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Abstract. Multi-layer neural networks have been successfully applied
in a wide range of supervised and unsupervised learning applications.
However defining its architecture is a difficult task, and might make
their usage very complicated. To solve this problem, a rule-based model,
KBANN, was previously introduced making use of an apriori knowledge
to build the network architecture. Neithertheless this apriori knowledge
is not always available when dealing with real world applications. Other
methods presented in the literature propose to find directly the neural
network architecture by incrementally adding new hidden neurons (or
layers) to the existing network, network which initially has no hidden
layer. Recently, a novel neural network approach CLANN based on con-
cept lattices was proposed with the advantage to be suitable for finding
the architecture of the neural network when the apriori knowledge is not
available. However CLANN is limited to application with only two-class
data, which is not often the case in practice. In this paper we propose
a novel approach M-CLANN in order to treat multi-class data. Carried
out experiments showed the soundness and efficiency of our approach on
different UCI datasets compared to standard machine learning systems.
It also comes out that M-CLANN model considerably improved CLANN
model when dealing with two-class data.

1 Introduction

An artificial neural network (ANN) is an adaptive system that changes its struc-
ture based on external or internal information that flows through the network
during the learning phase. ANN are useful especially when there is no a pri-
ori knowledge about the analyzed data. They offer a powerful and distributed
computing architecture, with significant learning abilities and they are able to
represent highly nonlinear and multivariable relationships. ANN have been suc-
cessfully applied to problems in pattern classification, function approximation,
optimization, pattern matching and associative memories [13]. Different types
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of ANN have been reported in the literature, among which the multilayer feed-
forward network, also called multi-layer perceptron (MLP), was the first and
arguably simplest type of ANN devised. MLP networks trained using the back-
propagation learning algorithm are limited to searching for a suitable set of
weights in an a priori fixed network topology. The selection of a network archi-
tecture for a specific problem has to be done carefully. In fact there are no known
efficient methods for determining the optimal network topology of a given prob-
lem. Too small networks are unable to adequately learn the problem well while
overly large networks tend to overfill the training data and consequently result in
poor generalization performance. In practice, a variety of architectures are tried
out and the one that appears best suited to the given problem is picked. Such
a trial-and-error approach is not only computationally expensive but also does
not guarantee that the selected network architecture will be close to optimal or
will generalize well. An ad-hoc and simple manner deriving from this approach
is to use one hidden layer with a number of neurons equal to the average of
the number of input neurons and the number of output neurons. In the liter-
ature, different automatic approaches have been reported to dynamically build
the network topology. These works could be divided into two groups:

1. Search an optimal network to minimize the number of units in the hid-
den layers [13]. These techniques bring out a dynamic solution to the ANN
topology problem when a priori knowledge is not available. One technique
suggests to construct the model by incrementally adding hidden neurons or
hidden layers to the network until the obtained network becomes able to
better classify the training data set. Another technique is network pruning
which begins by training a larger than necessary network and then eliminate
weights and neurons that are deemed redundant. An alternative approach
consists of using the genetic approach [4], which is computationally expen-
sive. All these (incremental, pruning, genetic) techniques results to neural
network that can be seen as black box system, since no semantic is associ-
ated to each hidden neuron. Their main limitation is the intelligibility of the
resulting network (black-box prediction is not satisfactory [1,5]).

2. Use a set of an a priori knowledge (set of implicative rules) on the problem
domain and derive the neural network from this knowledge [15]. The a priori
knowledge is provided by an expert of the domain. The main advantage here
is that each node in the network represents one variable in the rules set
and each connection between two nodes represents one dependence between
variables. The obtained neural network, KBANN (Knowledge-Based ANN),
is a comprehensible ANN since each node is semantically meaningful, and the
ANN decision is not viewed as deriving from a black-box system, but could
be easily explain using a subset of rules from the initial apriori knowledge.
But this solution is limited while the apriori knowledge is not available as it
might be the case in practice.

There are also in the literature many works which help user to optimise [19] or
prune networks by pruning some connections [10] or by selecting some variables [3]
among the entire set example variables. But these works do not propose an efficient
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method to build neural network. We propose here a novel solution, M-CLANN
(Multi-class Concept Lattices- based Artificial Neural Networks), to build a net-
work topology where each node has an associated semantic without using an a
priori knowledge. M-CLANN is an extended version of the CLANN approach [17].
Both approaches uses formal concept analysis (FCA) theory to build a semi-lattice
from which the NN topology is derived and trained by error backpropagation. The
main difference between M-CLANN and CLANN are two-folds. First M-CLANN
can deal with multi-class classification problem, while CLANN is limited to
two-class. Second, the derived topology from the semi-lattice is different in both
systems. Our proposed approach presents many advantages: (1) the proposed ar-
chitecture is a multi-layer feed-forward neural network, such that the use of learn-
ing algorithm such as back propagation is obvious; (2) each neuron has a semantic
as it corresponds to a formal concept in the semi-lattice, which is a way to justify
the presence of a neuron; (3) each connection (between input neuron and hidden
neuron, and between hidden neurons) in the derived ANN has also a semantic as it
is associated to a link in the Hasse diagram of the semi-lattice; (4) the knowledge
for other systems (such as expert system) could be extracted from the training data
through the model; (5) It better classifies the dataset after training, as observed
during experimentations on some datasets of UCI repository [11].

