILE DF, PUT DATA OBJ PIN -

CREATE, ... For navigating, they are SELECT FILE DF PARENT, SELECT FILE DF -

CHILD, ... For setting the values of attributes, they are RESET RETRY COUNTER,

CHANGE REFERENCE DATA, VERIFY, ... For changing the life cycle state of objects,
they are DEACTIVATE FILE, ACTIVATE FILE, TERMINATE FILE,...

5.2 Test Purpose Example

Here, we exhibit one of the test purposes written for the experimentation of our
approach. The property to be tested is “to access an object protected by a PIN

148 J. Julliand, P.-A. Masson, and R. Tissot

. (VERIFY | CHANGE REFERENCE DATA
| (RESET . SELECT FILE DF CHILD) | RESET RETRY COUNTER
| (SELECT FILE DF PARENT . SELECT FILE DF CHILD))

�(current DF = file 01 ∧ file 01 /∈ pin authenticated 2 df[{pin2}])
. SELECT FILE DF CHILD�(current DF = file 02)
.[CREATE FILE DF | DELETE FILE | ACTIVATE FILE | DEACTIVATE FILE
| TERMINATE FILE DF | PUT DATA OBJ PIN CREATE]

Fig. 4. Example of a test purpose — execution step

code, the PIN must be authenticated”. We associate with this property a test
purpose that causes the loss of the PIN authentication in all possible ways, and
then tries to access the object.

This test purpose is instantiated on the example of Fig. 3, for which we imagine
that the access to the DF file 02 is protected by an authentication over the
PIN pin2. The tester can describe this test purpose by regular expressions,
as illustrated in Fig. 4. They are easily translated into the automaton shown in
Fig. 5. The state properties in the states s1 to s7 are defined as B predicates over
the state variables of the B model M, as in Fig. 4. The transitions from the state
s0 to the state s4 aim at building the data structure surrounded by a dashed line
in Fig. 3. The first transition creates a new DF (file 01). The second creates
a PIN object (pin2) into the DF file 01, and gains an authentication over it.
The third transition creates the DF file 02 into the DF file 01. The fourth
transition resets the current DF to file 01, in order to start the core of the
test. As a result, the DF file 02 is protected by the PIN pin2 (located in the
DF file 01) for all possible access commands. The PIN pin2 is authenticated.

The following transitions translate the regular expression in Fig. 4, and show
the core testing stage, describing the testing of the security property in three
steps. First, the transitions between s4 and s5 describe all the possible ways
for losing the authentication (for instance, a failure of the VERIFY command or
a reset of the retry counter) over the PIN pin2. The transition from s5 to s6

selects the DF file 02. Finally, the transitions between s6 and s7 describe the
application of the access commands inside the DF file 02 to test the access
conditions. The state s7 is the terminating state.

5.3 Experimentation and Results

In this part, we give the results of an experimentation done with the B model of
IAS which is 15500 lines long. The complete IAS commands have been modelled
as a set of 60 B operations.

We first discuss what knowledge of the model is required to write the test
purposes, and then we present our experimental results.

Designing test purposes. The description language is based upon regular
expressions, which makes it easy to use. But designing a test purpose requires
some knowledge of the model. The tester must know the names of the different
operations of the model, and of the state variables and constants to describe

Generating Tests from B Specifications and Test Purposes 149

s0 s1 s2

s3

s4 s5

s6s7

CREATE FILE DF PUT DATA OBJ PIN CREATE . VERIFY

CREATE FILE DFSELECT FILE DF PARENT

VERIFY

CHANGE REFERENCE DATA

RESET . SELECT FILE DF CHILD

SELECT FILE DF PARENT . SELECT FILE DF CHILD

RESET RETRY COUNTER
SELECT FILE DF CHILD

CREATE FILE DF
DELETE FILE

ACTIVATE FILE

PUT DATA OBJ PIN CREATE

DEACTIVATE FILE
TERMINATE FILE DF

Fig. 5. Example of a test purpose

the states to reach. Moreover, he must choose the right behavioural level for
the description of the test purposes, to ensure good performances of the test
generation. For example, inserting a state to reach between two operation calls
allows reducing the search space, but requires searching which conditions ensure
the execution of the second operation without reducing its reachable behaviours.

Experimentations. We have experimented with three different test purposes,
which gave a total of 183 tests that have been run on the IAS implementation.
The test purpose example shown in Fig. 5 gave 30 test TP traces, which have
produced 35 TP executions. This is because sometimes there are several possible
behaviours to cover in the last operation of the TP trace.

The two other test purposes were for testing possible bad interpretations of
the access conditions due to a mechanism of short references to the security
objects, and the effects of life cycle changes on the authentication of a PIN. In
these various test campaigns, we have successfully instantiated every TP trace,
except when they contained unreachable states (w.r.t. the constraints on the
operations sequencing). Furthermore, we have begun an experimentation to test
the POSIX compliance of a file system. We have already generated 250 test
sequences (from 5 test purposes) for this case study. By now, these sequences
are able to test non-trivial executions of the system with basic operations.

Experimental results. The tests that we have generated are not redundant
w.r.t. the tests computed with static coverage criteria like behaviour coverage.
This is because the test purposes force the test generator to reach some given
states or to apply some operation sequences, which would not have been neces-
sarily reached or covered otherwise. These tests address some situations which
have been identified as potential vulnerabilities, and which were not addressed
by the previously generated structural tests.

We illustrate the difference between tests based on a test purpose and struc-
tural tests through the example of the aforementioned property: the access to
DF file 02 is protected by PIN code pin2. The automaton associated to the
TP that we have considered for this property is shown in Fig. 5. Let us imagine

150 J. Julliand, P.-A. Masson, and R. Tissot

s0 s1 s2

s3s4

CREATE FILE DF PUT DATA OBJ PIN CREATE · VERIFYOK

CREATE FILE DF

CREATE FILE DFOK

DELETE FILEOK

ACTIVATE FILEOK

PUT DATA OBJ PIN CREATEOK

DEACTIVATE FILEOK

TERMINATE FILE DFOK

Fig. 6. Structural testing for an authorized access

s0 s1 s2

s3s4

CREATE FILE DF PUT DATA OBJ PIN CREATE

CREATE FILE DF

CREATE FILE DF
¬OK

DELETE FILE
¬OK

ACTIVATE FILE
¬OK

PUT DATA OBJ PIN CREATE
¬OK

DEACTIVATE FILE
¬OK

TERMINATE FILE DF
¬OK

Fig. 7. Structural testing for an access denial

the same kind of automaton, but for a structural test related to this property.
Structural testing will exercise the property in two ways: by gaining an authen-
tication over pin2 and successfully accessing file 02, or by not gaining the
authentication and thus failing to access file 02. The simplest (and shortest)
way not to gain the authentication is by not calling the VERIFY command: this
is what LTG does for this example.

The automata for these two cases are respectively given in Fig. 6 and Fig. 7.
In these two automata, the initialization stage is (almost) identical to the au-
tomaton for the TP, because we want to compare the tests based on the same
data structure. In comparison to Fig. 5, the only difference is about the VERIFY
command that is given with its expected result (denoted by the subscript OK) in
Fig. 6, and absent from Fig. 7.

Then the core testing stage only consists of trying to access file 02, which is
always refused, as denoted by the subscript ¬OK in Fig. 7, and always allowed in
Fig. 6 (in Fig. 5, the expected result of every access command should be ¬OK).

The value-added of the tests from the TP is to force the coupling between
a successful authentication and (later) an access denial. In other words, two
operation behaviours are coupled in the same execution, whereas they were not
tested together with structural testing.

Another advantage of using test purposes is that they are issued from a poten-
tial vulnerability, to which the tests computed can be linked. This traceability
is more difficult to obtain for structural tests.

6 Conclusion and Future Work

We have presented in the B framework a method for generating tests from test
purposes in a behavioural model based testing context. The tests generated are

Generating Tests from B Specifications and Test Purposes 151

additional w.r.t. the structural ones [BLLP04, SLB05]. The method has been
validated on a real-size industrial application. The method makes use of already
existing material, written for model based structural testing: the behavioural
model and the concretization layer. Additionally, test purposes are written to
describe how to test behavioural properties.

The method easily ensures the traceability of the tests generated to the orig-
inal test purpose, since the tests are computed from them. Also, with the trace-
ability mechanism for functional test generation that we use, we know which
operation behaviours have been covered.

Many other works use test purposes as selection criteria to extract tests from a
model. The test purposes are described by temporal properties in a temporal logic,
input output Labelled (Symbolic) Transition Systems ioLTS (ioSTS), or use cases.

By exploiting its ability to produce counter-examples, a model-checker can
be used to compute tests from temporal properties [ADX01]. These techniques
are restricted to finite systems. The TGV approach [CJMR07, JJ05], uses ex-
plicit test purposes to extract tests from specifications, both given as ioLTS or
ioSTS [JJRZ05]. Our approach also addresses infinite systems, like ioSTS. ioSTS
are specifications where the data are integers and booleans, whereas the B mod-
els define more complex set data structures. So, our approach is based on set
constraint solving techniques whereas ioSTS use integer abstract interpretation
and constraint solving techniques.

In [SML06], the authors present a test case generation algorithm from B event
systems and use cases by refinement. There are three main differences with our
approach. Our method reuse abstract B machines and a concretization layer CL
dedicated to the functional test generation. Therefore we do not refine the test
cases. Moreover, our test purposes are more expressive use cases that contain
target state information.

Also, as a difference with the above cited approaches, we have showed in a
previous work [MJP+07] how the test purposes can be automatically computed,
by modelling some test needs as syntactic transformation rules that transform
behavioural properties.

We are currently working at identifying and writing such transformation rules,
based on the IAS case study. This work needs to be developed by studying many
other case studies (for instance, the mini-challenge that proposes to design and
verify a POSIX compliant flash-based system [JH07]) in order to produce rules
sufficiently generic to be applicable to a variety of examples.

Rules could also be automatically deduced from the syntactic expression of a
property, as suggested by [BDGJ06] for properties expressed in JTPL, a temporal
logic for JML.

References

[Abr96] Abrial, J.-R.: The B Book: Assigning Programs to Meanings. Cambridge
University Press, Cambridge (1996)

[ADX01] Amman, P., Ding, W., Xu, D.: Using a model checker to test safety prop-
erties. In: ICECCS 2001. IEEE Computer Society, Los Alamitos (2001)

152 J. Julliand, P.-A. Masson, and R. Tissot

[BDGJ06] Bouquet, F., Dadeau, F., Groslambert, J., Julliand, J.: Safety property
driven test generation from JML specifications. In: Havelund, K., Núñez,
M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262,
pp. 225–239. Springer, Heidelberg (2006)

[BLLP04] Bernard, E., Legeard, B., Luck, X., Peureux, F.: Generation of test se-
quences from formal specifications: GSM 11-11 standard case study. Soft-
ware: Practice and Experience 34(10), 915–948 (2004)

[CJMR07] Constant, C., Jéron, T., Marchand, H., Rusu, V.: Integrating formal veri-
fication and conformance testing for reactive systems. IEEE Transactions
on Software Engineering 33(8), 558–574 (2007)

[EFHP02] Farchi, E.E., Hartman, A., Pinter, S.S.: Using a model-based test genera-
tor to test for standard conformance. IBM Systems Journal 41(1), 89–110
(2002)

[GIX04] GIXEL. Common IAS Platform for eAdministration, Technical Specifica-
tions, 1.01 Premium edition (2004), http://www.gixel.fr

[JH07] Joshi, R., Holzmann, G.: A mini challenge: build a verifiable filesystem.
Formal Aspects of Computing 19(2), 269–272 (2007)

[JJ05] Jard, C., Jéron, T.: TGV: theory, principles and algorithms. Software Tools
for Technology Transfer 7(1) (2005)

[JJRZ05] Jeannet, T., Jéron, T., Rusu, V., Zinovieva, E.: Symbolic test selec-
tion based on approximate analysis. In: Halbwachs, N., Zuck, L.D. (eds.)
TACAS 2005. LNCS, vol. 3440, pp. 349–364. Springer, Heidelberg (2005)

[JL07] Jaffuel, E., Legeard, B.: LEIRIOS Test Generator: Automated test gen-
eration from B models. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007.
LNCS, vol. 4355, pp. 277–280. Springer, Heidelberg (2006)

[JMT08] Julliand, J., Masson, P.-A., Tissot, R.: Generating security tests in addition
to functional tests. In: AST 2008. ACM Press, New York (May 2008)

[MJP+07] Masson, P.-A., Julliand, J., Plessis, J.-C., Jaffuel, E., Debois, G.: Automatic
generation of model based tests for a class of security properties. In: A-
MOST 2007, pp. 12–22. ACM Press, New York (2007)

[SLB05] Satpathy, M., Leuschel, M., Butler, M.: ProTest: An automatic test envi-
ronment for B specifications. In: MBT 2004. ENTCS, vol. 111, pp. 113–136
(2005)

[SML06] Satpathy, M., Malik, Q.-A., Lilius, J.: Synthesis of scenario based test cases
from B models. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.)
FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 133–147. Springer, Hei-
delberg (2006)

[UL06] Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach.
Elsevier Science, Amsterdam (2006)

http://www.gixel.fr

Combining Scenario- and Model-Based Testing

to Ensure POSIX Compliance

Frédéric Dadeau, Adrien De Kermadec, and Régis Tissot

Laboratoire d’Informatique – Université de Franche-Comté
LIFC/INRIA CASSIS Project – 16 route de Gray – 25030 Besançon cedex

{dadeau, dekermadec, tissot}@lifc.univ-fcomte.fr

Abstract. We present in this paper a way to produce test suites for the
POSIX mini-challenge, based on a formal model of a file system man-
ager, written using a B machine. By this case study, we illustrate the
limitations of a fully-automated testing process, which justifies the use
of scenarios that complements the classical functional testing approach.
Scenarios are expressed through schemas, focusing only on operation
chaining. They are played on the model using a symbolic animation
engine in order to automatically compute pertinent operation parame-
ter values, based on model coverage criteria such as behavioral or data
coverage. We concretize our experimentation by testing the POSIX con-
formance of two different file systems: a recent Linux distribution, and
a customized Java implementation of POSIX used to evaluate the rele-
vance of our approach.

Keywords: B machine, scenarios, Model-Based Testing, symbolic ani-
mation, POSIX challenge.

1 Introduction

The use of formal methods becomes crucial when one wants to design a system
that requires a high level of correctness. In this context, a mini-challenge is
proposed to design and verify a POSIX compliant flash-based system [6]. Whilst
this proposal is not the first attempt to put formal methods into a real case study,
it illustrates the increasing need for formal modelling and verification that aims
at producing safe and secure software. In the process, testing takes an important
part which is used to provide witnesses that, first, the system does not contain
certain kind of execution errors, and, second, that it behaves as expected.

Our proposal is to consider a model-based testing approach [15], that relies
on a formal model of the system. The latter is used to compute the test cases, as
a sequence of operation calls intended to cover functional requirements. It also
provides the oracle of the test, namely the expected result that will be used to
ensure the conformance of the system w.r.t. the model. We have decided to apply
this technique in the context of the mini-challenge, and thus, we have designed
a formal model of the system, by means of a B machine.

Automated test generation processes suffer from a number of limitations, espe-
cially when applied to the domain of security testing (e.g. access control). Indeed,

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 153–166, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

154 F. Dadeau, A. De Kermadec, and R. Tissot

the systematic analysis and partitioning of the model may possibly avoid testing
specific configurations of the system that can be more precisely identified by the
experience and the know-how of the test engineer, rather than through the au-
tomated analysis of models. We therefore propose to extend the functional test
cases by scenarios. These latter are expressed by schemas that, roughly speaking,
can be assimilated to regular expressions over the alphabet represented by the
operations of the system.

This paper presents a schema expression language that makes it possible to
describe scenarios with test driving possibilities. This process is based on the
use of the symbolic animation of the formal model in order to instantiate the
test data to obtain pertinent values. This language has originally been designed
during the French RNTL POSÉ project1, in the context of the security testing.
It is now used for a larger purpose.

The paper is organized as follows. Section 2 presents the subject and the scope
of the case study. Then, we present an automated test generation approach using
the LEIRIOS Test Generator [5] and its limitations in Sect. 3. Section 4 presents
a scenario-based paradigm that is used to extend the testing phase. Experimental
data are provided in Section 5. Finally, Section 6 concludes and presents future
work.

2 Formal Model of a POSIX File System

This section presents the formal model that we have designed from the informal
specifications. This model is used in the test generation process. It includes a
realistic subset of the functionalities required in the challenge. We designed our
model from the Open Group Base Specification of Unix2. The data model we
have considered is relatively similar to the Z specification of the Unix filing
system [10].

2.1 Data Model

The basic elements of the file system are the entities, called nodes decomposed
into directories and files. They are both associated to a parent directory into
which they are located, and a name, which is the user designation of the node in
the directory. We also consider file descriptors, used to read from and/or write
into a file. Files and directories (resp. names) are atoms that are extracted from
a single abstract set of node ids (resp. names), named IDS (resp. NAMES).
Each existing node, file or directory, is a member of IDS and associated to one
of the NAMES.

nodes ⊆ IDS ∧ dirs ⊆ nodes ∧ files ⊆ nodes∧
dirs ∩ files = ∅ ∧ dirs ∪ files = nodes ∧ id2name ∈ nodes → NAMES

1 http://www.rntl-pose.info
2 http://www.unix.org/single unix specification/

http://www.rntl-pose.info
http://www.unix.org/single_unix_specification/

Combining Scenario- and Model-Based Testing 155

The file structure is modelled by associating to each entity its parent directory,
through the id2parent total function: id2parent ∈ nodes → dirs. Notice that
we do not manage symbolic links on files or directories.

A special directory representing the root of the file system is also considered,
that is its own parent. The root directory is the only existing one at the initial
state of the system (e.g. after having formatted the file system).

id root ∈ IDS ∧ id root ∈ dirs ∧ n root ∈ NAMES ∧
(id root �→ n root) ∈ id2name ∧ (id root �→ id root) ∈ id2parent

For opened files, we consider a set of file descriptors that are integers, identi-
fying the file descriptor. Each file descriptor is mapped to a node id. In addition,
we consider a mapping between a file descriptor and the opening mode that is
considered, i.e., read (r), write (w) or both (rw). A constant named MAX FD
sets the maximal number of files that can be opened.

fd2node ∈ fd→ nodes ∧ fd2mode ∈ fd→ {r, w, rw} ∧ fd ⊆ 0..MAX FD

2.2 Commands

For the experiment, we have decided to model the behavior of common opera-
tions that manipulate the file system structure, and the file content. We added
several operations that complete the original requirements of the mini-challenge.
The operations that we consider are the following. Jedi/rmdir, creates/removes a
directory; chdir, changes the current directory; open/close, opens/closes a file de-
scriptor used to read/write into a file. read/write, reads from or writes into a file
designated by its opened file descriptor; rename, renames a file/directory or pos-
sibly moves the file; (f)truncate, resizes a given file (descriptor); (f)stat, provides
informations on the file (descriptor) or directory; opendir/closedir, opens/closes
a directory for reading.

Figure 1 shows, as an example, the mkdir operation that is used to create
a directory in the file system. For readability purposes, this operation does not
include the access control mechanisms. As for all the operations that require a
path to be given as input, we represent this parameter as a triplet composed
a path root (the ID of the starting directory), a path target (the ID of the
destination directory), and a name (the name of the considered entity). Such
a representation makes it possible to rebuild the path when the tests are con-
cretized, may it be absolute (i.e., the starting directory is the root), or relative
(i.e., the starting directory is the current directory). This operation returns a
status word (OUT sw) indicating a correct termination (ok) or an erroneous ter-
mination (ko) of the operation which updates the errno state variable indicating
the cause.

2.3 Adding Acces Control Mechanisms

Taking access control mechanisms into account adds a potentially large number
of elements, namely: the users, their groups, and the read/write/execute permis-
sions on files and directories. Rules are expressed through a discretionary access

156 F. Dadeau, A. De Kermadec, and R. Tissot

OUT_sw, OUT_dir ← mkdir(IN_pathRoot, IN_path, IN_name) =̂
PRE

IN_pathRoot ∈ IDS ∧ IN_pathRoot ∈ {current_dir, root id} ∧
IN_path ∈ IDS ∧ IN_name ∈ NAMES

THEN
IF IN_name = EMPTY_NAME ∨ IN_path �∈ dirs ∪ files
THEN /* the path does not exist */

errno := ENOENT ‖ OUT_sw := ko
ELSE

IF IN_path ∈ files
THEN /* pathname points to a regular file*/

errno := ENOTDIR ‖ OUT_sw := ko
ELSE

IF (ids2parent~[{IN_path}] ∩ ids2name~[{IN_name}]) �= ∅
THEN /* the directory already exists */

errno := EEXIST ‖ OUT_sw := ko
ELSE /* a node that does not exist */

IF (nodes = IDS) THEN OUT sw := ko ‖ errno = EMFILE ELSE
ANY LOC_id WHERE LOC_id ∈ IDS ∧ LOC_id �∈ nodes THEN

OUT_sw := ok ‖ errno := OK ‖ OUT_dir := LOC_id ‖
dirs := dirs ∪ {LOC_id} ‖
ids2name := ids2name ∪ {LOC_id �→ IN_name} ‖
ids2parent := ids2parent ∪ {LOC_id �→ IN_path}

END END END END END END;

Fig. 1. The mkdir Operation of the POSIX File System Model

control policy (DAC) [7] , meaning that the access is granted to the owner of the
entity, which is able to change the access rights to whoever he wants. POSIX
distinguishes three access modes: read, write or execute, for three roles: user,
group, others. Each user belongs at least to one group.

Existing users (user) are related to existing groups (groups), the ownership
of a node in terms of user (node2own) and group (node2gr) is also considered.
Permissions are decomposed into three categories for each node: user permission
(permUser), group permssion (permGr), others permission (permOth) by their
octal value (read-write-execute bits). The formal data model is given hereafter.

user ⊆ UID ∧ groups ⊆ GID ∧ user2gr ∈ user ↔ group ∧
node2own ∈ node → user ∧ node2gr ∈ node → group ∧

permUser ∈ node → 0..7 ∧ permGr ∈ node → 0..7 ∧ permOth ∈ node → 0..7

Using this data model, the expression that checks, for example, the write
access for a given user u on node n is the following.

(node2own(n) = u⇒ permUser(n) ∈ {4, 5, 6, 7}) ∨
(node2own(n) �= u ∧ node2gr(n) ∈ {u} � user2gr⇒ permGr(n) ∈ {4, 5, 6, 7}) ∨
(node2own(n) �= u ∧ node2gr(n) �∈ {u} � user2gr ∧ permOth(n) ∈ {4, 5, 6, 7})

Combining Scenario- and Model-Based Testing 157

2.4 Restrictions on the Modeling

Since our objective is to generate tests based on a B model, we use the state-of-
the-art LEIRIOS Test Generator (LTG) [5] to automatically compute tests from
a B machine. However, due to the limitations of the tool, we have modified our
model. Since abstract sets are not authorized by LTG, we have instantiated the
sets of node ids (IDS) and names (NAMES). Moreover, LTG being unable to
deal with sequences, and sets of sets, we have decided to abstract the content
of the file system, in order to focus on the access control mechanisms. Files
are thus considered though different attributes that are their size, their owner,
group, permissions, and a version number that is incremented each time the file
is modified. We rely on the concretization phase of the tests to translate the
effects of file reading/writing commands on the concrete file system.

3 Functional Testing Approach

We present in this section the model based testing mechanisms. First, we intro-
duce the testing criteria automatically applied by LTG. Second, we present the
observations that we consider to establish whether the test is passed or failed.

3.1 Model Coverage Criteria

LTG considers a model coverage criterion that consists in activating the behav-
iors of the B operations. Behaviors are defined as a specific path in the control
flow graph of an operation. Each behavior is composed of an activation condi-
tion, i.e., a predicate that has to hold for the behavior to be activated. This
predicate is called the test target. If the behaviors contain a decision, e.g. ex-
pressed in B using an IF... THEN... ELSE... END structure, a decision coverage
criteria, selected by the user, is applied in order to refine the test target.

The composition of LTG test cases are shown in Fig. 2. Each test starts with a
preamble that is a sequence of operation calls that reaches a state satisfying the
test target. The test body is the activation of the behavior itself by invoking the
operation with the appropriate parameters values. The identification is used to
perform calls to specific operations, used to observe the system state, and thus, to
deduce the result of the test. The optional postamble feature makes it possible to
reset the system in order to chain the test cases on the system under test.

Example 1 (Test target computation). Consider again the mkdir operation from
the POSIX case study shown in Fig. 1. The following targets are extracted,

postamble

preamble identification

body

Fig. 2. Composition of an LTG Test Case

158 F. Dadeau, A. De Kermadec, and R. Tissot

under the hypothesis of the operation precondition (IN_pathRoot ∈ IDS ∧
IN_pathRoot ∈ {current_dir, ROOT_ID} ∧ IN_path ∈ IDS ∧ IN_name ∈
NAMES).

Target Predicate

1 IN_name = EMPTY_NAME ∨ IN_path �∈ nodes
2 IN_name �= EMPTY_NAME ∧ IN_path ∈ nodes ∧ IN_path ∈ files
3 IN_name �= EMPTY_NAME ∧ IN_path ∈ nodes ∧ IN_path �∈ files ∧

(ids2parent~[{IN_path}] ∩ ids2name~[{IN_name}]) �= ∅
4 IN_name �= EMPTY_NAME ∧ IN_path ∈ nodes ∧ IN_path �∈ files ∧

(ids2parent~[{IN_path}] ∩ ids2name~[{IN_name}]) = ∅ ∧
nodes = IDS

Since target 1 contains a disjunction, it may be expanded according to 4
rewritings, each one describing a specific coverage criteria, given in the following
table, in which p = (IN_name = EMPTY_NAME) and q = (IN_path �∈ nodes).
Each rewriting produces additional test targets replacing the initial predicate.
Inconsistant targets are detected by the tool and are thus not considered.

p ∨ q � Coverage Criteria
1 p ∨ q Condition Cov. (CC)
2 p, q Condition/Decision Cov. (C/DC)
3 p ∧ ¬q, ¬p ∧ q Modified Condition/Decision Cov. (MC/DC)
4 p ∧ ¬q, ¬p ∧ q, p ∧ q Multiple Condition Cov. (MCC)

Each test target produces at least one test, depending on the selected data
coverage for the operation parameters (e.g. all values, smart value, boundary
values for numerical data). LTG automatically performs the symbolic animation
of the B model in order to reach a state satisfying the test target. The result
of this computation provides the preamble of the test. It is important to notice
that the state exploration algorithm aims at finding the shortest path to the test
target, since no parameterization on the preamble length can be performed (e.g.
in order to maximize it).

3.2 Test Verdict Definition

The conformance relationship that we consider is based on observing command
outputs w.r.t. data given as input. We define two conformance relationships: a
heavyweight and a lightweight.

The heavyweight conformance relationship is based on observing if the oper-
ation succeeds, and if not, what is the corresponding error code. A test passes
if the implementation corresponds to the model for both of these two elements.
Due to the possibility of multiple errors and the presence of non-determinism
in the POSIX specification, we also consider a lightweight conformance relation-
ship, which only determines, for each step, if the operation call succeeded or
failed, without considering the reason of the error.

Combining Scenario- and Model-Based Testing 159

In practice, the lightweight conformance relationship is sufficient to test a
POSIX implementation. Indeed, POSIX operations have the particularity either
to succeed and make the system evolve, or they fail and nothing changes in the
system (except the errno variable). Thus, all the errors can be abstracted.

3.3 Limitations of This Approach

This approach presents the great advantage of performing an exhaustive coverage
of the activation contexts of an operation. It thus makes it possible to cover a
large variety of use cases of each operation. Nevertheless, LTG does not cover
the possibilities of reaching a context. Indeed, the state exploration performed
by LTG to build the preamble (i.e., to reach the test target) always chooses
the shortest possible path. As a consequence, possibly interesting sequences are
simply avoided.

For example, if we consider the test target corresponding to the successful
creation of a new directory with the mkdir operation, a test will be produced to
check the behavior of mkdir with a new name as a parameter. Nevertheless, an
other interesting test would be to reuse the name of a deleted file or directory.
Such a preamble is not taken into account by LTG.

4 Combining Scenario- and Model-Based Testing

Our proposal is to extend the “classical” functional test generation approach
with a scenario-based testing approach that uses the symbolic animation of the
model to decide the feasability of the test sequences and to compute test data.
Another advantage of using scenarios is that they can help reaching “unreached”
test targets, especially those related to boundary values coverage. Indeed, con-
sider the file/directory creation operations (e.g. create or mkdir), automatically
computed test target would require the maximal number of nodes in a directory
to be reached. Unfortunately, such a target would require numerous successive
creation of nodes. As a matter of fact, LTG preamble computation is natively
limited in both time and state exploration depth, preventing such a target from
being reached. Nevertheless, such a test target can be reached by considering
the suitable scenario.

4.1 Principles of Scenario- and Model-Based Testing

Scenario-based testing strengthens a classical functional test generation cam-
paign by generating complementary test cases, that are designed based on the
experience of the validation engineer. These tests respond to specific test needs
identified by the engineer when reading the informal specifications.

Tool support can be used to ease the test design, such as the Tobias [9]
combinatorial testing tool. This latter takes as input combinations of opera-
tion sequences and their possible parameters, expressed through finite regular
expressions, and combines operations and parameters together. This is a quick

160 F. Dadeau, A. De Kermadec, and R. Tissot

way to produce large test suites, but which may unfortunately be irrelevant,
especially when the combination of parameters’ values does not satisfy the oper-
ation preconditions. Indeed, this declination of scenario-based testing does not
use a model. Thus, irrelevant operation calls can be generated and appear in
the resulting test suite. Moreover, the engineer is asked to provide the opera-
tion parameters values, which might be a complicated task and requires both
skills and experience in testing. Also, the validation engineer should have a good
knowledge of the system in order to be able to correctly design the operation
chaining that reaches a specific system state.

Experiments on combinatorial testing have shown that most of the time, the
combinatorial explosion is introduced by the neverending iterations over the pos-
sible parameter values. We thus propose to abstract the operation parameters,
in order to focus only on the operations chaining.

The principle of the scenario- and model-based testing approach is to combine
the essence of combinatorial testing, i.e., being grounded on the know-how of
the validation engineer, and the power of the symbolic animation of a formal
model [3], in order to compute relevant test data. Scenarios are written using
schemas, that are now described.

4.2 Schemas Language

In this section, we introduce the language that we have designed to formally
express test schemas. We wanted the language to be as generic as possible w.r.t.
the modelling language used to formalize the system. It is thus structured in two
different layers: the sequence layer, and the test generation directive layer.

The former describes scenarios in terms of operation calls and state properties
to be reached. State properties are expressed in the language of the formal model.
In order to describe the multiple behaviors of a schema, the language is based on
regular expressions, and introduces notions of choices or iterations. The latter
deals with combinatorial issues, by specifying coverage criteria intended to the
test generation tool.

Syntax of the Sequence Layer. The concrete syntax of the sequence layer is
given hereafter:

OP ::=operation name SEQ ::=OP1 — ”(” SEQ ”)” — SEQ”�(” SP ”)”

— $OP —SEQ ”.” SEQ

— $OP ”\{” OPLIST ”}” —SEQ REPEAT

—SEQ CHOICE SEQ

OPLIST::=operation name

— operation name” , ”OPLIST REPEAT::=”*” — ”+” — ”?” — ”{” n ”}”

SP ::=state predicate —”{” n ”,}” — ”{,” n ”}” — ”{” n ”,” m ”}”

The SP rule describes the state predicates whereas OP is used to describe
operation calls, which may be expressed by: (i) an operation name, (ii) the
$OP tokens meaning any operation, or (iii) using $OP\{OPLIST} meaning any
operation, except those in list OPLIST.

Combining Scenario- and Model-Based Testing 161

The SEQ rule describes a sequence of operation calls as a regular expression. A
step of sequence is either an operation call, denoted by OP1, or an operation call
leading to a state satisfying a state predicate, denoted by SEQ �(SP). This latter
represents the major improvement w.r.t. usual scenario description languages,
since it makes it possible to define the target of a sequence of operation, without
necessarily enumerating the operations composing the sequence.

Sequences can be composed by the concatenation of two sequences, the repe-
tition of a sequence or the choice between two sequences. We use usual regular
expression iteration operators, augmented with bounded repetition operators
(exactly n times, at least n times, at most n times, between n and m times).

Syntax of the Test Generation Directive Layer. This part of the language
is given hereafter.

CHOICE ::=”|” | ”⊗”

OP1 ::= OP | ”[”OP”]”

It allows to specify guidelines for the test generation step. We propose two
kinds of directives aiming at reducing the search for instantiations of the test
schema.

The CHOICE rule introduces two operators, denoted as | and ⊗, for covering
the branches of a choice. Let S1 and S2 be two test schemas. Schema S1 | S2
specifies that the test generator must generate tests for both schema S1 and
schema S2. S1 ⊗ S2 specifies that the test generator must generate tests either
for schema S1 or schema S2.

The rule OP1 tells the test generator to cover one of the behaviors of operation
OP. It is the default option. The test engineer can also perform the coverage of
all the behaviors of the operation by surrounding its call with brackets.

Test Schema Example. The test schema hereafter aims at reaching a state
with the maximum amount of files opened. Such a target can be generated au-
tomatically using a boundary value coverage on the number of currently opened
files. In order to compute the preamble, a large number of calls to the open
operation have to be performed. Since LTG’s automated test generation process
is natively limited in the number of operations in the preamble, such a target
would never be reached.

open�(id1 ∈ existing files) .

(open* �(card(fd)=MAX OPEN ∧ ran(fd2ids)={id1}) |

opendir* �(card(fd)=MAX OPEN ∧ ran(fd2ids)={ROOT ID})

) . ([open] | [opendir])

In this example, we assume that the initial state of the system only contains
the root directory. The schema is constituted of 3 steps. The first one aims at
creating a new file (using the open operation). The second opens the maximum
amount of file descriptors pointing either on files or on directories. The third and

162 F. Dadeau, A. De Kermadec, and R. Tissot

final step explores the different behaviors of either open or opendir commands
in this state. It unfolds in 4 operation sequences that have to be instantiated.
Such an instantiation is now described.

4.3 From Schemas to Test Cases Using Model Symbolic Animation

Symbolic animation is a process that consists in performing the exploration of
the states of a model. Instead of considering concrete states, in which the state
variables have a defined and concrete value, symbolic animation considers groups
of concrete states, named symbolic states. These latter are introduced by leaving
operation parameters unspecified. Thus, they are replaced by a symbolic value
related to the corresponding data domain. Furthermore, all state variables whose
evolution depend on such symbolic parameters also become symbolic.

Example 2 (Symbolic Animation of the mkdirOperation). Consider the sequence:

< init; mkdir(id root,id root,N1); mkdir(id root,id root,N2) >

based on the mkdir operation of Fig. 1, in which the name parameters are
abstracted by two symbolic variables N1 and N2. After the successful execution
of these two operations, the id2name state variable becomes symbolic, associated
to the following constraints:

ids2name = {id0 �→ N1, id1 �→ N2} ∧N1 ∈ NAMES ∧N2 ∈ NAMES ∧N1 �= N2

In practice, symbolic animation relies on constraint solving techniques that
make it possible to instantiate the parameters after the execution of the se-
quence. In our example, one possible instantiation is N1=n01 and N2=n02.

Once unfolded, the tests are played on the model using the symbolic ani-
mation engine of LTG (similar as the one presented in [3]). At each step, the
parameters are replaced by symbolic values. Once the sequence has been entirely
(symbolically) played, the intermediate operation parameters are automatically
instantiated by the constraint solvers, so that the resulting test case is consis-
tent, meaning that the sequence of operations is feasible (as defined in [1]), and
each potential intermediate state predicate holds. It is possible for the validation
engineer to select the data coverage he wants to apply. By default, a single value
satisfying the constraints is chosen. An advanced test driving mechanism makes
it possible to select a boundary value coverage of numerical inputs.

5 Experiments

This section presents the expriments performed, by first giving an overview of the
systems under test (SUT) we have considered. Then, we introduce the schemas
we have designed and their results on the SUTs.

Combining Scenario- and Model-Based Testing 163

5.1 Systems Under Test

We have considered two target systems for our tests to be run. The first one is
a standard Linux kernel (version 2.6.20-16-generic on an Ubuntu distribution).
The second one is a hand-made implementation of POSIX in Java (meant to be
later adapted to JavaCard). We considered these targets for two purposes. The
Linux distribution makes it possible for us to validate our model. Indeed, even
if Linux systems are, as a matter of fact, not POSIX-compliant, the differences
with the POSIX standards can not be found in the basic subset of commands
that we have considered. Thus, playing our tests on a Linux system, through the
C interface, makes it possible to ensure the conformance of our model w.r.t. the
standard. Nevertheless, we needed to make sure that our tests were useful. Using
our own Java implementation of the POSIX standard makes it possible, first,
to check this implementation w.r.t. the validated model, and, second, to easily
introduce errors in this implementation in order to measure the fault detection
capabilities of our tests, through mutations.

We wrote translators, named adaptation layers, that concretize the abstract
XML test cases, produced by LTG, to system-dependant test cases. The first
translator produces C files containing calls to the corresponding C functions.
The second translator produces a JUnit test file containing calls to the corre-
sponding Java methods. The resulting files embed the test oracle, defined as the
conformance relationship given in 3.2. Notice that such translators may easily
be adapted to test other implementations of POSIX.

5.2 Test Schema and Results

We present here the description of several of the test schemas used to generate
the test cases during the experimentation3.

A functional test campaign has been computed using LTG, producing 78 tests.
These tests were completed by the schemas given hereafter. The first two schemas
are designed to overcome LTG limitations is reaching boundary values. The two
last schemas are designed in order to extend the functional test campaign:

– maxOpen: tests the maximal number of file opened (4 tests)
– maxFileSize: tests the maximal file size (24 tests)
– removedRef: tests the reuse of a (re)moved file name or closed file descriptors

(147 tests)
– multiFd: tests the multiple use of a file descriptor (64 tests)

We have unfolded the test schemas and instantiated the parameters w.r.t. the
model. Thus, we have run our tests on our two SUTs. The functional campaign
highlighted 7 non-conformances (on 78) between the Linux kernel and the B
model. The analysis of the tests show that they come from a different inter-
pretation of implementation-dependant elements of the specification. The tests
issued from the schemas were successfully run on our Linux distribution.
3 The original model, the schemas, and the resulting tests in C are available at
http://lifc.univ-fcomte.fr/∼dadeau/posix/

http://lifc.univ-fcomte.fr/~dadeau/posix/

164 F. Dadeau, A. De Kermadec, and R. Tissot

Running all the tests on the Java implementation revealed a few bugs (e.g.
array indexes out of bounds, null pointer exceptions) but basically no serious
non-conformance were found. We introduced several functional errors in this
implementation. Among them, we only allowed one file descriptor per system
file. This error was not detected by the LTG test suite, but was found using
schema multiFd. Another error was to incorrectly close an opened file descriptor,
so that it is possible to write/read through this file descriptor. Also, this error,
not found by LTG, was found using schema removedRef. These results illustrate
the relevance of using test schemas and the ease of using the schema language.

6 Conclusion and Future Work

We have presented in this paper the combination of scenario- and model-based
testing techniques. This approach relies on a schema language, based on regular
expressions, that makes it possible to describe symbolic scenarios as operation
sequences whose parameters values are computed by a symbolic animation en-
gine. This process is a great improvement of existing techniques. It provides a
tool support which relieves the validation engineer from, first, writing repetitive
test sequences, and, second, finding consistent test data that make it possible
to execute an operations’ suite. This latter is an improvement w.r.t. other sce-
nario based testing approaches, even applied to B [13]. In related works, scenario
based testing mainly focuses on extracting scenarios from UML diagrams, such as
the SCENTOR approach [16] or SCENT [11] using statecharts. The SOOFT ap-
proach [14] proposes an object oriented framework for performing scenario-based
testing; nevertheless, the scenarios have to be completely described, contrary to
our approach that abstracts the difficult task of finding well-suited parameter
values. The combination of symbolic techniques and scenarios for generating
tests based on models is an original combination that do not seem to have been
targeted before.

We applied our technique on a model of the POSIX case study written as a B
machine. It includes the most common operations on file systems for manipulat-
ing directories and files. We have used this model as an input to the LEIRIOS
Test Generator, in order to automatically produce functional test cases. These
tests were completed by a combination of scenario- and model-based tests. We
also experimented the ProB test generator (ProTest) [12]. Unfortunately, ProB’s
systematic enumeration of operation parameter values, on the model, suffers
from combinatorial explosion and makes it impossible to handle the model. A
related but less advanced work has been presented in [4]. This latter used a MBT
approach to test the fcntl byte range locking APIs of POSIX.

This work is a contribution to the POSIX mini-challenge, for which the pur-
poses are twofold. First, the generated tests can be run on the final implementa-
tion in order to make sure that it conforms to the model. Second, if the code of
the implementation is automatically generated from the model, the tests that we
propose can be played on this latter in order to make sure that it behaves as ex-
pected in the requirements of the POSIX standard. Thus, our testing technique

Combining Scenario- and Model-Based Testing 165

can be employed in the validation phase of the application, either for validating
the model, the implementation or both. Therefore, only simple adapters have to
be written to translate our tests in the considered target format.

We are now interested in extending our approach. First, we plan to refine our
schema language in order to increase its expressiveness. For example, using the
Tobias-2 format [8] would make it possible to capture the expressiveness of our
language, and would also permit to additionally specify some of the parameter
values, which are currently systematically all abstracted. Second, we plan to
automate the production of test scenarios based on formal properties expressed
on the model. Such an approach would be related to [2] in which we previously
used temporal safety properties to produce test cases.

References

1. Abrial, J.R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Bouquet, F., Dadeau, F., Groslambert, J., Julliand, J.: Safety property driven

test generation from JML specifications. In: Havelund, K., Núñez, M., Roşu, G.,
Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 225–239. Springer,
Heidelberg (2006)

3. Bouquet, F., Legeard, B., Peureux, F.: CLPS-B: A constraint solver to animate a
B specification. International Journal on Software Tools for Technology Transfer,
STTT 6(2), 143–157 (2004)

4. Farchi, E., Hartman, A., Pinter, S.S.: Using a model-based test generator to test
for standard conformance. IBM Systems Journal 41(1), 89–110 (2002)

5. Jaffuel, E., Legeard, B.: LEIRIOS Test Generator: Automated Test Generation
from B Models. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355,
pp. 277–280. Springer, Heidelberg (2006)

6. Joshi, R., Holzmann, G.: A mini challenge: build a verifiable filesystem. Formal
Aspects of Computing 19, 269–272 (2007)

7. Lampson, B.W.: Protection. SIGOPS Oper. Syst. Rev. 8(1), 18–24 (1974)
8. Ledru, Y., Dadeau, F., du Bousquet, L., Ville, S., Rose, E.: Mastering combinatorial

explosion with the tobias-2 test generator. In: ASE 2007: Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineering,
pp. 535–536. ACM, New York (2007)

9. Ledru, Y., du Bousquet, L., Maury, O., Bontron, P.: Filtering TOBIAS Combi-
natorial Test Suites. In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004.
LNCS, vol. 2984, pp. 281–294. Springer, Heidelberg (2004)

10. Morgan, C., Sufrin, B.: Specification of the UNIX filing system. In: Specification
case studies, pp. 91–140 (1987)

11. Ryser, J., Glinz, M.: A practical approach to validating and testing software sys-
tems using scenarios (1999)

12. Satpathy, M., Leuschel, M., Butler, M.: ProTest: An Automatic Test Environment
for B Specifications. Electronic Notes in Theroretical Computer Science 111, 113–
136 (2005)

13. Satpathy, M., Malik, Q.A., Lilius, J.: Synthesis of Scenario Based Test Cases from
B Models. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006
and RV 2006. LNCS, vol. 4262, pp. 133–147. Springer, Heidelberg (2006)

166 F. Dadeau, A. De Kermadec, and R. Tissot

14. Tsai, W.T., Saimi, A., Yu, L., Paul, R.: Scenario-based object-oriented testing
framework. qsic, 00:410 (2003)

15. Utting, M., Legeard, B.: Practical Model-Based Testing - A tools approach, 550
pages. Elsevier Science, Amsterdam (2006)

16. Wittevrongel, J., Maurer, F.: Scentor: Scenario-based testing of e-business applica-
tions. In: WETICE 2001: Proceedings of the 10th IEEE International Workshops
on Enabling Technologies, Washington, DC, USA, 2001, pp. 41–48. IEEE Com-
puter Society, Los Alamitos (2001)

UseCase-Wise Development: Retrenchment for Event-B

Richard Banach

School of Computer Science,
University of Manchester,
Manchester, M13 9PL, UK
banach@cs.man.ac.uk

Abstract. UseCase-wise Development, the introduction of functionality into an
application in stages, with each stage being carried through to (ideally) imple-
mentation before the next is considered, is examined with a view to its being
treated via an Event-B methodology. The need to modify top level behaviour in
a non-skip way precludes its naive treatment via Event-B refinement, and paves
the way for the use of retrenchment in Event-B. The details of an Event-B for-
mulation of retrenchment, aligned to the practical details of the Rodin toolset, are
described. The details of refinement/retrenchment interworking needed to handle
UseCase-wise development are outlined, and a simple case study is given.

Keywords: Event-B, UseCase-wise Development, Incremental Development,
Refinement, Retrenchment, Tower Pattern.

1 Introduction

One of the notable things about the move from traditional B [1] to Event-B [2,3], is
the way that the re-engineered refinement theory of Event-B has managed to encom-
pass many ‘low hanging fruit’ issues, for the handling of which, retrenchment has been
advanced in more conventional refinement frameworks in the past. One can mention:
the introduction of new events at successive development levels (within certain re-
strictions); the emphasis on guards (rather than preconditions) and their strengthening
during refinement; the migration of information between I/O variables and state vari-
ables (since in Event-B there is generally no separate category of I/O variables to worry
about); and so on. All of this is beneficial, in bringing such issues under more rigorous
control than when using other development techniques (or when using retrenchment).

Nevertheless, because in Event-B (as in every other rigorous refinement framework),
the development strategy and the notion of correctness is fixed ab initio —and yet the
world is richly and subtly structured— it is almost inevitable that sooner or later an
application scenario will arise in which the demands of Event-B will prove to be a less
than ideal fit for the application in question. It is to help accomodate situations like these
that retrenchment was originally conceived, so it is natural to ask what retrenchment
amounts to in the Event-B context, and how the notions of Event-B refinement and
Event-B retrenchment would interact. Fortunately, since the original introduction of
retrenchment [4], we have accumulated a good deal of experience and evidence on
which to base the answer (see eg. [5]).

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 167–180, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 R. Banach

In this paper we examine retrenchment in the Event-B context, by looking at a small
case study developed using a UseCase-wise development methodology. UseCase-wise
development is our name for a development strategy in which increments of function-
ality are added in stages, with the introduction of each resulting in a usable application
before the next is considered. Such an approach is at odds with the more traditional wa-
terfall model with which typical formal development approaches are frequently aligned.
We view the exploration of alternative strategies as a good motivation for studying how
retrenchment should be formulated in Event-B, a question which is of independent in-
terest in any case.

The rest of this paper is as follows. In Section 2 we describe UseCase-wise develop-
ment, contrasting it with conventional Event-B development. Section 3 briefly reviews
Event-B and discusses the details of retrenchment for Event-B. In Section 4 we cover re-
trenchment/refinement interworking and the Tower Pattern. The preceding ingredients
are then applied to a small case study, illustrating a good fit between the UseCase-wise
approach and Event-B correctness when retrenchment is available. Section 6 concludes.

2 UseCase-Wise Development

In Event-B there is a strong emphasis on getting the requirements correct (or as near
correct as is achievable) at the outset. One then analyses the requirements and deter-
mines the most appropriate order in which to take them into account within a sequence
of refinements. The refinements themselves, mix the accretion of requirements issues
as identified during requirements analysis, with data refinements, as appropriate. As
the models get more detailed, sound decomposition techniques are available to split
models into components, allowing further refinements to be done independently. This
TopDown (TD) approach, proceeding as it does in an essentially linear manner, shows
that the Event-B approach can be viewed as a formal interpretation of a fairly traditional
waterfall strategy.

By UseCase-wise (UCw) development, we mean an approach to system development
that proceeds by taking one or more of the UseCases identified during requirements
analysis, and completes the development of those first, from the abstract models down
to implementation, giving a usable system (with limited functionality). Subsequently
further UseCases are incorporated, with all the elements of the development getting
suitably enhanced, and yielding another working system, this time with greater func-
tionality. The process is repeated until all the UseCases identified during requirements
analysis have been developed, yielding a system with all the functionality desired. UCw
development can be seen as a member of the ‘Agile Methods’ family of system devel-
opment techniques.1

1 We coined the term ‘UseCase-wise development’ to avoid confusion. It is enough to glance
at http://en.wikipedia.org/wiki/Agile software development and the acronym blizzard one
finds there, with the same term having different meanings in different settings, to realise what
dangers lurk in the casual use of terms invented in this field. What we call UseCase-wise devel-
opment is also called ‘incremental development’ in other places, but that term is so laden with
possibilities for misinterpretation, that we thought it safest to invent a fresh name, inevitably
causing yet more terminological proliferation.

UseCase-Wise Development: Retrenchment for Event-B 169

… … … … … … …… … … … …

Fig. 1. Illustrating TopDown versus UseCase-wise development strategies

Fig. 1 illustrates the TD versus UCw distinction. On the left we see a development
proceeding TD in layers, while on the right, we see additional slices of functionality
being added UCw to an initially developed system. It is important to realise that the TD
vs. UCw distinction refers to the dynamics of the process by which the system is built.
Even though a system may be built using a UCw process, one which is superficially
unsympathetic to Event-B perspectives, there is no reason why the end result should
not be a collection of models which enjoy the levels of mutual consistency character-
istic of Event-B. Thus, even though one might argue that introducing a UCw approach
into Event-B would be a retrograde step for Event-B, it is hard to dispute that introduc-
ing Event-B’s criteria for correctness into the UCw approach would be a positive step
for UCw development. This begs the question of how one might incorporate Event-B
correctness into the UCw process. This will be dealt with in Section 4.

3 Event-B Machines, Refinement and Retrenchment for Event-B

In this section, we review Event-B machines, refinements, and against this background,
we formulate retrenchment in a way that will permit the smoothest possible cooperation
between the two techniques.

3.1 Event-B Machines

In a nutshell, an Event-B MACHINE has a name, it SEES one or more static contexts,
and it owns some VARIABLES; these are allowed to be updated via EVENTS, but
are required to always satisfy the INVARIANTS. The events can declare their own
parameters (which are bound variables acting as carriers of input values) — each event
has one or more guards, and one or more actions which are specified via before-after
predicates (or notations such as assignment for simpler cases). Among the events there
is an INITIALISATION, whose guard must be true.

The semantics of Event-B machines and of the refinement relationship between ma-
chines, is expressed via a number of proof obligations (POs). These must be provable in
order for the machine or refinement in question to be well defined. We quote the main
ones of interest to us, mentioning the others more briefly. See [2,3] for full details.

For a machine A to be well defined the initialisation and correctness POs must hold:

InitA(u′)⇒ I(u′) (1)

I(u) ∧ GEvA(i, u) ∧ EvA(u, i, u′)⇒ I(u′) (2)

170 R. Banach

In (1), InitA is the initialisation event and (1) says that the value u′ of A’s state variable
u established by InitA satisfies A’s invariant I. Likewise, (2) says that for an event EvA

of A, if A’s invariant I, and EvA’s guard GEvA(i, u), both hold in the before-state of the
event, and EvA’s before-after relation EvA(u, i, u′) also holds, then the after-state will
satisfy the invariant I once more. In (1) and (2) we have suppressed mention of the
details of the static contexts seen by A, but we have singled out EvA’s input variables
i for later convenience. For closer conformance to [2,3] we have not mentioned any
output variables, though it would be trivial to include them in the before-after relation
EvA(u, i, u′) and in (2). Aside from (1) and (2), Event-B machines must satisfy feasi-
bility POs for the initialisation and for all events, and also a deadlock freedom PO for
non-terminating systems; see [2,3].

3.2 Event-B Refinement

Suppose that as well as machine A, we have another machine C, with state variable w,
input variable k, initialisation event InitC, and typical event EvC, with guard GEvC(k, w)
and before-after relation EvC(w, k, w′). If C is a refinement of A, its invariant K(u, w)
will be a relation over both u and w, and the counterparts of (1) and (2) are:

InitC(w′) ⇒ (∃ u′ • InitA(u′) ∧ K(u′, w′)) (3)

I(u) ∧ K(u, w) ∧ GEvC(k, w) ∧ EvC(w, k, w′)
⇒ (∃ i, u′ • GEvA(i, u) ∧ EvA(u, i, u′) ∧ K(u′, w′)) (4)

where EvC is an event that is supposed to refine EvA and we have amalgamated the guard
strengthening and correctness POs in (4) for later convenience. In (3), each InitC(w′)
intialisation must be witnessed by some InitA(u′) intialisation that establishes the joint
invariant J(u′, w′). Likewise, (4) says that when both invariants hold, each EvC(w, k, w′)
event is witnessed by some EvA(u, i, u′) event that re-establishes the joint invariant.
Aside from (3) and (4) there are also feasibility POs for the initialisation and for all
events, variant decrease POs for ‘new’ C events not declared to be refinements of any
event of A, and also an overall relative deadlock freedom PO. See [2,3] for full details.

We give a small example of Event-B refinement. It builds a directed graph from a
finite universe of possible nodes contained in a set NSet held in a context NCtx.

Machine Nodes is concerned with the requirement of assigning nodes to the graph,
picking them out of the set NSet using the event AddNode, starting with the empty set.
Machine Edges refines Nodes, and addresses the requirement of having edges between
some of the graph nodes. In typical Event-B fashion, it simply accumulates the new
model elements, leaving the preceding ones unchanged. So Edges just contains Nodes
in its body. The new requirement is handled by adding a new variable edg and a new
event AddEdge. AddEdge acts like skip on the existing variable nod, as required for such
‘new’ events. Also since AddEdge does not refine any existing event (unlike AddNode
which refines itself and is thus ‘ordinary’), it must be ‘convergent’, which means that
each invocation of AddEdge decreases the N-valued VARIANT card(NSet×NSet−edg),
ensuring relative deadlock freedom. (We suppress the WHICH IS clauses below.)

UseCase-Wise Development: Retrenchment for Event-B 171

MACHINE Nodes
SEES NCtx
VARIABLES nod
INVARIANTS

nod ∈ P(NSet)
EVENTS

INITIALISATION
WHICH IS ordinary
BEGIN nod := ∅ END

AddNode
WHICH IS ordinary
ANY n
WHERE n ∈ NSet − nod
THEN nod := nod ∪ {n}
END

END

MACHINE Edges
REFINES Nodes
SEES NCtx
VARIABLES nod, edg
INVARIANTS

nod ∈ P(NSet)
edg ∈ P(NSet × NSet)

EVENTS
INITIALISATION

WHICH IS ordinary
BEGIN nod := ∅ END

AddNode
WHICH IS ordinary
REFINES AddNode
ANY n
WHERE n ∈ NSet − nod
THEN nod := nod ∪ {n}
END

AddEdge
WHICH IS convergent
ANY n, m
WHERE {n, m} ⊆ nod

n �→ m ∈ NSet × NSet − edg
THEN edg := edg ∪ {n �→ m}
END

VARIANT card(NSet × NSet − edg)
END

3.3 Retrenchment for Event-B

We now formulate retrenchment for Event-B against the preceding background. The
objective of retrenchment is to offer a flexible relationship between machines or system
models that can capture situations in which all the detailed criteria of some species of
refinement cannot be met, but where the two models in question are deemed neverthe-
less (and especially by domain experts rather than refinement specialists) to belong to
the same development activity. The focus of retrenchment is on a simulation-like crite-
rion, with the added aim of convenient interworking with refinement. Retrenchment is
therefore formulated as a modification of the main POs of the refinement notion, with
the incorporation of suitable additional predicates to enhance expressivity.2

For the specific context of Event-B, retrenchment is a relationship that is to hold
between top level machines. When a retrenchment involving a refinement machine is
needed, one must quantify away the dependence on the higher level abstractions to get
a self-contained top level machine using the technique described in Chapter 11 of [1].

Unlike refinement in Event-B, in which the refinement data (essentially just the joint
invariant and some bookkeeping details, as in our example) are incorporated into the
syntax of the refining machine, retrenchment is an independent syntactic construct, as
befits the weaker relationship between machines that it expresses, and especially, the
desire that none of the details of retrenchment interfere in any way with any refinement
that any machine involved in a retrenchment might also be involved in. Notationally
this departs from the scheme in [4] and agrees with the line taken in [6,7,8].

2 Thus the modification of the relevant refinement POs constitutes the sense in which the
simulation-like criterion is intended; suitable pairs of transitions in the two models should
satisfy an appropriate generalisation of (4).

172 R. Banach

Suppose we have top level machines A (having the elements mentioned earlier) and
B, and B’s state and input variables are v, j, the invariant is J(v) and the other pieces can
be imagined. Here is a schematic syntax for the retrenchment construct, intended as a
good fit for Event-B as currently implemented in the Rodin toolset [9]:

RETRENCHMENT Identifier RetA,B

FROM Identifier A TO Identifier B
[SEES IdentifierList]
[RETRIEVES Predicate R(u, v)]
[EVENTS

[RAMIFICATIONS Identifier EvA [TO Identifier EvB]
[WITHIN Predicate WEvA,EvB (i, j, u, v)]
[CONCEDES Predicate CEvA,EvB (u′, v′, i, j, u, v)]
END

]+
]
END

The construct has a name RetA,B, and is FROM machine A TO machine B. It can SEE
static contexts as can a machine or refinement. There is a RETRIEVES relation R(u, v)
between the two state spaces, and for each pair of retrenchment-related events in A and
B, eg. EvA and EvB (where one can omit mentioning EvB if it has the same name as EvA),
there are the RAMIFICATIONS, consisting of the WITHIN relation WEvA,EvB(i, j, u, v)
and the CONCEDES relation CEvA,EvB(u′, v′, i, j, u, v).

The semantics of retrenchment is given by its POs. These are:

InitB(v′) ⇒ (∃ u′ • InitA(u′) ∧ R(u′, v′)) (5)

I(u) ∧ R(u, v) ∧ J(v) ∧ WEvA,EvB(i, j, u, v) ∧ EvB(v, j, v′)
⇒ (∃ i, u′ • EvA(u, i, u′) ∧ (R(u′, v′) ∨ CEvA,EvB(u

′, v′, i, j, u, v))) (6)

where there is an instance of (6) for each ramifications-related pair EvA and EvB. We
see that the intialisation PO is standard, while the correctness PO permits considerable
deviation from refinement-like behaviour by virtue of the presence of the within and
concedes relations. In addition to the above, we demand for each EvA/EvB pair that:

WEvA,EvB(i, j, u, v)⇒ GEvA(i, u) ∧ GEvB(j, v) (7)

which is the criterion that ensures smooth retrenchment/refinement interworking. Note
however, that the other POs of Event-B refinement, variant decrease and relative dead-
lock freedom, do not have counterparts in retrenchment; we want to be able to relate
machines with significantly different behaviour as regards these aspects, if desired.

Although we do not have space here to fully examine the arguments why the above
design is a good one for retrenchment, we can make the following remarks. Firstly,
the aim of a notion that departs from refinement or desires to accommodate inability
to satisfy refinement, must amount to a weakening of refinement — there is clearly
no point in doing the opposite. The proposal we have given above does this, since
the occurrences of WEvA,EvB(i, j, u, v) and CEvA,EvB(u′, v′, i, j, u, v), in the hypotheses and
conclusions respectively, of (6), clearly weaken (4). Secondly, we want this weaken-
ing to be as general as possible so as not to have to invent a different notion of non-
refinement for every conceivable departure from refinement that might arise. Again, (6)

UseCase-Wise Development: Retrenchment for Event-B 173

A

C D

B

RefA,C

RetC,D

RetA,B

RefB,D …

Fig. 2. The basic structure for the Tower Pattern on the left, and on the right, its use in constructing
a UCw development whose outcome enjoys the rigour of an Event-B development

achieves this since WEvA,EvB(i, j, u, v) and CEvA,EvB(u
′, v′, i, j, u, v) must be specified on a

per-event-pair basis. Thirdly, we would want the departure from refinement to be quan-
tified in some way. Again, (6) achieves this, at least indirectly, since WEvA,EvB(i, j, u, v)
and CEvA,EvB(u′, v′, i, j, u, v) must actually be specified by the user in each particular case
of retrenchment — in doing this the precise details of how refinement fails to hold is
made clear by the user in the details of these (otherwise unconstrained) relations. Lastly,
we would want good interworking with refinement. This important topic is the subject
of the next section. See [5] for more extensive discussion of generalities such as these
concerning retrenchment.

4 Retrenchment and Event-B Interworking: The Tower Pattern

A definite sine qua non of retrenchment is that the use of retrenchment should not spoil
the rigour achievable via refinement. The best results are obtained when the two notions
work closely together, with retrenchment being used to connect together otherwise in-
compatible refinement strands. The more tightly such different refinement strands are
coupled via retrenchment, the more restraint is exercised over retrenchment’s otherwise
extreme permissiveness.

The paradigmatic arrangement of retrenchments and refinements, that achieves both
the tight coupling that restricts retrenchment and the non-interference with the rigour of
refinement, is the Tower Pattern, an epithet that summarises a host of square comple-
tion and factorisation results in Jeske’s thesis [10]. The left hand side of Fig. 2 shows a
commuting square of retrenchments and refinements among four system models A, B,
C, D, with the retrenchments horizontal and the refinements vertical (and the data that
characterises these retrenchments and refinements implicit). The results of [10] show
that whenever you start with two adjacent sides of such a square, the square can be
completed by building the missing system model and its impinging retrenchment and
refinement out of the existing elements in a canonical way, and that the result is indeed
a commuting square. (Section 5 is concerned with an explicit example of this construc-
tion.) Such commuting squares are the fundamental building blocks of the tower, which
itself is just an arrangement of such squares into a suitable grid pattern appropriate to
the development at hand.

The tower construction has by now had substantial vindication. In the formal de-
velopment of the Mondex Electronic Purse [11], there were a number of requirements

174 R. Banach

issues that were handled less than ideally in the formal modelling. These have all been
handled convincingly via retrenchment, mostly using the tower [12,13,14].

Although [10] was done in the context of Z refinement to directly serve the needs
of the Mondex work, the approach advocated in Section 3 and discussed more widely
in [5], ensures that there is a wide commonality between retrenchment formulations
for different variants of refinement. The insistence that retrenchment is confined to the
initialisation and correctness POs helps here, since most notions of refinement have ini-
tialisation and correctness POs that are either identical to, or extremely close to, (5) and
(6). In particular, this applies to Event-B and Z refinements, so, since the composition
of refinements and retrenchments is defined via their initialisation and correctness POs,
these compositions (which yield retrenchments), will be identically defined for both Z
and Event-B. See [15].

For our purposes, we need a suitable analogue of the Postjoin Theorem from [10],
which states that if we have three systems A, B, C, as in Fig. 2, the square can be com-
pleted in a canonical way with a system D, and a connecting retrenchment RetC,D and
refinement RefB,D, so that the two retrenchment+refinement compositions round it are
equal. What impedes the immediate application of the theorem from [10] is: (a) its fero-
cious technical complexity; (b) its detailed Z dependence as regards ‘non-correctness’
POs (i.e. the POs that in Z replace guard strengthening and relative deadlock freedom).
Fortunately the same remedy overcomes both problems. The ferocity of the postjoin
construction comes from wanting to deal with the most general situation possible, which
means allowing the relations that comprise the given retrenchment and refinement to be
as unrestricted as possible. The postjoin construction then has to extract those parts of
these constituent entities that compose smoothly, and it attempts to do so in the most
general manner achievable — this generates formidable complexity. However, if we
are dealing with a situation in which the constituents are well behaved to start with,
most of the complexity simplifies drastically, and a situation that is ‘obviously sensi-
ble’ emerges. The same applies to the non-correctness POs; in a well behaved context,
these do not cause problems either. Further discussion of these points is best given in
the context of an example, so we pick up this thread again near the end of Section 5.

