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Abstract. This paper critically analyzes reduct construction methods
at two levels. At a high level, one can abstract commonalities from the
existing algorithms, and classify them into three basic groups based on
the underlying control structures. At a low level, by adopting different
heuristics or fitness functions for attribute selection, one is able to derive
most of the existing algorithms. The analysis brings new insights into the
problem of reduct construction, and provides guidelines for the design of
new algorithms.

Keywords: Reduct construction algorithms, deletion strategy, addition-
deletion strategy, addition strategy, attribute selection heuristics.

1 Introduction

The theory of rough sets has been applied to data analysis, data mining and
knowledge discovery. A fundamental notion supporting such applications is the
concept of reducts, which has been studied extensively by many authors [14,17,
21, 22, 25, 29, 30]. A reduct is a subset of attributes that is jointly sufficient and
individually necessary for preserving the same information as provided by the
entire set of attributes. It has been proved that finding a reduct with the minimal
number of attributes is NP-hard [26]. Research efforts on reduct construction
algorithms therefore mainly focus on designing search strategies and heuristics
for finding a satisfactory reduct efficiently.

A review of the existing reduct construction algorithms shows that most of
them tie together search strategies (i.e., control structures) and attribute selec-
tion heuristics. This leads to difficulties in analyzing, comparing, and classifying
those algorithms, as well as the trend of introducing new algorithms constantly.
With ample research results on this topic, it is perhaps the time for us to pause
and to analyze critically those results, in order to gain more insights.

With a clear separation of control structures and attribute selection heuris-
tics, we can critically analyze reduct construction algorithms with respect to
the high level control strategies, and the low level attribute selection heuristics,
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respectively. This allows us to conclude that the differences between the exist-
ing algorithms lie more on the attribute selection heuristics than on the control
strategies.

The rest of the paper is organized as follows. First of all, we discuss the
connections between feature selection and reduct construction in Section 2. After
that, basic concepts and notations of rough set theory are reviewed in Section 3.
Three basic control structures are then presented in Section 4-6 by reformulating
the existing algorithms, from which many variations can be generated easily.
After these, Section 7 is the conclusion.

2 Feature Selection and Reduct Construction

Reduct computation is related to many disciplines. The same objective of sim-
plifying the attribute domain has been studied in machine learning, pattern
recognition, and feature selection in specific [3, 12, 13, 23].

Feature selection is a fundamental task in a number of different disciplines,
such as pattern recognition, machine learning, concept learning and data min-
ing. Feature selection is necessary for both description and prediction purposes.
In the description process, it can be computationally complex to construct rules
by using all available features; in the prediction process, the constructed high
dimensional rules can be hard to test and evaluate for new coming instances.
From a conceptual perspective, selection of relevant features, and elimination
of irrelevant ones, are the main tasks of feature selection. From a theoretical
perspective, it can be shown that an optimal feature selection requires an ex-
haustive search of all possible subsets of the entire feature set. If the cardinality
of the entire feature set is large, this exhaustive method is impractical. For prac-
tical feature selection applications, the search is normally for a satisfactory set
of features instead of an optimal set.

In the domain of feature selection, two methods, forward selection and back-
ward elimination, have been extensively studied [3,12,13]. The forward selection
strategy starts with the empty set and consecutively adds one attribute at a time
until we obtain a satisfactory set of features. This strategy also can be called as
an addition strategy for simplicity. On the contrary, the backward elimination
strategy starts with the full set and consecutively deletes one attribute at a time
until we obtain a satisfactory set of features. In this paper, this strategy also
is called a deletion strategy. The forward strategy can be extended from the
one-by-one sequential-add style to the “plus l - take away r” style. This kind of
methods first enlarge the feature subset by l features, then delete r features as
long as the remaining attribute set exhibits an improvement compared to the
previous feature set. They avoid the nesting problem of feature subsets that are
encountered in the sequential style, but need to set the values of l and r [4, 18].
The same idea can be applied to backward strategy variations.

In a consecutive forward selection or a backward elimination process, one can
adopt different heuristics for feature selection. A heuristic decides and then adds
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the best feature, or deletes the worst feature, at each round. As a consequence,
variations of the same algorithm can be derived.

The difference between reduct computation and feature selection is their halt-
ing strategies. For the purpose of feature selection, one might stop adding or
deleting features when the information preservation is satisfied, the classifica-
tion accuracy is not degrading, or the computation cost is affordable. For reduct
construction, the algorithm does not stop until the minimum set of features that
possesses some particular property is obtained. Reduct construction thus is a
special case of feature selection. In fact, many feature selection algorithms can
be viewed as performing a biased form of reduct computation. The results are not
necessarily being reducts. Obviously, the extensive studies of feature selection,
including the identification of relevant, irrelevant and redundant features, and
the design, implementation and renovation of the filter and wrapper methods,
affect the study of reduct computation.

