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Preface

This volume is the second part of the two-volume proceedings of the 18th Interna-
tional Conference on Artificial Neural Networks (ICANN 2008) held September
3–6, 2008 in Prague, Czech Republic. The ICANN conferences are annual meet-
ings supervised by the European Neural Network Society, in cooperation with
the International Neural Network Society and the Japanese Neural Network So-
ciety. This series of conferences has been held since 1991 in various European
countries and covers the field of neurocomputing and related areas. In 2008,
the ICANN conference was organized by the Institute of Computer Science,
Academy of Sciences of the Czech Republic together with the Department of
Computer Science and Engineering from the Faculty of Electrical Engineering
of the Czech Technical University in Prague. Over 300 papers were submitted
to the regular sessions, two special sessions and two workshops. The Program
Committee selected about 200 papers after a thorough peer-review process; they
are published in the two volumes of these proceedings. The large number, variety
of topics and high quality of submitted papers reflect the vitality of the field of
artificial neural networks.

The first volume contains papers on the mathematical theory of neurocom-
puting, learning algorithms, kernel methods, statistical learning and ensemble
techniques, support vector machines, reinforcement learning, evolutionary com-
puting, hybrid systems, self-organization, control and robotics, signal and time
series processing and image processing.

The second volume is devoted to pattern recognition and data analysis, hard-
ware and embedded systems, computational neuroscience, connectionistic cogni-
tive science, neuroinformatics and neural dynamics. It also contains papers from
two special sessions, “Coupling, Synchronies, and Firing Patterns: From Cogni-
tion to Disease,” and “Constructive Neural Networks,” and two workshops, New
Trends in Self-Organization and Optimization of Artificial Neural Networks, and
Adaptive Mechanisms of the Perception-Action Cycle.

It is our pleasure to express our gratitude to everyone who contributed in
any way to the success of the event and the completion of these proceedings. In
particular, we thank the members of the Board of the ENNS who uphold the
tradition of the series and helped with the organization. With deep gratitude we
thank all the members of the Program Committee and the reviewers for their
great effort in the reviewing process. We are very grateful to the members of the
Organizing Committee whose hard work made the vision of the 18th ICANN
reality. Zdeněk Buk and Eva Posṕı̌silová and the entire Computational Intel-
ligence Group at Czech Technical University in Prague deserve special thanks
for preparing the conference proceedings. We thank to Miroslav Čepek for the
conference website administration. We thank Milena Zeithamlová and Action M
Agency for perfect local arrangements. We also thank Alfred Hofmann, Ursula
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Barth, Anna Kramer and Peter Strasser from Springer for their help with this
demanding publication project. Last but not least, we thank all authors who
contributed to this volume for sharing their new ideas and results with the com-
munity of researchers in this rapidly developing field of biologically motivated
computer science. We hope that you enjoy reading and find inspiration for your
future work in the papers contained in these two volumes.

June 2008 Věra Kůrková
Roman Neruda

Jan Koutńık
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Gabriela Andrejková P.J. Šafárik University in Košice, Slovakia
Bartlomiej Beliczynski Warsaw University of Technology, Poland
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David Pearson Université Jean Monnet, Saint-Etienne,

France
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Jordi Garćıa-Ojalvo

Special Session: Constructive Neural Networks

Fuzzy Growing Hierarchical Self-Organizing Networks . . . . . . . . . . . . . . . . 713
Miguel Barreto-Sanz, Andrés Pérez-Uribe,
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Table of Contents – Part I XXIII

Mixture of Expert Used to Learn Game Play . . . . . . . . . . . . . . . . . . . . . . . . 225
Peter Lacko and Vladimı́r Kvasnička
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Implementation Issues of an Incremental and Decremental SVM . . . . . . . 325
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A Self-organizing Neural System for Background and Foreground
Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652

Lucia Maddalena and Alfredo Petrosino

Analyzing the Behavior of the SOM through Wavelet Decomposition of
Time Series Generated during Its Execution . . . . . . . . . . . . . . . . . . . . . . . . . 662

Vı́ctor Mireles and Antonio Neme

Decreasing Neighborhood Revisited in Self-Organizing Maps . . . . . . . . . . . 671
Antonio Neme, Elizabeth Chavez, Alejandra Cervera, and
Vı́ctor Mireles

A New GHSOM Model Applied to Network Security . . . . . . . . . . . . . . . . . 680
Esteban J. Palomo, Enrique Domı́nguez, Rafael Marcos Luque, and
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Institute of Informatics and Software Engineering
Faculty of Informatics and Information technologies

Slovak University of Technology, Ilkovičova 3, 842 16 Bratislava
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Abstract. In this paper we present a novel method of comparing in-
stances of ontological concepts in regard to personalized presentation
and/or navigation in large information spaces. It is based on the as-
sumption that comparing attributes of documents which were found in-
teresting for a user can be a source for discovering information about
user’s interests. We consider applications for the Semantic Web where
documents or their parts are represented by ontological concepts. We
employ ontology structure and different similarity metrics for data type
and object type attributes. From personalization point of view we impute
reasons that might have caused user’s interest in the content. Moreover,
we propose a way to enumerate similarity for the particular user while
taking into account individual user’s interests and preferences.

1 Introduction

Applications providing information from large information spaces can provide
a user more relevant content if personalization is used. Personalization of visible
aspects is usually based on user characteristics represented in the user model. To
provide proper personalization the user model needs to be reasonably populated
with user characteristics that are up to date and relevant to the information space
being accessed. Several approaches are used to obtain user characteristics. Some
information can be acquired when the user is asked explicitly or from observing
one’s behavior while working with the application. Mining user characteristics
from activity logs can be helpful to establishing patterns of needs or interests.

Analyzing content that is presented to a user is a good source of information
about the user [1]. If we know user’s rating given to displayed content (e.g.
user’s interest) we can acquire some characteristics by analyzing the content.
Since the rating varies we need to understand possible reasons for why it is low
or high. For instance, one can stumble upon hundreds of job offers on the Web
that advertise a position for Java programmers requiring high school education,
at least three years of previous experience, knowing basics of Web technologies,
offering motivating salary, etc. Let us have two such offers that have most features
similar and differ only in the job location. Assume we get different ratings for
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these two offers. The range or variety of the evaluation rating that was derived
could have been caused by the job location attribute.

In this paper we present a novel method for comparing instances of ontological
concepts aimed at identification of common and different aspects to be used for
personalization purposes. Examples used in the paper are from job offers domain
that is the subject of a research project NAZOU1 [2].

2 Related Work

Semantic Web applications typically use ontology methodologies as a base for
metadata representation and reasoning. Several approaches to comparison of
ontology concepts, or their instances, were mainly developed for the purpose of
ontology management. Similarly this problem is also known in ontology mapping,
matching or alignment. Their aim is to increase reusability and interoperability
between different ontologies covering the same domain. In [3] an approach is
described that is aimed at identification of changes in ontology versions on the
level of ontology schema and ontology instances using various heuristics.

The approach described in [4] uses three independent similarity assessments.
It deals with synonyms to ensure that synonyms refer to the same objects. Se-
mantics are then incorporated and lastly semantic relations (e.g. is-a) are used to
determine whether connected entities are related to the same set of entity classes.
Finally, distance between two concepts is measured by the shortest path.

In [5] an approach is described that conceptualizes ontology mapping in four
stages that include similarity of labels, instances, structures and previous map-
ping results verified by the application. While comparing instances the Edit-
Distance method is used in conjunction with a Glue approach based on machine
learning techniques [6]. It uses predefined similarity function to compute a sim-
ilarity value for each pair of concepts and generates the similarity matrix.

A method that accomplishes comparing instances of tourism ontology con-
cepts in two phases is described in [7]. The first phase is focused on preprocessing
the concepts. Two graphs are built – the inheritance graph organizes ontologi-
cal concepts according to a generalization hierarchy and the similarity graph
in which nodes relate to concepts and edges have assigned similarity degree.
Similarity is enumerated in the second phase using a three step process. First,
structural attributes are used, then hierarchical structure is exploited, and finally
a similarity measure is computed as a result of combination of two previous steps.

Comparison with ideal instance related to the particular domain (here job of-
fers) is used in searching based on user’s criteria [8]. The method allows searching
also offers that do not fulfill criteria fully. The user is allowed to specify for each
criterion, whether it has to be fulfilled, its importance, and precision.

A common characteristic for all the mentioned approaches is that they do
not investigate causes of similarity. Automated similarity enumeration mimics
to human similarity measure if different strategies are used according to clusters
1 NAZOU – Tools for acquisition, organization and maintenance of knowledge in an

environment of heterogeneous information resources, http://nazou.fiit.stuba.sk
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of users [9]. Users gave reasons for their assessments which become the basis for
machine learning algorithm that assigns users to a cluster. We use an automated
approach to quantify and define reasons of similarity, what also contributes to
scrutiny of the user model.

3 Similarity Enumeration

Similarity of two objects is expressed as a number from interval 〈0, 1〉 where simi-
larity of entirely different objects equals zero and similarity of identical objects
equals one. Similarity characteristics are also characterized in reflexivity (where
an object is identical to itself) and symmetry (where if object X equals Y , then
Y reciprocally equals X ).

For similarity enumeration any aggregation function can be used. We use mean
value to enumerate similarity between instances of concepts. The similarity of
instances InstA and InstB is evaluated as follows:

sim (InstA, InstB) =

∑|A∩B|
i=0 GeneralSMi (SetA,SetB )

|A ∪ B| (1)

where GeneralSMi encapsulates all similarity measures that are available (e.g.
according to attribute type), A and B are sets of attributes instances consist of,
respectively. Since an attribute can appear as a multiple, SetA and SetB are used
as a possible set of objects that can be connected to the particular attribute.

When using aggregation of partial similarities the computed result is the same
at all the times no matter what is the context. Since each user has different pref-
erences related to similarity, we consider this in the similarity enumeration. It
is useful, especially in cases when a user model that holds user’s preferences
is available. Therefore, we introduce weights to personalize enumeration what
allows computing similarity taking into account user’s individuality. Now, simi-
larity is evaluated as follows:

sim (InstA, InstB) =

∑|A∩B|
i=0 weighti × GeneralSMi (SetA,SetB)∑

weight
(2)

where the assigned meaning of variables is the same as in Eq. 1. The variable
weight is computed for each attribute that two instances have in common. It
gets a value from range 〈1, w〉 according to the match with corresponding char-
acteristic in the user model. We assume that user’s likes should result in more
influence on total similarity in our similarity assessment model. If there is a cor-
responding characteristic in the user model to an attribute of the instance and
also the value of the characteristic equals the value of the attribute, the weight is
set to w. In cases where no match between values is detected, weight is selected
from the range (1,w) according to the computed closeness to preferred value in
the user model, e.g. a city belongs to the same region as the city preferred by the
user in the user model but it is not that specific city. Our experiments showed
that weight = 2.0 is a worthy selection value (see Sect. 5).
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4 Method for Ontology Instances Similarity Evaluation

In the Semantic Web applications documents or their parts are represented by
ontological concepts. A concept describes a set of real objects [10]. Concepts can
be ordered in a hierarchy. Instances of concepts reflect objects from real world.
An example of an instance representing a job offer is depicted in Fig. 1.

jo:Text

jo:Text

jo:Text

jo:maxAmountjo:bonus

jo:minAmount

...

Fig. 1. Example of an instance representing a part of job offer. Each object has its
unified identifier, here we present only object’s label. JobOffer is an identifier of the
instance. We use italic font for data type attributes to distinguish them from object
type attributes. For simplicity, multiple attributes are surrounded by a rounded box.

If we think about an ontology statement as a triple in form subject – predicate
– object, an attribute represents predicate. In general, there are data type and
object type attributes. A data type attribute is connected to a literal value that
can be of several types defined according XML Schema. An object type attribute
expresses the relationship of a concept to another concept, or to an instance.

4.1 Recursive Evaluation of Ontology Instances Similarity

To evaluate similarity we have proposed a method based on recursive evaluation
of the attributes and component objects an instance consists of. The main idea
is based on looking for common pairs in both attributes and their sequential
processing. Basic steps of the method are depicted in Fig. 2.



Investigating Similarity of Ontology Instances and Its Causes 5

Get all attributes

Get connected objects

[Attributes list isn't empty] 

Get total similarity

Use object type strategy

Use data type strategy

[Object type attribute] 

[Data type attribute] 

[Object contains additional attribute] 

Adjust total similarity Add weights

[User model isn't present] [Attributes occurs in  both instances] 

Fig. 2. Basic steps of the method for recursive traversing of instance

The process of comparison begins with acquiring all the attributes from both
instances. An attribute can have single or multiple occurrences in both instances
or single/multiple occurrence in one instance only. When the attribute has a sin-
gle occurrence in both instances, objects (literals) refered to, are evaluated for
their similarity. Variety of similarity metrics can be used. If the attribute is
data type, the comparison for the attribute terminates after a metrics is used
to evaluate similarity between connected literals. Resulting computed similarity
measure(s) is aggregated to a total similarity measure. In the case of an object
type attribute, a metrics for connected object is used. Furthermore, the compar-
ison is being launched recursively on that object until literals are achieved.

A multiple occurrence is the most specific case we have to cope with. We
move solution of this problem to the lower level. Anytime a multiple attribute
is acquired only its one occurrence in the instance is considered. Afterwards, all
objects (literals) connected to that attribute are acquired from both instances.
Instead of dealing with attributes we now have to deal with two sets of objects (or
literals) possibly with different cardinalities. Here, a problem of how to figure
out which object from the first set should be compared with an object from
another set with the contribution to the total similarity emerges (see Sect. 4.2).

In the situation, when single or multiple occurrence of an attribute is present
in only one instance we use an assumption that instances are entirely different in
the attribute if there is no presence of that attribute in both instances. In regard
to similarity definition, the similarity equals zero if two objects have nothing
in common. In this case we estimate similarity for such an occurrence of the
attribute as equal zero.

4.2 Comparison Metrics and Similarity Measure

We proposed two groups of metrics according to an attribute’s type: data type
and object type. To evaluate similarity between literals connected to a data
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type attribute, any string based metrics can be used2. To achieve better results,
the semantic type of the literal content is taken into account (e.g. string, date,
number are each treated differently). When evaluating the similarity of objects
connected to the object type attribute their other characteristics can be consid-
ered (e.g. number of attributes and their types, position in taxonomy tree) [11].

Taxonomy distance is a heuristic similarity measure for evaluating similar-
ity between objects connected to the object type attribute. The edge-counting
method computes the shortest path between nodes. Distance is defined as the
shortest path linked through a common ancestor or as the general shortest
path [9]. Since we do not need a result what is closer or further, but a float
number between 0 and 1, we proposed our taxonomy distance metrics. It as-
sumes that the more nodes have two objects in common in the taxonomy tree
the more they are similar. Similarity is computed as the number of common
nodes in the taxonomy divided by number of nodes in the longer path leading
to the object (see Fig. 3).

ObjectA ObjectA

ObjectB

ObjectB

2

4

3 3

Fig. 3. Taxonomy distance for objects ObjectA and ObjectB is computed. Common
part (nodes) in the taxonomy is emphasized by dotted arrow; solid arrow is used to
show longer distance from the root node. For left example sim(ObjectA,ObjectB) =
2/4 = 0.5, for right example sim(ObjectA,ObjectB) = 3/3 = 1.0.

Identification of relevant pairs using only the object’s label is not satisfactory.
Each object in the ontology can have a label that could be compared using
selected data type metrics. Since the label is optional and does not have to
necessarily express any semantics we avoid using it. It should be noted that
for automatically acquired instances it is obvious that meaningful labels are
not present. We proposed the similarity measure to identify pairs of objects,
therefore, a relevance matrix is constructed which size is specified by cardinalities
of sets of objects.

The matrix holds similarities for each pair of objects from the sets. In the case
of literals, data metrics are used. For objects the recursive algorithm is employed
as for the entire instance. Afterwards, an identification of pairs can start. Number
of pairs is given by the set with the lower cardinality. Finding pairs with very

2 A collection of methods suitable for string comparing is implemented in the open
source library SimMetrics, http://www.dcs.shef.ac.uk/˜sam/simmetrics.html
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low similarity measure can be restricted by using a critical threshold as a filter.
The algorithm for finding relevant pairs follows these steps:

WHILE count(pairs) < count(getSmallerSet(setA, setB)) DO

SET maxValue to getMaxValue(matrix)

STORE maxValue in List

SET coordinates of maxValue to X and Y

FOR each item in matrix

IF item.row = X OR item.column = Y

SET item to -1

END IF

END FOR

END WHILE

Leftover objects are handled in the same way as described above for attributes
that have occurrence in one instance only. An example is shown in Fig. 4.

0.3 0.8 0.7 0.3

0.7 0.9 0.3 0.5

0.3 0.1 0.4 0.6

0.9 0.3 -1 0.7 0.3

-1 -1 -1 -1

0.3 -1 0.4 0.6

0.9

0.7

A1

A2

A3

B1 B4B3B2

Fig. 4. Identifying relevant pairs from the sets. Similarities in the matrix are random
numbers. In first iteration (left) at [A2,B2] is maximal value 0.9 and it is stored. Second
row and second column are set to -1. In the next iteration at [A1,B3] is maximal value
0.7. The last coordinate is [A3,B4]. Object B1 is evaluated as a leftover.

Our experimental results show that the way we find related pairs (in case of
object type attributes in combination with taxonomy distance) leads to mean-
ingful results. First, identities were found (maximal possible value 1.0). Other
found pairs were interpreted as semantically similar by a human. The number
of multiple attributes in job offers is usually small (less than 10). Therefore,
threshold 0.3 for deciding which pairs are still meaningful is reasonable.

4.3 Investigating Similarity Causes

Our goal is not only to compute the similarity between instances but also to
investigate reasons that caused the similarity or difference to be used later for
personalization purposes. From the user’s evaluation given to content we can
deduce user’s likes or dislikes. We assume that if the instance includes an at-
tribute that the user likes, it will likely influence his/her rating towards higher
(or positive) values. On the other hand, attributes of the content that the user
dislikes will influence rating towards lower (or negative) values.

Therefore, we introduced two threshold values that divide attributes into three
sets according to their similarity values. Since we are interested in attributes
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that significantly influence the user’s evaluation, we give up splitting outcome
interval in the equal parts. An attribute exhibiting similarity greater than the
positive threshold would be assigned to the positive interval set and the similarity
exhibiting lower than the negative threshold to negative interval set.

Thresholds were specified experimentally for this job offer domain. We eval-
uated 55 000 attributes. Attributes with similarity equal 0.0 or 1.0 were not
considered to eliminate identities and attributes with no occurrence in both in-
stances. The rest of the attributes were ordered according to similarity measure
and the Pareto principle (also known as 80/20 rule) was used. We split the 20%
segment in half to select 10 % of highest and 10 % of lowest values. This way,
the positive threshold was set to 0.65 and negative threshold to 0.25. Domain
independence of thresholds is subject of further experiments.

Attributes classified by this method can be transformed into user character-
istics and then used for filling or updating existing characteristics in the user
model. A transformation of attributes to user characteristics as well as their up-
dating in the user model is not included in the scope of this paper. The presented
method only prepares inputs for further processing. Using positive and negative
set of attributes in combination with user’s feedback for characteristics update
in the user model would improve user characteristics estimation.

5 Method Evaluation and Conclusions

We described a method for comparing instances of ontological concepts based on
recursive traversing of instance’s structure. Final similarity is a result of mean
aggregation of similarities computed for particular attributes while their type
is considered. Introducing similarity computed for individual attributes allows
employing semantics from ontology representation. It allowed us to extend sim-
ilarity enumeration with weights to compute similarity for particular user to be
used for personalization purposes. Moreover, we investigate reasons (attributes)
that influenced user’s evaluation (e.g. interest) of the content. We introduced
two thresholds dividing attributes in three sets. From personalization point of
view we are interested in only two outer sets (positive and negative). These can
be used by other tools for actualization of characteristics in the user model.

We have evaluated proposed method using developed software tool called Con-
Com (Concept Comparer) implemented in Java. Sesame framework was used to
access the ontological models represented in OWL DL. Evaluation was processed
on an experimental job offer ontology developed in the course of the research
project NAZOU. In the experiment, similarity for 10 000 pairs was computed.
The experiments showed that computed results fulfill all criterions requested for
similarity. In Fig. 5 there is a depiction of a sample of 80 pairs where similarity
was computed by ConCom for (1) all attributes and (2) for common attributes
only. Computed values were sorted out according to the computed similarities
in the first way.

In the following experiment a user was involved. A sample of 300 job offer pairs
was used where 30 randomly selected pairs appeared twice as a check sample. We
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Fig. 5. Similarity computed by ConCom in regard to considered attributes
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Fig. 6. Similarity estimated by a human and by ConCom for common attributes

asked the user to assess similarity on a scale from 0 to 7. Afterwards, acquired
values were recounted to similarity interval. The result for a randomly selected
set of 40 pairs is depicted in the Fig. 6.

We used similarity computed for common attributes to compare with our
test subject human evaluation since its values mimic values from evaluation
given by a human better. This result could have been caused by the fact, that
a human user can easier evaluate lower amount of attributes and especially
common attributes. Therefore, for further experiments with the user model we
use similarity computed for common attributes. On the other hand, using only
common attributes in our experiments resulted in narrow range of similarity
values – in 94.1 % computed similarities were from range 0.35 to 0.7, what
makes it not very useful for discovering user’s characteristics.

To figure weights for personalized similarity a user model was involved con-
sisting of one characteristic only (hasDutyLocation). Job offers used in the ex-
periment consisted of an average of sixteen attributes in averaged and contained
that attribute with the same value as in the user model. Already doubled weights
cause noticeable change in the similarity – from 0.06 up to 0.10 depending on
the number of attributes job offers consist of.
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We have started exploring the interest of scientific publications to further in-
vestigate domain independence of the method. The achieved results can be useful
in user model creation in combination with other methods [12,13], as a support
for clustering algorithms, semantic annotation or repository maintenance tools
as well as for recommending similar content in recommending systems. The aim
here is to improve semantic search using the method for personalized navigation
within ontology instances that represent metadata of large information space.
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programme of research and development “Establishing of Information Society”
under the contract No. 1025/04 and by the Scientific Grant Agency of Slovak
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Abstract. Distributed control systems frequently suffer from variable sampling
to actuation delay. This delay can degrade the control quality of such systems. In
some distributed control systems it is possible to know, at control time, the value
of the delay. The work reported in this paper proposes to build a model of the
behavior of the system in the presence of the variable delay and to use this model
to compensate the control signal in order to avoid the delay effect. This model can
be used as a compensator that can easily be added to an existing control system
that does not account for the sampling to actuation delay effect. The compensator
can be applied to distributed systems using online or off-line scheduling policies
provided that the sampling to actuation delay can be evaluated. The effectiveness
of the neural network delay compensator is evaluated using a networked control
system with a pole-placement controller.

1 Introduction

Distributed or networked control systems are widely used in embedded applications.
The distribution of the controller and the use of a communication network to connect
the nodes of the control loop induce variable sampling to actuation delay.

The delays are introduced due to the medium access control of the network,
the processing time and the processor scheduling in the nodes and the scheduling
mechanism used to schedule the bus time. They are usually variable from iteration
to iteration of the control loop. These delays degrade the performance of the control
system and can even destabilize the system [1], [2], [3], [4], [5] and [6].

There are several ways to deal with the variable sampling to actuation delay in
distributed control systems. One possibility is to use a delay compensator to improve
the control performance of the loop. Different kinds of compensators have been used to
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improve the control performance of networked control systems like the ones presented
in [7], [8] and [9].

This work proposes a neural network based implementation to the delay compensator
approach presented in [9].

2 The Principle of the Delay Compensator

The delay compensator approach proposes to add a delay compensator to an existing
controller that does not take into account the effects of the variable sampling to actuation
delay.

The principle is similar to the Additive feedforward Control that is represented in
figure 1.

 

Plant

Inverse
M odel

u (t)r (t+ 1 )

y (t+ 1 )Existing
Contro ller

+
+

+

-

Fig. 1. Block diagram of the Additive Feedforward Controller

The principle of additive feedforward control is quite simple: add to an existing
(but not satisfactory functioning) feedback controller an additional inverse process
controller.

The additive feedforward control strategy offers the following important advantages
[10]:

– Data collecting can be done using the existing closed loop, avoiding plant stopping
for data collection and facilitating the access to good quality data.

– There is no need for opening the existing control loop nor during training neither
during the introduction of the additive controller.

The delay compensator is slightly different from the Additive Feedforward control
since the introduced block is not a full controller but intends only to compensate
for the effect of the delay. This way, the compensator proposes a correction to the
control action, based in the delay information, in order to improve the overall control
performance.

Figure 2 shows the block diagram of the delay compensator approach.



A Neural Model for Delay Correction in a Distributed Control System 13

Fig. 2. Block diagram of the delay compensator approach

The output of the compensator is based on the sampling to actuation delay that affects
the system at each control cycle and can have any other input.

This principle can be applied to any distributed control system provided that the
sampling to actuation delay is known for each control cycle. The determination of the
sampling to actuation delay can be done either by an online measurement or by off-
line computations depending on the a priori knowledge of the overall system operation
conditions. The online measurement of the sampling to actuation delay provides a more
generic and flexible solution that does not require the knowledge of the details of the
operation conditions of the global system in which the distributed controller is inserted.

In order for the compensator to operate with the correct value of the delay affecting
the network the controller and the actuator must be implemented in the same network
node.

The delay compensator principle is generic and can be implemented using different
techniques. In [9] a fuzzy implementation is proposed based in the empirical knowledge
of the system, while here the delay compensator is a neural model, trained in supervised
mode.

The compensator can easily be turned on or off and the operation of the existing
controller is not disturbed.

2.1 Neural Implementation of the Delay Compensator

The model for the delay compensator is not a regular model. The information available
is the output of a certain system with (yd(k)) and without (y(k)) the effect of sampling
to actuation delay. The objective is to produce a model that can compensate the effect
of this delay (knowing the delay for the iteration) in order to correct the control signal
to avoid the degradation of the control system.

The information available is depicted in figure 3. It is now necessary to find a way of
producing a model that can perform the requested task.

The authors considered two possibilities: calculating an error between the two
outputs: ey(k)=y(k)-yd(k) and reporting this error to the input through an inverse model
or calculating the equivalent input of a system without sampling to actuation delay that
would have resulted in the output yd(k). This is obtained through an inverse model. The
second approach is illustrated in figure 4.
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Fig. 3. Representation of the information used to create the delay compensator model

Fig. 4. Determining the delay effect in terms of control signal

The first alternative would only be valid in the case of a linear system, since for
non-linear systems there is no guarantee that the output error could be reported to the
corresponding input, since the error range y−yd is very different from the output signal
range. Using the difference between y and yd and applying it to the inverse model could
result in a distortion due to the non-linearity.

Producing the required model is somehow similar to the specialized training for
inverse models that is shown in figure 5.

The specialized training solution was developed to avoid the problem of training
generic inverse models. These models were considered not to be goal directed since
they were trained in a situation different from the one where they would be used in a
control loop.

Although solving the goal directed problem this solution creates another one: the
error obtained here is ey(k) which reports to the output of the loop, but the error needed
to train the inverse model should be eu(k). To propagate the output error to the input
it is necessary to know the Hessian or Jacobian matrices of the system (depending
on the training algorithm used). Such information is rarely available which led to an
approximation: using the direct model as a replacement of the system and propagate
through it the error ey(k).
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Fig. 5. Specialized training of inverse models

Fig. 6. Delay compensator model

Using the proposal from figure 4 and studying the lag space results in the model
represented in figure 6.

This model has, as inputs, a past sample of the output, two past samples of the control
signal and two past samples of the delay information.

The model is composed of ten neurons with hyperbolic tangents in the hidden layer
and one neuron in the output layer with linear activation function and was trained for
15000 iterations with the Levenberg-Marquardt algorithm.

3 The Test System

The architecture of the test system and the existing controller will be presented in the
following subsections.

3.1 Distributed System Architecture

The test system is composed of 2 nodes: the sensor node and the controller and actuator
node connected through the Controller Area Network (CAN) bus. The controller and
the actuator have to share the same node in order to be possible to measure accurately
the value of the sampling to actuation delay that affects the control loop at each control
cycle. The block diagram of the distributed system is presented in figure 7.
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Fig. 7. Block diagram of the test system

The transfer function of the plant is presented in 1.

Y (s)
U(s)

=
0.5

s+ 0.5
(1)

The system was simulated using TrueTime, a MATLAB/Simulink based simulator
for real-time distributed control systems [1].

3.2 Existing Controller

The existing controller is of the pole-placement type. It does not take into account the
sampling to actuation delay. The controller parameters are constant and computed based
on the discrete-time transfer function given by equation 2.

G(q−1) =
bq−1

1− aq−1
(2)

The pole-placement technique allows the complete specification of the closed-loop
response of the system by the appropriate choice of the poles of the closed-loop transfer
function. In this case the closed-loop pole is placed at αm=2Hz. An observer pole was
also used with α0=4Hz.

The sampling period is equal to 280ms and was chosen according to the rule of
thumb proposed by [11].

The identification of the system was based in the discrete model in 2 and the
parameters were computed off-line.

The parameters of the control function were obtained by directly solving the
Diophantine equation for the system. The control function is given by 3.

uc(k) = t0(r(k) − a0r(k − 1))− s0y(k)− s1y(k − 1) + uc(k − 1) (3)

where t0=3.2832, ao= 0.3263, s0=7.4419 and s1= -5.2299.
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4 Tests and Simulation Results

The present work includes three different tests. Test 1 is the reference test, where the
sampling to actuation delay is constant and equal to 8ms. It corresponds to the minimum
value of the MAC and processing delays.

In tests 2 and 3 additional delay was introduced to simulate a loaded network. The
sampling to actuation delay introduced follows a random distribution over the interval
[0,h] for test 2 and a sequence based in the gamma distribution that concentrates the
values in the interval [h/2, h] for test 3.

The sampling to actuation delay obtained for tests 2 and 3 is depicted in figure 8 and 9.

Fig. 8. Sampling to actuation delay for test 2

Fig. 9. Sampling to actuation delay for test 3

The results obtained for test 1 for the system without the compensator (PP) are
presented in 10.

The tests were performed for the system without the compensator (PP) and for the
system with the neural network delay compensator (NNDC). The control performance
was assessed by the computation of the Integral of the Squared Error (ISE) between t=
5s and 30s. The results obtained for ISE are presented in Table 1.

The percentage of improvement obtained compared to the reference test for ISE is
presented in Table 2.

The improvement is calculated as the amount of error induced by the sampling to
actuation delay that the NNDC controller was able to reduce.
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Fig. 10. Control results for test 1

Table 1. ISE report

Test PP NNDC
1 3.3 3.3
2 4.1 3.7
3 4.6 3.7

Table 2. ISE report

Test NNDC
2 50%
3 69%

Fig. 11. Control results for test 3 without the NNDC
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Fig. 12. Control results for test 3 with the NNDC

The control results for test 3 with and without the compensator are presented in
figures 11 and 12.

The results show the effectiveness of the NNDC. For tests 2 and 3 the control
performance obtained using the NNDC is better than the ones obtained without
compensation. For test 2 the compensator reduced by 50% the effects of the variable
sampling to actuation delay and for test 3 the reduction is equal to 69%.

The reference test (test 1) was also performed with the compensator. The results
show that the modeling of the effect of the sampling to actuation delay is good since
the results obtained is the same as the one obtained without the compensator.

5 Conclusion

This work presents a neural network implementation for the delay compensator.
The NNDC can be added to any existing distributed control system provided that the

sampling to actuation delay can be determined for each control cycle.
The delay compensator is implemented through a model that describes the effect of

the sampling to actuation delay in terms of control signal. This neural model is not a
regular model and its training situation is similar to the specialized training.

The neural model is used to compensate the control signal according to the delay at
the actuation moment.

The compensator was able to model the effect of the sampling to actuation delay on
the distributed control system as the results show and it allowed the improvement of the
control performance of the system.
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Abstract. The paper presents an original model-based approach for fea-
ture selection and its application to classification of microarray datasets.
Model-based approaches to feature selection are generally denoted as
wrappers. Wrapper methods assess subsets of variables according to their
usefulness to a given prediction model which will be eventually used for
classification. This strategy assumes that the accuracy of the model used
for the wrapper selection is a good estimator of the relevance of the fea-
ture subset. We first discuss the limits of this assumption by showing
that the assessment of a subset by means of a generic learner (e.g. by
cross-validation) returns a biased estimate of the relevance of the subset
itself. Secondly, we propose a low-bias estimator of the relevance based on
the cross-validation assessment of an unbiased learner. Third, we assess a
feature selection approach which combines the low-bias relevance estima-
tor with state-of-the-art relevance estimators in order to enhance their
accuracy. The experimental validation on 20 publicly available cancer
expression datasets shows the robustness of a selection approach which
is not biased by a specific learner.

1 Introduction

The demand for classification in microarray datasets with a large number of
features and a small number of samples gave recently a new impetus to research
in feature selection [1,2]. This led to the development of many dimensionality
reduction techniques which can be grouped into three main approaches: (i) filter
methods which assess the merits of features directly from data, ignoring the ef-
fects of the selected feature subset on the performance of a learning algorithm [3],
(ii) wrapper methods which assess subsets of variables according to their useful-
ness to a given prediction model [4] and (iii) embedded methods that perform
variable selection as part of the learning procedure and are usually specific to
given learning machines [5]. All these strategies aim at finding the subset of fea-
tures which has the highest predictive power or relevance to the output class.
Quantitative measures of relevance of a subset of features are the information
gain [6,7], the variance of the target probability distribution conditioned on the
given subset [4] or the related Gini index [8]. Several filter approaches [6,9,10]
rely on learner independent relevance estimators to perform feature selection.
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In this paper we will focus instead on model-based strategies to select highly
relevant features and will show that a cross-validated assessment of the rele-
vance can both outperform wrappers and improve existing filters approaches. A
wrapper algorithm demands the definition of a specific learning algorithm and
is typically made of three steps: (i) a search procedure in a high dimensional
space which selects the candidate feature subsets to be assessed (ii) the assess-
ment of the candidate feature subsets by means of the learning algorithm (e.g.
by cross-validation) (iii) the choice of the best feature subset according to the
assessment. Note that the second step is particularly demanding in microarray
classification tasks because of the high ratio between the dimensionality of the
problem and the number of measured samples. This paper argues the biasedness
of a wrapper procedure which relies on a given learning algorithm to assess the
relevance of a set of variables. Given a binary classification task and a learning
algorithm h, Wolpert and Kohavi [11] showed that the expected misclassification
error Mh can be decomposed into three components: the variance of the noise,
the squared bias of the learner and the variance of the learner. Note that while
the first term refers to the difficulty of the classification task or better to the
amount of information or relevance that the set of input variables have on the
output, the two remaining terms refer to the learner accuracy. A common way to
estimate the quantity Mh in a wrapper procedure is to adopt a cross-validation
procedure (like leave-one-out). It follows that the assessment step of a wrapper
strategy does not estimate the relevance of the feature subset but rather a combi-
nation of the relevance with learner related quantities. In other words, although
cross-validation is an almost unbiased estimator of the generalization accuracy
of a learner h [12], it is a biased estimator of the relevance of a set of variables.
We deem that this bias may have a strong negative impact on the selection pro-
cedure mainly if it is not the accuracy of a specific classifier h which is at stake
but the selection of a biologically meaningful and robust signature of genes. The
negative impact of this problem can be mitigated by properly choosing the learn-
ing algorithm. This means that we should choose a learner with two properties
(i) a low bias term and (ii) a variance term which can return some insight on
the conditional variance. A well known algorithm which satisfies both properties
is the k-Nearest Neighbour (k-NN) algorithm [13]. The use of k-NN to estimate
posterior probabilities has been largely discussed in the pattern recognition lit-
terature [14,15]. In particular for k = 1 it is known that the misclassification
error of this algorithm asymptotically converges to a term which depends on
the conditional variance [12]. Note that this consideration leads to a perspective
change in the common practice of wrapper selection. So far, it is common to use
the same learner for the selection and the classification task according to the
principle that the selection procedure will return the set of features for which
the considered learner will perform the best. What we advocate here is that this
procedure does not aim to return the best set of variables as a whole but the best
set of variables for that specific learner. In fact, what is demanded by biologists
is not a learner dependent signature but a robust signature able to shed light
on the prognostic value of gene expressions. The use of a k-Nearest Neighbour
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estimator with small k returns a less biased information on the relevance of the
set of variables for the classification task and consequently enables a more gen-
eral and more robust assessment step. However, a potential shortcoming related
to the use of a low biased estimator for feature assessment lies in its presum-
ably high variance. The second contribution of the paper aims to address such a
problem by combining the cross-validated estimation returned by a low biased
estimator with an independent estimation of the relevance of the feature sub-
set. Two combination schemes will be taken into consideration: i) a combination
of the low-biased cross-validated estimator with a direct estimator of the con-
ditional probability inspired to [15] and ii) a combination of the leave-one-out
estimator with the filter relevance estimator implemented by the Maximum Rel-
evance Minimum Redundancy (MRMR) algorithm [9]. This algorithm proved
to be very effective in dealing with gene selection and we will show how its
performance can be further enhanced by combining it with a low bias cross-
validated assessment. The proposed model-based approach has been tested on
20 cancer classification tasks where a systematic investigation of the dependency
between expression patterns of thousands of genes and specific phenotypic vari-
ations is expected to provide an improved taxonomy of cancer. In this context,
the number of features corresponds to the number of expressed gene probes (up
to several thousands) and the number of observations to the number of tumor
samples (typically in the order of hundreds). The experimental session supports
two main conclusions about the benefit of a low bias cross-validation estima-
tor: 1) conventional wrappers are biased and are outperformed by a selection
strategy which exploits the assessment returned by a low-bias cross-validation
estimator, 2) state-of-the-art filter techniques can be improved by integrating
their relevance assessment with a low-bias cross-validation estimator.

2 Relevance and Feature Selection

Consider a multi-class classification problem [16] where x ∈ X ⊂ R
n is the n-

variate input1 with distribution function Fx, y ∈ Y is the target variable which
belongs to a set Y of K distinct classes {y1, . . . , yK}. Let s ⊂ x, s ∈ S be a
subset of the input vector having the marginal distribution Fs(·). In a feature
selection task it is important to define a measure of relevance of a subset s of
variables to the output y. This measure accounts for the predictive power that
the input s has on the target y. Here we define the relevance of the subset s of
input variables to the output y as

Rs =
∫
S

⎛⎝ K∑
j=1

Prob {y = yj|s}2
⎞⎠ dFs(s) =

∫
S
r(s)dFs(s) (1)

Note that r(s) = 1 − g(s) where g(s) is Gini index of diversity [8] of the condi-
tional probability Prob{y|s} and that in the zero-one case (K = 2) the following

1 Boldface denotes random variables.
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relation holds Var {y|s} = 1
2 [1− r(s)] Another well-known measure of relevance

of a subset s is the mutual information I(s; y) = H(y)−H(y|s) [17] where H(y)
is the entropy of the random variable y. Note that the quantities H(y|s) and
r(s) are related: both attain their maximum value when one of the conditional
probabilities Prob{y = yj |s} is equal to one and attain their minimum when
Prob{y = yj |s} is uniform for all j = 1, . . . ,K. It is possible then to introduce
a monotone function GH(·) : [0, 1]→ [0, 0.5] which maps the entropy H(y) of a
binary variable y to the related Gini index g.

Now, given an upper bound d on the number |s| of features, we may formulate
a feature selection problem as the maximisation problem

s∗ = arg max
s⊆x,|s|≤d

Rs (2)

where the goal is to select the subset s∗ which has the highest relevance in
the space of all subsets of x having size less or equal to d. Unfortunately the
quantity Rs to be maximized is unknown if the joint distribution is not available.
The wrapper approach [4] consists in attacking the feature selection problem by
(i) learning a classifier h on the basis of a training set for each subset s, (ii)
assessing it (e.g. by cross-validation) and (iii) using the assessment to estimate
the relevance of the subset s. Given a learner h trained on dataset of size
N , the wrapper approach translates the (learner independent) maximization
problem (2) into the (learner dependent) minimization problem

arg min
s⊆x,|s|≤d

Mh
s = arg min

s⊆x,|s|≤d

{∫
S

MMEh(s)dFs(s)
}

(3)

where MMEh is the Mean Misclassification Error (MME) of h in the point s. For
a zero-one loss function L, since y and ŷ = h(s) are independent, MMEh(s) =
Prob{y �= ŷ|s} and its bias/variance decomposition [11] is:

MMEh(s) =
1
2

⎛⎝1−
⎛⎝ K∑

j=1

Prob {y = yj|s}2
⎞⎠⎞⎠+

+
1
2

K∑
j=1

(Prob{y = yj |s} − Prob{ŷ = yj |s})2 +

+
1
2

⎛⎝1−
⎛⎝ K∑

j=1

Prob {ŷ = yj |s}2
⎞⎠⎞⎠ =

1
2

(n(s) + b(s) + v(s)) (4)

where n(s) = 1− r(s) is the noise variance term, b(s) is the learner squared bias
and v(s) is the learner variance. Note that (i) the lower the integral

∫
n(s)dFs(s),

the higher is the relevance of the subset s and that (ii) this quantity does not
depend on the learning algorithm nor on the training set but only on the feature
subset s. In the following, for the sake of simplicity, we will focus our discussion
on the zero-one classification task. Note however that this is not restrictive since
several techniques exist in literature to transform a multi-class problem into a
set of binary classification problems [18].
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3 Towards an Unbiased Estimator of Relevance

In real classification tasks, the one-zero misclassification error Mh
s of a learner h

for a subset s cannot be derived analytically but only estimated. Let us denote
by M̂

h

s the estimate of the misclassification error of the learner h computed on
the basis of the observed dataset DS

N (e.g. by cross-validation) and

sh = arg min
s⊂x,|s|≤d

M̂
h

s (5)

the optimization procedure implemented by a wrapper strategy which relies on
the learner h to assess a feature subset. If we use a generic learner h, that is
a learner where the bias term b(s) is significantly different from zero, the M̂

h

s

quantity will be a biased estimate of the term
∫
n(s)dFs(s) and consequently of

the term Rs =
∫

(1− n(s))dFs(s) which measures the relevance of the input set
s to the output. Intuitively, the bias would be reduced if we adopted a learner
having a small bias term. Examples of low bias, yet high variance, learners
are k-nearest neighbour classifiers (kNN) for small values of k where k is the
number of neighbours taken into consideration [13]. In particular, it has been
shown in [12] that for a 1NN learner and a binary classification problem (K = 2)
limN→∞M1NN

s = 1 − Rs where M1NN
s is the misclassification error of a 1NN

learner. Consider now a cross-validated estimation M̂
1NN

s of the quantity M1NN
s .