What does any of this have to do with reconciling the TD and UCw strategies? Well,
a single step of the UCw strategy takes the pre-existing development, and incorporates
a new UseCase of functionality. We can imagine that the pre-existing development has
been captured within a sequence of Event-B refinements, starting with the most abstract
formulation of the pre-existing functionality, and descending into more concrete levels
of description, perhaps aggregating additional events into the description as we go in
the usual Event-B way. We can represent this pre-existing development by the thick
vertical line in the middle of Fig. 2.

The incorporation of the new functionality may well require the introduction of new
events at the top level, a reworking of the top level invariant, reworked top level guards,
and so on. As such it will not generally fit into the preceding refinement sequence, not
least because the new top level functionality will usually not manipulate the top level
state in a skip-like fashion. (These of course are the crucial reasons why one cannot, in
general, capture such increments of functionality using Event-B refinements.) However,
the new functionality can be related to the existing development via a retrenchment.

UseCase-Wise Development: Retrenchment for Event-B 175

(We can say the latter with confidence since we show in [5] that any two system mod-
els can be related via a retrenchment, the potential vacuousness of such a statement be-
ing alleviated by the observation that the various relations that comprise a retrenchment
help to quantify the difference between the models, as noted above. In a well-controlled
situation, such as the introduction of new functionality, the difference between the two
models will not be capriciously arbitrary (despite not necessarily conforming to Event-
B refinement desiderata), and so the retrenchment between them will, in fact, be able to
say quite a lot.)

Depicting the retrenchment from previous top level model to new top level model
horizontally, we arrive at the shape given by the solid part of the next piece of Fig. 2.

Now the tower construction can take over, and complete a sequence of refinements
from the new top level via the requisite sequence of postjoin square completions, work-
ing downwards, as illustrated in the next part of Fig. 2. The new bottom level will be
at the right level of abstraction to correspond with the pre-existing bottom level model.
Thus one bout of UseCase introduction has been achieved via the tower. Successive
bouts follow the same route. In each case we draw up the retrenchment that takes us
to the new top level model, and allow the tower to do the rest. Finally, the right hand
column of the last bout yields a pristine Event-B development of the full functionality,
shown as an even thicker line on the right of Fig. 2.

5 A Simple Case Study

We tackle a toy distributed allocation problem. It is carried out in the way done here
only for purposes of illustrating our techniques. In reality, one would only apply the
machinery discussed in this paper to significantly more substantial examples.

Elements are to be allocated. At the most abstract level, there is a large (potentially
infinite) set, ASet, whose elements are to be allocated, and at a low level this is replaced
by a much smaller finite subset DSet. Also, at low enough levels of abstraction, ASet
and DSet are statically partitioned into ASet1, ASet2 and DSet1, DSet2 (the latter being
subsets of the former) for allocation to two individual agents. These static facts are
captured in the context Ctx:

CONTEXT Ctx
SETS ASet, DSet, ASet1, ASet2, DSet1, DSet2
AXIOMS

axm1 : ASet1 ∪ ASet2 = ASet
axm2 : ASet1 ∩ ASet2 = ∅

axm3 : DSet ⊂ ASet
axm4 : DSet1 = DSet ∩ ASet1
axm5 : DSet2 = DSet ∩ ASet2

END

5.1 Four Machines

Below are four machines, A, B, C, D, deliberately arranged as in Fig. 2. The left hand
column treats only one UseCase, that of allocation. Machine A, the most abstract one,
simply models the allocation of an element from ASet at the global level. Machine A

176 R. Banach

is refined to machine C, in which two agents can allocate from their statically assigned
partitions, each agent allocation refining the global allocation event.

MACHINE A
SEES Ctx
VARIABLES x
INVARIANTS inv1 : x ∈ P(ASet)
EVENTS

INITIALISATION
BEGIN act1 : x := ∅ END

AddEl
ANY el
WHERE grd1 : el ∈ ASet − x
THEN act1 : x := x ∪ {el}
END

END

MACHINE B
SEES Ctx
VARIABLES y
INVARIANTS inv1 : y ∈ P(ASet)
EVENTS

INITIALISATION
BEGIN act1 : y := ∅ END

AddEl
ANY el
WHERE grd1 : el ∈ ASet − y
THEN act1 : y := y ∪ {el}
END

SubEl
ANY el
WHERE grd1 : y �= ∅

grd2 : el ∈ y
THEN act1 : y := y − {el}
END

END

MACHINE C
REFINES A
SEES Ctx
VARIABLES x1, x2
INVARIANTS inv1 : x1 ∈ P(ASet1)

inv2 : x2 ∈ P(ASet2)
inv3 : x = x1 ∪ x2

EVENTS
INITIALISATION

BEGIN act1 : x1 := ∅

act2 : x2 := ∅

END
AddEl1

REFINES AddEl
ANY el
WHERE grd1 : el ∈ ASet1 − x1
THEN act1 : x1 := x1 ∪ {el}
END

AddEl2
REFINES AddEl
ANY el
WHERE grd1 : el ∈ ASet2 − x2
THEN act1 : x2 := x2 ∪ {el}
END

END

MACHINE D
REFINES B
SEES Ctx
VARIABLES y1, y2
INVARIANTS inv1 : y1 ∈ P(DSet1)

inv2 : y2 ∈ P(DSet2)
inv3 : y = y1 ∪ y2

EVENTS
INITIALISATION

BEGIN act1 : y1 := ∅

act2 : y2 := ∅

END
AddEl1

REFINES AddEl
ANY el
WHERE grd1 : el ∈ DSet1 − y1
THEN act1 : y1 := y1 ∪ {el}
END

AddEl2
.

SubEl1
REFINES SubEl
ANY el
WHERE grd1 : y1 �= ∅

grd2 : el ∈ y1
THEN act1 : y1 := y1 − {el}
END

SubEl2
.

END

The right hand column introduces the deallocation UseCase. Machine B is like ma-
chine A, except that (aside from variable renaming for clarity) it has a SubEl event as
well as an AddEl one. Machine B is refined to machine D. In machine D, the allocation
and deallocation events are refined into their agent-wise counterparts (the ones for agent
2 are just like the ones for agent 1, and so are suppressed to save space). Also machine
D introduces the use of DSet and its partition into DSet1, DSet2.

Let us consider the relationships between these various machines. The A to C refine-
ment is a normal Event-B refinement, as is the B to D refinement. However there is a

UseCase-Wise Development: Retrenchment for Event-B 177

difference between the two. In the A to C refinement, the static set ASet stays the same,
whereas in the B to D refinement, we are able to replace ASet by DSet. The reason we
are able to do this in the case of the B to D refinement but not the A to C refinement is
connected with the details of Event-B refinement POs. One of these, the relative dead-
lock freedom PO, demands that the disjunction of the guards of all the abstract events
implies the disjunction of the guards of all the concrete ones. Consider then the state
in which all DSet elements have been allocated. If we used DSet instead of ASet in
machine C, then, whereas the machine A AddEl’s guard would be true (since there are
plenty of elements left in ASet − DSet) the disjunction of the machine C AddEl1 and
AddEl2 guards would be false (since by definition, (DSet1−x1)∪(DSet2−x2) is empty
in this state). So the disjunction of the abstract guards would not imply the disjunction
of the concrete ones, and the refinement would fail. The same is not true of the B to D re-
finement. There, when all the DSet elements have been allocated, the disjunction of the
abstract guards is true as before, but now, at the concrete level, even though AddEl1 and
AddEl2 are disabled as in machine C, we have the SubEl1 and SubEl2 events enabled,
so the disjunction of the concrete guards is true as well, and the refinement succeeds.3

The relationship from machine A to machine B cannot be an Event-B refinement
since machine B’s SubEl event manipulates the machine A state in a non-skip manner
(and furthermore, the relationship cannot be a converse Event-B refinement since then
machine B’s SubEl event would not be refined by anything). To capture this relationship
we need retrenchment, and the trivial retrenchment RetA,B that follows will do:4

RETRENCHMENT RetA,B

FROM A TO B
SEES Ctx
RETRIEVES ret1 : x = y
EVENTS

RAMIFICATIONS AddEl
WITHIN wth1 : true
CONCEDES con1 : false
END

END

RETRENCHMENT RetC,D

FROM C TO D
SEES Ctx
RETRIEVES ret1 : x1 = y1

ret2 : x2 = y2
EVENTS

RAMIFICATIONS AddEl1
WITHIN wth1 : true
CONCEDES con1 : false
END

RAMIFICATIONS AddEl2
.

END

Alongside RetA,B, we have RetC,D, the retrenchment required to relate machine C to
machine D. Note that neither retrenchment needs to say anything about the initialisation
events, since they are required to work just as in refinement. RetC,D looks just as trivial
as RetA,B but in fact it is less so. In the Rodin toolset, there is a convention that when one
event refines another, any parameters that are identically named in the two events are
in fact equal, and the relevant equalities are automatically factored in to the automated
reasoning. We have availed ourselves of a similar convention for retrenchments, and it
applies in both RetA,B and RetC,D. In RetA,B this has little impact, since the only place

3 The success can be attributed to the fact that we are using the weak relative deadlock freedom
PO rather than the strong one (see [3], Deliverable D3). The strong version demands that for
each abstract event, its guard implies the disjunction of the corresponding concrete guard with
all the ‘new event’ guards. Such a PO would fail here, a circumstance that could be overcome
with a more extensive use of retrenchment.

4 One could introduce syntax to deal with such trivial event retrenchments more succinctly.

178 R. Banach

where it applies (the parameters of the machine A and machine B AddEl events), the as-
sumptions pertaining to the two events’ parameters are identical. In RetC,D however, the
same situation is less trivial, since machine C’s AddEl1 el is selected from ASet while
machine D’s AddEl1 el is selected from DSet. If we temporarily rename the parameters
in these two events by adding subscripts, the real within relation between the AddEl1
events in RetC,D becomes:

elC = elD ∧ elC ∈ ASet ∧ elD ∈ DSet (8)

which enforces an additional constraint on elC. So, despite appearances, the within re-
lation of AddEl1 has some real work to do. (Note that a similar thing is silently ac-
complished in the course of the B to D refinement. And if we had taken name identity
even further, and avoided renaming the A/C variables x, x1, x2, to the B/D variables
y, y1, y2, we could have simplified RetA,B and RetC,D even more by trivialising the re-
trieve relations.)

5.2 A, B, C, D and the Tower

Machines A, B, C, D, (and the various retrenchments and refinements that relate them),
form a commuting square and an instance of the Postjoin Theorem. It is time to pick
up the discussion left over from Section 4 regarding this. If we follow a state element
from A through the A to B retrieve relation and then through the B to D joint invariant,
we arrive at the same set of possibilities as if we had first gone through the A to C joint
invariant and then the C to D retrieve relation, i.e. the relevant relational compositions
are equal (a claim easy enough to check by hand in this simple example), and they
constitute the retrieve relation for the composed retrenchment. The rest depends on the
events. Of these, the initialisations behave straightforwardly of course; assuming the
truth of the component initialisation POs enables the truth of the composed initialisation
PO to be proved, given the composed retrieve relation.

For the other events, we note that machine A’s AddEl event is going to be retrenched
to both AddEl1 and AddEl2 in machine D, by tracing the square via B or C. Since
AddEl1 and AddEl2 are so similar, it will be sufficient for us to discuss AddEl1 and
to leave AddEl2 to the reader. To discuss AddEl1, we first need the within relation
for AddEl and AddEl1. This can be obtained in one of two ways. One can compose the
within relation of the A to B retrenchment with the conjunction of the joint invariant and
WITNESS relations5 of the B to D refinement, or one can compose the joint invariant
and WITNESS relations of the A to C refinement with the within relation of the C to D
retrenchment. Since the square commutes, these two calculations agree, as they must,
and as the reader can check.

The concedes relation for AddEl and AddEl1 is determined similarly. One way round,
the concedes relation of the A to B retrenchment is composed with the joint invariant

5 In Rodin, when an event and its refinement have different parameters, the refined event has a
WITNESS clause to say how any abstract parameters not occurring in the refinement are to be
related to the refined ones. This is like the within relation of a retrenchment and goes beyond
what is documented in [3] Deliverable D3. See the Rodin User Manual at [9]. When there are
no such abstract parameters, the witness relation trivialises.

UseCase-Wise Development: Retrenchment for Event-B 179

and witness relations of the B to D refinement for the before-state and input parameters,
and another copy of the B to D refinement joint invariant is used for the after-state.
The other way round, the witness relation and two copies of the joint invariant of the A
to C refinement are composed with the concedes relation of the C to D retrenchment.
Again, either way round the square yields the same result. See [15] for more detailed
calculations and proofs regarding the general case.

Altogether, we get the composed retrenchment RetA,D, in which the familiar facts
hold for the common el parameter of AddEl and AddEl1:

RETRENCHMENT RetA,D

FROM A TO D
SEES Ctx
RETRIEVES ret1 : x = y1 ∪ y2
EVENTS

RAMIFICATIONS AddEl TO AddEl1
WITHIN wth1 : true
CONCEDES con1 : false
END

RAMIFICATIONS AddEl TO AddEl2
.

END

The above sketches a confirmation that machine D (which we pulled out of a hat) has
the right characteristics to be the desired square completion. In general, when machines
are constructed to solve plausible problems, their interrelationships are benign, and it is
normally transparent what the square completion should look like, without resorting to
the general theory. Benign situations are characterised by the fact that the state (and other)
spaces partition into equivalence classes, which the various relations in play treat in an ‘all
or nothing’ manner. In other words, the relations involved and their needed compositions
are all regular [16]. In such cases one can confidently eschew the forbidding complexity
of the results in [10], or as here, their Event-B analogues, and work by hand.

6 Conclusions

Assuming that bringing the correctness achievable using techniques like Event-B to
today’s ‘Agile Methods’ would be a good thing, we argued that, in general, Event-
B’s insistence that levels of abstraction be complete at the point of introduction blocks
its ready deployment in such methodologies. Thus, in the specific UCw approach, one
might want to introduce new top level events that manipulate the state in non-skip ways,
and perhaps to make even more drastic modifications. We then showed that retrench-
ment, which we reformulated in a manner suitable for Event-B, and for Rodin, could
address such situations via the Tower Pattern, which we illustrated ‘by hand’.

The same technical constructions also enlarge the scope for Event-B to tackle a
wider variety of ‘real-world’ applications. For example, Event-B’s insistence that all
data types are discrete (at least) inhibits its application in real-world scenarios in which
the intrinsic variable types are continuous. Of course in all such cases, the continuous
variables must eventually be reduced to discrete ones in order to implement digital con-
trollers, but carrying out the argument to justify this replacement within a retrenchment
context allows it to make real contact with the formal development, whereas otherwise,

180 R. Banach

it would have to be expelled completely from the formal considerations. Other ways in
which retrenchment might capture the ‘grey areas’ surrounding a formal development
using Event-B could be easily imagined.

It would of course be desirable to mechanise the technology introduced here. For
this, as well as the obvious tool development, it would be necessary to formulate an
Event-B version of the theorems of [10]. This would need to focus on the useful cases
of the tower in a manner that allowed for ready mechanisation of the whole square
completion process. These aspects remain as work for the future.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

2. Abrial, J.R.: Event-B (to be published)
3. Rodin. European Project Rodin (Rigorous Open Development for Complex Systems) IST-

511599, http://rodin.cs.ncl.ac.uk/
4. Banach, R., Poppleton, M.: Retrenchment: An Engineering Variation on Refinement. In:

Bert, D. (ed.) B 1998. LNCS, vol. 1393, pp. 129–147. Springer, Heidelberg (1998)
5. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and Theoretical Underpin-

nings of Retrenchment. Sci. Comp. Prog. 67, 301–329 (2007)
6. Banach, R., Fraser, S.: Retrenchment and the BToolkit. In: Treharne, H., King, S., C. Hen-

son, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 203–221. Springer, Heidelberg
(2005)

7. Fraser, S., Banach, R.: Configurable Proof Obligations in the Frog Toolkit. In: Proc. Fifth
IEEE International Conference on Software Engineering and Formal Methods, pp. 361–370.
IEEE Computer Society Press, Los Alamitos (2007)

8. Fraser, S.: Mechanized Support for Retrenchment. PhD thesis, School of Computer Science,
University of Manchester (2008)

9. The Rodin Platform, http://sourceforge.net/projects/rodin-b-sharp/
10. Jeske, C.: Algebraic Integration of Retrenchment and Refinement. PhD thesis, University of

Manchester (2005)
11. Stepney, S., Cooper, D., Woodcock, J.: An Electronic Purse: Specification, Refinement and

Proof. Technical Report PRG-126, Oxford University Computing Laboratory (2000)
12. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Retrenching the Purse: Finite Sequence

Numbers, and the Tower Pattern. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 382–398. Springer, Heidelberg (2006)

13. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the Purse: Finite Exception
Logs, and Validating the Small. In: Proc. IEEE/NASA SEW30-06, pp. 234–245 (2005)

14. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the Purse: Hashing Injective
CLEAR Codes, and Security Properties. In: Proc. IEEE ISOLA-06 (to appear, 2006)

15. Banach, R., Jeske, C., Poppleton, M.: Composition Mechanisms for Retrenchment. J. Log.
Alg. Prog. 75, 209–229 (2008)

16. Banach, R.: On Regularity in Software Design. Sci. Comp. Prog. 24, 221–248 (1995)

http://rodin.cs.ncl.ac.uk/
http://sourceforge.net/projects/rodin-b-sharp/

Towards Modelling Obligations in Event-B

Juan Bicarregui1, Alvaro Arenas1, Benjamin Aziz1,
Philippe Massonet2, and Christophe Ponsard2

1 e-Science Centre, STFC Rutherford Appleton Laboratory, UK
2 Centre of Excellence in Information and Communication Tech. (CETIC), Belgium

{j.c.bicarregui,a.e.arenas,b.aziz}@rl.ac.uk, {phm,cp}@cetic.be

Abstract. We propose a syntactic extension of Event-B incorporating
a limited notion of obligation described by triggers. The trigger of an
event is the dual of the guard: when a guard is not true, an event must
not occur, whereas when a trigger is true, the event must occur. The
obligation imposed by a trigger is interpreted as a constraint on when
the other events are permitted. For example, the simplest trigger next,
which states that the event must be the next one to be executed when
the trigger becomes true, is modelled as an extra guard on each of the
other events which prohibits their execution at this time. In this paper
we describe the modelling of triggers in Event-B, and analyse refinement
and abstract scheduling of triggered events.

1 Introduction

In Event-B, a system is defined as a state consisting of a set of variables and some
events that cause the state to change by updating the values of the variables as
defined by the generalised substitution of the event.

Each event is guarded by some condition, which when satisfied implies that the
event is permitted in the current state. However, the guard is not an obligation
to perform the event as an event may be delayed as a result of, for example,
the interleaving with other permitted events. The choice to schedule permitted
events is made non-deterministically.

In this paper, we introduce a dual of guards which we call triggers. The trigger
of an event expresses an obligation on when the event must be executed. This
is useful in a number of modelling situations, for example to ensure that if a
request for a service is made, then the service will eventually be delivered, or
that if a hazard state is encountered an alarm will be promptly raised. Often
there is a caveat to the obligation, for example, if the receiver remains ready to
receive the service, or if the alarm system is in working order.

Triggers model such obligations as constraints on when other events are per-
mitted. For example, the simplest trigger is next which states that the event
must be the next one executed when the trigger becomes true. This is in effect
an extra guard on each of the other events which prohibits their execution at
this time.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 181–194, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

182 J. Bicarregui et al.

Event-B also incorporates a refinement methodology which is used to incre-
mentally develop a model of the system. Our model of triggers enables the ab-
stract specification of certain constraints on the ordering of events. In refinement,
further constraints can be added as these reduce the non-determinism inherent
in the choice of events. Thus triggers can be strengthened in refinement.

This work is motivated by a desire to close the gap between requirements and
specifications, in particular, when using the KAOS goal-oriented requirements
methodology for describing requirements [15] and Event-B for specifying soft-
ware systems. In KAOS, system goals are refined into requirements under the
responsibility of agents. Agents performs operations in order to fulfill require-
ments. Operations are specified by pre- and post-conditions, which represent
state transitions in the usual way, and a trigger condition, which captures an
obligation to perform the operation when the condition becomes true provided
the domain precondition is true.

The structure of the paper is as follows. Triggers are introduced to Event-B in
section 2. The use of triggers is demonstrated and compared with classical Event-
B on a motivating exemplar in section 3. The way obligations are interpreted in
Event-B is fully described in section 4. Refinement with triggers is discussed in
section 5. Then, section 6 discusses abstract schedulability, as triggers introduce
constraints on the order of event which may introduce deadlocks for which extra
proof obligations are required. Section 7 explores some related work. Finally the
paper summarises main results and highlights future work in section 8.

2 Events in Event-B

An Event-B model describes number of events which manipulate the state.
Events are defined by the following syntax:

ev ::= EVENT e WHEN G THEN S END

Where G is the guard, expressed as a first-order logical formula in the state
variables, and S is the generalised substitution, defined by the syntax of Figure 1.

S ::= SKIP Do nothing
| x := E(var) Deterministic substitution
| ANY t WHERE P (t, var)

THEN x := F (t, var) END Non-deterministic substitution
| S ‖ S′ Parallel substitution

Fig. 1. The syntax of generalised substitutions

For a comprehensive description of the Event-B language and its formal mean-
ing, we refer the reader to more detailed references such as [14].

Towards Modelling Obligations in Event-B 183

2.1 Events with Triggers

As mentioned above, in standard Event-B systems the next event to be executed
is chosen non-deterministically from all those whose guards are true. If a par-
ticular order of execution of events is required this must be described explicitly
through the guards by incorporating any required flags or other protocol in the
model of the state In this paper, we introduce the ability to implicitly model a
particular form of obligation, which we believe gives some of the benefits of richer
expressibility without changing the underlying semantic framework of Event-B.

For this purpose, we introduce a new syntactic construct to Event-B which
we define within the standard semantics by extending the model. This syntac-
tic sugar provides a way to abstractly describe requirements on the order of
execution of events without explicitly detailing a model of how the scheduling
is performed. Methodologically, triggers have the advantage of associating with
each event any obligation as to when it is performed, but the disadvantage is that
they implicitly impose constraints on other events which may be unwelcome.

Note that the obligation imposed by a trigger is similar to a partial correctness
guarantee: it ensures that if something happens, it will be the right thing but
it does not guaranteed that anything will happen at all. That is, it does not
guarantee that the system will not deadlock.

The new construct replaces the guard with a trigger and is indicated by chang-
ing the THEN keyword to NEXT. In the simplest case it forces the event to
be the next event which happens

ev ::= EVENT e WHEN T NEXT S END .

A weaker form requires the event to happen some time in the future

ev ::= EVENT e WHEN T EVENTUALLY S END .

Both of these are special cases of the WITHIN construct which gives an upper
bound to the number of other events which may occur before the triggered event

ev ::= EVENT e WHEN T WITHIN n NEXT S END

where n is zero for NEXT and n is unboundedly non-deterministically chosen
for EVENTUALLY.

The above syntax introduces a trigger condition, T , into the specification of an
event. This condition is a predicate on states which defines those states which, if
reached, oblige a particular behaviour to follow. This behaviour can be seen as a
bounded form of the leads-to modality [12]. Let � denote the always temporal
operator and � denote the eventually operator. Given a certain predicate P
defined on the states variables of an evolving system, then �P means that P
always holds whatever the evolution of the system. The statement �P means
that P holds at system start up or that it will certainly hold after system start up
whatever the evolution of the system. Given predicates P and Q, the statement
P leads-to Q means that it is always the case that once P holds then Q

184 J. Bicarregui et al.

holds eventually, which is formalised as �(P ⇒ �Q). Our triggered events are
modelling the behaviour �(P ⇒ �≤n(P ⇒ Q)), meaning that once P holds
then (P ⇒ Q) will occur before at most n time units. So the WITHIN event
introduced above models the behaviour �(T ⇒ �≤n(T ⇒ e)).

Our triggers model a class of queuing behaviour which are common in resource
management but also occur in other situations such as in telephone services or
ticket controlled supermarket counters. If on entering the queue, the requester
is ready to be served, and thereafter remains ready to be served, the service
will eventually be delivered. But if the requester leaves the queue, the request is
cancelled. In the next section, we introduce a very simple example to motivate
the most basic form of such requirement, when the service must be delivered in
the next cycle.

3 Motivating Example

We illustrate the use of triggers with a very small example, which although
simplified to the point of triviality still illustrates some of the advantages and
disadvantages of triggers. The example, taken from [11], is about the sump in
a mine which is used to control the drain water out of the main areas. In this
system, water seeps into the sump from the mine and the level of water is kept
within bounds by operating a pump. Additionally, an alarm must be immediately
sounded if methane is detected in the sump. The requirements on the system
are as follows:

1. The pump must be activated when the water level reaches a high water
sensor in order to keep the mine dry.

2. The pump must be deactivated when the water level reaches a low water
sensor in order to avoid the pump running dry which would damage it.

3. If methane is detected in the sump then the pump must be deactivated
immediately in order to avoid the risk of explosion, and an alarm sounded
in the main areas in order to warn of the eventual risk of flooding.

A partial specification in Event-B is given in Figure 2 in two versions, one us-
ing triggers and the other without. Note how the use of the trigger allows the
specification of the events to closely reflect the description of the problem given
in the requirements in that it captures the immediacy specified in the third re-
quirement alongside other aspects of that requirement. On the other hand, it
has the disadvantage of being rather implicit. In order to fully understand the
behaviour of the pump, the reader will now have to consider the specification of
the methane event.

Note also how the conflict between requirements 1 and 3, in the case where
high water and methane are both detected, is handled. The extra guard in the
event which switches the pump on ensures that requirement 3 is met. We will
show in section 4.1 that the two specifications are equivalent by definition.

In this simple example, both versions can be easily created and understood
but as we will see later, the situation is not so simple when there are several

Towards Modelling Obligations in Event-B 185

INVARIANTS
lowwater : Bool
highwater : Bool
methane : Bool
pump : {ON, OFF}
bell : {ON, OFF}

EVENTS
high water detected

WHEN highwater = true
THEN pump := ON
END

low water detected
WHEN lowwater = true
THEN pump := OFF
END

methane detected
WHEN methane = true
NEXT pump := OFF || bell := ON
END

INVARIANTS
lowwater : Bool
highwater : Bool
methane : Bool
pump : {ON, OFF}
bell : {ON, OFF}

EVENTS
high water detected

WHEN highwater = true
AND not (methane = true)

THEN pump := ON
END

low water detected
WHEN lowwater = true

AND not (methane = true)
THEN pump := OFF
END

methane detected
WHEN methane = true
THEN pump := OFF || bell := ON
END

Fig. 2. A simple example with and without the use of triggers

more complex timing requirements. In these situations, triggers can be used to
raise the level of abstraction by formalising requirements concerning the order of
execution of events without explicitly elaborating a model which exhibits them.

4 The Interpretation of Triggered Events

4.1 NEXT Events

Let us consider the interpretation of triggers for the simplest case, that is, when
a trigger forces an event to be the next one executed. Consider a system with
two events e and f , as shown in the upper box of Figure 3.

EVENT e WHEN G THEN S END
EVENT f WHEN T NEXT R END

EVENT e WHEN G ∧ ¬T THEN S END
EVENT f WHEN T THEN R END

Fig. 3. Simple case of NEXT trigger and its interpretation

186 J. Bicarregui et al.

In this case, whenever T become true, then e must be prohibited so that the
only remaining possibility is that f is the next event, representing the obligation
�(T ⇒ ◦f), where ◦ denote the next temporal operator. This can be modelled
by extending the guard on e with the negation of T as shown in the lower box
of Figure 3. Thus the trigger in f can be considered as a syntactic sugar for an
extra guard on e which ensures that e will be disabled when trigger T is true.
It is clear that if G is always false when T is false, that is if G ⇒ T , then the
un-triggered event will never be executed.

The case where there are several triggered events is given in Figure 4. Here
all other events must be disabled when any trigger becomes true so if more than
one trigger becomes true simultaneously, the machine will be “deadlocked”.

EVENT e1 WHEN G1 THEN S1 END
EVENT e2 WHEN G2 THEN S2 END
EVENT f1 WHEN T1 NEXT R1 END
EVENT f2 WHEN T2 NEXT R2 END

EVENT e1 WHEN G1 ∧ ¬T1 ∧ ¬T2 THEN S1 END
EVENT e2 WHEN G2 ∧ ¬T1 ∧ ¬T2 THEN S2 END
EVENT f1 WHEN T1 ∧ ¬T2 NEXT R1 END
EVENT f2 WHEN T2 ∧ ¬T1 NEXT R2 END

Fig. 4. The interpretation of NEXT triggers as extra guards on other events

This will show up in the following deadlock-freeness condition which must be
shown alongside the usual one that at least one guard (or trigger) must always
be true.

Law 1 (Deadlock-free of NEXT events) Let M be a system with k next
events EVENT ei WHEN Ti NEXT Si, for i = 1 · · · k. System M is deadlock-
free with relation to its NEXT events if all the trigger conditions associated
with the NEXT constructor are pairwise disjoint, i.e. ¬(Ti ∧ Tj) for i �= j.

A more general discussion of this law, including the general form of this proof
obligation is presented in section 6.

4.2 WITHIN Events

A generalisation of the NEXT constructor is the WITHIN constructor. In this
case, if the trigger becomes true the triggered event must be executed before at
most n other events are executed (provided the trigger remains true). If the
trigger becomes false within these n steps, the obligation is cancelled.

Again let us consider the simple case of a system with just two events, one of
them being a triggered one, as shown in the upper box of Figure 5.

To “un-sugar” this system, as shown in lower box of Figure 5, we must ex-
tend the state with a counter for event f. We add an integer valued counterf ,

Towards Modelling Obligations in Event-B 187

EVENT e WHEN G THEN S END
EVENT f WHEN T WITHIN n NEXT R END

Inv
�
= . . . ∧ 0 ≤ counterf ≤ n

Init
�
= . . . ‖ counterf := n

EVENT e WHEN G ∧ (¬T ∨ counterf > 0) THEN
S ‖ counterf := ((counterf − 1) � T � n) END

EVENT f WHEN T THEN R ‖ counterf := n END

Fig. 5. Simple case of WITHIN trigger and its interpretation

which is set with the value n whenever T becomes true, and is decremented
each time e is executed whilst T remains true. Here, we borrow the conditional
operator from UTP [9], and write x := exp1(var) � b(var) � exp2(var) to denote
the substitution ANY z WHERE ((b(var) ⇒ z = exp1(var)) ∧ (¬b(var) ⇒
z = exp2(var))) THEN x := z END . If counterf reduces all the way to zero,
then e becomes disabled and consequently f becomes obliged. If T becomes false
while the counter is active, then it is reset to n. Here we are modelling obliga-
tion �(T ⇒ ♦≤nf), which corresponds to a bounded version of the leads-to
modality.

The case where there are several triggered events is given in Figure 6. Here
the state is extended with a counter for each triggered event and each event is
extended with extra clauses in the guards and substitutions to manipulate these
counters.

It is clear that this model will quickly become quite complex if there are
several triggers. In fact the analysis of deadlock for such systems is not trivial
as we will see in section 6.

The NEXT trigger corresponds to the particular case of WITHIN with n
equal to 0.

Theorem 1 (Relation between NEXT and WITHIN). The event
EVENT e WHEN T NEXT R is equivalent to the event
EVENT e WHEN T WITHIN 0 NEXT R.

The proof which is omitted relies on the counter being always zero.

4.3 Events with Guards and Triggers

So far, our examples of triggered events have not included guards. We have
interpreted this as the guard being the same as the trigger, that is the event is
triggered exactly when it is permitted. Another possibility is that the guard of
the triggered event is always true. In the most general case, a triggered event
can have specified a guard indicating the states in which the event is permitted,
as well as a trigger indicating when it is obliged

ev ::= EVENT e WHEN (Trigger T, Guard G) WITHIN n NEXT S END

188 J. Bicarregui et al.

EVENT e1 WHEN G1 THEN S1 END
EVENT e2 WHEN G2 THEN S2 END
EVENT f1 WHEN T1 WITHIN n1 NEXT R1 END
EVENT f2 WHEN T2 WITHIN n2 NEXT R2 END

Inv
�
= . . . ∧ 0 ≤ counterf1 ≤ n1 ∧ 0 ≤ counterf2 ≤ n2

Init
�
= . . . ‖ counterf1 , counterf2 := n1, n2

EVENT e1 WHEN G1 ∧ (¬T1 ∨ counterf1 > 0) ∧ (¬T2 ∨ counterf2 > 0) THEN
S1 ‖ counterf1 := ((counterf1 − 1) � T1 � n1)
‖ counterf2 := ((counterf2 − 1) � T2 � n2) END

EVENT e2 . . .
EVENT f1 WHEN T1 ∧ (¬T2 ∨ counterf2 > 0) THEN

R1 ‖ counterf1 := n1

‖ counterf2 := ((counterf2 − 1) � T2 � n2) END
EVENT g1 WHEN T2 ∧ (¬T1 ∨ counterf1 > 0) THEN

R2 ‖ counterf2 := n2

‖ counterf1 := ((counterf1 − 1) � T1 � n1) END

Fig. 6. The interpretation of WITHIN triggers introduces a counter for each trigger

In this case the following healthiness condition, which relates triggers and
guards would apply: if an event is obliged, then surely it must be permitted.

Definition 1 (Well formedness of triggers). For all events
EVENT e WHEN (Trigger T, Guard G) WITHIN n NEXT S END , we
have that T ⇒ G.

On the other hand, the classical definition of an event in Event-B corresponds
to an event with false trigger.

Theorem 2 (Relating un-triggered and triggered events). The event
EVENT e WHEN G THEN R is equivalent to
EVENT e WHEN (false, G) WITHIN n NEXT R, where n is any arbitrary
integer greater than or equal to 0.

The proof is omitted for brevity.

4.4 EVENTUALLY Events

The unbounded case, described by WHEN T EVENTUALLY S, is modelled
by WITHIN with an unbounded non-deterministic choice of n. Note that in
this approach, the choice of n is made when the trigger becomes true and so the
deadline would be set at that time although it would be only known internally.

5 Refinement with Triggers

Refinement allows one to build a model incrementally by making it more and more
precise, that is closer to the reality. In this section we analyse refinement with

Towards Modelling Obligations in Event-B 189

triggers. We use notation e � f to indicate that abstract event e is refined by
concrete event f , meaning that feasibility, guard and invariant refinement laws
hold between e and f , as stated in the Event-B manual [14, pp. 11, Fig. 20].

5.1 Refinement of Duration

It is clear that the addition of triggers to a system restricts its possible behaviours
by strengthening its guards and so constitutes a refinement of that system. This
is formalised in the theorem below. On the other hand, it may of course introduce
the possibility of deadlock which is considered in the next section.

Theorem 3 (Refinement of duration). Let P be a predicate on states, S be
a substitution and let 0 ≤ n ≤ m be integers. Then we have:

EVENT e WHEN P EVENTUALLY S
� EVENT e1 WHEN P WITHIN m NEXT S
� EVENT e2 WHEN P WITHIN n NEXT S
� EVENT e3 WHEN P NEXT S

5.2 Refinement of the Trigger Predicate

As mentioned above, guards can be strengthened in refinement and so, by duality,
we would expect that triggers can be weakened in refinement[8]. To motivate this,
consider the abstract obliged behaviours. These are a minimal set of behaviours
necessary for the requirement to be satisfied. During refinement we would expect
to ensure that the set of obliged behaviours does not decrease as this could
invalidate a requirement.

This can also be understood mechanistically as the trigger is interpreted by
adding its negation to the other guards, weakening a trigger is in effect strengthen
ing the other guards.

Theorem 4 (Refinement of trigger predicates). LetM be a systemdeadlock-
free of NEXT events (as defined in Law 1), which includes abstract event
EVENT ea WHEN Ta WITHIN n NEXT S. If system M is deadlock-free of
NEXT events when event ea is replaced by event
EVENT ec WHEN Tc WITHIN n NEXT S and Ta ⇒ Tc, then we have
that

EVENT ea WHEN Ta WITHIN n NEXT S
� EVENT ec WHEN Tc WITHIN n NEXT S

Proof. The proof is straightforward by the usual refinement of guards.

5.3 Removing Triggers

From the above we see that we have Ta ⇒ Tc ⇒ Gc ⇒ Ga. That is, during re-
finement, triggers will get ever closer to guards. There are three limiting cases. A
false trigger is the degenerate case where nothing is obliged and the specification

190 J. Bicarregui et al.

reverts to a standard Event-B semantics. A true trigger means that the event is
always obliged and may therefore block the execution of any other event. The
third limiting case is when the trigger becomes equal to the guard. At this point
there is no choice left and the permitted behaviours are equal to the obliged
ones. Depending on the form of the obligation we have modelled and type of
concurrency in the system, this may mean that only one event can execute at
any given time and therefore that we have, in effect, partitioned the states by
the possible events.

5.4 Implementing Triggers

We have seen how the definition of refinement can be extended to incorporate
triggers and how this ensures that obligations are preserved during refinement.
However, it is still required, at the end of the refinement process, to ensure
that the most concrete specification does indeed implement the triggers and so
satisfies the obliged behaviors all the way back up the refinement chain.

Whilst the usual refinement process will ensure the model developed implicitly
using triggers is necessarily correct in this sense, it is perhaps unlikely that this
model will yield a satisfactory implementation. So we expect to have to build
into the implementation a mechanism for scheduling the events which has the
desired properties. This concrete model, which itself will have no triggers, is then
shown to be correct against the triggered version in the usual way. Thus we do
not expect to allow triggers in an implementation but instead develop a model
ourselves which implements the required behaviour.

6 Scheduling

The interpretation of triggered events with counters in Event-B is an example of
the inclusion of abstract scheduling in a specification, as advocated in [2]. Such
techniques have been used in the past for modelling dynamic contraints in B [1]
or to specify abstract scheduling of real-time programs [3].

In this section we consider the scheduling of triggered events and develop a
sufficient condition for schedulablity. We begin with the case where an event is
triggered immediately.

6.1 Deadlock Freeness for NEXT

As stated earlier it is clear that the system will deadlock if two “WITHIN 0”
triggers become true at any one time. Let us define an active counter to be one
whose corresponding trigger is currently true, then it is clear that there must be
at most one active counter whose value is equal to zero.

Definition 2 (Active Counter). For all events,
EVENT e WHEN T WITHIN n NEXT S, we say that e has an active
counter if T is true in the current state.

Towards Modelling Obligations in Event-B 191

Definition 3 (Deadlock-free for NEXT). A system is deadlock-free for
NEXT if at all times there is at most one active counter whose value is equal
to zero.

This condition must be true in addition to the usual condition that at least one
guard is true to ensure that the system is not currently in deadlock. It is slightly
more general than the disjointness of triggers for next events given earlier as
it also requires that any “WITHIN n” event which may have been triggered
earlier does not clash with a “WITHIN 0” event just triggered.

6.2 Schedulability

To generalise the above notion of deadlock for triggered events with non-zero
counters, we develop some properties related to the schedulability of triggered
events.

Definition 4 (Schedulability of a WITHIN event).
Event EVENT e WHEN T WITHIN n NEXT S is schedulable if whenever
T becomes true, there are at most n other active counters whose value is less
than or equal to n.

This says that whenever a “WITHIN n” event is triggered, there are not too
many other events already triggered for the next n+1 slots. This is not actually
a sufficient condition to guarantee that the system will not deadlock within this
period as it is possible that more events with shorter within clauses will be
triggered whilst this counter is active. Neither is it a necessary condition, as
some triggers which are currently true may become false before their event is
executed and therefore liberate some of the slots. It simply states that as far
as we can tell at the moment, it is not going to be impossible to schedule this
event.

Definition 5 (Schedulability of a system with WITHIN events). An
event system is schedulable if all its WITHIN events are schedulable at all
times.

Schedulability is not easy to prove in general, as it is not at all easy to characterise
which counters are active in any given state as this depends on the history of
the trace to this point, that is, on which triggers have been true in the past.

Given the above definitions, however, we can give the following characterisa-
tion of schedulability.

Theorem 5 (System schedulability). An event systemwithWITHIN events
is schedulable iff at all times, for all n, there are at most n+1 active counters whose
value is less than or equal to n.

This condition can be considered to be an invariant of a well defined system
and can therefore be added as an extra proof obligation for each event which, if
true, ensures that the system is deadlock-free. It states that, for any execution

192 J. Bicarregui et al.

of any event, if the system is schedulable beforehand, it must still be schedulable
afterwards. This then becomes an inductive prove of deadlock-freeness.

Note that we have assumed that the events meet the healthiness condition
given earlier, that is, that the guards are true whenever the triggers are true.
This is necessary so that if the scheduling of events requires that an event will be
next, we can be sure that it is permitted at this point. The healthiness condition
ensures this since, if the guard were false, then so would be the trigger, and so
the counter would become inactive and the event removed from the queue.

7 Related Work

There has been several proposals to model obligations in event-based languages
like B. In their seminal paper on dynamic constraints in B [1], Abrial and Mussat
propose modelling the leads-to and the until modalities in B. Given P and
Q state predicates, the leads-to modality �(P ⇒ �Q) means that it is always
the case that once P holds then Q holds eventually. They model this modality,
for a particular set of events, as a loop which is selected when condition P holds
and then iterates, executing one of the events until condition Q becomes true. A
variant condition guarantees termination of the loop. By contrast, our triggered
events model a bounded leads-to modality �(P ⇒ �≤nQ), which means that
once that once P holds then Q will occcur before at most n other events. So,
Abrial and Mussat’s model can be seen as a general case of our trigger model,
but there are some importance differences. For our triggered events, P is an
additional predicates on states and Q is the generalised substitution of the event.
When P becomes true, a counter is set running which ensures that no more than
n other events can occur before the triggered event is executed.

In [13], Méry and Merz propose an event language with deontic concepts such
as permissions, right and obligations, and develop a stepwise refinement method.
Their approach is close to ours in that their notion of obligation corresponds to
our trigger condition: a predicate associated to an event indicating the liveness
property that when the predicate is true it may lead to the occurrence of the
associated event. However, we interpret our triggers through an extension of the
usual event-B model rather than introducing a more complex semantic frame-
work.

In [8], Fiadeiro and Maibaum propose a relationship between deontic logic
structures, which use the notions of permissions and obligations, and temporal
logic through the definition of a consequence operator. This relationship then
permits the derivation of normative behaviours of systems, which could include
both safety and liveness properties, as well as the reasoning on the relationship
between normative states and normative trajectories that could lead to non-
normative states, e.g. the performing of permitted actions that lead to obligations
that cannot be fulfilled. Our work could be considered as the application of one
aspect of their framework, namely the description of a particular class of deontic
property, to Event-B systems.

Towards Modelling Obligations in Event-B 193

Other attempts to deal with liveness properties in B include [5], which presents
a proposal of specification and proof of liveness properties in Event-B. Here proof
obligations are defined in terms of weakest preconditions, inspired by the UNITY
logic.

Our work is also related to extensions of Event-B to deal with real-time. In [6],
the authors present a refinement method that allows refined events to be guarded
by time constraints using the concept of active times. The main difference from
our current work is that active times are a form of guards and thus do not express
any obliged behaviour. Colin et al. describe in [7] the alternative approach of
extending the semantic model of B with the duration calculus in order to deal
with real-time issues.

More recent work on CSP‖B allows designers to add control flow annota-
tions to machine operations [10]. One of their possible annotations is NEXT
which introduces the set of operations that should be enabled after an operation
is executed. There is an interesting relation between this annotation and our.
Interpretation of our NEXT event can correspond in some cases to annotat-
ing other events with NEXT annotations although this correspondence is not
straightforward. However, we focus on identifying circumstances when an event
will be executed next, rather that defining directly the order in which events
must occur.

8 Conclusion

This paper has presented a syntactic extension to Event-B to model the notion
of obligation throughout the use of triggers. The obligation imposed by a trig-
ger is interpreted as a constraint on when other events can be permitted. We
have analysed issues related to the refinement and schedulability of triggered
events.

There are some limitations in our proposal that we plan to address as future
work. One restriction is related to the abstract scheduling of events through
counters, which could make it difficult to incorporate other scheduling policies
into the model. One potential solution could be the use of the VARIANT clause
in the model, as advocated in [1]. There are some open questions in relation to
eventuality and scheduling, since the selection of n must not lead to deadlock. We
also plan to develop a more complete proof method for Event-B with obligations,
which will allow one to proof event properties without need to expand events
into the classical Event-B.

As mentioned before, our motivation is to link KAOS requirements with
Event-B specifications. Triggered events as presented here are suitable for mod-
elling the KAOS achieve pattern [16]; we would like to investigate the represen-
tation of other modalities as events, so that we can model other KAOS patterns
such as maintain and cease. Finally, we would like to model and reason about
obligation policies in our framework. Initial work on this line has been reported
in [4].

194 J. Bicarregui et al.

Acknowledgement

This work is funded by the European Commission under the FP6 IST project
GridTrust (project reference number 033817).

References

1. Abrial, J.R., Mussat, L.: Introducing Dynamic Constraints in B. In: Bert, D. (ed.)
B 1998. LNCS, vol. 1393. Springer, Heidelberg (1998)

2. Apt, K.R., Olderog, E.-R.: Proof Rules and Transformations Dealing with Fairness.
Science of Computer Programming 3(1), 65–100 (1983)

3. Arenas, A.E.: An Abstract Model for Scheduling Real-Time Programs. In: George,
C., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 204–215. Springer, Heidel-
berg (2002)

4. Arenas, A.E., Aziz, B., Bicarregui, J.C., Matthews, B.: Managing Conflicts of In-
terests in Virtual Organisations. In: STM 2007, ERCIM Workshop on Security and
Trust Management. Electronic Notes in Theoretical Computer Science, vol. 197,
pp. 45–56. Elsevier, Amsterdam (2008)

5. Rúız Barradas, H., Bert, D.: Specification and Proof of Liveness Properties under
Fairness Assumptions in B Event Systems. In: Butler, M., Petre, L., Sere, K. (eds.)
IFM 2002. LNCS, vol. 2335. Springer, Heidelberg (2002)

6. Cansell, D., Mery, D., Rehm, J.: Time Constraint Patterns for Event B Devel-
opment. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp.
140–154. Springer, Heidelberg (2006)

7. Colin, S., Mariano, G., Poirriez, V.: Duration Calculus: A Real-Time Semantic
for B. In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 431–446.
Springer, Heidelberg (2005)

8. Fiadeiro, J., Maibaum, T.: Temporal Reasoning over Deontic Specifications. Jour-
nal of Logic Computation 1(3), 357–395 (1991)

9. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Series
in Computer Science (1998)

10. Ifill, W., Schneider, S., Treharne, H.: Augmenting B with Control Annotations. In:
Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 34–48. Springer,
Heidelberg (2006)

11. Joseph, M.: Real-Time Systems: Specification, Verification and Analysis. Prentice
Hall International, Englewood Cliffs (1996)

12. Manna, Z., Pnueli, A.: The Reactive Behavior of Reactive and Concurrent System.
Springer, Heidelberg (1992)

13. Méry, D., Merz, S.: Event Systems and Access Control. In: Gollmann, D., Jürjens,
J. (eds.) 6th Intl. Workshop Issues in the Theory of Security, Vienna, Austria, pp.
40–54. IFIP WG 1.7, Vienna University of Technology (2006)

14. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Rodin Deliverable D3.2
(2005)

15. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
In: Fifth IEEE International Symposium on Requirements Engineering (2001)

16. van Lamsweerde, A., Letier, E.: Deriving Operational Software Specifications from
System Goals. In: Proceedings of the Tenth ACM SIGSOFT Symposium on Foun-
dations of Software Engineering 2002, pp. 119–128. ACM, New York (2002)

A Practical Single Refinement Method for B

Steve Dunne and Stacey Conroy

School of Computing, University of Teesside
Middlesbrough, TS1 3BA, UK

s.e.dunne@tees.ac.uk

Abstract. We propose a single refinement method for B, inspired di-
rectly by Gardiner and Morgan’s longstanding single complete rule for
data refinement, and rendered practical by application of the current
first author’s recent first-order characterisation of refinement between
monotonic computations.

1 Introduction

In this paper we describe a method for verifying arbitrary refinements between B
machines, in the absence of unbounded nondeterminism, in a single step rather
than having to find an intermediate backward refinement of the “abstract” ma-
chine which is itself then forward-refined by the “concrete” machine. The idea
of a single complete refinement rule is by no means new: such a rule for data
refinement in a predicate-transformer setting was described as long ago as 1993
by Gardiner and Morgan [11], and it is indeed fundamentally their idea which we
exploit in this paper. Gardiner and Morgan themsleves appear to have regarded
their rule as of theoretical interest only; it seems they didn’t seek to exploit
it in practice. We will show that a slightly extended version of B provides a
suitable setting for practical exploitation of Gardiner and Morgan’s rule. Like
Gardiner and Morgan we interpret a computation as a weakest-precondition (wp)
predicate transformer from sets of final states to sets of starting states [6], and
call it monotonic if its corresponding wp predicate-transformer is monotonic. A
monotonic computation can exhibit both demonic and angelic nondeterminism.
Conjunctivity and disjunctivity are special cases of monotonicity: a conjunctive
computation can exhibit only demonic nondeterminism, while a disjunctive com-
putation can exhibit only angelic nondeterminism [7].

Our contribution here is the formulation of a pair of simple first-order proof
obligations for verifying refinements between monotonic computations, which
renders such verifications amenable to mechanisation in a similar way to that
which B already uses for refinements between conjunctive computations [1].

The remainder of the paper is structured as follows: in Section 2 we describe
Gardiner and Morgan’s single complete rule for data refinement and in Section
3 we take some mathematical insight from [2] to explain why an arbitrary data
refinement can always be “factored” into a succession of backward and forward
refinements. In Section 4 we summarise the relevant properties of extended sub-
stitutions which we subsequently exploit to develop our new single refinement

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 195–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

196 S. Dunne and S. Conroy

method for B in Section 5; in Section 6 we illustrate the use of our new method
on an example refinement scenario; in Section 7 we compare our single complete
method for B with that formulated for Z in [4] before finally relating it to other
relevant recent work and drawing some conclusions in Section 8.

2 Gardiner and Morgan’s Rule for Data Refinement

Gardiner and Morgan [11] significantly advanced our understanding of data re-
finement when they showed that forward and backward refinement could be
subsumed into a single complete refinement rule in which the traditional re-
trieve relation between abstract and concrete states is superseded by a mono-
tonic predicate transformer of sets of abstract states to sets of concrete states.
Such a predicate transformer can be regarded as characterising in terms of its
wp semantics a heterogeneous monotonic computation from concrete states to
abstract states called a representation operation. Our intuition is that in a par-
ticular refinement context such an operation “computes” for any given concrete
state an abstract state which that concrete state can be said to “represent”.

2.1 Cosimulation

For a pair of abstract data types Adt and Cdt with respective state spaces Astate
and Cstate, and respective initialisations ainit and cinit, finalisations afin and cfin,
and repertoires of operations aopi and copi for i ∈ I , then a monotonic repre-
sentation operation rep from Cstate to Astate is a cosimulation if the following
hold:

ainit � cinit ; rep

rep ; aopi � copi ; rep for each i ∈ I

rep ; afin � cfin

The significance of the existence of such a cosimulation is that it establishes that
Cdt refines Adt . In the special case where rep is disjunctive then Cdt is a forward
refinement of Adt , while if rep is conjunctive then Cdt is a backward refinement
of Adt . There is, however, an important qualification on the completeness of
Gardiner and Morgan’s single rule, namely that the abstract operations and the
representation operation itself must only be at most boundedly nondeterministic.

In prominent formal modelling methods such as B [1], Z [16] and VDM [12]
finalisations are invariably just projections onto the global space, so the final-
isation condition is trivially met providing that rep is total (i.e. everywhere
feasible).

3 Factorising an Arbitrary Refinement

For any relation R ∈ X ↔ Y Back and von Wright [2] define two particular
computations from X to Y . They call these respectively the demonic and angelic

A Practical Single Refinement Method for B 197

relational updates on R, and denote them respectively by [R] and {R}. The
former is characterised by a conjunctive wp predicate transformer, the latter by
a disjunctive one. If x and y range respectively over X and Y , R is expressed
as predicate R(x , y) and Q(y) is any postcondition predicate, we have

wp([R],Q) =df ∀ y . R ⇒ Q

wp({R},Q) =df ∃ y . R ∧ Q

In [2] it is shown that for any monotonic computation comp from X to Y an
intermediate state space Z can be constructed with relations R1 ∈ X ↔ Z and
R2 ∈ Z ↔ Y such that comp = {R1} ; [R2] . This explains why an arbitrary
refinement of a data type Adt by another Cdt can always be factored into a
backward refinement of Adt by some intermediate data type Bdt and then a
forward refinement of that by Cdt . In these refinements the relations R1 and
R2 play the familiar role of retrieve relations between the concrete and abstract
states.

3.1 Traditional Representation of Refinements in B

Currently in both classical and Event-B refinement the retrieve relation con-
cerned is of course subsumed along with the concrete machine’s state invariant
into what is known as the “gluing” invariant. The concrete machine is therefore
not explicitly exhibited in the refinement component which is actually presented,
although it is always inferrable from the latter. It is important to appreciate that
this is a merely the way the original architects of the B method chose to represent
refinements, rather than being fundamental to the concept of refinement itself
in B. Other possibilities for representing refinements in B are quite imaginable.
For example, in [3] a new RETRENCHMENT construct is proposed which refers
to a pair of existing machines to express the existence of a retrenchment relation
between them. In the same way B might have had a REFINEMENT construct
which refers to a pair of existing machines and provides an appropriate retrieve
relation between them.

4 Extended Substitutions

In [10] B’s generalised substitution language is extended by the introduction
of angelic choice, and a theory of so-called extended substitutions is developed.
In particular, the bounded angelic and demonic choice operators are denoted
respectively by “%” and “�”. Like ordinary generalised substitutions [1,8], ex-
tended substitutions can naturally express heterogeneous computations (those
whose starting and final state spaces are distinct). This merely requires that their
passive (read frame) variables are all associated with the starting state space,
while their active (write frame) variables are all associated with the final state
space1. The significance here is that extended substitutions provide a means of
1 In the theory of generalised substitutions in [8] and of extended substitutions in [10]

the active frame of a substitution is simply called its frame.

198 S. Dunne and S. Conroy

expressing a heterogeneous monotonic representation operation in B. We note
that the read frame of an operation includes its input parameters, while its write
frame includes its output parameters.

4.1 Relational Characterisation of an Extended Substitution

Extended substitutions have several important associated characteristic predi-
cates. For our purpose here the most significant of these is the so-called before-
after power co-predicate2 cod(S), defined for an extended substitution S with
frame s as follows:

cod(S) =df [S]s ∈ u

Here the atomic variable u is assumed fresh, and ranges over sets of final states,
where each such final state is denoted by a tuple whose components correspond
to the individual variables of the final state in lexical order of their names, while
the frame variable s is interpreted here as a similar tuple whose whose compo-
nents collectively denote a starting state of the computation characterised by S .
Thus cod(S) is a relational predicate whose free variables are those comprising
s together with the fresh variable u.

For example, if S is x , y := 7, x + 1 � x := 8 then since frame(S) = x , y the
s in the definition of cod(S) above is interpreted here as the tuple (x , y), so we
have that

cod(S) = [x , y := 7, x + 1 � x := 8] (x , y) ∈ u

= [x , y := 7, x + 1](x , y) ∈ u ∧ [x := 8] (x , y) ∈ u

= (7, x + 1) ∈ u ∧ (8, y) ∈ u

Thus here cod(S) relates each starting state (x , y) to every corresponding set u
of final states which includes states (7, x +1) and (8, y), and inter alia, therefore,
to the minimal set of final states {(7, x + 1), (8, y)}. Notice that the variable u
in cod(S) is just a placeholder for sets of possible final states of the monotonic
computation characterised by S , in the same way that the primed frame variables
in the before-after predicate prd(T) of an ordinary generalised substitution T
in [8] are collectively just a placeholder for individual possible final states of the
conjunctive computation characterised by T .

4.2 Refinement of Extended Substitutions

An ordinary generalised substitution is characterised by its frame, its termina-
tion predicate trm and its before-after predicate prd [8], whereas in contrast an
extended substitution is characterised by its frame and its cod alone without
2 It is called a power co-predicate to distinguish it from its dual the power predicate

pod(S) =df ¬ [S]s /∈ u also defined in [10], which with the frame s provides an
alternative full characterisation of S .

A Practical Single Refinement Method for B 199

need of its trm. Indeed [10, Prop 5.6] establishes the following important first-
order characterisation of refinement between extended substitutions S and T
with the same frame, where v denotes the list of all free variables of cod(S) and
cod(T) –including of course the special atomic variable u used in the definition
of cod:

S � T ⇔ ∀ v . cod(S)⇒ cod(T)

5 A Complete Single Refinement Rule for B

We exploit the above formulation of extended-substitution refinement to re-
express Gardiner and Morgan’s single complete refinement rule described in
Section 2 by replacing its explicit occurrences of the refinement symbol � . This
yields the following complete first-order characterisation of the refinement of
one B machine Amach, with initialisation ainit and operations aopi for i ∈ I ,
by another Cmach with initialisation cinit and corresponding operations copi

for i ∈ I . Such a refinement is verified if a representation operation rep can be
specified from Cmach’s states to Amach’s states, expressed as a total boundedly
nondeterministic extended substitution, such that

∀ v . cod(ainit) ⇒ cod(cinit ; rep)

∀ v . cod(rep ; aopi) ⇒ cod(copi ; rep) for each i ∈ I

where v again signifies the list of all free variables of the cods concerned here.

5.1 Nature of a First-Order Characterisation

The above pair of obligations represent a first-order characterisation of refine-
ment since they can be re-written to eliminate first all the references to cod by
applying its definition and then the resulting substitutions by applying them as
wp predicate transformers. This will result in a finite collection of proof obliga-
tions expressed only in first-order logic with set-membership and equality, and
therefore eminently amenable to manual or machine-assisted proof.

The fact that an extended substitution is characterised by its frame and cod
alone without need of trm conveniently serves to limit the number of proof obli-
gations so generated. This is in contrast to traditional classical B refinement [1]
which generates two proof obligations for each operation, one essentially con-
cerned with before-after effects and one concerned with termination. In the fol-
lowing section we will illustrate our refinement method with an example.

6 Schrődinger’s Cat Revisited

The trio of machines below is almost the same as the Schrődinger’s Cat example
given in [9] as one of several examples of “intuitively obvious” co-refinements

200 S. Dunne and S. Conroy

which nevertheless can only be proved in one direction but not the other by B’s
traditional forward refinement method.

Our ACat and BCat machines each model from an external perspective the
scenario of putting a cat into an opaque box, and then later taking it out and
thereupon discovering whether it has survived or died during its confinement,
its fate having been dealt nondeterministically.

6.1 The Abstract and Concrete Specifications

First we introduce our GivenSets machine declaring relevant types:

MACHINE GivenSets

SETS
BOXSTATE = {empty, full}
CATSTATE = {alive, dead}

END

In the Acat machine below the cat’s fate is actually sealed when it is placed in
the box, because it is then that the state variable cat is nondeterministically
assigned its relevant value alive or dead which will subsequently be reported
when that cat is taken out of the box:

MACHINE Acat

SEES GivenSets

VARIABLES acat , abox

INVARIANT abox ∈ BOXSTATE ∧ acat ∈ CATSTATE

INITIALISATION abox := empty || acat :∈ CATSTATE

OPERATIONS

put =̂ PRE abox = empty
THEN abox := full || acat :∈ CATSTATE
END ;

rr ←− take =̂
PRE abox = full
THEN abox , rr := empty, acat
END

END

On the other hand, in the BCat machine below the cat’s fate isn’t sealed until
it is taken out of the box, because only then is the report variable rr nondeter-
ministically assigned its value alive or dead :

MACHINE Bcat

SEES GivenSets

A Practical Single Refinement Method for B 201

VARIABLES bbox

INVARIANT bbox ∈ BOXSTATE

INITIALISATION bbox := empty

OPERATIONS

put =̂ PRE bbox = empty
THEN bbox := full
END ;

rr ←− take =̂
PRE bbox = full
THEN box := empty || rr :∈ CATSTATE
END

END

Clearly an external observer must remain entirely oblivious of this fine distinction
between these machines’ respective internal workings concerning just when the
cat’s fate is actually determined. From his perspective the machines behave
identically. With a complete refinement method we ought to be able to prove
both that Acat � Bcat and Bcat � Acat . With B’s standard refinement method
we can only prove that Bcat � Acat , but not that Acat � Bcat . In [9] we
developed a counterpart backward refinement, but even that doesn’t allow us
to prove directly here that Acat � Bcat , since this isn’t purely a backward
refinement either3.

6.2 Proof of Refinement

We will now prove directly that Acat � Bcat using our new single complete
refinement method. For this we deem Acat as the abstract datatype while Bcat
is the concrete one.

Representation Operation. First, we specify an appropriate representation
operation:

rep =̂ IF bbox = empty
THEN abox , acat := empty, alive % abox , acat := empty, dead
ELSE abox , acat := full , alive � abox , acat := full , dead
END

We note that rep employs both demonic choice “�” and angelic choice “%” so
it is non-trivially monotonic.
3 The original Acat in [9] is subtly different from the one here: in addition to assigning

values to abox and rr its version of take also nondeterministically assigns either
alive or dead to acat . This has no effect on the externally observable behaviour of
the machine, but turns Acat � Bcat into a purely backward refinement which can
be proved directly by [9]’s backward refinement method.