By considering the properties of reducts, the deletion strategy always results
in a reduct [7, 30]. On the other hand, algorithms based on a straightforward
application of the addition strategy only produce a superset of a reduct [8, 10,
15, 16, 20]. In order to resolve this problem, many authors have considered a
combined strategy by re-applying the deletion strategy on the superset of the
reduct produced by the straightforward addition strategy [25]. An interesting
question is whether there exists an addition-only strategy that can produce a
reduct. A positive answer has been given by Zhao and Wang with an addition
algorithm without further deletion [29].

According to the above discussion, we have three control strategies used by
reduct construction algorithms. They are the deletion strategy, the addition-
deletion strategy, and the addition strategy. We can classify reduct construction
algorithms into the corresponding three groups.

3 Basic Concepts and Notations

The basic concepts, notations, and results related to the problem of reduct con-
struction are briefly reviewed in this section.

3.1 Information Table and Attribute Lattice

Suppose data are represented by an information table, where a finite set of
objects are described by a finite set of attributes [17].

Definition 1. An information table S is the tuple:

S = (U, At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, Va is a nonempty set of values for an attribute a ∈ At, and Ia : U → Va

is an information function. For an object x ∈ U , an attribute a ∈ At, and a
value v ∈ Va, Ia(x) = v means that the object x has the value v on attribute a.
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Table 1. An information table

a b c d e

o1 0 0 0 1 1
o2 0 1 2 0 0
o3 0 1 1 1 0
o4 1 2 0 0 1
o5 0 2 2 1 0
o6 0 3 1 0 2
o7 0 3 1 1 1

Example 1. An information table is illustrated in Table 1, which has five at-
tributes and seven objects.

The family of all attribute sets form an attribute lattice under the refinement
order. Let |At| denote the cardinality of At. An attribute lattice has |At| + 1
levels. The only node on the top level indicates the empty set ∅. The only node
on the bottom level indicates the biggest attribute set At. Nodes on the second
level stand for singleton attribute sets. There are |At| nodes in the second level.
For the nth level and n ≥ 2, there are

|At|(|At| − 1) . . . (|At| − n + 2)
(n − 1)!

nodes. There are 2|At| attribute sets in the entire attribute lattice. An edge con-
necting a pair of nodes implies the refinement relationship between an attribute
set and a subset or superset of the attribute set.

Example 2. Figure 1 illustrates the attribute lattice of the previous information
Table 1. It is obvious that totally 25 = 32 attribute sets can be defined for the
universe.

3.2 Equivalence Relations

Definition 2. Given an information table S, for any subset A ⊆ At there is an
associated equivalence relation EA ⊆ U × U , i.e.,

EA = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)},

which partitions U into disjoint subsets, called equivalence classes. An equiva-
lence class containing any object x ∈ U is defined as: [x]A = {y ∈ U | ∀a ∈
A, Ia(x) = Ia(y)}. Such a partition of the universe is denoted by U/EA, or U/A
for simplicity.

A partition U/EA is a refinement of another partition U/EB, or equivalently,
U/EB is a coarsening of U/EA, denoted by U/EA � U/EB, if every equivalence
class of U/EA is contained in some equivalence class of U/EB. The refinement
relation is a partial order, i.e, it is reflexive, anti-symmetric and transitive.



104 Y. Yao, Y. Zhao, and J. Wang

∅

At

{ , , , } { , , , } { , , , } { , , , } { , , , }a b c d a b c e a b d e a c d e b c d e

{ , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , }a b c a b d a b e a c d a c e a d e b c d b c e b d e c d e

{ , } { , } { , } { , } { , } { , } { , } { , } { , } { , }a b a c a d a e b c b d b e c d c e d e

{ } { } { } { } { }a b c d e

Fig. 1. The attribute lattice of the information Table 1

Given two partitions U/EA and U/EB, the meet of their equivalence classes,
U/EA ∧ U/EB, is all nonempty intersections of an equivalence class from U/EA

and an equivalence class from U/EB. The join of their equivalence classes,
U/EA ∨ U/EB, is all unions of an equivalence class from U/EA and an equiv-
alence class from U/EB. The meet is the largest refinement partition of both
U/EA and U/EB; the join is the smallest coarsening partition of both U/EA

and U/EB. Clearly, U/E∅ is the coarsest partition, and U/EAt is the finest par-
tition. For any A ⊆ At, we have U/EAt � U/EA � U/E∅. The family of all
partitions form a partition lattice under the refinement order.

3.3 Discernibility Matrices

Definition 3. Given an information table S, for any two objects (x, y) ∈ U ×U ,
there is an associated discernibility relation mx,y ⊆ At, i.e.,

mx,y = {a ∈ At | Ia(x) �= Ia(y)}.

The physical meaning of mx,y is that objects x and y can be distinguished by
any attribute in mx,y.

