

Lecture Notes in Computer Science 5150
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marina L. Gavrilova C.J. Kenneth Tan
Yingxu Wang Yiyu Yao Guoyin Wang (Eds.)

Transactions on
Computational Science II

13

Editors-in-Chief

Marina L. Gavrilova
University of Calgary, Department of Computer Science
2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
E-mail: marina@cpsc.ucalgary.ca

C.J. Kenneth Tan
OptimaNumerics Ltd.
Cathedral House, 23-31 Waring Street, Belfast BT1 2DX, UK
E-mail: cjtan@optimanumerics.com

Guest Editors

Yingxu Wang
University of Calgary, Schulich School of Engineering
Department of Electrical and Computer Engineering
2500 University Drive N.W., Calgary, AB, T2N 1N4, Canada
E-mail: yingxu@ucalgary.ca

Yiyu Yao
University of Regina, Department of Computer Science
Regina, SK, S4S 0A2, Canada
E-mail: yyao@cs.uregina.ca

Guoyin Wang
Chongqing University of Posts and Telecommunications
Institute of Computer Science and Technology, Chongqing 400065, China
E-mail: wanggy@cqupt.edu.cn

Library of Congress Control Number: 2008935543

CR Subject Classification (1998): F, D, C.2-3, G, E.1-2
LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743 (Lecture Notes in Computer Science)
ISSN 1866-4733 (Transactions on Computational Science)
ISBN-10 3-540-87562-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87562-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12446056 06/3180 5 4 3 2 1 0

LNCS Transactions on Computational Science

Computational science, an emerging and increasingly vital field, is now widely
recognized as an integral part of scientific and technical investigations, affecting
researchers and practitioners in areas ranging from aerospace and automotive research
to biochemistry, electronics, geosciences, mathematics, and physics. Computer
systems research and the exploitation of applied research naturally complement each
other. The increased complexity of many challenges in computational science
demands the use of supercomputing, parallel processing, sophisticated algorithms,
and advanced system software and architecture. It is therefore invaluable to have
input by systems research experts in applied computational science research.

Transactions on Computational Science focuses on original high-quality research
in the realm of computational science in parallel and distributed environments, also
encompassing the underlying theoretical foundations and the applications of large-
scale computation. The journal offers practitioners and researchers the possibility to
share computational techniques and solutions in this area, to identify new issues, and
to shape future directions for research, and it enables industrial users to apply leading-
edge, large-scale, high-performance computational methods.

In addition to addressing various research and application issues, the journal aims
to present material that is validated – crucial to the application and advancement of
the research conducted in academic and industrial settings. In this spirit, the journal
focuses on publications that present results and computational techniques that are
verifiable.

Scope

The scope of the journal includes, but is not limited to, the following computational
methods and applications:

• Aeronautics and Aerospace
• Astrophysics
• Bioinformatics
• Climate and Weather Modeling
• Communication and Data Networks
• Compilers and Operating Systems
• Computer Graphics
• Computational Biology
• Computational Chemistry
• Computational Finance and Econometrics
• Computational Fluid Dynamics
• Computational Geometry

VI LNCS Transactions on Computational Science

• Computational Number Theory
• Computational Physics
• Data Storage and Information Retrieval
• Data Mining and Data Warehousing
• Grid Computing
• Hardware/Software Co-design
• High-Energy Physics
• High-Performance Computing
• Numerical and Scientific Computing
• Parallel and Distributed Computing
• Reconfigurable Hardware
• Scientific Visualization
• Supercomputing
• System-on-Chip Design and Engineering

Preface

The denotational and expressive needs in cognitive informatics, computational intelligence,
software engineering, and knowledge engineering have led to the development of new
forms of mathematics collectively known as denotational mathematics. Denotational
mathematics is a category of mathematical structures that formalize rigorous expressions
and long-chain inferences of system compositions and behaviors with abstract concepts,
complex relations, and dynamic processes. Typical paradigms of denotational mathematics
are concept algebra, system algebra, Real-Time Process Algebra (RTPA), Visual Semantic
Algebra (VSA), fuzzy logic, and rough sets. A wide range of applications of denotational
mathematics have been identified in many modern science and engineering disciplines that
deal with complex and intricate mathematical entities and structures beyond numbers,
Boolean variables, and traditional sets.

This issue of Springer’s Transactions on Computational Science on Denotational
Mathematics for Computational Intelligence presents a snapshot of current research on
denotational mathematics and its engineering applications. The volume includes selected
and extended papers from two international conferences, namely IEEE ICCI 2006 (on
Cognitive Informatics) and RSKT 2006 (on Rough Sets and Knowledge Technology), as
well as new contributions. The following four important areas in denotational mathemat-
ics and its applications are covered:

 Foundations and applications of denotational mathematics, focusing on: a) con-
temporary denotational mathematics for computational intelligence; b) denota-
tional mathematical laws of software; c) a comparative study of STOPA and
RTPA; and d) a denotational mathematical model of abstract games.

 Rough and fuzzy set theories, focusing on: a) transformation of vague sets to
fuzzy sets; b) reduct construction algorithms; and c) attribute set dependence in
reduct computation.

 Granular computing, focusing on: a) mereological theories of concepts; and
b) rough logic and reasoning.

 Knowledge and information modeling, focusing on: a) semantic consistency of
knowledge bases; b) contingency matrix theory; and c) analysis of information
tables containing stochastic values.

The editors believe that the readers of the Transactions on Computational Science
(TCS) series will benefit from the papers presented in this special issue on the latest
advances in denotational mathematics and applications in cognitive informatics, natu-
ral intelligence, computational intelligence, and AI.

Acknowledgments

The guest editors of this Special Issue on Denotational Mathematics for Computa-
tional Intelligence in Springer’s Transactions on Computational Science series, would

 Preface VIII

like to thank all authors for submitting their latest interesting work. We are grateful to
the program committee members of the IEEE ICCI 2006 and RSKT 2006 confer-
ences, as well as the reviewers, for their great contributions to this special issue. We
would like to thank the Editors-in-Chief of TCS, Dr. Marina L. Gavrilova and Dr.
Chih Jeng Kenneth Tan, for their advice, vision, and support. We also thank the edito-
rial staff at Springer for their professional help during the publication of this special
issue.

June 2008 Yingxu Wang
Yiyu Yao

Guoyin Wang

LNCS Transactions on
Computational Science –

Editorial Board

Marina L. Gavrilova, Editor-in-chief University of Calgary, Canada
Chih Jeng Kenneth Tan, Editor-in-chief OptimaNumerics, UK
Tetsuo Asano JAIST, Japan
Brian A. Barsky University of California at Berkeley, USA
Alexander V. Bogdanov Institute for High Performance Computing

and Data Bases, Russia
Martin Buecker Aachen University, Germany
Rajkumar Buyya University of Melbourne, Australia
Hyungseong Choo Sungkyunkwan University, Korea
Danny Crookes Queen's University Belfast, UK
Tamal Dey Ohio State University, USA
Ivan Dimov Bulgarian Academy of Sciences, Bulgaria
Magdy El-Tawil Cairo University, Egypt
Osvaldo Gervasi Università degli Studi di Perugia, Italy
Christopher Gold University of Glamorgan, UK
Rodolfo Haber Council for Scientific Research, Spain
Andres Iglesias University of Cantabria, Spain
Deok-Soo Kim Hanyang University, Korea
Ivana Kolingerova University of West Bohemia, Czech Republic
Vipin Kumar Army High Performance Computing Research Center, USA
Antonio Lagana Università degli Studi di Perugia, Italy
D.T. Lee Institute of Information Science, Academia Sinica, Taiwan
Laurence Liew Platform Computing, Singapore
Nikolai Medvedev Novosibirsk Russian Academy of Sciences, Russia
Graham M Megson University of Reading, UK
Edward D. Moreno UEA – University of Amazonas state, Brazil
Youngsong Mun Soongsil University, Korea
Dimitri Plemenos Université de Limoges, France
Viktor K. Prasanna University of Southern California, USA
Muhammad Sarfraz KFUPM, Saudi Arabia
Dale Shires Army Research Lab, USA
Masha Sosonkina Ames Laboratory, USA
Alexei Sourin Nanyang Technological University, Singapore
David Taniar Monash University, Australia
Athanasios Vasilakos University of Western Macedonia, Greece
Chee Yap New York University, USA
Igor Zacharov SGI Europe, Switzerland
Zahari Zlatev National Environmental Research Institute, Denmark

Table of Contents

Regular Papers

Perspectives on Denotational Mathematics: New Means of Thought 1
Yingxu Wang, Yiyu Yao, and Guoyin Wang

On Contemporary Denotational Mathematics for Computational
Intelligence . 6

Yingxu Wang

Mereological Theories of Concepts in Granular Computing 30
Lech Polkowski

On Mathematical Laws of Software . 46
Yingxu Wang

Rough Logic and Its Reasoning . 84
Qing Liu and Lan Liu

On Reduct Construction Algorithms . 100
Yiyu Yao, Yan Zhao, and Jue Wang

Attribute Set Dependence in Reduct Computation 118
Pawel Terlecki and Krzysztof Walczak

A General Model for Transforming Vague Sets into Fuzzy Sets 133
Yong Liu, Guoyin Wang, and Lin Feng

Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics 145
Du Zhang

Contingency Matrix Theory I: Rank and Statistical Independence in a
Contigency Table . 161

Shusaku Tsumoto and Shoji Hirano

Applying Rough Sets to Information Tables Containing Possibilistic
Values . 180

Michinori Nakata and Hiroshi Sakai

Toward a Generic Mathematical Model of Abstract Game Theories 205
Yingxu Wang

A Comparative Study of STOPA and RTPA . 224
Natalia Lopez, Manuel Núñez, and Fernando L. Pelayo

Author Index . 247

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 1–5, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Perspectives on Denotational Mathematics:
New Means of Thought

Yingxu Wang1, Yiyu Yao2, and Guoyin Wang3

1 Dept. of Electrical and Computer Engineering, University of Calgary, Canada
2 Dept. of Computer Science, University of Regina, Canada

3 Institute of Computer Science and Technology,
Chongqing University of Posts and Telecommunications, China

Abstract. The denotational and expressive needs in cognitive informatics,
computational intelligence, software engineering, and knowledge engineering
lead to the development of new forms of mathematics collectively known as
denotational mathematics. Denotational mathematics is a category of
mathematical structures that formalize rigorous expressions and long-chain
inferences of system compositions and behaviors with abstract concepts,
complex relations, and dynamic processes. Typical paradigms of denotational
mathematics are such as concept algebra, system algebra, Real-Time Process
Algebra (RTPA), Visual Semantic Algebra (VSA), fuzzy logic, and rough sets.
A wide range of applications of denotational mathematics have been identified
in many modern science and engineering disciplines that deal with complex and
intricate mathematical entities and structures beyond numbers, Boolean
variables, and traditional sets.

Keywords: Cognitive informatics, computational intelligence, denotational
mathematics, concept algebra, system algebra, process algebra, RTPA, visual
semantic algebra, rough set, granular computing, knowledge engineering, AI,
natural intelligence.

1 Introduction

Recent transdisciplinary researches in cognitive informatics, natural intelligence,
artificial intelligence, computing science, software science, computational
intelligence, knowledge science, and system science have led to an interesting
discovery that a new form of mathematics is needed, which is collectively known as
denotational mathematics, in order to deal with the complex mathematical entities
beyond numbers, Boolean variables, and traditional sets. In denotational mathematics,
not only the mathematical entities are greatly complicated, but also the mathematical
structures and methodologies are intricately expanded from simple relations and
individual functions to embedded relations and series of dynamic functions.

The history of sciences and engineering shows that many branches of mathematics
have been created in order to meet their abstract, rigorous, and expressive needs.
These phenomena may be conceived as that new problems require new forms of
mathematics [1], [2], [26], and the maturity of a scientific discipline is characterized

2 Y. Wang, Y. Yao, and G. Wang

by the maturity of its mathematical means [15]. Upon the identification of more and
more new complex mathematical entities and structures in the aforementioned
disciplines, novel denotational mathematical forms are yet to be sought.

The lasting vigor of automata theory [8], Turing machines [7], and formal
inference methodologies [2], [6] reveals that suitable mathematical means such as
tuples, processes, and symbolic logics are the essences of computing science and
computational intelligence. However, although these profound mathematical
structures underlie the modeling of natural and machine intelligence, the level of their
mathematical entities as characterized by integers, real numbers, Boolean variables,
and simple sets is too low to be able to process concepts, knowledge, and series of
behavioral processes. The requirements for reduction of complex knowledge onto the
low-level data objects in conventional computing technologies and their associated
analytic mathematical means have greatly constrained the inference and computing
ability toward the development of intelligent knowledge processors known as
cognitive computers [14]. This has triggered the current transdisciplinary
investigation into novel mathematical structures for computational intelligence in the
category of denotational mathematics.

2 What Is Denotational Mathematics?

Applied mathematics can be classified into two categories known as analytic and
denotational mathematics [15]. The former are mathematical structures that deal with
functions of variables as well as their operations and behaviors. The latter are
mathematical structures that formalize rigorous expressions and inferences of system
architectures and behaviors with abstract concepts, complex relations, and dynamic
processes. Denotational mathematics is a collection of higher order functions on
complex mathematical entities. Given a certain mathematical structure, when both its
functions and inputs are varying in a series, it belongs to the category of denotational
mathematics; otherwise, it falls into the category of conventional analytic
mathematics.

Denotational mathematics is a category of expressive mathematical structures that
deals with high-level mathematical entities beyond numbers and sets, such as abstract
objects, complex relations, perceptual information, abstract concepts, knowledge,
intelligent behaviors, behavioral processes, and systems.

The term denotational mathematics is first introduced by Yingxu Wang in an
emerging discipline of cognitive informatics [10]. It is then formally described in his
latest book, Software Engineering Foundations: A Software Science Perspective [15].
Denotational mathematics may be viewed as a new way of formal inference on both
complex architectures and intelligent behaviors to meet modern challenges in
understanding, describing, and modeling natural and machine intelligence in general,
and software and knowledge engineering in particular. As a counterpart of the
conventional analytic mathematics, denotational mathematics concerns new forms of
mathematical structures for dealing with complex mathematical entities emerged in
cognitive informatics, computational intelligence, software engineering, and
knowledge engineering.

 Perspectives on Denotational Mathematics: New Means of Thought 3

The convergence of mathematics and computing science is evident ever since the
introduction of computers. On one hand, mathematics provides computer science with
a formal foundation, a rigorous approach of exploration, an abstraction power of
induction, and a systematic generalization means for enabling deduction in
applications. On the other hand, computer science raises many challenges to classical
mathematics, brings new ways of mathematical inferences, and offers help for
tackling intricate problems.

A great extent of effort has been put on extending the capacity of set theory and
mathematical logic in dealing with problems in cognitive informatics and computational
intelligence. The former are represented by the proposals of fuzzy sets [26] and rough
sets [4], [9], [24]. The latter are enabled by the development of temporal logic [5] and
fuzzy logic [26]. New mathematical structures are created for dealing with new problems
such as embedded relations, incremental relations, and the big-R notation [15], [18].
More systematically, a set of novel denotational mathematical forms [16], [18], [22] are
developed known as concept algebra [19], system algebra [20], Real-Time Process
Algebra (RTPA) [11], [21], and Visual Semantic Algebra (VSA) [23].

3 Why Denotational Mathematics Is Needed?

Christopher Strachey (1965), the founder of the Programming Research Group (PRG)
in the Computing Laboratory at Oxford University, wrote: “It has long been my
personal view that the separation of practical and theoretical work is artificial and
injurious. Much of the practical work done in computing, both in software and in
hardware design, is unsound and clumsy because the people who do it have not any
clear understanding of the fundamental design principles of their work. Most of the
abstract mathematical and theoretical work is sterile because it has no point of contact
with real computing.” The succeeding director of PRG and the Oxford Computing
Laboratory, C.A.R. Hoare, asserted that software is a mathematical entity that may be
treated by process algebra, particularly his CSP [3]. Then, Yingxu Wang, a visiting
professor working with C.A.R. Hoare in 1995, proved recently that there exists a
generic mathematical model of abstract program systems, based on it any concrete
program instance and application software system can be derived or treated as an
instance of the generic program model [15].

The emergence of denotational mathematics is driven by the practical needs in
cognitive informatics, computational intelligence, computing science, software
science, and knowledge engineering, because all these modern disciplines study
complex human and machine intelligence and their rigorous treatments. Among the
new forms of denotational mathematics, concept algebra is designed to deal with the
new abstract mathematical structure of concepts and their representation and
manipulation in knowledge engineering [19]. System algebra is created for a rigorous
treatment of abstract systems and their algebraic relations and operations [20]. RTPA
is developed to deal with series of behavioral processes and architectures of software
and intelligent systems [21]. VSA is introduced for the formal modeling and
manipulation of abstract visual objects and patterns for robots, machine visions, and
computational intelligence [23].

4 Y. Wang, Y. Yao, and G. Wang

Denotational mathematics has gain a wide range of real-world applications in
cognitive informatics and computational intelligence [10], [12], [13], [14], [15], [17],
from the cognitive processes of the brain to the generic model of software systems,
from rigorous system manipulation to knowledge network modeling, and from
autonomous machine learning to cognitive computers [14].

Acknowledgement. The authors would like to acknowledge the Natural Science and
Engineering Council of Canada (NSERC) for its partial support to this work. We
would like to thank Co-Editor-in-Chiefs of TCS, Dr. Marina L. Gavrilova and Dr.
Chih Jeng Kenneth Tan, for their comments and support for the Special Issue on
Denotational Mathematics for Computational Intelligence in Springer Transaction of
Computational Science (TCS), Vol. II.

References

1. Bender, E.A.: Mathematical Methods in Artificial Intelligence. IEEE CS Press, Los
Alamitos (1996)

2. Boole, G.: The Laws of Thought, vol. 1854. Prometheus Books, NY (2003)
3. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, London

(1985)
4. Pawlak, Z.: Rough Logic. Bulletin of the Polish Academy of Science, Technical Science 5-

6, 253–258 (1987)
5. Pnueli, A.: The Temporal Logic of Programs. In: Proc. 18th IEEE Symposium on

Foundations of Computer Science, pp. 46–57. IEEE, Los Alamitos (1977)
6. Russell, B.: The Principles of Mathematics, vol. 1903. W.W. Norton & Co., NY (1996)
7. Turing, A.M.: Computing Machinery and Intelligence. Mind 59, 433–460 (1950)
8. von Neumann, J.: The Principles of Large-Scale Computing Machines. Annals of History

of Computers 3(3), 263–273 (reprinted, 1946)
9. Wang, G., Peters, J.F., Skowron, A., Yao, Y.Y. (eds.): RSKT 2006. LNCS (LNAI),

vol. 4062. Springer, Heidelberg (2006)
10. Wang, Y.: On Cognitive Informatics, Keynote. In: Proc. 1st IEEE International

Conference on Cognitive Informatics (ICCI 2002), Calgary, Canada, pp. 34–42. IEEE CS
Press, Los Alamitos (2002)

11. Wang, Y.: The Real-Time Process Algebra (RTPA). Annals of Software Engineering: An
International Journal, USA 14, 235–274 (2002)

12. Wang, Y.: On Cognitive Informatics. Brain and Mind: A Transdisciplinary Journal of
Neuroscience and Neurophilisophy, USA 4(3), 151–167 (2003)

13. Wang, Y., Wang, Y.: On Cognitive Informatics Models of the Brain. IEEE Transactions
on Systems, Man, and Cybernetics (C) 36(2), 16–20 (2006)

14. Wang, Y.: Keynote: Cognitive Informatics - Towards the Future Generation Computers
that Think and Feel. In: Proc. 5th IEEE International Conference on Cognitive Informatics
(ICCI 2006), Beijing, China, pp. 3–7. IEEE CS Press, Los Alamitos (2006)

15. Wang, Y.: Software Engineering Foundations: A Software Science Perspective, CRC
Series in Software Engineering, vol. II. Auerbach Publications, NY, USA (2007)

16. Wang, Y.: Keynote: On Theoretical Foundations of Software Engineering and
Denotational Mathematics. In: Proc. 5th Asian Workshop on Foundations of Software,
Xiamen, China, pp. 99–102 (2007)

 Perspectives on Denotational Mathematics: New Means of Thought 5

17. Wang, Y.: The Theoretical Framework of Cognitive Informatics. International Journal of
Cognitive Informatics and Natural Intelligence 1(1), 1–27 (2007)

18. Wang, Y.: On Contemporary Denotational Mathematics for Computational Intelligence.
In: Gavrilova, M.L., et al. (eds.) Transactions on Computational Science, II. LNCS,
vol. 5150, pp. 6–29. Springer, Heidelberg (2008)

19. Wang, Y.: On Concept Algebra: A Denotational Mathematical Structure for Knowledge
and Software Modeling. International Journal of Cognitive Informatics and Natural
Intelligence 2(2), 1–19 (2008)

20. Wang, Y.: On System Algebra: A Denotational Mathematical Structure for Abstract
System modeling. International Journal of Cognitive Informatics and Natural
Intelligence 2(2), 20–42 (2008)

21. Wang, Y.: RTPA: A Denotational Mathematics for Manipulating Intelligent and
Computational Behaviors. International Journal of Cognitive Informatics and Natural
Intelligence 2(2), 44–62 (2008)

22. Wang, Y.: Keynote: On Denotational Mathematics Foundations of Abstract Intelligence.
In: Proc. 7th IEEE International Conference on Cognitive Informatics (ICCI 2008),
Stanford University, CA, USA, pp. 3–8. IEEE CS Press, Los Alamitos (2008)

23. Wang, Y.: On Visual Semantic Algebra (VSA) and the Cognitive Process of Pattern
Recognition. In: Proc. 7th International Conference on Cognitive Informatics (ICCI 2008),
Stanford University, CA. IEEE CS Press, Los Alamitos (2008)

24. Yao, Y.Y.: A Comparative Study of Formal Concept Analysis and Rough Set Theory in
Data Analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W.
(eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)

25. Yao, Y.Y., Shi, Z., Wang, Y., Kinsner, W.(eds.): Cognitive Informatics: In: Proc. 5th IEEE
International Conference (ICCI 2006), Beijing, China, vol. I and II. IEEE CS Press, Los
Alamitos (2006)

26. Zadeh, L.A.: Fuzzy Sets and Systems. In: Fox, J. (ed.) Systems Theory, pp. 29–37.
Polytechnic Press, Brooklyn (1965)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 6–29, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On Contemporary Denotational Mathematics for
Computational Intelligence

Yingxu Wang

Theoretical and Empirical Software Engineering Research Centre (TESERC)
International Center for Cognitive Informatics (ICfCI)

Dept. of Electrical and Computer Engineering
Schulich School of Engineering, University of Calgary

2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4
Tel.: (403) 220 6141, Fax: (403) 282 6855

yingxu@ucalgary.ca

Abstract. Denotational mathematics is a category of expressive mathematical
structures that deals with high-level mathematical entities beyond numbers and
sets, such as abstract objects, complex relations, behavioral information, con-
cepts, knowledge, processes, intelligence, and systems. New forms of mathe-
matics are sought, collectively known as denotational mathematics, in order to
deal with complex mathematical entities emerged in cognitive informatics,
computational intelligence, software engineering, and knowledge engineering.
The domain and architecture of denotational mathematics are presented in this
paper. Three paradigms of denotational mathematics, known as concept alge-
bra, system algebra, and Real-Time Process Algebra (RTPA), are introduced.
Applications of denotational mathematics in cognitive informatics and compu-
tational intelligence are elaborated. A set of case studies is presented on the
modeling of iterative and recursive systems architectures and behaviors by
RTPA, the modeling of autonomic machine learning by concept algebra, and
the modeling of granular computing by system algebra.

Keywords: Denotational mathematics, concept algebra, system algebra, proc-
ess algebra, RTPA, cognitive informatics, computational intelligence, software
engineering, knowledge engineering, embedded relations, incremental relations,
big-R notation.

1 Introduction

The history of sciences and engineering shows that many branches of mathematics
have been created in order to meet their abstract, rigorous, and expressive needs.
These phenomena may be conceived as that new problems require new forms of
mathematics [5], [26]. It also indicates that the maturity of a new discipline is charac-
terized by the maturity of its theories denoted in rigorous and efficient mathematical
means [42], [43]. Therefore, the entire computing theory, as Lewis and Papadimitriou
perceived, is about mathematical models of computers and algorithms [19]. Hence,
the entire theory of cognitive informatics, computational intelligence, and software

 On Contemporary Denotational Mathematics for Computational Intelligence 7

science is about new mathematical structures for natural and machine intelligence and
efficient mathematical means.

Applied mathematics can be classified into two categories known as analytic and
denotational mathematics [37], [42], [43], [46]. The former are mathematical struc-
tures that deal with functions of variables and their operations and behaviors; while
the latter are mathematical structures that formalize rigorous expressions and infer-
ences of system architectures and behaviors with abstract concepts and dynamic proc-
esses. It is observed that all existing mathematics, continuous or discrete, are mainly
analytic, seeking unknown variables from known factors according to certain func-
tions. Modern sciences have been mainly using analytic methodologies and mathe-
matics in theory development and problem solving. However, in cognitive informatics
and computational intelligence, the need is to formally describe and manipulate soft-
ware and instructional behaviors in terms of operational logic, timing, and memory
manipulation. Therefore, denotational mathematics are sought [37], [42], [43], [46],
[48-52], which are able to describe software and intelligent architectures and behav-
iors rigorously, precisely, and expressively.

Definition 1. Denotational mathematics is a category of expressive mathematical
structures that deals with high-level mathematical entities beyond numbers and sets,
such as abstract objects, complex relations, behavioral information, concepts, knowl-
edge, processes, intelligence, and systems.

The utility of denotational mathematics serves as the means and rules to rigorously
and explicitly express design notions and conceptual models of abstract architectures
and interactive behaviors of complex systems at the highest level of abstraction, in
order to deal with the problems of cognitive informatics and computational intelli-
gence characterized by large scales, complex architectures, and long chains of com-
puting behaviors. Therefore, denotational mathematics is a system level mathematics,
in which detailed individual computing behaviors may still be manipulated by con-
ventional analytical mathematics. Typical forms of denotational mathematics [43],
[46] are concept algebra [49], system algebra [50], and Real-Time Process Algebra
(RTPA) [37], [41], [43], [51], [52].

It is observed in formal linguistics that human and system behaviors can be classified
into three categories: to be, to have, and to do [6], [30], [41], [43]. All mathematical
means and forms, in general, are an abstract description of these three categories of hu-
man and system behaviors and common rules of them. Taking this view, as shown in
Table 1, mathematical logic may be perceived as the abstract means for describing “to
be,” set theory for describing “to have,” and functions for describing “to do” in classic
mathematics.

Table 1 summarized the usages of classic and denotational mathematics, which
presents a fundamental view toward the modeling and expression of natural and ma-
chine intelligence in general, and software system in particular. Table 1 also indicates
that only the logic- and set-based approaches are inadequate to deal with the entire
problems in complex software and intelligent systems.

8 Y. Wang

Table 1. Basic Expressive Power and Mathematical Means in System Modeling

Mathematical means Basic expressive
power in system

modeling
Classic

mathematics
Denotational
mathematics

Usage

To be Logic Concept algebra Identify objects and attributes
To have Set theory System algebra Describe relations and possession
To do Functions RTPA Describe status and behaviors

This paper presents the contemporary denotational mathematical structures for
cognitive informatics and computational intelligence beyond classic mathematical
entities, such as information, concepts, knowledge, processes, behaviors, intelligence,
systems, distributed objects, and complex relations. The emergence and domain of
denotational mathematics are described in Section 2. The paradigms of denotational
mathematics, such as concept algebra, system algebra, and RTPA, are introduced in
Section 3. Applications of denotational mathematics are demonstrated in Section 4,
which covers the modeling of iterative and recursive systems architectures and behav-
iors by RTPA, the modeling of autonomic machine learning by concept algebra, and
the modeling of granular computing by system algebra.

2 The Emergence and Development of Denotational
Mathematics

The emergence of denotational mathematics is driven by the practical needs in cogni-
tive informatics, computational intelligence, computing science, software science, and
knowledge engineering, because all these modern disciplines study complex human
and machine behaviors and their rigorous treatments. This section analyzes the fun-
damental elements in modeling computing systems and explains why these complex
mathematical entities cannot be modeled by simple numbers and sets. This leads to
the requirements for denotational mathematics that extends both entities and their
manipulations in conventional mathematics. Then, the domain and architecture of
denotational mathematics are summarized.

2.1 Fundamental Elements in Modeling Cognitive and Intelligent Systems

It is recognized that the behavioral space of any system or human action is
three-dimensional, which encompasses the dimensions of action, time, and space
[43]. Correspondingly, there are three fundamental categories of computational
behaviors in a software system: a) Computational operations for variable manipula-
tions, b) Timing operations for event manipulation, and c) Space operations for
memory manipulation. Therefore, the behavior of a software or intelligent system
can, in general, be viewed as a set of behavioral processes with computational op-
erations on time and memory.

 On Contemporary Denotational Mathematics for Computational Intelligence 9

Definition 2. A behavior of a software or intelligent system, B, is a tuple of its com-
puting operations OPs and observable outcomes and effects that affect or change the
states of a system in the environment modeled by all variables and input/output
events, as well as related memory structures M over time T, i.e.:

(, ,)B OP T M

OP T M= × ×
 (1)

Behaviors of generic computing systems can be classified as static and dynamic ones as
shown in Table 2. In Table 2, a static behavior of computing is a process that can be de-
termined at design or compile time; while a dynamic behavior of computing is a process
specified by given timing requirements that may only be determined at run-time.

Table 2. Characteristics of Computing System Behaviors

No. Behaviors Static Dynamic Behavioral cate-
gory

1 System architectures To be / to have

2 Data objects To be / to have

3 Dynamic memory allocation To do

4 Timing To do

5 Input/output manipulations To do

6 Event handling To do

7 Mathematical operations To do

It is noteworthy in Table 2 that most system behaviors are dynamic or both dy-
namic and static. Set theories and mathematical logic are found capable to deal with
the ‘to be’ and ‘to have’ type static behaviors. However, the dynamic ‘to do’ behav-
iors in computing have to be manipulated by process algebras, e.g., RTPA. Even for
the first two categories of behavioral problems in software and intelligent systems,
concept algebra and system algebra are capable to deal with the problems more effi-
ciently than logic and set theories, because they work at a higher level of mathemati-
cal entities known as abstract concepts and systems rather than numbers and sets.

2.2 New Problems Require New Forms of Mathematics

The history of sciences and engineering shows that new problems require new forms
of mathematics. Software science and computational intelligence are emerging trans-
disciplinary enquiries that encompass a wide range of contemporary mathematical
entities, which cannot be adequately described by conventional analytic mathematics.
Therefore, new forms of mathematics are sought, collectively known as denotational
mathematics.

The discussions in Section 2.1 indicate that classic mathematical forms such as sets,
logic, and functions are inadequate to deal with the complex and dynamic behavioral
problems of software and intelligent systems. The weaknesses of classic mathematics

10 Y. Wang

are in both of their expressive power and manipulation efficiency in the three catego-
ries of system descriptivity. The profound problems can be analogized to the evolu-
tions of computing architectures, where, although Turing machines [19] are the most
fundamental models for any computing need, von Neumann machines [36] and cogni-
tive machines [38], [39], [44] are required to solve the problems of complex data proc-
essing and knowledge processing more efficiently and expressively.

A great extent of effort has been put on extending the capacity of sets and mathe-
matical logic in dealing with the above problems in cognitive informatics and compu-
tational intelligence. The former are represented by the proposals of fuzzy sets [60,
62] and rough sets [27]. The letter are represented by the development of temporal
logic [29] and fuzzy logic [60]. New mathematical structures are created such as em-
bedded relations, incremental relations, and the big-R notation [37], [48]. More sys-
tematically, a set of new denotational mathematical forms [42], [43], [46] are devel-
oped known as concept algebra [49], system algebra [50], and RTPA [37], [40], [41],
[43], [51], [52]. These new mathematical structures are introduced below, while the
three paradigms of denotational mathematics will be elaborated in Section 3.

2.2.1 The Big-R Notation
The big-R notation is introduced to deal with the fundamental requirement in comput-
ing and software engineering [48], which is proposed first in RTPA [37]. In order to
develop a general mathematical model for unifying the syntaxes and semantics of
iterations and recursions, their inductive nature may be analyzed as follows.

Definition 3. An iteration of a process P can be defined as a series of n+1 repetitions,
Ri, 1 ≤ i ≤ n+1, of P by mathematical induction, i.e.:

0

1 0

1

,

 ,

...

 , 0n n

R

R P R

R P R n+

= ⊗

=

= ≥

→

→

 (2)

Where ⊗ denotes a skip, or doing nothing but exit.
Based on Definition 3, the big-R notation can be introduced below.

Definition 4. The big-R notation, R, is a generic mathematical calculus in computing
that is used to denote: (a) a finite set of repetitive behaviors, or (b) a finite set of re-
curring architectural constructs, in the following forms, respectively:

 (a)
exp =
R

F

BL T
P (3)

 (b)
i =1
R

n

N
P(iN) (4)

where BL and N are the type suffixes of Boolean and natural numbers, respectively; T
and F are the Boolean constants true and false, respectively.

 On Contemporary Denotational Mathematics for Computational Intelligence 11

The big-R notation is a new denotational mathematical structure that enables effi-
cient representation and manipulation of iterative and recursive behaviors in system
modeling and description. Further description of the type system and a summary of all
type suffixes of RTPA will be presented in Section 3.3.

2.2.2 The Embedded Relations

Definition 5. An embedded relation rij is a sequence of left-associated cumulative
relations among a series of computing behaviors pi and pj, 1 ≤ i < n, 1 < j ≤ m = n+1,
i.e.:

1

1 12 2 23 3 1,
1

(...((())) ...) (), 1
n

n n n i ij j
i

p r p r p r p p r p j iR
−

−
=

= = + (5)

where rij ∈ℜ, which is a set of relational process operators of RTPA that will be for-
mally defined in Lemma 6.

The embedded relational operation is a new denotational mathematical structure,
which provides a generic mathematic model for any program and software system in
computing and intelligent system modeling.

2.2.3 The Incremental Relations

Definition 6. An incremental union of two sets of relations R
1
 and R

2
, denoted by ,

are a union of R
1

 and R
2
 plus a newly generated incremental set of relations ΔR

12
, i.e.:

 1 2 1 2 12R R R R R∪ ∪ Δ (6)

where 12 1 12 2R R R RΔ ∧Δ and 12 1 2 1 22(# #)R C C R RΔ = ⊆i .

The incremental relational operation is a new denotational mathematical structure,
which provides a generic mathematical model for revealing the fusion principle and
system gains during system unions and compositions.

2.3 The Domain and Architecture of Denotational Mathematics

The emergence of new mathematical entities in computing, cognitive informatics, and
computational intelligence, as well as the requirements for new mathematical calculi,
are the driving forces for seeking new mathematical structures and forms known col-
lectively as denotational mathematics. The domain and architecture of denotational
mathematics are illustrated in Fig. 1.

Denotational mathematics is usually in the form of abstract algebra that is a form
of mathematics in which a system of abstract notations is adopted to denote relations
of abstract mathematical entities and their algebraic operations based on given axioms
and laws. Denotational mathematics may be used to denote complex behaviors of
humans and intelligent systems, as well as long sequences of inference processes. A
wide range of applications of denotational mathematics has been identified, such as
cognitive informatics, computational intelligence, software engineering, knowledge
engineering, information engineering, autonomic computing, autonomous machine
learning, and neural informatics.

12 Y. Wang

Processes

Behaviors Knowledge
engineering

Cognitive
informatics

The Theoretical Framework of Denotational Mathematics (DM)

Concept
algebra

Concepts

Knowledge

System
architectures

System
behaviors

Series of
actions

Process
algebra

Computational
intelligence

Information

System
algebra

 New mathematical
entities

New expressive
needs in DM

Information
engineering

Software
engineering

Systems

Series of
decisions

Application areas
of DM

Complex
relations

Distributed
granules

Knowledge
representation

Pattern
description

Fuzzy/rough
set theories

Category
theory

Novel mathematical
forms of DM

Autonomic computing

Cognitive computers

Neural informatics

Fig. 1. Architecture of Denotational Mathematics

The following sections will introduce three paradigms of contemporary denota-
tional mathematics. Their applications in cognitive informatics and computational
intelligence will be demonstrated, which show how denotational mathematics may
greatly improve the expressive power and efficiency in complex system modeling and
manipulations.

3 Paradigms of Denotational Mathematics

Algebra is a branch of mathematics in which a system of symbolic abstractions and
algebraic operations are adopted to denote variables, relations and their manipulation
rules. Extensions of conventional algebra onto more complicated mathematical entities
beyond numbers lead to the contemporary denotational mathematics. Three new deno-
tational mathematical forms are created in exploring the mathematical foundations of
cognitive informatics and computational intelligence [42], [43], [46]. Within the new
forms of descriptive mathematics, concept algebra is designed to deal with the new
abstract mathematical structure of concepts and their representation and manipulation.
RTPA is developed to deal with series of behavioral processes and architectures of

 On Contemporary Denotational Mathematics for Computational Intelligence 13

software and intelligent systems. System algebra is created for the rigorous treatment
of abstract systems and their algebraic operations.

3.1 Concept Algebra

In cognitive informatics, logic, linguistics, psychology, software engineering,
knowledge engineering, and computational intelligence, concepts are identified as
the basic unit of both knowledge and reasoning [2], [8], [11], [12], [17], [22], [25],
[41], [45], [49]. The rigorous modeling and formal treatment of concepts are at the
center of theories for knowledge presentation and manipulation [7], [25], [34], [55],
[59]. A concept in linguistics is a noun or noun-phrase that serves as the subject or
object of a to-be statement [17], [37], [43]. Concepts in denotational mathematics
[37], [49] are an abstract structure that carries certain meaning in almost all cogni-
tive processes such as thinking, learning, and reasoning.

Definition 7. A concept is a cognitive unit to identify and/or model a real-world con-
crete entity and a perceived-world abstract object.

This section describes the formal treatment of abstract concepts and a new mathe-
matical structure known as concept algebra in cognitive informatics and computa-
tional intelligence. Before an abstract concept is defined, the semantic environment or
context [11], [12], [17], [23], [59] in a given language, is introduced.

Definition 8. Let O denote a finite nonempty set of objects, and A be a finite non-

empty set of attributes, then a semantic environment or context ΘC is denoted as a
triple, i.e.:

 C ()

:

Θ
→ → → →

 , ,

 = | | |

O A R

R O O O A A O A A
 (7)

where R is a set of relations between O and A , and | demotes alternative relations.

Definition 9. An abstract concept c on ΘC is a 5-tuple, i.e.:

 (, , , ,)c i oc O A R R R (8)

where

• O is a finite nonempty set of objects of the concept, O = {o1, o2, …, om} ⊆

ÞO, where ÞO denotes a power set of O.

• A is a finite nonempty set of attributes, A = {a1, a2, …, an} ⊆ ÞA.

• Rc = O × A is a set of internal relations.

• ' , ' 'iR A A A C A c⊆ × ∧ , is a set of input relations, where C′ is a set of

external concepts, ' CC ⊆Θ . For convenience, 'iR A A= × may be simply

denoted as ' .iR C c= ×

• Ro ⊆ c × C′ is a set of output relations.

14 Y. Wang

Concept algebra is an abstract mathematical structure for the formal treatment of
concepts and their algebraic relations, operations, and associative rules for composing
complex concepts.

Definition 10. A concept algebra CA on a given semantic environment ΘC is a triple,
i.e.:

r c(, ,) = ({ , , }, { , },)c i o

C CCA C OP O A R , R , RΘ • • Θ (9)

where OP = {•r, •c} are the sets of relational and compositional operations on abstract
concepts.

Lemma 1. The relational operations •r in concept algebra encompass 8 comparative
operators for manipulating the algebraic relations between concepts, i.e.:

 r { }• ↔, , , ,=,≅, ,≺ ∼ (10)

where the relational operators stand for related, independent, subconcept, supercon-
cept, equivalent, consistent, comparison, and definition, respectively.

Lemma 2. The compositional operations •c in concept algebra encompass 9 associa-
tive operators for manipulating the algebraic compositions among concepts, i.e.:

 c { , }
− +

• ⇒ , , , , , , ,⇒⇒⇒
∼

 (11)

where the compositional operators stand for inheritance, tailoring, extension, substi-
tute, composition, decomposition, aggregation, specification, and instantiation, re-
spectively.

Concept algebra provides a denotational mathematical means for algebraic manipula-
tions of abstract concepts. Concept algebra can be used to model, specify, and ma-
nipulate generic “to be” type problems, particularly system architectures, knowledge
bases, and detail-level system designs, in cognitive informatics, computational intelli-
gence, computing science, software engineering, and knowledge engineering. De-
tailed relational and compositional operations of concept algebra may be referred to
[42], [49].

3.2 System Algebra

Systems are the most complicated entities and phenomena in abstract, physical, infor-
mation, and social worlds across all science and engineering disciplines. The system
concept can be traced back to the 17th Century when R. Descartes (1596-1650) noticed
the interrelationships among scientific disciplines as a system. Then, the general system
notion was proposed by Ludwig von Bertalanffy in the 1920s [35], followed by the
theories of system science [3], [4], [9], [13], [18], [31]. Further, there are proposals of
complex systems theories [18], [61], fuzzy theories [60], [61], and chaos theories [10],
[32]. Yingxu Wang found that, because of their extremely wide and frequent usability,
systems may be treated rigorously as a new mathematical structure beyond conventional
mathematical entities known as the abstract systems [50]. Based on this view, the con-
cept of abstract systems and their mathematical models are introduced below.

 On Contemporary Denotational Mathematics for Computational Intelligence 15

Definition 11. An abstract system is a collection of coherent and interactive entities
that has stable functions and a clear boundary with the external environment.

An abstract system forms the generic model of various real-world systems and repre-
sents the most common characteristics and properties of them. For instance, the
granularity of granular computing can be explained by the following lemma in the
abstract system theory.

Lemma 3. The generality principle of system abstraction states that a system can be
represented as a whole in a given level k of reasoning, 1 ≤ k ≤ n, without knowing the
details at levels below k.

Definition 12. Let C be a finite nonempty set of components, and B a finite nonempty

set of behaviors, then the universal system environment U is denoted as a triple, i.e.:

 ()U C B R
R C C C B B C B B: → → → →

 , ,

 = | | |
 (12)

where R is a set of relations between C and B, and | demotes alternative relations.

Abstract systems can be classified into two categories known as the closed and
open systems. Most practical and useful systems in nature are open systems in which
there are interactions between the system and its environment. That is, they need to
interact with external world known as the environment Θ, Θ U, in order to exchange

energy, matter, and/or information. Such systems are called open systems. Typical
interactions between an open system and the environment are inputs and outputs.

Definition 13. An open system S on U is a 7-tuple, i.e.:

 (, ,)c i oS C R , R , R , B, Ω Θ (13)

where

• C is a finite nonempty set of components of the system, C = {c1, c2, …, cn} ⊆
ÞC U.

• R is a finite nonempty set of relations between pairs of the components in the
system, R = {r1, r2, …, rm} ⊆ C × C.

• Rc = C × C is a set of internal relations.

• Ri ⊆ CΘ × C is a set of external input relations, CΘ ⊆ ÞC U.

• Ro ⊆ C × CΘ is a set of external output relations.

• B is a set of behaviors (or functions), B = {b1, b2, …, bp}⊆ ÞB U.

• Ω is a set of constraints on the memberships of components, the conditions of
relations, and the scopes of behaviors, Ω = {ω1, ω2, …, ωq}.

• Θ is the environment of S with a nonempty set of components CΘ outside C,
i.e., Θ = CΘ ⊆ ÞC U.

16 Y. Wang

System algebra is an abstract mathematical structure for the formal treatment of
abstract and general systems as well as their algebraic relations, operations, and asso-
ciative rules for composing and manipulating complex systems [43], [50].

Definition 14. A system algebra SA on a given universal system environment U is a

triple, i.e.:

r c(, ,) = ({ , }, { , },)ΩΘ • • Θc i oSA S OP C R , R , R , B, (14)

where OP = {•r, •c} are the sets of relational and compositional operations, respec-
tively, on abstract systems as defined below.

Definition 15. The relational operations •r in system algebra encompass 6 compara-
tive operators for manipulating the algebraic relations between abstract systems, i.e.:

 r { }• ,↔,∏,=, , (15)

where the relational operators stand for independent, related, overlapped, equivalent,
subsystem, and supersystem, respectively.

Definition 16. The compositional operations •c in system algebra encompass 9 asso-
ciative operators for manipulating the algebraic compositions among abstract systems,
i.e.:

 c { , , }
− +

• ⇒ , , , , , ,⇒⇒⇒
∼

 (16)

where the compositional operators stand for system inheritance, tailoring, extension,
substitute, difference, composition, decomposition, aggregation, and specification,
respectively.

System algebra provides a denotational mathematical means for algebraic manipula-
tions of all forms of abstract systems. System algebra can be used to model, specify,
and manipulate generic “to be” and “to have” type problems, particularly system ar-
chitectures and high-level system designs, in cognitive informatics, computational
intelligence, computing science, software engineering, and system engineering. It will
be demonstrated in Section 4.3 that the abstract system and system algebra are an
ideal model for rigorously describing both the structures and behaviors of granules in
granular computing. Detailed relational and compositional operations on abstract sys-
tems may be referred to [50].

3.3 Real-Time Process Algebra (RTPA)

A key metaphor in system modeling, specification, and description is that a software
and intelligent system can be perceived and described as the composition of a set of
interacting processes. Hoare [15], [16], Milner [24], and others developed various alge-
braic approaches to represent communicating and concurrent systems, known as process
algebra. A process algebra is a set of formal notations and rules for describing algebraic
relations of software engineering processes. RTPA [37], [40], [43], [51], [52] is a real-time
process algebra that can be used to formally and precisely describe and specify architec-
tures and behaviors of human and software systems.

 On Contemporary Denotational Mathematics for Computational Intelligence 17

Definition 17. A process P is an embedded relational composition of a list of n meta-
statements pi and pj, 1 ≤ i < n, 1 < j ≤ m = n+1, according to certain composing rela-
tions rij, i.e.:

1

1

1 12 2 23 3 1,

(), 1

(...((())) ...)

n

i ij j
i

n n n

P p r p j i

p r p r p r p

R
−

=

−

= = +

=

 (17)

where the big-R notation [48] is adopted that describes the nature of processes as the
building blocks of programs.

Definition 17. indicates that the mathematical model of a process is a cumulative
relational structure among basic computing operations, where the simplest process is
a single computational statement.

Definition 18. RTPA is a denotational mathematical structure for algebraically denot-
ing and manipulating system behavioural processes and their attributes by a triple,
i.e.:

 (, ,)RTPA T P N (18)

where T is a set of 17 primitive types for modeling system architectures and data ob-

jects, P a set of 17 meta-processes for modeling fundamental system behaviors, and R

a set of 17 relational process operations for constructing complex system behaviors.

Lemma 4. The primary types of computational objects state that the RTPA type sys-
tem T encompasses 17 primitive types elicited from fundamental computing needs,

i.e.:

 { , @ , @ , @ , }e t sint �T N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST S TM BL (19)

where the primary types of RTPA denote natural number, integer, real number, string,
Boolean variable, byte, hyper-decimal, pointer, time, date, date-time, run-time type,
system type, event, timing-event, interrupt-event, and system status, respectively.

Definition 19. A meta-process in RTPA is a primitive computational operation that
cannot be broken down to further individual actions or behaviors.

A meta-process is an elementary process that serves as a basic building block for
modeling software behaviors. Complex processes can be composed from meta- proc-
esses using process relational operations. In RTPA, a set of 17 meta-processes has
been elicited from essential and primary computational operations commonly identi-
fied in existing formal methods and modern programming languages [1], [14], [21],
[56], [57].

Lemma 5. The RTPA meta-process system P encompasses 17 fundamental computa-
tional operations elicited from the most basic computing needs, i.e.:

18 Y. Wang

P {:=, , ⇒, ⇐, , , , | , | , @, , ↑, ↓, !, ⊗, , §}

 (20)

where the meta-processes of RTPA stand for assignment, evaluation, addressing,
memory allocation, memory release, read. write, input, output, timing, duration, in-
crease, decrease, exception detection, skip, stop, and system, respectively.

Definition 20. A process relation in RTPA is an algebraic operation and a composi-
tional rule between two or more meta-processes in order to construct a complex process.

A set of 17 fundamental process relations has been elicited from fundamental alge-
braic and relational operations in computing in order to build and compose complex
processes in the context of real-time software systems.

Lemma 6. The software composing rules state that the RTPA process relation system
R encompasses 17 fundamental algebraic and relational operations elicited from basic
computing needs, i.e.:

R {→, , |, |…|…,
*

R , R
+

,
i

R , , , ||, ∯, |||, », , t, e, i}
 (21)

where the relational operators of RTPA stand for sequence, jump, branch, while-loop,
repeat-loop, for-loop, recursion, function call, parallel, concurrence, interleave, pipe-
line, interrupt, time-driven dispatch, event-driven dispatch, and interrupt-driven dis-
patch, respectively.

The generic program model can be established by a formal treatment of statements,
processes, and complex processes from the bottom-up in the program hierarchy.

Definition 21. A program ℘ is a composition of a finite nonempty set of m processes
according to the time-, event-, and interrupt-based process dispatching rules, i.e.:

1

(@)
=

℘=
m

k k
k

e PR (22)

Definitions 17 and 21 indicate that a program is an embedded relational algebraic
entity as follows.

Theorem 1. The Embedded Relational Model (ERM) of programs states that a soft-
ware system or a program ℘ is a set of complex embedded relational processes, in
which all previous processes of a given process form the context of the current proc-
ess, i.e.:

 1

1

1 1

(@)

[@ (() () ())], 1, ,

m

k k
k

m n

k i ij j i ij
k i

e P

e p k r k p k j i p r

R

R R
=

−

= =

℘=

= = + ∈ ∈P R

 (23)

 On Contemporary Denotational Mathematics for Computational Intelligence 19

Proof. Theorem 1 can be directly proven on the basis of Definitions 17 and 21. Sub-
stituting Pk in Definition 21 with Eq. 17, a generic program ℘ obtains the form as a
series of embedded relational processes as presented in Theorem 1.

The ERM model provides a unified mathematical treatment of programs, which re-
veals that a program is a finite nonempty set of embedded binary relations between a
current statement and all previous ones that form the semantic context or environment
of computing.

RTPA provides a coherent notation system and a formal engineering methodology
for modeling both software and intelligent systems. RTPA can be used to describe
both logical and physical models of systems, where logic views of the architecture of
a software system and its operational platform can be described using the same set of

Table 3. Taxonomy of Denotational Mathematics

Real-Time Process Algebra Operations Concept
Algebra

System
Algebra Meta-processes Relational operations

Related/independent ↔ / / Assignment := Sequence →

Super/sub relation / ↔ / Evaluation Jump

Equivalent = = Addressing Branch |

Consistent ≅ Memory
allocation

⇐ Switch | … |
…

Overlapped Π Memory
release

While-loop *R
Comparison ~ Read Repeat-loop

 R +

Relational
operations

Definition Write For-loop

iR
Inheritance Input | Recursion

Tailoring Output | Procedure call

Extension + + Timing

@ Parallel

||

Substitute Duration Concurrence

Composition Increase ↑ Interleave |||

Decomposition Decrease ↓ Pipeline »

Aggregation/ Exception
detection

! Interrupt

Specification Skip Time-driven
dispatch

t

Instantiation Stop Event-driven
dispatch

e

Composi-
 tional
operations

Difference System § Interrupt-
driven
dispatch

i

20 Y. Wang

notations. When the system architecture is formally modelled, the static and dynamic
behaviors that perform on the system architectural model, can be specified by a three-
level refinement scheme at the system, class, and object levels in a top-down ap-
proach. Detailed syntaxes and formal semantics of RTPA meta-processes and process
relations may be referred to [37], [41], [43], [51], [52].

A summary of the algebraic operations and their notations in concept algebra, sys-
tem algebra, and RTPA is provided in Table 3.

4 Applications of Denotational Mathematics

A wide range of applications of denotational mathematics have been identified,
which encompass concept algebra for knowledge manipulations, system algebra for
system architectural manipulations, and RTPA for system behavioral manipulations.
This section presents some typical applications of denotational mathematics for the
modeling of iterative and recursive systems architectures and behaviors by RTPA,
the modeling of autonomous machine learning by concept algebra, and the modeling
of granular computing by system algebra.

4.1 The Big-R Notation of RTPA for Modeling Iterative and Recursive System
Architectures and Behaviors

The most generic and fundamental operations in system and human behavioral model-
ing are iterations and recursions. Because a variety of iterative constructs are provided
in different programming languages, the notation for repetitive, cyclic, recursive be-
haviors and architectures in computing need to be unified.

The mechanism of the big-R notation can be analogized with the mathematical no-
tations ∑ or ∏. To a great extent, ∑ and ∏ can be treated as special cases of the big-R
for repetitively doing additions and multiplications, respectively.

Example 1. The big-∑ notation
1

n

i
i

x
=
∑ is a widely used calculus for denoting repetitive

additions. Assuming that the operation of addition is represented by sum(x), the
mechanism of big-∑ can be expressed more generally by the big-R notation, i.e.:

i=11

()R
n n

i i
i

x sum x
=

=∑ (24)

According to Definition 4, the big-R notation can be used to denote not only repetitive
operational behaviors in computing, but also recurring constructs of architectures and
data objects as shown below.

Example 2. The architecture of a two-dimensional array with n × m integer elements,
Anm, can be denoted by the big-R notation as follows:

 Anm =
i=0 j=0
RR
n-1 m-1

A[i, j]N (25)

 On Contemporary Denotational Mathematics for Computational Intelligence 21

Because the big-R notation provides a powerful and expressive means for denoting
iterative and recursive behaviors, and architectures of systems or human beings, it is a
universal mathematical means for system modeling in terms of repetitive behaviors
and architectures, respectively.

Definition 22. An infinitive iteration can be denoted by the big-R notation as:

 R P γ • P γ (26)

where γ is a label that denotes the fix (rewinding) point of a loop, and denotes a

jump in RTPA.
The infinitive iteration may be used to formally describe an everlasting behavior of

systems.

Example 3. A simple everlasting clock, CLOCK, which does nothing but tick as
C.A.R. Hoare proposed [16], i.e.:

 CLOCK tick → tick → tick → (27)

can be efficiently denoted by the big-R notation as simply as follows:

 CLOCK R tick (28)

A more generic and useful iterative construct is the conditional iteration.

Definition 23. A conditional iteration can be denoted by the big-R notation as:

exp =
R

F

BL T
P γ • (expBL = T

 → P

 γ

 | ~

 → ∅
)

 (29)

where ∅ denotes a skip.

The conditional iteration is frequently used to formally describe repetitive behaviors
on given conditions. Eq. 29 expresses that the iterative execution of P will go on as

long as the evaluation of the conditional expression is true (expBL = T), until expBL =

F abbreviated by ‘~’.

Definition 24. RecursionR Pi is a multi-layered, embedded process relation in
which a process P at layer i of embedment, Pi, calls itself at an inner layer i-1, Pi-1,
0 ≤ i ≤ n. The termination of Pi depends on the termination of Pi-1 during its execu-
tion, i.e.:

22 Y. Wang

 R Pi
0

i =n
R
N N

(iN > 0

 → PiN := PiN-1

 | ~

 → P0
)

 (30)

where n is the depth of recursion or embedment that is determined by an explicitly
specified conditional expression expBL = T inside the body of P.

Example 4. Using the big-R notation, the algorithm of the factorial function can be
recursively defined as shown below:

 (nN)! R (nN) !

 =
0

i =n
R
N N

 (iN > 0

 → (iN)! := iN • (iN-1)!

 | ~

 → (iN)! := 1
)

 (31)

The big-R notation of RTPA captures a fundamental and widely applied mathematical
concept in computing and human behavior description, which demonstrates that a
convenient mathematical calculus and notation may dramatically reduce the difficulty
and complexity in expressing a frequently used and highly recurring concept and no-
tion in computing.

4.2 Autonomous Machine Learning Using Concept Algebra

Cognitive informatics [38], [39], [44] defines learning as a cognitive process at the
higher cognitive function layer (Layer 7) according to the Layered Reference Model
of the Brain (LRMB) [53]. The learning process is interacting with multiple funda-
mental cognitive processes such as object identification, abstraction, search, concept
establishment, comprehension, memorization, and retrievably testing. Learning is
closely related to other higher cognitive processes of inferences such as deduction,
induction, abduction, analogy, explanation, analysis, synthesis, creation, modeling,
and problem solving.

Definition 25. Learning is a higher cognitive process of the brain at the higher cogni-
tive layer of LRMB that gains knowledge of something or acquires skills in some
actions by updating the cognitive models in long-term memory.

According to the Object-Attribute-Relation (OAR) model [45], results of learning can
be embodied by the updating of the existing OAR in the brain. In other words, learning
is a dynamic composition of the currently created sub-OAR and the existing OAR in
long-term memory (LTM) as expressed below.

 On Contemporary Denotational Mathematics for Computational Intelligence 23

Theorem 2. The representation of learning result states that the internal memory in
the form of the OAR structure can be updated by a conjunction between the existing
OAR and the newly created sub-OAR (sOAR), i.e.:

 OAR’ ST OARST sOARST

 = OAR ST (Os, As, Rs) (32)

where the composition operation in concept algebra is defined below.

Definition 26. A composition of concept c from n subconcepts c1, c2, …, cn, denoted

by , is an integration of them that creates the new super concept c via concept con-

junction, and establishes new associations between them, i.e.:

1

1 1

1 1 1

' ' ' '

1

(, , , ,)

 (, , , , | , ,

 ({(,), (,)}, ,)

 || (, , , , | {(,)}, {(,)

i i

i i i

n
c i o

i
i

n n
c i o

c c
i i

n n n
c c i i o o

c i i c c
i i i

n
c i o i i o o

i i i i i i i i i i i i
i

c O A R R R c

c O A R R R O O A A

R R c c c c R R R R

c O A R R R R R c c R R c c

R

R

=

= =

= = =

=

= =

= ∪ = =

= ∪ = ∪

U U

U U U

})

 (33)

As specified in Eq. 33, the composition operation results in the generation of new

internal relations

1

{(,), (,)}
n

c
i i

i

R c c c c
=

Δ =U that is not belongs to any of its subcon-

cepts. It is also noteworthy that, during learning by concept composition, the existing
knowledge in forms of the individual n concepts is changed and updating concur-
rently via the newly created input/output relations with the newly generated concept.

Corollary 1. The learning process is a cognitive composition of a piece of newly
acquired information and the existing knowledge in LTM in the form of the OAR-
based knowledge networks.

The cognitive process of learning can be formally modeled using concept algebra
and RTPA as given in Fig. 2. The center of the cognitive process of learning is that
knowledge about the learn objects and intermediate results are represented inter-
nally in the brain as a sub-OAR model. According to the LRMB model [53] and the
OAR model [45] of internal knowledge representation in the brain, the temporal
result of learning in short-term memory (STM) is a new sub-OAR model, which
will be used to update the entire OAR model of knowledge in LTM as permanent
learning result.

24 Y. Wang

The Learning Process

Learning (I:: OS; O:: OAR’ST)

{I. Identify object
 ObjectIdentification (I:: OS; O:: AS)

 // AST – a set of attributes of OS

 II. Concept establishment
 ConceptEstablishment (I:: OS, AS; O:: c(OS, AS, RS)ST)

 III. Comprehension
 Comprehension (I:: c(OS, AS, RS)ST; O:: sOAR’ST)

 IV. Memorization
 Memorization (I:: sOARST; O:: OAR’ST)

 V. Rehearsal

 → (Rehearsal BL = T

 ((ConceptEstablishment (I:: sOARST;

 O:: c(OS, AS, RS)ST)
 || Comprehension (I:: sOARST; O:: sOARST)

)
 Memorization (I:: sOARST; O:: OAR’ST)

)

 | ~

 → ⊗
)
}

Fig. 2. Formal description of the learning process in concept algebra and RTPA

According to the formal model of the learning process, autonomic machine learn-
ing can be carried out by the following steps: 1) Identify object: This step identifies
the learning object O; 2) Concept establishment: This step establishes a concept
model for the learning object O, c(A, R, O), by searching related attributes A, relations
R, and instances O; 3) Comprehension: This step comprehends the concept and repre-
sents the concept with a sub-OAR model in STM; 4) Memorization: This step associ-
ates the learnt sub-OAR of the learning object with the entire OAR knowledge, and
retains it in LTM; 5) Rehearsal test: This step checks if the learning result needs to be
rehearsed. If yes, it continues to parallel execution of Steps (6) and (7); otherwise, it
exits; 6) Re-establishment of concept: This step recalls the concept establishment
process to rehearse the learning result; 7) Re-comprehension: This step recalls the
comprehension process to rehearse the learning result.

The formalization of the cognitive process of learning does not only reveal the
mechanisms of human learning, but also explain how machine may gain the capability
of autonomous learning. Based on the rigorous syntaxes and semantics of RTPA, the
formal learning process can be implemented by computers in order to form the core of
machine intelligence [47].

 On Contemporary Denotational Mathematics for Computational Intelligence 25

4.3 Granular Computing Using System Algebra

The term granule is originated from Latin granum, i.e., grain, to denote a small com-
pact particle in physics and in the natural world. The taxonomy of granules in comput-
ing can be classified into the data granule, information granule, concept granule,
computing granule, cognitive granule, and system granule [20], [28], [33], [54], [58],
[62].

Definition 27. A computing granule, shortly a granule, is a basic mathematical struc-
ture that possesses a stable topology and at least a unit of computational capability or
behavior.

Definition 28. Granular computing is a new computational methodology that models
and implements computational structures and functions by a granular system, where
each granule in the system carries out a predefined function or behavior by interacting
to other granules in the system.

It is recognized that any abstract or concrete granule can be formally modeled by ab-
stract systems in system algebra. On the basis of Definition 13, an abstract granule
can be formally described as follows.

Definition 29. A computing granule G on the universal system environment U is a 7-

tuple, i.e.:

 (, ,)c i oG S = C R , R , R , B, Ω Θ (34)

where

• C is a finite nonempty set of cell or component of the system, C = {c1, c2, …,
cn} ⊆ ÞC U.

• R is a finite nonempty set of relations between pairs of the components in the
system, R = {r1, r2, …, rm} ⊆ C × C.

• Rc = C × C is a set of internal relations.
• Ri ⊆ CΘ × C is a set of external input relations, CΘ ⊆ ÞC U.

• Ro ⊆ C × CΘ is a set of external output relations.
• B is a set of behaviors (or functions), B = {b1, b2, …, bp}⊆ ÞB U.

• Ω is a set of constraints on the memberships of components, the conditions of
relations, and the scopes of behaviors, Ω = {ω1, ω2, …, ωq}.

• Θ is the environment of G with a nonempty set of components CΘ outside C,
i.e., Θ = CΘ ⊆ ÞC U.

Definition 30. A granular system SG is a composition of multiple granules in a system
where all granules interact with each other for a common goal of system functionality.

Properties of granular systems obey the properties of generic abstract systems as de-
scribed in Section 3.2 [50]. The set of relational and compositional operations on
granules and granular systems towards granular computing are identical as those
modeled in system algebra.

26 Y. Wang

5 Conclusions

The abstract, rigorous, and expressive needs in cognitive informatics, computational
intelligence, software engineering, and knowledge engineering have led to new
forms of mathematics collectively known as denotational mathematics. Denotational
mathematics has been introduced as a category of expressive mathematical structures
that deals with high-level mathematical entities such as abstract objects, complex
relations, behavioral information, concepts, knowledge, processes, and systems. The
domain and architecture of denotational mathematics have been described. New
mathematical entities, novel mathematical structures, and applications of denota-
tional mathematics have been explored toward the modeling and description of the
natural and machine intelligent systems.

Extensions of conventional analytic mathematics onto more complicated mathe-
matical entities beyond numbers and sets lead to the contemporary denotational
mathematics. Three paradigms of denotational mathematics, such as concept algebra,
system algebra, and Real-Time Process Algebra (RTPA), have been introduced.
Within the new forms of denotational mathematics, concept algebra has been de-
signed to deal with the new abstract mathematical structure of concepts and their
representation and manipulation in knowledge engineering. RTPA has been devel-
oped to deal with series of behavioral processes and architectures of software and
intelligent systems. System algebra has been created to the rigorous treatment of
abstract systems and their algebraic relations and operations. Applications of denota-
tional mathematics in cognitive informatics and computational intelligence have
been elaborated with a set of case studies and examples. This work has demonstrated
that denotational mathematics is an ideal mathematical means for a set of emerging
disciplines that deal with concepts, knowledge, behavioral processes, and hu-
man/machine intelligence.

Acknowledgement. The author would like to acknowledge the Natural Science and
Engineering Council of Canada (NSERC) for its partial support to this work. The au-
thor would like to thank the valuable comments and suggestions of the anonymous
reviewers.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addi-
son-Wesley Publication Co., New York (1985)

2. Anderson, J.R.: The Architecture of Cognition. Harvard Univ. Press, Cambridge (1983)
3. Ashby, W.R.: Principles of the Self-Organizing System. In: von Foerster, H., Zopf, G.

(eds.) Principles of Self-Organization, pp. 255–278. Pergamon, Oxford (1962)
4. Ashby, W.R.: Requisite Variety and Implications for Control of Complex Systems. Cyber-

netica 1, 83–99 (1985)
5. Bender, E.A.: Mathematical Methods in Artificial Intelligence. IEEE CS Press, Los Alami-

tos (1996)
6. Chomski, N.: Three Models for the Description of Languages. I.R.E. Transactions on In-

formation Theory 2(3), 113–124 (1956)

 On Contemporary Denotational Mathematics for Computational Intelligence 27

7. Codin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms Based on
Galois (Concept) Lattices. Computational Intelligence 11(2), 246–267 (1995)

8. Colins, A.M., Loftus, E.F.: A Spreading-Activation Theory of Semantic Memory. Psycho-
logical Review 82, 407–428 (1975)

9. Ellis, D.O., Fred, J.L.: Systems Philosophy. Prentice-Hall, Englewood Cliffs (1962)
10. Ford, J.: Chaos: Solving the Unsolvable. Dynamics and Fractals. Academic Press, London

(1986)
11. Ganter, B., Wille, R.: Formal Concept Analysis, pp. 1–5. Springer, Heidelberg (1999)
12. Hampton, J.A.: Psychological Representation of Concepts of Memory, pp. 81–110. Psy-

chology Press, Hove, England (1997)
13. Heylighen, F.: Self-Organization, Emergence and the Architecture of Complexity. In:

Proc. 1st European Conf. on System Science (AFCET), Paris, pp. 23–32 (1989)
14. Higman, B.: A Comparative Study of Programming Languages, 2nd edn., MacDonald

(1977)
15. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM 21(8),

666–677 (1978)
16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, London

(1985)
17. Hurley, P.J.: A Concise Introduction to Logic, 6th edn. Wadsworth Pub. Co., ITP (1997)
18. Klir, G.J.: Facets of Systems Science. Plenum, New York (1992)
19. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation, 2nd edn. Pren-

tice-Hall International, Englewood Cliffs (1998)
20. Lin, T.Y.: Granular Computing on Binary Relations (I): Data Mining and Neighborhood

Systems. In: Proc. Rough Sets in Knowledge Discovery, pp. 107–120. Physica-Verlag,
Heidelberg (1998)

21. Louden, K.C.: Programming Languages: Principles and Practice. PWS-Kent Publishing
Co., Boston (1993)

22. Matlin, M.W.: Cognition, 4th edn. Harcourt Brace College Pub., NY (1998)
23. Medin, D.L., Shoben, E.J.: Context and Structure in Conceptual Combination. Cognitive

Psychology 20, 158–190 (1988)
24. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer, Hei-

delberg (1980)
25. Murphy, G.L.: Theories and Concept Formation. In: Mechelen, I.V., et al. (eds.) Catego-

ries and Concepts, Theoretical Views and Inductive Data Analysis, pp. 173–200. Aca-
demic Press, London (1993)

26. Pavel, M.: Fundamentals of Pattern Recognition, 2nd edn. Addision-Wesley, Reading
(1993)

27. Pawlak, Z.: Rough Logic, Bulletin of the Polish Academy of Science. Technical Sci-
ence 5(6), 253–258 (1987)

28. Pedrycz, W. (ed.): Granular Computing: An Emerging Paradigm. Physica-Verlag, Heidel-
berg (2001)

29. Pnueli, A.: The Temporal Logic of Programs. In: Proc. 18th IEEE Symposium on Founda-
tions of Computer Science, pp. 46–57. IEEE, Los Alamitos (1977)

30. O’Grady, W., Archibald, J.: Contemporary Linguistic Analysis: An Introduction, 4th edn.
Pearson Education Canada Inc., Toronto (2000)

31. Rapoport, A.: Mathematical Aspects of General Systems Theory. General Systems Year-
book 11, 3–11 (1962)

32. Skarda, C.A., Freeman, W.J.: How Brains Make Chaos into Order. Behavioral and Brain
Sciences 10 (1987)

28 Y. Wang

33. Skowron, A., Stepaniuk, J.: Information Granules: Towards Foundations of Granular
Computing. International Journal of Intelligent Systems 16, 57–85 (2001)

34. Smith, E.E., Medin, D.L.: Categories and Concepts. Harvard Univ. Press, Cambridge
(1981)

35. von Bertalanffy, L.: Problems of Life: An Evolution of Modern Biological and Scientific
Thought. C.A. Watts, London (1952)

36. von Neumann, J.: The Principles of Large-Scale Computing Machines. Annals of History
of Computers 3(3), 263–273 (reprinted, 1946)

37. Wang, Y.: The Real-Time Process Algebra (RTPA). Annals of Software Engineering: A
International Journal, USA 14, 235–274 (2002)

38. Wang, Y.: Keynote: On Cognitive Informatics. In: Proc. 1st IEEE International Confer-
ence on Cognitive Informatics (ICCI 2002), Calgary, Canada, pp. 34–42. IEEE CS Press,
Los Alamitos (2002)

39. Wang, Y.: On Cognitive Informatics. Brain and Mind: A Transdisciplinary Journal of Neu-
roscience and Neurophilosophy, USA 4(3), 151–167 (2003)

40. Wang, Y.: Using Process Algebra to Describe Human and Software System Behaviors.
Brain and Mind 4(2), 199–213 (2003)

41. Wang, Y.: On the Informatics Laws and Deductive Semantics of Software. IEEE Transac-
tions on Systems, Man, and Cybernetics (C) 36(2), 161–171 (2006)

42. Wang, Y.: Cognitive Informatics and Contemporary Mathematics for Knowledge Repre-
sentation and Manipulation. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.)
RSKT 2006. LNCS (LNAI), vol. 4062, pp. 69–78. Springer, Heidelberg (2006)

43. Wang, Y.: Software Engineering Foundations: A Software Science Perspective. CRC Se-
ries in Software Engineering, vol. II. Auerbach Publications, NY, USA (2007)

44. Wang, Y.: The Theoretical Framework of Cognitive Informatics. International Journal of
Cognitive Informatics and Natural Intelligence 1(1), 1–27 (2007)

45. Wang, Y.: The OAR Model of Neural Informatics for Internal Knowledge Representation
in the Brain. International Journal of Cognitive Informatics and Natural Intelligence 1(3),
64–75 (2007)

46. Wang, Y.: Keynote: On Theoretical Foundations of Software Engineering and Denota-
tional Mathematics. In: Proc. 5th Asian Workshop on Foundations of Software, Xiamen,
China, pp. 99–102 (2007)

47. Wang, Y.: The Theoretical Framework and Cognitive Process of Learning. In: Proc. 6th
International Conference on Cognitive Informatics (ICCI 2007), Lake Tahoe, CA, pp.
470–479. IEEE CS Press, Los Alamitos (2007)

48. Wang, Y.: On the Big-R Notation for Describing Iterative and Recursive Behaviors. Inter-
national Journal of Cognitive Informatics and Natural Intelligence 2(1), 17–28 (2008)

49. Wang, Y.: On Concept Algebra: A Denotational Mathematical Structure for Knowledge
and Software Modeling. International Journal of Cognitive Informatics and Natural Intelli-
gence 2(2), 1–19 (2008)

50. Wang, Y.: On System Algebra: A Denotational Mathematical Structure for Abstract Sys-
tem Modeling. International Journal of Cognitive Informatics and Natural Intelli-
gence 2(2), 20–42 (2008)

51. Wang, Y.: RTPA: A Denotational Mathematics for Manipulating Intelligent and Computa-
tional Behaviors. International Journal of Cognitive Informatics and Natural Intelli-
gence 2(2), 44–62 (2008)

52. Wang, Y.: Deductive Semantics of RTPA. International Journal of Cognitive Informatics
and Natural Intelligence 2(2), 95–121 (2008)

 On Contemporary Denotational Mathematics for Computational Intelligence 29

53. Wang, Y., Wang, Y., Patel, S., Patel, D.: A Layered Reference Model of the Brain
(LRMB). IEEE Trans. on Systems, Man, and Cybernetics (C) 36(2), 124–133 (2006)

54. Wang, Y., Lotfi, A.: On the System Algebra Foundation for Granular Computing. Interna-
tional Journal of Software Science and Computational Intelligence 1(1) (January 2009)

55. Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts.
In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

56. Wilson, L.B., Clark, R.G.: Comparative Programming Language. Addison-Wesley Pub-
lishing Co., Reading (1988)

57. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice Hall In-
ternational, London (1996)

58. Yao, Y.Y.: Information Granulation and Rough Set Approximation. International Journal
of Intelligent Systems 16(1), 87–104 (2001)

59. Yao, Y.Y.: A Comparative Study of Formal Concept Analysis and Rough Set Theory in
Data Analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W.
(eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 59–68. Springer, Heidelberg (2004)

60. Zadeh, L.A.: Fuzzy Sets and Systems. In: Fox, J. (ed.) Systems Theory, pp. 29–37. Poly-
technic Press, Brooklyn (1965)

61. Zadeh, L.A.: Outline of a New Approach to Analysis of Complex Systems. IEEE Trans. on
Sys. Man and Cyb. 1(1), 28–44 (1973)

62. Zadeh, L.A.: Fuzzy Sets and Information Granularity. In: Gupta, M.M., Ragade, R., Yager,
R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Am-
sterdam (1979)

Mereological Theories of Concepts in Granular

Computing

Lech Polkowski

Polish-Japanese Institute of Information Technology
Warsaw, Poland

Department of Mathematics and Computer Science
University of Warmia and Mazury, Olsztyn, Poland

polkow@pjwstk.edu.pl

”...A few ideas that are not new” (Cyprian Kamil Norwid)

Abstract. This article is conceived as a homage to mathematicians and
computer theorists working on basic concepts concerning knowledge and
their usage in application contexts. Due to their work, we now have in our
possession very impressive tools for analysis of uncertainty like rough set
theory and fuzzy set theory along with hybrid ramifications between the
two and with other areas of research in the realm of cognitive technologies
in particular a very promising area of cognitive informatics.