202 S. Dunne and S. Conroy

Initialisation Labelling the abstract (Acat) initialisation as ainit and the con-
crete (Bcat) one as binit, we have to prove that

cod(ainit)⇒ cod(binit ; rep)

Proof:
cod(ainit)
= { defn of cod }

[ainit] (abox , acat) ∈ u
= { body of ainit }

[abox := empty || acat :∈ CATSTATE] (abox , acat) ∈ u
= { rewrite || }

[abox , acat := empty, alive � abox , acat := empty, dead] (abox , acat) ∈ u
= { apply substitution }

(empty, alive) ∈ u ∧ (empty, dead) ∈ u (1)

whereas
cod(binit ; rep)
= { defn of cod }

[binit ; rep] (abox , acat) ∈ u
= { defn of ; }

[binit] [rep] (abox , acat) ∈ u
= { body of rep }

[binit] [IF ... END](abox , acat) ∈ u
= { appln of IF ... END }

[binit] ((bbox = empty ⇒ (empty, alive) ∈ u ∨ (empty, dead) ∈ u)
∧ (bbox = full ⇒ (full , alive) ∈ u ∧ (full , dead) ∈ u))

= { body of binit }
[bbox := empty] ((bbox = empty ⇒ (empty, alive) ∈ u ∨ (empty, dead) ∈ u)

∧ (bbox = full ⇒ (full , alive) ∈ u ∧ (full , dead) ∈ u))
= { apply substitution, logic }

(empty, alive) ∈ u ∨ (empty, dead) ∈ u (2)

whence it can be seen that (1) ⇒ (2)
�

The put Operation. To differentiate the abstract and concrete versions of put
we label the former as aput and the latter as bput. We have to prove that

cod(rep ; aput)⇒ cod(bput ; rep)

Proof:
cod(rep ; aput)
= { defn of cod }

A Practical Single Refinement Method for B 203

[rep ; aput] (abox , acat) ∈ u
= { defn of ; }

[rep] [aput] (abox , acat) ∈ u
= { body of aput }

[rep] [abox = empty | (abox := full || acat :∈ CATSTATE)](abox , acat) ∈ u
= { defn of | }

[rep] (abox = empty ∧ [abox := full || acat :∈ CATSTATE] (abox , acat) ∈ u
= { rewrite || }

[rep] (abox = empty ∧
[abox , acat := full , alive � abox , acat := full , dead] (abox , acat) ∈ u

= { apply substitution, logic }
[rep] (abox = empty ∧ (full , alive) ∈ u ∧ (full , dead) ∈ u)
= { body of rep }

[IF ... END](abox = empty ∧ (full , alive) ∈ u ∧ (full , dead) ∈ u)
= { apply IF ... END, logic }

bbox = empty ∧ (full , alive) ∈ u ∧ (full , dead) ∈ u (3)

whereas
cod(bput ; rep)
= { defn of cod }

[bput ; rep] (abox , acat) ∈ u
= { defn of ; }

[bput] [rep] (abox , acat) ∈ u
= { body of rep }

[bput] [IF ... END](abox , acat) ∈ u
= { apply IF ... END }

[bput] (bbox = empty ⇒ (empty, alive) ∈ u ∨ (empty, dead) ∈ u) ∧
(bbox = full ⇒ (full , alive) ∈ u ∧ (full , dead) ∈ u)

= { body of bput }
[bbox = empty | bbox := full]

(bbox = empty ⇒ (empty, alive) ∈ u ∨ (empty, dead) ∈ u) ∧
(bbox = full ⇒ (full , alive) ∈ u ∧ (full , dead) ∈ u)

= { apply substitution, logic }
bbox = empty ∧ (full , alive) ∈ u ∧ (full , dead) ∈ u (4)

whence it can be seen that (3) = (4)
�

The take Operation. To differentiate the abstract and concrete versions of
take we label the former as atake and the latter as btake. Since they share the
output variable rr this appears in both their frames. We have to prove that

cod(rep ; atake) ⇒ cod(btake ; rep)

204 S. Dunne and S. Conroy

We note that the relevant frame tuple u here is (abox , acat , rr).
Proof:

cod(rep ; atake)
= { defn of cod }

[rep ; atake] (abox , acat , rr) ∈ u
= { defn of ; }

[rep] [atake] (abox , acat , rr) ∈ u
= { body of atake }

[rep] [abox = full | abox , rr := empty, acat] (abox , acat , rr) ∈ u
= { apply substitution }

[rep] (abox = full ∧ (empty, acat , acat) ∈ u)
= { body of rep }

[IF ... END](abox = full ∧ (empty, acat , acat) ∈ u)
= { apply IF ... END, logic }

bbox = full ∧ (empty, alive, alive) ∈ u ∧ (empty, dead , dead) ∈ u (5)

whereas
cod(btake ; rep)
= { defn of cod }

[btake ; rep] (abox , acat , rr) ∈ u
= { defn of ; }

[btake] [rep] (abox , acat , rr) ∈ u
= { body of rep }

[btake] [IF ... END](abox , acat , rr) ∈ u
= { apply IF ... END }

[btake] ((bbox = empty ⇒ (empty, alive, rr) ∈ u ∨ (empty, dead , rr) ∈ u) ∧
(bbox = full ⇒ (full , alive, rr) ∈ u ∧ (full , dead , rr) ∈ u))

= { body of btake }
[bbox = full | bbox := empty || rr :∈ CATSTATE]

((bbox = empty ⇒ (empty, alive, rr) ∈ u ∨ (empty, dead , rr) ∈ u) ∧
(bbox = full ⇒ (full , alive, rr) ∈ u ∧ (full , dead , rr) ∈ u))

= { rewrite || }
[bbox = full | bbox , rr := empty, alive � bbox , rr := empty, dead]

((bbox = empty ⇒ (empty, alive, rr) ∈ u ∨ (empty, dead , rr) ∈ u) ∧
(bbox = full ⇒ (full , alive, rr) ∈ u ∧ (full , dead , rr) ∈ u))

= { apply substitution, logic }
bbox = full ∧ ((empty, alive, alive) ∈ u ∨ (empty, dead , alive) ∈ u) ∧

((empty, alive, dead) ∈ u ∨ (empty, dead , dead) ∈ u) (6)

whence it can be seen that (5) ⇒ (6)
�

A Practical Single Refinement Method for B 205

7 Comparison with Single Complete Refinement in Z

In [4] Derrick gives a single complete refinement rule for Z, which he expresses
within an appropriate relational framework although it is inspired by the older
technique of possibility mappings first proposed in [15]. In place of a simple
retrieve relation between abstract and concrete states, his rule employs a pow-
ersimulation, i.e. a relation from sets of abstract states to individual concrete
states. There is in fact a close correspondence between Derrick’s method and
ours: specifically, his powersimulation when inverted should yield the power co-
predicate of our cosimulation as embodied by our representation operation.

7.1 Derrick’s Example Translated into B

The single complete rule in [4] is illustrated there on an example refinement which
is neither a forward nor backward one, and therefore unamenable to a direct
single-step proof using alone either the forward refinement rules or backward
refinement rules in [16], although of course since these rules are jointly complete
it would be possible to prove this as indeed any valid refinement by using them
in combination via an intermediate refinement.

We applied our method to the same example, after first translating this from
Z to B to obtain the following pair of machines:

MACHINE Amach
VARIABLES xx
INVARIANT xx ∈ 0..5
INITIALISATION xx := 0
OPERATIONS

one =̂ PRE xx = 0 ∨ xx = 1
THEN xx = 0 =⇒ xx := 1 � xx = 1 =⇒ xx := 0
END ;

two =̂ PRE xx = 0 THEN xx := 2 � xx := 3 END ;
three =̂ PRE xx = 2 ∨ xx = 3

THEN xx = 2 =⇒ xx := 4 � xx = 3 =⇒ xx := 5
END

END

MACHINE Cmach
VARIABLES yy
INVARIANT yy ∈ {0, 2, 4, 5}
INITIALISATION yy := 0
OPERATIONS

one =̂ PRE cc = 0 THEN yy := 0 END ;
two =̂ PRE yy = 0 THEN yy := 2 END ;
three =̂ PRE yy = 2 THEN yy := 4 � yy := 5 END

END

206 S. Dunne and S. Conroy

7.2 Verification of Derrick’s Refinement Example

Our experience of verifying Derrick’s refinement example was interesting. First,
we constructed the following representation operation rpn corresponding directly
to the powersimulation given by Derrick in [4] for the same example:

rpn =̂ (yy = 0 | (xx := 0 � xx := 1) % xx := 0 % xx := 1)
% (yy = 4 ∨ yy = 5 | (xx := 4 � xx := 5))

We were then unexpectedly perplexed to find that this rpn was ineffective for
proving Amach � Cmach by our method. On the other hand, we found were
able to verify this refinement by means of a different representation operation
rpr, where

rpr =̂ (yy = 0 | (xx := 0 % xx := 1))
% (yy = 2 | (xx := 2 � xx := 3)
% (yy = 4 ∨ yy = 5 | (xx := 4 � xx := 5))

We omit here the proofs involved, which are similar to those already given for
Schrődinger’s cat. We note that our representation operation rpr corresponds to
the powersimulation r , defined in Z terms by

r : P Astate ↔ Cstate

r = {{〈xx � 0〉} �→ 〈yy � 0〉,
{〈xx � 1〉} �→ 〈yy � 0〉,
{〈xx � 2〉, 〈xx � 3〉} �→ 〈yy � 2〉,
{〈xx � 4〉, 〈xx � 5〉} �→ 〈yy � 4〉,
{〈xx � 4〉, 〈xx � 5〉} �→ 〈yy � 5〉}

rather than the r defined in [4]. We subsequently alerted [4]’s author to this
discrepancy between his and our powersimulations. He obliged us by undertaking
his own investigation which resulted in his diagnosing a printer’s error in [4];
moreover, he confirmed that the correct powersimulation for the example is
indeed our r above rather than that given in [4]. We take this as a significant
vindication of our single refinement method for B: not only has it proved effective
in independently verifying this refinement example; it also directly led us to
detect a previously unsuspected mistake in the original powersimulation given
in [4] for verifying the same example by Derrick’s rule.

8 Related Work and Conclusions

In [5] model-checking is employed to generate retrieve relations for both forward
and backward refinements. Presumably this technique could be extended to gen-
erate powersimulations for arbitrary refinements, although this is not discussed
in [5]. On the other hand [14] does describe automatic verification of arbitrary
refinements in B using the ProB model checker [13]. That technique uses ProB

A Practical Single Refinement Method for B 207

to construct a relation from concrete states to sets of abstract states which is
in effect the power co-predicate of a cosimulation for the refinement, so this
complements our refinement proof method rather well.

Our single refinement method is applicable to classical B and Event-B alike. In
particular, Event-B’s characteristic introduction of new events during refinement
raises no particular issues for the new method. The key to our method is the
construction of an effective monotonic representation operation. Our experience
indicates that the flexibility afforded by the extended substitution language’s
syntax to arbitrarily interleave demonic and angelic choices greatly assists the
developer in such an exercise.

The example refinements on which we have demonstrated our single refinement
method are necessarily rather trivial, although they do nevertheless illustrate all
the principles of the method so we hope that they may have served sufficiently to
demonstrate that our method is amenable to the sort of mechanisation provided
by both the classical B and Event-B development support environments. Indeed
we hope to explore the possible provision of a suitable plug-in for the Rodin plat-
form for the generation of the proof obligations of our method. Two extensions to
core B are needed by our method, namely support for extended substitutions and
also for arbitrary tuples. Fortunately, we believe neither of these should pose any
particular difficulty for support tool implementors.

Acknowledgements

We are grateful for the points raised by the anonymous reviewers, which we have
endeavoured to address in this final version of the paper.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, New York (1998)

3. Banach, R., Fraser, S.: Retrenchment and the B-Toolkit. In: Treharne, H., King,
S., Henson, M.C., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 203–221.
Springer, Heidelberg (2005)

4. Derrick, J.: A single complete refinement rule for Z. Journal of Logic and Compu-
tation 10(5), 663–675 (2000)

5. Derrick, J., Smith, G.: Using model checking to automatically find retrieve rela-
tions. In: International Refinement Workshop (Refine 2007). Electronic Notes in
Theoretical Computer Science, vol. 201, pp. 155–175. Elsevier, Amsterdam (2008)

6. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall International, Engle-
wood Cliffs (1976)

7. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics.
Springer, Berlin (1990)

8. Dunne, S.E.: A theory of generalised substitutions. In: Bert, D., Bowen, J.P., Hen-
son, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 270–290.
Springer, Heidelberg (2002)

208 S. Dunne and S. Conroy

9. Dunne, S.E.: Introducing backward refinement into B. In: Bert, D., Bowen, J.P.,
King, S., Walden, M. (eds.) ZB 2003. LNCS, vol. 2651, pp. 178–196. Springer,
Heidelberg (2003)

10. Dunne, S.E.: Chorus Angelorum. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007.
LNCS, vol. 4355, pp. 19–33. Springer, Heidelberg (2006)

11. Gardiner, P.H.B., Morgan, C.: A single complete rule for data refinement. Formal
Aspects of Computing 5, 367–382 (1993)

12. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice-
Hall, Englewood Cliffs (1990)

13. Leuschel, M., Butler, M.J.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

14. Leuschel, M., Butler, M.J.: Automatic refinement checking for B. In: Lau, K.,
Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 345–359. Springer, Heidelberg
(2005)

15. Lynch, N.A.: Multivalued possibility mappings. In: de Bakker, J.W., de Roever,
W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp. 519–543. Springer,
Heidelberg (1990)

16. Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice
Hall, Englewood Cliffs (1996)

The Composition of Event-B Models

Michael Poppleton

School of Electronics and Computer Science,
University of Southampton, Highfield,

Southampton SO17 1BJ, UK
mrp@ecs.soton.ac.uk

Abstract. The transition from classical B [2] to the Event-B language and
method [3] has seen the removal of some forms of model structuring and com-
position, with the intention of reinventing them in future. This work contributes
to that reinvention. Inspired by a proposed method for state-based decomposition
and refinement [5] of an Event-B model, we propose a familiar parallel event
composition (over disjoint state variable lists), and the less familiar event fusion
(over intersecting state variable lists). A brief motivation is provided for these
and other forms of composition of models, in terms of feature-based modelling.
We show that model consistency is preserved under such compositions. More
significantly we show that model composition preserves refinement.

1 Introduction

1.1 Historical Context

Early work on the composition of specifications and programs such as [14,1] indicated
the importance of composition as a key mechanism for the scalability of Formal Meth-
ods in software development. Various compositional mechanisms were developed for
classical B as defined in [2] and elaborated in [22]. These mechanisms - denoted IN-
CLUDES, EXTENDS, USES, etc. - are syntactic in nature, and concerned with the
visibility or inclusion of the text of one machine by another. A variety of visibility
and usage rules and constraints are defined. These mechanisms were designed with the
scalability of automated proof obligation (PO) generation and proof at least as much
in mind as modelling utility. Perhaps unsurprisingly, they are not very intuitive, are
dissimilar to inclusion mechanisms in other languages, and not straightforward to use.
Later work [23] revealed further unsuspected modelling limitations in the composition
of B machines.

Recently completed EU Framework VI project RODIN1 saw the definition of the
Event-B language [19] and the creation of the rich RODIN toolkit [3] for formal mod-
elling, animation, verification, and proof with Event-B. Project RODIN is succeeded
by project DEPLOY2 which will, driven by industrial deployments, further develop the
RODIN toolset and Event-B methods.

1 RODIN - Rigorous Open Development Environment for Open Systems: EU IST Project IST-
511599, http://rodin.cs.ncl.ac.uk

2 DEPLOY - Industrial deployment of system engineering methods providing high dependabil-
ity and productivity: FP VII Project 214158 under Strategic Objective IST-2007.1.2.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 209–222, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

210 M. Poppleton

The classical B compositional mechanisms have been excised from Event-B to make
way for their reinvention in future. The high aspirations of [4], which demonstrated the
modelling power that could be unleashed by implementing the rich generic axiomatic
structuring of set theory at the metalanguage (as opposed to object language) level, will
be realized to some degree by the schedule for project DEPLOY.

The motivation for model decomposition is to reduce model size and proof complex-
ity; there is the bonus of enabling the distribution of development work. Two meth-
ods for decompositional working through refinement are on the DEPLOY schedule.
Methodologically, they work similarly: a single, “abstract” model M is developed and
decomposed - or abstracted - into component models {Ni}. The components are refined
to more “concrete” versions {NRi}; these concrete refinements are then recomposed
into model MR in a particular way that guarantees that MR refines M.

[19,5] propose the state-based decomposition (called “type A” decomposition, after
Abrial) of a model: here the state variables {vj} of M are initially partitioned across the
{Ni}. The events {ek} follow variables they act on into the {Ni}. Provided all events
acting on a variable v are located in its component machine Ni, that variable is local, or
internal to that machine and needs no special treatment. In general at least one variable
w is shared between two given component machines that act on it; such a variable is
also called external to each. If this is not the case, then we simply have disjoint and
unrelated developments.

Of course, the refinement of M by MR only decomposes provided the gluing invari-
ant decomposes conjunctively in the right way. More significantly, [19]3 shows that
external variables must be refined by a common, functional gluing invariant; internal
variables are not so constrained. The functional constraint is required by the proof of
the construction. The part of the gluing invariant concerning say, external v refined by
w, can be written v = h(w), and this equality enables certain existential quantifications
to be simplified with the existential one-point rule.

The second proposal is for event-based decomposition (called “type B” decomposi-
tion, after Butler) from [11,15]. Since “Event-B machines have the same semantic struc-
ture and refinement definitions as action systems” [Op.cit.], this is precisely the reverse
of the composition proposal of [10], where it was posed in an action
systems [7] setting. Here, an abstract model M is refined in a manner that facilitates the
partition of events between component models. The refinement of M to a single model
MR decomposes the state variables (by adding new ones), such that MR is expressible
as a parallel composition of component models || {NRi} over the partitioned variables.
Each event accessing variables in more than one NRi is decomposed into a set of events
each accessing only a local variable, that communicate by message-passing. The se-
mantic correspondence of action systems and CSP is used to proved monotonicity of
this process w.r.t. refinement.

Both the above proposals elaborate the traditional “top-down” development process;
it remains canonical to start from the most general, and concise abstraction, and then to
elaborate through refinement. Such top-down approaches are not natuarally receptive to
reuse, where one might want to draw on a database of models and model elements, at

3 Note that [5] make the stronger requirement that external variables are not data refined, purely
to simplify their exposition.

The Composition of Event-B Models 211

various levels of abstraction and genericity. This work is motivated by the desire to fa-
cilitate such working with reuse, i.e. to produce a refinement-preserving compositional
method, which reuses existing models. We demonstrate that Event-B models can in-
deed be so composed, in a manner analogous to the inverse of type A decomposition.
Unlike A- and B-decomposition however, new events are constructed in the composite
machine by a version of the event fusion of Butler and Back [15,8].

This introduction continues with a précis of specification (section 1.2) and refine-
ment (section 1.3) in Event-B, and ends with some remarks (section 1.4) motivating
feature-based composition as a form of reuse. Section 2 then defines our form of model
composition, including the mechanism of event fusion. We show that model consistency
is preserved under such composition. Section 3 proves that fusion preserves refinement,
an essential property for scalable working. In conclusion section 4 considers related
work, and describes future work.

1.2 Event-B Basics

This section is a précis of parts of [19], the Event-B language definition.
Event-B is designed for long-running reactive hardware/software systems that re-

spond to stimuli from user and/or environment. The set-theoretic language in first-order
logic (FOL) takes as semantic model a transition system labelled with event names. The
correctness of a model is defined by an invariant property, i.e. a predicate, or constraint,
which every state in the system must satisfy. More practically, every event in the system
must be shown to preserve this invariant; this verification requirement is expressed in a
number of proof obligations (POs). In practice this verification is performed either by
model checking or theorem proving (or both).

For modelling in Event-B the two units of structuring are the machine of dynamic
variables, events and their invariants, and the context of static data of sets, constants
and their axioms. Every machine sees at least one context. The unit of behaviour is the
event. An event e acting on (a list of) state variables v, subject to enabling condition, or
guard G(v) and action, or assignment E(v), has syntax

e =̂ when G(v) then E(v) end (1)

That is, when the state is such that the guard is true, this enables the action, or state

transition defined by E(v). Next we give a more general syntax for a nondeterministic
event. We give the guard, whose meaning is obvious from the before-after predicate for
the event: the guard is precisely the statement that there exists an after-state defined by
the before-after predicate, i.e. that the latter is feasible.

event syntax: any t where Q(t, v) then v := F(t, v) end (2)

guard: ∃ t • Q(t, v) (3)

before-after predicate: ∃ t • (Q(t, v) ∧ v′ = F(t, v)) (4)

Note the shorthand syntax: since v above is in general a variable list, F(t, v) is an ex-
pression list. (2-4) define a t-indexed nondeterministic choice between those transitions

212 M. Poppleton

v′ = F(t, v) for which Q(t, v) is true4. t is interpreted as an input from the environment.
Syntactic sugar is available: parallel (||) is used to enumerate multiple single-variable
assignments. In the any form, the event guard is not stated explicitly since it is con-
structed automatically from the where clause Q(t, v). The following useful property
always holds for the guard Ge and before-after predicate Ee of an any -defined event e:

Ee ⇒ Ge (5)

For the sake of completeness it is worth defining a more general event syntax that spec-
ifies an after-state in terms of a predicate it satisfies, called x :| P(x, x′, y). The equality-
based event definition of (2-4) is usually sufficiently expressive and forms the basis of
this work.

event syntax: any t where P(x, t, y) then x := t end (6)

guard: ∃ x′ • P(x, x′, y) (7)

before-after predicate: P(x, x′, y) (8)

An event e works in a model (comprising a machine and at least one context) with con-
stants c and sets s subject to axioms (properties) P(s, c) and an invariant I(s, c, v). Thus
the event guard G and assignment with before-after predicate E take s, c as parameters.
Two of the consistency proof obligations 5 (POs) for event e are FIS (feasibility preser-
vation) and INV (invariant preservation). For an event defined as (2-4), FIS clearly
discharges trivially.

P(s, c) ∧ I(s, c, v) ∧ G(s, c, v)⇒ ∃ v′ • E(s, c, v, v′) FIS (9)

P(s, c) ∧ I(s, c, v) ∧ G(s, c, v) ∧ E(s, c, v, v′) ⇒ I(s, c, v′) INV (10)

1.3 Refinement

The refinement of a context is simply its elaboration, by the addition of new sets, con-
stants and axioms. The refinement of a machine includes both data and algorithm re-
finement: all variables v are replaced by new ones w, some simply by renaming - i.e. of
the same type and meaning - and others by variables of different type. Existing events
are transformed to work on the new variables, and new events can be defined; that is,
the behaviour of an abstract event e can be refined by some sequence of e and new
events. The new behaviour will usually reduce nondeterminism. When model N(w) re-
fines M(v), it also has an invariant J(s, c, v, w) which can include M’s variables v. This
“gluing invariant”, or refinement relation, has the function of relating abstract variables
v to concrete ones w mathematically.

In Fig. 1, M sees C, N refines M and D refines C, then N sees D. It is also possible
for C not to be refined (i.e. to be identity-refined), in which case N sees C.

4 The deterministic assignment is simply written v := F(v), without an any variable or where
clause.

5 See [19] for the others.

The Composition of Event-B Models 213

As for simple machines, there are proof obligations for refinement. We assume ax-
ioms P(s, c), and abstract, concrete invariants I(s, c, v) and J(s, c, v, w) respectively. An
abstract event with guard GA(s, c, v) and before-after predicate EA(s, c, v, v′) is refined
by a concrete event with guard GC(s, c, w) and before-after predicate EC(s, c, w, w′).
The following obligations state that the concrete event is feasible (FIS REF), the con-
crete guard strengthens the abstract one (GRD REF), and that every concrete step is
correct (simulates) w.r.t. some abstract step (INV REF):

P(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ GC(s, c, w)
⇒ ∃w′ • EC(s, c, w, w′) FIS REF (11)

P(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w) ∧ GC(s, c, w)
⇒ GA(s, c, v) GRD REF (12)

P(s, c) ∧ I(s, c, v) ∧ J(s, c, v, w)
∧ GC(s, c, w) ∧ EC(s, c, w, w′)
⇒ ∃ v′ • (EA(s, c, v, v′) ∧ J(s, c, v′, w′)) INV REF (13)

[19] defines further refinement obligations, for nondivergence of new events introduced,
and “relative deadlockfreeness” to ensure a concrete model cannot deadlock more often
than the abstract one. We do not pursue these matters in this work.

1.4 Model Reuse with Features

A useful way to analyse reuse - provided by the Software Product Line (SPL) com-
munity, e.g. [20] - is in terms of data and behavioural variability [12] between system
versions. The concepts are as applicable in software reuse through evolution as they
are in SPLs. Event-B deals with static data variability by separating - in a B model
- the dynamic machine from the static context. However, there is no mechanism to
deal with behavioural variability. It is straightforward to generate variant versions of
a B development that differ only in configuration, or static data: simply switch the

variables

invariants

events

variables

invariants

events

abstract
machine

M

concrete
machine

N

sets

constants

properties

sets

constants

properties

concrete
context

D

abstract
context

C

sees

sees

refines refines

Fig. 1. Machine and context refinements (from [19])

214 M. Poppleton

required contexts into the refinement tree. In [21] we proposed the notion of a fea-
ture model, as a fine level of granularity for B specification, with composition of such
as a mechanism for behavioural variability in development, thus contributing to the
“Roadmap for Enhanced Languages and Methods to Aid Verification” [18]. A feature
is defined simply to be a B model which is (largely) atomic with respect to composi-
tion. “Atomic”, in the sense that no syntactically partial, or incomplete, model will (at
this time) be input to reuse in modelling. “Largely”, in the sense that certain obvious
refactorings, such as systematic renamings of certain identifiers, or text insertions such
as strengthening of predicates, will be allowed.

By way of brief motivation for feature-based composition, imagine a database of
Event-B features for some application domain, such as resource management for dis-
tributed computing. Imagine a model M1 with variables x, y and an event

e = any t where Q1(t, x) then x := F1(t, x, y) end

where the event specifies the allocation of some resource x such as a virtual circuit,
subject to some QoS requirement given by (Q1, F1). We might wish - subject to suitable
systematic variable and event renaming - to compose M1 with some other model M2 to
allow specification of other resources through other events f , g in M2. If both variable
lists and event lists are disjoint, composition is a trivial matter with no extra proof
obligations arising. Should the variable lists overlap, it will be necessary to show that
M1 events preserve the invariant of M2 and vice versa.

A more interesting case is where we wish to fuse an event e from M1 with some
event f from M3, say. It may be that M3 specifies different requirements of virtual cir-
cuits, such as fault-tolerance/redundancy. We may wish to select in x a virtual circuit
satisfying QoS (Q1, F1), and supporting fault-tolerance as specified by f .

In the next section we demonstrate that Event-B models (or features) can indeed
be composed, in a manner analogous to the inverse of state-based decomposition, in
a way that preserves refinement. We will focus in particular on the case of event
fusion.

2 Model and Event Fusion

Consider two models M1 and M2 which we propose to fuse by combining variables and
events. That is, we concatenate the variable lists and events, conjoin those events with
common names (in a manner to be defined) in a new model M. The variable list v in
M1 comprises the list x of actioned variables and the list y of skipping variables for
each event6. Similarly variables w in M2 comprise actioned z and skipping a. We define
xz = x∩ z, the common actioned variables, and ya = y ∩ a, the common skipping vari-
ables. Note that the other intersecting variable lists yz and xa are both empty, to enable
meaningful composition definitions. Since the context axioms P1, P2 of the two models
do not influence the proofs we assume they share sets and constants s, c without loss of
generality.

6 Strictly speaking v should be partitioned into (xe, ye) for each event e. We do not need this
decoration since only one event in each model is considered.

The Composition of Event-B Models 215

M1 : v = x ∪ y
s, c, P1(s, c) context
v, I1(s, c, v) invariant

event:
e = any α where Q1(α, v)

then x := F1(α, v)
Thus

Ge =̂ ∃α • Q1(α, v)
Ee =̂ ∃α • (Q1(α, v)

∧ x′ = F1(α, v))
∧ y′ = y

M2 : w = z ∪ a
s, c, P2(s, c) context
w, I2(s, c, w) invariant

event:
f = any β where Q2(β, w)

then z := F2(β, w)
Thus

Gf =̂ ∃β • Q2(β, w)
Ef =̂ ∃β • (Q2(β, w)

∧ z′ = F2(β, w))
∧ a′ = a

Next we define the fused model M, distinguishing clearly in the before-after predicate
between actioned variables < x− xz > exclusive to M1, common actioned variables xz,
and actioned variables < z− xz > exclusive to M2. We write the fusion of events e and
f as e� f . The fused model is then specified in the obvious way:

M : v, w = x ∪ z ∪ y ∪ a
s, c, P1(s, c) ∧ P2(s, c) context
v, w, I1(s, c, v) ∧ I2(s, c, w) invariant
e� f = any α, β where Q1(α, v) ∧ Q2(β, w)

then x := F1(α, v) || z := F2(β, w)
end

The usual existence proof obligation for a machine context - i.e. P1 ∧ P2 - arises here.
The meaning of the above syntax - i.e. the use of || over intersecting variable lists,

undefined as yet in the Event-B language - is given by the fused guard and before-after
predicate definitions7:

Ge�f =̂ ∃α, β • (Q1(α, v) ∧ Q2(β, w) ∧ F1(α, v) = F2(β, w)) (14)

Ee�f =̂ ∃α, β • (Q1(α, v) ∧ Q2(β, w) ∧< x− xz >′= F1(α, v) ∧
xz′ = F1(α, v) ∧ xz′ = F2(β, w) ∧< z− xz >′= F2(β, w)) ∧
y′ = y ∧ a′ = a (15)

Clearly, there must be sufficient nondeterminism in these definitions to satisfy Ge�f for
meaningful state values v, w.

The following useful properties are obvious:

Ge�f ⇒ Ge ∧ Gf Ee�f ⇒ Ee ∧ Ef (16)

Theorem 1. Event consistency (9-10) is preserved under model fusion.

Proof. Assume P1 ∧ P2 ∧ I1 ∧ I2 ∧ Ge�f ∧ Ee�f . From (16) the hypotheses of INV(e)
and INV(f) are made available, and it follows that I1(s, c, v′) ∧ I2(s, c, w′). QED

7 Ge�f , Ee�f definitions are given in shorthand; F1, F2 are expression lists, each list being par-
titioned according to the variable sublists in use at that point in the definitions. Thus (14-15)
should be read in terms of the appropriate sublists. In particular, (14) refers only to the the
sublists of F1, F2 assigning to common actioned variables xz.

216 M. Poppleton

We make some observations:

1. The fusion of two models clearly requires sufficient nondeterminism in the fusing
events’ actions over shared variables, in order for the fused event to be feasible (and
the fused guard not vacuously false). A natural way in which this might arise is as
follows. Event e(v1, v2, v3), say, assigns v1 nondeterministically to F1(α, v1, v2, v3)
for some α, v2 to anything in its type V2, and skips on v3. Event f (v1, v2, v3) as-
signs v1 to anything in its type V1, v2 nondeterministically to F2(β, v1, v2, v3) for
some β, and skips on v3. This represents the compositional modelling, from prior
component models, of the requirement to perform F1 on v1 and F2 on v2, in the
manner suggested in section 1.4.

Methodologically it is desirable that the fusion of two events should refine each
of them, and this is indeed the case, as we show below.

2. Theorem 1a. Theorem 1 applies for two models with disjoint variable lists and
composing events by the same reasoning. This is a parallel composition of models,
where each composed event represents the product of all transitions on all variables
from the component models.

3. Theorem 1b. Theorem 1 applies for two models with disjoint variable and event
lists; this is the embedding of each model in a larger one, where each event acts
on variables from its own model and skips on those from the other model. The
POs discharge trivially since each event is the identity refinement of its abstract
counterpart: for event e acting on v in composed model M, INV discharges by
noting that I1(s, c, v′) follows from INV(e) in M1, and that I2(s, c, w) follows from
skip in M2.

Theorem 2. The fusion e � f , in model M, of two events e and f refines each of those
events in their respective models.

Proof. We discharge the refinement obligations (11-13) for e � e � f ; the f case is
treated identically. FIS REF (11) follows trivially in the same way that FIS does for
events of the form (2-4), since Ge�f ⇒ ∃ v′, w′ • Ee�f . GRD REF (12) follows trivially
since Ge�f ⇒ Ge. For INV REF, for clarity we rename abstract variables in Mv v0, and
assume

P1 ∧ P2 ∧ I1(v0) ∧ v0 = v ∧ I1(v) ∧ I2(w) ∧ Ge�f (v, w) ∧ Ee�f (v, w, v′, w′)
We must prove

∃ v′0 • (Ee(v0, v′0) ∧ v′ = v′0 ∧ I1(v′0) ∧ I2(w′))
that is, removing the identical-copy abstract variables v0, v′0

Ee(v, v′) ∧ I1(v′) ∧ I2(w′))

Since Ee�f ⇒ Ee, and we have the second two conjuncts from INV(e) and INV(f) resp.
we are done. QED

3 Preservation of Refinement by Event Fusion

We show that the fusion of refined events refines the fusion of the original events.
Consider the compositional arrangement of models in Fig. 2. Since this construction is

The Composition of Event-B Models 217

N
v1, v2

eN(v1, v2)

P
v2, v3

eP(v2, v3)

M
v1, v2, v3

eM(v1, v2, v3)

NR
w1, w2

eNR(w1, w2)

MR
w1, w2, w3

eMR(w1, w2, w3)

PR
w2, w3

ePR(w2, w3)

J(v1, w1, w2) &
v2 = h(w2)

K(v3, w3, w2) &
v2 = h(w2)

J(v1, w1, w2) &
K(v3, w3, w2) &

v2 = h(w2)

= eNR � ePR

= eN � eP

Fig. 2. Refinement of event fusion

inspired by the state-based decomposition construction of [19] (as discussed in
section 1.1), the diligent reader will see that the gluing invariants here are precisely
those of [Op.cit.].

Model N has variables v1, v2 and event eN(v1, v2) with guard GN and before-after
predicate EN . Model P has variables v2, v3 and event eP(v2, v3) with guard GP and
before-after predicate EP. v2 is thus the shared variable between N and P. Model M
over variables v1, v2, v3 with event eM(v1, v2, v3) =̂ eN � eP is the fusion8 of N and P.
The guard and before-after predicate of eM are named GM, EM respectively.

Next we have two models NR, PR which refine N, P respectively. NR has variables
w1, w2 and event eNR(w1, w2) with guard GNR and before-after predicate ENR. eNR re-
fines eN with gluing invariant

J(v1, w1, w2) ∧ v2 = h(w2) (17)

Similarly, PR has variables w2, w3 and event ePR(w2, w3) with guard GPR and before-
after predicate EPR. ePR refines eP with gluing invariant

K(v3, w3, w2) ∧ v2 = h(w2) (18)

Note the requirement that the shared variable is refined in the same functional manner in
both machines; this satisfies the intuition that a shared variable should be treated “in the

8 Contrast this construction with that of [19] as outlined in sec. 1.1: in that case events eN and eP,
both acting on external variable v2, both appear independently in M. Then, in N the external
effect of eP on v2 must be modelled by a new external event ePx; in N ePx abstracts eP in M. The
new event is required in order that M refines N. In our scheme the fusion of events removes
their independence of behaviour, thus removing the need for external events. The proof of the
construction is simplified, but still requires the functional gluing invariant, for the same reason
as [Op.cit.].

218 M. Poppleton

same way” in each sharing refinement chain, before the refinements are fused. The local
variables in component machines may be defined more generally and independently of
each other, while allowing the reference to the concrete shared variable.

Finally, model MR over variables w1, w2, w3 has event eMR(w1, w2, w3) =̂ eNR �
ePR which is the fusion of eNR and ePR. We say that eMR has guard GMR and before-
after predicate EMR. We must now show that MR refines M w.r.t. gluing invariant

J(v1, w1, w2) ∧ v2 = h(w2) ∧ K(v3, w3, w2) (19)

Theorem 3. Given that eN � eNR:

J(v1, w1, w2) ∧ v2 = h(w2) ∧ GNR(w1, w2) ∧ ENR(w1, w2, w′
1, w′

2)
⇒ GN(v1, v2) ∧ ∃ v′1, v′2 • (EN(v1, v2, v′1, v′2) ∧ J(v′1, w′

1, w′
2) ∧ v′2 = h(w′

2) (20)

and eP � ePR:

K(v3, w3, w2) ∧ v2 = h(w2) ∧ GPR(w2, w3) ∧ EPR(w2, w3, w′
2, w′

3)
⇒ GP(v2, v3) ∧ ∃ v′2, v′3 • (EP(v2, v3, v′2, v′3) ∧ K(v′3, w′

3, w′
2) ∧ v′2 = h(w′

2) (21)

we must show9 eM = eN � eP � eMR = eNR � ePR:

J(v1, w1, w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2) ∧
GMR(w1, w2, w3) ∧ EMR(w1, w2, w3, w′

1, w′
2, w′

3)
⇒ GM(v1, v2, v3) ∧ ∃ v′1, v′2, v′3 • (EM(v1, v2, v3, v′1, v′2, v′3) ∧

J(v′1, w′
1, w′

2) ∧ K(v′3, w′
3, w′

2) ∧ v′2 = h(w′
2)) (22)

Proof. is straightforward and uses the fusion definitions (14, 15), i.e.

GN =̂ ∃α • QN(α, v1, v2) (23)

EN =̂ ∃α • (QN ∧ v′1 = F1
N(α, v1, v2) ∧ v′2 = F2

N(α, v1, v2)) (24)

GP =̂ ∃β • QP(β, v2, v3) (25)

EP =̂ ∃β • (QP ∧ v′2 = F2
P(β, v2, v3) ∧ v′3 = F3

P(β, v2, v3)) (26)

GNR =̂ ∃ γ • QNR(γ, w1, w2) (27)

ENR =̂ ∃ γ • (QNR ∧ w′
1 = F1

NR(γ, w1, w2) ∧ w′
2 = F2

NR(γ, w1, w2)) (28)

GPR =̂ ∃ δ • QPR(δ, w2, w3) (29)

EPR =̂ ∃ δ • (QPR ∧ w′
2 = F2

PR(δ, w2, w3) ∧ w′
3 = F3

PR(δ, w2, w3)) (30)

and thus

GM =̂ ∃α, β • (QN(α, v1, v2) ∧ QP(β, v2, v3) ∧ F2
N = F2

P) (31)

EM =̂ ∃α, β • (QN ∧ QP ∧ v′1 = F1
N ∧ v′2 = F2

N ∧ v′2 = F2
P ∧ v′3 = F3

P) (32)

9 [19] states that, instead of discharging (11-13), it suffices to prove the composite statement
(22).

The Composition of Event-B Models 219

GMR =̂ ∃ γ, δ • (QNR ∧ QPR ∧ F2
NR = F2

PR) (33)

EMR =̂ ∃ γ, δ • (QNR ∧ QPR ∧ w′
1 = F1

NR ∧ w′
2 = F2

NR ∧ w′
2 = F2

PR ∧
w′

3 = F3
PR) (34)

We rewrite the theorem in expanded form, omitting redundant guard expressions by (5),
i.e.

Given that eN � eNR:

J(v1, w1, w2) ∧ v2 = h(w2) ∧
∃ γ • (QNR(γ, w1, w2) ∧ w′

1 = F1
NR(γ, w1, w2) ∧ w′

2 = F2
NR(γ, w1, w2)) (35)

⇒ ∃ v′1, v′2 • (∃α • (QN(α, v1, v2) ∧ v′1 = F1
N(α, v1, v2) ∧

v′2 = F2
N(α, v1, v2)) ∧ J(v′1, w′

1, w′
2) ∧ v′2 = h(w′

2))
... where the RHS can be simplified to ...

∃α • (QN(α, v1, v2) ∧ J(F1
N(α, v1, v2), w′

1, w′
2) ∧ F2

N(α, v1, v2) = h(w′
2)) (36)

and eP � ePR:

K(v3, w3, w2) ∧ v2 = h(w2) ∧
∃ δ • (QPR(δ, w2, w3) ∧ w′

2 = F2
PR(δ, w2, w3) ∧ w′

3 = F3
PR(δ, w2, w3)) (37)

⇒ ∃ v′2, v′3 • (∃ β • (QP(β, v2, v3) ∧ v′2 = F2
P(β, v2, v3) ∧

v′3 = F3
P(β, v2, v3)) ∧ K(v′3, w′

3, w′
2) ∧ v′2 = h(w′

2))
... where the RHS can be simplified to ...

∃β • (QP(β, v2, v3) ∧ K(F3
P(β, v2, v3), w′

3, w′
2) ∧ F2

P(β, v2, v3) = h(w′
2)) (38)

we must show eM � eMR:

J(v1, w1, w2) ∧ K(v3, w3, w2) ∧ v2 = h(w2) ∧
∃ γ, δ • (QNR(γ, w1, w2) ∧ QPR(δ, w2, w3) ∧ w′

1 = F1
NR(γ, w1, w2) ∧ (39)

w′
2 = F2

NR(γ, w1, w2) ∧ w′
2 = F2

PR(δ, w2, w3) ∧ w′
3 = F3

PR(δ, w2, w3))

⇒ ∃ v′1, v′2, v′3 • (∃α, β • (QN(α, v1, v2) ∧ QP(β, v2, v3) ∧ v′1 = F1
N(α, v1, v2) ∧

v′2 = F2
N(α, v1, v2) ∧ v′2 = F2

P(β, v2, v3) ∧
v′3 = F3

P(β, v2, v3)) ∧
J(v′1, w′

1, w′
2) ∧ K(v′3, w′

3, w′
2) ∧ v′2 = h(w′

2))
... where the RHS can be simplified to ...

∃α, β • (QN(α, v1, v2) ∧ QP(β, v2, v3) ∧
F2

N(α, v1, v2) = F2
P(β, v2, v3) ∧ J(F1

N(α, v1, v2), w′
1, w′

2) ∧
K(F3

P(β, v2, v3), w′
3, w′

2) ∧ F2
P(β, v2, v3) = h(w′

2)) (40)

Assuming the hypothesis (39) for the refinement of eM , we can partition its terms
into separate quantifications over γ and δ, and thus infer the hypotheses (35, 37) for
the refinements of eN , eP respectively. The consequents of the component refinements

220 M. Poppleton

(36, 38) follow, and then we infer the result (40) directly by recombining the terms
under a joint quantification over α, β. QED

4 Conclusion and Related Work

(De-)Compositional approaches to modelling and verification have been extensively
studied for obvious reasons, and continue to be developed. We discuss only those
most relevant to Event-B; whilst contemporary work on component- and service-based
composition such as [6] is interesting, its application to Event-B remains for the
future.

Following earlier work on temporal property verification on labelled transition sys-
tems (LTS) inspired by B [9,13], Kouchnarenko and Lanoix [16,17] investigated com-
positional verification in that LTS setting. For their expressive “constraint synchonized
product” composition of components, preservation of both local and global invariants
is shown, as well as compositionality of refinement. With stuttering behaviour allowed
and non-increasing of deadlocks in refinement, their work is of interest to the Event-
B community. While this work does not deal with these behavioural aspects of re-
finement - leaving that for the future - it does allow for intersecting state spaces, i.e.
communication through shared variables. Kouchnarenko and Lanoix have disjoint state
spaces but their work may be extensible to a message-passing composition like that of
Butler [11].

Patterns and techniques for compositional/decompositional working with Event-B
are in their infancy, reflecting the fact that they remain to be implemented in what is
still a very recent language and method. Although the decompositional techniques of
section 1 have been known for some years, and paper-based case studies have been pub-
lished, e.g. [11], these techniques remain to be implemented by tools. Some progress is
expected in this regard during project DEPLOY. For these more established techniques,
and certainly for newer proposals such as ours, case study work is required to validate
their utility, followed by prototype tool development to implement them.

In the short term we will investigate the extensibility of the results of this work. Obvi-
ous questions are (i) does the construction work for full behavioural Event-B refinement
(as mentioned in sec. 1.3), (ii) under what conditions can features expressed in the more
general syntax (6-8) be composed, and (iii) can we compose subject to less constrained
gluing invariants than (17-18)? Beyond that we anticipate the proposal of more elabo-
rate patterns of composition. Our proposal (per Fig. 2) gives a simple one-to-one feature
refinement pattern, in general inadequate for elaborating an architectural model of the
system. More flexibility is required in the elaboration of the modular arrangement of
refinements. In the figure, for example, we can imagine different depths in the feature
refinement chains, or feature decompositions: say that PR is refined by event-based
decomposition into PR21, PR22, and each of these is further refined into PR31, PR32

before fusing, together with NR, into MR.
Significant further tool infrastructure will ultimately be required to support reuse,

i.e. the construction of system variants from different arrangements of feature compo-
sition and refinement. This includes inter alia system variant identification (in terms of
components), feature refactoring, and proliferation of feature changes.

The Composition of Event-B Models 221

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang. Syst. 15(1),
73–132 (1993)

2. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

3. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool environment for
Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer,
Heidelberg (2006)

4. Abrial, J.-R., Cansell, D., Laffitte, G.: “Higher-order” mathematics in B. In: Bert, D., Bowen,
J.P., Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 370–393.
Springer, Heidelberg (2002)

5. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition and instantiation of discrete mod-
els: Application to Event-B. Fundamenta Informaticae 77(1-2) (2007)

6. Attiogbé, C., André, P., Ardourel, G.: Checking component composability. In: Löwe, W.,
Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 18–33. Springer, Heidelberg (2006)

7. Back, R.-J., Kurki-Suonio, R.: Decentralization of process nets with centralized control. Dis-
tributed Computing 3(2), 73–87 (1989)

8. Back, R.J.R., Butler, M.: Fusion and simultaneous execution in the refinement calculus. Acta
Informatica 35, 921–949 (1998)

9. Bellegarde, F., Julliand, J., Kouchnarenko, O.: Ready-simulation is not ready to express a
modular refinement relation. In: Maibaum, T.S.E. (ed.) FASE 2000. LNCS, vol. 1783, pp.
266–283. Springer, Heidelberg (2000)

10. Butler, M.: Stepwise refinement of communicating systems. Science of Computer Program-
ming 27, 139–173 (1996)

11. Butler, M.: An approach to the design of distributed systems with B AMN. In: Bowen, J.P.,
Hinchey, M.G., Till, D. (eds.) ZUM 1997. LNCS, vol. 1212, pp. 223–241. Springer, Heidel-
berg (1997)

12. Coplien, J., Hoffman, D., Weiss, D.: Commonality and variability in software engineering.
IEEE Software, 37–45 (November/December 1998)

13. Darlot, C., Julliand, J., Kouchnarenko, O.: Refinement preserves PLTL properties. In: Bert,
D., P. Bowen, J., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 408–420. Springer, Heidel-
berg (2003)

14. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems 5(4), 596–619 (1983)

15. Jones, C.B. (ed.): Intermediate report on methodology. Technical Report Deliverable 19, EU
Project IST-511599 - RODIN (August 2006), http://rodin.cs.ncl.ac.uk

16. Kouchnarenko, O., Lanoix, A.: Refinement and verification of synchronized component-
based systems. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805,
pp. 341–358. Springer, Heidelberg (2003)

17. Kouchnarenko, O., Lanoix, A.: Verifying invariants of component-based systems through re-
finement. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 289–303. Springer, Heidelberg (2004)

18. Abrial, J.R., Batory, D., Butler, M., Coglio, A., Fisler, K., Hehner, E., Jones, C.B., Miller,
D., Peyton-Jones, S., Sitaraman, M., Smith, D.R., Leavens, G.T., Stump, A.: Roadmap for
enhanced languages and methods to aid verification. In: Proc. 5th Int. Conf. Generative Pro-
gramming and Component Engineering, Portland, Oregon (2006)

19. Métayer, C., Abrial, J.-R., Voisin, L.: Event-B Language. Technical Report Deliverable 3.2,
EU Project IST-511599 - RODIN (May 2005), http://rodin.cs.ncl.ac.uk

http://rodin.cs.ncl.ac.uk
http://rodin.cs.ncl.ac.uk

222 M. Poppleton

20. Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

21. Poppleton, M.R.: Towards Feature-Oriented Specification and Development with Event-B.
In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp. 367–381.
Springer, Heidelberg (2007)

22. Potet, M.-L.: Spécifications et développements structurés dans la méthode B. Technique et
Science Informatiques 22, 61–88 (2003)

23. Potet, M.-L., Rouzaud, Y.: Composition and refinement in the B-method. In: Bert, D. (ed.) B
1998. LNCS, vol. 1393, pp. 46–65. Springer, Heidelberg (1998)

Reconciling Axiomatic and Model-Based

Specifications Reprised

Ken Robinson

1 School of Computer Science & Engineering
The University of New South Wales

Sydney NSW 2052 Australia
k.robinson@unsw.edu.au
2 National ICT Australia

Abstract. This paper is a reprise of a paper presented at ZB2000 that
attempted to reconcile the worlds of model-based and axiomatic specifi-
cation. The new paper uses the same problem, but treats it very differ-
ently in Event B. The development also serves as a short tutorial example
in Event B.

Keywords: formal specification, axiomatic, model-based, refinement,
classical B, Event B.

1 Introduction

An earlier paper [6] was based on a small example —that of a simple stack— used
to explore the differences between axiomatic and model based specification using
the original B [1], now referred to as Classical B. The exercise was carried out
using the B-Toolkit[3]. In truth that exercise broke the usual rules of Classical B
by refining a constant. This required a simple modification to the B-Toolkit.

The reprise of that same exercise seems appropriate for the ABZ08 conference,
especially in regard to the AB part of the conference.

The reprise is carried out in Event B [2] using the Rodin toolkit[5]. Thus, the
exercise is also a tutorial in Event B and a demonstration of the Rodin toolkit.
As with many exercises that use Event B the final product —in the experience
of the author— is more abstract, and in the case of this example the final model
is much more axiomatic than its earlier attempt.

While the abstract modelling presented here may not generally be required in
modelling in B, there are many aspects of the modelling of datatypes that are
relevant to the more conventional modelling for which B is normally used. In
that respect, the paper can be seen as a tutorial exercise in datatype modelling
using Event B.

1.1 Axiomatic vs Model-Based Specification

Both axiomatic and model-based specification use axioms. The difference is one
of degree. Most model-based specification use structures that are perceived to

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 223–236, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

224 K. Robinson

possess behaviours that readily support the required behaviours of the construct
being modelled. This can mean that some behaviours of the model depend on
assumed, and hence unproven, behaviour of the chosen structures.

This can be illustrated by considering the example to be pursued in the re-
mainder of this paper. We will model something very simple: a stack. Commonly
a stack would be modelled using a sequence, it being very clear that adding and
removing elements to and from the same end of a sequence produces a last-in
first-out behaviour that should yield a stack; but there is no abstract modelling
of that behaviour itself.

In the rest of this paper we will first give a brief introduction to Event B and
the Rodin toolkit. Then we introduce an abstract stack in which STACK is an
opaque set of stacks. There is no visible structure to the stack; instead we model
all required behaviour of the stack with axioms.

We then refine the abstract stack to a concrete stack using a sequence. The
relationship between the abstract and concrete stack is defined by more axioms.

The whole development is carried out on the Rodin toolkit and the presen-
tation in this paper consists of markup of those machines interspersed with
commentary. Thus the formal text in this paper is actual Event B text that
has been analysed by the Rodin toolkit. The toolkit has also generated proof
obligations and the discharge of those POs has been addressed.

Finally, the paper discusses some of the experiences of using Rodin.

2 Brief Overview of Event B

Event B is the most recent development of the B Method by Abrial. The original
B is now referred to as Classical B. Event B models consist of the following
components:

Context machines: Context machines contain the declaration and definitions of
sets and constants. The definitions are given using axioms and common be-
haviours can be presented using theorems. Context machine can be extended
by other context machines.

Machines : Machines can see context machines and contain variables and an
invariant, modelling a machine state. The behaviour of a machine is specified
by events, which are autonomous actions controlled by guards that decide
when an event may fire. Machines can also contain theorems that use the
invariants as axioms.

Refinements : Refinement machines present a refined state and refinements of
the events of an abstract machine. During refinement, new events can be
specified for realising a more concrete version of the refined event, or even
for adding extra functionality that is “orthogonal” to that of the initial
abstract events.

The mathematical toolkit of Event B is essentially the same as for Classical B,
but the language is severely pared down making it feel more abstract than its
parent.

Reconciling Axiomatic and Model-Based Specifications Reprised 225

The Rodin toolkit developed by the Rodin project is implemented on the
Eclipse platform.

3 The Abstract Stack

A context machine, StackAxiom, is used to define the sets and constant functions
that will be required for our abstract stack.

3.1 Stack Sets, Constants, Axioms and Theorems

The StackAxiom context machine contains declarations of STACK the set of all
stacks and DATA the set of all data than can be placed on a stack.

CONTEXT : StackAxiom

SETS :
: STACK The set of stacks
: DATA Data that can be stored on the a stack

Constants consist of emptystack the empty stack, and functions push, pop, tos
and stackdepth that abstractly model the expected stack behaviour.

CONSTANTS :
: emptystack The empty stack
: STACK1 The set of non-empty stacks
: push The function that pushes an item of type DATA

onto a stack
: pop The function that pops the topmost item on the

stack
: tos A function that yields the value on top of the

stack
: stackdepth A function that displays the depth of a stack

AXIOMS :
stkaxm1 :: emptystack ∈ STACK

stkaxm2 :: STACK1 = STACK \ {emptystack}
stkaxm3 :: push ∈ STACK ×DATA �	 STACK1

stkaxm4 :: pop ∈ STACK1→ STACK

stkaxm5 :: tos ∈ STACK1→DATA

stkaxm6 :: ∀st, d·st ∈ STACK ∧ d ∈ DATA
⇒ pop(push(st �→ d)) = st

stkaxm7 :: ∀st, d·st ∈ STACK ∧ d ∈ DATA
⇒ tos(push(st �→ d)) = d

226 K. Robinson

stkaxm8 :: stackdepth ∈ STACK → N

stkaxm9 :: stackdepth(emptystack) = 0

stkaxm10 :: ∀st, d·st ∈ STACK ∧ d ∈ DATA
⇒ stackdepth(push(st �→ d)) = stackdepth(st) + 1

stkaxm11 :: ∀stack, data·stack ∈ STACK1 ∧ data ∈ DATA
⇒ stackdepth(pop(stack)) = stackdepth(stack)− 1

The informal stack properties expressed by the axioms are as follows.

stkaxm1 : emptystack the stack that is empty.
stkaxm2 : STACK1 is the set of stacks that contain at least one component.
stkaxm3 : push is a total injection from stack �→ data pairs to stacks. Different

(stack, data) pairs produce different stacks and all non-empty stacks can be
reached by push.

stkaxm4 : pop is a function takes any non-empty stack and produces a stack,
in which the topmost item on the stack has been removed. All non-empty
stacks can be popped. Popping different stacks can produce the same stack,
so it is simply a total (non-injective) function from non-empty stacks. The
set of all stacks related by push or pop produce a tree, whose root is the
empty stack.

stkaxm5 : tos is a function that when applied to a stack yields the topmost item
on the stack.

stkaxm6 : If you push an item onto a stack and then apply pop to the resultant
stack you will get the stack as it was before the push operation.

stkaxm7 : If you push an item onto a stack and apply tos to the resultant stack
you will get the item that was just pushed.

stkaxm8 : stackdepth, yields the depth of a stack, that is the net number of items
pushed onto the stack.

stkaxm9 : the stack depth of the empty stack is 0.
stkaxm10 : pushing an item onto a stack increases the depth of the stack 1.
stkaxm11 : popping a non-empty stack decreases the depth of the stack by 1.

Some of the properties that flow from the axioms will be presented as theorems.
Some of the theorems are present to simplify discharge of proof obligations and
others, such as stkthm3 express expectations of the stack construct.

THEOREMS :
stkthm1 :: emptystack /∈ ran(push)

stkthm2 :: dom(pop) = STACK \ {emptystack}
stkthm3 :: ∀st, d·st ∈ STACK ∧ d ∈ DATA

⇒ push(st �→ d) �= emptystack

stkthm4 :: ∀st·st ∈ STACK
⇒ (st ∈ dom(pop)⇔ st �= emptystack)

Reconciling Axiomatic and Model-Based Specifications Reprised 227

stkthm5 :: ∀st·st ∈ STACK
⇒ (st ∈ dom(tos)⇔ st �= emptystack)

stkthm1 : a trivial consequent of stkaxm2;
stkthm2 : a trivial consequent of stkaxm3;
stkthm3 : the push function will never produce an empty stack;
stkthm4 : the pop function does not apply to the empty stack, but is applicable

to all non-empty stacks;
stkthm5 : the tos function does not apply to the empty stack, but is applicable

to all non-empty stacks.

3.2 Stack Machine

The preceding context machine presents the mathematical constructs necessary
to specify Stack, a stack machine. The abstract stack machine uses events for the
stack operations of Push and Pop. In Classical B these would be modelled using
machine operations. A stack machine might normally have a Top operation that
yields the topmost element on the stack. Here we have abstracted this with a
function on stacks, tos, that yields the top of the stack. We also have an abstract
function stackdepth that when applied to a stack yields its depth. It should be
noted that events in Event B do not have the capability of returning results that
is provided by Classical B operations.

The following machine could be augmented by events that simply invoke the
functions tos and stackdepth and store the results in variables. This is a trivial
extension and has been omitted.

MACHINE : Stack
SEES : StackAxiom

VARIABLES :
: stack

INVARIANTS :
inv1 :: stack ∈ STACK

inv1 : stack is one stack;

EVENTS :
Initialisation:

begin:
act1 :: stack := emptystack

end :

The initialisation of the Stack machine consists of setting the stack to the empty
stack.

228 K. Robinson

Push: =̂
any:

: data
where:

grd1 :: data ∈ DATA

then:
act1 :: stack := push(stack �→ data)

end :

Given an item of data as a parameter, the Push event can execute at any time
to push that data onto the stack. As a side-effect, stackdepth will increment and
tos becomes the value of the data item just pushed onto the stack.

Pop: =̂
when:

grd1 :: stack �= emptystack

then:
act1 :: stack := pop(stack)

end :

Whenever the stack is not empty, Pop can remove the topmost element from the
stack: stackdepth concurrently decrements tos resets to the new top-of-stack.

At all times, when the stack is not empty, tos yields the topmost element of
the stack.

4 The Concrete Stack

4.1 Sequences: Preparing for the Concrete Stack

We intend refining the abstract stack machine to a “concrete stack” using a
sequence. Currently, Event B does not have sequences as a special construct in
its mathematical toolkit.

Of course it is easy to model sequences as coherent partial functions and we
will also add some functions on sequences that we will need. SeqAxiom is specified
as an extension of StackAxiom.

CONTEXT : SeqAxiom
EXTENDS : StackAxiom

CONSTANTS :
: SEQ The set of sequences
: SEQ1 The non-empty sequences
: emptyseq The empty sequence
: append Add an element to the end of a sequence
: front Sequence with last element removed
: last The last element of a non-empty sequence
: delete A function to remove any element of a sequence

Reconciling Axiomatic and Model-Based Specifications Reprised 229

AXIOMS :
seqaxm1 :: SEQ ⊆ N1 �→DATA

seqaxm2 :: ∀s·s ∈ SEQ⇒ finite(s)

seqaxm3 :: ∅ ∈ SEQ

seqaxm4 :: SEQ1 = SEQ \ {∅}
seqaxm5 :: ∀s·s ∈ SEQ⇒ dom(s) = 1 .. card(s)

seqaxm6 :: emptyseq ∈ SEQ

seqaxm7 :: emptyseq = ∅

seqaxm8 :: append ∈ (SEQ×DATA)→ SEQ1

seqaxm9 :: ∀s, d·s ∈ SEQ ∧ d ∈ DATA
⇒ append(s �→ d) = (s ∪ {card(s) + 1 �→ d})

seqaxm10 :: front ∈ SEQ1→ SEQ

seqaxm11 :: ∀s·s ∈ SEQ1⇒ front(s) = {card(s)} �− s

seqaxm12 :: last ∈ SEQ1→DATA

seqaxm13 :: ∀s·s ∈ SEQ1⇒ last(s) = s(card(s))

seqaxm14 :: delete ∈ N1 → (SEQ→ SEQ)

seqaxm15 :: ∀p, s·s ∈ SEQ1 ∧ p ∈ dom(s)
⇒ card(delete(p)(s)) = card(s) − 1

seqaxm16 :: ∀p, s·s ∈ SEQ1 ∧ p ∈ dom(s)
⇒ dom(delete(p)(s)) = 1 .. card(s) − 1

seqaxm17 :: ∀p, s, n·s ∈ SEQ1 ∧ p ∈ dom(s) ∧ n ∈ 1 .. p− 1
⇒ delete(p)(s)(n) = s(n)

seqaxm18 :: ∀p, s, n·s ∈ SEQ ∧ p ∈ dom(s) ∧ n ∈ p .. card(s)
⇒ delete(p)(s)(n) = s(n + 1)

seqaxm1 : SEQ is the set of all sequences that we will be using;
seqaxm2 : every sequence will be finite;
seqaxm3 : the empty set is a (empty) sequence;
seqaxm4 : SEQ1 is the set of all non-empty sequences;
seqaxm5 : every sequence s has a domain that is 1 .. card(s), that is the domain

is coherent;
seqaxm6 : emptyseq is a sequence;
seqaxm7 : the emptyseq is the empty set;
seqaxm8, seqaxm9 : append(s �→ x) puts x on the end of s;
seqaxm10, seqaxm11 : front(s) yields a subsequence of s that excludes the last

element;
seqaxm12 : the domain of last is all sequences except the empty sequence;
seqaxm13 : last(s) = s(size(s)) for every non-empty sequence s;
seqaxm14 : delete takes an ordinal and a sequence and produces a sequence with

possibly one element deleted;

230 K. Robinson

seqaxm15 : the size of a sequence after deletion is one less than before;
seqaxm16 : the domain of the sequence after a deletion is one less that before;
seqaxm17 : the position of items before the deletion position does not change;
seqaxm18 : all items after the deletion position are shifted one position down;

THEOREMS :
seqthm1 :: ∀s, d·s ∈ SEQ ∧ d ∈ DATA

⇒ dom(append(s �→ d)) = 1 .. card(s) + 1

seqthm2 :: ∀s·s ∈ SEQ1
⇒ dom(front(s)) = 1 .. card(s) − 1

seqthm3 :: ∀s·s ∈ SEQ ∧ s �= emptyseq⇒ s ∈ dom(front)

seqthm4 :: ∀s, d·s ∈ SEQ ∧ d ∈ DATA⇒ append(s �→ d) �= emptyseq

seqthm5 :: ∀s·s ∈ SEQ1⇒ card(s) ∈ dom(s)

seqthm6 :: ∀s, d·s ∈ SEQ ∧ d ∈ DATA⇒ front(append(s �→ d)) = s

seqthm7 :: ∀s, d·s ∈ SEQ ∧ d ∈ DATA⇒ last(append(s �→ d)) = d

seqthm8 :: ∀s, d·s ∈ SEQ ∧ d ∈ DATA⇒ append(s �→ d) ∈ SEQ1

seqthm9 :: dom(front) = SEQ1

seqthm10 :: dom(last) = SEQ1

seqthm1 : the domain of append(s �→ d) is 1 .. card(s) + 1;
seqthm2 : the domain of front(s is 1 .. card(s)− 1;
seqthm3 : any sequence that is not empty is in dom(front);
seqthm4 : append(s �→ d) is never empty;
seqthm5 : if s is not empty then card(s) ∈ dom(s);
seqthm6 : for a sequence s, front(append(s �→ d)) = s;
seqthm7 : for a sequence s, last(append(s �→ d)) = d;
seqthm8 : append(s �→ d) is a non-empty sequence;

4.2 The Recursive Structure of Stacks

We have not yet fully captured the recursive nature of an abstract stack, that is
a stack whose size is greater than 1 actually contains a number of stacks, given
by pop(stack), pop(pop(stack)), . . . etc. It is clear that, at any point, an abstract
stack will have been formed from finite sequences of interleaved push and pop
events. Abstract stacks being opaque means that the inner structure can only
be revealed by repeated application of functions.

Significantly, this recursive structure is evident in discharging proof obliga-
tions where a property like stack �= emptystack may become popn(stack) �=
emptystack in a different context. Thus we need to be able to present all stack
properties in terms of finite recursions of the basic two stack functions, push and
pop combined with the non-recursive functions tos and stackdepth.

Reconciling Axiomatic and Model-Based Specifications Reprised 231

Thus we need to be able to iterate a function f :

Given f ∈ X �→X, x ∈ X
f0(x) = x
fn(x) = fn−1(f(x))

More generally iteration is defined similarly on relations.
However currently, Event B does not have functional or relational iteration,

so we will give our own functions.

4.3 Sequence-Stack Axioms

We need to prepare the ground for refining the abstract stack to a sequence.
Paralleling the requirement to iterate function application on abstract stacks

we will also need to be able to iterate functions on our concrete sequence stack.
Unfortunately, because Event B is first-order, we cannot give a generic defini-
tion of iteration. We therefore define STACKIter and SEQIter for iterating
functions, respectively on values of type STACK and SEQ.

CONTEXT : StackSeqAxiom
EXTENDS : SeqAxiom

AXIOMS :
stsaxm1 :: STACKIter ∈ (STACK �→ STACK)

→ (N �→ (STACK → STACK))

stsaxm2 :: SEQIter ∈ (SEQ �→ SEQ)→ (N �→ (SEQ→ SEQ))

stsaxm3 :: ∀f, n, s·f ∈ STACK �→ STACK ∧ n ∈ N ∧ s ∈ STACK
∧ n = 0⇒ STACKIter(f)(n)(s) = s

stsaxm4 :: ∀f, n, s·f ∈ STACK → STACK ∧ n ∈ N1 ∧ s ∈ dom(f)
⇒ STACKIter(f)(n)(s) = STACKIter(f)(n− 1)(f(s))

stsaxm5 :: ∀f, n, s·f ∈ SEQ→ SEQ ∧ n ∈ N ∧ s ∈ SEQ ∧ n = 0
⇒(SEQIter(f))(n)(s) = s

stsaxm6 :: ∀f, n, s·f ∈ SEQ→ SEQ ∧ n ∈ N1 ∧ s ∈ dom(f)
⇒ (SEQIter(f))(n)(s) = (SEQIter(f))(n− 1)(f(s))

stsaxm1, stsaxm3 : STACKIter(f)(0)(s) = s;
stsaxm1, stsaxm4 : STACKIter(f)(n)(s) = STACKIter(f)(n− 1)(f(s)),

if n �= 0;
stsaxm2, stsaxm5 : SEQIter(f)(0)(s) = s;
stsaxm2, stsaxm6 : SEQIter(f)(n)(s) = SEQIter(f)(n− 1)(f(s)), if n �= 0.