The family of all discernibility relations can be conveniently stored in a |U | ×
|U | matrix, called a discernibility matrix M [21]. A discernibility matrix M is
symmetric, i.e., mx,y = my,x, and mx,x = ∅. The family of all discernibility
relations also can be expressed as a set M , collecting only the distinct nonempty
elements, i.e., M = {mx,y | mx,y �= ∅}.

Example 3. The discernibility matrix of information Table 1 is illustrated in
Table 2. Since the discernibility matrix is symmetric, we only list its lower left
half.
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Table 2. The discernibility matrix of information Table 1

o1 o2 o3 o4 o5 o6 o7

o1 - - - - - - -
o2 {b, c, d, e} - - - - - -
o3 {b, c, e} {c, d} - - - - -
o4 {a, b, d} {a, b, c, e} At - - - -
o5 {b, c, e} {b, d} {b, c} {a, c, d, e} - - -
o6 {b, c, d, e} {b, c, e} {b, d, e} {a, b, c, e} {b, c, d, e} - -
o7 {b, c} {b, c, d, e} {b, e} {a, b, c, d} {b, c, e} {d, e} -

The matrix also can be transformed to a set by collecting distinct elements
and eliminating empty elements, such that:

M = {{b, c}, {b, d}, {b, e}, {c, d}, {d, e}, {a, b, d},

{b, c, e}, {b, d, e}, {a, b, c, d}, {a, b, c, e},

{a, c, d, e}, {b, c, d, e}, At}.

The difference of equivalence relations and discernibility relations is obvious.
The equivalence relation EA is based on an attribute set A, indicating all the
object pairs that are indiscernible regarding A. The discernibility relation mx,y

is based on an object pair (x, y), indicating all the attributes that any of them
can distinguish x and y. The relationships between these two relations can be
expressed as follows:

(x, y) /∈ Emx,y ;
(x, y) ∈ EA ⇔ A ∩ mx,y = ∅ and A ∪ mx,y = At.

3.4 Reducts

Definition 4. Given an information table S, a subset R ⊆ At is called a ρ-
reduct of At for the property ρ, if R satisfies the two conditions:

(i). R and At possess the same property ρ;
(ii). for any a ∈ R, R − {a} cannot remain the property ρ.

The first condition indicates the joint sufficiency of the attribute set R, and the
second condition indicates that each attribute in R is individually necessary.

The property ρ can be interpreted in different ways. For example, considering
the equivalence relations, the property ρ can be expressed as U/EP , [x]P or
the joint entropy of P , for any P ⊆ At [17]. Also, regarding the family M of
discernibility relations, the property ρ can be expressed as ∀m ∈ M , m∩ P �= ∅.

According to different interpretations, condition (i) of the reduct definition
can be written as:

• U/ER = U/EAt,
• for all x ∈ U , [x]R = [x]At,
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• H(R) = H(At), where H(.) denotes the joint entropy of the set, or
• ∀m ∈ M, m ∩ At �= ∅ and m ∩ R �= ∅.

It means that the equivalence relations of R and At define the same partition
of the universe. For each object x in the universe, x has the same equivalence
class defined by R and At. R and At provide the same information grain. Object
pairs that can be distinguished by At also can be distinguished by R.

Given an information table, there may exist many reducts. The intersection
of all reducts is called the Core.

Definition 5. An attribute set R′ ⊆ At is called a super-reduct of a reduct R,
if R′ ⊇ R; an attribute set R′ ⊂ At R′ �= ∅ is called a partial reduct of a reduct
R, if R′ ⊂ R.

Given a reduct, there exist many super-reducts and many partial reducts.
Figure 2 shows a very simple attribute lattice with 8 nodes in total. Suppose

two reducts have been identified, and highlighted by stars on their corresponding
nodes. If an attribute set is a reduct, then all its supersets are super-reducts.
Here we shade their corresponding nodes in the lattice. At the same time, any
subset of a reduct is a partial reduct. In the graph, we use circle with solid line
to denote their corresponding nodes.

At

Fig. 2. An illustration of super- and partial reducts in a sample attribute lattice

Reduct computation can be understood as a search in the attribute lattice
under the refinement relation. Both the deletion and addition strategies can be
practised. The deletion strategy searches from At to ∅. As long as the condition
(i) is met, a reduct or a super-reduct is obtained. If all of its subset are partial
reducts, then it is identified as a reduct. A searching heuristic can facilitate the
search process by deciding which attribute to be eliminated first, in order to
move the search upward.
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On the other hand, the addition strategy executes the search from ∅ to At.
When the condition (i) is met, a reduct or a super-reduct is obtained, and the
forward selection can be stopped. We need to eliminate the superfluous attributes
from a super-reduct, if such is obtained. A searching heuristic decides which
attribute to be added first, in order to move the search downward. An enhanced
searching heuristic needs to prevent the search from leading to a proper superset
of a reduct. By doing so, a backtrack elimination can be saved.