In this work, we strive at presenting basic issues in granular theory of
knowledge emphasizing formal aspects of our approach. This approach
can be seen as a continuation of the line of analysis initiated by Gottlob
Frege with his idea of exact and inexact concepts through analysis of the
idea of knowledge by Popper, Lesniewski, �Lukasiewicz and others, to the
implementation of the Fregean idea in the theory of knowledge known
as rough set theory initiated by Pawlak and pursued by many followers.

The basic tool in our analysis of the idea of a concept and a fortiori
of knowledge is mereological theory of concepts (Lesniewski): we try to
convince the reader that ideas of that theory suit well needs of analysis
of knowledge and granulation of it.

This work arises from some previous attempts at developing this ideas
in a wider context of ontological discussion; the author is indebted to the
colloquia series SEFIR at Lateran University in Rome, where he was able
to present the basic ideas in a lecture in January 2005; for this opportunity
he is grateful to Professors Giandomenico Boffi and Alberto Pettorossi.

The author wishes to dedicate this work to the memory of Profes-
sors Helena Rasiowa and Zdzis�law Pawlak who influenced very much his
research interests in this area.

Keywords: mereological theory of concepts, approximate reasoning,
granular computing.

1 Introduction: On the Notions of a Concept, Knowledge
and Reasoning

To begin with, let us observe that man was using always symbols, words, or to-
kens in order to single out from the complex world some of its objects,

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 30–45, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Mereological Theories of Concepts in Granular Computing 31

phenomena, or relations deemed important: (see, e.g., Plutarch, Moralia, The
Letter on ”E”, XVII, 3: (capital ”E” (”Ei: you are” written on the wall of the
Delphi temple):: ”My own view is that the letter signifies neither number, nor
order, nor conjunction, nor any other omitted part of speech; it is a complete
and self-operating mode of addressing the God; the word once spoken brings the
speaker into apprehension of his power.”

The extent of a symbol, term or token understood as the community of entities
that fall under this symbol, term or token, has been understood as a concept.

Concepts serve as building blocks for knowledge. The notion of knowledge is
many–faceted and difficult to be defined precisely and uniquely and it is used
very frequently without any attempt at definition as a notion that explains per se.
We follow J. M. Bocheński [4] in claiming that the world is a system of states of
things, related to themselves by means of the network of relations; things, their
features, relations among them and states are reflected in knowledge: things
in objects or notions, features and relations in notions (or, concepts), states
of things in sentences. Sentences constitute knowledge. Knowledge allows its
possessor to classify new objects, model processes, make predictions.

Processes of reasoning include an effort by means of which sentences are cre-
ated; various forms of reasoning depend on the chosen system of notions, sym-
bolic representation of notions, forms of manipulating symbols.

Formal reasoning processes may be divided, according to J. M. Bochenski [4],
cf., �Lukasiewicz [20], Hintikka [13], into two main classes: deductive reasoning
and reductive (encompassing so called inductive reasoning) reasoning. Deductive
reasoning proceeds formally in systems endowed with implicative assertions, ac-
cording to the schema:

if A implies B and A then B. (1)

On the contrary, reductive reasoning proceeds according to the schema:

if A implies B and B then A. (2)

In reasoning with certainty, it is assumed that all assertions are assigned
values of truth states, from falsity (0) through intermediate states, to truth
(1). Deduction rules assign truth values to the assertion B on the basis of the
truth values of the implication A ⇒ B and the assertion A. This is especially
manifest in axiomatic systems, see, e.g., Hilbert and Ackermann [12] in which
one assumes a collection of assertions called axioms, assigned by default to be
true, from which by deduction rules other true assertions are derived.

Reductive reasoning poses more problems: in order to infer that A on the
basis of A ⇒ B and B requires usually evidence for B of satisfactory strength.
Problems related to this inference are expressed, e.g., by the well–known Hempel
”paradoxes of confirmation” [11], [3].

By these problems, reductive reasoning borders on reasoning under uncer-
tainty (approximate reasoning), as many approximate schemas, e.g., based on
probability or Bayesian reasoning, were proposed for it, see, e.g.,[1], [44].

Approximate reasoning in the strict sense seems to be a form of reasoning in
which assertions are assigned degrees of uncertainty, i.e., one is aware that the

32 L. Polkowski

actual value of truth of an assertion is known only to a degree; in this there
seems to lie the main distinguishing feature of this form of reasoning. Clearly,
it is not possible to draw a clear line between this form of reasoning and some
forms of formal deductive reasoning; for instance, the state 1/2 of truth in the
3–valued logic of �Lukasiewicz [21] may be interpreted as the state ”do not know”
i.e., an expression of uncertainty to degree of 1/2. However, in 3–valued logic,
the state of truth of 1/2 is known ”exactly” and it is not subject to evaluation
on the basis of evidence or knowledge.

We will in this exposition adhere to the point of view that approximate reason-
ing involves clear realization of uncertainty of knowledge which is expressed in
its formal shape by some numerical factors that convey the degree of uncertainty
and are evaluated on the basis of actual knowledge.

Among known forms of approximate reasoning, one may mention: rough set–
based reasoning, see, e.g., [24], [27], in which knowledge is expressed by means of
information systems and the underlying logic is the decision logic of descriptors;
fuzzy set–based reasoning, see, e.g., [47], [10], in which degrees of uncertainty
are expressed by means of membership degrees of an element in a set; various
forms of non–monotonic reasoning, see, e.g., [5].

2 Mathematical Approaches to the Notion of a Concept

A view on concepts as non–empty categories of entities, each category having of
more than one entity in its scope, was adopted by Aristotle in Prior Analytics.
A calculus of concepts in which concepts are related one to another by means of
inclusion (”all a is b”) and intersection (”some a is b”, ”no a is b”) developed
by Aristotle has been known as Syllogistics. Primitive terms of Syllogistic were
proposed as: Aab (”all a is b”), Iab (”some a is b”), Oab (”some a is not b”),
Eab (”no a is b”). Formulas of Syllogistic are of the form Xuv,Y wt

Zef where X, Y, Z

are among A, I, O, E. Theorems i.e. true formulas are called syllogisms (moods).
An axiomatic form was given to Syllogistic by �Lukasiewicz [22]; it exploits ax-

iomatic schemes: 1.Aaa 2. Iaa 3.Amb,Aam
Aab 4. Amb,Ima

Iab , and three derivation rules:
a. Modus Ponens p, if p then q

q ; b. Substitution c. Replacement by equivalents:
Oab = NAab, Eab = NIab, where N is the operator of negation.

This mechanism of inference allows for derivation of all 24 true moods of
Syllogistics. As proved by S�lupecki [43], the Aristotle Syllogistic is a complete
logical calculus of concepts with containment and intersection as relations among
them.

With creation of set theory in works by Cantor, Dedekind, Hausdorff and
others, the view emerged that concepts can be modeled in the new language
of set theory. A theory of concepts was created by Gottlob Frege [6], [7], [8].
Frege created second–order logical calculus in Begriffsschrift and Grundgesetze,
introducing variables for entities (like x, y, z, ...) as well as variables for functions
(like f, g, h, ...) with the intent of forming names of entities by means of terms
like f(x).

Mereological Theories of Concepts in Granular Computing 33

By means of truth values T (true), F (alse), concepts were defined as functions
mapping entities to truth values. An entity a falls under a concept f in case
f(a) = T , in symbols [f]a.

The essential role is played in the Frege system by Substitution Rule:
For each formula with only free occurrences of [f]x, one is justified in replacing

each such occurrence with a formula α(x) in which x is free.
For each concept f , its extension εf was postulated which was required to

satisfy the following
Basic law V:
εf = εg ⇔ ∀x.([f]x = [g]x), meaning: extensions of concepts are identical

if and only if for every object, that object falls under f if and only if it falls
under g.

Membership in an extension was defined by Frege as follows: x ∈ y ⇔ ∃f.(y =
εf ∧ [f]x).

Thus, for every concept f : x ∈ εf ⇔ [f]x (The law of extensions).
It is a consequence to Basic Law V that :
∀f.∃x.(x = εf),
meaning: to every concept there is an extension.
As it is well known, these intuitively acceptable intuitions about the nature of

concepts led to a contradiction: the well–known Russell Paradox. As formulated
by Frege (Grundgesetze II, Appendix): consider the concept g corresponding via
Principle of Comprehension to the formula: ∃f.x = εf ∧ ¬[f]x. There exists the
extension of g: εg.

Then: g ∈ εg ⇔ ¬(g ∈ εg), a contradiction.
The Russell Paradox forced a fundamental reconstruction of set theory which

resulted in axiomatic systems of Zermelo–Fraenkel or Goedel–Bernays see [14];
in each of them the notion of a set was restricted by reducing possibilities of
new set construction. Nevertheless, many statements about sets turned out to
be undecidable, e.g., the Continuum Hypothesis, the Souslin Hypothesis etc., see
[14]. As a result many additional axioms independent of standard axioms of set
theory has emerged leading to a variety of set theories.

”The true reason for the incompleteness inherent in all formal systems of
mathematics is that the formation of ever higher types can be continued into
the transfinite, while in any formal system at most denumerably many of them
are available. (...) The undecidable propositions constructed here become decided
whenever appropriate higher types are added (for example, the type ω to the
system P [Peano Arithmetic]). An analogous situation prevails for the axiom
system of set theory” (Goedel [9]; translated by A. Kanamori in [15]).

Language of set theory has become standard in discussing concepts in many
paradigms of reasoning, in spite of foundational difficulties with this theory. For
instance, rough set theory, or fuzzy set theory have been formulated predomi-
nantly in this language. For theories of concepts in those paradigms, see, e.g.,
[25], [10]. Theory of concept algebras in the realm of cognitive informatics was
presented in [45], [46].

34 L. Polkowski

A theory of concepts invoking the aristotelian spirit and removing the exis-
tence of the empty concept – a reason for the Russell Paradox – was formulated
by Lesniewski [16], [17], as the theory of Ontology. Ontology formally defines the
notion of a concept as a distributive entity; the primitive relation is ε (”is”).

The Axiom of Ontology (Lesniewski) is formulated as follows:

xεy ⇔ (∃z.zεx) ∧ (∀u, v.u, vεx ⇒ u = v) ∧ (∀z.zεx ⇒ zεy).

Thus, y is a distributive entity.
The consequences of the Axiom of Ontology are:

1. If there exists y such that xε y then x is non–void.
2. If there exists y such that xε y then x is a single entity (an individual).
3. If there exists y such that xεy then xε x for each entity x.
4. If xε y for some y and zε x then z = x.
An archetypal example, quoted by Lesniewski himself [16] was the sentence

”Socrates is a man” in which an individual ”Socrates” is stated to fall under the
concept of ”man”.

Duns Scotus, in Treatise on God as First Principle [42]: ” Aristotle says in the
seventh book of Metaphysics: ””If anything were compounded of but one element
that one would be the thing itself”” ”. Clearly, this view is in contradiction to
set theory which discerns between a singleton set and its element but it is valid
in Ontology by Lesniewski: each individual x satisfies the formula xεx.

Ontologuy sets apart the collection of individual entities – subjects in formulas
of the form xεy. On these individuals, a calculus of parts is developed. The
notion of a part here is abstracted as a mathematical notion from real examples
of complex objects which can be decomposed into parts.

Thus, Mereology is a calculus on individual concepts as specified by Ontology;
it is based on the predicate π of part, defined for individual entities, subject to
requirements:

P1. xπy ∧ yπz ⇒ xπz.
P2. ¬(xπx).
The relation of a part is therefore a strict order on individual entities; making

it into a partial non–strict order follows the standard lines. This new order is
the ingredient relation.

The ingredient relation ingπ induced by a part relation π is defined as follows:

x ingπ y ⇔ x = y or x π y.

Clearly, the relation ingπ is a partial non–strict ordering on individual entities.
Let us note that the relation of proper inclusion ⊂ is a part relation whereas

the corresponding ingredient relation is the relation of improper inclusion ⊆.
In Mereology, as in naive set theory, the necessity was felt for having a tool

for converting collections of entities into a single representative entity.
Passing from distributive entities (concepts, collections) to individual entities

is provided in Mereology by the class operator Cls.
The class Cls(M) of a distributive concept (collection, property) M is defined

by requiring the two properties to be satisfied.

Mereological Theories of Concepts in Granular Computing 35

C1. xε M ⇒ x ingπ Cls(M).
C2. x ingπ Cls(M) ⇒ ∃u, v.u ingπ x ∧ u ingπ v ∧ vε M .
Let us note that in case when the relation π is the relation ⊂, and M is a

non–void collection of sets, the class of M is the union
⋃

M of the collection M .
An example [16] of a class operator is the chessboard which is the class of white

and black squares. We offer yet another example: assuming the part relation to
be the strict order ¡ on the interval [0,1], the associated ingredient relation is
the partial order ≤ and for a collection M ⊂ [0, 1] of reals, the class of M is
Cls(M) = sup M .

The basic properties of the class operator are, see [16],
Proposition 1. If y is an individual entity, then Cls(y) = y.
Proposition 2. For each x, y: if for each z from z ingπ x it follows that

t ingπ x, t ingπ y for some t, then x ingπ y.
Proposition 2 is called the Inference Rule of Mereology (IRM); its usage allows

for reasoning about entities on the basis of ingredient relations; for the proof,
see [16].

3 Rough Mereology

Rough Mereology, see [28], [29], [37], [39], [32], extends Mereology by considering
the relation of a part to a degree; thus, it is suited for needs of Approximate
Reasoning, allowing to formally define the graded state of truth.

The basic notion of Rough Mereology is the concept of being a part of a given
object to a degree at least equal to a fixed value. It is denoted with the symbol
μ(y, r) where y is an individual object and r is a real number in the interval
[0, 1].

The term xε μ(y, r) is read as ”the individual x is a part of the individual y
to a degree at least r”.

The concept μ is required to satisfy the following conditions.
RM1. xε μ(y, 1) if and only if x ingπ y.
RM2. If xε μ(y, 1) and zε μ(x, r) then zε μ(y, r).
RM3. If xε μ(y, r) and s < r then xε μ(y, s).
The concept μ has been called by the author a rough inclusion.

4 Granulation of Knowledge

As an application of the mereological theory of concepts, we propose to present
the theory of granulation, studied by us in many works both of theoretical as well
as applications oriented character, see, e.g., [31], [33]. Granular computing was
proposed by Zadeh [48] and it was brought into the realm of relational systems
via the notion of neighborhood systems by Lin [18].

The formal theory of granulation presented here is in a sense akin to Lin’s
neighborhood systems: granules to be defined can be regarded as counterparts
in the language of mereology to closed balls in metric spaces with metrics in the
latter case replaced with rough inclusions in the former case.

36 L. Polkowski

We assume that a universal concept U is given; therefore, each entity u of
our interest satisfies uε U . Given a concept C such that each cε C is a concept
under which some entities responding to U fall, and a part relation π, the con-
cept I(C, π) of individual entities under C relative to π is defined, according to
Ontology Axiom. We assume that a rough inclusion μ, compatible with π in the
sense of the requirement RM1, is selected which for any two entities x, yε I(C, π)
determines whether the term xε μ(y, r) is satisfied.

Given an individual yε I(C, π), and a real number r ∈ [0, 1], we define the
granule about y of the radius r, denoted with the symbol g(y, r, μ) as,

g(y, r, μ) = Cls(μ(y, r)). (3)

Thus, we define a granule as the class in mereological sense of the concept of
being as part to a given degree to a given entity.

From the definition, basic properties of granules follow.
Proposition 3. For entity xε I(C), if y ingπ x and zε μ(y, r), then zε μ(x, r).

Proof. Assume that y ingπ x and zε μ(y, r). By RM1, yε μ(x, 1) which along
with zε μ(y, r) yields zε μ(x, r) by RM2.

Thus, belonging to the concept of being part to a degree r is upper–hereditary
with respect to the relation of ingredient.

In this very general setting, a few interesting specific and expressive proper-
ties of granules can be proved. In particular, the intuitively posing itself idea
that granules have a topological character of neighborhoods would require a
demonstration.

In order to give examples of rough inclusions as well as to establish some
properties of interesting rough inclusions, we discuss a few methods of inducing
them.

4.1 Metric–induced Rough Inclusions

Consider a metric ρ on the individuals I(C, π) of the universal concept U ; a
concept ρ(y, r) will mean that the distance ρ to the individual y is not greater
than r, i.e., xε ρ(y, r) if and only if ρ(x, y) ≤ r.

It was pointed first by Henri Poincaré [26] that ρ does induce a tolerance
relation τδ by the relation xτδy if and only if ρ(x, y) < δ; this relation is certainly
reflexive and symmetric but needs not be transitive.

Following this idea, we define a concept μρ(y, r) by requiring that xε μρ(y, r)
if and only if xε ρ(y, 1 − r). From the standard properties of a metric function,
the following facts about μ = μρ will follow.

Proposition 4. (i) μ is symmetric, i.e., from xε μρ(y, r) it follows that yε μρ(x, r).
(ii) xε μ(y, 1) if and only if x = y.
(iii) If xεμ(y, 1) and zε μ(x, r) then zε μ(y, r).
(iv) If xε μ(y, r) and s < r then xε μ(y, s).
(v) If zε μ(x, r) and xε μ(y, s) then zε μ(y, L(r, s)) where L(r, s) = max{0, x+

y − 1) is the �Lukasiewicz functor (tensor product, t–norm).

Mereological Theories of Concepts in Granular Computing 37

Proof. (i) follows by symmetry of ρ. (ii) follows by the property that ρ(x, y) = 0
if and only if x = y. (iii) follows by definition of μ and (ii). (iv) follows by
definition of μ. Finally, (v) is a consequence to the triangle inequality for ρ:
zε μ(x, r) and xε μ(y, s) imply, respectively, that ρ(z, x) ≤ 1 − r and ρ(x, y) ≤
1 − s hence ρ(z, y) ≤ (1 − r) + (1 − s) which implies by definition of μ that
zε μ(y, 1− [(1− r)+ (1− s)]), i.e., zε μ(y, r + s− 1). The final form of the thesis
in (v) comes after taking into account that values of degrees are non–negative.

The statement (v) is said to express the transitivity property of μρ.
The statement (ii) shows that the ingredient relation in this case is identity

and the part relation is empty.

4.2 Rough Inclusions Induced by Means of Representations of
Entities: The Attribute–Value Formalism

In knowledge related problems in Computer Science, entities in the universal
concept U are not discussed per se, as in the above section with metrics, but they
are represented by means of a chosen system for knowledge representation. This
formalism allows for applying to entity representations various mathematical
and logical operators which would be inapplicable to entities directly.

In the case of our discussion, it will be most suitable to choose the attribute–
value formalism.

This formalism consists in selecting for entities in U of a finitely many at-
tributes forming a set A; each a ∈ A is conceived as a mapping on entities valued
in a set Va of a − −values. We assume for simplicity that attribute values are
real numbers.

Each pair (a, v) where v is a value of the attribute a defines a concept [a, v]
by means of xε [a, v] if and only if a(u) = v.

In consequence of this adopted formalism, each entity u is represented by the
information concept Inf(u) = {[a, a(u)] : a ∈ A}.

On information concepts, one can perform standard operations, irrespective
of the true nature of entities in U . In particular, one is able to define rough
inclusions on entities by acting on their representations. We demonstrate a few
basic ideas on this aspect.

4.3 Archimedean t–Norms in Inducing Rough Inclusions

The �Lukasiewicz t–norm L(r, s) = max{0, r + s − 1} is an example of an
Archimedean t–norm t, see Hájek [10] or Polkowski [27] which is characterized
by the property that t(x, x) = x only for x = 0, 1. It is known, see, e.g., [10],
that the only two up to an isomorphism such t–norms are L and the product
t–norm P (r, s) = r · s. Thus, a general form of an Archimedean t–norm is either
φ−1 ◦ L ◦ φ or φ−1 ◦ P ◦ φ where φ is a chosen authomorphism of the structure
([0, 1],≤).

Given an Archimedean t–norm t, a representation holds, see Ling [19],

t(x, y) = g(f(x) + f(y)), (4)

38 L. Polkowski

where f is a decreasing continuous mapping of [0, 1] into itself, and g is the
pseudo–inverse to f , see Ling [19].

For a given Archimedean t–norm t, with f, g as in (4), and g−1(1) = 0, we
define a concept μt(y, r),

xε μt(y, r) iff g(
|A \ IND(x, y)|

|A|) ≥ r, (5)

where [a, v]ε IND(x, y) if and only if a(x) = v = a(y).
Proposition 5. μt is a rough inclusion.

Proof. For RM1, xε μt(y, 1) if and only if Inf(x) = IND(x, y) = Inf(y), i.e.,
when x, y are indiscernible; thus the ingredient relation is in this case the indis-
cernibility relation and part relation is indiscernibility of distinct entities.

Assuming that xε μt(y, 1) and zε μt(x, r), we have Inf(x) = IND(x, y) =
Inf(y) and g |A\ IND(x,z)|

|A|) ≥ r; thus, g |A\ IND(z,y)|
|A|) ≥ r as well and zε μt(y, r)

verifying RM2.
RM3 follows obviously.

Example: The case of the �Lukasiewicz t–norm L In this case, f(x) =
1 − x = g(x), see Ling [19], and thus,

xε μL(y, r) iff
|IND(x, y)|

|A| ≥ r. (6)

Let us note that μL coincides with the rough inclusion μH induced according
to sect.4.1 from the reduced Hamming distance H(x, y) = |A\ IND(x,y)|

|A| .
The transitivity property established in sect.4.1 for metric induced rough in-

clusions, holds for rough inclusions induced from Archimedean t–norms in a more
general form.

Proposition 6. For an Archimedean rough inclusion t and the rough inclu-
sion μt induced from t according to (5), the transitivity property takes place: if
zε μt(x, r) and xε μt(y, s) then zε μt(y, t(r, s)).

Proof. We denote the term A \ IND(x, y) with the symbol DIS(x, y). We have
by assumptions: g(|DIS(z,x)|

|A|) ≥ r and g(|DIS(x,y)|
|A|) ≥ r. Hence, passing to the in-

verse f : |DIS(z,x)|
|A| ≤ f(r), |DIS(x,y)|

|A| ≤ f(s). Clearly, |DIS(z, y)| ≤ |DIS(z, x)|+
|DIS(x, y)| and thus |DIS(z,y)|

|A| ≤ f(r) + f(s); passing again to the inverse g we

obtain g(|DIS(z,y)|
|A|) ≥ g(f(r) + f(s)). As by (4), g(f(r) + f(s)) = t(r, s), we

obtain finally zε μt(y, t(r, s)).

4.4 The Case of Residual Implication–Induced Rough Inclusions

In order to extend the analysis in sect. 4.3 to continuous t–norms, we make use of
residual implications induced by continuous t–norms. For a continuous t–norm
t, one defines the residual implication (residuum) ⇒t of t as,

z ≤ x ⇒t y iff t(z, x) ≤ y. (7)

Mereological Theories of Concepts in Granular Computing 39

Assume a mereological universe (U, π), with the associated ingredient rela-
tion ing and let φ : (U, ing) → ([0, 1],≤) be a morphism, i.e., the equivalence
u ing v textrmiff φ(u) ≤ φ(v) holds. Then,

Proposition 7. The concept μφ(v, r) defined as uε μφ(v, r) if and only if
φ(u) ⇒t φ(v) ≥ r is a rough inclusion.

Proof. It suffices to check that conditions RM1–RM3 are fulfilled. By (7), x ⇒y=
1 if and only if x ≤ y; thus, uε μφ(v, 1) if and only if φ(u) ≤ φ(v) if and only if
u ing v. This verifies RM1. For RM2, assume that wε μφ(u, r) and uε μφ(v, 1).
Thus, φ(w) ⇒t φ(u) ≥ r and φ(u) ≤ φ(v). By (7), t(r, φ(w)) ≤ φ(u) hence
t(r, φ(w)) ≤ φ(v) and, again by (7), φ(w) ⇒t φ(v) ≥ r, i.e., wε μφ(v, r) proving
RM2. RM3 holds obviously.

For various forms of the morphism φ, one obtains by Proposition 7, corresponding
rough inclusions.

Rough inclusions obtained from residual implications also have the transitivity
property.

Proposition 8. For any rough inclusion of the form μφ transitivity property
holds in the form: If wε μφ(u, r) and uε μφ(v, s) then wε μφ(v, t(r, s)).

Proof. Assume that wε μφ(u, r) and uε μφ(v, s), i.e., by (7), t(r, φ(w)) ≤ φ(u)
and t(s, φ(u)) ≤ φ(v). As t is monotone coordinate–wise, t(s, t(r, φ(w)) ≤ φ(v).
By symmetry and associativity of t, the last inequality is t(t(r, s), φ(w)) ≤ φ(v),
i.e., φ(w) ⇒t φ(v) ≥ t(r, s). Thus, wε μφ(v, t(r, s)).

Let us observe that μphi is not symmetric, contrary to μt with t Archimedean.
Symmetrization of μφ can be achieved along standard lines: let uε μσ

t (v, r) if
and only if uε μt(v, r) and vε μt(u, r).

Clearly: μσ
t is a rough inclusion; let us observe that μσ

t (v, 1) is the identity.

4.5 Granular Topologies

Our intuition about granules as neighborhoods of entities can be put into a formal
statement. We denote by μt a rough inclusion induced either by an Archimedean
t–norm or by a residual implication of a continuous t–norm.

We define classes of the form N(v, r) = Cls(Mt(v, r)), where

uεMt(v, r) tetxrmiff ∃s > r.uε μt(v, s). (8)

We expect that the system {N(v, r) : vεU ; r ∈ [0, 1]} will turn out a neigh-
borhood basis for a topology τμt . This is justified by,

Proposition 9. The following hold,
1. If u ing N(v, r) then ∃δ > 0.N(u, δ) ing N(v, r).
2. If s > r then N(v, s) ing N(v, r).
3. If w ing N(v, r) and w ing N(u, s) then ∃δ>0vvsuch that N(v, δ) ing N(v, r)

and N(w, δ) ing N(u, s).

40 L. Polkowski

Proof. For Property 1. u ing N(v, r) implies that there exists an s¿r such that
uεμt(v, s). Let δ < 1 be such that t(x, s) > r whenever x > δ; δ exists by
continuity of t and the identity t(1, s) = s. Thus, if w ing N(u, δ), then wεμt(u, η)
with η > δ and, by transitivity property, wεμt(v, t(η, s)); as t(η, s) ≥ r, by RM3,
wεμt(v, r). By Inference Rule (IRM), N(u, δ) ing N(v, r).

Property 2. follows by the Inference Rule (IRM) directly from definitions.
Property 3. is a consequence to Properties 1. and 2.

Specific properties of topologies τμt depend on the chosen parameter t. For in-
stance, in case of μL induced by the Archimedean t–norm L of �Lukasiewicz,
the topology τμL is a metric topology induced by the distance function (met-
ric) H acting on attribute–value representation of entities: H(Inf(u), Inf(v)) =
|Inf(u)∩Inf(v)|

|A| .
We conclude this discussion of granulation with a characterization of gran-

ules induced by Archimedean t–norms as well as granules induced by residual
implications of continuous t–norms.

Proposition 10. For any rough inclusion μ: either μt induced by an Archimedean
t–norm or any symmetrized form μσ

t of a rough inclusion obtained from a residual
implication of a continuous t–norm in a manner indicated above, the following
equivalence holds: w ing g(v, r, μ) if and only if wεμ(v, r).

Proof. Assume that w ing g(v, r, μ). Recall that the granule g(v, r, μ) is the
class of the property μ(v, r). By the class definition and our assumption, there
are entities q, p such that q ing w, q ing p, pεμ(v, r). Thus: qε μ(p, 1) and by
transitivity property qε μ(v, t(r, 1)), i.e., qε μ(v, r). As wε μ(q, 1) (by symmetry
and RM1 because of q ing w), again by transitivity property, wε μ(v, r).

4.6 Rough Inclusions on Finite Sets

For our further purpose, it will be convenient to discuss a particular case of
rough inclusions on a universal concept of finite sets Fin. Close relations of
containment of sets to ingredient relations suggest that a natural rough inclusion
can be defined as,

xε ν3(y, r) iff

⎧
⎨

⎩

x ⊆ y andr = 1
x ∩ y = ∅ and r = 0

r = 1
2 otherwise

(9)

One can also mimic recipes for rough inclusions worked out in the general case
above: we restrict ourselves to the rough inclusion induced by the Archimedean
t–norm L of �Lukasiewicz,

xε νL(y, r) iff g(
|x \ y|
|x|) ≥ r. (10)

As g(u) = 1 − u, the formula for νL can be rewritten in the form:

xε νL(y, r) iff
|x ∩ y|
|x| ≥ r.

Mereological Theories of Concepts in Granular Computing 41

5 Approximate Reasoning: A Granular Rough
Mereological Logic GRML

Granulation makes it possible to construct intensional logics, see [2] for this
notion, in which possible worlds at which extensions of formulas are evaluated
are granules of individuals and states of truth are reals in the interval [0, 1], cf.
e.g., [37].

We assume a universal concept U of entities with a part relation π, the cor-
responding ingredient relation ing, a compatible rough inclusion μ, and a rough
inclusion ν on finite concepts (sets); granules g(v, r, μ) are defined as in (3). We
consider predicates φ interpreted in individual entities in U , i.e., the meaning [φ]
is a concept under which some individuals in U fall. We assume finiteness of U .
As logical connectives, we choose the implication C (if ... then) and the negation
N (it is not true that ...). Semantic interpretation of connectives C and N will
be chosen as the following:

[Nφ] = U \ [φ], (11)
and,

[Cφψ]] = (U \ [φ]) ∪ [ψ]. (12)
The intension I(φ, μ, ν) of φ is a mapping from the concept of granules about

entities in U into real numbers; the extension of φ at a granule g is the value
E(g, φ, μ, ν) = I(φ, mu, ν)(g) of truth state of φ at the granule g.

This value will be defined as,

E(g, φ, μ, ν) ≥ r iff gε ν([φ], r), (13)

i.e., the value of the extension of a predicate at a granule is defined by the value
of degree of partiality of the granule in the meaning of the predicate.

We call a meaningful formula φ a theorem if and only if E(g, φ, μ, ν) = 1 for
each granule g.

5.1 The Case of the Archimedean t–Norm L of �LUkasiewicz

For illustration of ways in which granular logics work, we choose the t–norm
L and a fortiori the rough inclusion μL for granule computing and the rough
inclusion νL on finite concepts (sets). We assume obviously that knowledge is
represented in the attribute–value formalism.

With respect to negation the extension operator behaves according to the
formula,

E(g, φ, μL, νL) ≥ r iff E(g, Nφ, μL, νL) ≤ 1 − r, (14)
which follows from (11) and the form of νL (10). One can simplify this result to
the statement that E(g, Nφ, μL, νL) = 1−E(g, φ, μL, νL) by taking the maximal
values of degrees of partiality in both sides.

The behavior of the extension operator with respect to the implication functor
follows similarly from (12) and (10),

E(g, Cφψ, μL, νL) ≤ [(1 − E(g, φ, μL, νL)) + E(g, φ, μL, νL)]. (15)

so finally,

42 L. Polkowski

The formula on the right hand side of inequality (15) is the value of the
�Lukasiewicz implication of many–valued logic [23], [41].

Proposition 11. If a formula φ is a theorem of granular logic, then the sentential
collapse φc of φ is a theorem of the �Lukasiewicz many – valued logic.

Indeed, by (14) and (15) it follows that if the value of extension of φ is 1 then
φ regarded as a sentence in the �Lukasiewicz logic has value of truth 1.

An analysis of modal statements. Modalities related to knowledge concern
operators ”certainly φ...”, ”possibly φ...”. In attribute–value formalism, these
operators are formally defined within rough set theory.

The idea is to introduce a concept IND of indiscernibility: entities u, v are
indiscernible, (u, v)ε IND if and only if Inf(u) = Inf(v). The concept of indis-
cernibility class [u]IND is next: vε [u]IND if and only if (u, v)ε IND. A concept E
is IND–exact if and only if there exists a property (concept) F on indiscernibility
classes such that E = Cls(F).

Otherwise, a concept is in–exact. For any concept X , one can form the class
l(X) of all indiscernibility classes which are ingredients of X ; it is an exact
concept which is an ingredient of X and moreover, any exact concept which is
an ingredient of X is an ingredient of l(X).

Dually, there exists an exact concept u(X) such that X is an ingredient of
u(X) and u(X) is an ingredient of any exact concept of which X is an ingredient.
l(X) is the lower approximation to X and u(X) is the upper approximation
to X .

We define functors L of necessity and M of possibility (the formula Lφ is read
”certainly φ” and the formula Mφ is read: ”possibly φ”),

E(g, Lφ, μL, νL) ≥ r iff gε νL(l([φ]), r), (16)

and,
E(g, Mφ, μL, νL) ≥ r iff gε νL(u([φ]), r). (17)

We now present using the granular logic GRML that defined by us modalities
L, M obey the rules of modal logic S5.

Proposition 12. The following formulas of modal logic are theorems of GRML,

1. (K) CL(Cφψ)CLφLψ.
2. (T) CLφφ.
3. (S4) CLφLLφ.
4. (S5) CMφLMφ.

Proof. We verify that the formula (K) is a theorem of GRML. Other formulas are
theorems by virtue of duality. We have, [CL(Cφψ)CLφLψ]=U \ lU \ [φ] ∪ [ψ]∪
(U \ l([φ])) ∪ l([ψ])).

Assuming that u is such that u does not fall into U \ l([φ]) ∪ l([ψ]), we have
that

(i) [u]IND ing [φ]; (ii) [u]IND ∩ [ψ] = ∅.
It follows by (i,ii) that u does not fall into l(U \ [φ]) ∪ [ψ] (as if were u in

l(U \ [φ]) ∪ [ψ] it would mean that [u]IND ing (U \ [φ]) ∪ [ψ] hence by (ii) one
would have [u]IND ing U \ [φ], contradicting (i), i.e., the meaning of (K) is U .

Mereological Theories of Concepts in Granular Computing 43

6 On Applications of Rough Inclusions and Granulation
in Computer Science

We finally point to some applications of the presented theory of granulation and
reasoning, described in the literature. Among them are:

1. Fusion of knowledge. The problem is in merging a finite number of informa-
tion systems. In [29], it was shown that a simple merging scheme in which a Carte-
sian product ag is formed of two information systems ag1, ag2 results in granule
synthesizer S(G) which from granules g1(v1, r1, μL) at ag1 and g2(v2, r2, μL) at
ag2 forms a granule g((v1, v2), L(r1, r2), μL) at ag; similarly, the logic synthesizer
L(G) forms from extensions E(g1(v1, r1), φ1, μL, νL) at ag1 and E(g2(v2, r2),
φ2, μL, νL) at ag2 an extension at ag for the granule g((v1, v2), L(r1, r2), μL) of the
form

E(g2(v2, r2), φ2, μL, νL) · E(g2(v2, r2), φ2, μL, νL),

i.e., uncertainty is fused according to the product t–norm. Details can be found
also in [34], [35].

2. Neural computing. A perceptron–like neuron is constructed whose activa-
tion function is a rough inclusion built from the Archimedean product t–norm
P (r, s) = r · s, see [30].

3. Calculus of vague statements. Posed by L. Zadeh paradigm of Comput-
ing with Words, or, Perception Calculus, requires a formalism in which vague
statements like ”John is old” acquire degrees of truth allowing for computing
on semantic level with degrees of truth of syntactically composed statements.
An application of reasoning based on granulation to this problem was presented
in [38].

4. Classification problems. The problem here is to classify entities in a test
universe Tst into classes on the basis of rules learned from the training uni-
verse Trn. An approach based on granulation see, e.g., [36] consists in forming a
granular training universe GTrn consisting of a chosen according to some strat-
egy covering of Trn by granules of a fixed radius, and then factoring attributes
through granules by a chosen strategy, e.g., majority voting, averaging etc. etc.
The obtained new system is subject to inducing rules which are then applied to
the test Tst universe of entities. Results are very promising.

References

1. Adams, E. W.: Probability and the logic of conditionals. In: [13]
2. van Bentham, J.: A Manual of Intensional Logic. CSLI Stanford University (1988)
3. Black, M.: Notes on the paradoxes of confirmation. In: [13]
4. Bochenski, I.M.: Die zeitg önossichen Denkmethoden. A. Francke AG Verlag, Bern

(1954) (9th edn. 1986)
5. Bochman, A.: A Logical Theory of Nonmonotonic Inference and Belief Change.

Springer, Berlin (2001)
6. Frege, G.: Begriffschrift, eine der arithmetischen nachgebildete Formelsprache des

reinen Denken. Louis Nebert, Halle a. S (1879)

44 L. Polkowski

7. Frege, G.: Grundgesetze der Arithmetik I. Verlag Hermann Pohle, Jena (1893)
8. Frege, G.: Grundgesetze der Arithmetik II. Verlag Hermann Pohle, Jena (1903)
9. Gödel, K.: Über Formal Unentscheidbare Sätze der Principia Mathematica.

Monatshefte 38 (1931)
10. Hájek, P.: Metamathematics of Fuzzy Sets. Kluwer, Dordrecht (1998)
11. Hempel, C.G.: Studies in the logic of confirmation. Mind 54 (1945)
12. Hilbert, D., Ackermann, W.: Grundzüge der theoretischen Logik, Berlin (1938)
13. Hintikka, J., Suppes, P. (eds.): Aspects of Inductive Logic. North–Holland, Ams-

terdam (1966)
14. Jech, T.: Set Theory: The Third Millennium Edition, Revised and Expanded.

Springer, Berlin (2003)
15. Kanamori, A.: The mathematical development of set theory from Cantor to Cohen.

The Bulletin of Symbolic Logic 2(1) (1996)
16. Lesniewski, S.: Podstawy ogolnej teoryi mnogosci (On the Foundations of General

Set Theory) (in Polish). The Polish Scientific Circle, Moscow (1916); see also a later
digest in: Topoi 2, 7–52 (1982); engl. transl.: Foundations of the General Theory
of Sets. I. In: Surma, S. J., Srzednicki, J., Barnett, D. I., Rickey, V. F. (eds.):
Stanislaw Lesniewski: Collected Works, vol. 1. Kluwer, Dordrecht (1992)

17. Srzednicki, J.T., Rickey, V.F., Czelakowski, J. (eds.): Leśniewski’s Systems. Ontol-
ogy and Mereology. Nijhoff and Ossolineum, The Hague and Wroc�law (1984)

18. Lin, T.Y.: Neighborhood systems and relational database (abstract). In: Proceed-
ings of CSC 1988, p. 725 (1988)

19. Ling, C.-H.: Representation of associative functions. Publ. Math. Debrecen 12,
189–212 (1965)

20. �Lukasiewicz, J.: Concerning the reversibility of the relation ratio–consequence (in
Polish). Przegla̧d Filozoficzny 16 (1913)

21. �Lukasiewicz, J.: Farewell lecture by Professor Jan �Lukasiewicz. Warsaw University
Hall, March 7 (1918). In: [23]

22. �Lukasiewicz, J.: Aristotle’s Syllogistic. Clarendon Press, Oxford (1957)
23. Borkowski, L. (ed.): Jan Lukasiewicz. Selected Works. North–Holland and PWN–

Polish Scientific Publishers, Amsterdam and Warsaw (1970)
24. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer,

Dordrecht (1991)
25. Pawlak, Z.: Rough sets. Int. J. Computer and Information Sci. 11, 341–356 (1982)
26. Poincaré, H.: Science and Hypothesis, London (1905)
27. Polkowski, L.: Rough Sets. Mathematical Foundations. Physica Verlag, Heidelberg

(2002)
28. Polkowski, L.: A rough set paradigm for unifying rough set theory and fuzzy set

theory (a plenary lecture). In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.)
RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 70–78. Springer, Heidelberg (2003);
cf. Fundamenta Informaticae 54, 67–88 (2003)

29. Polkowski, L.: Toward rough set foundations. Mereological approach (a plenary
lecture). In: Tsumoto, S., S�lowiński, R., Komorowski, J., Grzyma�la-Busse, J.W.
(eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004)

30. Polkowski, L.: Rough–fuzzy–neurocomputing based on rough mereological calculus
of granules. Intern. J. Hybrid Intell. Systems 2, 91–108 (2005)

31. Polkowski, L.: Formal granular calculi based on rough inclusions (a feature talk).
In: [40], pp. 57–62 (2005)

Mereological Theories of Concepts in Granular Computing 45

32. Polkowski, L.: Rough mereological reasoning in rough set theory. A survey of results
and problems (a plenary lecture). In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao,
Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 79–92. Springer, Heidelberg
(2006)

33. Polkowski, L.: The paradigm of granular rough computing. In: Proceedings ICCI
2007. 6th IEEE Intern. Conf. on Cognitive Informatics, pp. 145–163. IEEE Com-
puter Society, Los Alamitos (2007)

34. Polkowski, L.: An approach to granulation of knowledge and granular computing
based on rough mereology: A survey. In: Kreinovich, V., Pedrycz, W., Skowron, A.
(eds.) Handbook of Granular Computing. John Wiley, New York (to appear, 2008)

35. Polkowski, L.: Granulation of knowledge: Similarity based approach in information
and decision systems. In: Lin, T. (ed.) Encyclopedia of Systems and Complexity.
Springer, Berlin (to appear)

36. Polkowski, L., Artiemjew, P.: On Granular Rough Computing: Factoring Classifiers
Through Granulated Decision Systems. In: Kryszkiewicz, M., Peters, J.F., Rybin-
ski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 280–289.
Springer, Heidelberg (2007)

37. Polkowski, L., Semeniuk–Polkowska, M.: On rough set logics based on similarity
relations. Fundamenta Informaticae 64, 379–390 (2005)

38. Polkowski, L., Semeniuk–Polkowska, M.: A formal approach to Perception Calculus
of Zadeh by means of rough mereological logic. In: Proceedings IPMU 2006, Paris
(2006)

39. Polkowski, L., Semeniuk–Polkowska, M.: Mereology in approximate reasoning
about concepts. In: Valore, P. (ed.) Formal Ontology and Mereology, Polimetrica
Intern. Publishers, Monza (2006)

40. Proceedings 2005 IEEE Intern. Conf. Granular Computing, Tsinghua Univ., Bei-
jing, China. IEEE Press, Los Alamitos (2005)

41. Rosser, J.B., Turquette, A.R.: Many–Valued Logics. North Holland, Amsterdam
(1958)

42. Scotus, Duns: Treatise on God as the First Principle,
http://www.ewtn.com/library/THEOLOGY/GODASFIR.HTM

43. S�lupecki, J.: S. Leśniewski’s calculus of names. Studia Logica 3, 7–72 (1955); Also
In: [17], pp. 59–122

44. Suppes, P.: A Bayesian approach to the paradoxes of confirmation. In: [13]
45. Wang, Y.: On concept algebra and knowledge representation. In: IEEE ICCI, pp.

320–331 (2006)
46. Yao, Y.T.: Concept formation and learning: A cognitive informatics perspective.

In: IEEE ICCI, pp. 42–51 (2004)
47. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
48. Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R.,

Yaeger, R.R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18.
North–Holland, Amsterdam (1979)

http://www.ewtn.com/library/THEOLOGY/GODASFIR.HTM

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 46–83, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On Mathematical Laws of Software

Yingxu Wang

Theoretical and Empirical Software Engineering Research Centre (TESERC)
International Center for Cognitive Informatics (ICfCI)

Dept. of Electrical and Computer Engineering
Schulich School of Engineering, University of Calgary

2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4
Tel.: (403) 220 6141; Fax: (403) 282 6855

yingxu@ucalgary.ca

Abstract. Recent studies on the laws and mathematical constraints of software
have resulted in fundamental discoveries in computing and software engineer-
ing toward exploring the nature of software. It was recognized that software is
not constrained by any physical laws discovered in the natural world. However,
software obeys the laws of mathematics, cognitive informatics, system science,
and formal linguistics. This paper investigates into the mathematical laws of
software and computing behaviors. A generic mathematical model of programs
is created that reveals the nature of software as abstract processes and its
uniqueness beyond other mathematical entities such as sets, relations, functions,
and abstract concepts. A comprehensive set of mathematical laws for software
and its behaviors is established based on the generic mathematical model of
programs and the fundamental computing behaviors elicited in Real-Time Proc-
ess Algebra (RTPA). A set of 95 algebraic laws of software behaviors is sys-
tematically derived, which encompasses the laws of meta-processes, process
relations, and system compositions. The comprehensive set of mathematical
laws of software lays a theoretical foundation for analyzing and modeling soft-
ware behaviors and software system architectures, as well as for guiding rigor-
ous practice in programming. They are also widely applicable for the rigorous
modeling and manipulation of human cognitive processes and computational in-
telligent behaviors.

Keywords: Software science, software engineering, denotational mathematics,
software, programs, computational intelligence, modeling, analysis, mathemati-
cal models, generic model of software, process models, algebraic laws, laws of
meta-processes, laws of process relations, laws of process compositions, RTPA.

1 Introduction

The wander on laws of software science can be traced back to George Boole in his
work on “The Laws of Thought [3].” Two fundamental discoveries in computing and
software engineering, the constrain laws of software [9], [16] and the process meta-
phor [14], [15], [20], have fundamentally influenced the theoretical and empirical

 On Mathematical Laws of Software 47

research on exploring the nature of software. The former reveals that, although soft-
ware is not constrained by any physical laws discovered in the nature world, it do
obey the laws of mathematics [16], [21], [38], [39], [41], as well as cognitive infor-
matics [33], [34], [36], [37], [40], system science [39], and formal linguistics and se-
mantics [6], [7], [11], [13], [26], [31], [36], [39], [43]. The latter indicates that any
software system and its behaviors can be modeled and described by a set of processes
[14], which can be treated as a new mathematical entity beyond sets, relations, func-
tions, and abstract concepts [38], [43], [44], [45], [46], [48].

In the exploration of the generic laws of programming, Hoare and his colleagues
proposed a set of mathematic laws of programming [16]. This work covered a set of
algebraic laws of programs for Dijkstra’s nondeterministic sequential programming
language [9]. Wang investigated the cognitive informatics laws of software in [36]
and organizational laws of software engineering in [47], which enhanced the under-
standing toward the fundamental computing behaviors and their composing rules [2],
[4], [8], [14], [15], [17], [20], [25], [27].

The latest reveal of the generic program model (GPM) in Wang (2007) [39] on the
basis of Real-Time Process Algebra (RTPA) [32], [35], [39], [43], [46] have led to the
establishment of a comprehensive set of 95 mathematical laws of fundamental soft-
ware behaviors in the categories of meta-processes and process relations. The mathe-
matical laws of software provide a solid foundation underlying software architectural
and behavioral modeling and analyses. They can be used to reveal equivalency be-
tween process expressions, to simplify complicated process behaviors, to express in-
teractive process relations, and to prove the correctness of software behaviors.

This paper investigates into the mathematical laws of software and computing
behaviors. Emphases will be put on the laws of the most complicated real-time com-
puting requirements and behaviors, such as laws for system dispatching, interrupt,
timing, addressing, dynamic memory allocation, and Boolean/numeric evaluations.
An algebraic treatment of fundamental behaviors of software systems is presented in
Section 2, with the introduction of GPM and RTPA. Algebraic laws of software for
the most fundamental and elementary computing behaviors are described in Section 3
known as the laws of meta-processes of software. Then, algebraic laws of software for
constructing and composing complex process behaviors and architectures are de-
scribed in Section 4 known as the laws of algebraic operations of software. The two
categories of mathematical laws of software cover a comprehensive set of laws for
software behaviors, architectures, and their interactions, which form a foundation for
rigorous reasoning and modeling of software systems and computing mechanisms.

2 The Algebraic Treatment of Fundamental Behaviors of
Software Systems in RTPA

On the basis of the process metaphor of software systems, abstract processes can be
rigorously treated as a mathematical entity beyond sets, relations, functions, and ab-
stract concepts. Real-Time Process Algebra (RTPA) is a denotational mathematical
structure for denoting and manipulating system behavioral processes [32], [35], [36],

48 Y. Wang

[39], [43], [46]. RTPA is designed as a coherent algebraic system for intelligent and
software system modeling, specification, refinement, and implementation. RTPA
encompasses 17 meta- processes and 17 relational process operations. RTPA can be
used to describe both logical and physical models of software and intelligent sys-
tems. Logic views of system architectures and their physical platforms can be de-
scribed using the same set of notations. When a system architecture is formally mod-
eled, the static and dynamic behaviors performed on the architectural model can be
specified by a three-level refinement scheme at the system, class, and object levels in
a top-down approach. RTPA has been successfully applied in real-world system
modeling and code generation for software systems, human cognitive processes, and
intelligent systems.

Definition 1. RTPA is a denotational mathematical structure for algebraically denoting
and manipulating system behavioural processes and their attributes by a triple, i.e.:

(, ,)RTPA T P N (1)

where

• T is a set of 17 primitive types for modeling system architectures and data
objects;

• P a set of 17 meta-processes for modeling fundamental system behaviors;
• R a set of 17 relational process operations for constructing complex system

behaviors.

Detailed descriptions of , , and T P N in RTPA will be extended in the following
subsections.

2.1 The Generic Mathematical Model of Programs and Software Systems

Program modeling is on coordination of computational behaviors with given data ob-
jects. On the basis of RTPA, a generic program model can be described by a formal
treatment of statements, processes, and complex processes from the bottom-up in the
program hierarchy.

Definition 2. A process P is the basic unit of an applied computational behavior that
is composed by a set of statements pi, 1 ≤ i ≤ n-1, with left-associated cumulative rela-
tions, rij, i.e.:

1

1

1 12 2 23 3 1,

 (), 1

(...((())) ...)

n

i ij j
i

n n n

P p r p j i

p r p r p r p

R
−

=

−

= = +

=

 (2)

where pi ∈ P and rij ∈ R.

With the formal process model as defined above, the generic mathematical model of
programs can be derived as follows.

 On Mathematical Laws of Software 49

Definition 3. A program ℘ is a composition of a finite set of m processes according
to the time-, event-, and interrupt-based process dispatching rules of RTPA, i.e.:

 (3)

Definitions 2 and 3 indicate that a program is an embedded relational entity, where a
statement in a program is an instantiation of a meta-instruction of a programming
language that executes a basic unit of coherent function and leads to a predictable
behavior.

Theorem 1. The Generic Program Model (GPM) states that a software system or a
program ℘ is an algebraic structure with a set of embedded relational processes, in
which all previous processes of a given process form the context of the current proc-
ess, i.e.:

1

1

1 1

 (@)

 [@ (() () ())], 1, , ,

m

k k
k

m n

k i ij j i j ij
k i

e P

e p k r k p k j i p p r

R

R R
=

−

= =

℘=

= = + ∈ ∈P R

 (4)

Proof. Theorem 1 can be directly proved on the basis of Definitions 2 and 3. Substi-
tuting Pk in Definition 3 with Eq. 2, a generic program ℘ obtains the form as a series
of embedded relational processes as presented in Theorem 1.

The GPM model given in Theorem 1 reveals that a program is a finite and nonempty
set of embedded binary relations between a current statement and all previous ones
that formed the semantic context or environment of computing. Theorem 1 provides a
unified software model, which is a formalization of the well accepted but informal
process metaphor for software systems in computing.

2.2 The Type System of RTPA

A type is a set in which all member data objects share a common logical property or
attribute. The maximum range of values that a set of variables can assume is the do-
main of a type, and a type is always associated with a set of predefined or allowable
operations in computing. A type can be classified as primitive and derived (complex)
types. The former are the most elemental types that cannot further divided into sim-
pler ones; the latter are a compound form of multiple primitive types based on given
type rules. In computing, most primitive types are provided by programming lan-
guages; while most user defined types are derived ones.

Definition 4. A type system specifies data object modeling and manipulation rules in
computing.

A set of 17 primitive types of RTPA in computing and human cognitive process mod-
eling is elicited from works in [5], [19], [22], [28], [32], [35], [39], [43], [46], which

1

(@)
m

k k
k

e PR
=

=℘

50 Y. Wang

is summarized in Table 1. In Table 1, the first 11 primitive types are for mathematical
and logical manipulation of data objects, and the remaining 6 are for system architec-
tural modeling.

It is noteworthy that although a generic computing behavior is constrained by the
mathematical domain Dm of types, an executable program is constrained by the lan-
guage-defined domain Dl, and at most time, it is further restricted by the user-defined
domain Du, where Du ⊆ Dl ⊆ Dm.

Table 1. RTPA Primitive Types and their Domains

No. Type Syntax Dm Dl

1 Natural number N [0, +∞] [0, 65535]

2 Integer Z [-∞, +∞] [-32768, +32767]

3 Real R [-∞, +∞] [-2147483648,
 2147483647]

4 String S [0, +∞] [0, 255]

5 Boolean BL [T, F] [T, F]

6 Byte B [0, 255] [0, 255]

7 Hexadecimal H [0, +∞] [0, max]

8 Pointer P [0, +∞] [0, max]

9 Time TI = hh:mm:ss:ms hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

10 Date

D = yy:MM:dd

yy: [0, 99]
MM: [1, 12]
dd: [1, 31}

yy: [0, 99]
MM: [1, 12]
dd: [1, 31}

11 Date/Time DT = yyyy:MM:dd:
 hh:mm:ss:ms

yyyy: [0, 9999]
MM:[1, 12]
dd: [1, 31]
hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

Yyyy: [0, 9999]
MM:[1, 12]
dd: [1, 31]
hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

12 Run-time determinable
type

RT –

–

13 System architectural
type

ST – –

14 Random event @eS [0, +∞] [0, 255]

15 Time event @tTM [0ms, 9999 yyyy] [0ms, 9999 yyyy]

16 Interrupt event @int [0, 1023] [0, 1023]

17 Status ⓢsBL [T, F] [T, F]

 On Mathematical Laws of Software 51

Lemma 1. The primary types of computational objects state that the RTPA type system
T encompasses 17 primitive types elicited from fundamental computing needs, i.e.:

{ , @ , @ , @ , }e t sint �T N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST S TM BL (5)

where the primitive types stand for natural number, integer, real, string, Boolean,
byte, hexadecimal, pointer, time, date, date/time, run-time determinable type, system
architectural type, random event, time event, interrupt event, and system status.

RTPA provides a coherent notation system and a rigorous mathematical structure for
modeling both software and intelligent systems. RTPA can be used to describe both
logical and physical models of systems, where logic views of the architecture of a
software system and its operational platform can be described using the same set of
notations. When the system architecture is formally modelled, the static and dynamic
behaviors that perform on the system architectural model, can be specified by a three-
level refinement scheme at the system, class, and object levels in a top-down ap-
proach. Although CSP [14], [15], the timed-CSP [4], [10], [23], and other process
algebra treated any computational operation as a process, RTPA distinguishes the
concepts of meta-processes from those of complex and derived processes, which are
composed by relational process operations on the meta-processes.

2.3 The Meta-processes of Software Behaviors in RTPA

RTPA adopts the foundationalism in order to elicit the most primitive computational
processes known as the meta-processes. In this approach, complex processes are
treated as derived processes from these meta-processes based on a set of algebraic
process composition rules known as the process relations.

Definition 5. A meta-process in RTPA is a primitive computational operation that
cannot be broken down to further individual actions or behaviors.

A meta-process is an elementary process that serves as a basic building block for
modeling software behaviors. In RTPA, a set of 17 meta-processes has been elicited
as shown in Table 2, from essential and primary computational operations commonly
identified in existing formal methods and modern programming languages [1], [12],
[16], [18], [52], [53]. Mathematical notations and syntaxes of the meta-processes are
formally described in Table 2, while formal semantics of the meta-processes of RTPA
may be referred to [36], [39], [43].

Lemma 2. The RTPA meta-process system P encompasses 17 fundamental computa-

tional operations as defined in Table 2, i.e.:

P = {:=, , ⇒, ⇐, , , , | , | , @, , ↑, ↓, !, ⊗, , §}

(6)

As shown in Lemma 2 and Table 2, each meta-process is a basic operation on one or
more operands such as variables, memory elements, or I/O ports. Structures of the
operands and their allowable operations are constrained by their types as described in
the preceding subsection.

52 Y. Wang

It is noteworthy that not all generally important and fundamental computational
operations as shown in Table 2 had been explicitly identified in conventional formal
methods. For instances, the evaluation, addressing, memory allocation/release, tim-
ing/duration, and the system processes. However, all these are found necessary and
essential in modeling system architectures and behaviors [39].

Table 2. RTPA Meta-Processes

No. Meta Process Notation Syntax

1 Assignment := yT := xT

2 Evaluation TexpT → T

3 Addressing ⇒ idT ⇒ MEM[ptrP] T

4 Memory allocation ⇐ idT ⇐ MEM[ptrP] T

5 Memory release idT MEM[⊥]T

6 Read MEM[ptrP]T xT

7 Write xT MEM[ptrP]T

8 Input | PORT[ptrP]T | xT

9 Output | xT | PORT[ptrP]T

10 Timing

@ @tTM @ §tTM

TM = yy:MM:dd

 | hh:mm:ss:ms
 | yy:MM:dd:hh:mm:ss:ms

11 Duration @tnTM Δ §tnTM + ΔnTM

12 Increase ↑ ↑(nT)

13 Decrease ↓ ↓(nT)

14 Exception detection ! ! (@eS)

15 Skip

⊗ ⊗

16 Stop

17 System § §(SysIDST)

2.4 Process Operations of RTPA

Definition 6. A process relation in RTPA is an algebraic operation and a compositional
rule between two or more meta-processes in order to construct a complex process.

A set of 17 fundamental process relations has been elicited from fundamental alge-
braic and relational operations in computing in order to build and compose complex
processes in the context of real-time software systems. Syntaxes and usages of the 17

 On Mathematical Laws of Software 53

RTPA process relations are formally described in Table 3. Deductive semantics of
these process relations may be referred to [36], [39], [43], [46].

Lemma 3. The software composing rules state that the RTPA process relation system
R encompasses 17 fundamental algebraic and relational operations elicited from basic
computing needs as defined in Table 3, i.e.:

R = {→, , |, |…|…,
*

R , R
+

,
i

R , , , ||, ∯, |||, », , t, e, i}

(7)

Table 3. RTPA Process Relations and Algebraic Operations

No. Process Relation Notation Syntax

1 Sequence → P → Q

2 Jump P Q

3 Branch | expBL = T → P

| ~ → Q

4 Switch |
…
|

 expT =
 i → Pi
| ~ →

 where T ∈ {N, Z, B, S}

5 While-loop *

R

exp =
R

F

BL T
P

6 Repeat-loop
 R

+

P →
exp =
R

F

BL T
P

7 For-loop i

R

1

n

i
R

=

N

N
P(iM)

8 Recursion 0

i n
R
=N N

PiM PiM-1

9 Function call P F

10 Parallel || P | | Q

11 Concurrence ∯ P ∯Q

12 Interleave ||| P ||| Q

13 Pipeline » P » Q

14 Interrupt P Q

15 Time-driven dispatch t @tiTM t Pi

16 Event-driven dispatch e @eiS e Pi

17 Interrupt-driven dispatch i @intj i Pj

54 Y. Wang

3 Laws of Meta-processes of Software Behaviors

A meta-process in RTPA is the most fundamental and elementary process that cannot
be broken up further. Specific laws that constrain RTPA meta-processes in software
engineering and computing are explored in this section. As a summary, the algebraic
laws of the 17 meta-processes are listed in Table 4.

3.1 Laws of Assignments

Hoare wrote in 1969: “Assignment is undoubtedly the most characteristic feature of
programming a digital computer, and one that most clearly distinguishes it from other
branches of mathematics. It is surprising therefore that the axiom governing our reasoning
about assignment is quite as simple as any to be found in elementary logic [13].”

Table 4. Algebraic Laws of Meta-Processes of Software Behaviors

No. Process Notation Specific laws

1 Assignment := L1(Selectivity), L2(Transitivity), L3(Most recent effectiveness),
L4(Compositionality), L5(Decompositionality)

2 Evaluation L6(Boolean evaluation), L7(Ordinal evaluation), L8(Ordinal power
set evaluation), L9(Numerical evaluation), L10 (Logical expressive
equivalence), L11(Shortcut of conjunctive evaluation), L12(Shortcut
of disjunctive evaluation)

3 Addressing ⇒ L13(Definite memory addressing), L14(Power set memory address-
ing)

4 Memory
allocation

⇐ L15(Memory allocation),

5 Memory
release

 L16(Memory release)

6 Read L17(Memory read)

7 Write L18(Memory write)

8 Input | L19(Port input)

9 Output | L20(Port output)

10 Timing

@ L21(System clock), L22(Absolute timing), L23(Relative timing)

11 Duration L24(Duration timing)

12 Increase ↑ -

13 Decrease ↓ -

14 Exception
detection

! -

15 Skip ⊗ L25(Jump equivalence), L26(Skip absorption), L27(Skew skip ab-
sorption)

16 Stop -

17 System § L33(Serial architecture representation), L46(Recurrent CLM
representation), L56(Nested architecture representation), L63(Parallel
architecture representation), L77(Coupled architecture representation)

 On Mathematical Laws of Software 55

The assignment process is transitive, and it constrained by the following laws of
software.

Law 1. The law of assignment selectivity states that the assignment operation, :=, is

selective on variables and/or values that share the same or equivalent type T, i.e.:

: (() () () ())

 ()

 |

 !(@TypeError)

y x T y T x T y T x

y V x

= = ∨

→ =

→

→ ∅

∼

T T

T T

S

 (8)

where, T is a predefined primitive type in RTPA, T ∈ T, and T(z) and V(z) are a type

and value evaluation function, respectively, on a given variable z.

Law 2. The law of assignment transitivity states that an assignment operation is transitive

among multiple related variables that share the same or equivalent type T, i.e.:

 (:) (:) :y z x y x z= → = =T T T T T T (9)

Law 2 can be expressed in a more general form as assignment compositeness in
Law 4.

Law 3. The law of most recent effectiveness of assignments states that n sequential
assignment operations on the same variable are mutually exclusive, where only the
last assignment is effective in the series of assignments, i.e.:

1
 : (:)

n

i n
i

y x y xR
=

= = T T T T (10)

Law 3 can be used to eliminate redundant or unnecessary assignments in pro-
gramming or system specifications, particularly in a distributed environment.

Law 4. The law of assignment compositionality states that an assignment operation is
compositional through multiple functions or expressions, i.e.:

(: ()) (: ())

(: ())

(: (())

y g z x f y

x f g z

x f g z

= → =

=

= =

T T T T T T

T T T T

� T T T T

 (11)

Law 4 is the foundation of programming and component-based system composi-
tion in software engineering. It is in line with the generic program model as presented
in Section 2.1. It is obvious that Law 3 is a special case of Law 4 where both func-
tions f and g are assignments.

An inverse expression of Law 4 forms the law of decompositionality for assign-
ments.

56 Y. Wang

Law 5. The law of assignment decompositionality states that an assignment operation
is decompositional through multiple functions or expressions, i.e.:

: ())

: (())

 (: ()) (: ())

x f g z

x f g z

y g z x f y

=

=

= = → =

T T T T

� T T T T

T T T T T T

 (12)

Law 5 forms the foundation of programming and component-based system specifi-
cation in software engineering.

3.2 Laws of Evaluations

The evaluation processes of expressions in computing can be classified as Boolean,
ordinal, and numerical. The evaluation processes are constrained by the following
laws of software.

Law 6. The law of Boolean evaluation states that a given Boolean expression expBL

can be evaluated exclusively by BL, which results in one of the Boolean constants T

or F, i.e.:

BL BL , () : { } exp exp →BL BL BL T F (13)

Typical branch constructs obey Law 6 where each branch is selected by a Boolean
constant T or F.

Law 7. The law of ordinal evaluation states that a given natural number expression

expN can be evaluated ordinally by N, which results in a unique ordinal number, i.e.:

N N() : exp exp →N N N N M (14)

Typical switch constructs obey Law 7 where each branch is selected by an ordinal
number n ∈ N.

Law 8. The law of ordinal power set evaluation states that a given natural number

expression expN can be evaluated ordinally by ÞN, which results in a subset of natu-

ral numbers, i.e.:

ÞN ÞN()Þ : Þ exp exp →N N N N (15)

A more general and flexible switch constructs obey Law 8 where each branch is se-
lected by a subset of numbers ÞN ⊆ N.

Law 9. The law of numerical evaluation states that a given real expression expR or

integer expression expZ can be evaluated numerically by R, or Z, which results in a

real number or an integer, respectively, i.e.:

R R() : exp exp →R R R R (16a)

Z Z() : exp exp →Z Z Z Z (16b)

 On Mathematical Laws of Software 57

Law 9 is the mathematical foundation of measurement theories and software engi-
neering measurement.

Law 10. The law of logical expressive equivalence states that a pair of Boolean ex-
pressions are equivalent, denoted by , iff: (a) Both expressions share the same set of
variables; and either (b) The symbolic expressions can be transformed into the same
form, or (c) The truth tables of both expressions are identical, i.e.:

1 1 2 n 2 1 2 n

BL 1 BL 2

))(, ,..., (, ,...,

, () = ()
n

i
i=1

exp x x x exp x x x

x exp expR ∀ ∈

BL BL BL BL BL BL BL BL

BL BL BL BL BL
 (17)

According to Law 10, equivalent evaluation of Boolean expressions can be deter-
mined either by identical truth tables or by transformation of one expression into the
other.

Law 11. The law of shortcut of conjunctive evaluation states that a conjunctive Boo-
lean expression with multiple Boolean variables, expBL = x1BL ∧ x2BL ∧ … ∧ xnBL, can
be evaluated directly as F whenever at most one of them is false, i.e.:

BL 1 2 n)(... , , 0 ix x x x i n∧ ∧ ∧ ∃ = ≤ ≤BL BL BL BL F BL F (18)

Law 12. The law of shortcut of disjunctive evaluation states that a disjunctive Boo-
lean expression with multiple Boolean variables, expBL = x1BL ∨ x2BL ∨ … ∨ xnBL, can
be evaluated directly as T whenever at most one of them is true, i.e.:

BL 1 2 n)(... , , 0 ix x x x i n∨ ∨ ∨ ∃ = ≤ ≤BL BL BL BL T BL T (19)

3.3 Laws of Addressing

Addressing is a fundamental computational process that maps a variable to a memory
location or block. The addressing processes are constrained by the following laws of
software.

Law 13. The law of definite memory addressing ⇒ states that a declared logical iden-
tifier idB in type byte can be associated to a unique physical memory address, i.e.:

MEM[]

: MEM[]
id ptr

id ptr ptrπ
⇒

→ →
BL P B

B P P B
 (20)

More generally, when the logical representation of an arbitrary typed identifier idT
occupies more than one memory elements, the following laws can be introduced.

Law 14. The law of power set memory addressing states that a declared logical identi-
fier idT can be mapped into a unique block of n continuous logical memory elements
for representing a variable in type T, i.e.:

MEM[]

: MEM[]
id ptr

id ptr ptrπ
⇒

→ →
T T

T T

P
P P

 (21)

58 Y. Wang

where the power set of addressing results is determined by
[, 1]ptr ptr ptr n= −+P P P N , and n is language implementation-specific.

Law 15. The law of memory allocation ⇐ states that a unique block of n continuous

physical memory elements can be allocated to a declared logical identifier idT, i.e.:

1

MEM[]

: MEM[]

id ptr

ptr idπ −

⇐

→
T T

T T

P

P
 (22)

where the power set of allocation pointer is [, 1]ptr ptr ptr n= −+P P P N , and n is lan-

guage implementation-specific.

Law 16. The law of memory release states that a unique block of n continuous

logical memory elements can be dissociated from a declared logical identifier idT by

the following sequential processes, i.e.:

:=

:=

 :=

)

MEM[Þ]

 (MEM[Þ]

 MEM[, 1]

id ptr

id ptr

ptr ptr n

ptr

id

⇒

⊥

⊥

⊥

→ + −
→
→

T T

T T

T

T

P
P

P P N
P

 (23)

where the first step denotes a readdressing process in order to establish the association
between the identifier, the memory block, and the pointers, and ⊥ denotes a value
undefined.

3.4 Laws of I/O Manipulations

Input/output (I/O) processes are important computational operations for modeling
interactive behaviors of systems. The I/O manipulation processes are constrained by
the following laws of software.

Law 17. The law of memory read states that the read operation on memory, , is

equivalent to an assignment operation, where the allocated memory element pointed
by ptrP is treated as a logical variable, i.e.:

MEM[] := MEM[]ptr x x ptrT T T T� � P P (24)

Law 18. The law of memory write states that the write operation on memory, , is
equivalent to an assignment operation, where the allocated memory element pointed
by ptrP is treated as a logical variable, i.e.:

:= MEM[] MEM[]x ptr ptr xT T T TP P (25)

 On Mathematical Laws of Software 59

Law 19. The law of port input states that the input from a port, | , is equivalent to an

assignment operation, where the allocated port buffer pointed by ptrP is treated as a
logical variable, i.e.:

PORT[] := PORT[]ptr x x ptrT T T T� � P P (26)

Law 20. The law of port output states that the output to a port, | , is equivalent to an

assignment operation, where the allocated port buffer pointed by ptrP is treated as a
logical variable, i.e.:

:= PORT[] PORT[]x ptr ptr xT T T TP P (27)

3.5 Laws of Time Manipulations

Time manipulation is a necessary dimension in computing that is supplemental to the
logic and space dimensions for modeling interactive system behaviors. The time ma-
nipulation processes are constrained by the following laws of software.