The paper is organized as follows: Section 2 gives preliminary definitions. Sec-
tion 3 presents the CLANN model. Section 4 is dedicated to our novel approach
M-CLANN. The empirical evidences about the utility of the proposed approach
are presented in Section 5.

2 Definitions – Preliminaries

A formal context is a triplet K = (O, A, I) where O is a not empty finite set
of objects, A a not empty finite set of attributes (or items) and I is a binary
relation between elements of O and elements of A (formally I ⊆ O × A).

Let f and g be two applications defined as follows: f : 2O −→ 2A, such that
f(O1) = O′

1 = {a ∈ A / ∀o ∈ O1 , (o, a) ∈ I} , O1 ⊆ O and g : 2A −→ 2O, such
that g(A1) = A′

1 = {o ∈ O / ∀a ∈ A1 , (o, a) ∈ I} , A1 ⊆ A; a pair (O1, A1) is
called formal concept iff O1 = A′

1 and A1 = O′
1. O1 (resp. A1) is the extension

(resp. intension) of the concept.
Let L be the entire set of concepts extracted from the context K and ≤ a

relation defined as (O1, A1) ≤ (O2, A2) ⇒ (O1 ⊂ O2) (or A1 ⊃ A2). The relation
≤ defines the order relation on L [7]. If (O1, A1) ≤ (O2, A2) is verified (without
intermediated concept) then the concept (O1, A1) is called the successor of the
concept (O2, A2) and (O2, A2) the predecessor of (O1, A1). The Hasse diagram
is the graphical representation of the relation successor/predecessor on the entire
set of concepts L. More details on FCA could be found in [7]. Different works in
the literature (e.g. [2]) have shown how to derive implication rules or associations
rules [8] from this join semi-lattice, sometimes named iceberg concept lattice [16];
or to use the lattice structure in classification [12]. Neithertheless CLANN only
treats problem with binary-class data, which is not often the case in practice.
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3 The CLANN Model

We describe in this section the different steps of our new approach as shown by
figure 1. The process of finding the architecture of neural networks are three-
folds: (1) build a join semi-lattice of formal concepts by applying constraints
to select relevant concepts; (2) translate the join semi-lattice into a topology of
the neural network, and set the initial connections weights; (3) train the neural
network.

Learning 

semi - lattice

Neural network topology

Training
data

Translation

and setting

Neural classifier

Training

dataHeuristics

Fig. 1. Neural network topology definition

3.1 Semi-lattice Construction

There are many algorithms [6] which can be used to construct concept lattices;
few of them build the Hasse diagram. Lattice could be processed using top-down
or bottom-up techniques. In our case, a levelwise approach presents advantage
to successively generate concepts of the join semi-lattice and the Hasse diagram.
For this reason, we choose to implement the Bordat’s algorithm [6] which is
suitable here. Concepts included in the lattice are only those which satisfy the
defined constraints.

3.2 Constraints

In order to reduce the size of lattice and then the time complexity, we present
some constraints regularly used to select concepts during the learning process.

Frequency of concept. A concept is frequent if it contains at least α (also
called minsupp is specified by the user) objects. The support s of a concept
(X, Y ) is the ratio between the cardinality of the set X and the total number of
objects (|O|) (s = 100×|X|

|O| %). Frequency is an anti-monotone constraint which
helps in pruning the lattice and reduce it computational complexity. Support
could be seen as the minimal number of objects that the intention of one concept
must verified before being taken in the semi-lattice.
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Algorithm 1. Modified Bordat’s algorithm
Require: Binary context K
Ensure: concept lattices (concepts extracted from K) and the Hasse diagram of the

order relation between concepts.
1: Init the list L of the concepts (G, {}) (L← (G, {}))
2: repeat
3: for concept c ∈ L such that his successors are not yet been calculated do
4: Calculate the successors c′ of c.
5: if the specified constraint is verified by c′ then
6: add c′ in L as successor of c if c′ does not exist in L else connect c′ as

successor of c.
7: end if
8: end for
9: until no concept is added in L.

10: derive the neural network architecture as described in section ?? from the concept
semi-lattice.