Since cross-validation returns a consistent estimation of Mh [14] and since the
quantity Mh asymptotically converges to one minus the relevance Rs, we have
that 1− M̂

1NN

s is a consistent estimator of the relevance Rs [19]. This property
supports the intuition that the cross-validated misclassification

R̂CV
s = 1− M̂

kNN

s (6)

of a kNN learner with low k is a low biased estimator of Rs. Note that though
R̂CV

s does not tell us much about the accuracy of the learner h which will be
used for the classification, it returns an unbiased, yet high variance, estimate of
the relevance of the subset s.

The low-bias high-variance nature of the the estimator (6) suggests that the
best way to employ this estimator is by combining it with other relevance es-
timators. We will take into consideration two possible estimators to combine
with (6):

1. adirectmodel-basedestimator p̂1 oftheconditionalprobabilityProb{y=y1|s}
and consequently of the quantity r(s). Similarly to [15] we propose a non-
parametric estimator of Rs =

∫
S r(s)dFs(s) which first samples a set of N ′′

unclassified input vectors s′′i according to the empirical distribution F̂s and
then computes the quantity

R̂D
s = 1− 2

N ′′

N ′′∑
i=1

p̂1(s′′i )(1− p̂1(s′′i )) (7)
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where the size N ′′ is set by the user. Estimations of p̂1(s) may be returned
by classifiers like kNN [15], Naive Bayes, SVM or, in the case of a 0-1 classi-
fication task, by any kind of regression algorithm. Note that if we employ a
low bias estimator for p̂1 the resulting estimation R̂D

s will have low bias and
presumably high variance.

2. a filter estimator based on the notion of mutual information: several filter
algorithms exploit this notion in order to estimate the relevance. An exam-
ple is the MRMR algorithm [9] where the relevance of a feature subset s,
expressed in terms of the mutual information I(s,y) = H(y) − H(y|s), is
approximated by the incremental formulation

IMRMR(s; y) = IMRMR(si; y) + I(xi,y)− 1
m− 1

∑
xj∈si

I(xj ; xi) (8)

where xi is a feature belonging to the subset s, si is the set s with the
xi feature set aside and m is the number of components of s. Now since
H(y|s) = H(y) − I(s,y) and Gs = 1−Rs = GH(H(y|s)) we obtain that

R̂MRMR
s = 1−GH (H(y)− IMRMR(s,y))

is a MRMR estimator of the relevance Rs where GH(·) is the monotone
mapping between H and Gini index. Note that the computation of R̂MRMR

requires the estimation of IMRMR (e.g. by assuming that x and y are nor-
mally distributed) and the knowledge of the GH(·) function (e.g. by numer-
ical interpolation).

According to the ensemble of estimators principle, an improved estimator
can be derived by simply averaging R̂CV (s) with the two estimators discussed
above. This is motivated by the fact that the combination of two unbiased and
independent estimators is still an unbiased but lower variance estimator [13]. We
obtain then two aggregated estimators

R̂′
s =

R̂CV
s + R̂D

s

2
, R̂′′

s =
R̂CV

s + R̂MRMR
s

2
(9)

Note that less trivial combination mechanisms [20] could be adopted, if we
had access to the variance of the two estimates in (9).

On the basis of the quantitites defined in (9) we can define two novel feature
selection algorithms: the algorithm R’ where the selected subset is

sR′
= arg max

s⊂x,|s|≤d
R̂′

s (10)

and the algorithm R” where the selected subset is

sR′′
= arg max

s⊂x,|s|≤d
R̂′′

s (11)
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4 Experiments

The experimental session aims to show: 1) the improvement in classification
accuracy with respect to a conventional wrapper approach when the selection
is done according to the strategy R’ (Equation (10)) 2) the improvement in
classification accuracy with respect to a filter approach like MRMR when the
selection is done according to the strategy R”(Equation 11).

Since, as discussed in the introduction, each feature selection algorithm relies
on a specific search strategy and given that the search strategy is not the focus of
this paper we restrict here to consider a conventional forward search exploration
strategy [4].

The experiment uses 20 public domain microarray expression datasets detailed
in the left side of Table 12. A first dimensionality reduction step is carried out
by hierarchically clustering the variables into 1000 compressed features obtained
by averaging the probes of the same cluster. The estimators R̂CV

s and R̂D
s are

implemented by a locally constant model with the automatic adaptation of the
number of neighbours (in the range [3, 5]) [21]. Two wrapper strategies are con-
sidered: the strategy denoted by WSVM which employs a linear Support Vector
Machine (SVMLIN) and the strategy denoted by WNB which employs a Naive
Bayes (NB) learner. A three-fold cross-validation strategy is used to measure the
generalization accuracy of the feature selection strategies. In order to avoid any
dependency between the learning algorithm employed by the wrapper and the
classifier used for prediction, the experimental session is composed of two parts:

– Part 1 (summarized in Table 1): here we perform the comparison with the
wrapper WSVM and we use the set of classifiers C1 ={TREE, NB, SVM-
SIGM, LDA, LOG} which does not include the SVMLIN learner,

– Part 2 (summarized in Table 2): here we perform the comparison with the
wrapper WNB and we use the set of classifiers C2 ={TREE, SVMSIGM,
SVMLIN, LDA, LOG} which does not include the NB learner.

Note that TREE stands for a classification tree, SVMSIGM for sigmoidal SVM,
LDA for linear discriminant analysis and LOG for logistic regresssion. All the
classifiers are implemented by public domain packages of the R statistical soft-
ware.

An external cross-validation scheme [22] is used to prevent feature selection
bias in our assessment. For each fold of the cross-validation, for each selection
approach and for each classifier, once selected features are returned, the general-
ization accuracy is assessed by (i) training the classifier on the same dataset used
for feature selection and (ii) testing the trained classifier on the remaining third.
Note that because of the scarcity of the data and to avoid the bias related to the
selection of the feature set size, we average the performance over all the classifiers
and over all the feature sets whose size is ranging from d = 3 to d = 20. For the
family C1 of classifiers we compare in Table 1 the accuracy of: the strategy R’, the
2 For reasons of limited space the complete reference list of the datasets is available

in http://www.ulb.ac.be/di/map/gbonte/icann suppl.pdf
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Table 1. Left: name of the dataset, number N of samples, number n of features
and number K of classes. Right: misclassification errors (three-fold cross-validation)
averaged over the classifiers of the family C1. The left side of the table compares the
strategy R’ with a wrapper selection based on linear SVM. The right side of the table
compares the strategy R” with MRMR and the RANK strategy. On the left (right)
side the bold notation stands for significantly different from the accuracy of the R’
(R”) strategy in terms of an adjusted p-value (Holm criterion). The AVG line returns
the average of the misclassification percentages. The W/B line returns the number of
times that the technique is worse/better than R’ (R”).

Name N n K
Golub 72 7129 2
Alon 62 2000 2
Notterman 36 7457 2
Nutt 50 12625 2
Shipp 77 7129 2
Singh 102 12600 2
Sorlie 76 7937 2
Wang 286 22283 2
Van’t Veer 65 24481 2
VandeVijver 295 24496 2
Sotiriou 99 7650 2
Pomeroy 60 7129 2
Khan 63 2308 4
Hedenfalk 22 3226 3
West 49 7129 4
Staunton 60 7129 9
Su 174 12533 11
Bhattacharjee 203 12600 5
Armstrong 72 12582 3
Ma 60 22575 3

Name R’ WSVM R” MRMR RANK
Golub 0.0917 0.1177 0.1 0.1079 0.1225
Alon 0.2704 0.2658 0.2267 0.1996 0.2281
Notterman 0.1966 0.0985 0.1494 0.1472 0.1432
Nutt 0.3798 0.4171 0.3873 0.3847 0.4189
Shipp 0.1429 0.1319 0.1322 0.1362 0.1873
Singh 0.1619 0.1517 0.1266 0.1374 0.1328
Sorlie 0.3835 0.4314 0.3963 0.4004 0.3987
Wang 0.4282 0.4111 0.4218 0.4232 0.4181
Van’t Veer 0.2786 0.2638 0.2492 0.2217 0.2277
VandeVijver 0.454 0.4724 0.4365 0.4636 0.4482
Sotiriou 0.5279 0.5796 0.5351 0.5708 0.5339
Pomeroy 0.428 0.4191 0.4141 0.3876 0.4181
Khan 0.0878 0.1143 0.0582 0.0686 0.131
Hedenfalk 0.5475 0.5263 0.452 0.5273 0.5389
West 0.6463 0.6109 0.6186 0.5746 0.6109
Staunton 0.6822 0.71 0.6511 0.6865 0.7407
Su 0.2568 0.307 0.2549 0.3772 0.3352
Bhattacharjee 0.1232 0.1347 0.1105 0.1057 0.1515
Armstrong 0.1082 0.1199 0.1306 0.115 0.1122
Ma 0.2456 0.2041 0.2257 0.2413 0.2317
AVG 0.323 0.331 0.310 0.326 0.331

W/B than R’ (R”) 10/7 9/6 9/2

conventional wrapper WSVM, the strategy R”, the conventional MRMR with
Gaussian estimation of the entropy and a ranking based on the cross-validated
misclassification of the univariate learner (RANK). For the family C2 of classifiers
we compare in Table 2 the accuracy of: the strategy R’, the conventional wrapper
WNB, the strategy R”, the conventional MRMR with Gaussian estimation of
the entropy and a ranking based on the cross-validated misclassification of the
univariate learner (RANK). Each Table is partitioned in two sides: the left side
refers to the comparison of the R’ algorithm with the wrapper strategy while the
right side refers to the comparison of the R” algorithm with filter strategies. The
AVG line returns the average of the misclassification percentages. On the left
(right) side of each Table, for a given dataset and selection strategy the figure is
reported in bold notation if the accuracy of the selection method is significantly
better than the one of R’ (R”). We assume a difference as significant if the Holm
adjusted p-value returned by the permutation paired test is lower than 0.05. On
the left (right) side of each Table, the last line contains the number of times that
the selection criterion is significantly worse/better than the algorithm R’ (R”).

Two major considerations can be done

– the strategy R’ (i.e. the combination of the cross-validated assessment crite-
rion with the direct relevance estimation) outperforms the wrapper algorithm
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Table 2. Misclassification errors (three-fold cross-validation) averaged over the classi-
fiers of the family C2.The left side of the table compares the strategy R’ with a wrapper
selection based on Naive Bayes. The right side of the table compares the strategy R”
with MRMR and the RANK strategy. On the left (right) side the bold notation stands
for significantly different from the accuracy of the R’ (R”) strategy in terms of an
adjusted p-value (Holm criterion). The AVG line returns the average of the misclassi-
fication percentages. The W/B line returns the number of times that the technique is
worse/better than R’ (R”).

Name R’ WNB R” MRMR RANK
Golub 0.0886 0.1114 0.0971 0.1019 0.0904
Alon 0.2376 0.2568 0.2181 0.2109 0.221
Notterman 0.1852 0.2059 0.1491 0.1512 0.1645
Nutt 0.3929 0.3402 0.36 0.3898 0.4258
Shipp 0.1261 0.127 0.1198 0.1338 0.1734
Singh 0.1495 0.1454 0.1297 0.1377 0.1245
Sorlie 0.3848 0.4254 0.3808 0.3953 0.3838
Wang 0.4363 0.4345 0.4298 0.4281 0.4255
Van’t Veer 0.2747 0.2715 0.2421 0.2253 0.2325
VandeVijver 0.4626 0.44 0.4763 0.4721 0.4358
Sotiriou 0.5126 0.5578 0.5505 0.5732 0.5611
Pomeroy 0.4367 0.4389 0.4007 0.3902 0.4224
Khan 0.0804 0.0896 0.0628 0.0631 0.0901
Hedenfalk 0.5379 0.5187 0.4369 0.4904 0.4949
West 0.6413 0.6696 0.5542 0.5882 0.6728
Staunton 0.6689 0.8298 0.6981 0.6661 0.83
Su 0.2544 0.3096 0.2646 0.3739 0.3529
Bhattacharjee 0.1235 0.1209 0.101 0.1061 0.1186
Armstrong 0.1079 0.1668 0.125 0.1148 0.1034
Ma 0.2565 0.2635 0.2335 0.2443 0.2681
AVG 0.322 0.3335 0.315 0.327 0.331

W/B than R’ (R”) 9/2 10/3 11/2

(as shown by the 10 wins against 7 losses in Table 1 and by the 9 wins against
2 losses in Table 2);

– the strategy R” (i.e. the combination of the cross-validated assessment cri-
terion with the MRMR criterion) outperforms the MRMR algorithm (as
shown by the 9 wins against 6 losses in Table 1 and by the 10 wins against
3 losses in Table 2) as well as the conventional ranking strategy.

In summary, the cross-validated estimate of the relevance brings useful additional
information about the subset to be selected in a microarray context characterized
by high dimensionality, large noise and low number of samples.

5 Conclusion and Future Work

The paper proposes a low bias cross-validated estimator which can be effectively
integrated with other mesures of relevance. The estimated quantity can be used
by a generic search algorithm to find the subset of variables expected to provide
the highest classification accuracy. The paper assessed the effectiveness of the
approach by comparing it to a conventional wrapper and a state-of-the-art filter
approach. Future work will extend the approach in two directions: the study of
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additional relationships between cross-validation and relevance and the integra-
tion of the cross-validated relevance measure with other filter algorithms.
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Abstract. Data mining applications explore large amounts of heteroge-
neous data in search of consistent information. In such a challenging con-
text, empirical learning methods aim to optimize prediction on unseen
data, and an accurate estimate of the generalization error is of paramount
importance. The paper shows that the theoretical formulation based on
the Vapnik-Chervonenkisdimension (dvc) can be of practical interest when
applied to clustering methods for data-mining applications. The presented
research adopts the K-Winner Machine (KWM) as a clustering-based,
semi-supervised classifier; in addition to fruitful theoretical properties, the
model provides a general criterion for evaluating the applicability of Vap-
nik’s generalization predictions in data mining. The general approach is
verified experimentally in the practical problem of detecting intrusions in
computer networks. Empirical results prove that the KWM model can ef-
fectively support such a difficult classification task and combine unsuper-
vised and supervised.

Keywords: Clustering, Data Mining, K-Winner Machine, Intrusion de-
tection systems, Network security.

1 Introduction

Data mining exploits clustering methods to arrange huge amounts of data into
a structured representation, which eventually support the search for relevant in-
formation. The vast datasets and the heterogeneous descriptions of patterns set
stringent requirements on the algorithms adopted; in such data-intensive appli-
cations, empirical learning methods aim to optimise prediction on unseen data
[1]. In this regard, the formulation based on the Vapnik-Chervonenkis dimen-
sion (dvc) [2] exhibits a general, theoretical foundation endowed with the widest
validity for the accurate estimate of the run-time generalization error.

This paper shows that, in the specific case of clustering methods for data-
mining applications, those theoretical results can yet have practical significance.
Several aspects seem to favor clustering-based approaches [1]: first, data min-
ing applications are typically rich with patterns and can offer the sample size
required to tighten theoretical bounds. Secondly, the associate classifiers prove
much simpler than other approaches [1]; finally, a clustering-based classifier, the
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K-Winner Machine (KWM) model [3], has been fully characterized in compli-
ance with Vapnik’s theory. Theoretical results [3] proved that the KWM model
can set very tight bounds to generalization performance. Moreover, the model is
independent of the data dimensionality and inherently supports multi-class clas-
sification tasks [3]; these features boost the model’s application to large masses
of high-dimensional data.

The method presented in this paper applies the hybrid paradigm of the KWM
model to the complex Anomaly Intrusion Detection (AID) problem, in which
’abnormal’ events in computer networks traffic are identified by dynamically
modelling ’normal’ traffic. Clustering-based implementations of AID [4,5,6,7,8,9]
typically map the network activity into a feature space, and the cluster-based
model identifies those space portions that support the distribution of normal
traffic, whereas outliers will mark abnormal traffic activities. This research shows
that applying the hybrid paradigm of the KWM model to AID can lead to some
intriguing results from both a theoretical and an applicative viewpoint.

From a theoretical perspective, the research addresses some issues related to
the possible non-stationary distribution of observed data [10], which ultimately
gives rise to a discrepancy between the pattern distribution in the training and
the test phases. The paper formulates a general criterion to evaluate the con-
sistency and consequent applicability of Vapnik’s approach, by measuring the
discrepancy between the empirical training set and the test distribution used at
run time to control generalization performance.

From an applicative viewpoint, the major result consisted in showing that a
KWM could effectively support such a complex classification task, mainly thanks
to the model’s ability to handle multi-class data distributions. The “KDD Cup
1999” dataset [10] provided the experimental domain for testing the proposed
framework. This reliable benchmark is a common testbed for comparing the per-
formances of anomaly-detection algorithms; indeed, experimental results proved
that the KWM-based classifier outperformed other clustering-based AID’s. The
following conventions will be adopted throughout the paper:

1. C = {c(h), h = 1, ..., Nc} is the set of Nc possible pattern classes;
2. W ′ = {(wn, cn),wn ∈ RD, cN ∈ C, n = 1, ..., Nh} is a set of Nh labeled

prototypes;
3. w∗(x) = arg minw∈W ′{||x−w||2} is the prototype that represents a pattern,

x.

2 The K-Winner Machine Model

The training strategy of the KWM model develops a representation of the data
distribution by means of an unsupervised process, then builds a classifier on
top of that via some calibration process. The basic design criterion is to model
the data distribution by Vector Quantization. In the research presented here, the
Plastic Neural Gas (PGAS) [11] algorithm for Vector Quantization models the
data distribution. The PGAS approach extends the ’Neural Gas’ model [12] by
some crucial advantages: first, both the number and the positions of prototypes
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are adjusted simultaneously [11]; secondly, the training process prevents the
occurrence of ’dead vectors’ (void prototypes covering empty partitions). After
VQ training positions the codebook prototypes a calibration process [3] labels
the resulting Voronoi tessellation of the data space induced by the positions of
the prototypes. Such a process categorizes each partition/prototype according to
the predominant class; tie cases can be solved by choosing any class from among
the best candidates. A detailed outline of the KWM training algorithm is given
in [3]. Here we present in algorithm 1 the runtime operation of KWM.

Algorithm 1. The K-Winner Machine run-time operation
1: procedure KWM-forward(test pattern x; a calibrated set of Nh prototypes W ′;

error bounds, π(k), for agreement levels, k = 1, ..., Nh)
2: (Pattern Vector Quantization) Build a sorted set of prototypes, W ′′(x),

arranged in increasing order of distance from x
3: (Count concurrences) Determine the largest value of K, 1 ≤ K ≤ Nh, such

that all elements in the sequence {(wk, ck) ∈ W ∗, k = 1, 2, ..., K} share the same
calibration, c∗

4: (Determine generalization error bound) Assigne risk bound to the classifi-
cation outcome of pattern x π∗ = π(K)

5: (Output)

– Categorize x with class c∗

– Associte the prompted output with an error bound, π∗

6: end procedure

Statistical Learning Theory can apply to this framework because the KWM
model allows one to compute Vapnik’s bound to the predicted generalization
performance at the local level. In this regard, it has been proved [3] that:

1. The VC-dimension of a Nearest-Prototype Classifier that includes a code-
book of Nh prototypes is d(1)

vc = Nh.
2. The Growth function of a KWM using a codebook of Nh prototypes, Nc

classes and a sequence of K concurring elements is: GF (K)(Np) = N
�Nh/K�
c .

Generalization theory proves that a classifier’s performance is upper-bounded
by the empirical training error, ν, increased by a penalty. In the latter term,
the Growth Function [2], GF (K)(Np), measures the complexity of the fact that
the classifier has been trained with a set of Np patterns. This theory derives a
worst-case bound, π, to the generalization error of the considered classifier:

π ≤ ν +
ε

2

(
1 +

√
1 +

4ν
ε

)
(1)

where ε = 4
Np

[lnGF (Np) − lnη
4 ], and η is a confidence level. KWM theory [3]

proves that one can compute a error bound, π(k), for each agreement level, k,
and more importantly, that such a bound is a non-increasing function when
k increases. This confirms the intuitive notion that the risk in a classification
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decision about a given point should be reduced by the concurrence of several
neighboring prototypes. As a consequence of 1) and 2), unsupervised prototype
positioning sharply reduces the bounding term in (1). By contrast, the KWM
training algorithm does not provide any a-priori control over the first term (the
empirical training error). This brings about the problem of model selection,
which is usually tackled by a tradeoff between accuracy (classification error in
training) and complexity (number of prototypes).

3 Statistical Learning Theory in Data-Mining
Applications

Vapnik’s theory adopts a worst-case analysis, hence the predicted bound (1)
often falls in a very wide range that eventually lessens the practical impact of
the overall approach. However, data-mining environments typically involve very
large datasets, whose cardinality (Np >> 105) can actually shrink the complexity
penalty term down to reasonable values. Moreover the KWM model intrinsically
prevents an uncontrolled increase in the classifier’s dvc. Thus data-mining do-
mains seem to comply with basic Statistical Learning Theory quite well. On the
other hand, data-intensive applications raise the crucial issue of the stationary
nature of the pattern distribution, which is basic assumption for the applicabil-
ity itself of Statistical Learning Theory. In fact, non-stationary environments are
quite frequent in data mining, as is the case for the present research dealing with
network traffic monitoring: new attack patterns are continuously generated and,
as a result, it is impossible to maintain a knowledge base of empirical samples
up to date. Theoretical predictions, indeed, are often verified on a test set that
should not enter the training process. This is done for a variety of reasons: either
because one uses cross-validation for model selection, or because the test set is
partially labeled, or because the test set was not available at the time of train-
ing. The stationary-distribution assumption may be rephrased by asserting that
the training set instance, T = {(xT

l , cl),x
T
l ∈ RD, cl ∈ C, l = 1, ..., Np} , and

the test set instance, S = {(xS
j , cj),xS

j ∈ RD, cj ∈ C, j = 1, ..., Nu}, are identi-
cally and independently drawn from a common probability distribution, P (x, c);
otherwise, the training set is not representative of the entire population, hence
expression (1) may not provide the correct estimate of classification accuracy.

The present work proposes a general yet practical criterion to verify the con-
sistency of the generalization bounds; the method uses the VQ-based paradigm
of the KWM model to check on the stationary-distribution assumption, and
completes in three steps. First, one uses the prototypes in the trained codebook,
W , to classify training and test data. Secondly, one estimates the discrete proba-
bility distributions, T̂ and Ŝ, of the training set and of the test set, respectively;
this is easily attained by counting the number of training/test patterns that lie
within the data-space partition spanned by each prototype. Finally, one com-
putes the Kullback-Leibler (KL) divergence to measure the mutual information
between T̂ and Ŝ, and therefore decides whether the two associate samples have
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been drawn from the same distribution. In the discrete case, the KL divergence
of probability distribution, Ŝ, from the reference distribution, T̂ , is defined as:

DKL(Ŝ, T̂ ) =
Nh∑
n=1

sn log
sn

tn
(2)

where sn and tn denote the normalized frequencies associated with Ŝ and T̂ ,
respectively. Using the result, T̂ , of the training process as a reference distribu-
tion offers some advantages: it is consistent from a cognitive perspective, since
it seems reasonable to adopt an empirical model of the data distribution; in
addition, the PGAS algorithm prevents the occurrence of dead vectors during
training, hence one has: tn > 0, ∀n; finally, the partitioning schema sets a com-
mon ground for comparing the distributions of training and test patterns. The
minimum (zero) value of DKL(Ŝ, T̂ ) marks the ideal situation and indicates per-
fect coincidence between the training and test distributions. Non-null values,
however, typically occur in common practice, and it may be difficult to inter-
pret from such results the significance of the numerical discrepancies measured
between the two distributions.

The present research adopts an empirical approach to overcome this issue by
building up a ’reference’ experiment setting. First, one creates an artificial, sta-
tionary distribution, J , that joins training and test data: J := T ∪ S. Secondly,
one uses the discrete distribution J to draw at random a new training set, TJ , and
a new test set, SJ , such that TJ ∩SJ = ∅. Both these sets have the same relative
proportions of the original samples. Third, using these sets for a session of train-
ing and test yields a pair of discrete distributions, ŜJ , T̂J ; finally, one measures
the divergence (2) between the new pair of data sets, by computing DKL(ŜJ , T̂J).
The latter value provides the numerical reference for assessing the significance
of the actual discrepancy value DKL(Ŝ, T̂ ) by comparison. If the original sample
had been drawn from a stationary distribution, then the associate discrepancy
value, DKL(Ŝ, T̂ ), should roughly coincide with the value, DKL(ŜJ , T̂J), com-
puted on the artificial distribution J . In this case, the theoretical assumptions
underlying Statistical Learning Theory hold, and the bound formulation (1) can
apply. Otherwise, if one verifies that: DKL(ŜJ , T̂J) << DKL(Ŝ, T̂ ), then one
might infer that the original sampling process was not stationary, hence a direct
application of theoretical results (1) is questionable. The overall algorithm for
the validation criterion is outlined in Algorithm 2.

4 Semi-supervised Anomaly Detection in Network
Security

Commercial implementations of Intrusion Detection Systems (IDS’s) typically
rely on a knowledge base of rules to identify malicious traffic. The set of rules,
however, is susceptible to inconsistencies, and continuous updating is required
to cover previously unseen attack patterns. An alternative approach envisions
adaptive systems that maintain a model of ’normal’ traffic and generate alerts in
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Algorithm 2. Criterion for validating the applicability of theoretical bounds
1: procedure Validate(a training set including NT labeled data, xi, c(xi); a test

set including NS labeled data, xj , c(xj))
2: (Training) Apply a VQ algorithm on the training set and position the set of

prototypes: W ′ = {(wn, cn),wn ∈ RD, cN ∈ C, n = 1, ..., Nh}
3: (Probability distribution)

– Estimate the training discrete probability distribution, T̂ as follows: T̂ :=
{P (T )

n ; n = 1, ..., Nh}; where: P
(T )
n = {x(T )

i ∈ RD : w∗(x(T )
i ) = wn};

– Estimate the test discrete probability distribution, Ŝ as follows: Ŝ :=
{P (S)

n ; n = 1, ..., Nh}; where: P
(S)
n = {x(S)

i ∈ RD : w∗(x(S)
i ) = wn};

4: (Measuring mutual information)

– Compute normalized frequencies: tn = |P (T )
n |

NT
; sn = |P (S)

n |
NS

; n = 1, ..., Nh

– Compute the KL divergence between T̂ and Ŝ: DKL(Ŝ, T̂ ) =
∑Nh

n=1 sn log sn
tn

5: (Applicability of generalization theory)

– Form an artificial discrete distribution by joining training and test data J :=
T ∪ S;

– Draw from J at random a training set, TJ , and a test set, SJ , having the same
relative proportions of the original data sets;

– Repeat steps (2,3,4) by using the new pair of sets;
– If DKL(ŜJ , T̂J ) ≈ DKL(Ŝ, T̂ ) (ideally≈ 0): than Stationary nature is verified

and generalization bounds are validated; else Stationary nature is not verified
and generalization bounds are not supported empirically

6: end procedure

the occurrence of ’abnormal’ events. Thus, Anomaly Intrusion Detection (AID)
systems do not use sets of rules and are capable of time-zero detection of novel
attack strategies; to do that, they require a continuous modeling of normal traf-
fic in a dynamic, data-intensive environment. Several approaches based on data
mining techniques have been adopted for that purpose [4,5,6,7,8,9], which typi-
cally map network traffic into vector patterns spanning a D-dimensional ’feature’
space. The research presented in this paper tackles the anomaly-detection prob-
lem by means of the KWM paradigm, mainly because the hybrid KWM model,
combining unsupervised clustering with supervised calibration, seems to fit the
problem representation that characterizes the anomaly-detection task. Crucial
properties contribute to these benefits in the data-mining scenario: 1) the Growth
Function of a KWM does not depend on the number of patterns (Theorem 2);
2) the performance properties of the classifiers do not depend on the dimen-
sion of the data space: this mitigates the ’curse of dimensionality’ and boosts
applications in high-dimensional spaces; 3) the KWM paradigm is inherently a
multi-class model. In practice, the KWM model supports the anomaly-detection
framework as follows. The off-line KWM training algorithm processes an empiri-
cal set, P , of Np traffic data; each datum includes a D-dimensional feature vector
and a multiclass indicator: P = {(xl, cl),xl ∈ RD, l = 1, ..., Np}. Class labels,
cl, indicate whether pattern xl derives from normal or abnormal traffic; suspect
patterns may be further sub-classified according to the various typologies of
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attacks. This results in both a codebook W ′ of Nh labeled prototypes and a set of
error bounds, π(k), associated with increasing values of the prototype-agreement
parameter, k.

5 Performance Measurements in Network Security

The well-known “KDD Cup 1999” dataset [10, KDD] provided the experimental
domain for the proposed framework. The data spanned a 41-dimensional feature
space; each pattern encompassed cumulative information about a connection ses-
sion. In addition to “normal” traffic, attacks belonged to four principle macro-
classes, namely, “DoS” (denial-of-service), “R2L” (unauthorized access from a
remote machine), “U2R” (unauthorized access to local “super user” privileges),
“probing” (surveillance and other probing such as port scanning). For simplic-
ity, the experimental sessions in this research involved the “10% training set,”
provided by the KDDCup’99 benchmark, which had been obtained by subsam-
pling original training data at a 10% rate. The resulting training set included
494,021 patterns and preserved the original proportions among the five princi-
pal macro-categories cited above. The test set provided by the KDD challenge
contained 311,029 patterns, and featured 17 ’novel’ attack schemes that were
not covered by the training set. The pattern descriptors that took on categorical
values, most notably “Protocol” and “Service”, were remapped into a numeri-
cal representation. “Protocol” could assume three different values (TCP, UDP,
ICMP) and was therefore encoded by a triplet of bits; each element of the triplet
was associated to a protocol, and only one of those could be non-null. The “Ser-
vice” descriptor took on eleven possible values, and was remapped accordingly
into eleven mutually exclusive coordinates. In summary, the patterns forming
the eventual dataset used in the experiments included 53-dimensional feature
vectors.

5.1 Experimental Validation of Generalization Bounds

The procedure described in Section 3 allows one to verify the stationary nature
of the observed data distribution. Thus, the coverage spanned by the original
distribution (T, S) was compared with the representation supported by the ex-
haustive distribution, J = T ∪S, that approximated a stationary situation. The
artificial, reference training and test sets, TJ and SJ , were obtained by random
resampling J . The KL divergence between the training and test coverages for
both distributions (T, S) and (TJ , SJ) completed the validation process. Figure 1
reports on the empirical results obtained for increasing codebook sizes.

The results highlights two main aspects: first, the KL divergence for the orig-
inal distribution (T, S) always resulted to be much larger than the divergence
measured when training and test data were drawn from the stationary distribu-
tion (TJ , SJ).

Secondly, the sizes of the codebooks differed significantly in the two situations:
when training and test data were drawn from a common distribution, J , the
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Fig. 1. Stationary Vs Original dataset

Fig. 2. Error bounds assessment: original data, stationary distribution

probability support was wider, hence the VQ algorithm required a larger number
of prototypes to cover the data space. Conversely, original training data, T, were
drawn from a limited sector of the actual support region, thus a smaller codebook
was sufficient to represent the sample distribution.

5.2 Prediction Accuracy in Intrusion Detection

A complementary experimental perspective aimed to assess the effectiveness of
the KWM method in terms of the classification accuracy on the actual dataset
from the KDDCup’99 competition. The Vector Quantization set-up phase by us-
ing the PGAS clustering algorithm on training data indicated best performance
with a codebook of 293 prototypes and an associated digital cost of 0.54%.

Such empirical evidence, mainly due to the marked discrepancies between
training and test data sets, clearly seemed to invalidate the applicability of the
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Table 1. KWM results

ACTUAL PREDICTED
Normal Probing DoS U2R R2L % correct

Normal 59118 152 1261 1 61 97.57%
Probing 720 3179 215 0 52 76.31%

DoS 1274 154 228425 0 0 99.38%
U2R 85 136 0 4 3 1.75%
R2L 14838 25 1317 0 9 0.06%

%correct 77.75% 87.19% 98.79% 80% 7.20%

Table 2. KDD99 winner results

ACTUAL PREDICTED
Normal Probing DoS U2R R2L % correct

Normal 60262 243 78 4 6 99.5%
Probing 511 3471 184 0 0 83.3%

DoS 5299 1328 223226 0 0 97.1%
U2R 168 20 0 30 10 13.2%
R2L 14527 294 0 8 1360 8.4%

%correct 74.6% 64.8% 99.9% 71.4% 98.8%

theoretical bounds from Statistical Learning Theory for the KDD’99 dataset. As
a result, the outcome of the validation criterion was that Vapnik’s bound would
not hold for the original challenge data. For the sake of completeness, Figure 2
compares the actual classification error with the theoretical bound for the orig-
inal and the stationary distribution. The obtained results show that theoretical
predictions fail in bounding the generalization performance for the original data
sets, whereas provide good approximations when the data distribution is artifi-
cially reduced to the stationary case.

Such a conclusion gave both an empirical support and a numerical justification
to a fact that has often been reported in the literature, namely, the considerable
discrepancy between training and test patterns in the KDD dataset. Such a crit-
ical issue had been hinted at by the proponents themselves of the competition
dataset [13,14], and possibly explains the intrinsic difficulty of the challenge clas-
sification problem. In the subsequent validation phase, test data were classified,
and the resulting performance was measured by using the scoring rules adopted
for the KDD99 competition. In spite of the very low training error, the test error
rate was 6.52%. In view of the discussion presented in the previous Section, such
a phenomenon seems depend on the non-stationary nature of the data distribu-
tion underlying the original challenge datasets. Table 1 compares the confusion
matrix for the obtained results with the corresponding matrix for the winning
method [13]. When applying the error-weighting scheme of the KDD99 compe-
tition [14], the KWM-based approach achieved a score of 0.2229, which slightly
improved on the result attained by the winner method, which scored 0.2331.
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Such a result seems to be interesting especially in view of the semi-supervised
nature of the proposed approach, as compared with the winning method that
adopted a fully supervised strategy (decision trees) and therefore was subject to
less stringent bounds to the predicted generalization performance.
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Abstract. We recently introduced the Random Forest - Recursive Fea-
ture Elimination (RF-RFE) algorithm for feature selection. In this paper
we apply it to the identification of relevant features in the spectra (fin-
gerprints) produced by Proton Transfer Reaction - Mass Spectrometry
(PTR-MS) analysis of four agro-industrial products (two datasets with
cultivars of Berries and other two with typical cheeses, all from North
Italy). The method is compared with the more traditional Support Vec-
tor Machine - Recursive Feature Elimination (SVM-RFE), extended to
allow multiclass problems. Using replicated experiments we estimate un-
biased generalization errors for both methods. We analyze the stability
of the two methods and find that RF-RFE is more stable than SVM-
RFE in selecting small subsets of features. Our results also show that
RF-RFE outperforms SVM-RFE on the task of finding small subsets of
features with high discrimination levels on PTR-MS datasets.

1 Introduction

Proton Transfer Reaction - Mass Spectrometry (PTR-MS) [1] is a spectrometric
technique with a growing number of applications ranging from medical diagnosis
to environmental monitoring [2]. It allows fast, non-invasive, time-continuous
measurements of volatile organic compounds (VOCs). These compounds play
a relevant role in food and agro-industrial applications. They are related to
the real or perceived quality of food and to its sensory characterisation, and
they are emitted during most transformation/preservation processes. Among the
applications of PTR-MS based classification in food science and technology, we
can cite the detection of the effect of different pasteurisation processes of fruit
juices [3], the classification of strawberry cultivars [4] or the characterisation of
Italian ‘Grana’ cheeses [5].

Here PTR-MS is used to produce a fingerprint of each sample in the form of a
spectrum vector whose components are the intensities of the spectrometric peaks

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 42–51, 2008.
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at different m/z ratios. Each PTR-MS spectrum can contain up to 500 m/z val-
ues. Although this is a relatively low number compared with other spectrometric
or spectroscopic approaches, the number of analysed samples per class is usually
low in the experimental practice, introducing issues similar to the ones faced in
the classification of high-throughput microarray and proteomic data. Moreover,
due to the absence of separation, each peak in the spectrum can be related to
one or more compounds. The identification of small sets of relevant features for
the food product under analysis is of interest for several operative reasons: in
particular, we focus on the identification of few relevant ‘quality’ markers that
can be measured in a simple, fast and cheap way or to concentrate to a few
relevant masses the identification efforts needed to compensate for the lack of
separation. There are indications that PTR-MS features can be related to ge-
netic aspects [4] or to sensory characteristics of food [6] and thus classification
based on PTR-MS data could provide a tool to better investigate these fields,
possibly providing a link between sensory and genetics.

In this application domain, we introduce instruments from the recent feature
selection literature [7,8,9]. As a general taxonomy, the feature selection mech-
anism may be implemented into the learning algorithm in embedded methods,
while wrapper methods directly consider the classifier outputs as in a black box
approach. In both cases, care is required to avoid overfitting during the selec-
tion process (the bias selection problem [10]), particularly in real applications
on small datasets. The use of resampling methods within a complete validation
setup is a typical strategy to avoid these problems [11].

The SVM-RFE algorithm [9] introduced a ranking of the features within Sup-
port Vector Machine classifiers by Recursive Feature Elimination (RFE). This
strategy found several applications in Bioinformatics[12] and also in Quantita-
tive Structure Activity Relationship (QSAR)[13]. The SVM-RFE is often used
in practice with linear SVMs, and it can easily be extended from binary to multi-
class classification problems. We developed the alternative RF-RFE method[14],
which basically replaces SVM with Breiman’s Random Forest (RF)[15] into the
core of the RFE method. RF is a natural multiclass algorithm with an internal
unbiased measure of feature importance, and we may use such internal measure
for ranking masses for relevance in discrimination. In this paper, we apply the
two feature selection and classification methods and compare their performances
in indicating highly discriminative masses for PTR-MS multiclass data.

A usually neglected problem in feature selection methods is the instability of
the selection process [16]. Quite different ranked lists of features may be obtained
for classifiers developed on slightly different data replicates, as typically observed
in functional profiling from microarray data. In the last part of this paper we
compare the stability of the two proposed versions of the RFE algorithm.

The article is organized as follows: in Section 2, we describe the full feature
selection schemes for RF-RFE and SVM-RFE. In Section 3 we compare both
methods on the four real PTR-MS datasets and in Section 4 we discuss the
stability of the solutions. Finally, we draw some conclusions in Section 5.
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2 The Feature Selection Setup

A feature selection method that uses (in any way) information about the tar-
gets may lead to overfitting, in particular with the very low samples-to-features
ratios typical of spectrometric experiments. Thus, in order to obtain unbiased
estimates of the prediction error with small PTR-MS datasets, feature rank-
ing and selection should be included in the modelling, and not treated as a
pre-processing step; moreover, we need to appropriately decouple selection from
error estimation [10].

Learning
Set i

Test
Set i

Modeling:
RF - SVM

Features
Subset i

Test Error i

Feature 
selection:
RF-RFE

SVM-RFE

Fig. 1. The computational setup used for the feature selection process

We use a computational setup consisting of two nested processes. The outer
loop performs n times a random split of the dataset in a training set (used to
develop the models – including the feature selection step), and in a test set, used
to estimate the accuracy of the models. The inner process (Figure 1) supports
the selection of nested subsets of features and the development of classifiers
over these subsets (using only the learning subset provided by the outer loop).
The results of the n replicated experiments are then aggregated to obtaine a
comprehensive feature ranking and accuracy estimation.

The RFE selection method [9] is basically a recursive process that ranks fea-
tures according to some measure of their importance. At each iteration feature
importances are measured and the less relevant one is removed. The (inverse)
order in which features are eliminated is used to construct a final ranking. The
feature selection process itself consists only in taking the first n features from
this ranking.

The original SVM-RFE method was developed to select features in a binary
classification problem. Between the various strategies for solving multiclass prob-
lems with binary classifiers [17,18], we choose the One-vs-One method to extend
SVM-RFE to handle multiclass datasets. In this case, a problem with c classes
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Table 1. Details of the four dataset. The columns ‘min #’ and ‘max #’ show the min
or max number of samples per class in the corresponding dataset. The last column
shows the number of production years included in the dataset.

Dataset min m/z max m/z Samples Classes min # max # Years

Strawberry 20 250 233 9 21 30 3

Raspberry 20 250 92 5 17 19 2

Nostrani 20 259 48 6 8 8 1

Grana 20 259 60 4 15 15 1

is decomposed into p = c(c − 1)/2 binary problems. To solve each problem we
train a linear SVM [19], obtaining p decision functions

Di(x) = xwi i = 1...p. (1)

The weight vectors wi corresponding to all binary problems are then averaged

W =
1
p

p∑
i=1

wi (2)

and the components of W are used for ranking the features. In all our experi-
ments we use a fixed value of C = 100, following [9]. We performed a series of
experiments on PTR-MS datasets using different C values, finding that on our
particular data the results are almost independent of the value of C. It must be
noted that other datasets could require a full tunning of this parameter [20].

In a previous work [14] we introduced Random Forest - Recursive Feature
Elimination (RF-RFE). We showed how RF’s internal measure of features im-
portance can replace SVM weights for features ranking. Also, as RF makes use
of Out-of-Bag subsets to estimate the importances, computational efforts are not
increased. Moreover, RF was developed as a multiclass algorithm, which suggests
it could provide a better measure of importance for this kind of problems.

3 Results

We considered four datasets. The first two refer to cultivar characterization of
berry fruits (Strawberries[4] and Raspberries) and the last two to typicality
assesment of cheeses (Nostrani[21] and Grana[6]). All products come from Trento
Province, North Italy, or other places in the same area. Table 1 shows details
of each dataset. In all cases the headspace composition of the samples has been
measured by direct injection in a PTRMS apparatus (experimental details can be
found in previous papers[3,4]). Each sample was then associated to its PTR-MS
spectrum normalised to unit total area.
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Fig. 2. Mean classification errors for SVM-RFE and RF-RFE on the Strawberry
dataset. Bars show one standard deviation evaluated over 100 replications.
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Fig. 3. Mean classification errors for SVM-RFE and RF-RFE on the Raspberry
dataset. Bars show one standard deviation evaluated over 100 replications.