Law 21. The law of system clock states that a software system, in particular a real-
time system, needs to maintain two clocks at the system level known as the absolute
clock §tTM and the relative clock §tnN, as follows:

 a) § [0:1:1:0:0:0:0 : : : : : : ,

 9999:12:31:23:59:59:999 : : : : : :]

tTM yyyy MM dd hh mm ss ms
yyyy MM dd hh mm ss ms

 (28a)

where a subset of the date/time range TM may be implemented for nonreal-time or
noncontinuous systems.

b) 8§ [0 , 1 10]τ ×N ms ms (28b)

where the range of the relative clock is determined by §τ N = 24hh × 60mm × 60ss ×
1000ms = 8.64 × 107ms. The relative clock §τ N may be reset to zero at midnight
every day in system modeling.

Law 22. The law of absolute timing states that the absolute system clock §tTM can be

used to set, @ , a timing event or the execution of a process @tTM at a precise point of

calendar time, i.e.:

 @tTM @ §tTM (29)

where TM = yy:MM:dd | hh:mm:ss:ms | yyyy:MM:dd:hh:mm: ss:ms.

Law 23. The law of relative timing states that the relative clock §τN can be used to

set, @ , a timing event or the execution of a process @tTM at a certain relative time

point, i.e.:

@tN @
 §τ ms (30)

where §τN ∈ [0, 1 × 108ms].

60 Y. Wang

Law 24. The law of duration timing states that an absolute timing event @tTM on the
system clock §tTM, or a relative timing event @tN on the system clock §τN, can be set,

, with and a given duration ΔnTM or Δnms for a timing event or the execution of a
process, i.e.:

 @ § + t t nΔTM TM TM (31a)

or

@ § + t nτ ΔN N ms (31b)

3.6 Laws of Skip

Skip is special meta-process in programming that has no semantic effect on the current
process Pk at a given embedded layer k in a program, such as a branch, loop, or func-
tion. However, it redirects the system to jump to execute an upper-layer process Pk-1 in
the embedded hierarchy. Therefore, skip is also known as exit or break in programming.
The skip processes are constrained by the following laws of software.

Law 25. The law of jump equivalence of skip processes states that a skip does nothing
functionally but adjusts the internal control to jump to a predefined process outside
the current executing layer, i.e.:

P Q P Q→⊗→ = (32)

where the jump process operation will be explained in Section 4.2.

Law 26. The law of skip absorption states that skips can be replaced by jump process
relations in a branch, parallel, concurrent, or pipeline process structure, i.e.:

(() ()) () ()

 ()

P Q S P S Q S

P Q S

→⊗ →⊗ → =
=

 (33)

where = {|, ||, , }.∫∫

Law 27. The law of skew skip absorption states that a skip can be replaced by a jump
process in a skew branch, parallel, concurrent, or pipeline process structure, i.e.:

(() ()) () ()P T Q S P T S Q S→ →⊗ → = → → (34)

where = {|, ||, , }.∫∫

According to Table 4, the top-level meta-process, system, obeys a set of architec-
tural representation laws, which will be described in Section 4, such as Law 33 for
serial architecture representation, Law 46 for recurrent CLM representation, Law 56
for nested architecture representation, Law 63 for parallel architecture representation,
and Law 77 for coupled architecture representation.

4 Laws of Algebraic Operations of Software Behaviors

The relational operations of process behaviors defined in RTPA provides a set of
17 process composing rules for constructing complex processes and manipulating

 On Mathematical Laws of Software 61

advanced computing behaviors on the basis of the RTPA meta-processes. A compre-
hensive set of algebraic laws for relational process operations will be established in
this section.

Let P, Q, S be meta or complex processes P, Q, S ∈ R, and R, R’ be different rela-

tional operators, R, R’∈ R, then a set of algebraic laws of software process composi-

tions can be elicited as defined in Table 5, where the simplest process can be a single
event.

Table 5 provides a set of generic algebraic laws of software process relations and
compositional rules. Observing the table it can be seen that the 12 relational laws, L1 –
L12, can be classified into six pairs, i.e., associative/dissociative, reflexive/irreflexive,
symmetric/antisymmetric, transitive/intransitive, distributive/ nondistributive, and
elicitive/nonelicitive. It is noteworthy that each pair of laws is exclusive, i.e., a

specific process relational operation R ∈ R only obeys one of the laws in a certain

pair as shown in Table 5.

Table 5. Generic Algebraic Laws of Software Processes

No. Law Description

Law L1 Associative R1 ο (R2 ο R3) ⇒ (R1 ο R2) ο R3

Law L2 Dissociative R1 ο (R2 ο R3) (R1 ο R2) ο R3

Law L3 Reflexive PR Q ⇒ P = Q

Law L4 Irreflexive PR Q ⇒ P ≠ Q

Law L5 Symmetric PR Q ⇒ QR P

Law L6 Asymmetric PR Q QR P

Law L7 Transitive PR S ∧ SR Q ⇒ PR Q

Law L8 Intransitive PR S ∧ SR Q PR Q

Law L9 Distributive PR (QR’S) ⇒ (P R Q) R’ (P R S)

Law L10 Nondistributive PR (QR’S) (P R Q) R’ (P R S)

Law L11 Elicitive (PR Q) R’ (P R S) ⇒ PR (Q R’S)

Law L12 Nonelicitive (PR Q) R’ (P R S) PR (Q R’S)

62 Y. Wang

A mapping of the 12 generic laws into each of the relational operators is summa-
rized in Table 6. The laws and properties may be used to enhance the understanding
of the mechanisms and behaviors of the fundamental processes in software engineer-
ing and computational intelligence. In addition to the generic laws for software proc-
esses and behaviors, there are special laws for most of the relational operations as
identified in the right-most column of Table 6, which will be described individually in
the corresponding laws.

The following subsections describe the algebraic laws for each of the 17 relational

process operations R ∈ R, plus any additional special law that a particular process

operation must obey.

4.1 Laws of Sequential Processes

The sequential operation of processes is associative, reflective, distributive, and elic-
itive. However, it is asymmetric and intransitive. The sequential process operations
are constrained by the following laws of software.

Table 6. Algebraic Laws of Relational Process Operations

Generic algebraic laws No. Process
relation

Notation

L
1

L
2

L
3

L
4

L
5

L
6

L
7

L
8

L
9

L
10

L
11

L
12

Special
algebraic laws

1 Sequence → L32, L33

2 Jump -

3 Branch | L41

4 Switch | … | L43

5 While *

R
- - - - - - - - - - - - L44

6 Repeat

R
+

- - - - - - - - - - - - L44

7 For-do i

R
- - - - - - - - - - - - L44, L45, L46

8 Recursion - - - - - - - - - - - - L47, L48, L49

9 Function call L56

10 Parallel || L62, L63

11 Concurrence ∯ L69

12 Interleave ||| -

13 Pipeline » L76, L77

14 Interrupt L78, L79, L80

15 Time-
dispatch

t L84, L85

16 Even-
dispatch

e L89, L90

17 Interrupt-
dispatch

i L94, L95

 On Mathematical Laws of Software 63

a) Associativity of Sequential Processes

Law 28. The law of associativity of sequential processes states that a list of sequential
processes can be arbitrarily associated whenever their original order of sequence is
preserved, i.e.:

() ()P Q S P Q S P Q S→ → = → → = → → (35)

Law 28, sequential associativity, is the foundation of system modularization, de-
composition, and integration in software engineering.

b) Reflective of Sequential Processes

Law 29. The law of reflectivity of sequential processes states that a list of sequential
processes is reflective, iff they are identical, i.e.:

P Q Q P P Q→ = → ⇒ = (36)

c) Distributivity of Sequential Processes

Law 30. The law of distributivity of sequential processes states that a linear process S
can be distributed into a pair of disjunctive conditional branch processes P | Q, i.e.:

(|) () | ()S P Q S P S Q→ = → → (37a)

or
(|) () | ()P Q S P S Q S→ = → → (37b)

d) Elicitivity of Common Statements

Law 31. The law of elicitivity of common statements states that common processes in a
pair of disjunctive conditional branch processes can be elicited as shared processes, i.e.:

() | () (|)S P S Q S P Q→ → = → (38a)

or

() | () (|)P S Q S P Q S→ → = → (38b)

Law 31 is an inverse statement of Law 30, which is frequently used to elicit the
common component from a branch structure.

In addition, sequential processes also obey the following special laws.

e) Procedural Representation of Compound Statements

Law 32. The law of procedural representation of compound statements states that an
arbitrary subset of sequential processes P, Q, S can be associated into a procedure or
function F, i.e.:

1 2

1 2

(...)

 , (...)
n

n

P Q Q Q S

P F S F Q Q Q

→ → → → → =
→ → = → → →

 (39)

where F is the procedure elicited from the list of processes.

64 Y. Wang

Law 32 is an extension of Law 28, sequential associativity, which provides a pow-
erful means to derive structural programs that implements the principles of encapsula-
tion, abstraction, and information hiding in software engineering.

f) Representation of Serial Architectures

Law 33. The law of serial architecture representation states that the sequential proc-
esses can be used as an abstract representation of recurring serial architectures (SAs)
in system modeling, i.e.:

1 2(...)nSA P P P→ → →ST (40)

where each process Pi , 1 ≤ i ≤ n, denotes a component in the system.
Law 33 shows that system architecture modeling share the same properties as those

of behavioral processes. Both of them can be modeled by processes and their rela-
tional operations.

4.2 Laws of Jump Processes

The jump operation of processes is associative, reflective, distributive, and elicitive,
but it is asymmetric and intransitive. The jump process operations are constrained by
the following laws of software.

a) Associativity of Jump Processes

Law 34. The law of associativity of jump processes states that multiple jumps be-
tween a list of sequential processes can be arbitrarily associated whenever their origi-
nal order of sequence is preserved, i.e.:

() ()P Q S P Q S P Q S= = (41)

b) Reflective of Jump Processes

Law 35. The law of reflectivity of jump processes states that the jump operation be-
tween two processes is reflective, iff they are identical, i.e.:

P Q Q P P Q= ⇒ = (42)

c) Distributivity of Jump Processes

Law 36. The law of distributivity of jump processes states that a process S can be dis-
tributed into a pair of disjunctive conditional branch processes P | Q by the jump op-
eration, i.e.:

(|) () | ()S P Q S P S Q= (43a)

or
(|) () | ()P Q S P S Q S= (43b)

 On Mathematical Laws of Software 65

d) Elicitivity of Jump Processes

Law 37. The law of elicitivity of jump statements states that a common process in a
pair of branch processes can be elicited as a shared process, i.e.:

() | () (|)S P S Q S P Q= (44a)

or
() | () (|)P S Q S P Q S= (44b)

The elicitivity of jump operations is an inversed operation of jump distributivity as
given in Law 36.

4.3 Laws of Branch Processes

The branch operation of processes is distributive and elicitive, but it is dissociative,
irreflexive, asymmetric, and intransitive. The branch process operations are con-
strained by the following laws of software.

a) Distributive of Branch Processes

Law 38. The law of distributivity of branch states that a process S can be distributed into a

pair of disjunctive conditional branch processes P | Q by a relational operation R, i.e.:

 (|) () | ()S P Q S P S Q= (45a)

or
(|) () | ()P Q S P S Q S= (45b)

where {||, , , ,|||}.= ∫∫

b) Elicitivity of Invariant Process from Branch Structures

Law 39. The law of elicitivity of sequential processes states that a common sequential
process S within a disjunctive conditional process can be elicited and executed outside
the conditional construct, i.e.:

|

(

 |

)

∼

∼

exp

S

P

S

Q

S exp

P

Q

=
→
→

→
→

= → =
→

→

BL T

BL T

 (46a)

where expBL is a Boolean expression, and ~ denotes otherwise.

66 Y. Wang

Law 39 can be similarly expressed in other form as follows:

|

(

 |

)

∼

∼

exp

P

S

Q

S

exp

P

Q

S

=
→
→

→
→

= =
→

→

→

BL T

BL T

 (46b)

where S is independent from the Boolean expression expBL or the execution of S will
not affect the Boolean value of expBL.

Law 39, sequential elicitivity, is the theoretical foundation of common function or
object elicitation, improvement of programming efficiency, and well structured pro-
gramming in software engineering.

c) Skew Symmetry of Branch Processes

Law 40. The law of skew symmetry of branch states that a branch or conditional
choice is commutative on the true and false branches, i.e.:

|

|

∼

∼

 exp

P

Q

exp

Q

P

=
→

→
= =

→

→

BL T

BL F

 (47)

d) Embedded Branch Processes

Law 41. The law of embedded branch states that multiple branches can be nested on
the else branches in order to form a multi-layer branch structure, i.e.:

 On Mathematical Laws of Software 67

0

0

1

1

|

|

 ...

|

∼

∼

∼

n

n

exp

P

exp

P

exp

P

=
→

→ =
→

→ =
→

BL T

BL T

BL T

0

1

= 0

 | 1

 | ...

 |

 |∼
n

exp P

P

n P

→⊗
= →

→

→
→⊗

N

 (48)

4.4 Laws of Switch Processes

The switch operation of processes is elicitive, but it is dissociative, irreflexive, asym-
metric, intransitive, and nondistributive. Therefore, Law 38 for branch structures can
be extended to the switch structure as follows.

a) Elicitivity of Sequential Processes

Law 42. The law of elicitivity of sequential processes states that a common sequential
process Q within a switch process can be elicited and executed outside the switch
construct, i.e.:

0

1

0

1

0 ()

 | 1 ()

 | ...

 | ()

 |

 0

 | 1

 | ...

 |

∼

n

n

exp P Q

P Q

n P Q

Q

exp P

P

n P

= → →
→ →

→ →
→

= = →
→

→

N

N

 |

∼
Q

→∅
→

 (49a)

68 Y. Wang

or

0

1

0

1

0 ()

 | 1 ()

 | ...

 | ()

 |

(0

 | 1

 | ...

∼

n

exp Q P

Q P

n Q P

Q

Q exp P

P

= → →
→ →

→ →
→

= → = →
→

N

N

 |

 |

)

∼
nn P→

→∅

 (49b)

The sequential elicitivity is the theoretical foundation of common function or ob-

ject elicitation, improvement of programming efficiency, and well structured pro-
gramming in software engineering.

b) Equivalent Embedded Branch Processes

Law 43. The law of equivalent embedded branch states that the switch operation is
equivalent to the multiple embedded structures in computing, i.e.:

0

1

0

0

1

1

0

 | 1

 | ...

 |

 |

=

 |

|

 ...

∼

∼

∼

n

exp P

P

n P

exp

P

exp

P

= →
→

→
→⊗
=

→

→ =
→

N

BL T

BL T

|

∼

n

n

exp

P

→ =
→

→⊗

BL T

 (50)

 On Mathematical Laws of Software 69

4.5 Laws of Iterative Processes

Although the iterative operations of processes do not obey any of the generic alge-
braic laws as given in Table 5, they are constrained by the following special laws of
software.

a) Equivalence between Different Forms of Iterations

Law 44. The law of equivalence between different forms of iterations states that all

forms of iterative constructs, such as while-do
*

R , repeat-do R
+

, and for-do
i

R ,

are equivalent, i.e.:

a)
*

exp =

P PR R=
F

BL T
 (51a)

b)

*

exp =

P P P

P P

R R

R

+ = →

= →
F

BL T

 (51b)

c)

=1

=

() ()

 (: 1

 =()

 ()

 ()

)

n
i

i

exp

P i P i

i

exp i n

P i

i

R R

R

=

= =
→ ≤

→

→ ↑

N

F

BL T

N N

N
BL N N

N

N

 (51c)

where
*

R , R
+

, and
i

R are known as the big-R notation of iterative behaviors and

operations in software engineering [32], [39], [42].

b) Cumulativeness of Iterations

Law 45. The law of cumulativeness of iterations states that two of sequential itera-
tions of identical process P can be concatenated, i.e.:

1 1 1

=0 = =0

() () ()
n n m n m

i i n i

P i P i P iR R R
− + − + −

→ =
N N N

N N N (52)

c) Recurrent Denoting of Logic Architectures

Law 46. The law of recurrent Component Logical Model (CLMs) representation
[32], [39], [42] states that the iterative process relations can be used as an abstract
model to denote repetitive architectural patterns in computing, i.e.:

70 Y. Wang

1

=0

[]
n

i

CLM CLM iR
−

N
ST N (53)

Law 46 can be illustrated by the following example.

Example 1. The port architecture of a computer, PA, with 1024 ports in various types

Ti , can be denoted as follows:

1023

i
=0

PORT[]
i

PA iR
N

ST N T (54)

where Ti ∈{B, H, N, Z, R, S} ⊂ T .

4.6 Laws of Recursive Processes

The recursive operation of processes is constrained by the following special laws of
software.

a) Two-Phase Recursions

Law 47. The law of two-phase recursion states that a recursion is carried out by a

series of deductive embedding processes (denoted by ↺) and then followed by an

inversed series of inductive de-embedding processes (denoted by ↻), i.e.:

0
-1 +1

= =0

1 1 1 1... ...

n
i i i i

i n i

n n- n n

P P P P

= P P P P P P

R R→
N

N N N N

N N N
- 0P

 (55)

where in the first phase of embedding, a given layer of nested process is deduced to a
lower layer till it is embodied to a known value P0. In the second phase of de-
embedding, the value of a higher layer process is deduced by the lower layer starting
from the base layer P0, where its value has already been known at the end of the pre-
ceding phase.

b) Terminable Recursions

Law 48. The law of terminable recursion states that a recursive function is terminable
or non circular, iff: (a) A base value P0 exists for certain arguments for which the
function does not refer to itself; and (b) In each recursion, the argument of the func-
tion must be closer to the base value, i.e.:

0

-1

=

i i

i n

P PR N N

N N
 (56)

c) Equivalence between Recursions and Iterations

Law 49. The law of equivalence between recursive and iteration states that a recur-
sive structure can always be represented by an equivalent iterative structure, i.e.:

 On Mathematical Laws of Software 71

0 0
-1

= =

-1

(0

:=

 |

i i

i n i n

i i

0

P P i

P P

P

R R= >

→

→

N N

N N N N
N N

N

)

 (57)

where a process P at layer i of embedment, Pi, calls itself at an inner layer i-1, Pi-1, 0 ≤
i ≤ n, and n is the depth of recursion or embedment that is determined by an explicitly
specified conditional expression expBL = T inside the body of P.

4.7 Laws of Function Calls

The function call operation of processes is associative, distributive, and elicitive, but
it is irreflexive, asymmetric, and intransitive. The function-call process operations are
constrained by the following laws of software.

a) Function Elicitation from Recurring Patterns

It is a good practice in programming if the common portion of program R in both
paths of branch structures can be elicited as a shared process or a list of sequential
statements. The law of elicitity is in line with the principle of information hiding [24].

Law 50. Recurring patterns, processes, algorithms, and methods of classes in pro-
gramming can be elicited and predefined as a procedure or function.

Some typical recurring algorithms and processes are provided below, such as the
unit increment/decrement function and the modular function.

Example 2. A pair of unit increment and decrement functions can be introduced to
simplify frequently used expressions in programming.

: + 1

 (), { , , , , , , , }

x x

x

=

↑ ∈ ⊆ N Z B H P TI D DT
T T

T T T
 (58a)

: - 1

 (), { , , , , , , , }

x x

x

=

↓ ∈ ⊆ N Z B H P TI D DT
T T

T T T
 (58b)

where the definitions of the specific types in the set of abstract type T may be referred

to [32], [39].

Example 3. Let xZ be an arbitrary integer, and MN be a positive integer, a modular
function mod yields the integer remainder rN, i.e.:

 mod = , 0 <

- M , > 0
 =

- , < 0

x M r r M

x k x

kM x x

≤

⎧
⎨
⎩

Z N N N N

Z N Z
N Z Z

 (59)

72 Y. Wang

For instances, according to Eq. 59, 18 mod 12 = 18 – 1 • 12 = 6, and -26 mod 7 =
4 • 7 – 26 = 2.

Programmers may define their own functions as a basic system construction
mechanism in computing.

b) Associativity of Function Calls

Law 51. The law of associativity of function calls states that a sequence of linear pro-
cedure calls can be arbitrarily associated or grouped, i.e.:

() ()P Q S P Q S P Q S= = (60)

c) Distributivity of Function Calls

Law 52. The law of distributivity of function calls states that a sequential process S
can be distributed into a pair of disjunctive conditional processes P | Q, i.e.:

(|) () | ()P Q S P S Q S= (61)

d) Function Elicitation from Branch Structures

Law 53. The law of function elicitation from branch structures states that a common
pattern S in both branches of a conditional structure can be elicited and separately
encapsulated as a predefined defined procedure, i.e.:

|

(

 |

)

∼

∼

exp

P

S

Q

S

exp

P

Q

S

=
→

→

= =
→

→

BL T

BL T

 (62)

e) Function Elicitation from Switch Structures

Law 54. The law of function elicitation from switch structures states that a common
pattern S in both branches of a conditional structure can be elicited and separately
encapsulated as a predefined procedure, i.e.:

 On Mathematical Laws of Software 73

0

1

0

1

0 ()

 | 1 ()

 | ...

 | ()

 |

 0

 | 1

 | ...

 |

∼

n

n

exp P S

P S

n P S

S

exp P

P

n P

= →
→

→

= = →
→

→

N

N

 |

∼
S

→∅

 (63)

f) Function Elicitation from Parallel Structures

Law 55. The law of function elicitation from parallel structures states that a common
pattern S in both sides of a parallel structure can be elicited and separately encapsu-
lated as a predefined procedure, i.e.:

() || () (||)P S Q S P Q S= (64)

The laws of procedure elicitation from various constructs and process relations are
the theoretical foundation of common function or object elicitation, improvement of
programming efficiency, and structured programming in software engineering.

g) Representation of Embedded Architectures

Law 56. The law of nested architecture representation states that the function-call
processes are an abstract representation of recurring nested architectures, NAs, of sys-
tems, i.e.:

1 2 ... nNA P P PST (65)

where each process Pi , 1 ≤ i ≤ n, denotes a nested component in the system.

4.8 Laws of Parallel Processes

The parallel operation of processes is associative, symmetric, transitive, and elicitive,
but it is irreflexive and nondistributive. The parallel process operations are con-
strained by the following laws of software, assuming that all processes belong to and
are synchronized in the same system in the parallel structure.

a) Associativity of Parallel Processes

Law 57. The law of associativity of parallel processes states that a list of parallel
processes can be arbitrarily associated or grouped, i.e.:

|| || (||) || || (||) || (||)P Q S P Q S P Q S P S Q= = = (66)

74 Y. Wang

b) Symmetry of Parallel Processes

Law 58. The law of symmetry of parallel processes states that parallel process rela-
tions are commutative, i.e.:

|| ||P Q Q P= (67)

c) Transitivity of Parallel Processes

Law 59. The law of transitivity of parallel processes states that parallel process rela-
tions are transitive between each other, i.e.:

(||) || (||) || ||P Q Q S P Q S= (68)

d) Elicitivity of Parallel Processes

Law 60. The law of elicitivity of parallel processes states that the common process in
two groups of parallel processes can be elicited, i.e.:

(||) (||) () || || ()P S Q S P Q S S P Q→ = → = → (69)

e) Elicitivity of Event

Law 61. The law of elicitivity of event in parallel processes states that a common
event which triggers different parallel processes is extractive, i.e.:

@ || @ @ (||)e P e Q e P Q=S S S (70)

f) Idempotency of Identical Parallel Processes

Law 62. The law of idempotency of identical parallel processes states that parallel
process relation between the same process is idempotent, i.e.:

||P P P= (71)

g) Representation of Parallel Architectures

Law 63. The law of parallel architecture representation states that the parallel proc-
esses can be used as an abstract model of recurring parallel architectures, PAs, of sys-
tems, i.e.:

1 2|| || ... || nPA P P PST (72)

where each process Pi , 1 ≤ i ≤ n, denotes a parallel component in the system.

4.9 Laws of Concurrent Processes

The concurrent operation of processes is associative, symmetric, transitive, and elic-
itive, but it is irreflexive and nondistributive. The concurrent process operations are
constrained by the following laws of software. The differences between concurrent
and parallel processes are that the former are implemented and executed on separated
machines or they are asynchronized in a distributed environment.

 On Mathematical Laws of Software 75

a) Associativity of Concurrent Processes

Law 64. The law of associativity of concurrent processes states that a list of concur-
rent processes can be arbitrarily associated or grouped, i.e.:

() () ()P Q S P Q S P Q S P S Q= = =∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫ (73)

b) Symmetry of Concurrent Processes

Law 65. The law of symmetry of concurrent processes states that concurrent process
relations are commutative, i.e.:

P Q Q P=∫∫ ∫∫ (74)

c) Transitivity of Concurrent Processes

Law 66. The law of transitivity of concurrent processes states that concurrent process
relations are transitive between each other, i.e.:

() () = P Q Q S P Q S∫∫ ∫∫ ∫∫ ∫∫ ∫∫ (75)

d) Elicitivity of Concurrent Processes

Law 67. The law of elicitivity of concurrent processes states that the common process
in two groups of concurrent processes can be elicited, i.e.:

() () () ()P S Q S P Q S S P Q→ = → = →∫∫ ∫∫ ∫∫ ∫∫ (76)

e) Elicitivity of Event

Law 68. The law of elicitivity of event in concurrent processes states that a common
event which triggers different concurrent processes is extractive, i.e.:

 @ @ @ ()e P e Q e P Q=∫∫ ∫∫S S S (77)

f) Idempotency of Identical Concurrent Processes

Law 69. The law of idempotency of identical concurrent processes states that concur-
rent process relation between the same process is idempotent, i.e.:

 P P P=∫∫ (78)

4.10 Laws of Interleave Processes

The interleave operation of processes is associative, symmetric, transitive, and elic-
itive, but it is irreflexive and nondistributive. The interleave process operations are
constrained by the following laws of software.

a) Associativity of Interleave Processes

Law 70. The law of associativity of interleave processes states that a list of inter-
leaved processes can be arbitrarily associated or grouped, i.e.:

76 Y. Wang

||| ||| (|||) ||| ||| (|||) ||| (|||)P Q S P Q S P Q S P S Q= = = (79)

b) Symmetry of Interleave Processes

Law 71. The law of symmetry of interleave processes states that interleaved process
relations are commutative, i.e.:

||| |||P Q Q P= (80)

c) Transitivity of Interleave Processes

Law 72. The law of transitivity of interleave processes states that interleaved process
relations are transitive between each other, i.e.:

(|||) ||| (|||) ||| |||P Q Q S P Q S= (81)

d) Elicitivity of Interleave Processes

Law 73. The law of elicitivity of interleave processes states that the common process
in two groups of interleaved processes can be elicited, i.e.:

(|||) (|||) () ||| ||| ()P S Q S P Q S S P Q→ = → = → (82)

4.1.1 Laws of Pipeline Processes
The pipeline operation of processes is associative and elicitive, but it is irreflexive,
asymmetric, intransitive, and nondistributive. The pipeline process operations are
constrained by the following laws of software.

a) Associativity of Pipeline Processes

Law 74. The law of associativity of pipeline processes states that a list of interlinked
processes can be arbitrarily associated or grouped, i.e.:

() () ()P Q S P Q S P Q S P S Q= = = (83)

b) Elicitivity of Pipeline Processes

Law 75. The law of elicitivity of interleave processes states that the common process
in two groups of interleaved processes can be elicited, i.e.:

() () ()S P S Q S P Q→ → = → (84)

or

() () ()P S Q S P Q S→ → = → (85)

c) Pairwise Coupling of Pipeline Processes

Law 76. The law of pairwise coupling of pipeline processes states that each of the
outputs of process P, OPi, 1 ≤ i ≤ n, is connected to the counterpart process Q’s input,
IQi, i.e.:

n

i =1

()Pi QiO = IR
N

N
 (86)

where OP and IQ are the outputs and inputs of processes P and Q, and #OP = #IQ.

 On Mathematical Laws of Software 77

d) Representation of Coupled Architectures

Law 77. The law of coupled architecture representation states that the pipeline proc-
esses can be used as an abstract model of recurring pairwise coupled architectures,
CAs, of systems, i.e.:

1 2 ... nCA P P PST (87)

where each process Pi , 1 ≤ i ≤ n, denotes a component in the system.

It is noteworthy that Laws 33, 46, 56, 63, and 77 provide a set of five laws for basic
system architectures in system modeling known as the serial, recurrent (CLM),
nested, parallel, and coupled structures, respectively. These laws also indicate that not
only system behaviors but also system architectures can be modeled by the RTPA
process relational operations [32], [39], [42].

4.1.2 Laws of Interrupt Processes
The interrupt operation of processes is dissociative, irreflexive, asymmetric, intransi-
tive, nondistributive, and nonelicitive. However, interrupt process operations are con-
strained by the following special laws.

a) Parallel Mechanism of Interrupt Processes

Law 78. The law of parallel mechanism of interrupt processes states that an interrupt
service process Q is parallel to the main process P, which is triggered by the ith inter-
rupt event @inti , i.e.:

 || @ i iP Q P int Q (88)

where and denote an interrupt service and an interrupt return, respectively.

b) Hierarchy of Interrupt Priorities

Law 79. The law of hierarchy of interrupt priorities states that multiple interrupt re-
sources interacting with a computing system can be configured at different levels of
priorities l, i.e.:

n

=1

 l l
l

int QR
N

N
 (89)

c) Maximum Duration of Interrupt Services

Law 80. The law of the maximum duration of interrupt service states that the duration
of an interrupt process in P Q should not exceed the basic time slice of system

dispatching §td, i.e.:

int d= §Qt t t< (90)

4.1.3 Laws of Time Dispatch Processes
The time dispatch operation of processes at the system level is symmetric and elic-
itive, but it is dissociative, ireflexive, intransitive, and nondistributive. The time-
dispatch process operations are constrained by the following laws of software.

78 Y. Wang

a) Elicitivity of Timing Event

Law 81. The law of elicitivity of timing events in system dispatch states that a com-
mon timing event which triggers two different dispatches can be elicited and the two
relational processes can be joined, i.e.:

 (@) (@) @ ()t P t Q t P Q=R RTM TM TM (91)

where R ∈ {→, ||, ∯, |||, »}.

b) Elicitivity of Process in Timing Dispatches

Law 82. The law of elicitivity of timing dispatch processes states that a common
process S can be elicited from a pair of time-driven dispatch processes, i.e.:

1 2

1 2

(@) | (@)

 (@ | @)

S t P S t Q

S t P t Q

→ →
= →

TM TM
TM TM

 (92)

1 2

1 2

(@) | (@)

 (@ | @)

t P S t Q S

t P t Q S

→ →
= →

TM TM
TM TM

 (93)

c) Symmetry of Timing Dispatches

Law 83. The law of symmetry of timing dispatching processes states that a time-
driven dispatch is symmetric or commutative, i.e.:

1 2 2 1@ | @ @ | @ t P t Q t Q t P=TM TM TM TM (94)

d) Skew Symmetry of Timing Dispatches

Law 84. The law of skew symmetric of timing dispatch states that a time-driven dis-
patch is symmetric or commutative on a pair of complemented events, i.e.:

@ | @ @ | @ t tt P Q Q t P
− −

=TM TM TM TM (95)

f) Idempotency of Timing Dispatches

Law 85. The law of idempotency of timing dispatch states that a time-driven dispatch
can be omitted if it is unconditional, i.e.:

@ | @ tt P P P
−

=TM TM (96)

4.1.4 Laws of Event Dispatch Processes
The event dispatch operation of processes at the system level is symmetric and elic-
itive, but it is dissociative, ireflexive, intransitive, and nondistributive. The event-
dispatch process operations are constrained by the following laws of software.

(a) Elicitivity of Operating Event

Law 86. The law of elicitivity of operating events in system dispatch states that a
common event which triggers two different dispatches can be elicited and the two
relational processes can be joined, i.e.:

 On Mathematical Laws of Software 79

 (@) (@) @ ()e P e Q e P Q=R RS S S (97)

where R ∈ {→, ||, ∯, |||, »}.

b) Elicitivity of Process in Event Dispatches

Law 87. The law of elicitivity of event dispatch states that a common process S can be
elicited from a pair of event dispatch processes, i.e.:

1 2

1 2

(@) | (@)

 (@ | @)

S e P S e Q

S e P e Q

→ →
= →

S S
S S

 (98)

1 2

1 2

(@) | (@)

 (@ | @)

e P S e Q S

e P e Q S

→ →
= →

S S
S S

 (99)

c) Symmetry of Event Dispatches

Law 88. The law of symmetry of event dispatching processes states that an event-
driven dispatch is symmetric or commutative, i.e.:

1 2 2 1@ | @ @ | @ e P e Q e Q e P=S S S S (100)

d) Skew Symmetry of Event Dispatches

Law 89. The law of skew symmetric of event dispatch states that an event-driven dis-
patch is symmetric or commutative on a pair of complemented events, i.e.:

@ | @ @ | @ e ee P Q Q e P
− −=S S S S (101)

f) Idempotency of Event Dispatches

Law 90. The law of idempotency of event dispatch states that an event-driven dis-
patch can be omitted if it is unconditional, i.e.:

@ | @ ee P P P
− =S S (102)

4.1.5 Laws of Interrupt Dispatch Processes
The interrupt dispatch operation of processes at the system level is symmetric and
elicitive, but it is dissociative, ireflexive, intransitive, and nondistributive. The inter-
rupt-dispatch process operations are constrained by the following laws of software.

a) Elicitivity of Interrupt Event

Law 91. The law of elicitivity of interrupt events in system dispatch states that a
common interrupt which triggers two different dispatches can be elicited and the two
relational processes can be joined, i.e.:

 (@) (@) @ ()int P int Q int P Q=R R (103)

where R ∈ {→, ||, ∯, |||, »}.

80 Y. Wang

b) Elicitivity of Process in Interrupt Dispatches

Law 92. The law of elicitivity of interrupt dispatch processes states that a common
process S can be elicited from a pair of interrupt-driven dispatch processes, i.e.:

(@) | (@)

 (@ | @)
1 2

1 2

S int P S int Q

S int P int Q

→ →
= →

 (104a)

(@) | (@)

 (@ | @)
1 2

1 2

int P S int Q S

int P int Q S

→ →
= →

 (104b)

c) Symmetry of Interrupt Dispatches

Law 93. The law of symmetry of interrupt dispatching processes states that an inter-
rupt-driven dispatch is symmetric or commutative, i.e.:

@ | @ @ | @ 1 2 2 1int P int Q int Q int P= (105)

d) Skew Symmetry of Interrupt Dispatches

Law 94. The law of skew symmetric of interrupt dispatch states that an interrupt-
driven dispatch is symmetric or commutative on a pair of complemented events, i.e.:

@ | @ @ | @ int intint P Q Q int P
−− −−

= (106)

e) Idempotency of Interrupt Dispatches

Law 95. The law of idempotency of interrupt dispatch states that an interrupt-driven
dispatch can be omitted if it is unconditional, i.e.:

@ | @ intint P P P
−−

= (107)

5 Conclusions

The exploration on the nature of software and its fundamental behaviors constrained
by the laws of mathematics, cognitive informatics, system science, and formal lin-
guistics are a profound effort in computing and software engineering. This paper has
presented the mathematical laws of software and fundamental computing behaviors
on the basis of the generic mathematical model of programs and RTPA. A compre-
hensive set of 95 algebraic laws in the categories of meta-processes, process relations,
and system compositions has been systematically established, which lays a theoretical
foundation for analyzing and modeling software behaviors and software system archi-
tectures. Supplementary to the algebraic laws of processes and process relations as
presented in this paper, the cognitive informatics laws [33], [34], [36], [40], system
laws [39], formal linguistic and semantic laws [6], [36], [39], [43] of software may be
referred to given literature.

The applications of the mathematical laws of software and the generic mathemati-
cal model of programs have provided new perspectives on software engineering foun-
dations and practices. An RTPA type checker and an RTPA code generator have been

 On Mathematical Laws of Software 81

implemented based on the algebraic laws, which automatically generates code in C++
or Java based on a formal system model in RTPA [29], [30]. A number of real-world
software systems have been formally modeled in RTPA based on the algebraic laws,
such as the telephone switching system [35], [39], the lift dispatching system [49], the
real-time operating system [50], and the ATM system [51]. The mathematical laws of
software and RTPA are not only useful for rigorously modeling and manipulating
software systems, but also widely applied in human cognitive process modeling and
computational intelligence [35], [39].

Acknowledgements. The author would like to acknowledge the Natural Science and
Engineering Council of Canada (NSERC) for its partial support to this work. The au-
thor would like to thank the valuable comments and suggestions of the anonymous
reviewers.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools, New
York. Addison-Wesley Publication Co, Reading (1985)

2. Baeten, J.C.M., Bergstra, J.A.: Real Time Process Algebra. Formal Aspects of Comput-
ing 3, 142–188 (1991)

3. Boole, G.: The Laws of Thought, Prometheus Books, NY (1854) (reprint, 2003)
4. Boucher, A., Gerth, R.: A Timed Model for Extended Communicating Sequential Proc-

esses. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267. Springer, Heidelberg (1987)
5. Cardelli, L., Wegner, P.: On Understanding Types, Data Abstraction and Polymorphism.

ACM Computing Surveys 17(4), 471–522 (1985)
6. Chomsky, N.: Three Models for the Description of Languages. I.R.E. Transactions on In-

formation Theory 2(3), 113–124 (1956)
7. Chomsky, N.: On Certain Formal Properties of Grammars. Information and Control 2,

137–167 (1959)
8. Dierks, H.: A Process Algebra for Real-Time Programs. In: Maibaum, T.S.E. (ed.) ETAPS

2000 and FASE 2000. LNCS, vol. 1783, pp. 66–76. Springer, Heidelberg (2000)
9. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Englewood Cliffs (1976)

10. Fecher, H.: A Real-Time Process Algebra with Open Intervals and Maximal Progress.
Nordic Journal of Computing 8(3), 346–360 (2001)

11. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial Algebra Semantics and
Continuous Algebras. Journal of the ACM 24(1), 59–68 (1977)

12. Higman, B.: A Comparative Study of Programming Languages, 2nd edn. MacDonald
(1977)

13. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications of the
ACM 12(10), 576–580 (1969)

14. Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM 21(8),
666–677 (1978)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, London
(1985)

16. Hoare, C.A.R., Hayes, I.J., He, J., Morgan, C.C., Roscoe, A.W., Sanders, J.W., Sorensen,
I.H., Spivey, J.M., Sufrin, B.A.: Laws of Programming. Communications of he
ACM 30(8), 672–686 (1987)

82 Y. Wang

17. Klusener, A.S.: Abstraction in Real Time Process Algebra. In: Huizing, C., de Bakker,
J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 325–352.
Springer, Heidelberg (1992)

18. Louden, K.C.: Programming Languages: Principles and Practice. PWS-Kent Publishing
Co., Boston (1993)

19. Martin-Lof, P.: An Intuitionistic Theory of Types: Predicative Part. In: Rose, H., Shep-
herdson, J.C. (eds.) Logic Colloquium 1973. North-Holland, Amsterdam (1975)

20. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

21. McDermid, J.A. (ed.): Software Engineer’s Reference Book. Butterworth-Heinemann Ltd.,
Oxford (1991)

22. Mitchell, J.C.: Type systems for programming languages. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, pp. 365–458. North Holland, Amsterdam (1990)

23. Nicollin, X., Sifakis, J.: An Overview and Synthesis on Timed Process Algebras. In: Lar-
sen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg
(1992)

24. Parnas, D.L., Clements, P.C.: A Rational Design Process: How and Why to Fake It. IEEE
Trans. on Software Engineering 12(2), 251–257 (1986)

25. Reed, G.M., Roscoe, A.W.: A Timed model for Communicating Sequential Processes. In:
Kott, L. (ed.) ICALP 1986. LNCS, vol. 226. Springer, Heidelberg (1986)

26. Scott, D.S., Strachey, C.: Towards a Mathematical Semantics for Computer Languages,
Programming Research Group Technical Report PRG-1-6, Oxford University (1971)

27. Schneider, S.A.: An Operational Semantics for Timed CSP, Programming Research Group
Technical Report TR-1-91, Oxford University (1991)

28. Stubbs, D.F., Webre, N.W.: Data Structures with Abstract Data Types and Pascal.
Brooks/Cole Publishing Co., Monterey (1985)

29. Tan, X., Wang, Y., Ngolah, C.F.: A Novel Type Checker for Software System Specifica-
tions in RTPA. In: Proc. 17th Canadian Conference on Electrical and Computer Engineer-
ing (CCECE 2004), Niagara Falls, ON, Canada, pp. 1549–1552. IEEE CS Press, Los
Alamitos (2004)

30. Tan, X., Wang, Y., Ngolah, C.F.: Design and Implementation of an Automatic RTPA
Code Generator. In: Proc. 19th Canadian Conference on Electrical and Computer Engi-
neering (CCECE 2006), Ottawa, ON, Canada, pp. 1605–1608 (May 2006)

31. Tarski, A.: The Semantic Conception of Truth. Philosophic Phenomenological Research 4,
13–47 (1944)

32. Wang, Y.: The Real-Time Process Algebra (RTPA). Annals of Software Engineering: A
International Journal 14, 235–274 (2002)

33. Wang, Y.: On Cognitive Informatics (Keynote Speech). In: Proc. 1st IEEE International
Conference on Cognitive Informatics (ICCI 2002), Calgary, Canada, pp. 34–42. IEEE CS
Press, Los Alamitos (2002)

34. Wang, Y.: On Cognitive Informatics. Brain and Mind: A Transdisciplinary Journal of Neu-
roscience and Neurophilosophy, USA 4(3), 151–167 (2003)

35. Wang, Y.: Using Process Algebra to Describe Human and Software System Behaviors.
Brain and Mind 4(2), 199–213 (2003)

36. Wang, Y.: On the Informatics Laws and Deductive Semantics of Software. IEEE Transac-
tions on Systems, Man, and Cybernetics (C) 36(2), 161–171 (2006)

37. Wang, Y.: Keynote: Cognitive Informatics - Towards the Future Generation Computers
that Think and Feel. In: Proc. 5th IEEE International Conference on Cognitive Informatics
(ICCI 2006), Beijing, China, pp. 3–7. IEEE CS Press, Los Alamitos (2006)

 On Mathematical Laws of Software 83

38. Wang, Y.: Cognitive Informatics and Contemporary Mathematics for Knowledge Repre-
sentation and Manipulation (Invited Plenary Talk). In: Wang, G.-Y., Peters, J.F., Skowron,
A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 69–78. Springer, Heidelberg
(2006)

39. Wang, Y.: Software Engineering Foundations: A Software Science Perspective. CRC Se-
ries in Software Engineering, vol. II. Auerbach Publications, NY, USA (2007)

40. Wang, Y.: The Theoretical Framework of Cognitive Informatics. International Journal of
Cognitive Informatics and Natural Intelligence 1(1), 1–27 (2007)

41. Wang, Y.: Keynote: On Theoretical Foundations of Software Engineering and Denota-
tional Mathematics. In: Proc. 5th Asian Workshop on Foundations of Software, Xiamen,
China, pp. 99–102 (2007)

42. Wang, Y.: On the Big-R Notation for Describing Iterative and Recursive Behaviors. Inter-
national Journal of Cognitive Informatics and Natural Intelligence 2(1), 17–28 (2008)

43. Wang, Y.: Deductive Semantics of RTPA. International Journal of Cognitive Informatics
and Natural Intelligence 2(2), 95–121 (2008)

44. Wang, Y.: On Concept Algebra: A Denotational Mathematical Structure for Knowledge
and Software Modeling. International Journal of Cognitive Informatics and Natural Intelli-
gence 2(2), 1–19 (2008)

45. Wang, Y.: On System Algebra: A Denotational Mathematical Structure for Abstract Sys-
tem modeling. International Journal of Cognitive Informatics and Natural Intelligence 2(2),
20–42 (2008)

46. Wang, Y.: RTPA: A Denotational Mathematics for Manipulating Intelligent and Computa-
tional Behaviors. International Journal of Cognitive Informatics and Natural Intelli-
gence 2(2), 44–62 (2008)

47. Wang, Y.: On Laws of Work Organization in Human Cooperation. International Journal of
Cognitive Informatics and Natural Intelligence 1(2), 1–15 (2008)

48. Wang, Y.: On Contemporary Denotational Mathematics for Computational Intelligence.
In: Gavrilova, M.L., et al. (eds.) Transactions on Computational Science, II. LNCS,
vol. 5150, pp. 6–29. Springer, Heidelberg (2008)

49. Wang, Y., Noglah, C.F.: Formal Specification of a Real-Time Lift Dispatching System. In:
Proc. 2002 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE
2002), Winnipeg, Manitoba, Canada, pp. 669–674 (May 2002)

50. Wang, Y., Noglah, C.F.: Formal Description of Real-Time Operating Systems using
RTPA. In: Proc. 2003 Canadian Conference on Electrical and Computer Engineering
(CCECE 2003), Montreal, Canada, pp. 1247–1250. IEEE CS Press, Los Alamitos (2003)

51. Wang, Y., Zhang, Y.: Formal Description of an ATM System by RTPA. In: Proc. 16th
Canadian Conference on Electrical and Computer Engineering (CCECE 2003), Montreal,
Canada, pp. 1255–1258. IEEE CS Press, Los Alamitos (2003)

52. Wilson, L.B., Clark, R.G.: Comparative Programming Language. Addison-Wesley Pub-
lishing Co, Reading (1988)

53. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice Hall In-
ternational, London (1996)

Rough Logic and Its Reasoning

Qing Liu and Lan Liu

Department of Computer Science
Nanchang University, Nanchang 330031, China

qliu_ncu@yahoo.com.cn

Abstract. In this article, Rough Logic is defined as a nonstandard logic
on a given information system IS = (U, A). Atomic formulae of the logic
are defined as a = v or av. It is interpreted as a(x) = v, where a ∈ A is
an attribute in A, x is an individual variable on U , and v is an attribute
value. The compound formula consist of the atomic formulae and logical
connectives. Semantics of the logic is discussed. Truth value of the rough
logic is defined as a ratio of the number of elements satisfying the logical
formula to the total of elements on U . Deductive reasoning and resolu-
tion reasoning are also studied. The rough logic will offer a new idea for
the applications to classical logic and other nonstandard logic.

Keywords: Atomic formula, Well-formed formula, Deductive reasoning,
Resolution reasoning.

1 Introduction

Since Pawlak proposed Rough Sets in 1982, many computer scientists and logi-
cian tried to create a Rough Logical Theory, to implement approximate reason-
ing and problem solving in artificial intelligence with it. Pawlak proposed Rough
Logic and Decision Logic in 1987 and in 1991 respectively[1,2]. The former set
up five truth values: true, false, roughly true, roughly false and roughly inconsis-
tent; The latter is based on the information table, it is essentially a special case
in two-valued logic. Orlowska proposed a Logic of Indiscernibility Relation[3] in
1985, that is, to add an indiscernibility relation predicate in classical logic, to
quote new concept for classical logic. In 1993, Charaborty proposed a Rough
Logic with Rough Quantifier[4], and to create the logical tools of approximate
reasoning. In 1994, Nakamura proposed information logic, a rough logic of incom-
plete knowledge and grade modal logic[5−7]. Author in this article bend oneself
to study the rough logic defined on a given information system for long time,
and to discuss approximate reasoning based on the logic, proposed the resolution
principle, OI-resolution strategy of the logic, and resolution reasoning of rough
proposition logic with lower and upper approximate operators[8−14]. Based on
previous work, we study further the rough logic on a given information system,
discuss multi-valued and λ-resolution strategy of the logic. The rough logic is
different from decision logic by Pawlak. The former is multi-valued logical sys-
tem defined in a given information system, and the latter is two-valued logical

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 84–99, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Rough Logic and Its Reasoning 85

system defined in a given information system. The rough logic is also different
from other multi-valued logic, the latter is no limited to define in a given infor-
mation system. So, rough logic in this article is a narrow logical system, but to
be fitted to applications in practice. Final, we research approximate reasoning
of the rough logic, and it is also illustrated with the real examples defined on
information systems.

The significance of studying the logic is to offer a new idea for the applications
in classical logic, to stride forward a step for research of ”Approximate Proof”by
logician Hao Wang forty years ago, to offer new theoretical tools for describing
and processing to nonstandard knowledge.

In the article, basic concepts of the rough logic is described in Section 2.
Related properties of the rough logic are given in Section 3. Clause forms of the
logic are also discussed in Section 4. Deductive reasoning of the logic is studied in
Section 5. Resolution principles and strategies of the logic are studied in Section
6. Applications for problem resolving in AI to the logic are presented in Section
7. Final Section is the conclusion of perspective of studying to the logic.

2 Basic Concepts of Rough Logic

2.1 Well-Formed Formulae in the Rough Logic

Rough logic is defined as a nonstandard logic on a given information system
IS = (U, A). Atomic formulae of the logic are defined as a = v or av. It is
interpreted as a(x) = v, where a ∈ A is an attribute in A, x is an individual
variable on U , and v is an attribute value. The compound formulae consist of the
atomic formulae and usual logical connectives. The rough logic is abbreviated as
RLIS. Its truth value is multi-valued on IS.

Definition 1. Well-formed formulas (wffs) of the rough logic are recursively
defined as follows[8−20]:

1. All atoms of form av are wffs in RLIS, where a ∈ A, v ∈ Va;
2. Let F1, F2 be wffs in RLIS, then ¬F1, F1∨F2, F1∧F2, F1 → F2 and F1 ↔ F2

are also wffs in RLIS;
3. The obtainable formulae what (1) − (2) are quoted finite times are wffs in

RLIS.

2.2 Interpretation and Assignment in the Rough Logic

Let IS = (U, A) be a given information system. I is an interpretation to in-
dividual constant, function and predicate to occur in the formula, and u is an
assignment to individual variable occurring in the formula. TIu is a united as-
signment symbol to formula F in interpretation I and assignment u. We have
the following rules:

1. If • is an individual constant in formula F (•), then TIu(•) = I(c) = e, where
c is an individual constant symbol in U , e is an entity on U ;

86 Q. Liu and L. Liu

2. If • is an individual variable in formula F (•), then TIu(•) = u(x) = e, where
x is an individual variable symbol on U , e is an entity on U ;

3. If • is a n-place function of form π(•1, · · · , •n), then I(π) = f , I(•i) = xi,
and TIu(•) = f(x1, · · · , xn), where f is a mapping symbol from Un to U ;

4. If • is a n-place predicate of form ρ(•1, · · · , •n), then I(ρ) = P , I(•i) = xi,
and TIu(•) = P (x1, · · · , xn), where P is a relation symbol on U .

Noteworthiness, the predicates to occur in rough logical formulae are the
attribute in a given information system. Therefore, a5 → c0 in the following
table 1 is a rough logical formula defined in the given information system, where
predicate symbol a and c are the attribute in A on IS [8,13,20−22]

Table 1. Information Table

U a b c d e

1 5 4 0 1 1

2 3 4 0 2 1

3 3 4 0 2 2

4 0 2 0 1 2

5 3 2 1 2 2

6 5 2 1 1 0

This information table in the above look to be very simple, because the at-
tribute values in this table are numeric. Despite an information system from
in practice is far more complicated than this table, but we transform always
it into the simple information table of attribute value being number[27,46]. ”Ev-
erything is a matter of numbers”, that is, all existing things can be viewed as
relationships of numbers in the final analysis. This famous axiom was proposed
by Pythagoras, a philosopher and mathematician of ancient Greece[27]. So, we
could transform a complicated information system into simple information table
according to Pythagoras’s assertion, as shown in example 4 in Section 7.

2.3 Truth Values of Rough Logical Formulae

Semantics of the rough logical formula F (•) defined in a given information system
IS = (U, A) is a subset on U , denoted by

m(F (•)) = {x ∈ U : x |=IS F (•)}

where |=IS is a satisfiable symbol on IS. Truth values of the rough logical for-
mulae are defined as follows:

Definition 2. Let F1, F2 ∈ RLIS be rough logical formula defined in a given
information system IS. I and u are an interpretation and an assignment to the
formula defined in IS. Thus the truth values are computed by the following rules

1. Let TIu be a united assignment symbol to rough logical formula. It is defined
as follows:

Rough Logic and Its Reasoning 87

TIu(•) = λ

where λ ∈ [0, 1] is a real number. I is an interpretation symbol, u is an
assignment symbol.

2. TIu(F1) = K(m(F1))/K(U), K(•) denotes the base number of set •. m(•)
is a set from the propositional variable • or the formula • to a subset on U ;

3. TIu(¬F1) = 1 − TIu(F1);
4. TIu(F1 ∨ F2) = max{TIu(F1), TIu(F2)};
5. TIu(F1 ∧ F2) = min{TIu(F1), TIu(F2)};
6. TIu((∀x)F1(x)) = min{TIu(F1(e1)), · · · , TIu(F1(en))}, where x is an individ-

ual variable on U . ei is a value of x on U . It is an entity(concrete studying
object) on U .

2.4 Semantics Model of Rough Logic

Semantics model of the rough logic is denoted by 6-tuple

M = (U, A, TIu , I, u, m)

• U is a universe of discourse objects on IS = (U, A).
• A is a set of attributes on IS.
• TIu is a united assignment symbol to individual constant, individual vari-

able, function and predicate to occur in the formula.
• I is an interpretation to individual constant, function and predicate to

occur in the formula.
• u is an assignment to individual variable to occur in the formula.
• m is a mapping from the formula defined on IS to the subset on U .

Given a model M , formula F (x) ∈ RLIS is satisfiable in the model M , denoted
by

M, u |=IS F (x)

Definition 3. Meaning of rough logical formulae F1, F2 ∈ RLIS with respect
to logical connectives ¬,∨,∧,→,↔ and quantifier ∀ are defined recursively as
follows:

1. M, u |=ISλ
P (x1, · · · , xn) = TIu(P (u(x1), · · · , P (u(xn)),

where λ > 0.5, P (x1, · · · , xn) is satisfiable to degree at least λ on IS:
2. M, u |=ISλ

¬F1 = 1 − M, u |=ISλ
F1;

3. M, u |=ISλ
(F1 ∨ F2) = M, u |=ISλ

F1 ∨ M, u |=ISλ
F2;

4. M, u |=ISλ
(F1 ∧ F2) = M, u |=ISλ

F1 ∧ M, u |=ISλ
F2;

5. M, u |=ISλ
(F1 → F2) = M, u |=ISλ

¬F1 ∨ M, u |=ISλ
F2;

6. M, u |=ISλ
(F1 ↔ F2) = (M, u |=ISλ

¬F1 ∨ M, u |=ISλ
F2) ∧ (M, u |=ISλ

¬F2 ∨ M, u |=ISλ
F1);

7. M, u |=ISλ
(∀x)F1(x) = M, u |=ISλ

F1(x1) ∧ · · · ∧ M, u |=ISλ
F1(xn).

88 Q. Liu and L. Liu

3 Related Properties of Rough Logic

The rough logical formulae have the following properties[23,29]:

1. Let F1, F2 ∈ RLIS be rough logical formula. Operations of the meaning
m(F1) and m(F2) corresponding to them on usual connectives ¬,∨,∧,→,↔
are denoted by[2,21]:
• m(¬F1) = U − m(F1);
• m(F1 ∨ F2) = m(F1) ∪ m(F2);
• m(F1 ∧ F2) = m(F1) ∩ m(F2);
• m(F1 → F2) = m(¬F1) ∪ m(F2);
• m(F1 ↔ F2) = (m(¬F1) ∪ m(F2)) ∩ (m(¬F2) ∪ m(F1)).

2. ∀F ∈ RLIS, if F is true to degree at least λ on IS, then it is denoted by

|=ISλ
F

3. ∀F ∈ RLIS, α and β are individual constant, or individual variable, or
function or predicate or rough logical formula on IS, then the substitution
is held. Formally we have

�ISλ
(α ↔ β) → (F (α) ↔ F (β))

4. ∀F1, F2 ∈ RLIS, we have

�ISλ
F1 ↔ F2 iff �ISλ

F2 ↔ F1

5. ∀F ∈ RLIS. The identity of F is held. Formally we have

�ISλ
F ↔ F

6. ∀F1, F2 ∈ RLIS, the symmetry of F1 and F2 is held. Formally we have

�ISλ
(F1 ↔ F2) → (F2 ↔ F1).

7. ∀F1, F2, F3 ∈ RLIS , the absorbance laws are held, denoted by

�ISλ
(F1 ∨ (F1 ∧ F2) ↔ F1)

and

�ISλ
(F1 ∧ (F1 ∨ F2) ↔ F1)

8. Some special properties of the rough logical formulae defined on IS are as
follows:
(i) av ∧ au =⊥, where a ∈ A is an attribute in A. u, v ∈ Va are attribute
value in set of attribute values, and u �= v. ⊥ is a false symbol.
(ii) ∨v∈Vaav = T , where a ∈ A is an arbitrary attribute in A. T is a true
symbol.
(iii) ¬au = ∨v∈Vaav, for each a ∈ A, u �= v.

9. ∀F1, F2 ∈ RLIS, if F1 is the equivalence to F2, then the complement ¬F1 is
also the equivalence to the complement ¬F2, denoted by

�ISλ
(F1 ↔ F2) → (¬F1 ↔ ¬F2)

Proof of the properties is straight from the definitions and properties of the
logical formulae on IS.

Rough Logic and Its Reasoning 89

4 Clause Forms of Rough Logical Formulae

The normal forms are similar to classical logic formally[21,18,36], but proposi-
tional variables and predicates in the rough logic are the attributes in a given
information systems.

(1) Disjunction Normal Form
Disjunction normal form of rough logical formula in a given information system
is similar to classical logic, denoted by

F = (A11 ∧ · · · ∧ A1r) ∨ · · · ∨ (An1 ∧ · · · ∧ Ant)

(2) Conjunction Normal Form
Conjunction normal form of rough logical formula in a given information system
is similar to classical logic, denoted by

F = (A11 ∨ · · · ∨ A1r) ∧ · · · ∧ (An1 ∨ · · · ∨ Ant)

where Aij is propositional variable, predicate or their negation. They are the
attribute on information systems.
(3) Skolem Clause Form of the Rough Logic
In first-order logic, all quantifiers are moved into the front of formula, and each
existent quantifier is eliminated from the prefixal form by using Skolem’s method.
Thus, original logical formula is equally transformed into the prefix form of
containing only full quantifiers. To eliminate all full quantifiers, the prefix form
is equally transformed into the Skolem clause form. Let F be a rough logical
formula in a given information system, which could equally be transformed into
following Skolem normal form according to Skolem’s ways,

F = C1 ∧ · · · ∧ Cm

where each Ci is a disjunction of atoms or their negation. We call it Skolem
clause form.

5 Deductive Reasoning of the Rough Logical Formulae

The Rough Logic defined in this article is based on Rough Set Theory proposed
by Pawlak. So, proposed rough logic here is defined in a given information system.
The truth values of rough logical formulae are limited to take multi-valued in the
given information system. Specially, the rough logical formulae with operators H
and L is based on upper and lower approximations in Rough Set Theory. H and
L are similar as two operators in Modal Logic respectively. Hϕ ∈ RLIS is viewed
as to take truth values in rough upper approximation and Lϕ ∈ RLIS is viewed
as to take truth values in rough lower approximation[2,4,5,8−10,12,14,16,17,28].

For any rough logical formula ϕ ∈ RLIS , it will be proved by deductive
reasoning. Here we will prove that some related properties of the rough logical

90 Q. Liu and L. Liu

formulas with operators H and L. For example, LHϕ is roughly equal to
Hϕ[2,12,22,23,26,29], namely

LHϕ =R Hϕ

where L and H is lower and upper approximate operators respectively[2,12].
Rough equality may also be called as true to degree at least λ, thus we need
only to prove:

LHϕ =λ Hϕ

which is equivalent to prove following two forms:

B∗LHϕ =λ B∗Hϕ

and

B∗Hϕ =λ B∗LHϕ

where LHϕ and Hϕ are operator rough logical formulae[2,12,18,36], B∗(•) and
B∗(•) denote the lower and upper approximations of indiscernibility relation B
with respect to • respectively. The form of lower approximation is proved as
follows:

Proof

1. L¬ϕ →λ ¬ϕ Definition of operator L[2,12,18]

2. ¬¬ϕ →λ ¬L¬ϕ Exchange position of logical formulas in (1)[36]

3. ϕ →λ Hϕ The properties of ¬ and duad of L and H[2,12] in (2)
4. B∗ϕ →λ B∗Hϕ The properties of rough sets[2,12] in (3)
5. B∗Lϕ →λ B∗HLϕ Replace ϕ by Lϕ in (4)
6. B∗HLϕ →λ B∗Lϕ Definition of L and H and properties

of rough sets[2,12] in (5)
7. B∗Lϕ ↔λ B∗HLϕ (5) and (6) and λ-equivalence definition
8. B∗LHϕ ↔λ B∗HLHϕ Replace ϕ by Hϕ in (7)
9. B∗LHϕ ↔λ B∗HHϕ Properties of rough sets[2,12]

10. B∗HHϕ ↔λ B∗Hϕ Properties of rough sets[2,12]

11. B∗LHϕ ↔λ B∗Hϕ The ”hypothetical syllogism”
in (9) and (10)[2,12]

where →λ and ↔λ are called as λ-complication and λ-equivalence respectively.
Similarly, we may prove the form of upper approximation.

6 Resolution Reasoning of the Rough Logical Formulae

We try to study resolution reasoning in the rough logic. Here we will discuss
resolution principles and λ-resolution strategies of the logic.

Rough Logic and Its Reasoning 91

6.1 Resolution Principles

Let C1 and C2 be two clauses in rough logic defined in a given information system
IS = (U, A). If L1 and L2 are two literals[23−25] in C1 and C2 respectively, and
TIu(L1) = T and TIu(L2) =⊥ or TIu(L1) =⊥ and TIu(L2) = T , then L1 and L2

are called as complementary literals[19,23−25,23].

Theorem 1. For ∀F ∈ RLIS, F could be transformed equivalently into clause
form

C1 ∧ · · · ∧ Cn

where each Ci is the disjunction of form attribute av or negation of its, a ∈ A is
an attribute on A, v ∈ Va is an attribute value in attribute set Va.

Definition 4. Let C1 : C′
1 ∨ av and C2 : C′

2 ∨ bu be two clauses used in the
resolution. av and bu are complementary literals in C1 and C2 respectively, then
they are resolved to produce an empty clause, denoted by ∇. Therefore, resolution
principles of C1 and C2 are defined as follows[9,15,16,23,24]:

C1 : C′
1 ∨ av

C2 : C′
2 ∨ bu

C : C′
1 ∨ C′

2

(1)

where av and bu are the literal to be resolved upon. The new clause C is called
as a rough resolvent GR(C1, C2) : C = C′

1 ∨ C′
2.

Example 1. We extract a rough logical formula from following information ta-
ble 2

F (a5, b2, b4, c3, c0) = (a5 ∨ c3) ∧ (b2 ∨ c0) ∧ b4 (2)

Formula (2) is a rough logical formula defined in the given information system.
The ground instances of the formula are as follows:

F (a5, b2, b4, c3, c0) = (a{1,2,3,4,5,6}
5 ∨ c

{}
3) ∧ (b{4,5,6}

2 ∨ c
{1,2,3,4,5,6}
0) ∧ b

{1,2,3}
4 (3)

In formula (3) clauses C1 : (a{1,2,3,4,5,6}
5 ∨ c

{}
3) and C2 : (b{4,5,6}

2 ∨ c
{1,2,3,4,5,6}
0)

include ground literals c
{}
3 and c

{1,2,3,4,5,6}
0 in them respectively. They are exactly

complementary ground literal. Therefore, clause C1 : (a{1,2,3,4,5,6}
5 ∨ c

{}
3) and

clause C2 : (b{4,5,6}
2 ∨ c

{1,2,3,4,5,6}
0) are resolved as follows:

C1 : (a{1,2,3,4,5,6}
5) ∨ (c{}3))

C2 : (b{4,5,6}
2) ∨ (c{1,2,3,4,5,6}

0))
C : a

{1,2,3,4,5,6}
5 ∨ b

{4,5,6}
2)

(4)

The resolvent GR(C1, C2) = a
{1,2,3,4,5,6}
5 ∨ b

{4,5,6}
2 . Thus formula (3) is reduced

by resolution, to have

F (a5, b2, b4, c3, c0) = (a{1,2,3,4,5,6}
5 ∨ b

{4,5,6}
2) ∧ b

{1,2,3}
4 (5)

92 Q. Liu and L. Liu

Table 2. Information Table

U a b c d e

1 5 4 0 1 1

2 5 4 0 2 1

3 5 4 0 2 2

4 5 2 0 1 2

5 5 2 0 2 2

6 5 2 0 1 0

6.2 λ-Resolution Strategies of the Rough Logic

Definition 5. Let L1 and L2 be literals in the rough logic, where L1 is true to
degree at least λ, L2 is true to degree at most 1−λ, if λ ≥ 0.5, TIu(L1) > λ and
TIu(L2) < 1− λ; Or L1 is true to degree at most λ, L2 is true to degree at least
1 − λ, if λ < 0.5, TIu(L1) < λ and TIu(L2) ≥ 1 − λ, then L1 and L2 are called
as λ-complement literal pair in rough logic on IS[9,15,16,23,24].

Definition 6. Let C1 and C2 be without common variable clauses, and L1 in
C1 and L2 in C2 are λ-complement literals, then λ-resolvent of C1 and C2 is
defined as follows:

GRλ(C1, C2) = (C1 − L1) ∨ (C2 − L2) = C′
1 ∨ C′

2

where C′
1 = C1 − L1, C′

2 = C2 − L2.

Example 2. Let IS = (U, A, V, f) be an information system, as shown on in-
formation table 1 in the above. We may construct a rough logical formula on
IS[8−16,21−24]. We extract a formula F ∈ RLIS from the IS as follows:

F (a5, b2, b4, c0,¬e0) = (a5 ∨ b4) ∧ b2 ∧ (c0 ∨ ¬e0) (6)

Formula (6) may be written as the following ground clause form:

F (a5, b2, b4, c0,¬e0) = (a{1,6}
5 ∨ b

{1,2,3}
4) ∧ b

{4,5,6}
2 ∧ (c{1,2,3,4}

0 ∨ ¬e
{2,3,4,5}
0) (7)

where each item is a ground clause. When λ is defined as 0.6, obviously, a{1,6}
5 and

c
{1,2,3,4}
0 is a λ-complement ground literal pair. So, the resolvent GRλ(C1, C2)

of a
{1,6}
5 ∨ b

{1,2,3}
4 in C1 and c

{1,2,3,4}
0 ∨ ¬e

{2,3,4,5}
0 in C2 is computed as follows:

GRλ(C1, C2) = (a{1,6}
5 ∨b

{1,2,3}
4 −a

{1,6}
5)∨(c{1,2,3,4}

0 ∨¬e
{2,3,4,5}
0 −c

{1,2,3,4}
0) (8)

Hence, the formula (7) could be rewritten as

(b{1,2,3}
4 ∨ ¬e

{1,2,3,4,5}
0) ∧ b

{4,5,6}
2 (9)

In face, when λ = 0.6, a
{1,6}
5 and ¬e

{1,2,3,4,5}
0 is also a λ-complement ground

literal pair, hence the resolvent GRλ(C1, C2) could be obtained as follows:

(b{1,2,3}
4 ∨ c

{1,2,3,4}
0) ∧ b

{4,5,6}
2 (10)

Rough Logic and Its Reasoning 93

Example 3. Let IS = (U, A, V, f) be an information system, as shown on infor-
mation table 1 in the above. We may prove the following rough logical formula
F is λ-true to degree at least λ in this information table 1, where λ = 0.6

F (a5, c1, c0, e0, e1,¬e0) = e0 ∧ (a5 ∨ c1) ∧ (c0 ∨ ¬e0) → e1 (11)

Formula (11) may be written as the following clause form by Skolem’s method,
where decision aim e1 is used as a negation clause ¬e1 to add.

F (a5, c1, c0, e0, e1,¬e0) = e0 ∧ (a5 ∨ c1) ∧ (c0 ∨ ¬e0) ∧ ¬e1 (12)

Formula (12) may be written as the following ground clause form according to
information table 1.

F (a5, c1, c0, e0, e1, ¬e0)=e
{6}
0 ∧ (a

{1,6}
5 ∨ c

{5,6}
1) ∧ (c

{1,2,3,4}
0 ∨ ¬e

{1,2,3,4,5}
0) ∧ ¬e

{3,4,5,6}
1

(13)

Hence, by λ = 0.6-resolution, literals a
{1,6}
5 and c

{1,2,3,4}
0 in the formula (13) are

the literals resolved upon, they are eliminated. So, the formula (13) could be
rewritten as

e
{6}
0 ∧ (c{5,6}

1 ∨ ¬e
{1,2,3,4,5}
0) ∧ ¬e

{3,4,5,6}
1 (14)

Again by λ = 0.6-resolution in the formula (14), literals c
{5,6}
1 and ¬e

{3,4,5,6}
1

in the formula (14) are the literals resolved upon, they are eliminated. So, the
formula (14) could be rewritten as

e
{6}
0 ∧ ¬e

{1,2,3,4,5}
0 (15)

Literals e
{6}
0 and ¬e

{1,2,3,4,5}
0 in the formula (15) are the literals resolved upon,

they are eliminated. So, the formula (15) could be obtained an empty after
resolution. In fact, we use a method of resolution refutation in classical logic in
this example. Because decision aim is negated and to join in resolution, to obtain
an empty in conclusion. So, this rough logical formula F from the information
table 1 is λ-true to degree at least λ = 0.6 in the information table 1. In fact,
we could compute to obtain this rough logical formula

F (a5, c1, c0, e0, e1,¬e0) = e0 ∧ (a5 ∨ c1) ∧ (c0 ∨ ¬e0) → e1 (16)

to be true in the information table. Namely,
TIu(F (a5, c1, c0, e0, e1,¬e0)) = card(e0 ∧ (a5 ∨ c1)∧ (c0 ∨¬e0) → e1)/card(U)

So the resolution reasoning of rough logic proposed in this article is valid in
information system .

The λ-resolution proof in the above is based on the semantics of the rough
logical formulae, no involving predicate symbol. So, the meaning of two different
predicate symbols is satisfied by λ-complement, the λ-complement literal pair
may be resolved.

94 Q. Liu and L. Liu

In the following we will prove that the resolution is λ-soundness.

Theorem 2. Let Δ = {C1), · · · , Cn} be a clause set of the rough logical for-
mula. If there is a resolution deduction of the clause C from Δ, then the Δ
implies C logically, that is,

C1 ∧ · · · ∧ Cn) →λ C

is true[23,24].

Proof: It is finished by simple induction on length of the resolution deduction.
For the deduction, we need only to show that any given resolution step is λ-
soundness.

Suppose that C1 and C2 are two clauses in the logic at arbitrary step i,
(1). C1 = C′

1 ∨ av

(2). C2 = C′
2 ∨ bu

where C′
1 and C′

2 are still clauses in the logic. Assuming that C1 and C2 are
λ-true to degree at least λ at step i, av and bu are λ-complement literal pair at
the step i, then av and bu are eliminated to produce a resolvent

GRλ(C1, C2) : C = C′
1 ∨ C′

2

which is a new clause in the logic.
Now let us prove that C is also λ-true to degree at least λ. Suppose that two

clauses joined in resolution are C1 and C2. If the literal av in C1 is (1 − λ)-true
to degree at least 1 − λ on IS and bu in C2 is λ-true to degree at most λ on
IS, then C′

1 in C1 is λ-true to degree at least λ, so the new clause C : C′
1 ∨ C′

2

is λ-true to degree at least at λ on IS; If the literal bu in C2 is (1 − λ)-true to
degree at least 1 − λ on IS and av in C1 is λ-true at most on IS, then C′

2 is
λ-true to degree at least λ on IS, so the new clause C : C′

1 ∨ C′
2 is also λ-true

to degree at least λ on IS.
The extracting of resolution step i could be arbitrary, λ ∈ [0, 1] is a real

number. If λ is 0 or 1, then the λ-soundness is called as soundness of the resolution
in the rough logic. Otherwise, which is called as λ-soundness of the resolution in
the rough logic. So, according to induction, proof of the soundness of resolution
deduction in the rough logic is finished. Formally, we have

C1 ∧ · · · ∧ Cn →λ C

is true{23,24}.