The following theorems record equivalences between various compositions of
stack and sequence operations.

232 K. Robinson

THEOREMS :
ststhm1 :: ∀s, st, d·s ∈ SEQ ∧ st ∈ STACK ∧ d ∈ DATA

⇒ last(append(s �→ d)) = tos(push(st �→ d))

ststhm2 :: dom(STACKIter) = STACK �→ STACK

ststhm3 :: dom(SEQIter) = SEQ �→ SEQ

ststhm4 :: ∀s, d·s ∈ SEQ ∧ d ∈ DATA
⇒ card(append(s �→ d)) = card(s) + 1

ststhm1 : for a sequence seq and stack stack, s,
last(append(s �→ d)) = tos(push(stack �→ d)).

4.4 Stack Refinement

We will now refine the abstract stack machine, Stack, to a concrete machine in
which the stack is modelled as a sequence, SeqStack.

MACHINE : SeqStack
REFINES : Stack
SEES : StackSeqAxiom

VARIABLES :
: seqstack

Notice that the state consists of only one variable, seqstack. Since this is a
sequence the size of the stack is implicit in the length of the sequence.

INVARIANTS :
inv1 :: seqstack ∈ SEQ

inv2 :: seqstack �= emptyseq⇒ tos(stack) = last(seqstack)

inv3 :: stack �= emptystack⇔ seqstack �= emptyseq

inv4 :: seqstack �= emptyseq
⇒ (∀n·n ∈ N1 ∧ n ≤ card(seqstack)
⇒ last(SEQIter(front)(n− 1)(seqstack))
= tos(STACKIter(pop)(n− 1)(stack)))

inv5 :: seqstack �= emptyseq
⇒ (∀n·n ∈ N1 ∧ n ≤ card(seqstack)
⇒ STACKIter(pop)(n− 1)(stack) �= emptystack)

inv6 :: seqstack �= emptyseq
⇒ (∀n·n ∈ N1 ∧ n ≤ card(seqstack)
⇒ SEQIter(front)(n− 1)(seqstack) �= emptyseq)

inv7 :: stackdepth(stack) = card(seqstack)

inv8 :: stack �= emptystack⇒ tos(stack) = last(seqstack)

Reconciling Axiomatic and Model-Based Specifications Reprised 233

The invariant of this refinement, of course contains the refinement relation, which
is concerned with ensuring that the concrete stack, seqstack, has behaviour that
is consistent with that of the abstract stack, stack. The following comments
explain the significance of each of the invariants.

inv1 : seqstack is a finite sequence;
inv2 : if seqstack is not empty, then tos is last(seqstack), otherwise it is an

arbitrary element of DATA;
inv3 : stack �= emptystack⇔ seqstack �= emptyseq;
inv4 : for any value of n less than the length of seqstack, applying front to the

sequence n times and taking last of the resulting sequences yields the same
value as applying pop n times to the abstract stack and then taking tos of
the resulting stack;

inv5 : applying pop to the abstract stack any number of times less than the
length of seqstack does not yield emptystack;

inv6 : applying front to seqstack any number of times less than the length of
seqstack does not yield the empty sequence;

inv7 : the depth of the abstract stack is equal to the length of seqstack.
inv8 : the top of the abstract (non-empty) stack is equal to the last element of

(non-empty) sequence.

THEOREMS :
thm1 :: ∀n, d·n ∈ N ∧ n ≤ card(seqstack) ∧ d ∈ DATA

⇒ last(SEQIter(front)(n)(append(seqstack �→ d)))
= tos(STACKIter(pop)(n)(push(stack �→ d)))

thm2 :: ∀n, d·n ∈ N ∧ n ≤ card(seqstack) ∧ d ∈ DATA
⇒ STACKIter(pop)(n)(push(stack �→ d)) �= emptystack

thm3 :: ∀n, d·n ∈ N ∧ n ≤ card(append(seqstack �→ d)) ∧ d ∈ DATA
⇒ last(((SEQIter(front))(n − 1))(append(seqstack �→ d)))
= tos(((STACKIter(pop))(n− 1))(push(stack �→ d)))

thm4 :: seqstack �= emptyseq⇒ (front(seqstack) �= emptyseq
⇒ last(front(seqstack)) = tos(pop(stack)))

thm1 : clearly this is a special case of inv5 combined with axm5 for the Stack-
Axiom, the axioms for SeqAxioms and the axioms for STACKIter and
SEQIter;

thm2 : an expression of the requirement that an abstract stack has as many
“levels” as its refinement seqstack;

thm3, thm4 : special cases of more general axioms.

EVENTS :
Initialisation:

begin:
act1 :: seqstack := emptyseq

end :

234 K. Robinson

Pop: =̂
Refines : Pop

when:
grd1 :: seqstack �= emptyseq

then:
act1 :: seqstack := front(seqstack)

end :

Push: =̂
Refines : Push

any:
: data

where:
grd1 :: data ∈ DATA

then:
act1 :: seqstack := append(seqstack �→ data)

end :

4.5 An Explanation of the Sudden Appearance of Recursion

The appearance of recursion was justified in sec4.2 by the recursive nature of
the abstract. This is surprising as that structure is present in the abstract stack
and nothing to specifically deal with this was introduced, or indeed required
in the abstract stack model. There were 11 proof obligations generated for the
StackAxiom machine and 2 for the Stack machine, and they were all discharged
automatically.

However, the requirement for the recognition of the recursive structure is
forced by the proof obligations generated for the SeqStack machine and derives
from the refinement requirement as follows.

The functions tos/last and pop/front are partial and cannot be applied to
empty stacks,sequences. The refinement is required to verify the outcomes of
tos(pop(stack))/last(front(seqstack), which raise the checking that pop(stack)/
front(seqstack) are not empty. So it is clear that there will need to be invariants
concerned with things like emptiness one level down. But as soon as rules are
written for descending to the next lower level of the stacks, the concern recurses,
and hence there is a requirement for general (but finite) iterations of the stack
functions. Hence, the axioms seen in the SeqStackAxiom machine were originally
produced in response to proof obligations.

5 Other Aspects of the Development

We have presented a development of a simple stack that is significantly based
on axioms. The development listing that is used as the basis of this paper is
dominated by axioms and theorems. The abstractness of this exercise is very

Reconciling Axiomatic and Model-Based Specifications Reprised 235

suited to Event B, and my general experience of using Event B is that it seems
to be easier to be abstract. In retrospect, it is always the case that a very similar
development could have been given in Classical B, but there is a tendency for
that not to happen.

5.1 Consistency

Care has been taken with the expression of the axioms and theorems to use con-
sistent expressions for concepts. Provers can be quite sensitive to inconsistency
and (interactive) proof can become more difficult as a result of inconsistency in
the expression of the same concept or property. While producing the develop-
ment for this paper the formulation has undergone a number of changes; often
not in content, but in expression. A very early version defined size as a synonym
for card, but that has been dropped. It was introduced purely for cosmetic rea-
sons, but Event B/Rodin does not provide an aliasing facility, so the only way
of introducing such a synonym seems to be by universal quantification, and that
introduces a significant disadvantage into proof discharge.

5.2 Proof Obligations

The statistics on the proof obligations are

Machine Total Auto
hline StackAxiom 11 11

Stack 2 2
SeqAxiom 25 15

StackSeqAxion 10 2
SeqStack 41 8

At this stage no statistics have been given on interactive proof or review. The
Rodin provers allow a PO to be “reviewed”: that is the PO can be examined
carefully and review might be selected. Review is not equivalent to proved; it re-
mains tagged as reviewed until it is proved interactively or automatically. All of
the remaining undischarged proof obligations have been at least reviewed; many
have been proved interactively, but changes to the development have left the
obligations undischarged at this stage. The Rodin provers —there are a number
of them— are generally good, but they tend to be uneven, sometimes unable to
discharge quite simple lemmas. Particularly annoying are the “well-definedness”
(WD) proof obligations, that generally are not discharged automatically. This
development uses high order functions and the provers continuously require dis-
charge of WD proof obligations of the form x ∈ dom(f) and this becomes par-
ticularly onerous for higher order functions with such proofs being requested at
each level of the function.

It is asserted that all POs are either proved or able to be proved.

236 K. Robinson

5.3 General Experience of the Rodin Toolkit

The Rodin toolkit is generally very pleasant to use and very productive. However
for developments which go through a significant number of revisions the editing
facilities are much inferior to many standard editors.

It must also be said, that Event B is a very rewarding formal modelling method
to use. It encourages abstraction and hence enables top-down modelling.

6 Conclusion

We have reprised the earlier exercise of presenting a B model with a strong ax-
iomatic basis. This has been very successful and has produced a better outcome
than the earlier exercise. It can be remarked that the solution presented here
was always available in Classical B.

Acknowledgements

I wish to acknowledgement some very useful comments from the reviewers.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J.-R.: B�: Towards a Synthesis between Z and B. In: ZB 2003: Formal Spec-
ification and Development in Z and B, pp. 168–177 (2003)

3. B-Core(UK) Ltd., Oxford Science Park, Oxford UK. B-Toolkit, release 3.0 edition
(1996)

4. P. Bowen, J., Dunne, S., Galloway, A., King, S. (eds.): B 2000, ZUM 2000, and ZB
2000. LNCS, vol. 1878. Springer, Heidelberg (2000)

5. Romanovsky, A., et al.: RODIN: Rigorous Open Development Environment for
Complex Systems. Technical report, University of Newcastle upon Tyne, UK (2004–
2007), http://www.rodin.cs.ncl.ac.uk

6. Robinson, K.: Reconciling Axiomatic and Model-Based Specifications Using the B
Method. In: Bowen, J.P., et al. (eds.) [4], pp. 95–106 (2000)

http://www.rodin.cs.ncl.ac.uk

A Verifiable Conformance Relationship between

Smart Card Applets and B Security Models

Frédéric Dadeau1, Julien Lamboley2, Thierry Moutet2, and Marie-Laure Potet2

1 Laboratoire d’Informatique de Franche-Comté, F-25030 Besançon cedex,
2 Vérimag, centre équation, 2 avenue de Vignate – F-38610 Gières

dadeau@lifc.univ-fcomte.fr,
{Julien.Lamboley,Thierry.Moutet,Marie-Laure.Potet}@imag.fr

Abstract. We propose a formal framework based on the B method,
that supports the development of secured smart card applications. Ac-
cordingly to the Common Criteria methodology, we start from a formal
definition and modelling of security policies, as access control policies. At
the end of the development process, smart card applications are imple-
mented in a standardized way, based on both the life cycle of smart card
applets and the APDU protocol. In this paper, we define a conformance
relationship that aims at establishing how smart card applications can
be related to security requirement models. This embraces both the no-
tions of security conformance as well as traceability allowing to relate
basic events appearing at the level of applications with abstract security
policies. This approach has been developed in the RNTL POSÉ project1,
involving a smart card issuer, Gemalto.

1 Introduction

Smart cards play an important role in the information systems security. They
supply a medium for authentication, confidentiality and integrity. Security in
smart cards is based on hardware mechanisms and operating system protections
and, at the level of applications, on some security properties that can be estab-
lished. Nowadays, more and more software applications are embedded on smart
cards, as electronic wallets, electronic passports or administrative services.

Because smart cards become a central piece of every day citizen security, it is
crucial to produce some assurances in terms of security. The Common Criteria
standard is a norm allowing to produce confidence that the process of speci-
fication, implementation and evaluation has been conducted in a rigorous and
standard manner. In the Common Criteria approach, security is specified as a
set of security functional components [6] and the development process must then
supply some assurances relatively to these security requirements [7]. The result is
a level of confidence (called EAL for Evaluation Assurance Level), based on the
measures taken during the development process. Common Criteria evaluations
thus rely on the principles of modelling and presentation of evidences, which
explain how security functionalities are really guaranteed. EAL are numbered
1 Work supported by the RNTL POSE project (ANR-05-RNTL-01001).

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 237–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

238 F. Dadeau et al.

from 1 to 7, depending on the the precision attached to models and evidences.
Higher levels are based on semi-formal and formal modellings.

Due to the increasing number of smart card applications, methodologies must
be elaborated, in order to dispose of certifying processes which can be reproduced
and automated. In the national French POSÉ project, dedicated to a model
based testing approach for security policies, a B formal framework has been
developed in order to relate smart card applications to security requirements.
This paper presents this framework and extends it in order to capture the APDU
level implementations, which was encapsulated in the testing tool used in the
POSÉ. Section 2 describes the context of smart card development and access
control specification. Section 3 describes the proposed B framework dedicated
to the conformance relationship. Then, Section 4 illustrates our approach for
smart card APDU level implementations. Finally, conclusion and perspectives
are presented in Sect. 5.

2 The Context

In smart card applications, access control policies are a central piece of secu-
rity because they ensure data protection. In the Common Criteria norm, the
FDP class (user Data Protection) is relative to access control security exigences.
From EAL 6 (Common Criteria version 3.1 [7]) a formal definition of security
requirements is expected, called SPM (for Security Policy Modelling). This for-
malization is exploited in several ways. First, policies are stated in a precise
and unambiguous manner, helping in that developers and certifying evaluators.
Second, some properties relative to the security policies can be established, as
their consistency. Finally, this model is exploited to relate functional specifica-
tion, functional testing and vulnerabilities analysis to security requirements. The
proposed B framework will address this relationship, allowing in that to produce
assurance evidences.

2.1 Security Model

Access controlwhich is considered here is the control of subjects executing some op-
erations on some protected objects. Permissions can depend on security attributes.
In smart card applications, subjects generally correspond to the type of authenti-
cation and access control depends on the life cycle of the card or the applet.

In our approach, a security model is composed of two B models: a rule-based
model describing which subjects are authorized to execute which operations
on which objects, and a dynamic model describing how subjects, objects and
security attributes dynamically evolve. From a rule-based model and a dynamic
model, a security kernel, enforcing the rules of the first model on the second one,
can be automatically generated by the Meca tool [11]. We illustrate our approach
with the example of an electronic purse in which some operations may only be
executed from specific terminals that represent the subjects. We distinguish three
kinds of subjects: administrative terminals dedicated to personalization, bank
and pda terminals. The life cycle of the card (personalization, in use or invalid

A Conformance Relationship between Smart Cards and B Models 239

mode) and the boolean variable isHoldAuth, indicating if the card holder has
been authenticated, constitute the security attributes. Here are two examples:

(mode=USE ⇒ (BANK �→ checkPin) ∈ permission) ∧
(mode=USE ∧ isHoldAuth=TRUE⇒ (BANK �→ credit) ∈ permission)

The dynamic model describes how security attributes evolve. Generally, this
model is non deterministic due to the fact that some functional values are not
modeled, such as the internal pin value. For instance, the checkPin operation
can result in two different behaviors depending on whether the pin verification
succeeds or fails. The status result is a witness of the internal behavior. The
security model, obtained from Meca, is built from the dynamic model adding
security conditions and the witness sr stating if the operation execution is au-
thorized or not (sr:=OK or sr:=KO). Figure 1 describes this model.

2.2 Smart Card Applications

The APDU protocol (Application Protocol Data Unit) [12] governs the communi-
cations between cards and terminals. Terminals send APDU commands and cards
respond with a response APDU. A command APDU takes the following form:

CLA INS P1 P2 Lc Data Field Le

The invariant Lc = size(Data Field) is verified when APDU commands
are received or built. The field CLA is used to identify an application class and
INS indicates the instruction code. P1 and P2 are parameter bytes. Lc denotes

machine e purse security
sets SUBJECTS = {ADMIN, BANK, PDA}; MODE = {PERSO, USE, INVALID}
variables subject, mode, isHoldAuth
invariant subject ∈ SUBJECTS ∧ mode ∈ MODE ∧ isHoldAuth ∈ BOOL
initialisation subject:∈SUBJECTS ‖ mode,isHoldAuth:=PERSO,FALSE
operations

sr, status ← checkPin(p) =̂
pre p ∈ TAB BYTE then

if mode=USE ∧ subject=BANK
then

choice isHoldAuth:=TRUE ‖ status:=success ‖ sr:=OK
or isHoldAuth:=FALSE ‖ status:=failure ‖ sr:=OK
end

else sr:=KO
end

end

...
end

Fig. 1. Security Model for the Electronic Purse

240 F. Dadeau et al.

the number of bytes in the data field of the command APDU. Le denotes the
maximum number of bytes expected in the data field of the response APDU. A
response APDU takes the form:

Data Field SW1 SW2

SW1 and SW2 are status words denoting the results of the command. Values
of the status words are normalized. For instance, 9000 indicates that the com-
mands terminated in the right way. In the framework of JavaCard, the Java Card
Runtime Environment (JCRE) supplies the APDU class that manages the APDU
buffer [19]. The ISOException class also supplies the throwIt(short) method that
builds an APDU response with a status word corresponding to the parameter.
Here is a JavaCard implementation of the checkPin operation. Object hpc (for
holder pin code) is an instance of the OwnerPin class, relative to the manage-
ment of pin codes. A try counter is associated to the hpc variable. Contrary to
the security model, the number of failing tries is limited.

Error codes are used to set together fields SW1 and SW2 that will be de-
noted after by SW. SW TERMINAL DENIED and SW MODE INCORRECT are two er-
ror codes defined at the level of application (respectively as 6810 and 6820).
SW PIN BLOCKED signals when no new try is possible. Other error codes are stan-
dardized ones (Interface ISO7816 of [19]). When no error is raised, the APDU

private void checkPin(APDU apdu) {
byte[] apduBuf = apdu.getBuffer();
// test the conformance of the parameter values
if (apduBuf[ISO7816.OFFSET_P1] != (byte)0x00

|| apduBuf[ISO7816.OFFSET_P2] != (byte)0x00)
ISOException.throwIt(ISO7816.SW_INCORRECT_P1P2);

// test the conformance of the expected Lc value
short lc = apdu.setIncomingAndReceive();
if (lc != 2)
ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

// security conditions on terminal and mode
if ((terminal != BANK))
ISOException.throwIt(SW_TERMINAL_DENIED);

if (mode_ != USE)
ISOException.throwIt(SW_MODE_INCORRECT);

// verification of the remaining tries number
if (hpc_.getTriesRemaining() == 0)
ISOException.throwIt(ISO7816.SW_CONDITIONS_NOT_SATISFIED);

//verification of the pin code
if (!hpc_.check(apduBuf, ISO7816.OFFSET_CDATA, (byte) lc)) {

hpc_.reset();
if (pin.getTriesRemaining() == 0)
ISOException.throwIt(SW_PIN_BLOCKED);
else ISOException.throwIt(ISO7816.SW_WRONG_DATA); } }

Fig. 2. APDU implementation for the Electronic Purse

A Conformance Relationship between Smart Cards and B Models 241

response is implicitly updated with SW NO ERROR, i.e. 9000. We now define a
framework to establish how such an implementation can be related to a security
model, as introduced in Sect. 2.1.

3 Conformance Relationship

Our theoretical framework is based on the three following notions: (i) a notion
of admissible traces associated to a model, (ii) a notion of mapping relating the
(abstract) level of controlled operations with operations of the implementation
level, and, (iii) a notion of conformance of an implementation w.r.t. a security
model, through the mapping relationship. In the POSÉ project, the implemen-
tation level was specified in B in order to produce functional tests with the help
of the LTG tool [13]. Then, security models are also expressed using B, and
the conformance relationship can be defined using B theoretical tools. We first
briefly recall some background for B.

3.1 Some B Notions

Generalized Substitutions, that are used to describe behaviors, can be defined
by the Weakest Precondition semantics, introduced by E.W. Dijkstra [9], and
denoted here by [S]R. The following predicates are attached to generalized sub-
stitutions (x being the state variables attached to the substitution S and x′ the
values of x after the substitution):

trm(S) =̂ [S]true termination
prdx(S) =̂ ¬[S]¬(x′ = x) before-after predicate
fis(S) =̂ ∃x prdx(S) feasibility

Operation definitions are of the form o ← op(i) =̂ pre P then S end. An
operation is characterized by its termination and its before-after predicate. A
call of the form r ← op(v) can be defined by [5]:

var i, o in i := v ; pre P then S end ; r:= o end

The Event B extension [2], dedicated to dynamic aspects, is based on another
execution model. Events are of the form select P then S end. An event is
characterized by its before-after predicate and its feasibility, called here its guard.
As soon as the guard holds, the event can be enabled.

Abstract models can be proved and refined. The refinement process consists
in building a more concrete model and establishing the refinement relation. The
refinement is based on a gluing invariant linking abstract and concrete variables.
Refinement proof obligations consists in showing that the concrete initialization
refines the abstract one, and that each concrete operation refines its abstract
definition. A substitution S is refined by a substitution T , with respect to the
gluing invariant L (S �L T) if and only if:

L ∧ trm(S) ⇒ [T]¬[S]¬L

242 F. Dadeau et al.

3.2 Security Traces

Access control being relative to the control of operation execution, security poli-
cies can be characterized as the set of admissible traces. A similar approach is
adopted by F. Schneider [17] who characterizes access control by security au-
tomata. Traces can be syntactically represented as sequences of occurrences of
execution calls, stated as triplets (op, v, r) where op is the name of an operation,
v a valuation of input parameters and r a valuation of output parameters. Then,
a trace associated to a model M is written:

< init ; (op1, v1, r1) ; . . . ; (opn, vn, rn) >

with init the initializing substitution of M and opi an operation of M . Intuitively,
an occurrence (op, v, r) has to be interpreted as the observation of the execution
of the operation op called with the value v and producing the resulting value r.
Furthermore, this execution only takes place in a state where the precondition
holds, as it is required when termination is taken into account.

Definition 1 (Call occurrence). Let o ← op(i) be an operation defined by the
substitution pre P then S end. The event exec(op, v, r), corresponding to the
execution of a call op(v) returning the value r, can be defined by the substitution:

select [i := v]P then

var o in [i := v]S ; select (r = o) then skip end end

end

Substitution into substitution, as [i := v]S, is defined as in [1]. Here, we have
prd(exec(op, v, r)) ≡ ∃ o′ [i := v](P ∧ prd(S) ∧ o′ = r), that exactly describes
the observation of an operation call for input v producing the value r as result.
We now define admissible traces.

Definition 2 (Admissible trace). Let t be a trace of the form < init; (op1, v1,
r1) ; . . . ; (opn, vn, rn) >. This trace t is admissible if and only if the following
condition holds:

fis(init ; exec(op1, v1, r1) ; . . . ; exec(opn, vn, rn))

In the following, we denote by TM the set of admissible traces associated to the
model M . TM can be interpreted as the union of terminating call sequences associ-
ated to the set of correct implementations in which preconditions arenotwidened2.
We now present a conformance relationship, based on admissible traces, that aims
at establishing whether an application conforms to a security model.

3.3 Mapping Security and Functional Levels

In smart card applications, the granularity between operations which are the
target of the access control policies and the operations of the implementation
2 Such precondition can be automatically built, as described in [1] p. 524.

A Conformance Relationship between Smart Cards and B Models 243

is generally the same one. Nevertheless, for security reasons, implementation
operations are defensive and can be invoked in any case whereas the execution of
operations of the security model does not make sense if access control conditions
do not hold. A mapping is a set of rules stating how application calls can be
related to controlled operations of the security kernel. In a more general case, a
rule takes one of the two following forms:

1. (opapp, vapp, rapp) → (opsec, vsec, < rsec, OK >)
2. (opapp, vapp, rapp) → (skip, < KO >)

The first case maps an implementation behavior with an authorized security
behavior. The second case corresponds to non-authorized calls, in which secu-
rity attributes must not be modified, in any way. OK and KO are values which
are introduced in the security kernel (Sect. 2.1). vapp, rapp, vsec, rsec denotes se-
quences of expressions with possibly free variables. We denote by free(t) the set
of free variables in term t. A mapping can be non-deterministic, meaning that
some form of implementation behavior can be matched with different monitored
behaviors. Expected properties of mapping are discussed in Sect. 4.2. Let be here
an example of a rule relating some behaviours of the checkpin implementation
(see Fig. 2) with some behaviours of the checkpin definition at the security level
(see Fig. 1).

(checkpin, < apdu >, < SW NO ERROR >)
�→ (checkpin, < OFFSET CDATA..OFFSET CDATA + lc− 1 � apdu >,

< success, OK >)

in which OFFSET CDATA..OFFSET CDATA + lc − 1 � apdu represents
the extraction of the parameter pin value located at index OFFSET DATA of
the apdu buffer. Definition 3 hereafter states how mapping rules can be applied.

Definition 3 (Closure of mapping by instanciation). Let l �→ r be a rule
of a mapping R and let σ be any substitution with dom(σ) ⊆ free(l) ∪ free(r).
R is close by σ meaning that σ(l) �→ σ(r) ∈ R.

Then a term t can be rewritten into s by a mapping R if and only if t �→ s ∈ R.

3.4 Conformance Definition

Intuitively, an application conforms to a security model if and only if its traces
are accepted by the security model, through the mapping relation. Due to the
considered security policies, it means that: (i) all sequences of positive calls
(associated to an effective execution of operations) can also be played by the
security model, and, (ii) the application level can refuse more executions than
the security level, in particular for functional reasons.

More formally, let tapp = < initapp ; call1app ; . . . ; callnapp > be a trace relative
to the application and let tsec = < initsec ; call1sec ; . . . ; callnsec > be a trace

244 F. Dadeau et al.

relative to the security model, with calli a 3-uplet of the form (opi, vi, ri). A
mapping relation R can be extended to traces in the following way:

(tapp �→ tsec) ∈ R iff (calliapp �→ callisec) ∈ R for i ∈ 1..n

Then, for a given mapping R, the finite set of traces associated to a trace tapp

of the implementation level can be computed as {tsec | (tapp �→ tsec) ∈ R}.
Now, operation calls that return KO can be assimilated to stuttering steps [15],
because they do not modify security attributes. The operation Stut, defined
hereafter, erases such calls.

Definition 4 (Elimination of refused executions)

Stut(< (skip, < KO >) ; s >) =̂ Stut(< s >)
Stut(< (op, v, < r, OK >) ; s >) =̂ < (op, v, < r, OK >) ; Stut(< s >) >

Stut(<>) =̂ <>

Finally, the conformance between an application A and a security model S,
through a mapping relation R, can be defined.

Definition 5 (Conformance relationship)

∀ ta (ta ∈ TA ⇒ ∃ ts ((ta �→ ts) ∈ R ∧ Stut(ts) ∈ TS))

With this definition, it is possible to implement some part of the access control
in a wrong way, for instance in making a mistake during the update of a security
attribute. The conformance relationship that we propose (only) verifies that a
wrong implementation can not be used to obtain rights that are not authorized.
Nevertheless, it is the main expected characteristics in security: a security failure
which can not be exploited in any way is not really a problem3. For instance,
in the implementation of Sect 2.2, the result of the authentication (variable
IsHoldAuth in the security model) is stored in the OwnerPin object and can be
consulted through the isValidated() method [19]. Suppose now this variable
is not updated by true, whereas the authentication succeeds. According to the
access control rules given Sect. 2.1, the trace:

< init ; (checkpin, apdu, NO ERROR) ; (credit, val, NO ERROR) >

is not authorized to be played by the application. But it is not a security error. On
the contrary, if this variable is not updated by false whereas the authentication
fails (call to hpc. reset() in the implementation), the trace:

< init ; (checkpin, apdu, TERMINAL DENIED) ; (credit, val, NO ERROR) >

that intuitively corresponds to an abstract trace where a credit is authorized
after an erroneous authentication, will be detected as insecure.
3 The purpose of this work is not to found malicious errors that can be exploited by

attackers. It is rather a mean to ensure that the security aspects, namely the access
control mechanisms, have correctly been implemented.

A Conformance Relationship between Smart Cards and B Models 245

4 Application to APDU Implementations

During the POSÉ project, the security model was designed as a direct abstraction
of the functional model, the final goal being to complete functional test cam-
paign with new tests dedicated to security requirements. The closeness between
security and functional models was enforced by the strong requirement for our
test generation tool (namely LTG [13]) to dispose of deterministic models. The
tests generated using the functional model [14] are concretized to be run on the
system under test through an adaptation layer that encapsulates operation calls
and responses into APDU (the Gemalto tool, named EVA for Easy Validation
Application). Mapping rules were very simple because they state direct corre-
spondences of the internal behaviors between the functional and security models.
In this section, we extend the previous approach by proposing a form of map-
ping dedicated to APDU level implementations. Furthermore, we propose proof
obligations to validate mapping rules and we show how these proof obligations
can be used to verify mappings, particularly when they are non deterministic.

4.1 A Form of Mapping Dedicated to APDU Implementations

In the JavaCard framework, an applet extends the javacard.framework.Applet
class that defines the common methods an applet has to provide. Method process
“decodes” the APDU command, executes the expected treatment and builds the
corresponding APDU response. This method is invoked by the JCRE that man-
ages the exchanges between terminals and cards. Here is the APDU format for
invoking the checkPin procedure of our example:

CLA INS P1 P2 Lc Data Field Le
80h 52h 00h 00h 04h 4 bytes (pin value) 00h

Thus, the exchange between a card acceptance device and a smart card can
be modelled by the exchange operation given hereafter:

Data res, SW ← exchange(CLA, INS, P1, P2, Lc, Data com, Le) =̂
pre Lc=size(Data com) then

var apdu in

apdu ← receiveAPDUcommand(CLA, INS, P1, P2, Lc, Data com, Le) ;
process(apdu) ;
Data res, SW ← sendAPDUresponse

end

end

Precondition of exchange states that the condition Lc=size(Data com) must
be verified when APDU commands are built, as pointed out in Sect. 2.2. Method
process tests the fields CLA and INS and, depending on these values, invokes
the appropriate method. For instance, method checkPin will be invoked as soon
as CLA=80h and INS=52h. The mapping associated to the exchange operation
is given in Tab. 1, with v=<80h, 52h, P1, P2, Lc, Data, Le>. SW results are

246 F. Dadeau et al.

Table 1. Mapping for the checkPin operation

Functional cases
(exchange, v, <NO ERROR>) → (checkPin, <Data>, <success, OK>)
(exchange, v, <WRONG DATA>) → (checkPin, <Data>, <failure, OK>)
(exchange, v, <PIN BLOCKED>) → (checkPin, <Data>, <failure, OK>)

Errors coming from the security model
(exchange, v, <TERMINAL DENIED>) → (skip, <KO>)
(exchange, v, <MODE INCORRECT>) → (skip, <KO>)

Functional errors
(exchange, v, <COND. NOT SATISFIED>→ (skip, <KO>)
(exchange, v, <INCORRECT P1P2> → (skip, <KO>)
(exchange, v, <WRONG LENGTH> → (skip, <KO>)

those of Sect. 2.2 in which prefixes ISO7816 and SW are omitted. In the case of
checkPin, no other data response is expected. This value is thus omitted.

4.2 Mapping Properties

The proposed approach is based on the relevance of the mapping. This latter
must be a simulation relationship linking behaviors describing similar treat-
ments. We propose here some proof obligations relative to the expected prop-
erties for mappings. As considered in the POSÉ project, we suppose disposing
of formal models both for the security and the implementation levels. Further-
more, due to the concerned applications, we consider here that there is no in-
ternal data refinement between these two models. Subjects, objects and security
attributes (Sect. 2.1) are represented in the same way, possibly after renaming.
These hypotheses are based on the fact that smart card applications generally do
not imply sophisticated algorithms or data representations relatively to access
controls. Furthermore, we consider here non-deterministic mappings. As stated
before, non-determinism is a way to deal with multiple errors: depending on
the order in which verifications are performed in the implementation and in the
security model, the result may differ. This non-determinism is very important
in the sense that implementations are free to favour one cause over another,
avoiding a cause of side channel, making the implementation behavior too pre-
dictable. To take non-determinism into account, mappings will now be given as
a set of rules of the form li → {ri

1, . . . , r
i
n} with li describing non-overlapping

implementation behaviors: i.e. formulae ¬(prd(exec(li))∧prd(exec(lj)) for i �= j,
must be established under the hypothesis of the invariant of the application and
with exec defined as in Def. 1.

Definition 6 (Mapping Correctness). A mapping rule l → {r1, . . . , rn} is
correct if and only if:

choice exec(r1) or . . .or exec(rn) end � exec(l)

Another interesting property is to establish that there exists a rule that applies
for each implementation behavior.

A Conformance Relationship between Smart Cards and B Models 247

Definition 7 (Mapping Completeness). Let o← op(i) =̂ S be the operation
definition at the implementation level and let (op, v1

app, r1
app), . . . , (op, vk

app, rk
app)

be the set of left sides relative to op. A mapping R is complete if and only if:

choice select i = v1
app then exec(op, v1

app, r
1
app) end

or . . .or select i = vk
app then exec(op, vk

app, r
k
app) end

end � exec(op, i, o)

In this way, each behavior of the implementation is covered by a mapping rule.

Definitions 6 and 7 can be used to produce proof obligations relatively to a
set of mapping rules. These proof obligations are obtained from the refinement
definition (see section 3.1), and must be proved under the hypothesis of the
invariant of the application. If the mapping is correct and complete, and if the
initialization of the application refines the initialization of the security model,
then each admissible traces at the application level is in conformance with the
security model, according to Def. 5. Conditions of definitions 6 and 7 are sufficient
ones but not necessary, as pointed out at the end of Sect. 3.4. That means that
there exists some couples (tapp, tsec) verifying the conformance relationship that
do not correspond to a step by step refinement.

4.3 Example

A B model describing the APDU implementation level has been developed4. The
JCRE machine contains the buffer APDU and operations receiveAPDUcommand
and sendAPDUresponse. Similar models has been recently developed, for instance
in JML [16]. The application model is just the translation of the Java description
in B, using the API models. We illustrate here how condition 6 can be used to
find error in mappings, particularly when non-determinism is allowed. Suppose
now we want to specify, at the level of the security model, that the result of
checkPin (Fig. 1) depends on the pin format. Then, the security definition of
checkPin is now:

sr, status ← checkPin(p) =̂
pre p ∈ TAB BYTE then

if mode=USE ∧ subject=BANK then

if size(p)=2 then ... /* remainder of the operation */
else sr := OK ‖ status := data error end

else sr := KO
end

end

An invocation that contains two security errors (an unsupported terminal
and a pin size different from the expected one) prioritizes the TERMINAL DENIED
response in the security model (Fig. 1) and the WRONG LENGTH status word in the

4 http://www-verimag.imag.fr/∼potet/B08

http://www-verimag.imag.fr/~potet/B08

248 F. Dadeau et al.

implementation (Fig. 2). As a consequence, rules relative to TERMINAL DENIED
and WRONG LENGTH responses must be:

(exchange, v, <TERMINAL DENIED>)→ (skip, <KO>)
(exchange, v, <WRONG LENGTH>) → (checkPin, <Data>, <data error, OK>)
(exchange, v, <WRONG LENGTH>) → (skip, <KO>)

Suppose now that the last rule has been omitted. Then the mapping correct-
ness (Def. 6) can not be established. The proof obligation associated to the left
part (exchange, v, <WRONG LENGTH>) is:

Lc = size(Data) ∧ apduBuf [OFFSET P1] = 00
∧ apduBuf [OFFSET P2] = 00 ∧ Lc �= 2

⇒ mode = use ∧ terminal = bank ∧ size(Data) �= 2

with Lc = size(Data) the precondition of the operation exchange and mode =
use ∧ terminal = bank ∧ size(Data) �= 2 the prd predicate associated to the
right part (checkPin, <Data>, <data error, OK>). This proof obligation can
not be proved, showing that some rules are missing. Adding the last rule, the
proof obligation becomes:

Lc = size(Data) ∧ apduBuf [OFFSET P1] = 00
∧ apduBuf [OFFSET P2] = 00 ∧ Lc �= 2

⇒ (mode = use ∧ terminal = bank ∧ size(Data) �= 2
∨ ¬(mode = use ∧ terminal = bank)

and allows to establish the correctness of the mapping. In the same way if the
first rule of Table 1 is omitted, this error can be detected by the completeness
definition: behaviors producing the status word SW NO ERROR at the application
level should not be covered by any rule.

5 Conclusion and Future Work

In this paper, we have defined a formal framework that relates a security model
with a Java Card implementation using APDU commands and responses. It re-
lies on the definition of a mapping between these two abstraction levels. Using
B as a support for describing this framework makes it possible to perform both
correctness and completeness verifications on the mapping in order to ensure the
accuracy of the results. This conformance relationship has been employed in the
french RNTL POSÉ project, which aimed at validating security mechanism in
a JavaCard application by means of dedicated security tests [14,8]. In practice,
the conformance relationship acts as an oracle for the test execution, similar to
the ioco relationship (input-output conformance) [20], extended by a mapping.
In this project, correctness and completeness conditions have not been established
by proof but were used as a guidance to verify mappings through a review process.

The B method has already been used as a support for access control poli-
cies [4,18]. In [4], the authors propose a form of modeling attached to Or-BAC

A Conformance Relationship between Smart Cards and B Models 249

access control and characterize behaviors which conform to a given access control
policy. Our approach can be seen as an extension of [4,18] taken into account
the conformance of an application with respect to a security model. To do that
questions of observation, refinement and correspondence between models stated
at different levels of abstraction, have to be tackled. Although our conformance
relationship is based on B refinement, we mainly focused on the computation
behaviors of a system, through a mapping relationship, describing what it means
to represent abstract behaviors by more concrete ones. This form of refinement
is named interface refinement in [15]. Compared to B theory of refinement, the
main particularity here is the way of characterizing the set of behaviors associ-
ated to a classical B model, based on operations. We do not consider here all
sequences of terminating operation calls but traces associated to the observa-
tion of operation calls, where calls take place during execution. In this way, we
obtain a set of traces that embraces terminating sequences of calls, and cor-
responding to traces admitted by the set of correct refinements associated to
a classical B model and where preconditions could not be widened. The final
condition guarantees that abstract invariants are always preserved at the level
of implementations, as it is the case when only abstract terminating sequences
are considered. From a methodological point of view, our approach can be seen
as an instantiation of the Model Driven Security approach proposed in [3]. We
revisited here the notions of dialect relating security concepts with a model of
an application as done in the Meca tool, and classification of actions in atomic
ones (directly mapped to actions of the implementation level) and composite
ones. We have here exploited the B theory and particularities of our application
domain to formally state the notion of security correctness, based on semantic
preservation.

We are currently implementing this approach into a tool that aims to verify
smart card applications w.r.t. different forms of security policies. This tool will
be based on the API B models under development and our OpenJCard tool5 al-
lowing to execute APDU implementations. Extensions to other forms of security
requirements and systems will be studied in the new ANR project LISE6, in which
traceability between security requirements and components must be formalized in
order to point out liabilities when wrong executions are detected. The proposed
approach seems to be easily expendable to take into account other types of se-
curity properties that can be evaluated on a current execution. On the contrary,
security properties as non-interference [10] or side channels, that involve sets of
executions, will be based on more sophisticated conformance relations.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R., Mussat, L.: Introducing Dynamic Constrains in B. In: Bert, D. (ed.)

B 1998. LNCS, vol. 1393. Springer, Heidelberg (1998)

5 http://www-lsr.imag.fr/Les.Personnes/Thierry.Moutet/
6 ANR-07-SESU-007.

http://www-lsr.imag.fr/Les.Personnes/Thierry.Moutet/

250 F. Dadeau et al.

3. Basin, D., Doser, J., Lodderstedt, T.: A temporal logic of actions. ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 15(1) (2006)

4. Benaissa, N., Cansell, D., Mery, D.: Integration of Security Policy into System
Modeling. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp.
232–247. Springer, Heidelberg (2006)

5. Bert, D., Boulmé, S., Potet, M.-L., Requet, A., Voisin, L.: Adaptable Translator
of B Specifications to Embedded C programs. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805. Springer, Heidelberg (2003)

6. Common Criteria for Information Technology Security Evaluation, Part 2: Secu-
rity functional components. Technical Report CCMB-2006-09-002, v3.1 (September
2006)

7. Common Criteria for Information Technology Security Evaluation, Part 3: Secu-
rity assurance components. Technical Report CCMB-2006-09-003, v3.1 (September
2006)

8. Dadeau, F., Potet, M.-L., Tissot, R.: A B Formal Framework for Security Develop-
ments in the Domain of Smart Card Applications. In: SEC 2008: 23th International
Information Security Conference, IFIP proceedings. Springer, Heidelberg (to ap-
pear, 2008)

9. Dijkstra, E.W.: A discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

10. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20 (1982)

11. Haddad, A.: Meca: a Tool for Access Control Models. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 281–284. Springer, Hei-
delberg (2006)

12. Smart Card Standard: Part 4: Interindustry Commands for Interchange. Technical
report, ISO/IEC 7816-4 (1995)

13. Jaffuel, E., Legeard, B.: LEIRIOS Test Generator: Automated Test Generation
from B Models. In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355,
pp. 277–280. Springer, Heidelberg (2006)

14. Julliand, J., Masson, P.-A., Tissot, R.: Generating security tests in addition to
functional tests. In: AST 2008, 3rd Int. workshop on Automation of Software Test,
Leipzig, Germany, May 2008, pp. 41–44. ACM Press, New York (2008)

15. Lamport, L.: A temporal logic of actions. ACM Transactions on Programming
Languages and Systems 16(3), 872–923 (1994)

16. Poll, E., van den Berg, J., Jacobs, B.: Specification of the JavaCard API in JML.
In: Domingo-Ferrer, J., Chan, D., Watson, A. (eds.) CARDIS. IFIP Conference
Proceedings, vol. 180, pp. 135–154. Kluwer, Dordrecht (2000)

17. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

18. Stouls, N., Potet, M.-L.: Security Policy Enforcement through Refinement Process.
In: Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 216–231.
Springer, Heidelberg (2006)

19. Java Card 2.1 Platform API Specification, http://www.labri.fr/perso/bernet/
javacard/spec/api/html/javacard/framework/

20. Tretmans, J.: Conformance testing with labelled transition systems: Implementa-
tion relations and test generation. Computer Networks and ISDN Systems 29(1),
49–79 (1996)

http://www.labri.fr/perso/bernet/
javacard/spec/api/html/javacard/framework/

Modelling Attacker’s Knowledge

for Cascade Cryptographic Protocols

Nazim Benäıssa�

Université Henri Poincaré Nancy 1
benaissa@loria.fr

LORIA
BP 239

54506 Vandœuvre-lès-Nancy
France

Abstract. We address the proof-based development of cryptographic
protocols satisfying security properties. Communication channels are sup-
posed to be unsafe. Analysing cryptographic protocols requires precise
modelling of the attacker’s knowledge. In this paper we use the event B
modelling language to model the knowledge of the attacker for a class
of cryptographic protocols called cascade protocols. The attacker’s be-
haviour conforms to the Dolev-Yao model. In the Dolev-Yao model, the
attacker has full control of the communication channel, and the crypto-
graphic primitives are supposed to be perfect.

Keywords: cryptography, model for attacker, formal methods.

1 Introduction

Proving properties such as secrecy or authentication on cryptographic protocols
is a crucial point. A protocol satisfies a secrecy property if it is able to prevent the
attacker from learning the content of a secret message intended for other users.
By authentication we mean that an attacker can not mislead other honest agents
about his identity. To be able to prove such properties on a protocol, we must
be able to model the knowledge of the attacker. One popular model of attacker’s
behaviour is the Dolev-Yao model [6]; this model is an informal description of
all possible behaviours of the attacker as described in section 2. In this paper
we present an event B [1,2,4] model of the attacker for a class of cryptographic
protocols called cascade protocols and we prove the secrecy property on it. Our
work is based on that of Dolev-Yao [6] where they gave a characterization of
secure cascade protocols, but proofs in their work were done by hand.

Proving properties on cryptographic protocols such as secrecy is known to
be undecidable. However research involving formal methods for the analysis of
security protocols has been carried out. Theorem provers or model checkers are

� This work was supported by grant No. ANR-06-SETI-015-03 awarded by the Agence
Nationale de la Recherche.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 251–264, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

252 N. Benäıssa

usually used for proving. For model checking, one famous example is Lowe’s ap-
proach [7] using the process calculus CSP and the model checker FDR. Lowe
discovered the famous bug in Needham-Schroeder’s protocol. Model checking is
efficient for discovering an attack if there is one, but it can not guarantee that
a protocol is reliable. Many other works are based on theorem proving: Paul-
son [10] used an inductive approach to prove safety properties on protocols. He
defined protocols as sets of traces and used the theorem prover Isabelle [9]. Other
approaches, like Bolignano [3], combines theorem proving and model checking
taking general formal method based techniques as a framework.

We summarize the organisation of the paper: in section 2, we present the
Dolev-Yao attacker model. We then present the class of cascade protocols and
the characterisation of secure protocols with respect to the secrecy property. The
event B model of the attacker is given in section 3 of the paper.

2 The Dolev-Yao Model

In Dolev-Yao’s model, cryptographic primitives are assumed to be black boxes
satisfying given properties. The most important property is that the only way
to obtain the plaintext M from the cipher text K(M), where K is an encryption
key, is to know the reverse key of K. In the Dolev Yao model, the attacker has full
control of communication channels. He can intercept and remove any message
from the channel, split unencrypted messages and decrypt parts of the message
if he has the appropriate key. The attacker can also generate an infinite number
of messages. All agents can be involved in an unlimited number of protocol
instances, and interleaving of protocol instances have to be considered.

2.1 The Dolev-Yao Model for Cascade Protocols

Cascade protocols are a simple class of public protocols in which the agents
involved in the protocol can apply several layers of encryption or decryption of
messages. The encryption-decryption is made by using only public key operators.
Dolev-Yao developed a model specifying the syntax of this class of protocols.

Let S be a set of symbols, we use S∗ to denote the set of all finite sequences
over S. Let E and D be respectively the set of encryptions and decryption keys
of all the agents. If X is an agent, then his encryption key Ex and decryption
key Dx are two functions mapping from {0, 1}∗ into {0, 1}∗. These functions
satisfy the basic properties of the public key protocols: ExDx = DxEx = id, the
identity function. Dx is known only by the agent himself while Ex is public and
available in a key server.

Here is a short description of the Dolev-Yao model for cascade protocols
(see [6] for detailed information). As shown in figure 1, a two party cascade
protocol in the Dolev-Yao model is specified by a series of finite strings:

– αi(X, Y) ∈ {Ex, Dx, Ey}∗, 1 ≤ i ≤ t
– βi(X, Y) ∈ {Ey, Dy, Ex}∗, 1 ≤ i ≤ t′ with t′ = t or t− 1

Modelling Attacker’s Knowledge for Cascade Cryptographic Protocols 253

X Y

.

.

.

.

.

.

Fig. 1. A cascade protocol between two agents X,Y

When an agent X wishes to transmit a plaintext message M to another agent Y,
the exchanged message has the following form: Nk(X, Y)M , where 1 ≤ k ≤ t + t′

and:

– N1(X, Y) = α1(X, Y),
– N2j(X, Y) = βj(X, Y)N2j−1(X, Y), 1 ≤ j ≤ t′,
– N2i+1(X, Y) = αi+1(X, Y)N2i(X, Y), 1 ≤ i ≤ t− 1.

An attacker Z is supposed to be able to intercept any exchanged message
between two agents X and Y, a cipher message Nk(X, Y)M with (k = 1, 2....),
and will try to obtain the plaintext message M by applying different operators
from one of three following categories:

1. E ∪ {Dz}, E is known by all agents, and Dz is the attacker decryption key.
2. βi(X, Y) for all X �= Y and i ≥ 1, even if the attacker does not know

βi(X, Y)’s value, he can start a transmission with any agent Y claiming
himself to be agent X . He can then send any message Msg to Y in the
(2i−1)st message and wait for Y ’s answer. He will then get βi(X, Y) applied
to his message Msg.

3. αi(X, Y) for all X �= Y and i ≥ 2, in this case the attacker does not know
the value of αi(X, Y) but he may wait for X sending a message to Y , he can
intercept Y ’s reply and prevent it from reaching X . He can then send any
message to X claiming himself to be Y with his own message Msg and wait
for the reply from X with αi(A, B) applied to Msg.

As a result, the attacker will try to obtain the plaintext Message M from a
cipher message Nk(X, Y)M with (k = 1, 2....) by applying operators from these
three categories even if the he does not know the value of αi(X, Y) or βi(X, Y)
for two agents X and Y .

2.2 Secure Cascade Protocols in the Dolev-Yao Model

We give here two definitions from the Dolev-Yao model followed by the charac-
terization of secure cascade protocol:

254 N. Benäıssa

Definition 1. Let π ∈ (E ∪D)∗ be a string and A be a user name. We say that
π has the balancing property with respect to A if the following statement holds:
if DA ∈ symb(π) then EA ∈ symb(π) 1

Definition 2. Let X,Y be two distinct user names. A two party cascade protocol
is a balanced cascade protocol if

1. for every i ≥ 2, αi(X, Y) has the balancing property with respect to X, and
2. for every j ≥ 1, βj(X, Y) has the balancing property with respect to Y .

And the main result of the Dolev-Yao model is the following theorem.

Theorem 1. Let X,Y be two distinct user names. A two-party cascade protocol
is secure if and only if

1. symb(α1(X, Y)) ∩ {Ex, Ey} �= ∅, and
2. the protocol is balanced.

After presenting the Dolev-Yao attacker model and the cascade protocols, we
give in the next section an event B model of the attacker and prove on this
model that if a cascade protocol is balanced then the secrecy property holds on
this protocol.

3 Modelling the Attacker

First we give the static part of the model, the basic carrier sets are the following

- Msg: Set of all possible messages exchanged in the system.
- agent: Set of all agents including attackers.

We also define the set of encryption and decryption keys, respectively E and D.
Two total injective functions EA, DA associate keys to their owners. Obviously,
two different agents can not have the same encryption or decryption keys.

SETS

Msg

agent

AXIOMS

axm1 : D ⊆Msg→Msg
axm2 : DA ∈ agent � D
axm3 : E ⊆Msg→Msg
axm4 : EA ∈ agent � E

The attacker is an agent among others, he has his own encryption and decryption
key:

axm5 : Z ∈ agent
axm6 : Dz ∈ D
axm7 : DA(Z) = Dz
axm8 : Ez ∈ E
axm9 : EA(Z) = Ez

1 symb(π) is the set of symbols of π.

Modelling Attacker’s Knowledge for Cascade Cryptographic Protocols 255

Cryptographic primitive are supposed to be perfect and only the decryption
key of an agent can be used to decrypt a message encrypted with his encryption
key, this is modeled by the use of sequences and the reduction operation over
the sequences.

3.1 Key Sequences

In cascade protocols, agents may apply more than one key on a message they
received. A possible modelling of encryptions where several keys are applied is the
use of function composition. If X and Y are two agents, (DA(X);EA(Y))(Msg)
is an encryption with two keys DA(X) and EA(Y). The problem with using
function composition is that it has no memory, and it is therefore not possible
to write properties on the structure of an encryption with more than one key.
Thus, we use sequences to model an encryption where several layers of keys are
used. For example, if X and Y are two agents, [EA(X),DA(Y),EA(X)] is an
encryption sequence where EA(X) is first applied, and is followed by DA(Y)
and EA(X).

When an encryption key of an agent is immediately followed by a decryption
key of the same agent in a sequence, this sequence can be reduced to a shorter
sequence where both keys are removed. For example, if X and Y are two agents,
[EA(X),DA(X),EA(Y)] can be reduced to [EA(Y)]. Formally, we model the
reduction relation as the smallest relation that satisfies:

axm10 : reduction ∈ (N �→D ∪ E)↔ (N �→D ∪ E)
axm11 : ∀seq1, seq2, i, j, k, A·

A ∈ agent∧
i .. j ⊆ N ∧ k ∈ i .. j ∧ k + 1 ∈ i .. j∧
seq1 ∈ i .. j→D ∪ E∧
seq1(k) = DA(A) ∧ seq1(k + 1) = EA(A)∧
seq2 ∈ i .. j − 2→D ∪ E∧
seq2 = i .. j − 2 � (seq1 �− {l �→ m|l ∈ k .. j − 2 ∧m = seq1(l + 2)})
⇒
seq1 �→ seq2 ∈ reduction

In the previous axiom, we considered the case of a decryption key followed by
an encryption key. We added a similar axiom for the case where an encryption
key is followed by a decryption key.

To guaranty that reductions are made only between the encryption and de-
cryption key of the same agent, the injectivity of the functions DA and EA is
not sufficient and it is necessary to be sure that an encryption key of an agent
is not used as a decryption key of another agent.

axm12 : ran(EA) ∩ ran(DA) = ∅

We emphasize that since we use the reduction relation, it is not necessary to
have the following property on agents keys:

256 N. Benäıssa

axm13 : ∀A·A ∈ agent⇒ (DA(A);EA(A)) = id(Msg)

It may be possible to apply several reductions iteratively over a sequence. Thus,
the reduction relation needs to be applied iteratively. We use a relation Rep
similar to the one used by Cansell and Méry in [5]. Rep behaves like a repeat-until
loop, it captures the idea of repeating a relation on a set as long as it is possible to
apply the relation. A pair (seq1 , seq2) is in Rep if either seq1 /∈ dom(reduction)
and seq1 = seq2 or seq1 ∈ dom(reduction) and there is a path over reduction
leading to seq2 /∈ dom(reduction). Formally, Rep is the smallest relation that
satisfies:

axm14 : NotDOMAIN = id(N �→D ∪ E) \ id(dom(reduction))
axm15 : Rep ∈ (N �→D ∪ E)↔ (N �→D ∪ E)
axm16 : Rep = NotDOMAIN ∪ (reduction; Rep)

When no more reductions are possible, we say that the sequence is in the normal
form. Formally, the normal form is modeled as follows:

axm17 : Norm ∈ ((N �→D ∪ E)→ (N �→D ∪ E))
axm18 : Norm ⊆ Rep

If the normal form of a sequence seq equals the empty set, it means that the
composition of all encryption and decryption keys contained in the sequence
equals the identity function and we can obtain the plain text M from seqM .

seq Ai and seq Bj are two sets containing sequences of encryption or decryp-
tion keys. If X and Y are two agents involved in a protocol run, seq Ai contains
all sequences of keys applied in each step of the protocol by agent X, seq Bj con-
tains those applied by Y. Each sequence contained in one of these sets matches
with an αi(X, Y) or βj(X, Y) defined in the Dolev-Yao model.

axm19 : seq Ai ⊆ N �→D ∪ E
axm20 : seq Bj ⊆ N �→D ∪ E
axm21 : ∀seq ·seq ∈ (seq Ai ∪ seq Bj)

⇒
(
∃X,Y ·X ∈ agent ∧ Y ∈ agent ∧
X �= Y ∧
ran(seq) ⊆ {DA(X), EA(X), EA(Y)}

)

The protocol has to be balanced (see definition 2), thus for each sequence from
the sets seq Ai and seq Bj the following axioms holds:

Modelling Attacker’s Knowledge for Cascade Cryptographic Protocols 257

axm22 : ∀X, seq ·X ∈ agent ∧ seq ∈ seq Ai ∧
DA(X) ∈ ran(seq)⇒ EA(X) ∈ ran(seq)

axm23 : ∀Y, seq ·Y ∈ agent∧ seq ∈ seq Bj ∧
DA(Y) ∈ ran(seq)⇒ EA(Y) ∈ ran(seq)

We emphasize the particular case of the first step of the protocol that is not
concerned by the previous axiom22. We define a set seq A1 containing the se-
quences corresponding to the first step of the protocol. It is not mandatory for
sequences from this set to satisfy the balancing property, but they should at least
contain one encryption key as stated in the Dolev-Yao characterization of secure
protocols (see theorem 1):

axm24 : seq A1 ⊆ N �→D ∪ E
axm25 : ∀seq ·seq ∈ seq A1

⇒
(
∃X,Y ·X ∈ agent ∧ Y ∈ agent ∧
X �= Y ∧
ran(seq) ⊆ {DA(X), EA(X), EA(Y)} ∧
ran(seq) ∩ {EA(X), EA(Y)} �= ∅

)

3.2 Variables

We use a variable seq Atk to model the structure of the messages that the at-
tacker can obtain through applying his own keys or applying different sequences
from the sets seq Ai and seq Bj. We also use a variable size containing the size
of the sequence seq Atk and a variable a1 that memorizes the size of the sequence
from the set seq A1 used in the first step of the current protocol instance.

VARIABLES

seq Atk
size
a1

INVARIANTS

inv1 : size ∈ N1

inv2 : a1 ∈ N1

inv3 : seq Atk ∈ 1 .. size→D ∪ E

We emphasize that the variable seq Atk does not contain the plain text message
M , but only the sequence of public key operators that may be applied by the
attacker. Thus, in order to prove that the protocol satisfies the secrecy property,
we must prove that the normal form of the sequence seq Atk is never equal to the
empty set. If the normal form of a sequence equals the empty set, it means that
the composition of all encryption and decryption keys contained in the sequence
equals the identity function and the attacker can obtain the plaintext M .

thm2 : Norm(seq Atk) �= ∅

258 N. Benäıssa

3.3 Events

The attacker can intercept any message exchanged between two agents. When
a honest agent initiates a transaction with another agent, he first applies to the
plain text message M a sequence from the set seq A1 (first step of the protocol).
The two agents apply then alternately sequences from seq Ai and seq Bj. Mes-
sages exchanged between agents have the form ”(seq Ai∪ seq Bj)∗ seq A1 M”,
M is the plaintext message. After intercepting the cipher message ”(seq Ai ∪
seq Bj)∗ seq A1 M”, the attacker applies different sequences from the set
seq Ai ∪ seq Bj ∪ E ∪ {Dz}. Accordingly, there is no need to model ex-
plicit message interception by the attacker, it is enough to initialize the variable
seq Atk with a sequence from the set seq A1 and add events that model the
concatenation of seq Atk with all possible sequences:

- Initialization of seq Atk with a sequence from seq A1.
- Event Attack seq Ai: concatenation of seq Atk with a sequence from seq Ai.
- Event Attack seq Bj: concatenation of seq Atk with a sequence fromseq Bj.
- Event Attack E: concatenation of seq Atk with a sequence from E.
- Event Attack Dz: concatenation of seq Atk with Dz.

These concatenations are done by some honest agent before the message is in-
tercepted or by the attacker himself after intercepting the cipher message.

In order to write the appropriate events, we need to have tools that let us
manipulate sequences such as concatenation or subsequences. In our model we
use a modified form of the relation match introduced by Jean Raymond Abrial
in the Earley algorithm model. We modified this relation to adapt it to our case
study:

axm26 : match ∈ (N �→D ∪ E)↔ (N �→D ∪ E)
axm27 : ∅ �→ ∅ ∈ match

Unlike the equality, two sequences seq1 ∈ i..j → D ∪E and seq2 : k ..l → D ∪ E
may match if the order of the keys in the two sequences is the same even if their
respective domains i..j and k..l are different (see example in figure 2).

axm28 : ∀i, j, k, l, n1, n2, s1, s2·
i ∈ 1 .. j + 1 ∧
j ∈ 0 .. n1− 1∧
k ∈ 1 .. l + 1∧
l ∈ 0 .. n2− 1∧
s1 ∈ 1 .. n1→D ∪ E∧
s2 ∈ 1 .. n2→D ∪ E∧
i .. j � s1 �→ k .. l � s2 ∈ match∧
s1(j + 1) = s2(l + 1)
⇒
i .. j + 1 � s1 �→ k .. l + 1 � s2 ∈ match

Modelling Attacker’s Knowledge for Cascade Cryptographic Protocols 259

k l

seq1

...

...
i j

...

seq2

...

Dx Dx Dz Ex

Dx Dx Dz Ex

s1

s2

Fig. 2. The match relation

We also add a fixed point axiom saying that match is the smallest relation
satisfying the axiom 28. Using match is convenient to express relations between
sequences. For instance, to express the fact that a sequence seq1 is a subsequence
of seq2 , it suffices to say that there are some i, j such that seq1 �→ i .. j � seq2 ∈
match. To express the fact that a sequence seq ∈ i..j → D ∪ E is the result of
the concatenation of two sequences seq1 and seq2 , it suffices to say that there is
some k such that seq1 �→ i ..k�seq ∈ match and seq2 �→ k+1 ..j�seq ∈ match.

Events have been added to the model to express all the attacker’s options.
The following event shows the case of a sequence randomly chosen from the set
seq Ai. This sequence is concatenated with the attacker sequence seq Atk, the
variable size is also increased.

EVENT sendAi
ANY

seq Ax
ax

WHERE
grd1 : seq Ax ∈ seq Ai
grd2 : ax ∈ N1

grd3 : seq Ax ∈ 1 .. ax→D ∪ E
THEN

act1 : size := size + ax
act2 : seq Atk : | seq Atk′ ∈ 1 .. size + ax→D ∪ E∧

seq Ax �→ 1 .. ax � seq Atk′ ∈ match∧
seq Atk �→ ax + 1 .. ax + size � seq Atk′ ∈ match

END

Similar events are added to express all the other possibilities of the Dolev-Yao
model. Since the attacker sequence is initialized with a sequence from the set
seq A1, it will have two parts (as shown in figure 3). A part 1..size−a1�seq Atk
that matches with a sequence from (seq Ai ∪ seq Bj ∪ E ∪ {Dz})∗, and a
part (size− a1)+1 .. size� seq Atk that matches with a sequence from seq A1.
It’s important to distinguish these two parts since, unlike sequences from the set
seq Ai ∪ seq Bj, sequences from the set seq A1 do not satisfy the balancing
property.

260 N. Benäıssa

... ...
1 size-a1

(size-a1)+1..size seq_Atk
(matches with a sequence from seq_A1)

1..size-a1 seq_Atk

size

Fig. 3. The two parts of the attacker sequence

3.4 Invariant and Proofs

Proofs of the B model are inspired from the proofs given by Dolev and Yao in
their model, but proofs of their models were done by hand and parts of their
proofs were stated without being formally proved. Before introducing the main
invariant of our model we first give definitions of some important properties
over sequences that are necessary to state the invariant. A Norm(A)(seq) is the
normal form with respect to one agent A of a sequence seq, it is obtained by
removing all possible subsequences [EA(A),DA(A)] or [DA(A),EA(A)].

axm29 : A Norm ∈ agent→ ((N �→D ∪ E)→ (N �→D ∪ E))

For example,

A Norm(X)([DA(Y),EA(Y),EA(X),DA(X)]) = [DA(Y),EA(Y)]

We modeled A Norm similarly to Norm using a reduction relation where only
keys from the appropriate agent are reduced.

In order to prove that the normal form of the attacker sequence never equals
the empty set, we need to prove first that the sequence Norm(1 .. size− a1 �
seq Atk) has the balancing property with respect to all agents except the attacker
himself. We recall that it is not mandatory to have the balancing property for
sequences from the set seq A1, this is why this property does not hold for the
whole attacker sequence.

thm3 : ∀A·A ∈ agent∧ A �= Z∧
DA(A) ∈ ran(Norm(1 .. size− a1 � seq Atk))
⇒
EA(A) ∈ ran(Norm(1 .. size− a1 � seq Atk))

But unfortunately this property is not an inductive invariant but only a theorem.
As a counter example, let us consider the case where Norm(1 .. size − a1 �
seq Atk) equals:

[DA(A),DA(Z),EA(A),EA(Z),DA(X),EA(Y),DA(A),DA(Y),EA(X)]

Modelling Attacker’s Knowledge for Cascade Cryptographic Protocols 261

This sequence satisfies the balancing property. If the previous event sendAi
is triggered with the local variable seq Ax = [DA(A),EA(Z),EA(A)] (this se-
quence satisfies the axioms 19 and 21), the new value of Norm(1 .. size −
a1�seq Atk) will be: [EA(Z),DA(X),EA(Y),DA(A),DA(Y),EA(X)]. The new
value does not satisfy the balancing property anymore. Thus we introduce a new
property called A Balanced property of a sequence with respect to an agent A:

axm30 : A Balanced ∈ agent→ P(N �→D ∪ E)
axm31 : ∀A, seq, i, j ·seq ∈ i .. j→D ∪ E∧

i .. j ⊆ N ∧ j ≥ i∧
(seq(i) ∈ D \ {DA(A)}∧
seq(j) ∈ D \ {DA(A)}∧
ran((A Norm(A))(i + 1 .. j − 1 � seq)) ∩ D ⊆ {DA(A)}∧
DA(A) ∈ ran((A Norm(A))(i + 1 .. j − 1 � seq))⇒

EA(A) ∈ ran((A Norm(A))(i + 1 .. j − 1 � seq)))
⇒
seq ∈ A Balanced(A)

Intuitively, for an agent A, a sequence is A Balanced(A) means that if the first
and last symbols of this sequence are decryption keys and if the A Norm(A) of
this sequence contains only A decryption key in its range it should also contain
A encryption key.