For all cases we replicated the feature selection process on n = 100 runs. For
each run, we split the dataset at random into train/test sets with a 75%/25% pro-
portion, stratifying on class frequencies. The train set is used for RF-RFE and
SVM-RFE to select features and to develop models, which are then evaluated on
the test set. It is important to note that the 100 runs are not completely inde-
pendent of each other, because there is a considerable overlap amongh any pair of
train sets or any pair of test sets. The results obtained from this kind of replicated
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Fig. 4. Mean classification errors for SVM-RFE and RF-RFE on the Nostrani dataset.
Bars show one standard deviation evaluated over 100 replications.
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Fig. 5. Mean classification errors for SVM-RFE and RF-RFE on the Grana dataset.
Bars show one standard deviation evaluated over 100 replications.

experiments on wide datasets usually do not have statistical significance, they are
only strong indications of the espected behaviour of the different methods.

3.1 Modeling Error

In Figure 2 we compare both selection methods on the Strawberry dataset.
We show mean classification errors (± one standard deviation) for RF or SVM
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Table 2. Mean inter-quartile distances (MIQ) (×102) for different models and subsets
size. The first 2 columns show RF and SVM MIQ for the 10 features with the highest
median ranking. The following columns show the same results for 50 m/Z values and
for the full sets.

m/Z values 10 50 All

RF SVM RF SVM RF SVM

Strawberry 1.4 1.9 3.6 5.7 10.9 9.7

Raspberry 2.5 5.5 12.1 10.0 30.3 17.0

Nostrani 3.9 4.9 10.4 13.2 21.6 19.0

Grana 4.6 6.4 18.3 19.1 30.8 26.3

models adjusted on subsets of different sizes selected with the corresponding
RFE methods. In this case RF-RFE clearly outperforms SVM-RFE when using
only a few masses. Both methods have a similar behaviour for more than 11
features, reaching their minimum modeling error with around 35 features. This
minimum error level is very similar for both methods, with a small edge for
SVM. In Figure 3 we show the corresponding results for the Raspberry dataset.
RF-RFE shows lower mean errors than SVM-RFE for all subset sizes in this
case. The differences between both methods are the biggest of the four datasets
under evaluation.

The same analysis was repeated for the cheeses datasets, Figures 4 and 5.
The results for the Nostrani dataset are similar to the Raspberry ones. RF-RFE
again shows lower mean errors than SVM-RFE for all subset sizes. It reaches the
minimum mean error with ∼ 50 features. For the Grana dataset (Figure 5), both
methods show the same behaviour for small size subsets. But in this case SVM-
RFE outperforms RF-RFE with bigger subsets, reaching the minimum mean
error for 17 features subsets.

3.2 Complexity

Both algorithms showed comparable execution times. In our experiments on
PTR-MS datasets, RF-RFE was in all cases slightly heavier than SVM-RFE,
with running times ranging from 1.2 to 1.9 of the corresponding times for SVM-
RFE, but these ratios are clearly problem-dependent. Also, any tunning of the C
parameter of SVMs should increase the running time of SVM-RFE considerably.

3.3 Stability

As feature selection methods are unstable[16], each replicate of the selection
process gives a different ranking. This means that the error levels showed in
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Figures 2 to 5 are only indications of the expected behavior of both methods,
which cannot be associated with a particular subset. Of course, a higher stability
of the selection method helps in the identification of the most relevant features,
because rankings are more similar in that case. In order to measure the stability
of both methods we assign relative ranking positions to each feature with a linear
scale between 1 (first) and 0 (last). An ideal (totally stable) selection method
should returns the same value for each feature in all replicates. On the opposite,
a completely unstable method should return a random value in [0 : 1]. Thus,
the dispersion of the distribution of this relative ranking (measured over the 100
replications) is correlated with the instability of the selection method.

In Table 2 we show the mean inter-quartile distances (MIQ) of these dis-
tributions evaluated on different subsets of features. For the 10 and 50 most
relevant features for classification RF-RFE values are clearly smaller than SVM-
RFE ones. Only in the Raspberry dataset with 50 features SVM-RFE shows a
smaller MIQ than RF-RFE. For the full sets, SVM selections are always more
stable, but this fact has low influence in the selection of the most relevant m/Z
values.

4 Conclusion

In this paper we used RF-RFE (coupled with replicated experiments) for fea-
ture selection on PTR-MS datasets, and compared it with SVM-RFE. Feature
selection methods can be evaluated at least on two aspects, their capacity to
find the smallest subset with a given error level, or to find the minimum possible
error without caring about the number of selected features. For the first task
we showed that RF-RFE has similar or better performance than SVM-RFE in
all four datasets. For the second one, RF-RFE showed similar or better perfor-
mance than SVM-RFE in 3 out of the 4 datasets under analysis. Furthermore,
we compared the stability of the selected features, an usually neglected aspect of
the feature selection process. We showed that RF-RFE is more stable then SVM-
RFE in selecting the most relevant features for discrimination. Overall, RF-RFE
seems to be more appropriate than SVM-RFE for fingerprinting agroindustrial
products with PTR-MS.

Work in progress includes the use of other multiclass strategies or non-linear
extensions in the SVM-RFE method, the analysis of more agroindustrial prod-
ucts and the identification of the compounds associated with the selected masses.
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Abstract. In order to design probabilistic neural networks in the frame-
work of pattern recognition we estimate class-conditional probability dis-
tributions in the form of finite mixtures of product components. As the
mixture components correspond to neurons we specify the properties of
neurons in terms of component parameters. The probabilistic features
defined by neuron outputs can be used to transform the classification
problem without information loss and, simultaneously, the Shannon en-
tropy of the feature space is minimized. We show that, instead of di-
mensionality reduction, the decision problem can be simplified by using
binary approximation of the probabilistic features. In experiments the
resulting binary features improve recognition accuracy but also they are
nearly independent - in accordance with the minimum entropy property.

Keywords: Probabilistic neural networks, Feature extraction, Multi-
variate Bernoulli mixtures, Subspace approach, Recognition of numerals.

1 Introduction

It is a common experience that statistical classification methods usually do not
perform well in multidimensional spaces. For this reason feature selection or fea-
ture extraction is generally accepted to reduce dimensionality of multivariate
problems of pattern recognition. However, the description reduced to a small
number of highly informative variables is not the only way to simplify decision
making. In biological neural networks, the higher level neurons of ascending
neural pathways tend to respond to increasingly complex and specific input pat-
terns. In this way the meaning of strongly interrelated low-level input signals
may be coded by labels (indices) of output channels which respond nearly ex-
clusively. In such a case any further decision making becomes superfluous since
the classification problem is actually solved by the extracted features alone.

Formally, in multi-layer neural networks, the output of each neuron can be
viewed as a feature extracted from the respective input layer. Despite the obvious
importance of the extracted features, the decision-making aspects are rarely
subject of neural network research. If necessary the choice of features for neural
networks is usually optimized independently by means of standard approaches.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 52–61, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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It appears that, in the framework of neural networks, feature extraction is rather
considered as a problem of mapping data from a high-dimensional space onto a
lower-dimensional one. Let us mention in this connection e.g. the self-organizing
map of Kohonen [7,14] or the distance preserving mapping of Sammon [17].
On the other hand the most widely used back-propagation training algorithm
extracts the optimal features implicitly without any special criteria.

In this paper we discuss the properties of features automatically produced by
probabilistic neural networks (PNN). The standard reference to PNN is the paper
of Specht [19] which is closely related to Parzen estimates of probability density
functions. The non-parametric Parzen estimates are asymptotically unbiased
and consistent but, in multidimensional applications, their properties strongly
depend on the choice of smoothing parameters. The PNN concept of Specht may
considerably save training time but, on the other hand, the resulting PNN has
to include one neuron for each training pattern. For this reason the computation
may become awkward in case of large training data sets but also the principle
is hardly interpretable from biological point of view.

In the following we refer mainly to our papers on PNN (cf. [3] - [11]) based on
finite mixtures of product components. The main idea of mixture-based PNN is
to view the components of mixtures as formal neurons. Estimating the mixture
parameters by means of EM algorithm [1,15,18] we define the outputs of neu-
rons and the properties of the corresponding features. We have shown that the
features extracted by PNN can be used to transform the classification problem
without information loss [3,4,21]. Simultaneously the Shannon entropy of the
feature space is minimized.

In multidimensional spaces the features defined in terms of a posteriori prob-
abilities tend to behave as binary variables. Typically, the maximum a posteriori
probability is near to one and the others are close to zero. We have used this
property for a natural binary approximation of the probabilistic features by
means of Bayes decision function. It has been verified in [9] that the information
loss caused by the binary approximation of a posteriori probabilities is bounded
by the approximation error [9]. In the paper [8] we have shown that indepen-
dently computed binary feature vectors can be combined in parallel in order to
increase the recognition accuracy. In Section 3 we show that a more liberal bi-
nary approximation based on a threshold value is even more successful in terms
of recognition accuracy. Moreover, the resulting binary features appear to be of
low statistical complexity. As opposed to standard feature selection methods our
approach tends to emphasize simplicity of features rather than to reduce their
number. The properties of binary features have been verified in several numeri-
cal experiments with differently complex mixtures. The recognition accuracy in
the feature space was better in all experiments. Moreover, the resulting binary
features appear to be nearly independent.

The paper is organized as follows. In Section 2 we first summarize basic proper-
ties of the mixture-based PNN. In Section 3 we recall the concept of information
preserving transform and introduce the proposed binary probabilistic features.
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The properties of the features are illustrated by a numerical example in Section
4. Finally, we summarize the results in the Conclusion.

2 Mixture Based Probabilistic Neural Networks

The concept of mixture-based PNN has been proposed in the framework of
statistical pattern recognition (cf. [3] - [11]). Considering a finite set of classes Ω
we assume that some vectors x from a multidimensional space X occur randomly
with a priori probabilities p(ω) according to the class-conditional probability
distributions P (x|ω). Thus, given the probabilistic description

{P (x|ω)p(ω), ω ∈ Ω}, x = (x1, . . . , xN ) ∈ X , Ω = {ω1, ω2, . . . , ωK} (1)

we can compute the a posteriori probabilities of classes

p(ω|x) =
P (x|ω)p(ω)

P (x)
, P (x) =

∑
ω∈Ω

P (x|ω)p(ω) (2)

for the sake of Bayesian decision making. In this way the problem reduces to
estimating the class-conditional distributions P (x|ω), ω ∈ Ω. Unlike similar pa-
pers on PNN (cf. [16,20,22]) we approximate the unknown distributions by finite
mixtures of product components

P (x|ω) =
∑

m∈Mω

F (x|m)f(m) =
∑

m∈Mω

f(m)
∏

n∈N
fn(xn|m), N = {1, . . . , N}.

(3)
Here F (x|m) denote the component specific product distributions, f(m) ≥ 0 are
probabilistic weights, Mω are the component index sets of different classes and
N is the index set of variables. For the sake of simplicity we assume consecutive
indexing of components. Hence, for each component index m ∈Mω the related
class ω ∈ Ω is uniquely determined and therefore the parameter ω can be omitted
in the components F (x|m)f(m).

A typical feature of the probabilistic approach to neural networks is the com-
plete interconnection of neurons with all input variables. In order to avoid the
biologically unnatural complete interconnection property we have proposed the
concept of structural mixtures [3,6,8,10]. In particular we define the product
mixture in the form

P (x|ω) =
∑

m∈Mω

F (x|0)G(x|m,φm)f(m), F (x|0) =
∏

n∈N
fn(xn|0) (4)

where F (x|0) is a fixed “background” probability distribution usually defined as
a product of unconditional marginals and the component functions G(x|m,φm)
include binary structural parameters φmn :

G(x|m,φm) =
∏

n∈N

[
fn(xn|m)
fn(xn|0)

]φmn

, φmn ∈ {0, 1}. (5)
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The main motivation for the structural mixture model is the possibility to cancel
the background probability distribution F (x|0) in the Bayes formula since then
the decision making may be confined only to “relevant” variables. Introducing
notation

wm = p(ω)f(m), m ∈Mω, ω ∈ Ω (6)

and using substitution (3), we can write

P (x) =
∑

m∈M
F (x|0)G(x|m,φm)wm, M =

⋃
ω∈Ω

Mω = {1, . . . ,M}. (7)

Further, considering the conditional component weights

q(m|x) =
F (x|m)wm

P (x)
=

G(x|m,φm)wm∑
j∈MG(x|j, φj)wj

, m ∈M (8)

we can write

p(ω|x) =
P (x|ω)p(ω)

P (x)
=

∑
m∈Mω

G(x|m,φm)wm∑
j∈MG(x|j, φj)wj

=
∑

m∈Mω

q(m|x). (9)

Thus the posterior probabilities p(ω|x) become proportional to the respective
weighted sums of the component functions G(x|m,φm), each of which can be
defined on a different subspace. Consequently, the input connections of a neuron
can be confined to an arbitrary subset of input neurons or, in biological terms,
the “receptive fields” of neurons can be specified without any constraint.

The structural optimization of PNN can be included into the EM algorithm.
Confining ourselves to binary variables xn ∈ {0, 1}, we can write:

fn(xn|m) = θxn
mn(1− θmn)1−xn , n ∈ N , m = 0, 1, . . . ,M, (10)

F (x|0) =
∏

n∈N
θxn
0n (1− θ0n)1−xn , (θ0n = P{xn = 1}), (11)

G(x|m,φm) =
∏

n∈N

[(
θmn

θ0n

)xn
(

1− θmn

1− θ0n

)1−xn
]φmn

. (12)

The mixture parameters f(m), θmn, and the structural parameters φmn can be
optimized simultaneously by means of the EM algorithm (cf. [2,6,8,10]). Given
a training set of independent observations from the class ω ∈ Ω

Sω = {x(1), . . . ,x(Kω)}, x(k) ∈ X ,
we obtain the maximum-likelihood estimates of the mixture (2) by maximizing
the log-likelihood function

L =
1
|Sω|

∑
x∈Sω

logP (x|ω) =
1
|Sω|

∑
x∈Sω

log

[ ∑
m∈Mω

F (x|0)G(x|m,φm)f(m)

]
.

(13)
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For this purpose the EM algorithm can be modified as follows:

f(m|x) =
G(x|m,φm)f(m)∑
j∈Mω

G(x|j, φj)f(j)
, x ∈ Sω , m ∈Mω, n ∈ N , (14)

f
′
(m) =

1
|Sω|

∑
x∈Sω

f(m|x), θ
′
mn =

1
|Sω|f ′(m)

∑
x∈Sω

xnf(m|x), (15)

γ
′
mn = f

′
(m)

[
θ
′
mn log

θ
′
mn

θ0n
+ (1 − θ′

mn) log
(1− θ′

mn)
(1− θ0n)

]
, (16)

φ
′
mn =

{
1, γ

′
mn ∈ Γ

′
,

0, γ
′
mn �∈ Γ

′
,
, Γ

′ ⊂ {γ′
mn}m∈Mω n∈N , |Γ ′ | = r. (17)

Here f
′
(m), θ

′
mn, and φ

′
mn are the new iteration values of mixture parameters and

Γ
′

is the set of a given number of highest quantities γ
′
mn. The iterative equations

(14)-(17) generate nondecreasing sequence of values of the log-likelihood function
(13) converging to a possibly local maximum (cf. [2,6]).

3 Information Preserving Features

Let us recall that the component distributions F (x|m) naturally introduce an
additional “descriptive” decision problem [3,4] with a priori probabilities wm

(cf. (6), (7)). In this sense each component of the mixture (7) may correspond
to an elementary situation or property. Given a vector x ∈ X , the presence
of elementary properties can be characterized by the conditional probabilities
q(m|x) (cf. (8)) and also there is a simple relation (9) between the a posteriori
probabilities of the primary- and descriptive decision problem.

In the framework of statistical pattern recognition the most essential aspect of
any transform is to preserve original decision information contained in the input
space X . It has been shown (cf. [3]) that the Shannon information I(X ,M)
about the descriptive decision problem on X is automatically preserved by any
transform

T : X → Y, Y ⊂ RM , T (x) = (T 1(x),T2(x), . . . ,TM (x)) ∈ Y (18)

defined by Eqs.

ym = Tm(x) = ϕm(q∗(m|x)), x ∈ X , m ∈M (19)

where q∗(m|x), (cf. (8)) are the true conditional probabilities given x ∈ X and
ϕm are one-to-one mappings of the closed interval [0, 1] into the real line R. The
transformation (19) preserves Shannon information in the sense that

I(X ,M) = I(Y,M) (20)
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and simultaneously the entropy of the transformed distribution

H(Y) =
∑
y∈Y

−Q(y) logQ(y), Q(y) = P (T−1(y)) (21)

is minimized over the class of all transforms T satisfying (20).
It is easily verified that, in view of (9), the transform (19) also preserves the

decision information I(X , Ω) = I(Y , Ω). Roughly speaking, the transform T
“unifies” the points x ∈ X with the same posterior distributions q∗(.|x). In the
paper [4] the proof of the above assertions relates to discrete variables, a gener-
alization to continuous case can be found in [21]. In the paper [5] we have shown
that, choosing ϕm as logarithm, we obtain information preserving transform T
which is fault-tolerant in the sense that bounded approximation inaccuracy may
cause only bounded information loss. In particular, let the coordinate functions
Tm(x) satisfy for some δ > 0 and ε > 0 the inequality

|Tm(x)− ln[q∗(m|x) + f∗(m)δ]| < ε, m ∈ M, x ∈ X (22)

where asterisk denotes true values. Then the information loss accompanying the
transform T is bounded by the inequality

I(X ,M)− I(Y ,M) = H(M|Y)−H(M|X ) < δ + 2ε (23)

where H(M|X ), H(M|Y) are the corresponding conditional entropies (for proof
cf. [5]). It can be seen that for ε and δ approaching zero inequality (22) implies
the information preserving property (20).

The condition (22) suggests the fault-tolerant transform

ym = Tm(x) = log [q(m|x) + f(m)δ] , x ∈ X , m ∈M (24)

with the estimated values q(m|x), f(m). Let us note that the positive constant
f(m)δ avoids possible singularities occurring near the zero point q(m|x) = 0.
However, even if we use the more practical form (24) of the transform T , the
computational properties of the resulting features appear to be poor. As the
probabilistic features ym are real, we have to use a probability density model.
However, the otherwise efficient normal mixture does not seem to be suitable to
describe the properties of the transformed space Y . In our numerical experiments
the recognition accuracy based on the probabilistic feature vectors (24) was
always essentially worse than in the input space X .

In multidimensional spaces the conditional probabilities q(m|x) behave nearly
binary, i.e. one of them is near one and the remaining values are near zero. This
property suggests a natural possibility of binary approximation. In the previ-
ously published experiments (cf. [8,9]) the binary approximation was defined by
means of the Bayes decision function with only one unit per output vector. Con-
sequently, in this case, the recognition accuracy based on the binary features is
approximately the same as in the sample space. In the paper [8] we succeeded to
improve the recognition accuracy by combining independent solutions in parallel.
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In this paper we apply a less rigorous principle to define the binary output
variables. Instead of the Bayes decision function we use a very low threshold
with the aim to include additional information about possible ties. In particular,
we define

ym = Tm(x) =
{

1, q(m|x) ≥ θ,
0, q(m|x) < θ,

0 < θ � 1. (25)

The positive threshold θ has been chosen very low (θ ≈ 10−6 − 10−8) in order
to detect possible latent alternatives of the given maximum. In this way we
succeeded to improve the recognition accuracy in all numerical experiments with
handwritten numerals.

4 Numerical Example

In computational experiments we have applied the proposed PNN to the NIST
Special Database 19 (SD19) containing about 400000 handwritten digits (see
also [11]). The SD19 numerals have been widely used for benchmarking of clas-
sification algorithms. As it appears, in literature there is no generally accepted
partition of SD19 into the training and testing data set. Unfortunately, the orig-
inal report [12] recommends for test purposes the data set which differs from the
training data in origin and size. For this reason, in order to guarantee the same
statistical properties of both the training and testing data sets, we have used
the odd samples of each class for training and the even samples for testing.

In our experiments we have normalized all digit patterns to a 32x32 binary
raster. The conditional distributions P (x|ω) have been estimated in the original
sample space (dimension N=1024) without any preliminary feature extraction
or feature selection. In order to increase the natural variability of data we have
extended the training data set four times by making three differently rotated
variants of each digit pattern (by -10,-5,+5 degrees). The same principle has
been applied to independent test sets. For the sake of the final test of accuracy
each digit pattern has been classified by summing first the four a posteriori
distributions computed for the respective pattern variants.

By using the training data we have estimated in several experiments the class-
conditional mixtures of different complexity by means of the EM algorithm of
Sec. 2. The EM algorithm has been stopped by the relative increment threshold
10−3 implying several tens (10÷40) of EM iterations. The initial number of mix-
ture components was always the same in all classes but some of the components
have been suppressed in the course of iterations. For each experiment (first row)
the final number of components is given in the second row of Tab.1. Unlike Eq.
(17) the structural parameters φmn have been chosen in each iteration by using
the computationally more simple thresholding:

φ
′
mn =

{
1, γ

′
mn ≥ 0.1γ

′
0,

0, γ
′
mn < 0.1γ

′
0,
, γ

′
0 =

1
|Mω|N

∑
m∈Mω

∑
n∈N

γ
′
mn. (26)

The threshold value 0.1γ
′
0 is relatively low and therefore in each component only

the really superfluous variables have been omitted. The resulting total number
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Table 1. Classification accuracy. Recognition of numerals from the NIST SD19 data-
base. Classification error in % obtained by different methods and for differently complex
mixtures, in comparison with feature space.

Experiment No.: 1 2 3 4 5 6 7

Number of Components 100 200 357 494 695 1119 1382

Number of Parameters 96046 174547 243293 272302 533628 574159 1027691

Number of Parameters [in %] 93.8 85.2 66.5 53.8 75.0 50.1 72.6

Mean Number of Units in y 1.22 1.27 1.32 1.26 1.44 1.39 1.50

Log-Likelihood (Input Space) -295.8 -277.1 -265.8 -259.4 -242.0 -239.8 -235.3

Log-Likelihood (Features) -6.21 -7.15 -7.95 -8.14 -9.19 -9.48 -10.09

Recognition Accuracy

Error [in %] (Input Space) 5.46 3.94 3.24 2.95 2.52 2.21 2.12

Error [in %] (Features) 5.21 3.82 3.17 2.74 2.46 2.10 2.08

of component specific variables is given in the third row of Table 1. In the fourth
row the same number is expressed relatively in % of the “full” mixture model.

The next row of Table 1 illustrates the functioning of the threshold θ in Eq.
(25). It can be seen that the value θ ≈ 10−6− 10−8 generates the second unit in
about 20% - 50% of binary feature vectors. The influence of the chosen threshold
value on the resulting classification accuracy is rather limited.

Another important aspect of the information preserving features is the mini-
mum entropy property (cf. (20), (21)). Let us recall in this connection that the
log-likelihood function (13) can be viewed as a sample estimate of the corre-
sponding entropy. In particular, we can write

lim
|Sω|→∞

1
|Sω |

∑
x∈Sω

logP (x) = lim
|Sω|→∞

∑
x∈X

P̃ (x) logP (x) ≈ −HP (X ) (27)

where P̃ (x) denotes the relative frequency of x in Sω . Thus, with the aim to
illustrate the decrease of entropy, we have computed the log-likelihood criterion
for the independent test set both in the sample space X (row 6) and in the space
of transformed features Y (row 7). It can be seen that in the binary feature space
the log-likelihood values are much greater, i.e. the corresponding entropy is much
less than in the sample space X . Moreover, it appears that for each class the
considered binary features are nearly independent. In all experiments we have
used only one component to estimate the class-conditional binary distributions
Q(y|ω) in the feature space Y . In case of two or more components the classifi-
cation accuracy was the same or even worse. This observation corresponds well
with the assumption of class conditional independence of variables.

The last two rows of Tab.1 compare the recognition performance in the sample
space X and in the feature space Y. As it can be seen, the recognition accuracy
based on the proposed binary features is slightly better in all experiments and
improves with increasing model complexity.
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5 Conclusion

Considering PNN in the framework of statistical pattern recognition we obtain
formal neurons defined by means of component parameters of the estimated
class-conditional mixtures. The output variables of neurons can be viewed as
features having some useful theoretical properties. The probabilistic features
extracted by PNN can be used to transform the classification problem without
information loss while keeping the entropy of the output space to be minimum.
We have shown that even a simple binary approximation of probabilistic features
is capable of improving the recognition accuracy - when estimating the class-
conditional distributions of binary features again. The method simplifies decision
making by reducing the feature complexity rather than dimensionality of the
problem. In numerical experiments the resulting binary features appear to be
almost conditionally independent with respect to classes since the conditional
mixtures with one component yield the best recognition accuracy.

The purpose of the numerical experiments has been to illustrate the proper-
ties of the proposed approach, no validation data sets have been considered for
optimization of the model complexity and of the underlying feature thresholds.
In general, the recognition accuracy increases with the model complexity and is
slightly better in the space of the extracted features.
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Abstract. In this paper we show that the correlation integral can be de-
composed into functions each related to a particular point of data space.
For these functions, one can use similar polynomial approximations as
used in the correlation integral. The essential difference is that the value
of the exponent, which would correspond to the correlation dimension,
differs in accordance to the position of the point in question. Moreover,
we show that the multiplicative constant represents the probability den-
sity estimation at that point. This finding is used for the construction
of a classifier. Tests with some data sets from the Machine Learning
Repository show that this classifier can be very effective.

1 Introduction

The correlation dimension [7], [11] as well as other effective dimensions - Haus-
dorff, box-counting, information dimension [9], [14] - are used to study features
of different fractals and data generating processes. For estimation of the value
of the correlation dimension in a particular case, linear regression is often used
for logarithms of variables [7]. We write it in the form

ln(s) = ln(C) + υ ln(rs), s = 1, 2, . . . (1)

Here, v is a correlation dimension, s is index of binate distances such that s = 1
for the shortest, s = 2 for the second shortest binate distance and so on, and C
is a multiplicative constant in original polynomial relation

s = Crυ
s , s = 1, 2, .... (2)

Constant C has no particular meaning.
In this paper we show that the correlation integral can be decomposed into

functions related to particular points of data space. For these functions, one can
use similar polynomial approximations as given by (2). The value of exponent
q, which corresponds to the correlation dimension v, differs in accordance with
the position of point x in question. Moreover, we show that the multiplicative
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constant C in these cases represents the probability density estimation at point
x. This finding is used to construct a classifier. Tests with some data sets from
the Machine Learning Repository [10] show that this classifier can have a very
low classification error.

2 Decomposition of Correlation Integral

We work in the n-dimensional metric space with L2 (Euclidean) or L1 (taxicab
or Manhattan) metrics.

2.1 Correlation Integral

The correlation integral, in fact, a distribution function of all binate distances in
a set of points in a space with a distance was introduced in [7]. The correlation
integral CI(r) is defined by

CI(r) = lim
N→∞

1
N2
× {number of pairs (i, j) : ‖Xi −Xj‖ < r}.

In a more comprehensive form, one can write

CI(r) = Pr(‖Xi −Xj‖ < r).

Grassberger and Procaccia [7] have shown that for a small r, the CI(r) grows like
the power CI(r) ∼ rν and that the ”correlation exponent” ν can be taken as a
most useful measure of the local structure of the strange attractor. This measure
allows one to distinguish between deterministic chaos and random noise [2].

The correlation integral can be rewritten in the form [2]

CI(r) = lim
N→∞

1
N(N − 1)

∑
1≤i<j≤N

h(r − ‖Xj −Xi‖),

where h(.) is the Heaviside step function. From it

ν = lim
r→∞

lnCI(r)
ln r

.

There are methods for estimating the correlation dimension ν. One of the most
cited is Taken’s estimator [13], [1], [8].

2.2 Probability Distribution Mapping Function

Let a query point x be placed without loss of generality in the origin. Let us build
balls with their centers at point x and with volumes Vi, i =1, 2, ... Individual
balls are in one another, the (i-1)-st inside the i-th like peels of an onion. Then
the mean density of the points in the i-th ball is ρi = mi/Vi. The volume
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of a ball of radius r in n-dimensional space is V (r) = const.rn. Thus we have
constructed a mapping between the mean density ρi in the i-th ball and its
radius ri. Then ρi = f(ri). Using the analogy between the density ρ(z) and
the probability density p(z) one can write p(ri) = f(ri), and p(ri) is the mean
probability density in the i-th ball with radius ri. This way, a complex picture
of the probability distribution of the points in the neighborhood of a query
point x is simplified to a function of a scalar variable. We call this function the
probability distribution mapping function D(x, r), where x is a query point,
and r is the distance from it. More exact definitions follow.

Definition 1. The probability distribution mapping function D(x, r) in the
neighborhood of the query point x is the functionD(x, r) =

∫
B(x,r)

p(z)dz, where

r is the distance from the query point and B(x, r) is a ball with center x and
radius r.

Definition 2. The distribution density mapping function d(x, r) in the neigh-
borhood of the query point x is the functiond(x, r) = ∂

∂rD(x, r), where D(x, r) is
the probability distribution mapping function of the query point x and radius r.

One can write the probability distribution mapping function in the form

D(x, r) = lim
N→∞

1
N − 1

N−1∑
j=1

h(r − rj), (3)

where h(.) is the Heaviside step function.

2.3 Power Approximation of the Probability Distribution Mapping
Function

Let us introduce a simple polynomial function in the form D(x, r) = C.rq .
We shall call it a power approximation of the probability distribution mapping
function D(x, r).

Definition 3. The power approximation of the probability distribution mapping
function D(x, rq) is the function rq such that D(x,rq)

rq → C forr → 0+. The
exponent q is a distribution-mapping exponent.

Using this approximation of the probability distribution mapping function
D(x, r) we, in fact, linearize this function as a function of the variable z = rq in
the neighborhood of the origin, i.e. in the neighborhood of the query point. The
distribution density mapping function d(x, r) as a function of variable z = rq

is approximately constant in the vicinity of the query point. This constant in-
cludes the true distribution of the probability density of the points as well as
the influence of the boundary effects.
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2.4 Decomposition of the Correlation Integral to Local
Functions

We show in this section that the correlation integral is the mean of the distribu-
tion mapping functions and that the correlation dimension can be approximated
by the mean of the distribution mapping exponents as shown in the theorem
below.

Theorem 1. Let there be a learning set of N points (samples). Let the corre-
lation integral, i.e. the probability distribution of the binate distances of points
from the data set, be CI(r) and let D(xi, r) be the distribution mapping function
corresponding to point xi. Then CI(r) is the mean value of D(xi, r):

CI(r) = lim
N→∞

1
N

N∑
i=1

D(xi, r). (4)

Proof. Let h(x) be the Heaviside step function and lij be the binate distances
of points from the data set. Then the correlation integral is

CI(r) = lim
N→∞

1
N(N−1)

N∑
i=1

N−1∑
j=1

h(r − lij)

and also

CI(r) = lim
N→∞

1
N

N∑
i=1

(
1

N−1

N−1∑
j=1

h(r − lij)

)
. (5)

Comparing (5) with (3) we get (4) directly.

2.5 Distribution Mapping Exponent Estimation

LetU be a learning set composed of points (patterns, samples)xcs,where c= {0, 1}
is the class mark and s = 1, 2, . . . , Nc is the index of the point within class c. Nc

is the number of points in class cand let N = N0 + N1 be the learning set size.
Let point x /∈ U be given and let points xcs of one class be sorted so that

index s = 1 corresponds to the nearest neighbor, index s= 2 to the second nearest
neighbor, etc. In Euclidean metrics, rs = ||x − xcs|| is the distance of the s-th
nearest neighbor of class c from point x.

We look for the exponent q so, that rq
s is proportional to index s, i.e.

s = Crq
s , s = 1, 2, ..., Nc, c = 0 or 1, (6)

where C is a suitable constant. Using a logarithm we get

ln(s) = ln(C) + q ln(rs), s = 1, 2, ..., Nc. (7)

On one hand, we exaggerate the distances nonlinearly to make small differ-
ences in the distance appear much larger for the purposes of density estimation.
On the other hand, there is a logarithm of distance in (7), which decreases large
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influences of small noise perturbations on the final value of q. Note that it is
the same problem as in the correlation dimension estimation where equations
of the same form as (6) and (7) arise. In [7] a solution by linear regression was
proposed. In [5], [8], [11] and others, different modifications and heuristics were
later proposed. Many of these approaches and heuristics can be used for dis-
tribution mapping exponent estimation, e.g. use a half or a square root of Nc

nearest neighbors instead of Nc to eliminate the influence of the limited number
of points of the learning set.

The system of Nc (or Nc/2 or
√
Nc as mentioned above) equations (7) with

respect to an unknown q can be solved using standard linear regression for both
classes. Thus, for two classes we get two values of q, q0 and q1 and two values of
C′, C′

0 and C′
1.

At this point we can say that qc is something like a local effective dimension-
ality of the data space including the true distribution of points in each class. At
the same time, we get constant C′

c. The values of qc and C′
c are related to each

particular point xand, thus, vary from one point x to another.

2.6 Probability Density Estimation

Let n′
c(r) be a number of points of class c until distance r from the query point

x. Let qc be the distribution mapping exponent for points of class c and let

zc = rqc. (8)

Also, let nc(zc) = n′
c(r) = n′

c(z
1/qc
c ). ThenPc(zc) = nc(zc)/N is a percentage

of all points of class c until distance r = z
1/qc
c from the query point x, i.e. until

a “distance” measured by zc from point x.
Due to polynomial approximation (8), nc(zc) = C′

c.zc. This is a number of
points up to distance r, which is related to zc according to (8). The derivative
according to zc is dnc(zc)/dzc = C′

c and it represents a number of points of class
c on a unit1 of the zc, i.e., in fact, a density of points with respect to zc.

By dividing by the total number of points N there is a percentage of points
of class c on a unit of zc. This percentage is equal to p(c|x, zc) = C′

c/N . In a
limit case for r → 0 (and zc as well), p(c|x, 0) = p(c|x) = C′

c/N = Cc.
Finally, if there are two classes, there must be p(0|x) + p(1|x) = 1 and then

C′
0 + C′

1 = N.This result includes a priori probabilities Nc/N for both classes.
When we need to exclude a priori probabilities we use the formula

p(c|x) =
C′

c/Nc

C′
0/N0 + C′

1/N1
. (9)

A generalization to a many class case is straightforward. For k classes

p(c|x) =
C′

c/Nc

k∑
i=1

C′
i/Ni

, c = 1, 2, ..k. (10)

1 We cannot say “unit length” here as the dimensionality of zc is (length)qc.
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A more exact development follows.

Definition 4. Let N be n-dimensional space with metrics ρ. Let there be a sub-
set Q ⊆ N and a number q ∈ g+, 1 ≤ q ≤ n be associated with subset Q. A
q-dimensional ball with center at point x ∈ g and radius r is Bq = B(q, x, r, ρ) =
{y ∈ g : ρ(x, y) < r}. The volume of Bq is V (q, x, r, ρ) = S(q, ρ).rq, where S(q, ρ)
is a function independent of r.

The metrics ρ can be omitted when it is clear which metrics we are dealing with.

Lemma 1. Let B(q, x, R) be a q-dimensional ball with center at point x ∈ g and
radius R, and let V (q, x, r) be its volume. Let points in Q in the neighborhood of
point x up to distance R be distributed with a constant probability density p = C.
Then for r < R, where r is the distance from point x, the distribution function
is given by

P (x, r) =
∫

B(q,x,R)

pdr =
∫
pdV (q, x, r) = C · V (q, x, r).

The Proof is obvious.

Conversely, let in Q holds P (x, r) = C · V (q, x, r), where C is a constant as
long as r < R. It is obvious that this can be fulfilled even when the distribution
density is not constant. On the other hand it is probably a rare case. Then we
can formulate an assumption.

Assumption 1. If in Q holds P (x, r) = C · V (q, x, r), the corresponding prob-
ability density p can be approximated by constant C in B(q, x, R) and then

Illustration. A sheet of white paper represents 2 dimensional subspace embed-
ded in 3 dimensional space. Let point x be in the center of the sheet. White
points of paper are uniformly distributed over the sheet with the some constant
(probability) density and a distribution function (the number of white points) is
proportional to the circular area around point x. Thus, the distribution function
grows quadratically with distance r from point x, and only linearly with the size
of the circular area. Furthermore, the size of the circular area is nothing more
than the volume of the 2 dimensional ball embedded in 3 dimensional space.

Theorem 2. Let, in a metric space, each point belong to one of two classes
c = {0, 1}. Let, for each point x and each class c, a distribution mapping function
D(x, c, r) exist where r is the distance from point x. Let Assumption 1 hold and
the power approximation of the distribution mapping function be Ccr

qc , where qc
is the distribution mapping exponent for point x and class c. Then p(c|x) = Cc

holds.

Proof. Let zc = rqc be a new variable. Then D(x, c, r) = D(x, c, zc) and when
using zc D(x, c, zc) = Cc zc. The D(x, c, zc) is, in fact, a distribution function
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of points of class c. This distribution function corresponds to the uniform distrib-
ution in a subspace of dimension qc and, according to Lemma 1 and Assumption
1, the proportionality constant Cc is equal to the probability density in the
neighborhood of point x including this point.

2.7 Classifier Construction

Using formulas (9) or (10) we have a relatively simple method for estimating the
probabilities p(c|x). First, we sort points of class c according to their distances
from the query point x. Then, we solve linear regression equations

qc ln(rs) = ln(C′
c) + ln(s), s = 1, 2, ...,K (11)

for the first K points, especially with respect to an unknown C′
c. The number

K may be a half or a square root of total number Nc of points of class c. We
found that one half of the number of samples from the learning set can be an
optimal value of K from a point of view of simplicity, reliability and classification
quality. This is made for all k classes, c = 1, 2, .. k. Finally we use formula (9)
for k = 2 or formula (10) for more than two classes. Formula (9) or (10) gives a
real number. For a two class classification, a discriminant threshold (cut) θ must
be chosen, and then if p(1|x) > θ, then x belongs to class 1 or else to class 0. A
default value of θ is 0.5.

In testing a classifier, we found the results a bit better when L1 metrics were
used rather than with L2 metrics.

3 Experiments

The applicability of the method “QCregre1” demonstrates some tests using real-
life tasks from the UCI Machine Learning Repository [10]. Tasks of classification
into two classes for which data about previous tests are known were selected:
“Heart”, “Ionosphere”, and “Iris”.

The task “Heart” indicates an absence or presence of heart disease for patient.
For the task “Ionosphere”, the targets were free electrons in the ionosphere.

“Good” radar returns are those showing evidence of some type of structure in
the ionosphere. “Bad” returns are those that do not; their signals pass through
the ionosphere.

The task “Iris” is to determine whether an iris flower is of class Versicolor or
Virginica. The third class, Setoza is deleted, as it is linearly separable from the
other two. 100 samples, four parameters and ten-fold cross validation were used
as in [15].

We do not describe these tasks in detail here as all of them can be found in
descriptions of individual tasks of the Repository and also the same approach to
testing and evaluation was used. Especially splitting the data set into two disjoint
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subsets, the learning set and the testing set and the use of cross validation were
the same as in [10] or – for Iris database – [15].

We also checked some standard methods for comparison as follows:

– 1-NN – standard nearest neighbor method [3]
– Sqrt-NN – the k-NN method with k equal to the square root of the number

of samples of the learning set [4]
– Bay1 – the näıve Bayes method using ten bins histograms [6]
– LWM1 – the learning weighted metrics by [12].

For k-NN, Bayes, LWM and our method the discriminant thresholds θg were
tuned accordingly. All procedures are deterministic (even Bayes algorithm) and
then no repeated runs were needed.

In Table 1, the results are shown together with the results for other methods.

Table 1. Classification errors for three different tasks shown for different methods pre-
sented in the Machine Learning Repository. The note [fri] refers to the results according
to paper [15]. The results shown in bold were computed by authors.

Heart Ionosphere Iris

Algorithm Test Algorithm Error Algorithm Test

QCregre10.1779 QCregre1 0.02013 scythe[fri] 0.03

LWM1 0.1882 Bay1 0.02013 QCregre1 0.04878

Bayes 0.374 LWM1 0.02649 sqrt-NN 0.04879

Discrim 0.393 IB3 (Aha & Kibler,
IJCAI-1989)

0.033 mach:ln [fri] 0.05

LogDisc 0.396 backprop an aver-
age of over

0.04 mach-bth [fri] 0.05

Alloc80 0.407 sqrt-NN 0.05369 CART 0.06

QuaDisc 0.422 Ross Quinlan’s C4
algorithm

0.06 mach [fri] 0.06

Castle 0.441 nearest neighbor 0.079 mach:ds [fri] 0.06

Cal5 0.444 ”non-linear” per-
ceptron

0.08 1-NN 0.06098

Cart 0.452 ”linear” perceptron 0.093 LWM1 0.06863

Cascade 0.467 Bay1 0.08537

KNN 0.478 k-NN 0.8

Dipol92 0.507

BayTree 0.526

BackProp 0.574

LVQ 0.6

IndCart 0.63

Kohonen 0.693

Cn2 0.767

Radial 0.781

C4.5 0.781
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4 Discussion

The main goal of this paper is to show that the correlation integral can be de-
composed to local functions – the probability distribution mapping functions
(PDMF). Each PDMF corresponds to a particular point of data space and char-
acterizes the probability distribution in some neighborhood of a given point. We
have also shown that – similarly to the correlation integral – the PDMF can
be approximated by a polynomial function. This polynomial approximation is
governed by two constants, the distribution mapping exponent, which can be
considered as a local analog to the correlation dimension, and a multiplicative
constant. It is proven here, that this multiplicative constant is just an estimate
of probability density at the given point. This estimate is used to construct a
classifier.

This classifier is slightly related to various nearest neighbor methods. It uses
information about the distances of the neighbors of different classes from the
query point and neglects information about the direction where the particular
neighbor lies. On the other hand, nearest neighbor methods do not differentiate
individual distances of nearest points. E.g. in the k-NN method the number of
points of one and the other class among k nearest neighbors is essential, but
not the individual distances of the points. The method proposed here takes
individual distances into account even if these distances are a little bit hidden
in regression equations. The method outperforms 1-NN, k-NN as well as LWM
(learning weighted metrics) [12] in practically all the cases and can be found as
the best for some tasks shown in Table 1.

There is an interesting relationship between the correlation dimension and
the distribution mapping exponent qc. The former is a global feature of the
fractal or the data generating process; the latter is a local feature of the data set
and is closely related to a particular query point. On the other hand, if linear
regression were used, the computational procedure is almost the same in both
cases. Moreover, it can be found that the values of the distribution mapping
exponent usually lie in a narrow interval <-10, +10> percentage around the
mean value.
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Abstract. Practical applications of q-state Potts models are compli-
cated, as they require very large RAM (32N2q2 bits, where N is the
number of neurons and q is the number of the states of a neuron). In
this work we examine a modified Potts model with binarized synaptic
coefficients. The procedure of binarization allows one to make the re-
quired RAM 32 times smaller (N2q2 bits), and the algorithm more than
q times faster. One would expect that the binarization worsens the recog-
nizing properties. However our analysis shows an unexpected result: the
binarization procedure leads to the increase of the storage capacity by a
factor of 2. The obtained results are in a good agreement with the results
of computer simulations.