7 Applications of Rough Logic to Problem Resolving in
AI

The problem solving in AI is an idea of collapsing a complex problem into sim-
ple, solvable sub-problems[23−27]. And then the answers of the local problems
could be amalgamated into the answer of the original problem. Hence we need

Rough Logic and Its Reasoning 95

study the knowledge representation, namely representing the practical problem
by a rough logical formula. And the original global logical formula is decomposed
into sub-formulae, till predicates or propositions. The sub-formulae, predicates
or propositions are solved, and then the local answers of sub-formulae are amal-
gamated into the solution of the global logical formula. The problem solving
procedure is listed as follows:

1. Gathering a group of data related with the solving problem in the situation;
2. The group of data is constructed into an information table
3. We could extract a rough logical formula F from this information table;
4. By Skolem’s way, the rough logical formula F is equivalently transformed

into the following clause form:

C1 ∧ C2 ∧ · · · ∧ Cn

where each clause Ci = Li1 ∨Li2 ∨· · ·∨Lim is a disjunction of literals. Literal
Lij is a predicate, proposition or negative of them.

5. The meaning corresponding to Ci is denoted by

m(Ci) = {x ∈ U : x |=IS Ci}

The symbol |=IS is a satisfiability symbol for rough logical formula[21−30].

Example 4. Let IS = (U, A) be the system of diagnosis and treating in Chinese
Traditional Medicine, where U is a set of the patients, A is a set of symptoms
(attributes) for the patients. The system possesses the function to test blood
viscosity concentration for patients[26,27]. The data set of the patient gathered
in clinic is denoted by P = {Namev, Sexv, Agev, T esting − V aluev}. Such as,
P = {NameWang, Sexmale, Age65, T esting − V alue3.5}, where Wang is a value
of attribute Name, Male is a value of attribute Sex, 65 is a value of attribute
Age, and 3.5 is blood viscosity concentration of testing the patient via testing
instruments in clinic. We construct an information table using this group of data
as follows:

Table 3. Information Table

U Name Sex Age T-V

1 Wang Male 65 3.5

2 Li Female 30 4.2

3 Zhang Male 50 5.2

For convenience, we only use a testing index item of blood viscosity concen-
tration T − V3.5 in this table 3. In fact, to need testing 18 index items, other
items are similar as this testing of T − V3.5, but the methods of their processed
are different from each other. We extract the following rough logical formula F
from this table 3, this F represents the resolving problem in practice.

F = NameWang ∧ SexMale ∧ Age65 ∧ T − V3.5

96 Q. Liu and L. Liu

where T −V is an abbreviation for Testing-Value. Now we collapse this formula
into sub-formulae or predicates, and to solve these sub-formulae or predicates
according to the algorithm given in the system[27]. And then we amalgamate the
answers of the sub-formulae into an answer of the global formula. The steps of
the solving procedure are listed as follows.

1. F is collapsed into some sub-formulae, i.e. the predicates P1 = nameWang,
P2 = SexMale, P3 = Age65 and P4 = TV3.5. Because this logical formula F
is exactly a clause form of Skolem’s, we needn’t transform the rough logical
formula F into its clause form equivalently.

2. We select to solve the sub-formula P2, It is interpreted as attribute value
SexMale, it is the meaning of sub-formula P2. In fact, we find out the inter-
val [4.42, 4.79] of blood viscosity concentration corresponding to reference
value of health male[26,27]. And then the interval [4.42, 4.79] is granulated by
0.618. The average value and the standard deviation of the blood viscosity
concentration interval of normal people reference value are computed ac-
cording to following formulae. The average value and the standard deviation
in this example are computed, we will obtain AV2 = 4.70 and SD2 = 0.28
respectively.

AV = (a +
n−2∑

j=1

(a + j ∗ 0.618) + b)/n (17)

SD = sqrt(
n−1∑

j=0

((a + j ∗ 0.618)− AV)2/n) (18)

where sqrt is the square root function symbol, and n is the total number of
all small intervals partitioned on the interval [a, b].

3. The level of index item IV corresponding to testing value TV = 3.5 in clinic
are computed as follows:

IV = (TV − AV)/SD, TV > a (19)

IV = (−TV + AV)/SD, TV ≤ a (20)

where TV is the testing blood viscosity concentration in clinic via testing
instrument. It is 3.5 in the example. Average value AV and standard devia-
tion SD in the example is AV2 = 4.27 and SD2 = 0.28 respectively. a is the
lower bound corresponding to the interval. IV in the example is computed
to be IV2 = −3.74.

4. The levels of 9 sub-types (Concentration-ConL, Viscosity-V L, Aggregation-
AL, Coagulation-CoaL, Hematocrit-HL, Erythrocyte Aggregation-EAL,
Red Cell Rigidity-RCRL, Blood Plasma Viscosity-BPV L, Platelet
Aggregation-BPAL)are computed. The levels of blood viscosity concentra-
tion (BHV S, BLV S, BHLV S and BLHV S) are also computed[27].

5. By querying case history, IV is decided to plus or minus a correct value
according to the record in case history base for this patient. Thus, the patient
is diagnosticated as a result of blood viscosity concentration[27].

Rough Logic and Its Reasoning 97

8 Perspective of Studying for the Rough Logic

The rough logic will inspire what we construct the rough logical formula to be
fitted to applications for some specialities. Thus, we tried to resolve the practice
problems in various speciality using it[31−35]. Besides, it will offer new theory
and methodology for applications of classical logic and other nonstandard logic.
So, we will further study the theoretical significance and practice value of the
logic. The studying of semantics of rough logical formulae defined in a given
information system will offer a new model for studying of granular computing.
Studying based on semantics of the rough logic is also an extension of Rough
Logic proposed by Pawlak[1,2].

In further work, we will study resolution refutation of the logic, that is, given
a set Δ of clauses in the rough logic. A resolution deduction of C from Δ is a
finite sequence C1, · · · , Cn of clauses such that each Ci either is a clause in Δ or
a resolvent preceding Cj and Ck. Finally, Cn = C. If there is a deduction of ∇
from Δ, where ∇ is a λ-empty clause, then we call it λ-resolution refutation. We
will also further study the related properties and reasoning of the rough logic.

Acknowledgement

We would like to thank the support of Natural Science Fund of China (NSFC-
60173054). Thanks are also to Dr. James Kuodo Huang (member IEEE) for his
modifying English in this article.

References

1. Pawlak, Z.: Rough logic. Bull. of Polish Acad. of Sci. 35(5-6), 253–259 (1987)
2. Pawlak, Z.: Rough sets-theoretical aspects of reasoning about data. Kluwer Aca-

demic Publishers, Dordrecht (1991)
3. Orlowska, E.: A logic of indicernibility relation. In: Skowron, A. (ed.) SCT 1984.

LNCS, vol. 208, pp. 177–186. Springer, Heidelberg (1985)
4. Chakraborty, M.K., Banerjee, M.: Rough logic with rough quantifiers. Warsaw

University of Technology, ICS Research Report 49/93 (1993)
5. Nakamura, A.: A rough logic based on incomplete information and its applications.

International Journal of Approximate Reasoning 15, 367–378 (1996)
6. Nakamura, A., Matsueda, M.: Rough logic on incomplete knowledge systems. In:

Lin, T.Y. (ed.) Proceedings of the third International workshop on Rough Sets
and Soft Computing (RSSC 1994), San Jose State University, San Jose, California,
USA, pp. 56–64 (1994)

7. Nakamura, A.: Graded modalitiesin rough logic. In: Polkowski, L., Skowron, A.
(eds.) Rough Sets Knowledge Discovery1, pp. 192–208. Physica-Verlag, Heidelberg
(1998)

8. Liu, Q.: Operator rough logic and its resolution principle. Chinese Journal of Com-
puter 21(5), 435–476 (1998) (In Chinese)

9. Liu, Q.: The OI-Resolution of Operator Rough Logic. In: Polkowski, L., Skowron,
A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 432–435. Springer, Heidelberg
(1998)

98 Q. Liu and L. Liu

10. Liu, Q.: The resolution for rough propositional logic with lower(L) and upper(H)
approximate operators. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC
1999. LNCS (LNAI), vol. 1711, pp. 352–356. Springer, Heidelberg (1999)

11. Liu, Q., Wang, Q.Y.: Granular logic with Closeness Relation and Its Reasoning.
In: Śl ↪ezak, D., Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005.
LNCS (LNAI), vol. 3641, pp. 709–717. Springer, Heidelberg (2005)

12. Lin, T.Y., Liu, Q.: First-order rough logic I: Approximate reasoning via rough sets.
Fundamenta Informaticae 27(2-3), 137–154 (1996)

13. Yao, Y., Liu, Q.: A Generalized Decision Logic in Interval-Set-Valued Informa-
tion table. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS
(LNAI), vol. 1711, pp. 285–293. Springer, Heidelberg (1999)

14. Liu, Q.: λ-Level Rough Quality Relation and the Inference of Rough Paramodu-
lation. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp.
462–469. Springer, Heidelberg (2001)

15. Chang, C.L., Lee, R.C.T.: Symbolic logic and machine theorem proving. Academic
Press, London (1993)

16. Liu, X.H.: Fuzzy Logic and Fuzzy Reseaning. Press Of Jilin University (1989)
17. Banerjee, M., Khan, A.: Propositional Logic from Rough Set Theory. In: Peters,

J.F., Skowron, A., Düntsch, I., Grzyma�la-Busse, J.W., Or�lowska, E., Polkowski,
L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 1–25. Springer,
Heidelberg (2007)

18. Hamilton, A.G.: Logic for Mathematicans. Cambridge University Press, Cambridge
(1980)

19. Liu, Q., Liu, S.H., Zheng, F.: Rough Logic and Its Applications in Data Mining.
Journal of Software 12(3), 415–419 (2001) (In Chinese)

20. Rasiowa, H., Skowron, A.: Rough concepts logic. In: Skowron, A. (ed.) SCT 1984.
LNCS, vol. 208, pp. 288–297. Springer, Heidelberg (1985)

21. Liu, Q.: Rough Sets and Rough Reseaning (Third), p. 8. Science Press, Beijing
(2005) (In Chinese)

22. Liu, Q.: Granular Language and Its Reasoning, Data Mining and Knowledge Dis-
covery: Theory, Tools, and Technology V. In: Proceeding of SPIE-The International
Society for Optical Engineering, Orlando, Florida, USA, April 21-22, pp. 279–287
(2003)

23. Liu, Q., Sun, H.: Theoretical Study of Granular Computing. In: Wang, G.-Y.,
Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp.
93–102. Springer, Heidelberg (2006)

24. Liu, Q., Huang, Z.H.: G-Logic and Resolution Reasoning. Chinese Journal of Com-
puter 27(7), 865–873 (2004) (In Chinese)

25. Hobbs, J.R.: Granularity. In: Proceedings of IJCAI, Los Angeles, pp. 432–435
(1985)

26. Liu, Q., Liu, Q.: Granules and Applications of Granular Computing in Logical Re-
seaning. Research and Development of Computer 41(4), 546–551 (2004) (In Chi-
nese)

27. Liu, Q., Jiang, F., Deng, D.Y.: Design and Implement for the Diagnosis Software
of Blood Viscosity Syndrome Based on Hemorheology on GrC. LNCS (LNAI),
vol. 2639, pp. 413–420. Springer, Berlin (2003)

28. Kripke, S.: Semantic Analysis of Modal Logic. In: Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, pp. 67–96 (1963)

29. Liu, Q., Wang, J.Y.: Semantic Analysis of Rough Logical Formulas Based on Gran-
ular Computing. In: Proceedings of IEEE GrC 2005, pp. 393–396. IEEE, Los Alami-
tos (2006)

Rough Logic and Its Reasoning 99

30. Zhang, B., Zhang, L.: Theory and Applications for Problem Solving. Publisher of
Tsinghua University (1990) (In Chinese)

31. Polkwski, L.: A Calculus on Granules from Rough inclusions in Information Sys-
tems, The Proceedings of International Forum on Theory of GrC from Rough Set
Perspective. Journal of Nanchang Institute of Technology 25(2), 22–27 (2006)

32. Lin, T.Y.: From Rough Sets and Neighborhood Systems to Information Granulation
and Computing in Words. In: European Congress on Intelligent Techniques and
Soft Computing, pp. 1602–1606 (1997)

33. Yao, Y.Y.: Three Perspectives of Granular Computing, The Proceedings of Interna-
tional Forum on Theory of GrC from Rough Set Perspective. Journal of Nanchang
Institute of Technology 25(2), 22–27 (2006)

34. Liu, Q., Liu, Q.: Approximate Reasoning Based on Granular Computing in Gran-
ular Logic. In: The Proceedings of ICMLS 2002, November 4-6, pp. 1258–1262.
IEEE, Los Alamitos (2002)

35. Lin, T.Y.: Granular Computing on Binary Relations II: Rough Set Representa-
tions and Belief Functions. In: Skowron, A., Polkowski, L. (eds.) Rough Sets in
Knowledge Discovery, pp. 121–140. Physica-Verlag, Berlin (1998)

36. Wang, X.J.: Introduction for mathematical logic. Press. Of Beijing Uni., Beijing
(1982)

37. Lin, Y.: Granular Computing on Partitions, Coverings Neighborhood Systems, The
Proceedings of International Forum on Theory of GrC from Rough Set Perspective.
Journal of Nanchang Institute of Technology 25(2), 22–27 (2006)

38. Skowron, A.: Rough-Granular Computing, The Proceedings of International Forum
on Theory of GrC from Rough Set Perspective. Journal of Nanchang Institute of
Technology 25(2), 22–27 (2006)

39. Yao, Y.Y.: Information granulation and rough set approximation. International
Journal of Intelligence Systems 16, 87–104 (2001)

40. Dai, J.H.: Axis Problem of Rough 3-Valued Algebras, The Proceedings of Interna-
tional Forum on Theory of GrC from Rough Set Perspective (IFTGrCRSP 2006),
Nanchang, China. Journal of Nanchang Institute of Technology 25(2), 48–51 (2006)

41. Liu, G.L.: The Topological Structure of Rough Sets over Fuzzy Lattices. In: Pro-
ceedings of IEEE International Conference on Granular Computing, Beijing, China,
July 25-27, vol. I, pp. 535–538 (2005)

42. Pei, D.W.: A Generalized Model of Fuzzy Rough Sets. Int. J. General Sys-
tems 34(5), 603–613 (2005)

43. Yao, J.T., Yao, Y.Y.: Induction of classification rules by granular computing. In:
Proceedings of the International Conference on Rough Sets and Current Trends in
Computing, pp. 331–338. Springer, Berlin (2002)

44. Miao, D.Q.: Rough Group, Rough Subgroup and their Properties. In: Śl ↪ezak, D.,
Wang, G., Szczuka, M., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI),
vol. 3641, Part I, pp. 104–113. Springer, Heidelberg (2005)

45. Wu, W.Z.: Rough Set Approximations VS. Measurable Space. In: 2005 Proceedings
of IEEE International Conference on Granular Computing, Atlanta, Georgia, USA,
pp. 329–332 (2006)

46. Liu, Q., Sun, H.: Studying direction of granular computimg from rough set perspec-
tive of development. Journal of Nanchang Institute Technology 25(5), 1–10 (2006)
(In Chinese)

On Reduct Construction Algorithms

Yiyu Yao1, Yan Zhao1, and Jue Wang2

1 Department of Computer Science, University of Regina
Regina, Saskatchewan, Canada S4S 0A2

{yyao, yanzhao}@cs.uregina.ca
2 Laboratory of Complex Systems and Intelligence Science, Institute of Automation

Chinese Academy of Sciences, Beijing, China 100080
jue.wang@mail.ia.ac.cn

Abstract. This paper critically analyzes reduct construction methods
at two levels. At a high level, one can abstract commonalities from the
existing algorithms, and classify them into three basic groups based on
the underlying control structures. At a low level, by adopting different
heuristics or fitness functions for attribute selection, one is able to derive
most of the existing algorithms. The analysis brings new insights into the
problem of reduct construction, and provides guidelines for the design of
new algorithms.

Keywords: Reduct construction algorithms, deletion strategy, addition-
deletion strategy, addition strategy, attribute selection heuristics.

1 Introduction

The theory of rough sets has been applied to data analysis, data mining and
knowledge discovery. A fundamental notion supporting such applications is the
concept of reducts, which has been studied extensively by many authors [14, 17,
21,22,25,29, 30]. A reduct is a subset of attributes that is jointly sufficient and
individually necessary for preserving the same information as provided by the
entire set of attributes. It has been proved that finding a reduct with the minimal
number of attributes is NP-hard [26]. Research efforts on reduct construction
algorithms therefore mainly focus on designing search strategies and heuristics
for finding a satisfactory reduct efficiently.

A review of the existing reduct construction algorithms shows that most of
them tie together search strategies (i.e., control structures) and attribute selec-
tion heuristics. This leads to difficulties in analyzing, comparing, and classifying
those algorithms, as well as the trend of introducing new algorithms constantly.
With ample research results on this topic, it is perhaps the time for us to pause
and to analyze critically those results, in order to gain more insights.

With a clear separation of control structures and attribute selection heuris-
tics, we can critically analyze reduct construction algorithms with respect to
the high level control strategies, and the low level attribute selection heuristics,

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 100–117, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Reduct Construction Algorithms 101

respectively. This allows us to conclude that the differences between the exist-
ing algorithms lie more on the attribute selection heuristics than on the control
strategies.

The rest of the paper is organized as follows. First of all, we discuss the
connections between feature selection and reduct construction in Section 2. After
that, basic concepts and notations of rough set theory are reviewed in Section 3.
Three basic control structures are then presented in Section 4-6 by reformulating
the existing algorithms, from which many variations can be generated easily.
After these, Section 7 is the conclusion.

2 Feature Selection and Reduct Construction

Reduct computation is related to many disciplines. The same objective of sim-
plifying the attribute domain has been studied in machine learning, pattern
recognition, and feature selection in specific [3, 12, 13,23].

Feature selection is a fundamental task in a number of different disciplines,
such as pattern recognition, machine learning, concept learning and data min-
ing. Feature selection is necessary for both description and prediction purposes.
In the description process, it can be computationally complex to construct rules
by using all available features; in the prediction process, the constructed high
dimensional rules can be hard to test and evaluate for new coming instances.
From a conceptual perspective, selection of relevant features, and elimination
of irrelevant ones, are the main tasks of feature selection. From a theoretical
perspective, it can be shown that an optimal feature selection requires an ex-
haustive search of all possible subsets of the entire feature set. If the cardinality
of the entire feature set is large, this exhaustive method is impractical. For prac-
tical feature selection applications, the search is normally for a satisfactory set
of features instead of an optimal set.

In the domain of feature selection, two methods, forward selection and back-
ward elimination, have been extensively studied [3,12,13]. The forward selection
strategy starts with the empty set and consecutively adds one attribute at a time
until we obtain a satisfactory set of features. This strategy also can be called as
an addition strategy for simplicity. On the contrary, the backward elimination
strategy starts with the full set and consecutively deletes one attribute at a time
until we obtain a satisfactory set of features. In this paper, this strategy also
is called a deletion strategy. The forward strategy can be extended from the
one-by-one sequential-add style to the “plus l - take away r” style. This kind of
methods first enlarge the feature subset by l features, then delete r features as
long as the remaining attribute set exhibits an improvement compared to the
previous feature set. They avoid the nesting problem of feature subsets that are
encountered in the sequential style, but need to set the values of l and r [4, 18].
The same idea can be applied to backward strategy variations.

In a consecutive forward selection or a backward elimination process, one can
adopt different heuristics for feature selection. A heuristic decides and then adds

102 Y. Yao, Y. Zhao, and J. Wang

the best feature, or deletes the worst feature, at each round. As a consequence,
variations of the same algorithm can be derived.

The difference between reduct computation and feature selection is their halt-
ing strategies. For the purpose of feature selection, one might stop adding or
deleting features when the information preservation is satisfied, the classifica-
tion accuracy is not degrading, or the computation cost is affordable. For reduct
construction, the algorithm does not stop until the minimum set of features that
possesses some particular property is obtained. Reduct construction thus is a
special case of feature selection. In fact, many feature selection algorithms can
be viewed as performing a biased form of reduct computation. The results are not
necessarily being reducts. Obviously, the extensive studies of feature selection,
including the identification of relevant, irrelevant and redundant features, and
the design, implementation and renovation of the filter and wrapper methods,
affect the study of reduct computation.

By considering the properties of reducts, the deletion strategy always results
in a reduct [7, 30]. On the other hand, algorithms based on a straightforward
application of the addition strategy only produce a superset of a reduct [8, 10,
15, 16, 20]. In order to resolve this problem, many authors have considered a
combined strategy by re-applying the deletion strategy on the superset of the
reduct produced by the straightforward addition strategy [25]. An interesting
question is whether there exists an addition-only strategy that can produce a
reduct. A positive answer has been given by Zhao and Wang with an addition
algorithm without further deletion [29].

According to the above discussion, we have three control strategies used by
reduct construction algorithms. They are the deletion strategy, the addition-
deletion strategy, and the addition strategy. We can classify reduct construction
algorithms into the corresponding three groups.

3 Basic Concepts and Notations

The basic concepts, notations, and results related to the problem of reduct con-
struction are briefly reviewed in this section.

3.1 Information Table and Attribute Lattice

Suppose data are represented by an information table, where a finite set of
objects are described by a finite set of attributes [17].

Definition 1. An information table S is the tuple:

S = (U, At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects, At is a finite nonempty set of at-
tributes, Va is a nonempty set of values for an attribute a ∈ At, and Ia : U → Va

is an information function. For an object x ∈ U , an attribute a ∈ At, and a
value v ∈ Va, Ia(x) = v means that the object x has the value v on attribute a.

On Reduct Construction Algorithms 103

Table 1. An information table

a b c d e

o1 0 0 0 1 1
o2 0 1 2 0 0
o3 0 1 1 1 0
o4 1 2 0 0 1
o5 0 2 2 1 0
o6 0 3 1 0 2
o7 0 3 1 1 1

Example 1. An information table is illustrated in Table 1, which has five at-
tributes and seven objects.

The family of all attribute sets form an attribute lattice under the refinement
order. Let |At| denote the cardinality of At. An attribute lattice has |At| + 1
levels. The only node on the top level indicates the empty set ∅. The only node
on the bottom level indicates the biggest attribute set At. Nodes on the second
level stand for singleton attribute sets. There are |At| nodes in the second level.
For the nth level and n ≥ 2, there are

|At|(|At| − 1) . . . (|At| − n + 2)
(n − 1)!

nodes. There are 2|At| attribute sets in the entire attribute lattice. An edge con-
necting a pair of nodes implies the refinement relationship between an attribute
set and a subset or superset of the attribute set.

Example 2. Figure 1 illustrates the attribute lattice of the previous information
Table 1. It is obvious that totally 25 = 32 attribute sets can be defined for the
universe.

3.2 Equivalence Relations

Definition 2. Given an information table S, for any subset A ⊆ At there is an
associated equivalence relation EA ⊆ U × U , i.e.,

EA = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)},

which partitions U into disjoint subsets, called equivalence classes. An equiva-
lence class containing any object x ∈ U is defined as: [x]A = {y ∈ U | ∀a ∈
A, Ia(x) = Ia(y)}. Such a partition of the universe is denoted by U/EA, or U/A
for simplicity.

A partition U/EA is a refinement of another partition U/EB, or equivalently,
U/EB is a coarsening of U/EA, denoted by U/EA � U/EB, if every equivalence
class of U/EA is contained in some equivalence class of U/EB. The refinement
relation is a partial order, i.e, it is reflexive, anti-symmetric and transitive.

104 Y. Yao, Y. Zhao, and J. Wang

∅

At

{ , , , } { , , , } { , , , } { , , , } { , , , }a b c d a b c e a b d e a c d e b c d e

{ , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , }a b c a b d a b e a c d a c e a d e b c d b c e b d e c d e

{ , } { , } { , } { , } { , } { , } { , } { , } { , } { , }a b a c a d a e b c b d b e c d c e d e

{ } { } { } { } { }a b c d e

Fig. 1. The attribute lattice of the information Table 1

Given two partitions U/EA and U/EB, the meet of their equivalence classes,
U/EA ∧U/EB, is all nonempty intersections of an equivalence class from U/EA

and an equivalence class from U/EB. The join of their equivalence classes,
U/EA ∨ U/EB, is all unions of an equivalence class from U/EA and an equiv-
alence class from U/EB. The meet is the largest refinement partition of both
U/EA and U/EB; the join is the smallest coarsening partition of both U/EA

and U/EB. Clearly, U/E∅ is the coarsest partition, and U/EAt is the finest par-
tition. For any A ⊆ At, we have U/EAt � U/EA � U/E∅. The family of all
partitions form a partition lattice under the refinement order.

3.3 Discernibility Matrices

Definition 3. Given an information table S, for any two objects (x, y) ∈ U×U ,
there is an associated discernibility relation mx,y ⊆ At, i.e.,

mx,y = {a ∈ At | Ia(x) �= Ia(y)}.

The physical meaning of mx,y is that objects x and y can be distinguished by
any attribute in mx,y.

The family of all discernibility relations can be conveniently stored in a |U | ×
|U | matrix, called a discernibility matrix M [21]. A discernibility matrix M is
symmetric, i.e., mx,y = my,x, and mx,x = ∅. The family of all discernibility
relations also can be expressed as a set M , collecting only the distinct nonempty
elements, i.e., M = {mx,y | mx,y �= ∅}.

Example 3. The discernibility matrix of information Table 1 is illustrated in
Table 2. Since the discernibility matrix is symmetric, we only list its lower left
half.

On Reduct Construction Algorithms 105

Table 2. The discernibility matrix of information Table 1

o1 o2 o3 o4 o5 o6 o7

o1 - - - - - - -
o2 {b, c, d, e} - - - - - -
o3 {b, c, e} {c, d} - - - - -
o4 {a, b, d} {a, b, c, e} At - - - -
o5 {b, c, e} {b, d} {b, c} {a, c, d, e} - - -
o6 {b, c, d, e} {b, c, e} {b, d, e} {a, b, c, e} {b, c, d, e} - -
o7 {b, c} {b, c, d, e} {b, e} {a, b, c, d} {b, c, e} {d, e} -

The matrix also can be transformed to a set by collecting distinct elements
and eliminating empty elements, such that:

M = {{b, c}, {b, d}, {b, e}, {c, d}, {d, e}, {a, b, d},
{b, c, e}, {b, d, e}, {a, b, c, d}, {a, b, c, e},
{a, c, d, e}, {b, c, d, e}, At}.

The difference of equivalence relations and discernibility relations is obvious.
The equivalence relation EA is based on an attribute set A, indicating all the
object pairs that are indiscernible regarding A. The discernibility relation mx,y

is based on an object pair (x, y), indicating all the attributes that any of them
can distinguish x and y. The relationships between these two relations can be
expressed as follows:

(x, y) /∈ Emx,y ;
(x, y) ∈ EA ⇔ A ∩ mx,y = ∅ and A ∪ mx,y = At.

3.4 Reducts

Definition 4. Given an information table S, a subset R ⊆ At is called a ρ-
reduct of At for the property ρ, if R satisfies the two conditions:

(i). R and At possess the same property ρ;
(ii). for any a ∈ R, R − {a} cannot remain the property ρ.

The first condition indicates the joint sufficiency of the attribute set R, and the
second condition indicates that each attribute in R is individually necessary.

The property ρ can be interpreted in different ways. For example, considering
the equivalence relations, the property ρ can be expressed as U/EP , [x]P or
the joint entropy of P , for any P ⊆ At [17]. Also, regarding the family M of
discernibility relations, the property ρ can be expressed as ∀m ∈ M , m∩P �= ∅.

According to different interpretations, condition (i) of the reduct definition
can be written as:

• U/ER = U/EAt,
• for all x ∈ U , [x]R = [x]At,

106 Y. Yao, Y. Zhao, and J. Wang

• H(R) = H(At), where H(.) denotes the joint entropy of the set, or
• ∀m ∈ M, m ∩ At �= ∅ and m ∩ R �= ∅.

It means that the equivalence relations of R and At define the same partition
of the universe. For each object x in the universe, x has the same equivalence
class defined by R and At. R and At provide the same information grain. Object
pairs that can be distinguished by At also can be distinguished by R.

Given an information table, there may exist many reducts. The intersection
of all reducts is called the Core.

Definition 5. An attribute set R′ ⊆ At is called a super-reduct of a reduct R,
if R′ ⊇ R; an attribute set R′ ⊂ At R′ �= ∅ is called a partial reduct of a reduct
R, if R′ ⊂ R.

Given a reduct, there exist many super-reducts and many partial reducts.
Figure 2 shows a very simple attribute lattice with 8 nodes in total. Suppose

two reducts have been identified, and highlighted by stars on their corresponding
nodes. If an attribute set is a reduct, then all its supersets are super-reducts.
Here we shade their corresponding nodes in the lattice. At the same time, any
subset of a reduct is a partial reduct. In the graph, we use circle with solid line
to denote their corresponding nodes.

At

Fig. 2. An illustration of super- and partial reducts in a sample attribute lattice

Reduct computation can be understood as a search in the attribute lattice
under the refinement relation. Both the deletion and addition strategies can be
practised. The deletion strategy searches from At to ∅. As long as the condition
(i) is met, a reduct or a super-reduct is obtained. If all of its subset are partial
reducts, then it is identified as a reduct. A searching heuristic can facilitate the
search process by deciding which attribute to be eliminated first, in order to
move the search upward.

On Reduct Construction Algorithms 107

On the other hand, the addition strategy executes the search from ∅ to At.
When the condition (i) is met, a reduct or a super-reduct is obtained, and the
forward selection can be stopped. We need to eliminate the superfluous attributes
from a super-reduct, if such is obtained. A searching heuristic decides which
attribute to be added first, in order to move the search downward. An enhanced
searching heuristic needs to prevent the search from leading to a proper superset
of a reduct. By doing so, a backtrack elimination can be saved.

4 Reduct Construction by Deletion

4.1 Control Strategy

By a deletion method, we take At as a super-reduct, which is the largest super-
reduct. Deletion methods can be described generally in Algorithm 1.

Algorithm 1. The deletion method for computing a reduct
Input: An information table.
Output: A reduct R.

(1) R = At, CD = At.
(2) While CD �= ∅:

(2.1) Compute fitness values of all the attributes in CD regarding the
property ρ using a fitness function δ;

(2.2) Select an attribute a according to its fitness, let CD = CD − {a};
(2.3) If R − {a} is jointly sufficient, let R = R − {a}.

(3) Output R.

Many algorithms are proposed based on this simple deletion control strategy.
For example, the algorithms proposed in [5,7,30] are implemented for computing
a reduct based on information tables.

A deletion method starts with the trivial super-reduct, i.e., the entire at-
tribute. It has to check all the attributes in At for deletion. It is not efficient in
the cases when a reduct is short, and many attributes are eliminated from At
after checking.

4.2 Attribute Selection Heuristics

The order of attributes for deletion is essential for reduct construction. Regard-
ing a property ρ, different fitness functions may determine different orders of
attributes, that may result in different reducts.

The attribute selection heuristic is given by a fitness function:

δ : At −→ �, (1)

where At is the set of attributes in the information table, and � is the set of real
numbers. The meaning of the function δ is determined by many semantic consid-
erations. For example, it may be interpreted in terms of the cost of testing, the
easiness of understanding, the actionability of an attribute, or the information
gain an attribute produces.

108 Y. Yao, Y. Zhao, and J. Wang

Example 4. Suppose the fitness function δ is interpreted as an information en-
tropy

δ(a) = H(a) = −
∑

v∈Va

p(v) log p(v). (2)

This heuristic can be easily applied to information tables. For the information
Table 1, we obtain H(a) = 0.592, H(b) = 1.950, H(c) = 1.557, H(d) = 0.985
and H(e) = 1.449, which yields an order b → c → e → d → a. According to this
entropy-based order, the attribute a that contains least information is most likely
to be deleted first, and the attributes d, e, c and b are then considered in turn.
As a result, a reduct {b, c, e} is computed. The iterative steps are illustrated in
Figure 3.

Step 2: check d Step 3: check e Step 4: check c Step 5: check b

b c d e b c e b c e b c e

o1 0 0 1 o1 0 0 o1 0 1 o1, o4 0 1

o2 1 2 0 o2 1 2 o2, o3 1 0 o2, o5 2 0

o3 1 1 0 o3 1 1 o4 2 1 o3 1 0

o4 2 0 1 o4 2 0 o5 2 0 o6 1 2

o5 2 2 0 o5 2 2 o6 3 2 o7 1 1

o6 3 1 2 o6, o7 3 1 o7 3 1

o7 3 1 1

U/E{b,c,e} = U/EAt ,

d can be deleted.

R ={b,c,e}.

U/E{b,c} U/EAt ,

e cannot be deleted.

R ={b,c,e}.

U/E{b,e} U/EAt ,

c cannot be deleted.

R ={b,c,e}.

U/E{c,e} U/EAt ,

b cannot be deleted.

R ={b,c,e}.

Step 1: check a

a b c d e

o1 0 0 1 1

o2 1 2 0 0

o3 1 1 1 0

o4 2 0 0 1

o5 2 2 1 0

o6 3 1 0 2

o7 3 1 1 1

U/E{b,c,d,e} = U/EAt ,

a can be deleted.

R ={b,c,d,e}.

Fig. 3. An illustration of using a deletion strategy for the information Table 1

Suppose the fitness function δ is interpreted as the frequency that an attribute
appears in any element of the discernibility matrix M , i.e.,

δ(a) = |{m ∈ M | a ∈ m}|. (3)

We attempt to first delete an attribute that differentiates a small number of
objects. We can obtain a set of quantitative values for our sample discernibility
matrix in Table 1, such that δ(a) = 6, δ(b) = 18, δ(c) = 16, δ(d) = 12, and δ(e) =
15. The yielded order is consistent with the order yielded by the information gain.
Consequently, the same reduct is computed.

Many algorithms use entropy-based heuristics, such as information gain, con-
ditional entropy, and mutual information [2, 15, 16, 24, 27]. Some algorithms
use frequency-based heuristics with respect to the discernibility matrix, such
as [6, 17,22,25].

Besides a quantitative evaluation, the fitness function δ can be interpreted as
a qualitative evaluation. A qualitative method relies on pairwise comparisons of
attributes. For any two attributes a, b ∈ At, we assume that a user is able to
state whether one is more important than, or is more preferred to, the other.
Based on the user preference, usually the preferred attributes are intended to be
kept, and the unfavourable attributes are intended to be deleted.

On Reduct Construction Algorithms 109

5 Reduct Construction by Addition-Deletion

5.1 Control Strategy

By an addition-deletion strategy, we start the construction from an empty set
or the Core, and consequently add attributes until a super-reduct is obtained.
The constructed super-reduct contains a reduct, but itself is not necessarily a
reduct unless all the attributes in it are individually necessary. We need to delete
the superfluous attributes in the super-reduct till a reduct is found [29,30]. The
addition-deletion methods can be described generally in Algorithm 2.

Algorithm 2. The addition-deletion method for computing a reduct
Input: An information table.
Output: A reduct R.

Addition:
(1) R = ∅, CA = At.
(2) While R is not jointly sufficient and CA �= ∅:

(2.1) Compute fitness values of all the attributes in CA regarding the
property ρ using a fitness function σ;

(2.2) Select an attribute a according to its fitness, let CA = CA − {a};
(2.3) Let R = R ∪ {a}.

Deletion:
(3) CD = R.
(4) While CD �= ∅:

(4.1) Compute fitness values of all the attributes in CD regarding the
property ρ using a fitness function δ;

(4.2) Select an attribute a according to its fitness, let CD = CD − {a};
(4.3) If R − {a} is jointly sufficient, let R = R − {a}.

(5) Output R.

The addition-deletion strategy has been proposed and studied since the dele-
tion strategy is not efficient, and the straightforward addition process can only
find a super-reduct, but not a reduct. A lack of consideration of the latter prob-
lem has produced many incomplete reduct construction algorithms, such as the
ones reported in [8, 10, 16,20]. An addition-deletion algorithm based on the dis-
cernibility matrix has been proposed by Wang and Wang [25], which can con-
struct the subset of attributes from At, and then reduce it to a reduct efficiently.

Due to the fact that an addition-deletion method computes a relatively precise
super-reduct first, the deletion checking process is expected to be more efficient
than a straightforward deletion-only method. This is true when regarding some
orders, a super-reduct is constructed pretty fast. However, the process of com-
puting a super-reduct itself is also time consuming, as well as the process of
deleting the superfluous attributes from the constructed super-reduct.

110 Y. Yao, Y. Zhao, and J. Wang

5.2 Attribute Selection Heuristics

For the addition-deletion strategies, the orders of attributes for addition and
deletion are both essential for the result reduct. Regarding a property ρ, by using
the fitness function σ, we add the fit attributes to the empty set or the Core to
form a super-reduct; by using the fitness function δ, we delete the superfluous
attributes from the super-reduct in order to form a reduct. σ and δ can be
two different heuristics, or the same heuristic. If one can order the attributes
according to a fitness function δ from the most fit attribute to the least fit
attribute, then this order can be used for adding them one by one until the
sufficient condition is met, and the reversed order can be used for deleting the
superfluous attributes. By this means, one heuristic determines two orders, and
a reduct composed of more fit attributes is obtained.

Example 5. For the information table in Table 1, suppose the fitness function
σ is interpreted as the frequency or information gain as we have defined for
the fitness function δ in the previous section. A set of quantitative values are
computed according to the chosen heuristic. The attribute b is mostly intended to
be added, followed by attributes c, e, d and a. In this case, a super-reduct {b, c, e}
is computed. After using the reverse order to check the necessity, this super-
reduct is identified as a reduct. The iterative steps are illustrated in Figure 4.

Step 1: add b Step 2: add c Step 3: add e Step 4: check e

b b c b c e b c e

o1 0 o1 0 0 o1 0 0 1 o1 0 0

o2, o3 1 o2 1 2 o2 1 2 0 o2 1 2

o4, o5 2 o3 1 1 o3 1 1 0 o3 1 1

o6, o7 3 o4 2 0 o4 2 0 1 o4 2 0

o5 2 2 o5 2 2 0 o5 2 2

o6, o7 3 1 o6 3 1 2 o6, o7 3 1

o7 3 1 1

U/E{b} U/EAt,

R ={b}.

U/E{b,c} U/EAt,

R ={b,c}.

U/E{b,c,e}=U/EAt,

R ={b,c,e}.

U/E{b,c} U/EAt ,

e cannot be deleted.

R ={b,c,e}.

Step 5: check c

b c e

o1 0 1

o2, o3 1 0

o4 2 1

o5 2 0

o6 3 2

o7 3 1

U/E{b,e} U/EAt ,

c cannot be deleted.

R={b,c,e}.

Step 6: check b

b c e

o1, o4 0 1

o2, o5 2 0

o3 1 0

o6 1 2

o7 1 1

U/E{c,e} U/EAt ,

b cannot be deleted.

R={b,c,e}.

Fig. 4. An illustration of using an addition-deletion strategy for the information Table 1

6 Reduct Construction by Addition

6.1 Control Strategy

By an addition method, we start the reduct construction process from an empty
set or the Core, and consequently add attributes to it until it becomes a reduct.
The essential difference between the addition method and the addition-deletion
method is that, the addition method takes in one attribute if the constructed
set is a partial reduct, while the addition-deletion method continuously adds
attributes until a super-reduct is produced. In this case, superfluous attributes
can be added by an addition-deletion method, and the deletion process is re-
quired to eliminate them. The addition methods can be described generally in
Algorithm 3.

On Reduct Construction Algorithms 111

Algorithm 3. The addition method for computing a reduct
Input: An information table S.
Output: A reduct R.

(1) R = ∅, CA = At;
(2) While CA �= ∅:

(2.1) Compute fitness values of all the attributes in CA regarding the
property ρ using a fitness function σ;

(2.2) Select an attribute a according to its fitness;
(2.3) If a is a core attribute, then let R = R ∪ {a} and CA = CA − {a}

else
(2.3.1) Compute fitness values of all the elements in Group(a) =

{m ∈ M | a ∈ m} regarding the property ρ using a fitness
function δ′;

(2.3.2) If Group(a) = ∅, let CA = CA − {a} and go to Step (2),
else, select an element m = {a} ∪ A according to its fitness;

(2.3.3) If CA − A is jointly sufficient, let R = R ∪ {a} and
CA = CA − m, else, go to Step (2.3.2).
If a cannot be made necessary regarding all m ∈ Group(a),
let CA = CA − {a}.

(3) Output R.

For a selected attribute a ∈ CA, Group(a) = {m ∈ M | a ∈ m} is the set
of matrix elements that each indicates an object pair that can be distinguished
by a. If a is a core attribute then it is individually necessary for constructing a
reduct. If a is a non-core attribute, one can make a necessary by eliminating its
associated attributes in an element m ∈ Group(a) from further consideration.
Suppose Group(a) = {m1, m2, . . . , md}, (mi = A∪ {a}) ∈ Group(a) and A �= ∅.
It means that all the attributes in m can distinguish the object pair associated
with m, and the attribute a is not individually necessary for such a task. We
can make a necessary by eliminating all the attributes in A. If A is a superset of
another element m′ ∈ M , then A is necessary for distinguishing the object pair
associated with m′, which means that A cannot be eliminated. In other words,
the attribute a cannot be made necessary regarding m. If a cannot be made
necessary regarding all mi ∈ Group(a), then a cannot be added to the partial
reduct.

Example 6. For our running example, suppose the non-core attribute a is se-
lected. It is easy to obtain from the matrix in Table 2 that Group(a) = {mo1,o4 ,
mo2,o4 , mo3,o4 , mo4,o5 , mo4,o6 , mo4,o7}. Suppose to make a necessary, the matrix
element mo1,o4 = {a, b, d} is selected, and thus the attributes in the set mo1,o4 −
{a} = {b, d} need to be eliminated. However, the elimination will cause the ele-
ment mo2,o5 = {b, d} becomes empty. In other words, the object pair (o2, o5) can
no longer be distinguished. Therefore, attribute set {b, d} cannot be eliminated,
which means that attribute a cannot be added to the partial reduct regarding
the matrix element mo1,o4 . We can easily verify that a cannot be added regarding
any matrix element in Group(a), thus a does not belong to the partial reduct.

112 Y. Yao, Y. Zhao, and J. Wang

6.2 Attribute Selection Heuristics

The addition algorithm requires the attributes added to the reduct are individu-
ally necessary. To ensure it, the associated attributes are eliminated for consider-
ation. At the same time, the elimination should not change the joint sufficiency
of the remaining attributes. Therefore, the general addition algorithm explicitly
checks both the sufficiency condition and the necessity condition in Step (2.3.3).
Its time complexity is higher than the general deletion algorithm.

Zhao and Wang suggested using a matrix absorption operation to simplify
the checking process [29]. The matrix absorption operation is a sequence of
all possible element absorption operations on pairs of elements whenever the
following condition holds:

∅ �= M(x′, y′) ⊂ M(x, y).

That is, the value of M(x, y) is replaced by the value of M(x′, y′) in the matrix.
We also say M(x, y) is absorbed by M(x′, y′). The physical meaning of the
absorption can be explained as follows. Suppose M(x′, y′) �= ∅ and M(x′, y′) ⊂
M(x, y). The set of attributes discerning both pairs (x′, y′) and (x, y) is given by
M(x, y) ∩ M(x′, y′) = M(x′, y′). After absorption, M(x, y) becomes M(x′, y′).
Attributes in M(x′, y′) are sufficient to discern both object pairs (x′, y′) and
(x, y). When an attribute from M(x′, y′) is in a reduct, the same attribute can
be used to discern (x, y). Thus, it is not necessary to consider attributes in
M(x, y) − M(x′, y′). After matrix absorption, no element in the matrix is a
proper subset of another element.

By using the matrix absorption operation, the general addition algorithm can
be much simplified. Let attribute a be selected in Steps (2.1) and (2.2), and
Group(a) store the elements contains a from the absorbed matrix. When an
element (m = {a} ∪ A) ∈ Group(a) is selected in Steps (2.3.1) and (2.3.2),
A can be eliminated immediately. Since A is not a proper subset of another
element, thus is not necessary for distinguishing any object pair. Since CA − A
is ensured jointly sufficient, therefore, m can be eliminated after attribute a
being made necessary and added to the partial reduct. We can set CA = {a ∈
At | Group(a) �= ∅}, and apply the matrix absorption operation every time after
the CA is updated.

Example 7. For our running Example 3, we can observe that the distinct matrix
element {b, c} can distinguish the object pairs (o1, o7) and (o3, o5) whose corre-
sponding matrix elements equal to {b, c}, and also the object pairs (o1, o2), (o1, o3),
(o1, o5), (o1, o6), (o2, o4), (o2, o6), (o2, o7), (o3, o4), (o4, o6), (o4, o7), (o5, o6) and
(o5, o7) whose corresponding matrix elements contain {b, c}. By applying the ma-
trix absorption operation we can obtain:

{d, e} absorbs {b, d, e}, {a, c, d, e}, {b, c, d, e}, At;
{b, e} absorbs {b, c, e}, {b, d, e}, {a, b, c, e}, {b, c, d, e}, At;
{b, c} absorbs {b, c, e}, {a, b, c, d}, {a, b, c, e}, {b, c, d, e}, At;
{b, d} absorbs {a, b, d}, {b, d, e}, {a, b, c, d}, {b, c, d, e}, At;
{c, d} absorbs {a, b, c, d}, {a, c, d, e}, {b, c, d, e}, At}.

On Reduct Construction Algorithms 113

As a result, the absorbed discernibility matrix contains the following distinct
elements {b, c}, {b, d}, {b, e}, {c, d}, {d, e}. We can use M̂ denote the absorbed
matrix in a set representation.

For the absorbed discernibility matrix, if we group the matrix elements, we
obtain five overlapped sets:

Group(a) = ∅,
Group(b) = {{b, c}, {b, d}, {b, e}},
Group(c) = {{b, c}, {c, d}},
Group(d) = {{b, d}, {c, d}, {d, e}},
Group(e) = {{b, e}, {d, e}}.

Attribute set CA = {b, c, d, e}.

The fitness function σ can be the one that we discussed in Sections 4 and 5.
We need to discuss more about the fitness function δ′. We should note that
the fitness function δ′ of the proposed addition algorithm is different from the
fitness function δ of the general deletion algorithm. That is because δ evaluates
the fitness of one single attribute at a time, and δ′ evaluates the fitness of a
matrix element m, which is a set of attributes. Typically, δ′ is the summation
or the average fitness of all the included attributes.

Quantitatively, the selection of a matrix element for deletion can be described
by a mapping:

δ′ : {mi ∈ Group(a)} −→ �. (4)

The meaning of the function δ′ is determined by many semantic considerations
as well.

Example 8. For example, a frequency-based heuristic can be defined as follows.
For mi = {a} ∪ A,

δ′(mi) = |{m ∈ M̂ | m ∩ A �= ∅}|. (5)

For the running example, if the reduct attribute b is selected according to the
information gain measure, we thus focus on Group(b) = {{b, c}, {b, d}, {b, e}}.
Using the former heuristic, we obtain that δ′({b, c}) = 2, δ′({b, d}) = 3, and
δ′({b, e}) = 2 in M̂ . Suppose we therefore pick the element {b, d}. Consequently,
a reduct {b, c, e} can be computed. The iterative steps are illustrated in Figure 4.

We can also define the fitness function δ′ as the information entropy, i.e., the
joint entropy of all the attributes in the attribute set mi − {a}. For example, if
mi − {a} = {b, c}, then

δ′(mi) = H(mi − {a})
= H({b, c})
= −

∑

x∈Vb

∑

y∈Vc

p(b, c) log p(b, c). (6)

114 Y. Yao, Y. Zhao, and J. Wang

Step 1: add b

Delete {b d} from

CA

Step 2: add c

Delete {c} from

CA

Step 3: add e

Delete {e} from

CA

b c e b c e b c e

o1 o1 o1

o2 o2 o2

o3 o3 o3

o4 o4 o4

o5 o5 o5

o6 o6 o6

o7 o7 o7

M b c b d

b e c d d e

CA b c d e

b b c

b d b e

U/E b,c,e U/EAt,

R b

M c e

CA c e

c c

U/E b,c,e U/EAt,

R b c

M

M e

CA e

e

e

U/E b,c,e U/EAt,

R b c e

Fig. 5. An illustration of using an addition strategy for the information Table 1

By applying this heuristic to the sample information Table 1, we obtain that
δ′({b, c}) = H({c}) = 1.557, δ′({b, e}) = H({e}) = 1.449 and δ′({b, d}) =
H({d}) = 0.985. The reduct {b, c, e} can be computed if the element {b, d} is
selected.

Similarly, qualitative evaluation can also be applied here for selecting a matrix
element for deletion. This can be based on the user preference on the attribute
set, that we have discussed in the previous sub-section. We usually select the
most unfavourable matrix element for deletion.

Example 9. For our running example in Table 1, we only find two reducts ac-
cording to the introduced heuristics. By applying different heuristics, we may
be able to find the rest of reducts, like {c, d, e} and {b, d}. The attribute lat-
tice shown in Figure 6 highlights all the reducts by stars, and super-reducts by
shadings, partial reducts by circles with solid lines.

{ } { } { } { } { }a b c d e

{ , } { , } { , } { , } { , } { , } { , } { , } { , } { , }a b a c a d a e b c b d b e c d c e d e

At

{ , , , } { , , , } { , , , } { , , , } { , , , }a b c d a b c e a b d e a c d e b c d e

{ , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , } { , , }a b c a b d a b e a c d a c e a d e b c d b c e b d e c d e

Fig. 6. An illustration of super- and partial reducts in the attribute lattice of Table 1

On Reduct Construction Algorithms 115

7 Time Complexity Analysis

Suppose the partition of the information table is chosen for the time complexity
analysis. For an attribute a ∈ At, the execution of U/E{a} needs to compare
each object pair regarding attribute a. It thus requires |U|(|U|+1)

2 comparisons,
where |U | is the cardinality of U . For an attribute set A ⊂ At, the execution
of U/EA needs to compare each object pair regarding all the attributes in A. It
thus requires |U|(|U|+1)

2 |A| comparisons.
The attribute deletion operation of the deletion strategy is to check if the

remaining attribute set is still jointly sufficient for each iteration. To check the
necessity of attribute a1, one needs to verify if At − {a1} produces the same
partition as At does, and thus |U|(|U|+1)

2 (|At| − 1) comparisons are required. If
a1 is deleted after the checking, then to verify if At − {a1} − {a2} produces the
same partition as At does, one needs |U|(|U|+1)

2 (|At|−2) comparisons. If a1 is not
deleted after the checking, then one still needs |U|(|U|+1)

2 (|At| − 1) comparisons,
to check the necessity of a2. Totally, O(|U |2|At|2) comparisons are required to
check the jointly sufficiency condition and the individual necessity condition for
all attributes.

The addition-deletion strategy checks the joint sufficiency condition for a con-
structed super-reduct, and checks the individual necessity condition for all the at-
tributes in the constructed super-reduct. To verify if U/E{a1} = U/EAt one needs
|U|(|U|+1)

2 comparisons. To verify if U/E{a1,a2} = U/EAt one needs 2|U|(|U|+1)
2

comparisons, and so on. Totally, O(|U |2|At|2) comparisons are required to con-
struct a super-reduct. And same number of comparisons are required to check
the necessity of all attributes.

The addition strategy picks an attribute to make it individually necessary by
eliminating its associated attributes, at the same time, it ensures the elimination
does not change the joint sufficiency of the remaining attributes. To ensure the
necessity of attribute a1, one needs to verify if At − A1 produces the same
partition as At does, where ma1 = {a1} ∪ A1. This requires |U|(|U|+1)

2 (|At| −
|A1|) comparisons. If a1 is added after the checking, then one needs to verify if
At−ma1 −A2 produces the same partition as At does, where ma2 = {a2}∪A2.
This requires |U|(|U|+1)

2 (|At| − |m| − |A2|) comparisons. If a1 is not added after
the checking, then one still needs |U|(|U|+1)

2 (|At| − |A2| − 1) comparisons, to
ensure the necessity of a2. Totally, O(|U |2|At|2) comparisons are required to
check the jointly sufficiency condition and the individual necessity condition for
all attributes.

This analysis is very rough. It should be noted that the addition-deletion
algorithm normally does not need to add all attributes in At for a super-reduct.
The addition algorithm relies on the absorption operation to simplify the matrix
and generate the groups for all attributes. Normally, the addition algorithm is
the most inefficient one comparing to the other two.

116 Y. Yao, Y. Zhao, and J. Wang

8 Conclusion

This paper provides a critical study of the existing reduct construction algo-
rithms based on a two-level view: a high level view of control strategy and a
low level view of attribute selection heuristics. Three groups of algorithms are
discussed based on the deletion strategy, the addition-deletion strategy and the
addition strategy.

We define the concepts of super-reducts and partial reducts besides the con-
cept of reduct. A deletion strategy and an addition-deletion strategy strike to
find a reduct from a super-reduct. An addition strategy strikes to find a reduct
from a partial reduct.

This paper may be considered as an attempt to synthesize the results from
existing studies into a general and easy to understand form, with an objective
towards a more abstract theory. Any success in such a research will not only
produce valuable insights into the problem, but also provide guidelines for the
design of new reduct construction algorithms.

References

1. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J.: Rough set
algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y.
(eds.) Rough Set Methods and Applications, pp. 49–88 (2000)

2. Beaubouef, T., Petry, F.E., Arora, G.: Information-theoretic measures of uncer-
tainty for rough sets and rough relational databases. Information Sciences 109,
185–195 (1998)

3. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artificial Intelligence, 245–271 (1997)

4. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-
Hall, New York (1982)

5. Grzymala-Busse, J.W.: LERS - A system for learning from examples based on
rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support, pp. 3–18. Kluwer
Academic Publishers, Boston (1992)

6. Hoa, N.S., Son, N.H.: Some efficient algorithms for rough set methods. In: Proceed-
ings of the Conference of Information Processing and Management of Uncertainty
in Knowledge-based Systems, pp. 1451–1456 (1996)

7. Hu, X.: Using rough sets theory and database operations to construct a good
ensemble of classifiers for data mining applications. In: Proceedings of ICDM, pp.
233–240 (2001)

8. Hu, X., Cercone, N.: Learning in relational databases: a rough set approach. Inter-
national Journal of Computation Intelligence 11, 323–338 (1995)

9. Jain, A.K., Zongker, D.: Feature selection: evaluation, application and small sample
performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 19,
153–158 (1997)

10. Jenson, R., Shen, Q.: A rough set-aided system for sorting WWW bookmarks. In:
Zhong, N., et al. (eds.) Web Intelligence: Research and Development, pp. 95–105
(2001)

11. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection
problem. In: Proceedings of the Eleventh International Conference on Machine
Learning, pp. 121–129 (1994)

On Reduct Construction Algorithms 117

12. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelli-
gence, 273–324 (1997)

13. Koller, D., Sahami, M.: Toward optimal feature selection. In: Proceedings of the
Thirteenth International Conference of Machine Learning, pp. 284–292 (1996)

14. Mi, J.S., Wu, W.Z., Zhang, W.X.: Approaches to knowledge reduction based on
variable precision rough set model. Information Sciences 159, 255–272 (2004)

15. Miao, D., Hou, L.: A comparison of rough set methods and representative inductive
learning algorithms. Fundamenta Informaticae 59, 203–219 (2004)

16. Miao, D., Wang, J.: An information representation of the concepts and operations
in rough set theory. Journal of Software 10, 113–116 (1999)

17. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer,
Boston (1991)

18. Portinale, L., Saitta, L.: Feature selection, Technical report, D14.1, University of
Dortmund (2002)

19. Rauszer, C.: Reducts in information systems. Foundamenta Informaticae 15, 1–12
(1991)

20. Shen, Q., Chouchoulas, A.: A modular approach to generating fuzzy rules with re-
duced attributes for the monitoring of complex systems. Engineering Applications
of Artificial Intelligence 13, 263–278 (2000)

21. Skowron, A., Rauszer, C.: The discernibility matrices and functions in informa-
tion systems. In: Slowiński, R. (ed.) Intelligent Decision Support, Handbook of
Applications and Advances of the Rough Sets Theory. Kluwer, Dordrecht (1992)

22. Slezak, D.: Various approaches to reasoning with frequency based decision reducts:
a survey. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough set methods and
applications, pp. 235–285 (2000)

23. Swiniarski, R.W.: Rough sets methods in feature reduction and classification. In-
ternational Journal of Applied Mathematics and Computer Science 11, 565–582
(2001)

24. Wang, G., Yu, H., Yang, D.: Decision table reduction based on conditional infor-
mation entropy. Chinese Journal of Computers 25, 759–766 (2002)

25. Wang, J., Wang, J.: Reduction algorithms based on discernibility matrix: the or-
dered attributes method. Journal of Computer Science and Technology 16, 489–504
(2001)

26. Wong, S., Ziarko, W.: On optimal decision rules in decision tables. Bulletin of the
Polish Academy of Sciences and Mathematics, 693–696 (1985)

27. Yu, H., Yang, D., Wu, Z., Li, H.: Rough set based attribute reduction algorithm.
Computer Engineering and Applications 17, 22–47 (2001)

28. Zhao, M.: Data Description Based on Reduct Theory, Ph.D. Thesis, Institute of
Automation, Chinese Academy of Sciences (2004)

29. Zhao, K., Wang, J.: A reduction algorithm meeting users’ requirements. Journal
of Computer Science and Technology 17, 578–593 (2002)

30. Ziarko, W.: Rough set approaches for discovering rules and attribute dependencies.
In: Klösgen, W., Żytkow, J.M. (eds.) Handbook of Data Mining and Knowledge
Discovery, pp. 328–339 (2002)

Attribute Set Dependence in Reduct

Computation�

Pawel Terlecki and Krzysztof Walczak

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland
P.Terlecki, K.Walczak@ii.pw.edu.pl

Abstract. In the paper we propose a novel approach to finding rough
set reducts in information systems. Our method combines an apriori-
like scheme of space traversing with an efficient pruning condition based
on attribute set dependence. Moreover, we discuss theoretical and im-
plementational aspects of our pruning procedure, including adopting a
bst and a trie tree for storing set collections. Operation number and
execution time tests have been performed in order to demonstrate the
efficiency of our approach.

Keywords: rough sets, reduct, apriori, set dependence, trie.

1 Introduction

Cognitive informatics (CI) is a new discipline that has recently emerged from
cognitive science (Wang 2002). It combines various existing approaches under
the common goal of understanding the gist of intelligent thinking. In fact, CI
struggles to construct a set of computational models that could explain particu-
lar states and processes in human’s brain, like reasoning, abstracting, learning,
emotions, etc. Among many other approaches within knowledge discovery the
rough set theory seems to be one of the most convenient tools for solving many
CI problems (Semeniuk-Polkowska & Polkowski 2003). It provides simple, ele-
gant and powerful way for describing inexact, uncertain and vague information.
Moreover, it proposes the concept of a reduct that is widely used in data reduc-
tion, feature selection, rule induction and object classification (Bazan, Nguyen,
Nguyen, Synak & Wroblewski 2000, Swiniarski 2001). Since the time of intro-
duction (Pawlak 1982), it has gained numerous advocates in various fields of ap-
plication being combined with statistical methods, neural networks (Swiniarski
& Skowron 2003), fuzzy sets and other valuable approaches. The past decade
has also brought some insights on relations between data-mining and rough set
problems has appeared (Lin 1996,Terlecki & Walczak 2006).

The paper refers to the reduct set problem, which is one of the most fun-
damental rough set issues, defined as finding all the reducts of an information
� The research has been partially supported by grant No 3 T11C 002 29 received from

Polish Ministry of Education and Science.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 118–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Attribute Set Dependence in Reduct Computation 119

system. In order to apply the already known solutions, the problem is frequently
transformed into the problem of finding the prime implicants of a monotonous
boolean function. The classic methods employ the notions of discernibility ma-
trix and discernibility function (Skowron & Rauszer 1992). On the other hand,
there are some algorithms that efficiently traverse an attribute set space by
means of pruning conditions employing concise representations (Kryszkiewicz
1994,Kryszkiewicz & Cichon 2004). In practical problems, it is often enough to
compute only a subset of all the existing reducts. Most basic approaches focus
on finding only the best reduct according to some criteria (Hu, Lin & Han 2003)
or multiple reduct (Wu, Bell & McGinnity 2005). Moreover, some heuristic, evo-
lutionary ideas have been proposed (Wroblewski 1995).

The algorithms presented in the paper follow the Apriori scheme of set gen-
eration (Agrawal & Srikant 1994). We propose a novel pruning condition based
on the notion of set dependence. The convexity of complement subspaces of de-
pendent and independent sets has been demonstrated. Our method traverses the
subspace of independent sets. We also show how to construct an algorithm in
order to test the condition efficiently and to avoid maintaining additional struc-
tures. It is worth noticing that several methods in the rough set theory examine
the space similarly (Bazan, Nguyen, Nguyen, Synak & Wroblewski 2000,Nguyen
2002).

One of the major challenges is to efficiently employ rough set methods in
large databases. In the case of reduct computation the large number of objects
increases strongly the cost of discernibility calculation for a given attribute set.
Therefore, we performed several tests to prove the usefulness of our pruning
strategy in reducing the number of these operations.

Section 2 provides selected elements of the rough set theory and border repre-
sentations. In Section 3 we consider the notions of discernibility and dependence,
and give theoretical background for a proposed pruning approach. The algorithm
is described in Section 4 and followed by a brief analysis and comments on their
implementation provided in Section 5. A discussion on data structures for storing
set collections is presented in Section 6. Section 7 contains results obtained for
several popular data sets. Tests focus on the efficiency of our pruning condition
measured by the number of dominant operations. Time results for different data
structures are covered in Section 8. The paper is summarized in Section 9.

2 Preliminaries

Let an information system be a pair (U ,A), where U = {u1, .., u|U|}(universum)
is a non-empty, finite set of objects and A is a non-empty finite set of attributes.
The domain of an attribute a ∈ A is denoted by Va and its value for an object
u ∈ U is denoted by a(u).

Consider B ⊆ A. An indiscernibility relation IND(B) is defined as follows:
IND(B) = {(u, v) ∈ U × U : ∀a∈B a(u) = a(v)}. An attribute a ∈ B is
dispensable in B, iff INDB−{a} = INDB, otherwise a is indispensable. We call
B independent, iff all its members are indispensable, otherwise it is dependent.

120 P. Terlecki and K. Walczak

An attribute set B ⊆ A is a super reduct, iff IND(B) = IND(A). An inde-
pendent super reduct is called a reduct. Finding all the reducts of an information
system is called the reduct set problem. For the sake of convenience, we introduce
the following collections.

Definition 1. Independent set collection ISC = {B ⊆ A : B is independent}.
Dependent set collection DSC = {B ⊆ A : B is dependent}. Super reduct
collection URED = {B ⊆ A : IND(B) = IND(A)}. Reducts collection RED =
ISC ∩ URED.

The property of set dependence generates a binary partition {ISC, DCS} in
P (A) = 2A. Moreover, it can be easily demonstrated that every subset of an in-
dependent set is independent and every superset of a dependent set is dependent.
These facts are expressed formally below.

Lemma 1. Let B, S ⊆ A, we have: S ⊆ B ∧ B ∈ ISC =⇒ S ∈ ISC.

Lemma 2. Let B, S ⊆ A, we have: B ⊆ S ∧ B ∈ DSC =⇒ S ∈ DSC.

A discernibility matrix C is a matrix |U| × |U| with elements Cij = {a ∈ A :
a(ui) �= a(uj)} for i, j = 1..|U|. This matrix can be used to check whether a
given attribute set differentiates objects as well as A does. Let EC be a set of all
elements of a matrix C. The following measure allows to make inferences about
discernibility avoiding direct usage of comparison of relations.

Definition 2. Let B ⊆ A. We define as:

covcount(B) = |{X ∈ EC : X ∩ B �= Ø}|.

Lemma 3. Let B, S ⊆ A such that S ⊂ B, we have: IND(S) = IND(B) ⇐⇒
covcount(S) = covcount(B).

In the paper, we decided to use concise set representations to describe regions
of the search space P (A). It requires the following notions.

Consider a set S. A border is an ordered pair < L,R > such that L,R ⊆ P (S)
are antichains and ∀X∈L∃Z∈RX ⊆ Z. L and R are called a left and a right
bound, respectively. A border < L,R > represents a set interval [L,R] = {Y ∈
P (S) : ∃X∈L∃Z∈RX ⊆ Y ⊆ Z}. The left and right bounds consist, respectively,
of minimal elements and maximal elements of a set, assuming inclusion relation.

The collection F ⊆ P (S) is a convex space (or is interval-closed) if we have:
∀X,Z∈F∀Y ∈P (S)X ⊆ Y ⊆ Z ⇒ Y ∈ F . Definitions of a border and a convex
space lead to a conclusion that every convex space has a unique border and
every collection that has a border is convex.

For brevity, we use the following notation: an expression k-set denotes a k-
element set. Moreover, for a given set collection F we introduce a convenient
notation Fk = {B ∈ F : |B| = k}, i.e ISCk, REDk, Pk(A), etc. For a given
set S, we call its subset (superset) direct when it has the cardinality smaller
(greater) by 1 than the cardinality of S.

Attribute Set Dependence in Reduct Computation 121

3 Discernibility and Dependency

In the reduct set problem we deal with an exponentially-large search space P (A).
Therefore, the algorithms that solve the problem by traversing the space have
to use such strategies that avoid examining all possible attribute sets.

These methods are constructed around to main issues. The first one is to give
efficient pruning conditions. The basic idea is to visit only those regions about
which we cannot infer from the already examined subspace. The second issue is
strongly influenced by the pruning strategy and concerns the way of traversing
the search space. It has two objectives: to make the pruning stage as efficient as
possible and not to generate exponentially-large set collections.

We begin our consideration with a discussion of pruning conditions and then
combine them with the appropriate ways of space traversing.

Basic criteria originate from works related to monotonous boolean
functions. In particular, the following two conditions are extensively discussed in
(Kryszkiewicz 1994).

Theorem 1. (Kryszkiewicz 1994) Let B ⊆ A, we have: S ⊂ B∧B �∈ URED =⇒
S �∈ RED.

Theorem 2. (Kryszkiewicz 1994) Let B, S ⊆ A, we have: B ⊂ S ∧ B ∈
URED =⇒ S �∈ RED.

The former uses the notion of discernibility and states that we do not need to
examine actual subsets of a non-super reduct B, since they cannot differentiate
more object pairs than B does. The latter tells us that actual supersets of a
reduct cannot be minimal, so they can be also excluded from examination.

In the text we propose a strategy that is based solely on set dependence. The
following theorem refers to convexity and the next one generalizes Theorem 2.

Theorem 3. Collections ISC and DSC are convex. There exist subcollections
MISC, mDSC ⊆ P (A) such that ISC has a border < Ø, MISC > and DSC
has a border < mDSC, {A} >, where the symbols MISC and mDSC stand
for maximal independent set collection and minimal dependent set collection,
respectively.

Proof. It is sufficient to show that both collections have specified borders.
Let us focus on ISC first. Consider ISC ⊆ [{Ø}, MISC]. Let B ∈ ISC.

Obviously, B ⊇ Ø. Notice that inclusion partially orders elements in ISC, so
also ∃S∈MISCB ⊆ S. Conversely, ISC ⊇ [{Ø}, MISC]. Let B ∈ [{Ø}, MISC].
From the definition of a border we have ∃S∈MISCØ ⊆ B ⊆ S. According to
Lemma 1 B is independent, so B ∈ ISC. Summing up, we have found that ISC
has a border < {Ø}, MISC > and, consequently, is convex.

A proof for DSC is analogical and employs Lemma 2.

Theorem 4. Let B, S ⊆ A, we have: B ⊆ S ∧ B ∈ DSC =⇒ S �∈ RED.

Proof. Consider B ∈ DSC and S ⊆ A such that B ⊆ S. From Lemma 2 we
have S ∈ DSC. Thus, S �∈ ISC and S cannot be a reduct.

122 P. Terlecki and K. Walczak

According to the definition, it is possible to test set dependence by examining
all direct subsets of a given set. In practice, it is convenient to use covcount to
verify set dependence.

Theorem 5. Let B ⊆ A, we have: ∃a∈Bcovcount(B) = covcount(B−{a}) ⇐⇒
B ∈ DSC.

Proof. From the definition attribute a ∈ B is dispensable in B iff IND(B) =
IND(B−{a}). From Lemma 3, where S = B−{a}, we have: a ∈ B is dispensable
iff covcount(B) = covcount(B − {a}).

However, every covcount computation can be costly when very large databases
are concerned. Therefore, first we perform pruning using information on depen-
dent sets and reducts visited so far. We check whether all direct subsets of a
tested set are independent and are not reducts. Otherwise, the set is dependent
basing on Lemma 2 or Theorem 2.

Theorem 6. Let B ⊆ A, we have: ∃a∈B(B−{a}) �∈ (ISC|B|−1−RED|B|−1) =⇒
B ∈ DSC.

Proof. Let B ⊆ A and a ∈ B such that (B − {a}) �∈ (ISC|B|−1 − RED|B|−1).
Since |B−{a}| = |B|−1, so (B−{a}) ∈ P|B|−1(A)− (ISC|B|−1−RED|B|−1) =
DSC|B|−1 ∪ RED|B|−1. Therefore, (B − {a}) ∈ DSC|B|−1 or (B − {a}) ∈
RED|B|−1. Let us consider both cases separately.

Table 1. The information system IS = ({u1, u2, u3, u4, u5}, {a, b, c, d, e})

a b c d e

u1 0 0 1 0 0
u2 1 1 1 1 0
u3 1 1 1 2 0
u4 0 2 0 1 0
u5 2 3 1 1 1

MISC = {{a, c}, {a, d}, {b, d}, {c, d, e}}
mDSC = {{a, b}, {a, e}, {b, c}, {b, e}}
RED = {{a, d}, {b, d} {c, d, e}}

Fig. 1. The search space P ({a, b, c, d, e}) of the reduct set problem for the information
system IS. Independent sets - ovals, dependent sets - rectangles, super reducts - gray
background.

Attribute Set Dependence in Reduct Computation 123

Let (B−{a}) ∈ DSC|B|−1 ⊆ DSC. In accordance with Lemma 2 we have (B−
{a}) ⊆ B ∧ (B −{a}) ∈ DSC =⇒ B ∈ DSC. Let, now, (B −{a}) ∈ RED|B|−1.
It means that IND(B − {a}) = IND(A) = IND(B), so a is dispensable in B
and B ∈ DSC.

Let us move to a brief example. We classify attribute sets according to two binary
characteristics: dependence and discernibility. The information system IS and
its search space are depicted in Table 1 and Fig. 1, respectively.

4 Algorithm Overview

In the paper we present a novel approach to finding all the reducts of an infor-
mation system. Our method is a combination of apriori-like set generation and
an efficient pruning technique based on Theorems 5 and 6.

The general scheme of our algorithm follows the classic apriori structure
(Agrawal & Srikant 1994). In every step we generate a family of k-sets and
use pruning techniques to remove reducts and dependent sets. The final family
of every step Lk contains only independent sets that are not reducts.

The collections RED and ISC are created incrementally. In k-th step all
their k-element members are computed. When the algorithm stops we obtain
collections: RED =

⋃
k=1..|A| REDk.

1: RED1 = {all 1-reducts}
2: ISC1 = {all 1-sets}
3: L1 = {all 1-sets} − RED1

4: for (k = 2; Lk−1 �= Ø; k + +) do
5: Ck = apriori-gen-join(Lk−1)
6: Dk = prune-with-subsets(Ck, Lk−1)
7: ISCk = Dk − find-dependent(Dk)
8: REDk = find-RED(ISCk)
9: Lk = ISCk − REDk

10: end for

4.1 Candidate Set Generation

The function apriori-gen-join is responsible for candidate set generation. A
new collection of sets Ck is generated according to the join step of apriori-gen
function described in (Agrawal & Srikant 1994). The generation of Ck is based
on a collection of independent sets Lk−1 obtained in the previous iteration. As
a result we obtain a collection of all possible k-element sums of two elements
chosen from Lk−1.

