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Slovak University of Technology in Bratislava, Faculty of Informatics and Information
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Abstract. The graphics processing unit has evolved through the years
into the powerful resource for general purpose computing. We present in
this article the implementation of Extended Kalman filter used for recur-
rent neural networks training, which most computational intensive tasks
are performed on the GPU. This approach achieves significant speedup
of neural network training process for larger networks.

1 Introduction

The graphics processing unit (GPU) was and still is used mainly for speedup
of graphical operations. It has recently evolved into the powerful resource for
general purpose computing.

Recurrent neural network learning is a very difficult numerical problem, which
approaches very poorly and slowly to satisfactory results when being solved with
the classic gradient optimization methods on longer input sequences. In this
paper we present the already studied [9,10] better alternative which is called
Extended Kalman filter (EKF) and how to make it faster using modern but
generally available graphics processing unit.

In the first section of this paper we explain the concept of Kalman filtering and
how to apply it to the task of neural network training. The remaining sections
describe in detail how to map the equations involved onto the graphics processing
unit. On the chosen problem we demonstrate two things. Firstly, the already
known fact that the EKF achieves better results than classical gradient descent
methods and secondly, more importantly, the speedup of our implementation on
the graphics processing unit as opposed to implementation on CPU.

2 Extended Kalman Filter

Kalman filter (which is the set of mathematical equations) is considered one of
the important discoveries in the control theory principles. E. Kalman’s paper [5]
was published in the year 1960. Its most immediate applications were in control
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of complex dynamic systems, such as manufacturing processes, aircrafts, ships
or spaceships (it was part of the Apollo onboard guidance system). However, the
Extended Kalman filter started to appear in the neural network training appli-
cations only relatively recently, which was caused by the progress of computer
systems development.

Original Kalman filter is targeted at the linear dynamic systems. However,
when the model is nonlinear, which is the case of neural networks, we have
to extend Kalman filter using linearization procedure. Resulting filter is then
called extended Kalman filter (EKF) [3]. Neural network is a nonlinear dynamic
system, that can by described by equations:

xk = xk−1 + qk−1 (1)
yk = g(xk,uk,vk−1) + rk (2)

The process equation expresses the state of neural network as a stationary
process corrupted by the process noise qk, where the state of the network x
consists of network weights. Measurement equation expresses the desired output
of the network as a nonlinear function g of the input vector uk, of the weight
vector xk and for recurrent networks also of the activations of recurrent neurons
from the previous step vk−1. This equation is augmented by a random measure-
ment noise rk. The covariance matrix of the noise rk is Rk = E

[
rkrT

k

]
and the

covariance of the noise qk is Qk = E
[
qkqT

k

]
.

The basic idea of the Extended Kalman filter lies in the linearization of the
measurement equation at each time step around the newest state estimate x̂k.
We use for this purpose just the first-order Taylor approximation of non-linear
equation, because of computational complexity.

We can express the neural network training as a problem of finding the state
estimate xk that minimizes the least-squares error, using all the previous mea-
surements. We can express the solution of this problem as:

Kk = PkHT
k [HkPkHT

k + Rk]−1 (3)
x̂k+1 = x̂k + Kk[yk − g(x̂k,uk,vk−1)] (4)
Pk+1 = Pk − KkHkPk + Qk (5)

where x̂ is a vector of all the weights, g(·) is a function returning a vector of actual
outputs, y is a vector of desired outputs, K is the so called Kalman gain matrix,
P is the error covariance matrix of the state and H is the measurement matrix
(Jacobian). Matrix H contains partial derivatives of ith output with respect to
jth weight. One can use for this purpose one of two main methods – Real-Time
Recurrent Learning (RTRL) or Backpropagation Through Time (BPTT), or its
truncated version BPTT(h) [8].

The RTRL is computationally intensive, therefore we will use the BPTT(h)
method according to the recommendation in [8]. With this method for appro-
priately chosen depth h we obtain derivatives that are close to those obtained
by the RTRL, and we significantly reduce the computational complexity.

At the beginning of the recursion (3–5) it is necessary to assign the initial
values of x̂0, P0, Q0 and R0. The initial values of weights should be set randomly
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e.g. from interval [−0.5, 0.5]. According to recommendations in [3,8] P0 should
be set in orders of magnitude 100 I–1000 I, where I is identity matrix. Q0 should
have values from 10−6 I to 0.1 I. Its nonzero value helps to override divergency [3].
For the parameter R0, values in orders of magnitude 10 I–100 I should be chosen.