Validity of concept. Many techniques are used to reduce the size of lattice.
The following notions are used in order to select concepts: a concept (X, Y ) is
complete if Y recognize all examples in dataset. A concept (X, Y ) is consistent
if Y throws back all counterexamples (formally, the set of consistent concept is
{(X, Y )/Y ∩ O− = {}} where O = O+∪O−). To reduce the restriction imposed
by these two constraints, other notions are used:

1. Validity. A concept (X, Y ) is valid if its description recognizes most ex-
amples; a valid concept is a frequent concept on the set of examples O+;
formally the set of valid concepts is defined as {(X, Y ) / |X+| ≥ α} where
0 < α ≤ |O+|.

2. Quasi-consistency. A concept (X, Y ) is quasi-consistent is if it is valid
and its extension contains few counterexamples. Formally the set of quasi-
consistent concepts is defined as {(X, Y ) / |X+| ≥ α and |X−| ≤ β}.

Height of semi-lattice. The level of a concept c is defined as the minimal
number of connexions from the supremum concept to c. The height of the lattice
is the greatest value of the level of concepts. Using levelwise approach to gener-
ate the join semi-lattice, a given constraint can be set to stop concept generation
at a fixed level. The height of the lattice could be performed as the depth with-
out considering the cardinality of concepts extension (or intention). In fact at
each level, concept extensions (or intentions) do not have the same cardinality.
The number of layers of the semi-lattice is a parameter corresponding to the
maximum level (height) of the semi-lattice.

4 The M-CLANN Model

As CLANN, M-CLANN defines the topology of a neural network in two phases:
in the first phase, a join semi-lattice structure is constructed and in the second
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one, the join semi-lattice structure is translated into a neural network architec-
ture.

M-CLANN builds the join semi-lattice using a modified version of Bordat’s
algorithm [6]. The modified algorithm uses monotonic constraints to prune the
lattice and then reduce its complexity. The semi-lattice construction process
starts by finding the supremum element. The process continues by generating
the successors of the concepts that belong to the existing set until there are
no concept which satisfies the specified constraints. Algorithm 2 presents the
M-CLANN method to translate the semi-lattice into ANN.

Objects used in this algorithm are defined as follows: K is a formal context
(dataset); L is the semi-lattice built from the training dataset K; c and c′ are
formal concepts; n is the number of attributes in each training pattern; m is the
number of output classes in the training dataset; c a formal concept, element of
L; NN is the comprehensive neural network build to classify the data.

Algorithm 2. Translation of semi-lattice into ANN topology
Require: L a semi-lattice structure built using specified constraints.
Ensure: NN initial topology obtained from the semi-lattice L
1: for each concept c ∈ L do
2: if the set of predecessor of c is empty, mark its successor as “last hidden neuron”;
3: Else c becomes neurons and add to NN with the successor and predecessor as

in L; if the set of successor of c is empty then mark c as “first hidden neuron”.
4: Endif
5: end for
6: Create a new layer of n neurons and connect each neuron of this layer to the

neurons marked as “first hidden neuron” in NN .
7: Create a new layer of m neurons and connect each neuron of this layer to the

neurons marked as “last hidden neuron” in NN .
8: Initialize connection weights and train them.

Among the constraints used in CLANN, the validity of concept is not use in
M-CLANN since M-CLANN does not consider the class of each object during the
semi-lattice building process. The constraints used in M-CLANN are frequency
of concept and the height of the semi-lattice.

Threshold is zero for all units and the connection weights are initialized as
follows:

– Connection weights between neurons derived directly from the lattice is ini-
tialized to 1. This implies that when the neuron is active, all its predecessors
are active too.

– Connection weights between the input layer and hidden layer is initialized as
follows: 1 if the attribute represented by the input appears in the intention
Y of the concept associated to the ANN node and -1 otherwise. This implies
that the hidden unit connected to the input unit will be active only if the
majority of its input (attributes including in its intention) is 1.
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5 Experimentations

To examine the practical aspect of the approach presented above, we run the
experiments on the data available on UCI repository [11]. The characteristics
of these data are collected in table 1 which contains the name of the dataset
(dataset label), the number of training patterns (#Train), the number of test
patterns (#Test), the number of output classes (#Class), the initial number of
(nominal) attributes in each pattern (#Nom), the number of binary attributes
obtained after binarization (#Bin). Those attributes were binarized by the Weka
[18] binarization procedure “Filters.NominalToBinary”. The diversity of these
data (from 24 to 3196 training patterns; from 2 to 19 output classes) helps in
revealing the behaviour of each model in many situations. There is no missing
values in these datasets.