4 Reduct Construction by Deletion

4.1 Control Strategy

By a deletion method, we take At as a super-reduct, which is the largest super-
reduct. Deletion methods can be described generally in Algorithm 1.

Algorithm 1. The deletion method for computing a reduct
Input: An information table.
Output: A reduct R.

(1) R = At, CD = At.
(2) While CD �= ∅:

(2.1) Compute fitness values of all the attributes in CD regarding the
property ρ using a fitness function δ;

(2.2) Select an attribute a according to its fitness, let CD = CD − {a};
(2.3) If R − {a} is jointly sufficient, let R = R − {a}.

(3) Output R.

Many algorithms are proposed based on this simple deletion control strategy.
For example, the algorithms proposed in [5,7,30] are implemented for computing
a reduct based on information tables.

A deletion method starts with the trivial super-reduct, i.e., the entire at-
tribute. It has to check all the attributes in At for deletion. It is not efficient in
the cases when a reduct is short, and many attributes are eliminated from At
after checking.

4.2 Attribute Selection Heuristics

The order of attributes for deletion is essential for reduct construction. Regard-
ing a property ρ, different fitness functions may determine different orders of
attributes, that may result in different reducts.

The attribute selection heuristic is given by a fitness function:

δ : At −→ �, (1)

where At is the set of attributes in the information table, and � is the set of real
numbers. The meaning of the function δ is determined by many semantic consid-
erations. For example, it may be interpreted in terms of the cost of testing, the
easiness of understanding, the actionability of an attribute, or the information
gain an attribute produces.
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Example 4. Suppose the fitness function δ is interpreted as an information en-
tropy

δ(a) = H(a) = −
∑

v∈Va

p(v) log p(v). (2)

This heuristic can be easily applied to information tables. For the information
Table 1, we obtain H(a) = 0.592, H(b) = 1.950, H(c) = 1.557, H(d) = 0.985
and H(e) = 1.449, which yields an order b → c → e → d → a. According to this
entropy-based order, the attribute a that contains least information is most likely
to be deleted first, and the attributes d, e, c and b are then considered in turn.
As a result, a reduct {b, c, e} is computed. The iterative steps are illustrated in
Figure 3.

Step 2: check d Step 3: check e Step 4: check c Step 5: check b

b c d e b c e b c e b c e 

o1 0 0  1 o1 0 0  o1 0  1 o1, o4  0 1 

o2 1 2  0 o2 1 2  o2, o3 1  0 o2, o5  2 0 

o3 1 1  0 o3 1 1  o4 2  1 o3  1 0 

o4 2 0  1 o4 2 0  o5 2  0 o6  1 2 

o5 2 2  0 o5 2 2  o6 3  2 o7  1 1 

o6 3 1  2 o6, o7 3 1  o7 3  1 

o7 3 1  1   

U/E{b,c,e} = U/EAt ,

d can be deleted. 

R ={b,c,e}.

U/E{b,c}  U/EAt ,

e cannot be deleted. 

R ={b,c,e}. 

U/E{b,e}  U/EAt ,

c cannot be deleted. 

R ={b,c,e}. 

U/E{c,e}  U/EAt ,

b cannot be deleted. 

R ={b,c,e}. 

Step 1: check a

a b c d e

o1  0 0 1 1

o2  1 2 0 0

o3  1 1 1 0

o4  2 0 0 1

o5  2 2 1 0

o6  3 1 0 2

o7  3 1 1 1

U/E{b,c,d,e} = U/EAt ,

a can be deleted. 

R ={b,c,d,e}.

Fig. 3. An illustration of using a deletion strategy for the information Table 1

Suppose the fitness function δ is interpreted as the frequency that an attribute
appears in any element of the discernibility matrix M , i.e.,

δ(a) = |{m ∈ M | a ∈ m}|. (3)

We attempt to first delete an attribute that differentiates a small number of
objects. We can obtain a set of quantitative values for our sample discernibility
matrix in Table 1, such that δ(a) = 6, δ(b) = 18, δ(c) = 16, δ(d) = 12, and δ(e) =
15. The yielded order is consistent with the order yielded by the information gain.
Consequently, the same reduct is computed.

Many algorithms use entropy-based heuristics, such as information gain, con-
ditional entropy, and mutual information [2, 15, 16, 24, 27]. Some algorithms
use frequency-based heuristics with respect to the discernibility matrix, such
as [6, 17, 22, 25].

