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Abstract. Constructive neural network algorithms suffer severely from
overfitting noisy datasets as, in general, they learn the set of examples
until zero error is achieved. We introduce in this work a method for
detect and filter noisy examples using a recently proposed constructive
neural network algorithm. The method works by exploiting the fact that
noisy examples are harder to be learnt, needing a larger number of synap-
tic weight modifications than normal examples. Different tests are car-
ried out, both with controlled experiments and real benchmark datasets,
showing the effectiveness of the approach.

1 Introduction

A main issue at the time of implementing feed-forward neural networks in classi-
fication or prediction problems is the selection of an adequate architecture [1,2,3].
Feed-forward neural networks trained by back-propagation have been widely used
in several problems but yet the standard approach for selecting the number of lay-
ers and number of hidden units of the neural architecture is the inefficient trial-
by-error method. Several constructive methods and pruning techniques [1] have
been proposed as an alternative for the architecture selection process but it is a
research issue whether these methods can achieve the same level of prediction ac-
curacy. Constructive algorithms start with a very small network, normally com-
prising a single neuron, and work by adding extra units until some convergence
condition is met [4,5,6,7]. On the other hand, pruning techniques start with a very
large architecture and work by eliminating unnecessary weights and units [8].

Despite the existence of many different constructive algorithms, they have not
been extensively applied in real problems. This fact is relatively surprising, given
that they offer a systematic and controlled way of obtaining an architecture and
also because they offer the possibility of an easier rule extraction procedure.
In a 1993 work, Smieja [9] argued that constructive algorithms might be more
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efficient in terms of the learning process but cannot achieve a generalization
ability comparable to back-propagation neural networks. Smieja arguments were
a bit speculative more than based on obtained results, but nevertheless might
explain the fact that constructive methods have not been widely applied to real
problems. In recent years new constructive algorithms have been proposed and
analyzed, and the present picture might have changed [7,10].

One of the problems that affects predictive methods in general, is the prob-
lem of overfitting [11,12]. In particular, overfitting affects severely neural network
constructive algorithms as they, in general, learn towards zero error. The overall
strategy in constructive algorithms for avoiding overfitting is by creating very
compact architectures. Unfortunately, this approach is not enough when the
input data is noisy as it is normally the case of real data. A solution to this
overfitting problem might be the implementation of methods that exclude noisy
instances from the training dataset [13,14,15,16,17]. In this work, we use a re-
cently introduced constructive neural network algorithm named C-Mantec [18]
for detecting noisy examples. The method can detect and filter noisy instances
leading to an improvement in the generalization ability of the algorithm and
permitting to obtain more compact neural network architectures.

2 The C-Mantec Algorithm

The C-Mantec algorithm is a constructive neural network algorithm that cre-
ates architectures with a single layer of hidden nodes with threshold activation
functions. For functions with 2 output classes, the constructed networks have a
single output neuron computing the majority function of the responses of the
hidden nodes (i.e., if more than half of the hidden neurons are activated the out-
put neuron will be active). The learning procedure starts with an architecture
comprising a single neuron in the hidden layer and adds more neurons every
time the present ones are not able to learn the whole set of training examples.
The neurons learn according to the thermal perceptron learning rule proposed
by Frean [5], for which the synaptic weights are modified according to Eq. 1.

δwi = (t− o) ψi
T

T0
exp{−|φ|

T
} , (1)

where t is the target value of the example being considered, o represent the actual
output of the neuron and ψ is the value of the input unit i. T is an introduced
temperature, T0 the starting temperature value and φ is a measure of how far is
the presented example from the actual synaptic vector. The thermal perceptron
is a modification of the perceptron rule that incorporates a modulation factor
forcing the neurons to learn only target examples close to the already learnt
ones, in order to avoid forgetting the stored knowledge. For a deeper analysis of
the thermal perceptron rule, see the original paper [5].