Keywords: Recognition, Potts model, storage capacity.

1 Introduction

At present the problems of identification (classification) of a very large array
of vectors of high dimensionality frequently occur. For instance, to identify an
attack on a large computer network one has to deal with vectors of the dimen-
sionality N ∼ 4000 and with q ∼ 32 states for each coordinate.

One type of neural networks, which can solve such a problem, is a q-state
neural network. A well-known network of this type is the Potts-glass neural net-
work [1]. The properties of this model have been examined by the methods of
statistical physics [2]-[6], and its recognizing characteristics have been investi-
gated mainly by means of computer modeling.

The Potts model is characterized by a large storage capacity M ∼ Nq(q −
1)/4 ln q. However a practical application of this model is complicated, because
it requires very large RAM due to the fact that ∼ 32N2q2 bits are needed for the
storage of the connection matrix. In particular, the aforementioned problem of
the attack identification requires more than 16 Gb. One can reduce the required
RAM by the factor of 32 making it ∼ N2q2 bits by a binarization of the synaptic
connections of the neural network (i.e. replacing all positive matrix elements
by 1, and leaving zero matrix elements as they are). Then the problem under
discussion would require 500 Mb instead of 16 Gb.
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Our attempt to apply the binarization procedure to the standard q-state Potts
model [1] led to a negative result: the storage capacity decreased strongly. That
is why we applied the binarization procedure to a modified q-state Potts model.
Similar models of neural networks (the so-called parametrical neural networks)
were examined in a series of works [7]-[16]. They were designed for a realization
as an optical device. For these models relatively simple analytical expressions,
which describe their storage capacity and noise immunity, are obtained.

An analysis of the modified Potts model with binarized synaptic coefficients
shows an unexpected result: instead of the expected worsening of the recognizing
properties, the storage capacity of the neural network increases by a factor of
2 as a result of the binarization. It can be accounted for by the fact that the
dispersion of the input signal on a neuron decreases faster than it’s average
value. Besides that, the binarized model works more than q times faster than
the standard Potts model [1] with the same N and q. Such an improvement can
be important for real-time systems. The results obtained correlate with those of
the computer simulations. Further it will be shown that in the range of q > 150
and q < N < q2 binarization of synaptic coefficients results in decreasing the
storage capacity. However, this range is of no practical value.

The paper is organized as follows. In Section 2 we describe our modified model.
In Section 3 we derive the expressions for the storage capacity. In Section 4 we
analyze the obtained results and compare them with the results of computer
simulations.

2 The Description of the Model

Let us start with the description of the modified Potts model. This is a fully
connected network of N spin-neurons, each of which can be in one of q different
discrete states (q ≥ 2). A unit vector ek in the space Rq is associated with
the state with the number k = 1, 2, ..., q. The state of the network as a whole
is described by an N -dimensional set X = (x1, x2, ..., xN ) of q-dimensional
vectors xi. Each xi corresponds to the state of i-th neuron in the pattern:

xi ∈ {ek}q . (1)

The difference between the modified model and the standard Potts model [1]
is as follows. In the modified model one of the components of the vector xi is
equal to 1, and all the others are equal to 0. In the standard Potts model one
component of the vector representing the state of a neuron is equal to 1 − 1/q,
and all the other components are equal to −1/q.

The synaptic connection between i-th and j-th neurons is given in this model
by a q × q-matrix T̂ij , whose elements are obtained according to the Hebb rule
with M stored patterns Xμ = (xμ1, xμ2, ..., xμN), μ = 1, M :

T̂ij =
M∑

μ=1

xμix+
μj , (2)
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and the diagonal elements are equal to zero: T̂ii = 0. The local field acting on
i-th neuron is given by the standard expression

Hi =
N∑

j =i

T̂ijxj . (3)

The dynamics of the network are defined in a natural way: we suppose that
under the action of the local field Hi i-th spin-neuron orients along a direction,
which is most close to the direction of the field (as the neuron states are discrete,
it cannot be oriented exactly along the field Hi). In other words, a neuron orients
along that unit vector, which has a maximal projection on the vector Hi. This
rule can be formalized by the following algorithm: for each t one calculates the
projections of the vector Hi on all the unit vectors of the space Rq and chooses
the largest one. Let it be, for instance, the projection on the unit vector er. Then
the state of i-th spin-neuron in the next moment t+ 1 is given by the following
rule:

xi(t + 1) = er. (4)

This procedure should be successively applied to all the neurons (asynchro-
nous dynamics) until the stable state of the system is reached.

Now let us describe the binarized model. Its synaptic matrix τ̂ij is obtained
by the binarization of the initial Hebb matrix T̂ij :

τkl
ij = sgnT kl

ij , (5)

where k, l = 1, q , i, j = 1, N , and the local field takes the form:

hi =
N∑

j =i

τ̂ijxj . (6)

The dynamics of the binarized model are the same as of the original (non-
binarized) model. Below we examine the properties of these two models (the
binarized model and the original non-binarized model) and compare them.

3 Effectiveness of the Pattern Recognition

Let us estimate the storage capacity of the neural network for the binarized
model. To do this let us find the probability for a memorized pattern to be a
fixed point. Let the initial state of the network correspond to a pattern X1. The
pattern X1 is a fixed point if for each neuron the following condition is satisfied:
The projection of the local field on the unit vector, which corresponds to the
state of the neuron in the stored pattern, is maximal. Let us consider 1-st neuron
and suppose for simplicity that the first component of X1 equals e1. Then the
condition of the correct orientation of 1-st neuron is that the following (q − 1)
inequalities are simultaneously true:

ηk = h1
1 − hk

1 > 0, k = 2, q. (7)
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These inequalities follow from the rule (4) and they mean that the projection
h1

1 of the local field on the unit vector e1 is larger than its projections on any of
the other (q − 1) unit vectors. From (6) we obtain the projections on 1-st and
on an arbitrary k-th unit vector (k �= 1):

h1
1 = N, (8)

hk
1 =

N∑
i

sgn

⎛⎝ M∑
μ=1

xk
μ1x

li
μi

⎞⎠, (9)

where lj is the number of the non-zero coordinate of the vector x1j .
The probability of the event that all (q−1) inequalities (7) are imultaneously

true,

P = Pr

[
q−1⋂

k

ηk > 0

]
, (10)

can be calculated assuming that the quantities ηk are random Gaussian vari-
ables with the same mean value < ηk >, the dispersion σ2 and the covariation
cov(ηk, ηr):

< ηk >= NP0, (11)

σ2 = NP0

[
1−NP0 + (N − 1)P

q
q+1
0

]
, (12)

cov(ηk, ηr) = N2P 2
0

(
1− P− 1

q2−1
0

)
. (13)

Here P0 is the probability that a matrix element of the matrix τ̂ij is equal to
zero:

P0 =
(

1− 1
q2

)M

. (14)

In what follows we analyze the case q2 >> 1 (the case q ∼ 1 is not inter-
esting, because then the recognizing properties of the modified network become
comparable with the recognizing properties of the Hopfield network).

Using the parameters (11)-(13) one can write down the probability P as a
standard error function for multivariate Gaussian distribution. We do not show
here the general expression because it is too cumbersome. Omitting intermediate
calculations, we write down the expression for the probability P (10) for the most
interesting case P → 1 in the limit γ >> 1:

P = 1− Nq√
2πγ

e−
1
2 γ2

, (15)

where γ =< ηk > /σ is the so-called signal-noise ratio. The parameter γ is the
main indicator of the recognizing reliability of the network: the larger γ, the
larger the probability P of the correct recognizing and the larger the storage
capacity of the network.
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The storage capacity M can be determined from the condition P → 1. In
the asymptotic limit N →∞ this condition can be transformed to the following
form:

γ2 = 2 lnNq. (16)

When N << q or N >> q we obtain from (16)

M =
q2N

2(1 +N/q) lnNq
. (17)

For an arbitrary ratio between N and q an expression for the storage capac-
ity cannot be obtained, because the equation (17) is transcendental. However,
numerical simulations show that (18) estimates the storage capacity reasonably
well (with the accuracy up to 20− 40%) for any ratio between N and q.

For a comparison we write down the estimate for the storage capacity of the
original non-binarized network (we omit here analogous calculations):

M0 =
q2N

4(1 +N/q) lnNq
. (18)

Before we start further analysis we note that the quantity M is 2 times larger
than M0. However this ratio is not true for some values of N and q (see Fig.2.).

4 Comparative Analysis

Let us compare the storage capacities of two networks, the one is the binarized
network (5)-(6), the other is the original model (2)-(3). In Fig.1 we show the
dependence of the value of M on the dimensionality of the problem N for a
fixed q. This dependence was obtained as a numerical solution of equation (17).
As is seen from the figure, the storage capacity of the binarized network increases
rapidly with the growth of N , reaches its maximum value and then decreases
slowly (as ∼ 1/ lnNq). The maximal value M = Mmax is reached at N = Nmax:

Mmax =
q5/2 ln q

8
√

2
, Nmax =

(2 ln q)3

q
exp
(√

q/2
)
. (19)

For practical applications such a behavior means the following: if N > Nmax,
then one can use the stored patterns with a reduced size N = Nmax. Then
the storage capacity of the network and the operating speed of the algorithm
increase, while the requirements imposed on RAM are lowered.

The dependence M0 = M0(N) obtained from (19) is shown in Fig.1 for a
comparison. As one can see, M0 also increases at first and then decreases as
∼ 1/ lnNq. The maximal value M0 = M0

max is reached at N = N0
max:

M0
max =

q3

8 ln q
,N0

max = 2q ln q. (20)
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Fig. 1. The dependence of the storage capacity on the network size for binarized (upper
curve) and original (lower curve) models for q = 32

Equations (19) and (20) determine the maximal storage capacity, which can
be reached at a given value of q. The curves in Fig.1 are plotted for q = 32. As
one can see, for this value of q the storage capacity of the binarized network is
about 2 times larger than the storage capacity of the non-binaraized network.
Such a ratio is true for moderate values of q.

The dependence of the ratio M/M0 on the value of N for different values of q
is shown in Fig.2. As we see, in the case q ≤ 150 we have M/M0 > 1 for almost
all parameters. Moreover, M/M0 ∼ 2 for N < q or N >> q. However for large
enough q (q > 150) there is an interval of the values of N (q < N < q2), in
which M/M0 < 1.

Let us compare the characteristics of those networks, which can be used for
practical applications, i.e. of the networks which can be modeled with relatively
small RAM (for instance, less than 2 Gb). Such networks belong to the part of
Fig.2 situated above the dotted line. As one can see, in this region the binariza-
tion procedure results in the increase of the neural network storage capacity.

We carried out a series of computer experiments in order to check the obtained
estimates. The results of one experiment with N = 30 and q = 10 are shown in
Fig.3. The obtained dependencies show that a network with a binarized connec-
tion matrix breaks down at a noticeably larger value of the loading parameter.
Furthermore, one can see that the storage capacities of the binarized model and
of the standard Potts model are of the same order. However the operating speed
of the binarazied model is more than q times larger than the operating speed
of the Potts model (10 times in this case), and the binarazied model requires
32 times less RAM. In our experiments the parameters were varied within the
ranges 4 ≤ q ≤ 128 and 10 ≤ N ≤ 500. The results of the experiment show
that the binarization always leads to the increase of the storage capacity by a
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Fig. 2. The figure shows the ratio as a function of N/q for different values of the
parameter q. For the points below the dotted line (the curves marked with grey color)
the size of the required RAM exceeds 2 Gb.

Fig. 3. The fraction of the fixed points P as a function of the number of memorized
patterns M for different models. 1 - the non-binarized model; 2 - the binarized model;
3 - the standard Potts model. The experiment is done for N = 30 and q = 10.

factor of 2. Due to a restricted RAM of our computer we were unable to realize
a network with the values of the parameters, at which the binarization would
worsen the characteristics of the network (q > 150, N > 32).



Modified q-State Potts Model with Binarized Synaptic Coefficients 79

5 Conclusions

In this work a modified Potts model with binarized synaptic coefficients is con-
sidered. It is shown that the storage capacity of the network is increased by a
factor of 2 after the binarization of the matrix elements. It can be accounted
for by the fact that the dispersion of the input signal on a neuron decreases
faster than it’s average value. For the networks with reasonable values of the
external parameters (4 ≤ q ≤ 128 and 10 ≤ N ≤ 500) this result is verified in
many experiments. Moreover, the binarized model has the storage capacity of
the same order of magnitude as the standard q-state Potts model. However, the
binarized model requires 32 times less RAM and has a q times larger operating
speed. Due to all this the binarized model can be very attractive for applications
in identification systems, which work with very large arrays of vectors of high
dimensionality in the real-time operation mode.

As the application the one-layer q-state perceptron has been constructed on
the base of the described binarized model (2700 input neurons, number of their
states q = 256; 2 output neurons, number of their states is 325). Such a per-
ceprton can reliably identify any of 105 stored patterns under 75% of distortion.
To store the matrix of synaptic coefficients, 56 Mb of RAM is required. The time
needed for identification is about 200 ms. An analogous perceptron based on the
standard Potts-model would require 1.8 Gb of RAM and would work 325 times
slower.
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Abstract. This paper presents a novel neural network model, called
Similarity Neural Network (SNN), designed to learn similarity measures
for pairs of patterns exploiting binary supervision. The model guarantees
to compute a non negative and symmetric measure, and shows good
generalization capabilities even if a small set of supervised examples is
used for training. The approximation capabilities of the proposed model
are also investigated. Moreover, the experiments carried out on some
benchmark datasets show that SNNs almost always outperform other
similarity learning methods proposed in the literature.

1 Introduction

In many pattern recognition tasks, an appropriate definition of the distance
function on the input feature space plays a crucial role. Generally, in order to
compare patterns, the input space is assumed to be a metric space, and Euclidean
or Mahalanobis distances are used. In some situations, this assumption is too
restrictive, and a similarity measure could be learnt from examples.

In the last few decades, the perception of similarity received a growing at-
tention from psychological researchers [1], and, more recently, the problem of
learning a similarity measure has attracted also the machine learning commu-
nity. In particular, in a wide set of research fields, ranging from bioinformatics
to computer vision, the supervision on the relationships between two entities is
expressed in the form of similarity/dissimilarity constraints. In those contexts,
the main requirement is just to find a way to compare entity pairs coherently
with the given supervision, whereas the estimation of a metric is not always
needed. A similarity measure can be considered as a distance function where not
all the metric properties necessarily hold, as discussed in [2].

In the literature many algorithms that perform distance function or similar-
ity measure learning from pairwise constraints are proposed. Some of them are
strictly related to semi–supervised clustering, and the presence of a few class
labels or pairwise constraints on a subset of data is used to improve the cluster-
ing process. Some approaches exploit an iterative computation of the similarity
measure, solving a convex optimization problem, based on a small set of pairs
that represent the problem constraints [3,4]. Other techniques use EM–like algo-
rithms, as in [5] where MPCK–Means is proposed, or Hidden Markov Random
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Fields (HMRF–KMeans) [6]. In [7] Relevant Component Analysis is described,
a method that aims at identifying and down–scaling global unwanted variabil-
ity within the data, exploiting only similarity constraints. A technique for the
estimation of Gaussian mixture models considering pairwise constraints is used
by a boosting algorithm (DistBoost) for similarity measure learning [8,9]. Other
approaches try to estimate kernel matrices with the given supervision in order to
solve classification tasks [10,11]. Both learning similarity measures and learning
kernels are problems for which there exists a growing literature, and they are
commonly faced quite differently.

In this paper Similarity Neural Networks (SNN), a novel neural network
model for the learning of similarity measures, is presented. The SNN archi-
tecture guarantees to learn a non negative and symmetric function, showing
extremely promising results compared with four state of the art techniques on
some datasets from the UCI repository. Moreover, this is the first neural model
that is applied to the general similarity measure learning task exploiting pairwise
constraints.

The paper is organized as follows. In the next section, the network architecture
and its properties are presented. In Section 3 experimental results are reported,
and finally, some conclusions are drawn in Section 4.

2 Similarity Neural Network

An SNN consists in a feed–forward multilayer perceptron trained to learn a
similarity measure for pairs of patterns x,y ∈ IRn.

Humans are generally able to provide supervision about the similarity of object
pairs in binary form (similar/dissimilar), instead of specifying continuous degrees
of similarity that can not be easily defined in a coherent way. Hence, SNNs are
trained using binary supervisions. In details, given a set of objects described by fea-
ture vectors V = {x1, ...xN}, xi ∈ IRn, a training set T = {(xik

,yjk
, tik,jk

)| k =
1, ...,m; xik

,yjk
∈ V }, collects a set of m triples (xik

,yjk
, tik,jk

), being tik,jk
∈

{0, 1} the similarity/dissimilarity label of the pair (xik
,yjk

), and [xik
′,yjk

′]′ ∈
IR2n is the input vector of the SNN. Learning a similarity measure is a regression
problem, but due to the binary supervisions the learning task is actually specified
as a two–class classification problem. The training of the SNN is performed using
backpropagation for optimizing the squared error criterion function, leading to a
network that is able to approximate the similarity measure for patterns within the
distribution described by the training set.

The SNN is an MLP with a single hidden layer containing an even number of
units and an output neuron with sigmoidal activation function, that constraints
the output range in the interval [0, 1]. If fSNN (x,y, θ) is the function computed
by a trained SNN for a pair (x,y), and a set of network parameters θ, then the
following properties hold:

– fSNN(x,y, θ) ≥ 0 (non negativity)
– fSNN(x,y, θ) = fSNN(y,x, θ) (symmetry).
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Non negativity is guaranteed by using the sigmoidal activation function in the
output unit. Symmetry is obtained by exploiting a peculiar network architecture
that is based on two independent networks that share the corresponding weights,
as shown in Fig.1. The output of an SNN can be written in matrix form as follows:

fSNN(x,y, θ) = σ

([
Who1

Who2

]′
· a
([

Wih1,1 Wih1,2

Wih2,1 Wih2,2

]
·
[
x
y

]
+
[
bh1

bh2

])
+ bo

)

where [x′,y′]′ ∈ IR2n represents the network input, σ, and a are the activation
functions of the output and hidden units respectively, while the parameter set
θ collects Wih1,1,Wih1,2,Wih2,1,Wih2,2 ∈ IRq,n, and Who1,Who2 ∈ IRq that
are input to hidden and hidden to output weight matrices, bh1, bh2 ∈ IRq and
b0 that represent the hidden and output biases. If we set, as shown in Fig. 1,
Wih1,1 = Wih2,2, Wih1,2 = Wih2,1, Who1 = Who2, and bh1 = bh2, it is easy
to verify that:

fSNN(x,y, θ) = fSNN(y,x, θ).

...

bo

Wih Wih

Who

2,21,1

(x,y)SNN

1,2Wih
1

f

2

yx

2q hidden units

... ...

...

2n input units

1 output unit

bihbih

 1

Wih 2,1

  2Who

Fig. 1. SNN architecture. The left and right half of the input layer collect the features
of the first and second pattern of the compared pair, respectively. Notice that the grey
boxes represent all the connections between the groups of linked neurons, and that
boxes of the same gray level denote shared weights.

SNNs are universal approximators for symmetric functions. For sake of sim-
plicity, we first consider the case of SNNs with a linear output neuron, that
compute a parametric function fLSNN(x,y, θ), then we extend the result to the
case of a sigmoidal output unit.
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Theorem 1. Let CF (K) be the set of all the symmetric functions l : IR2n → IR,
that are defined on a compact set K ⊂ IR2n. Suppose that CF (K) is equipped with
the L∞(K) norm. Then for any compact set K, any function l ∈ CF (K), and any
precision ε > 0, there is an SNN, whose input-output function fLSNN(x,y, θ) is
such that

||l(x,y)− fLSNN(x,y, θ)||∞ ≤ ε

Proof. Considering that feed–forward neural networks are universal approxima-
tors [12], given the function l(x,y)

2 , we can approximate it with an MLP with a
linear output unit, that compute the function g(x,y, θ). Due to the symmetry
of l(x,y), g(x,y, θ) can be chosen such that the following statements hold:∣∣∣∣∣∣ l(x,y)

2 − g(x,y, θ)
∣∣∣∣∣∣
∞
≤ ε

2∣∣∣∣∣∣ l(y,x)
2 − g(y,x, θ)

∣∣∣∣∣∣
∞
≤ ε

2

(1)

Since the SNN architecture is composed by two distinct parts that share the
correspondent weights, and due to the linear output assumption, we can con-
sider the function computed by the SNN as the sum of two contributions,
fLSNN(x,y, θ) = g(x,y, θ) + g(y,x, θ). The resulting function is symmetric
and guarantees that:

||l(x,y)− fLSNN(x,y, θ)||∞ =∣∣∣∣∣∣ l(x,y)
2 + l(y,x)

2 − (g(x,y, θ) + g(y,x, θ))
∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣ l(x,y)

2 − g(x,y, θ)
∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣ l(y,x)

2 − g(y,x, θ)
∣∣∣∣∣∣
∞
≤ ε

(2)

Theorem 2. Let CF (K) be the set of all the symmetric functions h : IR2n →
[0, 1], that are defined on a compact set K ⊂ IR2n. Suppose that CF (K) is
equipped with the L∞(K) norm. Then for any compact set K, any function
h ∈ CF (K), and any precision ε > 0, there is an SNN with sigmoidal output
unit, whose input-output function fSNN (x,y, θ) is such that

||h(x,y)− fSNN(x,y, θ)||∞ ≤ ε

Proof. The function h returns values in [0, 1], while the sigmoid function has
values in (0, 1). However, we can assume to approximate the function h with a
function h̄ : IR2n → (0, 1) to any certain degree of precision ε

2 :∣∣∣∣h̄(x,y)− h(x,y)
∣∣∣∣
∞ ≤

ε

2
(3)

Since we can write fSNN (x,y, θ) = σ(fLSNN (x,y, θ)), we can consider the con-
dition of Theorem 1 written as:∣∣∣∣σ−1(h̄(x,y))− σ−1(fSNN (x,y, θ))

∣∣∣∣
∞ ≤

ε

2
(4)
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because σ(x) = 1
1+exp(−x) is continuous and invertible in (0, 1). The derivative

of the sigmoid is always less than 1, and reaches its maximum value for x = 0,
σ(0)′ = 1

4 . Due to this fact, we have guarantee that ||σ(x + ε)− σ(x)||∞ <
||x+ ε− x||∞ = ε, and the application of the sigmoidal function to the left side
of the inequality reported in Eq. 4 leads to:∣∣∣∣h̄(x,y)− fSNN (x,y, θ)

∣∣∣∣
∞ <

ε

2
. (5)

Considering Eq. 3 and Eq. 5, and exploiting triangular inequality:

||h(x,y)− fSNN(x,y, θ)||∞ ≤∣∣∣∣h(x,y)− h̄(x,y)
∣∣∣∣
∞ +

∣∣∣∣h̄(x,y)− fSNN(x,y, θ)
∣∣∣∣
∞ < ε

2 + ε
2 = ε

Remark 1. The learned function is a similarity measure but not a metric, since
it is not guaranteed to satisfy the triangular inequality and the self–similarity
fSNN(x,x, θ) = 0. These properties can be approximated by learning from data,
but they are not forced in any way by the structure of the network.

3 Experimental Results

In order to evaluate the performances of SNNs we selected 5 datasets from the
UCI data repository [13], whose patterns are organized in K distinct classes (see
Table 1).

With the aim of approaching the similarity learning task we need a binary
supervision associated to pairs of patterns. Hence, we generated such supervision
by labeling pairs of patterns that belong to the same class as similar, while the
dissimilar examples were created choosing patterns from different classes.

Given a dataset V = {x1, ...,xN}, the set C = {(xi,xj , ti,j)| xi,xj ∈ V ; ti,j ∈
{0, 1}; i = 1, ..., N ; j = i, ..., N} is generated, where ti,j = 0 if xi and xj

have the same class label in the original dataset, ti,j = 1 otherwise. Then C is

Table 1. Details of the datasets from the UCI repository used in the experiments

Name Size Dimension Classes

Balance 625 4 3
Bostona 506 13 3
Ionosphere 351 34 2
Iris 150 4 3
Wine 178 13 3

a The 14th attribute of the original dataset, the median value (MV) of owner–occupied
homes in thousands of dollars, was divided in three intervals leading to 3 highly
unbalanced classes, in order to generate difficult conditions to approach the similarity
learning task with the described randomly generated supervision: MV ≤ 13.1 (53
patterns), 13.1 < MV ≤ 25.1 (329 patterns) and MV > 25.1 (124 patterns).
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randomly sampled and the sets S ⊂ C and D ⊂ C, of similar and dissimilar pairs
are built. The number of examples selected from C depends on the connected
components belonging to the similarity and dissimilarity graphs, GS = (V, S)
and GD = (V,D)1. In particular, the sets S and D are iteratively created adding
to each set a new pair from C until a target number of connected components is
reached. For instance, in the reported experiments |S| and |D| are chosen such
that the number of connected components of GS and GD are roughly equal to
the 90% or 70% of N , in the case of small or large side–information. This is
the same approach proposed in [3], with the difference that in our experimental
setup a limit to the number of supervised dissimilarity constraints is posed.

The sets S and D are enriched exploiting the transitive property of the sim-
ilarity relationship2. The set S can be augmented by considering the transitive
closure over GS . Differently, the set D can be enriched by considering both GS

and GD. Given two nodes a, b involved in a dissimilarity relationship, such that
a ∈ con(GS)i and b ∈ con(GS)j , where con(GS)i is the i–th connected com-
ponent of GS , then each element in con(GS)i can be linked to any element of
con(GS)j in GD. In other words, if there is a dissimilarity relationship between
two nodes, this relationship can be extended to all the nodes belonging to the
corresponding connected components of GS . Finally, the set S can be enriched
by exploiting the self–similarity of each data point.

The described augmenting technique can produce unbalanced training sets for
the SNN model, due to the different sizes of S and D. Even if perfectly balanced
training sets are not required, S and D must be augmented while maintaining
an overall balancing of the supervision size. This result has been obtained by
considering not all the newly generated pairs but just a randomly sampled subset
of them.

The constraint sets S and D were realized 20 times in both the small and large
cases for each dataset. The performances were evaluated using the cumulative
neighbor purity index [9,14], that measures the percentage of correct neighbors
up to the K-th neighbor, averaged over all the data points. The maximum num-
ber of neighbors has been chosen such that Kmax ≈ N

3 . For this evaluation, the
value of similarity produced by the SNN is used to order the neighbors, i.e. for
any given point xi ∈ V the other points xj ∈ V \{xi} are ordered for increasing
values of fSNN(x,y, θ).

The quality of the measure produced by the SNN model has been compared
against classical distance functions (Euclidean and Mahalanobis distances), and
against four state of the art techniques designed to learn a similarity measure or
a distance function exploiting pairwise constraints:

– Xing’s metric [3], using a full distance matrix estimated with gradient ascent
and multiple iterative projections.

– Relevant Component Analysis (RCA), proposed in [7], that exploits positive
(similarity) constraints only.

1 Single nodes are considered as connected components of size one.
2 The similarity relationship is not generally transitive, but if supervision is syntheti-

cally generated from data belonging to K distinct classes, this property holds.
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Fig. 2. Cumulative neighbor purity computed on 5 datasets from the UCI repository, in
case of large side–information. Constraint size, expressed by the number of connected
components of the similarity and dissimilarity graphs, is roughly equal to the 70% of
the dataset size. Each result is averaged on 20 random realizations of the constraints.
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Fig. 3. Cumulative neighbor purity computed on 5 datasets from the UCI repository, in
case of small side–information. Constraint size, expressed by the number of connected
components of the similarity and dissimilarity graphs, is roughly equal to the 90% of
the dataset size. Each result is averaged on 20 random realizations of the constraints.
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– Metric learned by the MPCK-Means algorithm [5], in the case of a sin-
gle metric parameterized by a full matrix. The metric learning process is
exploited in a K-means like clustering algorithm, which uses supervised con-
straints both in the cluster assignation and in the algorithm initialization
phases (seeding).

– Non metric distance learning with DistBoost [9,14], which combines boosting
hypotheses on the product space with a weak learner based on constrained
EM [8]. The number of boosting iterations was set to 50, as in [14].

All experiments were carried out in the same conditions among the different
techniques, using the software provided by the respective authors on their web-
sites.

Results are reported in Fig. 2 and Fig. 3 and are averaged on 20 random
generations of the constraints. Each of the described distance learning algorithms
was given exactly the same supervision (with the exception of RCA, as already
stated).

As reported in Fig. 2, in the large case SNNs outperform all the other distance
functions for 3 datasets (Balance, Ionosphere, Boston), while they show compa-
rable results to DistBoost for the Wine and Iris benchmarks, outperforming all
the remaining functions. In the small scenario of Fig. 3, SNNs demonstrate a bet-
ter behavior with respect to the other techniques for the Ionosphere and Boston
datasets, while for the remaining ones they show comparable or slightly worse
results with respect to DistBoost, outperforming all the other distance functions.
It can be noticed that SNNs tend to make a better use of the supervision while
its size increases, whereas not all the other techniques show this capability.

4 Conclusions and Future Work

In this paper a neural network approach to similarity learning has been pre-
sented, showing promising overall results compared to classical distance functions
and some state of the art distance learning techniques, even with a small num-
ber of supervisions. The proposed architecture assures to learn symmetric and
non negative similarity measures, and can also be trained to incorporate other
properties of the data. Thus, this is the first neural model that is applied to the
similarity measure learning task from pairwise constraints. Moreover, the ap-
proximation capabilities of the proposed model are assessed, showing that SNNs
are universal approximators for symmetric functions. Future work includes the
application of the learned function to clustering tasks.
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Abstract. Computational prediction of cis-regulatory binding sites is widely ac-
knowledged as a difficult task. There are many different algorithms for searching
for binding sites in current use. However, most of them produce a high rate of
false positive predictions. Moreover, many algorithmic approaches are inherently
constrained with respect to the range of binding sites that they can be expected
to reliably predict. We propose to use SVMs to predict binding sites from mul-
tiple sources of evidence. We combine random selection under-sampling and the
synthetic minority over-sampling technique to deal with the imbalanced nature
of the data. In addition, we remove some of the final predicted binding sites on
the basis of their biological plausibility. The results show that we can generate a
new prediction that significantly improves on the performance of any one of the
individual prediction algorithms.

1 Introduction

In this paper, we address the problem of predicting transcription factor (TF) binding
sites (binding motifs) within sequences of regulatory DNA. Currently, experimental
methods for characterising the binding sites found in regulatory sequences are both
costly and time consuming. Computational predictions are therefore often used to guide
experimental techniques. Computational prediction of cis-regulatory binding sites is
widely acknowledged as a difficult task [12]. Binding sites are notoriously variable
from instance to instance and in higher eukaryotes they can be located considerable
distances, both upstream and downstream, from the gene being regulated.

There are many different algorithms for searching for binding sites in current use,
such as those proposed in [1] and [2]. However, most of them produce a high rate of
false positive predictions. The use of algorithmic predictions prone to high rates of
false positives is particularly costly to experimental biologists using the predictions to
guide experiments. Moreover, many algorithmic approaches are inherently constrained
with respect to the range of binding sites that they can be expected to reliably predict.
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Given the differing aims of these algorithms it is reasonable to suppose that an effi-
cient method for integrating predictions from these diverse strategies should increase
the range of detectable binding sites. Furthermore, an efficient integration strategy may
be able to use multiple sources of information to remove many false positive predic-
tions, while also strengthening our confidence about many true positive predictions. In
[6], five popular motif discovery algorithms are run multiple times with different pa-
rameters, then multiple results are collected and grouped by a score rank. The final
predictions are obtained based on voting, smoothing and extracting methods. In [7], a
software tool, MultiFinder, was developed. It performs automated motif searching us-
ing four different profile-based motif finders (algorithms), and results from each motif
finder are ranked according to the user specified scoring function. The user can select
any combination of motif prediction tools.

The nature of the problem allows domain specific heuristics to be applied to the
classification problem. Instead of applying voting as discussed in [6], and merging mul-
tiple predictions according to the user specified scoring function mentioned in [7], we
attempt to reduce these false positive predictions using classification techniques taken
from the field of machine learning. In [10] and [11], we found that the integrated clas-
sifier, or meta classifier, when using a support vector machine (SVM) [9] outperformed
each of the original prediction algorithms. In particular the integrated classifier has a
better tradeoff between recall and precision.

In this work, we extend our work in [11] by making a major change to the way the
training sets are constructed. Previously we have only used proximal annotated DNA
sequences close to a gene as both positive and negative examples of binding sites. How-
ever a potential problem with this approach is that the nucleotides labelled as not being
part of a binding site may be incorrectly labelled, due to unreliable biological evidence.
Here we introduce a new background dataset which draws negative examples from se-
quences that are 5000-4500 base pair (bp) away from any gene. In this way we hope to
ensure that our negative examples are much less likely to be regulatory.

We use a 6-ary real valued vector, each element of which is a prediction result from
one of the algorithms, for a particular nucleotide position, as the input of the system. The
data consists of a merger of promoters from the mouse genome (M.musculus), annotated
with transcription factor (TF) binding sites taken from the ABS1 and ORegAnno2 data-
bases. In total there are 47 promoter sequences (regulatory region containing transcrip-
tional start site), including 142 TF binding sites. The data also includes 250 upstream,
non-coding sequences from which negative examples may be taken (background). The
background sequences were extracted using the UCSC genome website3.

In this work, one challenging aspect is the imbalanced nature of the data and that
has led us to explore some powerful techniques to address this issue. The data has two
classes: either binding sites or non-binding sites, with about 97% being non-binding
sites. We combine random selection under-sampling and SMOTE [3] over-sampling
techniques. In addition, we remove some of the final predicted binding sites on the
basis of their biological plausibility. The proposed method can be seen in Figure 1.

1 http://genome.imim.es/datasets/meta2005/index.html
2 http://www.oreganno.org/oregano/Index.jsp
3 http://genome.ucsc.edu/
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Fig. 1. The integration, sampling and classification of the data. The 6 algorithms give their own
value for each sequence position and one such column is shown. The 6 results are combined
into a 6-ary real valued vector. The data was under and over sampled, and then classified using a
meta-classifier.

2 The Description of the Dataset

As mentioned in Section 1, the data consists of a merger of promoters annotated with
transcription factor binding sites for mouse from the ABS and ORegAnno databases.
This data is denoted as ABS-And-OReg data. The data also includes 250 upstream, non-
coding sequences, denoted as background data.

– ABS-And-OReg
There are 47 annotated promoter sequences in total. Sequences extracted from ABS
are typically around 500 base pairs (bp) in length and those taken from ORegAnno
are typically around 2000bp in length. Most of the promoters are upstream of their
associated gene although a small number extend over the first exon and include
intronic regions: where promoters were found to overlap they were merged. The
total dataset is comprised of 60851 nucleotides, each of which may be part of a
binding site.

– Background
250 regions were randomly picked from across the mouse genome (forward strand
genes only). The first 500bp from each sequence were selected i.e. the nucleotides
that are 5000-4500 away from the gene with which they are associated. The idea is
to extract non-coding sequences that are also probably non-regulatory.

A check is also made that the selected region is indeed at least 4500 base pairs
away from any neighbouring gene. It is common that a neighbouring gene can be
close by and/or overlapping. The data is a sequence of 124467 nucleotides, and is
believed to contain no TF binding sites.
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For each nucleotide there is a real valued result from each of the six sources of
evidence. Each nucleotide also has a label denoting whether it is part of a known binding
site.

Six sources of evidence were generated from UCSC genome website, and were used
as input in this study. Computational predictions of binding sites were generated using
MotifLocator and EvoSelex. MotifLocator uses the PHYLOFACTS matrices from the
JASPAR database4 to scan for stringent matches in the sequences. EvoSelex uses mo-
tifs from [4] and the Fuzznuc algorithm to search for consensus sequences. A number
of sources of genomic annotation evidence were extracted from the UCSC genome
browser5: Regulatory Potential (RP) is used to compare frequencies of short alignment
patterns between known regulatory elements and neutral DNA. The RP scores were
calculated using alignments from the genomes of human, chimpanzee, macaque, rat,
mouse, cow and dog. PhastCons is an algorithm that computes sequence conservation
from multiple alignments using a phylo-HMM strategy. The algorithm was used with
two levels of stringency. The CpGIsland algorithm finds ‘CG’ nucleotide sub-sequences
in the regulatory region which are typically found near transcription start sites and are
rare in vertebrate DNA.

3 Methods

3.1 Sampling

In our dataset, there are less than 2.93% binding positions amongst all the vectors, so
this is an extremely imbalanced dataset [8]. Since the dataset is imbalanced, the su-
pervised classification algorithms will be expected to over predict the majority class,
namely the non-binding site category. There are various methods of dealing with im-
balanced data [13]. In this work, we concentrate on the data-based method [3]: us-
ing under-sampling of the majority class (non-binding sites) and over-sampling of the
minority class (binding site examples). We combine both over-sampling and under-
sampling methods in our experiments.

For under-sampling, we randomly selected a subset of data points from the majority
class. In [8], the author addresses an important issue that the class imbalance prob-
lem is only a problem when the minority class contains very small subclusters. This
indicates that simply over sampling with replacements may not significantly improve
minority class recognition. To overcome this problem, we apply a synthetic minority
over-sampling technique (SMOTE) as proposed in [3]. For each member of the minor-
ity class its nearest neighbours in the same class are identified and new instances are
created, placed randomly between the instance and its neighbours.

3.2 Biologically Constrained Post-processing

We propose a two-step post-processing over the SVM predictions. First, since TF bind-
ing sites are almost never found within an exon, an exon prediction can be considered

4 http://jaspar.genereg.net/
5 http://genome.ucsc.edu/
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to be negative evidence for a TF binding site at a given position. Although exon predic-
tions are still not perfect, they are much more robust than TF binding site predictions by
several orders of magnitude. There is much less noise in the signals that delimit them
in the sequence. Therefore, predicted components of a TF binding site will be removed
if they are within a predicted exon position.

One important concern when applying classifier algorithms to the output of many
binding site prediction algorithms is that the classifier decisions could result in biolog-
ically unfeasible results. The original algorithms only predict reasonable, contiguous
sets of base pairs as constituting complete binding sites. However when combined in
our meta-classifier each base pair is predicted independently of the neighbouring base
pairs, and it is therefore possible to get lots of short predicted binding sites of length
one or two base pairs. In this and a previous study, it was observed that many of the
predictions made by the classifiers were highly fragmented and too small to correspond
to biological binding sites. It was not clear whether these fragmented predictions were
merely artifacts or whether they were accurate but overly conservative.

Since the limits of biologically observed binding site lengths are typically in the
range 5-30 bp, we simply remove any predicted TF binding site with a length smaller
than 5bp. It was found that removal of the fragmented predictions had a considerable
positive effect on the performance measures, most notably for Precision.

3.3 Classifier Performance

In cases such as the imbalanced data simple error rates are inappropriate - an error
rate of 2.93% can be obtained by simply predicting the majority class. Therefore it is
necessary to use other metrics. Several common performance metrics, such as Recall
(also known as Sensitivity), Precision, False Positive rate (FP-Rate) and F-Score, can
be defined using the confusion matrix (see Table 1) computed from the test results:

Table 1. A confusion matrix

Predicted Negatives Predicted Positives
Actual Negatives True Negatives (TN) False Positives (FP)
Actual Positives False Negatives (FN) True Positives (TP)

Recall = TP
(TP + FN) , Precision = TP

(TP + FP) ,

F-Score = 2·Recall·Precision
Recall+Precision , FP-Rate = FP

FP+TN.

Furthermore the Correlation Coefficient (CC) [12], is given below:

CC =
TP · TN− FN · FP√

(TP +FN)(TN+FP)(TP+FP)(TN+FN)
.

Note that for all the measures except FP-Rate a high value is desirable. Precision is the
proportion of the positively categorised samples that are actually part of a binding site.
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Increasing the Precision of the prediction is one of the main goals of our meta-classifier.
However increasing Precision is normally accompanied by a decrease in the Recall, so
the F-Score, which takes into account both Recall and Precision, is a useful measure
of overall performance. The Correlation Coefficient (at nucleotide level) measures the
correlation of the prediction with the target. The FP-Rate is the proportion of all the
negative samples that are incorrectly predicted. The original algorithms generally have
a high FP-Rate and reducing this is another major goal of our classifier.

4 Experiments: Binding Sites Prediction

4.1 Simulation Setup

First the ABS-And-OReg data was divided into a training set that consisted of 2/3 of
the data, the remaining 1/3 including 20 promoter sequences was used as the test set.
We consider the following cases: 1) all non-binding site examples are selected from the
ABS-And-OReg data; 2) all non-binding site examples are selected from the background
data; 3) we repeat case 2) using only 4 features, that is without the two prediction
algorithms MotifLocator and EvoSelex as inputs. In the last two cases, the training sets
are actually a combination of ABS-And-OReg and background data, since all training
examples of components of TF binding sites are from ABS-And-OReg and all non-
binding site examples are from background.

Amongst the data, there are repeated vectors, some with the same label (repeated
items), and some with contradictory labels (inconsistent items). These items are un-
helpful in the training set and were therefore removed. The training datasets are then
consistent. However, in the case of the test set, the full set of data is considered.

In the ABS-And-OReg data, there are fewer than 2.93% binding positions amongst all
the vectors, so this is imbalanced data. To cope with this problem we used sampling. For
under sampling, a subset of data points from the majority class is randomly selected. In
this work, we apply SMOTE for over sampling, where we take 9 nearest neighbours,
and increase the number of items in the minority class by a factor of 7. The final ratio
of majority to minority class is set to 1 in all the following experiments. Note that we
normalise the consistent training set before sampling so that each feature has zero mean
and unit standard deviation.

After sampling, there are 3 different training sets based on each case mentioned
above.

Case 1: original data from ABS-And-OReg denoted orig.
Case 2: postive examples from ABS-And-OReg and negative examples from back-

ground denoted orig+bg.
Case 3: As case 2 but using only four features, denoted by orig+bg 4f.