Besides a quantitative evaluation, the fitness function δ can be interpreted as
a qualitative evaluation. A qualitative method relies on pairwise comparisons of
attributes. For any two attributes a, b ∈ At, we assume that a user is able to
state whether one is more important than, or is more preferred to, the other.
Based on the user preference, usually the preferred attributes are intended to be
kept, and the unfavourable attributes are intended to be deleted.
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5 Reduct Construction by Addition-Deletion

5.1 Control Strategy

By an addition-deletion strategy, we start the construction from an empty set
or the Core, and consequently add attributes until a super-reduct is obtained.
The constructed super-reduct contains a reduct, but itself is not necessarily a
reduct unless all the attributes in it are individually necessary. We need to delete
the superfluous attributes in the super-reduct till a reduct is found [29,30]. The
addition-deletion methods can be described generally in Algorithm 2.

Algorithm 2. The addition-deletion method for computing a reduct
Input: An information table.
Output: A reduct R.

Addition:
(1) R = ∅, CA = At.
(2) While R is not jointly sufficient and CA �= ∅:

(2.1) Compute fitness values of all the attributes in CA regarding the
property ρ using a fitness function σ;

(2.2) Select an attribute a according to its fitness, let CA = CA − {a};
(2.3) Let R = R ∪ {a}.

Deletion:
(3) CD = R.
(4) While CD �= ∅:

(4.1) Compute fitness values of all the attributes in CD regarding the
property ρ using a fitness function δ;

(4.2) Select an attribute a according to its fitness, let CD = CD − {a};
(4.3) If R − {a} is jointly sufficient, let R = R − {a}.

(5) Output R.

The addition-deletion strategy has been proposed and studied since the dele-
tion strategy is not efficient, and the straightforward addition process can only
find a super-reduct, but not a reduct. A lack of consideration of the latter prob-
lem has produced many incomplete reduct construction algorithms, such as the
ones reported in [8, 10, 16, 20]. An addition-deletion algorithm based on the dis-
cernibility matrix has been proposed by Wang and Wang [25], which can con-
struct the subset of attributes from At, and then reduce it to a reduct efficiently.

Due to the fact that an addition-deletion method computes a relatively precise
super-reduct first, the deletion checking process is expected to be more efficient
than a straightforward deletion-only method. This is true when regarding some
orders, a super-reduct is constructed pretty fast. However, the process of com-
puting a super-reduct itself is also time consuming, as well as the process of
deleting the superfluous attributes from the constructed super-reduct.
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5.2 Attribute Selection Heuristics

For the addition-deletion strategies, the orders of attributes for addition and
deletion are both essential for the result reduct. Regarding a property ρ, by using
the fitness function σ, we add the fit attributes to the empty set or the Core to
form a super-reduct; by using the fitness function δ, we delete the superfluous
attributes from the super-reduct in order to form a reduct. σ and δ can be
two different heuristics, or the same heuristic. If one can order the attributes
according to a fitness function δ from the most fit attribute to the least fit
attribute, then this order can be used for adding them one by one until the
sufficient condition is met, and the reversed order can be used for deleting the
superfluous attributes. By this means, one heuristic determines two orders, and
a reduct composed of more fit attributes is obtained.

Example 5. For the information table in Table 1, suppose the fitness function
σ is interpreted as the frequency or information gain as we have defined for
the fitness function δ in the previous section. A set of quantitative values are
computed according to the chosen heuristic. The attribute b is mostly intended to
be added, followed by attributes c, e, d and a. In this case, a super-reduct {b, c, e}
is computed. After using the reverse order to check the necessity, this super-
reduct is identified as a reduct. The iterative steps are illustrated in Figure 4.

Step 1: add b Step 2: add c Step 3: add e Step 4: check e

b b c b c e  b c e

o1 0 o1 0 0 o1 0 0 1 o1 0 0  

o2, o3 1 o2 1 2 o2 1 2 0 o2 1 2  

o4, o5 2 o3 1 1 o3 1 1 0 o3 1 1  

o6, o7 3 o4 2 0 o4 2 0 1 o4 2 0  

o5 2 2 o5 2 2 0 o5 2 2  

o6, o7 3 1 o6 3 1 2 o6, o7 3 1  

o7 3 1 1     

U/E{b} U/EAt,

R ={b}.

U/E{b,c} U/EAt,

R ={b,c}. 

U/E{b,c,e}=U/EAt,

R ={b,c,e}. 

U/E{b,c}  U/EAt ,

e cannot be deleted. 

R ={b,c,e}. 

Step 5: check c

b c e 

o1 0  1 

o2, o3 1  0 

o4 2  1 

o5 2  0 

o6 3  2 

o7 3  1 

U/E{b,e}  U/EAt ,

c cannot be deleted. 

R={b,c,e}.

Step 6: check b

b c e 

o1, o4  0 1 

o2, o5  2 0 

o3  1 0 

o6  1 2 

o7  1 1 

U/E{c,e}  U/EAt ,

b cannot be deleted. 

R={b,c,e}.