At the single neuron level the C-Mantec algorithm uses the thermal perceptron
rule, but at a global level the C-Mantec algorithm incorporates competition be-
tween the neurons, that makes the learning procedure more efficient and permit-
ting to obtain more compact architectures [18]. Competition between neurons is
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implemented as follows: for a given input example, the neuron with the smallest
value of the parameter φ is picked as the neuron that will learn the presented input
(note that the weights are modified only for wrongly classified inputs). The temper-
ature, T , controlling each individual perceptrons, is lowered every time the neuron
gets an update of its weights.When a new unit is added to the network, the temper-
ature of all neurons is reset to the initial valueT0. The learning procedure continues
in this way until enough neurons are present in the architecture, and the network
is able to learn the whole sets of inputs. Regarding the role of the parameters, an
initial high temperature T0 ensures a certain number of learning iterations and an
initial phase of global exploration for the weights values, as for high temperature
values changes are easier to be accepted. The parameter setting for the algorithm
is relatively simple as C-Mantec has been shown to be very robust to changes. The
convergence of the algorithm is ensured because the learning rule is very conserva-
tive in their changes, preserving the acquired knowledge of the neurons and given
by the fact that new introduced units learn at least one input example. Tests per-
formed with noise-free Boolean functions using the C-Mantec algorithm show that
it generates very compact architectures with less number of neurons than exist-
ing constructive algorithms [18]. However, when the algorithm was tested on real
datasets, it was observed that a larger number of neurons was needed because the
algorithm overfit noisy examples. To avoid this overfitting problem the method in-
troduced in the next section is developed in this work.

3 The “Resonance” Effect for Detecting Noisy Examples

In Fig. 1, an schematic drawing shows the “resonance” effect that is produced
when a thermal perceptron tries to learn a set of instances containing a
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Fig. 1. Schematic drawing of the “resonance effect” that occurs when noisy examples
are present in the training set. A thermal perceptron will learn the “good” examples,
represented at the left of the figure, but will classify rightly only one of the noisy
samples. Further learning iterations in which the neuron tries to learn the wrongly
classified example will produce an oscillation of the separating hyperplane. The number
of times the synaptic weights are adjusted upon presentation of an example can be used
to detect noisy inputs.
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Fig. 2. The effect of attribute noise. Top: Generalization ability as a function of the level
of attribute noise for the “modified” Pima indians diabetes dataset for the C-Mantec
algorithm applied with and without the filtering stage. Bottom: The number of neurons
of the generated architectures as a function of the level of noise. The maximum number
of neurons was set to 101.

contradictory pair of examples. In the figure, the set of “good” examples is
depicted in the left part of the figure, while the contradictory pair is on the
right. When a single neuron tries to learn this set, the algorithm will find an hy-
perplane from a beam of the possible ones (indicated in the figure) that classifies
correctly the whole set except for 1 of the noisy examples. Further learning iter-
ations produce a resonant behavior, as the dividing hyperplane oscillates trying
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Fig. 3. The effect of class noise. Top: Generalization ability as a function of the level
of class noise for the modified Pima indians diabetes dataset for the cases of imple-
menting the filtering stage and for the case of using the whole raw dataset. Bottom:
The number of neurons of the generated architectures for the two mentioned cases of
the implementation of the C-Mantec algorithm.

to classify correctly the wrong example. Eventually, the iterations will end and
as the whole set cannot be learnt, a new neuron will be added to the network.
It was observed that these noisy examples make the network to grow excessively
and degrade the generalization ability, and thus a method for removing them is
quite useful. The method is based on counting the number of times each training
example is presented to the network; and if the number of presentations for an
example is larger by two standard deviations from the mean, it is removed from
the training set. The removal of examples is made on-line as the architecture is
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constructed but a second learning phase with the selected set of examples was
implemented as better results can be obtained. In this second phase, the training
set is fix as no removal of examples is permitted.

To test the new method for removal of noisy examples a “noise-free” dataset is
created from a real dataset, and then controlled noise was added on the attributes
(input variables) and on the class (output), separately to see if there was any evi-
dent difference between the two cases [19]. The dataset chosen for this analysis is
the Pima Indians Diabetes dataset, selected because it has been widely studied
and also because it is considered a difficult set with an average generalization
ability around 75%. To generate the “noise-free” dataset, the C-Mantec algo-
rithm was run with a single neuron, that classify correctly approximately 70% of
the dataset, and then the “noise-free” dataset was constructed by presenting the
whole set of inputs through this network to obtain the “noise-free” output. Two
different experiments were carried out: in the first one, noise was added to the
attributes of the dataset and the performance of the C-Mantec algorithm was
analyzed with and without the procedure for noisy examples removal. In Fig. 2
(top) the generalization ability for both mentioned cases is shown for a level of
noise between 0 and 0.8 and the results are the average over 100 independent
runs. For a certain value of added noise, x, the input values were modified by a
random uniform value between −x and x. The bottom graph shows the number
of neurons in the generated architectures when the filtering process was and was
not applied as a function of the added attribute noise. It can be clearly seen
that the removal of the noisy examples help to obtain much more compact ar-
chitectures and a better generalization ability. The second experiment consisted
in adding noise to the output values and the results are shown on Fig. 3. In
this case the noise level indicate the probability of modifying the class value to
a random value. The results in this case also confirm the effectiveness of the
filtering approach in comparison to the case of using the whole “noisy” dataset.