The main invariant of our model states that each subsequence of the sequence
Dz (1 .. size− a1� seq Atk) Dz has the A Balanced property with respect to all
agents except the attacker.

inv4 : ∀seq, i, j, k, l, A, seq Atk Dz ·
A ∈ agent ∧A �= Z∧
seq ∈ i .. j→D ∪ E∧
seq Atk Dz ∈ 1 .. size− a1 + 2→D ∪ E
seq Atk Dz(1) = Dz
seq Atk Dz(size− a1 + 2) = Dz
1.. .. size− a1� seq Atk �→ 2 .. size− a1+1� seq Atk Dz ∈ match
seq �→ k .. l � seq Atk Dz ∈ match
⇒
seq ∈ A Balanced(A)

Let us consider the case of the event sendAi shown before. In this event, we
concatenate a sequence from the set seq Ai to the sequence seq Atk to obtain
seq Atk′ . We have then to prove that any subsequence seq of Dz (1 .. size −
a1 � seq Atk) Dz (there are some k, l such that seq �→ k .. l � (Dz (1 .. size−
a1 � seq Atk′) Dz) ∈ match) is A Balanced (see figure 4).

To achieve the proof, all possible cases of k..l values have to be considered
(especially the values of k and l compared to the value of ax + 1), this is made
easier by the use of the match relation. For each case it is necessary to prove that

262 N. Benäıssa

... ...

...
k l1 ax+1

seq_Ax 1..size-a1 seq_Atk

seq

Dz Dz

Fig. 4. A Balanced property has to be proved on seq

the concatenation of a sequence that has the balancing property with respect to
an agent A with a sequence that has the A Balanced property with respect to A
results on a sequence that has the A Balanced property with respect to A, since
this has to be done with all events of the model, it was interesting to prove the
following theorem:

thm4 : ∀seq, i, j, k, n, A·
A ∈ agent ∧ seq ∈ 1 .. n→D ∪ E∧
i .. j ⊆ 1 .. n ∧ k ∈ i .. j∧
A Norm(A)(i .. k � seq) = i .. k � seq∧
(DA(A) ∈ ran(i .. k � seq)⇒EA(A) ∈ ran(i .. k � seq))∧
(DA(A) ∈ ran(A Norm(A)(k + 1 .. j � seq))⇒

EA(A) ∈ ran(A Norm(A)(k + 1 .. j � seq)))
⇒
(DA(A) ∈ ran(A Norm(A)(i .. j � seq))⇒

EA(A) ∈ ran(A Norm(A)(i .. j � seq)))

The last step of our modelling is to prove theorem 2, that states that seq Atk
never equals the empty set, from the theorem 3 that states that the sequence
Norm(1 .. size − a1 � seq Atk) has the balancing property with respect to all
agents other than the attacker. To prove this result, we do a proof by case on
the structure of seq = size− a1 + 1 .. size � seq Atk (the part of the attacker
sequence that matches with the first step of the protocol). According to axiom
23, there are two agents X ,Y such that ran(seq) ⊆ {DA(X),EA(X),EA(Y)}
and ran(seq) ∩ {EA(X),EA(Y)} �= ∅. We give here a sketch of the proof:
By contradiction, suppose that the normal form of seq Atk equals the empty
set, two case are possible:

1. EA(Y) ∈ ran(seq): since DA(Y) /∈ ran(seq), the only way to obtain the
empty set in the normal form of the whole sequence seq Atk is that the re-
minder part Norm(1 ..size−a1�seq Atk) contains DA(Y) but not EA(Y).
This is impossible because of the balancing property of this part of the at-
tacker sequence.

2. The other case is done in a similar way.

Proving these invariants and theorems requires intensive use of operators over
sequences. The axiom defining the relation match given before is not convenient

Modelling Attacker’s Knowledge for Cascade Cryptographic Protocols 263

in our case, that’s why we introduced several theorems over this relation such
as identity, reflexivity and transitivity properties to make proofs easier. Here
follows an example of one of these theorems:

thm5 : ∀seq1, seq2, k, i1, i2, j1, j2·
seq1 ∈ i1 .. j1→D ∪ E∧
seq2 ∈ i2 .. j2→D ∪ E∧
k ∈ 0 .. j1− i1∧
seq1 �= ∅ ∧ seq2 �= ∅∧
seq1 �→ seq2 ∈ match
⇒
seq1(i1 + k) = seq2(i2 + k)

To prove this theorem we used induction over the size of the sequence. These
theorems are not specific to this model, thus they can be reused later in similar
protocol models. We used the Rodin platform [8] for modelling and proving our
attacker model. 10 theorems were proved interactively on the match relation.
25 proofs generated by the prover for the invariants of the model, 13 were done
automatically. Interactive proofs were not difficult except proofs of the main
invariant 4 of the model that were long because of the high number of the cases
that had to be considered.

4 Conclusion

We have written in this paper a B model of the attacker for a class of cryp-
tographic protocols. Events of our model take into account all the options the
attacker can perform in the Dolev-Yao model. Unlike the original Dolev-Yao’s
model for cascade protocols, proofs were mechanized. Accordingly, all constraints
on the attacker’s model have to be stated explicitly, and some of the constraints
were added later during the proving process. Proofs of our model were made
easier by the use of the match relation and by the theorems we have proved over
this relation. These theorems can be reused in future developments. The next
step will be modelling attackers for more complex classes of protocols and to
study how attacker models can be integrated into the complete protocol model.

Acknowledgements. Thanks are due to Jean Raymond Abrial for his advice
on modelling cryptographic protocols. We also thank Dominique Cansell and
Dominique Méry for their help and suggestions.

References

1. Abrial, J.-R.: The B book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Bjørner, D., Henson, M.C.: Logics of Specification Languages. EATCS Textbook
in Computer Science. Springer, Heidelberg (2007)

264 N. Benäıssa

3. Bolignano, D.: Integrating proof-based and model-checking techniques for the for-
mal verification of cryptographic protocols. In: CAV, pp. 77–87 (1998)

4. Cansell, D., Méry, D.: The event-B Modelling Method: Concepts and Case Studies,
pp. 33–140. Springer, Heidelberg (2007) See [2]

5. Cansell, D., Méry, D.: Incremental parametric development of greedy algorithms.
Electr. Notes Theor. Comput. Sci. 185, 47–62 (2007)

6. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

7. Lowe, G.: Breaking and fixing the needham-schroeder public-key protocol using fdr.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166.
Springer, Heidelberg (1996)

8. Metayer, C., Abrial, J.-R., Voisin, L.: Event-B language. RODIN Project Deliver-
able D7 (May 2005)

9. Paulson, L.C. (ed.): Isabelle - A Generic Theorem Prover (with a contribution by
T. Nipkow). LNCS, vol. 828. Springer, Heidelberg (1994)

10. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security 6, 85–128 (1998)

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 265–279, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using EventB to Create a Virtual Machine Instruction
Set Architecture

Stephen Wright

Department of Computer Science, University of Bristol, UK
stephen.wright@bris.ac.uk

Abstract. A Virtual Machine (VM) is a program running on a conventional mi-
croprocessor that emulates the binary instruction set, registers, and memory
space of an idealized computing machine, a well-known example being the Java
Virtual Machine (JVM). Despite there being many binary Instruction Set Archi-
tectures (ISA) in existence, all share a set of core properties which have been
tailored to their particular applications. An abstract model may capture these
generic properties and be subsequently refined to a particular machine, provid-
ing a reusable template for development of formally proven ISAs: this is a task
to which the EventB [16,18] notation is well suited. This paper describes a pro-
ject to use the RODIN tool-set [24] to perform such a process, ultimately pro-
ducing the MIDAS (Microprocessor Instruction and Data Abstraction System)
VM, capable of running binary executables compiled from high-level languages
such as C [9]. The abstract model is incrementally refined to a model capable of
automatic translation to C source code, and compilation for a hardware platform
using a standard compiler. A second C compiler, targeted to the VM itself, al-
lows C programs to be executed on it.

1 Introduction

The last 10 years have seen the development of Integrated Modular Avionics (IMA)
systems by the aerospace industry. These are generic computing platforms containing
built-in system services, allowing application software to be developed as separate
modules [1]. This concept may be extended by the introduction of a VM middle-ware
layer, offering various technical and industrial advantages. The need for software
portability during hardware updates (typically due to hardware obsolescence) is an-
ticipated by providing tools and methods that create platform-portable systems during
original development. Control executables may be generated and tested in an accurate
environment simulation prior to final target hardware becoming available, and using
the same development tool sets. The predictable performance provided by the VM
allows system designers to more accurately predict final computational requirements
at an earlier stage of development. As with any VM, the significant disadvantages are
runtime performance and potential unreliability of the VM itself: the use of Formal
Methods is proposed to assist in mitigation of the second issue.

The paper is organized as follows. Section 2 reviews current work in related sub-
jects. Section 3 summarizes the common properties of a practical VM. Section 4 de-
scribes the structure of the EventB model. Section 5 describes the most significant

266 S. Wright

EventB constructs used in the model. Section 6 describes how the model may be re-
used for different architectures and ISAs. Section 7 describes the specific VM ISA
that has been implemented via the process as a demonstration. Section 8 describes the
extensions to the RODIN platform that were developed for auto-translation of the
model to an executable program. Section 9 describes the additional tools that were
developed outside the RODIN environment in order to allow execution of a binary
image on the developed VM. Section 10 suggests improvements and extensions that
could be made to the RODIN tool in order to facilitate future work of this type. Sec-
tion 11 suggests future work implied by the project.

2 Related Work

This project draws on 2 threads of academic and industrial research: the use of virtual
machines in real-time embedded systems and the use of Formal Methods to perform
verification of software. A common use of VMs is the implementation of legacy mi-
croprocessor instruction sets in order to allow porting of compiled software to new
hardware platforms. VMs have been used to implement instruction set emulators for
support of legacy software in both non real-time desktop and mainframe microproces-
sors [26], and real-time avionics systems [14,15].

Formal Methods have previously been applied to model the specification of the
Java Virtual Machine (JVM), in order to capture its exact meaning and verify its in-
ternal consistency [22]. Complete machine checking of a JVM specification and the
greater task of machine-checking an implementation against that specification re-
mains a challenge [17]. However, a machine-checked specification and implementa-
tion of parts of the JVM have been achieved using B [5].

3 Common Properties of Instruction Set Architectures

In spite of a vast number of general-purpose microprocessor ISAs in existence, all
share a set of core properties [7]. Programs are stored within the machine as a contigu-
ous array of binary values, each locatable via an integer address stored in a special
register: the program counter (PC). The selection of the next instruction to be executed
(“control flow”) is achieved by simple incrementing of the PC, or its overwriting with
a calculated value to perform a jump operation. Calculations are performed by taking
one or two fixed-size input registers, and outputting a result to an output register. In the
case of a destructive operation, this output register may be one of the input registers.
Certain ISAs implement specialist instructions with more than two inputs [1], but are
not targeted at general purpose applications. Calculations consist of bit-manipulations,
typically implementing the basic arithmetic operations (i.e. addition, subtraction, mul-
tiplication and division) plus a number of application-oriented operations. Input data
may be loaded via “immediate mode” addressing, in which a constant value is incorpo-
rated within the executed instruction, or transferred from a specified location in a read-
writable data memory. The data memory consists of a contiguous array of binary
values: large register values may be stored across two or more contiguous memory
locations. Data memory locations are specified by one of several addressing modes,

 Using EventB to Create a Virtual Machine Instruction Set Architecture 267

which may be generally classified as “direct” or “indirect” [7]. During direct mode
addressing the location to be accessed is specified as a fixed address value incorporated
into the instruction (i.e. the location is itself an immediate mode constant). During
indirect mode, the location is specified by a value in data memory accessed by direct
mode. Variations on this general paradigm exist, such as PC-relative mode [8], which
may be considered a form of direct addressing.

In order to execute binary images compiled from the C high level language using
existing tools, particularly the GNU Compiler Collection (GCC), the VM must be
further specified to implement multiple 32-bit general registers, 8-bit wide data mem-
ory and all instruction and data memory addressing from a single register [21].

4 Model Description

The EventB model addresses only those aspects of a microprocessor’s functionality
needed to implement a VM ISA. Therefore, only a functional description of the in-
struction set and its associated aspects are included, such as those parts of the memory
system visible to the instruction stream. No consideration of the mechanisms within a
typical microprocessor needed to efficiently implement an ISA is necessary. For ex-
ample the model does not address instruction pipelining, memory caching or specula-
tive execution mechanisms [7]. The model derives a functioning VM by a total of
thirty-one stages of refinement, which may be summarized into seven distinct layers:
StateMch, ControlFlowMch, RegMch, MemMch, StkMch, CalcMch and MidasMch.
Each layer confers particular properties on the model, described here individually.

4.1 Model Architecture

StateMch defines a machine with only two state variables: an instruction and a ma-
chine status. A state machine is derived that defines the four possible states that the
machine status may take: LOADING (of the program to be executed), RUNNING (of
the loaded program), HALTED (i.e. commanded shutdown of the machine) and
FAILED (i.e. detection of an error in the program). State values are specified as dis-
similar abstract constants: assigning of numerical values is postponed to the last
refinement stages of the model. The model is initialized to LOADING and may con-
tinue in that state until loading is complete, when RUNNING is entered. From RUN-
NING, RUNNING is re-entered on successful execution of a valid instruction,
HALTED is entered by the execution of a valid halt instruction, or FAILED entered
by execution of an invalid instruction or unsuccessful execution of a valid instruction.
Execution results in the modification of the instruction state variable by unspecified
means. Once the HALTED or FAILED state is entered, the machine enters explicit
deadlock by the definition of appropriate events. Thus a mechanism for the refining of
execution exceptions and the guaranteed stopping of the machine in this event is de-
fined. The StateMch state transitions are summarized in Figure 1.

Mutually exclusive sets defining the instruction groups are derived in the corre-
sponding machine context definition.

268 S. Wright

Fig. 1. StateMch State Transitions

ControlFlowMch refines the instruction variable to an array of Inst types and a
variable representing the PC. A boolean variable representing an abstract conditional
decision is introduced. Sets of instructions are constructed that define different effects
on the PC: incrementing by an abstract constant N2 (representing a normal instruc-
tion), incrementing by an abstract constant N1 (representing a conditional jump on
decision false), and overwriting from a stored jump vector (representing a conditional
jump on decision true). Instructions are defined to allow setting of the jump vector
and conditional flag. These data flows are summarized in Figure 2.

Fig. 2. ControlFlowMch Data Flows

Exception events are constructed identifying attempts to increment or overwrite the
program counter outside the domain of the instruction array.

RegMch defines a set of states representing the two operands and one result used
during calculations, and two stores of data, one read-only, and the other read-writable.
Nine possible interactions are defined between these elements: loading of each of the
two operands from both the read-only and read-writable store, a single input operation
loading the result, a dual input operation loading the result, loading the program
counter from the result (i.e. a jump operation), extraction of the current program

 Using EventB to Create a Virtual Machine Instruction Set Architecture 269

Fig. 3. RegMch Data Flows

counter back to the first operand, and loading of the read-writable store from the re-
sult. These interactions are summarized in Figure 3.

The operands and result have associated “write-possible” and “read-possible”
flags, allowing defense against uninitialised reading to be modeled. Exception condi-
tions are constructed identifying attempts to read or write a variable when the appro-
priate availability flag is false. The jump vector defined in the ControlFlowMch layer
is refined to the result at this stage. The instruction array and program counter are
referenced unmodified.

MemMch refines the read-only and read-writable stores into arrays of an abstract
“Data” set, indexed via a pointer, which is then refined to separate direct and indirect
pointers, for each addressing mode. The abstract Data set is further refined to Small,
Medium and Large sub-sets, and the instruction sets are sub-divided to define distinct
sub-sets to handle each addressing mode and size.

In StkMch the general paradigm constructed in the first four layers is specifically
refined to a stack-based machine [7]. The operands and result are refined to locations
on a data stack, and the write/read-possible flags are refined to checks on the size of
that stack. For example, writing to the stack is not-possible if the stack is already full,
refining the previously constructed event in which a write-possible flag is false. The
EventB event merge capability is used to refine the separate events handling the two
operand registers into single events.

CalcMch refines the two operand-to-result operations and conditional flag update
constructed in the RegMch layer into a particular set of practical operations necessary
for executing applications. The single operand operation is refined to integer-to-
floating-point cast and floating-point-to-integer cast. The dual operand operation is
refined to addition, subtraction, multiplication and division for both integer and float-
ing point, integer modulo divide, bit-wise OR, AND, XOR, bitmap shift-left and shift-
right. The conditional flag update is refined to greater-than, less-than, equal and
not-equal comparison operations.

270 S. Wright

The final layer, MidasMch, merges the separate arrays defining the instruction and
data regions into a single addressable array of small data elements. The instructions
that have been constructed in the previous layers are mapped to concrete data values.
Concrete numerical values are specified for the instruction and data region boundaries,
thus defining the memory map of the machine. The event associated with the LOAD-
ING state is refined to a state machine capable of sequentially loading the instruction
and read-only regions of the new contiguous memory space. Data-write events are
refined to define a small region of writable IO within the data memory region.

4.2 Model Metrics

A complete list of the refinement stages within the seven general layers described
previously is given in Table 1.

Table 1. The MIDAS refinement layers

Layer Events Proof Obligations
(Automatically
Discharged)

Proof Obligations
(Manually
Discharged)

Proof Obligations
(Total)

StateMch 2 4 0 4
StateMchR1 5 2 0 2
StateMchR2 6 1 0 1
StateMchR3 7 5 0 5
ControlFlowMch 7 13 7 20
ControlFlowMchR1 9 9 0 9
ControlFlowMchR2 11 3 3 6
ControlFlowMchR3 20 13 56 69
RegMch 29 116 59 175
RegMchR1 33 30 9 39
RegMchR2 35 11 1 12
RegMchR3 39 24 1 25
RegMchR4 40 2 1 3
MemMch 40 2 36 38
MemMchR1 40 6 0 6
MemMchR2 51 140 6 146
MemMchR3 75 536 3 539
MemMchR4 75 248 50 298
StkMch 76 846 49 899
StkMchR1 92 111 4 115
StkMchR2 72 270 14 284
StkMchR3 56 67 54 121
CalcMch 61 0 34 34
CalcMchR1 87 0 116 116
CalcMchR2 89 0 16 16
MidasMch 95 0 16 16
MidasMchR1 111 2 772 774
MidasMchR2 111 0 147 147
MidasMchR3 112 0 8 8
MidasMchR4 114 0 10 10
MidasMchR5 122 419 1104 1523

 Using EventB to Create a Virtual Machine Instruction Set Architecture 271

Proof Obligations (PO) for all refinement stages are discharged using all of the
RODIN proving tools. The increasing necessity for manual interaction during later
refinement stages reflects the large number of hypotheses visible to the RODIN
automatic proving tools at this point, thus requiring selection by the developer in
order to achieve proof. Also of note is the reduction in the number of events at the
StkMch layer. This is a result of the merging of the separate events that define loading
of the two operand registers into a single stack push event, a simplification possible
for a stack machine architecture.

5 Model Detail

The VM model contains a large number of EventB statements: those most significant
to the VM application are described here in more detail.

5.1 Instruction Set Construction

Instructions are constructed by the successive division of a top-level EventB SET Inst,
which represents the complete instruction space of the VM (i.e. both valid and invalid
instructions). Statements are introduced to explicitly state that the derived sub-sets are
inclusive of the entire parent set, in order to ensure that the entire instruction space of
the VM is decoded. For example, the following EventB fragment summarizes the de-
composition of a previously constructed instruction group StoreInst (all instructions that
write to the data memory) into direct and indirect addressing mode sub-groupings.

CONSTANTS
StoreDirInst // Direct mode within store instruction
StoreIndirInst // Indirect mode within store instruction
AXIOMS
StoreDirInst ⊆ StoreInst // Subset of StoreInst
StoreDirInst ≠ ∅ // Direct mode exists
StoreIndirInst ⊆ StoreInst // Subset of StoreInst
StoreIndirInst ≠ ∅ // Indirect mode exists
StoreDirInst ո StoreIndirInst = ∅ // Mutually exclusive
StoreDirInst չ StoreIndirInst = StoreInst // Complete coverage (1)

5.2 Data Modeling

Binary data may be assigned a variety of meanings by a C program at run-time: data
may represent integer, floating point or bit-field elements and may have different bit
lengths, which may be treated as multiple smaller data elements. Therefore, use of the
basic EventB types is insufficient and modeling of these features is achieved within
the model by the introduction of a new set Data. Data is decomposed into 3 sub-sets,
representing 3 possible data sizes:

272 S. Wright

CONSTANTS
DataLarge // Largest data size
DataMed // Medium data size
DataSmall // Small data size
AXIOMS
DataLarge = Data // Largest can contain any Data
element
DataMed ⊆ DataLarge // Medium can be contained by
DataLarge
DataSmall ⊆ DataMed // Small can be contained by DataMed (2)

In most ISAs, DataLarge, DataMed and DataSmall will ultimately correspond to

8, 16 and 32 bit-fields. However, the level of abstraction shown here is maintained to
allow the possibility of other sizes and representations to be postponed to the imple-
mentation layer of the model (e.g. the inclusion of error detection mechanisms used
by some implementations). Elements of type DataSmall are represented within
DataMed and DataLarge by the provision of record accessor functions [6]. For exam-
ple, the following fragment shows the accessor function for the index-zero DataSmall
element of DataLarge:

DataLarge2DataSmall0 ∈ DataLarge → DataSmall (3)

When the mathematical meaning of a data element is required, conversion of the

“raw” binary data to their local numerical meanings is provided via similar un-
interpreted functions:

DataSmall2Nat ∈ DataSmall → 0..255 (4)

5.3 Modeling of Memory-Mapped Data

The data memory system is initially modeled as a simple array mapping between an
address range MemDom and the generic Data set:

dataMem ∈ MemDom → Data (5)

Further refinement is required to define storage of the three Data sub-sets within
the data memory. The data memory is initially refined to an array mapping dataMemR
to DataSmall:

dataMemR ∈ MemDomR → DataSmall (6)

A gluing invariant establishes equivalence across the entire domain of the abstract
array:

 Using EventB to Create a Virtual Machine Instruction Set Architecture 273

∀x • x∈MemDom ⇒ dataArray(x) = dataArrayR(x) (7)

Mappings to DataLarge and DataMed are defined as groupings of elements of
DataSmall retrieved via the accessor functions described in Section 5.2, and distrib-
uted across a contiguous domain within the refined array. For example, the following
fragments state the locations of the index-zero and index-one DataSmall extracted
elements of a DataLarge, at offsets zero and one respectively from the base location
of the element.

∀x,A,B,a,b • x∈MemDom ∧ A∈DataDom→Data ∧
B∈MemDom→DataSmall

∧ a∈DataLarge ^ b=DataLarge2DataSmall0(a) ⇒
A◁{x↦a}=B◁{x↦b}

(8)

∀x,A,B,a,b • x∈MemDom ∧ A∈DataDom→Data ∧
B∈MemDom→DataSmall

∧ a∈DataLarge ^ b=DataLarge2DataSmall1(a) ⇒
A◁{x↦a}=B◁{x+1↦b}

(9)

These statements define the precise location of the extracted elements of a data ele-

ment in memory, thus defining the “endianness” of the ISA [7].

6 Model Structuring Rationale

Consideration is given to the order of model refinement in order to allow the model to
be re-used with minimal modifications. Some layers of the model provide essential
definitions necessary to facilitate later refinements, and therefore these must be posi-
tioned earlier in the refinement process. For example, the StateMch layer is required
to define the exception condition concept and its triggering of machine deadlock,
before any specific exception conditions, such as program counter out-of-range detec-
tion, may be defined in the ControlFlowMch. Other refinements may be performed at
any point in the modeling process, and are therefore postponed to as late as possible
in order to maximize the flexibility of the model. For example, the refinements speci-
fying the exact calculations supported by the VM in CalcMch are positioned prior to
only the final MidasMch layer. The decision to place the CalcMch layer after the
StackMch layer is made on the assumption that supported calculation operations will
be modified more regularly than the selection of a stack machine architecture. Re-
finements describing the higher level architectural features of the VM, such as the
selection of a stack machine, may be easily identified and placed before implementa-
tion-specific features, such as exact instruction code values. Decisions on the relative
importance of separate architectural issues are harder to make, and judgment based on

274 S. Wright

projected applications is required. However, such an approach does not consider the
consequences of a large number of events being constructed early in the refinement
process, and therefore propagating the associated management and proving burden to
all subsequent refinements.

 The separate modeling of the executable, read-only and read-write memories of
the machine allows its applicability to Harvard or Von Neumann memory architec-
tures (i.e. whether the loaded binary program is visible or write-able in the machine’s
memory system) [10,11]. In the case of the MIDAS demonstrator, a Modified Har-
vard Architecture, in which the read-only region is visible but the binary program is
not, is selected at the MidasMch layer.

7 The MIDAS VM

In order to demonstrate the completeness and usefulness of the modeling technique, a
working ISA was developed. Implementation of an existing instruction set and ma-
chine architecture was considered: such an approach would allow use of existing
support tools and benefit from existing development. Two example machines were
considered: an existing Virtual Machine standard, the Java Virtual Machine (JVM),
and a typical hardware microprocessor targeted at embedded systems, the Hitachi
SH4. Existing architectures and instruction sets contain complexities related to
achieving particular requirements not relevant to this application: for example, the
JVM contains various features to allow efficient support for the Java high level lan-
guage [13], and the SH4 instruction set’s use of delay-slotted branch instructions [8],
enhances performance in a hardware implementation but increases processor and
support tool complexity. Full control over the design allows the instruction set to be
reduced to a minimum required for program execution and instruction code formats to
be selected that are logically based on the formal model.

The MIDAS (Microprocessor Instruction & Data Abstraction System) specification
[25] describes a Modified Harvard Architecture, stack-based 32-bit ISA with a total of
42 instructions in 9 orthogonal groups [7], and a little-endian memory system. The in-
struction groups implement no-operation (1 instruction), stack-push (9 instructions),
stack-pop (6 instructions), single-operand calculations (2 instructions), dual-operand
calculations (14 instructions), operand compare (6 instructions), control-flow jump (2
instructions), program counter fetch (1 instruction) and machine halt (1 instruction). A
stack machine architecture was selected to increase code density, avoid non-linear per-
formance due to out-of-register spills in real-time systems [7], and emulate the architec-
ture of the JVM in a simplified form [13]. A Harvard Architecture was selected for its
guaranteed prevention of executable corruption by bad data accesses, increasing integ-
rity in safety-critical applications. In order to reduce ISA size and complexity the
MIDAS ISA is not optimized for performance: for example the single operand com-
pare-to-zero instruction provided by many typical ISAs is not implemented [8].

The basic instruction is an 8-bit field, treated as two 4-bit sub-fields (nibbles). The
instruction group is specified by the most significant nibble (MSN) and the precise
operation given by a modifier in the least significant nibble (LSN). Instruction groups
and modifiers are derived from the groupings constructed in the formal model, allow-
ing for an efficient decoding scheme to be implemented, as events applying to whole
instruction groups need only decode the MSN.

 Using EventB to Create a Virtual Machine Instruction Set Architecture 275

8 Implementation Generation

EventB and the RODIN tool are intended to support automatic generation of executa-
ble source code from sufficiently refined models [4]. This functionality is not yet part
of the current RODIN functionality, and therefore a plug-in extension [19] was devel-
oped to support a sufficient subset of EventB to support the VM project, translating to
the C language. An example showing the final refinement of the MIDAS NOP in-
struction, and its translated C implementation is given in Figure 4.

Each event is translated to a separate C function returning a boolean signifying
whether the event has been triggered. A function is generated to call all event func-
tions in turn until an event is triggered, or signal if no event has been triggered at the
end of the machine iteration (i.e. deadlock has occurred).

The translator requires sufficient refinement of the model such that all non-
determinism is resolved: precise values are assigned to all ranges and codes, and set
membership is reduced to direct comparison operations. Range checking is performed

NopOk
REFINES NopOk
ANY

op
opVal
nextInstPtr

WHERE
grd6: op : DataSmall
grd7: op = mem(instPtr)
grd5: opVal : DataSmallNat
grd2: opVal= DataSmall2Nat(op)
grd1: opVal = 16
grd3: instPtr <= 99994
grd4: statusCode = 2
grd8: nextInstPtr : DataLargeNat
grd9: nextInstPtr = instPtr + 1

THEN
act1: instPtr := nextInstPtr

END

/* Event5 [NopOk] */
BOOL NopOk(void)
{

/* Local variable declarations */
DataLargeNat nextInstPtr;
DataSmall op;
DataSmallNat opVal;

/* Guard 1 */
op = mem[instPtr];
DataSmall2Nat(op,&opVal);
if(opVal!=16) return BFALSE;

/* Guard 2 */
if(instPtr>99994) return BFALSE;

/* Guard 3 */
if(statusCode!=2) return BFALSE;

/* Local assignments in actions */
nextInstPtr = (instPtr+1);

/* Actions */
instPtr = nextInstPtr;

/* Report hit */
ReportEventbEvent("NopOk",5);
return BTRUE;

}

Fig. 4. EventB event and derived C

276 S. Wright

to ensure that numerical values and ranges may be contained by the implementing C
type. State variables are disallowed from the right side of actions, in order to prevent
use after modification by preceding action-derived statements.

Guard statements are automatically evaluated for one of three possible interpreta-
tions: type definition of local parameters, assignments to local parameters, or condi-
tional evaluations. Conditionals are implemented as negations of the basic comparisons
enabling early returns from a function, and local parameter assignments are only calcu-
lated immediately prior to use. Thus execution is optimized and assignments are only
evaluated in a valid context. Comments and instrumentation is inserted to provide trace-
ability between the model and implementation.

9 MIDAS Demonstration

In order to test the constructed MIDAS VM, a support environment is provided using
conventional coding techniques. The environment provides a mechanism for
download of binary images into MIDAS executable memory, and text output via a
virtual console. These facilities are integrated with the MIDAS implementation de-
scribed in Section 8 using conventional C development tools.

A C compiler targeted at the MIDAS ISA is provided via an appropriate GCC as-
sembler and compiler back-end [21]. Thus a hand-coded C test-suite could be com-
piled, loaded and executed, demonstrating the suitability of the MIDAS VM for
supporting C programs. The test-suite, which was not developed using Formal
Methods, is not a complete test of the C language, but includes the most common
constructs and invokes the major executable fragments implemented by the com-
piler. An assembler-coded bootstrap performs segment initialization and machine
shutdown. String initialization demonstrates the correct use of the read-only data
region, length calculations test integer-based looping, and output to the virtual con-
sole tests character manipulation. Integer-to-string conversions test integer arithme-
tic and integer digit display via C switch statements test use of dispatch tables.
Passing of function arguments and results test variable passing via stack pushes.
Explicit tests exercise floating point arithmetic and casting. Integer field extraction
functions test bit-wise shift and masking functions. Nested for and if statements test
in-function nesting. Nested calls test deeply stacked function calls and returns.

10 EventB and RODIN

Experience gained during the development of the generic VM model and MIDAS
demonstrator allows future improvements to both EventB and the RODIN tool to be
suggested. Model development using multiple refinement steps requires consider-
able repetition of event guard and action sections: in larger models refinement can
lead to small changes being difficult to identify amongst previously constructed
functionality. As the principle of guard strengthening allows additional guards to be
legitimately introduced, erroneous guards may be introduced, potentially leading to
unintended deadlock conditions. A suggested solution is the extension of the current

 Using EventB to Create a Virtual Machine Instruction Set Architecture 277

EventB “inherited” property, which signifies that an event is to be entirely repeated
from a previous step. Expression of an event’s guards and actions as incremental
additions to those of a previous refinement step would yield more concise, reliable
notation, whilst still allowing a complete event to be inspected via appropriate data-
base viewing tools.

Within the RODIN tool, the concept of a stored model database, indirectly editable
via specialized tools, allows for efficient storage and traversing of model logic by tool
extensions. Improvements in the ergonomics of the editing interface are required to
achieve productivity similar to that of conventional text editing interfaces. Search,
replace and pasting capabilities within a single view would allow faster, less error-
prone development.

In common with other logical proof tools, the RODIN provers are susceptible to in-
correct discharge of proof obligations due to false predicates introduced by accidental
introduction of contradictory statements within a model. It is suggested that vacuity-
checking techniques be introduced to defend against such conditions, as incorporated in
other commercially available tools [3].

11 Future Work

The EventB VM model and MIDAS demonstration ISA suggest a number of future
areas of investigation. The VM model has been developed using incremental refine-
ment techniques, with all generated POs discharged in order to prove consistency
between refinement steps. However, this analysis does not guarantee correctness of
the model itself: in the case of the VM, checking against implicit deadlock states is of
particular importance. Tools exist for the checking of model correctness [12], and use
of these for checking of the VM model is desirable.

The VM model currently allows for non-determinism under certain conditions: for
example, two separate events are constructed to raise exceptions if either the source or
destination are unavailable on an attempted data transfer, but the event triggered in
the case of both being unavailable is not defined. Expansion of the model to determin-
istically enumerate all such conditions would yield a more precise specification of
VM behavior under such error conditions. Expansion of the model to incorporate
other common ISA features is also desirable: for example the construction of events
transferring data between the registers of the RegMch model layer.

Formally derived models have been recognized as a possible basis for generation
of testing criteria [23]. The VM application allows the opportunity for testing to be
performed on a deployed machine, test inputs being provided by the loading of ap-
propriate binary executables.

The MIDAS ISA and compiler have been demonstrated to support a hand-coded
example application: testing of the VM against a complete C test-suite is required to
fully demonstrate the VM [20]. The MIDAS ISA has been specified to demonstrate
the EventB modeling technique without regard to other metrics such as performance:
expansion of the ISA to include additional performance-enhancing instructions and
features, within the EventB modeling paradigm discussed here, is possible.

278 S. Wright

12 Conclusions

EventB allows the generic properties of binary Instruction Set Architectures to be
captured in an abstract model, thus providing a re-usable template for the develop-
ment of Formally Proved computing machines. The EventB refinement process al-
lows an incremental structure in this abstract model, maximizing its re-usability, and
its concretization to a level sufficient for automatic conversion to a usable implemen-
tation. Constructed relationships derived within the model may also be used to guide
specification of new ISAs.

The RODIN tool enables the management of the multiple refinement stages and
Formal Proof analysis required for such a technique, and provides the capability for
necessary implementation generation tools to be developed.

The technique has been demonstrated by the construction of such a model, and its
refinement to an implementation in the form of a Virtual Machine capable of running
compiled binary images.

References

1. AMD Inc. 28-Bit SSE5 Instruction Set (2007)
2. Audsely, N.: Portable Code in Future Avionic Systems, IEE Colloquium on Real-Time

Systems (Digest No. 1998/306) (1998)
3. Beer, I., Ben-David, S.: RuleBase: Model checking at IBM. In: Grumberg, O. (ed.) CAV

1997. LNCS, vol. 1254. Springer, Heidelberg (1997)
4. Butler, M.: RODIN Deliverable D16 Prototype Plug-in Tools (2006), http://rodin.

cs.ncl.ac.uk
5. Caset, L.: Formal Development of an Embedded Verifier for Java Card Byte Code. In: In-

ternational Conference on Dependable Systems and Networks (2002)
6. Evans, N., Butler, M.: A Proposal for Records in Event-B Formal Methods 2006 (2006)
7. Hennessy, J., Patterson, D.: Computer Architecture, A Quantitive Approach. Morgan

Kaufmann, San Francisco (2003)
8. Hitachi Ltd. SH7707 Hardware Manual (1998)
9. Kernighan, B., Ritchie, D.: The C Programming Language. Prentice Hall, Englewood

Cliffs (1988)
10. Lapsley, P., Bier, J., Shoham, A., Lee, E.: DSP Processor Fundamentals. IEEE Press, Los

Alamitos (1997)
11. Lee, E.: Programmable DSP Processors part I and II. IEEE ASSP Mag. (October 1988–

January 1989)
12. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: FME 2003, SpringerLink

(2003)
13. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn (1999)
14. Lowry, H., Mitchell, B.: Mission computer replacement prototype for Special Operations

Forces aircraft an application of commercial technology to avionics. In: Proceedings of
The 19th Digital Avionics Systems Conference (2000)

15. Luke, J., Haldeman, D.: Replacement Strategy for Aging Avionics Computers. IEEE
Aerospace and Electronic Systems Magazine 14(3) (1999)

16. Metayer, C., Abrial, J.-R., Voisin, L.: RODIN Deliverable 3.2 Event-B Language (2005),
http://rodin.cs.ncl.ac.uk

17. Moore, J.: A Grand Challenge Proposal for Formal Methods A Verified Stack. In: Formal
Methods at the Crossroads From Panacea to Foundational Support, SpringerLink (2003)

 Using EventB to Create a Virtual Machine Instruction Set Architecture 279

18. Schneider, S.: The B-Method An Introduction. Palgrave (2001)
19. Shavor, S., D’Anjou, J., Fairbrother, S.: The Java Developer’s Guide to Eclipse. Addison-

Wesley, Reading (2003)
20. Sherridan, F.: Practical Testing of a C99 Compiler Using Output Comparison. Software:

Practical and Experience 37(14) (2007)
21. Stallman, R.: Using and Porting the GNU Compiler Collection, Free Software Foundation

(2001)
22. Stark, R., Schmid, J., Borger, E.: Java and the Java Virtual Machine. Springer, Heidelberg

(2001)
23. Utting, M., Legeard, B.: Practical Model-Based Testing – A Tools Approach. Morgan

Kaufmann, San Francisco (2007)
24. Voisin, L.: A Description of the RODIN Prototype (2006), http://rodin.cs.

ncl.ac.uk
25. Wright, S.: MIDAS Design Document CSTR-06-014, Bristol University (2008),

http://www.cs.bris.ac.uk/Publications/Papers/2000543.pdf
26. http://www.hercules-390.org/

Z2SAL - Building a Model Checker for Z

John Derrick, Siobhán North, and Anthony J.H. Simons

Department of Computing, University of Sheffield, Sheffield, S1 4DP, UK
J.Derrick@dcs.shef.ac.uk

Abstract. In this paper we discuss our progress towards building a
model-checker for Z. The approach we take in our Z2SAL project in-
volves implementing a translation from Z into the SAL input language,
upon which the SAL toolset can be applied. The toolset includes a num-
ber of model-checkers together with a simulator. In this paper we discuss
our progress towards implementing as complete as a translation as pos-
sible, the limitations we have reached and the optimizations we have
made. We illustrate with a small example.

Keywords: Z, model-checking, SAL.

1 Introduction

Z has, for some time, lagged behind other specification languages in its provision
of tools. There are a number of reasons for this, although most are connected
with the language itself and its semantics: its expressivity has made it more
difficult to build tractable tools. However, recently a number of projects have
begun to tackle this defficiency. These include the CZT (Community Z Tools)
project [8], our own work [6], as well as related work such as ProZ [9], which
adapts the ProB [7] tool for the Z notation, and that of Bolton who has used
Alloy to verify data refinements in Z [1].

Our concern is that of providing a model-checking [4] tool via translation
of Z specifications into the input language of an appropriate toolset. Here we
choose the SAL [5] tool-suite, designed to support the analysis and verification of
systems specified as state-transition systems. Its aim is to allow different verifica-
tion tools to be combined, all working on an input language designed as a format
into which programming and specification languages can be translated. The in-
put language provides a range of features to support this aim, such as guarded
commands, modules, definitions etc., and can, in fact, be used as a specification
language in its own right. The tool-suite currently comprises a simulator and
four model checkers including those for LTL and CTL.

The original idea of translating Z into SAL specifications was due to Smith
and Wildman [10]. In [6] we described the basics of our implementation, which
essentially is a Java based compiler of a subset of Z into SAL. Here we discuss
the implementation in broader scope, describing how different parts of the Z
mathematical toolkit are translated.

The aim of [10] was to preserve the Z-style of specification including predicates
where primed and unprimed variables are mixed, and the approach of the Z

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 280–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Z2SAL - Building a Model Checker for Z 281

mathematical toolkit to the modelling of relations, functions etc., as sets of
tuples. Given this theoretical basis (the translation in [10] was not optimized for
implementation) the actual implementation has preserved this general approach
but has increasingly diverged as optimization issues have been tackled.

The general scheme of the translation is that a Z specification is translated to
a SAL module, which groups together a number of definitions including types,
constants and modules for describing a state transition system. The declarations
in a state schema in Z are translated into local variables in a SAL module,
and any state predicates become appropriate invariants over the module and its
transitions.

A SAL specification defines its behaviour by specifying transitions, thus it is
natural to translate each Z operation into one branch of a guarded choice in the
transitions of the SAL module. The predicate in the operation schema becomes
a guard of the particular choice. The guard is followed by a list of assignments,
one for each output and primed declaration in the operation schema.

As would be expected the work to be done in such a translation is in translat-
ing the mathematical toolkit; yet a naive translation quickly produces SAL input
which is infeasible to simulate or model-check. Thus our work has optimized the
translation as much as possible by using appropriate combinations of the inbuilt
SAL types. Much of our discussion below concerns these issues.

The structure of the paper is as follows. The basic architecture of our imple-
mentation is described in Section 2. Section 3 gives an overview of the approach
to translation, and more specifics about translating the mathematical toolkit is
given in Section 4. Finally, Section 5 discusses the use of the tool.

2 The Z2SAL Architecture

The Z2SAL tool is currently implemented in Java directly (rather than using
the CZT components) in order to rapidly prototype and evaluate a number of
ideas. At present it works by scanning a Z LATEXsource file in a single pass into
something which is basically a list of schema class instances with associated
classes representing the named constants, types and variables and one expres-
sion structure to represent the restrictions derived from the constraints in the
axiomatic definitions. The use of a single scan is feasible because we restrict the
Z we accept to definition before use of all identifiers (which in practice is not a
significant limitation).

Having parsed the Z a certain amount of optimisation is performed with a
view to producing efficient SAL. Given we are producing output for use with a
model-checker, the first step is to turn any aspect that might be unbounded into
a finite size. In order to keep the state space to a minimum the size of any basic
types we use is also restricted as far as possible. Thus if Z is used in Z a type
called INT will be declared in the SAL output which ranges between one less
than the smallest constant used in the Z to one more than the largest. Given
types from the Z specification have to be assigned explicit values in the SAL

282 J. Derrick, S. North, and A.J.H. Simons

output, and by default they are set to consist of a type with three elements but
this can be varied by supplying the parser with a different value as a parameter.

The combination of small fixed ranges for basic types and giving all constants
a value allows us to optimize expressions derived from both the constraints of
the schemas and the axiomatic definitions. The latter are optimized first. Z ex-
pressions are initially parsed into a conventional tree but this is immediately
transformed into a list of subtrees which represents the series of conjoined pred-
icates. This is both a natural way to represent the predicate in a Z schema and a
convenient structure to modify when combining predicates derived from different
sources, something we have to do in various places starting with the predicates
of all the axiomatic definitions.

This combined predicate is scanned both to eliminate redundant predicates
and to restrict all the variables constrained by any axiomatic definitions to as
small a range as possible. In an earlier release (see [6]) we dealt with these vari-
ables by giving them arbitrary values and treating them as constants, however,
it turned out that the properties of the resulting SAL were too dependent on
the translator’s choice. Thus here we restrict their type as far as possible us-
ing the conditions imposed by the axiomatic definitions constraints. Sometimes
the type restriction process allows a variable to be restricted to a single value,
and at that point it is transformed into a constant, removing the need for a
SAL predicate, and this in turn can lead to further optimization. If, during this
process a Z predicate proves to be unsatisfiable, the translator terminates under
the assumption that the Z specification is erroneous. Any predicates remain-
ing, ones that cannot be converted into restrictions of type, are then added to
the state schema predicates and the variables are added to those of the state
schema.

Next, all the variables are scanned to identify any types that must be con-
structed in SAL. For example (see Appendix A) to express rented : PERSON ↔
TITLE in SAL we have to create a symbolic name for a SAL product type
PERSON__X__TITLE : TYPE = [PERSON, TITLE] for use in the declaration
rented: set{PERSON__X__TITLE}!Set since the product type cannot be used
directly in the instantiation of the set context. So, unless the type is named
elsewhere, we have to generate an artificial name for it, which is declared early
in the SAL output. Finally the schema predicates are scanned, to optimize them
and also to identify any extra declarations we need, including those required by
a count context (see below), which is used to express set cardinality.

Having cleaned up the Z as far as possible, in the manner just described,
the SAL is generated. First the named types and constants are generated.
The order of these is insignificant in SAL but, from a human point of view,
it is useful to have them in the same order as they appear in the
original Z. To this end a list of identifiers in order of first use is kept by
the lexical analyser and can be used to order the initial declarations in the
SAL correctly. After this the types and counters generated by the translator
are generated, the state invariant and finally the operation schemas, trans-
formed into transitions, are exported. Here again we maintain the same order for
readability.

Z2SAL - Building a Model Checker for Z 283

3 Overview of the Translation Strategy

A specification in the SAL input language consists of a number of context files, in
which all the declarations are placed. In our translation, we use a master CONTEXT
for the main Z specification and refer to other context files, which define the
behaviour of the mathematical toolkit. The master context includes declarations
of the basic types and constants; and declares the finite state automaton, known
as a MODULE, which represents the Z state schema as a collection of local state
variables and the Z operation schemas as transitions of the automaton, acting
on the local, input and output variables.

Types: We adopt the following scheme for the translation of Z types

Z SAL translation
Built-in types such as N etc Finite subranges of SAL equivalent types

Given sets Enumerated finite type in SAL
Free types Constructed type in SAL

So, in the example in Appendix A, the given type [PERSON] is translated to:
PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3}; SAL constructed
types may be recursive, but some implementations of the SAL tools cannot
process recursive definitions because they expand all recursive constructions in-
finitely as the definitions are compiled to BDDs. This problem may be fixed in
future releases of the SAL toolset. We assume for the moment that the input
does not contain recursively-defined data types.

Constants and Axiomatic Definitions: The most direct way to translate
constants and axiomatic definitions is to declare them as a SAL local variable,
within the module clause. However, this multiplies the state space of the system,
but with many of the states being over-constrained. We thus attempt to identify
suitable exact values for constants in the translation, which can often be done
by looking at predicates which involve the constant elsewhere in the specification.

State and Initialisation Schemas: The Z state schema is converted into
LOCAL variable declarations within the MODULE clause, with a corresponding
DEFINITION clause to represent the schema invariant. This defines a local ab-
breviation invariant__ for a boolean equation expressing constraints on the
values of local variables; and could also include further constraints resulting
from axiomatic definitions. The Z initialization schema is translated in a non-
constructive style into a guarded command in the INITIALIZATION clause of the
SAL module, with the invariant as part of the guard.

Operation Schemas: The translation of Z operation schemas into SAL con-
sists of three stages. First, all input and output variables are extracted and
converted into their cognate forms in SAL. In addition, each operation schema
is converted into a single transition, such that the Z schema predicate becomes
the guard for the guarded command, expressing the relationship between the
primed and unprimed versions of variables. The primed invariant__’ is added
to the guard, to indicate that the invariant must hold after firing each transition.

284 J. Derrick, S. North, and A.J.H. Simons

Finally, a catch-all ELSE branch is added to the guarded commands, to ensure
that the transition relation is total (for soundness of the model checking).

In Z. input and output variables are locally scoped to each operation schema,
but exist in the same scope in the SAL MODULE clause, therefore we prefix input
and outputs by the name of the Z schema from which they originate (additionally,
outputs use an underscore decoration rather than a !).

Thus the example in Appendix A is translated into the following SAL fragment
(we have elided parts of the translation - the complete output is in Appendix B).
In particular, the assignment of updated values occurs before the --> in the
transitions in this non-constructive style of encoding.

example : CONTEXT = BEGIN
PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3};
NAT : TYPE = [0..4];

...
State : MODULE =

BEGIN
LOCAL members : set {PERSON;} ! Set
LOCAL rented : set {PERSON__X__TITLE;} ! Set
LOCAL stockLevel : [TITLE -> NAT]
INPUT RentVideo__p? : PERSON
INPUT AddTitle__t? : TITLE

...
OUTPUT CopiesOut__copies_ : NAT
LOCAL invariant__ : BOOLEAN
DEFINITION

invariant__ = ...
INITIALIZATION [

members = set {PERSON;} ! empty AND
stockLevel = function{TITLE, NAT; TITLE__B, 4}!empty AND invariant__
-->

]
TRANSITION [

RentVideo :
...

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]
AddTitle :

...
ELSE -->

END

4 The Mathematical Toolkit

The heart of the translation deals with the Z mathematical toolkit, which provides
a rich vocabulary of mathematical data types, including sets, products, relations,

Z2SAL - Building a Model Checker for Z 285

functions, sequences and bags. The challenge is to represent these types, and the
operations that act upon them, efficiently in SAL, whilst still preserving the ex-
pressiveness of Z. The basic approach is to define one or more context files for each
data type in the toolkit. For example, the set -context implements a set as a func-
tion from elements to BOOLEAN. This is a standard encoding for sets, optimized for
symbolic model checkers that use BDDs as the core representation [2,3]. A set is
not a single, monolithic entity, but rather a polylithic membership predicate over
all of its elements. Set operations are defined in the following style:

union(setA : Set, setB : Set) : Set =
LAMBDA (elem : T) : setA(elem) OR setB(elem);

However, the encoding causes problems when calculating the cardinality of sets.
In [10] cardinality is defined as the search for a relation between sets and natural
numbers. However, we found that this was inefficient when implemented [6]. We
also tried two other encodings for counted sets, which relied on brute-force enu-
meration of elements. Since then, we have removed the size? function altogether
from the standard, efficient set -context and provide this in a separately gener-
ated countN-context, parameterized over arbitrary N elements. This separation
of concerns provides brute-force counting only when the specification actually
requires this. For example, three possible elements may be counted by the size?
function from the count3-context:

count3{T : TYPE; e1, e2, e3 : T} : CONTEXT =
BEGIN
Set : TYPE = [T -> BOOLEAN];
size? (set : Set) : NATURAL =
IF set(e1) THEN 1 ELSE 0 ENDIF +
IF set(e2) THEN 1 ELSE 0 ENDIF +
IF set(e3) THEN 1 ELSE 0 ENDIF;

END

A similar strategy was adopted for encoding relations. The initial idea was to
define relations as sets of pairs. We found that the SAL parser rejected type-
instantiation with anything other than a simple symbolic type name, which
initially limited the use of constructed product-types, but we later adopted the
work-around of defining symbolic aliases for each product-type.

The standard relation-context is parameterized over the domain and range
element-types, and internally defines two pair-types, two set-types for the domain
and range, and two set-types for the relation and inverse relation, followed by
operations on relations:

relation{X, Y : TYPE; } : CONTEXT =
BEGIN
XY : TYPE = [X, Y];
YX : TYPE = [Y, X];
Domain : TYPE = [X -> BOOLEAN];

286 J. Derrick, S. North, and A.J.H. Simons

Range : TYPE = [Y -> BOOLEAN];
Relation : TYPE = [XY -> BOOLEAN];
Inverse : TYPE = [YX -> BOOLEAN];
...
domain (rel : Relation) : Domain =
LAMBDA (x : X) : EXISTS (y : Y) :
LET pair : XY = (x, y) IN rel(pair);

END

This translation makes maximally-efficient use of the direct encoding of sets as
boolean functions, for example, using internal variables (introduced by LET) to
facilitate the toolset’s manipulation of symbolic structures.

There was the option of re-implementing all of the set operations again in
the relation-context; however, for efficiency we provide definitions only for the
additional operations upon relations. In our example, specific relation operations
(such as domain) are selected from this relation-context, whereas standard set-
operations (such as contains?) are selected from a set -context, treating the
same relation as a set of pairs:

... relation {PERSON, TITLE;} ! domain(rented) ...

... set {PERSON__X__TITLE;} ! contains?(rented,
(RentVideo__p?, RentVideo__t?)) ...

The success of this partitioning approach motivated our splitting the complete
definition of relations over three contexts, according to the number of types
related. The standard context provides all operations on relations between two
distinct base types. A separate context provides all operations on relations closed
over a single type (such as identity, transitive closure); while a third context
defines relational composition, relating three types. The translator exports these
contexts only if they are needed.

In translating Z functions, we could either model them as sets of pairs, thereby
easing the integration into the models for sets and relations, or use the SAL built-
in function type. Timing experiments confirmed that using native SAL functions
was far more efficient. However, SAL functions are total . To support the more
commonly-occurring partial functions in Z we adopt a totalizing strategy, in which
every type appearing in a function signature is extended with a bottom value. This
is typically an extra symbolic value (such as TITLE__B) for basic types and an out-
of-range value for numeric types. Partial Z functions are converted into total SAL
functions, in which some domain or range values are bottom. At the same time,
extra invariants are added to the translation of Z operation schemas to assert that
input and output variables never take the bottom value. This approach was more
scalable than defining two versions of each type, with and without bottom.

The function-context is parameterized over the domain and range element-
types, but also includes value-parameters for the bottom element of each of these
types. This allows operations on functions to recognize undefined cases. The con-
text defines the function-type, but also pair-types for the corresponding relation
and inverse relation, and supplies a convert operation to convert a SAL-function
back into our preferred encoding for a relation as a set of pairs:

Z2SAL - Building a Model Checker for Z 287

function {X, Y : TYPE; xb : X, yb : Y} : CONTEXT =
BEGIN
XY : TYPE = [X, Y];
YX : TYPE = [Y, X];
Function : TYPE = [X -> Y];
Relation : TYPE = [XY -> BOOLEAN];
Inverse : TYPE = [YX -> BOOLEAN];
Domain : TYPE = [X -> BOOLEAN];

...
convert (fun : Function) : Relation =
LAMBDA (pair : XY) : fun(pair.1) = pair.2
AND pair.1 /= xb AND pair.2 /= yb;

END

Since this encoding is quite different from the relation encoding, we re-
implemented some of the standard operations on relations, to optimize these
for functions, eg:

image (fun : Function, set : Domain) : Range =
LAMBDA (y : Y) : EXISTS (x : X) :
set(x) AND fun(x) = y AND y /= yb;

Here, maximal use is made of native function application, which is extremely
efficient in SAL, while including extra side-constraints to rule out mappings
that would include bottom. To simplify the definition of these and other oper-
ations on functions, a global constraint fun(xb) = yb is asserted in the main
context.

Z distinguishes many function types for plain, injective, surjective and bijec-
tive functions (in total and partial combinations). The strategy in SAL is not
to create additional function types, which would either require duplication of all
function operations, or would prevent treating e.g. an injective function just as
a plain function. Instead, the Z definitions of each function type are converted
into predicates, that are added to the system invariant. For example, a (partial)
surjective function is constrained by the predicate:

surjective? (f : Function) : BOOLEAN =
FORALL (y : Y) : EXISTS (x : X) : f(x) = y;

and the extra conjunction is added to constrain myFun in the invariant:

DEFINITION invariant__ = ...
AND function{Dom, Ran, dom__b, ran__b}! surjective?(myFun)...

The predicates must be coded in such a way that they are not violated if the
functions are in fact empty, as is typical at the start of a simulation.

Finally, the SAL contexts encoding Z sets, functions and relations also include
a number of optimized operations for dealing with common Z cases. For example,
the insertion of single elements into sets is expressed in Z as the union of a set
with a constructed singleton set. In SAL, this can be achieved much more simply
with an extra insert operation in the set-context:

288 J. Derrick, S. North, and A.J.H. Simons

insert (set : Set, new : T) : Set =
LAMBDA (elem : T) : elem = new OR set(elem);

Likewise, the Z style of replacing maplets in functions using the override operator
is handled much more efficiently by providing an extra insert operation in the
function-context:

insert (fun : Function, pair : XY) : Function =
LAMBDA (x : X) : IF x = pair.1
THEN pair.2 ELSE fun(x) ENDIF;

These special cases are identified in our parser. Similar special operations are
supplied for empty and universal sets, singleton sets and empty functions.

5 Use of the Tool

The SAL toolset uses a command line interface, as does our translator. The
translator accepts the LATEX markup as defined in the Z standard, and the
translator output is a plain SAL file. We have work in progress to port the
translator to accept the ZML markup for Z, using the ASTs constructed by the
parser produced by the CZT project [8]. We also have work in progress to build
a GUI interface to the command-line tools and interpret the results, which are
rather dense at the moment.

Simulation: The SAL translation of the example can be simulated by running
the sal-sim tool and loading the SAL file. The compilation process takes about
6-7 seconds for this example on a standard desktop. Our example creates 11664
initial states, most of which are due to assigning all possible values to the INPUT
and OUTPUT variables (since we initialise the LOCAL variables to fixed values).
While it is necessary to represent all possible input conditions for the first sim-
ulation step, we could reduce the number of initial states by constraining the
unused values of output variables. The simulation is triggered by repeated calls
to the (step!) function and the number of resulting states may be viewed:

Step 0 1 2 3 4 5
States 11664 221040 1752048 7918848 24593328 61568640

As well as displaying n of the states found at each step, it is possible to see
an arbitrary trace through the system, by a command which selects a random
trace. For example, after five steps, a trace is returned that shows how the system
performed the following:

Step Transition Updates
0 Init members, rented , stockLevel = ∅

1 AddTitle stockLevel(TITLE 2) = 3
2 AddMember PERSON 2 ∈ members
3 AddMember PERSON 3 ∈ members
4 RentVideo (PERSON 3, TITLE 2) ∈ rented
5 Else no change

Z2SAL - Building a Model Checker for Z 289

From this, it can be seen that the system acquired some videos and members
and rented a title to one of the members. The final step selected the default
ELSE-transition, a nullop that is always possible, in case a simulation deadlocks.

Model Checking: The SAL toolkit has several simple and bounded model-
checkers that support both LTL and CTL temporal logics. At the moment, we
add theorems by hand to the end of the translated SAL file. Eventually, we
expect to add an extension to Z to express theorems in temporal logic.

Suppose that we want to show that videos eventually get rented to members
of the video club. In SAL, we propose the negation of this as a theorem:

th1 : THEOREM State |- G(set {PERSON__X__TITLE;}!empty?(rented));

This says that ”the State module allows us to derive that the relation rented
is always empty,” using the LTL operator G for always. We run this through the
model checker and this generates the smallest counterexample that proves the
desired property:

Step Transition Updates
0 Init members, rented , stockLevel = ∅

1 AddTitle stockLevel(TITLE 2) = 3
2 AddMember PERSON 1 ∈ members
3 RentVideo (PERSON 1,TITLE 2) ∈ rented

For our example, the time taken is again about 6-7 seconds, however, the ma-
jority of time is taken up compiling the example, and the execution time to find
the counterexample was 0.17 seconds. Proper evaluation and scalability is left
for future work.

6 Conclusion

In conclusion, we have achieved a fairly efficient translation of Z into SAL,
demonstrating the benefits of encodings that are close to SAL’s internal BDD
structures and giving heuristics for reducing the initial state-space. New results
reported in this paper include the translation of schema invariants and the op-
timized datatypes for the Z mathematical toolkit. We have also identified some
problems in handling constructed and recursive types in SAL. Future work will
include translating the rest of the mathematical toolkit.

Acknowledgements. This work was done as part of collaborative work with the
University of Queensland, and in particular, Graeme Smith and Luke Wildman.
Tim Miller also gave valuable advice on the current CZT tools.

References

1. Bolton, C.: Using the Alloy Analyzer to Verify Data Refinement in Z. Electronic
Notes in Theoretical Computer Science 137(2), 23–44 (2005)

2. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

290 J. Derrick, S. North, and A.J.H. Simons

3. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

5. de Moura, L., Owre, S., Shankar, N.: The SAL language manual. Technical Report
SRI-CSL-01-02 (Rev.2), SRI International (2003)

6. Derrick, J., North, S., Simons, T.: Issues in implementing a model checker for z.
In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 678–696. Springer,
Heidelberg (2006)

7. Leuschel, M., Butler, M.: Automatic refinement checking for B. In: Lau, K.-K.,
Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 345–359. Springer, Heidelberg
(2005)

8. Miller, T., Freitas, L., Malik, P., Utting, M.: CZT Support for Z Extensions. In:
Romijn, J., Smith, G., Pol, J. (eds.) IFM 2005. LNCS, vol. 3771, pp. 227–245.
Springer, Heidelberg (2005)

9. Plagge, D., Leuschel, M.: Validating Z Specifications using the ProB Animator and
Model Checker. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp.
480–500. Springer, Heidelberg (2007)

10. Smith, G., Wildman, L.: Model checking Z specifications using SAL. In: Treharne,
H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 85–
103. Springer, Heidelberg (2005)

Appendix A

The following defines a video shop and the process of renting videos etc.

[PERSON ,TITLE]

State
members : PPERSON
rented : PERSON ↔ TITLE
stockLevel : TITLE �→ N

dom rented ⊆ members
ran rented ⊆ dom stockLevel

Init
State ′

members ′ = ∅

stockLevel ′ = ∅

RentVideo
∆State
p? : PERSON
t? : TITLE

p? ∈ members
t? ∈ dom stockLevel
stockLevel(t?) > #(rented � {t?})
(p?, t?) �∈ rented
rented ′ = rented ∪ {(p?, t?)}
stockLevel ′ = stockLevel
members ′ = members

AddTitle
∆State
t? : TITLE
level? : N

stockLevel ′ = stockLevel ⊕ {(t?, level?)}
rented ′ = rented
members ′ = members

Z2SAL - Building a Model Checker for Z 291

DeleteTitle
∆State
t? : TITLE

t? �∈ ran rented
t? ∈ dom stockLevel
stockLevel ′ = {t?} −� stockLevel
rented ′ = rented
members ′ = members

AddMember
∆State
p? : PERSON

p? �∈ members
stockLevel ′ = stockLevel
rented ′ = rented
members ′ = members ∪ {p?}

CopiesOut
ΞState
t? : TITLE
copies! : N

t? ∈ dom stockLevel
copies! = #(rented � {t?})

Appendix B

This following is the SAL output from the translation of the above.

example : CONTEXT = BEGIN

PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3}; TITLE : TYPE =
{TITLE__1, TITLE__2, TITLE__3, TITLE__B}; PERSON__X__TITLE : TYPE
= [PERSON, TITLE]; NAT : TYPE = [0..4];

PERSON__X__TITLE__counter : CONTEXT = count12 {PERSON__X__TITLE;
(PERSON__1, TITLE__1), (PERSON__1, TITLE__2), (PERSON__1, TITLE__3),
(PERSON__1, TITLE__B), (PERSON__2, TITLE__1), (PERSON__2, TITLE__2),
(PERSON__2, TITLE__3), (PERSON__2, TITLE__B), (PERSON__3, TITLE__1),
(PERSON__3, TITLE__2), (PERSON__3, TITLE__3), (PERSON__3, TITLE__B)};

State : MODULE =
BEGIN

LOCAL members : set {PERSON;} ! Set
LOCAL rented : set {PERSON__X__TITLE;} ! Set
LOCAL stockLevel : [TITLE -> NAT]
INPUT RentVideo__p? : PERSON
INPUT RentVideo__t? : TITLE
INPUT AddTitle__t? : TITLE
INPUT AddTitle__level? : NAT
INPUT DeleteTitle__t? : TITLE
INPUT AddMember__p? : PERSON
INPUT CopiesOut__t? : TITLE
OUTPUT CopiesOut__copies_ : NAT
LOCAL invariant__ : BOOLEAN

292 J. Derrick, S. North, and A.J.H. Simons

DEFINITION
invariant__ = (set {PERSON;} ! subset?(relation {PERSON, TITLE;} !

domain(rented), members) AND
set {TITLE;} ! subset?(relation {PERSON, TITLE;} ! range(rented),

function {TITLE, NAT; TITLE__B, 4} ! domain(stockLevel)) AND
stockLevel (TITLE__B) = 4 AND
RentVideo__t? /= TITLE__B AND
AddTitle__t? /= TITLE__B AND
AddTitle__level? /= 4 AND
DeleteTitle__t? /= TITLE__B AND
CopiesOut__t? /= TITLE__B AND
CopiesOut__copies_ /= 4)

INITIALIZATION [
members = set {PERSON;} ! empty AND
stockLevel = function {TITLE, NAT; TITLE__B, 4} ! empty AND invariant__

-->
]
TRANSITION [
RentVideo :

set {PERSON;} ! contains?(members, RentVideo__p?) AND
set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !

domain(stockLevel), RentVideo__t?) AND
stockLevel (RentVideo__t?) > PERSON__X__TITLE__counter !

size?(relation {PERSON, TITLE;} ! rangeRestrict(rented, set
{TITLE;} ! singleton(RentVideo__t?))) AND

NOT set {PERSON__X__TITLE;} ! contains?(rented, (RentVideo__p?,
RentVideo__t?)) AND

rented’ = set {PERSON__X__TITLE;} ! insert(rented, (RentVideo__p?,
RentVideo__t?)) AND

stockLevel’ = stockLevel AND
members’ = members AND
invariant__’

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]
AddTitle :

stockLevel’ = function {TITLE, NAT; TITLE__B, 4} ! insert(stockLevel,
(AddTitle__t?, AddTitle__level?)) AND

rented’ = rented AND
members’ = members AND
invariant__’

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]
DeleteTitle :

NOT set {TITLE;} ! contains?(relation {PERSON, TITLE;} !