Table 2 gives the size of these datasets.
In the following experiments, we apply an SVM for classification. The SVM software

is publicly available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. The radial basis ker-
nel is employed. Therefore the SVM has two free parameters: the cost C and γ related
to the radial basis kernel function. The range for C is set to [20, 250, 500, 1000,
2000, 5000] and for γ is [0.001, 0.01, 0.1, 1, 10]. In all the following experiments,
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Table 2. Description of datasets used in this work (bp denotes base pair)

Type Dataset Negative (bp) Positive (bp) Size (bp)
Original ABS-And-OReg 59070 1782 60851
Original Background 124467 0 124467

orig 5446 5446 10892
Training orig+bg 5757 5757 11514

orig+bg 4f 5264 5264 10528
Test test (from ABS-And-OReg) 18124 784 18908

the best values of C and γ are C = 5000 and γ = 10, selected by standard 5-fold cross
validation.

4.2 Experimental Results

Before presenting the main results we should point out that predicting binding sites
accurately is extremely difficult. The best individual original algorithm (EvoSelex) pro-
duces over 11 times as many false positives as true positives on the test set. This makes
the predictions almost useless to a biologist as most of the suggested binding sites will
need expensive experimental validation and most will not be useful. Therefore the key
aim of our combined classifier is to reduce the number of false positives while increas-
ing the number of true positives given by the original algorithms.

Table 3 shows experimental results without post-processing. For comparison, we also
give results of the two original prediction algorithms: MotifLocator and EvoSelex, over
the test set.

Table 3. Classification results without post-processing (in percentage %)

Recall Precision F-Score FP-Rate CC

MotifLocator 42.5 7.1 12.1 24.2 8.4

EvoSelex 34.8 8.0 13.0 17.2 9.1
orig 43.1 12.5 19.4 13.0 17.2

orig+bg 66.1 13.3 22.1 18.7 23.4
orig+bg 4f 60.5 16.3 25.7 13.4 26.0

The first notable feature of these results is that the meta classifiers have produced
stronger Recalls and Precisions than those of the two original algorithms. Therefore, the
F-Score, which can be viewed as an average of the Recall and Precision, has also been
increased. The nucleotide level correlation coefficient has been significantly improved.
As for the FP-Rate, the meta classifiers trained on orig+bg 4f and orig, have reduced
the FP-Rate by 22.1% and 24.4%, respectively, compared with EvoSelex, while the
meta classifier trained on orig+bg has increased the FP-Rate by 8.7%.

The second notable feature of these results is that the meta classifier trained on
orig+bg 4f, which used only 4 features, produced a better performance than the one
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that used all 6 features when looking at the F-Score and CC values, which assess the
overall performance of a classifier.

One more notable feature of these results is that one can obtain a better overall per-
formance when using non-binding site examples from the background set rather than
from the ABS-and-OReg dataset.

Finally we investigate how the results can be further improved by removing those
predictions of base-pairs being part of a binding site that are not biologically plausible.
As described earlier we find that removing predictions that are either within exons or
not part of a contiguous predicted binding site of at least five nucleotides gives a better
result. So here we take the predictions of our experimental results and remove all those
that do not meet the criteria. The results can be seen in Table 4.

Table 4. Classification results with and without post-processing (in percentage %)

Recall Precision F-Score FP-Rate CC
EvoSelex 34.8 8.0 13.0 17.2 9.1

orig+bg 4f 60.5 16.3 25.7 13.4 26.0

orig+post processing 40.6 13.7 20.4 11.1 17.9
orig+bg+post processing 61.0 14.8 23.8 15.2 24.2

orig+bg 4f+post processing 58.0 17.5 26.9 11.8 26.8

It shows that all FP-Rates are reduced when compared with the best original algo-
rithm EvoSelex. In addition, comparing orig+bg 4f+post processing with orig+bg 4f,
one can see that the FP-Rate has been further reduced to 11.8%. Looking at two over-
all performance values, F-Score and CC, it shows that the accuracy of predictions is
further improved after post-processing. Interestingly, orig+bg+post processing has a
larger number of true positives (Recall) than orig+bg 4f+post processing. However,
orig+bg 4f+post processing has a lower FP-Rate and better overall performance on F-
Score and CC. Specifically, orig+bg 4f+post processing has increased the Recall by
66.7%, the Precision by 118.8%, the F-Score by 106.9% and CC by 194.5%, while
reduced the FP-Rate by 31.4% when compared with the original prediction algorithm
EvoSelex.

To further analyse our method, we investigate in more detail the predictions on each
test promoter. Figure 2 shows the nucleotide level correlation coefficient within each
promoter between the known nucleotide positions and the predicted nucleotide posi-
tions for each prediction algorithm.

It can be seen that there are more higher correlation (bright patterns) between the
known nucleotide positions and the predicted nucleotide positions based on each pro-
moter given by the 3 meta classifiers. It indicates that the two original prediction algo-
rithms can only successfully find few parts of binding sites, while the meta classifiers
can detect more parts of binding sites by integrating several diverse sources. In addition,
although both meta classifiers orig and orig+bg include MotifLocator and EvoSelex as
part of the input, these two prediction algorithms do not contribute significantly in the
final decision to the meta classifiers. For example, there is a relatively high CC value
in both MotifLocator and EvoSelex predictions within test promoter 6, but all 3 SVM
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Fig. 2. Correlation coefficients between predicted positions and the known positions in each test
promoter. Note that predictions from 3 meta classifiers are post-processed. High correlations are
associated with brighter cells. Poor correlations are associated with darker cells.

meta classifiers produce a lower CC value. One more example is test promoter 5. Both
MotifLocator and EvoSelex predictions have low correlation with the known nucleotide
positions, but the 3 meta classifiers give a very high CC value. It suggests that those 4
suggestive evidences rather than the two original prediction algorithms are much more
important for the classification.

5 Discussion

The identification of regions in a sequence of DNA that are regulatory binding sites is a
very difficult problem. Here we have confirmed our earlier results showing that a meta
classifier using multiple sources of evidence can do better than any of the original algo-
rithms individually. In particular it was possible to reduce the number of false positive
predictions.

Importantly we have also shown that using negative data that is very probably cor-
rectly labelled leads to a better prediction results. This is perhaps unsurprising, but it
does suggest that some of the original data in the promoter sequences may be incor-
rectly labelled. This suggests that more binding sites exist on the promoter sequences
than have been found by the expensive experimental techniques currently needed to
produce such predictions.

Finally results that the meta classifier trained on only 4 features can produce a better
performance than the one used all 6 features demonstrate the importance of feature
selection. One needs to choose sources of complementary evidences which are in fact
the most useful to consider. In the future, we intend to cope with this by applying the
SVM classification based on Recursive Feature Elimination [5].

Much further work is needed to extend our current methods. The technique needs to
be evaluated on other species and the biological significance of the predictions needs
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close examination. However it seems likely that the use of background data, as demon-
strated here, will facilitate generally improved predictions.
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Abstract. Building a strong computer Go player is a longstanding open
problem. In this paper we consider the related problem of predicting the
moves made by Go experts in professional games. The ability to predict
experts’ moves is useful, because it can, in principle, be used to narrow
the search done by a computer Go player. We applied an ensemble of
convolutional neural networks to this problem. Our main result is that
the ensemble learns to predict 36.9% of the moves made in test expert
Go games, improving upon the state of the art, and that the best single
convolutional neural network of the ensemble achieves 34% accuracy.
This network has less than 104 parameters.

Keywords: Go, Move prediction, Convolutional Neural Networks.

1 Introduction

Go is an ancient and popular two-player board game in which players take turns
to place pieces on the board, aiming to capture as many of the opponent’s pieces
and as much board territory as possible. The pieces are unmovable, but can be
captured and removed from the board if surrounded by the opponent’s pieces. Go
is played on a 19× 19 board; its rules are described by van der Werf [1, ch. 2]

Existing Go-playing computer programs are still not competitive with Go
professionals on 19×19 boards (e.g., [2], [1], [3]). In contrast, some Chess-playing
programs can play on par with world champions, even though Chess is not
obviously easier than Go, except with respect to board size. Some checkers-
playing programs are even more extreme and can play the optimal checkers
strategy [4].

The techniques used for successful Chess play do not work for Go for sev-
eral reasons. First, the nature of the rules of Chess makes it easy to estimate
the player with the advantage, simply by counting the pieces. This and similar
heuristics allow minimax search to compute a good move reasonably rapidly. In
contrast, there is no easy way to determine the player with the advantage in Go.
In particular, counting captured pieces (which works for Chess) does not work
for Go because the value of a piece depends more heavily on its surroundings.
The inability to rapidly evaluate Go positions prevents minimax searches from
finding good moves. Second, typical Chess positions have 40 legal moves, while
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typical Go positions have 200 legal moves, so the search space is substantially
larger. This partly explains why there are still no strong computer Go players.

The difficulty of Go suggests that it may be useful to start by solving a
different problem whose solution would help create a strong Go player. In this
paper we consider such a problem, which is to predict the moves made in Go
experts’ games. Predicting moves of Go experts is related to creating a good
Go player, because an extremely accurate move predictor (e.g., a Go expert)
ought to play Go well. However, constructing a fairly accurate move predictor is
potentially easier than playing Go well, because an accurate move predictor can
occasionally make devastating mistakes which would make it a poor Go player.
For an illustration of the importance of the problem, consider an observer of a
professional Go tournament. If the observer is able to predict, on average, every
third move the players make, then it is plausible that the observer is a Go expert.
Our convolutional neural networks can do precisely this. In addition, the move
predictor can be used for educational purposes, since by outputting a probability
distribution over all possible moves, it allows the student of expert Go games
to see alternative good moves that could have been made (but obviously, were
not). Finally, the move predictor can be used to narrow the search done by a
full Go player.

We report the prediction accuracy of several convolutional neural networks [5],
[6] on the problem of predicting Go experts’ moves and also the accuracy when the
networks are combined. Our main result shows that an ensemble of convolutional
neural networks is able to predict 36.9% of the moves in the test Go games, while
the most accurate previous method by Stern et al. [7] predicts 34% of the moves
correctly. The best convolutional neural network of our ensemble has less than
104 parameters and achieves over 34% accuracy on the test set, while a very small
convolutional neural network, with less than 2,000 parameters, achieves 30% pre-
diction accuracy. Furthermore, the convolutional networks learn rapidly and reach
30% accuracy after learning on a small fraction of the training set.

We now outline the difference between Stern et al.’s approach [7] and ours.
While our move predictor uses an ensemble of convolutional neural networks
the best of which have a small number of parameters, Stern et al.’s predictor
uses a 107-dimensional feature vector to represent the board, where each feature
represents an exact pattern match (up to a translation and a symmetry) and is
computed very efficiently. It copes with such high-dimensional feature vectors
by using Bayesian methods, and is trained on 180,000 expert games. The nature
of its exact pattern matching may make it difficult to generalize to non-expert
games.

In addition to using fewer parameters, we used a smaller training set con-
sisting of approximately 45,000 expert games [8]. Since the convolutional neural
networks, especially the small ones, have relatively few parameters, and do not
perform exact pattern matching, they have the potential to generalize to non-
expert games.

The method of Stern et al. has an advantage over ours: it does not use the
previously made moves as additional inputs. This is significant, because our
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results show that the moves made in previous timesteps greatly improve the
performance of our convolutional neural networks (see table 1 for the extent to
which it helps).

2 Convolutional Neural Networks

Convolutional neural networks [5] form a subclass of feedforward neural networks
that have special weight constraints. They enable the network to learn much
more efficiently from fewer examples, provided that the learning problem exhibits
two-dimensional translation invariance.

Convolutional neural networks have been successfully applied to various prob-
lems, and have obtained the best classification accuracy on the MNIST digit
dataset [9], [10], the NORB image dataset [11], and on the problem of handwrit-
ten zipcode understanding [12].

Convolutional neural networks are well suited for problems with a natural
translation invariance, such as object recognition ([9], [11], [12]). Go has some
translation invariance, because if all the pieces on a hypothetical Go board are
shifted to the left, then the best move will also shift (with the exception of
pieces that are on the boundary of the board). Consequently, many applications
of neural networks to Go have used convolutional neural networks ([6], [13],
[14], among others). A convolutional neural network is depicted in figure 1. Its
construction is motivated by the observation that images (and Go boards) are
expected to be processed in the same way in every small image patch; there-
fore, the weights of the convolutional neural network have a replicated structure
which applies the same weights to every subrectangle of the image (the size of
the subrectangles is always the same; fig. 1), producing the total inputs to the
next layer. The weights of a convolutional neural network are also called the
convolutional kernel, K, and its size, n, is the size of the subrectangles it consid-
ers. In particular, a fully connected feedforward neural network has many more
parameters than a convolutional network of the same size. The relatively small
number of weights makes parameter estimation require many fewer examples, so
a good solution (if exists) can be found rapidly.

As in feedforward networks, applying the sigmoid function (1 + e−t)−1 to
the total inputs produces the values of the units in the hidden layer, which
form several 2-dimensional laid out “images” that are processed in the same
convolutional manner.

More concretely, a layer of a convolutional neural network is governed by the
following equation

yx,y =

⎛⎝1 + exp

⎛⎝− (n−1)/2∑
u=−(n−1)/2

(n−1)/2∑
v=−(n−1)/2

xx+u,y+vKu,v

⎞⎠⎞⎠−1

(1)

where y is the activity of a hidden unit at position (x, y), and x are the input
units.
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A convolutional neural network can have several convolutional kernels; for
instance, the network of figure 1 has three convolutional kernels in the first
hidden layer. The convolutional kernel works in such a way that the sizes of
the maps in the input, hidden, and output layers are the same. To accomplish
this, some rectangles need to be partially outside of the board; in this case, the
weights of the kernels corresponding to the outside-the-board region are unused.

Fig. 1. A convolutional neural network with one hidden layer, and three convolutional
kernels; the applications of the kernels to two rectangular regions of their inputs are
shown. I , H , and O are the input, hidden, and output layers, respectively.

3 Experiments

In this section we describe the details of the convolutional neural networks that
we used for our experiments and report their performance.

For our experiments, we used the Gogod collection of games [8] which contains
about 45,000 expert games. D. Stern [7] generously provided us with a quarter
of their test set for accurate comparisons. We processed the games in a simple
manner so that it is the black’s player move on each board, which involved
reversing the colors of every second board (in a way that depends on first player’s
color).

The structure of the convolutional neural network used are as follows: The
size of the convolutional kernels of the first layers are 9 × 9 or 7 × 7, and the
size of the hidden-to-output convolutional kernels are 5 × 5. The hidden layer
consists of 15 convolutional kernels. As usual, the output layer is the softmax of
its input from the hidden layer, and the objective function is the log probability
of the model given the labels.

Another variable in the experiments is the encoding of the input. We tried
a raw input encoding, where each intersection on a board takes three possible
values: empty, white and black, which is given to the convolutional layer in the
form of two 19× 19 bitmaps corresponding to the black and the white pieces.

We also tried an encoding that represents the number of liberties of each
group (the liberty representation). A group is a connected set of pieces of the
same color, and the number of liberties of a group is equal to the number of pieces
the opponent needs to place in order to capture this group, without intervention.
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Fig. 2. A convolutional neural network that uses the moves made in previous timesteps.
It receives, as inputs, several of the previous board positions. The marked convolutional
maps are the same; thus every timestep is proceed in the same way, at first. The output
layer consists of 361 softmax units, whose activities are the network’s belief in the
correctness of the given move.

This feature was used earlier ([7], [13], [14]) and was shown to be useful. The
number of liberties of a non-empty intersection is defined to be the number of
liberties of the intersection’s group, which can take the values 1, 2,≥ 3 (it cannot
be 0 if the intersection is nonempty). Combining the number of liberties with the
color of the piece, each nonempty board intersection can take values in the set
V els = {1, 2,≥ 3} × {black, white} of size 6. Thus, the input representation is
given in the form of 6 bitmaps of size 19×19 (cf. figure 3). An empty intersection
causes every bitmap be 0 in this intersection; if the intersection is nonempty, then
the bitmap corresponding to the feature in V els is set to 1 in the corresponding
input intersection.

The final variable of the experiment is the number of previous boards used
as inputs: instead of using only the current board as an input, it is also possible
to use the board configurations of several previous timesteps. We used 0 and 4
previous timesteps. See figure 2.

We also tried using a much smaller a convolutional neural networks that have
only 3 convolutional kernels of size 7× 7, which achieved 30% accuracy, as well
as one that has uses only one previous timestep.

The learning details are as follows: A learning rate of size 0.1 is used for the
first 3000 weight updates, which is then reduced to 0.01. The momentum of size
0.9 is used. Learning proceeds for 105 weight updates, where each weight update
corresponds to processing a single game in the Gogod dataset; thus, learning
makes less than three passes over the training set. Finally, the gradient is always
divided by 200 (before being multiplied by the learning rate) since the mean
length of a Go game in our dataset is 206. No weight decay was used.

3.1 Averaging the Predictions of Different Neural Networks

In this subsection we describe the results that are obtained when all the networks
are combined to make a large predictor. We train a neural network that takes
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Table 1. Results of the small convolutional neural networks. Each simulation is de-
scribed by there parameters. The first, k × k, is the size of the input-to-hidden convo-
lutional kernel; t is the number of previous timesteps used; l is written if the liberty
representation is used, and n if the raw representation is used. Every network in this
table has less than 104 parameters and 15 convolutional kernels, except for the last
row, which has only 3 convolutional kernels and less than 2,000 parameters. Notice
that the best network that does not make use of the previous timesteps achieves 22%
accuracy, showing that the previous timesteps are extremely helpful for convolutional
neural networks.

Network Structure Accuracy Mean log loss

7 × 7, t = 0, l 22.0% 4.9

7 × 7, t = 0, n 17.5% 5.2

7 × 7, t = 4, l 34.1% 4.0

7 × 7, t = 4, n 31.7% 4.2

9 × 9, t = 0, l 21.8% 4.9

9 × 9, t = 0, n 18.2% 5.2

9 × 9, t = 4, l 34.6% 4.0

9 × 9, t = 4, n 32.3% 4.1

7 × 7, t = 4, l, h = 3 30.0% 4.4

the predictions of the individual nets listed in table 1 as inputs, and computes
a single move prediction as output.

In addition to the networks in table 1, we also include a few simple move
predictors in the ensemble that improve the accuracy of the ensemble, despite
having low individual accuracy. The simple move predictor is a neural network
that estimates the probability of an expert making a move at a particular loca-
tion, given a local “patch” of the board centred at that location as input. For
example, the input to the network would be a 9 × 9 patch of the board, and
the output would be the probability of an expert making a move at the center
of the patch. Such a model can be used for full-board move prediction by inde-
pendently applying it to all possible candidate move locations on a board, and
then selecting the one with the highest probability as the predicted expert move
location. Such a purely local predictor will have limited accuracy because many
expert moves in Go are decided based on knowledge about the entire board.
Nevertheless, it will be good at predicting moves that are fully determined by
local configurations of stones. We train networks on patches of size 9 × 9 (100
hidden units), 13× 13 (100 hidden units), and 17× 17 (200 hidden units), with
test set move prediction accuracies of 18.4%, 18.9%, and 19.8%, respectively.
Although these networks perform poorly, they still improve the accuracy of the
ensemble.

We selected a subset of the training set of size 1000 games to learn the weights
of the ensemble network. We tried two averaging methods. The first method
computes the weighted arithmetic means the predictions of all the networks,
with the objective to maximize the log probability. This yields 35.5% accuracy.
The second method computes the weighted geometric means of the predictions
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Fig. 3. The weights of a neural network achieving 34.6% accuracy that uses the liberties
as an additional input. Recall that the input vector is represented by 6 bitmaps. Each
column of the top-left image shows the convolutional kernels corresponding to each
such bitmap, for each of the 15 convolutional maps. The image on the right shows the
biases of the hidden units; it is displayed as 15 19×19 images. The image at the bottom
shows the convolutional kernels mapping the 15 from the current and the 4 previous
timesteps. The images are clipped at -1.5, 1.5, to enhance their contrast.

of all the networks and renormalizes the predictions, with the same objective.
This approach, although yielding a lower average log probability, obtains 36.9%
accuracy.

4 Related Work

A popular research direction for Go is to apply the idea that produced the
Backgammon program [15]. The Backgammon playing program uses Reinforce-
ment Learning [16] with self-play to learn a neural network that computes the
Q-values of the different moves. This approach was attempted in [6] (but using
TD(0) [16]). It is not a straightforward application of TD(0)-learning to Go,
because the neural network makes 361 predictions, one per intersection, on the
identity of its owner in the end of the game. Doing this increases the amount
of learning signal obtained from a single game. More elaborate variants of Q-
learning with neural networks are also used [14], where the neural network is
highly specialized and uses Q-learning to learn to predict many aspects of the fi-
nal position (e.g., determine whether a given position will be an eye, or whether
two positions will belong to the same group in the end of the game). This is
motivated by the belief that a good Go player should be able to predict all these
aspects of the final position, so the resulting hidden units will be more helpful
for accurate board evaluation.

The most successful recent approaches at computer Go used Monte Carlo
simulations to estimate the position’s value [17]. While this approach yields
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Fig. 4. The curve shows the fraction of the boards (vertical axis) whose correct move
is among the top k predictions of the ensemble, where k ranges the horizontal axis

the strongest existing computer Go player [18], we do not directly compare our
move predictor to it, since a strong move predictor is not necessarily a strong
Go player, and vice versa.

There has also been some work on move prediction for computer Go [1], [13]
using a small neural network resembling ours. It used some features, such as
the number of liberties, as well as a feature that determines the distance to the
previously made move, and were trained with a specially-chosen loss function. Its
accuracy was 25%. A different specialized convolutional neural network trained
with moderately strong play on 9 × 9 boards was able to generalize to 19 × 19
boards, obtaining 10% accuracy in expert’s move prediction [19].

There has been more work [20] on move prediction that used high-dimensional
feature vectors similar to those that Stern et al. used. In addition to using high-
dimensional feature representation, Araki et al. [20] also used the previously
made moves as additional features. They were only able to obtain prediction
accuracy of 33%, having trained on half of the Gogod dataset.

5 Conclusions

We reported experimental results using neural networks for move prediction
for Go. Our results show that small convolutional neural networks are a viable
method for predicting Go expert moves. Our main discovery that knowledge of
the previous timesteps combined with the convolutional neural networks produce
a particularly accurate move predictor. Araki et al.’s [20] experience suggests
that using the previous timesteps will be less helpful for feature-vector based
approaches.

In particular, the small convolutional neural networks could be used to direct
the search very efficiently, and their small number of parameters makes them
easy to learn.
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Abstract. An associative memory (AM) is a special kind of neural net-
work that allows associating an output pattern with an input pattern.
In the last years, several associative models have been proposed by dif-
ferent authors. However, they have several constraints which limit their
applicability in complex pattern recognition problems. In this paper we
gather different results provided by a dynamic associative model and
present new results in order to describe how this model can be applied
to solve different complex problems in pattern recognition such as ob-
ject recognition, image restoration, occluded object recognition and voice
recognition.

1 Introduction

An associative memory AM can be seen as a particular kind of neural network
specially designed to recall output patterns in terms of input patterns that might
appear altered by some kind of noise, refer for example to [1], [2], [3], [4], [7]
and [9]. Most of these associative models have several constraints that limit
their applicability in real life problems. For example input patterns can only be
distorted by additive or subtractive noise, but not both or only by mixed noise.
Other associative models can only store a limit number of patterns, or can only
store binary and bipolar patterns. There are a limited number of associative
models that can store real patterns.

A particular problem with images obtained from real life situations is that
they could suffer pronounced alterations. Examples of these alterations are im-
age transformations such as illumination changes, scale chances, rotations and
different orientations. Working with these kinds of alterations under models like
those described in [1], [2], [3], [4] and [9] could produce unexpected results due
to their limitations. The same occurs with sound patterns, they suffer different
transformations that make almost impossible applying an AM for voice recogni-
tion for example.

Recently in [7] a new associative model was proposed. This model can be used
to recall a set of images even if these images suffer affine transformations. This
model also has been applied to different pattern recognition problems, refer for
example to [7], [14] and [15]. In this paper we propose to apply them to object
recognition, occluded object recognition and voice recognition.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 111–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Description of the Dynamic Associative Model

This proposed model is not an iterative model as Hopfield’s model [1]. The model
emerges as an improvement of the model proposed in [4] which is not an iterative
model. Let x ∈ IRn and y ∈ IRm an input and output pattern, respectively.
An association between input pattern x and output pattern y is denoted as(
xk,yk

)
, where k is the corresponding association. Associative memory W is

represented by a matrix whose components wij can be seen as the synapses of the
neural network. If xk = yk∀k = 1, . . . , p then W is auto-associative, otherwise
it is hetero-associative. A distorted version of a pattern x to be recalled will be
denoted as x̃. If an associative memory W is fed with a distorted version of xk

and the output obtained is exactly yk, we say that recalling is robust.

2.1 Building the Dynamic Associative Memory (DAM)

This model is inspired in some biological ideas of the human brain. Humans, in
general, do not have problems recognizing patterns even if these are altered by
noise. Several parts of the brain interact together in the process of learning and
recalling. This model defines several interacting areas, one per association we
would like the memory to learn. Also integrate the capability to adjust synapses
in response to an input stimulus. Before an input pattern is learned or processed
by the brain, it is hypothesized that it is transformed and codified by the brain.
This process is simulated using the procedure introduced in [5].

This procedure allows computing codified patterns from input and output
patterns denoted by x̄ and ȳ respectively; x̂ and ŷ are de-codifying patterns.
Codified and de-codifying patterns are allocated in different interacting areas.
On the other hand, d defines of much these areas are separated and determines
the noise supported by the model. In addition a simplified version of xk denoted
by sk is obtained as:

sk = s
(
xk
)

= mid xk (1)

where mid operator is defined as mid x = xn+1
2

.
When the brain is stimulated by an input pattern, some regions of the brain

(interacting areas) are stimulated and synapses belonging to those regions are
modified. In this model, the most excited interacting area is call active region
(AR) and could be estimated as follows:

ar = r (x) = arg
(

p

min
i=1
|s (x)− si|

)
(2)

Once computed the codified patterns, the de-codifying patterns and sk we can
compute the synapses of the DAM as follows:

Let {(x̄k, ȳk
)∀k = 1, . . . , p}, x̄k ∈ IRn and ȳk ∈ IRm a fundamental set of

associations (codified patterns). Synapses of W are defined as:

wij = ȳi − x̄j (3)
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In short, building of the DAM can be performed in three stages as:

1. Transform the fundamental set of association into codified and de-

codifying patterns by means of Procedure 1 described in [5].

2. Compute simplified versions of input patterns by using equation 1.

3. Build W in terms of codified patterns by using equation 3.

2.2 Modifying Synapses of the Associative Model

In this model, synapses could change in response to an input stimulus; but
which synapses should be modified? There are synapses that can be drastically
modified and they do not alter the behavior of the DAM. In the contrary, there
are synapses that only can be slightly modified to do not alter the behavior of
the DAM; we call this set of synapses the kernel of the DAM and it is denoted
by KW. In this model are defined two types of synapses: synapses that can be
modified and do not alter the behavior of the DAM and synapses belonging to
the kernel of the DAM. These last synapses play an important role in recalling
patterns altered by some kind of noise.

Let KW ∈ IRn the kernel of a DAM W . A component of vector KW is
defined as:

kwi = min (wij) , j = 1, . . . ,m (4)

Synapses that belong to KW are modified as a response to an input stimulus.
Input patterns stimulate some ARs, interact with these regions and then, ac-
cording to those interactions, the corresponding synapses are modified. Synapses
belonging to KW are modified according to the stimulus generated by the input
pattern. This adjusting factor is denoted by Δw and can be computed as:

Δw = Δ (x) = s (x̄ar)− s (x) (5)

where ar is the index of the AR.
Finally, synapses belonging to KW are modified as:

KW = KW ⊕ (Δw −Δwold) (6)

where operator ⊕ is defined as x⊕e = xi+e∀i = 1, . . . ,m. As you can appreciate,
modification of KW in equation 6 depends of the previous value of Δw denoted
by Δwold obtained with the previous input pattern. Once trained the DAM,
when it is used by first time, the value of Δwold is set to zero.

2.3 Recalling a Pattern Using the Proposed Model

Once synapses of the DAM have been modified in response to an input pattern,
every component of vector ȳ can be recalled by using its corresponding input
vector x̄ as:

ȳi = mid (wij + x̄j) , j = 1, . . . , n (7)
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In short, pattern ȳ can be recalled by using its corresponding key vector x̄ or
x̃ in six stages as follows:

1. Obtain index of the active region ar by using equation 2.

2. Transform xk using de-codifying pattern x̂ar by applying the following

transformation: x̆k = xk + x̂ar.
3. Compute adjust factor Δw = Δ (x̆) by using equation 5.

4. Modify synapses of associative memory W that belong to KW by using

equation 6.

5. Recall pattern y̆k by using equation 7.

6. Obtain yk by transforming y̆k using de-codifying pattern ŷar by applying

transformation: yk = y̆k − ŷar.

The formal set of prepositions that support the correct functioning of this
dynamic model and the main advantages again other classical models can be
found in [18].

3 Associative Memories Applied to Pattern Recognition

In this section we describe different pattern recognition problems and we provide
a solution to this problem using the dynamic associative model already described.

In previous papers we have described how a DAM could be use to solve some
of the most important problems in pattern recognition: 3D object recognition
[14] and face recognition [15]. Instead of use several statistical computationally
expensive techniques such as principal component analysis [10] and [11], or view
based object recognition [12] and [13], we used the DAM already described com-
bined with two biological hypotheses: the role of the response to low frequencies
at early stages, and some conjectures concerning how an infant detects subtle
features (stimulating points) from a face or a toy.

Now we will address how a DAM could be used to solve some interesting
problems in pattern recognition such as object recognition, image restoration,
occluded object recognition and voice recognition.

3.1 Image Restoration (Filtering)

The most common application of an AM is as a filter; refer for example to [3],
[4] and [6]. In this case, the AM is fed with a pattern, probably altered by noise;
at the output the original image (without noise) should be obtained.

In this experiment we firstly trained the DAM with the set of images A,
see Fig. 1, as in section 2.1. Each image was firstly transformed into a raw
vector reading the image from left -right and up-down and transforming each
RGB pixel (hexadecimal value) into a decimal value and finally, we stored the
information into an array. In this case, each image was associated with itself (40
associations). Once trained the DAM, we proceed to test the accuracy of the
proposal. First we verified if the DAM is able to recall the fundamental set of
association using set of image A, and then we verified if the DAM recall noisy
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(a) (b)

Fig. 1. (a) Set of images A is composed by 40 different images of flowers and animals.
(b) Set of image B is composed by 40 classes of flowers and animals, 15 images per
class. For each class the pixels of each image are altered by Gaussian noisy (altering
the 5% of the pixel until 75% of the pixels in step of 5).

version of the images using the set of images B. In both cases the DAM recalled
the corresponding image, even when the 75% of the pixels where modified. In
summary, the accuracy of the proposal was, in both cases, of 100%. This result
supports the applicability of the proposal for the cleaning up of images from
noisy versions of them.

3.2 Object Recognition

Now suppose that you want to develop a nurse robot capable of recognizing the
different surgeon tools used in a surgery. One possible solution could be to use
the methodology described in [17] combined with the dynamic associative model.

First to all, we have to train the DAM using a set of images of the objects
that we would like the nurse robot learn. Once trained the DAM we expected to
recognize the objects learned by the nurse robot (DAM). For training, we used a
set of images composed by 4 objects, 20 images per object at different rotations
and positions, see Fig. 2(a). In order to test the accuracy of the proposal we
used a set of 100 images containing the objects already trained, see Fig. 2(b).

(a) (b)

Fig. 2. (a) Some images used in training phase. (b) Some images used in recognition
phase.

Training phase is given as follows: For each image, apply a threshold, apply a
labeling-component algorithm, compute Hu descriptors for each labeled compo-
nent and use them to train the DAM as in section 2.1. In this case, we trained
the DAM using the average descriptor vector of each object associated with a
vector filled with 0 and with an 1 in the position that indicates the index class
of the object.

Recognition phase could be performed as follows: For a given image, apply
a threshold, apply a labeling-component algorithm, compute Hu descriptors for
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Table 1. Accuracy of the proposal compared against other results (adapted from [17])

Object Angled-based Canberra Manhathan Euclidian Bayesian DAM

1 85% 98% 88% 88% 100% 99%
2 76% 76% 76% 76% 99% 98%
3 98% 99% 98% 97% 99% 99%
4 75% 95% 79% 74% 89% 90%

% recognition 83.5% 92% 85.25% 83.75% 96.75% 96.75%

each labeled component and operate the DAM using each descriptor already
obtained as described in section 2.3.

The accuracy of this proposal was compared with the results obtained using
other distance classifiers, for the details, refer to Table 1. As you can appreciate,
the accuracy of the proposal using DAM is comparable to that obtained using the
Bayesian classifier and better than those obtained using other distance classifiers.

3.3 Object Recognition under Occlusions

If an object is being partially occluded, the corresponding invariant description
(as those used in section 3.2) will be distorted or, in the worst case, unable to
reflect the identity of the object. One possible solution to this problem could be
use the methodology described in [16] combined with the DAM. In this method-
ology, essential parts (EP), which are parts that characterize an object, are first
detected. These parts are then described in terms of invariant features for fur-
ther processing; this allows object recognition also under image transformations
(translations, rotations, and so on). Finally object part descriptions are next
used to train the DAM.

For training we used a set of images composed by 5 objects, 20 images per
object at different rotations and positions, see Fig. 3(a). In order to test the
accuracy of the proposal we used a set of 100 images containing the objects
already trained, see Fig. 3(b). Training phase is given as follows (for details
refers to [16]): For each image, select and EP part, apply a threshold, apply a
labeling-component algorithm, compute Hu descriptors [8] and train the DAM
as was described in section 2.1. In this case, the DAM was trained by using the
average descriptor vector of each EP part associated with a vector filled with 0
with an 1 in the position that indicates the index class of the object.

(a) (b)

Fig. 3. (a) Some images of the five objects used in training phase. (b) Some of the
images used in recognition phase.
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Recognition phase is performed as follows (for details refers to [16]): For a
given image, extract an EP part, apply a threshold, apply a labeling-component
algorithm, compute Hu descriptors and operate the DAM as was described in
section 2.3. During object detection, EP parts are searched by means of swapping
window connected to the DAM. Each time an EP part of an object is detected
a vote is given to that object telling that this object appears in the image.

The accuracy of this proposal was compared with the results obtained using
other distance classifiers and AMs, see Table 2. As you can appreciate, the
accuracy of the proposal using the DAM is slightly better compared against
that obtained using the Bayesian classifier and other associative models.

Table 2. Accuracy of the proposal compared against other results (adapted from [16])

Object PAM MAM Euclidian Bayesian SAM DAM

Bolt 76% 70% 74% 90% 86% 88%
Washer 67% 60% 64% 89% 70% 75%
Eyebolt 82% 49% 80% 60% 82% 80%
Hook 52% 52% 52% 51% 52% 53%

Dovetail 81% 78% 83% 92% 95% 93%
% of recognition 71.6% 61.8% 71.0% 76.4% 76.8% 77.8%

3.4 Voice Recognition

Until here, the most common characteristic of the previous problems was that
they use images to train the DAM. Now, we will show how this model can be
applied to other kind of problems which do not involve the use of images.

In the previous problems we associated an image with other image, now we
will associate a voice signal with another voice signal, a voice signal with text
and a voice signal with an image. Each voice signal was recorded in a wav file
(PCM format, 44.1 KHz, 16 bits and mono).

Before training the DAM, each voice signal has to be transformed into a voice
signal pattern. In order to build a voice signal pattern from the wav file, we only
read the wav information chuck of the file and then we store it in an array. Note
that we did not use any sophisticated techniques for extracting voice features.
In order to associate a voice signal with an image belonging to set of image A
used in section 3.1, each image was first transformed into an array. The same
occurs when we associate a voice signal with a word, each word in ASCII was
first transformed into their hexadecimal value and then stored in an array. In
order to test the accuracy of the proposal we perfomed three experiments using
several sets of sounds.

Set of sounds A is composed by 40 different sounds that when reproduced
you can hear the name of different flowers and animals. Set of sounds B1 is
composed by 40 classes of flowers and animals, 15 sounds per class, see Fig 4.
For each class the wav information of each sound was altered by additive noise
(we begun with 5% of the wav information until 75% of the total of the wav
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(a) (b)

Fig. 4. (a) Some voice signals used in training phase. (b) Some noisy versions of voice
signals altered with Gaussian noise used in recognition phase.

information in steps of 5), this set is composed by 600 sounds. Set of sounds
B2, B3 and B4 are composed by 600 sounds like B1 but altered by subtractive,
mixed and Gaussian noise respectively.

In [15], the authors suggested to compute a simplified version of the DAM
model by using a random selection of stimulating points. In order to increase the
accuracy of the proposal we adopted this technique. Stimulating points SP are
used by the DAM to determine an active region and are given by sp ∈ {ZZ+}c
where c is the number of SP used. spi = random(n), i = 1, . . . , c where n is
the size of the pattern. To determine the active region, the DAM stores during
training phase an alternative simplified version of each pattern xk given by:

ssk = ss
(
xk
)

= xk|sp = {xk
sp1
, . . . , xk

spc
} (8)

During recalling phase, each element of an input simplified pattern x̃k|sp
excites some of these regions and the most excited region will be the active
region. To determine which region is excited by an input pattern we use:

b = arg
(

p

min
k=1

∣∣[ss (x)]i − ssk
i

∣∣) (9)

For each element of x̃k|sp we applyed eq. 9 and the most excited region (the
region that more times was obtained) will be the active region.

Finally, building of the DAM is done as follows: Let Ik
x and Ik

y an association
of sounds, images or words, and c the number of stimulating points.

1. Take at random c stimulating points spi.
2. For each association transform the input patterns into an array.

3. Train the DAM.

Pattern Ik
y can be recalled by using its corresponding key input pattern Ik

x or
distorted version Ĩk

x as follows:

1. Use the same c stimulating points spi as in building phase.

2. Transform the input pattern into an array.

3. Operate the DAM.

Experiment 1. Voice-to-voice. In this experiment we trained the DAM with the
set of sounds A. Each sound was associated with itself (40 associations). Once
trained the DAM, we proceeded to test the accuracy of the proposal. Firstly
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we verified if the DAM was able to recall the fundamental set of associations
using set of sounds A, and then we verified if the DAM could recall the sounds
from noisy versions of them by using the sets of sounds B1, B2, B3 and B4. For
the first case, the fundamental set of associations was correctly recalled. For the
second case, using 100 stimulating points, the DAM recalled the corresponding
sound, even when the 75 % of the wave information was modified. In summary,
the accuracy of the proposal for this experiment was of 100%.

Experiment 2. Voice-to-word. In this experiment each sound (from set of
sounds A) was associated with the word that reproduce the voice signal. For
example, the voice signal that reproduces the word ”tiger” was associated with
the word ”tiger”. Once trained the DAM with the 40 associations, we used the
sets of sounds B1, B2, B3 and B4 expecting recall the corresponding describing
word associated to the sound. Instead of recalling a sound, the trained DAM
was used to recall the describing word. Using 100 stimulating points, as equal as
the previous experiment, the DAM recalled the corresponding word, even when
the 75 % of the wave information was modified. In summary, the accuracy of the
proposal, for this experiment was of 100%.

Experiment 3. Voice-to-image. In this experiment each sound was associated
with an image. Once trained the DAM with 40 associations, we proceeded to test
the accuracy of the proposal. Firstly we verified if the DAM was able to recall the
fundamental set of associations using set sounds A, and then we verified if the
DAM could recall the images associated to the sounds by using the set of sounds
B1, B2, B3 and B4. For the first case, the fundamental set of associations was
correctly recalled. For the second case, using 100 stimulating points, the DAM
recalled the corresponding image (using a sound), even when the 75 % of the
wave information was modified. In summary, the accuracy of the proposal, for
this experiment, was of 100%.

4 Conclusions and Directions for Further Research

In this paper we have described how a DAM can be applied to different prob-
lems in pattern recognition. We have demonstrated the robustness of this model
compared with other associative models and other techniques. We have shown
the capabilities of this dynamic model not only in problems with images but in
problems that uses other information resources such as sound.

The results obtained in the different pattern recognition problems presented in
this research are very encouraged and suggest that DAM could be considerate as
a robust classification tool useful in several kind of pattern recognition problems.

These results can be considered as preliminary results for more complex prob-
lems. Nowadays we are applying this result to more complex problems such as
robot control with voice commands using DAM, images retrieval using voice
commands and DAM, voice encryption using DAM.
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Abstract. Obtaining analytical expressions for coherent detection of
known signals in Weibul-distributed clutter and white Gaussian noise
has been a hard task since the last decades. In fact, nowadays, these
expressions have not been found yet. This problem lead us to use sub-
optimum solutions to solve this problem. Optimum approximations can
be done by using Multilayer Perceptrons (MLPs) trained in a supervised
way to minimize the mean square error. So, MLP-based detectors are
constructed and compared with one of the suboptimum detectors com-
monly used to solve the detection problem under study. First, a study
of the dimensionality of the MLP is done for typical values of the target
and clutter conditions. And finally, a deep study is done according to
the variations of the most important parameters of the target and clut-
ter signals. The last study let us to be conscious about the importance of
the selection of the parameters to design both detectors. Moreover, the
difference of performances between each other and the superiority of the
MLP-based detector against the suboptimum solution is emphasized.

1 Introduction

Coherent detection of known targets [1] in clutter and noise is a difficult task,
which can be solved by Artificial Neural Networks (ANNs). Many clutter models
have been proposed in the literature [2], although one of the commonly accepted
models is the Weibull one [3,4]. So, if the ANN training is supervised, they
can approximate the Neyman-Pearson detector [5,6,7], which is usually used in
radar systems design. This detector maximizes the probability of detection (Pd)
maintaining the probability of false alarm (Pfa) lower than or equal to a given
value [8].

The research shown in [9] set the optimum detector for target and clutter
with Gaussian Probability Density Functions (PDFs). Due to the impossibility to
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obtain analytical expressions for the optimum detector under Weibull-distributed
clutter, only suboptimum solutions are proposed. The Target Sequence Known
A Priori (TSKAP) detector is one of them and is taken as reference for the
experiments, which conveys some implementation problems.

In this work, MLPs are trained to approximate the Neyman-Pearson detector
for known targets in coherent Weibull clutter and white Gaussian noise. Due
to this approximation, it is expected that this MLP-based detector outperforms
the suboptimum solutions (TSKAP detector) commonly used in the literature
[4,9], which need to have a priori some knowledge of the environment. A study of
the MLP size is carried out for typical values of target and clutter parameters.
This paper shows how the MLP-based detector outperforms the suboptimum
solutions, but, what does it happen if the target and clutter conditions vary
across the time? This question is answered in the paper, where a deep study of
both detectors (MLP-based and TSKAP) is done according to their robustness
with respect to variations of target and clutter parameters.