4 Experiments and Results

We tested the noise filtering method introduced in this work using the C-Mantec
constructive algorithm on a set of 11 well known benchmark functions. The set
of functions contains 6 functions with 2 classes and 5 multi-class problems with
a number of classes up to 19. The C-Mantec algorithm was run a maximum
number of iterations of 50.000 and an initial temperature (T0) equals to the
number of inputs of the analyzed functions, but it is worth noting that the algo-
rithm is quite robust to changes on these parameters. The results are shown in
Table 1, where it is shown the number of neurons of the obtained architectures
and the generalization ability obtained, including the standard deviation values,
computed over 100 independent runs. The last column of Table 1 shows, as a
comparison, the generalization ability values obtained by Prechelt [20] in a work
where he analyzed in a systematic way the prediction capabilities of different
topologies neural networks, and thus we believe that the reported values are
highly optimized. The number and the set of training and test examples were
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chosen identically in both compared cases. The results shows that the C-Mantec
algorithm outperforms the ones obtained by Prechelt in 6 out of 11 problems
and on average the generalization ability is 2.1% larger. Regarding the size of the
networks obtained using the method introduced in this work, the architectures
are very small for all problems with 2 or 3 classes, for which the architectures
contain less than 4 neurons (on average) for all these cases. For the multi-class
problems the algorithm generates networks with a larger number of hidden neu-
rons but this is because of the method used to treat multiclass problems that
will be reported in [18].

Table 1. Results for the number of neurons and the generalization ability obtained
with the C-Mantec algorithm using the data filtering method introduced in this work.
The last column shows the results from [20] (See text for more details).

Function Inputs Classes Neurons Generalization Generalization
C-Mantec NN [20]

Diab1 8 2 3.34 ± 1.11 76.62 ± 2.69 74.17 ± 0.56
Cancer1 9 2 1 ± 0.0 96.86 ± 1.19 97.07 ± 0.18
Heart1 35 2 2.66 ± 0.74 82.63 ± 2.52 79.35 ± 0.31
Heartc1 35 2 1.28 ± 0.57 82.48 ± 3.3 80.27 ± 0.56
Card1 51 2 1.78 ± 0.87 85.16 ± 2.48 86.63 ± 0.67

Mushroom 125 2 1 ± 0.0 99.98 ± 0.04 100.00 ± 0.0
Thyroid 21 3 3 ± 0.0 91.91 ± 0.59 93.44 ± 0.0
H orse1 58 3 3 ± 0.0 66.56 ± 5.08 73.3 ± 1.87
Gene1 120 3 3.03 ± 0.22 88.75 ± 1.07 86.36 ± 0.1
Glass 9 6 17.84 ± 1.19 63.75 ± 6.38 53.96 ± 2.21

Soybean 82 19 171 ± 0.0 91.63 ± 1.89 90.53 ± 0.51

Average 50.27 4.18 18.99 ± 0.43 84.21 ± 2.03 82.50 ± 0.63

5 Discussion

In this work we have introduced a new method for filtering noisy examples us-
ing a recently developed constructive neural network algorithm C-Mantec. The
filtering method is based on the fact that noisy examples are more difficult to
be learnt, and this fact is evident during the learning process in which the con-
structive algorithm tries to classify correctly the examples using the minimum
number of neurons. Noisy examples need more learning updates of the synaptic
weights, and this fact permits its identification and further removal. Simulations
performed on benchmark datasets show that the generalization ability and size
of the resulting network are very much improved after the removal of the noisy
examples and a comparison, done against previous reported results [20], shows
that the generalization ability was on average a 2.1% larger, indicating the ef-
fectiveness of the C-Mantec algorithm implemented with the new filtering stage.
It has to be noted that the introduced method of data selection can be used
as a pre-processing stage for its use with other prediction algorithms. We have
also analyzed the performance of the filtering stage on datasets contaminated by
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only attribute or class noise, but did not find any clear difference between these
two cases for which the filtering process worked equally well.
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