Z2SAL - Building a Model Checker for Z 293

range(rented), DeleteTitle__t?) AND
set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !

domain(stockLevel), DeleteTitle__t?) AND
stockLevel’ = function {TITLE, NAT; TITLE__B, 4} ! domainSubtract(set

{TITLE;} ! singleton(DeleteTitle__t?), stockLevel) AND
rented’ = rented AND
members’ = members AND
invariant__’

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]
AddMember :

NOT set {PERSON;} ! contains?(members, AddMember__p?) AND
stockLevel’ = stockLevel AND
rented’ = rented AND
members’ = set {PERSON;} ! insert(members, AddMember__p?) AND
invariant__’

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [TITLE -> NAT] | TRUE}

[]
CopiesOut :

members = members’ AND
rented = rented’ AND
stockLevel = stockLevel’ AND
set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !

domain(stockLevel), CopiesOut__t?) AND
CopiesOut__copies_’ = PERSON__X__TITLE__counter ! size?(relation

{PERSON, TITLE;} ! rangeRestrict(rented, set {TITLE;} !
singleton(CopiesOut__t?))) AND

invariant__’
-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [TITLE -> NAT] | TRUE};
CopiesOut__copies_’ IN { x : NAT | TRUE}

[]
ELSE -->

]
END;

END

Formal Modeling and Analysis of a Flash

Filesystem in Alloy

Eunsuk Kang and Daniel Jackson

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA. U.S.A
{eskang,dnj}@mit.edu

Abstract. This paper describes the formal modeling and analysis of a
design for a flash-based filesystem in Alloy. We model the basic opera-
tions of a filesystem as well as features that are crucial to NAND flash
hardware, such as wear-leveling and erase-unit reclamation. In addition,
we address the issue of fault tolerance by modeling a mechanism for re-
covery from interrupted filesystem operations due to unexpected power
loss. We analyze the correctness of our flash filesystem model by checking
trace inclusion against a POSIX-compliant abstract filesystem, in which
a file is modeled simply as an array of data elements. The analysis is
fully automatic and complete within a finite scope.

1 Introduction

Flash memory is becoming an increasingly popular choice of medium for non-
volatile data storage. Among a wide range of applications, flash memory has
been used by NASA for on-board storage in planetary rovers. In one well known
incident, Spirit, a Mars Exploration Rover, suffered a major system failure that
resulted in 10 days of lost scientific activity [19]. The cause of the failure was
later determined to be a flaw in the flash filesystem software. On investigation,
it turned out that the failure scenario was neglected during testing because the
development team considered it to be an “unanticipated behaviour.”

Testing is an essential part of any software development process, but cannot
alone ensure the reliability of software. Formal methods can mitigate the weak-
ness of testing by allowing an exhaustive analysis. However, applying formal
methods to a poorly designed piece of code in an after-the-fact, ad hoc fash-
ion is impractical, and rarely yields high confidence for reliability. Instead, by
formalizing important aspects of a design and analyzing them early in a devel-
opment process, software engineers can identify key reliability issues and address
them in the simpler context of the design, where they can be resolved before the
complexities of implementation are introduced.

This paper describes the formal modeling and analysis of a design for a flash
filesystem in Alloy [16]. Our model addresses three primary aspects of a flash
filesystem: (1) The underlying flash hardware, (2) filesystem software with ba-
sic file operations such as read and write, and (3) a fault-tolerance mechanism

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 294–308, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Formal Modeling and Analysis of a Flash Filesystem in Alloy 295

for handling unexpected hardware failures. Unlike disk-based storage devices,
flash memory suffers from a major limitation in that blocks can be written only
a limited number of times. In order to address this issue, our model includes
techniques for efficiently managing block erasures, such as wear-leveling and
erase-unit reclamation [10].

Alloy provides completely automatic (but bounded) analysis of a model, given
a property and a scope for the size of each domain in the model. In order to
verify the correctness of the filesystem design, we used a simplified version of
the POSIX standard as a reference model. Then, we checked trace inclusion
of the concrete flash filesystem against the reference model using backwards
simulation [24]. To our knowledge, this is the first fully automatic analysis of a
design for a flash filesystem.

The paper presents the POSIX reference model (Section 2), a model of the
underlying flash hardware (3), and then a design of a flash filesystem that uses
the flash hardware and is intended to conform to the reference model (4). Unlike
the first two models, this design does not formalize existing descriptions, but it
incorporates a variety of mechanisms that have appeared in the literature [10,15].
Subsequent sections describe the analysis that was performed (5), relate our
approach to others (6), and discuss the challenges faced during this project (7)
and plans for future work (8).

2 Abstract POSIX Filesystem

POSIX (Portable Operating System Interface) [21] is an international standard
that specifies the function signatures and expected behaviours of a set of filesys-
tem operations. The widespread adoption of POSIX by many popular operating
systems, such as UNIX and Mac OS X, makes it an attractive choice as a ref-
erence model for a flash filesystem. A specification for a UNIX filesystem was
formalized in the Z notation [20] by Morgan et al. [18] and served as a starting
point for our work.

Alloy [16] is a declarative modeling language based on first-order logic with
transitive closure. The origin of Alloy is rooted in Z, drawing on the latter’s
simple and intuitive semantics that is well suited for object and data modeling.
For example, a file with an array of data elements can be declared as follows1:

sig File { contents : seq Data }
sig Data {}

Then, an entire filesystem may be viewed as a container for a relation that maps
each file identifier to zero or one file2:

sig AbsFsys { fileMap : FID -> lone File }
sig FID {} // File identifier

1 In Alloy, the keyword sig S declares a set of atoms of type S, and seq T constructs
a sequence whose elements are of type T.

2 The keyword lone imposes a cardinality constraint of “less than or equal to one”.

296 E. Kang and D. Jackson

The basic operations of the filesystem—reading from and writing to a file—
are modeled using functions and predicates. The read operation, as defined by
POSIX, takes three arguments—a file identifier, an offset, and a size—and re-
turns a data sequence of the specified size, starting at the offset within the file:

fun readAbs[fsys: AbsFsys, fid: FID, offset, size: Int]: seq Data {
let file = fsys.fileMap[fid] |

// subseq[m,n] returns a subsequence between m and n, inclusively
(file.contents).subseq[offset, offset + size - 1]

}

Like Z, Alloy does not support the notion of an implicit global state. Thus,
readAbs explicitly takes an instance of AbsFsys as an argument.

The write operation takes a file identifier, an offset, a size, and a buffer con-
taining the input data, and writes a data sequence of the specified size from the
buffer into the file, starting at the offset3:

pred writeAbs[fsys, fsys’: AbsFsys, fid: FID, buffer: seq Data,
offset, size: Int] {

let buffer’ = buffer.subseq[0, size - 1],
file = fsys.fileMap[fid], file’ = fsys’.fileMap[fid] {

(#buffer’ = 0) => file’ = file
(#buffer’ != 0) =>

file’.contents =
(zeros[offset] ++ file.contents) ++ shift[buffer’, offset]

promote[fsys, fsys’, file, file’, fid]
}

}

Sequences are represented, as in Z, by functions from integers to values. The ex-
pression zeros[n] gives a sequence of zeros of length n, and is used for padding;
shift[s,i] gives a function like the sequence s but with the index of each ele-
ment shifted by i. Unlike readAbs, writeAbs is expressed as a predicate (rather
than a function) because it may modify the state of the filesystem.

There are three distinct cases to consider in this operation. First, if the input
buffer is empty, writeAbs does not modify the contents of the file. If the offset is
located within the file, writeAbs overrides the existing data in the overlapping
positions with the input data. Lastly, if the offset is greater than the file size,
writeAbs fills the gap between the end of the file and the offset with zeros.

Changes in the state of the filesystem are modeled using an explicit constraint
between a pair of pre- and post- states (fsys and fsys’). It is also necessary
to ensure that the operation does not affect any other files. This style of mod-
eling changes in system state is called promotion [24]. The following predicate
“promotes” a change in the contents of a file to a change in the entire filesystem:

pred promote[fsys, fsys’: AbsFsys, file, file’: File, fid: FID] {
file = fsys.fileMap[fid]
fsys’.fileMap = fsys.fileMap ++ (fid -> file’)

}

3 The cardinality operator # returns the length of a sequence, and ++ is the operator
for relational override.

Formal Modeling and Analysis of a Flash Filesystem in Alloy 297

3 NAND Flash Memory

Two types of flash memory are currently in widespread use: NOR and NAND.
Although NOR allows random access and is easier to program, the higher den-
sity and performance of NAND makes the latter more suitable as a storage
device. Our model of the flash hardware is based on Open NAND Flash In-
terface (ONFi), an industry-wide standard for the specification of NAND flash
memory [14]. However, it is important to note that the focus of our work is on
the design of a filesystem, not a flash device. Therefore, our hardware model
includes only the minimum amount of detail necessary for modeling basic flash
operations, erase-unit reclamation, and fault tolerance.

3.1 Memory Hierarchy

The smallest unit for reading or programming flash memory is called a page; it
consists of a fixed number of data elements4:

sig Page { data : seq Data } { #data = PAGE_SIZE }

In addition, each page is associated with one of four status constants:

abstract sig PageStatus {}
one sig Free, // Erased and ready to be programmed

Allocated, // Allocated for a file write operation
Valid, // Contains valid data in a file
Invalid extends PageStatus {} // Contains obsolete data

A block, also called an erase-unit, contains an array of pages and is the smallest
unit for erase operations. A logical unit (LUN) is the minimum independent
entity that receives and executes a flash command5:

sig Block { pages : seq Page } { #pages = BLOCK_SIZE }
sig LUN { blocks : seq Block } { #blocks = LUN_SIZE }

Two forms of addresses are used during flash operations: the row address and
the column address. A row address is used to access a particular page:

sig RowAddr { lunIndex, blockIndex, pageIndex : Int }

A column address, simply of type Int, identifies the position of a data element
within a page.

Finally, a flash device is the top-level component that directly communicates
with the host filesystem:

4 A formula F in sig A {...}{F} is a constraint that applies to every atom of type A.
5 ONFi defines another level of hierarchy—called targets—above LUNs. To simplify

our analysis, we abstract away this detail from our model.

298 E. Kang and D. Jackson

sig Device {
luns : seq LUN,
pageStatusMap : RowAddr -> one PageStatus,
eraseCountMap : RowAddr -> one Int,
reserveBlock : RowAddr

}{ #luns = DEVICE_SIZE }

The three fields pageStatusMap, eraseCountMap, and reserveBlock are aux-
iliary data structures used for erase-unit reclamation and fault tolerance6. The
pageStatusMap associates each page in the device with its current status. The
eraseCountMap associates each block with the number of times it has been
erased; erase counts play a crucial role in wear-leveling. Lastly, reserveBlock
holds the address of a block that temporarily stores valid pages during erase-unit
reclamation. The usage of these data structures is further discussed in Section 4.

3.2 Flash API Functions

During a file operation, the host filesystem may make one or more calls to three
flash API functions: read, program, and erase. Due to limited space, we present
only the interface declarations of these operations:

// Reads data from the page at "rowAddr", starting at the index "colAddr"
fun fRead[d: Device, colAddr: Int, rowAddr: RowAddr] : seq Data { ... }

// Programs (i.e. writes) "newData" into the page at "rowAddr", starting at
// the index "colAddr", and sets the status of the page to "Allocated"
pred fProgram[d,d’: Device, colAddr: Int, rowAddr: RowAddr,

newData: seq Data] { ... }

// Erases the entire block that contains the page at "rowAddr", increments
// its erase count, and sets the status of every page within the block to "Free"
pred fErase[d,d’: Device, rowAddr: RowAddr] { ... }

Note that fProgram and fErase are expressed as constraints between two device
states (d and d’) since these operations may modify the state of the device.

4 Flash Filesystem

Given the model for the underlying hardware, we now describe a concrete filesys-
tem that communicates with the flash device to perform file operations. This
concrete model is not based on one particular flash filesystem; rather, our design
incorporates a variety of mechanisms that have appeared in literature. Namely,
we adopted the techniques for wear-leveling and erase-unit reclamation from Gal
and Toledo’s survey paper on flash memory algorithms [10]. The division of the
write operation into separate phases and the mechanism for power-loss recovery
6 ONFi does not explicitly mention these data structures. On an actual device, they

would be scattered across the flash memory using sophisticated techniques, but this
detail is not suitable for the level of modeling abstraction in this work.

Formal Modeling and Analysis of a Flash Filesystem in Alloy 299

were modeled after the Intel Flash File System Specification [15]. It is impor-
tant to note that in our modeling task, we were primarily concerned with the
correctness of the design, not its performance. Thus, when multiple techniques
were available, we adopted the alternative that we considered to be the simplest.

A file, represented by an Inode, consists of a list of virtual blocks (VBlock),
each of which points to a particular page on the flash device:

sig Inode { blockList : seq VBlock }
sig VBlock {}

Like its abstract counterpart, the concrete filesystem contains a relation that
maps each file identifier to at most one inode. In addition, the filesystem contains
a bijective map from a virtual block to a row address:

sig ConcFsys {
inodeMap : FID -> lone Inode,
blockMap : VBlock one -> one RowAddr

}

Rather than being a fixed map, blockMap is dynamically updated during write
operations, and plays a crucial role in wear-leveling, as discussed below.

4.1 Concrete Operations

The two basic file operations that we describe here—read and write—are sub-
stantially more complex than their counterparts in the abstract filesystem. A
concrete operation involves multiple calls to the flash API functions, since an
inode consists of a number of fixed-size pages. Due to limited space, we focus on
the most distinctive aspects of the operations.

Concrete Read. Like readAbs, the readConc operation (Fig. 1) accepts three
arguments—fid, offset, and size. In addition, readConc requires a ConcFsys
and a Device, which together represent a particular state of the filesystem. Note
that unlike readAbs, readConc is a predicate (not a function) that constrains
buffer to be the result of the operation7.

The core part of readConc (shown in Fig. 1) involves reading each of the
virtual blocks in the inode and storing the output into a single, contiguous
buffer. Prior to line 4, blocksToRead is constrained to be a sequence of virtual
blocks to be read, based on offset and size. For each index i in this sequence,
readConc retrieves the address of the page to which the virtual block at i is
mapped (line 6), invokes fRead (line 9), and stores the page data into a buffer
slot between two indices, from and to. After line 9, buffer contains all of the
data from blocksToRead in the order that they appear within the inode.

7 Sometimes, it is more natural to describe a result implicitly rather than to construct
it explicitly using a function with the formula as the body of a set comprehension.

300 E. Kang and D. Jackson

1: pred readConc[fsys: ConcFsys, d: Device, fid: FID, offset, size: Int,
2: buffer: seq Data] {
3: ...
4: all idx : blocksToRead.inds | // "inds" returns the set of all indices
5: let vblock = blocksToRead[idx],
6: rowAddr = fsys.blockMap[vblock],
7: from = PAGE_SIZE * idx, to = from + PAGE_SIZE - 1 |
8: // Read a flash page and store data into correct buffer slot
9: buffer.subseq[from,to] = fRead[d, 0, rowAddr]
10: ...
11: } // 90 LOC in total, including comments

1: pred writeConc[fsys, fsys’: ConcFsys, d, d’: Device, fid: FID,
2: buffer: seq Data, offset, size: Int] {
3: ...
4: some stateSeq : seq TranscState, interDev : Device {
5: // Phase 1: Program pages
6: stateSeqConds[d, interDev, stateSeq, numPagesToProgram]
7: all idx : stateSeq.butlast.inds {
8: let inode = fsys.inodeMap[fid],
9: from = PAGE_SIZE * idx, to = from + PAGE_SIZE - 1,
10: dataFragment = buffer.subseq[from, to],
11: vblock = inode.blockList[startBlkIndex + idx],
12: rowAddr = fsys.blockMap[vblock]
13: preState = stateSeq[idx], postState = stateSeq[idx + 1] |
14: // Program one page worth of data into the flash
15: programVBlock[preState, postState, rowAddr, dataFragment]
16: }
17: // Phase 2: Invalidate/validate old/new pages
18: updatePageStatuses[interDev, d’]
19: // Update virtual-block-to-page mapping and the list of inode blocks
20: updateFsysInfo[fsys, fsys’, fid, stateSeq.last]
21: }
22: ...
23: } // 549 LOC in total, including comments

Fig. 1. Concrete Operations

Wear-Leveling and Erase-Unit Reclamation. Unlike sectors in a traditional
disk-based filesystem, flash pages must be completely erased before they can be
rewritten. One major limitation of flash memory is that each block can be erased
only a finite number of times. Thus, a wear-leveling technique that distributes
erasures evenly across flash memory is essential in any flash filesystem.

Using an example, let us illustrate the standard wear-leveling technique [10]
that is adopted by most flash filesystem, including our design. Suppose an inode
n consists of a list of virtual blocks, one of which (vblk) is mapped to a physical
flash page p1. A client sends a request to the filesystem to overwrite the existing
data, including vblk, in the inode. A simple approach would be to erase the
physical flash block fblk that contains p1 and then program new data into p1.
However, if operations involving n were frequent, then fblk would wear out much
more quickly than others. Thus, rather than erasing p1, we instead program the
new data into a free, available page p2. In addition, we mark the data in p1 as

Formal Modeling and Analysis of a Flash Filesystem in Alloy 301

obsolete by modifying the page status to Invalid. Lastly, we update blockMap
in ConcFsys to indicate that vblk is now mapped to p2.

Over time, the flash device accumulates obsolete data and eventually runs
out of free pages. In order to free up space for new program operations, the
filesystem carries out a procedure called erase-unit reclamation. A reclamation
procedure involves the following steps:

1. Search for all blocks that contain obsolete data. Among these blocks, select
the one with the lowest erase count by checking eraseCountMap in Device.

2. Relocate all valid pages in the selected block. This block (call it dirtyBlock)
may still contain one or more pages that hold valid data. For the purpose
of relocation, the filesystem keeps one completely erased block as a spare
(reserveBlock in Device). Each valid page is relocated from dirtyBlock
to the corresponding position in reserveBlock.

3. Erase dirtyBlock using the fErase command. This block becomes the new
reserve block for the filesystem.

After Step 3, all pages within the old reserveBlock that do not hold the relo-
cated data from dirtyBlock are free and available for programming.

Concrete Write. The writeConc operation (Fig. 1) is expressed as a constraint
between two pairs of ConcFsys and Device atoms. The pair (fsys, d) represents
the state of the filesystem at the beginning of the operation, and (fsys’, d’)
represents the state at the end. At the filesystem client level, writeConc is a
single-step transition between fsys and fsys’, modifying the filesystem in the
following ways: 1) If writeConc involves overwriting existing data in the inode,
then it updates fsys.blockMap with a new virtual-block-to-page mapping, and
2) if writeConc involves writing data beyond the current end of the inode, then
it appends one or more virtual blocks to inode.blockList.

At the flash device level, writeConc makes a sequence of calls to the flash
command fProgram, depending on the size of the input data and PAGE SIZE. In
order to model the flash operations closely to ONFi, we explicitly introduce a
sequence of intermediate device states between d and d’; each pair of adjacent
states in this sequence corresponds to a pair of pre- and post- states that are
passed as arguments to fProgram. After each step along the sequence, writeConc
maintains information about allocated-to-obsolete-page pairs and a list of new
pages to be added to the inode; this auxiliary information is used to update
fsys.blockMap and inode.blockListat the end of the operation. The signature
TranscState encapsulates all of the stateful information:

sig TranscState {
dev : Device, // Current device state
allocToObsoletePagePairs : RowAddr -> lone RowAddr, // New-old page pairs
newPageList : seq RowAddr // List of new pages to be added to inode

}

Then, we can model a sequence of flash-level transitions using a sequence of
TranscState’s, with additional constraints as follows:

302 E. Kang and D. Jackson

pred stateSeqConds[init, final: Device, stateSeq: seq TranscState, length: Int]{
stateSeq.first.dev = init // Beginning of trace is initial device state
stateSeq.last.dev = final // End of trace is final device state
#stateSeq = length + 1 // Constrain the length of sequence
no stateSeq.first.allocToObsoletePagePairs // Initially empty pairs
no stateSeq.first.newPageList // Initially empty list

}

Fig. 1 shows a core snippet from a simplified version of the full writeConc
model. Based on the Intel specification (Section 2.5) [15], we divide the operation
into two distinct phases. Phase 1 (lines 6-16) involves partitioning the input
buffer into fixed-size fragments and programming them into the flash memory.
For each i, which corresponds to the ith transition in stateSeq, writeConc
extracts a data fragment of length PAGE SIZE from the buffer (lines 9-10). Next,
writeConc retrieves the row address of the virtual block that will be overwritten
with this fragment (lines 11-12). Finally, in line 15, the predicate programVBlock
programs the data fragment into the virtual block (which will be mapped to a
new flash page) by executing fProgram and adds a (new, old) row address pair
to preState.allocToObsoletePagePairs.

If the expression (startBlkIndex + i) evaluates to an index beyond the end
of inode.blockList, then both vblock and rowAddr will be empty expressions
(lines 11 and 12). The predicate programVBlock handles this case by appending
a page to preState.newPageList. In addition, if the device is out of free pages,
programVBlock performs erase-reclamation before programming a page.

In Phase 2, we invalidate the pages that contain obsolete data and then val-
idate all of the pages that were allocated during Phase 1; for simplicity, we
present this phase as being carried out inside the predicate updatePageStatuses
(line 18). The quantified variable interDev, introduced in line 4, acts as an in-
termediate device state that joins the two phases together.

Lastly, after all of the flash-level transitions have been completed, writeConc
updates fsys.blockMap and inode.blockList using the information accumu-
lated up to the last TranscState in the state sequence (line 20).

4.2 Fault Tolerance Mechanism

Over the course of its lifetime, a flash device is susceptible to a variety of un-
expected hardware failures. Therefore, one crucial aspect of designing a flash
filesystem is its robustness in recovering from such failures. After recovery, the
filesystem must be either in a state as if an operation has never begun, or in
a state where the operation has been successfully completed. In this work, we
modeled one particular type of fault-tolerance mechanism—recovery from power
loss in the middle of a write operation. Our model is based on the mechanism
that is described in the Intel specification (Section 2.5) [15].

A power failure can occur during either Phase 1 or Phase 2 of the write
operation. We give a high-level description of the fault-tolerance mechanism in
these two distinct cases:

Formal Modeling and Analysis of a Flash Filesystem in Alloy 303

pred alpha[asys: AbsFsys, csys: ConcFsys, d: Device] {
all fid : FID |
let file = asys.fileMap[fid], inode = csys.inodeMap[fid],

vblocks = inode.blockList {
#file.contents = #vblocks * PAGE_SIZE
(all i : vblocks.inds |
let vblock = vblocks[i],

from = i * PAGE_SIZE, to = from + PAGE_SIZE - 1,
absDataFrag = file.contents.subseq[from,to],
concDataFrag = findPageData[vblock,csys,d] |
absDataFrag = concDataFrag)

}
}

assert WriteRefinement {
all csys, csys’: ConcFsys, asys, asys’: AbsFsys, d, d’: Device,

fid: FID, buffer: seq Data, offset,size : Int |
concInvariant[csys, d] and
writeConc[csys, csys’, d, d’, fid, buffer, offset, size] and
alpha[asys, csys, d] and
alpha[asys’, csys’, d’]
=> writeAbs[asys, asys’, fid, buffer, offset, size]

}

Fig. 2. Abstract Relation and Refinement Property for Write

Phase 1: At the point of the failure, one or more pages have been programmed
and their statuses have been modified to Allocated. To recover from this failure,
we set the status of every allocated page to Invalid. After recovery, the device
contains extra invalid pages, but to a filesystem client, the inode appears to have
the same data as it did at the beginning of the operation.

Phase 2: To recover from power loss during this phase, we first invalidate every
page p1 that is paired with an allocated page p2 (i.e. p2 is the replacement
for p1). Then, we validate every such p2 by setting its status to Valid. In essence,
the recovery process is here equivalent to completing the rest of Phase 2 that was
interrupted by the power failure. At the end of the recovery, the inode contains
the input data as expected by the caller of writeConc.

5 Analysis

Given the models for the abstract and concrete filesystems, we used the Alloy
Analyzer to check refinement properties for read and write operations. First, we
defined an abstraction relation alpha that maps a concrete state (represented by
a pair of ConcFsys and Device atoms) to an abstract state (represented by an
AbsFsys atom). The relation is expressed as a predicate (Fig. 2) that states that
for every file in the abstract filesystem, the concrete state includes an inode with

304 E. Kang and D. Jackson

a correctly ordered sequence of virtual blocks containing the same data elements
as in the abstract file8.

The assertion WriteRefinement posits a backwards simulation for the write
operation9. We performed backwards (rather than forwards) simulation since
alpha maps a concrete state “upwards” to an abstract state. The predicate
concInvariant defines a valid state in the concrete filesystem—for example,
that every free page in the flash device must be completely erased—and its
preservation is checked independently. When the Alloy Analyzer finds a scenario
that violates the assertion within a specified scope, it graphically displays the
counterexample using its built-in visualizer. In the final version of the model, the
analyzer returned no counterexamples for the assertion. We used a scope of 5 for
every signature in the model, with 6 flash pages, each of which was constrained
to contain 4 data elements. The total size of the filesystem was therefore 24 data
elements. The property was checked on a 3.6 GHz Pentium 4 machine with 3GB
RAM in approximately 8 hours.

Even though the size of the filesystem that we checked is too small to represent
a realistic system, we were able to find over 20 non-trivial bugs over the entire
course of our design process. These bugs were removed from the model through-
out the various iterations of our modeling task. In a typical filesystem, many
types of errors occur in “boundary cases”, which involve only a small number
of components (i.e. pages, blocks, etc.). For example, consider the model for the
readConc operation in Fig. 1. As currently shown, this operation is buggy in the
following two ways: (1) If offset is not a multiple of PAGE SIZE, then the length
of the first slot in the output buffer must be less than PAGE SIZE, and similarly,
(2) if the expression (offset + size) is not a multiple of PAGE SIZE, then the
length of the last slot in the buffer must also be adjusted accordingly. An instance
of a filesystem state with two pages is sufficient to generate a counterexample
that demonstrates both of these bugs; increasing the scope to a higher value
would not reveal any useful information about bugs of a similar nature.

6 Related Work

Our work is a contribution to the second pilot project in the Verified Software
Repository (VSR) [3]. The idea of verifying a flash filesystem as a mini-challenge
was suggested by Joshi et al. [17], and several groups are now actively working
on this project [5,7,9,13].

Filesystems were an early target for case studies in formal methods. As a his-
torically significant example, Morgan and Sufrin first formalized a specification
for a UNIX filesystem in Z [18]. Freitas and his colleagues refined an abstract
POSIX filesystem to a concrete implementation and proved the refinement re-
lation using Z/Eves [8]. Similarly, Arkoudas et al. proved a refinement relation
between an abstract filesystem and a disk-based implementation in the Athena
8 For simplicity, we restrict the size of every abstract file as shown in Fig. 2 to be a

multiple of PAGE SIZE. The complete version on the web is free of this restriction.
9 We can obtain ReadRefinement by replacing the write predicates with read.

Formal Modeling and Analysis of a Flash Filesystem in Alloy 305

theorem prover [2]. In comparison to previous two works, which employ theorem
proving, the analysis in Alloy is fully automatic, but it guarantees the correctness
of the refinement relation only up to a finite bound.

Butterfield et al. formalized NAND flash memory in Z [6], following the ONFi
specification, which formed a basis for our hardware model as well. Ferreira and
their colleagues also formalized the ONFi specification and a POSIX filesystem
in VDM++ [7]. They performed the analysis of the filesystem using the HOL
theorem prover [12] and Alloy. They used the Alloy Analyzer primarily for finding
a counterexample to proof obligations that could not be automatically discharged
by HOL, whereas we used the analyzer to perform the analysis in its entirety.

Groce et al. performed randomized testing on a POSIX filesystem implemen-
tation that is based on NAND flash memory [13]. Yang et al. used model checking
to find errors in existing filesystem implementations [25]. Although their work
is not flash-specific, the nature of their analysis is similar to ours; they deliber-
ately scaled down the size of the filesystem for increased tractability of analysis
but were still able to find numerous bugs, many of which were due to complex
interactions among a small number of components.

7 Discussion

In this project, we have shown that we were able use Alloy to successfully model
and analyze the types of complexity that arise in a flash filesystem design. We
believe that the scope we used in the final analysis was sufficient to ensure that
the refinement relation is sound, but we currently cannot justify our intuition rig-
orously. It is also possible, as it would be even if theorem proving were used, that
the concrete model harbours unintentional overconstraints that slipped through
our analysis unnoticed.

Our experience has raised a number of interesting questions about the Al-
loy language and the analyzer. First of all, due to the declarative nature of
the language, modeling multi-step operations in Alloy is not always straight-
forward. Although the language is expressive enough for describing such oper-
ations, writing certain types of control constructs (such as loops) in Alloy can
be cumbersome, since it does not support a built-in notion of an implicit global
state. In particular, in order to model changes to the device after each call to
fProgram in writeConc, we explicitly introduced a sequence of state atoms and
imposed a constraint between each pair of adjacent states. A language such as
ASM [4]—with the notion of an implicit global state—may be more suitable for
this particular aspect of the filesystem model. We are currently investigating
an extension to Alloy that will provide the user with control constructs, while
maintaining the declarative power of the language.

Our filesystem model, as one of the largest case studies that we have done
to date, has pushed the boundary of Alloy’s scalability. The analyzer uses as its
backend a relational model finder called Kodkod [23] that translates an Alloy
model to a CNF formula, which can then be handled by powerful SAT solvers.
Although checking the refinement relation in our latest model took several hours

306 E. Kang and D. Jackson

to complete, the analyzer is fully automatic, and so we were able to leave the
analyzer running unattended overnight. On the other hand, due to the exponen-
tial nature of SAT, the duration of the analysis can grow rapidly as the scope is
incremented or as additional layers of complexity are added to the model. Kod-
kod already employs a variety of techniques to reduce the size of a SAT problem,
such as symmetry breaking and sharing detection [23]; we are looking into fur-
ther opportunities for an improved scalability by leveraging available techniques
(e.g. additional decision procedures [11]).

Another useful feature of the Alloy Analyzer is the extraction of an unsatis-
fiable core [22], which highlights top-level constraints in a model that are used
to establish the correctness of an assertion. In some cases, an overconstraint
may cause an assertion to be vacuously true; the user can usually tell when this
has happened by noticing that formulas that were expected to be highlighted as
part of the core were not. The unsatisfiable core facility was very useful in this
project, and did indeed expose overconstraints on several occasions. However,
the granularity of the core can sometimes be too coarse to be useful to the user.
In particular, a top-level formula that is existentially quantified over a conjunc-
tion of sub-constraints is treated as a single constraint in the core; this grouping
might suppress potentially useful information. We are currently implementing a
mechanism that will overcome this problem and extract a finer-grained unsatis-
fiable core.

8 Future Work

While formalizing and analyzing a design model are useful exercises on their
own, one interesting question is whether the usage of the model can be extended
beyond the design into the implementation and testing phases. We are looking
into possible uses of the flash filesystem model. For example, by mapping our
model to an existing flash filesystem implementation (such as YAFFS [1]), we
can leverage the power of the Alloy Analyzer as a model finder to automatically
generate a large set of test cases. Other research questions that we are planning
to explore include simulation, model-based diagnosis, and code generation.

The current functionality of our filesystem is rather limited. For future work,
we plan to include a larger set of POSIX file operations, such as creat, open,
and close, and the support for directories. We also plan to model recovery
mechanisms for other types of failures (besides power loss), such as bad blocks
and bit corruption.

Complete versions of all Alloy models that appear in this paper are available
at http://sdg.csail.mit.edu/projects/flash.

Acknowledgements. We are grateful to Felix Chang, Greg Dennis, Vijay
Ganesh, Derek Rayside, Sivan Toledo, and Emina Torlak for helpful discussions
and feedback. This research was supported by the National Science Foundation
under Grant Nos. 0541183 and 0438897, and by the Nokia Corporation as part
of a collaboration between Nokia Research and MIT’s Computer Science and
Artificial Intelligence Lab.

Formal Modeling and Analysis of a Flash Filesystem in Alloy 307

References

1. Aleph One. YAFFS: A flash file system for embedded use, http://www.yaffs.net
2. Arkoudas, K., Zee, K., Kuncak, V., Rinard, M.: On verifying a file system imple-

mentation. In: 6th ICFEM, pp. 373–390 (2004)
3. Bicarregui, J., Hoare, C.A.R., Woodcock, J.: The verified software repository: a step

towards the verifying compiler. Formal Aspects of Computing 18, 143–151 (2006)
4. Borger, E., Start, R.F.: Abstract State Machines: A method for high-level system

design and analysis. Springer, New York (2003)
5. Butler, M., Damchoom, K., Abrial, J.-R.: Some filestore developments with Event-

B and Rodin. In: Verifiable File Store Mini-Challenge Workshop, co-located with
the 9th ICFEM (2007)

6. Butterfield, A., Woodcock, J.: Formalizing flash memory: First steps. In: 12th
ICECCS, pp. 251–260 (2007)

7. Ferreira, M.A., Silva, S.S.: J. N. Oliveira Verifying Intel flash file system core
specification. In: 4th VDM-Overture Workshop, FM 2008 (2008)

8. Freitas, L., Fu, Z., Woodcock, J.: POSIX file store in Z/Eves: an experiment in the
verified software repository. In: 12th ICECCS, pp. 3–14 (2007)

9. Freitas, L., Woodcock, J., Butterfield, A.: POSIX and the Verification Grand Chal-
lenge: a roadmap. In: 13th ICECCS, pp. 153–162 (2008)

10. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Com-
puting Surveys 37, 138–163 (2005)

11. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007)

12. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher order logic. Cambridge University Press, New York (1993)

13. Groce, A., Holzmann, G.J., Joshi, R.: Randomized differential testing as a prelude
to formal verification. In: 29th ICSE, pp. 621–631 (2007)

14. Hynix Semiconductor et al. Open NAND Flash Interface Specification. Technical
Report Revision 1.0. ONFi Workgroup (2006), http://www.onfi.org

15. Intel. Flash File System Core Reference Guide. Technical Report 304436001. Intel
Corporation (2004)

16. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)
17. Joshi, R., Holzmann, G.J.: A mini challenge: Build a verifiable filesystem. In: Ver-

ified Software: Theories, Tools, Experiments (2005)
18. Morgan, C., Sufrin, B.: Specification of the UNIX filing system. IEEE Transactions

on Software Engineering 10, 128–142 (1984)
19. Reeves, G., Neilson, T.: The Mars Rover Spirit FLASH Anomaly. In: IEEE

Aerospace Conference (2005)
20. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs

(1998)
21. The Open Group. The POSIX 1003.1, 2003 Edition Specification, http://www.

opengroup.org/certification/idx/posix.html
22. Torlak, E., Chang, F.S.-H., Jackson, D.: Finding minimal unsatisfiable cores of

declarative specifications. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008. LNCS,
vol. 5014, pp. 326–341. Springer, Heidelberg (2008)

http://www.yaffs.net
http://www.onfi.org
http://www.
opengroup.org/certification/idx/posix.html

308 E. Kang and D. Jackson

23. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: 13th TACAS, pp.
632–647 (2007)

24. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall, NJ (1996)

25. Yang, J., Twohey, P., Engler, D., Musuvathi, M.: Using model checking to find
serious file system errors. In: 6th OSDI, pp. 273–288 (2004)

Unit Testing of Z Specifications

Mark Utting1 and Petra Malik2

1 Department of Computer Science, The University of Waikato, NZ
marku@cs.waikato.ac.nz,

2 Faculty of Engineering, Victoria University of Wellington, NZ
petra.malik@mcs.vuw.ac.nz

Abstract. We propose a simple framework for validation unit testing
of Z specifications, and illustrate this framework by testing the first few
levels of a POSIX specification. The tests are written in standard Z, and
are executable by the CZT animator, ZLive.

1 Introduction

In [Hoa03], Hoare proposes a grand challenge for computer science—a verifying
compiler—and inspired researchers from all over the world to work jointly to-
wards this ambitious goal. A key part of the grand challenge is a series of case
studies [BHW06], which provide examples of specified and verified code and can
be used as benchmarks to exercise and test current and future verification tools.

The Mondex case study was tackled as a first pilot case study in 2006. Several
teams using a variety of techniques and tools worked on a fully automated proof
of the Mondex smart-card banking application. A verifiable filesystem has been
proposed [JH07] as another mini challenge. An initial small subset of POSIX
has been chosen [FFW07] and participants of the ABZ 2008 conference were
challenged to contribute to this project.

Lots of work and effort is typically put into either deriving or verifying a cor-
rect lower level specification or implementation from an abstract specification.
We argue that before those activities, the abstract specification should be care-
fully validated against the requirements. While there is hope that verification
can be mostly automated, validation remains a task for human designers.

This paper proposes a simple approach to validate Z specifications by writing
positive and negative unit tests for each schema within the specification. These
tests give the designer more confidence that their specification reflects their in-
tentions, allows regression testing after each modification of the specification,
and can help the unfamiliar reader of the specification to understand the specifi-
cation more quickly and easily. The framework has been used to design tests for
the first few levels of a refactored version of Morgan and Suffrin’s Z specification
of the POSIX file system [MS84]. The tests were executed and checked by the
CZT animator ZLive.

The structure of this paper is as follows. In Section 2, we present our testing
framework. Section 3 gives an overview of the ZLive animator, which is used
to evaluate the tests. Section 4 describes the refactored POSIX specification.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 309–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

310 M. Utting and P. Malik

In Section 5, the tests for the data system are explained and Section 6 shows
how they can be promoted to test the storage system. Finally, Section 7 gives
conclusions.

The main contributions of the paper are: the unit testing framework for val-
idating Z specifications, a simple style for promoting tests from one level to
another, the refactored and standard-compliant POSIX specification, the exam-
ple unit tests we have developed for it, and the use of the ZLive animator to
execute those tests.

2 How to Test a Z Specification

This section introduces a simple framework for expressing unit tests of a Z spec-
ification. We assume that the specification is written in the common Z sequential
style, with each section containing a state schema, an initialisation schema, sev-
eral operation schemas, as well as various auxiliary definitions and schemas.

The first question that must be asked is why we do not use an existing testing
framework for Z, such as the Test Template Framework (TTF) [Sto93, CS94] or
Heirons’ Z-to-FSM approach [Hie97]. The main difference is that they all aim at
generating tests from a Z specification, in order to test some implementation of
that specification. But in this paper, we want to design some tests that actually
test the Z specification itself. So the goal of those approaches is verification (of
some implementation), whereas our goal is validation (of the Z specification).
This results in quite a different style of testing.

An important philosophical difference is that when our aim is the validation of
a Z specification, the correctness of our tests must be ensured by some external
means (not just the specification itself), to avoid circular reasoning. That is, we
cannot generate tests from the specification, then test them against that same
specification, and expect to find any errors. There needs to be some independence
between the tests and the system being tested. In this paper we avoid such
circular reasoning by designing our tests manually, based on the informal English
description of the POSIX operations. So the oracle for the correctness of the tests
is our human understanding of the POSIX requirements.

A practical difference is that when testing an implementation (for verification
testing), we can control its inputs but not its outputs, whereas when testing a
Z specification (for validation purposes) we can ask arbitrary questions about
inputs or outputs. So when validating a Z specification, we can use a richer
variety of tests. In this paper, by a test of a Z schema Op we mean a boolean
property of some finite/small subset of S that can (in principle) be enumerated
in a reasonable time. For example, we may be able to test Op by instantiating it
with a specific output value and asking which input values could generate that
output value – such ‘tests’ are not possible on black-box implementations.

Another difference is that when validating a specification, we want to design
both positive tests, which test that a given behaviour is allowed by the spec-
ification, and negative tests, which test that a given behaviour is not allowed

Unit Testing of Z Specifications 311

n

5 n’

543210−1−2−3−4−5

Fig. 1. A graph of the solutions to the Wedge schema

by the specification. In contrast, when testing whether an implementation is a
refinement of a specification, the implementation is usually free to add behav-
iour outside the precondition of the specification and we can therefore use only
positive tests.1

To illustrate our testing framework, we shall use a simple example specification
given by the following specification, which defines the shape shown in Figure 1.
Our tests will be written using standard Z conjecture paragraphs, so that they
can be checked by theorem provers or by the ZLive animator. For each section S ,
we write the unit tests for that section within a separate section (typically called
STests) that has S as a parent. This clearly identifies the tests and separates
them from the rest of the specification, so that tools that operate on the main
specification can ignore the unit tests.

sectionwedge parents standard toolkit

State == [n : − 10 . . 10]
Wedge == [∆State | n ∗ n + n ′ ∗ n ′ ≤ 25; n + n ′ ≤ 5; 0 ≤ n ′]

2.1 Positive Tests

The first kind of testing we want to do is positive tests to check that an operation
has a desired input-output behaviour. When specifying tests, it is usual to specify
the expected output values as well as the input values, so we write all the inputs
and output values as a Z binding and use a membership test. Here are two
examples that test the non-deterministic output behaviour of Wedge when the
input n is zero.

sectionwedgeTest parentswedge

1 Note that a test of exceptional behaviour that is formalised in the specification is a
positive test.

312 M. Utting and P. Malik

Wedge0Gives0 �? 〈| n == 0,n ′ == 0 |〉 ∈ Wedge

Wedge0Gives5 �? 〈| n == 0,n ′ == 5 |〉 ∈ Wedge

Note that since 2007, the Z standard requires conjectures to be written within
a LATEX theorem environment, and allows each conjecture to be given a name.
Our naming convention for tests is that the name of a test should start with the
name of the operation being tested, followed by some phrase that expresses the
essential property of the test.

An alternative style of writing a suite of positive tests is to name each test
tuple, group the tuples into a set, and then test them using a single subset
conjecture.

Wedge0Gives0 == 〈| n == 0,n ′ == 0 |〉
Wedge0Gives5 == 〈| n == 0,n ′ == 5 |〉

WedgePos �? {Wedge0Gives0,Wedge0Gives5} ⊆ Wedge

2.2 Negative Tests

It is also useful to perform negative tests to validate an operation. For example,
we may want to check that an input value is outside the precondition of the
operation, or check that a certain output can never be produced by the operation.
The idea is to validate the specification by showing that its behaviour is squeezed
in between the set of positive tests and the set of negative tests. The more positive
and negative tests that we design, the more sure we can be that we have specified
the desired behaviour, rather than allowing too many or too few behaviours.

We can write negative tests using a negated membership test (test �∈ Op)
or, equivalently, we can test that the tuple is a member of the negated schema
(test ∈ ¬ Op). Our conjecture naming convention is the same as for positive
tests, but the phrase after the operation name usually contains a negative word
such as not or cannot to emphasize that it is a negative test.

Wedge0NotNeg �? 〈| n == 0,n ′ == − 1 |〉 �∈ Wedge

Wedge0Not6 �? 〈| n == 0,n ′ == 6 |〉 ∈ ¬ Wedge

We can also test just the precondition of the operation.

WedgePreNot6 �? 〈| n == 6 |〉 �∈ preWedge

As we did for positive tests, we may also combine several negative tests into a
group. In this case, our conjecture may be written as tests ⊆ ¬ Op, or equiv-
alently we may check that the intersection of the negative test suite and the
operation is empty, tests ∧ Op = ∅. The latter style is often more convenient,
since it allows us to write tests using schema notation, and to omit variables

Unit Testing of Z Specifications 313

that we are not interested in (because the schema conjunction will expand the
type of tests to match the type of Op). For example, the following two negative
test suites check that 6 can never be an input for Wedge, and that 6 can never
be an output of Wedge.

Wedge6Not �? ([n == 6] ∧ Wedge) = ∅

WedgeNot6 �? ([n ′ == 6] ∧ Wedge) = ∅

It is sometimes convenient to write these kinds of negative test values within the
operation schema (e.g., [Wedge | n = 6] = ∅), which can make the tests even
more concise.

2.3 Promoting Tests

A heavily-used pattern in the POSIX Z specification is the use of promotion to
lift the operations of one data type up to work on a more complex data type. It is
useful to be able to promote the tests of those operations as well. To illustrate an
elegant way of doing this, we shall promote the Wedge tests up to the following
function space:

sectionmanyStates parentswedge

ManyStates == [states : N → Z]

ΦManyStates
∆State
∆ManyStates
curr? : N

(curr? �→ n) ∈ states
states ′ = states ⊕ {curr? �→ n ′}

We promote the Wedge operation up to the ManyStates level simply by con-
joining Wedge with the framing schema ΦManyStates . The effect is to apply the
Wedge operation to just the curr? element of the states function.

ManyWedge == ΦManyStates ∧Wedge

We use the same framing schema to promote the tests. But to ensure that all
inputs of the promoted operation are given, we find it useful to further instantiate
the framing schema ΦManyStates , to obtain a testing-oriented framing schema
(ΦManyStatesTest) that also specifies which curr? input will be tested and an
initial value for the states mapping.

sectionmanyStatesTest parentsmanyStates ,wedgeTest

ΦManyStatesTest == [ΦManyStates ; curr? == 1 | states = {0 �→ 3, 1 �→ n}]

314 M. Utting and P. Malik

ManyWedgePos �? ({Wedge0Gives0,Wedge0Gives5} ∧ ΦManyStatesTest) ⊆ ManyWedge

In fact, this style of promoted test theorem will always be true, because for any
test suite OpTests of an operation Op, and any promoted operation defined as
OpP == Op ∧ ΦP , it is true that:

(OpTests ⊆ Op) ∧ (ΦPTests ⊆ ΦP)⇒ (OpTests ∧ ΦPTests ⊆ OpP)

Proof: follows from the monotonicity of ⊆ and schema conjunction. �
However, there is a possibility that some of the promoted tests might be incon-
sistent with the framing schema (either ΦP or ΦPTests), which would mean that
the set OpTests ∧ ΦPTests would be empty or smaller than our original set of
tests Optests . If we want to check that all of the original tests can be promoted
without being lost, we can check the conjecture (ΦPTests
OpTests) = Optests .

If this mass-promotion test fails, we may want to check each promoted test
vector v ∈ Optests separately. To do this, we can define the promoted vector as
pv == (µ ΦPTests ∧ {v}), and then we can test pv ∈ OpP .

3 The ZLive Animator

One of the tools available in the CZT system is the ZLive animator. It is the
successor to the Jaza animator for Z [Utt00], and its command line interface is
largely backwards compatible with that of Jaza. However, the animation algo-
rithm of ZLive is quite different and more general. It is based on an extension
of the Z mode system developed at Melbourne University by Winikoff and oth-
ers [KWD98, Win98].

When an expression or predicate is evaluated in ZLive, it is parsed and type-
checked, and then unfolded and simplified using the transformation rules system
of CZT [UM07]. This unfolds schema operators, expands definitions and performs
a variety of simplifications. For example, the test 〈| n == 0,n ′ == 0 |〉 ∈ Wedge
is unfolded to:

〈| n == 0,n ′ == 0 |〉 ∈ [n : − 10 . . 10; n ′ : − 10 . . 10 |
n ∗ n + n ′ ∗ n ′ ≤ 25; n + n ′ ≤ 5; 0 ≤ n ′]

The resulting term is then translated into a sequence of primitive relations, each
of which corresponds to a single Z operator. For example, the term n∗n+n ′∗n ′ ≤
25 is translated into a sequence of four relations:

FlatMult(n,n, tmp1), // n ∗ n = tmp1
FlatMult(n ′,n ′, tmp2), // n ′ ∗ n ′ = tmp2
FlatPlus(tmp1, tmp2, tmp3), // tmp1 + tmp2 = tmp3
FlatLessThanEq(tmp3, 25) // tmp3 ≤ 25

ZLive next performs a bounds analysis phase, which does a fixpoint calculation
to infer conservative lower and upper bounds for each integer variable, bounds

Unit Testing of Z Specifications 315

on the size and contents of sets, and aliasing between variables. This infers that
n ∈ − 10 . . 5 and n ′ ∈ 0 . . 10.

The last analysis phase attempts to reorder the sequence of primitive Flat . . .
relations into an efficient computation order. Each of the relations can be ex-
ecuted in one or more modes. A mode determines whether each parameter is
an input or an output. In addition, ZLive estimates the expected number of
results for each mode. For example, the mode IIO:1 for FlatPlus(x , y, z) means
that x and y are inputs and z is an output (with one result expected), while
mode III:0.6 means they are all inputs and there is a 60% probability of getting
a result. The reordering algorithm gives preference to modes that have a small
number of expected results, which means that filter predicates are moved as near
to the front as possible, which reduces the search space.

Finally, ZLive enumerates all possible results via a depth-first backtracking
search of all the solutions generated by the sorted sequence. However, for mem-
bership tests such as A ∈ S , where A is a known value and S is a set compre-
hension, it substitutes the value of A into the set comprehension for S and then
checks whether the set is empty or not – this avoids generating all of S .

ZLive can usually evaluate expressions that range over finite sets only, and
can sometimes handle expressions that contain a mixture of finite and infinite
sets. So it is a useful tool for checking the correctness of tests, and can sometimes
be used to generate one or all solutions of a partially specified test or schema.

4 POSIX Standardized

In this section, we briefly describe the refactored POSIX specification. The main
change was to break up the original specification into sections. Figure 2 shows
the structure of the resulting Z sections, using a notation similar to a UML class
diagram. Each box represents a Z section, and the three parts within each box
show the name of the section, the main variables within the state schema of that
definition, and the names of its operation schemas (we omit Init schemas and
auxiliary schemas). We also added a state schema and initialization schema to
some of the sections (e.g., the ds section) and made several naming changes so
that the specification follows the usual Z sequential style more closely.

section ds parents standard toolkit

This section specifies the data system (ds) of the filing system.

BYTE == 0 . . 255
ZERO == 0
FILE == seqBYTE
DS == [file : FILE]
InitDS == [DS ′ | file ′ = 〈〉]

The after operator returns the subfile that starts after a given offset. We write
this as an explicit definition (==) rather than axiomatically, because it is clearer,
avoids possible inconsistency, and is easier to evaluate.

316 M. Utting and P. Malik

standard toolkit

�

ds (Data System)

FILE == seqBYTE
file : FILE

readFILE ,writeFILE
�

ss (Storage System)

fstore : FID �→ FILE

createSS , destroySS , readSS ,writeSS

�

cs (Channel System)

cstore : CID �→ CHAN

openCS , closeCS

�

as (Access System)

SS ; CS

readAS ,writeAS , seekAS

�

ns (Name System)

nstore : NAME �→ FID

createNS , lookupNS , destroyNS , lsNS

�

fs (File System)

SS ; CS ; NS ; usedfids : P FID

createFS , openFS , readFS ,writeFS , closeFS ,
unlinkFS0, destroyFS , linkFS ,moveFS

���������

dstest

���������

�

sstest

���������

�

· · ·

Fig. 2. Overview of Z Sections in the Refactored POSIX Specification

Unit Testing of Z Specifications 317

function 42 leftassoc(after)

after == (λ f : FILE ; offset : N • (λ i : 1..#f − offset • f (i + offset)))

The readFile operation is defined similar to the one in Morgan and Sufrin’s
specification but we use the usual Ξ notation for convenience here.

readFILE
ΞDS
offset?, length? : N

data! : FILE

data! = (1 . . length?) � (file after offset?)

The auxiliary function zero returns a FILE containing a given number of ZERO
bytes. The infix operator shift takes a FILE and an offset and shifts the content
of the file by the offset. Once again, we give an explicit rather than an axiomatic
definition.

zero == (λn : N • (λ k : 1 . . n • ZERO))

function 42 leftassoc(shift)

shift == (λ f : FILE ; offset : N • (1 . . offset)−� (zero offset � f))

While the readFILE operation does not change the file, the writeFile opera-
tion given next changes the file. It is defined similar to the writeFile operation
given in Morgan and Sufrin’s specification but we use the usual ∆ notation for
convenience here.

writeFILE
∆DS
offset? : N

data? : FILE

file ′ = (zero offset?⊕ file)⊕ (data? shift offset?)

5 Testing the DS Specification

section dstest parents ds

We start by testing the InitDS schema.

InitDSEmpty �? 〈| file ′ == 〈〉 |〉 ∈ InitDS

InitDSNot3 �? 〈| file ′ == 〈3〉 |〉 �∈ InitDS

318 M. Utting and P. Malik

For readFILE , we design a set of positive tests that all work on the same input
file contents, eg1. So when writing the set of tests, it is convenient to use the
schema calculus to factor out the unchanging file,file ′ from the other test values.

eg1 == 〈1, 255〉
dsPos == [file == eg1; file ′ == eg1] ∧

{〈| offset? == 0, length? == 0, data! == 〈〉 |〉,
〈| offset? == 0, length? == 3, data! == 〈1, 255〉 |〉,
〈| offset? == 1, length? == 1, data! == 〈1〉 |〉,
〈| offset? == 3, length? == 2, data! == 〈0, 0〉 |〉
}

readFILEPos �? dsPos ⊆ readFILE

Here is the output from ZLive when we use its conjectures command to eval-
uate all the conjectures in this dstest section.2

dstest> conjectures
Conjecture on line 7 (InitDSEmpty)
true
Conjecture on line 11 (InitDSNot3)
true
Conjecture on line 29 (readFILEPos)
false

To investigate the failing conjecture readFILEPos on line 29, we ask ZLive to
evaluate dsPos \readFILE . This displays just the test vectors that are not mem-
bers of readFILE , which tells us that the third and fourth tests failed. For each
of these, we investigate why it failed by using the ZLive ‘do’ command to search
for any solution to the readFILE schema with the given input values. For the
third test, we get this output:

dstest> do [readFILE | file=eg1; offset?=1; length?=1]

1 : 〈| file == {(1, 1), (2, 255)}, file ′ == {(1, 1), (2, 255)},
offset? == 1, length? == 1, data! == {(1, 255)} |〉

Oops, this test should have had 255 in data! rather than 1, because in POSIX,
offset? = 1 refers to the second byte of the file.

dstest> do [readFILE | file=eg1; offset?=3; length?=2]

2 We have added the conjecture names into the ZLive output by hand in this example,
but hope to automate this in the future. The problem is that the Z standard cur-
rently does not pass the conjecture names from the LATEX markup to the Unicode
markup, so getting access to the names within the parser and ZLive will require
some extensions to the Z standard, which we have not yet made.

Unit Testing of Z Specifications 319

1 : 〈| file == {(1, 1), (2, 255)}, file ′ == {(1, 1), (2, 255)},
offset? == 3, length? == 2, data! == {} |〉

Ah, of course! Reading past the end of the file should return empty data!, rather
than zeroes. (When designing this fourth test, Mark was incorrectly thinking of
the behaviour of the Write command past the end of the file, which inserts
zeroes automatically.) Once these two errors in the expected output values are
corrected, all tests give true.

5.1 Negative Tests for readFILE

Our first two negative tests check that − 1 is not a valid input for offset? or
length?. In the latter test (ReadNotLenNeg), we show how we can write the test
values inside the readFILE schema, which can sometimes be more convenient.

ReadNotOffNeg �? ([offset? == − 1] ∧ readFILE) = {}
ReadNotLenNeg �? [readFILE | length? = − 1] = {}

The remaining negative tests are partially specified, so each conjecture actu-
ally checks a set of negative test tuples. The ReadNoChange test checks that
the read operation does not change the contents of our example file eg1. The
ReadNotLonger test checks that the output data! is never longer than the con-
tents of file eg1. This is actually proving that the property #data! > 2 is false
for all lengths 0 . . 3, which is a form of finite proof by exhaustive enumeration.

ReadNoChange �? [readFILE | file = eg1; file ′ �= eg1] = {}
ReadNotLonger �? [readFILE | file = eg1; offset? = 0; length? < 4; #data! > 2] = {}

This illustrates that there is a continuum between testing and proof. We usu-
ally test just one input-output tuple at a time, but the idea of testing can be
extended (as in this paper) to allow a given property to be evaluated for all
members of a finite/small set. This is similar to model-checking, where prop-
erties of finite systems are proved by exhaustive enumeration. Animators like
ZLive use a mixture of symbolic manipulation techniques and exhaustive enu-
meration. The more they use symbolic manipulation, the closer they become to
general theorem provers. So the testing-proof continuum ranges from testing of
single input-output tuples, through enumeration (or model-checking) of finite
systems, to full symbolic proof.

We can write positive and negative unit tests for the writeFile operation in a
similar way to readFile, but space does not permit us to show the details of this.

6 Testing the SS Specification

The storage system is reponsible for mapping file identifiers FID to file contents.
While testing, we instantiate FID to naturals, so test values are easier to write.

320 M. Utting and P. Malik

section ss parents ds

FID == N

SS == [fstore : FID �→ FILE]

The ss section then defines createSS and destroySS operations, plus the following
framing schema, which is used to promote readFILE and writeFILE .

ΦSS
∆SS ; ∆DS ; fid? : FID

fid? ∈ dom fstore
file = fstore(fid?)
fstore ′ = fstore ⊕ {fid? �→ file ′}

readSS == (ΦSS ∧ readFILE) \ (file,file ′)

section sstest parents dstest , ss

To promote the ds tests, we define a special case of the ΦSS framing schema.

ΦSSTest == [ΦSS | fid? = 101; fstore = {100 �→ 〈3, 5〉, 101 �→ file}]

Then we can promote the dsPos tests and check if they satisfy readSS .

SSTestPos �? (dsPos ∧ ΦSSTest) \ (file,file ′) ⊆ readSS

Unfortunately, due to an inefficiency in its sorting/optimization algorithms,
ZLive currently says the left side of the ⊆ is too large to evaluate. However,
it should be capable of evaluating it, and we expect that it will be able to in the
next few months.

7 Conclusions

In this paper, we have proposed a framework for unit testing Z specifications. The
framework uses the sections and conjectures of the Z standard to allow various
kinds of validation tests to be expressed in an elegant and concise style. The
ability to promote a large set of tests in a single expression makes it practical to
develop multiple layers of tests, matching the layers of the specification. Testing
is a useful validation technique for specifications, especially when the execution
of the tests can be automated, as we have done with ZLive. We believe that most
Z specifications should include validation unit tests in this style.

We plan to add a unittest command to ZLive that executes all the unit tests
in all the sections whose names end with ‘Test’. This will make it easy to rerun
all unit tests after each modification of a specification, so will support regression
testing during development of Z specifications. It would also be useful if ZLive
measured structural coverage metrics of the operation schemas during testing,

Unit Testing of Z Specifications 321

so that we can see what level of, say, branch coverage (each predicate evaluating
to true and to false) our test suite obtains.

Our style of unit testing is quite complementary to the specification valida-
tion facilities of ProB/ProZ [LB08], because we focus on unit testing of each
individual operation schema using a manually designed test suite, while ProB
focusses on automatic testing of sequences of operations, and tests only a few
input values of each operation. The goal of our unit testing is to test the input-
output functionality of each operation, while the main goal of ProB is to try
to validate several standard system properties such as absence of deadlock and
preservation of invariants.

The refactored Z specification of POSIX, and our simple test suite, may be
a useful starting point for other researchers who want to work on refinement
or proofs about the POSIX case study. It is available from the CZT sourceforge
website [CZT]. Interestingly, the original POSIX specification did include several
examples that used test values to illustrate some of the operations, but those
examples were written within the English commentary, so were not even type-
checked, let alone proved correct. Our unit tests are more systematic and are
formalized so that they can be checked automatically by an animator like ZLive.

References

[BHW06] Bicarregui, J.C., Hoare, C.A.R., Woodcock, J.C.P.: The verified software
repository: a step towards the verifying compiler. Formal Aspects of Com-
puting 18(2), 143–151 (2006)

[CS94] Carrington, D.A., Stocks, P.: A tale of two paradigms: formal methods and
software testing. In: Proceedings of the 8th Z User Meeting (ZUM 1994),
June 1994, pp. 51–68. Springer, Heidelberg (1994)

[CZT] Community Z tools, http://czt.sourceforge.net
[FFW07] Freitas, L., Fu, Z., Woodcock, J.: POSIX file store in Z/EVES: an experi-

ment in the verified software repository. In: ICECCS 2007: Proceedings of
the 12th IEEE International Conference on Engineering Complex Computer
Systems, pp. 3–14. IEEE Computer Society, Los Alamitos (2007)

[Hie97] Hierons, R.: Testing from a Z specification. Software Testing, Verification
& Reliability 7, 19–33 (1997)

[Hoa03] Hoare, T.: The verifying compiler: A grand challenge for computing re-
search. Journal of the ACM 50(1), 63–69 (2003)

[JH07] Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable file system.
Formal Aspects of Computing 19(2), 269–272 (2007)

[KWD98] Kazmierczak, E., Winikoff, M., Dart, P.: Verifying model oriented specifi-
cations through animation. In: Proceedings of the 5th Asia-Pacific Software
Engineering Conference, pp. 254–261. IEEE Computer Society Press, Los
Alamitos (December 1998)

[LB08] Leuschel, M., Butler, M.: ProB: An Automated Analysis Toolset for the
B Method. Journal Software Tools for Technology Transfer (page accepted
for publication, 2008)

[MS84] Morgan, C., Sufrin, B.: Specification of the UNIX filing system. IEEE Trans-
actions on Software Engineering (1984)

http://czt.sourceforge.net

322 M. Utting and P. Malik

[Sto93] Stocks, P.: Applying Formal Methods to Software Testing. PhD the-
sis, The University of Queensland (1993), http://www.bond.edu.au/it/
staff/publications/PhilS-pubs.htm

[UM07] Utting, M., Malik, P.: Transforming Z with rules. In: ZUM 2007 at ICECCS
2007 in conjunction with FMinNZ 2007, Auckland (July 2007)

[Utt00] Utting, M.: Data structures for Z testing tools. In: Schellhorn, G., Reif, W.
(eds.) FM-TOOLS 2000, 4th Workshop on Tools for System Design and
Verification, vol. 2000-07, pp. 2000–2007. Ulmer Informatik Berichte (May
2000)

[Win98] Winikoff, M.: Analysing modes and subtypes in Z specifications. Technical
Report 98/2, Melbourne University (1998)

http://www.bond.edu.au/it/
staff/publications/PhilS-pubs.htm

Autonomous Objects and Bottom-Up

Composition in ZOO Applied to a Case Study of
Biological Reactivity

Nuno Amálio1, Fiona Polack2, and Jing Zhang3

1 Dept of Computing, City University, Northampton Sq, London, EC1V 0HB, UK
nuno.amalio@gmail.com

2 Dept of Computer Science, University of York, York, YO10 5DD, UK
fiona@cs.york.ac.uk

3 China Exim Bank, DongCheng District, Beijing 100009, P.R. China
jackiezhang219@hotmail.com

Abstract. As part of our work on the formal analysis of object-oriented
models, we turn to systems where many autonomous individuals inter-
act to give rise to complex collective behaviour. We adapt our ZOO [1,2]
structuring and apply it to a case study based on a published model of
part of the immune system [3]. The formalisation calls for a bottom-up
solution with no central control over individual units, and includes an
approach to represent feedback channels enabling broadcast communica-
tion between individuals and across levels.