Fig. 4. An illustration of using an addition-deletion strategy for the information Table 1

6 Reduct Construction by Addition

6.1 Control Strategy

By an addition method, we start the reduct construction process from an empty
set or the Core, and consequently add attributes to it until it becomes a reduct.
The essential difference between the addition method and the addition-deletion
method is that, the addition method takes in one attribute if the constructed
set is a partial reduct, while the addition-deletion method continuously adds
attributes until a super-reduct is produced. In this case, superfluous attributes
can be added by an addition-deletion method, and the deletion process is re-
quired to eliminate them. The addition methods can be described generally in
Algorithm 3.
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Algorithm 3. The addition method for computing a reduct
Input: An information table S.
Output: A reduct R.

(1) R = ∅, CA = At;
(2) While CA �= ∅:

(2.1) Compute fitness values of all the attributes in CA regarding the
property ρ using a fitness function σ;

(2.2) Select an attribute a according to its fitness;
(2.3) If a is a core attribute, then let R = R ∪ {a} and CA = CA − {a}

else
(2.3.1) Compute fitness values of all the elements in Group(a) =

{m ∈ M | a ∈ m} regarding the property ρ using a fitness
function δ′;

(2.3.2) If Group(a) = ∅, let CA = CA − {a} and go to Step (2),
else, select an element m = {a} ∪ A according to its fitness;

(2.3.3) If CA − A is jointly sufficient, let R = R ∪ {a} and
CA = CA − m, else, go to Step (2.3.2).
If a cannot be made necessary regarding all m ∈ Group(a),
let CA = CA − {a}.

(3) Output R.

For a selected attribute a ∈ CA, Group(a) = {m ∈ M | a ∈ m} is the set
of matrix elements that each indicates an object pair that can be distinguished
by a. If a is a core attribute then it is individually necessary for constructing a
reduct. If a is a non-core attribute, one can make a necessary by eliminating its
associated attributes in an element m ∈ Group(a) from further consideration.
Suppose Group(a) = {m1, m2, . . . , md}, (mi = A ∪ {a}) ∈ Group(a) and A �= ∅.
It means that all the attributes in m can distinguish the object pair associated
with m, and the attribute a is not individually necessary for such a task. We
can make a necessary by eliminating all the attributes in A. If A is a superset of
another element m′ ∈ M , then A is necessary for distinguishing the object pair
associated with m′, which means that A cannot be eliminated. In other words,
the attribute a cannot be made necessary regarding m. If a cannot be made
necessary regarding all mi ∈ Group(a), then a cannot be added to the partial
reduct.

Example 6. For our running example, suppose the non-core attribute a is se-
lected. It is easy to obtain from the matrix in Table 2 that Group(a) = {mo1,o4 ,
mo2,o4 , mo3,o4 , mo4,o5 , mo4,o6 , mo4,o7}. Suppose to make a necessary, the matrix
element mo1,o4 = {a, b, d} is selected, and thus the attributes in the set mo1,o4 −
{a} = {b, d} need to be eliminated. However, the elimination will cause the ele-
ment mo2,o5 = {b, d} becomes empty. In other words, the object pair (o2, o5) can
no longer be distinguished. Therefore, attribute set {b, d} cannot be eliminated,
which means that attribute a cannot be added to the partial reduct regarding
the matrix element mo1,o4 . We can easily verify that a cannot be added regarding
any matrix element in Group(a), thus a does not belong to the partial reduct.
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6.2 Attribute Selection Heuristics

The addition algorithm requires the attributes added to the reduct are individu-
ally necessary. To ensure it, the associated attributes are eliminated for consider-
ation. At the same time, the elimination should not change the joint sufficiency
of the remaining attributes. Therefore, the general addition algorithm explicitly
checks both the sufficiency condition and the necessity condition in Step (2.3.3).
Its time complexity is higher than the general deletion algorithm.

Zhao and Wang suggested using a matrix absorption operation to simplify
the checking process [29]. The matrix absorption operation is a sequence of
all possible element absorption operations on pairs of elements whenever the
following condition holds:

∅ �= M(x′, y′) ⊂ M(x, y).

That is, the value of M(x, y) is replaced by the value of M(x′, y′) in the matrix.
We also say M(x, y) is absorbed by M(x′, y′). The physical meaning of the
absorption can be explained as follows. Suppose M(x′, y′) �= ∅ and M(x′, y′) ⊂
M(x, y). The set of attributes discerning both pairs (x′, y′) and (x, y) is given by
M(x, y) ∩ M(x′, y′) = M(x′, y′). After absorption, M(x, y) becomes M(x′, y′).
Attributes in M(x′, y′) are sufficient to discern both object pairs (x′, y′) and
(x, y). When an attribute from M(x′, y′) is in a reduct, the same attribute can
be used to discern (x, y). Thus, it is not necessary to consider attributes in
M(x, y) − M(x′, y′). After matrix absorption, no element in the matrix is a
proper subset of another element.