4.2 Pruning with Subsets

The function prune-with-subsets removes from family Ck all members B that
are supersets of any dependent attribute set or reduct. Direct pruning by max-
imal independent sets found so far would be a costly operation. However, in

124 P. Terlecki and K. Walczak

accordance to Theorem 6, it is enough to test whether {B − {a} ⊆ Pk−1(A) :
a ∈ A} ⊆ ISCk−1 −REDk−1 = Lk−1. It needs at most |B| membership tests in
a collection Lk−1 computed in a previous step.

4.3 Finding Dependent Sets

Even if all actual subsets of a given B are independent, B can be dependent.
When we cannot prove dependency basing on Theorem 6, we have to check it by
means of Theorem 5. Otherwise, B ∈ ISCk. This operation requires computing
covcount(B). We compare this value with covcount(S), for all S such that S
is a direct subset of B. Notice that, each S is an independent non reduct as B
passed through a phase of dependent superset pruning. Moreover, the value of
covcount(S) will have already been computed to prove the independence of S.

4.4 Finding Reducts

Notice that, REDk ⊆ ISCk. Thus, in every iteration we have to find these
B ∈ ISCk for which covcount(B) = covcount(A). Notice that, covcount is
already computed for elements of ISCk, so this step requires simply traversing
ISCk.

4.5 Execution Example

This section provides a short example of an algorithm execution. For brevity, we
use a convenient notation ab−14 meaning a set {a, b} and covcount({a, b}) = 14.

We consider the information system IS = (U , {a, b, c, d, e}) (Table 1). We
have the following facts:

– EC ={{a, b, e}, {a, b, c, e}, {a, b, d, e}, {a, b, c}, {a, b, d}, {d}, {b, c, d},
{a, b, c, d}}

– covcount({a, b, c, d, e}) = 8

Our algorithm performs the following steps (Table 2) while solving the reduct
set problem for IS.

Table 2. Algorithm execution for IS

k Lk REDk

1 {a − 6, b − 7, c − 4, d − 5, e − 3} Ø
2 {ac − 7, cd − 7, ce − 6, de − 7} {ad − 8, bd − 8}
3 Ø {cde − 8}

5 Algorithm Analysis

5.1 Implementation Details

The algorithm scheme, presented in Section 4, gives a brief overview of our
method. We decided on the notation of set sequences to emphasize the connection

Attribute Set Dependence in Reduct Computation 125

between the presented theorems and particular algorithmic steps. However, it is
easy to notice that steps 6, 7, 8, 9 can be performed during and apriori-gen-join
function in order to avoid additional computations. Consider k-th iteration and
B ∈ Ck generated from E, F ∈ Lk−1. Firstly, we have to examine a collection
DS = {B − {a} : a ∈ B} that contains direct subsets of B. Obviously, E, F
can be omitted, since they are independent, not super reducts. Now, for each
direct subset S ∈ DS − {E, F} we check S ∈ Lk−1. Finding any S not hold-
ing this condition causes a rejection of B and repeating the whole procedure
for the next candidate. Otherwise, covcount(B) is calculated and the condition
covcount(B) = maxS∈DS(covcount(S)) is checked. If it holds, we reject B. Oth-
erwise, B ∈ ISC. If, additionally, covcount(B) = covcount(A), B is accepted
as an independent, not super reduct. Notice that this maximum can be easily
calculated while elements of DS are being examined. Summing up, for a given
B we check a membership of S ∈ DS in collection Lk−1 exactly once.

Another observation refers to temporary collections stored in memory. Basi-
cally, we maintain and successively update the resulting collection RED. More-
over, in every iteration the only historical collection needed is Lk−1. It is used
both: for candidate generation and for efficient pruning. Notice that we do not
have to remember the collection ISCk−1, since pruning by dependent subsets
and reducts is performed in the same algorithmic step (Theorem 6) and employs
only the whole collection Lk−1.

Testing the membership of a set in a collection is also a significant operation,
which can be efficiently implemented using a tree structure or hashing methods.
One of the propositions is covered further, in Section 6.

5.2 Algorithm Execution Example

This example demonstrates how we examine each candidate set in order to decide
whether it is a reduct or a member of Lk collection.

Consider the information system (U , {a, b, c, d, e, f}), for which we have com-
puted covcount({a, b, c, d, e, f}) = 50.

We focus on a hypothetical iteration for k = 5. From the previous iteration
we have L4 = {abcd − 26, abce− 35, abcf − 23, abde − 31, acde − 40, bcde − 12}.
We select two sets E = {a, b, c, d}, F = {a, b, c, e} and generate a candidate
B = E ∪ F = {a, b, c, d, e}. We have a collection of direct subsets of B equal to
DS = {{b, c, d, e}, {a, c, d, e}, {a, b, d, e}, {a, b, c, e}, {a, b, c, d}}.

Firstly, we have to check whether S ∈ L4 for each S ∈ DS − {E, F}.
During this examination we also compute maxS∈DS(covcount(S)) = 40. Be-
cause DS ⊂ L4, so we cannot use Theorem 6. After computation, we ob-
tain covcount(B) = 40. Because covcount(B) = maxS∈DS(covcount(S)) =
covcount({a, c, d, e}), according to Theorem 5, we have found that B is depen-
dent and we do not add it to L5.

5.3 Complexity Analysis

Our algorithm traverses the search region ISC and, additionally, examines not
pruned, direct supersets of MISC −RED in order to prove their independence.

126 P. Terlecki and K. Walczak

Although the approach uses the concept of concise (border) representation we
avoided costly checking whether a collection contains a subset/superset of a given
set. Pruning is performed by membership tests only.

Thorough emphasis should also be placed on covcount computation, which is
a basic operation in our algorithm. According to Lemma 3 and the definition of
a super reduct, we can infer about dependence and discernibility only by means
of covcount measure. The operation appears to be costly, when large databases
are concerned, so it should be optimized and performed as rarely as possible.
For sure, the covcount has to be computed at least for the elements of ISC and
for A. Notice that we compute covcount for each examined set only once.

Moreover, it can be easily demonstrated that for computing covcount we do
not need to examine all sets from EC but only the minimal elements within a
collection of all non-empty elements of EC. Formally, we define this collection
as RC = {B ∈ EC : B �= Ø ∧ ∀S∈EC(S = Ø ∨ S �⊂ B)}. Most often, this simple
optimization reduces strongly the size of EC, and thus, the operation cost.

However, for very large databases it may be infeasible to construct and reduce
the indiscernibility matrix, since these operation have time and space cost of
O(n2). In such a situation, for a given B ∈ A the value of covcount(B) can
be computed directly from an information system after computing the sizes of
blocks of the partition generated by B. This operation involves sorting U on
attribute set B with time cost O(nlog(n)), in situ.

6 Data Structures for Storing Attribute Set Collections

As it was described before we consider two dominant operations in our algo-
rithm: covcount computation and membership testing. Due to the possibly large
databases and large indiscernibility matrices, we have decided to avoid the first
one and, according to Theorems 5 and 6, replace it by multiple membership tests.
Such a strategy has enforced us to study different data structures for storing an
attribute set collection Lk−1.

In fact, we perform two basic operations on a collection Lk−1. First, we enu-
merate its members to generate new candidates and test whether a given at-
tribute set belongs to the collection. It should be kept in mind that in apriori-like
candidate generation many pairs of attribute sets cannot be joined. Thus, the
collection should be traversed in a specific ordering in order to avoid additional
examinations.

Apart from optimizing the operations, the second important issue is an eco-
nomical management of operational memory. In fact, real life datasets usually
have hundreds of attributes, which results in large search spaces. In conse-
quence, temporary collections become memory-consuming, especially when each
attribute set is stored separately. Thus, concise data structures are preferable.

The most natural approach is to store attribute sets in a vector. The main
advantage is that we can easily ensure ordering needed for candidate genera-
tion making this stage very efficient. However, a linear time is needed for each
membership test.

Attribute Set Dependence in Reduct Computation 127

In a more sophisticated solution each attribute set is treated as a node of a
balanced binary search tree. The number of nodes is equal to the cardinality of
the collection. This tree structure also stores each attribute set separately and
needs to allocate more additional memory than a vector. When we use a prefix-
wise node ordering, an in-order method of node traversing allows us to visit
attribute sets in order appropriate for candidate generation. Due to dynamical
nature, this step is slower than in case of vector. On the other hand, a balanced
tree assures a logarithmic time for finding a particular set. In fact, the access
time can be worse, when C is large and we cannot treat the cost of attribute
set comparison as constant. Notice that when we use prefix-wise node ordering
and go down the tree in order to find a member, the time of each comparison
increase with a node level. Such a phenomenon is due to longer common prefixes
of a given set and a set associated with a node. This property can significantly
affect efficiency of tree building stage and later member finding.

The last approach refers to a classic trie structure that was originally designed
for storing a collection of strings over a given alphabet S. A trie is a multi-way
ordered tree. Each edge is labeled with a letter of the alphabet. There is one node
for every common prefix, which can be read by scanning edge labels on the path
from the tree root to this node. All leaves and some internal nodes are marked
as terminating, since they are associated with prefixes that belong to S. There
are two important advantages of a trie structure. The search time is logarithmic
with a single letter comparison, not a string comparison, as a basic operation.
The structure is more efficient than a list of strings or a balanced tree when large
collections are considered. Actually, the difference in search time between a trie
and a BST tree decrease with an increase of average number of children of a trie
node. Although references used to build nodes involve additional memory, trie
remains a very compact structure.

In our case, we assume some linear ordering in C, order elements of each at-
tribute set and treat it as a string of attributes. Now, the attribute set collection
Lk−1 can be stored in a trie tree. Notice that all terminating nodes are leaves,
since all attribute sets have the same cardinality k − 1.

The original structure has been adopted to meet the requirements of the
algorithm. First of all, it is unnecessary to store attribute sets explicitly, while
they are once inserted to the tree. Information on the covcount value of an
attribute set can be saved in an appropriate terminating node. Secondly, we
have decided to use a balanced tree for storing the references from each node to
its children. It allows us to conveniently traverse subsets in candidate generation
stage. In fact, each two sets that can be joined share a parent node at the last
but one level. Thus, it is possible to perform this step in the same way like
using a vector. It is also advisable to use this approach for data sets with a large
number of possible attributes |C|, e.g. gene expression data (1k-10k attributes).
Another option is to store children in a hash table. This solution also ensures
an efficient memory usage and outperforms dynamic structures for reasonably
small |C|. However, it is less efficient when candidate generation is concerned.

128 P. Terlecki and K. Walczak

Fig. 2. A modified trie tree for the exemplary collection Lk−1. Each path from the
root to a leaf refers to an attribute set from this collection. Ovals denote internal nodes
and rectangles - terminal nodes. The values of covcount of respective attribute sets are
given in terminal nodes.

Let us consider the set of possible attributes C = {a, b, c, d, e}, the collection
Lk−1 = {{a, b, c}, {a, b, e}, {a, c, e}, {b, c, e}, {b, d, e}, {c, d, e}} and the covcount
values for these attribute sets: 4, 7, 8, 7, 9, 5, respectively. A modified trie tree
for this collection is presented in Fig. 2.

Let us consider a set {b, c, e}. Its covcount value can be found in the tree by
going three levels down. Since all attribute sets have the same size, the average
cost of accessing a factual member of a collection Lk−1 is similar. On the other
hand, when a given set do not belong to a collection, the computation is shorter,
e.g. finding a set {a, d, e} requires visiting only tow levels.

To sum up, we have used a trie structure in order to get a more economical
representation of an attribute set collection and to assure a logarithmic search
time. It is worth mentioning that a trie structure remains a basis for many con-
temporary structures proposed for transaction databases, mainly in association
rules and pattern mining. For example, support calculations in Apriori algo-
rithm are often optimized by means of itemset trees (Agrawal & Srikant 1994).
On the other hand, a FP-growth algorithm (Han, Pei & Yin 2000) is completely
based on another trie-like structure, a frequent pattern tree (FP-Tree). Inter-
esting solutions, involving various modifications of a pattern tree (P-Tree), have
been proposed for mining jumping emerging patterns (Bailey, Manoukian & Ra-
mamohanarao 2002), strong emerging patterns (Fan & Ramamohanarao 2006)
and chi emerging patterns (Fan & Ramamohanarao 2003).

7 Pruning Efficiency Testing

When we deal with a NP -hard problem, the time cost of algorithms depends
strongly on the structure of input data. Thus, we resigned from a comparison
with other classic methods and focused mainly on proving the efficiency of our
pruning approach in reducing the search space.

Input information systems (Table 3), originating from (D.J. Newman & Merz
1998), are provided with a preliminary hardness assessment. The size of the
search space indicates how many sets have to be examined by an exhaustive ap-
proach. On the other hand, the minimal reduct length shows when an apriori-like

Attribute Set Dependence in Reduct Computation 129

Table 3. Dataset characteristics

Name
Number of Number of Size of the Minimal |RED| |RC|

objects attributes search space reduct length

austra 690 15 3.0e+04 4 13 7
diab 768 9 5.0e+02 3 27 18
dna 500 21 2.0e+06 9 577 50
geo 402 11 2.0e+03 7 1 7

heart 270 14 1.0e+04 3 55 26
lymn 148 19 5.0e+05 9 132 45

mushroom 8124 23 8.0e+06 15 1 15
vehicle 846 19 5.0e+05 3 1714 240

zoo 101 17 1.0e+05 11 7 12

algorithm starts to find minimal reducts. The time cost of covcount computa-
tion for a given attribute set is determined by the size of RC and the number of
attributes.

Table 4 contains experimental results. Our algorithm (Algorithm 1) is com-
pared with a similar apriori-like algorithm (Algorithm 2), which prunes the can-
didate collection only with reducts found so far. In other words, we use as a
reference an algorithm based on Theorem 2, that is weaker than Theorem 4.

The results advocate the efficiency of our pruning approach. First of all, the
sets generated by Algorithm 1 constitute only a small region of the respective
search space. More precisely, in the considered cases ISC contains less sets by
1-2 orders of magnitude. Secondly, a comparison with Algorithm 2 shows that
Theorem 4 has significantly better pruning properties than Theorem 2. Last
but not least, Algorithm 2 is more prone to data set characteristics such as
the minimal reduct length and the number of reducts related to the size of the
search space. These parameters determine the frequency of pruning. Conversely,
the performance of our algorithm depends more on the characteristics of more
numerous and diversified collection MISC.

Table 4. Experimental results for pruning efficiency testing

Dataset
Algorithm 1 Algorithm 2

Generat. Pruned by Pruned by covcount Membership Generat. covcount
sets Theorem 5 Theorem 6 comput. tests sets comput.

austra 476 64 179 297 500 28855 28825
diab 205 22 45 160 209 288 264
dna 157220 868 59585 97635 526204 2060148 2057656
geo 165 34 0 165 201 2035 2033

heart 1259 130 473 786 1713 7615 7446
lymn 38840 203 1908 36932 175599 517955 515191

mushroom 32923 148 0 32923 180241 8388479 8388353
vehicle 11795 2112 3518 8277 24982 91916 84796

zoo 7910 40 189 7721 30686 130991 130903

130 P. Terlecki and K. Walczak

The time cost is described by two dominant operations: covcount computa-
tion and testing the membership of a set in a collection. As a result of stronger
space reduction the number of covcount computations performed by Algorithm 1
is much lower in comparison to Algorithm 2, often by 1-2 orders of magni-
tude. Moreover, we do not compute covcount for these generated sets, which are
pruned by a condition based on Theorem 6. In presented data sets this condition
holds more often than the one based on Theorem 5.

8 Execution Time Testing

Section 7 gives insights on efficiency of pruning based on attribute set depen-
dency in terms of operation numbers. However, when algorithms use quite dif-
ferent basic operations or the operations are differently implemented it is hard
to use such an approach to compare their overall performance. Therefore, we
have decided to perform additional tests on execution time.

We study time efficiency of our algorithm implemented with three different
structures for storing a collection Lk−1: a vector, a balanced tree and a trie tree.

All the algorithms are implemented with common data structures derived from
basic types of Java 1.5. Tests have been performed on Intel Pentium M 1.5GHz
with 512MB of RAM, switched to a stable maximum performance, using the
Windows XP operating system and Sun JRE 1.5.0.06. We have repeated execu-
tions for each data set and each method to obtain a reliable average execution
time.

The results are given in Table 5. As we can see, the approach based on vector
tends to be slower when the algorithm performs many membership tests related
to the number of generated sets (dna, lymn, mushroom, vehicle, zoo). On the
other hand, both solutions that employ tree structures behave similarly. However,
in case of a trie tree, common prefixes are represented in a compact way, which
makes it a more economical structure in terms of memory.

Table 5. Experimental results for execution time testing [ms]

Dataset
Algorithm 1 Algorithm 1 Algorithm 1

with an array with a balanced BST with a trie

austra 2179 2183 2180
diab 277 263 267
dna 753534 525816 523693
geo 163 153 153

heart 624 664 607
lymn 29876 7354 7624

mushroom 129092 113323 114611
vehicle 4122 2897 2941

zoo 1131 270 313

Attribute Set Dependence in Reduct Computation 131

9 Summary

In the paper we have proposed an apriori-like algorithm for the reduct set prob-
lem. It employs a novel pruning method based on the notion of attribute set
dependence. We have demonstrated that supersets of the independent set collec-
tion (ISC) cannot be reducts. Moreover, it has been explained how to efficiently
perform a pruning test and avoid maintaining ISC.

According to operation-wise tests, introduction of a new pruning approach
reduces greatly the search space and the number of discernibility computations
for attribute sets, important aspects when large databases are concerned. The
execution time tests indicate that the algorithm performs relatively faster when
an attribute set collection is implemented by means of dynamic structures: a
balanced BST tree or a trie tree, rather than by means of a vector. Since a trie
structure takes advantage of common prefixes, it tends to be more compact and
temporary collections are less probable to exceed memory limits.

An apriori-like scheme used for candidate set generation allows efficiently to
infer about set dependence and prune large regions of the search space. How-
ever, such an approach precludes the use of discernibility pruning conditions. In
fact, a different space traversing employing method combined of both pruning
approaches may perform better. On the other hand, the presented ideas can be
adopted in a natural way for finding other types of reducts, i.e reducts related
to a decision or approximate reducts. In future work we plan to address both
these issues.

References

Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases.
In: VLDB 1994, pp. 487–499 (1994)

Bailey, J., Manoukian, T., Ramamohanarao, K.: Fast algorithms for mining emerg-
ing patterns. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS
(LNAI), vol. 2431, pp. 39–50. Springer, Heidelberg (2002)

Bazan, J., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewski, J.: Rough set algo-
rithms in classification problem. Rough set methods and applications: new develop.
in knowl. disc. in inf. syst., 49–88 (2000)

Newman, D.J., Hettich, S., Merz, C.: UCI repository of machine learning databases
(1998)

Fan, H., Ramamohanarao, K.: Efficiently mining interesting emerging patterns. In:
Dong, G., Tang, C.-j., Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 189–201.
Springer, Heidelberg (2003)

Fan, H., Ramamohanarao, K.: Fast discovery and the generalization of strong jumping
emerging patterns for building compact and accurate classifiers. IEEE Transactions
on Knowledge and Data Engineering 18(6), 721–737 (2006)

Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In:
SIGMOD 2000: Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pp. 1–12. ACM Press, New York (2000)

Hu, X., Lin, T.Y., Han, J.: A new rough sets model based on database systems. In:
Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI),
vol. 2639, pp. 114–121. Springer, Heidelberg (2003)

132 P. Terlecki and K. Walczak

Kryszkiewicz, M.: The Algorithms of Knowledge Reduction in Information Systems.
PhD thesis, Warsaw University of Technology (1994)

Kryszkiewicz, M., Cichon, K.: Towards scalable algorithms for discovering rough
set reducts. In: Peters, J.F., Skowron, A., Grzyma�la-Busse, J.W., Kostek, B.z.,
Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS,
vol. 3100, pp. 120–143. Springer, Heidelberg (2004)

Lin, T.: Rough set theory in very large databases. In: Proc. of CESA IMACS 1996,
Lille, France, vol. 2, pp. 936–941 (1996)

Nguyen, H.S.: Scalable Classification Method Based on Rough Sets (2002)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sci-

ences 11, 341–356 (1982)
Semeniuk-Polkowska, M., Polkowski, L.: Conjugate information systems: Learning cog-

nitive concepts in rough set theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.)
RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 255–258. Springer, Heidelberg (2003)

Skowron, A., Rauszer, C.: The discernibility matrices and functions in information
systems. In: Slowinski, R. (ed.) Intelligent Decision Support, pp. 331–362. Kluwer,
Dordrecht (1992)

Swiniarski, R.W.: Rough set methods in feature reduction and classification. Interna-
tional Journal of Applied Mathematics and Computer Science 11(3), 565–582 (2001)

Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition.
Pattern Recognition Letters 24(6), 833–849 (2003)

Terlecki, P., Walczak, K.: On the relation between rough set reducts and jumping
emerging patterns. Information Sciences (2006) (to be published)

Wang, Y.: On cognitive informatics. icci 00, 34 (2002)
Wroblewski, J.: Finding minimal reducts using genetic algorithm. In: Proc. of the 2nd

Annual Join Conference on Information Sciences, pp. 186–189 (1995)
Wu, Q., Bell, D.A., McGinnity, T.M.: Multiknowledge for decision making. Knowl. Inf.

Syst. 7(2), 246–266 (2005)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 133–144, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A General Model for Transforming Vague Sets into
Fuzzy Sets

Yong Liu1, Guoyin Wang1,2, and Lin Feng2,3

1 Institute of Computer Science and Technology, Chongqing University of Posts and
Telecommunications, Chongqing, 400065, P. R. China

{liuyong,wanggy}@cqupt.edu.cn
2 School of Information Science and Technology, Southwest Jiaotong University, Chengdu,

610031, P.R. China
3 Department of Engineering and Technology, Sichuan Normal University, Chengdu,

610072, P.R. China
mgyfl@tom.com

Abstract. The relationship between vague sets and fuzzy sets are analyzed in this
paper. A general model for transforming vague sets into fuzzy sets is proposed.
The transformation of a vague set into a fuzzy set is proved to be a many-to-one
mapping relation. The validity of this transformation model is also discussed. It
establishes a mathematical relationship between the vague set theory and fuzzy
set theory.

Keywords: Fuzzy sets, Vague sets, Membership function, Transformation-
model.

1 Introduction

Since the theory of fuzzy sets [1] was proposed in 1965, it has been applied in
many uncertain information processing problems successfully. A fuzzy set F of
an universe of discourse },,,{ 21 nuuuU L= is a set of ordered pairs

))}(,(,)),(,()),(,{(2211 nFnFF uuuuuu μμμ L , where
Fμ is the membership function of

the fuzzy set F ,]1,0[: →UFμ , and)(iF uμ is the membership of iu belonging to F . It

is obvious that).1)(0(≤≤∀ ∈ iFUu u
i

μ

In the type 2 fuzzy sets theory [2], there is a membership function that maps a set X
to an interval [0,1]. A type 2 fuzzy set is a φ -fuzzy set or interval-valued fuzzy set.

Such an interval-valued fuzzy set [3] is characterized by a membership function

)(xFμ , Xx∈ , which assigns to each object a grade of membership which is a con-

tinuous interval of real numbers in [0,1], rather than a single value. In [4], Gau and
Buehrer also assigned to each object a grade of membership which is a subinterval of
[0,1].

Quinlan [5] introduced two values,)(Pt and)(Pf , characterizing a proposition P .

)(Pt is the greatest lower bound of the probability of P derived from the evidence for

134 Y. Liu, G. Wang, and L. Feng

P and)(Pf is the greatest lower bound of the probability of ~ P derived from the

evidence against P .
In [4], Gau and Buehrer pointed out that a single value)(iF uμ combined the evi-

dence for Uui ∈ and the evidence against Uui ∈ (Uui ∉), without indicating how much

there was of each, could not tell us anything about its accuracy. Therefore, they pro-
posed the concept of vague sets and compared it with the other interval-valued fuzzy
sets. Grattan-Guiness [6] defined an interval containment in a natural way, that is

],[],[dcba ≤ iff ca ≥ and db ≤ . Gau and Buehrer also defined a vague set contain-

ment in another way [4]. A membership of a vague set is a subinterval of [0,1]. It in-
cludes three kinds of information about an element),(Ux∈ that is, support degree,

against degree and unsure degree.
Vague sets are more accurate for describing some vague information than fuzzy sets

[7, 8, 9, 10, 11]. Many researchers are interested in the vague sets theory in recent years,
and have some good results [12, 13, 14, 15, 16]. Similarity measures between vague sets
and between elements are studied in [12, 14] and Multicriteria fuzzy decision-making
problems based on vague set theory is proposed in [16]. Several methods have been de-
veloped for transforming vague sets into fuzzy sets in order to study the properties of
vague sets and the relationship between vague sets and fuzzy sets [17, 18, 19].

In this paper, the relationship between vague sets and fuzzy sets is analyzed and the
problem of transforming vague sets into fuzzy sets is also studied. It is found to be a
many-to-one mapping relation to transform a vague set into a fuzzy set. A new general
model for transforming vague sets into fuzzy sets is proposed. The two transformation
methods developed by F Li in [8] are proved to be two special cases of this general
transformation model. The validity of this transformation model is also discussed. This
general transformation model could be used in uncertain information processing systems,
especially in vague information systems. It could transform vague information systems
into fuzzy information systems. Fuzzy knowledge could then be further extracted.

The rest of this paper is organized as follows. In section 2, we introduce the defini-
tion of vague sets. In section 3, we discuss about some existed methods for trans-
forming vague sets into fuzzy sets. In section 4, we propose a new general model for
transforming vague sets into fuzzy sets, and prove its properties. In section 5, the va-
lidity of the general transformation model is explained by examples. In section 6, some
conclusions are drawn.

2 Vague Set

Definition.1 [4] (vague set) Let U be a space of points(objects), with a generic element
of U denoted by u . A vague set A in U is characterized by a truth-membership
function)(ut A

 and a false-membership function)(uf A
,)(ut A

 is a lower bound on the

grade of membership of u derived from the evidence for u , and)(uf A
 is a lower

bound on the negation of u derived from the evidence against u . Both)(ut A
 and

)(uf A
 associate a real number in the interval [0,1] with each point in U , where

1)()(≤+ ufut AA
.

 A General Model for Transforming Vague Sets into Fuzzy Sets 135

That is,

].1,0[:

],1,0[:

→
→

Uf

Ut

A

A

When U is continuous , a vague set A can be written as

 uduufutA A

U

A /)](1),([∫ −= .

When U is discrete, a vague set A can be written as

iiA

n

i
iA uufutA /)](1),([

1
∑
=

−= .

Here, [)(1),(ufut AA −] is the vague value of an element u .

The vague set theory can be interpreted using a voting model. Suppose that A is a
vague set in U , Uu ∈ , and the vague value is [0.6,0.8], that is, 6.0)(=ut A

,

2.08.01)(=−=uf A
. Then, we can say that the degree of Au∈ is 0.6, and the degree of

Au∉ is 0.2. The vague value [0.6,0.8] can be interpreted as “the vote for a resolution
is 6 in favor, 2 against, and 2 abstentions(The number of total voting people is assumed
to be 10)”.

3 Related Methods for Transforming Vague Sets into Fuzzy Sets

F Li proposed two methods for transforming vague sets into fuzzy sets[17]. For the
convenience of illustration, we call them Method 1 and Method 2 respectively.

Method 1[17]:)(UVA∈∀ ()(UV is all vague sets of the universe of discourse U),

let Uu∈ , and its vague value is)](1),([ufut AA − , then the fuzzy membership function of

u to FA (FA is the fuzzy set corresponding to the vague set A) is defined as:

2

)()(1
2/)]()(1[)(

ufut
ufutut AA

AAAAF

−+=−−+=μ . (1)

The Method 1 can be interpreted using the following voting model: value ”1” means

the vote for a resolution of favor, while ”0” for against, and ”0.5” for abstention. For
example, a vague value [0.3, 0.7] means that the vote for a resolution is 3 in favor, 3
against, and 4 abstentions. It corresponds to a fuzzy membership value (3 × 1 + 4 × 0.5
+ 3 × 0)/10 = 0.5.

The Method 1 is simple in problem solving. However, some information might be
lost when it is used to describe some special cases. In the Method 1, the fuzzy mem-
bership value for abstention is assigned to be "0.5". The influence of other voting
values (favor or against) are not considered. In the above example, it is reasonable to
assign the value "0.5" to the 4 abstention persons' voting attitude since the voting for
against is equal to that for favor. Now, let’s look at another example. If the vote for a
resolution is 8 in favor, 1 against, and 1 abstention. Usually, the attitude of a person
voting for abstention might not be absolutely neutral. His/Her attitude might be influ-
enced by the other voting people. It is more likely that he/she might tend to vote in favor
instead of against in this case, since there are more affirmative votes than negative
votes. It is unreasonable to assign ”0.5” to the abstentions in this case.

136 Y. Liu, G. Wang, and L. Feng

F Li proposed another method(Method 2) for solving this problem.
Method 2[17]:)(UVA∈∀ ()(UV is all vague sets of the universe of discourse

U), let Uu ∈ , and its vague value is)](1),([ufut AA − , then the fuzzy membership

function of u to FA (FA is the fuzzy set corresponding to the vague set A) is de-
fined as:

)()(

)(
)]()(/[)()]()(1[)(

ufut

ut
ufututufutut

AA

A
AAAAAAAF

+
=+⋅−−+=μ (2)

There will be some unreasonable problems for some special cases when this method
is used to transform vague sets into fuzzy sets. For example, a vague value [0,0.2], in
this voting model, there are 0 vote in favor, 8 against. The abstention persons’ voting
attitude might tend to vote against instead of in favor since there are much more nega-
tive votes than affirmative votes. However, the abstention persons’ favorite voting at-
titude in this model is 0. It means that abstention persons’ voting attitude is absolutely
against. Obviously, it is unreasonable. For this reason, Z G Lin proposed a new trans-
formation method in [18]. We call it Method 3 in this paper.

Method 3 [18]:)(UVA∈∀ ()(UV is all vague sets in the universe of discourse U),

let Uu∈ , and its vague value is)](1),([ufut AA − , then the fuzzy membership function

of u to FA (FA is the fuzzy set corresponding to the vague set A) is defined as :

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≤<
+
−

+•−−+

≤<
+

•−−+

=
+

−
•−−+

=

1)(5.0)
)()(

5.0)(
5.0()]()(1[)(

5.0)(0
)()(

)(
)]()(1[)(

0)(
)()(

)(1
)]()(1[)(

ut
ufut

ut
ufutut

ut
ufut

ut
ufutut

ut
ufut

uf
ufutut

A
AA

A
AAA

A
AA

A
AAA

A
AA

A
AAA

AFμ

(3)

Let’s consider the following cases using this model.
Case 1 : 0)(=ut A

, there is 0 vote in favor, the abstention persons’ favorite voting

attitude will be
)(

)(1
)](1[

uf

uf
uf

A

A
A

−
⋅− .

Case 2: 5.0)(0 ≤< ut A
, the Method 3 is the same as the Method 2.

Case 3: 1)(5.0 ≤< ut A
, the abstention persons’ favorite voting attitude will be

)
)()(

5.0)(
5.0()]()(1[

ufut

ut
ufut

AA

A
AA +

−
+⋅−− . In this case, the abstention persons’ voting at-

titude will tend to vote in favor instead of against since there are more affirmative votes
than negative ones.

The Method 3 is an improvement of the Method 1 and Method 2. Lin illuminated the
validity of this method. However, we find that there are still some unreasonable cases in
this model. Let’s look at the following example.

Example 1:)(UVA∈∀ , if u = [0, 0.9], the fuzzy membership values of u to FA

using the above three transformation methods are shown in Table 1.

 A General Model for Transforming Vague Sets into Fuzzy Sets 137

Table 1. Fuzzy values generated by the Methods 1, 2 and 3

Fuzzy Value
Vague Value

Method 1 Method 2 Method 3
[0,0.9] 0.45 0 8.1

The domain of FA
μ is between 0 and 1. So, we know 1.8=FA

μ resulted from the

Method 3 is incorrect.
There will be some problems when the Method 3 is used to calculate the fuzzy

membership when 0)(=utA
. If 0)(=utA , we know that FA

μ should satisfy the fol-

lowing conditions according to formula (3):

⎪⎩

⎪
⎨
⎧

−
=

+
−

•−−+=

−≤≤

)(

)](1[

)()(

)(1
)]()(1[)(

)(10
2

uf

uf

ufut

uf
ufutut

uf

A

A

AA

A
AAAA

AA

F

F

μ

μ

Then, we could have),(1
)(

))(1(2

uf
uf

uf
A

A

A −≤
−

Thus,
2

1
)(≥uf A

.

Since],1,0[)(∈uf A then, 1)(
2

1 ≤≤ uf A
.

So, if 0)(=utA
 and 1)(

2

1 ≤≤ uf A
, the Method 3 will be reasonable.

If 0)(=ut A
 and

2

1
)(0 <≤ uf A

, it will be unreasonable.

4 A General Model for Transforming Vague Sets into Fuzzy Sets

In this section, we will analyze the mapping relation between the elements of vague sets
and the points on a plane, and propose a general model for transforming vague sets into
fuzzy sets.

)(UVA∈∀ , u is an element in a universe of discourse U . Its vague value is

)](1),([ufut AA − . We take)(utA
 and)(uf A

 as the axes of ordinate and abscissa re-

spectively on a plane.
Here, 1)(0 ≤≤ utA

, 1)(0 ≤≤ ufA
, and 1)()(≤+ ufut AA

.

So, each element of a vague set A can be mapped to a point on the plane. All points
are in the area of the triangle OAB of Fig.1.

All elements of a vague set A can be shown in the area of the isosceles right-angle
triangle AOB of Fig.2. It is obvious that |OA|=|OB|=1. All points on the border line
segment AB correspond to fuzzy values. These points’ coordinates satisfy

1)()(=+ ufut AA . Each point on the line segment OA corresponds to a vague value

138 Y. Liu, G. Wang, and L. Feng

Fig. 1. The mapping between vague values and points on a plane

with a false membership of zero, that is, 0)(=uf A
. Each point on the line segment OB

corresponds to a vague value with a truth membership of zero, that is, 0)(=ufA
.

In Fig.2, the radial OC is the bisector of the first quadrant. The point C is the in-
tersection point of the radial OC and the line segment AB. It is obvious that

)()(ufut AA = for all points on the line segment OC. The point C corresponds to a

vague value[0.5, 0.5]. By intuitive understanding, we can assign all points on the line
OC the same fuzzy membership value 0.5 as the point C. In a voting model, the at-
titude of a person voting for abstention might not always be absolutely neutral.
His/Her attitude might be influenced by the others. It is more likely that he/she might
tend to vote in favor instead of against when there are more affirmative votes than
negative ones, while vote against instead of favor when there are more negative votes
than affirmative ones.

In Fig.2, in order to map the same fuzzy membership value 0.5 to all points on the
line segment OC, we extend the line segment CO to D(it will be discussed later about
how to choose the point D). We scan the triangle AOB with a radial l . D is the end
point of l . The line segment FG is the intersection of the radial l and the triangle
AOB. We assign all points on the line segment FG the same fuzzy membership value as
the point G. Assume that the length of the line segment OD is ,λ that is, ,|| λ=OD

0≥λ . When the point G moves from point A to B along the line segment AB, the

radial l will exactly scan the whole triangle AOB. We can transform all vague values
into fuzzy values in this way. In this method, it is more possible that a person voting for
abstention might tend to vote in favor instead of against when there are more affirma-
tive votes than negative ones, while vote against instead of favor when there are more
negative votes than affirmative ones.

According to the above discussion, we could develop a general model for transforming
vague sets into fuzzy sets(Method 4).)(UVA∈∀ , where)(UV is all vague sets in a

universe of discourse .U ,Uu∈∀ and the vague value is)](1),([ufut AA − . Let λ be the

 A General Model for Transforming Vague Sets into Fuzzy Sets 139

Fig. 2. A general model for transforming vague values into fuzzy values

length of the line segment OD in Fig.2, and 0>λ . The fuzzy membership function of u
to FA (FA is the fuzzy set corresponding to the vague set A) is defined as :

)]()(1][
2)()(

)()(
1[

2

1
)(ufut

ufut

ufut
ut AA

AA

AA
AAF −−

++
−++=

λ
μ (4)

In Fig.2, when we transform vague sets into fuzzy sets, we assign the vague values
of all points on the line segment FG to the same fuzzy membership value of the point G.
The above formula (4) is thus derived.

From formula (4), we can find that it is more possible that a person voting for ab-
stention might tend to vote in favor instead of against when there are more affirmative
votes than negative ones, while vote against instead of favor when there are more
negative votes than affirmative ones.

According to the formula (4), we can calculate the limits of
FA

μ when 0→λ and
+∞→λ respectively, that is,

)()(

)(

)]()(1][
02)()(

)()(
1[

2

1
)(

)]}()(1][
2)()(

)()(
1[

2

1
)({limlim

00

ufut

ut

ufut
ufut

ufut
ut

ufut
ufut

ufut
ut

AA

A

AA
AA

AA
A

AA
AA

AA
AAF

+
=

−−
×++

−+×+=

−−
++

−+×+=
→→ λ

μ
λλ

140 Y. Liu, G. Wang, and L. Feng

2

)()(1

)]()(1][
20

0
1[

2

1
)(

)]}()(1][
2

)()(

)()(

1[
2

1
)({

)]}()(1][
2)()(

)()(
1[

2

1
)({

lim

limlim

ufut

ufutut

ufut
ufut

ufut

ut

ufut
ufut

ufut
ut

AA

AAA

AA
AA

AA

A

AA
AA

AA
AAF

−+=

−−
+

+×+=

−−
++

−

+×+=

−−
++

−+×+=

+∞→

+∞→+∞→

λ

λ

λ
μ

λ

λλ

It is obvious that the Method 1 and 2 by F Li are two special cases of our general
model when +∞→λ and 0→λ respectively. Furthermore, we could analyze the
effect of the length of the line segment OD (λ) for transforming vague values into
fuzzy values.

Theorem 3.1. In Method 4, if)()(ufut AA > , then

).
)()(

)(
,

2

)()(1
)((

ufut

utufut
ut

AA

AAA
AAF +

−−
+∈μ

Proof:
2]2)()([

)]()(1[)]()([

λλ
μ

++
−−⋅−

−=
ufut

ufutufut

d

d

AA

AAAAAF

.

If)()(ufut AA > , then 0≤
λ
μ
d

d FA .

Thus,
FA

μ descends monotonically with λ .

Since
)()(

)(
lim

0 ufut

ut

AA

A

AF

+
=

→
μ

λ

, and
2

)()(1
)(lim

ufut
ut AA

AAF

−−
+=

+∞→
μ

λ

,

then,).
)()(

)(
,

2

)()(1
)((

ufut

utufut
ut

AA

AAA
AAF

+
−−

+∈μ

The greater the value of λ is, the smaller the value of
FA

μ will be. A person voting

for abstention might tend to vote less favorably if λ is greater. It is obvious that the
voting tendency of a person voting for abstention tends to vote in favor if)()(ufut AA >

according Theorem 3.1.
Theorem 3.2. In Method 4, if)()(ufut AA < , then

).
2

)()(1
)(,

)()(

)(
(

ufut
ut

ufut

ut AA
A

AA

A
AF

−−
+

+
∈μ

Proof:
2]2)()([

)]()(1[)]()([

λλ
μ

++
−−⋅−−=

ufut

ufutufut

d

d

AA

AAAAAF

.

If)()(ufut AA < , then 0≥
λ
μ
d

d FA .

 A General Model for Transforming Vague Sets into Fuzzy Sets 141

Thus,
FA

μ increases monotonically with λ .

Since
)()(

)(
lim

0 ufut

ut

AA

A
AF

+
=

→
μ

λ

, and

2

)()(1
)(lim

ufut
ut AA

AAF

−−
+=

+∞→
μ

λ

,

then).
2

)()(1
)(,

)()(

)(
(

ufut
ut

ufut

ut AA
A

AA

A
AF

−−
+

+
∈μ

The greater the value of λ is, the greater the value of FA
μ will be. A person voting

for abstention might tend more to vote in favor if λ is greater. It is obvious that the
voting tendency of a person voting for abstention is likely to vote against if

)()(ufut AA < according to Theorem 3.2.

Theorem 3.3. In Method 4,)(, UVBA ∈∀ ()(UV is all vague sets in the universe of

discourse U), if BA ⊆ then FF BA ⊂ (FA , FB are the fuzzy sets corresponding to

the vague sets A and B).
Proof: Since BA ⊆ ,

 then Uu∈∀ ∧≤)()((utut BA)).(1)(1 ufuf BA −≤−

 So, ,0)()(≤− utut BA ,0)()(≤− ufuf AB),()()()(ufutufut ABBA ≤

)]()(1][
2)()(

)()(
1[

2

1
)(ufut

ufut

ufut
ut AA

AA

AA
AAF −−

++
−

++=
λ

μ ,

)]()(1][
2)()(

)()(
1[

2

1
)(ufut

ufut

ufut
ut BB

BB

BB
BBF −−

++
−

++=
λ

μ .

 Then, =− FF BA
μμ −−−

++
−

++)]()(1][
2)()(

)()(
1[

2

1
)(ufut

ufut

ufut
ut AA

AA

AA
A λ

)]}()(1][
2)()(

)()(
1[

2

1
)({ ufut

ufut

ufut
ut BB

BB

BB
B −−

++
−

++
λ

=
]2)()(][2)()([

)]()()()()()(2)()(2[

λλ
λ

++++
−+−+−

ufutufut

ufufutututufufut

BBAA

ABBABABA

]2)()(][2)()([

)]()()()([2 2

λλ
λ

++++
−+−

+
ufutufut

ufufutut

BBAA

ABBA

]2)()(][2)()([

)()()()(

λλ ++++
−+

ufutufut

ufutufut

BBAA

ABBA 0≤ .

That is, FF BA ⊂ .
In the process of transforming vague values into fuzzy values, the value of λ is the

length of the line segment OD. It adjusts the influence degree of the voting tendency of
persons voting for abstention affected by the others.

In this general transformation model, if there are more affirmative votes than nega-
tive ones, and the value of λ is much greater, the voting tendency of a person voting

142 Y. Liu, G. Wang, and L. Feng

for abstention to favor will be less. If there are more negative votes than affirmative
ones, and the value of λ is much greater, the voting tendency of a person voting for
abstention to against will be less. The result of our general transformation model is
always reasonable in any case.

5 Case Study for the General Transformation Model

λ is assigned to be 1 in the general transformation model in order to compare it with
the other transformation methods. Thus, we can have the Method 4 from our general
transformation model.

Method 4:)(UVA∈∀ ()(UV is all vague sets in the universe of discourse U), let

Uu ∈ , and its vague value is)](1),([ufut AA − , then the fuzzy membership function of

u to FA (FA is the fuzzy set corresponding to the vague set A) is defined as:

)]()(1][
2)()(

)()(
1[

2

1
)(ufut

ufut

ufut
ut AA

AA

AA
AAF −−

++
−

+×+=μ (5)

In order to compare it with the other methods, the 3 examples used by Cai [8] are
considered here.

Example 2:)(UVA∈∀ , let u be an element in the universe of discourse U , it’s

vague value be [0, 0.9], the fuzzy membership values of u to FA generated by the
four transformation methods are shown in the 1st line of Table 2.

Table 2. Comparative results of Methods 1, 2, 3, and 4

Fuzzy Value
Vague Value

Method 1 Method 2 Method 3 Method 4
[0,0.9] 0.45 0 8.1 0.429
[0,0.3] 0.15 0 0.129 0.111
[0.9,1] 0.95 1 0.994 0.966

Obviously, the result of the Method 4 is reasonable. It is similar with the result of the
Method 1. The results of the Method 2 and Method 3 are unreasonable.

Example 3:)(UVA∈∀ , let u be an element in the universe of discourse U , it’s

vague value be [0, 0.3], the fuzzy membership values of u to FA generated by the four
transformation methods are shown in the 2nd line of Table 2.

In the Method 2, the voting tendency of a person voting for abstention is absolutely
against. It is unreasonable. The result of the Method 4 is similar with the results of the
Method 1 and 3. It is rather reasonable.

Example 4:)(UVA∈∀ , let u be an element in the universe of discourse U , it’s

vague value be [0.9, 1], the fuzzy membership values of u to FA generated by the four
transformation methods are shown in the 3rd line of Table 2.

It is unreasonable that the voting tendency of a person voting for abstention is taken
as absolutely in favor in the Method 2. The results of the Method 4, Method 1 and

 A General Model for Transforming Vague Sets into Fuzzy Sets 143

Method 3 are reasonable. The results of the Method 4 and Method 3 are much better
than that of Method 1, since the voting tendency of a person voting for abstention has
no relation with the other people in the Method 1.

Now, let’s analyze the effect of the parameter λ on the fuzzy membership of
u to FA .

Example 5:)(UVA∈∀ , let u be an element in the universe of discourse U , and

it’s vague value be [0.2, 0.7], the fuzzy membership values of u to FA generated by the
Method 4 with different values sλ are shown in Table 3.

Table 3. Fuzzy values generated by the Method 4 with different λ

λ 0.5 0.8 10
Fuzzy Value 0.433 0.438 0.449

The vague value [0.2, 0.7] can be interpreted as “the vote for a resolution is 2 in
favor, 3 against, and 5 abstentions”. There are more negative votes than affirmative
ones. The greater the value of the parameter λ is, the higher the fuzzy membership of
u to FA will be. The voting tendency of favor of a person voting for abstention is in-
creasing with λ monotonically. In real applications, one can choose a suitable value
for the parameter λ according to the characteristics of the problem to be processed.

6 Conclusion

The relationship between vague sets and fuzzy sets is studied in this paper. The
many-to-one mapping relation for transforming a vague set into a fuzzy set is discov-
ered. A general model for transforming vague sets into fuzzy sets is also proposed. The
validity of this transformation model is analyzed. The two transformation methods
proposed by F Li in [17] are proved to be its two special cases. The transformation
method in [18] is found to be unreasonable for some special cases. The relationship
among vague sets, rough sets, fuzzy sets and other non-classical sets could also be
further studied in a similar way.

Acknowledgement. This paper is supported by National Natural Science Foundation
of P.R.China under grants No.60573068 and No.60773113, Program for New Century
Excellent Talents in University (NCET), Natural Science Foundation of Chongqing of
China under grant No.2008BA2017.

References

1. Zadeh, L.A.: Fuzzy sets. Information and Control 3(8), 338–353 (1965)
2. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic, New

York (1980)
3. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and information. Prentice-Hall, Engle-

wood Cliffs (1988)

144 Y. Liu, G. Wang, and L. Feng

4. Gau, W.L., Buehrer, D.J.: Vague sets. IEEE Transactions on Systems, Man and Cybemet-
ics 2(23), 610–614 (1993)

5. Quinlan, J.R.: Inferno: A cautious approach to uncertain inference. Computer J. 3(26),
255–268 (1983)

6. Grattan-Guiness, I.: Fuzzy membership mapped onto intervals and many-valued quantities.
Zeitschr. Math. Logik. and Grundlagen d. Math., Bd. 22, 149–160 (1975)

7. Xu, J.C., An, Q.S., Wang, G.Y., Shen, J.Y.: Disposal of information with uncertain bor-
derline-fuzzy sets and vague sets. Computer Engineering and Applications 16(38), 24–26
(2002) (in Chinese)

8. Cai, L.J., Lv, Z.H., Li, F.: A three-dimension expression of vague set and similarity measure.
Computer Science 5(30), 76–77 (2003) (in Chinese)

9. Li, F., Lu, A., Yu, Z.: A construction method with entropy of vague sets based on fuzzy sets.
Journal of Huazhong University of Science and Technology (Nature Science Edition) 9(29),
1–2 (2001) (in Chinese)

10. Li, F., Xu, Z.Y.: Measure of similarity between vague sets. Journal of Software 6(12),
922–926 (2001) (in Chinese)

11. Ma, Z.F., Xing, H.C.: Strategies of ambiguous rule acquisition from vague decision table.
Chinese Journal of Computers 4(24), 382–389 (2001) (in Chinese)

12. Chen, S.M.: Measures of similarity between vague sets. Fuzzy Sets and Systems 2(74),
217–223 (1995)

13. Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Sys-
tems 3(79), 403–405 (1996)

14. Chen, S.M.: Similarity Measures Between Vague Sets and Between Elements. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 1(27), 153–158 (1997)

15. Hong, D.H., Chul, K.: A note on similarity measures between vague sets and between ele-
ments. Information Sciences 115(1-4), 83–96 (1999)

16. Hong, D.H., Choi, C.H.: Multicriteria fuzzy decision-making problems based on vague set
theory. Fuzzy Sets and Systems 114(1), 103–113 (2000)

17. Li, F., Lu, Z.H., Cai, L.J.: The entropy of vague sets based on fuzzy sets. Journal of
Huazhong University of Science and Technology (Nature Science Edition) 1(31), 1–3
(2003) (in Chinese)

18. Lin, Z.G., Liu, Y.P., Xu, L.Z., Shen, Z.Y.: A method for transforming vague sets into fuzzy
sets in fuzzy information processing. Computer Engineering and Applications 9(40), 24–25
(2004) (in Chinese)

19. Li, F., Lu, A., Cai, L.J.: Fuzzy entropy of vague sets and its construction method. Computer
Applications and Software 2(19), 10–12 (2002) (in Chinese)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 145–160, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Quantifying Knowledge Base Inconsistency
Via Fixpoint Semantics

Du Zhang

Department of Computer Science
California State University

Sacramento, CA 95819-6021
USA

zhangd@ecs.csus.edu

Abstract. Inconsistency and its handling are very important in the real world
and in the fields of computer science and artificial intelligence. When dealing
with inconsistency in a knowledge base (KB), there is a whole host of deeper
issues we need to contend with in order to develop rational and robust intelli-
gent systems. In this paper, we focus our attention on one of the issues in cop-
ing with KB inconsistency: how to measure the information content and the
significance of inconsistency in a KB. Our approach is based on a fixpoint se-
mantics for KB. The approach reflects each inconsistent set of rules in the least
fixpoint of a KB and then measures the inconsistency in the context of the least
fixpoint for the KB. Compared with the existing results, our approach has some
unique benefits.

Keywords: inconsistency, fixpoint semantics, KB coherence, significance of
inconsistency.

1 Introduction

Inconsistency in knowledge and information is ubiquitous in the real world and in the
fields of computer science and artificial intelligence. Occurrences of inconsistency
often serve as an important indicator and trigger a whole host of possible cognitive
activities. In the context of an intelligent agent system, a crucial component is its
knowledge base (KB) that contains knowledge about a problem domain [2], [4], [8],
[21]. Inconsistency in a KB can affect the correctness and performance of an intelli-
gent system that deploys the KB.

When dealing with inconsistency in a KB, merely labeling the KB as consistent or
inconsistent (a binary delineation), and removing conflicting rules in the event that the
KB is inconsistent, is no longer adequate and may be counterproductive [15]. There
are circumstances where some inconsistent cases are considered more significant than
others. There are also circumstances where inconsistency is even deemed useful and
desirable [7]. Hence, we need to have a better understanding of the issues that under-
pins inconsistency before making the appropriate decisions with inconsistency in an
agent’s knowledge. There are the following dimensions for inconsistency:

146 D. Zhang

• What are the causes for inconsistency?
• What does inconsistency tell us with regard to each different circumstance?
• Where can inconsistency occur?
• How do we define and represent inconsistency?
• What types of inconsistency do we have to contend with?
• How do we identify inconsistency in knowledge?
• How do we measure and differentiate the significance of inconsistency?
• What can we do with inconsistency once it is identified and when to do something

about it?
• What are the circumstances under which inconsistency is considered useful and

desirable?

Fig. 1. Dimensions of KB inconsistency

It is important to understand what the aforementioned issues entail and what the
state-of-the-practice is in this research area. We will take a brief look at each of the
issues.

Causes for inconsistency. There are a number of causes for inconsistency. (1) Ontol-
ogy related reasons include: either the lack of explicit constraints in the ontology
specification (e.g., an ontology does not specify that animals and vegetables are mu-
tually exclusive and jointly exhaustive in living things), or the discrepancy in termi-
nology and its usage (e.g., complementary, mutual exclusive, or incompatible literals
are explicitly sanctioned in the KB, polysemy, or antonymy). (2) Epistemic conflicts
refer to the fact that different sources have different beliefs [16]. (3) Conflicting de-
faults in default reasoning [32]. (4) Lack of complete information, reliability of in-
formation source, or obsolescence of information [3]. (5) Assertion lifting. The need
for lifting or importing assertions from one context to another [20]. (6) Redundancy-
induced circumstances where some redundant rule is modified, but others do not [31].
(7) Defeasible inheritance induced [32].

What inconsistency tells us. The presence of inconsistency indicates the existence of
errors, disagreement, misunderstanding, miscommunication, or lack of information.

 Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics 147

Depending on the nature of inconsistency, resolution or tolerance actions will be in
order. It is important to bear in mind that the type of cognitive activities in reasoning
with inconsistent information needs to be commensurate with the nature and type of
inconsistency.

Where inconsistency occurs. Inconsistency can occur in many situations. Following
are some sample circumstances cited in [19]. (1) Diagnosis and testing. (2) Preference
elicitation. (3) Belief merging and revision (e.g., merging and revising KB from het-
erogeneous sources). (4) Group decision making (e.g., negotiation in multi-agent
systems, common sense reasoning in autonomic systems). The issue of inconsistency
has found its way into database systems, knowledge-based systems, agent and auto-
nomic systems, software engineering requirement specifications, and digital libraries
and search engines, to name a few.

Inconsistency definitions. In the context of knowledge-based systems, various defini-
tions have been given in the literature on inconsistency [9], [27], [30], [31]. In [15],
ten different inconsistency definitions were enumerated, covering the grounds from
classical logic (inconsistency as explosive reasoning, inconsistency as conflicting
inferences, inconsistency as inference of a contradiction formula, inconsistency as
trivial reasoning, and inconsistency as a lack of a model), to non-classical logics such
as multi-valued logics (inconsistency as an inconsistent truth value, and inconsistency
as delineated falsity), and to inconsistency under certain operational semantics (incon-
sistency as unrealisability, inconsistency as rule violation, and inconsistency as viola-
tion of normality). How to capture the essence of inconsistency in a single description
that unifies all of the aforementioned definitions remains an open issue.

Types of inconsistency. There are different ways to classify inconsistency. In [32],
inconsistency is examined from: different levels of granularity in knowledge, different
categories of knowledge, and different logic forms. There are eighteen syntactic cases
of inconsistency in rule-based systems in terms of complementary, mutually exclusive
and incompatible literals [30]. In a given context space [20], inconsistency can be
local within a context or global among several contexts. Temporally, it can be tran-
sient with regard to some instance(s) of the working memory in a knowledge-based
system or persistent for all of the working memory instances. There are logical con-
sistency and output consistency (whether the same set of inputs produces the same set
of outputs or several sets of outputs) [27].

How to identify inconsistency. Early work in rule-base verification and validation
treated inconsistency as specific deficiencies, and focused on devising algorithms to
detect them. The approaches were based on formalizing KB either in terms of some
graphical model [29] or as a quasi logic theory [9] or in some knowledge representa-
tion formalism [26]. Additional results and references can be found in [23].

How to handle inconsistency. Depending on the nature and the type of inconsistency,
we may just tolerate it, isolate it, or resolve it through uncertainty reasoning or meta-
level reasoning, or adopt certain inconsistency management strategy. Inconsistency
proves to be useful in directing reasoning, and in helping initiate argumentation, seeking

148 D. Zhang

additional information, multi-agent negotiation, knowledge acquisition and refinement,
and learning [15].

When to handle inconsistency. The timing for actions to be taken to resolve or toler-
ate inconsistency is yet another issue to be contending with. Immediate resolution of
inconsistency via removal of conflicting rules without proper deliberation may be
counterproductive, yielding loss of valuable information [15].

In this paper, our focus is on measuring the information content and the significance
of inconsistency in a KB. Our approach is based on a fixpoint semantics for KB. The
approach reflects each inconsistent set of rules in the least fixpoint of a KB and then
measures the inconsistency in the least fixpoint for the KB.

The rest of the paper is organized as follows. Section 2 summarizes the existing
work on measuring inconsistency. A brief overview is provided in Section 3 of the
fixpoint semantics for a KB and the inconsistency definition in the context of the
fixpoint semantics. Section 4 discusses the information content of a KB in terms of
the concept of KB coherence. Section 5 describes our proposed approach to measur-
ing the significance of KB inconsistency. A comparison with related work is given in
Section 6. Finally Section 7 concludes the paper with remark on future work.

2 Related Work

Not all inconsistent cases are of the same significance. Some are more important or
prominent than others. Here is a salient example. When Pat Tillman gave up his
NFL career as a star player to join the army in May 2002 and was killed in Afghani-
stan on April 22, 2004, there were inconsistent conclusions as to whether Pat was
killed by enemy fire or by friendly fire [28]. The inconsistent information about
where the tragedy took place, whether near the village of Sperah [24] or Manah
[28], definitely pales in comparison in its significance with the conflicting causes of
his death.

Current approaches to measuring inconsistency include [15]: (1) Consistency-
based analysis that reasons with consistent subsets of a KB. (2) Information theoretic
approach that relies on using information theory to gauge the information content of a
KB containing inconsistent rules [22]. (3) Probabilistic approach that adopts a prob-
abilistic distribution for rules in a KB [17], [18]. (4) Epistemic approach that gauges
the degree of information in a KB based on the number of actions needed to identify
the truth value of an atomic proposition, and the degree of contradiction in terms of
the number of actions needed to restore consistency in the KB [19]. (5) Model theo-
retic approach that evaluates a KB using three or four valued models that allows an
inconsistent truth value [13], [14]. (6) Possibility theoretic approach that attaches a
weight to each rule in a KB and establishes an α-cut of a possibilistic KB so as to
describe the degree of inconsistency [3].

There are two important measures: the amount of information or degree of infor-
mation, and the amount of contradiction or degree of contradiction. Typically, those

 Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics 149

measures are numerical values and vary as a result of the representation formalism
utilized [19]. The conjoint use of both measures plays a pivotal role in inconsistency
resolution or tolerance [15].

There are two approaches toward characterizing the importance of inconsistency.
The first approach focuses on the number of formulas in a KB involved in the contra-
diction, whereas the second approach emphasizes on the number of atoms which
exhibit conflicting information [15].

3 Overview of KB Fixpoint Semantics

As described in [32], there are a number of different types of inconsistency that can
exist in a knowledge base. At the core of those types of inconsistency are the possible
logical expressions involving the inconsistency-causing literals: complementary, mu-
tual exclusive, incompatible, anti-subtype, anti-supertype, asymmetric, anti-inverse,
mismatching, disagreeing, contradictory, and iProbVal (for inconsistent probabilistic
truth value). In addition, a violation of some domain constraint may also constitute an
occurrence of inconsistency. Hence, for a given KB, if its augmented fixpoint (see
Equation 1) contains any of the aforementioned literals, then the KB contains incon-
sistent knowledge.

Since the main focus of this paper (measuring the information content and the sig-
nificance of inconsistency in a KB) does not hinge on the specific definition of any of
the inconsistency types, we will only summarize the notations we use to represent
those eleven types of inconsistency in Table 1 (L, Li, Lj and Lk in Table 1 are literals,
⩏Lk is a disjunction of literals, ⩎Lk is a conjunction of literals, and Δ is a set of
rules). Explanations on some inconsistency types can be found in examples in Sec-
tions 4 and 5 below.

There are a number of fixpoint semantics for a logical theory [5], [6]: classical two-
valued, two-valued with stratification, three-valued for handling negation, four-valued
for dealing with inconsistency and incompleteness, and the truth value space of [0, 1].

In our previous results [31], we adopted the four-valued logic FOUR as defined in

[1], [10]. FOUR has the truth value set of {true, false, ⊥, ⊤} where true and false
have their canonical meanings in the classical two-valued logic, ⊥ indicates undefined
or don’t know, and ⊤ is overdefined or contradiction.

The four-valued logic FOUR is the smallest nontrivial bilattice, a member in
a family of similar structures called bilattices [10]. Bilattices offer a general frame-
work for reasoning with multi-valued logics and have many theoretical and practical
benefits [10].

According to [1], there are two natural partial orders in FOUR: knowledge ordering
≤k (vertical) and truth ordering ≤t (horizontal) such that:

⊥ ≤k false ≤k ⊤, ⊥ ≤k true ≤k ⊤ and
false ≤t ⊤ ≤t true, false ≤t ⊥ ≤t true.

150 D. Zhang

Table 1. Types of inconsistency

Inconsistency Type Notation

Complementary Li≠Lj

Mutually exclusive Li≄Lj

Incompatible Li≇Lj

Anti-subtype Li⋢Lj

Anti-supertype L⇎(⩏Lk)

Asymmetric Li⫝Lj

Anti-inverse Li≭Lj

Mismatching L≢(⩎Lk)

Disagreeing Li≩Lj

Contradictory Li≉Lj

iProbVal Prob(L)∉Prob(Δ)

Both partial orders offer a complete lattice. The meet and join for ≤k, denoted as ⊗
and ⊕, respectively, yield: false ⊗ true= ⊥ and false ⊕ true = ⊤. The meet and join
for ≤t, denoted as ∧ and ∨, respectively, result in: ⊤ ∧ ⊥ = false and ⊤ ∨ ⊥ = true.

The knowledge negation reverses the ≤k ordering while preserving the ≤t ordering.
The truth negation reverses ≤t ordering while preserving ≤k ordering.

For a knowledge base Ω, we define a transformation TΩ, which is a “revision op-
erator” [6] that revises our beliefs based on the rules in RB and established facts in
WM. The interpretation of TΩ can be understood in the following sense. A single step

of TΩ to Ω amounts to generating a set of ground literals, denoted as ⊢WMiRB, which
is obtained by firing all enabled rules in RB under WMi. Let WM0 denote the initial
state for WM. We use WMi (i = 1, 2, 3,…) to represent subsequent states of WM as a
result of firing all enabled rules under the state of WMi-1. It can be shown that TΩ is
monotonic and has a least fixpoint lfp(TΩ) with regard to ≤k [5], [6].

Since a monotonic operator also has a greatest fixpoint denoted as gfp(), gfp(TΩ)
exists and can be expressed as follows:

gfp(TΩ) = ⋃{B | TΩ(B) = B}.

Because of the definition of TΩ, lfp(TΩ) is identical to gfp(TΩ) for a given knowl-
edge base Ω. Operationally, the fixpoint of TΩ for a KB can be obtained as follows.
Given a set G of initial facts, WM0 gets initialized based on G.

i = 0;
Φ0 = G;

Φ1 = Φ0 ∪ ⊢WM0RB;

 Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics 151

while (Φi+1 != Φi) do {
i++;

Φi+1 = Φi ∪ ⊢WMiRB
};
lfp(TΩ) = gfp(TΩ) = Φi;

lfp(TΩ) (gfp(TΩ)) contains all the derivable conclusions from the KB through some
inference method. Let ΓΩ be the set of domain (ontological) constraints for a given
KB Ω, We define an augmented fixpoint lfp+(TΩ) for Ω as follows :

lfp+(TΩ) = lfp(TΩ) ∪ ΓΩ (1)

Thus, lfp+(TΩ) constitutes the semantics for the KB. lfp+(TΩ) allows us to deal with
the following situations: (1) derived facts in lfp(TΩ) are conflicting with each other;
and (2) a derived fact is not conflicting with any other facts in lfp(TΩ), but is contra-
dicting with a domain or ontological constraint in ΓΩ. For instance, if we have a de-
rived fact: age(john, 250)∈lfp(TΩ), even if it does not contradict with any literal in
lfp(TΩ), it still constitutes an inconsistent case because it violates the following do-
main constraint: age(x, y)∧human(x)∧(y ≤150) (a human being’s age should be less
than or equal to 150). We use the following to denote that a derived fact violates some
domain constraint

A≁ΓΩ where A ∈ lfp(TΩ) (2)

The following fixpoint description for inconsistency is given in terms of lfp+(TΩ).
Let ν be a mapping from ground atomic formulas to FOUR. Given a ground

atomic formula A,

ν(A) = true, if (3)

A ∈ lfp+(TΩ) ∧¬A ∉ lfp+(TΩ)
 ∧ ∄¬A'∈ lfp+(TΩ) [A ≅ A']
 ∧ ∄A"∈ lfp+(TΩ) [(A≄A") ∨ (A≉A")

 ∨ (A"⋢A) ∨ (A⫝A") ∨ (A≩A") ∨ (A≭A") ∨ (A≁A")]
∧ ∄(⩏Li)⊆ lfp+(TΩ) [A⇎(⩏Li)]
∧ ∄(⩎Lj)⊆ lfp+(TΩ) [A≢(⩎Lj)]
∧ ∄Δ⊆ lfp+(TΩ) [Prob(A)∉Prob(Δ)].

ν(A) = false, if (4)
¬A ∈ lfp+(TΩ) ∧ A ∉ lfp+(TΩ)
∧∄A'∈ lfp+(TΩ) [(A≅A') ∨ (A⫝̸A') ∨ (A'⊑A) ∨ (A≧A') ∨ (A≍A')]

 ∧ ∄¬A"∈ lfp+(TΩ) [(A≄A")]
∧ ∄(⩎Li) ⊆ lfp+(TΩ) [(A≡(⩎Li)]
∧ ∄(⩏Lj) ⊆ lfp+(TΩ) [(A⇔(⩏Lj)].

ν(A) = ⊤, if (5)
A ∈ lfp+(TΩ) ∧ [(¬A ∈ lfp+(TΩ)) ∨ [∃A′∈ lfp+(TΩ) [(A≄A′) ∨ (A≇A′)

 ∨ (A≉A′) ∨ (A⫝A′) ∨ (A≩A′) ∨ (A≭A′)∨ (A≁A′)]]

152 D. Zhang

∨ ∃¬A"∈ lfp+(TΩ) [(A⊑A")]
∨ ∃(⩏Li) ⊆ lfp+(TΩ) [(A⇎(⩏Li)]
∨ ∃ (⩎Lj) ⊆ lfp+(TΩ) [(A≢(⩎Lj)]
∨ ∃Δ⊆ lfp+(TΩ) [Prob(A)∉Prob(Δ)]].

ν(A) = ⊥, if (6)

A ∉ lfp+(TΩ) ∧¬A ∉ lfp+(TΩ) ∧ [(∄A'∈ lfp+(TΩ)) (∄¬A'∈ lfp+(TΩ))
[(A≅A') ∨ (A⫝̸A') ∨ (A≧A') ∨ (A⊑A') ∨ (A≭A′)]]

∧ [(∄(⩏Li)⊆ lfp+(TΩ)) (∄¬(⩏Li) ⊆ lfp+(TΩ)) (A⇔(⩏Li))]
∧ [(∄(⩎Lj)⊆ lfp+(TΩ)) (∄¬(⩎Lj) ⊆ lfp+(TΩ)) (A≡(⩏Li))].

Definition 1. Given a knowledge base Ω, we obtain its least fixpoint lfp(TΩ). KB is
said to contain inconsistent knowledge if for hi ∈ lfp+(TΩ), the following holds:

∃ hi∈ lfp+(TΩ) (ν(hi) =⊤) (7)

4 KB Coherence

Given a KB Ω and a set of initial facts G, we use a set Ð to denote the facts derived
from Ω and G:

Ð(Ω) = lfp(TΩ) – G (8)

In general, KB inconsistency may involve several instances of the same predicate.

For example, in the following set {p(a), ¬p(a), p(b), ¬p(b)}, there are two instances
of the complementary type (atom and its negation) of inconsistency involving the
predicate p.

Definition 2. Given a predicate p, We use ϑ(p) to denote the number of inconsistent
cases involving p.

Definition 3. Given a KB Ω, we define its conflict set Ψ as follows:

 Ψ(Ω) = {A| A ∈ Ð(Ω) ∧ ¬A ∈ Ð(Ω)} (9)
 ∪ {A| A, A′∈Ð(Ω) ∧ [(A≄A′) ∨ (A≇A′) ∨ (A⋢A′) ∨ (A⫝A′)

∨ (A≭A′) ∨ (A≩A′) ∨ (A�A′)]}
 ∪ {A| A∈ Ð(Ω) ∧⩏Ai ⊆ Ð(Ω) ∧ (A⇎(⩏Ai))}
 ∪ {A| A∈ Ð(Ω) ∧⩎Ai ⊆ Ð(Ω) ∧ (A≢(⩎Ai))}
 ∪ {A| A∈ Ð(Ω) ∧ Δ⊆ Ð(Ω) ∧ (Prob(A)∉Prob(Δ))}
 ∪ {A| A ∈ Ð(Ω) ∧ A≁ΓΩ }.

Ψ(Ω) in a nutshell contains the representatives of all the inconsistent cases found
in a given KB Ω.

Let Θ(Ω) be a set as specified below:

 Θ(Ω) = {A, ¬A| A ∈ Ð(Ω) ∧ ¬A ∈ Ð(Ω)} (10)
 ∪ {A, A′| A, A′∈ Ð(Ω) ∧ [(A≄A′) ∨ (A≇A′) ∨ (A⋢A′) ∨ (A⫝A′)

∨(A≭A′) ∨ (A≩A′) ∨ (A≉A′)]}

 Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics 153

 ∪ {A, ⩏Ai| A∈Ð(Ω) ∧⩏Ai ⊆ Ð(Ω) ∧ (A⇎(⩏Ai))}
 ∪ {A, ⩎Ai| A∈ Ð(Ω) ∧⩎Ai ⊆ Ð(Ω) ∧ (A≢(⩎Ai))}
 ∪ {A, Δ|A∈Ð(Ω) ∧ Δ ⊆ Ð(Ω) ∧ (Prob(A)∉Prob(Δ))}
 ∪ {A| A ∈ Ð(Ω) ∧ A≁ΓΩ}.

Θ(Ω) includes all inconsistent literals that fit the profiles as defined in Table 1 and
literals that violate domain constraints.

Definition 4. Given a KB Ω, we define its base set Φ as follows:

Φ(Ω) = Ψ(Ω) ∪ (Ð(Ω) - Θ(Ω)). (11)

Φ(Ω) contains all the representatives of the inconsistent cases and those derived facts
that are not part of any inconsistent case.

Example 1. Given the following Ð(Ω) for a KB Ω

Ð(Ω) = {p(b), ¬p(b), p(d), ¬p(d), q(e), ¬q(f), r(a), Expensive(a), ¬HighPriced(a),

Animal(c), Vegetable(c), Surgeon(john), ¬Doctor(john),
Connected(agent1, agent2), Connected(agent2, agent3),
SendMsgTo(agent1, agent2), ReceiveMsgFrom(agent2, agent3),
SpaceAvail(agent1, 5GB), SpaceAvail(agent1, 3500MB),
Deployed(agent1, 12-1-2007), InService(agent1, 10-1-2006)}

there are nine inconsistent cases in Ð(Ω):

• p(b) and ¬p(b), and p(d) and ¬p(d) are complementary;

• Expensive(a) and ¬HighPriced(a) are incompatible;
• Animal(c) and Vegetable(c) are mutually exclusive;

• Surgeon(john) and ¬Doctor(john) are anti-subtype;
• Assuming that Connected represents a symmetric relation, then Connected(agent1,

agent2) and Connected(agent2, agent3) are asymmetric;
• SendMsgTo and ReceiveMsgFrom are inverse predicates. Thus,

SendMsgTo(agent1, agent2) and ReceiveMsgFrom(agent2, agent3) are anti-
inverse;

• SpaceAvail(agent1, 5GB) and SpaceAvail(agent1, 3500MB) are disagreeing; and
• Deployed(agent1, 12-1-2007) and InService(agent1, 10-1-2006) are contradictory.

Therefore for Example 1, we have the following Ψ(Ω) and Φ(Ω), respectively:

Ψ(Ω) = {p(b), p(d), Expensive(a), Animal(c), Surgeon(john),
Connected(agent1, agent2), SendMsgTo(agent1, agent2),
SpaceAvail(agent1, 5GB), Deployed(agent1, 12-1-2007)}

Φ(Ω) = {p(b), p(d), q(e), ¬q(f), r(a), Expensive(a), Animal(c), Surgeon(john),
Connected(agent1, agent2), SendMsgTo(agent1, agent2),
SpaceAvail(agent1, 5GB), Deployed(agent1, 12-1-2007)}

154 D. Zhang

Definition 5. The coherence ζ ∈ [0, 1] for a given KB Ω is defined as follows.