3 Computational Complexity

In order to express the computational complexity of EKF and BPTT(h), let us
summarize the notation and dimensions of every matrix and vector:

ni Number of input neurons, i.e. number of inputs to the network
no Number of output neurons, i.e. number of outputs of the network
nh Number of hidden neurons
nx Number of weights in the network

x [nx×1] Vector of weights in the network
g(·) [no×1] Function returning vector of actual outputs
y [no×1] Vector of desired outputs

K [nx×no] Kalman gain matrix
P [nx×nx] Error covariance matrix
Q [nx×nx] Process noise covariance matrix
R [no×no] Measurement noise covariance matrix
H [no×nx] Measurement matrix (Jacobian)

Number of weights nx in the Elman’s architecture of recurrent neural network
can be expressed as (ni+1)nh+n2

h+(nh+1)no, where ones represent bias weights.
Using given notation, we can express the computational complexity of the EKF

(3–5) as O
([

non
2
x + n2

onx + n2
o + nonx + n2

x

]
+ n3

o + hnonx

)
. The first term

[non
2
x + n2

onx + n2
o + nonx + n2

x] comes from matrix multiplications and addi-
tions, the second term n3

o is the matrix inversion in (3) and the third term hnonx

represents the complexity of BPTT(h) used to compute measurement matrix H,
where h is the truncation depth. Typically h, no � nx, so the complexity of the
EKF is then O(non

2
x). As BPTT(h) alone has complexity O(hnonx), the speed

difference between EKF and BPTT(h) is significant for large nx.

4 Reducing Complexity Using GPU

In this paper we aim to reduce the impact of the most computationally intensive
tasks of the EKF by exploiting the parallel nature of the graphics processing unit.
As the number of parallel processors is fixed – concretely 128 in G8800 GTX –
this does not have the impact on asymptotical complexity of EKF. But any
constant factor speedup makes the EKF more useable and for smaller numbers
of nx can actually make it faster than BPTT(h).

For implementation we chose CUBLAS library readily available for nVidia
GPUs (as part of CUDA Toolkit[12]), because it provides basic linear algebra oper-
ations, especially matrix multiplication. This library is a significant step in general
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purpose computing on the GPU as one does not have to overcome steep learning
curve of detailed GPU functionality. As it turns out, the provided functionality of
CUBLAS library is all we need to speed up matrix equations (3–5).

The only thing that is not readily available is matrix inversion needed to
compute no×no matrix in (3). This is a symmetric positive definite matrix, that
is why we chose to use Cholesky factorization to compute its inverse. Cholesky
factorization on GPU has already been studied [4], but because it is usually
small matrix (no � nx) we can simply compute it on the CPU. This requires an
additional transfer of data between GPU and CPU which is a costly operation,
but we already have to transfer a much bigger measurement matrix and weight
vector, so this should not have a big impact.

Cholesky factorization of a symmetric positive definite matrix M is a lower
triangular matrix N for which holds NNT = M. Inverse of matrix M can then
be efficiently and numerically stable computed:

MM−1 = I (6)
NNTM−1 = I (7)

NTM−1 = X (8)
NX = I (9)

where I is an identity matrix and X is used for substitution. The inverse of
M is computed by first solving (9) for unknown X and then by solving (8) for
unknown M−1.

5 Implementation Details

This section describes in detail the implementation of EKF on GPU as well as
on CPU. In order to explain the meaning of auxiliary matrices A, B, C and Z
used in pseudocode we rewrite equation (3):

K = PHT
[
HPHT + R

]−1
= C

[
AHT + R

]−1
= CB−1 = CZ

The pseudocode of initialization of the EKF on GPU follows:

On CPU Initialize matrices P, R, Q, I
Note: we store only diagonal elements of R, Q and I

On CPU Fill vector x with uniformly random weights from [−0.5, 0.5]
Transfer P, R, Q, I and x from system memory to GPU

The pseudocode of one time step of the EKF on GPU follows. The mentioned
function names are those that were used from CUBLAS library.

On CPU Set weights to x and propagate network with actual input
On CPU Compute measurement matrix H using BPTT(h)
On CPU Compute yg = y − g(·)
Transfer H from system memory to GPU
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On GPU A = HP, P is symmetric – function cublasSsymm()
On GPU C = PHT – function cublasSgemm()
On GPU B = AHT – function cublasSgemm()
On GPU B = B + R – function cublasSaxpy()
Transfer B from GPU to system memory
On CPU Compute Cholesky factor of B

Note: it is stored in the lower triangular part of B
Transfer B and yg from system memory to GPU
On GPU Z = I – function cublasScopy()
On GPU BZ = Z – function cublasStrsm()

Note: solves Z in equation BZ = I
On GPU BTZ = Z – function cublasStrsm()

Note: Z now contains inverse of HPHT + R
On GPU K = CZ, Z is symmetric – function cublasSsymm()
On GPU x = Kyg + x – function cublasSgemv()
On GPU P = −KA + P – function cublasSgemm()
On GPU P = P + Q – function cublasSaxpy()
Transfer x from GPU to system memory

We used our own implementation of BPTT(h) and the pseudocode from [4]
to compute Cholesky factorization on CPU. Each variable that was transferred
to GPU used single precision floating point, which is the limitation of present
GPUs. We used double precision floating point for everything else.