Keywords: object-orientation, Z, complex systems, statecharts.

1 Introduction

Natural systems often comprise many autonomous individuals interacting lo-
cally to give rise to complex collective behaviour. The analogy of individual and
object suggests that the object-oriented (OO) paradigm is suited to modelling
such systems. However, more classical OO design builds collective behaviour
as orchestrations (or collaborations) of object computations with a clear centre
of control. Designers use modelling notations, such as UML collaboration and
sequence diagrams [4], to specify such central orchestrations. They use design
patterns, such as Mediator [5] and Controller [6], to build units that encapsu-
late the logic of object orchestration. In systems characterised by numerous and
complex interactions among individuals, explicit control is no longer possible or
desirable.

We illustrate an approach using our ZOO structuring to model such sys-
tems. The approach is based on a representation of autonomous objects that
are capable of sensing events, and of reacting to them when appropriate, and
on bottom-up composition of local structures to bring about global behaviour
with no central control. We use a case study of biological reactivity [3], a typical
example of such systems. We focus on modelling issues, rather than on biological

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 323–336, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 N. Amálio, F. Polack, and J. Zhang

aspects of the case study. The approach differs from our previous representation
of statecharts [1,2], where objects are passive units, reacting to events only when
stimulated by central control.

2 The Case Study Model

Fig. 1. Main classes involved
in T-cell activation

The original case study comes from the inter-
disciplinary work of Irun Cohen, David Harel
and others, and concerns the events that take
place in a cell following the engagement of a
T-cell antigen receptor (TCR) by its cognate
ligand. These events can lead either to cellu-
lar activation (lymphokine production and cell
proliferation) or to anergy (a state of unrespon-
siveness). Kam, Harel and Cohen [3,7] rework a
state-transition model in a simple Boolean for-
malism [8] to a diagrammatic model compris-
ing a class diagram and a suite of statecharts.

2.1 A T-cell class Diagram

The original model represents the static structure of T-cell activation in a class
diagram and text commentary [3,7]. In figure 1, we rework this to a UML-style
class diagram. In the diagram,

– TCR and PTK are components of the Tcell class. This is represented as the
composition associations ItsPTk and ItsTCR.

– Ligand and TCR are linked by the Bind association. Note that we change the
multiplicity of the association (originally it was 1 − 1); this is required by
our semantics, for consistency with the statecharts (see discussion).

– TCR and PTK are associated by the Interact association.
– In all classes, the st attributes record the current state of an object as defined

by its class’s statechart. The recTm attributes are used by objects to keep
track of the passage of time.

2.2 Statecharts

In the statecharts of [3], each class has its own events, objects are capable of
generating events on other objects, and global behaviour is based on chain re-
actions: from an event coming from the environment or some time delay, an
object reacts and may cause further reactions on other objects. In our model,
events come from the environment and they are shared, each being propagated
to all objects, which then decide autonomously whether they should react or
not. These autonomous object reactions, however, must not take place in an un-
constrained way: they must be synchronised and subject to feedback from other
objects. What was in [3] a chain reaction, where some object would generate

Autonomous Objects and Bottom-Up Composition in ZOO 325

(a) Ligand (b) TCR

(c) PTK

Fig. 2. Statecharts of classes Ligand (model with rebinding), TCR and PTK

events on other objects, is in our model a single synchronised event subject
to feedback. To allow this we introduce the notion of a feedback channel to
enable objects to broadcast information and receive feedback. We show how we
represent feedback channels in ZOO and introduce a special notation to represent
them in statecharts.

Figures 2 and 3 present statecharts of classes Ligand, TCR, PTK and Tcell. These
are the result of a meaning-preserving refactoring of the original statecharts (see [3]
for a detailed explanation). We label every state transition with an event name;
those corresponding to timing delays have a timing pre-condition on the appropri-
ate state transition. As discussed above, the evaluation of a timing pre-condition
must affect all objects that share that event; we use the following notation to rep-
resent the feedback channel that allows this: (a) a state transition pre-condition
with the symbol ! means that the object broadcasts the result of evaluating the
pre-condition to other objects; (b) a state transition pre-condition with the sym-
bol ? means that the object receives feedback regarding the pre-condition. Because
events are shared, events evBindLigand and evTCRBound of [3] are merged into
evBindLigandAndTCR, and event evTCRFree becomes evFreeLigandAndTCR. We
also collapse superstates in the originaldiagrams. Superstates are a notational con-
vention to reduce the overall number of transitions [9]; in [3] superstates do not
reduce the number of transitions so the structure can be simplified.

3 The ZOO Model

ZOO [2,1] is an OO style for Z that uses the logical concept of views, each
describing one aspect of an OO system. A ZOO model is built incrementally
and in a layered fashion, view-by-view.

326 N. Amálio, F. Polack, and J. Zhang

Fig. 3. The statechart of class Tcell

A ZOO model is built from structures representing the main OO concepts: ob-
jects, classes, associations and system. An object is represented as an atom, a mem-
ber of the set of all possible objects, and of the set of possible objects of its class. In
ZOO, a class is a promoted Zabstract data type [10]with a dual representation.The
class intension (the inner type)defines a class in termsof properties sharedby itsob-
jects (for example, a class Person with properties name and address). Class exten-
sion (the outer type) defines a class in terms of its existing object instances (for ex-
ample, Person is {MrSmith,MrAnderson,MsFitzgerald}). An association relates
objects of classes and denotes a set of object tuples describing linked objects. The
ZOO representation is as a Z relation between class objects. Systems are ensembles
of classes and associations,with properties expressed in terms of the ensemble. The
structure of a ZOO system of two classes and an association is shown in figure 4.

Fig. 4. Objects (oA, oB), classes
({oA �→ StA}, {oB �→ StB}), asso-
ciations ({oA, oB}) and the system
in ZOO

The following highlights the most inter-
esting issues regarding the ZOO specifica-
tion of the biological system. The complete
ZOO specification is available online [11].
The reader is referred to [2,1] for a de-
tailed explanation on the structure of a ZOO
specification.

3.1 Time and Events

To use ZOO with the statecharts, we need
to consider how to handle time and events.

Time, because the behaviour of objects is subject to characteristic time delays.
Events, because they differ from our previous our previous work [2] on state-

Autonomous Objects and Bottom-Up Composition in ZOO 327

charts, where events were class operations that affect one class only; here events
are global and they can affect various objects.

In the ZOO specification [11], time and events are defined in the structural
view. The type TIME represents time as a set of time-points isomorphic to the
natural numbers. This gives a simple discrete view of time that is enough for
our purposes and admits use of integer operators. The constants corresponding
to the characteristic time delays of [3] are defined axiomatically to be of type
TIME . Events (figures 2 and 3) are defined as a Z free type.

3.2 States, State Transitions and Feedback Channels

We need to handle states and transitions between them and the special case of
feedback that is associated with events. The following shows how we handle this
in ZOO’s structural and intensional views.

Structural View. We need to introduce a feedback channel to broadcast the
evaluation of pre-conditions. This is defined in the structural view (see [11]). We
introduce the set TCEvent of all events that are time constrained and whose
evaluation of timing pre-conditions is to be broadcast. We also define the type
EvPreEval of sets of TCEvent , an instance of which indicates the event time
pre-conditions that are true. Finally, the operator IsTrueEvPre, which describes
a property of sets of TCEvent and EvPreEval , indicates whether the evaluation
of the pre-condition is true in a set of pre-condition evaluations; this is just
an abbreviation for set membership, but provides a useful abstraction making
expressions involving timing pre-conditions easier to read.

TCEvent ==
{evBindLigandAndTCR,
evFreeLigandAndTCR,
evPTKActive,
evPTKInactive, evPosSigOff }

EvPreEval == P TCEvent

IsTrueEvPre : P(TCEvent × EvPreEval)

∀ tev : TCEvent ; evpreEv : EvPreEval •
IsTrueEvPre(tev , evpreEv)
⇔ tev ∈ evpreEv

Intensional View. As in [2], the intensional view includes a type to repre-
sent statechart states. In [11], an attribute st in each class intension records the
current state; in the class’s initialisation st is equated to the statechart’s initial
state. A class whose objects need to track time has a recTm attribute. This is ini-
tialised with the current system time, and updated on each event that the class’s
objects need to respond to; the current time is provided by the environment as
the input now?. This is illustrated here for the Ligand class.

LigandST ::= Lfree | Lbound

Ligand
st : LigandST
recTm : TIME

LigandInitI
now? : TIME

LigandInit
LigandInitI
Ligand ′

st ′ = stLfree
recTm ′ = now?

328 N. Amálio, F. Polack, and J. Zhang

A statechart transition is represented by a Z operation schema, with an event
(ev?), current time (now?) and a set of pre-condition evaluations to communicate
or receive feedback (evPreEval?) as inputs. We define the conditions under which
the transition’s pre-condition is true to communicate feedback and we require
the pre-condition to be true. The pre-condition requires (a) the event to be that
specified for the transition, (b) the object’s current state to be the before state of
the transition, and (c) for a transition with a timing condition, the time elapsed
since the last recorded time must be the same as the relevant timing delay. The
postcondition says (a) that the current state becomes the transition’s after state
and (b) that the recorded time becomes the current time. The definitions below
specify how a Ligand broadcasts feedback and how a TCR makes use of feedback
received from a Ligand object.

Ligand∆FrFreeToBound
∆Ligand
now? : TIME
ev? : Event
evpreEval? : EvPreEval

IsTrueEvPre(ev?, evpreEval?)
⇔ ev? = evBindLigandAndTCR
∧ now?− recTm = BindingDelay
∧ st = Lfree

IsTrueEvPre(ev?, evpreEval?)
st ′ = Lbound ∧ recTm ′ = now?

TCR∆FrFreeToBound
∆TCR
ev? : Event
evpreEval? : EvPreEval

ev? = evBindLigandAndTCR
IsTrueEvPre(ev?, evpreEval?)
st = Tfree ∧ st ′ = Tbound

3.3 Autonomous Objects That Can Sense

We need to define the transition occurrence and autonomous behaviour of ob-
jects. To do this, objects sense events – they are constantly listening for events
that happen in the system. When an event is detected, objects react appropri-
ately; otherwise they do nothing.

Intensional View. We now show how we make the behaviour of Ligand objects
autonomous. The act of doing something is modelled as the disjunction of state
transition operation schemas (Ligand∆DoSomething). An object does nothing
if the pre-condition of doing something is not true (LigandΞDoNothing). An
object reacts by either doing something or doing nothing (LigandReact):

Ligand∆DoSomething == Ligand∆FrFreeToBound ∨ Ligand∆FrBoundToFree

LigandΞDoNothing == ¬ (preLigand∆DoSomething) ∧ ΞLigand

LigandReact == Ligand∆DoSomething ∨ LigandΞDoNothing

3.4 Orthogonal Components of Statecharts

The statechart of Tcell comprises three orthogonal components, each with its
own statechart. In ZOO, we represent each statechart separately in the inten-
sional view (each orthogonal component has its own intensional view) and then

Autonomous Objects and Bottom-Up Composition in ZOO 329

compose them using schema conjunction. See the definition of Tcell intension
in [11] for further details.

3.5 Bottom-Up Composition

The collective behaviour of the system is a composition of behaviours of the
autonomous objects. It is expressed as the conjunction of the react operations
from every structure, class extension or association.

SysObjectsReact == SLigandReact ∧ STcellReact ∧ SPTKReact ∧ STCRReact
∧ ABindReact ∧ AInteractReact ∧ AItsPTKReact ∧ AItsTCRReact \ (evpreEval?)

Note that there is no central control to determine which specific computation
some structure needs to carry out. We simply say that it is up to each component
to react and do what is appropriate.

3.6 Handling Global Pre-Conditions

In [1,2], we showed that certain pre-conditions are only expressible in terms of
the ensemble, because they only make sense in terms of the composition. In [1,2]
we gave examples of such pre-conditions and how to represent them in the global
view associated with system operations.

This case study includes conditions of state transitions that involve the state
of other objects, which cannot be expressed locally in a direct way. One such
condition occurs in the statechart of PTK (figure 2(c)), on the transition from
Active to BecomingActive. The condition involves the PTK’s Tcell: the positive
signaling component must either be in state PSOnFull or PSOnDecay.

The problem in this particular context is exacerbated, as these pre-conditions
cannot be formalised globally either, because they are associated with a transi-
tion whose processing is made locally – at the level of objects. Our solution to
this problem is to again use the idea of feedback channels and propagate global
pre-conditions to the local object level.

Structural View. The structural view introduces the global pre-condition feed-
back channel which is similar to the definition of the feedback channel given
above. In [11], the definition of this feedback channel introduces a constant for
each global pre-condition defined as part of the free type GPre, and the type
GPreEval of sets of GPre, an instance of which says the global pre-conditions
that are true. It also introduces IsTrueGPre, a property of sets of GPre and
GPreEval , indicating whether global evaluation of some global precondition
(GPre) is true in a set of global evaluations.

Intensional View. The intensional view describes global pre-conditions as lo-
cal pre-conditions by using the IsTrueGPre operator. This involves the input
gpreEval? which receives a set of global pre-conditions; the global pre-condition
of this transition is evaluated with respect to gpreEval? using IsTrueGpre. In [11],
this can be observed in the definition of the transition from Active to Becomin-
gActive in the class PTK (schema PTK∆FrActiveToBecomingInactive), which is
then the used to define the react operation of PTK as shown above for Ligand.

330 N. Amálio, F. Polack, and J. Zhang

Global View. In the global view, we define a schema for each global pre-
condition and specify the conditions under which the global pre-condition is
true. The following describes the global pre-condition for the transition from
Active to BecomingActive in the statechart of PTK.

GPrePTKFrActiveToBecomingActive
STcell ; SPTK
oTcell? : OTcellCl
gpreEval? : GPreEval

IsTrueGPre(PTKFrActiveToBecomingActive, gpreEval?)
⇔ (stTcell oTcell?).stPS = PSOnFull

∨ (stTcell oTcell?).stPS = PSOnDecay

Finally, we define the global reaction by conjoining the reaction of local struc-
tures, the input connector, the global pre-conditions. We also define the global
reaction to be total: the system either does something or nothing.

SysReactDoSomething == ∆System ∧ SysObjectsReact ∧ ConnSysReact
∧ GPrePTKFrActiveToBecomingActive
∧ GPreTcellActFrActiveToRestingOrAnergic
∧ GPreTcellPSFrOffToOnFull
∧ GPreTcellPSFrOnDecayToOnFull \ (oTCR?, oPTK ?, oLigand?, oTcell?, gpreEval?)

SysReactDoNothing == ¬ (pre SysReactDoSomething) ∧ ΞSystem

SysReact == SysReactDoSomething ∨ SysReactDoNothing

The feedback between local (or intensional) and global levels takes place through
the internal input gpreEval?. The input is received by the local view through
the operation SysObjectsReact (in our example, this includes PTKReact , which
in turn includes PTK∆FrActiveToBecomingInactive). In the global view, the
input is transmitted through the GPre schemas. Both SysObjectsReact and the
GPre schemas are part of the SysReact operation.

4 Snapshot Analysis

Fig. 5. Values of char-
acteristic timing de-
lays used in snapshot
analysis

The ZOO model constructed above is now analysed using
our snapshot analysis technique [2,12]. First, we assign
values to the characteristic timing delays for the purpose
of the analysis and represent this configuration informa-
tion as a snapshot (figure 5). The snapshot analysis tech-
nique is illustrated here with the snapshot sequence and
the snapshot pair of figure 6.

The snapshot sequence of figure 6(a) simulates the en-
gagement of a ligand with a TCR followed by the ac-
tivation of the PTK. In the first snapshot, the ligand
and TCR objects are free — not linked by association
Bind and in states Lfree and Tfree. The second snapshot

Autonomous Objects and Bottom-Up Composition in ZOO 331

(a) Snapshot Sequence: Ligand-TCR binding
followed by PTK activation

(b) Ligand enters state bound without
engaging with a TCR

Fig. 6. Snapshots used in the analysis of ZOO model given above

presents the effect of event evBindLigandAndTCR, where ligand and TCR become
bound — linked by association Bind and in states Lbound and Tbound — and
the PTK starts its activation process — state BecomingActive. The last snapshot
in the sequence shows the effect of a PTK activation. The PTK changes to the
Active state, and the states of the Tcell components also change as defined by
the statechart. All snapshot proofs for this sequence (see [2]) are provable in
Z/Eves [13].

As observed in [8], this sequence is possible because in this setting Activa-
tionDelay < DissociationDelay (see figure 5). If it were not the case, the event
evFreeLigandAndTCR would occur before the PTK activation event, and so lig-
and and TCR would dissociate becoming both free and the PTK would go back
to the Inactive state (see statecharts).

The snapshot-pair (figure 6(b)) highlights an oddity of the statecharts model
given above. It shows a system with two ligand and one Tcell composite objects,
where one of the ligands is bound to the Tcell and the other is free. The free
ligand is stimulated to react, and it does so changing to the state Lbound, but
without actually being bound to a TCR. This is an inconsistency that is accepted
by the model of the system — snapshot proof is provable in Z/Eves. This behav-
iour was introduced when we relaxed the multiplicity of the association Binds to

332 N. Amálio, F. Polack, and J. Zhang

Table 1. Experimental data regarding proof of snapshots with the Z/Eves theorem
prover. Table indicates snapshot and number of proofs required to prove it; for each
proof it says how many Z/Eves commands were required and how much time it took
to carry out the proof in Z/Eves.

Snapshot No of
proofs

Proof No of
Z/eves
commands

Time to prove

Fig. 6(a) 2 Correctness of 1st
snapshot pair

5 32s

Correctness of 2nd
snapshot pair

5 38s

Fig. 6(b) 1 Correctness of snap-
shot pair in model
without fix

6 32s

Fig. 6(b) 1 Negation of correct-
ness snapshot pair in
model with fix

11 1m32s

0 . . 1, 0 . . 1. In [3], a ligand is linked to a TCR throughout its lifetime, binding
and re-binding always involves the same (ligand, TCR) pair, and so the problem
highlighted by the snapshot-pair does not occur. In our model, this problem can
be fixed with a global pre-condition on the transition free to bound in the ligand
statechart by requiring that the TCR is in the free state1 The ZOO model of [11]
does precisely this and here the snapshot is no longer provable (the negation is
provable, which means that the model no longer accepts the snapshot).

Table 1 presents experimental data regarding the proof of the snapshots above
with the Z/Eves theorem prover. The correctness of the snapshot sequence
(figure 6(a)) involved two proofs (one for each pair). We proved the snapshot
pair (figure 6(b)) before and after fixing the problem discussed above. After the
fix, we proved the negation of correctness to conclude that the snapshot pair was
no longer accepted (see [2] for further details).

5 Discussion

We illustrate a ZOO model, the result of systematic formalisation of a stat-
echart model of part of the immune system. In [3], the authors analysed the
model through simulation in the Rhapsody tool; we have analysed the ZOO
model using snapshot analysis, a technique based on formal proof; all proofs
were discharged in the Z/Eves interactive theorem prover [13]. Our formalisa-
tion revealed a problem with the original object model’s 1 : 1 association
multiplicity of Binds. In our semantics, this multiplicity requires a link to exist
in all states of the system; in [3] all relevant statecharts require a period where a

1 The precondition of transition Lfree to Lbound becomes !tm(bindingDelay),
TCell?− > ItsTCR− > Is In(Tfree).

Autonomous Objects and Bottom-Up Composition in ZOO 333

Ligand is free, and has no link in the Binds association. Our anaysis also revealed
an erronoeus behaviour introduced by our relaxation to the 1 : 1 association
multiplicity constraint (see above).

This case study started as a masters project [14], applying the ZOO templates
and snapshot analysis to the Tcell statecharts of [3,7]. We soon found that the
OO templates from [2] were not sufficient for this small, but non-trivial system of
autonomous objects. The Z representation presented here involved several stages
of work, constituting an interesting modelling challenge.

Elsewhere, we show that diagrammatic notations have multiple interpreta-
tions [15]. The appropriate semantics must be chosen based on the problem at
hand; our generative approach [2] is guided by this principle. Here, we capture
the semantics of autonomous objects and feedback, demonstrating again the im-
portance of interpretation. We wish to use ZOO to further explore this sort of
system, and then to devise new FTL templates to capture the underlying seman-
tics and modelling patterns, so that our generative approach [2] to build ZOO
models can be applied to other models of this sort.

The phenomena evidenced in our case study are not exclusive to biological
systems. They also appear in graphical user interfaces (GUIs) where an event
triggers a reaction in many components, and the GUI components have subtle
interactions and constraints; we have observed this in development of a graph-
ical user interface for a large-scale critical system. The Harel statecharts seem
very appropriate to this sort of model, helping in understanding and providing
an intuitive visual documentation. As said above, statecharts have multiple-
interpretations, and so they are at their best when accompanied with a clear
description of the semantics being adopted, or, like we did here, accompanied
with a description in a more precise formal language that effectively resolves the
semantic ambiguities of the diagrammatic description.

The ZOO representation presented here highlights several patterns for Z mod-
elling of this sort of system. The autonomous objects pattern enables a bottom-
up composition of lower-level autonomous structures in the global view: instead
of orchestration by system events, we simply ask lower-level structures to re-
act. The feedback channels pattern is also key; it allows propagation of global
constraints to the local level enabling full bottom-up composition: constraints
that needed handling globally can be propagated to the lower-level so that they
can be expressed naturally. It also enables exchange of information between ob-
jects, enabling objects to act autonomously but in a synchronised way subject
to feedback regarding the evaluation of event pre-conditions.

The autonomous objects and bottom-up composition provide an interesting
and practical approach to the dreaded frame problem [16]. No longer is a global
frame needed to describe the structures that do not change as a result of a global
operation; that decision is taken locally by the individual reacts : an object either
changes or does nothing.

Our feedback channels pattern enables broadcast communication between ob-
jects. This was observed to be a limitation of Rhapsody in [7], where the au-
thors mention that communication between objects is “point-to-point” and that

334 N. Amálio, F. Polack, and J. Zhang

“Rhapsody does not allow broadcasting”. Here, feedback channels enable broad-
casting, avoiding the need to send messages to each object that is interested
in some event — one object (the main entity responsible for dealing with the
event) emits information to be processed by other objects. The pattern relies on
an internal input that acts as an internal information channel. To ease specifica-
tion, the pattern introduces a predicate (defined as an operator) that gives some
abstraction, helping in specifying and reading Z expressions involving feedback-
channels. The pattern may look odd at first, but once it is understood it is
repeatable and applicable in slightly different contexts (as the paper has shown).
The key in understanding what the pattern does is that there is one transmit-
ting and several receiving ends that must be connected in the global view so
that communication through the channel can effectively take place.

The feedback channels pattern and other aspects of ZOO may look like advanced
Z, but this advanced Z is repeatable and its underlying structure can be repre-
sented as templates expressed in the Formal Template Language (FTL) [17,2].
FTL representations of Z enable generation of Z by a process of template
instantiation; [2] provides a catalogue of FTL templates to support generation of
ZOO models that comprises most of structures used here; the new patterns intro-
duced here would also be expressible as FTL templates. More advanced Z users
can grasp the general pattern from the instances described here or from FTL, and
apply it to various contexts where feedback-channels may be applied, and even
find new contexts where the underlying structure is applicable. More naive Z users
and newcomers can either use the template form, and have the appropriate ZOO
generated from templates by providing an instantiation, or use the diagrams and
have the ZOO generated from their diagrammatic specifications via a process of
template instantiation. Provided that there is a template representation for the
statecharts interpretation presented here, then generation of a ZOO specification
from diagrams is possible by following the approach defined in [2].

Perhaps the biggest limitation of our approach lies in the fact that the system
needs to be stimulated from the environment. Our model does not describe a
self-reactive system; the environment needs to stimulate a reaction by providing
the event to be observed and the current time. This is because the Z schema cal-
culus does not allow recursive operations. Despite this limitation, we are able to
perform the analysis of the original study [8], and observe the way the relation-
ships between different time delays influence the behaviour of the system and
how the system reacts as a whole to events. This is done within a mathematical
model that expresses clearly what are the system’s constituents parts and how
its parts collaborate to make the whole.

6 Related Work

In our ZOO formalisation, we can observe several characteristics of emergent
systems. One such characteristic is that of levels, where our constituent parts
are at the lower, local level, and the emergent property, the collective behaviour
of the objects, at the higher global level [18]. Another characteristic is the very

Autonomous Objects and Bottom-Up Composition in ZOO 335

interesting interplay between levels – it is not only the parts that determine the
ensemble, but also how the ensemble affects its parts [18]. This can be observed
in our need to propagate constraints from the global to the local level.

Liu and Tsui [19] describe a nature-inspired computational setting as a sys-
tem operated by populations of autonomous entities. Each autonomous en-
tity consists of a detector, an effector and a repository of local behavioural
rules. A detector receives information related to its neighbours and the environ-
ment, an effector carries out actions and facilitates information sharing between
autonomous entities, and the local rules indicate how the entity should react to
the information collected by the detector. Our ZOO-based model of autonomous
objects matches this description. The state transitions as described by the stat-
echarts and formalised in ZOO’s intensional view are the local rules of our au-
tonomous entities; the receiving end of the feedback channel acts as the detector,
and the transmission of information through the feedback channel as the effector.

7 Conclusions

This paper presented an approach to model, in Z, systems with emergent phe-
nomena characterised by global interactions at the individual level that give rise
to a complex collective behaviour of individual units. This approach was devel-
oped in the context of ZOO, our OO structuring for Z. Our approach comprises
several smaller contributions: (a) an approach to model statecharts of such sys-
tems in ZOO, (b) an approach to make objects behave autonomously, which
enables bottom-up composition of object behaviours, and (c) an approach to
represent feedback channels, which allows propagation of global level constraints
to the local/individual level and broadcast communication between objects.

Our approach is illustrated with a case study of biological reactivity. We
started from a statecharts model to obtain a ZOO model, which we then analysed
formally using our snapshot analysis technique. Our formalisation highlighted
several interesting characteristics of emergent systems.

References

1. Amálio, N., Polack, F., Stepney, S.: An object-oriented structuring for Z based on
views. In: Treharne, H., King, S., C. Henson, M., Schneider, S. (eds.) ZB 2005.
LNCS, vol. 3455, pp. 262–278. Springer, Heidelberg (2005)

2. Amálio, N.: Generative frameworks for rigorous model-driven development. Ph.D.
thesis, Dept. Comp. Science, Univ. of York (2007)

3. Kam, N., Harel, D., Cohen, I.R.: Modeling biological reactivity: Statecharts vs.
boolean logic. In: Proc. Int. Conf. on Systems Biology (ICSB 2001) (2001)

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Reading (1999)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Re-
susable Object-Oriented Software. Professional Computing. Addison-Wesley, Read-
ing (1995)

336 N. Amálio, F. Polack, and J. Zhang

6. Larman, C.: Applying UML and patterns: an introduction to object-oriented analy-
sis and design (1998)

7. Kam, N., Harel, D., Cohen, I.R.: The immune system as a reactive system: Mod-
eling T cell activation with statecharts. In: VLFM 2001 (2001)

8. Kaufman, M., Andris, F., Leo, O.: A logical analysis of T cell activation and anergy.
Proc. Natl. Acad. Sci. USA 96(7) (1999)

9. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8, 231–274 (1987)

10. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof (1996)
11. Amálio, N., Polack, F., Zhang, J.: Zoo specification of T-cell statecharts (2008),

http://www-users.cs.york.ac.uk/∼fiona/PUBS/zoo-tcell-statecharts.pdf
12. Amálio, N., Stepney, S., Polack, F.: Formal Proof from UML Models. In: Davies,

J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 418–433.
Springer, Heidelberg (2004)

13. Saaltink, M.: The Z/EVES system. In: Bowen, J., Hinchey, M. (eds.) ZUM 1997.
LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

14. Zhang, J.: Extending an approach to formalize diagrammatic model: Analysis of
Harel’s T cell model. Master’s thesis, Dept. Comp. Science, Univ. of York (2006)

15. Amálio, N., Stepney, S., Polack, F.: Modular UML semantics: Interpretations in
Z based on templates and generics. In: Van, H.D., Liu, Z. (eds.) FACS 2003 Int.
Workshop, vol. 284, pp. 81–100. UNU/IIST Technical Report (2003)

16. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
ifications. IEEE Trans. on Softw. Eng. 21(10), 785–798 (1995)

17. Amálio, N., Stepney, S., Polack, F.: A formal template language enabling meta-
proof. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 252–267. Springer, Heidelberg (2006)

18. Stepney, S., Polack, F.A.C., Turner, H.R.: Engineering emergence. In: ICECCS
2006, pp. 89–97. IEEE Computer Society, Los Alamitos (2006)

19. Liu, J., Tsui, K.: Toward nature-inspired computing. Commun. ACM 49(10), 59–64
(2006)

http://www-users.cs.york.ac.uk/~fiona/PUBS/zoo-tcell-statecharts.pdf

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 337, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integrating Z into Large Projects
Tools and Techniques

Anthony Hall

If we want to use Z to write an overall system specification, we need to integrate it
into a rich set of documents written in natural language and domain-specific nota-
tions. These documents must be easy to write and read by non-mathematicians.

On a purely practical level, this implies that we want Z to be part of the ordinary
documents that are used every day on the project. That means, in practice, that it has
to be integrated into Microsoft Word. I describe a tool for writing and checking Z
within the Word environment and some progress towards a process for writing the
specification and guidelines for its structure.

The de facto standard for writing Z is the LaTeX mark up first introduced by
Spivey and now incorporated into the Z standard. Industry, however, does not use
LaTeX: it uses Microsoft Word. I have developed, with help from several colleagues,
a package of Z tools for Word. This is in day to day use on a large project and is being
made freely available. For more information see http://ZWTools.anthonyhall.org

The tool includes:

1. styles for laying out schemas and other Z paragraphs;
2. a Unicode font that includes all the Z symbols;
3. automatic layout of Z paragraphs like the LaTeX equivalent;
4. the ability to enter symbols from a palette or typing in the markup;
5. one-click typechecking, with errors highlighted in the Word document;
6. use before declaration and and specifications distributed over several documents;
7. generation of indexes and cross-references to definition and use of Z names;
8. the ability to hide the Z so the document can be used by non—Z readers;
9. miscellaneous tools such as checking matching brackets.

The tool currently uses Mike Spivey's fuzz as the typechecking engine, but the in-
tention is to open it to other tools and hence to support the Z standard.

It is crucial to realise that in a Z specification, the mathematics is subsidiary to the
natural language. A piece of mathematics makes no sense unless we know the intended
meaning of each construct. We therefore enforce a rule that an English description must
precede the corresponding Z and should be of about the same length. The English and
the Z are complementary: the English describes the relevant real-world concept and ex-
plains the meaning of every term in the maths; the maths makes precise the relationships
between the terms defined in the English. We expect there to be as much informal text
and diagrams in the document as there is mathematics. Note in particular that there is no
rule like "In case of a discrepancy between English and Z, the Z takes precedence":
rather, the rule is that such a discrepancy is an error which must be corrected.

In the full version of this paper I show examples of this style in practice, based on
experience in a real project. It is still difficult to write specification documents that are
accessible to all stakeholders, but we have made significant progress in integrating
formality into large scale project documents.

A First Attempt to Express KAOS Refinement

Patterns with Event B

Abderrahman Matoussi, Frédéric Gervais, and Régine Laleau

LACL, Université Paris-Est
{abderrahman.matoussi,frederic.gervais,laleau}@univ-paris12.fr

It is now recognised that goals play an important role in requirements engineering
process, and consequently in systems development process.Whereas specifications
allowus to answer the question ”WHAT the system does”, goals allowus to address
the ”WHY, WHO, WHEN” questions [1]. Up to now, the development process as-
sociated with formal methods, including Event B, begins at the specification level.
Our objective is to include requirements analysis within this process, and more
preciselyKAOS [2] which is amethodology to implement goal-based reasoning.Ex-
isting work [3,4] that combine KAOS with formal methods generate a formal speci-
fication model from a KAOS requirements model. We aimat expressingKAOS goal
models with a formal language (Event B), hence staying at the same abstraction
level. Our work is based on a constructive approach in which Event B models are
built incrementally fromKAOS goalmodels,drivenby goal refinement patterns [1].
Since a KAOS goal means that a property must be established, the main idea is to
represent each goal as a B event and the property as the post-condition of this B
event. Up to now, we consider refinement patterns defined with first-order logic.
Patterns with LTL temporal logic will be studied in further work. Thus, the gen-
eral form of the assertion associated to a goal G is P → Q (P and Q are predicates,
→ is the logical implication). The THEN part of the B event corresponding to G is
the translation of this assertion into Event B. At the most abstract level, the guard
of the event related to the parent goal is always set to True to express that the event
is always feasible. The definitive guard is built during the refinement process; i.e.
after processing the different sub-goals. Proof obligations of Event B allow most of
the KAOS refinement conditions to be verified. However, for some KAOS patterns
as the case-driven tactics [2], additional constraintsmust be identified. Our current
work is still partial and we are working on its extensions.

References

1. Darimont, R., van Lamsweerde, A.: Formal Refinement Patterns for Goal-Driven
Requirements Elaboration. In: SIGSOFT 1996, San Francisco, California, USA, Oc-
tober 1996, pp. 179–190. ACM SIGSOFT, New York (1996)

2. Letier, E.: Reasoning About Agents in Goal-Oriented Requirements Engineering.
Ph.D. Thesis (2001), ftp://ftp.info.ucl.ac.be/pub/thesis/letier.pdf

3. Nakagawa, H., Taguchi, K., Honiden, S.: Formal specification generator for KAOS.
In: ASE 2007, Atlanta, USA, November 2007, pp. 531–532. ACM, New York (2007)

4. Ponsard, C., Dieul, E.: From Requirements Models to Formal Specifications in B.
In: REMO2V 2006, Luxembourg (June 2006)

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 338, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ftp://ftp.info.ucl.ac.be/pub/thesis/letier.pdf

Verification and Validation of Web Service

Composition Using Event B Method

Idir Ait-Sadoune and Yamine Ait-Ameur

LISI/ENSMA - Université de Poitiers
Téléport 2 - 1, avenue Clément Ader - B.P. 40109

86960 Futuroscope Cedex - France
{idir.aitsadoune,yamine}@ensma.fr

The Service-Oriented Architecture based on the Web service technology em-
erged as a consequence of the evolution of distributed computing. One of the
key ideas of this technology is the ability to create service compositions by
combining and interacting with pre-exisiting services. A service is implemented,
described[1], and published by a service provider in a UDDI[2] registry. The ser-
vice composition is referred to an executable process that interacts with other
services accomplishing its functional goal. Orchestration and Choreography[3] are
the processes that allow to schedule the defined services compositions and mes-
sages exchanges. There is a wide range of industrial standardization efforts to-
wards providing specification languages for the Web service composition. Among
them BPEL (Business Process Execution Language[4]) is the most known and
used orchestration language. Our work addresses the composition expressed by
the orchestration and its support language BPEL. BPEL allows the designer
to represent service compositions by various behavioral properties like services
interactions (message exchanges), control flow constraints (sequence, iteration,
conditional) or data flow constraints (exchange, modification, evaluation of data
expressions).

Our work focuses on the formal verification of the composition of web services.
We study the verification and validation of behavioral requirements through,
the properties that a services composition shall satisfy in order to achieve its
functional goal. These requirements include deadlock freeness, correct manipu-
lation and transformation of data, obeying to rules and to constraints on inter-
actions ordering and termination. This verification is not supported by BPEL
like languages although there exists several operational orchestration tools like
Orchestra[5] that encode and interpret this language.

We propose to address the problem of services composition verification using
proof and refinement based techniques with the event B method. Our approach
consists in extracting an event B model from service compositions written in
BPEL. Thereafter, the obtained model is enriched with the relevant properties
in the INVARIANTS and THEOREMS clauses and events guards. Two devel-
opment scenarios have been studied.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 339–340, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

340 I. Ait-Sadoune and Y. Ait-Ameur

References

1. Booth, D., Liu, C.K.: Web Services Description Language Version 2.0. Technical
report, W3C Recommendation (June 26, 2007),
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/

2. OASIS: Universal Description, Discovery, and Integration Specification (2003),
http://uddi.xml.org/

3. Peltz, C.: Web services orchestration and choreography. Web Services Journal (July
2003), http://www.wsj2.com

4. Jordan, D., Evdemon, J.: Web Services Business Process Execution Language Ver-
sion 2.0. Technical report, OASIS Standard (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

5. BSOA: Orchestra v3.0. Technical report, BULL CEDOC (November 2006),
http://orchestra.objectweb.org

http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626/
http://uddi.xml.org/
http://www.wsj2.com
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://orchestra.objectweb.org

Stability of Real-Time Abstract State Machines

under Desynchronization

J. Cohen and A. Slissenko�

Laboratory for Algorithmics, Complexity and Logic (LACL),
University Paris-East (Paris 12)

61 Av. du Gn. de Gaulle, 94010, Crteil, France
{j.cohen,slissenko}@univ-paris12.fr

Introduction. In our paper TR-LACL-2008–02 (www.univ-paris12.fr/lacl/) we
give sufficient conditions that permit to implement a real-time ASM with instan-
taneous actions (IA-ASM) by an ASM with delayed actions (DA-ASM) with ap-
proximate bisimulation of runs. The time is continuous and time constraints are
linear inequalities with rational coefficients. As IA-ASM we consider ASM whose
programs are blocks of if guard then blockOfUpdates. The implementation is an
ASM of more general type. It works by 2 phases: backup phase memorizes the val-
ues of functions, and update phase makes the updates using the backed up values.
Such an implementation implies shifts of time instants and, consequently, of the
values of the real-valued functions. The approximation of runs (and, thus approx-
imate bisimulation) is determined by 2 positive parameters (ε, η), where ε bounds
time shifts, and η bounds the deviations of real-valued functions. We introduce a
notion of (ε, η)-sturdy IA-ASM, and prove that the implementation of any such
IA-ASM gives an DA-ASM with (ε, η)-approximately bisimular runs if the delay
satisfies some constraints. An interesting point is that the sources of desynchro-
nization that destroy the bisimulation are much more subtle and numerous than
one can think a priori. Another conceptual consequence concerns the adequacy of
the notion of IA-ASM that was introduced in Gurevich–Huggins (LNCS, vol. 1092,
1996), and later studied in Beauquier–Slissenko, (APAL, 113(1–3):13–52, 2002)
for the specification of real-time system.
Our Work in Progress. We study one more question of this kind. Given a
general multi-agent ASM with delayed actions, under what conditions its desyn-
chronization gives an approximately bisimular set of runs?

LetA be such ASM, whose each agent programm is constructed using updates,
branching, sequential and parallel composition. Each agent has only external
default loop. A delay interval dA(X) is attributed to each occurrence X of update
or of guard of A. When a run arrives at t at the evaluation or execution of X then
this action is accomplished by an instant T that is chosen non-deterministically
in t + dA(X).

Given an ASM A0, its ξ-desynchronization A1 is an ASM with the same
program whose delays are ξ-close to the delays of A0 but bigger.

We give constraints on A0 and ξ of the same flavor as above, that guarantee
that A0 and A1 are (ε, η)-bisimular.
� Member of Scholars Club of Saint-Petersburg Division of Steklov Mathematical In-

stitute, Russian Academy of Sciences.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 341, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

XML Database Transformations with Tree

Updates

Qing Wang1, Klaus-Dieter Schewe2, and Bernhard Thalheim3

1 Massey University, New Zealand
q.q.wang@massey.ac.nz

2 Information Science Research Centre, Palmerston North, New Zealand
k-d.schewe@xtra.co.nz

3 Institute of Computer Science, CAU Kiel, Olshausenstr. 40, Kiel, Germany
thalheim@is.informatik.uni-kiel.de

For many years the eXtensible Markup Language (XML) has attracted much
research attention from database communities, particularly in the area of query
and transformation languages such as XQuery and XSLT. XML documents are
usually represented as trees. In order to accommodate the diversity of user re-
quirements, it is desirable to conduct transformations on XML trees at flexible
abstraction levels. However, most of current approaches have a fixed abstrac-
tion level at which updates must be identified for individual nodes and edges.
In this paper we study XML database transformations with structured updates,
for example, manipulations on portions of a tree, including deleting, modifying
or inserting subtrees, copying contexts, etc, by using Abstract State Machines
(ASMs) as it has turned out in [3] to be a universal computation model capturing
database transformations.

In this setting, the problem of partial updates [1] will come up again. Essen-
tially, partial updates root in two factors: complex objects and parallel computing.
When several parallel computations are executing updates on partial parts of the
same complex object, inconsistency of an update set might arise. As trees are typ-
ically a kind of complex objects, we believe that XML database transformations
provide an interesting paradigm for the study towards partial updates.

The study is carried out under an algebraical framework for XML trees ex-
tended from tree algebras by [4,2]. Updates on existing and output XML trees
are manipulated in a unifying and parallel manner, and thus the consistency
checking on a collection of updates plays a key role in computations.

References

1. Gurevich, Y., Tillmann, N.: Partial updates. Theor. Comput. Sci. 336(2-3), 311–342
(2005)

2. Walukiewicz, I., Bojanczyk, M.: Forest algebras. In: Flum, J., Graedel, E., Wilke,
T. (eds.) Logic and Automata. Amsterdam University Press (2007)

3. Wang, Q., Schewe, K.-D.: Axiomatization of database transformations. In: Proceed-
ings of the ASM 2007: The 14th International ASM Workshop (2007)

4. Wilke, T.: An algebraic characterization of frontier testable tree languages. Theor.
Comput. Sci. 154(1), 85–106 (1996)

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 342, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Dynamic Resource Configuration &

Management for Distributed Information Fusion
in Maritime Surveillance

Roozbeh Farahbod and Uwe Glässer

Software Technology Lab, Simon Fraser University, Burnaby, B.C., Canada
{roozbehf,glaesser}@cs.sfu.ca

We propose a highly adaptive and auto-configurable, multi-layer network archi-
tecture for distributed information fusion to address large volume surveillance
challenges, assuming a multitude of different sensor types on multiple mobile
platforms for intelligence, surveillance and reconnaissance. Our focus is on net-
work enabled operations to efficiently manage and improve employment of a set
of mobile resources, their information fusion engines and networking capabilities
under dynamically changing and essentially unpredictable conditions. Building
on realistic application scenarios adopted from the design and development of the
CanCoastWatch system [1], we contend that distributed system concepts based
on decentralized control mechanisms are crucial for the design of robust and
scalable network enabled operations for several reasons.

A high-level model of our network architecture, called Dynamic Resource Con-
figuration & Management Architecture (DRCMA) [2], is described in abstract
functional and operational terms based on a multi-agent modeling paradigm using
the Abstract State Machine (ASM) formalism [3]. This description of the underly-
ing design concepts provides a concise yet precise blueprint for reasoning about key
system attributes at an intuitive level of understanding, supporting requirements
specification, design analysis, validation and, where appropriate, formal verifica-
tion of system properties prior to actually building the system. Additionally, by
building on the CoreASM tool environment (see www.coreasm.org), we also il-
lustrate how to use the ASM formalism and underlying abstraction principles for
rapid prototyping of a high-level executable DRCMA model. The result will be a
prototype for testing, experimental validation and machine-assisted verification
of the key system attributes prior to actually building the system.

References

1. Farahbod, R., Glässer, U., Wehn, H.: CanCoastWatch Dynamic Configuration Man-
ager. In: Proc. of the 14th Int’l Abstract State Machines Workshop (2007)

2. Farahbod, R., Glässer, U., Wehn, H.: Dynamic resource management for adaptive
distributed information fusion in large volume surveillance. In: Proc. of SPIE De-
fense & Security Symposium (2008)

3. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 343, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.coreasm.org

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 344, 2008.
© Springer-Verlag Berlin Heidelberg 2008

UML-B: A Plug-in for the Event-B Tool Set*

Colin Snook and Michael Butler

University of Southampton,
United Kingdom

{cfs,mjb}@ecs.soton.ac.uk

UML-B is a graphical formal modelling notation that relies on Event-B for its
underlying semantics and is closely integrated with the ‘Rodin’, Event-B verification
tools. UML-B is similar to UML but has its own meta-model. UML-B provides tool
support, including drawing tools and a translator to generate Event-B models. When a
UML-B drawing is saved the translator automatically generates the corresponding
Event-B model. The Event-B verification tools (syntax checker and prover) then run
automatically providing an immediate display of problems which are indicated on the
relevant UML-B diagram. The UML-B modelling environment consists of a UML-B
project containing a UML-B model. Four interlinked diagram types (package, context,
class and statemachine) are available. Package Diagrams are used to describe the
‘refines’ and ‘sees’ relationships between top level components (machines and
contexts) of a UML-B project. UML-B mirrors the Event-B approach where static
data (sets and constants) are modelled in a separate package called a ‘context’. The
context diagram is similar to a class diagram but has only constant data represented
by ClassTypes, Attributes and Associations. ClassTypes define ‘carrier’ sets or
constant subsets of other ClassTypes. ClassTypes may own immutable attributes and
associations which represent constant functions. The behavioural parts (variables and
events) are modelled in a Class diagram which is used to describe the ‘machine’.
Classes represent subsets of the ClassTypes that were introduced in the context. The
class’ associations and attributes are similar to those in the context but represent
variables instead of constants. Classes may own events that modify the variables.
Event parameters can be added to an event, providing local variables to be used in the
transition’s guards and actions. Class events utilise a parameter, self, to non-
deterministically select the affected instance of the class. State machines may be used
to model behaviour. Transitions represent events with implicit behaviour associated
with the change of state. Additional guards and actions can be attached to the
transition. UML-B retains sufficient commonality with UML for the main goals of
approachability to be attained by industrial users. Since UML-B automates the
production of many lines of textual B, models are quicker to produce and hence
exploration of a problem domain is more attractive. This assists novices in finding
useful abstractions for their models. We have found that the efficiency of UML-B and
its ability to divide and contextualise mathematical expressions assists novices who
would otherwise be deterred from writing formal specifications. UML-B is also a
useful visual aid for more experienced formal methods users.

* This work was carried out under the EU projects, Rodin [IST-511599] and ICT project

Deploy [IP-214158].

BART: A Tool for Automatic Refinement�

Antoine Requet

ClearSy
Parc de la Duranne

320, avenue Archimde
Les Pliades III - Bt A

13857 AIX EN PROVENCE CEDEX 3 - France
antoine.requet@clearsy.com

1 Extended Abstract

Refining a B specification into an implementation can be a complex and time
consuming process. This process can usually be separated in two distinct parts:
the specification part, where the refinement is used to introduce new proper-
ties and specification details, and the implementation, where refinement is used
to convert a detailed B specification into a B0 implementation. The first part
requires human interaction, since it corresponds to writing the specification.
However, the implementation part is more mechanical, and usually corresponds
to apply known refinement schemes.

The BART tool aims to provide helps for this second part of the B develop-
ment, by automatically refining machines or refinements to B0 implementations.

To refine a specification, the tool uses rules describing refinement patterns
using pattern matching. Those rules allows the refinement of both data and algo-
rithm: abstract variables are refined to concrete variables, and the substitutions
used within the abstract machines are refined into equivalent B0 substitutions.

A set of default refinement rules is provided with the tool, however, users
can also write new refinement rules to handle more complex refinements. Rules
can be customized safely, as the proof of the generated machines still has to be
performed. So, an incorrect refinement rule will lead to an incorrect refinement,
which will be detected during the proof.

Using an automatic refinement tool provides several benfits: the most obvious
is that it automatises repetitive tasks. However, it is also a way of reusing refine-
ment patterns, and capitalizing on refinement experience, and can also simplify
the proof of the generated components by using well-known refinement patterns.
The BART tool is currently in development and will be integrated in the next
major version of Atelier B.

� This work has been funded by french ”Agence Nationale de la Recherche” ANR-06-
SETI-015.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 345, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Checking Event-B by Encoding into Alloy

(Extended Abstract)�

Paulo J. Matos and João Marques-Silva

Electronics and Computer Science, University of Southampton
{pocm,jpms}@ecs.soton.ac.uk

Current day systems are ever more detailed and complex leading to the ne-
cessity of developing models that abstract unimportant implementation details
while emphasizing their structure. Until recently it was only possible to perform
temporal model checking in an Event-B model by converting the model to B-

method and then using ProB [1]. More recently, a prototype ProB plugin [2] for
the RODIN tool has been developed. Nevertheles, encoding Event-B to Alloy

allows building on top of the Alloy model finding engine therefore benefiting
from all of its optimizations. An extended version of this work is in [3].

There are three aspects to the encoding: encoding of model structures, expres-
sions, and predicates (which are straightforward). The execution model needs to
be emulated by the final Alloy model. A signature “State” keeps track of all
the state variables that are ordered in time using the ordering module. Events
are predicates and facts define not only the initial state but also that one event is
triggered per state. Expressions are the hardest part to encode. There is not only
a myriad of complex expressions in Event-B but given that Alloy uses only
flat relations, some Event-B expressions that introduce relations with nested
sets generate many Alloy expressions. Some expressions are straightforward as
they have Alloy counterparts, others need to be defined by small functions.
Function expressions are encoded as relations and then facts can be added to
the model as to assure the semantics is preserved.

The motivation for our work is to allow users of the Event-B language to
exploit the accumulated experience from the development of the Alloy tools.
The resulting Alloy model can serve to find counterexamples to false invariants
and translate them back to Event-B. Future work entails the automatic gen-
eration of the encoding and its integration with the RODIN platform. The tool
to be developed can then be extended to use other backends besides Alloy.

References

1. Leuschel, M., Butler, M.J.: ProB: A model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

2. Ligot, O., Bendisposto, J., Leuschel, M.: Debugging Event-B Models using the ProB
Disprover Plug-in. In: Proceedings of AFADL 2007 (June 2007)

3. Matos, P.J., Marques-Silva, J.: Model checking Event-B by encoding into Alloy.
Computing Research Repository abs/0805.3256 (May 2008)

� This work is partially supported by EPSRC grant EP/E012973/1, and by EU grants
IST/033709 and ICT/217069.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Roadmap for the Rodin Toolset�

Jean-Raymond Abrial1, Michael Butler2,
Stefan Hallerstede2, and Laurent Voisin3

1 ETH Zurich, Switzerland
jabrial@inf.ethz.ch

2 University of Southampton, United Kingdom
{mjb,sth}@ecs.soton.ac.uk

3 Systerel, France
laurent.voisin@systerel.fr

Event-B is a formal method for system-level modelling and analysis. Key features
of Event-B are the use of set theory as a modelling notation, the use of refinement
to represent systems at different abstraction levels and the use of mathematical
proof to verify consistency between refinement levels.

The Rodin Platform1 is an Eclipse-based toolset for Event-B that provides
effective support for refinement and mathematical proof. Key aspects of the tool
include support for abstract modelling in Event-B, support for refinement proof,
extensibility of the functionality and open source development. To support mod-
elling and refinement proofs Rodin contains a modelling database surrounded by
various plug-ins: a static checker, a proof obligation generator, automated and
interactive provers. The extensibility of the platform has allowed for the integra-
tion of various plug-ins such as a model-checker (ProB), animators, a UML-B
transformer and a LATEX generator. The database approach provides great flex-
ibility, allowing the tool to be extended and adapted easily. It also facilitates
incremental development and analysis of models. The platform is open source,
contributes to the Eclipse framework and uses the Eclipse extension mechanisms
to enable the integration of plug-ins.

In its present form, Rodin provides a powerful and effective toolset for Event-B
development and it has been validated by means of numerous medium-sized case
studies. Naturally further improvements and extensions are required in order to
improve the productivity of users further and in order to scale the application of
the toolset to large industrial-scale developments. A roadmap has been produced
which outlines the planned extensions to the Rodin toolset over the coming years.
The roadmap1 covers the following issues: model construction; composition and
decomposition; team-based development; extending proof obligations and math-
ematical language; proof and model checking; animation; requirements handling
and traceability; document management; automated model generation.
� The continued development of the Rodin toolset is funded by the EU research project

ICT 214158 DEPLOY (Industrial deployment of system engineering methods pro-
viding high dependability and productivity) www.deploy-project.eu. The toolset was
originally developed as part of the project IST 511599 RODIN (Rigorous Open De-
velopment Environment for Complex Systems).

1 Available from www.event-b.org

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 347, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exploiting the ASM Method for Validation &

Verification of Embedded Systems�

A. Gargantini1, E. Riccobene2, and P. Scandurra2

1 DIIMM, Università di Bergamo, Italy
2 DTI, Università di Milano, Italy

SystemC (built upon C++) [2] is an IEEE industry-standard language for system-
level models, specifically targeted at architectural, algorithmic, transaction-level
modelling. Recently, a further improvement has been achieved by trying to com-
bine SystemC with lightweight software modelling languages like UML to describe
systemspecifications. Inaccordancewith thedesignprinciplesof theOMG’sModel-
driven architecture (MDA), we defined a model-driven design methodology for em-
bedded systems [3] based on the UML 2, a SystemC UML profile (for the HW side),
and a multi-thread C UML profile (for the SW side), which allows UML modelling
of the system at higher levels of abstraction (from a functional level down to RTL
level).

Currently, we are working on complementing this methodology with a formal
analysis process for high level system validation and verification (V&V) which
involves the Abstract State Machine (ASM) formal method.

The V&V toolset we are building is based on the ASMETA toolset [1]. The
analysis process starts with the automatic mapping of the SystemC-UML model
of the system into a corresponding ASM model (written in AsmetaL), which pro-
vides the basis for analysis. Several activities can be then executed in parallel: (a)
simulation of ASM models by AsmetaS; (b) scenario-based validation allowing
the designer to describe possible behaviours of the system as scenarios and test
them within the AsmetaV validator; (c) automatic test-case generation from the
model by the ATGT tool; (d) conformance testing of the implementations with
respect to their specification by transforming test and/or validation scenarios
in SystemC test cases. We plan to support formal verification by model check-
ing. This requires transforming ASM models into inputs for model checkers, for
example SPIN, and specifying the desired properties in temporal logic.

We have been testing our analysis methodology on case studies taken from
the standard SystemC distribution. Thanks to the ease in raising the abstraction
level using ASMs, we believe our approach scales effectively to industrial systems.

References

1. The ASMETA toolset (2006), http://asmeta.sf.net/
2. The Open SystemC Initiative, http://www.systemc.org
3. Riccobene, E., Scandurra, P., Rosti, A., Bocchio, S.: A Model-driven co-design flow

for Embedded Systems. In: Advances in Design and Specification Languages for
Embedded Systems (Best of FDL 2006) (2007)

� This work is partially supported by STMicroelectronics.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 348, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://asmeta.sf.net/
http://www.systemc.org

Tool Support for the Circus Refinement Calculus

A.C. Gurgel, C.G. de Castro, and M.V.M. Oliveira

Departamento de Informática e Matemática Aplicada, UFRN, Brazil

Circus combine both data and behavioural aspects of concurrent systems using
a combination of CSP, Z, and Dijkstra’s command language. Its associated re-
finement theory and calculus distinguishes itself from other such combinations.
Using a refinement calculus, we can correctly construct programs in a stepwise
fashion. Each step is justified by the application of a refinement law, possibly
with the discharge of proof obligations (hereafter called POs). The manual ap-
plication of the refinement calculus, however, is an error-prone and hard task.

We present CRefine1, tool that supports the use of the Circus refinement calcu-
lus. It is a considerable extension to an earlier prototype. First, we updated the
Circus parser to fix a couple of bugs of its earlier version. We have also added
facilities to manage developments like undoing and redoing refinement steps,
and saving and opening developments. Furthermore, GUI facilities like pretty-
printing, filtering applicable laws according to the selected program, classifica-
tion of laws, adding comments, and printing the development are also available.
Finally, CRefine automatically discharges some POs. In our experience, they
represent over 60% of the POs generated in a development.

CRefine’s interface contains a menu and three main frames: refinement, proof
obligations, and code. The refinement frame shows all the steps of the refinement
process. This includes law applications and retrieving the current status of an
action or process (collection). The proof obligations frame lists the POs that were
generated by the law applications, indicates their current state (i.e. checked valid
or invalid, or unchecked), and associates each one of them to the law application
that originated it in the refinement frame. Finally, the code frame exhibits the
overall Circus specification that has been calculate so far.

The majority of the Circus refinement laws proposed so far are included in
CRefine. However, we intend to use a specific parser for refinement laws to dy-
namically load them. It is also in our agenda to allow CRefine users to define
and use tactics of refinement within CRefine bringing a profit in effort. In a near
future, users will also be able to modularise their development by making sub-
developments within larger developments. The most interesting piece of future
work is the automatic (or iterative) discharge of the POs that are not automat-
ically discharged. For that, we will integrate CRefine with a theorem-prover.

CRefine can be a useful tool in the development of state-rich reactive systems.
Our initial intention was to develop an educational tool and use it in teaching
formal methods. However, during the implementation and tests, we noticed that
it may as well be useful in the development of industrial-scale systems. Empirical
verifications in a near future will verify this statement. For instance, we are
currently developing case studies that are related to the oil industry.
1 This work is financially supported by CNPq: grant 550946/2007-1.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Separation of Z Operations

Ramsay Taylor

Dept.of Computer Science, Regent Court, University of Sheffield, S1 4DP, UK
ramsay@dcs.shef.ac.uk

1 Introduction

Machine code and assembly language programs are structured using various
branches and decision points, but between these they contain blocks of instruc-
tions that are simply sequentially composed. Most work on formal program anal-
ysis has focused on the behavior of the branch points — primarily because com-
posing the blocks of sequential code to determine their overal effect on the system
is often intellectually trivial. This processs is also computationaly simple, but it
is not computationally trivial. The aim of this work is to produce a system of
rules that can be efficiently implemented and allow us to determine the overal
behaviour of sequentially composed operations.

To identify those sequential compositions that are trivial we will use tech-
niques inspired by Separation logic[2, 1]. Separation logic itself is a very general,
abstract collection of higher order logic statements but the simple observation at
the heart of separation logic will be used: if two operations refer to completely
disjoint parts of the state space they can be reasoned about independently.

Here we will not present anything with the generality and elegance of sep-
aration logic. Nor will we present a complete solution to analysing sequential
composition in Z. The aim is to present some techniques that are very easy to
implement and that will identify those operation compositions that are trivial.
These can be processed syntactically, before a more serious theorem proover is
applied.

The approach taken is in the spirit of separation logic. If two operations are
sequentially composed but it can be shown that the effects of the first in no way
influence the effects of the second then the effect of the composition is just the
syntactic combination of the two — a new schema for the composition can be
created by concatenating all the declarations and predicates together after some
very simple pruning.

References

[1] Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data struc-
tures. In: Proceedings of POPL 2001 (2001)

[2] Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure.
In: Proceedings of the Symposium in Celebration of the Work of C.A.R.
Hoare (1999)

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 350, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

BSmart: A Tool for the Development of Java

Card Applications with the B Method

D. Déharbe, B.E.G. Gomes, and A.M. Moreira

Federal University of Rio Grande do Norte; Natal, RN; Brazil
{david,bruno,anamaria}@consiste.dimap.ufrn.br

A smart card is a portable computer device able to store data and execute com-
mands. Java Card [1] is a specialization of Java, providing vendor inter-operability
for smart cards, and has now reached a de facto standard status in this industry.
The strategic importance of this market and the requirement for a high reliability
motivate the use of rigorous software development processes for smart card aware
applications based on the Java Card technology. The B method [2] is a good can-
didate for such process, since it is a formal method with a successful record to ad-
dress industrial-level software development. In [3,4], we proposed two versions of a
Java Card software development method (called BSmart) based on the B method.
The main feature of these methods is to abstract the particularities of smart card
systems to the applications developers as much as possible. This abstract presents
the current version of a tool, also called BSmart, to support the method. The tool
provides the automatable steps required by the method and some guidelines and
library machines that are useful during the development process. It includes B de-
velopment tools (type checker, PO generator) and specific BSmart tools (refine-
ment generator, Java Card translator, etc.). In this approach, the card services
specifier only needs to apply some refinement steps to his abstract (implementa-
tion platform independent) B specification. The generation of these refinements
adapts the specification to Java Card standards and introduces platform specific
aspects gradually. Finally, from the concrete B refinements the Java Card code
implementing the services provided by the card will be automatically generated
by the tool. The tool also provides the generation of a Java API for the host-side
application from the original abstract specification, encapsulating all the commu-
nication protocol details. Thus, the client application code can then be developed
in a completely platform independent way. The definition of the method is in a
mature stage, and our attention is now focused on the implementation of more
robust versions of the BSmart tools and packaging them in a user-friendly envi-
ronment. The integration of verification and animation tools is also planned for a
next release of the tool.

References

1. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison Wesley, Reading (2000)

2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
(1996)

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 351–352, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

352 D. Déharbe, B.E.G. Gomes, and A.M. Moreira

3. Gomes, B., Moreira, A.M., Déharbe, D.: Developing Java Card applications with B.
In: SBMF, pp. 63–77 (2005)

4. Deharbe, D., Gomes, B.G., Moreira, A.M.: Automation of Java Card component
development using the B method. In: ICECCS, pp. 259–268. IEEE Comp. Soc., Los
Alamitos (2006)

From ABZ to Cryptography

(Abstract)

Eerke A. Boiten

Computing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF, UK
E.A.Boiten@kent.ac.uk

Three Steps from the Ideal

Ideally correctness is by construction; post-hoc verification is second choice; ver-
ification of proofs is the next step down. In the application area of modern cryp-
tographic protocol verification, the latter would be viewed as serious progress.

Modern Cryptographic Protocols and Security

A modern cryptographic protocol may have the following properties:

– its functionality is clear, but its security definition incomplete;
– it contains explicit probabilistic elements;
– its notion of security (correctness) is approximate, and relative to computa-

tional resources available for an attack against it;
– its security is proved relative to some problem being hard;
– primitives cannot be implemented compositionally.

All this means that the standard techniques and good intentions of formal meth-
ods do not work straight out of the box. Many approaches to bridging the gap
between formal methods and modern cryptography exist – but none of these are
too close in spirit to the ABZ world.

An ABZ Bottom-Up Approach

We would need to extend our toolbox in a few dimensions:

approximation. Notions of correctness which are not exact but “close enough”.
probability. In formalisms, and in notions of refinement.
action refinement. From single step world change to communication protocols.
attacks. Multiple instances of protocols, attacks, computationally bounded?
compositionality. Of cryptographic primitives, to allow algebraic reasoning.

All of this makes up a large research agenda to chip away at. Watch this space
for a planned new EPSRC Network and new research in several of these areas.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 353, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 354, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using ASM to Achieve Executability within a
Family of DSL

Ileana Ober and Ali Abou Dib

IRIT – Université Paul Sabatier Toulouse
118, route de Narbonne 3 1062 Toulouse- France
{Ileana.Ober,aboudib}@irit.fr

Abstract. We propose an approach to achieve interoperability in a family of
domain specific language based on the use of their ASM semantics and of the
category theory. The approach is based on the construction of a unifying lan-
guage of the family, by using categorical colimits. Since the unifying language
is obtained by construction, translators to this one are obtained easily. These are
the premises for using ASM tools for symbolically executing systems made of
components specified in domain specific languages of a same family.

Our work starts from a case study that we developed with colleagues from the French
Space Agency (CNES). This case study revealed their need to deal with a set of re-
lated – yet different – domain specific languages in remotely controlled satellites.
Here, one main challenge is to handle the heterogeneity. Our thesis is that the interop-
erability within a family of DSLs can be rigorously tackled, by using a categorical
approach. Classical results in category theory, allow us to obtain by construction the
formal semantics of a unification language as well as translators from the source
DSLs to this unification language. Moreover, properties established in the context of
DSLs and expressed as invariants, pre-conditions or post-conditions in the algebraic
structure can be transferred to the unification language.

In order to get to a framework with symbolic execution, we apply a similar ap-
proach on the ASM specifications of programs specified in DSLs of a same family of
languages. On the theoretical side, the set of ASM specifications of the languages in
the family does not lead to the category of algebraic specifications. Therefore, we
have to identify a good category on which to reason on. Existing results on especs
show that it is possible to use categorical results and existing tools based on catego-
ries, with specifications using state machines.