By using the matrix absorption operation, the general addition algorithm can
be much simplified. Let attribute a be selected in Steps (2.1) and (2.2), and
Group(a) store the elements contains a from the absorbed matrix. When an
element (m = {a} ∪ A) ∈ Group(a) is selected in Steps (2.3.1) and (2.3.2),
A can be eliminated immediately. Since A is not a proper subset of another
element, thus is not necessary for distinguishing any object pair. Since CA − A
is ensured jointly sufficient, therefore, m can be eliminated after attribute a
being made necessary and added to the partial reduct. We can set CA = {a ∈
At | Group(a) �= ∅}, and apply the matrix absorption operation every time after
the CA is updated.

Example 7. For our running Example 3, we can observe that the distinct matrix
element {b, c} can distinguish the object pairs (o1, o7) and (o3, o5) whose corre-
sponding matrix elements equal to {b, c}, and also the object pairs (o1, o2), (o1, o3),
(o1, o5), (o1, o6), (o2, o4), (o2, o6), (o2, o7), (o3, o4), (o4, o6), (o4, o7), (o5, o6) and
(o5, o7) whose corresponding matrix elements contain {b, c}. By applying the ma-
trix absorption operation we can obtain:

{d, e} absorbs {b, d, e}, {a, c, d, e}, {b, c, d, e}, At;
{b, e} absorbs {b, c, e}, {b, d, e}, {a, b, c, e}, {b, c, d, e}, At;
{b, c} absorbs {b, c, e}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e}, At;
{b, d} absorbs {a, b, d}, {b, d, e}, {a, b, c, d}, {b, c, d, e}, At;
{c, d} absorbs {a, b, c, d}, {a, c, d, e}, {b, c, d, e}, At}.



On Reduct Construction Algorithms 113

As a result, the absorbed discernibility matrix contains the following distinct
elements {b, c}, {b, d}, {b, e}, {c, d}, {d, e}. We can use M̂ denote the absorbed
matrix in a set representation.

For the absorbed discernibility matrix, if we group the matrix elements, we
obtain five overlapped sets:

Group(a) = ∅,

Group(b) = {{b, c}, {b, d}, {b, e}},

Group(c) = {{b, c}, {c, d}},

Group(d) = {{b, d}, {c, d}, {d, e}},

Group(e) = {{b, e}, {d, e}}.

Attribute set CA = {b, c, d, e}.

The fitness function σ can be the one that we discussed in Sections 4 and 5.
We need to discuss more about the fitness function δ′. We should note that
the fitness function δ′ of the proposed addition algorithm is different from the
fitness function δ of the general deletion algorithm. That is because δ evaluates
the fitness of one single attribute at a time, and δ′ evaluates the fitness of a
matrix element m, which is a set of attributes. Typically, δ′ is the summation
or the average fitness of all the included attributes.

Quantitatively, the selection of a matrix element for deletion can be described
by a mapping:

δ′ : {mi ∈ Group(a)} −→ �. (4)

The meaning of the function δ′ is determined by many semantic considerations
as well.

Example 8. For example, a frequency-based heuristic can be defined as follows.
For mi = {a} ∪ A,

δ′(mi) = |{m ∈ M̂ | m ∩ A �= ∅}|. (5)

For the running example, if the reduct attribute b is selected according to the
information gain measure, we thus focus on Group(b) = {{b, c}, {b, d}, {b, e}}.
Using the former heuristic, we obtain that δ′({b, c}) = 2, δ′({b, d}) = 3, and
δ′({b, e}) = 2 in M̂ . Suppose we therefore pick the element {b, d}. Consequently,
a reduct {b, c, e} can be computed. The iterative steps are illustrated in Figure 4.

We can also define the fitness function δ′ as the information entropy, i.e., the
joint entropy of all the attributes in the attribute set mi − {a}. For example, if
mi − {a} = {b, c}, then

δ′(mi) = H(mi − {a})
= H({b, c})

= −
∑

x∈Vb

∑

y∈Vc

p(b, c) log p(b, c). (6)



114 Y. Yao, Y. Zhao, and J. Wang

Step 1: add b

Delete {b d} from

CA

Step 2: add c

Delete {c} from 

CA

Step 3: add e

Delete {e} from 

CA

b c e b c e b c e

o1 o1 o1

o2 o2 o2

o3 o3 o3

o4 o4 o4

o5 o5 o5

o6 o6 o6

o7 o7 o7

M b c b d

b e c d d e

CA b c d e

b b c

b d b e

U/E b,c,e U/EAt,

R b

M c e

CA c e

c c

U/E b,c,e U/EAt,

R b c

M

M e

CA e

e

e

U/E b,c,e U/EAt,

R b c e

Fig. 5. An illustration of using an addition strategy for the information Table 1

By applying this heuristic to the sample information Table 1, we obtain that
δ′({b, c}) = H({c}) = 1.557, δ′({b, e}) = H({e}) = 1.449 and δ′({b, d}) =
H({d}) = 0.985. The reduct {b, c, e} can be computed if the element {b, d} is
selected.