 (12)

If Ω is free of inconsistency, then ζ(Ω) = 1. On the other hand, if ζ(Ω) = 0, then Ω is
entirely incoherent. When 0 < ζ(Ω) < 1, it indicates that Ω contains inconsistency, but
is not completely incoherent1.

Example 2. The coherence for the KB in Example 1 is 0.25.

Example 3. Following is an example from [25]. Given a medical diagnosis KB con-
sisting of six rules r1, …, r6 where r1, …, r4 are from doctor one and r5, …, r6 from
doctor two, d1 and d2 indicate two different diagnosis results and s1 through s4 repre-
sent different symptoms.

r1: s1(x) ∧ s2(x) → d1(x)
r2: s1(x) ∧ s3(x) → d2(x)

r3: d2(x) → ¬d1(x)

r4: d1(x) → ¬d2(x)
r5: s1(x) ∧ s4(x) → d1(x)
r6: ¬s1(x) ∧ s3(x) → d2(x)

Now a set of lab test results is made available about John and Bill as follows:

G = {s1(john), ¬s1(bill), ¬s2(john), ¬s2(bill), s3(john), s3(bill), s4(john), ¬s4(bill)}.

The least fixpoint for the KB is obtained below:

lfp(TΩ) = {s1(john), ¬s1(bill), ¬s2(john), ¬s2(bill), s3(john), S3(bill), s4(john),
 ¬s4(bill), d1(john), d2(john), d2(bill), ¬d1(john), ¬d2(john), ¬d1(bill)}.

And the conflict set and the base set are:

Ψ(Ω) = {d1(john), d2(john)}
Φ(Ω) = {d1(john), d2(john), ¬d1(bill), d2(bill)}

Thus we have ζ(Ω) = 0.5.

5 Significance Measure of Inconsistency

When a KB contains inconsistency, it’s desirable to have a mechanism whereby the
relative significance of the inconsistent cases can be established before committing to
either reasoning under inconsistency or restoring consistency. There are a number of
approaches to measuring the degree or significance of inconsistency as was briefly
summarized in Section 2. In this paper, we adopt an approach that establishes the
importance of contradictory information based on the number of conflicting atoms in

1 Note here we exclude the initial given facts in the definition for KB coherence.

 Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics 155

the least fixpoint of a given KB. The approach is inspired by the results in Hunter’s
mass-based significance function [14].

An n-ary predicate represents an n-ary relation that is a subset of the Cartesian
product D1 × … × Dn, where each Di is a set of domain elements. We define the car-
dinality of a predicate p, denoted φ(p), to be the number of elements in a relation R for
which p represents. For instance in Example 3, the diagnosis results d1 and d2 are
unary predicates that are defined over the set of domain elements {john, bill}, thus

φ(d1) = φ(d2) = 2.

For a predicate p∈Ψ(Ω), we use {p⇅p′} as a shorthand to indicate either of the

following:

• {p, ¬p} where p′ represents ¬p;

• {p, dC} where (p ∈ lfp(TΩ)) ∧ (dC∈ΓΩ) ∧ (p≁dC) and p′ denotes dC (dC is the
domain constraint p violates);

• {p, p′} where
 (p≄p′) ∨ (p≇p′) ∨ (p⋢p′) ∨ (p⫝p′) ∨ (p≭p′) ∨ (p≩p′) ∨ (p≉p′) ∨
 (p⇎(⩏p′)) ∨ (p≢(⩎p′)) ∨ (Prob(p)∉Prob(p′))2.

Definition 6. For each element in the conflict set for a KB, a weight ω({p⇅p′)} can
be defined which amounts to providing a piece of meta-knowledge from the problem
domain about the importance of such inconsistent case [14].

The ω function has the following properties:

• Meaningful when Ψ(Ω) ≠ ∅;

• ∀p∈Ψ(Ω) ω({p⇅p′}) ∈ [0, 1];
• .

In Example 3, if the diagnosis result d2 is more important than that of d1, then any
inconsistency involving d2 would be more significant than that of d1. Based on this, a
higher weight can be assigned to d2.

Definition 7. Two measures are defined for the significance of KB inconsistency:

ŝ({p⇅p′}) ∈ [0, 1] to denote the significance for an inconsistent predicate instance

and Ŝ({p⇅p′}) ∈ [0, 1] to denote the significance for an inconsistent predicate.

 (13)

2 We use {p, ¬p} as a shorthand for a pair of complementary literals, and {p, p′} for the re-

maining ten cases of conflicting literals. For {p, p′} in the third case, we assume that it’s the
case that φ (p) = φ(p′) and that p and p′ are defined over the same set of domain elements. p′
in cases of anti-supertype, mismatching and iProbVal represents a set of predicates for the
involved literals.

156 D. Zhang

 (14)

ŝ and Ŝ have the following properties:

• ŝ({p⇅p′}) = Ŝ({p⇅p′}) when ϑ(p) = 1;

• Ŝ can be considered as a cumulative measure with regard to a predicate;
• The higher the Ŝ (ŝ) value is, the more significant the inconsistency becomes.

In the significance definitions above, we assume that each inconsistent predicate
instance is equally important. This of course can be revised to reflect the situation in
which some inconsistent predicate instance is more important than the others.

Example 4. Continuing the KB in Example 3, if we have the weight assignments
below:

ω({d1, ¬d1}) = 0.2

ω({d2, ¬d2}) = 0.8

then the following significance measures for the two inconsistent cases can be
obtained:

ŝ({d1(john), ¬d1(john)}) = 0.2 × 0.5 = 0.1, and

ŝ({d2(john), ¬d2(john)}) = 0.8 × 0.5 = 0.4.

Example 5. Given a KB Ω, suppose we have the following:

Ψ(Ω) = {p(a), q(d), q(e), q(g)}
Φ(Ω) = {p(a), p(b), p(c), q(d), q(e), q(f), q(g)}

ω({p, ¬p}) = 0.6

ω({q, ¬q}) = 0.4
φ(p) = 3
φ(q) = 4
ϑ(p) = 1
ϑ(q) = 3.

Thus

ŝ({p, ¬p}) = Ŝ({p, ¬p}) = 0.2

Ŝ({q, ¬q}) = 0.3.

This example illustrates that even though any inconsistency with regard to p is
generally considered more important than that of q. However, when there are more
inconsistent cases involving q, its cumulative significance may outweigh that of p.

With the significance measure in place, we can now revise the contradiction case in
the valuation function ν(A) defined in our earlier work for inconsistency. Instead of
just concluding that a ground atom A has the truth value of contradiction (⊤), there is

 Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics 157

a chain of truth values describing the degrees or the level of significance for the con-
tradiction [14].

Definition 8. We use the notation ⊤λ to represent a truth value of contradiction with
a significance of λ. For a ground atom A, if p is the predicate in A, then

ν(A) = ⊤λ(p) iff ν(A) =⊤ ∧ λ(p) = ŝ({p⇅p′}). (15)

Example 6. For the KB in Example 4, the truth value for d1(john) and d2(john) are as
follows:

ν(d1(john)) = ⊤0.1
ν(d2(john)) = ⊤0.4.

This extension makes it possible to transform a four-valued semantics to a multi-
valued semantics [14]. The significance of inconsistency can be quantified in a similar
way as the degree to which a vague predicate is satisfied in fuzzy logic.

6 Discussions and Comparison

Even though our proposed measures are based on the number of literals which exhibit
conflicting information (rather than the number of rules in a KB that are involved in
the contradiction), we can easily extend the algorithm for establishing the fixpoint
semantics for a KB (Section 3) to finding conflicting chains of rules that lead to the
derivation of contradictory literals. Though we will not provide the algorithmic details
in this paper, but this can be accomplished by keeping track of the rule number and
the LHS of the rule for each newly derived ground atom, and checking for a non-
empty intersection of the two supporting sets of conditions for the given pair of con-
flicting atoms. For instance, in Example 4, with regard to the pair of contradictory
atoms {d1(john), ¬d1(john)} in lfp(TΩ), we can trace back to the following supporting
sets of evidence, respectively:

r2: {s1(john), s3(john)} for ¬d1(john), and
r5: {s1(john), s4(john)} for d1(john).

Since the intersection of the two sets is {s1(john)}, the contradictory information in
{d1(john), ¬d1(john)} stems from one of the inconsistent patterns: “rules with shared
condition result in complementary conclusions” [30].

Compared with the existing results on measuring inconsistency, our proposed ap-
proach to quantifying inconsistency has the following benefits.

• It deals with the language in first order logic.
• It accommodates a larger set of conflict cases by considering not only complemen-

tary cases, but also many other cases, including domain constraint violation cases.
• Fixpoint semantics provides a tool that circumvents the issue of selecting a

particular paraconsistent logic before properties for contradiction measures can be
established.

158 D. Zhang

• It makes it possible to identify rules in a KB that contribute to inconsistency,
thus allowing both conflicting rules and contradictory atoms to be utilized in the
analysis.

7 Conclusion

When developing a rational and robust intelligent system, how to properly handle
inconsistency in its KB becomes an issue of great importance. In this paper, we focus
our attention on one of the issues pertaining to KB inconsistency: how to measure the
information content and the significance of inconsistency in a KB. Our approach is
based on a fixpoint semantics for KB. The approach reflects each inconsistent set of
rules in the least fixpoint of a KB and then measures the inconsistency in the context
of the least fixpoint for the KB. Compared with the existing results, our approach has
some salient features.

Future work can be pursued in the following directions. (1) Properties for both in-
formation and contradiction measures (in the context of fixpoint semantics). (2) Pos-
sible definitions of new information and contradiction measures that are based on a
framework where both the number of conflicting rules in a KB and the number of
contradictory atoms are utilized. (3) A conjoint way to make use of degree of infor-
mation and degree of contradiction in inconsistency tolerance or resolution.

Acknowledgments. The author would like to acknowledge the comments from
anonymous reviewers.

References

1. Belnap, N.D.: A Useful Four-Valued Logic. In: Epstein, G., Dunn, J. (eds.) Modern Uses
of Multiple-Valued Logic, pp. 8–37. D. Reidel, Dordrecht (1977)

2. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kauf-
mann Publishers, San Francisco (2004)

3. Dubois, D., Lang, J., Prade, H.: Possibilistic Logic. In: Handbook of Logic in Artificial In-
telligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, Oxford
(1994)

4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)

5. Fitting, M.: Bilattices and the Semantics of Logic Programming. Journal of Logic Pro-
gramming 11, 91–116 (1991)

6. Fitting, M.: Fixpoint Semantics for Logic Programming: a Survey. Theoretical Computer
Science 278(1-2), 25–51 (2002)

7. Gabby, D., Hunter, A.: Making Inconsistency Respectable 2: Meta-Level Handling of In-
consistent Data. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS,
vol. 747, pp. 129–136. Springer, Heidelberg (1993)

8. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan
Kaufmann Publishers, Los Altos (1987)

 Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics 159

9. Ginsberg, A., Williamson, K.: Inconsistency and Redundancy Checking for Quasi-First-
Order-Logic Knowledge Bases. International Journal of Expert Systems 6(3), 321–340
(1993)

10. Ginsberg, M.L.: Multivalued Logics: a Uniform Approach to Inference in Artificial Intelli-
gence. Computational Intelligence 4(3), 265–316 (1988)

11. Grant, J., Hunter, A.: Measuring Inconsistency in Knowledge Bases. Journal of Intelligent
Information Systems 27, 159–184 (2006)

12. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with Inconsistent Ontologies. In:
The Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence, Edinburgh, Scotland, pp. 454–459 (2005)

13. Hunter, A.: Measuring Inconsistency in Knowledge via Quasi-classical Models. In: The
Proceedings of the National Conference on Artificial Intelligence, pp. 68–73 (2002)

14. Hunter, A.: Evaluating Significance of Inconsistencies. In: The Proceedings of the Eight-
eenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, pp.
468–473 (2003)

15. Hunter, A., Konieczny, S.: Approaches to Measuring Inconsistent Information. In: Ber-
tossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp.
189–234. Springer, Heidelberg (2005)

16. Hunter, A., Summerton, R.: A Knowledge-Based Approach to Merging Information.
Knowledge-Based Systems 19, 647–674 (2006)

17. Knight, K.: Measuring Inconsistency. Journal of Philosophical Logic 31, 77–98 (2001)
18. Knight, K.: Two Information Measures for Inconsistent Sets. Journal of Logic, Language

and Information 12, 227–248 (2003)
19. Konieczny, S., Lang, J., Marquis, P.: Quantifying Information and Contradiction in Pro-

positional Logic through Test Actions. In: The Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, pp. 106–111 (2003)

20. Lenat, D.: The Dimensions of Context-Space. CYCorp Report (1998)
21. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press, Cambridge

(2000)
22. Lozinskii, E.: Information and Evidence in Logic Systems. Journal of Experimental and

Theoretical Artificial Intelligence 6, 163–193 (1994)
23. Menzies, T., Pecheur, C.: Verification and Validation and Artificial Intelligence. In: Zelko-

witz, M. (ed.) Advances in computers, vol. 65. Elsevier, Amsterdam (2005)
24. MSNBC: (April 26, 2004), http://www.msnbc.msn.com/id/4815441 (accessed

December 31, 2007)
25. Murata, T., Subrahmanian, V.S., Wakayama, T.: A Petri Net Model for Reasoning in the

Presence of Inconsistency. IEEE Transactions on Knowledge and Data Engineering 3(3),
281–292 (1991)

26. Nguyen, T.A., Perkins, W.A., Laffey, T.J., Pecora, D.: Knowledge Base Verification. AI
Magazine 8(2), 69–75 (1987)

27. Rushby, J., Whitehurst, R.A.: Formal verification of AI software. NASA Contractor Re-
port 181827 (1989)

28. SFC: (September 25, 2005),
http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2005/09/25/
MNGD7ETMNM1.DTL (accessed December 31, 2007)

29. Zhang, D., Nguyen, D.: PREPARE: A Tool for Knowledge Base Verification. IEEE Trans-
actions on Knowledge and Data Engineering 6(6), 983–989 (1994)

160 D. Zhang

30. Zhang, D., Luqi: Approximate Declarative Semantics for Rule Base Anomalies. Knowl-
edge-Based Systems 12(7), 341–353 (1999)

31. Zhang, D.: Fixpoint Semantics for Rule Base Anomalies. In: Proceedings of the Fourth
IEEE International Conference on Cognitive Informatics, Irvine, CA, pp. 10–17 (2005)

32. Zhang, D.: On Classifying Inconsistency in Autonomic Agent Systems. Technical Report,
December 2007. Department of Computer Science, California State University, Sacra-
mento (submitted, 2007)

Contingency Matrix Theory I: Rank and

Statistical Independence in a Contigency Table

Shusaku Tsumoto and Shoji Hirano

Department of Medical Informatics, Faculty of Medicine, Shimane University
89-1 Enya-cho, Izumo

Shimane 693-8501 Japan
tsumoto@computer.org

Abstract. A contingency table summarizes the conditional frequencies
of two attributes and shows how these two attributes are dependent on
each other with the information on a partition of universe generated
by these attributes. This paper discusses statistical independence in a
contingency table from the viewpoint of matrix theory. Statistical in-
dependence is equivalent to linear dependence of all columns or rows.
Also, the equations of statistical independence are equivalent to those
on collinearity of projective geometry.

1 Introduction

Statistical independence between two attributes is a very important concept
in data mining[1] and statistics[2]. The definition P (A, B) = P (A)P (B) show
that the joint probability of A and B is the product of both probabilities. This
gives several useful formula, such as P (A|B) = P (A), P (B|A) = P (B). In a
data mining context, these formulae show that these two attributes may not be
correlated with each other. Thus, when A or B is a classification target, the
other attribute may not play an important role in its classification.

Although independence is a very important concept, it has not been fully and
formally investigated as a relation between two attributes.

In this paper, a statistical independence in a contingency table is focused on
from the viewpoint of granular computing[3,4].

The first important observation is that a contingency table compares two
attributes with respect to information granularity. It is shown from the definition
that statistical independence in a contingency table is a special form of linear
depedence of two attributes. Especially, when the table is viewed as a matrix,
the above discussion shows that the rank of the matrix is equal to 1.0. Also, the
results also show that partial statistical independence can be observed.

The second important observation is that matrix algebra is a key point of
analysis of this table. A contingency table can be viewed as a matrix and several
operations and ideas of matrix theory are introduced into the analysis of the
contingency table.

The paper is organized as follows: Section 2 discusses the characteristics of
contingency tables. Section 3 shows the conditions on statistical independence
for a 2× 2 table. Section 4 gives those for a 2× n table. Section 5 extends these

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 161–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 S. Tsumoto and S. Hirano

results into a m×n contingency table. Section 6 extends the ideas into a multi-way
contingency cube. Section 7 defines a contingency matrix and shows the relation
between rank and statistical independence. Section 8 and 9 discusses pseudo sta-
tistical independence, which is an intermediate dependency between statistical
independence and dependence. Finally, Section 10 concludes this paper.

2 Contingency Tables

2.1 Rough Sets Notations

In the subsequent sections, the following notations is adopted, which is in-
troduced in [5]. Let U denote a nonempty, finite set called the universe of
the discourse (dataset) and A denote a nonempty, finite set of attributes, i.e.,
a : U → Va for a ∈ A, where Va is called the domain of a, respectively. Then, a
data table is defined as an information system, A = (U, A). The atomic formulas
over B ⊆ A and V are expressions of the form [a = v], called descriptors over
B, where a ∈ B and v ∈ Va. The set F (B, V) of formulas over B is the least set
containing all atomic formulas over B and closed with respect to disjunction,
conjunction and negation. For each f ∈ F (B, V), fA denote the meaning of f in
A, i.e., the set of all objects in U with property f , defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v}
2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa

2.2 Contingency Table (2 × 2)

From the viewpoint of information systems, a contingency table summarizes the
relation between two attributes with respect to frequencies. This viewpoint has
already been discussed in [6,7]. However, this study focuses on more statistical
interpretation of this table.

Definition 1. Let R1 and R2 denote binary attributes in an attribute space A.
A contingency table is a table of a set of the meaning of the following formulas:
|[R1 = 0]A|,|[R1 = 1]A|, |[R2 = 0]A|,|[R2 = 1]A|, |[R1 = 0 ∧ R2 = 0]A|,|[R1 =
0∧R2 = 1]A|, |[R1 = 1∧R2 = 0]A|,|[R1 = 1∧R2 = 1]A|, |[R1 = 0∨R1 = 1]A|(=
|U |). This table is arranged into the form shown in Table 1, where: |[R1 = 0]A| =
x11 + x21 = x·1, |[R1 = 1]A| = x12 + x22 = x·2, |[R2 = 0]A| = x11 + x12 = x1·,
|[R2 = 1]A| = x21 + x22 = x2·, |[R1 = 0 ∧ R2 = 0]A| = x11, |[R1 = 0 ∧
R2 = 1]A| = x21, |[R1 = 1 ∧ R2 = 0]A| = x12, |[R1 = 1 ∧ R2 = 1]A| = x22,
|[R1 = 0 ∨ R1 = 1]A| = x·1 + x·2 = x··(= |U |).

From this table, accuracy and coverage[8] for [R1 = 0] → [R2 = 0] are defined
as:

α[R1=0]([R2 = 0]) = |[R1 = 0 ∧ R2 = 0]A|
|[R1 = 0]A| =

x11

x·1
,

and

κ[R1=0]([R2 = 0]) = |[R1 = 0 ∧ R2 = 0]A|
|[R2 = 0]A| =

x11

x1·
.

Contingency Matrix Theory I 163

Table 1. Two way Contingency Table

R1 = 0 R1 = 1

R2 = 0 x11 x12 x1·
R2 = 1 x21 x22 x2·

x·1 x·2 x··
(= |U | = N)

Table 2. A Small Dataset

a b c d e

1 0 0 0 1
0 0 1 1 1
0 1 2 2 0
1 1 1 2 1
0 0 2 1 0

Example 1. Let us consider an information table shown in Table 2. The relation-
ship between b and e can be examined by using the corresponding contingency
table as follows. First, the frequencies of four elementary relations are counted,
called marginal distributions: [b = 0], [b = 1], [e = 0], and [e = 1]. Then, the fre-
quencies of four kinds of conjunction are counted: [b = 0]∧[e = 0], [b = 0]∧[e = 1],
[b = 1] ∧ [e = 0], and [b = 1] ∧ [e = 1]. Then, the following contingency table is
obtained (Table 3). From this table, accuracy and coverage for [b = 0] → [e = 0]
are obtained as 1/(1 + 2) = 1/3 and 1/(1 + 1) = 1/2.

One of the important observations from granular computing is that a contingency
table shows the relations between two attributes with respect to intersection of
their supporting sets. For example, in Table 3, both b and e have two differ-
ent partitions of the universe and the table gives the relation between b and e
with respect to the intersection of supporting sets. It is easy to see that this
idea can be extended into m × n contingency tables, which can be viewed as
n × n-matrix.

2.3 Contingency Table (m × n)

Two-way contingency table can be extended into a contingency table for multi-
nominal attributes.

Table 3. Corresponding Contingency Table

b=0 b=1

e=0 1 1 2
e=1 2 1 3

3 2 5

164 S. Tsumoto and S. Hirano

Table 4. Contingency Table (m × n)

A1 A2 · · · An Sum

B1 x11 x12 · · · x1n x1·
B2 x21 x22 · · · x2n x2·
...

...
...

. . .
...

...
Bm xm1 xm2 · · · xmn xm·
Sum x·1 x·2 · · · x·n x·· = |U | = N

Definition 2. Let R1 and R2 denote multinominal attributes in an attribute
space A which have m and n values. A contingency tables is a table of a set
of the meaning of the following formulas: |[R1 = Aj]A|, |[R2 = Bi]A|, |[R1 =
Aj ∧R2 = Bi]A|, |[R1 = A1∨R1 = A2∨· · ·∨R1 = Am]A|, |[R2 = B1∨R2 = A2∨
· · · ∨ R2 = An]A| = |U | (i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · , m). This table is
arranged into the form shown in Table 1, where: |[R1 = Aj]A| =

∑m
i=1 x1i = x·j,

|[R2 = Bi]A| =
∑n

j=1 xji = xi·, |[R1 = Aj ∧ R2 = Bi]A| = xij , |U | = N = x··
(i = 1, 2, 3, · · · , n and j = 1, 2, 3, · · · , m).

3 Statistical Independence in 2 × 2 Contingency Table

Let us consider a contingency table shown in Table 1. Statistical independence
between R1 and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0]) × P ([R2 = 0])
P ([R1 = 0], [R2 = 1]) = P ([R1 = 0]) × P ([R2 = 1])
P ([R1 = 1], [R2 = 0]) = P ([R1 = 1]) × P ([R2 = 0])
P ([R1 = 1], [R2 = 1]) = P ([R1 = 1]) × P ([R2 = 1])

Since each probability is given as a ratio of each cell to N , the above equations
are calculated as:

x11

N
=

x11 + x12

N
× x11 + x21

N
x12

N
=

x11 + x12

N
× x12 + x22

N
x21

N
=

x21 + x22

N
× x11 + x21

N
x22

N
=

x21 + x22

N
× x12 + x22

N

Since N =
∑

i,j xij , the following formula will be obtained from these four
formulae.

x11x22 = x12x21 or x11x22 − x12x21 = 0

Thus,

Contingency Matrix Theory I 165

Theorem 1. If two attributes in a contingency table shown in Table 1 are sta-
tistical indepedent, the following equation holds:

x11x22 − x12x21 = 0 (1)
��

It is notable that the above equation corresponds to the fact that the determinant
of a matrix corresponding to this table is equal to 0. Also, when these four values
are not equal to 0, the equation 1 can be transformed into:

x11

x21
=

x12

x22
.

Let us assume that the above ratio is equal to C(constant). Then, since x11 =
Cx21 and x12 = Cx22, the following equation is obtained.

x11 + x12

x21 + x22
=

C(x21 + x22)
x21 + x22

= C =
x11

x21
=

x12

x22
. (2)

This equation also holds when we extend this discussion into a general case.
Before getting into it, let us cosndier a 2 × 3 contingency table.

4 Statistical Independence in 2 × 3 Contingency Table

Let us consider a 2× 3 contingency table shown in Table 5. Statistical indepen-
dence between R1 and R2 gives:

P ([R1 = 0], [R2 = 0]) = P ([R1 = 0]) × P ([R2 = 0])
P ([R1 = 0], [R2 = 1]) = P ([R1 = 0]) × P ([R2 = 1])
P ([R1 = 0], [R2 = 2]) = P ([R1 = 0]) × P ([R2 = 2])
P ([R1 = 1], [R2 = 0]) = P ([R1 = 1]) × P ([R2 = 0])
P ([R1 = 1], [R2 = 1]) = P ([R1 = 1]) × P ([R2 = 1])
P ([R1 = 1], [R2 = 2]) = P ([R1 = 1]) × P ([R2 = 2])

Table 5. Contingency Table (2 × 3)

R1 = 0 R1 = 1 R1 = 2

R2 = 0 x11 x12 x13 x1·
R2 = 1 x21 x22 x23 x2·

x·1 x·2 x···3 x··
(= |U | = N)

166 S. Tsumoto and S. Hirano

Since each probability is given as a ratio of each cell to N , the above equations
are calculated as:

x11

N
=

x11 + x12 + x13

N
× x11 + x21

N
(3)

x12

N
=

x11 + x12 + x13

N
× x12 + x22

N
(4)

x13

N
=

x11 + x12 + x13

N
× x13 + x23

N
(5)

x21

N
=

x21 + x22 + x23

N
× x11 + x21

N
(6)

x22

N
=

x21 + x22 + x23

N
× x12 + x22

N
(7)

x23

N
=

x21 + x22 + x23

N
× x13 + x23

N
(8)

From equation (3) and (6),

x11

x21
=

x11 + x12 + x13

x21 + x22 + x23

In the same way, the following equation will be obtained:

x11

x21
=

x12

x22
=

x13

x23
=

x11 + x12 + x13

x21 + x22 + x23
(9)

Thus, we obtain the following theorem:

Theorem 2. If two attributes in a contingency table shown in Table 5 are sta-
tistical indepedent, the following equations hold:

x11x22 − x12x21 = x12x23 − x13x22

= x13x21 − x11x23 = 0 (10)
��

It is notable that this discussion can be easily extended into a 2×n contingency
table where n > 3. The important equation 9 will be extended into

x11

x21
=

x12

x22
= · · · =

x1n

x2n

=
x11 + x12 + · · · + x1n

x21 + x22 + · · · + x2n
=

∑n
k=1 x1k∑n
k=1 x2k

(11)

Thus,

Theorem 3. If two attributes in a 2 × k contingency table (k = 2, · · · , n) are
statistical indepedent, the following equations hold:

x11x22 − x12x21 = x12x23 − x13x22 = · · ·
= x1nx21 − x11xn3 = 0 (12)

��
It is also notable that this equation is the same as the equation on collinearity
of projective geometry [9].

Contingency Matrix Theory I 167

5 Statistical Independence in m × n Contingency Table

Let us consider a m×n contingency table shown in Table 4. Statistical indepen-
dence of R1 and R2 gives the following formulae:

P ([R1 = Ai, R2 = Bj]) = P ([R1 = Ai])P ([R2 = Bj])
(i = 1, · · · , m, j = 1, · · · , n).

According to the definition of the table,

xij

N
=

∑n
k=1 xik

N
×

∑m
l=1 xlj

N
. (13)

Thus, we have obtained:

xij =
∑n

k=1 xik ×
∑m

l=1 xlj

N
. (14)

Thus, for a fixed j,
xiaj

xibj
=

∑n
k=1 xiak∑n
k=1 xibk

In the same way, for a fixed i,

xija

xijb

=
∑m

l=1 xlja∑m
l=1 xljb

Since this relation will hold for any j, the following equation is obtained:

xia1

xib1
=

xia2

xib2
· · · =

xian

xibn
=

∑n
k=1 xiak∑n
k=1 xibk

. (15)

Since the right hand side of the above equation will be constant, thus all the
ratios are constant. Thus,

Theorem 4. If two attributes in a contingency table shown in Table 4 are sta-
tistical indepedent, the following equations hold:

xia1

xib1
=

xia2

xib2
· · · =

xian

xibn
= const. (16)

for all rows: ia and ib (ia, ib = 1, 2, · · · , m).
��

6 Statistical Independence with m-Way Tables

6.1 Three-Way Table

Let “•” denote as the sum over the row or column of a contingency matrix. That
is ,

xi• =
n∑

j=1

xij (17)

x•j =
m∑

i=1

xij , (18)

168 S. Tsumoto and S. Hirano

where (17) and (18) shows marginal column and row sums. Then, it is easy to
see that

x•• = N,

where N denotes the sample size.
Then, Equation (14) is reformulated as:

xij

x••
=

xi•
x••

× x•j

x••
(19)

That is,

xij =
xi• × x•j

x••
Or

xijx•• = xi•x•j

Thus, statistical independence can be viewed as the specific relations between
assignments of i,j and “·”. By use of the above relation, Equation (16) can be
rewritten as:

xi1j

xi2j
=

xi1•
xi2•

,

where the right hand side gives the ratio of marginal column sums.
Equation (19) can be extended into multivariate cases. Let us consider a three

attribute case.
Statistical independence with three attributes is defined as:

xijk

x•••
=

xi••
x•••

× x•j•
x•••

× x••k

x•••
, (20)

Thus,
xijkx2

••• = xi••x•j•x••k, (21)

which corresponds to:

P (A = a, B = b, C = c) = P (A = a)P (B = b)P (C = c), (22)

where A,B,C correspond to the names of attributes for i,j,k, respectively.
In statistical context, statistical independence requires hiearchical model.

That is, statistical independence of three attributes requires that all the two
pairs of three attributes should satisfy the equations of statistical independence.
Thus, for Equation (22), the following equations should satisfy:

P (A = a, B = b) = P (A = a)P (B = b),
P (B = b, C = c) = P (B = b)P (C = c), and

P (A = a, C = c) = P (A = a)P (C = c).

Thus,

xij•x••• = xi••x•j• (23)
xi•kx••• = xi••x••k (24)
x•jkx••• = x•j•x••k (25)

Contingency Matrix Theory I 169

From Equation (21) and Equation (23),

xijkx••• = xij•x••k,

Therefore,
xijk

xij•
=

x••k

x•••
(26)

In the same way, the following equations are obtained:

xijk

xi•k
=

x•j•
x•••

(27)

xijk

x•jk
=

xi••
x•••

(28)

In summary, the following theorem is obtained.

Theorem 5. If a three-way contingency table satisfy statistical independence,
then the following three equations should be satisfied:

xijk

xij•
=

x••k

x•••
xijk

xi•k
=

x•j•
x•••

xijk

x•jk
=

xi••
x•••

��

Thus, the equations corresponding to Theorem 4 are obtained as follows.

Corollary 1. If three attributes in a contingency table shown in Table 4 are
statistical indepedent, the following equations hold:

xijka

xijkb

=
x••ka

x••kb

xijak

xijbk
=

x•ja•
x•jb•

xiajk

xibjk
=

xia••
xib••

for all i,j, and k.
��

6.2 Multi-way Table

The above discussion can be easily extedned into a multi-way contingency table.

Theorem 6. If a m-way contingency table satisfy statistical independence, then
the following equation should be satisfied for any k-th attribute ik and jk (k =
1, 2, · · · , n) where n is the number of attributes.

170 S. Tsumoto and S. Hirano

xi1i2···ik···in

xi1i2···jk···in

=
x••···ik···•
x••···jk···•

Also, the following equation should be satisfied for any ik:

xi1i2···in×xn−1
••···• = xi1•···•x•i2···•×· · ·×x••···ik···•×· · ·×x••···•in ��

7 Contingency Matrix

The meaning of the above discussions will become much clearer when we view
a contingency table as a matrix.

Definition 3. A corresponding matrix CTa,b
is defined as a matrix the element

of which are equal to the value of the corresponding contingency table Ta,b of two
attributes a and b, except for marginal values.

Definition 4. The rank of a table is defined as the rank of its corresponding
matrix. The maximum value of the rank is equal to the size of (square) matrix,
denoted by r.

The contingency matrix of Table 4(T (R1, R2)) is defined as CTR1,R2
as below:

⎛

⎜
⎜
⎜
⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎞

⎟
⎟
⎟
⎠

7.1 Independence of 2 × 2 Contingency Table

The results in Section 3 corresponds to the degree of independence in matrix
theory. Let us assume that a contingency table is given as Table 1. Then the
corresponding matrix (CTR1,R2

) is given as:

(
x11 x12

x21 x22

)

,

Then,

Proposition 1. The determinant of det(CTR1,R2
) is equal to x11x22 − x12x21,

Proposition 2. The rank will be:

rank =

{
2, if det(CTR1,R2

) �= 0
1, if det(CTR1,R2

) = 0

From Theorem 1,

Contingency Matrix Theory I 171

Theorem 7. If the rank of the corresponding matrix of a 2×2 contingency table
is 1, then two attributes in a given contingency table are statistically independent.
Thus,

rank =

{
2, dependent

1, statistical independent

It is easy to see that this discussion can be extended into 2 × n tables.

7.2 Independence of 3 × 3 Contingency Table

When the number of rows and columns are larger than 3, then the situation is
a little changed. It is easy to see that the rank for statistical independence of
a m × n contingency table is equal 1.0 as shown in Theorem 4. Also, when the
rank is equal to min(m, n), two attributes are dependent.

Then, what kind of structure will a contingency matrix have when the rank is
larger than 1,0 and smaller than min(m, n)− 1 ? For illustration, let us consider
the following 3times3 contingecy table.

Example 2. Let us consider the following corresponding matrix:

A =

⎛

⎝
1 2 3
4 5 6
7 8 9

⎞

⎠ .

The determinant of A is:

det(A) = 1 × (−1)1+1det

(
5 6
8 9

)

+2 × (−1)1+2det

(
4 6
7 9

)

+3 × (−1)1+3det

(
4 5
7 8

)

= 1 × (−3) + 2 × 6 + 3 × (−3) = 0

Thus, the rank of A is smaller than 2. On the other hand, since (123) �= k(456)
and (123) �= k(789), the rank of A is not equal to 1.0 and thus, the rank of A
is equal to 2.0. Actually, one of three rows can be represented by the other two
rows. For example,

(4 5 6) =
1
2
{(1 2 3) + (7 8 9)}.

Therefore, in this case, we can say that two of three pairs of one attribute are
dependent to the other attribute, but one pair is statistically independent of the
other attribute with respect to the linear combination of two pairs. It is easy to
see that this case includes the cases when two pairs are statistically independent
of the other attribute, but the table becomes statistically dependent with the
other attribute.

172 S. Tsumoto and S. Hirano

In other words, the corresponding matrix is a mixure of statistical depen-
dence and independence. We call this case contextual independent. From this
illustration, the following theorem is obtained:

Theorem 8. If the rank of the corresponding matrix of a 3× 3 contigency table
is 1, then two attributes in a given contingency table are statistically independent.
Thus,

rank =

⎧
⎪⎨

⎪⎩

3, dependent

2, contextual independent

1, statistical independent

It is easy to see that this discussion can be extended into 3 × n contingency
tables.

7.3 Independence of m × n Contingency Table

Finally, the relation between rank and independence in a multi-way contingency
table is obtained from Theorem 4.

Theorem 9. Let the corresponding matrix of a given contingency table be a
m×n matrix. If the rank of the corresponding matrix is 1, then two attributes in
a given contingency table are statistically independent. If the rank of the corre-
sponding matrix is min(m, n) , then two attributes in a given contingency table
are dependent. Otherwise, two attributes are contextual dependent, which means
that several conditional probabilities can be represented by a linear combination
of conditional probabilities. Thus,

rank =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(m, n) dependent

2, · · · ,

min(m, n) − 1 contextual independent

1 statistical independent

8 Pseudo Statistical Independence: Example

The next step is to investigate the characteristics of linear independence in a
contingency matrix. In other words, a m × n contingency table whose rank is
not equal to min(m, n). Since two-way matrix (2 × 2) gives a simple equation
whose rank is equal to 1 or 2, let us start our discussion from 3×3-matrix, whose
rank is equal to 2, first.

8.1 Three-Way Contingency Table (Rank: 2)

Let M(m, n) denote a contingency matrix whose row and column are equal to
m and n, respectively. Then, a three-way contingency table is defined as:

M(3, 3) =

⎛

⎝
x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞

⎠

Contingency Matrix Theory I 173

When its rank is equal to 2, it can be assumed that the third row is represented
by the first and second row:

(x31 x32 x33) = p(x11 x12 x13) + q(x21 x22 x23) (29)

Then, we can consider the similar process in Section 5 (13). In other words, we
can check the difference defined below.

Δ(i, j) =
xij

N
−

∑n
k=1 xik

N
×

∑m
l=1 xlj

N
. (30)

Then, the following three types of equations are obtained by simple calculation.

Δ(1, j) = (1 + q)

{

x1j

3∑

k=1

x2k − x2j

3∑

k=1

x1k

}

Δ(2, j) = (1 + p)

{

x2j

3∑

k=1

x1k − x1j

3∑

k=1

x2k

}

Δ(3, j) = (p − q)

{

x1j

3∑

k=1

x2k − x2j

3∑

k=1

x1k

}

According to Theorem 4, if M(3, 3) is not statistically independent, the formula:
x1j

∑3
k=1 x2k − x2j

∑3
k=1 x1k is not equal to 1.0. Thus, the following theorem is

obtained.

Theorem 10. The third row represened by a linear combination of first and
second rows will satisfy the condition of statistical independence if and only if
p = q.

We call the above property pseudo statistical independence. This means that if
the third column satisfies the following constraint:

(x31 x32 x33) = (x11 x12 x13) + (x21 x22 x23),

the third column will satisfy the condition of statistical independence. In other
words, when we merge the first and second row and construct a 2×3 contingency
table, it will become statistical independent. For example,

D =

⎛

⎝
1 2 3
4 5 6
10 14 18

⎞

⎠

can be transformed into

D′ =
(

5 7 9
10 14 18

)

,

where D′ is statistically independent. Conversely, if D′ is provided, it can be
decomposed into D. It is notable that the decomposition cannot be uniquely
determined. It is also notable that the above discussion does not use the infor-
mation about the columns of a contingency table. Thus, this discussion can be
extended into a 3 × n contingency matrix.

174 S. Tsumoto and S. Hirano

8.2 Four-Way Contingency Table (Rank: 3)

From four-way tables, the situation becomes more complicated. In the similar
way to Subsection 8.1, a four-way contingency table is defined as:

M(4, 4) =

⎛

⎜
⎜
⎝

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

⎞

⎟
⎟
⎠

When its rank is equal to 3, it can be assumed that the fourth row is represented
by the first to third row:

(x41 x42 x43 x44) = p(x11 x12 x13 x14)
+q(x21 x22 x23 x24)
+r(x31 x32 x33 x34) (31)

Then, the following three types of equations are obtained by simple calculation.

Δ(1, j) = (1 + q)

{

x1j

4∑

k=1

x2k − x2j

4∑

k=1

x1k

}

+(1 + r)

{

x1j

4∑

k=1

x3k − x3j

4∑

k=1

x1k

}

Δ(2, j) = (1 + p)

{

x2j

4∑

k=1

x1k − x1j

4∑

k=1

x2k

}

+(1 + r)

{

x2j

4∑

k=1

x3k − x3j

4∑

k=1

x2k

}

Δ(3, j) = (1 + p)

{

x2j

4∑

k=1

x1k − x1j

4∑

k=1

x2k

}

+(1 + q)

{

x1j

4∑

k=1

x2k − x2j

4∑

k=1

x1k

}

Δ(4, j) = (p − q)

{

x1j

4∑

k=1

x2k − x2j

4∑

k=1

x1k

}

+(r − p)

{

x3j

4∑

k=1

x2k − x1j

4∑

k=1

x1k

}

+(q − r)

{

x2j

4∑

k=1

x3k − x3j

4∑

k=1

x2k

}

Thus, the following theorem is obtained.

Contingency Matrix Theory I 175

Theorem 11. The fourth row represened by a linear combination of first to third
rows (basis) will satisfy the condition of statistical independence if and only if
Δ(4, j) = 0.

Unfortunately, the condition is not simpler than Theorem 10. It is notable
Δ(4, j) = 0 is a diophatine equation whose trivial solution is p = q = r. That is,
the solution space includes not only p = q = r, but other solutions. Thus,

Corollary 2. If p = q = r, then the fourth row satisfies the condition of statis-
tical independence.

The converse is not true.

Example 3. Let us consider the following matrix:

E =

⎛

⎜
⎜
⎝

1 1 2 2
2 2 3 3
4 4 5 5

x41 x42 x43 x44

⎞

⎟
⎟
⎠ .

The question is when the fourth row represented by the other rows satisfies the
condition of statistical independence. Since x1j

∑4
k=1 x2k − x2j

∑4
k=1 x1k = −2,

x1j

∑4
k=1 x3k−x3j

∑4
k=1 x1k = 6 and x2j

∑4
k=1 x1k−x1j

∑4
k=1 x2k = −4, Δ(4, j)

is equal to: −2(p − q) + 6(r − p) − 4(q − r) = −8p− 2q + 10r.
Thus, the set of solutions is {(p, q, r)|10r = 8p + 2q}, where p = q = r is

included.

It is notable that the characteristics of solutions will be characterized by a dio-
phantine equation 10r = 8p + 2q and a contingency table given by a tripule
(p, q, r) may be represented by another tripule. For example, (3, 3, 3) gives the
same contingency table as (1, 6, 2):

⎛

⎜
⎜
⎝

1 1 2 2
2 2 3 3
4 4 5 5
21 21 30 30

⎞

⎟
⎟
⎠ .

It will be our future work to investigate the general characteristics of the solution
space.

8.3 Four-Way Contingency Table (Rank: 2)

When its rank is equal to 2, it can be assumed that the third and fourth rows
are represented by the first to third row:

(x41 x42 x43 x44) = p(x11 x12 x13 x14)
+q(x21 x22 x23 x24) (32)

(x31 x32 x33 x34) = r(x11 x12 x13 x14)
+s(x21 x22 x23 x24) (33)

176 S. Tsumoto and S. Hirano

Δ(1, j) = (1 + q + s)

{

x1j

4∑

k=1

x2k − x2j

4∑

k=1

x1k

}

Δ(2, j) = (1 + p + r)

{

x2j

4∑

k=1

x1k − x1j

4∑

k=1

x2k

}

Δ(3, j) = (p − q + ps − qr)

×
{

x2j

4∑

k=1

x1k − x1j

4∑

k=1

x2k

}

Δ(4, j) = (r − s + qr − ps)

×
{

x1j

4∑

k=1

x2k − x2j

4∑

k=1

x2k

}

Since p − q + ps − qr = 0 and r − s + qr − ps = 0 gives the only reasonable
solution p = q and r = s, the following theorem is obtained.

Theorem 12. The third and fourth rows represened by a linear combination of
first and second rows (basis) will satisfy the condition of statistical independence
if and only if p = q and r = w.

9 Pseudo Statiatical Independence

Now, we will generalize the results shown in Section 8. Let us consider the n×m
contingency table whose r rows (columns) are described by n−s rows (columns).
Thus, we assume a corresponding matrix with the following equations.

⎛

⎜
⎜
⎜
⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎞

⎟
⎟
⎟
⎠

(xn−s+p,1 xn−s+p,2 · · · xn−s+p,m) =
n−s∑

i=1

kpi(xi1 xi2 · · · xim)

(1 ≤ s ≤ n − 1, 1 ≤ p ≤ s) (34)

Then, the following theorem about Δ(u, v) is obtained.

Contingency Matrix Theory I 177

Theorem 13. For a contingency table with size n × m:

Δ(u, v) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−s∑

i=1

(1 +
n−s∑

p=1

kpi)

×

⎧
⎨

⎩
xuv(

m∑

j=1

xij) − xiv(
m∑

j=1

xuj)

⎫
⎬

⎭

(1 ≤ u ≤ n − s, 1 ≤ v ≤ m)

n−s∑

i=1

m∑

j=1

n−s∑

q=1

xq1xij

×{(kuq − kui)

+kuq

n−s∑

p=1

kpi − kui

n−s∑

p=1

kpq

}

(n − s + 1 ≤ u ≤ n, 1 ≤ v ≤ m)

(35)

Thus, from the above theorem, if and only if Δ(u, v) = 0 for all v, then the
u-th row will satisfy the condition of statistically independence. Especially, the
following theorem is obtained.

Theorem 14. If the following equation holds for all v(1 ≤ v ≤ m) , then the
condition of statistical independence will hold for the u-th row in a contingency
table.

n−s∑

i=1

m∑

j=1

n−s∑

q=1

{

(kuq − kui) + kuq

n−s∑

p=1

kpi − kui

n−s∑

p=1

kpq

}

= 0 (36)

It is notable that the above equations give diophatine equations which can check
whether each row (column) will satisfy the condition of statistical independence.
As a corollary,

Corollary 3. If kui is equal for all i = 1, · · · , n− s , then the u-th satisfies the
condition of statistical independence.

The converse is not true.

Example 4. Let us consider the following matrix:

F =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 2
2 2 3
4 4 5

x41 x42 x43

x51 x52 x53

⎞

⎟
⎟
⎟
⎟
⎠

,

178 S. Tsumoto and S. Hirano

where the last two rows are represented by the first three columns. That is, the
rank of a matrix is equal to 3. Then, according to Theorem 14, the following
equations are obtained:

(5k53 − k52 − 4k51)
× {k41 − 2k43 + (k51 − 2k53 − 1} = 0 (37)

(5k43 − k42 − 4k41)
× {k41 − 2k43 + (k51 − 2k53 − 1} = 0 (38)

In case of k41 − 2k43 + (k51 − 2k53 − 1) = 0, simple calculations give several
equations for those coefficients.

k41 + k51 = 2(k43 + k53) + 1
k42 + k52 = −3(k43 + k53)

The solutions of these two equations give examples of pseudo statistical inde-
pendence. ��

10 Conclusion

In this paper, a contingency table is interpreted from the viewpoint of granular
computing and statistical independence. From the definition of statistical inde-
pendence, statistical independence in a contingency table will holds when the
equations of collinearity(Equation 14) are satisfied. In other words, statistical
independence can be viewed as linear dependence. Then, the correspondence
between contingency table and matrix, gives the theorem where the rank of the
contingency matrix of a given contingency table is equal to 1 if two attributes
are statistical independent. That is, all the rows of contingency table can be
described by one row with the coefficient given by a marginal distribution. If the
rank is maximum, then two attributes are dependent. Otherwise, some proba-
bilistic structure can be found within attribute -value pairs in a given attribute,
which we call contextual independence. Moreover, from the characteristics of
statistical independence, a contingency table may be composed of statistical in-
dependent and dependent parts, which we call pseudo statistical dependence.
In such cases, if we merge several rows or columns, then we will obtain a new
contingency table with statistical independence, whose rank of its correspond-
ing matrix is equal to 1.0. Especially, we obtain Diophatine equations for a
pseudo statistical dependence. Thus, matrix algebra and elementary number
theory are the key methods of the analysis of a contingency table and the de-
gree of independence, where its rank and the structure of linear dependence as
Diophatine equations play very important roles in determining the nature of a
given table.

Contingency Matrix Theory I 179

References

1. Maimon, O., Rokach, L. (eds.): The Data Mining and Knowledge Discovery Hand-
book. Springer, Heidelberg (2005)

2. Joe, H.: Multivariate Models and Dependence Concepts. CRC/Chapman & Hall
(1997)

3. Zadeh, L.: Toward a theory of fuzzy information granulation and its certainty in
human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)

4. Lin, T.Y., Liau, C.J.: Granular computing and rough sets. In: [1], pp. 535–561
5. Skowron, A., Grzymala-Busse, J.: From rough set theory to evidence theory. In:

Yager, R., Fedrizzi, M., Kacprzyk, J. (eds.) Advances in the Dempster-Shafer Theory
of Evidence, pp. 193–236. John Wiley & Sons, New York (1994)

6. Yao, Y., Wong, S.: A decision theoretic framework for approximating concepts.
International Journal of Man-machine Studies 37, 793–809 (1992)

7. Yao, Y., Zhong, N.: An analysis of quantitative measures associated with rules. In:
Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 479–488.
Springer, Heidelberg (1999)

8. Tsumoto, S.: Automated induction of medical expert system rules from clinical
databases based on rough set theory. Information Sciences 112, 67–84 (1998)

9. Coxeter, H. (ed.): Projective Geometry, 2nd edn. Springer, New York (1987)

Applying Rough Sets to Information Tables

Containing Possibilistic Values

Michinori Nakata1 and Hiroshi Sakai2

1 Faculty of Management and Information Science,
Josai International University

1 Gumyo, Togane, Chiba, 283-8555, Japan
nakatam@ieee.org

2 Department of Mathematics and Computer Aided Sciences,
Faculty of Engineering, Kyushu Institute of Technology,

Tobata, Kitakyushu, 804-8550, Japan
sakai@mns.kyutech.ac.jp

Abstract. Rough sets are applied to information tables containing im-
precise values that are expressed in a normal possibility distribution. A
method of weighted equivalence classes is proposed, where each equiva-
lence class is accompanied by a possibilistic degree to which it is an actual
one. By using a family of weighted equivalence classes, we derive lower
and upper approximations. The lower and upper approximations coin-
cide with ones obtained from methods of possible worlds. Therefore, the
method of weighted equivalence classes is justified. When this method is
applied to missing values interpreted possibilistically, it creates the same
relation for indiscernibility as the method of Kryszkiewicz that gave an
assumption for indiscernibility of missing values. Using weighted equiva-
lence classes correctly derives a lower approximation from the viewpoint
of possible worlds, although using a class of objects that is not an equiv-
alence class does not always derive a lower approximation.

Keywords: Rough sets, Imprecise value, Missing value, Possibility dis-
tribution, Weighted equivalence class, Lower and upper approximations.

1 Introduction

Rough sets play a significant role in the field of knowledge discovery and data
mining since the first paper published by Pawlak [29]. Methods of rough
sets are originally constructed under the premise that information tables
consisting of precise information are obtained, which are called the traditional
methods of rough sets. However, information tables actually obtained contain
imprecise data such as missing values in many cases. Furthermore, there ubiq-
uitously exists imperfect information containing imprecision and uncertainty in
the real world [28]. Under these circumstances, it has been investigated to apply
rough sets to information tables containing imprecise information represented by
a missing value, an or-set, a possibility distribution, a probability distribution,

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 180–204, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Applying Rough Sets to Information Tables Containing Possibilistic Values 181

etc [5,6,7,11,14,15,16,17,20,21,22,23,24,25,26,31,32,33,35,37,38]. The methods
are broadly separated into three ways.

The first method is one based on possible worlds, which is called a method
of possible worlds [27, 31, 32, 33, 34]. The method creates an extended set of
possible tables from an information table. All possible tables consist of precise
values. Each possible table is dealt with in terms of the traditional methods of
applying rough sets to information tables not containing imprecise values, and
then the results from possible tables are aggregated. In other words, the methods
that are already established are applied to each possible table. Therefore, There
is no doubt about the correctness of the method of possible worlds in the sense
that the method is based on results obtained from the established methods.
However, the method has difficulties for knowledge discovery at the level of a
set of possible values, although it is suitable for finding knowledge at the level
of possible values. This is because the number of possible tables exponentially
increases as the number of imprecise attribute values increases.

The second method is to use assumptions on indiscernibility of missing val-
ues [5, 6, 11, 14, 15, 16, 17, 20, 37, 38]. The assumption that Kryszkiewicz used is
that a missing value is indiscernible with any value. Stefanowski and Tsoukiàs
pointed out that the assumption creates quite poor results for lower approxi-
mations [37]. To improve the situation, another assumption was proposed. The
assumption is that indiscernibility is directional [5, 6, 37, 38]. A missing value is
indiscernible with any precise value when viewed from the missing value, whereas
any precise value is not indiscernible with a missing value when viewed from the
precise value. Under the assumptions, we can obtain a binary relation for in-
discernibility between objects. To the binary relation, rough sets are applied by
using a class of objects which is not an equivalence class; for instance, a toler-
ance class. In the method, it is not clarified why the assumptions are valid to real
data sets.

The third method directly deals with imprecise values, without using any as-
sumptions on indiscernibility, under extending the traditional method of apply-
ing rough sets to information tables not containing imprecise values [21,22,23,38].
In the method, imprecise values are dealt with probabilistically or possibilisti-
cally and the traditional methods are probabilistically or possibilistically ex-
tended. A binary relation for indiscernibility is constructed by calculating a
degree for indiscernibility between objects. A criterion is proposed to check the
correctness of extended methods [21, 22, 23]. The correctness criterion is that
any extended method has to give the same results as the method of possible
worlds [21]. This criterion is commonly used in the field of databases handling
imprecise information [1,2, 3,4, 12, 13, 39].

Stefanowski and Tsoukiàs obtained a lower approximation by using implica-
tion operators to calculate an inclusion degree between tolerance classes [38].
Nakata and Sakai have shown that the results in terms of implication opera-
tors do not satisfy the correctness criterion and has proposed the method that
satisfies the correctness criterion [21,22,23]. However, the proposed method has

182 M. Nakata and H. Sakai

difficulties for definability, because rough approximations are defined by con-
structing sets from singletons. Therefore, we propose a method using equivalence
classes, called a method of weighted equivalence classes. In this paper, we show
how weighted equivalence classes are applied to information tables containing
possibilistic values expressed in a normal possibility distribution.1

In Section 2, we briefly address the traditional methods of applying rough
sets to information tables not containing imprecise values. In Section 3, the
method of possible worlds is mentioned. The extended set of possible tables is
created from an information table containing imprecise values. The traditional
methods of applying rough sets to precise information deal with each possible
table and then the results from possible tables are aggregated. In Section 4, a
method of applying rough sets to information tables containing imprecise values
expressed in a normal possibility distribution is described in terms of weighted
equivalence classes. In Section 5, the method is applied to information tables
containing missing values under possibilistic interpretation. Section 6 presents
conclusions.

2 Rough Sets under Precise Information

A data set is represented as a table, called an information table, where each row
represents an object and each column represents an attribute. The information
table is expressed in (U, AT), where U is a non-empty finite set of objects called
the universe and AT is a non-empty finite set of attributes such that ∀a ∈ AT :
U → Va. Va is called the domain of attribute a. In information table T consisting
of set AT of attributes, binary relation IND(ΨA) for indiscernibility of objects
in subset Ψ ⊆ U on subset A ⊆ AT of attributes is,

IND(ΨA) = {(o, o′) ∈ Ψ × Ψ | ∀a ∈ A a(o) = a(o′)}, (1)

where o and o′ denotes objects, (o, o′) a pair of o and o′, a(o) and a(o′) attribute
values of o and o′ on a. This relation is called an indiscernibility relation. Obvi-
ously, IND(ΨA) is an equivalence relation. From the indiscernibility relation, the
equivalence class containing object o on A, denoted by E(ΨA)o(= {o′ | (o, o′) ∈
IND(ΨA)}), is obtained. This is also the set of objects that is indiscernible with
object o on A, called the indiscernible class on A for object o. Finally, a family
of equivalence classes on A, denoted by Ψ/IND(ΨA) (= {E(ΨA)o | o ∈ Ψ}), is
derived from the indiscernibility relation. All equivalence classes obtained from
the indiscernibility relation do not intersect with each other. This means that
the objects are partitioned.

Example 1
Let the following information table T1 be obtained:

1 See references [24,26] for information tables containing probabilistic information.

Applying Rough Sets to Information Tables Containing Possibilistic Values 183

T1

O a1 a2 a3

1 x 1 a
2 x 2 b
3 y 2 b
4 z 1 b
5 x 1 a
6 y 2 b

Mark O denotes the object identity and U = {o1, o2, o3, o4, o5, o6}. For set
Ψ(= {o2, o3, o4, o5, o6}) of objects, we obtain the following binary relation for
indiscernibility on attribute a1:

IND(Ψa1) = {(o2, o2), (o2, o5), (o3, o3), (o3, o6), (o4, o4), (o5, o2), (o5, o5),
(o6, o3), (o6, o6)}.

From IND(Ψa1), we obtain the following family of equivalence classes:

Ψ/IND(Ψa1) = {{o4}, {o2, o5}, {o3, o6}}.

Similarly, for Φ = {o1, o2, o3, o5, o6} on attribute a3,

Φ/IND(Φa3) = {{o1, o5}, {o2, o3, o6}}.

Using equivalence classes, lower approximation Apr(ΦB, ΨA) and upper ap-
proximation Apr(ΦB , ΨA) of Φ/IND(ΦB) by Ψ/IND(ΨA) are,

Apr(ΦB , ΨA) = {E(ΨA) | ∃E(ΦB) E(ΨA) ⊆ E(ΦB)}, (2)

Apr(ΦB , ΨA) = {E(ΨA) | ∃E(ΦB) E(ΨA) ∩ E(ΦB) �= ∅}. (3)

where E(ΨA) ∈ Ψ/IND(ΨA) and E(ΦB) ∈ Φ/IND(ΦB) are equivalence classes
for sets Ψ and Φ of objects on sets A and B of attributes, respectively. These
formulas are expressed in terms of equivalence classes. For lower and upper
approximations in terms of objects, the following expressions are used:

apr(ΦB , ΨA) = {o | o ∈ E(ΨA) ∧ ∃E(ΦB) E(ΨA) ⊆ E(ΦB)}, (4)
apr(ΦB , ΨA) = {o | o ∈ E(ΨA) ∧ ∃E(ΦB) E(ΨA) ∩ E(ΦB) �= ∅}. (5)

Example 2
We check equivalence classes comprising families Ψ/IND(Ψa1) and Φ/IND(Φa3)
in Example 1. For inclusion and intersection between equivalence classes, {o4}∩
{o1, o5} = ∅, {o4} ∩ {o2, o3, o6} = ∅, {o2, o5} �⊆ {o1, o5}, {o2, o5} ∩ {o1, o5} �= ∅,
{o2, o5} �⊆ {o2, o3, o6}, and {o3, o6} ⊂ {o2, o3, o6}. Thus, for lower and upper
approximations in terms of equivalence classes,

Apr(Φa3 , Ψa1) = {{o3, o6}},
Apr(Φa3 , Ψa1) = {{o2, o5}, {o3, o6}}.

184 M. Nakata and H. Sakai

For the expressions in terms of objects,

apr(Φa3 , Ψa1) = {o3, o6},
apr(Φa3 , Ψa1) = {o2, o3, o5, o6}.

3 Methods of Possible Worlds

In methods of possible worlds, the traditional methods addressed in the previous
section are applied to each possible table, and then the results from possible
tables are aggregated. We suppose that every imprecise value is expressed in a
normal possibility distribution where an element has the maximum possibilistic
degree 1. When imprecise values are contained in information table T , we obtain
the following extended set rep(T) of possible tables:

rep(T) = {(pt1, μ(pt1)), . . . , (ptn, μ(ptn))}, (6)

where pti and μ(pti) denote a possible table and the possibilistic degree to which
pti is the actual one, n is equal to Πi=1,mli, m is the number of imprecise
attribute values that are expressed in a normal possibility distribution having
li(i = 1, m)) elements. A possible table is a table such that each imprecise
value expressed in a normal possibility distribution is replaced by an element
comprising the normal possibility distribution. When replaced values in pti are
expressed in terms of elements vi1, vi2, . . ., vim,

μ(pti) = min
k=1,m

π(vik), (7)

where π(vik) is the possibilistic degree of vik and comes from normal possibility
distribution π expressing the imprecise attribute value in which vik is an element.

Example 3
Let the following information table T2 be obtained:

T2

O a1 a2 a3

1 x 1 a
2 {(x, 1), (y, 0.8)}p 2 b
3 y 2 {(a, 0.4), (b, 1)}p

4 {(x, 1), (y, 0.3)}p 1 a

U = {o1, o2, o3, o4} and subscript p of {(x, 1), (y, 0.8)}p denotes a normal pos-
sibility distribution. The following extended set rep(T2) of possible tables is
obtained:

rep(T2) = {(pt1, μ(pt1)), · · · , (pt8, μ(pt8))},

where pti and μ(pti) are:

Applying Rough Sets to Information Tables Containing Possibilistic Values 185

pt1
O a1 a2 a3

1 x 1 a
2 x 2 b
3 y 2 a
4 x 1 a

pt2
O a1 a2 a3

1 x 1 a
2 x 2 b
3 y 2 b
4 x 1 a

pt3
O a1 a2 a3

1 x 1 a
2 x 2 b
3 y 2 a
4 y 1 a

pt4
O a1 a2 a3

1 x 1 a
2 x 2 b
3 y 2 b
4 y 1 a

pt5
O a1 a2 a3

1 x 1 a
2 y 2 b
3 y 2 a
4 x 1 a

pt6
O a1 a2 a3

1 x 1 a
2 y 2 b
3 y 2 b
4 x 1 a

pt7
O a1 a2 a3

1 x 1 a
2 y 2 b
3 y 2 a
4 y 1 a

pt8
O a1 a2 a3

1 x 1 a
2 y 2 b
3 y 2 b
4 y 1 a

μ(pt1) = min(1, 1, 0.4) = 0.4,
μ(pt2) = min(1, 1, 1) = 1,
μ(pt3) = min(1, 0.3, 0.4) = 0.3,
μ(pt4) = min(1, 0.3, 1) = 0.3,
μ(pt5) = min(0.8, 1, 0.4) = 0.4,
μ(pt6) = min(0.8, 1, 1) = 0.8,
μ(pt7) = min(0.8, 0.3, 0.4) = 0.3,
μ(pt8) = min(0.8, 0.3, 1) = 0.3.

Each possible table consists of precise values. Possible table pti is accompa-
nied by possibilistic degree μ(pti) to which it is the actual information table.
Thus, the family of equivalence classes accompanied by a possibilistic degree is
obtained for each possible table, which is denoted by (U/IND(UA)pti , μ(pti)).2

(U/IND(UA)pti , μ(pti)) is defined by,

(U/IND(UA)pti , μ(pti)) = {(E(UA), μ(pti)) | E(UA) ∈ U/IND(UA)pti}. (8)

U/IND(UA) is the union of (U/IND(UA)pti , μ(pti)),

U/IND(UA) = ∪i(U/IND(UA)pti , μ(pti)). (9)

In union ∪i, the maximum possibilistic degree is taken if there are the same
elements accompanied by a possibilistic degree. Thus,

U/IND(UA) = {(E(UA), κ(E(UA) ∈ U/IND(UA))) |
κ(E(UA) ∈ U/IND(UA)) = max

E(UA)∈U/IND(UA)pti

μ(pti)}, (10)

where E(UA) is an equivalence class on A and κ(E(UA) ∈ U/IND(UA)) is the
possibilistic degree to which E(UA) is contained in U/IND(UA).

2 U is used in place of a set when it is the universe.

186 M. Nakata and H. Sakai

Example 4
Binary relations IND(Ua1)pt1 and IND(Ua3)pt1 for indiscernibility on attributes
a1 and a3 in possible table pt1 of Example 3 are,

IND(Ua1)pt1 = {(o1, o1), (o1, o2), (o1, o4), (o2, o1), (o2, o2), (o2, o4), (o3, o3),
(o4, o1), (o4, o2), (o4, o4)},

IND(Ua3)pt1 = {(o1, o1), (o1, o3), (o1, o4), (o2, o2), (o3, o1), (o3, o3),
(o3, o4), (o4, o1), (o4, o3), (o4, o4)}.

Families U/IND(Ua1)pt1 and U/IND(Ua3)pt1 of equivalence classes on attributes
a1 and a3 are,

U/IND(Ua1)pt1 = {{o3}, {o1, o2, o4}},
U/IND(Ua3)pt1 = {{o2}, {o1, o3, o4}}.

Possible table pt1 is accompanied by possibilistic degree μ(pt1) to which it is the
actual one. Thus, families (U/IND(Ua1)pt1 , μ(pt1)) and (U/IND(Ua3)pt1 , μ(pt1))
of equivalence classes accompanied by possibilistic degree μ(pt1)(= 0.4) are,

(U/IND(Ua1)pt1 , μ(pt1)) = {({o3}, 0.4), ({o1, o2, o4}, 0.4)},
(U/IND(Ua3)pt1 , μ(pt1)) = {({o2}, 0.4), ({o1, o3, o4}, 0.4)}.

Similarly, for the other possible tables,

(U/IND(Ua1)pt2 , μ(pt2)) = {({o3}, 1), ({o1, o2, o4}, 1)},
(U/IND(Ua3)pt2 , μ(pt2)) = {({o1, o4}, 1), ({o2, o3}, 1)},
(U/IND(Ua1)pt3 , μ(pt3)) = {({o1, o2}, 0.3), ({o3, o4}, 0.3)},
(U/IND(Ua3)pt3 , μ(pt3)) = {({o2}, 0.3), ({o1, o3, o4}, 0.3)},
(U/IND(Ua1)pt4 , μ(pt4)) = {({o1, o2}, 0.3), ({o3, o4}, 0.3)},
(U/IND(Ua3)pt4 , μ(pt4)) = {({o1, o4}, 0.3), ({o2, o3}, 0.3)},
(U/IND(Ua1)pt5 , μ(pt5)) = {({o1, o4}, 0.4), ({o2, o3}, 0.4)},
(U/IND(Ua3)pt5 , μ(pt5)) = {({o2}, 0.4), ({o1, o3, o4}, 0.4)},
(U/IND(Ua1)pt6 , μ(pt6)) = {({o1, o4}, 0.8), ({o2, o3}, 0.8)},
(U/IND(Ua3)pt6 , μ(pt6)) = {({o1, o4}, 0.8), ({o2, o3}, 0.8)},
(U/IND(Ua1)pt7 , μ(pt7)) = {({o1}, 0.3), ({o2, o3, o4}, 0.3)},
(U/IND(Ua3)pt7 , μ(pt7)) = {({o2}, 0.3), ({o1, o3, o4}, 0.3)},
(U/IND(Ua1)pt8 , μ(pt8)) = {({o1}, 0.3), ({o2, o3, o4}, 0.3)},
(U/IND(Ua3)pt8 , μ(pt8)) = {({o1, o4}, 0.3), ({o2, o3}, 0.3)}.

The possibilistic degree to which {o1} is an actual equivalence class on a1 is,

κ({o1} ∈ U/IND(Ua1)) = max(0.3, 0.3) = 0.3.

Applying Rough Sets to Information Tables Containing Possibilistic Values 187

Similarly, for the other equivalence classes,

κ({o3} ∈ U/IND(Ua1)) = max(0.4, 1) = 1,

κ({o1, o2} ∈ U/IND(Ua1)) = max(0.3, 0.3) = 0.3,

κ({o1, o4} ∈ U/IND(Ua1)) = max(0.4, 0.8) = 0.8,

κ({o2, o3} ∈ U/IND(Ua1)) = max(0.4, 0.8) = 0.8,

κ({o3, o4} ∈ U/IND(Ua1)) = max(0.3, 0.3) = 0.3,

κ({o1, o2, o4} ∈ U/IND(Ua1)) = max(0.4, 1) = 1,

κ({o2, o3, o4} ∈ U/IND(Ua1)) = max(0.3, 0.3) = 0.3.

Finally,

U/IND(Ua1) = {({o1}, 0.3), ({o3}, 1), ({o1, o2}, 0.3), ({o1, o4}, 0.8),
({o2, o3}, 0.8), ({o3, o4}, 0.3), ({o1, o2, o4}, 1), ({o2, o3, o4}, 0.3)}.

Similarly,

U/IND(Ua3) = {({o2}, 0.4), ({o1, o4}, 1), ({o2, o3}, 1), ({o1, o3, o4}, 0.4)}.

To obtain lower and upper approximations, the traditional methods addressed
in the previous section are applied to possible tables. Let Apr(UB, UA)pti and
Apr(UB, UA)pti denote the lower approximation and the upper approxima-
tion of U/IND(UB)pti by U/IND(UA)pti in possible table pti having possi-
bilistic degree μ(pti). Apr(UB, UA)pti and Apr(UB , UA)pti are accompanied by
possibilistic degree μ(pti), which are denoted by (Apr(UB , UA)pti , μ(pti)) and
(Apr(UB, UA)pti , μ(pti)), respectively.

(Apr(UB, UA)pti , μ(pti)) = {(E(UA), μ(pti)) | E(UA) ∈ Apr(UB, UA)pti},(11)

(Apr(UB, UA)pti , μ(pti)) = {(E(UA), μ(pti)) | E(UA) ∈ Apr(UB, UA)pti}.(12)

(Apr(UB, UA)) and (Apr(UB, UA)) are the union of (Apr(UB, UA)pti , μ(pti)) and
(Apr(UB, UA)pti , μ(pti)), respectively,

Apr(UB, UA) = ∪i(Apr(UB, UA)pti , μ(pti)), (13)

Apr(UB, UA) = ∪i(Apr(UB, UA)pti , μ(pti)). (14)

Considering the same equivalence classes accompanied by a possibilistic degree,

Apr(UB , UA) = {(E(UA), κ(E(UA) ∈ Apr(UB, UA))) |
κ(E(UA) ∈ Apr(UB, UA)) = max

E(UA)∈Apr(UB ,UA))pti

μ(pti)}, (15)

Apr(UB , UA) = {(E(UA), κ(E(UA) ∈ Apr(UB, UA))) |
κ(E(UA) ∈ Apr(UB , UA)) = max

E(UA)∈Apr(UB ,UA))pti

μ(pti)}, (16)

188 M. Nakata and H. Sakai

where κ(E(UA) ∈ Apr(UB , UA)) and κ(E(UA) ∈ Apr(UB, UA)) are possibilistic
degrees to which E(UA) is contained in Apr(UB, UA) and Apr(UB, UA),
respectively. These formulas show that the maximum of the possibilistic degrees
of possible tables where E(UA) is contained in the approximations is equal to
the possibilistic degree for E(UA).

Proposition 1
When (E(UA), κ(E(UA) ∈ Apr(UB, UA))) is an element of Apr(UB, UA) in an
information table, there exists possible table pti where Apr(UB, UA)pti contains
E(UA) and μ(pti) is equal to κ(E(UA) ∈ Apr(UB, UA)).

Proof
Let (E(UA), κ(E(UA) ∈ Apr(UB, UA))) be an element of Apr(UB, UA). From
formula (15), there are possible tables where a lower approximation contains
E(UA) and κ(E(UA) ∈ Apr(UB, UA)) is equal to the maximum of possibilistic
degrees that the possible tables have. Thus, Proposition 1 holds.

Proposition 2
When (E(UA), κ(E(UA) ∈ Apr(UB, UA))) is an element of Apr(UB, UA) in an
information table, there exists possible table pti where Apr(UB, UA)pti contains
E(UA) and μ(pti) is equal to κ(E(UA) ∈ Apr(UB, UA)).

Proof
The proof is similar to that of Proposition 1.

When lower and upper approximations are expressed in terms of objects,

apr(UB, UA) = {(o, κ(o ∈ apr(UB, UA))) | κ(o ∈ apr(UB, UA)) > 0}, (17)
apr(UB, UA) = {(o, κ(o ∈ apr(UB, UA))) | κ(o ∈ apr(UB, UA)) > 0}, (18)

where

κ(o ∈ apr(UB, UA)) = max
E(UA)�o

κ(E(UA) ∈ Apr(UB, UA)), (19)

κ(o ∈ apr(UB, UA)) = max
E(UA)�o

κ(E(UA) ∈ Apr(UB, UA)). (20)

Example 5
For inclusion and intersection of equivalence classes on attributes a1 and a3 of
possible table pt1 in Example 4, {o1, o2, o4} �⊆ {o1, o3, o4}, {o1, o2, o4} �⊆ {o2},
{o3} ⊆ {o1, o3, o4}, {o1, o2, o4} ∩ {o1, o3, o4} �= ∅, and {o3} ∩ {o1, o3, o4} �= ∅.
Thus,

(Apr(Ua3 , Ua1)pt1 , μ(pt1)) = {({o3}, 0.4)},
(Apr(Ua3 , Ua1)pt1 , μ(pt1)) = {({o3}, 0.4), ({o1, o2, o4}, 0.4)}.