2 Models of Signal: Target, Clutter and Noise

A radar system explores a zone at a certain pulse repetition frequency (PRF) or
sampling rate of the process, obtaining an observation map of this zone for each
radar scan. This map is analyzed in blocks of N cells or pulses (it is considered
that for each cell only the information of one pulse transmitted and received
exists). So observation vectors (z) composed of N complex samples are presented
to the detector. Under hypothesis H0 (target absent), z is composed of N samples
of clutter and noise. Whereas under hypothesis H1 (target present), a known
target characterized by a fixed amplitude (A) and phase (θ) (Swerling V model
[1]) for each of the N pulses is present in clutter and noise samples. Also, a
doppler frequency in the target model (fs) is assumed.

In the radar system under study, the noise is modeled as a coherent white
Gaussian complex process of unity power, i.e., a power of 1

2 for the quadrature
and phase components. The clutter is modeled as a coherent correlated sequence
with Gaussian AutoCorrelation Function (ACF), whose complex samples have
a modulus distributed with a Weibull PDF, which is an statistical distribution
commonly used in the literature:

p(|w|) = ab−a|w|a−1e−( |w|
b )a

(1)

where |w| is the modulus of the coherent Weibull sequence and a and b are the
skewness (shape) and scale parameters of the Weibull distribution, respectively.

The NxN autocorrelation matrix of the clutter is given by

(Mc)h,k = Pcρ
|h−k|2
c ej(2π(h−k) fc

PRF ) (2)

where the indexes h and k varies from 1 to N , Pc is the clutter power, ρc is the
one-lag correlation coefficient and fc is the doppler frequency of the clutter.
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The relationship between the Weibull distribution parameters and Pc is

Pc =
2b2

a
Γ

(
2
a

)
(3)

where Γ () is the Gamma function.
The model used to generate coherent correlated Weibull sequences consists of

two blocks in cascade: a correlator filter and a NonLinear MemoryLess Trans-
formation (NLMLT) [3,10]. To obtain the desired sequence, a coherent white
Gaussian sequence is correlated with the filter designed according to (2) and
(3). The NLMLT block, according to (1), gives the desired Weibull distribution
to the sequence.

Taking into consideration that the complex noise samples are of unity variance
(power), the following power relationships are considered for the study: Signal to
Noise Ratio (SNR=10log10

(
A2
)
) and Clutter to Noise Ratio (CNR=10log10 (Pc)).

3 Optimum and Suboptimum Neyman-Pearson Detectors

The problem of optimum radar detection of targets in clutter is explored in [3]
when both signals are time correlated and have arbitrary PDFs. The optimum
detector scheme is built around two non-linear estimators of the disturbances in
both hypothesis, which minimize the mean square error (MSE). The study of
Gaussian correlated targets detection in Gaussian correlated clutter plus noise is
carried out, but for the cases where the hypothesis are non-gaussian distributed,
only suboptimum solutions are obtained.

The proposed detectors basically consist of two channels. The upper channel
is matched to the conditions that the sequence to be detected is the sum of the
target plus clutter in presence of noise (hypothesis H1). While the lower one is
matched to the detection of clutter in presence of noise (hypothesis H0).

For the detection problem considered in this paper, the suboptimum detec-
tion scheme (TSKAP) shown in the fig. 1 is taken. Considering that the CNR is
very high (CNR >> 0 dB), the inverse of the NLMLT is assumed to transform
the Weibull clutter in a Gaussian one, so the Linear Prediction Filter (LPF) is
a N-1 order linear filter. Then, the NLMLT transforms the filter output in a
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Fig. 1. Target Sequence Known A Priori Detector
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Weibull sequence. Besides being suboptimum, this scheme presents two impor-
tant drawbacks. First, the prediction filters have N-1 memory cells that must
contain the suitable information to predict correct values for the N samples of
each observation vector. So N+(N-1) pulses are necessary to decide if the target
is present or not. And second, the target sequence must be subtracted from the
input of the H1 channel. As a conclusion, there is no sense in subtracting the
target component before deciding if this component is present or not. So, in
practical cases, it makes this scheme non-realizable.

4 MLP-Based Detector

The alternative detector proposed for the experiments is presented in fig. 2. In
this case, a detector based on an MLP with log-sigmoid activation function in its
hidden and output neurons with hard limit threshold (THR’) after its output is
proposed. The final thresholding is varied in order to get the performance (Pd Vs
Pfa) of the detector. This MLP-based detector tries to overcome the drawbacks of
the suboptimum detector taken as reference (see Section 3). Also, as MLPs have
been probed to approximate the Neyman-Pearson detector when minimizing
the MSE [5], it can be expected that the MLP-based detector outperforms the
suboptimum detector proposed in [3,4].

In our case of study, MLPs are trained to minimize the MSE using the LM
backpropagation algorithm with adaptive parameter [11]. As this algorithm is
based on the Newton method, MLPs with few hundred of weights (W ) are able
to achieve good performances converging in few epochs.

Three sets of patterns are generated for the design and simulation of these
detectors: train, validation and test. The train and validation sets are used to
train the MLPs with an external validation of the process in order to avoid
overfitting. To improve the generalization of the trained MLPs, the training is
stopped if the estimated MSE with the validation set increases during the last
ten epochs of the training. Finally, the test set is used to obtain the performance
of the MLPs trained working as radar detectors, i.e., to obtain the Pfa and Pd
estimation by Moltecarlo simulations.

Before the training process starts, MLPs are initialized using the Nguyen-
Widrow method [12] and, in all cases, the training process is repeated ten times.
Once all the MLPs are trained, the best MLP in terms of the estimated MSE
with the validation set is selected. With this selection, the problem of keeping
in local minima at the end of the training is practically eliminated.

The architecture of the MLP considered for the experiments is I/H/O, where
I is the number of MLP inputs, H is the number of hidden neurons in its
hidden layer and O is the number of MLP outputs. As the MLPs work with real
arithmetic, if the observation vector (z) is composed of N complex samples, the
MLP will have 2N inputs (N in phase and N in quadrature components of the
N complex samples), as it is shown in fig. 2. The number of MLP independent
elements (weights) to solve the problem is W = (I+1)·H+(H+1)·O, considering
the bias of each neuron.
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Fig. 2. MLP-based Detector

5 Results

The performance of the detectors exposed in the previous sections is shown in
terms of the Receiver Operating Characteristics (ROC) curves. This curves are
plotted in two ways. The first one (Pd Vs Pfa) relates the Pd achieved by the
detector for a certain threshold, which is obtained according to the desired Pfa.
The second one (Pd Vs SNR) relates the Pd obtained for a certain threshold
obtained for a desired Pfa taking into account the SNR of the environment. The
experiments are developed for an integration of two pulses (N = 2). So, in order
to test correctly the TSKAP detector, observation vectors of length 3 complex
samples (N+(N−1)) are generated, due to memory requirements of the TSKAP
detector (N − 1 pulses).

The MLP architecture used in the MLP-based detector is 6/H/1. The number
of MLP outputs (1) is established by the problem (binary detection). The
number of hidden neurons (H) is a parameter under study in this work. And the
number of MLP inputs (6) is established because of a comparison with the reference
radar detector under the same conditions, as it is exposed above.

The a priori probabilities of observation vectors under H0 and H1 hypothesis
is supposed to be the same. Three sets of patterns (train, validation and test)
are generated. The first two sets are generated under the same conditions, which
are called the design conditions of the experiments. Whereas the third one is
usually generated under different conditions than in the design stage. It involves
that the designed detectors are tested with a set of conditions different than
the design ones in order to analyze the robustness of the detectors. The train
and validation sets are composed of 5 · 103 observation vectors each. The test
set is composed of 5 · 106 observation vectors, so the error in the estimations
of the Pfa and the Pd is lower than 10% of the estimated values in the worst
case (Pfa=10−4). Attending to previous studies of detection of targets in clutter
[3,4,9], typical values of the target and Weibull-distributed clutter are taken to
study the dimensionality of the MLP-based detector and to study the robustness
of the TSKAP and MLP-based detectors.

For the case of study of the MLP size, the following conditions are considered
for the design and simulation conditions (being the same in both cases):
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Fig. 3. MLP-based detector performances for different MLP sizes (6/H/1)

– Radar parameters: PRF=1000Hz
– Target conditions: Swerling V model, fs=500Hz, ρs=1.0 and SNR=20dB.
– Clutter conditions: fc=0Hz, ρc=0.9, CNR=30dB and a=1.2.

The results obtained are shown in fig. 3. As can be observed, an MLP size greater
than 6/20/1 improves lowly its performance and increases its computational cost.
So, an MLP size of 6/20/1 (W > 121 weights) is selected for the next experi-
ments because of the tradeoff between performance improvement and computa-
tional cost. Moreover, greater MLP sizes than 6/65/1 where probed but very low
improvements were achieved. Experiments under different conditions were carried
out and the same conclusions were obtained about this MLP size study.

For the cases of study of the TSKAP and MLP-based detectors performances
and robustness, the following conditions are fixed:

– Radar parameters: PRF=1000Hz
– Target conditions: Swerling V model, fs=500Hz and ρs=1.0.
– Clutter conditions: fc=0Hz, ρc=0.9 and CNR=30dB.

whereas other conditions are varied in order to study the robustness of both kind
of detectors against them:

– Target conditions (design): DSNR=[5, 15, 25]dB.
– Clutter conditions (design): ad=[0.8, 1.2].
– Target conditions (simulation): SSNR=[5− 40]dB.
– Clutter conditions (simulation): as=[0.4, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0].

Figures 4-6 and 7-9 show the performance characterization (Pd Vs SSNR)
of the TSKAP and MLP-based (6/20/1) detectors created with the different
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Fig. 4. Performance under different clutter conditions driven by a (Pd Vs SNR) of
TKAP detectors designed with DSNR=5dB and (a) ad=0.8 or (b) ad=1.2
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Fig. 5. Performance under different clutter conditions driven by a (Pd Vs SNR) of
TKAP detectors designed with DSNR=15dB and (a) ad=0.8 or (b) ad=1.2
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Fig. 7. Performance under different clutter conditions driven by a (Pd Vs SNR) of
MLP-based detectors designed with DSNR=5dB and (a)ad=0.8 or (b)ad=1.2
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Fig. 8. Performance under different clutter conditions driven by a (Pd Vs SNR) of
MLP-based detectors designed with DSNR=15dB and (a)ad=0.8 or (b)ad=1.2
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Fig. 9. Performance under different clutter conditions driven by a (Pd Vs SNR) of
MLP-based detectors designed with DSNR=25dB and (a)ad=0.8 or (b)ad=1.2



MLP-Based Detection of Targets in Clutter 129

design conditions and tested with the different simulation parameters exposed
above for a Pfa=10−4, respectively.The establishment of the these variations
of the conditions is done according to the study of how the performances of
the detectors under study varies with respect to clutter conditions (Weibull
shape parameter variations) and target conditions (power received in the radar
due to the target signal). The variation of the clutter conditions is very usual
in real radar systems due to the weather conditions and the variation of the
received target power is also important due to the observed target size (radar
cross section, RCS) and the distance from the target to radar.

Analyzing the results obtained for the TSKAP detector simulations, several
aspects can be emphasized. First, the design SNR (DSNR) is practically irrele-
vant for the TSKAP detector design due to the signal is known a priori. Second,
the shape parameter of the Weibull clutter (variation on its PDF) is not relevant
too. And third, the performance of the TSKAP detector is better for simulation
shape parameter values (as) greater than the design shape parameter values
(ad). The opposite effect occurs when as is lower than ad.

Analyzing the results obtained for the MLP-based detector simulations, sev-
eral aspects can be emphasized. First, the DSNR is a relevant parameter in the
detector design. In this way, the greater is the DSNR, the lower is the dispersion
of the ROC curves (Pd Vs SSNR) for different simulation shape parameters and
the higher is the robustness of the detector against changes in the simulation
conditions with respect to clutter conditions changes. Second, the shape para-
meter of the Weibull distribution in the design stage is not very relevant because
of the low variation of the results obtained for different values of ad with respect
to the SSNR. And third, the performance of the MLP-based detector is better
when the values of as are lower than in the design stage (ad). The opposite effect
occurs when as is greater than ad.

6 Conclusions

In real radar environments, it is very usual that their conditions fluctuate across
the time. This fluctuations or variations in the environment concern parameters
related to the target and the clutter signals. In our studies, a variation of the
power received related to the target and the statistical distribution of the clutter
are considered.

The influence of the MLP size in MLP-based radar detectors is studied. This
study avoid us to select an MLP-based detector with a structure of 6/20/1,
although a detector with lower MLP size (lower computational cost) than this
is able to outperform the detector took as reference, the TSKAP one.

After analyzing the performances of the detectors under study, it is appreci-
ated that the MLP-based detector achieves better performance than the TSKAP
one, specially for low SSNRs. But not only the MLP-based detector is better than
the TSKAP one in terms of performance, it is also better in terms of robustness
against variations of clutter and target conditions, specially for high values of
DSNR (25dB). Moreover, different behavior in their performances are observed.
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On one hand, when the simulation shape parameter of the Weibull clutter is
greater than the design one, the TSKAP performance increases, whereas in the
MLP-based detector decrease. On the other hand, this behavior is inverted when
the simulation shape parameter of the Weibull clutter distribution is lower than
the design shape parameter.

As a final conclusion, the MLP-based detector is proposed to detect known
targets in a Weibull-distributed clutter and white Gaussian noise radar environ-
ments, but considering several aspects as relevant. If the clutter conditions varies
across the time and its variation is huge in terms of the shape parameter, an
MLP-based detector design with high DSNR values is recommended because of
its robustness against the variation of the shape parameter. On the other hand,
if this variation is low, an MLP-based detector designed with medium DSNR
values is recommended. In all the cases of study, it is necesary to have a priori
knowledge of the ranges of variation of the shape parameter in order to select
its best value in the design stage.
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Abstract. New potential applications for neural networks and fuzzy
systems are emerging in the context of ubiquitous computing and am-
bient intelligence. This new paradigm demands sensitive and adaptive
embedded systems able to deal with a large number of stimulus in an
efficient way. This paper presents a design methodology, based on a
new Matlab tool, to develop computational-efficient neuro-fuzzy sys-
tems. To fulfil this objective, we have introduced a particular class of
adaptive neuro-fuzzy inference systems (ANFIS) with piecewise multi-
linear (PWM) behaviour. Results obtained show that the PWM-ANFIS
model generates computational-efficient implementations without loss of
approximation capabilities or learning performance. The tool has been
used to develop both software and hardware approaches as well as special
architectures for hybrid hardware/software embedded systems.
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1 Introduction

Neuro-fuzzy systems (NFS) combine artificial neural networks and fuzzy logic
in a synergetic way. Fuzzy systems provide a framework to represent imprecise
information and to reason with this kind of information, while neural networks
enhance fuzzy systems with the capability of learning from input-output samples;
learning is used to adapt parameters of the fuzzy system as membership functions
or rules. Some example representative application areas of NFSs are: automatic
control, robotics, adaptive signal processing, pattern recognition, and system
identification (see, for example, [1]). In addition, new potential applications can
be found in the field of ubiquitous computing and ambient intelligence [2]. These
kinds of applications involve reasoning and learning algorithms that have to deal
with signals from a large number of distributed sensor nodes.
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NFSs are rather complex because they integrate many different tasks working
in a cooperative way. Hence, neuro-fuzzy implementations must be developed
carefully in order to fulfil all the requirements that a real-life application can
demand, such as cost, size, power, etc. These implementations can be carried
out by means of either hardware or software platforms. Software (SW) imple-
mentations are more flexible and economical than hardware implementations,
but they provide lower speed processing. Hardware (HW) implementations are
generally addressed to real-time applications where high performance is always
an essential requirement. In addition hybrid HW/SW approaches provide an op-
timal solution for many applications where a trade-off between versatility and
performance is required. Owing to the above requirements, efficient algorithms
and tools are required in order to support the whole development cycle of NFSs,
from the design specification to the final prototype.

This paper presents a design methodology based on a new Matlab tool to de-
velop computational efficient NFSs. The Matlab tool, constructed by the authors,
is the mainstay of the proposed methodology. It is a user friendly environment
for modelling, analyzing and simulating computational efficient NFS applica-
tions. The proposed methodology is specially suited for real time applications
that involve a large number of inputs. It deals with efficient implementations
of a class of NFSs, the adaptive neuro-fuzzy inference system (ANFIS) [3], that
has been widely used to develop NFSs in the above application areas. ANFIS is
a network representation of different types of fuzzy inference models, endowed
with the learning capabilities of neural networks. In the last decade, ANFIS
has become very popular mainly due to the powerful capabilities as universal
function approximator that it exhibits, even when simple membership functions
like trapezes or triangles are used [4,5,6]. Our work focuses specifically on an
ANFIS-like model that is functionally equivalent to the Takagi-Sugeno inference
system [7]. With regard to the computational cost, some different restrictions
are applied to the system in order to reduce drastically the complexity of its
inference mechanism which becomes a Piecewise Multilinear (PWM) function.
In what follows we will refer to this model as PWM-ANFIS.

The paper is structured as follows: Section 2 overviews the generic ANFIS
model and introduces the PWM-ANFIS used in this paper; the computational
efficiency is analyzed in order to highlight the advantages of the PWM model.
In Section 3 the proposed methodology is described along with the principal fea-
tures of the tool. Section 4 presents some test examples and the results obtained.
Finally, Section 5 outlines the main conclusion of this work.

2 Generic ANFIS Model and PWM-ANFIS

In this section, first we are going to describe the proposed PWM-ANFIS. This
model is a NFS of the ANFIS type with some restrictions on its membership
functions that lead to a very simple and rapid inference mechanism. These re-
strictions, as will be seen below, do not affect the learning performance or the
approximation capability of the system.
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2.1 Anfis Model

First let us introduce the basics of the generic ANFIS model [3], for the case of
a zero-order Takagi-Sugeno inference system [4]. Consider a rule-based n-input,
one-output fuzzy system:

Rj : IF x1 is A1j1 and x2 is A2j2 . . . and xn is Anjn THEN y is rj (1)

where Rj is the jth rule (1 ≤ j ≤ p), xi (1 ≤ i ≤ n) are input variables, y is the
output, rj is a constant consequent, and Aiji are linguistic labels (antecedents)
with each one being associated with a membership function μAiji

(xi), where
(1 ≤ ji ≤ mi) being mi the number of antecedents of the variable xi . In a zero-
order Takagi-Sugeno fuzzy model the inference procedure used to derive the
conclusion for a specific input x = (x1, x2, .., xi, .., xn), x ∈ IRn, consists of two
main steps. First the firing strength or weight ωj of each rule is calculated as

ωj =
n∏

i=1

Aiji(xi) (2)

After that, the overall inference result, y, is obtained by means of the weighted
average of the consequents

y = (
p∑

j=1

ωj · rj)/
p∑

j=1

ωj) (3)

(2) and (3) provide a compact representation of the inference model.ANFIS con-
sists of a representation of different types of fuzzy inference models as adaptive
networks. To be precise, the above fuzzy model can be viewed as an adaptive
network with the following layers (see Fig. 1):

Layer 1 computes the membership functions

Aiji (xi) (4)

Layer 2 contains m neurons. Neuron j in this layer generates the firing strength
of the j-th rule by computing the algebraic product

ωj =
n∏

i=1

Aiji(xi) (5)

Layer 3 is an m-neuron normalization layer. This layer performs the normal-
ization of the activation of the rules; the output of the j-th neuron is the ratio
of the j-th rules weight to the sum of the weights of all the rules:

ω̄j = ωj/

p∑
k=1

ωk (6)
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Layer 4 contains m neurons. The neuron outputs produce the weight of the
corresponding consequents:

yj = ω̄j · rj (7)

Layer 5 contains only one neuron. The neuron output is the weighted sum of
the consequents:

y =
p∑

j=1

ω̄j · rj (8)

To train the above network, a hybrid algorithm has been proposed in [3].
The algorithm is composed of a forward pass which is carried out by a Least
Squares Estimator (LSE) process, followed by a backward pass which is carried
out by a Back Propagation (BP) algorithm. Each epoch of the hybrid procedure
is composed of a forward pass and a backward pass. In the forward pass the con-
sequent parameters are identified by the LSE method and in the backward pass
the antecedent parameters are updated by the Gradient Descent Method (GDM)
[1]. From (2) and (3), it can be deduced that the evaluation of an inference re-
quires one division, mn(n − 1) products, 2(mn − 1) sums and mn membership
evaluations, where it has been assumed that m = m1 = m2 = = mn.
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Fig. 1. Architecture of a generic n-input ANFIS

2.2 The Proposed PWM-ANFIS Model

In order to reduce the complexity of the above ANFIS model, let us introduce the
following restrictions on the antecedents: (i) the membership functions are over-
lapped by pairs, (ii) they are triangular shaped, and (iii) they are normalized in
each input dimension (see Fig. 2(a)). Similar constraints have been successfully
used by many designers because of the useful properties of triangular membership
functions.
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(a) (b)

Fig. 2. (a) Triangular membership functions verifying constraints (i) to (iii)., (b) Tri-
angular membership functions for an n-input PWM-ANFIS case example.

In the following we will analyze the advantages of constraints (i) to (iii) on the
simplicity of the layered representation of the fuzzy system. First, let us consider
some immediate consequences of these restrictions. The first restriction forces
the overlapping degree of the antecedents to be two. Therefore, given an input
vector x = (x1, x2, .., xi, .., xn) only two antecedents per input dimension provide
membership values different from zero (i.e. active antecedents). To be exact, due
to (ii) and (iii), only one half of the triangles concerned become active (see
shadow region in Fig. 2(a)). Fig. 2(b) depicts typical membership functions for
a particular case of an n-input system with mi triangular antecedents per input
verifying the above constraints (m1 = 7,m2 = 5, ..,mn = 4). It can also be
seen in this figure that the vertex of the mi triangles delimits (mi − 1) intervals
per axis. Note that these intervals induce a partition of the input space into
n∏

i=1

(mi − 1) polyhedral cells or regions.

Only one of these cells is involved in the calculus of the system output at each
time. The whole system can, therefore, be implemented as a single inference ker-
nel. The parameters of the kernel depend on the concrete cell where the input
vector falls (i.e. active cell).

Let us illustrate with the example of Fig. 2(b) in what way the restrictions im-
posed on the antecedent membership functions simplify the network architecture.

Layer 1. Every neuron in this layer computes one active membership function.
In virtue of (i), each input is concerned with two membership functions per
dimension. Therefore, we have only 2n active neurons in this layer,

A12(x1), A13(x1), A23(x2), A24(x2), .., An2(xn), An3(xn)
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Layer 2. Each neuron in this layer generates a multilinear output which repre-
sents the firing strength of a rule; each multilinear term consists of the product
of n linear terms as in (5). The rules with non-zero firing strength are only those
associated with the active neurons in layer 2 (only one pair of complementary
neurons per input), that is, 2n active rules. We will use ω∗

k (1 ≤ k ≤ 2n) to denote
the firing strength of active rules.

ω∗
1 = A12(x1) ·A23(x2) · . . . · An2(xn)

ω∗
2 = A12(x1) ·A23(x2) · . . . · An3(xn)

. . . . . . . . . . . . . . .
ω∗

2n−1 = A13(x1) ·A24(x2) · . . . · An2(xn)
ω∗

2n = A13(x1) · A24(x2) · . . . ·An3(xn)

(9)

Layer 3. Taking into account constraint (iii), it can easily be proved that the
normalization layer disappears because the division is unnecessary [6].

2n∑
k=1

ω∗
k = 1 (10)

Layer 4. The neuron outputs produce the weight of the consequents. We will
use (1 ≤ k ≤ 2n) to denote the consequents associated with the active rules.

yk = ω∗
k · r∗k (11)

Layer 5. Finally, generalizing the expression, the output layer is reduced to the
sum of 2n product terms,

y = ω∗
1r

∗
1 + ω∗

2r
∗
2 + ... + ω∗

2n−1r
∗
2n−1 + ω∗

2nr∗2n (12)

In sum, the main benefits of constraints (i) to (iii) on the general ANFIS
architecture are a reduction of the number of neurons per layer (layers 1 and 2)
due to the activation of a reduced number of antecedents, the elimination of the
normalization layer, and a simplification of the network arithmetic.

Concerning the learning procedure, the advantages of restrictions (i) to (iii)
are twofold. Firstly, as has been seen, the PWM-ANFIS limits the activation of
the system each time to a single cell or region of the input space. This cellular
nature of the feed-forward network (fuzzy inferences) also reduces the computa-
tional complexity of the learning algorithm because both LSE and GDM equally
require the evaluation of the feed-forward network. Secondly, the constraints im-
posed on the input partition reduce not only the active set of parameters for a
concrete input (parameters of the active cell), but also the total set of antecedent
parameters.

With the above restrictions, a total of (2n + 1)n products and 2n + 2n − 1
sums is required to perform an inference. This cost is considerably less than
that required by the generic ANFIS and it does not depend on the number of
membership functions m. Moreover, as n and m increase, the difference between
both costs (generic ANFIS and PWM-ANFIS) becomes extremely large.
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3 The PWM-ANFIS Tool

The PWM-ANFIS Tool, developed by the authors, provides a compact design
flow that encompasses all the steps involved in the development of NFSs. The
tool allows the designer to define multivariable systems without limitations ei-
ther in the number of membership functions or in the number of rules. Triangular
and Gaussian membership functions are available to model both PWM-ANFIS
systems and generic ANFIS systems, respectively. For purposes of analysis, the
tool obtains the Sum Squared Error (SSE) between the target function and
their corresponding approximations during the learning process. After training
it can also provide the Generalized Sum Square Error (GSSE), which is the SSE
but evaluated with a collection of non-training data. These error parameters
give measures about the approximation capability of the developed system. The
simulation process takes advantage of the Matlab resources, fundamentally in
matrix treatments of complex numerical calculations, to give a high speed re-
sponse. The most popular debugging facilities of the Matlab environment are
also available to refine the system designs. The tool also provides a user-friendly
graphic interface to monitor the evolution of learning processes. In addition, it
generates object code for developing off-line training applications. The tool has
been tested extensively by means of several nonlinear functions [8] and it has
been used to develop efficient SW solutions, high performance HW solutions,
and hybrid HW/SW approaches [9,10].

Fig. 4 shows a block diagram of the PWM-ANFIS Tool. The main block is a
Matlab program that gives support off-line learning applications. In the off-line
learning mode the program accepts the following files: a file that contains the
parameters of the process, a file that contains the Input/Output training data
pairs, and a file that contains test data pairs (optional). The parameters of the
process are the number of antecedents for each variable, the learning rate, the
target error, and the maximum number of iterations.

The first step in the development cycle consists in loading the parameters of
the process. Then the tool extracts the system size and generates an initial (non-
trained) PWM-ANFIS and the process commences. The training data pairs are
read from the text file. Meanwhile, the user is able to monitor the evolution of
the SSE. The training process finishes when either the specified error is achieved
or the maximum number of iterations is reached. If the GSSE option is enabled,
the test data file is loaded and the GSSE is calculated. In addition, the graph-
ical interface provides a representation of both the trained function and the
target function. Moreover, the membership functions (initial and final triangle
partitions) are represented.

As a result of the trained process the PWM-ANFIS Tool generates a text
file with the trained parameters (antecedents and consequents) which can be
exported to develop different kinds of implementations. In addition, Matlab is
able to compile the m-file program (script) to provide C code. Hence, an ex-
ecutable file can be implemented, for instance, on a microprocessor, a digital
signal processor (DSP), or a System-on-a-Programmable Chip (SoPC).
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Fig. 3. Block diagram of the PWM-ANFIS environment

4 Application of the Development Methodology to Some
NFS Case Examples

In this section, the proposed PWM-ANFIS tool will be used to develop some
NFS examples. The examples deal with the approximation of non-linear func-
tions. In particular, we have selected some functions that are commonly used
as test examples in related works [1,11]. All these examples clearly illustrate
the proposed methodology and they also show how the PWM-ANFIS has good
approximation capability despite the imposed restrictions.

4.1 Approximation of Non-linear Functions

Two-Variables: The first example deals with the non-linear function y =
sin(x1 ·π)·sin(x2 ·π), with x1 ∈ [−1, 1] and x2 ∈ [0, 1]. This function is graphically
shown in Fig. 4(a). A collection of training points is obtained by sampling x1

and x2 with 21 and 11 points respectively; hence, we have a total of 231 training
points. Another 200 intermediate points are also used as test points. The parame-
ters for the system are the following: 1) number of antecedents for each variable
m1 = 7 and m2 = 5; 2) learning rate for each variable η1 = η2 = 2.5; 3) maxi-
mum number of iterations imax = 15; and 4) the target error SSEt = 0.0001.

The tool starts by importing the input files from which the size and dimen-
sionality of the NFS are calculated. Then, it builds up the NFS and begins the
training process. After the 15-th iteration, the process stops and displays the
SSE curve and the GSSE value (see Fig. 5(a)). We can see that the system
reaches an error as low as SSE=0.000171. The tool also provides a graphical
representation of the obtained surface (i.e., the output for the training points)
(see Fig. 4(b)). Note the close similarity between the target function and the
learned function.

Three-variables and Four-variables: In the example for three variable, the
approximation of a polynomical 3-input function is presented. The target funcion
is y = (1 + x0.5

1 + x−1
2 + x−1.5

3 )2, with x1, x2 and x3 in [1,6]. In this experiment
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Fig. 4. (a) Two-variable target function, (b) Two-variable learned function
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Fig. 5. SSE and GSSE errors (a) 2-variables, (b) 3-variables, (c) 4-variables

a total of 1331 training points (11 samples per dimension) and another 1000
intermediate test points have been collected. The input parameters are now
the following: m1 = m2 = m3 = 5; η1 = η2 = η3 = 0.99; imax = 50; and
SSEt = 0.0001. Fig. 5(b) shows the error values once the 50 iterations have
been completed. We see again that the system reaches very low error values; i.e.,
SSE=GSSE=0.0398.

To analyze the response of the system for a large number of inputs, a 4-input
function has also been tested. The function is given by y = 4(x1 − 0.5)(x4 −
0.5) sin(2π(x2

2 +x2
3)1/2), where x1, x2, x3 and x4 in [-1,1]. The number of training

points and test points are respectively 4096 (84) and 2041 (74). The parameters
for the system are the following: m1 = m2 = m3 = m4 = 5; η1 = η2 = η3 =
η4 = 0.5; imax = 50; and SSEt = 0.0001. Results obtained are depicted in
Fig. 5(c). Once again we can see that the values of the errors are very small; i.e.,
SSE=0.044 and GSSE=0.0722.

5 Concluding Remarks

A design methodology, based on a new Matlab tool, to develop computational-
efficient neuro-fuzzy systems has been presented. The proposed methodology is
based on a particular class of adaptive neuro-fuzzy inference systems (ANFIS)
with piecewise multilinear (PWM) behaviour. The proposed methodology has
been tested extensively with well-known nonlinear functions. Results obtained
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show that the PWM-ANFIS model generates computational-efficient implemen-
tations without loss of approximation capabilities or learning performance. The
tool has been used to develop both software and hardware approaches as well as
special architectures for hybrid hardware/software embedded systems.

References

1. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing, Part
VII. Prentice Hall, Upper Saddle River (1997)

2. Acampora, G., Loia., V.: A Proposal of Ubiquitous Fuzzy Computing for Ambient
Intelligence. Inf. Science 178, 631–646 (2008); 5, 3005–3009 (2003)

3. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans.
Systems, Man, and Cybernetics 23(3), 665–685 (1993)

4. Buckley, J.J.: Sugeno type controllers are universal controllers. Fuzzy Sets Sys-
tems 53(3), 299–303 (1993)

5. Kosko, B.: Fuzzy systems as universal approximators. IEEE Transactions on Com-
puters 43(11), 1329–1333 (1994)

6. Rovatti, R.: Fuzzy piecewise multilinear and piecewise linear systems as universal
approximators in Sobolev norms. IEEE Transactions on Fuzzy Systems 6(2), 235–
249 (1998)

7. Zeng, X.-J., Singh, M.G.: Approximation accuracy analysis of fuzzy systems as
function approximators. IEEE Transactions on Fuzzy Systems 4(1), 44–63 (1996)

8. Basterretxea, K., del Campo, I., Tarela, J.M., Bosque, G.: An Experimental Study
on Nonlinear Function Computation for Neural/Fuzzy Hardware Design. IEEE
Transaction on Neural Networks 18(1), 266–283 (2007)

9. Echanobe, J., del Campo, I., Bosque, G.: An Adaptive Neuro-Fuzzy System for
Efficient Implementations. Inf. Science 178(9), 2150–2162 (2008)

10. del Campo, I., Echanobe, J., Bosque, G., Tarela, J.M.: Efficient Hardware/Software
Implementation of an Adaptive Neuro-Fuzzy System. IEEE Transactions on Fuzzy
Systems 16(3), 761–778 (2008)

11. Lee, S.J., Ouyang, Ch.S.: A Neuro-Fuzzy System Modeling With Self-Constructing
Rule Generation and Hybrid SVD-Based Learning. IEEE Transactions on Fuzzy
Systems 11(3), 341–353 (2003)



Embedded Neural Network for Swarm Learning

of Physical Robots

Pitoyo Hartono and Sachiko Kakita

Department of Media Architecture, Future University-Hakodate
Kamedanakanocho 116-2, Hakodate, Japan

hartono@fun.ac.jp

http://www.fun.ac.jp/~hartono/hartono.html/

Abstract. In this study we ran real time learning of multiple physical
autonomous robots situated in a real dynamic environment. Each ro-
bot has an onboard micro controller where a simple neural network is
embedded. The neural network was built with the consideration of the
power and calculation resources limitation which is a general characteris-
tic of simple robots. In the experiments, several autonomous robots were
placed in one environment, where each of them was given a specific task
which was expressed as the evaluation function for the robot’s neural
network. The learning processes of the robots were started simultane-
ously from their randomized initial conditions. The presence of several
robots consequently formed a dynamic environment, in which an action
of one robot affected the learning process of others. We demonstrated the
efficiency of the embedded learning mechanism with respect to different
environmental factors.

1 Introduction

In the past decade, several multi-robot systems have been proposed. This rela-
tively young field encompasses a number of interesting research topics [1]. The
fact that so far we have not succeeded in building highly autonomous singular
robots capable of reliably and continuously operating in dynamic environment,
is one of the factors that motivates the study of multi-robot systems. The emer-
gence of swarm intelligences in nature such as in ants’ or bees’ colonies is one
of the main inspirations for these studies[2]. In [3] a decentralized control the-
ory for multiple cooperative robotic system was developed. A group of robots,
each with a simple predefined behavior, capable of cooperating in self-organized
manner was proposed in [4]. A study in [5] implemented a social reinforcement
learning to encourage the emergence of social behaviors in multi-robot system.
Most of the previous studies agreed that bottom-up behavior-based mechanism
is a more realistic approach compared to the centralized top down control in run-
ning multi-robot systems for achieving sophisticated group behaviors applicable
to real world task. It is also becoming obvious that development of learning
mechanism of a single robot within a multi-robot system to obtain intelligent
strategies in supporting the group behavior is one of the core topics.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 141–149, 2008.
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In this research we developed a simple neural network that can be embedded
on the onboard processor of a physical simple autonomous robot which is limited
in power, computational resources and sensors’ precision. The efficiency of the
learning mechanism is demonstrated with the execution of a collective learning
scheme where several robots are placed in a same environment. Initially the ro-
bots did not have any moving strategy, hence they moved in a random manner.
A learning target is then given to each robot in the form of an evaluation func-
tion for the embedded neural network. There is no particular limitation on the
learning task, hence it is possible that all of the robots have different individual-
istic goals. However, in our research we set a common primitive goal for each of
the robots, which is the acquirement of obstacle avoidance strategy while ran-
dom walking in the presence of each other. Although simple, we consider that an
effective obstacle avoidance strategy is strongly correlated with self-preservation
capability of autonomous robots situated in dynamic environments. In this re-
search, because each robot must execute its learning process in the presences
of other robots, the learning environment becomes highly dynamics, where the
learning process of one robot is affected by the behaviors of others. So far, this
kind of collective learning is rarely executed in physical multi-robot systems, at
least without any partial help from simulators. One of our near future interests
is to learn about the collective behavior of the multi-robot system at various
stages of the learning process of the respective individual robots. This will lead
to a clearer understanding in the relation between the individual behavior and
the collective behavior of the multi-robot system. We believe this research con-
tributes in providing experimental platform not only the further multi-robot
systems studies but also in understanding the emergence of the swarm intelli-
gence in nature.

2 Robot’s Structure and Behavior

For this study we built several robots with two different structures shown in
Fig.1. The robot in the right side of the figure is built based on a commer-

micro controller

proximity sensors

micro switchs

proximity sensors

micro switchs

micro controller

type1 type 2

Fig. 1. Simple Robots
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cially available toy. The size and weigh of each robot are approximately 230 x
180 x 130 [mm], and 0.5 [kg] (without batteries), respectively. For each robot,
we attached four proximity sensors which measure distance from obstacles and
four micro-switch to detect collisions. Each robot has two DC motors, one mi-
cro controller(H8/3052) where a simple neural network is implemented and two
EEPROMs to store the internal state of the neural network. Using ten 1.2[V]
nickel hydrogen batteries, a robot can operate for up to 3.5 hours. The internal
structure, common for all the robots, is shown in Fig.2.

Fig. 2. Internal Structure

3 Learning Algorithm

For the controller of each robot, a simple two-layered neural network is fully
embedded onboard. In the input layer, the current sensory values from the sen-
sors, the delayed values of the past sensors’ measurements, the past actions
and the associated evaluation values are given as the current inputs. Each neu-
ron in the output layer is associated with a primitive behavior of the robot. In
this study we designate four primitive behaviors, which are forward, backward,
turn− left− foward, and turn− right− forward. The execution time of each
behavior is the same. The last two behaviors are designated to prevent the robot
from rotating in the same position. It should be noted that stop is not one of
the primitive behaviors, hence the robot is forced to continuously move.

In this research, there is no distinction between a learning phase and a running
phase. In its life time, a robot continuously utilizes the embedded neural network
to generate movements while also updating its neural network based on the
feedback from the environment. Consequently, the robot continuously adapts
the gradual change in the environment.
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Fig. 3. Neural Network

For the neural network of a robot, the value of the j-th output neuron at time
t, Oj(t), can be shown as follows.

Oj(t) = f(
N∑

i=1

wij(t)xi(t)) (1)

xi(t), and wij(t) are the value of the i-th input neuron and the connection weight
between the i-th input neuron and the j-th output neuron at time t, respectively,
while N is the number of the input neurons. All input x is normalized so that,
x ∈ [−1, 1]. The activation function is shown as follows.

f(y) = y if max
j
‖yj(t)‖ < 1 (2)

=
y

maxj ‖yj(t)‖ otherwise

j ∈ {1, 2, 3, 4}

The normalization in Eq.2 is needed so that the past behaviors that are given
as feedbacks to the input layer have the same scale as other inputs.

After processing a given input vector, the values of all of the output neurons
are calculated, and then the output neuron that generates the largest value is
designated as a winner neuron, as follows.

win(t) = argmax
j
{Oj(t)} (3)

The robot then executes a primitive behavior associated the winner neuron
as follows.

a(t) = A(win(t)) (4)

a(t) denotes the primitive behavior executed at time t, while A is a function to
map an output neuron into its associated primitive behavior.
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Fig. 4. Flowchart of Behavior of Individual Robot

After the robot executed a winning primitive behavior, it calculates the cu-
mulative value of the distance measurements of all the proximity sensors, as
follows.

D(t + 1) =
K∑

i=1

pi(t + 1) (5)

In Eq.5, D(t + 1) shows the cumulative distance value at time t. pi(t) is the
value of the i-th proximity sensor at time t, while K is the number of proximity
sensors.

The evaluation for the robot’s movement at time t, E(t) is defined as follows.

E(t) = D(t+ 1)−D(t) (6)

The evaluation function is simply the difference between the cumulative dis-
tances before and after the robot executed its primitive behavior. A positive E(t)
is an indication that the robot moved away from obstacles in the environment
as the implication of its recently executed behavior. In this case the winning
neuron will be rewarded by correcting the connection weights so that its output
increases with respect to the same input. At the same time the losing neurons
will be punished by correcting the connection weights so that their values de-
crease with regards to the same input. Hence, in this case the learning process
works in a positive feedback manner for the winning neuron, and a negative
feedback manner for other neurons. A negative E(t) indicates that the robot
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executed a wrong behavior because it moved towards obstacles. In this case, the
winning neuron is punished by correcting the connection weights so that its value
decreases. At the same time, the robot has to be encouraged to execute another
behavior, hence the connection weights should be corrected so that the values
of the non-winning neurons increase. In this case, the learning process works
in a negative feedback manner for the winning neuron and a positive feedback
manner of others. In the case that the primitive behavior of the robot did not
bring a significant improvement or deterioration, no correction is made to the
internal state of the neural network. The outline of the robot’s learning process
is shown in Fig.4 and the weight correction algorithm is formulated as follows.

wij(t) = wij(t− 1) + α(E(t)) φ(E(t), xi(t), j) (7)

α(E(t)) = η if |E(t)| > T (8)
= 0 otherwise

T and η in Eq.8 are empirically decided positive values. The direction of the
correction is decided by the function φ() which is defined in the table below.

The correction rule in Eq.7 guarantees that when the executed behavior at
time t improved the evaluation of the robot, for the same input vector X ,

On+1
j (X) > On

j (X) j = win (9)

On+1
j (X) < On

j (X) j �= win

In the case that the executed behavior deteriorated the evaluation of the
robot,

On+1
j (X) < On

j (X) j = win (10)

On+1
j (X) > On

j (X) j �= win

On
j (X) denotes the output of the j-th output neuron in reaction to input

vector X given for the n-th time.
Equation 9 implies that the neural network reinforces a good behavior while

simultaneously suppresses other alternatives, while Eq.10 shows that the neural
network suppresses a proven harmful behavior and explores alternative ones.
While the implemented learning mechanism has similar properties with the con-
ventional Reinforcement Learning, it operates in continuous value domain and
requires significantly less calculation resources (especially memory). The charac-
teristics of the learning method allow it to be fully implemented on an onboard
processor that supports the real time learning process of a robot situated in a
dynamic real world environment.
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4 Experiments

In this research we run experiments in two types of environments. The first en-
vironment is shown in the left side of Fig.5. In this experiment, three robots
were arbitrary placed in a straight line surrounded by four walls, and the primi-
tive behaviors are limited to forward and backward. The connection weights of
these robots’ neural networks were randomly initialized.