The implementation on CPU was essentially the same. The only difference was
removal of transfers between CPU and GPU and the substitution of CUBLAS li-
brary functions by corresponding ATLAS library functions [11], which is straight-
forward as they both comply with Basic Linear Algebra Subprograms (BLAS)
standard [2]. When configured to support threading, ATLAS library automati-
cally takes advantage of multiple CPU cores to speed up its functions.

The hardware and software specifications used for all the tests:

– Intel Core2 Quad CPU Q6600 2.4 GHz – 4 cores
– nVidia GeForce 8800 GTX GPU – 128 parallel processors
– Ubuntu 7.10
– gcc 4.2.1

compile flags: -fomit-frame-pointer -mfpmath=sse -mmmx -msse
-msse2 -msse3 -O3

– ATLAS 3.8.1
configured with -b 32 -t 4 -D c -DPentiumCPS=2400

– nVidia Toolkit 1.1
– nVidia Graphics Driver 169.12

ATLAS library was configured to support threading on CPU. The number of
maximum threads was chosen to be 4 which is the number of cores on our test
machine.
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6 Experiment Description

The main goal of the experiment was to compare the performance of various
implementations of the EKF and for comparison also of the BPTT(h) in a task
typically used for training of recurrent neural networks.

We trained the recurrent neural network on the next symbol prediction. The
predicted sequence1 is based on real data obtained by quantization of activity
changes of laser in chaotic regime. The bounds for quantization were chosen
for positive small and big activity change and for negative small and big activ-
ity change. One symbol is assigned for each of these categories. The sequence
therefore consists of four distinct symbols. This sequence contains relatively pre-
dictable subsequences followed by much less predictable events. The sequence
length is 10000 symbols, we can therefore predict 9999 symbols.

The next symbol prediction procedure in general is the following: we present
in every time step the first symbol in order, and the desired network’s output is
the next symbol in sequence order. The predictive performance was evaluated by
means of a normalized negative log-likelihood (NNL), calculated over symbolic
sequence from time step t = 1 to T [1]:

NNL = − 1
T

T∑

t=1

log|A| p
(t)(s(t)) (10)

where the base of the logarithm |A| is the number of symbols in the alphabet
A and p(t)(s(t)) is the probability of predicting symbol s(t) in the time step t.
If NNL = 0, then the network predicts next symbol with 100% accuracy, while
NNL ≥ 1 corresponds to a very inaccurate prediction (random guessing).

We chose the following initial values of parameters for the EKF: covariance
matrix P0 = 1000 I, measurement noise covariance matrix R0 = 100 I and
process noise covariance matrix Q0 = 0.0001 I. We have not altered the covari-
ance matrices R and Q during the training process. These values were inspired
by [1] and were chosen also because they correspond with recommendations for
EKF.

For the BPTT(h) method, we chose the learning parameter α = 0.2 and
parameter h = 10. The same value of parameter h was used also for the EKF.
This choice is in accordance with the recommendations in [7].

We have used the training and testing procedure for the next symbol from
this sequence prediction from [1]. We do not update the weights for the first 50
steps, in order to lessen the impact of initial recurrent neurons output values.
The training then takes place during next 7949 symbols. The remaining 2000
symbols form the test data set, through which we compute the NNL. That
terminates one cycle. A few cycles are usually sufficient for the EKF, much more
for the BPTT(h) to converge to its best result (for details see [9,10]). However,
we chose 20 training cycles in order to compare the precision of various EKF
implementations in longer run.
1 This sequence is available at http://www2.fiit.stuba.sk/∼cernans/main/
download.html

http://www2.fiit.stuba.sk/~cernans/main/
download.html
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We have used one-hot encoding for inputs as well as for outputs, so we have
4 inputs as well as outputs – one input/output for each of 4 symbols. With this
setup the prediction probability of the desired symbol is determined as the value
of that element of the output vector which is reserved for given symbol, after
normalizing the output vector (i.e. the sum of its elements equals 1). We chose
the Elman’s network architecture – i.e. the network with one hidden layer, which
is recurrent.