Similarly for the other possible tables,

(Apr(Ua3 , Ua1)pt2 , μ(pt2)) = {({o3}, 1)},

Applying Rough Sets to Information Tables Containing Possibilistic Values 189

(Apr(Ua3 , Ua1)pt2 , μ(pt2)) = {({o3}, 1), ({o1, o2, o4}, 1)},
(Apr(Ua3 , Ua1)pt3 , μ(pt3)) = {({o3, o4}, 0.3)},
(Apr(Ua3 , Ua1)pt3 , μ(pt3)) = {({o1, o2}, 0.3), ({o3, o4}, 0.3)},
(Apr(Ua3 , Ua1)pt4 , μ(pt4)) = {({∅}, 0.3)},
(Apr(Ua3 , Ua1)pt4 , μ(pt4)) = {({o1, o2}, 0.3), ({o3, o4}, 0.3)},
(Apr(Ua3 , Ua1)pt5 , μ(pt5)) = {({o1, o4}, 0.4)},
(Apr(Ua3 , Ua1)pt5 , μ(pt5)) = {({o1, o4}, 0.4), ({o2, o3}, 0.4)},
(Apr(Ua3 , Ua1)pt6 , μ(pt6)) = {({o1, o4}, 0.8), ({o2, o3}, 0.8)},
(Apr(Ua3 , Ua1)pt6 , μ(pt6)) = {({o1, o4}, 0.8), ({o2, o3}, 0.8)},
(Apr(Ua3 , Ua1)pt7 , μ(pt7)) = {({o1}, 0.3)},
(Apr(Ua3 , Ua1)pt7 , μ(pt7)) = {({o1}, 0.3), ({o2, o3, o4}, 0.3)},
(Apr(Ua3 , Ua1)pt8 , μ(pt8)) = {({o1}, 0.3)},
(Apr(Ua3 , Ua1)pt8 , μ(pt8)) = {({o1}, 0.3), ({o2, o3, o4}, 0.3)}.

We aggregate the results obtained from possible tables. The union of the
results from possible tables is made. For lower approximation Apr(Ua3 , Ua1), the
equivalence classes that satisfy κ(E(Ua1) ∈ Apr(Ua3 , Ua1)) > 0 are {o1}, {o3},
{o1, o4}, {o2, o3}, and {o3, o4}.

κ({o1} ∈ Apr(Ua3 , Ua1)) = max(0.3, 0.3) = 0.3,

κ({o3} ∈ Apr(Ua3 , Ua1)) = max(0.4, 1) = 1,

κ({o1, o4} ∈ Apr(Ua3 , Ua1)) = max(0.4, 0.8) = 0.8,

κ({o2, o3} ∈ Apr(Ua3 , Ua1)) = 0.8,

κ({o3, o4} ∈ Apr(Ua3 , Ua1)) = 0.3.

Finally,

Apr(Ua3 , Ua1) = {({o1}, 0.3), ({o3}, 1), ({o1, o4}, 0.8), ({o2, o3}, 0.8),
({o3, o4}, 0.3)}.

Similarly, for upper approximation Apr(Ua3 , Ua1), the equivalence classes that
satisfy κ(E(Ua1) ∈ Apr(Ua3 , Ua1)) > 0 are {o1}, {o3}, {o1, o2}, {o1, o4}, {o2, o3},
{o3, o4}, {o1, o2, o4}, {o2, o3, o4}.

Apr(Ua3 , Ua1) = {({o1}, 0.3), ({o3}, 1), ({o1, o2}, 0.3), ({o1, o4}, 0.8),
({o2, o3}, 0.8), ({o3, o4}, 0.3), ({o1, o2, o4}, 1), ({o2, o3, o4}, 0.3)}.

When the lower approximation is expressed in terms of objects,

κ(o1 ∈ apr(Ua3 , Ua1)) = max(0.3, 0.8) = 0.8,

κ(o2 ∈ apr(Ua3 , Ua1)) = 0.8,

κ(o3 ∈ apr(Ua3 , Ua1)) = max(1, 0.8, 0.3) = 1,

κ(o4 ∈ apr(Ua3 , Ua1)) = max(0.8, 0.3) = 0.8.

190 M. Nakata and H. Sakai

Similarly, for the upper approximation,

κ(o1 ∈ apr(Ua3 , Ua1)) = 1,

κ(o2 ∈ apr(Ua3 , Ua1)) = 1,

κ(o3 ∈ apr(Ua3 , Ua1)) = 1,

κ(o4 ∈ apr(Ua3 , Ua1)) = 1.

Thus,

apr(Ua3 , Ua1) = {(o1, 0.8), (o2, 0.8), (o3, 1), (o4, 0.8)},
apr(Ua3 , Ua1) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1)}.

We adopt results from the method of possible worlds as a correctness criterion
of extended methods of applying rough sets to information tables containing
imprecise values. This is commonly used in the field of databases handling
imprecise information [1,2, 3,4, 12, 13, 39].

Correctness criterion
Results obtained from applying an extended method to an information table
containing imprecise information are the same as ones obtained from applying
the corresponding traditional method to every possible table derived from that
information table and aggregating the results created in the possible tables.

This is formulated as follows:
Suppose that operator rep creates extended set rep(T) of possible tables derived
from information table T containing imprecise values. Let q be an extended
method directly applied to T and the corresponding method q′ be applied to rep(T)
in the method of possible worlds. The two results is the same; namely,

q(T) = q′(rep(T)).

This condition is schematized in Figure 1.

T
rep

rep(T)

q′q

q(T) = q′(rep(T))

�

�

�
�

�
�

�
�

���

Fig. 1. Correctness criterion of extended method q

When this condition is valid, extended method q gives correct results at the level
of possible values. This correctness criterion is checked as follows:

Applying Rough Sets to Information Tables Containing Possibilistic Values 191

– Derive the extended set of possible tables from an information table contain-
ing imprecise values.

– Apply the traditional methods to each possible table.
– Aggregate the results obtained from possible tables.
– Apply the extended method to the original information table.
– Compare the aggregated results with ones obtained from the extended

method.

4 Applying Rough Sets to Information Tables Containing
Possibilistic Values

When object o takes imprecise values on attributes, we calculate the degree to
which the attribute values are the same as those of another object o′. The degree
is the indiscernibility degree of objects o and o′ on the attributes. In this case, a
binary relation for indiscernibility on set A of attributes is,

IND(UA) = {((o, o′), κ(A(o) = A(o′))) |
(κ(A(o) = A(o′)) �= 0) ∧ (o �= o′)} ∪ {((o, o), 1)}, (21)

where κ(A(o) = A(o′)) denotes the indiscernibility degree of objects o and o′ on
set A of attributes and is equal to degree κ((o, o′) ∈ IND(UA)) to which (o, o′)
is included in IND(UA).

κ(A(o) = A(o′)) =
⊗

a∈A

κ(a(o) = a(o′)), (22)

where operator
⊗

depends on properties of imprecise attribute values. When
the imprecise attribute values are expressed in a normal possibility distribution,
the operator is min.

κ(a(o) = a(o′)) = max
u,v∈Va

min(μ=(u, v), πa(o)(u), πa(o′)(v)),

where πa(o)(u) and πa(o′)(v) are possibilistic degrees to which attribute values
a(o) and a(o′) are equal to u and v, respectively, and,

μ=(u, v) =
{

1 if u = v,
0 otherwise. (23)

From IND(UA), family U/IND(UA) of weighted equivalence classes is ob-
tained via indiscernible classes. Among the elements of IND(UA), set S(UA)o

of objects that are paired with object o, called the indiscernible class on A for
o, is,

S(UA)o = {o′ | κ((o, o′) ∈ IND(UA)) > 0}. (24)

S(UA)o is the greatest one among equivalence classes containing objects o, when
o has a precise value on every attribute in A. Let PS(UA)o denote the power set of

192 M. Nakata and H. Sakai

S(UA)o. From PS(UA)o, family Can(U/IND(UA))o of candidates of equivalence
classes containing o is obtained:

Can(U/IND(UUA))o = {E(UA) | E(UA) ∈ PS(UA)o ∧ o ∈ E(UA)}. (25)

Whole family Can(U/IND(UA)) of candidates of equivalence classes is,

Can(U/IND(UA)) = ∪oCan(U/IND(UA))o. (26)

Possibilistic degree κ(E(UA) ∈ U/IND(UA)) to which E(UA) ∈
Can(U/IND(UA)) is an actual equivalence class is,

κ(E(UA) ∈ U/IND(UA)) = κ(∧o∈E(UA) and o′∈E(UA)(A(o) = A(o′))
∧o′′∈E(UA) and o′′′ 	∈E(UA)(A(o′′) �= A(o′′′))), (27)

where o �= o′, κ(f) is the possibilistic degree to which formula f is satisfied, and
κ(f) = 1 when there exists no f . When an information table contains k objects
and E(UA) consists of l objects,

κ(E(UA) ∈ U/IND(UA)) =
max

(u,v1,···,vk−l)
min(min

oi∈E(UA)
(πA(o1)(u), πA(o2)(u), . . . , πA(ol)(u)),

min
o′

i 	∈E(UA)
(πA(o′

1)(v1), πA(o′
2)

(v2), . . . , πA(o′
k−l)

(vk−l))), (28)

where

πA(oi)(u) = min
j=1,m

πaj(oi)(uj), (29)

πA(o′
i)

(vi) = min
j=1,m

πaj(o′
i)

(vij), (30)

where different values u and vi on set A(= {a1, a2, . . . , am}) of attributes
are expressed in (u1, · · · , um) and (vi1, · · · , vim), respectively. Finally, family
U/IND(UA) of weighted equivalence classes is,

U/IND(UA) =
{(E(UA), κ(E(UA) ∈ U/IND(UA))) | κ(E(UA) ∈ U/IND(UA)) > 0}. (31)

Example 6
From applying formula (21) to information table T2 in Example 3,

U/IND(Ua1) = {((o1, o1), 1), ((o1, o2), 1), ((o1, o4), 1), ((o2, o1), 1),
((o2, o2), 1), ((o2, o3), 0.8), ((o2, o4), 1), ((o3, o2), 0.8),
((o3, o3), 1), ((o3, o4), 0.3), ((o4, o1), 1), ((o4, o2), 1),
((o4, o3), 0.3), ((o4, o4), 1)}.

Applying Rough Sets to Information Tables Containing Possibilistic Values 193

For the binary relation for indiscernibility, each indiscernible class on attribute
a1 for object oi is, respectively,

S(Ua1)o1 = {o1, o2, o4},
S(Ua1)o2 = {o1, o2, o3, o4},
S(Ua1)o3 = {o2, o3, o4},
S(Ua1)o4 = {o1, o3, o3, o4}.

Each power set of these sets is, respectively,

PS(Ua1)o1 = {∅, {o1}, {o2}, {o4}, {o1, o2}, {o1, o4}, {o2, o4}, {o1, o2, o4}},
PS(Ua1)o2 = PS(Ua1)o4

= {∅, {o1}, {o2}, {o3}, {o4}, {o1, o2}, {o1, o3}, {o1, o4}, {o2, o3},
{o2, o4}, {o3, o4}, {o1, o2, o3}, {o1, o2, o4}, {o1, o3, o4},
{o2, o3, o4}, {o1, o2, o3, o4}},

PS(Ua1)o3 = {∅, {o2}, {o3}, {o4}, {o2, o3}, {o2, o4}, {o3, o4}, {o2, o3, o4}}.

Each family of candidates of equivalence classes containing oi is, respectively,

Can(U/IND(Ua1))o1 = {{o1}, {o1, o2}, {o1, o4}, {o1, o2, o4}},
Can(U/IND(Ua1))o2 = {{o2}, {o1, o2}, {o2, o3}, {o2, o4}, {o1, o2, o3},

{o1, o2, o4}, {o2, o3, o4}, {o1, o2, o3, o4}},
Can(U/IND(Ua1))o3 = {{o3}, {o2, o3}, {o3, o4}, {o2, o3, o4}},
Can(U/IND(Ua1))o4 = {{o4}, {o1, o4}, {o2, o4}, {o3, o4}, {o1, o2, o4},

{o1, o3, o4}, {o2, o3, o4}, {o1, o2, o3, o4}}.

The whole family of candidates of equivalence classes is,

Can(U/IND(Ua1)) = {{o1}, {o2}, {o3}, {o4}, {o1, o2}, {o1, o3}, {o1, o4}, {o2, o3},
{o2, o4 }{o3, o4}, {o1, o2, o3}, {o1, o2, o4}, {o1, o3, o4},
{o2, o3, o4}, {o1, o2, o3, o4}}.

Possibilistic degree κ({o1} ∈ U/IND(Ua1)) to which {o1} is an actual equiva-
lence class is,

κ({o1} ∈ U/IND(Ua1)) = κ((a1(o1) �= a1(o2)) ∧ (a1(o1) �= a1(o3)) ∧
(a1(o1) �= a1(o4))

= min(0.8, 1, 0.3)
= 0.3.

Similarly,

κ({o2} ∈ U/IND(Ua1)) = 0,

194 M. Nakata and H. Sakai

κ({o3} ∈ U/IND(Ua1)) = 1,

κ({o4} ∈ U/IND(Ua1)) = 0,

κ({o1, o2} ∈ U/IND(Ua1)) = 0.3,

κ({o1, o3} ∈ U/IND(Ua1)) = 0,

κ({o1, o4} ∈ U/IND(Ua1)) = 0.8,

κ({o2, o3} ∈ U/IND(Ua1)) = 0.8,

κ({o2, o4} ∈ U/IND(Ua1)) = 0,

κ({o3, o4} ∈ U/IND(Ua1)) = 0.3,

κ({o1, o2, o3} ∈ U/IND(Ua1)) = 0,

κ({o1, o2, o4} ∈ U/IND(Ua1)) = 1,

κ({o1, o3, o4} ∈ U/IND(Ua1)) = 0,

κ({o2, o3, o4} ∈ U/IND(Ua1)) = 0.3,

κ({o1, o2, o3, o4} ∈ U/IND(Ua1)) = 0.

Thus, the family of weighted equivalence classes on attribute a1 is,

U/IND(Ua1) = {({o1}, 0.3), ({o3}, 1), ({o1, o2}, 0.3), ({o1, o4}, 0.8),
({o2, o3}, 0.8), ({o3, o4}, 0.3), ({o1, o2, o4}, 1),
({o2, o3, o4}, 0.3)}.

Similarly, the family of weighted equivalence classes on attribute a3 is,

U/IND(Ua3) = {({o2}, 0.4), ({o1, o4}, 1), ({o2, o3}, 1), ({o1, o3, o4}, 0.4)}.

Proposition 3
When (E(UA), κ(E(UA) ∈ U/IND(UA))) is an element of U/IND(UA) in an
information table, there exists possible table pti where U/IND(UA)pti contains
E(UA) and μ(pti) is equal to κ(E(UA) ∈ U/IND(UA)).

Proof
A calculated possibilistic degree κ(E(UA) ∈ U/IND(UA))) by using formulas
(27) – (30) is equal to the maximum possibilistic degree to which each object
o ∈ E(UA) takes an equal possible value, denoted by u, on A and each object
o′i �∈ E(UA) takes a possible value, denoted by vi, different from u on A. Let u
and vi be (u1, · · · , um) and (vi1, · · · , vim) on A(= {a1, a2, . . . , am}), respectively.
The possibilistic degree is equal to that of the possible table where each object
o ∈ E(UA) takes an equal possible value uj and each object o′i �∈ E(UA) takes
possible value vij as the value of attribute aj for j = 1, m and all objects take a
possible value with the maximum degree 1 on the attributes not included in A.
Thus, Proposition 3 holds.

Applying Rough Sets to Information Tables Containing Possibilistic Values 195

Example 7
We check whether or not each element of U/IND(Ua1) in Example 6 exists
in families of equivalence classes obtained in Example 4. ({o1}, 0.3) is an ele-
ment of (U/IND(Ua1)pt7 , μ(pt7)) and (U/IND(Ua1)pt8 , μ(pt8)). Indeed, there
exist possible tables pt7 and pt8 where U/IND(UA)pt7 and U/IND(UA)pt8

contain {o1} and μ(pt7) and μ(pt8) is equal to 0.3. Similarly, for the other
elements ({o3}, 1), ({o1, o2}, 0.3), ({o1, o4}, 0.8), ({o2, o3}, 0.8), ({o3, o4}, 0.3),
({o1, o2, o4}, 1), and ({o2, o3, o4}, 0.3), there exist the corresponding possible
tables pt2, pt3 and pt4, pt6, pt6, pt3 and pt4, pt2, and pt7 and pt8.

Proposition 4
U/IND(UA) in an information table is equal to one obtained from the union of
the families of equivalence classes accompanied by a possibilistic degree, where
each family of equivalence classes is obtained from a possible table created from
the information table.

Proof
From Proposition 3 and the proof, if (E(UA), κ(E(UA) ∈ U/IND(UA))) is
an element of U/IND(UA), there exist possible tables having the family of
equivalence classes containing E(UA). κ(E(UA) ∈ U/IND(UA))) is equal to the
maximum of possibilistic degrees that the possible tables have. The maximum
degree is taken as the possibilistic degree, as is shown in formula (10), when more
than one equivalence class accompanied by a possibilistic degree is obtained in
the union operation. The possibilistic degree by which an equivalence class is
accompanied in a possible table is equal to one that the possible table has. So,
(E(UA), κ(E(UA) ∈ U/IND(UA))) is equal to one obtained from the union of
the families of equivalence classes.

Proposition 5
For any object o,

max
E(UA)�o

κ(E(UA) ∈ U/IND(UA)) = 1. (32)

Proof
From Proposition 4, U/IND(UA) in an information table is equal to the
union of the families of equivalence classes accompanied by a possibilistic de-
gree, where each family of equivalence classes is obtained from a possible ta-
ble created from the information table. Every imprecise value is expressed in
a normal possibility distribution where an element has the maximum possi-
bilistic degree 1. So, there is a possible table where all imprecise attribute
values are replaced by an element having the maximum possibilistic degree
1 for any information table. The possibilistic degree to which the possible
table is the actual one is equal to 1. Each object belongs to either of the
equivalence classes obtained in the possible table. Thus, the above formula
holds.

196 M. Nakata and H. Sakai

Example 8
From Example 6, κ({o3} ∈ U/IND(Ua1)) = 1 and κ({o1, o2, o4} ∈ U/IND(Ua1))
= 1. Indeed, for any object o, maxE(Ua1)�o κ(E(Ua1) ∈ U/IND(Ua1)) = 1.

Using families of weighted equivalence classes, we can obtain lower approxima-
tion Apr(UB, UA) and upper approximation Apr(UB, UA) of U/IND(UB) by
U/IND(UA). For the lower approximation,

Apr(UB, UA) =
{(E(UA), κ(E(UA) ∈ Apr(UB, UA))) | κ(E(UA) ∈ Apr(UB, UA)) > 0},(33)

κ(E(UA) ∈ Apr(UB, UA)) = max
E(UB)

min(κ(E(UA) ⊆ E(UB)),

κ(E(UA) ∈ U/IND(UA)), κ(E(UB) ∈ U/IND(UB))),(34)

where

κ(E(UA) ⊆ E(UB)) =
{

1 if E(UA) ⊆ E(UB),
0 otherwise. (35)

Proposition 6
If (E(UA), κ(E(UA) ∈ Apr(UB, UA))) is an element of Apr(UB, UA) in an
information table, there exists possible table pti where Apr(UB, UA)pti contains
E(UA) and μ(pti) is equal to κ(E(UA) ∈ Apr(UB, UA)).

Proof
From formulas (33) and (34), we suppose to obtain E(UA) ⊆ E(UB),
κ(E(UA) ∈ U/IND(UA)) > 0, and κ(E(UB) ∈ U/IND(UB)) > 0 that gives
κ(E(UA) ∈ Apr(UB, UA)) > 0. From Proposition 3, there is possible tables ptj
and ptk accompanied by μ(ptj) and μ(ptk) equal to κ(E(UA) ∈ U/IND(UA))
and κ(E(UB) ∈ U/IND(UB)), respectively. In possible table ptj we suppose
that every o ∈ E(UA) takes the same possible value xj on A and every
o′ �∈ E(UA) takes x′

j different from xj . All objects take a possible value with
the maximum degree 1 on the attributes not included in A. And similarly in
possible table ptk we suppose that every o ∈ E(UB) takes the same possible
value yk on B and every o′ �∈ E(UB) takes y′

k different from yk. All objects take
a possible value with the maximum degree 1 on the attributes not included
in B. Clearly, there is possible table pti where every o ∈ E(UA) takes the
same possible value xj on A and every o′ �∈ E(UA) takes x′

j different from
xj and every o ∈ E(UB) takes the same possible value yk on B and every
o′ �∈ E(UB) takes y′

k different from yk and all objects take a possible value
with the maximum degree 1 on the attributes not included in A ∪ B. And
in pti Apr(UB, UA)pti contains E(UA) and pti is accompanied by possibilistic
degree μ(pti) equal to min(μ(ptj), μ(ptk))(= κ(E(UA) ∈ Apr(UB, UA))).
Thus, Proposition 6 holds.

Applying Rough Sets to Information Tables Containing Possibilistic Values 197

For the upper approximation,

Apr(UB, UA) =
{(E(UA), κ(o ∈ Apr(UB, UA))) | κ(E(UA) ∈ Apr(UB, UA)) > 0}, (36)

κ(E(UA) ∈ Apr(UB, UA)) = max
E(UB)

min(κ(E(UA) ∩ E(UB) �= ∅),

κ(E(UA) ∈ U/IND(UA)), κ(E(UB) ∈ U/IND(UB))), (37)

where

κ(E(UA) ∩ E(UB) �= ∅) =
{

1 if E(UA) ∩ E(UB) �= ∅,
0 otherwise. (38)

Proposition 7
If (E(UA), κ(E(UA) ∈ Apr(UB, UA))) is an element of Apr(UB, UA) in an
information table, there exists possible table pti where Apr(UB, UA)pti contains
E(UA) and μ(pti) is equal to κ(E(UA) ∈ Apr(UB, UA)).

Proof
The proof is similar to that of Proposition 6.

For expressions in terms of a set of objects, the same expressions as in Section
3 are used.

Proposition 8
The lower and upper approximations that are obtained by the method of
weighted equivalence classes coincide with ones obtained by the method of
possible worlds.

Proof
This proposition is proved by showing that the lower and upper approximations
that are obtained by the method of weighted equivalence classes are equal to
the union of ones obtained from possible tables. For the lower approximation,
from Proposition 6, if (E(UA), κ(E(UA) ∈ Apr(UB, UA)) is an element of
Apr(UB, UA), there exist possible tables having the lower approximation
containing E(UA). Each possible table is accompanied by a possibilistic degree.
The possibilistic degree is also one by which E(UA) is accompanied for the
lower approximation in the possible table. κ(E(UA) ∈ Apr(UB, UA)) is equal
to the maximum degree among the possibilistic degrees. The maximum degree
is taken as the possibilistic degree, as is shown in formula (15), when more
than one equivalence class accompanied by a possibilistic degree is obtained
in the union operation. So, (E(UA), κ(E(UA) ∈ Apr(UB, UA)) is equal to one
obtained from the union of the lower approximations obtained from possible
tables. For the upper approximation, the proof is similar to that of the lower
approximation.

198 M. Nakata and H. Sakai

Example 9
Using the families of weighted equivalence classes in Example 6, we derive the
lower and upper approximations of U/IND(Ua3) by U/IND(Ua1). For the
lower approximation, the possibilistic degree to which equivalence class {o1}
in U/IND(Ua1) is contained in Apr(Ua3 , Ua1) is,

κ({o1} ∈ Apr(Ua3 , Ua1)) = max(min(1, 0.3, 1), min(1, 0.3, 0.4)) = 0.3.

Similarly, for the other equivalence classes,

κ({o3} ∈ Apr(Ua3 , Ua1)) = max(min(1, 1, 1), min(1, 1, 0.4)) = 1,

κ({o1, o2} ∈ Apr(Ua3 , Ua1)) = 0,

κ({o1, o4} ∈ Apr(Ua3 , Ua1)) = max(min(1, 0.8, 1), min(1, 0.8, 0.4)) = 0.8,

κ({o2, o3} ∈ Apr(Ua3 , Ua1)) = min(1, 0.8, 1) = 0.8,

κ({o3, o4} ∈ Apr(Ua3 , Ua1)) = min(1, 0.3, 0.4) = 0.3,

κ({o1, o2, o4} ∈ Apr(Ua3 , Ua1)) = 0,

κ({o2, o3, o4} ∈ Apr(Ua3 , Ua1)) = 0.

Thus,

Apr(Ua3 , Ua1) = {({o1}, 0.3), ({o3}, 1), ({o1, o4}, 0.8), ({o2, o3}, 0.8),
({o3, o4}, 0.3)}.

For all elements of Apr(Ua3 , Ua1), there exist corresponding possible tables in Ex-
ample 5. For element ({o1}, 0.3), the element exists in (Apr(Ua3 , Ua1)pt7 , μ(pt7))
and Apr(Ua3 , Ua1)pt8 , μ(pt8)). Thus, there exists corresponding possible tables
pt7 and pt8 to this element. Similarly, for the other elements ({o3}, 1), ({o1, o4},
0.8), ({o2, o3}, 0.8), ({o3, o4}, 0.3), there exists corresponding possible tables pt2,
pt6, pt6, and pt3, respectively. Thus, Proposition 6 holds.

From Apr(Ua3 , Ua1), the possibilistic degree to which each object is contained
in the lower approximation is, respectively,

κ(o1 ∈ apr(Ua3 , Ua1)) = max(0.3, 0.8) = 0.8,

κ(o2 ∈ apr(Ua3 , Ua1)) = 0.8,

κ(o3 ∈ apr(Ua3 , Ua1)) = max(1, 0.8, 0.3) = 1,

κ(o4 ∈ apr(Ua3 , Ua1)) = max(0.8, 0.3) = 0.8.

Thus,

apr(Ua3 , Ua1) = {(o1, 0.8), (o2, 0.8), (o3, 1), (o4, 0.8)}.

Similarly, for the upper approximation,

Apr(Ua3 , Ua1) = {({o1}, 0.3), ({o3}, 1), ({o1, o2}, 0.3), ({o1, o4}, 0.8),
({o2, o3}, 0.8), ({o3, o4}, 0.3), ({o1, o2, o4}, 1), ({o2, o3, o4}, 0.3)},

apr(Ua3 , Ua1) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1)}.

Applying Rough Sets to Information Tables Containing Possibilistic Values 199

For all elements of Apr(Ua3 , Ua1), there exist corresponding possible tables in Ex-
ample 5. For element ({o1}, 0.3), the element exists in (Apr(Ua3 , Ua1)pt7 , μ(pt7))
and Apr(Ua3 , Ua1)pt8 , μ(pt8)). Thus, there exists corresponding possible tables
pt7 and pt8 to this element. Similarly, for the other elements ({o3}, 1), ({o1, o2},
0.3), ({o1, o4}, 0.8), ({o2, o3}, 0.8), ({o3, o4}, 0.3), ({o1, o2, o4}, 1), ({o2, o3, o4},
0.3), there exist corresponding possible tables pt2, pt3 and pt4, pt6, pt6, pt3 and
pt4, pt2, and pt7 and pt8, respectively. Thus, Proposition 7 holds.

Indeed, the lower and upper approximations coincide with ones obtained from
the method of possible worlds in Example 5.

5 Information Tables Containing Missing Values

We apply the method of weighted equivalence classes to information tables con-
taining missing values. We briefly compare the method that Kryszkiewicz used
with the method of weighted equivalence classes.

When missing values are contained in an information table, Kryszkiewicz de-
fined binary relation TOR(UA) for indiscernibility between objects on set A of
attributes as follows [14, 16]:

TOR(UA) = {(o, o′) ∈ U × U |
∀a ∈ A, a(o) = a(o′) ∨ a(o) = ∗ ∨ a(o′) = ∗}, (39)

where ∗ denotes a missing value. This relation for indiscernibility is a toler-
ance relation. When an object has a missing value as an attribute value, the
object may have the same properties as another object on the attribute. Then,
the tolerance relation treats two objects as indiscernible. This corresponds to
”do not care” semantics of missing values addressed by Grzymala-Busse [9, 10],
where missing values are replaced by all domain elements of the attribute [8].
Indeed, the above definition means that an object having a missing value on
every attribute in A is indiscernible with any object.

By using tolerance classes obtained from TOR(UA), Kryszkiewicz expressed
lower and upper approximations of set Φ of objects as follows:

apr(Φ, UA) = {o ∈ U | T (UA)o ⊆ Φ}, (40)
apr(Φ, UA) = {o ∈ U | T (UA)o ∩ Φ �= ∅}, (41)

where T (UA)o(= {o′ | (o, o′) ∈ TOR(UA)}) denotes the tolerance class for object
o.

When a missing value in an attribute is possibilistically interpreted, every
element in the domain of the attribute has the same possibilistic degree 1 to
which the element is the actual value. In other words, the missing value is equal
to the possibilistic value expressed in the uniform possibility distribution where
every element over the domain has the maximum possibilistic degree 1. When
attribute value a(o) of o is a missing value,

κ(a(o) = a(o′)) = max
u,v∈Va

min(μ=(u, v), πa(o)(u), πa(o′)(v)) = 1,

200 M. Nakata and H. Sakai

where o �= o′ and πa(o)(u) and πa(o′)(u) denote normal possibility distributions
expressing attribute values a(o) and a(o′),3 respectively. This shows that the
indiscernibility degree of an object taking a missing value with the other
objects is equal to 1; namely, the object is indiscernible with any object.
This is equivalent to adopting the assumption that Kryszkiewicz used for
indiscernibility of missing values [14, 16] and is equivalent to ”do not care”
semantics of missing values addressed by Grzymala-Busse [9, 10]. We express
lower and upper approximations by using weighted equivalence classes, as is
shown in the previous section, although Kryszkiewicz used tolerance classes
that are not an equivalence class. This difference is clarified in the following
example.

Example 10
Let the following information table T3 containing missing values be given:

T3

O a1 a2 a3

1 x 1 a
2 y 2 b
3 ∗ 2 b
4 ∗ 3 c

Let domains Va1 , Va2 , and Va3 of attributes a1, a2, and a3 be {x, y}, {1, 2, 3}
and {a, b}, respectively. Tolerance classes on a1 for each object are,

T (Ua1)o1 = {o1, o3, o4},
T (Ua1)o2 = {o2, o3, o4},
T (Ua1)o3 = {o1, o2, o3, o4},
T (Ua1)o4 = {o1, o3, o3, o4}.

We suppose that Φ = {o2, o3}. Because of {o1, o3, o4} �⊆ {o2, o3}, {o2, o3, o4} �⊆
{o2, o3}, {o1, o2, o3, o4} �⊆ {o2, o3}, {o1, o3, o4} ∩ {o2, o3} �= ∅, {o2, o3, o4} ∩
{o2, o3} �= ∅, and {o1, o2, o3, o4} ∩ {o2, o3} �= ∅,

apr(Φ, Ua1) = ∅,
apr(Φ, Ua1) = {o1, o2, o3, o4, o5}.

Note that we do not obtain any information for the lower approximation. This
is true for different expressions proposed by several authors, where equivalence
classes are not used [10, 11,20]. On the other hand, when we use the method of
weighted equivalence classes, applying formulas (24) – (31) to information table
T3, family U/IND(Ua1) of weighted equivalence classes is,

U/IND(Ua1) = {({o1}, 1), ({o2}, 1), ({o1, o3}, 1), ({o1, o4}, 1), ({o2, o3}, 1),
({o2, o4}, 1), ({o1, o3, o4}, 1), ({o2, o3, o4}, 1)}.

3 When a(o′) is a precise value; for example, a(o′) = x, normal possibility distribution
πa(o′) is expressed in {(x, 1)}p.

Applying Rough Sets to Information Tables Containing Possibilistic Values 201

Applying formulas (33) – (38),

Apr(Φ, Ua1) = {({o2}, 1), ({o2, o3}, 1)}.
Apr(Φ, Ua1) = {({o2}, 1), ({o1, o3}, 1), ({o2, o3}, 1), ({o2, o4}, 1), ({o1, o3, o4}, 1),

({o2, o3, o4}, 1)}.

Using formulas (17) – (20),

apr(Φ, Ua1) = {(o2, 1), (o3, 1)}.
apr(Φ, Ua1) = {(o1, 1), (o2, 1), (o3, 1), (o4, 1)}.

As is shown in this example, the method of weighted equivalence classes gives
some information for the lower approximation, but the method of Kryszkiewicz
using tolerance classes does not any information.

To examine the reason why such a difference is created, we show the following
simple example.

Example 11
Let the following information table T4 be obtained:

T4

O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 ∗ 2 b

pt1
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 x 2 b

pt2
O a1 a2 a3

1 x 1 a
2 x 1 a
3 x 1 a
4 x 1 a
5 y 2 b

Let domains Va1 , Va2 , and Va3 of attributes a1, a2, and a3 be {x, y}, {1, 2}, and
{a, b}, respectively. For tolerance classes on a1 for each objects, which are derived
from the binary relation for indiscernibility obtained from applying formula (39)
to T4,

T (Ua1)o1 = T (Ua1)o2 = T (Ua1)o3 = T (Ua1)o4 = T (Ua1)o5 = {o1, o2, o3, o4, o5}.

We suppose that Φ = {o1, o2, o3, o4} for simplicity. We focus on lower approxi-
mation apr(Φ, Ua1), because the upper approximation is trivial in this case. For
the method of Kryszkiewicz using formula (40), because of {o1, o2, o3, o4, o5} �⊆
{o1, o2, o3, o4},

apr(Φ, Ua1) = ∅

This shows that we do not obtain any information for the lower approximation.
On the other hand, the method of possible worlds creates different results. We
obtain two possible tables pt1 and pt2 from T4, because missing value ∗ of ob-
ject o5 is replaced by x or y, which comprise the domain of a1. The family of
equivalence classes on a1 in pt1 is,

U/IND(Ua1) = {o1, o2, o3, o4, o5}.

202 M. Nakata and H. Sakai

The family of equivalence classes on a1 in pt2 is,

U/IND(Ua1) = {{o1, o2, o3, o4}, {o5}}.

From {o1, o2, o3, o4, o5} �⊆ Φ, pt1 has apr(Φ, Ua1) = ∅. On the other hand, pt2
has apr(Φ, Ua1) = {o1, o2, o3, o4} from {o1, o2, o3, o4} ⊆ Φ.

In the above example, possible table pt1 corresponds to the case that object o5

is indiscernible with the other objects whereas pt2 does to the case that o5 is dis-
cernible with the other objects. The method of Kryszkiewicz deals with only the
situation that corresponds to pt1. The reason why the method of Kryszkiewicz
creates the empty set to the lower approximation is due to that discernibility
of missing values is not considered, although indiscernibility of missing values is
considered [25]. On the other hand, the method of weighted equivalence classes
deals with not only indiscernibility but also discernibility of missing values.

6 Conclusions

We have proposed a method, where weighted equivalence classes are used, to
deal with imprecise information expressed in a normal possibility distribution.
The lower and upper approximations by the method of weighted equivalence
classes coincide with ones by the method of possible worlds. In other words, this
method satisfies the correctness criterion that is used in the field of incomplete
databases. This is justification of the method of weighted equivalence classes.

We have applied the method of weighted equivalence classes to information
tables containing missing values under possibilistic interpretation. A binary re-
lation for indiscernibility is the same as one obtained from the assumption that
Kryszkiewicz used. We obtain correct results for rough approximations when
weighted equivalence classes are used, although we do not obtain any results for
the lower approximation when tolerance classes are used.

Acknowledgment. This research has been partially supported by the Grant-
in-Aid for Scientific Research (C), Japan Society for the Promotion of Science,
No. 18500214.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Pub-
lishing Company, Reading (1995)

2. Bosc, P., Duval, L., Pivert, O.: An Initial Approach to the Evaluation of Possibilistic
Queries Addressed to Possibilistic Databases. Fuzzy Sets and systems 140, 151–166
(2003)

3. Bosc, P., Liétard, N., Pivert, O.: About the Processing of Possibilistic Queries
Involving a Difference Operation. Fuzzy Sets and systems 157, 1622–1640 (2006)

4. Grahne, G.: The Problem of Incomplete Information in Relational Databases.
LNCS, vol. 554. Springer, Heidelberg (1991)

Applying Rough Sets to Information Tables Containing Possibilistic Values 203

5. Greco, S., Matarazzo, B., Slowinski, R.: Handling Missing Values in Rough Set
Analysis of Multi-attribute and Multi-criteria Decision Problem. In: Zhong, N.,
Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–
157. Springer, Heidelberg (1999)

6. Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Theory for Multicriteria De-
cision Analysis. European Journal of Operational Research 129, 1–47 (2001)

7. Grzymala-Busse, J.W.: On the Unknown Attribute Values in Learning from Ex-
amples. LNCS (LNAI), vol. 542, pp. 368–377. Springer, Heidelberg (1991)

8. Grzymala-Busse, J.W.: MLEM2: A New Algorithm for Rule Induction from Im-
perfect Data. In: Proceedings of the IPMU 2002, 9th International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based
Systems, Annecy, France, pp. 243–250 (2002)

9. Grzymala-Busse, J.W.: Characteristic Relations for Incomplete Data: A General-
ization of the Indiscernibility Relation. In: Tsumoto, S., S�lowiński, R., Komorowski,
J., Grzyma�la-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 244–
253. Springer, Heidelberg (2004)

10. Grzymala-Busse, J.W.: Incomplete Data and Generalization of Indiscernibility Re-
lation, Definability, and Approximation. In: Śl ↪ezak, D., Wang, G., Szczuka, M.S.,
Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 244–253.
Springer, Heidelberg (2005)

11. Guan, Y.-Y., Wang, H.-K.: Set-valued Information Systems. Information Sci-
ences 176, 2507–2525 (2006)

12. Imielinski, T.: Incomplete Information in Logical Databases. Data Engineering 12,
93–104 (1989)

13. Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal
of the ACM 31(4), 761–791 (1984)

14. Kryszkiewicz, M.: Rough Set Approach to Incomplete Information Systems. Infor-
mation Sciences 112, 39–49 (1998)

15. Kryszkiewicz, M.: Properties of Incomplete Information Systems in the framework
of Rough Sets. In: Polkowski, L., Skowron, A. (eds.) Rough Set in Knowledge Dis-
covery 1: Methodology and Applications, Studies in Fuzziness and Soft Computing,
vol. 18, pp. 422–450. Physica Verlag (1998)

16. Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sci-
ences 113, 271–292 (1999)

17. Kryszkiewicz, M., Rybiński, H.: Data Mining in Incomplete Information Systems
from Rough Set Perspective. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough
Set Methods and Applications, Studies in Fuzziness and Soft Computing, vol. 56,
pp. 568–580. Physica Verlag (2000)

18. Latkowski, R.: On Decomposition for Incomplete Data. Fundamenta Informati-
cae 54, 1–16 (2003)

19. Latkowski, R.: Flexible Indiscernibility Relations for Missing Values. Fundamenta
Informaticae 67, 131–147 (2005)

20. Leung, Y., Li, D.: Maximum Consistent Techniques for Rule Acquisition in Incom-
plete Information Systems. Information Sciences 153, 85–106 (2003)

21. Nakata, N., Sakai, H.: Rough-set-based Approaches to Data Containing Incom-
plete Information: Possibility-based Cases. In: Nakamatsu, K., Abe, J.M. (eds.)
Advances in Logic Based Intelligent Systems. Frontiers in Artificial Intelligence
and Applications, vol. 132, pp. 234–241. IOS Press, Amsterdam (2005)

204 M. Nakata and H. Sakai

22. Nakata, N., Sakai, H.: Checking Whether or Not Rough-Set-Based Methods to
Incomplete Data Satisfy a Correctness Criterion. In: Torra, V., Narukawa, Y.,
Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558, pp. 227–239. Springer,
Heidelberg (2005)

23. Nakata, N., Sakai, H.: Rough Sets Handling Missing Values Probabilistically Inter-
preted. In: Śl ↪ezak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFD-
GrC 2005. LNCS (LNAI), vol. 3641, pp. 325–334. Springer, Heidelberg (2005)

24. Nakata, N., Sakai, H.: Applying Rough Sets to Data Table to Data Tables Contain-
ing Imprecise Information under Probabilistic Interpretation. In: Greco, S., Hata,
Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., S�lowiński, R. (eds.)
RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 213–223. Springer, Heidelberg (2006)

25. Nakata, N., Sakai, H.: Applying Rough Sets to Data Table Containing Missing
Values. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP
2007. LNCS (LNAI), vol. 4585, pp. 181–191. Springer, Heidelberg (2007)

26. Nakata, N., Sakai, H.: Applying Rough Sets to Information Tables Containing
Probabilistic Values. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007.
LNCS (LNAI), vol. 4617, pp. 282–294. Springer, Heidelberg (2007)

27. Or�lowska, E., Pawlak, Z.: Representation of Nondeterministic Information. Theo-
retical Computer Science 29, 313–324 (1984)

28. Parsons, S.: Current Approaches to Handling Imperfect Information in Data and
Knowledge Bases. IEEE Transactions on Knowledge and Data Engineering 8(3),
353–372 (1996)

29. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sci-
ences 11, 341–356 (1982)

30. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht (1991)

31. Sakai, H.: Some Issues on Nondeterministic Knowledge Bases with Incomplete In-
formation. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI),
vol. 1424, pp. 424–431. Springer, Heidelberg (1998)

32. Sakai, H.: Effective Procedures for Handling Possible Equivalence Relation in Non-
deterministic Information Systems. Fundamenta Informaticae 48, 343–362 (2001)

33. Sakai, H., Nakata, M.: An Application of Discernibility Functions to Generating
Minimal Rules in Non-deterministic Information Systems. Journal of Advanced
Computational Intelligence and Intelligent Informatics 10, 695–702 (2006)

34. Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-deterministic
Information Systems. Transactions on Rough Sets 1, 209–231 (2004)

35. S�lowiński, R., Stefanowski, J.: Rough Classification in Incomplete Information Sys-
tems. Mathematical and Computer Modelling 12(10/11), 1347–1357 (1989)

36. Slowiński, R., Vanderpooten, D.: A Generalized Definition of Rough Approxima-
tions Based on Similarity. IEEE Transactions on Knowledge and Data Engineer-
ing 12(2), 331–336 (2000)

37. Stefanowski, J., Tsoukiàs, A.: On the Extension of Rough Sets under Incomplete
Information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS
(LNAI), vol. 1711, pp. 73–81. Springer, Heidelberg (1999)

38. Stefanowski, J., Tsoukiàs, A.: Incomplete Information Tables and Rough Classifi-
cation. Computational Intelligence 17(3), 545–566 (2001)

39. Zimányi, E., Pirotte, A.: Imperfect Information in Relational Databases. In: Motro,
A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs
to Solutions, pp. 35–87. Kluwer Academic Publishers, Dordrecht (1997)

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 205–223, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Toward a Generic Mathematical Model of
Abstract Game Theories

Yingxu Wang

Theoretical and Empirical Software Engineering Research Centre (TESERC)
International Center for Cognitive Informatics (ICfCI)

Dept. of Electrical and Computer Engineering
Schulich School of Engineering, University of Calgary

2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4
Tel.: (403) 220 6141; Fax: (403) 282 6855

yingxu@ucalgary.ca

Abstract. Games are a complex mathematical structure for modeling dynamic
decision processes under competition where opponent players compete for the
maximum gain or toward a success state in the same environment according to
the same rules of the game. Games are conventionally dealt with payoff tables
based on random strategies, which are found inadequate to describe the dy-
namic behaviors of games and to rigorously predict the outcomes of games.
This paper presents an abstract game theory, which enables a formal treatment
of games by a set of mathematical models for both the layouts and behaviors of
games. A generic mathematical model of abstract games is introduced, based on
which the properties of games in terms of decision strategies and serial matches
are described. A wide range of generic zero-sum and nonzero-sum games are
formally modeled and analyzed using the generic mathematical models of ab-
stract games.

Keywords: Cognitive informatics, abstract games, game theory, mathematical
models, static layout, dynamic behaviors, properties, layoff tables, utilities, de-
cision making, zero-sum games, nonzero-sum games, serial matches, decision
grids.

1 Introduction

As a complex mathematical structure, games and game theories are a typical para-
digm of decision theories. The study on decision making is interested in multiple
disciplines, such as cognitive informatics, computer science, computational intelli-
gence, cognitive psychology, management science, operational theories, economics,
sociology, political science, and statistics [5], [10], [14], [17], [20], [24], [25], [30],
[33], [34], [35], [36], [38].

Decision theories can be categorized into two paradigms: the descriptive and
normative theories. The former are based on empirical observation and on experimen-
tal studies of choice behaviors; and the latter assume a rational decision-maker who

206 Y. Wang

follows well-defined preferences that obey certain axioms of rational behaviors. Typi-
cal normative theories are the expected utility paradigm [12], [17], [21], and the
Bayesian theory [5], [33]. W. Edwards and B. Fasolo proposed a 19-step decision
making process [10] by integrating Bayesian and multi-attribute utility theories. W.
Zachary and his colleagues [42] perceived that there are three constituents in decision
making known as the decision situation, the decision maker, and the decision process.
Although the cognitive capacities of decision makers may be greatly varying, the core
cognitive processes of the human brain share similar and recursive characteristics and
mechanisms [35], [39], [40].

An overview of the taxonomy and classification of decision theories and related
rational strategies can be illustrated as shown in Fig. 1, which may be used as a
guideline for studying the whole framework of decision theories. Most of the deci-
sion making strategies [5], [6], [10], [14], [24], [33], [42] can be classified into static
decision-making strategies, because the changes of environments of decision makers
are independent of the decision makers’ activities. Also, different decision strategies
may be selected in the same situation or environment based on the decision makers’
values and attitudes towards risk and their prediction on future outcomes. In classic
decision and operations theories [6], [33], although the states of nature or environ-
ment may be both deterministic or nondeterministic, its state of nature as an outcome
of the environment will not be changed or affected by the decision maker’s actions.
In other words, there are natural rules but no adaptive competitors in the static deci-
sion making processes.

However, when the environment of a decision maker is interactive with one’s deci-
sions or the environment changes according to the decision makers’ activities and the
decision strategies and rules are predetermined, this category of decision making
needs are classified into the category of dynamic decisions, such as games [32], [33]
and decision grids [36], [37].

Definition 1. The dynamic strategies and criteria of decision making are those that
all alternatives and criteria are dependent on both the environment and the effect of
the historical decisions made by the decision maker.

Classic dynamic decision making methods are decision trees [6], [12], [17], [21]. A
new theory of decision grids is developed in [36], [37] for serial decision makings.
Decision making under interactive events and competition is commonly modeled by
games [12], [17], [32]. According to Fig. 1, games are used to deal with the most
complicated decision problems, which are dynamic, interactive, and under uncontrol-
lable competitions.

Definition 2. A game is a decision process under competition where opponent players
or opponent groups of players compete for the maximum gain or toward a success
state in the same environment according to the same predetermined rules and con-
straints of the game.

Games traditionally deal with probability-based static payoff tables [3], [4], [12], [16],
[19], [26]. However, the conventional approach is found inadequate to deal with the
dynamic behaviors of games and to rigorously determine the outcomes of games. This

 Toward a Generic Mathematical Model of Abstract Game Theories 207

Decision Models

No

Yes

 Certain outcomes?

Static decisions Dynamic decisions

Predictable
probability?

Decision
under

certainty

Decision
under
risk

Decision
under

uncertainty

Decision
series

Decision with
interactive

events

Decision
with

competition

No

Yes

Min. regretPessimisticOptimistic

Maximax
profit

Minimin
cost

Maximin
profit

Minimax
cost

Minimax
regret

Max.
expected

utility

Max.
profit

Maximax
utility

probability

Min.
cost

Decision
grid

Event-driven
automata

Games
(formal)

Zero
sum

Nonzero
Sum

Fig. 1. An overview of decisions and strategies

paper presents a formal model of abstract games, which rigorously describes the ar-
chitecture or layout of abstract games and their dynamic behaviors with a set of
mathematical models. Section 2 reviews related work of various game theories in
literature, which indicates a need of a unified model of abstract games. Section 3
develops a formal model of abstract games and describes their properties. Section 4
analyzes the behaviors of abstract games embodied by sets of matches, particularly
the zero-sum games and nonzero-sum games. Section 5 discusses strategies of deci-
sion making in games such as the maximin and maximum utility strategies.

2 Related Work

Game theory provides a mathematical structure for analyzing the interaction between
multiple parties whose decisions affect each other. A game encompasses a finite set of

208 Y. Wang

players, a set of courses of actions available to them, and their preferences over the
possible outcomes.

Studies on game theories can be traced back to the 1940s when von Neumann and
his colleagues studied the theory of rational games where the players' decision mak-
ing pursues best outcomes and maximum utilities under the settings of the game [32].
Von Neumann found that if each player allows the maximin mixed or random strat-
egy, an equilibrium game can be achieved where each strategy is optimal against the
other.

John Nash extended von Neumann's rational binary equilibrium to a general case
known as Nash equilibrium [22], [23]. A set of strategies of an n-player game is said
to be in Nash equilibrium if no player can benefit by deviating from it. Nash proved
that there exists at least one equilibrium in games with mixed strategies. However, he
did not solve the decision optimization problem when there are multiple equilibriums
in a game [8], [13], [15], [28], [41].

Evolutionary games are proposed to enable repeatedly plays of the same game in
order to learn best strategies [27], [31]. Kuhn introduced the structure of game trees
[18], where the edges represent possible actions and the leaves represent outcomes. In
game trees, the players assume perfect information, i.e., any action taken is revealed
to all players. Infinitely repeated players are introduced in order to obtain a stable
result for a given game under the same rationality constraints [1].

There are also cooperative games, where players can form coalitions and make
binding agreements about their choice of actions [7], [19], [29], [32]. In cooperative
games, if a party of a coalition is treated as a single player for collective decision
making, then it can be reduced to a typical noncooperative game [37].

Classic decision theories provide techniques for seeking optimal solutions for a
single decision. However, most real world decisions are a process of a series of deci-
sions. This complicated type of serial decisions can be modeled by game theory and
decision grids theory. A decision grid is a directed network of series decisions over
time in which each decision possess only Boolean outcomes, right or wrong, where
the effort spent to make a right decision is considered to be identical with that of a
wrong decision [36], [37]. The decision grids can be classified into the categories of
unlimited and limited grids according to the scope of allowable trials. When the al-
lowable number of trials t in a decision grid is infinitive, the decision grid is called an
unlimited decision grid; otherwise, it is a limited decision grid. The unlimited deci-
sion grid is a suitable model for the series of decisions toward a success state no mat-
ter how many trials are needed, such as an experimental process, a research project, or
a person’s pursuit towards a goal in life. The limited decision grid is a serial decision
model for a short period of trials, such as a student towards a degree, an assessment
process, or a deadline-specific process.

3 The Generic Mathematical Model of Abstract Games

Although games are usually represented by layoff tables, the lack of a generic
mathematical model of games in game theories has greatly limited the exploration of
the modeling, properties, and dynamic behaviors of games. This section develops a

 Toward a Generic Mathematical Model of Abstract Game Theories 209

mathematical model of a general abstract game, based on which the layouts and be-
haviors of any concrete game may be treated as a derived instance.

3.1 The Formal Model of Abstract Games

The architecture of an abstract game can be formally described by the following defi-
nition, where the behaviors of the game will be modeled by a series of matches be-
tween the players of the game.

Definition 3. An abstract game G is a 4-tuple, i.e.:

G = (P, D, M, S) (1)

where

 • P is a finite nonempty set of players P = {p1, p2, …, pn}, and n denotes the
number of players, n = #P, n ≥ 2.

• D is a finite nonempty set of decisions for certain moves, D = {d1, d2, …,
dk}, k ≥ 1, and all players have the same number of alternative decisions in
rational games.

 • M is a nonempty finite set of matches between players, M = {m1, m2, …,
mq}, q ≥ 1.

 • S is a nonempty finite set of scores for each player after a match or a series
of matches, S = {s1, s2, …, sn}.

For a generic abstract game, the matches, which represent the behaviors of the
game, can be further described below.

Definition 4. A match m ∈ M of an abstract game G = (P, D, M, S) is a function that
maps a set of n decisions made by each player of G into a set of n scores S for each of
the players, i.e.:

 m = fm : D × D × … × D → S (2)

A match is an individual block given in the payoff table of the game. A set of

matches in the given game is constrained by a set of certain rules in order to be ra-
tional.

Lemma 1. In an abstract game G = (P, D, M, S), the following rules for matches yield
rational, stable, and predictable behaviors and scores:

• Rule (a): All players are supposed to pursue the maximum gains on the
basis of the same predefined payoff table.

 • Rule (b): Whenever the first player initiates a move in a specific set of
matches, the remaining moves (actions) of all players in the set
of matches are determined according to Rule (a).

• Rule (c): Each match preset in the payoff table may only be used once in
the set of matches.

210 Y. Wang

The rules given in Lemma 1 form the basic constraints of rational games and make
a game to be deterministic and its outcomes of all sets of matches are predictable. In
lemma 1, Rules (a) and (b) guarantee that all matches of a game are determinable on
the basis of the given payoff table. Rule (c) assurances that a set of matches in the
game is finite and determinable, although it may force a player to take an unused
strategy that would be unfavorable in a particular mach when it is the only strategy
left in the setting of the given game.

Lemma 2. The number of individual matches nm in the set of matches of a given
game G = (P, D, M, S) is determinable, i.e.:

 nm = kn (3)

where n is the number of players in a game, and k is the number of alternative deci-
sions (moves) defined in the game for each player.

Example 1. An n × k = 2 × 2 game G1 = (P, D, M, S) can be formally described ac-
cording to Definition 3 as follows:

 • Players P = {a, b}, n = 2.
• Decisions D = {d1, d2}, k = 2, i.e. Da = {a1, a2}, or Db = {b1, b2}.

 • Scores S = {sa, sb}.
 • Matches M ={m11, m12, m21, m22}, which is determined by

 Lemma 2, i.e., nm = kn = 22 = 4.

In G1 = (P, D, M, S), let a1 and a2 be the alternative decisions of player A, and b1

and b2 the alternative decisions of player B, then the four matches in M can be for-
mally described as follows:

m11 = a1 : b1 → sa : sb = 0 : 0
m12 = a1 : b2 → -1 : 1
m21 = a2 : b1 → -2 : 2
m22 = a2 : b2 → 3 : -3

The above matches can be represented by a payoff table as shown in Table 1.

Table 1. The Payoff Table of M = {m11, m12, m21, m22}

 b1 b2

a1 0 : 0 -1 : 1

a2 -2 : 2 3 : -3

This is the static architecture or layout of game G1. Its dynamic behaviors on the
basis of the layout will be discussed in the following subsections.

 Toward a Generic Mathematical Model of Abstract Game Theories 211

3.2 Properties of Abstract Games

Properties of games are basic characteristics possessed by them. The properties of ab-
stract games are number of alternative strategies (moves), number of sets of matches,
and the number of matches. The properties of abstract games can be used to predicate
possible outcomes of games and to select optimal strategies or moves in games.

Definition 5. A set of matches in an abstract game G = (P, D, M, S) is a series of
matches in which all players may use each of their alternative strategies only once
determined according to the current move of opponent and the rule of the maximum
gains based on the given layout of the game.

Lemma 3. The number of set of matches ns in an abstract game G = (P, D, M, S) is
proportional to both the number of alternative strategies (moves) k, and the number of
players n, i.e.:

 ns = n • k (4)

Lemma 4. The number of matches q of an abstract game G = (P, D, M, S) is deter-
mined by a product of the number of sets of matches ns and number of matches in
each set nm, i.e.:

= s m

n

n+1

q n • n

 nk • k

n • k

=

=

 (5)

It is noteworthy that Lemmas 1 through 4 provide a set of generic theories for de-
termining the properties of any given game including those that are beyond the proc-
ess power of conventional game theories. The attributes of some typical games can be
predicated as shown in Table 2.

Table 2. Attributes of Arbitrary and Typical Games

k ⇒ (nm = kn | ns = n • k | q = ns • nm = nkn+1) n

k = 1 k = 2 k = 3 k = 4

2 1 2 2 4 4 16 9 6 54 16 8 128

3 1 3 3 8 6 48 27 9 243 64 12 768

4 1 4 4 16 8 128 81 12 972 256 16 4096

5 1 5 5 32 10 320 243 15 3645 1024 20 20480

…

100 1 100 100 2100 200 100•2101 3100 200 100•3101 4100 400 100•4101

According to Table 2, the complexity of games is explosively increasing propor-
tional to the numbers of both players n and strategies k. This explains why games are
so complicated and difficult to be modeled and formally treated in conventional game
theory [6], [32]. For example, when the number of players n = 5 and the number of

212 Y. Wang

alternative strategies of each player k = 4, the total number of matches of the game
may easily reach as high as 20,480. That is why conventional empirical game theories
may only deal with small and simple games with a few of players and alternative
strategies.

However, the abstract game theory presented so far is able to analyze any games
no matter how large n and k would be based on the generic mathematical model of
formal games and their instances.

Since games with multiple players can be divided into a number of pairwise games,
the following sections will focus on the analyses of binary game properties as shaded
in Table 2.

Definition 6. A binary game G = (P2, D, M, S2) is a game with only two players n = 2,
where P2 = {p1, p2} and S2 = {s1, s2}, simply called a game.

Example 2. A well known binary game is the Prisoner’s dilemma, where two con-
spirators in prison may receive a sentence for either two years or eight years for both
remaining silent or confess, respectively. They are also given the opportunity to con-
fess in return for a reduced prison sentence of half a year. The payoffs correspond to
numbers of years in prison are given in Table 3.

Table 3. The Payoff Table of the Prisoner’s Dilemma

 b1 (silent) b2 (confess)

a1 (silent) -2 : -2 -0.5 : -10

a2 (confess) -10 : -0.5 -8 : -8

It is noteworthy that according to Nash equilibrium, the utility of the above game is
(-8, -8), rather than (-2,-2) [2], [22]. However, according to the abstract game the-
ory, the average score of the above game is -20.5 : -20.5, i.e., there is no winner
according to the payoff table of the Prisoner’s dilemma.

When a game G = (P, D, M, S) is set according to Definitions 3 and 4, the proper-
ties of G, such as the number of matches, the number of sets of matches, and the
winner are determined. Game theory may be used to predict and select the optimal
combination of individual strategies. However, the score for any individual strategy
in G has already fixed according to the payoff table.

Theorem 1. The properties of games state that an abstract game G = (P, D, M, S) is
deterministic and conservative. Once the game G is set, the properties of G are deter-
mined, predictable, and unchangeable to all players in the game.

According to Theorem 1, game theory may be used to predict and select the optimal
combinations of individual strategies for a player in a given game G. However, the
optimal strategies may not necessarily result in a win situation rather than a minimal

 Toward a Generic Mathematical Model of Abstract Game Theories 213

loss in some cases, because the scores for individual moves and their combination
strategies in G are determined by the settings of the game.

Corollary 1. The outcomes of a formal game G = (P, D, M, S) are constrained by the
settings of the game. Although an individual strategy may result in the maximum gain,
the final score of a player in the whole set of games is fixed by the payoff table in a
particular match, which may not necessarily result in a win situation for all players.

The objective of decision makers in a game is to make the score of a player to the
maximum. However, according to Corollary 1, max(si) may not mean a winning score
due to the settings of a given game.

4 Behaviors of Abstract Games

There are zero-sum and nonzero-sum games. Each of them has different properties
and dynamic behaviors as described in the following subsections.

4.1 Behaviors of Zero-Sum Games

Definition 7. A zero-sum game is a type of abstract games where the total score of all
players in the game remains zero, i.e.:

1

0
n

i
i

s
=

=∑ (6)

In the case of a binary game, Eq. 6 can be expressed as follows:

 s1 = - s2 (7)

where Eq. 7 models a decision making situation that one player’s gain is always an-
other’s loss.

Lemma 5. The condition for a zero-sum game is that all nm individual matches are
zero-sum, i.e.:

1

0
mn

i
i

s
=

=∑ (8)

Example 3. The game G1 = (P, D, M, S) as given in Example 1 and Table 1 is a zero-
sum game. The properties and behaviors of G1 can be formally analyzed below.

The properties of G1 = (P, D, M, S) are:

 • Number of sets of matches: ns = n • k = 2 • 2 = 4
 • Number of matches in a set: nm = kn = 22 = 4
 • Total number of matches in the game:
 3= 2 2 16n+1

m s mn n • n n • k •= = =

214 Y. Wang

The four sets of matches each with a series of four individual matches can be illus-
trated in Fig. 2.

1:1 3: 3 2:2 0:0

2:2 0:0 1:1 3: 3

0:0 1:1

1 2 2 1 1

2 1 1 2 2

1 1

 :

Set 1: 0 : 0

Set 2: 0 : 0

Set 3:

a bs s

a b a b a

a b a b a

b a

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯ →

⇒

⇒
3: 3 2:2

3: 3 2:2 0:0 1:1

2 2 1

2 2 1 1 2

0 : 0

Set 4: 0 : 0

b a b

b a b a b

− −
⎯⎯ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

− − −
⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

⇒

Fig. 2. Sets of matches in the zero-sum game G1

Lemma 6. The final scores of all sets of matches of an abstract games G are the same,
no matter who moves first and which strategy (decision alternative) is selected for the
first move.

Theorem 2. The scores of a 2 × k abstract game, sa : sb, is predetermined by the set-
tings of the payoff table, i.e.:

=1 =1 =1 =1

=1 =1 =1 =1

 : = () : ()

 () : (-)

ij ij

ij ij

k k k k
a b

a b
i j i j

k k k k
a a

i j i j

s s s s

s s=

∑∑ ∑∑

∑∑ ∑∑
 (9)

where k is the number of alternative decision strategies and k is identical for all
players.

According to Theorem 2, the results of all possible sets of matches for a given zero-
sum game can be predicated using Eq. 9. For instance, the final score of Example 3
can be calculated according Eq. 9 as follows:

11 12 21 22

11 12 21 22

=1 =1 =1 =1

 : = () : ()

() :

 ()

(0 1 2 3) :

 (0 1 2 3)

0 : 0

ij ij

k k k k
a b

a b
i j i j

a a a a

b b b b

s s s s

s s s s

s s s s

= + + +

+ + +

= − − +

+ + −

=

∑∑ ∑∑

Example 4. For a 2 × 3 game G2 = (P, D, M, S) with the following payoff table, try to
determine its properties and behaviors.

 Toward a Generic Mathematical Model of Abstract Game Theories 215

Table 4. The Payoff Table of G2 = (P, D, M, S)

 b1 b2 b3

A1 0 : 0 100 : -100 200 : -200

A2 -300 : 300 0 : 0 -100 : 100

A3 500 : -500 -200 : 200 0 : 0

The properties of G2 = (P, D, M, S) are:

• Number of sets of matches: ns = n • k = 2 • 3 = 6
• Number of matches in a set: nm = kn = 32 = 9
• Total number of matches in the game:
 3= 2 3 54n+1

m s mn n • n n • k •= = =

According to Theorem 2, the final scores of G2 = (P, D, M, S) are as follows:

11 12 13 21 22 23 31 32 33

11 12 13 21 22 23 31 32 33

=1 =1 =1 =1

 : = () : ()

() :

 ()

(0 100 200 300 0 100 500 200 0) :

 (0 100 200 300 0 100 500 2

ij ij

k k k k
a b

a b
i j i j

a a a a a a a a a

b b b b b b b b b

s s s s

s s s s s s s s s

s s s s s s s s s

= + + + + + + + +

+ + + + + + + +

= + + − + − + − +

− − + + + − +

∑∑ ∑∑

00 0)

200 : -200

+

=

The behaviors of G2 = (P, D, M, S) can be modeled by 54 detailed matches in 6
sets as shown in Fig. 3.

Corollary 2. The outcomes of a given game G is determined according to the scores
sa : sb as follows:

: Player A won

 = : Tie

: Player B won

a b

a b

a b

s s

s s

s s

⎧⎪ >⎪⎪⎪⎪⎨⎪⎪⎪ <⎪⎪⎩

 (10)

Therefore, the final score of Example 1, sa : sb = 0 : 0, shows a tie game; while Ex-

ample 3, sa : sb = 200 : -200, indicates that Player A will always win.

4.2 Behaviors of Nonzero-Sum Games

A more general type of games is nonzero-sum games where all players involved share
a certain pie with a fixed size. From this view, the zero-sum game discussed in Sec-
tion 4.1 is a special case of nonzero-sum games where the size of the pie is zero.

216 Y. Wang

0:0 500:-500 -200:200 100:-100

200:-200 0:0 -300:300

1 1 3 2 1

3 3 2 1

 :

Set 1:

 , ,

a bs s

a b a b a

b a a b

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

0:0 -100:100

-300:300 500:-500 -200:200 100:-100

0:0 200:-200 0:0

2 2 2 3

2 1 3 2 1

1 1 3 2 2

 , 200 : -200

Set 2:

 , , ,

a b a b

a b a b a

b a b a b

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

-100:100 0:0

-200:200 100:-100 0:0 500:-500

0:0 200:-200 300:300

2 3 3 3

3 2 1 1 3

3 1 2 1

 , 200 : -200

Set 3:

 , ,

a b a b

a b a b a

b a a b

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯→

⇒

0:0 -100:100

500:-500 -200:200 100:-100 0:0

-300:300 -100:100 0:0

2 2 2 3

1 3 2 1 1

2 3 2 2

 , 200 : -200

Set 4:

 , ,

a b a b

b a b a b

a b b a

⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⇒

200:-200 0:0

100:-100 0:0 500:-500 -200:200

0:0 300:300 200:-200

3 1 3 3

2 1 1 3 2

2 1 3 1

 , 200 : -200

Set 5:

 , ,

b a b a

b a b a b

a b b a

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

−
⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⇒

-100:100 0:0

200:-200 0:0 500:-500 -200:200

100:-100 0:0 -300:300

3 2 3 3

3 1 1 3 2

1 3 3 1 2

 , 200 : -200

Set 6:

 , , ,

b a b a

b a b a b

a a b b a

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→

⇒

0:0 -100:100
2 2 3 2 , 200 : -200b a b a⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯⎯→ ⇒

Fig. 3. Sets of matches of the 2 × 3 zero-sum game

Definition 8. A nonzero-sum game is a game where the total scores of all players in
the game is a nonzero positive value, i.e.:

1

0
n

i
i

s
=

>∑ (11)

A group on a common project or a set of partners bidding for a contract is a typical

example of nonzero-sum games.
The most interesting property of decision making in nonzero-sum game is that

there is an ideal state of result known as the win-win situation.

Definition 9. A win-win game is a nonzero-sum game in which all players gain a cer-
tain score constrained by Eq. 11.

Lemma 7. A win-win game can only exist in nonzero-sum games.

 Toward a Generic Mathematical Model of Abstract Game Theories 217

According to Lemma 7, if a number of competitive players in a nonzero-sum game
are coordinated, i.e., a superset of partnership is established in the game, every party
may be benefit.

Theorem 3. A win-win decision can be achieved in a nonzero-sum game when the
following condition is satisfied:

1

1 sn

i
s i

s
n

σ
=

≥ ∑ (12)

where σ is the sum of the game that is a nonzero positive constant, si is the expected
score of player i, and ns is the number of sets of matches in the game.

According to Theorem 3, a win-win game may satisfy all coordinative players when
the constant sum σ is large enough as determined by Eq. 12.

Example 5. Given a 2 × 2 nonzero-sum game G3 = (P, D, M, S) with the following
payoff table and σ = 100, try to determine its properties and behaviors.

Table 5. The Payoff Table of G3 = (P, D, M, S)

 b1 b2

 a1 70 : 30 20 : 80

 a2 60 : 40 90 : 10

The properties of G3 = (P, D, M, S) are:

• Number of sets of matches: ns = n • k = 2 • 2 = 4
• Number of matches in a set: nm = kn = 22 = 4
• Total number of matches in the game:
 3= 2 2 16n+1

m s mn n • n n • k •= = =

According to Theorem 2, the final scores of G3 = (P, D, M, S) are as follows:

11 12 21 22 11 12 21 22

=1 =1 =1 =1

 : = () : ()

() : ()

(70 20 60 90) : (30 80 40 10)

240 : 160

ij ij

k k k k
a b

a b
i j i j

a a a a b b b b

s s s s

s s s s s s s s= + + + + + +

= + + + + + +

=

∑∑ ∑∑

This result indicates that the four sets of matches defined by G3 will result in an

average score in each match as 60 : 40, in which Players A and B share σ = 100.
This can be proved by the following four sets of matches as shown in Fig. 4.

218 Y. Wang

20:80 90:10 60:40 70:30

60:40 70:30 20:80 90:10

1 2 2 1 1

2 1 1 2 2

 :

Set 1: 240 : 160

Set 2: 2

a bs s

a b a b a

a b a b a

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⇒

⇒
70:30 20:80 90:10 60:40

90:10 60:40 70:30 20:80

1 1 2 2 1

2 2 1 1 2

40 : 160

Set 3: 240 : 160

Set 4: 240 : 160

b a b a b

b a b a b

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

⇒

⇒

Fig. 4. Sets of matches of the 2 × 2 nonzero-sum game G3

It may be observed that for a given game in a certain context, it would appear to be
competitive between conflict interests of players. However, at a higher level of an
enlarged scope of the given game, it can be perceived differently as a cooperative
game for all parties involved. This leads to the following corollary for management
attitude and skills in decision making.

Corollary 3. The art of management, to a certain extent, is to create a win-win
environment for all members, partners, and parent organizations involved in a game
context.

5 Strategies of Decision Making in Games

According to Lemma 4, a certain layout of a game implies a whole set of q = nkn+1
match outcomes. Therefore, the choice of decision strategies in games is crucial. The
following subsections discuss typical decision making strategies in games known as
those of maximin and maximum utility.

5.1 The Maximin Strategy in Games

A conservative strategy to try to gain the maximum utility or to spend the minimum
cost under uncertainty is known as the maximin strategy in games [9], [37].

Definition 10. A conservative decision making under uncertainty dmaximin or dminimax
yields a decision with the maximum-minimum strategy for utility or a minimum-
maximum strategy for cost, i.e.:

 dmaximin = f: A × C → A

 = {ai | max (min (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)} (13a)

or

 dminimax = f: A × C → A

 = {ai | min (max (uij | 1 ≤ i ≤ n) | 1 ≤ j ≤ k)} (13b)

where A is a set of given alternative strategies, and C a set of decision-making

criteria.

 Toward a Generic Mathematical Model of Abstract Game Theories 219

Example 6. Consider the following engineering project where a maximin or a pessi-
mistic uncertainty decision can be made based on the project gains for different archi-
tecture-result combinations as shown in Table 6.

Table 6. Maximin Decision Making for an Engineering Project

Situation (S)
Alternative (A) Result 1

(s1)
Result 2

(s2)
Result 3

(s3)
Result 4

(s4)

Criterion
(maximin

utility)

Architecture (a1) 100 10 40 60 u12 = $10k

Architecture (a2) - 10 50 200 30

Architecture (a3) 50 20 5 130

According to Eq. 13a, the maximin decision under uncertainty is as follows:

 dmaximax = f: A × C → A

 = {ai | max (min (uij | 1 ≤ i ≤ 3) | 1 ≤ j ≤ 4)}
 = {ai | max (u12, u21, u33)}
 = {a1 | u12 = 10}

The solution indicates that the conservative decision for this given project with the

maximin criterion is (a1, s2), which will result in a maximin project gain umax = u12 =
$10,000. It is noteworthy that, by choosing this solution, there is a chance to lose the
opportunity gain of u23 =$200,000 if the uncertain outcomes turn out to be Result 3
constrained by the other party of the game. However, in any case, this decision can
prevent the project from a negative result as that of u21 = -$10,000.

5.2 The Maximum Utility Strategy in Games

Subsection 5.1 deals with decision strategies where the probabilities of the opponent
party are uncertain. When the opponent strategies in a game are individually predict-
able, i.e., the probabilities or likelihoods are known, the risk for a decision can be
better estimated. In this case, decision making process will be directed based on the
weights of probabilities for each payoff.