The result of the first experiment is shown in Fig.6. The left graph shows the
average of cumulative distance measured by the proximity sensors. From this
graph it is obvious that the cumulative distance increases with the progress of
the learning process. The unit for the ordinate of this graph is the unit of the
distance measurement of the proximity sensor, while the unit of the abscissa is
the learning step. The total learning time for 500 learning steps are equivalent
to approximately 5 minutes. The right graph shows the average number of col-
lisions of the three robots. This graph indicates that the number of collisions
decreases with the progress of the learning process. From these two graphs,
it is clear that, through the proposed learning process, the embedded neural

a)environment1 b)environment2

Fig. 5. Environments

Fig. 6. Experimental Result in Environment 1
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Fig. 7. Experimental Result in Environment 2

Fig. 8. Multi-Robot Learning

networks gradually obtained a strategy to control the robots in achieving the
given task (obstacle avoidance) in a dynamic environment. As the consequence
of the learning process, we observed that the three robots were able to evenly
intervaled themselves in this environment while random walking, thus forming
a simple formation.

In the second experiment, three robots are randomly placed inside an environ-
ment shown in the right side of Fig.5. In this experiment, all of the primitive behav-
iors are activated. Figure 7 shows the result of this environment. The two graphs
also show the efficiency of the proposed learning method in real time learning.
We ran 10000 learning steps which are equivalent to approximately 75 minutes.
Although from this experiment we cannot observe any formation generation, the
three robots were able to achieve the task of obstacle avoidance while random walk-
ing in a two dimensional environment. The shown graphs are the average over 5
iterations of this experiment. Some snapshots of multi-robot learning are shown
in Fig.8. The learning parameter (in Eq.8) η is set to 0.1 for the first experiment,
and 0.001 for the second experiment, T is commonly set to 10.

5 Conclusions

In this research we proposed a simple learning algorithm that can be fully imple-
mented on onboard processor for low cost autonomous robots with very limited
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calculation and power resources. Although the proposed learning mechanism
is very basic and shares similar properties with Hebbian Learning and Rein-
forcement Learning, it is sufficiently powerful to be implemented for strategy-
acquisition real time learning in dynamic environment.

We run several experiments with two types of simple but dynamic environ-
ments, in which three robots must learn the obstacle-avoidance strategy while
random walking in the presence of each other, based only on local information
and local evaluation. To show the structure-independent property of the learn-
ing mechanism, it is also implemented on two types of robots with different
structures, which gave similar results. Altough it is not reported in this paper,
scalability of the learning algorithm is also tested on the swarm learning con-
taining 10-100 robots on a simulator which also gave good results.

Although very simple, we believe that the proposed learning mechanism in-
cluding the internal hardware configuration can contribute in setting a low cost
standard experimental platform not only in the field of swarm robotics but also
for helping to understand the emergence of swarm intelligences in nature.
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Abstract. The paper offers an associative-neural-net method to opti-
mize resource allocation between independent tasks in a multiprocessor
system. In the case of a dual-core CPU the method allows the task to be
fully solved in O (M) operations.
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1 Introduction

An important characteristic of today’s multi-processor systems is their multitask-
ing ability. Servers, real-time computers and multi-core CPU systems imply a
multitasking mode of operation. One of the problems that arise when a multiple-
CPU machine tries to compute many tasks simultaneously is efficient allocation
of workload between the CPU cores. Inefficient use of multi-CPU systems was
the reason for making special resource-controlling systems. The typical design
of a system like that is given in Fig. 1. Computation process planning plays an
important role in resource management [1]-[6].

However, computational complexity of conventional mathematical methods
makes them inefficient in computation process planning. Then the problem is to
develop efficient algorithms of computational resource allocation.

The paper offers a load balancing algorithm using methods of associative
Hopfield neural nets.

2 Setting the Problem

Let a system of N processors of equal productivity V handle M independent
tasks of computational complexity Hi (i = 1 . . .M). Then the processing of the
i-th task takes time

τi = Hi/V. (1)

Optimization of load allocation among multiple processors suggests minimiza-
tion of execution time T for all tasks [1], [7]. Time T is defined as

T = max {T1, T2, . . . , TN} , (2)

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 150–158, 2008.
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Fig. 1. The typical resource management system

where Tj is the time the j-th processor unit takes to complete its own subset of
tasks. For example, if a, b, . . . c are the numbers of the tasks to be executed by
the j-th processor, this time is found to be

Tj = τa + τb + . . .+ τc. (3)

It is necessary to allocate all the tasks among processor units so that time T is
smallest.

3 Setting the Problem in a Different Way

Let us denote an instance of task allocation among processor cores as G. This
allocation is characterized by time parameter

T = T (G) = max {T1, T2, . . . , TN} . (4)

For each G it is possible to find the variance of execution times

σ2 =
1
N

N∑
j=1

(
Tj − T

)2
, (5)

where

T =
1
N

N∑
j=1

Tj =
1
N

M∑
i=1

τi. (6)

Then there is a relationship between σ2 and T , which is proved by experiment
results. In particular, Figures 2 give the results of a numerical experiment, in which
a set of 20 tasks of different computational complexity H = [1, . . . , 10] were
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randomly allocated among 4 identical processors 10000 times. Execution time T
and variance σ2 were computed for each instance of task allocation and the corre-
sponding graphs were drawn. It is seen (Fig.2) that the same T has several differ-

ent values of variance. However, the mean value of variance σ2 = 1
K

K∑
l=1

σ2
l grows

steadily with T . Left picture on Figure 2 shows the mean variance σ2 as a function
of execution time. As seen from the figure, the dependence is monotonous.

Over 1000 computer simulation experiments were carried out to make sure
this fact. In the experiments the number of processors varied from 2 to 10, and
the complexity factor M ∈ [6; 20]. That the experiments gave similar results
allows us to turn to minimization of variance σ2 rather than minimization of T .

Setting the problem this way (i.e., optimization of σ2 rather than minimization
of T ) leads us to load balancing algorithms whose idea is to allocate computa-
tional load among processing units most evenly. In turn this allows us to resort
to optimization algorithms used in vector neural networks. Task allocation in
the case of a dual-CPU machine is particularly interesting because:

1. in this event σ2 is strictly dependent on execution time (Fig. 3) repeating
the behavior of T . Below in the paper we deal with a system of two equal-
productivity CPUs;

2. the algorithm can be used for resource management in the case of multiple-
CPU systems;

3. using methods of associative neural nets, the algorithm allows us to cope
with the problem in O (M) operations.

Fig. 2. Variance versus execution time: four processors of equal power; 20 processes;
the number of runs 10000 and on right figure mean variance of σ2 and its mean square
deviation versus execution time
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Fig. 3. Dependence of σ2 on execution time: two equal-productivity processors; ten
processes whose computational complexity H=7;4;7;6;7;10;8;8;3;3;

4 The Neural Net Model

Let T1 and T2 be the times that the first and second processors take to complete
its own task. Let binary variable (coordinate) yi denote the i-th task belonging
to either processor; namely, if yi = 1, the task is run on the first processor, if
yi = 0, the second executes the task. In these terms variance σ2 takes the form:

σ2 = [T1 − T2]2 =

⎛⎝ M∑
j=1

(2yj − 1)Hj

⎞⎠2

, (7)

After some transformations, we get

σ2 = const +
M∑

i,j=1

Aijxixj =

(
M∑
i=1

Hixi

)2

−
M∑
i=1

(Hixi)
2
, (8)

where

Aij =
{
HiHj , i �= j
0, i = j

, (9)

xi = 2yi − 1, xi = {−1,+1} , yi = {0, 1} .
Notice that expression (8) for variance σ2 is similar to definition of energy

in the Hopfield model of neural net, where matrix Aij stands for (M ×M)-
dimensional interconnection matrix. For this reason a standard neural-net algo-
rithm is used for finding the minimum of quadratic functional (8) with respect
to binary variables xi. For this kind of interconnection matrix Aij the behavior



154 M. Kryzhanovsky and M. Malsagov

of the Hopfield network is as follows: the state of the k-th neuron at time (t+ 1)
is determined in accordance with the Hopfield rule:

xk (t + 1) = −sign (S(t)−Hkxk(t)) , k = 1, . . . ,M, (10)

followed by modification S = H · x
S(t+ 1) = S(t)−Hkxk(t) +Hkxk(t+ 1). (11)

The algorithm like that allows an M -times decrease of the number of operations,
which is equal to O (M) now.

5 Computer Simulation

That the neural-net algorithm optimization is fast brings much advantage in
tackling the process management for multiple-PU systems. However, as the al-
gorithm falls into the category of iteration methods, its effectiveness depends on
what initial state we choose. That is why it is necessary to define the method
of choosing the initial state. In our computer simulation experiments we used
three methods.

1. The leveling method allows us to choose the initial state of the neural
network. It works as follows: a) the rough value T0 of minimal execution time
is first found by halving the sum of all run times; b) the first processor is fed
with tasks until their total execution time exceeds T0; c) the other tasks go to
the second processor.

2. The random search method involves multiple search for the minimum of
functional (8) with the help of Hopfield neural net. The state with the smallest
σ2 is chosen in the process. The initial task allocation is chosen by chance.

3. The modified method of load balancing suggests the initial task allocation
being determined by the leveling method.

To get statistically reliable results, runs of the simulation experiments involved
1000 sets of M tasks (M = 15, 17, 20, 60). The computational complexity of
the tasks varied in the interval from 1 to D (D was either 10 or 100).

Initially the exhaustive search method was used to find the global minimum
of functional (8) for each task set. The result was compared to that obtained
with the aid of the leveling method, random start method and modified method.
Fig.4-7 give the results of the experiments.

Left graphs in Fig. 4 shows the probability of finding solutions as a function of
departure from the global minimum for D = 10, M = 20. By way of comparison,
right graphs in Fig. 4 gives similar graphs for D = 10, M = 15.

Variable A which is laid off as abscissa of all the graphs is the distance to the
global minimum in units of D, that is, A = (dT − dT0) /D, where dT0 is the lag
of the execution times for the optimal allocation, dT is the time lag for the given
task allocation. Clear that A characterizes asymmetry in processor loading.

The experiments showed (Figure 4) that use of the Hopfield network in the
random start method gives better results than when used in the leveling method.
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At the same time, combining the leveling method and the Hopfield net algorithm
gives still better results. The fact is very interesting because the Hopfield algo-
rithm has 1000 starts with one task set, and direct application of ”leveling” is
not effective.

Indeed, the probability of finding the optimum at the distance A ≤ 0.4 is
≈ 0.35 for the leveling method, ≈ 0.9 for the random start method, ≈ 1 for the
modified method. Further, these probabilities for x ≤ 0.2 are 0.22, 0.8, 1. All the
runs in these experiments had the number of tasks larger than D (M > D).

Fig. 4. Probability of finding the minimum by the leveling method 1, by the random
search method 2, the modified load-balancing method 3 for M = 20, D = 10 (left fig.)
and M = 15, D = 10 (right fig.)

Figure 5 gives the results of experiments when the number of tasks (M = 20)
is much fewer than D (D = 100), - another limiting case. As in previous plots, the
X-axis has units of dimensionless quantity A = (dT − dT0) /D (see above). The
probability that the distance to the global minimum is less than X (P {A < X})
is unit of the Y-axis. Plots 1, 2, 3 correspond to different methods: leveling
method, random-start method and modified method. Again in this case the
modified method (curve 3) shows better results than the other two. In particular,
the energy departure from the global minimum is no greater than ≈ 1.6D for
the leveling method.

To see what happens between the limiting cases, we ran some experiments for
M/D (M = 60,D = 100) and obtained similar results. To illustrate this, Figure 6
reports the data received in the experiments using the modified method. The
experimental results allow us to determine expectations of quantity A:

dT − dT0 = 0.700D for the leveling method;
dT − dT0 = 0.126D for the random start method;
dT − dT0 = 0.065D for the modified method.
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Fig. 5. Cumulative probability P{A < X}, that is, probability that loading asymmetry
is less than X (curve 1 - the leveling method, curve 2 - the random start method, curve
3 - the modified method)

Fig. 6. The results of using the modified load balancing method for different number
of tasks M and complexity range boundary D

Let us look at Figure 7 to understand the reason why determination of the
starting point yields better results.

The figure gives the experimentally found distribution of probable solutions
of the neural net (a set of 60 tasks whose complexity varies from 1 to 100). The
X-axis of the both graphs is the probable solutions of the neural net (energy
levels). In the first graph, the degree of degeneration (multiplicity) of the level
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is laid out along the Y-axis. In the second, it is the probability of level being
populated. One million of chance starts were made. The degree of degeneration
and the number of hits were computed for each level. The solid vertical line on
the graphs denotes the level which we come to when using the leveling method
(for this particular experiment).

Fig. 7. Experimentally found energy spectrum for M = 60, D = 100

From the first graph we see that the degeneration degree grows with the depth
of the energy level, i.e. the smaller quantity A, the higher the degeneration of
the level. It allows a conclusion that the probability of the neural net coming to
a particular level also increases with the level depth. The second graph proves
the conclusion. It means that the closer to the optimal solution the initial state
leads us, the higher the probability of getting to the optimal distribution and
the lower the chances of sticking at less deeper minima. The data agree well with
the results of earlier researches [8].

6 Conclusions

When the process starts from a random point in the configuration space of vector
x, application of neural-net optimization does not guarantee success.

Modification of the load balancing method (when neural-net optimization
is accompanied with purposeful choice of the starting point) allows noticeably
better results.

A small amount of computations O (M) (M is the dimensionality of the task)
is needed to cope with the task. In the most Hopfield network-based methods
the amount of computations is O

(
M2
)
.
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Abstract. Recent trends in microprocessor design clearly show that the
multicore processors are the answer to the question how to scale up the
processing power of today’s computers. In this article we present our
C implementation of the Temporal Hebbian Self-organizing Map (TH-
SOM) neural network. This kind of neural networks have growing com-
putational complexity for larger networks, therefore we present different
approaches to the parallel processing – instruction based parallelism and
data-based parallelism or their combination. Our C implementation of
THSOM is modular and multi-platform, allowing us to move critical
parts of the algorithm to other cores, platforms or use different levels of
the instruction parallelism yet still run exactly the same computational
flows – maintaining good comparability between different setups. For our
experiments, we have chosen a multicore x86 system.

1 Introduction

This paper presents a C implementation of THSOM [3] neural network. The
THSOM neural network is enhanced SOM [1] neural network which is capable
of spatiotemporal clusterization.

In the past, parallel SOM implementations either hardware or software were
developed. Multi-threaded parallel implementation of SOM appeared already in
2000 [7], utilizing SGI Power Challenge and SGI Origin 2000 and dual Celeron
systems. There were numerous hardware implementations of the SOM, either as
part of re-programmable platform like RAPTOR2000 [6] or as IP core [4] or [5].

Nowadays, yet still mainstream x86 architecture offers enhanced SIMD
floating point instruction set (SSE) and even multiple processors (cores) in the
single chip delivering great amount of parallel processing power to common desk-
top/server systems. We will present a way how to utilize such parallel power,
and create efficient implementation of THSOM neural network.
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2 THSOM Neural Network

The Temporal Hebbian Self-organizing Map (THSOM) were introduced in [2].
Unlike classic SOM [1] based networks, they contain spatial and temporal map,
extending the clustering to space and time. The THSOM architecture consists of
one layer (usually connected as the grid) of hybrid neurons as depicted Figure 1.
They are fully connected to input vector of dimension d, connections make up
the spatial map. The neurons are connected to each other in the grid using re-
current temporal synapses (temporal map). Hybrid neurons contain two types
of similarity measures, Euclidean metric for measuring similarities in input spa-
tial space and scalar product for measuring similarities in temporal space. The
activation (output) of a neuron is defined as follows:

yt+1
i =

√
D −

√√√√ d∑
j=1

(xt
j − wt

ij)2 +
n∑

k=1

(yt
km

t
ik) (1)

where yt+1
i is activation (output) of i-th neuron in time t+1 (further time step),√

D is a constant square root of input vector dimension D, xt
j is input of j-th

vector in time t, wt
ij is the spatial weight for j-th input in time t, yt

k is output of
k-th neuron in time t, mt

ik is temporal weights for k-th neuron in time t (from
neuron k to neuron i), n is number of of neurons in network, and d is a dimension
of input space (vector).

The spatial weights are updated using classical SOM (Kohonen’s Self-organizing
Map) rules [1]. The weights are updated in order to move the neuron in the space
closer to the input vector. Temporal weights use modified Hebbian learning rule ac-
cording to following formula [3] (after new Best Matching Unit (BMU) b is
computed):
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Fig. 1. THSOM network architecture
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where yt
k is an output of k-th neuron of previous time step, β and α control

temporal synapses learning rate, α can start on 1.0 and is decreased in time to
slow down oscillation around desired temporal weight value, Kl is a low boundary
of temporal weights, usually (Kl = 0), Kh is a high boundary of temporal
weights, usually (Kh = 1).

3 THSOM Implementation Architecture

Our C based THSOM implementation consists of two modules. Main module
controls the THSOM operations and data handling and the other implements
the executive functions.

The main module implements data loading (function loaddata), network ini-
tialization (function randomW) and the learning logic (function learn). The exec-
utive function module implements the functions which find actual best matching
unit (function findBMU normal) and Gaussian neighbourhood of winning neu-
ron (cutgauss2D). There are also functions which update the neural weights in
the neighborhood of winning neuron and the winning neuron itself (functions
updateSOM and updateTSOM).

4 Optimizing Reference C Implementation

As a benchmark, we have chosen artificial GPS data containing a simulated car
ride across the city. The data were sampled with constant rate. There are 2216
data samples (normalized 2D coordinates). The learning phase of the THSOM
neural network was fixed at 1000 Epochs.

The reference C implementation was profiled using the gprof tool. We used
the GCC 4.1 compiler (32-bit) with standard optimizing options (-O2 -msse2).
The Table 1 summarizes the gprof profiler results obtained from the THSOM
network with 64 neurons. Each sample has been counted as 0.01 seconds. The
results of the benchmark were used for further optimizations as described later.

The profiling results reveal, that our program spends most of the time inside
a findBMU normal routine, which computes the BMU of SOM part of the net-
work. During the weight modification phase, the program computes the Gaussian
neighborhood using function cutgauss2D. Although the function is rated as third,
it is called many times, therefore it is worth to optimize it too. The functions
with accel postfix are just wrappers for future accelerated versions of find-
BMU normal and updateTHSOM.

5 Parallel Processing and Optimization

Our effort will focus on both data parallel processing as well as multi-threaded
processing. The most computational intensive function of our reference imple-
mentation is the findBMU normal function. It happens to be good candidate for
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Table 1. The summary of profiled functions, findBMU normal as most complex and
cutgauss2D as most called

% time cumulative seconds self seconds calls name

92.50 47.35 47.35 2216001 findBMU normal
3.03 48.90 1.55 2216000 updateSOM
2.72 50.29 1.39 141824000 cutgauss2D
1.15 50.88 0.59 15750045 gamma2D
0.18 50.97 0.09 231860 updateTSOM
0.12 51.03 0.06 1 learn
0.10 51.08 0.05 2216000 updateTHSOM accel
0.08 51.12 0.04 14839040 max
0.08 51.16 0.04 2216001 findBMU accel
0.06 51.19 0.03 14839040 min
0.00 51.19 0.00 4224 randf
0.00 51.19 0.00 64 dump neuron s
0.00 51.19 0.00 64 dump neuron t
0.00 51.19 0.00 1 findBMU accel init
0.00 51.19 0.00 1 loaddata
0.00 51.19 0.00 1 randomW

data and even for instruction based parallelism. The search for the best match-
ing unit on all neurons is independent and can run parallel in different threads.
Moreover, each thread might compute the BMU of group of neurons utilizing
the SIMD instruction set of the processor (SSE in our case).

5.1 Data Parallelism on Data Structures

The findBMU normal function operates on the temporal and spatial maps of neu-
rons, and delivers the proportional “similarity” of input vector to best matching
neuron, traditionally called best matching unit (BMU). In order to use SIMD
instructions on different neurons we grouped the spatial and temporal maps
accordingly as depicted on code fragment bellow:

struct neuron4 {
float m[NEURONS][4]; /* temporal map */
float w[VDIM][4]; /* spatial map */

}
struct neuron4 neurons4[NEURONS / 4];

The grouping by four is architecture specific, because the SIMD SSE instruc-
tion can operate on four floats concurrently. The spatial layout of arrays m and
w group each neuron weight elements to the consecutive memory space, allowing
to load the vector register without a stride.
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5.2 Optimization on x86 Using SSE Intrinsic

We wanted to avoid the direct assembly code for its obvious disadvatages, there-
fore we used compiler vector extensions. The GCC vector extensions operate on
special data type which holds the elements of the vector. The SSE instruction
set allows to have 4 floats per vector, the data type is defined as follows:

#include <xmmintrin.h>
typedef float v4sf __attribute__ ((vector_size(16)));
union f4vector {

v4sf v;
float f[4];

};

We declared the v4sf type, which tells the compiler to pack up to four floats
together. We created the f4vector union data type which allows to operate on
vector or access the elements of the vector individually. The findBMU normal
routine was re-coded using the vector data types. From the implementation point
of view it lost the inner-most iteration cycle for all neurons packed in neuron4
type.

Some vector operations cannot be coded as standard C operators. The GCC
solves that with intrinsic function to load resp. store the vector from resp. to
memory with functions mm load ps resp. mm store ps. The load of same value
to all vector members is accomplished with function mm load1 ps. Zeroing
whole vector with mm setzero ps. Even the square root function is available –
mm sqrt ps. This optimization is labeled as -DSSEin further text.

5.3 Optimization on x86 Using Threads

Even when using SSE optimized version, the 76% of the time is still spent in the
findBMU SSE. Up to now, our implementation was just single threaded. In this
chapter we propose multi-threaded version of findBMU function.

Most natural way is to use as many threads as CPU cores available. The OS
scheduler will plan threads on distinct cores. Each core will compute proportional
part of neurons divisible by 4 to ease the additional SSE acceleration. After each
core finishes the findBMU SSE on the subsets, final BMU needs to be found
by simple comparison of the results returned from all participating threads. A
synchronization barrier needs to be inserted before and after the BMU compu-
tation, so that all threads start to compute for the same input vector and it is
sure that all threads finished computation, before the final BMU is searched.

Traditionally, the barrier implementation uses the mutexes and sleeping-waking
primitives for the thread execution handling. Unfortunately this is not feasible for
the very intensive thread synchronization like in ours implementation. Due to con-
text switching and waking/sleeping thread overhead the computations will take
much longer than in single thread version.

Therefore we propose our own barrier implementation, which uses the busy
waiting and atomic operations for data manipulation and arithmetic. We use the
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libatomic-ops library which provides platform independent atomic operations.
See the following code:

int barrier_wait(struct barrier *barrier, int tid) {
AO_fetch_and_add1(&barrier->b); /* atomicaly incr barrier */
if (!tid) {
/* we are thread 0, wait for all other threads to join */
while ((*((volatile AO_t *) (&barrier->b))) < NUM_THREADS) ;

AO_store(&barrier->b, 0); /* unblock waiting threads */
return 0;
} else {

while ((*((volatile AO_t *) (&barrier->b))));
return 0;

}
return 0;

}

Each thread calls the barrier wait function with the ID of calling thread (tid)
and with the pointer to actual barrier shared between the threads (*barrier). The
AO fetch and add1 function atomically increases the barrier. All other threads
than thread zero are waiting until the barrier is zero again. Thread zero spins in
a loop until all other threads has entered the barrier. Hence the barrier value is
equal to number of threads which are trying to synchronize.

For performance reasons, it is feasible to align whole barrier structure to one
cache line size, so there are no other data affected with the exclusive state of the
cached data.

5.4 Optimization Using cutGauss2D Lookup Table

The profiling revealed the cutGauss2D function as good candidate for improve-
ment. It computes the neighbourhood for the weight adoption in the SOM layer
of the network. We implemented a simple on-demand lookup table. The result
of the cutGauss2D is stored in the 2D array for each two neurons. If the size of
neighbourhood changes, whole lookup table is invalidated. This optimization is
labeled as -DnyCachein further text.

6 Measurements of Optimized THSOM Implementation

This chapter summarizes all measurements. The data and number of epochs is
the same as during the profiling phase to maintain comparability of all results.

6.1 The Influence of Cutgauss2D Lookup Table

The Table 2 summarizes the speedup achieved with additional cutgauss2D op-
timization. The benefit of lookup table will disappear if the space occupied by
lookup table is too large and does not fit well into the cache. This happened for
the network with 1024 neurons.
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Table 2. The benefit of cutGauss2D lookup table for different network sizes (NS)

NS Speedup

4 1.45
16 1.30
64 1.39

256 1.08
1024 0.99

6.2 Measurements of Optimized Single Thread THSOM
Implementation

The measurements were performed for various levels of compiler based optimiza-
tions and include above proposed optimizations. The platform was equipped with
Intel based microprocessor Intel(R) Core(TM)2 CPU 6420 running on 2.13GHz
with 4MB of L2 cache for each core. The installed compiler was GCC version
4.2.3 (Debian 4.2.3-3) and generated 64-bit code. The run-time results are given
in seconds. The table 3 and 4 summarizes the measurements for THSOM network
with 4 up to 1024 neurons.

The -O0 denotes optimization disabled (GCC default). The -O1 turns some
optimizations that are safe and does not prolong the compilation time. The -O2
turns nearly the rest of available optimization options which do not involve speed
versus size trade-off. The -O3 adds some remaining optimization – this option is

Table 3. The duration of learning phase with various optimizations and network sizes
(NS) in seconds

NS -O0 -O1 -O2 -O2 -DSSE -O3 -DSSE

4 2.29 1.57 1.48 1.32 1.31
16 9.67 6.14 4.85 3.51 3.20
64 78.57 49.35 25.48 14.52 14.43

256 963.94 662.46 258.00 108.51 107.98
1024 14459.65 10048.41 3832.65 1511.96 1537.86

Table 4. The duration of learning phase with various optimizations and network sizes
(NS) in seconds

NS -O2 -DSSE -DnyCACHE -O3 -DSSE -DnyCACHE

4 0.25 0.24
16 1.24 0.95
64 7.74 7.74

256 88.76 88.36
1024 1462.03 1442.48
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sometimes considered unsafe. As indicated earlier, our optimizations are denoted
-SSE and -DnyCache.

The speedup between fully optimized version and unoptimized is in average
10.2 times. The speedup of compiler generated optimization from -O0 to -O2 is
in average 2.8 times. Our optimizations -DSSE and -DnyCache contributes to
speedup in average by factor 3.7.

Our -DnyCache optimization is only efficient when the lookup table fits the
cache size. Figure 2 gives in logarithmic coordinates complete overview of per-
formed optimizations.

0.1

1

10

100

1000

10000

10 100 1000

S
ec

o
n
d
s

Neurons

Legend
-O0
-O1
-O2

-O2 -DSSE
-O3 -DSSE

-O2 -DSSE -DnyCACHE
-O3 -DSSE -DnyCACHE

Fig. 2. The x86 optimized versions on single core with clearly visible effect of -
DnyCache and other compiler optimizations

6.3 Measurements of Optimized Multi-threaded Version

The multicore version was measured on four core Intel Core2 Quad CPU running
on 2.4GHz, with 4MB of L2 cache on each two cores. Table 5 summarizes the
achieved results.

The fastest compilation flags were used (-DSSE -DnyCache -O3 -msse2). The
system uses GCC 4.2.3 (32bit). The Figure 3 depict the achieved parallel speedup
for different network sizes. The multicore version becomes faster for networks
whose size is bigger then 64 neurons. For smaller networks the BMU computation
is faster then the costs for mutual synchronization of the threads. However the
parallel speedup does not scale till infinity. The networks with 4096 neurons
have speedup just 1.3x. The main impact plays the memory subsystem, which
is unable to handle so much bandwidth between caches and main memory. The
total memory size of 4096 neurons is 256MB, which is far more then all caches
can handle.
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Table 5. Computation times in seconds for different network sizes

NS 1 Core 2 Cores 4 Cores

4 0.47 0.01 0.06
16 1.62 3.32 5.01
64 8.83 10.21 11.12

256 89.96 60.37 44.42
1024 1654.37 680.23 364.96
4096 29359.41 21711.38 22141.99
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Fig. 3. Parallel speedup with two and four cores

The network with 1024 neurons occupies just 16KB per neuron, that is total
16MB of memory. The total CPU cache size is 8MB and this scales up very well.
The parallel speedup of four thread version is even more then 4x. This is caused
by slower computation for single thread version, which jumps between cores of
CPUs and hits cold caches.

7 Conclusion

We have shown that use of compiler based optimization gains speedup of 2.7
times and additional vector optimization gains additional speedup of 3.7 times.
The total speedup for the single threaded program with no optimization to fully
optimized is approximately 10 times, which is significant especially when using
large networks.
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The multicore version using busy waiting synchronization shows significant
performance increase if all data memory is well cachable. The best speedup
achieved on four cores compared to optimized single threaded version was four
times.

Due to single running thread migration between the cores, the single threaded
version shall be 1.13x faster then noted. If we compare the slowest unoptimized
version with 1024 neurons and the fastest four threads version and project the
little different CPU speed factor, 1.012 we get total speedup 39x.

If we just compare single threaded, with compiler based optimization with-
out any “hand-made” optimization with our fastest four threads version, fully
optimize, we get total speedup of 10x.
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Abstract. Artificial Neural Networks (ANNs) is a well known bio-
inspired model that simulates human brain capabilities such as learn-
ing and generalization. ANNs consist of a number of interconnected
processing units, wherein each unit performs a weighted sum followed
by the evaluation of a given activation function. The involved computa-
tion has a tremendous impact on the implementation efficiency. Existing
hardware implementations of ANNs attempt to speed up the compu-
tational process. However these implementations require a huge silicon
area that makes it almost impossible to fit within the resources available
on a state-of-the-art FPGAs. In this paper, we devise a hardware archi-
tecture for ANNs that takes advantage of the dedicated adder blocks,
commonly called MACs to compute both the weighted sum and the acti-
vation function. The proposed architecture requires a reduced silicon area
considering the fact that the MACs come for free as these are FPGA’s
built-in cores. The hardware is as fast as existing ones as it is massively
parallel. Besides, the proposed hardware can adjust itself on-the-fly to
the user-defined topology of the neural network, with no extra configura-
tion, which is a very nice characteristic in robot-like systems considering
the possibility of the same hardware may be exploited in different tasks.

1 Introduction

Artificial Neural Networks (ANNs) are useful for learning, generalization, classi-
fication and forecasting problems [3]. They consists of a pool of relatively simple
processing units, usually called artificial neurons, which communicates with one
another through a large set of weighted connections. There are two main net-
work topologies, which are feed-forward topology [3], [4] where the data flows
from input to output units is strictly forward and recurrent topology, where
feedback connections are allowed. Artificial neural networks offer an attractive
model that allows one to solve hard problems from examples or patterns. How-
ever, the computational process behind this model is complex. It consists of
massively parallel non-linear calculations. Software implementations of artificial
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neural networks are useful but hardware implementations takes advantage of the
inherent parallelism of ANNs and so should answer faster.

Field Programmable Gate Arrays (FPGAs) [7] provide a re-programmable
hardware that allows one to implement ANNs very rapidly and at very low-cost.
However, FPGAs lack the necessary circuit density as each artificial neuron of the
network needs to perform a large number of multiplications and additions, which
consume a lot of silicon area if implemented using standard digital techniques.

The proposed hardware architecture described throughout this paper is de-
signed to process any fully connected feed-forward multi-layer perceptron neural
network (MLP). It is now a common knowledge that the computation performed
by the net is complex and consequently has a huge impact on the implementation
efficiency and practicality. Existing hardware implementations of ANNs have at-
tempted to speed up the computational process. However these designs require
a considerable silicon area that makes tem almost impossible to fit within the
resources available on a state-of-the-art FPGAs [1], [2], [6]. In this paper, we
devise an original hardware architecture for ANNs that takes advantage of the
dedicated adder blocks, commonly called MACs (short for Multiply, Add and
Accumulate blocks) to compute both the weighted sum and the activation func-
tion. The latter is approximated by a quadratic polynomial using the least-square
method. The proposed architecture requires a reduced silicon area considering
the fact that the MACs come for free as these are FPGA’s built-in cores. The
hardware is as fast as existing ones as it is massively parallel. Besides, the pro-
posed hardware can adjust itself on-the-fly to the user-defined topology of the
neural network, with no extra configuration, which is a very nice characteristic
in robot-like systems considering the possibility of the same piece of hardware
may be exploited in different tasks.

The remaining of this paper is organized as follows: In Section 2, we give a
brief introduction to the computational model behind artificial neural networks;
In Section 3, we show how we approximate the sigmoid output function so we
can implement the inherent computation using digital hardware; In Section 4, we
provide some hardware implementation issues about the proposed design, that
makes it original, efficient and compact; In Section 5, we present the detailed
design of the proposed ANN Hardware; Last but no least, In Section 6, we draw
some useful conclusions and announce some orientations for future work.

2 ANNs Computational Model

We now give a brief introduction to the computational model used in neural
networks. Generally, is constituted of few layers, each of which includes several
neurons. The number of neurons in distinct layers may be different and conse-
quently the number of inputs and that of outputs may be different [3].

The model of an artificial neuron requires n inputs, say I1, I2, . . . , In and the
synaptic weights associated with these inputs, say w1, w2, . . . , wn. The weighted
sum a, which, also called activation of the neuron, is defined in (1). The model
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usually includes an output function nout(.) that is applied to the neuron acti-
vation before it is fed forwardly as input to the next layer neurons.

a =
n∑

j=1

wj × fj (1)

The non-linearity of the neuron is often achieved by the output function,
which may be the hyperbolic tangent or sigmoid [3]. In some cases, nout(a) may
be linear.

A typical ANN operates in two necessary stages: learning and feed-forward
computing. The learning stage consists of supplying known patterns to the neural
network so that the network can adjust the involved weights. Once the network
has learned to recognize the provided patterns, the network is ready to operate,
performing the feed-forward computing. In this stage, the network is supplied
with an input data or pattern, which may or not be one of those given in learning
stage and verify how the network responds with output results. This allows one to
know whether the neural network could recognize the input data. The precision
of the net in recognizing the new input patterns depends on the quality of its
learning stage and on its generalization. As we have previously mentioned, here
we are only concerned with the implementation of feed-forward computing stage.

3 Approximation of the Output Function

Unlike the activation function, which includes operations that can easily and ef-
ficiently implemented in hardware, the out function requires a special care before
the computation involved can be modeled in hardware. Without loss of general-
ity, we chose to use the sigmoid output function. Note that the same treatment
applies to the hyperbolic function too. To allow an efficient implementation of
the sigmoid function defined in (2), in hardware, we proceeded with a parabolic
approximation of this function using the least-square estimation method.

sigmoid(a) =
1

1 + e−a
(2)

The approximation proceeds by defining nout(a) = C × a2 + B × a + A
as a parabolic approximation of the sigmoid of (2), just for a short range of
the variable a. We used the least-square parabola to make this approximation
feasible. Many attempts were performed to try to find out the best range of a
for this approximation, so that the parabola curves fits best that of sigmoid(a).
We obtained the range [−3.3586, 2.0106] for variable a, taking into account the
calculated coefficients C = 0.0217, B = 0.2155 and A = 0.4790 for the parabolic
approximation. Thus, the approximation of the sigmoid function is:

nout(a) =

⎧⎨⎩
0 a < −3.3586
0.0217× a2 + 0.2155× a + 0.4790 a ∈ [−3.3586, 2.0106].
1 a > 2.0106

(3)
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4 Implementation Issues

An Artificial Neural Network is a set of several interconnected neurons arranged
in layers. Let L be the number of layers. Each layer has its own number of
neurons. Let mi be the number of neurons in layer i. The neurons are connected
by the synaptic connections. Some neurons get the input data of the network, so
they are called input neurons and thus compose the input layer. Other neurons
export their outputs to the outside world, so these are called output neurons
and thus compose the output layer. Neurons placed on the layer 2 up to layer
L−1 are called the hidden neurons because they belong to the hidden layers. In
Fig. 1, we show a simple example of an ANN. The output of each neuron, save
output neurons, represents an input of all neurons placed in the next layer.

The computation corresponding to a given layer starts only when that of the
corresponding previous layer has finished. Our ANN hardware has just one real
layer of neurons, constitutes of k neurons, where k is maximum number of neu-
rons per layer, considering all layers of the net. For instance, for the net of Fig. 1,
this parameter is 3. This single real layer or physical layer is used to implement all
layers of the network. As only one layer operates at a time, this allows us to min-
imize drastically the silicon area required without altering the response time of
the net. For instance, considering the net of Fig. 2, the first stage of the computa-
tion would use only 2 neurons, then in the second stage all three physical neurons
would be exploited and in the last stage, only one neuron would be useful. So in-
stead of having 6 physically implemented neurons, our hardware requires only half
that number to operate. ANN hardware treats the nets layers as virtual.

Fig. 1. Neural network with two intpus, three layers and one output Y

Besides reducing the number of neurons that are actually implemented in
hardware, our design takes advantage of some built-in cores that come for free in
nowadays FPGAs. This blocks are called MACs (Multiply, add and Accumulate),
which are usually used in DSPs (Digital Signal Processing) and their architecture
is shown in Fig. 2. The MACs blocks are perfect to perform the weighted sum.
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Fig. 2. Built-in MACs blocks in FPGAs

Recall that nout(a) of (3) is the actual neuron output function our ANN hard-
ware will perform. Observe that the computation involved in this function is sum
of products (quadratic polynomial) and so the MACs can be used in this purpose
to. Actually we use the same block of the neuron to compute the output function.

5 ANN Hardware Architecture

The ANN hardware interface is illustrated in Fig. 3, wherein two other compo-
nents are included: load controller and clock system. The former may
be any outside system able to setup the neural network topology and to load
all necessary data in the ANN hardware. This include the number of inputs, the
number of layers, the number of neurons per layer and that of outputs, besides,
the net inputs and the definitive weights. Our ANN hardware is organized in a
neural control unit (uc) and Neural arithmetic and logic unit (alu).

Neural uc encompasses all control components for computing all neural net-
work feed-forward computation. It also contains the memories for storing the
net’s inputs in the input memory, the weights in the weight memory, the
number of inputs and neurons per layer in the layer memory and the coeffi-
cients of the output function in the output function memory as described
in (3). Fig. 4 and Fig. 5 depict, respectively, two parts of the neural uc.

Fig. 3. Interface of the ANN hardware
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Fig. 4. First part of the neural uc

During the loading process, which commences when LCStart = 1, the load
controller sets signal DataLoad and selects the desired memory of the neural
uc by signals Load0 and Load1 (see Fig. 3, Fig. 4 and Fig. 5).

The counters that provide addresses for memories are entirely controlled by the
load controller. Signal JKClk is the clock signal (from clock system in Fig.
4) that synchronizes the actions of those Counters and of the load controller.
This one fills each memory through the 32-bit DATA in loading process.

When the loading process is finished (LCFinal= 1), in Fig. 3, signalDataLoad
can be turned off and the loadcontroller can set signalStart for the commenc-
ingof the feed-forwardNeuralNetworkcomputing.WhenStart=1(andDataLoad
= 0), the ANN hardware gets the whole control of its components; so the loadcon-
troller can no longer interfere in the neural uc. This one has a main controller
called Network Controller (Fig. 3) that controls all components of the neural uc
(Fig. 4 and Fig. 5) and also the neural alu, which is depicted in Fig. 9.
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Fig. 5. Second part of the neural uc

During the ANN hardware operation, neural uc by the mean of the network
controller, controls the computation of each layer per stage. For each layer of
the neural network, all k hardware neurons of the neural alu of Fig. 9 work in
parallel even though not necessarily all physical neurons are needed in the layer.
Recall that some layers in the ANN hardware may have fewer neurons than k.
At this stage, signal Clk is now the active clock of the ANN hardware, not signal
JKClk anymore.

In Fig. 9, adder mux decides the actual input for all hardware neurons and it
is exploited to multiplex a network input, from the input memory in Fig. 4 or the
output of a hardware neuron nOUTi, which is an output of a neuron placed in a
layer i of the net. While all physical neurons are in operation, the weight regis-
ters of Fig. 9 are already being loaded using signal W (see Fig. 4). These are the



176 N. Nedjah et al.

Fig. 6. Overall hardware architecture of the Neural alu

new weights, which are the weights of the next layer in the network. Furthermore,
in Fig. 9, we see a set of tri-state buffers, each of which is controlled by signal Ni,
issued by the neuron layer decoder, in the neural uc of Fig. 4. Fig. 9 shows the
neuron architecture. Each hardware neuron performs the weighted sum followed
by the application of the output function nout(a).

Observing Fig. 4 (neural uc), the input counter, together with neuron
layer register, neuron layer comparator, neuron layer adder and
lastprod comparator control the computation of the weighted sum: signal
FirstProd indicates the first product of the weighted sum and LastProd, the last
one. SuperOR component is an OR of all input bits. Signal EndSum (Fig. 4,
Fig. 9 and Fig. 9) flags that the weighted sum has been completed. It also
triggers the start of the output function computation. During this stage, the
output function counter (see Fig. 5) provides the address to the output
function memory in order to release the coefficients (C = 0.0217, B = 0.2155
or A = 0.4790), through ofmData, to the hardware neurons. Signal fourF inal,
in Fig. 5, indicates that the computation of nout(a) has finished.

Each hardware neuron encloses a MAC block, which consists of a float mul-
tiplier and a float adder to perform products and sums, respectively. The
multiplier register allows the load adder to works in parallel with float
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Fig. 7. Hardware architecture of the Neuron

multiplier. The adder register accumulates the weighted sum. Recall that
all hardware neurons work in parallel (see Fig. 9).

At an earlier stage, the load controller has loaded Limit0 = −3.3586 and
Limit1 = 2.0106 in neural uc so that RegLimit0 = −3.3586 and RegLimit1 =
2.0106 have been obtained. Those float numbers refer to (3), wherein nout(a) is
0 if a < −3.3586 and 1 if a > 2.0106.

In Fig. 9, which shows the hardware neuron, downequal comparator sets
OUTZ = 1, if a < −3.3586 and upequal comparator sets OUTO = 1,
if a > 2.0106. These components, intermediated by two latches, control the
output manager, which decides as to the output of the hardware neuron
(nOUT ): (i) If a ∈ [−3.3586, 2.0106], then nOUT is the result of the second
degree polynomial as described in (3), which is the content of the OUTPUT
function register; (ii) If a < −3.3586, then the output manager provides
nOUT = 0; (iii) If a > 2.0106, then nOUT is 0. Components LATCH0 and
LATCH1 are used to maintain nOUT stable. Signal nOUT have to be kept
during the computation of the weighted sum of a next layer neuron. Furthermore,
in Fig. 9, signal amFinali indicates the end of both a product and sum performed
by the neuron. The multiplier and the adder operate in parallel, i.e. when the
adder is accumulating the freshly computed product to the partial weighted sum
obtained so far, the multiplier is computing the next product. In Fig. 5, signal
amFinal indicates the end of all the computation in all neurons.