7 Results

We conducted the described experiment with different implementations of EKF
and with BPTT(h). We will use following abbreviations of corresponding imple-
mentations in this section:

EKF GPU EKF implemented using CUBLAS library
EKF ATLASf EKF implemented using ATLAS library with single precision

functions and utilizing single thread
EKF ATLASft EKF implemented using ATLAS library with single precision

functions and utilizing four threads
EKF ATLASd EKF implemented using ATLAS library with double precision

functions and utilizing single thread
EKF ATLASdt EKF implemented using ATLAS library with double precision

functions and utilizing four threads
BPTT(h) Truncated BPTT with double precision – h is truncation depth

Table 1. Elapsed time in seconds for 10 cycles of training and testing of recurrent
neural network with various numbers of hidden neurons and thus weights

hidden neurons 4 8 12 16 30 60
number of weights 56 140 256 404 1174 4144

EKF GPU 67s 108s 179s 279s 951s 4752s
EKF ATLASf 35s 96s 187s 325s 2218s 19858s
EKF ATLASft 35s 103s 199s 332s 1483s 13614s
EKF ATLASd 35s 96s 192s 340s 2005s 28677s
EKF ATLASdt 40s 107s 197s 354s 2026s 23315s

BPTT(h) 31s 76s 136s 214s 621s 2184s

Firstly, we present the results for the elapsed time during training of neural
networks with various numbers of hidden neurons by each method in absolute
numbers in Table 1, as well as relative to EKF GPU in Fig. 1. From these results
we can see that the implementation of EKF on GPU provides significant speedup
for larger networks, but is not beneficial for smaller networks. This stems from
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Fig. 1. Graphical representation of Tab. 1 – the speed comparison of EKF GPU relative
to other implementations. J is number of hidden neurons and w the number of weights
in recurrent neural network. The speedup is significant for networks with many weights
even when compared to the threaded CPU version with single floating point precision.
On the other hand it is not beneficial for small networks. Gradient descent method
BPTT(h) is still faster but converges slowly and achieves worse results [9,10].
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Fig. 2. The NNL dependence on the training cycles for various implementations and
methods used for recurrent network with 16 hidden neurons. The exception is EKF
GPU 30 and EKF GPU 60 which is a result for 30 and 60 hidden neurons respectively.
The results show that (a) EKF is superior to gradient descent method BPTT(h) (for
details see [9,10]); (b) the various EKF implementations achieve comparable results
(see Fig. 3); (c) the increasing of hidden neurons is beneficial for this problem and was
made more feasible by achieved speedup.
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than second implementation. The differences are negligible, all within 0.6%.

the fact, that the overhead of copying data from system memory to GPU and of
parallelization alone is not worth when there is not much to compute.

The most “fair” comparison of EKF GPU is with EKF ATLASft, because both
utilize parallelization and work with single precision floating point arithmetic.
EKF GPU achieves nearly 3 times speedup for largest network when compared
to EKF ATLASft. The most significant acceleration by using computation with
EKF GPU – 6 times on largest network – is achieved when compared to EKF
ATLASd, which is probably most similar to existing implementations of EKF.

In Fig. 1 we can further see that method BPTT(h) is consistently the fastest,
whereas EKF ATLASd is generally the slowest one. The obvious question is if
the achieved results are on the one hand worth the speed degradation when
compared with BPTT(h) and on the other hand worth the significant speedup
when compared with potentially more precise EKF ATLASd. The answer is in
Fig. 2 which for each method shows the average results when used for training 10
randomly initialized networks. In this graph we can see the superior convergence
and achieved result of EKF when compared with BPTT(h) (see also [9,10]). We
can also see the comparable results of various implementations of EKF, which is
more obvious from Fig. 3. It means the used floating point arithmetic does not
play a significant role in EKF performance in this experiment.

The achieved speedup of EKF GPU made it also more feasible to conduct
thorough experiments with larger networks, as seen in Fig. 2. This also justifies
the increasing of number of hidden neurons for this problem, as the best achieved
result is by networks with 60 hidden neurons (NNL=0.1156 in training cycle 4).

8 Conclusion

In this paper we have shown that the implementation of the most computational
intensive tasks in the Extended Kalman filter using the CUBLAS library for
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nVidia graphics processing units can significantly speed up the recurrent neural
network training process. What is important, the speedup was achieved only
by means of available library functions, one does not have to overcome steep
learning curve of GPU architecture and its efficient parallel programming.

The drawback in current GPUs is the lack of double precision floating point
arithmetic. This affects the numerical stability as well as overall achieved re-
sult. In our experiments we experienced the numerical stability problem when
computing Cholesky factorization of matrix which became non positive defi-
nite. This was remedied by restarting the training process with different initial
weights. Since the problem usually arose in the early training cycles, and the
training is fast, the restarting did not cause significant delays.

The reduced precision was not significant problem in our experiments. How-
ever, the recommended practice for the time being would be to tune the training
parameters using EKF on GPU and to use CPU only version with double pre-
cision for final experiments.

The presented method can be further enhanced by implementing more parts of
algorithm on the GPU and reduce thus the need to copy data between CPU and
GPU which is a costly operation. This will be the topic of our further research,
namely implementing Cholesky factorization [4], neural network propagation [6]
and BPTT(h) on graphic processing units.
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