Similarly, qualitative evaluation can also be applied here for selecting a matrix
element for deletion. This can be based on the user preference on the attribute
set, that we have discussed in the previous sub-section. We usually select the
most unfavourable matrix element for deletion.

Example 9. For our running example in Table 1, we only find two reducts ac-
cording to the introduced heuristics. By applying different heuristics, we may
be able to find the rest of reducts, like {c, d, e} and {b, d}. The attribute lat-
tice shown in Figure 6 highlights all the reducts by stars, and super-reducts by
shadings, partial reducts by circles with solid lines.

{ } { } { } { } { }a b c d e

{ , } { , } { , } { , } { , } { , } { , } { , } { , } { , }a b a c a d a e b c b d b e c d c e d e

At

{ , , , } { , , , } { , , , } { , , , } { , , , }a b c d a b c e a b d e a c d e b c d e

{ , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , }a b c a b d a b e a c d a c e a d e b c d b c e b d e c d e

Fig. 6. An illustration of super- and partial reducts in the attribute lattice of Table 1
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7 Time Complexity Analysis

Suppose the partition of the information table is chosen for the time complexity
analysis. For an attribute a ∈ At, the execution of U/E{a} needs to compare
each object pair regarding attribute a. It thus requires |U|(|U|+1)

2 comparisons,
where |U | is the cardinality of U . For an attribute set A ⊂ At, the execution
of U/EA needs to compare each object pair regarding all the attributes in A. It
thus requires |U|(|U|+1)

2 |A| comparisons.
The attribute deletion operation of the deletion strategy is to check if the

remaining attribute set is still jointly sufficient for each iteration. To check the
necessity of attribute a1, one needs to verify if At − {a1} produces the same
partition as At does, and thus |U|(|U|+1)

2 (|At| − 1) comparisons are required. If
a1 is deleted after the checking, then to verify if At − {a1} − {a2} produces the
same partition as At does, one needs |U|(|U|+1)

2 (|At|−2) comparisons. If a1 is not
deleted after the checking, then one still needs |U|(|U|+1)

2 (|At| − 1) comparisons,
to check the necessity of a2. Totally, O(|U |2|At|2) comparisons are required to
check the jointly sufficiency condition and the individual necessity condition for
all attributes.

The addition-deletion strategy checks the joint sufficiency condition for a con-
structed super-reduct, and checks the individual necessity condition for all the at-
tributes in the constructed super-reduct. To verify if U/E{a1} = U/EAt one needs
|U|(|U|+1)

2 comparisons. To verify if U/E{a1,a2} = U/EAt one needs 2|U|(|U|+1)
2

comparisons, and so on. Totally, O(|U |2|At|2) comparisons are required to con-
struct a super-reduct. And same number of comparisons are required to check
the necessity of all attributes.

The addition strategy picks an attribute to make it individually necessary by
eliminating its associated attributes, at the same time, it ensures the elimination
does not change the joint sufficiency of the remaining attributes. To ensure the
necessity of attribute a1, one needs to verify if At − A1 produces the same
partition as At does, where ma1 = {a1} ∪ A1. This requires |U|(|U|+1)

2 (|At| −
|A1|) comparisons. If a1 is added after the checking, then one needs to verify if
At − ma1 − A2 produces the same partition as At does, where ma2 = {a2} ∪ A2.
This requires |U|(|U|+1)

2 (|At| − |m| − |A2|) comparisons. If a1 is not added after
the checking, then one still needs |U|(|U|+1)

2 (|At| − |A2| − 1) comparisons, to
ensure the necessity of a2. Totally, O(|U |2|At|2) comparisons are required to
check the jointly sufficiency condition and the individual necessity condition for
all attributes.

This analysis is very rough. It should be noted that the addition-deletion
algorithm normally does not need to add all attributes in At for a super-reduct.
The addition algorithm relies on the absorption operation to simplify the matrix
and generate the groups for all attributes. Normally, the addition algorithm is
the most inefficient one comparing to the other two.
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8 Conclusion

This paper provides a critical study of the existing reduct construction algo-
rithms based on a two-level view: a high level view of control strategy and a
low level view of attribute selection heuristics. Three groups of algorithms are
discussed based on the deletion strategy, the addition-deletion strategy and the
addition strategy.

We define the concepts of super-reducts and partial reducts besides the con-
cept of reduct. A deletion strategy and an addition-deletion strategy strike to
find a reduct from a super-reduct. An addition strategy strikes to find a reduct
from a partial reduct.

This paper may be considered as an attempt to synthesize the results from
existing studies into a general and easy to understand form, with an objective
towards a more abstract theory. Any success in such a research will not only
produce valuable insights into the problem, but also provide guidelines for the
design of new reduct construction algorithms.
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