Table 1. Experimental data sets

Dataset #Train #Test #Class #Nom #Bin

Balance-scale (Bal) 625 0 3 4 20
Chess 3 196 0 2 36 38
Hayes-roth (Hayes) 132 28 3 5 15
Tic-tac-toe (Tic) 958 0 2 9 26
Spect 80 187 2 22 22
Monsk1 124 432 2 6 15
Monsk2 169 432 2 6 15
Monsk3 122 432 2 6 15
Lymphography (lympho) 148 0 3 18 51
Solar-flare1 (Solar1) 323 0 7 12 40
Solar-flare2 (Solar2) 1066 0 7 12 40
Soybean-backup (Soyb) 307 376 19 35 151
Lenses 24 0 3 4 12

The two constraints presented above have been applied in selecting concepts
during experimentation. In the first step we separately use each constraint and
we combine them in the second step during the join semi-lattice construction
process.

The experiment results are obtained from the model trained by backpropaga-
tion algorithm [14] and validated by 10-cross validation or holdout [9]. The para-
meters of the learning algorithm are the following: as activation function, we use
the sigmoid (f(x) = 1

1+expx ), 500 iterations in the weight modification process
and 1 as learning rate. In the result table, the symbol “-” indicates that no con-
cept satisfies the constraint and the process has not converged. Table 2 presents
the accuracy rate (percentage) obtained with data in table 1 and those obtained
using other classifiers. These classifiers are MLP (a WEKA implementation
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of the multilayer perceptron classifier), C4.5 (a decision tree based classifier),
IB1 (a case based learning classifier model). The result presented is the accuracy
rate. In this table, MCL1 is M-CLANN built using only one level of the semi-
lattice; MCL30 and MCL20 are M-CLANN built using respectively 30 and 20
percent as frequency of the concepts. CLANN column represents the accuracy
rate obtained using the original version of CLANN (with a constraint of one
level; x indicates that it is not possible to use CLANN since it is a multi-class
dataset). Finally MC1-30 and MC1-20 are respectively M-CLANN built with
a combination of one level lattice and 30% minimum support and M-CLANN
built with a combination of one level semi-lattice and 20% minimum support
as constraints. The best results (accuracy rate) of M-CLANN are obtained with
the α value equal to 20% (MCL20). With high minimum support values, the
semi-lattice does sometimes not contain sufficient concepts to better classify the
data. For instance, with the minimum support value set to 35%, the semi-lattice
built from Balance-scale is empty.

M-CLANN was not compared with KBANN because we haven’t an apriori
knowledge about these data. The goal of this comparison is to see the behav-
iour (on the supervised classification problems) of M-CLANN regarding those
of other learning models. From the average of accuracy rate presented in the
table 2, MCL20 is the best classifier in average. Using different parameters set-
tings, M-CLANN is still better than other classifiers. MLP of Weka platform is
the best one compared to C4.5 and IB1. Another advantage of M-CLANN over
MLP is that each neuron is meaningful and this can be used to explain its de-
cision. During the experimentations, the running times of MLP and M-CLANN
are much more greater than that of C4.5 and IB1. The difference between the
running times of M-CLANN and those of MLP is not significative.

Table 2. Accuracy rate of used classifiers with data of table 1

Dataset CLANN MCL1 MCL30 MCL20 MC1-30 MC1-20 MLP C4.5 IB1

Bal x 99,76 - 99,89 - 99,89 98,40 77,92 66,72
Chess 93,60 99,87 93,60 93,78 99,87 99,87 99,30 98,30 89,9
Hayes x 75,72 78,58 85,72 78,57 85,71 82,15 89,28 75,00
Tic 94,45 89,64 99,67 99,86 99,32 100 96,86 93,21 81,63
Spect 93,90 72,74 92,56 96,73 73,66 77,57 65,77 66,70 66,31
Monsk1 82,70 91,67 91,17 91,17 91,67 91,71 100 100 89,35
Monsk2 78,91 100 100 100 100 99,67 100 70,37 66,89
Monsk3 83,61 93,51 91,17 93,52 92,59 93,52 93,52 100 81,63
Lympho x 80,78 84,67 88,91 85,71 92,56 81,76 74,32 80,41
Solar1 x 79,42 78,67 69,58 71,10 71,10 72,79 74,30 68,39
Solar2 x 75,00 76,71 70,91 75,34 78,95 68,11 69,97 66,56
Soyb x 81,33 89,34 86,95 83,11 84,04 92,02 88,83 89,89
Lenses x 98,67 100 99,87 98,67 99,87 95,83 91,67 100

Average 86,05 86,62 89,67 90,53 87,57 90,37 88,57 84,22 78,67
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6 Conclusion

This paper shows how concept lattices can help to build a comprehensible ANN
for a given task, by providing clear significance to each neuron. In this work,
we use some monotonic constraints to reduce the size of the lattice and also the
training time. Particularly for the classification tasks, looking at the experiment
results, our model is better in average than many other classifiers in different test
cases. M-CLANN model also uses binary data set. Our ongoing research firstly
consists of extending M-CLANN to nominal and numeric data. Many attempts
exist in the literature to build concept lattices for such data sets. We will also
compare extracted rules from our model to those of other models as KBANN,
or decision trees.
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