Definition 11. A decision making under risk is a selection of an alternative ai among
A that meets a given criterion C, when the likelihood or probability of each possible

situation is known or can be predicated.

The criterion for a decision making under risk can be based on the maximum ex-
pected utility of alternatives.

Definition 12. An expected utility EU is a weighted sum of all utilities uj for each
decision alternative based on known probabilities for each possible situation pj, i.e.:

220 Y. Wang

=1

= , 1
k

i ij j
j

EU u p i n≤ ≤∑ i (14)

Definition 13. A decision making under risk with maximum expected utility dmaxEU

yields a decision with the maximum expected utilities of all alternatives, i.e.:

 dmaxEU = f: A × C → A

 = {ai | max (EUi | 1 ≤ i ≤ n)} (15)

Example 7. Consider the same layout given in Example 6. A decision under risk with
maximum expected utility can be made based on the EUs determined by Eq. 14 for
different decision alternatives as shown in Table 7.

After the expected utilities for all three alternatives are obtained as shown in Table 7,
the best decision with the maximum expected utility can be determined according to
Eq. 15 as follows:

 dmaxEU = f: A × C → A

 = {ai | max (EUi | 1 ≤ i ≤ n)}
 = {ai | man (EU1, EU2, EU3)}
 = {a2 | EU2 = 66}

Table 7. Decision Making based on the Maximum Expected Utility for an Engineering Project

Situation (S)
Alternative (A) Result 1

(s1)
[p1 = 0.2]

Result 2
(s2)

[p2 = 0.5]

Result 3
(s3)

[p3 = 0.2]

Result 4
(s4)

[p4 = 0.1]

Expected

Utility
(EU)

Criterion
(Maximum

EU)

Architecture (a1) 100 10 40 60 EU1 = 39

Architecture (a2) - 10 50 200 30 EU2 = 66 EUmax = 66

Architecture (a3) 50 20 5 130 EU3 = 34

The solution indicates that the decision under risk for this given project with the
maximum expected utility criterion is Architecture a2 that will result in a maximum
weighted sum EU2 = $66,000.

Decision making under risk with the maximum expected utility dmaxEU can be de-
scribed by a backward-inducted decision tree as shown in Fig. 5. The decision tree
provides another approach to derive the maximum expected utility in two steps [11].
First, the individual weighted utilities of all the alternatives are calculated according
to Eq. 14, which yields EUi, 1 ≤ i ≤ 3, represented by the three middle nodes. Then,
the maximum utility EUmax is selected from these three middle nodes according to
Eq. 15, which yields node A represented by decision d2 with EUmax = 66.

 Toward a Generic Mathematical Model of Abstract Game Theories 221

 A

 E

 F

 G

 H

 I

 J

 K

 L

 M

 N

 O

 P

 D

 C

 B

 d1

 d2

 d3

p1 = 0.2

p2 = 0.5

p3 = 0.2

p4 = 0.1

 u11 = 100

 u12 = 10

 u13 = 40

 u14 = 60

 u21 = -10

 u21 = 50

 u23 = 200

 u24 = 30

 u31 = 50

 u32 = 20

 u33 = 5

 u34 = 130

p1 = 0.2

p2 = 0.5

p2 = 0.5

p3 = 0.2

p3 = 0.2

p4 = 0.1

p4 = 0.1

p1 = 0.2

 EU1 = 39

 EU2 = 66

 EU3 = 34

d2 | EUmax=66

Fig. 5. A decision tree based on the strategy of maximum expected utility

6 Conclusions

This paper has presented a generic mathematical model of abstract games. Based on
the abstract game theory, properties of games have been analyzed, and the predictabil-
ity of games has been derived. This paper has demonstrated a formal treatment of
games by a set of mathematical models on both of the layout and behaviors of abstract
games in terms of serial matches constrained by the generic rules. Then, all specific
games has been treated as particular instances. On the basis of the generic game the-
ory, zero-sum and nonzero-sum games have been rigorously analyzed and their prop-
erties and relations have been formally described. A set of decision strategies of
games such as the maximin and maximum utility has been explained. The generic
abstract game theories and mathematical models can be applied in the design and im-
plementation of game systems as well as autonomous agent systems.

Acknowledgement. This work is partially sponsored by Natural Sciences and Engi-
neering Research Council of Canada (NSERC). The author would like to thank the
anonymous reviewers for their valuable suggestions and comments on this work.

References

1. Abreu, D., Rubinstein, A.: The Structure of Nash Equilibria in Repeated Games with Fi-
nite Automata. Econometrica 56, 1259–1281 (1992)

2. Aumann, R.: Subjectivity and Correlation in Randomized Strategies. Journal of Mathe-
matical Economics 1, 67–96 (1974)

222 Y. Wang

3. Aumann, R.J., Hart, S.: Handbook of Game Theory with Economic Applications, vol. 1–3.
Elsevier, Amsterdam (1992, 1994, 1997)

4. Battigalli, P., Gilli, M., Milinari, M.C.: Learning and Convergence to Equilibrium in Re-
peated Strategic Interactions: An Introductory Survey. Ricerche Economiche 46, 335–377
(1992)

5. Berger, J.: Statistical Decision Theory – Foundations, Concepts, and Methods. Springer,
Heidelberg (1990)

6. Bronson, R., Naadimuthu, G.: Schaum’s Outline of Theory and Problems of Operations
Research, 2nd edn. McGraw-Hill, New York (1997)

7. Crawford, V.: Adaptive Dynamics in Coordination Games. Econometrica 63, 103–158
(1995)

8. Damme, V.E.: Stability and Perfection of Nash Equilibria. Springer, Berlin (1991)
9. Dekel, E., Fudenberg, D.: Rational Behavior with Payoff Uncertainty. Journal of Eco-

nomic Theory 52, 243–267 (1990)
10. Edwards, W., Fasolo, B.: Decision Technology. Annual Review of Psychology 52, 581–

606 (2001)
11. Friedman, D.: Equilibrium in Evolutionary Games: Some Experimental Results. Economic

Journal (1996)
12. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)
13. Harsanyi, J., Selten, R.: A General Theory of Equilibrium Selection in Games. MIT Press,

Cambridge (1988)
14. Hastie, R.: Problems for Judgment and Decision Making. Annual Review of Psychol-

ogy 52, 653–683 (2001)
15. Jordan, J.: Three Problems in Learning Mixed-Strategy Equilibria. Games and Economic

Behavior 5, 368–386 (1993)
16. Koller, D., Pfeffer, A.: Representations and Solutions for Game-Theoretic Problems. Arti-

ficial Intelligence (1997)
17. Koller, D.: Game Theory. In: Wilson, R.A., Keil, F.C. (eds.) The MIT Encyclopedia of the

Cognitive Sciences. MIT Press, Cambridge (2001)
18. Kuhn, H.W.: Extensive Games and the Problem of Information. In: Kuhn, H.W., Tucker,

A.W. (eds.) Contributions to the Theory of Games II, pp. 193–216. Princeton University
Press, Princeton (1953)

19. Luce, R.D., Raiffa, H.: Games and Decisions—Introduction and Critical Survey. Wiley,
Chichester (1957)

20. Matlin, M.W.: Cognition, 4th edn. Harcourt Brace College Publishers, Orlando (1998)
21. Myerson, R.: Game Theory. Harvard University Press, Cambridge (1991)
22. Nash, J.F.: Equilibrium Points in n-Person Games. Proc. National Academy of Sci-

ences 36, 48–49 (1950)
23. Nash, J.F.: Non-Cooperative Games. Annals of Mathematics 54, 286–295 (1951)
24. Payne, D.G., Wenger, M.J.: Cognitive Psychology. Houghton Mifflin Co., New York

(1998)
25. Pinel, J.P.J.: Biopsychology, 3rd edn. Allyn and Bacon, Needham Heights (1997)
26. Rosenschein, J.S., Zlotkin, G.: Consenting Agents: Designing Conventions for Automated

Negotiation. AI Magazine 15(3), 29–46 (1994)
27. Roth, A., Er’ev, I.: Learning in Extensive Form Games: Experimental Data and Simple

Dynamic Models in the Intermediate Run. Games and Economic Behavior 6, 164–212
(1995)

28. Selten, R.: Reexamination of the Perfectness Concept for Equilibrium Points in Extensive
Games. International Journal of Game Theory 4, 25–55 (1975)

 Toward a Generic Mathematical Model of Abstract Game Theories 223

29. Shapley, L.S., Shubik, M.: Solutions of n-Person Games with Ordinal Utilities. Economet-
rica 21, 348–349 (1953)

30. Simon, H.A.: The New Science of Management Decision. Harper & Row, NY (1960)
31. Smith, M.J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge

(1982)
32. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton

Univ. Press, Princeton (1944)
33. Wald, A.: Statistical Decision Functions. John Wiley & Sons, Chichester (1950)
34. Wang, Y.: Keynote: On Cognitive Informatics. In: Proc. 1st IEEE International Confer-

ence on Cognitive Informatics (ICCI 2002), Calgary, Canada, pp. 34–42. IEEE CS Press,
Los Alamitos (2002)

35. Wang, Y.: On Cognitive Informatics. Brain and Mind: A Transdisciplinary Journal of Neu-
roscience and Neurophilosophy 4(3), 151–167 (2003)

36. Wang, Y.: A Novel Decision Grid Theory for Dynamic Decision Making. In: Proc. 4th
IEEE International Conference on Cognitive Informatics (ICCI 2005), Irvin, CA (August
2005)

37. Wang, Y.: Software Engineering Foundations: A Software Science Perspective. CRC Se-
ries in Software Engineering, vol. II. Auerbach Publications, NY, USA (2007)

38. Wang, Y.: The Theoretical Framework of Cognitive Informatics. International Journal of
Cognitive Informatics and Natural Intelligence 1(1), 1–27 (2007)

39. Wang, Y., Ruhe, G.: The Cognitive Process of Decision Making. International Journal of
Cognitive Informatics and Natural Intelligence 1(2), 73–85 (2007)

40. Wang, Y., Wang, Y., Patel, S., Patel, D.: A Layered Reference Model of the Brain
(LRMB). IEEE Transactions on Systems, Man, and Cybernetics (C) 36(2), 124–133
(2006)

41. Wilson, R.: Computing Equilibria of n-Person Games. SIAM Journal of Applied Mathe-
matics 21, 80–87 (1971)

42. Zachary, W., Wherry, R., Glenn, F., Hopson, J.: Decision Situations, Decision Processes,
and Decision Functions: Towards a Theory-Based Framework for Decision-Aid Design.
In: Proc. Conference on Human Factors in Computing Systems (1982)

A Comparative Study of STOPA and RTPA�

Natalia Lopez1, Manuel Núñez1, and Fernando L. Pelayo2

1 Dept. Sistemas Informáticos y Programación
Facultad de Informática

Universidad Complutense de Madrid, 28040 Madrid, Spain
{natalia, mn}@sip.ucm.es
2 Dept. de Sistemas Informáticos

Escuela Politécnica Superior
Universidad Castilla-La Mancha, 02071 Albacete, Spain

fpelayo@dsi.uclm.es

Abstract. During the last years it has been widely recognized that formal seman-
tic frameworks improve the capability to represent cognitive processes. In this
line, process algebras have been introduced as formal frameworks to represent
this kind of processes. In this paper we compare two process algebras oriented
towards the specification of cognitive processes: RTPA (Real Time Process Alge-
bra) and STOPA (Stochastic Process Algebra). These two formal languages share
a common characteristic: Both of them include a notion of time. Thus, when
comparing the two languages we will concentrate on the different treatment of
time. In order to illustrate how these two languages work we specify a cognitive
model of the memorizing process both in RTPA and in STOPA. In order to repre-
sent the memory, we follow the classical memory classification (sensory buffer,
short-term, and long-term memories) where we also consider the so-called action
buffer memory.

1 Introduction

Cognitive informatics [34,36,46] is emerging as a new, separate, interdisciplinary branch
of research. Quoting from [41], we can describe this field as:

Cognitive Informatics is a transdisciplinary enquiry of cognitive and informa-
tion sciences that investigates the internal information processing mechanisms
and processes of the brain and natural intelligence, and their engineering appli-
cations via an interdisciplinary approach.

Since this quite new research line is in a preliminary phase, we are still in need
of having good formalisms to represent the different agents involved in the behaviour
of cognitive processes. In order to show that this is a truly interdisciplinary area, re-
searchers in cognitive informatics very often take advantage of developments in other
areas. Thus, they often adapt implementation and representation languages, theoretical
models, and algorithms as well as consider the best practices obtained in these areas.

� Research partially supported by the Spanish MCYT project WEST TIN2006-15578-C02.

M.L. Gavrilova et al. (Eds.): Trans. on Comput. Sci. II, LNCS 5150, pp. 224–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Comparative Study of STOPA and RTPA 225

In this line, descriptive mathematics for cognitive informatics introduced as a represen-
tation language an adaption of classical process algebras [15,21,2]. It is worth to note
that even though process algebras were not originally created to describe cognitive pro-
cesses, they are a very suitable mechanism to do it since they are very appropriate to
define systems where concurrency plays a fundamental role. In fact, variants of process
algebras have been already used several times to represent human processes (see, for
example, [26,19,37,44,27,29,18]).

The first cognitive process algebra is RTPA [35,38,41,40,42]. By conveniently putting
together the ideas underlying the definition of classical process algebras, RTPA is a new
mathematical framework to represent cognitive processes and systems. Following RTPA,
the process algebra STOPA [17] represents an advance since the notion of time is further
developed to consider the representation of stochastic time.

In order to understand why we consider stochastic time, it is worth to briefly review
the main milestones in the development of process algebras (see [3] for a good overview
of the current research topics in the field). Process algebras are very suitable to formally
specify systems where concurrency is an essential key. This is so because they allow
to model these systems in a compositional manner. The first work on process algebras
settled an important theoretical background for the study of concurrent and distributed
systems. In fact, this work was very significant, mainly to shed light on concepts and
to open research methodologies. However, due to the abstraction of the complicated
features, models were still far from real systems. Therefore, some of the solutions were
not specific enough, for instance, those related to real time systems.

Thus, researchers in process algebras have tried to bridge the gap between formal
models described by process algebras and real systems. In particular, features which
were abstracted before have been introduced in the models. Thus, they allow the design
of systems where not only functional requirements but also performance ones are in-
cluded. The most significant of these additions are related to notions such as time (e.g.
[31,22,47,10,1]) and probabilities (e.g. [11,25,24,8,7,23]). An attempt to integrate time
and probabilistic information has been given by introducing stochastic process alge-
bras (e.g. [12,14,4,28,16,20]). The idea underlying the definition of stochastic time is
that the actual amount of time is given by taking into account different probabilities.
Thus, we will be able to specify not only fix delays (e.g. the process will last 2 mil-
liseconds) but delays that can vary according to a probability distribution function. For
example, we may specify a process finishing before 1 millisecond with probability 1

3 ,
finishing before 2 milliseconds with probability 1

2 , finishing before 4 milliseconds with
probability 4

5 , and so on.
Most stochastic process algebras work exclusively with exponential distributions

(some exceptions are [5,9,13,6,20]). The problem is that the combination of paral-
lel/concurrency composition operators and general distributions strongly complicates
the definition of semantic models. That is why stochastic process algebras are usually
based on (semi)-Markov chains. However, this assumption decreases the expressiveness
of the language, because it does not allow to properly express some behaviours where
timed distributions are not exponential.

The main purpose of this paper is to compare the two cognitive process algebras
RTPA and STOPA. As we mentioned before, RTPA [35,38] represents a step forward for

226 N. Lopez, M. Núñez, and F.L. Pelayo

formalization of cognitive processes including time information. Our STOchastic Pro-
cess Algebra builds, on the one hand, on RTPA and, on the other hand, on our work on
stochastic and probabilistic process algebras [25,7,23,20]. Thus, STOPA represents a new
stochastic process algebra to formally represent cognitive processes containing stochas-
tic information. For example, a process such as ξ; P is delayed an amount of time t with
probability Fξ(t), where Fξ is the probability distribution function associated with ξ.
Let us remark that deterministic delays (as presented in timed process algebras) can be
specified by using Dirac distributions. The main improvement of our framework with
respect to RTPA is that we may specify timed information given by stochastic delays. As
we will see along the paper, the inclusion of stochastic time introduces some additional
complexity in the definition of the operational semantics of the language.

In order to assess the usefulness of the two languages and compare how they repre-
sent the same process, we formally represent a high level description of the cognitive
process of memorizing. We follow contemporary theories of memory classification al-
ready stated in [33,32]. We consider sensory buffer, short-term, and long-term memories.
Moreover, borrowing from [45], we also consider the so-called action buffer memory.

2 The Language RTPA

RTPA is a formal method for specifying software system architectures and also, static
and dynamic behaviours. An uploaded version of RTPA, can be found in [43], this
version provides 17 meta-processes, 17 process relations and 17 primitive types, on the
other hand, the one referred in this paper is almost as complete as the most recent but it
is completely worth for our purposes. Quoting from [35]:

Definition 1. behaviour of a software system is outcomes and effects of computational
operations that affect or change the state of a system in a space of input/output events
and variables, as well as internal variables and related memory structures.

Behaviours of software systems can be classified as static and dynamic ones as de-
scribed below.

Definition 2. The static behaviour of a software system is a software behaviour that
can be determined at design and compile time. The dynamic behaviour of a software
system is a software behaviour that can be determined at run-time.

In software engineering, basic requirements for describing and specifying a software
system can be considered in two categories: architectural components and operational
components. System specifications can be described as:

– system architecture,
– system static behaviours,
– system dynamic behaviours.

They can be described by a set of real-time processes in RTPA.

Definition 3. A process is a basic unit of software system behaviours that represents a
transition procedure of a system from one state to another by changing its sets of inputs,
outputs, and/or internal variables.

A Comparative Study of STOPA and RTPA 227

Table 1. RTPA meta-processes (1/2)

No. Meta-process Syntax Operational Semantics
1.1 System §(SysIDS) Represents a system, SysID,

identified by a string, S

1.2 Assignment yType := xType if x.type = y.type
then x.value ⇒ y.value
else !(@AssigmentTypeErrorS)

where Type ∈ Meta − Types

1.3 Addressing ptrP ˆ := xType if prt.type = x.type
then x.value ⇒ ptr.value
else !(@AssigmentTypeErrorS)

where Type ∈ {H, Z, P }̂

1.4 Input Port(ptrP)̂Type| > xType if Port(ptrP)̂.type = x.type
then Port(ptrP)̂.value ⇒ x.value
else !(@InputTypeErrorS)

where Type ∈ {B, H}, P ˆ ∈ {H, N, Z}

1.5 Output xType| < Port(ptrP)̂Type if Port(ptrP)̂.type = x.type
then x.value ⇒ Port(ptrP)̂.value
else !(@OutputTypeErrorS)

where Type ∈ {B, H}, P ˆ ∈ {H, N, Z}

1.6 Read Mem(ptrP)̂Type > xType if Mem(ptrP)̂.type = x.type
then Mem(ptrP)̂.value ⇒ x.value
else !(@ReadTypeErrorS)

where Type ∈ {B, H}, P ˆ ∈ {H, N, Z}

1.7 Write xType < Mem(ptrP)̂Type if Mem(ptrP)̂.type = x.type
then x.value ⇒ Mem(ptrP)̂.value
else !(@WriteTypeErrorS)

where Type ∈ {B, H}, P ˆ ∈ {H, N, Z}

1.8 Timing a) @thh:mm:ss:ms := §thh:mm:ss:ms if @t.type = §t.type
b) @tyy:MM:dd := §tyy:MM:dd then §t.value ⇒ @t.value
c) @tyy:MM:dd:hh:mm:ss:ms := else !(@TimingTypeErrorS)

§tyy:MM:dd:hh:mm:ss:ms where yy ∈ {0, . . . , 99}, MM ∈ {1, . . . , 12},
dd ∈ {1, . . . , 31}, hh ∈ {0, . . . , 23},
mm, ss ∈ {0, . . . , 59}, ms ∈ {0, . . . , 999}

1.9 Duration @tnZ := §tnZ + ΔnZ if @tn.type = Δn.type = §tn.type = Z
then (§tn.value + Δn.value) mod

MaxValue ⇒ @tn.value
where MaxValue is the upper bound of the
system relative-clock, and the unit of
all values is ms

1.10 Memory AllocateObject (ObjectIDS , nN := NofElements;
allocation NofElementsN , ElementTypeRT) Rn

i=1(new ObjectID(iN) : ElementTypeRT);
©S ObjectID.ExistedBL := true

228 N. Lopez, M. Núñez, and F.L. Pelayo

Table 2. RTPA meta-processes (2/2)

No. Meta-process Syntax Operational Semantics
1.11 Memory ReleaseObject(ObjectIDS) delete ObjectIDS //

release System.Garbage Collection() ;
ObjectIDS := null ;
©S ObjectID.ReleaseBL := true

1.12 Increase ↑ (nType) if n.value < MaxValue
then n.value + 1 ⇒ n.value
else !(@ValueOutofRangeS)

where Type ∈ {N, Z, B, H,P }̂
MaxValue = min{run-time defined
upper bound, nature upper bound
of Type}

1.13 Decrease ↓ (nType) if n.value > 0
then n.value − 1 ⇒ n.value
else !(@ValueOutofRangeS)

where Type ∈ {N, Z, B, H,P }̂

1.14 Exception !(@eS) ↑ (ExceptionLogPtrP ˆ);
detection @eS ⇒ Mem(ExceptionLogPtrP ˆ)S

1.15 Skip ∅ Exit a current control structure,
such as loop, branch, or switch

1.16 Stop stop System stop

A process can be defined as a single meta-process or as a complex process based on
meta-processes using process relations. Thus, RTPA is described by using the following
structure:

RTPA ::= Meta-processes
| Primary types
| Abstract data types
| Process relations
| System architectures
| Specification refinement sequences

RTPA distinguishes the concepts of meta-processes from complex processes and
complex relations. A meta-process is an elementary process that serves as a basic build-
ing block in a software system. Complex processes can be derived from meta-processes
according to given process combinatory rules. The syntax and operational semantics of
the meta-processes are given in Tables 1 and 2. Each meta-process is a basic operation
on one or more operands such as variables, memory elements, or I/O ports. Structures
of the operands and their allowable operations are constrained by their types.

The RTPA notation is strongly typed. Every operand in RTPA is assigned with a data
type labeled as a suffix. The definition of the primary data types are the meta-types
defined from 2.1 to 2.10 in Table 3. The meta-types date/time (2.11) are specially types
for continuous real-time systems, where long-range timing manipulation is needed. The

A Comparative Study of STOPA and RTPA 229

Table 3. RTPA meta-types

No. Meta-type Syntax
2.1 Natural number N
2.2 Integer Z
2.3 Real R
2.4 String S
2.5 Boolean BL = {true, false}
2.6 Byte B
2.7 Hexadecimal H
2.8 Pointer P ˆ
2.9 Time hh : mm : ss : ms

where hh ∈ {0, . . . , 23}, mm, ss ∈ {0, . . . , 59},
ms ∈ {0, . . . , 999}

2.10 Date yy : MM : dd
where yy ∈ {0, . . . , 99}, MM ∈ {1, . . . , 12},
dd ∈ {1, . . . , 31}

2.11 Date/Time yyyy : MM : dd : hh : mm : ss : ms
where yyyy ∈ {0, . . . , 9999}, MM ∈ {1, . . . , 12},
dd ∈ {1, . . . , 31}, hh ∈ {0, . . . , 23},
mm, ss ∈ {0, . . . , 59}, ms ∈ {0, . . . , 999}

2.12 Run-time determinable type RT
2.13 System architectural type ST
2.14 Event @eS

2.15 Status ©S sBL

runtime determinable (2.12) is a subset of all the rest meta-types defined, which is
designed to support flexible type specification that is unknown at compile-time, but will
be instantiated at run-time. The system architectural components (2.13) is a novel and
important data type in RTPA that models system architectural components. The event
and status types are used to model systems event variables (2.14) as a string type, and
system status variables (2.15) as a Boolean type.

In addition to the meta-types for system modeling, a set of typical and frequently
used combinational data objects in system architectural modeling, the abstract data
types are selected and predefined in RTPA. They are described in Table 4. The inter-
ested reader may find in [35] a detailed explanation of all the definitions appearing in
Tables 1-4 as well as the complete definitions of system architectures and specification
refinement sequences. Quoting from [35]:

There are four types of system meta-architectures known as: parallel, se-
rial, pipeline, and nested. Any complicated system architecture can be repre-
sented by a combination of these four meta-architectures between components.
It is interesting to find that each of the meta-architectures corresponds to a key
RTPA process relation as defined in Table 5.

The combination rules of meta-processes in RTPA are governed by a set of algebraic
process relations. In Table 5 the syntax and operational semantics of the process rela-
tions are described. The process relations sequential, branch and iteration (4.1 − 4.6)

230 N. Lopez, M. Núñez, and F.L. Pelayo

Table 4. RTPA abstract data types

No. ADT Syntax Designed behaviours
3.1 Stack Stack:ST Stack. (Create, Push, Pop, Clear, EmptyTest,

FullTest, Release)

3.2 Record Record:ST Record. (Create, fieldUpdate,
Update, FieldRetrieve, Retrieve, Release)

3.3 Array Array:ST Array. (Create, Enqueue, Serve,
Clear, EmptyTest, FullTest, Release)

3.4 Queue Queue:ST Queue.(Create, Enqueue, Serve,
(FIFO) Clear, EmptyTest, FullTest, Release)

3.5 Sequence Sequence:ST Sequence.(Create, Retrieve,
Append, Clear, EmptyTest, FullTest, Release)

3.6 List List:ST List. (Create, FindNext, FindPrior,
Findith, FindKey, Retrieve, Update, InsetAfter,
InsertBefore, Delete, CurrentPos, FullTest,
EmptyTest,SizeTest,Clear,Release)

3.7 Set Set:ST Set. (Create, Assign, In, Intersection, Union,
Difference, Equal, Subset, Release)

3.8 File SeqFile:ST SeqFile. (Create, Reset, Read, Append,
(Sequential) Clear, EndTest, Release)

3.9 File RandFile:ST RandFile. (Create, Reset, Read, Write,
(Random) Clear, EndTest, Release)

3.10 Binary BTree:ST BTree. (Create, TRaverse, Insert, DeleteSub,
Tree Update, Retrieve, Find, Characteristics,

EmptyTest, Clear, Release)

are identified as the basic control structures of software architectures. To represent
the modern programming structural concepts seven additional process relations are in-
cluded: function call, recursion, parallel, concurrency, interleave, pipeline, and jump
(4.7 − 4.12, 4.16). The language RTPA extends the process relations with time-driven
dispatch, event-driven dispatch, and interrupt (4.13 − 4.15).

3 The Language STOPA

In this section it is presented the language STOPA. The semantic model is strongly based
on RTPA. The modifications are given mainly in the presentation of the operational se-
mantics for process relations and the introduction of the stochastic time. In the forth-
coming subsection a detailed explanation will be given about all these modifications.
In this language, we have included, with respect to RTPA, three choice operators. These
operators represent the external, internal and stochastic choices. Besides, some modifi-
cations are needed in the description of the parallel operator due to we have to take into
account the passing of time. Finally, two process relations of the language RTPA have
been omitted, the function call and the jump operator.

A Comparative Study of STOPA and RTPA 231

Table 5. RTPA process relations

No. Process relation Syntax Operational semantics
4.1 Sequence P → Q P ; Q
4.2 Branch (?expBL = true) ; P if expBL = true

| (?expBL = false) ; Q then P
else Q

4.3 Switch ?expNUM = case expNUM =
0 → P0 0 : P0

1 → P1 1 : P1

.
n − 1 → Pn−1 n − 1 : Pn−1

else → ∅ else : exit
4.4 For-do Rn

i=1P (i) for i := 1 to n
do P (i)

4.5 Repeat RexpBL�=true
≥1 P repeat P

until expBL �= true

4.6 While-do RexpBL�=true
≥0 P while expBL = true

do P
4.7 Function call P

�

F P ′ → F → P ′′ where P = P ′ ∪ P ′′

4.8 Recursion P � P P ′ → P → P ′′ where P = P ′ ∪ P ′′

4.9 Parallel P ‖ Q MPSC (multi-processor single clock)
internal parallel

4.10 Concurrence P
∮

Q MPMC (multi-processor multi-clock)
external parallel

4.11 Interleave P ||| Q SPSC (single processor single clock)
internal virtual parallel

4.12 Pipeline P >> Q P → Q and {Poutputs} =⇒ {Qinputs}
4.13 Time-driven @tihh:mm:ss:ms @t1hh:mm:ss:ms

�

P1

dispatch

�

Pi, i ∈ {1, . . . , n} | @t2hh:mm:ss:ms

�

P2

. . .
| @tnhh:mm:ss:ms

�

Pn

4.14 Event-driven @eiS

�

Pi, i ∈ {1, . . . , n} @e1S

�

P1

dispatch | @e2S

�

P2

| . . .
| @enS

�

Pn

4.15 Interrupt P ‖
⊙

(@eS ↗ Q ↘
⊙

) P ‖ system interrupt capture;
if @eS captured = true

then (record interrupt
point

⊙
and variables�

Q
→ recover interrupted variables
→ return to the interrupt point

⊙

and continue P)
4.16 Jump P → Q P → goto Q → Q

As we have already commented in the introduction of this paper, the aim of this
language is to add stochastic information in the framework of RTPA. For that reason
random variables are included in the syntax of the process relations, that is, a process

232 N. Lopez, M. Núñez, and F.L. Pelayo

can be delayed according to a random variable. It is supposed that the sample space
(that is, the domain of random variables) is the set of real numbers IR and that random
variables take only positive values, that is, given a random variable ξ we have P(ξ ≤
t) = 0 for any t ≤ 0. The reason for this restriction is that random variables are always
associated with time distributions.

Definition 4. Let ξ be a random variable. Its probability distribution function, denoted
by Fξ, is defined as the function Fξ : IR −→ (0, 1] such that Fξ(x) = P(ξ ≤ x), where
P(ξ ≤ x) is the probability that ξ assumes values less than or equal to x. ��

In the forthcoming examples as well as in the last section of this paper we will use the
following probability distribution functions.

Uniform Distributions. Let a, b ∈ IR+ such that a < b. A random variable ξ fol-
lows a uniform distribution in the interval [a, b], denoted by U(a, b), if its associated
probability distribution function is:

Fξ(x) =

⎧
⎨

⎩

0 if x ≤ a
x−a
b−a if a < x < b

1 if x ≥ b

These distributions allow us to keep compatibility with time intervals in timed process
algebras in the sense that the same weight is assigned to all the times in the interval.

Discrete Distributions. Let PI = {(ti, pi)}i∈I be a set of pairs such that for any
i ∈ I we have that ti ≥ 0, pi > 0, for any i, j ∈ I , if i �= j then ti �= tj , and

∑
pi = 1.

A random variable ξ follows a discrete distribution with respect to PI , denoted by
D(PI), if its associated probability distribution function is:

Fξ(x) =
∑

i∈I

{|pi | x ≥ ti|}

Let us note that {| and |} represent multisets. Discrete distributions are important because
they allow us to express passive actions, that is, actions that are willing, from a certain
point of time, to be executed with probability 1.

Exponential Distributions. Let 0 < λ ∈ IR. A random variable ξ follows an expo-
nential distribution with parameter λ, denoted by E(λ) or simply λ, if its associated
probability distribution function is:

Fξ(x) =
{

1 − e−λx if x ≥ 0
0 if x < 0

Poisson Distributions. Let 0 < λ ∈ IR. A random variable ξ follows a Poisson
distribution with parameter λ, denoted by P (λ), if it takes positives values only in IN
and its associated probability distribution function is:

Fξ(x) =
{∑

t∈IN,t≤x
λt

t! e
−λt if x ≥ 0

0 if x < 0

During the rest of the paper, mainly in the examples and when no confusion arises, we
will identify random variables with their probability distribution functions.

A Comparative Study of STOPA and RTPA 233

Example 1. Let us consider the process U(1, 3) ; P . This process will behave as P in
less than 1 milliseconds with probability 0. In a time less than or equal to t millisec-
onds, when 1 < t < 3, with probability t−1

2 . And it will behave as P in more than 3
milliseconds with probability 1. ��

Regarding communication actions, they can be divided into input and output actions.
Next, we define our alphabet of actions.

Definition 5. We consider a set of communication actions Act = Input ∪ Output,
where we assume Input ∩ Output = ∅. We suppose that there exists a bijection f :
Input ←→ Output. For any input action a? ∈ Input, f(a?) is denoted by the output
action a! ∈ Output. If there exists a message transmission between a? and a! we say
that a is the channel of the communication (a, b, c, · · · to range over Act).

We also consider a special action τ �∈ Act that represents internal behaviour of the
processes. We denote by Actτ the set Act ∪ {τ} (α, β, γ, · · · to range over Actτ).

Besides, We consider a denumerable set Id of process identifiers. In addition, we
denote by V the set of random variables (ξ, ξ′, ψ, · · · to range over V). ��

3.1 Process Relations in STOPA

In this section, we define the syntax and operational semantics of our process algebra
to describe process relations. Operational semantics is probably the simplest and more
intuitive way to give semantics to any process language. In this part of the description of
the language, operational behaviours will be defined by means of transitions P ω−−→ P ′

that each process can execute. These are obtained in a structured way by applying a set
of inference rules [30].

The intuitive meaning of a transition as P ω−−→ P ′ is that the process P may perform
the action ω and, once this action is performed, then it behaves as P ′. Let us note that
labels appearing in these operational transitions have the following types: a? ∈ Input,
a! ∈ Output, a ∈ Act , α ∈ Act ∪ {τ}, ω ∈ Actτ ∪ V , and ξ ∈ V .

The set of process relations, as well as their operational semantics, is given in Ta-
bles 6 and 7. Next, we intuitively describe each of the operators.

The external, internal, and stochastic choice process relations are used to describe
the choice among different actions. They are respectively denoted by

∑
ai ; Pi

∑
◦ τ ; Pi

∑
• ξi ; Pi

where ai ∈ Act and ξi ∈ V . The inference rules describing the behaviour of these
process relations are (CHO1), (CHO2), and (CHO3).

The process
∑

ai ; Pi will perform one of the actions ai and after that it behaves as
Pi. The term

∑
◦ τ ; Pi represents the internal choice among the processes Pi. Once the

choice is made, by performing an internal action τ , the process behaves as the chosen
process. Finally, the process

∑
• ξi ; Pi will be delayed by ξi a certain amount of time t

with probability p = P(ξi ≤ t) and after that it will behave as Pi (see Example 1).
Sequence is a process relation in which two processes are consequently performed.

This relation is denoted by:
P ; Q

234 N. Lopez, M. Núñez, and F.L. Pelayo

The rules (SEQ1), (SEQ2), (SEQ3), and (SEQ4) describe the behaviour of these process
relations. Intuitively, P is initially performed. Once P finishes, Q starts its performance.

If the process P can perform an action then P ; Q will perform it. If the process P
finishes then the process P ; Q will behave as Q. A process will finish its execution if it
performs the action

√
(see rule (SEQ4)).

The branch and switch process relations are denoted by

(?expBL = true) ; P | (?expBL = false) ; Q

and
| (?expNUM = i) ; Pi

The behaviour of the first operator is described in the rule (BRA). If the boolean ex-
pression expBL evaluates to true then P is performed; otherwise, Q is performed. In
the second operator, if the value of the numerical expression expBL is equal to i then
the process Pi is performed (see rule (SWI)).

The FOR-DO, REPEAT, and WHILE-DO process relations are denoted, respec-
tively, by:

n

R
i = 1

P
expBL 	= true

R
≥ 1

P
expBL 	= true

R
≥ 0

P

and their operational semantics are given in the rules (FOR), (REP), (WHI1) and
(WHI2).

The FOR-DO process relation may be used to describe the performance of a certain
process a fix amount of times n. Thus, Rn

i=1P behaves as P and after that as Rn−1
i=1 P .

The REPEAT process relation executes a process P at least once. It continues its ex-
ecution until a certain expression takes the value true. Thus, the term RexpBL	=true

≥1 P
behaves as P , and after that, as a WHILE-DO process relation.

The WHILE-DO process relation RexpBL	=true
≥0 P behaves as P if the boolean expres-

sion expBL is true, and after that behaves again as RexpBL	=true
≥0 P . If the boolean

expression expBL is false then the process finishes its performance.
Recursion is a process relation in which the definition of a process may contain a

call to itself. We will use a notation slightly different to that in RTPA

X := P

where X ∈ Id, that is, a process identifier. The rule (REC1) applies to external and
internal actions while (REC2) applies to stochastic actions. Let us also remark that
P [X/X := P] represents the substitution of all the free occurrences of X in P by
X := P .

The parallel, concurrence, and interleaving process relations are denoted, respec-
tively, by:

P ‖tc Q P
∮
Q P ||| Q

Parallel is a process relation in which two processes are executed simultaneously,
synchronized by a common system clock. The parallel process relation is designed to

A Comparative Study of STOPA and RTPA 235

model behaviours of a multi-processor single-clock system. The parameter tc indicates
the time of the system clock. It will vary as time passes. If one of the processes of
the parallel composition can perform a non-stochastic action then the composition will
perform it (see rules (PAR1) and (PAR2)). We suppose that there is an operation ∗ on
the set of actions Act such that (Act , ∗) is a monoid and τ is its identity element. Thus,
by rule (PAR3), if we have the parallel composition of P and Q, P may perform a, Q
may perform b, and a ∗ b �= τ then they will evolve together. Let us suppose that P can
perform a stochastic action, and neither external nor internal actions can be performed
by the composition. Then P ‖tc Q will perform the temporal action and Q will evolve
into cond(A, Δt), being Δt the actual time consumed by the stochastic action. That is,
Δt = tc′ − tc, where tc is the system time in the moment that the performance of ξ
started and tc′ is the system time after the execution of ξ.

The definition of the function cond(P, Δt) is given in Table 8. In that table we have
included, for the sake of completeness, all the cases of the function. However, the most
relevant part of this definition is the one concerning choice process relations. In this
case,

cond(P, Δt) =
⎧
⎪⎪⎨

⎪⎪⎩

∑
ai ; cond(Pi, Δt) if P =

∑
ai ; Pi

∑
◦ τ ; cond(Pi, Δt) if P =

∑
◦ τ ; Pi

∑
• ξ′i ; Pi if P =

∑
• ξi ; Pi

where ξ′i is the random variable whose probability distribution function is given as a
conditional probability. We have that P(ξ′i ≤ t′) = P(ξi ≤ t′′ | Δt + t′ ≤ t′′), that is,
the probability of the random variable ξ′i to finish before t′ units of time have passed
is equal to the probability of the original random variable ξ, to be less than or equal
to t′′, provided that Δt + t′ ≥ t′′. Let us remark that the modification of the process
of the parallel composition that does not perform the stochastic action is needed. This
is so because, in this case, we have a multi processor single-clock system, so the time
consumed by the stochastic action has to be taken into account in both sides of the
parallel composition.

Example 2. Let P = ξ1 ; P1 ‖tc ξ2 ; P2. Let us suppose that we have transitions of the
form

P
ξ1−−→ P1 ‖tc′ ξ′2 ; P2

The passage of time would not be reflected in the right hand side of the paral-
lel composition. Nevertheless, the random variable associated with the action b can-
not be ξ2 because some time has passed. That is why we generate the transition

P
ξ1−−→ P1 ‖tc′ cond(ξ2 ; P2, tc

′ − tc), where cond(ξ2 ; P2, tc
′ − tc) = ξ′2 ; P2

and ξ′2 is the random variable with probability distribution function defined as:

Fξ′
2
(t) = P(ξ′2 ≤ t) = P(ξ2 ≤ t′ | t + (tc′ − tc) ≤ t′)

��

Concurrence is a process relation in which two processes are simultaneously and asyn-
chronously executed, according to separate system clocks. This process relation is de-
signed to model behaviours of a multi-processor multi-clock system. The rules (CON1)

236 N. Lopez, M. Núñez, and F.L. Pelayo

and (CON2) indicate that if one of the processes of the composition can perform an
action then the composition will asynchronously perform it. However, if one of the pro-
cesses of the composition can perform an input action and the other can perform the
corresponding output action then there is a communication and the process relation will
perform it (see rules (CON3) and (CON4)). Since we have in this case a multi-clock
system, if one of the processes can perform a stochastic action then the composition
will perform it without modifying the other part of the composition (see rules (CON5)
and (CON6)).

Interleaving is a process relation in which two processes are simultaneously exe-
cuted while maintaining by a common system clock. The interleaving process relation
is designed to model behaviours of a single-processor single-clock system. If one of the
processes can perform a non-stochastic action then the composition will perform it (see
rules (INT1) and (INT2)). Regarding stochastic actions, see rules (INT3) and (INT4),
we consider that a stochastic action , once it has started, cannot be interrupted. Besides,
if one of the processes performs a stochastic action then the other component is not
modified. In fact, as we suppose a single processor single-clock system, the other side
of the composition is not active, so no time has passed for it.

Pipeline is a process relation in which two processes are interconnected to each
other. The second process takes the inputs from the outputs of the first one. This process
relation is denoted by:

P >> Q

Thus, if P can perform an action then P >> Q will perform it (see rules (PIPE1) and
(PIPE3)). Once the process P is finished, that is, P can perform the action

√
, P >> Q

behaves as Q (see rule (PIPE2)).
Time-driven dispatch is a process relation in which the i-th process is triggered by

a predefined system time tihh:mm:ss:ms. It is denoted as follows:

@tihh:mm:ss:ms

�

Pi, i ∈ {1, . . . , n}

According to the rule (TDD), the process Pi is performed when the value of the system
time is equal to tihh:mm:ss:ms.

Event-driven dispatch is a process relation in which the i-th process is triggered by
a system event @eiS. It is denoted as follows:

@eiS

�

Pi, i ∈ {1, . . . , n}

When the event occurred is eiS, then the process Pi is performed, rule (EDD).
Interrupt is a process relation in which a process is temporarily held by another with

higher priority. The term describing that the process P is interrupted by the process Q
when the event @eS is captured at interrupt point

⊙
will be represented by

P ‖ ⊙
(@eS ↗ Q ↘ ⊙

)

If the event eS is captured (rule (INTER1)), the process P ‖ ⊙
(@eS ↗ Q ↘ ⊙

) will
behave as Q, and after that the process will continue its execution behaving as P . If the
event eS is not captured and P can perform an action (rules (INTER2) and (INTER3)),
the process P ‖ ⊙

(@eS ↗ Q ↘ ⊙
) will also perform it.

A Comparative Study of STOPA and RTPA 237

The semantics of both RTPA and STOPA have been described and form this theoretical
level, the differences between them are mainly those allowing STOPA to capture more
generic notions of time (whatever time provide that we knew its probability distribution
function) than RTPA does, and this fact is reflected in the existence of three choice
relations in STOPA, one of them a stochastic choice process relation which introduces
the ability of capturing stochastic time, and as a natural consequence the semantics of
the parallel operator has been modified for dealing with the definition of this time and its
soundness. The parallel operator semantics needs the function cond to properly capture
its semantics.

We want to analyze the empirical differences between this two process algebras,
in particular when describing/specifying the same case study, in order to perform this
comparison, the cognitive memorizing process is now described.

4 The Memorizing Process

In this section we give a brief explanation on how the memorization process works.
The main goal of this description is to answer the following three basic questions:

– How are memories formed? (encoding)
– How are memories retained? (storage)
– How are memories recalled? (retrieval)

4.1 Encoding Process

Encoding is an active process which requires selective attention to the material to be
encoded. Memories may then be affected by the amount or type of attention devoted to
the task of encoding the material.

There may be different levels of processing, being some of them deeper than others.
These processes are structural encoding (where emphasis is placed on the physical
structural characteristics of the stimulus), phonemic encoding (with emphasis on the
sounds of the words) and semantic encoding (that is, emphasis on the meaning).

The main aspects of encoding fit the OAR-model in the following sense:

1. Relation: Association with other information.
2. Object: Visual imagery of the real entity or concept that can be used to add richness

to the material to be remembered. Besides, it also adds more sensory modalities.
3. Attributes: To make the material personally relevant and to add more detailed in-

formation about the object.

4.2 Storage Process

Over the years, analogies with available technologies have been made to try and explain
the behaviour of the memory. Nowadays, memory theories use a computer-based, or
information processing, model. The most accepted model states that there are three
stages of memory storage and one more for memory retrieving:

238 N. Lopez, M. Núñez, and F.L. Pelayo

Table 6. Operational semantics of the process relations (1/2)

(CHO1)∑
ai;Pi

ai−−→ Pi

(CHO2)∑
◦ τ ;Pi

τ−−→ Pi

(CHO3)
∑
• ξi;Pi

ξi−−→ Pi

(SEQ1)
P

α−−→ P ′

P ;Q
α−−→ P ′;Q

(SEQ2)
P

√

−−→ P ′

P ;Q
τ−−→ Q

(SEQ3)
P

ξ−−→ P ′

P ;Q
ξ−−→ P ′;Q

(SEQ4)
exit

√

−−→ stop

(BRA)
expBL=true

(?expBL=true);P | (?expBL=false);Q
τ−−→ P

(SWI)
expNUM=i

| (?expNUM=i);Pi
τ−−→ Pi

(FOR)
Rn

i=1P
τ−−→ P ;Rn−1

i=1 P
(REP)

RexpBL�=true
≥1 P

τ−−→ P ;RexpBL�=true
≥0 P

(WHI1)
expBL=true

RexpBL�=true
≥0 P

τ−−→ P ;RexpBL�=true
≥0 P

(WHI2)
expBL=false

RexpBL�=true
≥0 P

τ−−→ exit

(REC1)
P [X/X:=P]

α−−→ P ′

X:=P
α−−→ P ′

(REC2)
P [X/X:=P]

ξ−−→ P ′

X:=P
ξ−−→ P ′

(PAR1)
P

α−−→ P ′

P‖tcQ
α−−→ P ′‖tcQ

(PAR2)
Q

α−−→ Q′

P‖tcQ
α−−→ P‖tcQ′

(PAR3)
P

a−−→ P ′, Q
b−→ Q′, a∗b�=τ

P‖tcQ
a∗b−−→ P ′‖tcQ′

(PAR4)
P

ξ−−→ P ′, P‖tcQ � α−−→
P‖tcQ

ξ−−→ P ′‖tc′cond(Q,tc′−tc)
(PAR5)

Q
ξ−−→ Q′, P‖tcQ � α−−→

P‖tcQ
ξ−−→ cond(P,tc′−tc)‖tc′Q′

(CON1)
P

α−−→ P ′

P
∮

Q
α−−→ P ′

∮
Q

(CON2)
Q

α−−→ Q′

P
∮

Q
α−−→ P

∮
Q′

(CON3)
P

a?−−→ P ′, Q
a!−−→ Q′

P
∮

Q
τ−−→ P ′

∮
Q′

(CON4)
P

a!−−→ P ′, Q
a?−−→ Q′

P
∮

Q
τ−−→ P ′

∮
Q′

(CON5)
P

ξ−−→ P ′

P
∮

Q
ξ−−→ P ′

∮
Q

(CON6)
Q

ξ−−→ Q′

P
∮

Q
ξ−−→ P

∮
Q′

(INT1)
P

α−−→ P ′

P |||Q α−−→ P ′|||Q
(INT2)

Q
α−−→ Q′

P |||Q α−−→ P |||Q′

(INT3)
P

ξ−−→ P ′

P |||Q
ξ−−→ P ′|||Q

(INT4)
Q

ξ−−→ Q′

P |||Q
ξ−−→ P |||Q′

A Comparative Study of STOPA and RTPA 239

Table 7. Operational semantics of the process relations (2/2)

(PIPE1)
P

α−−→ P ′

P>>Q
α−−→ P ′;Q

(PIPE2)
P

√

−−→ P ′, Input(Q)=Output(P)

P>>Q
τ−−→ Q

(PIPE3)
P

ξ−−→ P ′

P>>Q
ξ−−→ pP ′>>Q

(TDD)
tsystemhh:mm:ss:ms=tihh:mm:ss:ms

@tihh:mm:ss:ms

�

Pi, i∈{1,...,n} τ−−→ Pi

(EDD)
esystem=eiS

@eiS

�

Pi, i∈{1,...,n} τ−−→ Pi

(INTER1)
@eScaptured=true

P‖tc

⊙
(@eS↗Q↘

⊙
)

τ−−→ Q;P

(INTER2)
@eScaptured=false, P

α−−→ P ′

P‖tc

⊙
(@eS↗Q↘

⊙
)

α−−→ P ′‖tc

⊙
(@eS↗Q↘

⊙
)

(INTER3)
@eScaptured=false, P

ξ−−→ P ′

P‖tc

⊙
(@eS↗Q↘

⊙
)

ξ−−→ P ′‖tc

⊙
(@eS↗Q↘

⊙
)

– Sensory store retains the sensory image for only a small part of a second, just
long enough to develop a perception. This is stored in the Sensory Buffer Mem-
ory (SFM). Following [45], we also consider Action Buffer Memory (ABM) which
is used as a buffer when recovering information.

– Short Term Memory (STM) lasts about 20 to 30 seconds when we do not consider
rehearsal of the information. On the contrary, if rehearsal is used then short term
memory will last as long as the rehearsal continues. Short term memory is also lim-
ited in terms of the number of items it can hold. Its capacity is about 7 items but
can be increased by chunking, that is, by combining similar material into units.
Let us remark that short term memory was originally perceived as a simple re-
hearsal buffer. However, it turns out to have a more complicated underlying pro-
cess, being better modelled by using an analogy with a computer, which has the
ability to store a limited amount of information in its cache RAM while performing
other tasks. In other words, we can consider it as a kind of working memory.

– Long Term Memory (LTM) has been suggested to be permanent. However, even
though no information is forgotten, we might lose the means of retrieving it.

Another interesting point regarding memory is to determine the mechanism to
change the condition of a certain memory. In other words, how does short term memory
stuff get into long term memory? We have to take into account the following:

– Serial position effect. Thus, primacy (i.e. first words get rehearsed more often and
so that they move into long term memory) and recency (for instance, words at the

240 N. Lopez, M. Núñez, and F.L. Pelayo

Table 8. Definition of function cond(P, Δt)

cond
(∑

ai ; Pi, Δt
)

=
∑

ai ; cond
(
Pi, Δt

)
cond

(∑
◦ τ ; Pi, Δt

)
=

∑
◦ τ ; cond

(
Pi, Δt

)

cond
(∑

• ξi ; Pi, Δt
)

=
∑
• ξ′

i ; Pi cond
(
P ; Q, Δt

)
= cond

(
P, Δt

)
; Q

cond
(
P >> Q, Δt

)
= cond

(
P, Δt

)
>> Q

cond
(

| (?expNUM = i) ; Pi, Δt
)

= | (?expNUM = i) ; cond
(
Pi, Δt

)

cond
(
(?expBL = true) ; P | (?expBL = false) ; Q,Δt

)
=

(?expBL = true) ; cond
(
P, Δt

)
| (?expBL = false) ; cond

(
Q, Δt

)

cond

(n
R

i = 1
P, Δt

)

=

⎧
⎪⎪⎨

⎪⎪⎩

cond
(
P, Δt

)
;
n − 1

R
i = 1

P if n ≥ 1

n
R

i = 1
P otherwise

cond

(
expBL 	= true

R
≥ 1

P, Δt

)

= cond
(
P, Δt

)
;
expBL 	= true

R
≥ 0

P

cond

(
expBL 	= true

R
≥ 0

P, Δt

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cond
(
P, Δt

)
;

expBL 	= true

R
≥ 0

P if expBL = true

expBL 	= true

R
≥ 0

P otherwise

cond
(
X := P, Δt

)
= cond

(
P [X/X := P], Δt

)

cond
(
P ‖tc Q, Δt

)
= cond

(
P, Δt

)
‖tc cond

(
Q, Δt

)

cond
(
P

∮
Q, Δt

)
= cond

(
P, Δt

)∮
cond

(
Q,Δt

)

cond
(
P ||| Q, Δt

)
= cond

(
P, Δt

)
||| cond

(
Q,Δt

)

cond
(
@tihh:mm:ss:ms

�

Pi, i ∈ {1, . . . , n}, Δt
)

= @tihh:mm:ss:ms

�

Pi, i ∈ {1, . . . , n}

cond
(
@eiS

�

Pi, i ∈ {1, . . . , n}, Δt
)

= @eiS

�

cond
(
Pi, Δt

)
, i ∈ {1, . . . , n}

cond
(
P ‖

⊙
(@eS ↗ Q ↘

⊙
), Δt

)
= cond

(
P, Δt

)
‖

⊙
(@eS ↗ cond

(
Q,Δt

)
↘

⊙
)

end that are not rehearsed as often but that are still available in STM) affect long
term memory.

– Rehearsal helps to move things into long term memory.
– According to the organizational structures of long term memory, we have also to

consider:
• Related items are usually remembered together.
• Conceptual hierarchies are used as classification scheme to organize memories.
• Semantic networks are less neatly organized bunches of conceptual hierarchies

linked together by associations to other concepts.

A Comparative Study of STOPA and RTPA 241

• Schemas are clusters of knowledge about an event or object abstracted from
prior experience with the object. Actually, we tend to recall objects that fit our
conception of the situation better than ones that do not.

• A script is a schema which organizes our knowledge about common things
or activities (if you know the script applicable to the event, you can better
remember the elements of the event).

The process of storing new information in LTM is called consolidation.

4.3 Retrieval Process

Memory retrieval is not a random process. Once a request is generated the appropriate
searching and finding processes take place. This process is triggered according to the
organization structures of the LTM, while the requested information is provided via the
Action Buffer Memory. The figure 1 captures this description.

Fig. 1. The model of the memorizing process

5 Formal Description of the Memorizing Process

Taking as starting point the description of the memorization process given in the previ-
ous section, we present how RTPA describes in a rigorous way this cognitive process of
the brain. It can also be found in [39] another description of the memorizing process, but
the former is the one chosen in this comparative study since the original block diagram
(Fig.1) has already been used for the specification in both process algebras syntax.

242 N. Lopez, M. Núñez, and F.L. Pelayo

MemorizationProcess (I:: ThePerceptionS; O:: OAR (ThePerceptionS)ST, LmemorizationN) �
{
oS := ThePerceptionS
→ (ScopeS := ObjectsS

�

Search (I:: oS; ScopeS; O::{o1, o2, . . . , on})
‖ ScopeS := AttributesS

�

Search (I:: oS; ScopeS; A::{a1, a2, . . . , am})
‖ ScopeS := RelationsS

�

Search (I:: oS; ScopeS; R::{r1, r2, . . . , rt})
)

→ EncodingSTM (I:: OAR(oS); O:: OAR(oS)) { }
→ (? (REHEARSALRT ≤ thresholdRT) ∨ (@F ound−Related−Cues)

→ EncodingLTM (I:: OAR(oS); O:: OAR(oS)) { }
→ PL1S

| ? ∼

→ LOSING (I:: OAR(oS); O::∅)
→ PL1S

)
→ PL1S

�

DecodingABM (I:: OAR(oS); O:: TheInformation(ST)) { }
}

And now we present how STOPA describes the memorizing process.

MemorizationProcess (I:: ThePerceptionS; O:: OAR (ThePerceptionS)ST, LmemorizationN) �
{
(oS := ThePerceptionS
→ (ScopeS := ObjectsS

�

Search (I:: oS; ScopeS; O::{o1, o2, . . . , on})
‖ ScopeS := AttributesS

�

Search (I:: oS; ScopeS; A::{a1, a2, . . . , am})
‖ ScopeS := RelationsS

�
Search (I:: oS; ScopeS; R::{r1, r2, . . . , rt})

)
→ EncodingSTM (I:: OAR(oS); O:: OAR(oS)) { }
→ (? (@F ound−Related−Cues)

→ EncodingLTM (I:: OAR(oS); O:: OAR(oS)) { }
→ PL1?S

| ? ∼

→
∑
• ξREHEARSAL ; PBL

))∮

(→ PL1!S

�

DecodingABM (I:: OAR(oS); O:: TheInformation(ST)) { })
}

where PBL can be:

– P1 = EncodingLTM(I :: OAR(oS); O :: OAR(oS)){} ; PL1?S
– P0 = LOSING(I :: OAR(oS); O :: ∅)

6 Conclusions

In this paper we have compared two timed process algebras, RTPA and STOPA which
have been used for the specification and analysis of cognitive processes. The funda-
mental differences between them have been pointed out in sections 2 and 3.

A Comparative Study of STOPA and RTPA 243

As previously mentioned, STOPA is strongly based in RTPA with the only exception
of time managing issues. To be more precise, in RTPA the notion of time follows a
Uniform distribution, whereas in STOPA there is only one restriction when describing
timing aspects, which is to know the probability distribution function of such a time.
This is what we call “STOPA can represent stochastic time”. A minor difference is the
appearance of three choice operators in STOPA, one is needed for capturing the time dif-
ference stated, and there is one for internal and the other for external choices. Therefore
the reason for choosing one against the other, can just fall on the amount and quality of
time information of the events to be modelled/described, and in very rare cases on the
possibility of founding pure non-deterministic behaviour (captured by internal choices
of STOPA).

Section 5 shows that both languages are even closer when only seeing at the par-
ticular specification of a system, but the main differences appear when applying the
semantics rules of the parallel and stochastic choice operators of STOPA, this fact be-
comes this formalism rather more complex than RTPA.

Our main line for future work in this theoretical field is to perform a more thorough
study of the semantic framework. In particular, it would be very adequate to define both
testing and bisimulations semantics over STOPA.

A comparison with some other formal model as timed Petri Nets could be an inter-
esting field to explore.

Acknowledgments

We would like to thank Professor Yingxu Wang for his support for writing this paper.
In particular, he suggested the idea of comparing RTPA and STOPA.

References

1. Baeten, J.C.M., Middelburg, C.A.: Process algebra with timing. EATCS Monograph.
Springer, Heidelberg (2002)

2. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Computer Science 18.
Cambridge University Press, Cambridge (1990)

3. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra. North Holland,
Amsterdam (2001)

4. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with non-
determinism, priorities, probabilities and time. Theoretical Computer Science 202(1-2), 1–54
(1998)

5. Bravetti, M., Bernardo, M., Gorrieri, R.: Towards performance evaluation with general distri-
butions in process algebras. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS,
vol. 1466, pp. 405–422. Springer, Heidelberg (1998)

6. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. The-
oretical Computer Science 282(1), 5–32 (2002)

7. Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory of probabilis-
tic and non-deterministic processes. Journal of Logic and Algebraic Programming 55(1–2),
57–103 (2003)

8. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilistic pro-
cesses. Information and Computation 154(2), 93–148 (1999)

244 N. Lopez, M. Núñez, and F.L. Pelayo

9. D’Argenio, P.R., Katoen, J.-P., Brinksma, E.: An algebraic approach to the specification of
stochastic systems. In: Programming Concepts and Methods, pp. 126–147. Chapman & Hall,
Boca Raton (1998)

10. Davies, J., Schneider, S.: A brief history of timed CSP. Theoretical Computer Science 138,
243–271 (1995)

11. van Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of
probabilistic processes. Information and Computation 121(1), 59–80 (1995)

12. Götz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed system design: The
integration of functional specification and performance analysis using stochastic process al-
gebras. In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS 1993 and Performance 1993.
LNCS, vol. 729, pp. 121–146. Springer, Heidelberg (1993)

13. Harrison, P.G., Strulo, B.: SPADES – a process algebra for discrete event simulation. Journal
of Logic Computation 10(1), 3–42 (2000)

14. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs
(1985)

16. López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer,
Heidelberg (2001)

17. López, N., Núñez, M., Pelayo, F.L.: STOPA: A STOchastic Process Algebra for the formal
representation of cognitive systems. In: 3rd IEEE Int. Conf. on Cognitive Informatics, ICCI
2004, pp. 64–73. IEEE Computer Society Press, Los Alamitos (2004)

18. López, N., Núñez, M., Pelayo, F.L.: Specifying the memorization process with STOPA. The
International Journal of Cognitive Informatics & Natural Intelligence 1(4), 47–60 (2007)

19. López, N., Núñez, M., Rodrı́guez, I., Rubio, F.: A formal framework for e-barter based on
microeconomic theory and process algebras. In: Unger, H., Böhme, T., Mikler, A.R. (eds.)
IICS 2002. LNCS, vol. 2346, pp. 217–228. Springer, Heidelberg (2002)

20. López, N., Núñez, M., Rubio, F.: An integrated framework for the analysis of asynchronous
communicating stochastic processes. Formal Aspects of Computing 16(3), 238–262 (2004)

21. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs (1989)
22. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: Larsen,

K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)
23. Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Algebraic Pro-

gramming 56(1–2), 117–177 (2003)
24. Núñez, M., de Frutos, D.: Testing semantics for probabilistic LOTOS. In: 8th IFIP WG6.1

Int. Conf. on Formal Description Techniques, FORTE 1995, pp. 365–380. Chapman & Hall,
Boca Raton (1996)

25. Núñez, M., de Frutos, D., Llana, L.: Acceptance trees for probabilistic processes. In: Lee,
I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 249–263. Springer, Heidelberg
(1995)

26. Núñez, M., Rodrı́guez, I.: PAMR: A process algebra for the management of resources in con-
current systems. In: 21st IFIP WG 6.1 Int. Conf. on Formal Techniques for Networked and
Distributed Systems, FORTE 2001, pp. 169–185. Kluwer Academic Publishers, Dordrecht
(2001)

27. Núñez, M., Rodrı́guez, I., Rubio, F.: Formal specification of multi-agent e-barter systems.
Science of Computer Programming 57(2), 187–216 (2005)

28. Pelayo, F.L., Cuartero, F., Valero, V., Cazorla, D.: An example of performance evaluation
by using the stochastic process algebra ROSA. In: 7th Int. Conf. on Real-Time Systems and
Applications, pp. 271–278. IEEE Computer Society Press, Los Alamitos (2000)

A Comparative Study of STOPA and RTPA 245

29. Pelayo, F.L., Núñez, M., López, N.: Specifying the memorization process with STOPA. In:
4th IEEE Int. Conf. on Cognitive Informatics, ICCI 2005, pp. 238–247. IEEE Computer
Society Press, Los Alamitos (2005)

30. Plotkin, G.D.: A structural approach to operational semantics. Technical Report DAIMI FN-
19, Computer Science Department. Aarhus University (1981)

31. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theo-
retical Computer Science 58, 249–261 (1988)

32. Solso, R.L. (ed.): Mind and brain science in the 21st century. MIT Press, Cambridge (1999)
33. Squire, L.R., Knowlton, B., Musen, G.: The structure and organization of memory. Annual

Review of Psychology 44, 453–459 (1993)
34. Wang, Y.: On cognitive informatics. In: 1st IEEE Int. Conf. on Cognitive Informatics, ICCI

2002, pp. 34–42. IEEE Computer Society Press, Los Alamitos (2002)
35. Wang, Y.: The Real Time Process Algebra (RTPA). Annals of Software Engineering 14,

235–274 (2002)
36. Wang, Y.: Cognitive informatics: A new transdisciplinary research field. Brain and Mind 4,

115–127 (2003)
37. Wang, Y.: Using process algebra to describe human and software behaviors. Brain and

Mind 4, 199–213 (2003)
38. Wang, Y.: On the mathematical laws of software. In: 18th Canadian Conf. on Electrical and

Computer Engineering, CCECE 2005, pp. 1086–1089 (2005)
39. Wang, Y.: Formal description of the cognitive process of memorization. In: 6th IEEE Int.

Conf. on Cognitive Informatics, ICCI 2007, pp. 284–293. IEEE Computer Society Press,
Los Alamitos (2007)

40. Wang, Y.: A software science perspective, crc book series in software engineering. Sofware
Engineering Foundations 2 (2007)

41. Wang, Y.: The theoretical framework of cognitive informatics. The International Journal of
Cognitive Informatics & Natural Intelligence 1(1), 1–27 (2007)

42. Wang, Y.: Deductive semantics of rtpa. The International Journal of Cognitive Informatics
and Natural Intelligence 2(2), 95–121 (2008)

43. Wang, Y.: A denotational mathematics for manipulating intelligent and computational be-
haviours. The International Journal of Cognitive Informatics and Natural Intelligence 2(2),
44–62 (2008)

44. Wang, Y., Dong, L., Ruhe, G.: Formal description of the cognitive process of decision mak-
ing. In: 3rd IEEE Int. Conf. on Cognitive Informatics, ICCI 2004, pp. 124–130. IEEE Com-
puter Society Press, Los Alamitos (2004)

45. Wang, Y., Wang, Y.: Cognitive models of the brain. In: 1st IEEE Int. Conf. on Cognitive
Informatics, ICCI 2002, pp. 259–269. IEEE Computer Society Press, Los Alamitos (2002)

46. Wang, Y., Wang, Y.: Recent advances in cognitive informatics. IEEE Transactions on Sys-
tems, Man, and Cybernetics C 36(2), 121–123 (2006)

47. Yi, W.: CCS+ Time = an interleaving model for real time systems. In: Leach Albert, J.,
Monien, B., Rodrı́guez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 217–228.
Springer, Heidelberg (1991)

Author Index

Feng, Lin 133

Hirano, Shoji 161

Liu, Lan 84
Liu, Qing 84
Liu, Yong 133
Lopez, Natalia 224

Nakata, Michinori 180
Núñez, Manuel 224

Pelayo, Fernando L. 224
Polkowski, Lech 30

Sakai, Hiroshi 180

Terlecki, Pawel 118
Tsumoto, Shusaku 161

Walczak, Krzysztof 118
Wang, Guoyin 1, 133
Wang, Jue 100
Wang, Yingxu 1, 6, 46, 205

Yao, Yiyu 1, 100

Zhang, Du 145
Zhao, Yan 100

	Title
	Preface
	Table of Contents
	Perspectives on Denotational Mathematics: New Means of Thought
	Introduction
	What Is Denotational Mathematics?
	Why Denotational Mathematics Is Needed?
	References

	On Contemporary Denotational Mathematics for Computational Intelligence
	Introduction
	The Emergence and Development of Denotational Mathematics
	Fundamental Elements in Modeling Cognitive and Intelligent Systems
	New Problems Require New Forms of Mathematics
	The Domain and Architecture of Denotational Mathematics

	Paradigms of Denotational Mathematics
	Concept Algebra
	System Algebra
	Real-Time Process Algebra (RTPA)

	Applications of Denotational Mathematics
	The Big-R Notation of RTPA for Modeling Iterative and Recursive System Architectures and Behaviors
	Autonomous Machine Learning Using Concept Algebra
	Granular Computing Using System Algebra

	Conclusions
	References

	Mereological Theories of Concepts in Granular Computing
	Introduction: On the Notions of a Concept, Knowledge and Reasoning
	Mathematical Approaches to the Notion of a Concept
	Rough Mereology
	Granulation of Knowledge
	Metric–induced Rough Inclusions
	Rough Inclusions Induced by Means of Representations of Entities: The Attribute–Value Formalism
	Archimedean t–Norms in Inducing Rough Inclusions
	The Case of Residual Implication–Induced Rough Inclusions
	Granular Topologies
	Rough Inclusions on Finite Sets

	Approximate Reasoning: A Granular Rough Mereological Logic GRML
	The Case of the Archimedean t–Norm \L of \LUkasiewicz

	On Applications of Rough Inclusions and Granulation in Computer Science
	References

	On Mathematical Laws of Software
	Introduction
	The Algebraic Treatment of Fundamental Behaviors of Software Systems in RTPA
	The Generic Mathematical Model of Programs and Software Systems
	The Type System of RTPA
	The Meta-processes of Software Behaviors in RTPA
	Process Operations of RTPA

	Laws of Meta-processes of Software Behaviors
	Laws of Assignments
	Laws of Evaluations
	Laws of Addressing
	Laws of I/O Manipulations
	Laws of Skip

	Laws of Algebraic Operations of Software Behaviors
	Laws of Sequential Processes
	Laws of Jump Processes
	Laws of Branch Processes
	Laws of Switch Processes
	Laws of Iterative Processes
	Laws of Recursive Processes
	Laws of Function Calls
	Laws of Parallel Processes
	Laws of Concurrent Processes
	Laws of Interleave Processes

	Conclusions
	References

	Rough Logic and Its Reasoning
	Introduction
	Basic Concepts of Rough Logic
	Well-Formed Formulae in the Rough Logic
	Interpretation and Assignment in the Rough Logic
	Truth Values of Rough Logical Formulae
	Semantics Model of Rough Logic

	Related Properties of Rough Logic
	Clause Forms of Rough Logical Formulae
	Deductive Reasoning of the Rough Logical Formulae
	Resolution Reasoning of the Rough Logical Formulae
	Resolution Principles
	\lambda-Resolution Strategies of the Rough Logic

	Applications of Rough Logic to Problem Resolving in AI
	Perspective of Studying for the Rough Logic
	References

	On Reduct Construction Algorithms
	Introduction
	Feature Selection and Reduct Construction
	Basic Concepts and Notations
	Information Table and Attribute Lattice
	Equivalence Relations
	Discernibility Matrices
	Reducts

	Reduct Construction by Deletion
	Control Strategy
	Attribute Selection Heuristics

	Reduct Construction by Addition-Deletion
	Control Strategy
	Attribute Selection Heuristics

	Reduct Construction by Addition
	Control Strategy
	Attribute Selection Heuristics

	Time Complexity Analysis
	Conclusion
	References

	Attribute Set Dependence in Reduct Computation
	Introduction
	Preliminaries
	Discernibility and Dependency
	Algorithm Overview
	Candidate Set Generation
	Pruning with Subsets
	Finding Dependent Sets
	Finding Reducts
	Execution Example

	Algorithm Analysis
	Implementation Details
	Algorithm Execution Example
	Complexity Analysis

	Data Structures for Storing Attribute Set Collections
	Pruning Efficiency Testing
	ExecutionTimeTesting
	Summary
	References

	A General Model for Transforming Vague Sets into Fuzzy Sets
	Introduction
	Vague Set
	Related Methods for Transforming Vague Sets into Fuzzy Sets
	A General Model for Transforming Vague Sets into Fuzzy Sets
	Case Study for the General Transformation Model
	Conclusion
	References

	Quantifying Knowledge Base Inconsistency Via Fixpoint Semantics
	Introduction
	Related Work
	Overview of KB Fixpoint Semantics
	KB Coherence
	Significance Measure of Inconsistency
	Discussions and Comparison
	Conclusion
	References

	Contingency Matrix Theory I: Rank and Statistical Independence in a Contigency Table
	Introduction
	Contingency Tables
	Rough Sets Notations
	Contingency Table (2 \times 2)
	Contingency Table $\(m\times n)$

	Statistical Independence in 2$\{times} 2 Contingency Table
	Statistical Independence in 2$\{times}3 Contingency Table
	Statistical Independence in m${\times}$ n Contingency Table
	Statistical Independence with m-Way Tables
	Three-Way Table
	Multi-way Table

	Contingency Matrix
	Independence of 2 ${\times}$ 2 Contingency Table
	Independence of 3 ${\times}$ 3 Contingency Table
	Independence of m${\times}$ n Contingency Table

	Pseudo Statistical Independence: Example
	Three-Way Contingency Table (Rank: 2)
	Four-Way Contingency Table (Rank: 3)
	Four-Way Contingency Table (Rank: 2)

	Pseudo Statiatical Independence
	Conclusion
	References

	Applying Rough Sets to Information Tables Containing Possibilistic Values
	Introduction
	Rough Sets under Precise Information
	Methods of Possible Worlds
	Applying Rough Sets to Information Tables Containing Possibilistic Values
	Information Tables Containing Missing Values
	Conclusions
	References

	Toward a Generic Mathematical Model of Abstract Game Theories
	Introduction
	Related Work
	The Generic Mathematical Model of Abstract Games
	The Formal Model of Abstract Games
	Properties of Abstract Games

	Behaviors of Abstract Games
	Behaviors of Zero-Sum Games
	Behaviors of Nonzero-Sum Games

	Strategies of Decision Making in Games
	The Maximin Strategy in Games
	The Maximum Utility Strategy in Games

	Conclusions
	References

	A Comparative Study of \STOPA and \RTPA
	Introduction
	The Language \RTPA
	The Language \STOPA
	Process Relations in \STOPA

	The Memorizing Process
	Encoding Process
	Storage Process
	Retrieval Process

	Formal Description of the Memorizing Process
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