We started on the practical side, by doing small experiments consisting in translat-
ing by hand ASM toy specifications in CoreASM, corresponding to specifications in
source DSLs into the algebraic form accepted by Specware, in order to calculate
pushouts for unifying them.

Using Satisfiability Modulo Theories to Analyze

Abstract State Machines
(Abstract)

Margus Veanes1 and Ando Saabas2

1 Microsoft Research, Redmond, WA, USA
margus@microsoft.com

2 Institute of Cybernetics
Tallinn University of Technology, Tallinn, Estonia

ando@cs.ioc.ee

We look at a fragment of ASMs used to model protocol-like aspects of software
systems. Such models are used industrially as part of documentation and ora-
cles in model-based testing of application-level network protocols. Correctness
assumptions about the model are often expressed through state invariants. An
important problem is to validate the model prior to its use as an oracle. We
discuss a technique of using Satisfiability Modulo Theories or SMT to perform
bounded reachability analysis of such models. We use the Z3 solver for our im-
plementation and we use AsmL as the modeling language.

Protocols are abundant; we rely on the reliable sending and receiving of email,
multimedia, and business data. But protocols, such as the Windows network file
protocol SMB (Server Message Block), can be very complex and hard to get
right. Model programs have proven to be a useful way to model the behavior
of such protocols and it is an emerging practice in the software industry to use
model programs for documentation and behavioral specification of such proto-
cols1 2, so that different vendors understand the same protocol in the same way.
The step semantics of model programs is based on the theory of ASMs with a
rich background universe. Correctness assumptions about the model are often
expressed through state invariants. It is important that the model is validated
before it is used as a specification or an oracle. We describe a technique 3 of using
satisfiability modulo theories or SMT to perform bounded reachability analysis
of a fragment of model programs and extend the work through improved han-
dling of quantifier elimination and extended support for background axioms. We
use the SMT solver Z34 and we use AsmL as the modeling language.
1 W. Grieskamp, D. MacDonald, N. Kicillof, A. Nandan, K. Stobie, and F. Wur-

den. Model-based quality assurance of windows protocol documentation. In First
International Conference on Software Testing, Verification and Validation, ICST,
Lillehammer, Norway, April 2008.

2 J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-based Software Testing
and Analysis with C#. Cambridge University Press, 2008.

3 M. Veanes, N. Bjørner, and A. Raschke. An SMT approach to bounded reachability
analysis of model programs. In FORTE’08, LNCS. Springer, 2008.

4 L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems, (TACAS’08), LNCS. Springer, 2008.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 355, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Formal Verification of ASM Models Using TLA+

Hocine El-Habib Daho and Djilali Benhamamouch

Department of Informatics, University of Oran, Algeria
dahoh@yahoo.com

Abstract. The notion of Abstract State Machines(ASMs) handles a
practical new approach for modeling and analysing various kinds of dis-
crete dynamic systems. In the context of the verification problem of ASM
models, formal verification techniques based on variants of restricted
first-order temporal logic have been used to verify correctness of re-
stricted forms of ASM specifications. In this spirit, the current work
shows how the state-based logic of TLA+can be employed to formally
reason about dynamic systems formalised in terms of ASMs.

Reasoning about ASMs within the TLA+-Logical Framework. In our on-
going research work[2], we propose to adopt Lamport’s Temporal Logic of Ac-
tions (TLA)[3] to formally reason aboutASM specifications of dynamic systems[1].
TLA is a state-based logic which provides the means for describing transition sys-
tems and formulating their properties in a single logical formalism, equipped with
a set of proof rules for reasoning about safety and liveness properties. The op-
erational behavior of an ASM specification is directly defined by TLA-formulas
and the TLA-proof techniques can be applied to formally prove the correctness of
ASM specifications. In particular, we provide some basic rules to translate ASM
models into TLA+specifications. TLA+is a formal specification language based
on Zermelo-Fränkel set theory, first-order logic and the linear-time temporal logic
TLA[3]. The TLA+ framework offers a potential mathematical framework into
which ASM model elements are directly translated to their most natural equiv-
alents in TLA+. The applicability of the proposed TLA+approach is illustrated
by the formal correctness proofs of both Lamport’s bakery algorithm and a token
ring algorithm both formalised in terms of ASMs[2]. Futur work will concentrate
on the development of a model translator, namely ASM2TLA+ translator, to per-
form the translation of an ASM model into a TLA+model which can be verified
automatically using the TLA+model checker called TLC[3].

References

1. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

2. El-Habib Daho, H., Benhamamouch, D.: Verifying the correctness of ASM Programs
using TLA+. Technical Report, Department of Informatics (January 2008)

3. Lamport, L.: Specifying Systems: The TLA+Language and Tools for Hardware and
Software Engineers. Addison-Wesley, Boston (2003)

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 356, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

DIR 41 Case Study

How Event-B Can Improve an Industrial System
Specification

Christophe Metayer1 and Mathieu Clabaut2

1 Systerel
christophe.metayer@systerel.fr

2 Systerel
mathieu.clabaut@systerel.fr

1 Context and Goals

Some RATP1 units are responsible for evolution and maintenance of an auto-
mated interlocking specification document.

In order to improve their paper and pencil process, RATP asked Systerel if
Event-B could be useful to them. An eight month study was launched whose main
goal was to help RATP improving their confidence in their interlocking specifica-
tion, by applying an Event-B approach on rewriting their requirement document.

2 Description of Work and Results

The work was planned to be highly iterative and composed of the following tasks:
Requirement specification rewriting with the organization and the word-
ing of our choice. This document was to be approved by the domain experts
and to serve as a reference for the modeling task.
Refinement plan design
Modeling the system and proving it correct.

The achieved model contains fifteen levels of refinement and allowed us to ex-
hibit four potential safety flaws (with an expected low probability of occurrence)
and many implicit hypotheses.

Several paths of improvement emerge from this study. They range from mod-
eling process and techniques to the way of involving domain experts in the whole
process.

3 Conclusion

Modeling a system with Event-B proved to be very interesting for pointing out
potential safety flaws and for capturing and proving the global safety rationale.

This way of modeling allows a B expert with little knowledge in an industrial
domain to quickly grasp the domain core concepts. It is still very difficult to
involve the domain experts in the whole process and we have high expectations
that model animation would improve this.
1 French organization in charge of Paris transportation, which supported this study.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

FDIR Architectures for Autonomous Spacecraft:

Specification and Assessment with Event-B

Jean-Charles Chaudemar1, Charles Castel2, and Christel Seguin2

1 ISAE-DMIA, Toulouse, France
2 ONERA-DCSD, Toulouse, France

Abstract. On-board Fault Detection, Isolation and Recovery (FDIR)
systems are considered to ensure the safety and to increase the auton-
omy of spacecrafts. They shall be carefully designed and validated. Their
implementation involves a relevant knowledge of items like functions and
architectures of the system, and a fault model in relation with these
items. Thus, the event-B method is well suited to correctly specify and
validate on-board safety architectures.

This paper focuses on the FDIR concept presentation and the use of
event-B for formalising and for refining the FDIR concept.

The paper is organised as follows: after a short presentation of on-
board FDIR concept strongly bounded with autonomy architecture con-
cept, we suggest activities enabling to implement FDIR concept. Then,
we present the framework of formal modelling that we will use to describe
our architecture and the properties related to this architecture. We illus-
trate our approach by modelling more specifically a safety architecture
pattern that includes a primary functional component and a redundant
one, under the hypothesis of no common fault. The safety property to be
met is: “one single fault shall not lead to the total loss of the function”.
The last section of the paper deals with the objectives for the future work.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 358, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Object Modelling in the SystemB Industrial

Project

Helen Treharne, Edward Turner, Steve Schneider 1, and Neil Evans2

1Department of Computing, University of Surrey
2AWE plc Aldermaston

Abstract. The SystemB project is a two year project at the University
of Surrey, funded by AWE plc, and is concerned with bridging the areas
of formal methods and object modelling. The project is focused on the
CSP ‖ B integrated formal method and increasing its level of tool sup-
port so that CSP ‖ B models of Executable UML (xUML) systems can be
constructed automatically. The CSP ‖ B models will subject the xUML
model to formal analysis prior to generating executable code. We are
currently developing a CSP ‖ B model generator within the xUML tool-
suite provided by Kennedy Carter Ltd. xUML is used within AWE and
we will initially focus on reasoning about xUML state machines. Actions
within xUML state machines are defined using the Action Specification
Language (ASL). ASL is more low level than the Object Constraint Lan-
guage; they can execute concurrently, and can also be used in operation
definitions. Hence it is a challenge to model formally. In the extended
abstract we provide an overview of one ASL to AMN translation pattern
being developed and highlight the role of B in the project.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, p. 359, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Splitting Atoms with Rely/Guarantee

Conditions Coupled with Data Reification

Cliff B. Jones and Ken G. Pierce

School of Computing Science, Newcastle University, UK

Abstract. This paper presents a novel formal development of a non-
trivial parallel program: Simpson’s implementation of asynchronous com-
munication mechanisms (ACMs). Although the correctness of the “4-slot
algorithm” has been shown elsewhere, earlier developments are by no
means intuitive. The aims of this paper include both the presentation of
an understandable (yet formal) design history and the establishment of
another way of “splitting (software) atoms”. Using the “fiction of atom-
icity” as an aid to understanding the initial steps of development, the
top-level specification is developed to code. The rely-guarantee approach
is, here, combined with notions of read/write frames and “phased” spec-
ifications; the atomicity assumptions implied by rely/guarantee condi-
tions are realised by clever choice of data representation. The develop-
ment method herein is compared with other approaches –in a spirit of
cooperation– as the authors believe that constructive comparison eluci-
dates many of the finer points in the “4-slot” specification/development
and of parallel programs in general.

1 Introduction

This paper is intended to contribute to methods of developing parallel programs;
in particular it extends the repertoire of ways of “splitting (software) atoms
safely”. To do this, it addresses an intricate parallel program to illustrate the
novel aspects of an approach to the development of parallel programs.

The general case for developing programs from abstractions is taken as read
(cf. [Jon90, Abr96]). The VDM literature uses the terms “operation decomposi-
tion” and “data reification” for design steps of sequential programs and provides
detailed proof obligations to justify such steps. Even if –as here– what is be-
ing created is a rational reconstruction of a design, the resulting documentation
offers clarity and captures a design history to inform subsequent modification.
Research on rely/guarantee conditions (see Section 2.2 below) extends the for-
mal tools to cover classes of shared-variable concurrent programs. As has been
repeatedly made clear in the literature, “compositionality” is essential to derive
real pay off from a “posit and prove” approach.

More recently, research has looked at using a “fiction of atomicity” as an
additional abstraction [Jon03] in the specification of parallel programs; the cor-
responding development notion is sometimes referred to as “splitting (software)
atoms safely”; one example of this approach is Jones’ transformation rules for
“pobl” as in [Jon96].

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 360–377, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Splitting Atoms with Rely/Guarantee Conditions 361

This paper uses rely and guarantee conditions in reasoning about “splitting
atoms”. In particular, the example illustrates the combination of rely/guarantee
reasoning with data reification outlined in [Jon07].

Although this paper offers comparisons (see Section 6), it is quite specifically
not competitive. In fact, the intention is to write a longer joint journal paper with
Abrial and Cansell whose rather different approach [AC05] fits into the evolving
research on “Event-B” which is being pursued in the EU “Deploy” project in
which the first author is also a player. Moreover, the first author co-supervised
Neil Henderson’s PhD and encouraged the view that each of the approaches
used in [Hen04] threw different light on the intricate algorithm that has also
been chosen for the current paper.

The application chosen concerns “Asynchronous Communication Methods”
— specifically, the four-slot implementation of ACMs devised by Hugo Simp-
son [Sim97] — see Section 3. The algorithm is ingenious and its correctness by
no means obvious.

The real message of the current paper is however the (generic) approach out-
lined; a key test is whether the reader gains insight by reading the development
below. In each major section, there is a sub-section that restates the methods
used so that it is clear what the reader can take from the specific example to
other specification and design challenges.

2 Background Material

This section briefly sets out state-of-the-art methods; any reader who is unfa-
miliar with these areas should consult the cited publications.

2.1 Data Reification

For many systems, data abstraction is key to achieving a concise and perspicu-
ous specification. An algorithm might be easy to specify or describe in terms of
tractable mathematical objects; its implementation might have to represent the
abstraction in a complex way (possibly to achieve performance). Separation of
these issues results in clearer documentation of design histories. The preferred
development rule in VDM [Jon90] works where the chosen reification (represen-
tation of the abstraction) can be described using a “retrieve function” that is a
many-to-one mapping from the representation back to the abstraction. This is
possible where the abstraction is free from “implementation bias”.

The simple VDM reification rule basically checks that (starting with a repre-
sentation state) composing the retrieve function with the post condition of an
abstract operation gives the same result as composing the post condition of the
operation on the representation with the retrieve function. (There are restrictions
to pre conditions –but here they are minimal– and an obligation to prove “ade-
quacy” of a representation. All of this is explained in [Jon90, Chapter 8].)

There are however situations where the abstraction retains information to
express potential non-determinacy and this information is superfluous in a step of

362 C.B. Jones and K.G. Pierce

development where the non-determinacy is reduced. In a sense this is “intentional
bias”. In such situations it is necessary to use the development rule introduced
by Tobias Nipkow in [Nip86, Nip87] that expresses a general relation between
the abstraction and its reification.

For an exhaustive discussion of “data refinement” see [dRE99]; for a historical
account of the development of the VDM rules see [Jon89].

2.2 Rely/Guarantee Thinking

Just as pre conditions simplify a designer’s task by limiting the starting states
in which the specified object is to be deployed, rely conditions indicate assump-
tions that the developer is allowed to make about the expected interference to
a (shared-variable) concurrent program. Similarly, guarantee conditions can be
compared to post conditions in that both are constraints on the behaviour of
the created program.

VDM’s operation decomposition rules for sequential programs have always
used post conditions that relate the final state to the initial state (this is in
contrast to many approaches that try to get by with predicates of the final
state). Both rely and guarantee conditions are also relations between two states.

The general idea of documenting and reasoning about interference has many
embodiments; some of the references include [Jon81, Jon83a, Jon83b, Jon96] but
a number of other theses extend the basic idea.1 A notable extension to cover
progress arguments is [Stø90]. As the title of this section suggests, the approach
is seen as a general way of thinking and reasoning about the design of concurrent
systems rather than a specific set of rules. In fact, the general approach can also
be applied to communication-based concurrency.

Once again, de Roever provides an encyclopaedic treatment in [dR01]; a
particularly valuable contribution is the clear identification of the fact that
rely/guarantee thinking achieves “compositionality”.

A more recent development is the link made in [Jon07], between the achieve-
ment of a rely/guarantee specification and the designer’s ability to find an ap-
propriate data representation. This observation throws light on several older
developments and is crucial to the design step in Section 5 below. Essentially,
an abstraction is used that could be said to be using the “fiction of atomicity”.
The splitting of operations that have to be atomic on the abstraction is made
possible by judicious choice of representation. So, for example, a variable whose
monotonic reduction would imply locking can be represented by an expression
involving the minimum of two values each of which can only be updated by one
of two parallel processes.

2.3 Event Decomposition

Jean-Raymond Abrial’s extension of his “B” approach [Abr96] to “event-B” is
described in [AC05]. Guarded events are assumed to be executed atomically;
1 See an on-line attempt to keep track of the literature at:

http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf

Splitting Atoms with Rely/Guarantee Conditions 363

selection as to which event can be executed is non-deterministic if multiple
guards evaluate to true. As such, this approach is completely different from
that of rely/guarantee thinking (although Section 2.4 notes a common concern).
The approach in [AC05] to increasing concurrency (or “splitting atoms”) is to
decompose events. When one “splits” an event into sub-events it has to be shown
that all but one “refine skip”.

There are a number of elegant examples of the use of this approach: Abrial
and Cansell have also tackled the “4-slot” implementation of ACMs and have
been kind enough to let us see their development as supported by the RODIN
tools [Rod08]. Some further comments relating [AC08] to the material in this
paper are made in Section 6.3.

2.4 Tracking Execution with Variables

There are two roles that variables can play that are close to “pseudo instruction
counters”. The shorthand term “phasing” is used in this paper to refer to either
role.

In the (rely/guarantee) approach it is sometimes necessary to delineate differ-
ent interference in different phases of a program. One way of handling this is by
using pseudo-instruction counters and implications whose left-hand side makes
appropriate case distinctions. One objective below is to show that using con-
trol constructs like “semicolon” provides another way of representing changing
assumptions.

The other use of pseudo instruction counters is vividly illustrated in Abrial’s
event refinement approach. The order of execution of the events with true guards
in a given set is non-deterministic. In situations where the correctness depends
on a constrained order, pseudo instruction counters are tested in guards and
set in the corresponding events.2 The Abrial/Cansell approach is discussed in
Section 6.3.

2.5 Status of the Proofs

The authors have checked all of the proof obligations required in the develop-
ment below. A technical report version of this paper will add appendices that
make outline proofs available for scrutiny. The second author’s thesis will present
proofs at the level of formality used in [Jon90]. Plans to attempt machine checked
proofs are currently being considered.

3 ACMs and Their Specification

“Asynchronous Communication Methods” (ACMs) address an extremely inter-
esting application scenario. First, imagine two process that are independently

2 This is reminiscent of the proof of the Boehm/Jacopini theorem that “goto” state-
ments can be avoided.

364 C.B. Jones and K.G. Pierce

timed in the sense that they are not synchronised in any way (thus “asyn-
chronous”); furthermore, suppose that one process produces values that are to be
“communicated” to the other (one writes and the other reads); the key require-
ment is that communication must be achieved with no delay to either process.
So it is not, for example, possible to use a conventional shared variable –access to
which is controlled by some device such as semaphores– since one process could
be delayed waiting for a lock to be released. To sharpen the issues, it might be
useful to think of Value below as being large — something that certainly can’t be
changed in one machine cycle (“atomically”). ACMs are used in important high
speed communication situations such as passing values from sensors to flight
control software.

A number of non-obvious consequences follow from the asynchronous essence
of ACMs. The simplest is that it is certainly valid for the reader to see the same
value multiple times if it cycles faster than the writer. The more complicated
consequences are shown once a formal specification has been given.

3.1 A Specification

The issue of a formal statement of what behaviour a valid ACM is allowed to
exhibit is itself non-trivial and different approaches are already distinguished
at this starting point. (Alternatives are discussed in Section 3.3.) Sections 4
and 5 present a formal development of a well-known –and extremely ingenious–
implementation of ACMs but it is clearly necessary to offer a formal starting
point for such a development. The aim here is to provide a way of specifying
ACM behaviour with which a user can feel comfortable.

It would fit the “splitting atoms” programme nicely if it were possible to
present a specification using of a simple (atomic) variable. Unfortunately, this
is not an appropriate abstraction because it does not show the full potential
behaviour of an ACM. In particular, a read operation could start and –before
it delivers a value– several write operations could start and complete. Alterna-
tively, a write operation could start and –before it completes– several different
read operations could start and complete. It is necessary to show which values
can be delivered to the receiving process. A straightforward way to do this is
to distinguish between start -Read/end -Read and start -Write/end -Write.3 An
underlying state to characterise these operations (in VDM notation4) could be:

Σa :: data-w : Value∗

fresh-w : N

hold -r : N

inv (mk -Σa (data-w , fresh-w , hold -r)) hold -r ≤ fresh-w

3 For those who feel queasy about this in a specification, Section 3.3 discusses alter-
natives. Furthermore, the approach of the current section can be proved to fit with
such specifications.

4 Remember that types in VDM are restricted by invariants; so, for example, quanti-
fying over Σa only includes records that satisfy its invariant.

Splitting Atoms with Rely/Guarantee Conditions 365

The idea here is that data-w retains all values written; start -Write first stores
a new value but only end -Write releases it for access by updating fresh-w . Con-
versely, start -Read notes the index of values that must be regarded as “fresh”
and end -Read makes a non-deterministic choice of an index between the hold -r
and the value of fresh-w at the time of completion of the read. (The suffixes of
the variable names indicate whether the reader or writer can change their values;
this shows straight away that there are no variables written to by both “sides”.)

It is obviously necessary to initialise the state. Most authors who give formal
presentations do this by assuming that a value x has been written then read
once. This can be shown as:

σa
0 = mk -Σa([x], 1, 1)

with the following pseudo-code:

while true do
start -Write(v :Value): data-w ← data-w � [v];
end -Write(): fresh-w ← len data-w

od
while true do

start -Read(): hold -r ← fresh-w ;
end -Read()r :Value: r ← data-w(i) for some i ∈ {hold -r ..fresh-w}

od

The code ensures that old values cannot be read. Although end -Read might not
select the newest item in the sequence, a value only becomes old when a newer
item is returned. Since start -Read sets hold -r to the value of fresh-r before the
choice is made and hold -r is never greater than fresh-r , the read process cannot
return an old value (though the same value may be returned more than once).

Figures 1, 2 and 3 give possible executions of the code (giving the operation
name and corresponding final sate). Figure 1 is a simple sequential write and
read: y is added to data-w , marked as fresh and subsequently read. In Figure 2,
the read begins before the write ends and the read yields x.

start-Write(y) .. mk -Σa([x, y], 1, 1)
end -Write() .. mk -Σa([x, y], 2, 1)
start-Read() .. mk -Σa([x, y], 2, 2)
end -Read() .. r = y

Fig. 1. Sequential case

start-Write(y) .. mk -Σa([x, y], 1, 1)
start-Read() .. mk -Σa([x, y], 1, 1)
end -Read() .. r = x
end -Write() .. mk -Σa([x, y], 2, 1)

Fig. 2. Interleaved case

start-Read() .. mk -Σa([x], 1, 1)
start-Write(y) .. mk -Σa([x, y], 1, 1)
end -Write() .. mk -Σa([x, y], 2, 1)
start-Write(z) .. mk -Σa([x, y, z], 2, 1)
end -Write() .. mk -Σa([x, y, z], 3, 1)
end -Read() .. r ∈ {x, y, z}
start-Read() .. mk -Σa([x, y, z], 3, 3)
end -Read() .. r = z

Fig. 3. Non-deterministic case

366 C.B. Jones and K.G. Pierce

The more complex case in Figure 3 shows the non-determinism of the read
operation. By the time end -Read is ready to return a result, three possible values
are available and one will be selected non-deterministically. Note however that
a subsequent read can return neither x nor y because hold -r is updated to the
value of fresh-w at the start of the read.

The pseudo-code above is brief and offers the intuition of what can happen but
for the development that follows, this needs to be presented as formal (VDM)
specifications of the four operations. These are straightforward (see Figure 4)5.

Write(v : Value)
start-Write(v : Value)

wr data-w
post data-w =

↼−−−−
data-w � [v]

end -Write(v :Value)
rd data-w
wr fresh-w
pre data-w(len data-w) = v
post fresh-w = len data-w

Read()r : Value
local hold -r : N
start-Read()

wr hold -r
rd fresh-w
post hold -r = fresh-w

end -Read()r : Value
rd data-w , fresh-w
post ∃i ∈ {hold -r ..fresh-w} · r = data-w(i)

Fig. 4. Specification in terms of four sub-operations

In these operation specifications, the standard VDM style of marking the
read/write access is used. This proves particularly valuable below when inter-
ference is considered. One non-standard extension is also used and that is the
declaring hold -r as local to the two Read operations. This is essentially marking
it as invisible to the two Write operations. (The efficacy of these markings is
addressed in the (draft) thesis of the second author.)

Notice that rely/guarantee conditions are not yet necessary because the four
operations are assumed to be atomic. The fiction of atomicity is used to achieve
a simple specification. At this point, the specifications imply big assumptions
about atomic update of data-w ; this is addressed in the following sections. Per-
haps of more interest is the decision to use semicolon as a tool in specifications
— again, this is addressed below.
5 As an aside: It would be reasonable to assume that a Read operation will run in

less time than a Write — in this case it would be impossible for multiple Writes
to complete within the time of a Read — such an assumption can slightly simplify
solutions. This assumption is not made here (nor in most other papers).

Splitting Atoms with Rely/Guarantee Conditions 367

Note that pre-end -Write is required to pass information between the two
write processes. The proof showing that this is implied by post -start -Write is
immediate.

3.2 Splitting Atoms in Σa

As observed, the operations in the preceding section are assumed to execute
atomically. The process of “splitting atoms” can begin by considering the over-
lap of Read and Write sub-operations. This could be very difficult to describe.
Indeed, the cleverness of the final code is all about finding a way to do this safely
whilst achieving “asynchroneity”. Here, we postpone the key property that there
is no delay to either process since it can be achieved by further splitting of atoms.

For now, Figure 5 contains exactly the post conditions of the preceding section
and adds rely and guarantee conditions that represent the possible interference.
Notice first that the state Σa is unchanged. Rely/guarantee assertions are easy
to add because all that is necessary is to make sure that results required in the
post conditions cannot be subverted by interference.

It is a simple task to check that the rely and guarantee conditions in the
two threads are consistent. The work involved is almost syntactic because of the
limitations on read and write access marked in the VDM operation specifications.
For example, both rely-start -Write and rely-end -Write follow immediately from
the fact that neither Read component has write access to the relevant variables.

An astute reader might be very worried that massive assumptions are being
made here about what can be changed atomically. Such assumptions have to be
eliminated in subsequent development. What is achieved here is to show that
the splitting atoms development idea can provide an intuitive understanding of
extremely delicate code.

The details of the rely and guarantee operations are, here, made much simpler
to write because of the way that the sub operations are ordered (by semicolon).
Were one to try to record a specification of an entire Read and Write opera-
tions, they would be festooned with implications. The structure of the program
(e.g. that Write cannot interfere with Write) simplifies the specifications of the
sub-operations.

3.3 Alternative Specifications

The most surprising decision in the specification used here is the retention of val-
ues (in data-w of σa) that can no longer be accessed. Henderson goes to pains to
delete “old” values after they have been overtaken by subsequent reads. The cost
in [Hen04] is that both Read and Write need to have a record of where the other
process is in its execution. True, this record keeping is eliminated in the subsequent
development; but so are our superfluous values. In both cases, the same technical
rule comes to the rescue. Our current view is that leaving the extra values results
in a clearer specification.

Abrial and Cansell [AC08] start from a specification in terms of the traces of
reading and writing. It is inherent in the ACM problem –rather than a criticism of

368 C.B. Jones and K.G. Pierce

Write(v : Value)
start-Write(v : Value)

rd fresh-w
wr data-w
rely fresh-w =

↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

guar {1..fresh-w} � data-w = {1..fresh-w} �
↼−−−−
data-w

post data-w =
↼−−−−
data-w � [v]

end -Write(v :Value)
rd data-w
wr fresh-w
pre data-w(len data-w) = v

rely fresh-w =
↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

post fresh-w = len data-w

Read()r : Value
start-Read()

rd fresh-w
wr hold -r
rely hold -r =

↼−−−
hold -r

post hold -r ∈ {↼−−−−fresh-w , fresh-w}
end -Read()r : Value

rd data-w , fresh-w , hold -r
rely hold -r =

↼−−−
hold -r ∧ ∀i ∈ {hold -r ..

↼−−−−
fresh-w} · data-w(i) =

↼−−−−
data-w (i)

post ∃i ∈ {hold -r ..
↼−−−−
fresh-w} · r =

↼−−−−
data-w(i)

Fig. 5. Specification of sub-operations on Σa with rely/guarantee

their specification– that pinning down the exact behaviour is somewhat messy: in
essence, they have to reflect the points at which operations start and end. In the
journal version of this paper a proof will be added that the initial “specification”
in Section 3.1 satisfies their specification. This then leaves the user to decide
which is the most intuitive way of understanding ACM behaviour.

3.4 Summary of Specification Methods Used

The ideal of the “fiction of atomicity” would be to abstract from all of the details
of ACMs by using a single atomically accessed variable as an abstraction. Since
this does not describe all of the possible behaviours, one has to think harder to
obtain a starting specification. The choice here is to make a minimal split of the
two parallel processes each into two sub-operations whose behaviour is composed
sequentially (“by semicolon”). This “phasing” is of course algorithmic detail in
a specification but is claimed to offer a reasonably intuitive description of the
permissable behaviours of an ACM. The same phasing idea pays off handsomely
when the move is made to specifications with rely and guarantee conditions: if
the same essential properties were to be presented for the whole of say Write,

Splitting Atoms with Rely/Guarantee Conditions 369

there would have to be ghost variables to track the phase and implications to
present the information about the separate phases as a single predicate. The
current authors recognise the arguments for a specification in terms of traces
but believe phasing is sometimes easier to understand.

The rely and guarantee conditions themselves are fairly standard. Checking
that they are consistent between the two parallel threads is made almost trivial
by judicious choice of frame markings.

4 Retaining Less History

The first real reification is to an intermediate representation in which it is pos-
sible to retain fewer Values than in Σa . Not only can Σi get away with fewer
values, it is also clear that it might be possible to lock only parts of its data-w
component and thus increase concurrency. Thus this step moves towards the
idea of multiple slots without being specific as to how many there must be to
make the algorithm work. Essentially, a careful data reification step is bringing
in some of the design decisions without going all the way to Simpson’s code.
Rely/guarantee conditions are again used to investigate the requirements.

4.1 The Data Representation

The state representation for this reification is:
Σi :: data-w : X m−→ Value

fresh-w : X
hold -r : X
hold -w : X

inv (mk -Σi(data, fresh, hold -r , hold -w))
{fresh, hold -r , hold -w} ⊆ dom data

At this step of development, the (indexing) set X is arbitrary. In order to
show the initial state assume that X ∈ {α, β, . . .}. Then:

σi
0 = mk -Σi({α �→ x}, α, α, α)

4.2 Relating Σi to Σa

The fact that the chosen state in the specification (Σa) cannot be “retrieved”
from the representation as in the simple VDM reification rule means that the
connection between elements of Σa/Σi has to be given by a relation:

r : Σa × Σi → B

r(mk -Σa(data-wa , fresh-wa , hold -ra),
mk -Σi(data-w i , fresh-w i , hold -r i , hold -w i))

rng data-w i ⊆ elems data-wa ∧
data-wa (fresh-wa) = data-w i (fresh-w i) ∧
data-wa (hold -ra) = data-w i (hold -r i)

370 C.B. Jones and K.G. Pierce

Because the representation here has (potentially) less information than the
abstraction, it is necessary to use the refinement rule given in [Nip86, Nip87].
For the current case it is necessary to show for each operation that:

r(σa
1 , σi

1) ∧ post i(σi
1, σ

i
2) ⇒ ∃σa

2 ∈ Σa · posta(σa
1 , σa

2) ∧ r(σa
2 , σi

2)

Generalisations of this rule to add inputs or outputs are obvious.

4.3 Specifications of the Sub-operations

The specifications of the four sub-operations over the Σi states are shown in
Figure 6. There is masses of non-determinism here — in fact, one valid imple-
mentation is to have X = N and retain the whole sequence as in Section 3.

The post condition of start -Write clearly shows that we need at least three
slots in order to avoid “race conditions” on individual Values.6

Write(v : Value)
local hold -w :X
start-Write(v : Value)

rd hold -r , fresh-w
wr data-w
rely fresh-w =

↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

guar {↼−−−hold -r , hold -r}� data-w = {↼−−−hold -r , hold -r}�
↼−−−−
data-w

post hold -w ∈ (X − {fresh-w ,
↼−−−
hold -r , hold -r}) ∧

data-w =
↼−−−−
data-w † {hold -w �→ v}

end -Write(v :Value)
rd data-w
wr fresh-w
pre data-w(hold -w) = v
rely fresh-w =

↼−−−−
fresh-w ∧ data-w =

↼−−−−
data-w

post fresh-w = hold -w

Read()r : Value
start-Read()

rd fresh-w
wr hold -r
rely hold -r =

↼−−−
hold -r

post hold -r ∈ {↼−−−−fresh-w , fresh-w}
end -Read()r : Value

rd hold -r , data-w
rely hold -r =

↼−−−
hold -r ∧ data-w(hold -r) =

↼−−−−
data-w(hold -r)

post r = data-w(hold -r)

Fig. 6. Rely/guarantee specifications on Σi

6 The argument why that is not enough is set out in [Hen04] and is not repeated here.

Splitting Atoms with Rely/Guarantee Conditions 371

4.4 Justifying This Step

The technical report version of this paper contains proofs of the (initialisation,
and) four sub-operations in an appendix. These proofs will be presented formally
in the second author’s forthcoming PhD thesis.

Checking the coherence of the rely and guarantee conditions between the two
sub-operations of Read and of Write is somewhat more work than in Section 3
but the effort required is still drastically reduced by the read and write frames
(coupled with the local in Write).

4.5 Summary of Development Methods Used in This Stage

The justification of the data reification from Σa to Σi cannot be done using the
simpler of the two rules in the VDM literature but the rule from Nipkow’s thesis
covers the (possible) reduction in the size of the state space and this rule has
been included in VDM since [Jon90, §9.3]. The use here is technically interesting;
in fact, its availability makes possible the choice of development from Σa to Σr

via Σi . Such careful choice of design strategy is essential but is perhaps the
hardest part of the method to reduce to general rules.

Another key point only sees its completion in Section 5 and that is the use even
at this step of rather bold atomicity assumptions. Without Simpson’s clever data
representation it might be impossible to achieve atomic update (on a reasonable
machine architecture) without locking and it is made clear in Section 3 that this
is not allowed in ACMs. Such roadblocks (leading to backtracking) cannot be
ruled out by any method whether formal or informal.

There are key links from this section to the second author’s upcoming PhD
thesis. In particular, one sees even more clearly in this section than the last how
rely and guarantee conditions are simpler to express because of the read and
write frames. Furthermore, without “phasing”, there would be much more to
write with implications all over the place.

5 The Four-Slot Representation

In purely formal terms, the task remaining after Figure 6 (which uses Σi) is
to find a representation that admits atomic changes in a sensible machine. The
crucial contribution of Simpson’s “4-slot” algorithm is to achieve control over
where the reader and writer find or change values with only two single bit con-
trol variables. This is where the link between “splitting atoms” and reification
(cf. [Jon07, §3]) comes into play. These control variables keep the reader and
writer from “colliding” while never delaying each other. This is the ingenuity
in Hugo Simpson’s contribution and there is absolutely no claim here that the
formalism is a substitute for such design inspiration. Used by a designer (which
it wasn’t), formalism can establish that proceeding to the next design step leaves
no hostage to fortune on correctness; used as here, the formalism can provide a
clear understanding, documentation (and appreciation) of an intricate piece of
code.

372 C.B. Jones and K.G. Pierce

5.1 The Data Representation

The size of the domain of the data-w field of Σi is not constrained. Simpson’s
“4-slot” approach shows that the domain need only have cardinality four. Fur-
thermore, he shows that treating the data map as two pairs (P below) of two
slots (indexed by S below) makes their bookkeeping atomic.

So the essential difference between Σi of Section 4 and Σr here is that the
general index set X of the former is represented here as a pair (P ,S). The other
changes are to control variables whose role becomes clear in Section 5.2.

Σr :: data-w : P × S m−→ Value
pair -w : P
pair -r : P
slot -w : P m−→ S
wp-w : P
ws-w : S
rs-r : S

where:

P ,S = token-set

These two sets can be identical and each has two elements: P = S , card P = 2,
with an inverter function, ρ (for “reverse”)7, such that ρ(i) �= i .

5.2 Justifying the Step from Σr to Σi

Figure 7 reflects the differences between the two state spaces. The justification of
this step of development requires showing that the combination of index values
in Σr can be used to justify the properties of X etc. in Σi . (This is the process
described in [Jon07, §3].) Thus one shows that each of the conditions of Figure 7
corresponds to those of Figure 6. This follows from:

Σi represented in Σr by
data-w i data-w r

freshi (pair -w r , slot -w r (pair r (pair -w r)))
hold -r i (pair -r r , slot -w r (pair r (pair -r r)))
hold -w i (wp-w r ,wp-sr)

The proofs will be given in an appendix to the technical report version of this
paper.

5.3 The Code

It is straightforward to show that the code in Figure 8 satisfies the specifications
of the sub-operations in Section 5.2.

7 Many authors use B for P and then employ negation — to us, this is a coding trick!

Splitting Atoms with Rely/Guarantee Conditions 373

Write(v : Value)
local wp-w :P
local ws-w :S
start-Write(v : Value)

rd pair-r , slot-w
wr data-w
rely slot-w =

↼−−−
slot-w ∧ data-w =

↼−−−−
data-w

guar {(↼−−−pair-r , slot-w(
↼−−−
pair-r), (pair-r , slot-w(pair-r)}� data-w =

{(↼−−−pair-r , slot-w(
↼−−−
pair-r), (pair-r , slot-w(pair-r)}�

↼−−−−
data-w

post wp-w = ρ(
↼−−−
pair-r) ∧ ws-w = ρ(slot-w(wp-w)) ∧

data-w(wp-w ,ws-w) = v
end -Write()

wr pair-w , slot-w
rely pair-w =

↼−−−−
pair-w ∧ slot-w =

↼−−−
slot-w

guar slot-w(pair-r) =
↼−−−
slot-w(pair-r)

post slot-w(wp-w) = ws-w ∧ pair-w = wp-w

Read()r : Value
local rs-r : S
start-Read()

rd pair-w , slot-w
wr pair-r
rely slot-w(pair-r) =

↼−−−
slot-w(pair-r) ∧ pair-r =

↼−−−
pair-r

post pair-r =
↼−−−−
pair-w ∧ rs-r =

↼−−−
slot-w(pair-r)

end -Read()r : Value
rd pair-r , data-w
rely pair-r =

↼−−−
pair-r ∧ data-w(pair-r , rs-r) =

↼−−−−
data-w (pair-r , rs-r)

post r = data-w(pair-r , rs-r)

Fig. 7. Final (Σr) rely/guarantee specification of code

Write(v : Value)
local wp-w :P
local ws-w :S

wp-w ← ρ(pair-r);
ws-w ← ρ(slot-w(wp-w));
data-w(wp-w ,ws-w)← v ;
slot-w(wp-w)← ws-w ;
pair-w ← wp-w

Read()r : Value
local rs-r : S

pair-r ← pair-w ;
rs-r ← slot-w(pair-r);
r ← data-w(pair-r , rs-r)

Fig. 8. Code for Simpson’s algorithm

374 C.B. Jones and K.G. Pierce

5.4 Summary of Development Methods Used in This Stage

Finally, the usefulness of the intermediate data abstraction becomes clear in this
step: it is relatively easy to see the pair/slot mapping as a way of simplifying
a mapping from the arbitrary set X . Moreover, the whole thrust of “splitting
atoms safely” is clear in this step.

6 Conclusions

This section both summarises the general methodological messages of the pa-
per and offers brief descriptions of some other recent justifications of Simpson’s
algorithm. In making such comparisons, the authors are not trying to be com-
petitive but to use this intricate algorithm to indicate what insight can be given
by various approaches.

6.1 Summary

As made clear at the outset, ACMs are complex; Simpson’s algorithm is inge-
nious; and its correctness requires delicate reasoning. The material in Figures 5–7
is key to providing an intuitive grasp of the correctness. The authors hope that
the reader finds this a clear design rationale. (The material pre Figure 5 is really
there to provide an intuition of the behaviour.)

However, the intention was not to add yet another correctness argument of
one specific algorithm but instead to use this development to illustrate how a
number of ideas can be used in concert to move from a “fiction of atomicity”
using a development approach that can be called “splitting (software) atoms
safely”. The notes in Sections 3.4, 4.5 and 5.4 can be summarised as:

– The authors present an understandable and tractable reworking of the “4-
slot” algorithm, with a clear design history.

– The “fiction of atomicity” is a good place to begin.
– While rely/guarantee conditions allow us to reason about the interference,

a clever data reification is required (which Simpson gives us).
– Rely/guarantee reasoning is greatly simplified by the use of frames and phas-

ing arguments.

6.2 Brief Comments on Henderson’s Development

Henderson’s research (in particular, his thesis [Hen04]) has been a key informa-
tion source. Interestingly, he uses broadly the same set of technical tools as in
the current paper. In spite of this, the presentation here looks very different.

First, Henderson’s specification attempts to retain a minimal list of Values
that could potentially be returned by a Read . As mentioned in Section 3.3, a
cost for this is a pair of “ghost variables” that inform the Read operation in
which phase the Write operation is executing (and vice versa). These variables
can be eliminated in reification because Henderson also uses “Nipkow’s rule”.

Splitting Atoms with Rely/Guarantee Conditions 375

The current authors hold the (biased) view that the specification here is clearer
but there would be little difficulty in proving they describe the same behaviour
and the choice can be left to the “customer”.

A more pervasive difference results in part from the recent development
(cf. [Jon07]) of the link between atomicity refinement and data reification. In
Section 5 of the current paper, the preceding interference specifications are
achieved by capitalising on Simpson’s four-slot representation.

The reader is also referred to [HP02] and [PHA04]; the second of these ad-
dresses the delicate issue of “meta-stability” of the control bits.

6.3 Comparison with Event Decomposition

The “event decomposition” method described in, for example, [AC05] is ex-
tremely interesting because it is general. Attention has already been drawn above
to its use of a “pseudo instruction counter” which is related to the “phasing” idea
used here. They avoid any need for rely and guarantee conditions by preserving
the atomicity of events at any level of development. This achieves a considerable
economy of rules.

The current authors do wonder whether the interesting development of Simp-
son’s algorithm in [AC08] indicates that the atomicity constraint might require
a series of difficult-to-invent steps. But their forthcoming publication will admit
wider comparison (and by people unbiased by being authors of either approach).
As indicated, it is the hope of the current authors that a comparison paper might
be written together with Jean-Raymond Abrial and Dominique Cansell.

6.4 Comparison with “Separation Logic”

Another exciting development in research on concurrent code has been the recent
developments around “concurrent separation logic”. At this time, researchers in
Newcastle, London and Cambridge are discussing ways of combining the best
features of both separation logic and rely/guarantee reasoning. For example, the
second author’s thesis builds the bridge with the read/write frames here. There
is not space here to do this research full justice; but an excellent recent reference
(from which other citations can be found) is [Vaf07].

During the writing of this paper, Richard Bornat sent us current work on
Simpson’s algorithm. The title of [BA08] alone should indicate why this is excit-
ing. Again, the availability of this in published form will admit proper unbiased
comparison.

Acknowledgments

The authors are grateful to Jean-Raymond Abrial and Dominique Cansell for
sharing ongoing work in this area. Similarly, the preview of the paper by Richard
Bornat and Hasan Amjad is gratefully acknowledged even though time has not
yet permitted a full comparison. Thanks also go to Peter O’Hearn, Hongseok

376 C.B. Jones and K.G. Pierce

Yang, Viktor Vafeiadis and Matt Parkinson for general and ongoing discussions
on development methods for concurrency.

Of course, the original inspiration of the specific algorithm comes from Hugo
Simpson’s contribution. Neil Henderson and Steve Paynter made us aware of the
challenge of this tiny but intriguing problem.

Our research is supported by the EPSRC Platform Grant on “Trustworthy
Ambient Systems” and EU FP7 “DEPLOY project”.

References

[Abr96] Abrial, J.-R.: The B-Book: Assigning programs to meanings. Cambridge
University Press, Cambridge (1996)

[AC05] Abrial, J.-R., Cansell, D.: Formal construction of a non-blocking concur-
rent queue algorithm. Journal of Universal Computer Science 11(5), 744–770
(2005)

[AC08] Abrial, J.-R., Cansell, D.: Development of a comcurrent program (2008)
(private communication)

[BA08] Bornat, R., Amjad, H.: Inter-process buffers in separation logic with rely-
guarantee. Formal Aspects of Computing (private communication) (submit-
ted, 2008)

[dR01] de Roever, W.P.: Concurrency Verification: Introduction to Compositional
and Noncompositional Methods. Cambridge University Press, Cambridge
(2001)

[dRE99] de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof
Methods and Their Comparison. Cambridge University Press, Cambridge
(1999)

[Hen04] Henderson, N.: Formal Modelling and Analysis of an Asynchronous Commu-
nication Mechanism. PhD thesis, University of Newcastle upon Tyne (2004)

[HP02] Henderson, N., Paynter, S.E.: The formal classification and verification of
Simpson’s 4-slot asynchronous communication mechanism. In: Eriksson, L.-
H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 350–369. Springer,
Heidelberg (2002)

[Jon81] Jones, C.B.: Development Methods for Computer Programs including a No-
tion of Interference. PhD thesis, Oxford University (June 1981); Printed as:
Programming Research Group, Technical Monograph 25

[Jon83a] Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings
of IFIP 1983, pp. 321–332. North-Holland, Amsterdam (1983)

[Jon83b] Jones, C.B.: Tentative steps toward a development method for interfering
programs. Transactions on Programming Languages and System 5(4), 596–
619 (1983)

[Jon89] Jones, C.B.: Data reification. In: McDermid, J.A. (ed.) The Theory and
Practice of Refinement, pp. 79–89. Butterworths (1989)

[Jon90] Jones, C.B.: Systematic Software Development using VDM, 2nd edn. Pren-
tice Hall International, Englewood Cliffs (1990)

[Jon96] Jones, C.B.: Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design 8(2), 105–122
(1996)

[Jon03] Jones, C.B.: Wanted: a compositional approach to concurrency. In: McIver,
A., Morgan, C. (eds.) Programming Methodology, pp. 1–15. Springer, Hei-
delberg (2003)

Splitting Atoms with Rely/Guarantee Conditions 377

[Jon07] Jones, C.B.: Splitting atoms safely. Theoretical Computer Science 357, 109–
119 (2007)

[Nip86] Nipkow, T.: Non-deterministic data types: Models and implementations.
Acta Informatica 22, 629–661 (1986)

[Nip87] Nipkow, T.: Behavioural Implementation Concepts for Nondeterministic
Data Types. PhD thesis, University of Manchester (May 1987)

[PHA04] Paynter, S.E., Henderson, N., Armstrong, J.M.: Ramifications of meta-
stability in bit variables explored via Simpson’s 4-slot mechanism. Formal
Aspects of Computing 16(4), 332–351 (2004)

[Rod08] Rodin.: Rodin tools can be downloaded from SourceForge (2008),
http://sourceforge.net/projects/rodin-b-sharp/

[Sim97] Simpson, H.R.: New algorithms for asynchronous communication. IEE, Pro-
ceedings of Computer Digital Technology 144(4), 227–231 (1997)

[Stø90] Stølen, K.: Development of Parallel Programs on Shared Data-Structures.
PhD thesis, Manchester University (1990), Available as UMCS-91-1-1

[Vaf07] Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis,
University of Cambridge (2007)

http://sourceforge.net/projects/rodin-b-sharp/

ABZ2008 VSR-Net Workshop

Jim Woodcock1 and Paul Boca2

1 University of York
2 London Southbank University

In 2004, the UK Computing Research Committee initiated a number of Grand
Challenges aimed at stimulating long term research in key areas of computing
science. One of the challenges (GC6) focuses on Dependable Systems Evolu-
tion. GC6 has two central principles: theory should be embodied in tools, and
tools should be tested against real systems. The goal is to produce a Verifying
Compiler (a suite of integrated tools) and a repository of verified software.

The results of the first VSR pilot project, conducted in 2006, on verifying the
Mondex system, using different formalisms and tools, are the first artifacts to
be deposited in the repository. A number of other pilot studies are underway
in various parts of Europe, USA, Brazil, Canada, and China. This is a truly
international initiative, and the UK is a major contributor.

In 2005, Joshi and Holzman from the Jet Propulsion Laboratory at Caltech
suggested the specification and verification of a POSIX-compliant filestore in-
terface to flash memory—see http://www.cs.york.ac.uk/circus/mc/abz for
a good overview of the challenge problem. The filestore has strict fault-tolerance
requirements that make it suitable for use by forthcoming NASA missions. This
was suggested to the ASM, B and Z communities as an interesting problem to
work on, and some rose to this challenge by submitting papers to the ABZ 2008
conference (see the paper by Eunsuk Kang and Daniel Jackson, entitled Formal
Modeling and Analysis of a Flash Filesystem in Alloy, in these proceedings).

VSR-net is approaching the end of its three years of ESPRC funding, and this
workshop provides a summary of the various achievements to date and a forum
to discuss how to move forward with the Challenge. There is an opportunity
for reflection too: Tony Hoare gives his perspective on how the Challenge has
evolved and how it differs from what he originally envisaged.

The workshop features a number of technical talks, and we give a few highlights
here. Cliff Jones, University of Newcastle, a leading figure in the verification area,
will give an invited talk entitled Splitting atoms with rely/guarantee-conditions
coupled with data reification. In this talk Jones describes a novel, and intuitive
formal development of an implementation of Simpsons 4-slot algorithm. The paper
accompanying this talk appears elsewhere in these proceedings).

Jim Woodcock, University of York, in his talk Progress on the Verified Soft-
ware Repository discusses past, present and future challenge problems. Three
of the areas Woodcock covers (Mondex, Cardiac Pacemaker, and the Verified
Filestore) are represented at the workshop:

– Richard Banach (University of Manchester). The Mondex Purse Require-
ments and Retrenchments.

E. Börger et al. (Eds.): ABZ 2008, LNCS 5238, pp. 378–379, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ABZ2008 VSR-Net Workshop 379

– John Fitzgerald (University of Newcastle). Approaches to the Pacemaker
Challenge Problem.

– Michael Butler (University of Southampton). Applying Event-B and Rodin
to the filestore.

– Eunsuk Kang (MIT). Counterexample Detection, Core Extraction and Sim-
ulation: Three Analyses Applied to a Flash File System Model.

These cover different approaches and formalisms (e.g., VDM, Event-B, Retrench-
ment) and different tools (Rodin and Alloy).

There are no formal proceedings for this workshop. However, the organizers
are planning a book based on this and other VSR-net workshops, which they
hope will be published in 2009.

Author Index

Abou Dib, Ali 354
Abrial, Jean-Raymond 347
Ait-Ameur, Yamine 339
Ait-Sadoune, Idir 339
Amálio, Nuno 323
Arenas, Alvaro 181
Aziz, Benjamin 181

Banach, Richard 42, 57, 167
Beckers, Jörg 112
Beierle, Christoph 98
Benäıssa, Nazim 251
Benhamamouch, Djilali 356
Bicarregui, Juan 181
Boca, Paul 378
Börger, Egon 24
Boiten, Eerke A. 353
Butler, Michael 344, 347
Büttner, Wolfram 1

Carioni, Alessandro 71
Castel, Charles 358
Castro, Cristiano Gurgel de 349
Cavarra, Alessandra 85
Chaudemar, Jean-Charles 358
Clabaut, Mathieu 357
Cohen, Joelle 341
Conroy, Stacey 195

Dadeau, Frédéric 153, 237
Daho, Hocine El-Habib 356
Déharbe, David 351
De Kermadec, Adrien 153
Derrick, John 280
Dunne, Steve 195

Evans, Neil 359

Farahbod, Roozbeh 343

Gargantini, Angelo 71, 348
Gervais, Frédéric 338
Glässer, Uwe 343
Gomes, Bruno 351
Gurgel, Alessandro Cavalcante 349

Hall, Anthony 337
Hallerstede, Stefan 125, 347

Jackson, Daniel 294
Jones, Cliff B. 360
Julliand, Jacques 139

Kang, Eunsuk 294
Kern-Isberner, Gabriele 98
Klünder, Daniel 112
Kowalewski, Stefan 112

Laleau, Régine 338
Lamboley, Julien 237
Leuschel, Michael 4

Malik, Petra 309
Marques-Silva, João 346
Masson, Pierre-Alain 139
Massonet, Philippe 181
Matos, Paulo J. 346
Matoussi, Abderrahman 338
Metayer, Christophe 357
Moreira, Anamaria 351
Moutet, Thierry 237

North, Siobhán 280

Ober, Ileana 354
Oliveira, Marcel Vinicius Medeiros 349

Pierce, Ken G. 360
Polack, Fiona 323
Ponsard, Christophe 181
Poppleton, Michael 209
Potet, Marie-Laure 237

Requet, Antoine 345
Riccobene, Elvinia 71, 348
Robinson, Ken 223

Saabas, Ando 355
Scandurra, Patrizia 71, 348
Schellhorn, Gerhard 39, 57
Schewe, Klaus-Dieter 342

382 Author Index

Schlich, Bastian 112
Schneider, Steve 359
Seguin, Christel 358
Simons, Anthony J.H. 280
Slissenko, Anatol 341
Snook, Colin 344

Taylor, Ramsay 350
Thalheim, Bernhard 24, 342
Tissot, Régis 139, 153
Treharne, Helen 359
Turner, Edward 359

Utting, Mark 309

Veanes, Margus 355

Voisin, Laurent 347

Wang, Qing 342

Woodcock, Jim 378

Wright, Stephen 265

Zhang, Jing 323

	Title Page
	Preface
	Organization
	Table of Contents
	Complex Hardware Modules Can Now be Made Free of Functional Errors without Sacrificing Productivity
	The High Road to Formal Validation: Model Checking High-Level Versus Low-Level Specifications
	Introduction
	Granularity and Expressivity
	Searching for Errors in Large State Spaces
	An Experiment
	Explanation of the Experimental Results

	Exploiting Symmetry in High-Level Models
	First Experiment: Scheduler
	Second Experiment: Multiple Symmetric Datatypes

	Conclusion
	References

	Modeling Workflows, Interaction Patterns, Web Services and Business Processes: The ASM-Based Approach
	Introduction
	Building ASM Ground Models for Business Processes
	Separation of Different Concerns
	The Scheme for Workflow Interpreter Rules
	Instantiating WorkflowTransition for BPMN Gateways
	ComplexGateTransition
	Instantiating ComplexGateTransition

	OR-Join Gateway: Global versus Local Description Elements
	Related and Future Work
	References

	Refinement of State-Based Systems: ASMs and Big Commuting Diagrams
	References

	Model Based Refinement and the Tools of Tomorrow
	Introduction
	Model Based Refinement Methods: Generalities
	ASM, B, Event-B, Z
	Z
	B
	Event-B
	ASM

	Configurable Semantics
	Issues for Tools
	Conclusions
	References

	A Concept-Driven Construction of the Mondex Protocol Using Three Refinements
	Introduction
	The Abstract Specification
	From Atomic Transfers to Messages
	Protection against Replay Attacks
	Sequence Numbers as Challenges
	Renaming to Use the Original Data Structures
	Related Work
	Conclusion
	References

	A Scenario-Based Validation Language for ASMs
	Introduction
	Motivations and Related Work
	Scenario-Based Validation of ASM Models
	The AValLa Language
	The AValLa Semantics
	The AsmetaV Validator
	The LIFT Case Study
	Conclusions
	References

	Data Flow Analysis and Testing of Abstract State Machines
	Introduction
	Data Flow Analysis
	Data Flow Concepts at the Rule Level
	Data Flow Concepts at the State Level
	Data Flow Coverage Criteria

	Generating Test Cases from ASMs
	Discussion and Future Work
	References

	A Verified AsmL Implementation of Belief Revision
	Introduction
	Background
	Consistency and C-Revisions
	Basic Universes and Functions of \CondorASML
	Implementation of Belief Revision
	Computing an Ordered Partition
	Checking Consistency
	Computation of Penalties \(\kappa_{i}^{-}\)
	Computation of a c-Revision
	Verification of Belief Revision

	Experiences with \CondorASML{} and Conclusions
	References

	Direct Support for Model Checking Abstract State Machines by Utilizing Simulation
	Introduction
	Related Work
	[mc]square
	Model Checking in [ms]square
	Architecture

	Verification of CoreASM Models Using [mc]square
	Case Study
	Distributed Termination Detection
	Flash Cache Coherence Protocol
	Evaluation

	Conclusion and Future Work
	References

	On the Purpose of Event-B Proof Obligations
	Introduction
	Event-B
	Machine Consistency
	Machine Refinement

	Reactive Systems Modelling
	Failure Semantics
	Failure Refinement

	Sequential Program Modelling
	Set Transformers
	Refinement of Set Transformers
	Introduction of aWhile Loop
	Analysing theWhile Loop
	Use of the Enabledness Proof Obligation
	Limitations

	Conclusion
	References

	Generating Tests from B Specifications and Test Purposes
	Introduction
	Preliminaries
	B Abstract Machines
	Test Purpose

	Process of Property Based Testing
	Combining a Model and a Test Purpose for Security Test Generation
	Case Study
	IAS Case Study
	Test Purpose Example
	Experimentation and Results
	Experimentation and Results

	Conclusion and Future Work
	References

	Combining Scenario- and Model-Based Testing to Ensure POSIX Compliance
	Introduction
	Formal Model of a POSIX File System
	Data Model
	Commands
	Adding Acces Control Mechanisms
	Restrictions on the Modeling

	Functional Testing Approach
	Model Coverage Criteria
	Test Verdict Definition
	Limitations of This Approach

	Combining Scenario- and Model-Based Testing
	Principles of Scenario- and Model-Based Testing
	Schemas Language
	From Schemas to Test Cases Using Model Symbolic Animation

	Experiments
	Systems Under Test
	Test Schema and Results

	Conclusion and Future Work
	References

	UseCase-Wise Development: Retrenchment for Event-B
	Introduction
	UseCase-Wise Development
	Event-B Machines, Refinement and Retrenchment for Event-B
	Event-BMachines
	Event-B Refinement
	Retrenchment for Event-B

	Retrenchment and Event-B Interworking: The Tower Pattern
	A Simple Case Study
	Four Machines
	A, B, C, D and the Tower

	Conclusions
	References

	Towards Modelling Obligations in Event-B
	Introduction
	Events in Event-B
	Events with Triggers

	Motivating Example
	The Interpretation of Triggered Events
	NEXT Events
	WITHIN Events
	Events with Guards and Triggers
	EVENTUALLY Events

	Refinement with Triggers
	Refinement of Duration
	Refinement of the Trigger Predicate
	Removing Triggers
	Implementing Triggers

	Scheduling
	Deadlock Freeness for NEXT
	Schedulability

	Related Work
	Conclusion
	References

	A Practical Single Refinement Method for B
	Introduction
	Gardiner and Morgan’s Rule for Data Refinement
	Cosimulation

	Factorising an Arbitrary Refinement
	Traditional Representation of Refinements in B

	Extended Substitutions
	Relational Characterisation of an Extended Substitution
	Refinement of Extended Substitutions

	A Complete Single Refinement Rule for B
	Nature of a First-Order Characterisation

	Schr˝odinger’s Cat Revisited
	The Abstract and Concrete Specifications
	Proof of Refinement

	Comparison with Single Complete Refinement in Z
	Derrick’s Example Translated into B
	Verification of Derrick’s Refinement Example

	Related Work and Conclusions
	References

	The Composition of Event-B Models
	Introduction
	Historical Context
	Event-B Basics
	Refinement
	Model Reuse with Features

	Model and Event Fusion
	Preservation of Refinement by Event Fusion
	Conclusion and RelatedWork
	References

	Reconciling Axiomatic and Model-Based Specifications Reprised
	Introduction
	Axiomatic vs Model-Based Specification

	Brief Overview of Event B
	The Abstract Stack
	Stack Sets, Constants, Axioms and Theorems
	Stack Machine

	The Concrete Stack
	Sequences: Preparing for the Concrete Stack
	The Recursive Structure of Stacks
	Sequence-Stack Axioms
	Stack Refinement
	An Explanation of the Sudden Appearance of Recursion

	Other Aspects of the Development
	Consistency
	Proof Obligations
	General Experience of the Rodin Toolkit

	Conclusion
	References

	A Verifiable Conformance Relationship between Smart Card Applets and B Security Models
	Introduction
	TheContext
	Security Model
	Smart Card Applications

	Conformance Relationship
	Some B Notions
	Security Traces
	Mapping Security and Functional Levels
	Conformance Definition

	Application to APDU Implementations
	A Form of Mapping Dedicated to APDU Implementations
	Mapping Properties
	Example

	Conclusion and Future Work
	References

	Modelling Attacker’s Knowledge for Cascade Cryptographic Protocols
	Introduction
	TheDolev-YaoModel
	The Dolev-Yao Model for Cascade Protocols
	Secure Cascade Protocols in the Dolev-Yao Model

	Modelling the Attacker
	Key Sequences
	Variables
	Events
	Invariant and Proofs

	Conclusion
	References

	Using EventB to Create a Virtual Machine Instruction Set Architecture
	Introduction
	Related Work
	Common Properties of Instruction Set Architectures
	Model Description
	Model Architecture
	Model Metrics

	Model Detail
	Instruction Set Construction
	Data Modeling
	Modeling of Memory-Mapped Data

	Model Structuring Rationale
	The MIDAS VM
	Implementation Generation
	MIDAS Demonstration
	EventB and RODIN
	Future Work
	Conclusions
	References

	Z2SAL - Building a Model Checker for Z
	Introduction
	The Z2SAL Architecture
	Overview of the Translation Strategy
	The Mathematical Toolkit
	Use of the Tool
	Conclusion
	References

	Formal Modeling and Analysis of a Flash Filesystem in Alloy
	Introduction
	Abstract POSIX Filesystem
	NANDFlashMemory
	Memory Hierarchy
	Flash API Functions

	Flash Filesystem
	Concrete Operations
	Fault Tolerance Mechanism

	Analysis
	Related Work
	Discussion
	Future Work
	References

	Unit Testing of Z Specifications
	Introduction
	How to Test a Z Specification
	Positive Tests
	Negative Tests
	Promoting Tests

	The ZLive Animator
	POSIX Standardized
	Testing the DS Specification
	Negative Tests for readFILE

	Testing the SS Specification
	Conclusions
	References

	Autonomous Objects and Bottom-Up Composition in ZOO Applied to a Case Study of Biological Reactivity
	Introduction
	The Case Study Model
	A T-cell class Diagram
	Statecharts

	TheZOOModel
	Time and Events
	States, State Transitions and Feedback Channels
	Autonomous Objects That Can Sense
	Orthogonal Components of Statecharts
	Bottom-Up Composition
	Handling Global Pre-Conditions

	Snapshot Analysis
	Discussion
	Related Work
	Conclusions
	References

	Integrating Z into Large Projects Tools and Techniques
	A First Attempt to Express KAOS Refinement Patterns with Event B
	References

	Verification and Validation of Web Service Composition Using Event B Method
	References

	Stability of Real-Time Abstract State Machines under Desynchronization
	XML Database Transformations with Tree Updates
	References

	Dynamic Resource Configuration & Management for Distributed Information Fusion in Maritime Surveillance
	References

	UML-B: A Plug-in for the Event-B Tool Set*
	BART: A Tool for Automatic Refinement
	Extended Abstract

	Model Checking Event-B by Encoding into Alloy
	References

	A Roadmap for the Rodin Toolset
	Exploiting the ASM Method for Validation & Verification of Embedded Systems
	References

	Tool Support for the Circus Refinement Calculus
	Separation of Z Operations
	Introduction
	References

	BSmart: A Tool for the Development of Java Card Applications with the B Method
	References

	From ABZ to Cryptography
	Using ASM to Achieve Executability within a Family of DSL
	Using Satisfiability Modulo Theories to Analyze Abstract State Machines
	Formal Verification of ASM Models Using TLA+
	References

	DIR 41 Case Study How Event-B Can Improve an Industrial System Specification
	Context and Goals
	Description of Work and Results
	Conclusion

	FDIR Architectures for Autonomous Spacecraft: Specification and Assessment with Event-B
	Object Modelling in the SystemB Industrial Project
	Splitting Atoms with Rely/Guarantee Conditions Coupled with Data Reification
	Introduction
	Background Material
	Data Reification
	Rely/Guarantee Thinking
	Event Decomposition
	Tracking Execution with Variables
	Status of the Proofs

	ACMs and Their Specification
	A Specification
	Splitting Atoms in Σ^{a}
	Alternative Specifications
	Summary of Specification Methods Used

	Retaining Less History
	The Data Representation
	Relating Σ^{i} to Σ^{a}
	Specifications of the Sub-operations
	Justifying This Step
	Summary of Development Methods Used in This Stage

	The Four-Slot Representation
	The Data Representation
	Justifying the Step from Σ^{r} to Σ^{i}
	The Code
	Summary of Development Methods Used in This Stage

	Conclusions
	Summary
	Brief Comments on Henderson’s Development
	Comparison with Event Decomposition
	Comparison with “Separation Logic”

	References

	ABZ2008 VSR-Net Workshop
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