In Fig. 3, signal Final indicates that all computation required in all the layers
of the network are completed and the outputs of the network have been obtained.
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These outputs are available signals nOUT1, nOUT2, . . ., nOUTh (see Fig. 3 and
8), where h is the number of neurons placed in the output layer of the Network,
with h ≤ k.

6 Conclusions

In this paper, we presented novel hardware architecture for processing an ar-
tificial neural network, whose topology can be changed on-the-fly without any
extra reconfiguration effort. The design takes advantage of the built-in MACs
block that come for free in modern FPGAs. The model was specified in VHDL
[5], simulated to validate its functionality. We are now working on the synthesis
process to evaluate time and area requirements. The comparison of the per-
formance result of our design will be then compared to both the binary-radix
straight forward design and the stochastic computing based design.
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Abstract. This paper proposes an embedded system on a chip to gener-
ate locomotion patterns of periodic rhythmic movements inspired by bio-
logical neural networks called Central Pattern Generators (CPGs) found
in animal nervous system. The proposed system contains a custom digital
module, attached to an embedded processor, that mimics the functional-
ity and organization of the fundamental Amari-Hopfield CPG. In order
to reduce the CPG hardware integration complexity as well as to provide
flexibility, an embedded linux operating system running on a processor
is used to deal with the CPG interfacing in a high level transparent way
for application development. The system is implemented on a Field Pro-
grammable Gate Array (FPGA) device providing a compact, flexible and
expandable solution for generating periodic rhythmic patterns in robot
control applications. Results show that the obtained waveforms from the
FPGA implementation agree with software simulations and preserve the
easiness of CPG parameter setting for adaptive behavior.

1 Introduction

It has been shown, by means of neurophysiological studies, that many activities
vital to animal locomotion such as walking, swimming and flying are produced
by repetitive and rhythmic activations of the animal muscles. These rhythmic
movements are controlled by specialized biological neural networks called central
pattern generators situated in ganglion or spinal cord [1][2]. Researchers have
studied CPGs for decades and some principles have been derived to model their
functionality and structure. CPGs consist of sets of neural oscillators that receive
inputs from command neurons. These oscillators produce rhythmic patterns of
neural activity that activate motor neurons. Though sustained rhythmic out-
puts can be produced by a CPG without need of sensory feedback, the feedback
mechanism plays an important role to regulate the frequency and phase of os-
cillators to change the locomotion patterns depending on the situation and the
environment. Furthermore, CPGs induce some coordination among the several
physical parts of animals to produce smooth locomotion patterns.
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In recent years, the computational modeling of CPGs has demonstrated the
utility of this theory in the development of autonomous locomotion control sys-
tems in robotics such as legged walking robots where control is distributed
throughout the body [2][3]. CPGs are an important example of distributed
processing where the amount of computations for movement control is reduced
as a result of the coordination of the distributed physical parts induced by the
rhythmic movements. Engineering CPG-based control systems has been diffi-
cult since the simulation of even rather simple neural network models requires a
significant computational power that exceeds the capacity of general embedded
microprocessors. As a result, CPG dedicated hardware implementations, both
analog and digital, have received more attention [1][3]. On one hand, CPGs have
been implemented using digital processors providing high accuracy and flexibil-
ity but those systems consume high power and occupy a large area restricting
their utility in embedded applications. On the other hand, analog circuits have
been already proposed, being computation- and power- efficient but they usually
lack flexibility and dynamics and they involve large design cycles [3].

With the advent of technological improvements and the high level design
methodologies to build embedded systems, it is now plausible to design control
systems that counterbalance the analog and digital drawbacks by providing cus-
tom efficient hardware attached to embedded processors in a single chip such
as FPGA devices [4]. FPGAs have shown to be suitable for neural processing,
i.e., processing where massively distributed elementary units interact through
dense interconnection schemes [5][6]. In this paper, an FPGA-based embedded
implementation of an artificial CPG is presented. Our approach may take ad-
vantage of both the spatial computing model of custom logic for efficient neural
processing and the flexibility of time-multiplexed processing offered by embed-
ded processors available in FPGAs. Having a dedicated coprocessor to generate
the rhythmic patterns makes possible to perform general real-time control on the
main processor. In this work, a custom implementation of the Amari-Hopfield
CPG is attached to a Xilinx microblaze processor with an embedded linux op-
erating system allowing application development that use CPG in a transparent
way. The microprocessor could handle higher functions such as CPG parameter
adaptation or robot decision making, leaving the neural processing and coordi-
nation to a custom CPG hardware module.

2 Central Pattern Generator Model

Artificial CPGs emerge from the study and modeling of biological oscillatory neu-
rons that generate rhythmic patterns of locomotive motion. Different artificial
neural networks have been proposed to model CPGs, such as relaxation oscilla-
tors and continuous-time recurrent neural networks [1]. The most fundamental
CPG model consists of two neurons with reciprocal inhibition. Although its orga-
nization is simple, it is essential since it is used as the elementary component of
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Fig. 1. Amari-Hopfield neuron model [1]

more complex CPG configurations. For instance in [1], a CPG controller for inter-
limb coordination in quadruped locomotion is presented so as to generate typical
gaits of mammals such walking, trotting and galloping. The model consists of four
coupled neural oscillators with twelve excitatory and inhibitory interneurons for
quadruped locomotion but the generator can be extended to more than four ar-
ticulations by adding more oscillators.

In this paper, the Amari-Hopfield neuron model [1] is used as the neural oscil-
lator. It consists of an excitatory neuron and inhibitory neuron with excitatory
inhibitory interactions as shown in figure 1. The dynamics of the Amari-Hopfield
model is given by equation 1:

du

dt
= −u+Afμ(u)− Cfμ(v) + Su(t) (1)

dv

dt
= −v +Bfμ(u)−Dfμ(v) + Sv(t)

where u and v stand for the internal state of the excitatory and inhibitory neu-
rons, respectively. The model has four tunable parameters A-D that determine
the dynamics of the system. Su and Sv are the external inputs and fμ(x) is the
transfer function given by equation 2:

fμ(x) =
1 + tanh(μx)

2
(2)

where μ is the slope control parameter. Several other possibilities exist for the
transfer function used in the model such as the tan-sigmoid and the log-sigmoid
functions among others.

3 FPGA-Based Embedded Implementation

The Amari-Hopfield oscillator is suitable for CPG implementation as a digital
circuit, however some factors for an efficient and flexible FPGA-based imple-
mentation should be taken into account:

– Area-greedy nonlinear operators : neural operators require a significant amount
of digital logic. Usually, piecewise linear approximations to the nonlinear oper-
ators are preferable at the cost of precision [7]. As a first approximation, in this
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work, f(x) = |x+1|−|x−1|
2 is used as the activation function without reducing

significantly the quality and generality of the rhythmic patterns.
– Arithmetic representation: neural computations when implemented in gen-

eral microprocessor-based systems use floating point arithmetic. A preferred
approach for embedded implementations is the use of 2’s complement fixed
point representation with a dedicated wordlength that better matches the
FPGA computational resources and that saves further silicon area at the
cost of precision.

– Efficiency and flexibility: embedded hard processor cores or configurable soft
processors developed by FPGA vendors add the software programmability
of optimized processors to the fine grain parallelism of custom logic on a
single chip [8][9]. In the field of neural processing, several applications mix
real-time or low-power constraints with a need for flexibility, so that FPGAs
appear as a well-fitted implementation solution for the target application [6].

This paper proposes an FPGA-based embedded system where an efficient digi-
tal implementation for the Amari-Hopfield model is attached to the Xilinx mi-
croblaze microprocessor running the uclinux embedded operating system. We
have chosen to encapsulate neural processing using uclinux wrapping libraries
and drivers to avoid the time-consuming integration work and the partial lack
of flexibility of a custom architecture for applications development. This work
aims at creating a CPG-based neural control embedded in FPGAs, so that this
platform might be used more likely and easily than microprocessors for develop-
ing robot applications. This work is a preliminary step towards this goal, since it
implements the fundamental CPG building block as an embedded and scalable
coprocessor.

3.1 Central Pattern Generator Digital Architecture

Figure 2 shows a simplified block diagram of the proposed digital architecture
for the discretized Amari-Hopfield equation. All the internal components use
2’s complement fixed-point arithmetic representation. Four multipliers are used
to weight the output of the activation functions with the excitatory/inhibitory
values. The components labeled as ACC stand for accumulators that hold the
internal state of the neural oscillators. The activation function was implemented
under a piecewise linear approach using two comparators and a 4-input multi-
plexer. The input value to the activation function module is compared to +1
and -1, and the comparator outputs are used for the control word of the 4-input
multiplexer which selects the appropriate value (+1, -1, or the input value) ac-
cording to the control word. Two separate register banks are used to provide
communication channels to an embedded processor, one for the A-D parame-
ters and the external inputs, and other one for the outputs. These banks are
accessible in the microblaze-uclinux system and their values are set or read by
the running application. From a given uclinux application, the CPG is seen as a
memory-mapped device.
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Fig. 2. Digital hardware architecture for the Amari-Hopfield model

3.2 Integration in an Embedded Linux System

In order to overcome the partial lack of flexibility of the CPG digital architec-
ture, it has been attached as a specialized coprocessor to a microblaze processor
following an embedded system design approach so as to provide a high level
interface layer for application development. Microblaze is a parameterized 32-
bit soft-processor engineered by Xilinx for low silicon area utilization without
a memory management unit (MMU) with several bus interfaces for adding co-
processors and peripherals [10]. The whole system is composed of a microblaze
processor and the specialized digital architecture that generates the rhythmic
patterns according to the tunable CPG parameters specified by the current

Fig. 3. Interfacing of the CPG digital architecture as a coprocessor to the microblaze-
uclinux system
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application. The uclinux operating system running on the processor allows to
manage the system and to integrate it easily in the perception-action loop of
mobile robotic applications. uclinux is a Linux fork for embedded systems with-
out a MMU, which has been ported to microblaze by the open-source petalinux
distribution [11]. Figure 3 shows a simplified block diagram of the CPG coproces-
sor interfacing scheme to the microblaze-uclinux system. The CPG receives six
input data and it sends two output data through the microblaze Processor Local
Bus (PLB) to the application.

4 Implementation Results

The CPG digital architecture has been modeled using the Very High Speed
Integrated Circuits Hardware Description Language (VHDL). The FPGA-based
embedded system has been targeted to Xilinx FPGA devices. A 16-bit fixed
point precision, 6-bit for the integer part and 10-bit for the fractional part, has
been used for testing and validation purposes, but the model is parameterized
and the precision may be changed easily. The CPG module has been attached as
a slave coprocessor to the microblaze soft-processor using the PLB bus and a set
of wrapping libraries according to the Xilinx design flow for embedded systems.
The system has been synthesized using ISE Foundation and EDK tools from
Xilinx targeted to a Spartan-3E device.

The uclinux embedded operating system was ported to microblaze using the
petalinux distribution. Software drivers, wrappers and a simple application ex-
ample were developed to test the functionality of the CPG architecture using
the microblaze cross tool chain from petalinux. A Matlab implementation of the
fundamental Amari-Hopfield CPG using Simulink was written to compare the
hardware and software results.

4.1 Experimental Results

In order to test the FPGA-based embedded system, a C-based application was
written running on the microblaze-uclinux to set the values of the parameters in
the Amari-Hopfield digital hardware model and to capture the results for a given
period of time, and to send the results to a host computer through a serial con-
nection to visualize the waveforms. Figure 4 shows the obtained sinusoidal-like
waveforms for the FPGA implementation in the Spartan-3E starter kit prototyp-
ing board. The following parameter values for the Amari-Hopfield model were
used: Su = −0.3, Sv = 0.3, A = 1.5, B = 1.5, C = 1, D = 0. These values were
obtained from [12], where a genetic algorithm was used to tune the CPG to pro-
duce the rhythmic patterns. Figure 5 shows the attractor of the Amari-Hopfield
model in the u - v phase plane. For this implementation, a 2’s complement fixed-
point representation of 16 bits was used with 6 and 10 bits for the integer and
fractional part, respectively.
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4.2 FPGA Implementation

The whole system was synthesized to a Spartan-3E device using Xilinx ISE and
EDK tools and tested in the Spartan-3E starter kit development board. A sum-
mary of the FPGA resource utilization of the Amari-Hopfield digital architecture
is shown in table 1. For the 20-bit implementation the FPGA hardware utiliza-
tion is less than seven per cent of the total available resources in the FPGA.

Fig. 4. Rythmic patterns for the excitatory and inhibitory neurons, top and bottom
respectively, generated by the CPG FPGA-based embedded implementation

Fig. 5. Attractor of the Amari-Hopfield model in the u - v phase plane
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Table 1. Hardware resource utilization for the Amari-Hopfield digital architecture for
different precisions targeted to a Xilinx XC3S500e-5fg320 device

Resources 16-bit fixed point precision 20-bit fixed point precision

4-input LUTs 298 514
Flip-flops 188 272
Slices 232 347
Embedded multipliers 6 16
Maximum clock frequency 74 MHz 60 MHz

According to the reported results the CPG architecture could operate at a max-
imum clock frequency of 74 MHz for a 16-bit fixed point representation and 60
MHz for a 20-bit representation. The architecture was attached to the microblaze
and the whole system was tested using a 50 MHz clock frequency. The hardware
resource utilization for the complete system, including the microblaze processor
and the cores for memory controllers and peripherals, is around 70 percent (3400
slices out of 4656) of the available resources in the FPGA. Better results both
in performance and resource utilization might be obtained if most up to date
FPGAs are used, such as the Virtex4-FX family devices where a hard-embedded
PowerPC processor is available and more complex CPG architectures [1] could
be mapped to the dedicated coprocessor.

5 Concluding Remarks and Further Considerations

This paper has presented an implementation of the fundamental Amari-Hopfield
CPG in an FPGA-embedded system providing performance and flexibility to gen-
erate rhythmic patterns suitable for mobile robotic applications. A specialized dig-
ital architecture for the Amari-Hopfielfd model was developed and attached as a
co-processor to a microblaze embedded processor so as to provide an integrated
platform for developing robot control applications. The system can be improved
and extended in different ways. More complex topologies for CPG must be ana-
lyzed and generated in order to apply the system in applications involving a large
number of freedom degrees, i.e., a large number of oscillators such as those described
in [1]. In order to improve further the hardware resource utilization, a serial or bit-
stream pulse-mode implementation of CPG oscillators might be addressed since
these approaches have been proved to be resource saving in neural network hard-
ware implementations [6][13]. The microblaze-uclinux system opens the possibility
to explore dynamic reconfiguration in the FPGA so as to adapt the parameters and
topology of the CPG coprocessor according to different needs at runtime.
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Abstract. This paper presents a biologically inspired modular hard-
ware implementation of a cortical model of orientation selectivity of the
visual stimuli in the primary visual cortex targeted to a Field Program-
mable Gate Array (FPGA) device. The architecture mimics the func-
tionality and organization of neurons through spatial Gabor-like filter-
ing and the so-called cortical hypercolumnar organization. A systolic
array and a suitable image addressing scheme are used to partially over-
come the von Neumann bottleneck of monolithic memory organization in
conventional microprocessor-based system by processing small and local
amounts of sensory information (image tiles) in an incremental way. A
real-time FPGA implementation is presented for 8 different orientations
and aspects such as flexibility, scalability, performance and precision are
discussed to show the plausibility of implementing biologically-inspired
processing for early visual perception in digital devices.

1 Introduction

Biological studies indicate that neurons in the mammalian primary visual cor-
tex are selective along several visual stimulus features such as retinal position,
spatial frequency, orientation and speed. Neurons tuned to the same retinal po-
sition but different stimulus features are grouped into retinotopical arrays of
hypercolumns that provide relevant information for further neural mechanisms
in the visual pathways [1][2]. The orientation selectivity property is believed to
have an important role in the bottom-up mechanisms for visual perception, such
as motion estimation and selective visual attention [3]. Thus, its computational
relevance has lead to several software implementations to support visual percep-
tual tasks. Designing and engineering effective systems inspired by such biolog-
ical mechanisms to process in real-time in the perception-action loop through
software techniques on conventional computing systems is a difficult task. It is
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mostly due to the vast amounts of data and processing needed on the limited
time-multiplexed computational resources of microprocessor-based systems.

Analog Very Large Scale Integration (VLSI) implementations have been pro-
posed to alleviate the computational load by using specific datapaths. In this
context, neuromorphic engineering [4] has emerged as a research area for design-
ing systems that replicate the capabilities of biological systems by mimicking
both functional and structural characteristics of neural processing for perceptual
tasks through analog and asynchronous computations of electronic devices [5][6],
whereas digital hardware implementations appear as quite unable to handle such
processing for lack of density. However, devices such as FPGAs, and their as-
sociated methodologies and tools have achieved a level of maturity that allow
designing and implementing complex systems on a single chip with high compu-
tational density and performance by tailoring the underlying architecture to the
algorithmic nature [7]. Instead of temporally distributing computations across
time shared compute units using a monolithic and linear memory organization,
computations in FPGAs are distributed spatially across dedicated compute units
exploiting fine grain parallelism of the computation and distributed memory
blocks (spatial computing model). In spite of the ability of FPGAs to deal with
strong implementation and application constraints, a major current research do-
main is to find ways to map neural connectivity and hardware-demanding non-
linear functionality onto digital devices through architectures inspired by such
massively parallel processing for visual perception [8][9].

Unlike analog neuromorphic implementations of orientation selectivity [5][6],
a real-time FPGA-based architecture is presented in this paper. The architecture
relies on a set of processing elements organized on a 2-D systolic array providing
a high modularity in the sense that the coverage of orientations can be extended
by replicating the array for each additional orientation. The architecture consti-
tutes one of our first attempts to make real-time implementations of biologically
inspired vision models in fully flexible and functional systems. The rest of the
paper is organized as follows. Section 2 provides the biological and mathemat-
ical foundations of the Hubel and Wiesel orientation selectivity model in the
primary visual cortex. Section 3 describes the proposed architecture and gives
details of its hardware organization at different levels in analogy to the biological
model. Section 4 presents and discusses the experimental results of synthesis and
performance of the architecture targeted to an FPGA device.

2 Orientation Selectivity Model

Hubel and Wiesel suggested that neurons tuned to the same orientation and
retinal location are grouped together into what has been called a column [5][6]. In
their model, neighboring columns at the same retinal position but with different
preferred orientations are grouped into hypercolumns. Conceptually, the primary
visual cortex can be though as a two dimensional sheet of neurons where at
any point, all neurons are tuned to the same orientation and location [1][2].
Figure 1 (a) shows the hypercolumnar organization in the model where each
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Fig. 1. (a) Conceptual diagram of the hypercolumnar organization of neurons, and (b)
a computational model used to implement the functionality of orientation selectivity.
Each layer represents neurons tuned to the same orientation, adapted from [6].

block represents a neuron tuned to a specific orientation. The neuron response is
strongest when the visual stimulus is applied at a preferred retinal location and
with a preferred orientation. Figure 1 (b) shows a computational analogy used
to implement this model by means of multiple independent arrays of neurons
tuned at the same orientation as proposed in [6].

A functional approximation for a large number of neuron responses in the
primary visual cortex consists of a linear spatio-temporal filtering stage followed
by several nonlinear mechanisms. Particularly, the spatial filtering determines
the orientation selectivity and a set of spatial Gabor filters is commonly used to
mimic the response profile of neurons. A 2-D Gabor filter is an oriented complex
sinusoidal grating usually modulated by a 2-D Gaussian function [10]:

Gσ,φ,θ(x, y) =
1

2πσ
e

−(x2+y2)
2σ2 e2πiφ(x cos θ+y sin θ) (1)

The parameters φ, θ are real values that specify the frequency and orientation
of the span-limited sinusoidal grating, x and y are the spatial coordinates and
σ is the scale parameter of the Gaussian function. By changing these values,
the filters can be tuned to different orientations, bandwidth and spatial scales
of the visual stimuli. In some models, a phase parameter is used in the complex
exponential to control the type of stimulus, a bar or edge, that best excites the
filter [11]. Neurons display a full range of phases, although there is some evi-
dence that phases cluster around 0°, 90°, 180°and 270°[1][2]. The Gabor-filtered
outputs of a gray-level image f(x, y) are obtained by the convolution of the im-
age with the Gabor filter bank. The Gabor filter is a complex valued function
that can be decomposed in its real and imaginary parts. Given a neighborhood
window with size WxW and W = 2k+1, the discrete convolutions of f(x, y) with
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the real component, Rσ,φ,θ, of Gσ,φ,θ(x, y) (the convolution with the imaginary
component Iσ,φ,θ is computed in a similar way) is given by:

GR(x, y, σ, φ, θ) =
k∑

l=−k

k∑
m=−k

f(x+ l, y +m)Rσ,φ,θ(l,m) (2)

An image is filtered with a set of Gabor filters tuned to different orientation
and spatial frequencies that cover appropriately the spatial frequency domain.
The obtained results are feature fields or maps used for further processing in
different applications. In this work, only the real part of the discrete Gabor filters
is considered for the orientation selectivity [11][12], but the architecture can
be applied to compute the imaginary part or both. Particularly, a biologically-
inspired digital architecture for discrete Gabor-like filtering of gray-level images
in eight different orientations using 7x7 window masks is presented.

3 Biologically Inspired Digital Architecture

Since a fully parallel implementation over a complete image is not viable, despite
improvements in FPGA densities [13][14], the implementation aims at reducing
hardware resource utilization without compromising processing speed by using
systolic arrays of limited size to filter incrementally over input image tiles [15].
Figure 2 shows a block diagram of the proposed architecture that filters the input
image in different orientations. The input image is stored in an external memory
which is read in a column-based scheme and pixels are sent to all the Gabor
Window Processors (GWPs). The elemental processing unit is the GWP, which
is organized at different levels of interconnection and modularity. The memory
management unit uses efficiently the memory bandwidth by reusing data inside
the arrays, exploiting data parallelism, and reducing the input/output buses. A
control module is used to coordinate computations and the data exchange among
GWPs and, a temporal storage module to pack several results in one location
in the output memory. The architecture follows a very regular and modular
structure inspired by the organization of neurons in the orientation selectivity
model as described in the following subsections.

3.1 Gabor Window Processor

Each GWP computes the convolution of an image tile with the Gabor window
mask centered at a specific position in the input image. The block diagram of
the GWP and its analogy to orientation selectivity model are shown in figure 2
(right). The GWP has two internal registers to support computational and data
pipelines among neighboring GWPs. The computational pipeline computes a
partial product between a pixel and a Gabor coefficient on each clock cycle and
accumulates previous results. The data pipeline distributes the Gabor coeffi-
cients, the received coefficient is delayed one clock cycle and then transmitted
to the neighboring GWP in the array.
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Fig. 2. General organization of the multiple 2-D systolic arrays in the biological-
inspired hardware architecture and the Gabor Window Processor

3.2 1-D Systolic Array

In figure 3 (a), each block denoted by GWP represents an orientation-tuned
neuron located in the same column on the input image, the block labeled by DL
stands for a delay line. The 1-D data collector module collects results of GWPs
and sends them to the 2-D data collector. Data flows from top to bottom in the
array and the GWPs work progressively in a systolic pipeline. The current pixel
is broadcast to all GWPs and the coefficients are transmitted between adjacent
GWPs. A delay line, a serial-input serial-output shift register, is required in
the boundary of the GWPs array for window coefficient synchronization among
columns of GWPs when they are connected in a 2-D systolic array. The window
coefficients are temporally stored in the delay line, and then transmitted to
the next column of GWPs. The stage number in the delay line depends on the
number of rows processed in parallel by the architecture.

3.3 2-D Systolic Array

Figure 3 (b) shows a block diagram of the 2-D systolic organization of GWPs.
The array exploits the 2-D parallelism through the incremental computation
of neuron responses tuned to the same orientation as image tiles are extracted
from the input memory. The interconnection between two contiguous columns of
GWPs is straightforward and it can be considered a cascaded connection of 1-D
systolic arrays. In the 2-D array, data flows from top to bottom of a column, and
then left to right through columns. The 2-D data collector collects progressively
results from the 1-D systolic arrays and then sends the results to the temporal
storage module.
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Fig. 3. Biological analogy and organization of GWPs in the architecture, (a) 1-D sys-
tolic array of GWPs, (b) 2-D systolic array of GWPs, and (c) Multiple 2-D systolic
array for different orientations

3.4 Multiple 2-D Systolic Arrays

In order to filter the input image in different orientations, multiple 2-D systolic
arrays are replicated in the architecture as shown in figure 3 (c). Each 2-D array
receives the same pixels from the input image but works with different convolu-
tion coefficients tuned to a specific orientation. In this sense, the architecture is
flexible to include a wide rage of orientations to filter the input image by using as
many arrays as orientations. Also the number of GWPs in the 2-D systolic array
might be adjusted to different application constraints but a good compromise
between area and performance is to use the same number of GWPs as the size
of the convolution mask [14].

4 Experimental Results and Discussion

An architecture configuration to compute response in eight different orientations,
by 7x7 convolution masks, was used for simulation and validation purposes on
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Fig. 4. (a) An input image tile used in the simulation (left), the floating point repre-
sentation of the window coefficients (middle), and the corresponding fixed point repre-
sentation interpreted as signed integers (right). (b) Data and computational pipelines
for two 1-D systolic arrays associated to the positions in the input image enclosed by
solid and broken line rectangles.

8-bit gray level images. A 10-bit fixed point precision, with 9 bits for the frac-
tional part, was selected after some experimental tests on the coefficients numeric
range, but generics were used to cope with several precision choices.

To show the main data and computational pipelines inside the systolic arrays,
a timing diagram is presented for a limited number of clock cycles. For simplic-
ity, a small tile of an input image and a 7x7 window mask are considered in the
simulation. The gray-level pixels, the window coefficients, both in their floating
point and fixed point representation (values interpreted as signed integers) are
shown in figure 4 (a). Figure 4(b) shows internal computations of GWPs in the
1-D systolic arrays enclosed by solid and broken line rectangles. At the start
of the timing diagram, the array enclosed by the solid line rectangle is process-
ing the second column of its associated window mask, and the array in broken
line rectangle is processing the first column of the input image. Note that the
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Fig. 5. Results of the orientation selectivity response of the architecture for a gray-level
input image. (a) the input image, (b) 0°, (c) 45°, (d) 90°, (e) 135°, (f) the addition of
0°to 135°responses.

addressing scheme reads pixels in a column-based order with 13 pixels per col-
umn. Since a GWP processes only seven pixels of this column, an idle period of 6
clock cycles for each GWP is required. The window coefficients are transmitted
from the first array to the second one by the delay line with a delay of 6 clock
cycles as shown in figure 4(b). Note that the window coefficients are transmitted
from one GWP to the next GWP array on each clock cycle. A VHDL testbench
was written to test and validate the model with input images. Figure 5(a) is
a 8-bit gray level test image with a 512x512 resolution. Figures 5(b)-(e) show
the obtained responses for different orientations, 0°, 45°, 90°, and 135°, respec-
tively. Figure 5 (f) shows an image obtained by adding the responses from 0°to
135°. Though the tested architecture configuration can compute the responses
in eight different orientations from 0°to 315°, for simplicity only four orienta-
tion responses are shown. The scaling and frequency parameters to generate the
Gabor coefficients are 0.239 and 0.5, respectively.

The VHDL model was synthesized and implemented into a Virtex device us-
ing the Xilinx ISE 8.2i tool suite. Results are summarized in table I. Eight 2-D
systolic arrays of 7x7 to compute the response in eight orientations fitted in
an XCV3200E-6 device. The architecture compares favorably to other digital
architectures reported in the literature for image convolution [16]. Our imple-
mentation is able to handle medium and high resolution images with a limited
number of GWPs compared to the number of pixels in the image without sac-
rificing performance. According to the performance analysis presented in [13]
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Table 1. Post-place and route synthesis results for the proposed architecture targeted
to a XCV3200E-6 device

Resources number

4-input LUTs 49883
Flip-flops 16811
Slices 31563
Maximum clock frequency 40 MHz

and the reported maximum clock frequency, the processing time for a 512x512
gray-level image is around 15 milliseconds, i.e., around 66 images per second,
which fulfill the standard metric for real-time performance of 30 frames per sec-
ond. Note that the frequency is moderately low due to the high requirements of
interconnection resources for the design. A good comprise between performance
and hardware resource utilization is setting the size of the 2-D systolic array to
the same size as the window mask. Increasing the number of GWPs far beyond
does not provide substantially larger performance improvements [16].

5 Conclusion and Further Work

This paper has presented a biologically inspired digital architecture for an effi-
cient implementation of a cortical model of orientation selectivity. The experi-
mental evaluations have shown that a compact architecture allows the real-time
computation of different orientation responses over an input image suitable for
embedded processing with the additional benefits of flexibility and scalability
compared to analog implementations. These benefits allow to adapt the archi-
tecture to different application constraints: variable data precision, performance
and resource utilization tradeoff, and orientation coverage. The architecture can
be extended to other applications related to Gabor processing, such as image
analysis, feature extraction, texture segmentation and motion detection. Partic-
ularly, the architecture might be useful in a class of motion detection models
that arise from a spatio-temporal conceptualization of motion estimation [17]
where spatiotemporal energy filters are used to selectively respond to motion in
a particular orientation. To extract spatiotemporal energy, filters are chosen as
quadrature pairs and their outputs squared and summed. In the case of Gabor
filters, this can be done by using the real and imaginary parts of the same filter.
As the presented architecture can compute concurrently the quadrature outputs
of Gabor filters, it can be used as the main computational core of an embedded
digital system for motion perception.
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Abstract. The graphics processing unit has evolved through the years
into the powerful resource for general purpose computing. We present in
this article the implementation of Extended Kalman filter used for recur-
rent neural networks training, which most computational intensive tasks
are performed on the GPU. This approach achieves significant speedup
of neural network training process for larger networks.

1 Introduction

The graphics processing unit (GPU) was and still is used mainly for speedup
of graphical operations. It has recently evolved into the powerful resource for
general purpose computing.

Recurrent neural network learning is a very difficult numerical problem, which
approaches very poorly and slowly to satisfactory results when being solved with
the classic gradient optimization methods on longer input sequences. In this
paper we present the already studied [9,10] better alternative which is called
Extended Kalman filter (EKF) and how to make it faster using modern but
generally available graphics processing unit.

In the first section of this paper we explain the concept of Kalman filtering and
how to apply it to the task of neural network training. The remaining sections
describe in detail how to map the equations involved onto the graphics processing
unit. On the chosen problem we demonstrate two things. Firstly, the already
known fact that the EKF achieves better results than classical gradient descent
methods and secondly, more importantly, the speedup of our implementation on
the graphics processing unit as opposed to implementation on CPU.

2 Extended Kalman Filter

Kalman filter (which is the set of mathematical equations) is considered one of
the important discoveries in the control theory principles. E. Kalman’s paper [5]
was published in the year 1960. Its most immediate applications were in control
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of complex dynamic systems, such as manufacturing processes, aircrafts, ships
or spaceships (it was part of the Apollo onboard guidance system). However, the
Extended Kalman filter started to appear in the neural network training appli-
cations only relatively recently, which was caused by the progress of computer
systems development.

Original Kalman filter is targeted at the linear dynamic systems. However,
when the model is nonlinear, which is the case of neural networks, we have
to extend Kalman filter using linearization procedure. Resulting filter is then
called extended Kalman filter (EKF) [3]. Neural network is a nonlinear dynamic
system, that can by described by equations:

xk = xk−1 + qk−1 (1)
yk = g(xk,uk,vk−1) + rk (2)

The process equation expresses the state of neural network as a stationary
process corrupted by the process noise qk, where the state of the network x
consists of network weights. Measurement equation expresses the desired output
of the network as a nonlinear function g of the input vector uk, of the weight
vector xk and for recurrent networks also of the activations of recurrent neurons
from the previous step vk−1. This equation is augmented by a random measure-
ment noise rk. The covariance matrix of the noise rk is Rk = E

[
rkrT

k

]
and the

covariance of the noise qk is Qk = E
[
qkqT

k

]
.

The basic idea of the Extended Kalman filter lies in the linearization of the
measurement equation at each time step around the newest state estimate x̂k.
We use for this purpose just the first-order Taylor approximation of non-linear
equation, because of computational complexity.

We can express the neural network training as a problem of finding the state
estimate xk that minimizes the least-squares error, using all the previous mea-
surements. We can express the solution of this problem as:

Kk = PkHT
k [HkPkHT

k + Rk]−1 (3)
x̂k+1 = x̂k + Kk[yk − g(x̂k,uk,vk−1)] (4)
Pk+1 = Pk −KkHkPk + Qk (5)

where x̂ is a vector of all the weights, g(·) is a function returning a vector of actual
outputs, y is a vector of desired outputs, K is the so called Kalman gain matrix,
P is the error covariance matrix of the state and H is the measurement matrix
(Jacobian). Matrix H contains partial derivatives of ith output with respect to
jth weight. One can use for this purpose one of two main methods – Real-Time
Recurrent Learning (RTRL) or Backpropagation Through Time (BPTT), or its
truncated version BPTT(h) [8].

The RTRL is computationally intensive, therefore we will use the BPTT(h)
method according to the recommendation in [8]. With this method for appro-
priately chosen depth h we obtain derivatives that are close to those obtained
by the RTRL, and we significantly reduce the computational complexity.

At the beginning of the recursion (3–5) it is necessary to assign the initial
values of x̂0, P0, Q0 and R0. The initial values of weights should be set randomly
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e.g. from interval [−0.5, 0.5]. According to recommendations in [3,8] P0 should
be set in orders of magnitude 100 I–1000 I, where I is identity matrix. Q0 should
have values from 10−6 I to 0.1 I. Its nonzero value helps to override divergency [3].
For the parameter R0, values in orders of magnitude 10 I–100 I should be chosen.

3 Computational Complexity

In order to express the computational complexity of EKF and BPTT(h), let us
summarize the notation and dimensions of every matrix and vector:

ni Number of input neurons, i.e. number of inputs to the network
no Number of output neurons, i.e. number of outputs of the network
nh Number of hidden neurons
nx Number of weights in the network

x [nx×1] Vector of weights in the network
g(·) [no×1] Function returning vector of actual outputs
y [no×1] Vector of desired outputs

K [nx×no] Kalman gain matrix
P [nx×nx] Error covariance matrix
Q [nx×nx] Process noise covariance matrix
R [no×no] Measurement noise covariance matrix
H [no×nx] Measurement matrix (Jacobian)

Number of weights nx in the Elman’s architecture of recurrent neural network
can be expressed as (ni+1)nh+n2

h+(nh+1)no, where ones represent bias weights.
Using given notation, we can express the computational complexity of the EKF

(3–5) as O
([
non

2
x + n2

onx + n2
o + nonx + n2

x

]
+ n3

o + hnonx

)
. The first term

[non
2
x + n2

onx + n2
o + nonx + n2

x] comes from matrix multiplications and addi-
tions, the second term n3

o is the matrix inversion in (3) and the third term hnonx

represents the complexity of BPTT(h) used to compute measurement matrix H,
where h is the truncation depth. Typically h, no � nx, so the complexity of the
EKF is then O(non

2
x). As BPTT(h) alone has complexity O(hnonx), the speed

difference between EKF and BPTT(h) is significant for large nx.

4 Reducing Complexity Using GPU

In this paper we aim to reduce the impact of the most computationally intensive
tasks of the EKF by exploiting the parallel nature of the graphics processing unit.
As the number of parallel processors is fixed – concretely 128 in G8800 GTX –
this does not have the impact on asymptotical complexity of EKF. But any
constant factor speedup makes the EKF more useable and for smaller numbers
of nx can actually make it faster than BPTT(h).

For implementation we chose CUBLAS library readily available for nVidia
GPUs (as part of CUDA Toolkit[12]), because it provides basic linear algebra oper-
ations, especially matrix multiplication. This library is a significant step in general
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purpose computing on the GPU as one does not have to overcome steep learning
curve of detailed GPU functionality. As it turns out, the provided functionality of
CUBLAS library is all we need to speed up matrix equations (3–5).

The only thing that is not readily available is matrix inversion needed to
compute no×no matrix in (3). This is a symmetric positive definite matrix, that
is why we chose to use Cholesky factorization to compute its inverse. Cholesky
factorization on GPU has already been studied [4], but because it is usually
small matrix (no � nx) we can simply compute it on the CPU. This requires an
additional transfer of data between GPU and CPU which is a costly operation,
but we already have to transfer a much bigger measurement matrix and weight
vector, so this should not have a big impact.

Cholesky factorization of a symmetric positive definite matrix M is a lower
triangular matrix N for which holds NNT = M. Inverse of matrix M can then
be efficiently and numerically stable computed:

MM−1 = I (6)
NNTM−1 = I (7)

NTM−1 = X (8)
NX = I (9)

where I is an identity matrix and X is used for substitution. The inverse of
M is computed by first solving (9) for unknown X and then by solving (8) for
unknown M−1.

5 Implementation Details

This section describes in detail the implementation of EKF on GPU as well as
on CPU. In order to explain the meaning of auxiliary matrices A, B, C and Z
used in pseudocode we rewrite equation (3):

K = PHT
[
HPHT + R

]−1
= C

[
AHT + R

]−1
= CB−1 = CZ

The pseudocode of initialization of the EKF on GPU follows:

On CPU Initialize matrices P, R, Q, I
Note: we store only diagonal elements of R, Q and I

On CPU Fill vector x with uniformly random weights from [−0.5, 0.5]
Transfer P, R, Q, I and x from system memory to GPU

The pseudocode of one time step of the EKF on GPU follows. The mentioned
function names are those that were used from CUBLAS library.

On CPU Set weights to x and propagate network with actual input
On CPU Compute measurement matrix H using BPTT(h)
On CPU Compute yg = y − g(·)
Transfer H from system memory to GPU
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On GPU A = HP, P is symmetric – function cublasSsymm()
On GPU C = PHT – function cublasSgemm()
On GPU B = AHT – function cublasSgemm()
On GPU B = B + R – function cublasSaxpy()
Transfer B from GPU to system memory
On CPU Compute Cholesky factor of B

Note: it is stored in the lower triangular part of B
Transfer B and yg from system memory to GPU
On GPU Z = I – function cublasScopy()
On GPU BZ = Z – function cublasStrsm()

Note: solves Z in equation BZ = I
On GPU BTZ = Z – function cublasStrsm()

Note: Z now contains inverse of HPHT + R
On GPU K = CZ, Z is symmetric – function cublasSsymm()
On GPU x = Kyg + x – function cublasSgemv()
On GPU P = −KA + P – function cublasSgemm()
On GPU P = P + Q – function cublasSaxpy()
Transfer x from GPU to system memory

We used our own implementation of BPTT(h) and the pseudocode from [4]
to compute Cholesky factorization on CPU. Each variable that was transferred
to GPU used single precision floating point, which is the limitation of present
GPUs. We used double precision floating point for everything else.

The implementation on CPU was essentially the same. The only difference was
removal of transfers between CPU and GPU and the substitution of CUBLAS li-
brary functions by corresponding ATLAS library functions [11], which is straight-
forward as they both comply with Basic Linear Algebra Subprograms (BLAS)
standard [2]. When configured to support threading, ATLAS library automati-
cally takes advantage of multiple CPU cores to speed up its functions.

The hardware and software specifications used for all the tests:

– Intel Core2 Quad CPU Q6600 2.4 GHz – 4 cores
– nVidia GeForce 8800 GTX GPU – 128 parallel processors
– Ubuntu 7.10
– gcc 4.2.1

compile flags: -fomit-frame-pointer -mfpmath=sse -mmmx -msse
-msse2 -msse3 -O3

– ATLAS 3.8.1
configured with -b 32 -t 4 -D c -DPentiumCPS=2400

– nVidia Toolkit 1.1
– nVidia Graphics Driver 169.12

ATLAS library was configured to support threading on CPU. The number of
maximum threads was chosen to be 4 which is the number of cores on our test
machine.
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6 Experiment Description

The main goal of the experiment was to compare the performance of various
implementations of the EKF and for comparison also of the BPTT(h) in a task
typically used for training of recurrent neural networks.

We trained the recurrent neural network on the next symbol prediction. The
predicted sequence1 is based on real data obtained by quantization of activity
changes of laser in chaotic regime. The bounds for quantization were chosen
for positive small and big activity change and for negative small and big activ-
ity change. One symbol is assigned for each of these categories. The sequence
therefore consists of four distinct symbols. This sequence contains relatively pre-
dictable subsequences followed by much less predictable events. The sequence
length is 10000 symbols, we can therefore predict 9999 symbols.

The next symbol prediction procedure in general is the following: we present
in every time step the first symbol in order, and the desired network’s output is
the next symbol in sequence order. The predictive performance was evaluated by
means of a normalized negative log-likelihood (NNL), calculated over symbolic
sequence from time step t = 1 to T [1]:

NNL = − 1
T

T∑
t=1

log|A| p(t)(s(t)) (10)

where the base of the logarithm |A| is the number of symbols in the alphabet
A and p(t)(s(t)) is the probability of predicting symbol s(t) in the time step t.
If NNL = 0, then the network predicts next symbol with 100% accuracy, while
NNL ≥ 1 corresponds to a very inaccurate prediction (random guessing).

We chose the following initial values of parameters for the EKF: covariance
matrix P0 = 1000 I, measurement noise covariance matrix R0 = 100 I and
process noise covariance matrix Q0 = 0.0001 I. We have not altered the covari-
ance matrices R and Q during the training process. These values were inspired
by [1] and were chosen also because they correspond with recommendations for
EKF.

For the BPTT(h) method, we chose the learning parameter α = 0.2 and
parameter h = 10. The same value of parameter h was used also for the EKF.
This choice is in accordance with the recommendations in [7].

We have used the training and testing procedure for the next symbol from
this sequence prediction from [1]. We do not update the weights for the first 50
steps, in order to lessen the impact of initial recurrent neurons output values.
The training then takes place during next 7949 symbols. The remaining 2000
symbols form the test data set, through which we compute the NNL. That
terminates one cycle. A few cycles are usually sufficient for the EKF, much more
for the BPTT(h) to converge to its best result (for details see [9,10]). However,
we chose 20 training cycles in order to compare the precision of various EKF
implementations in longer run.
1 This sequence is available at http://www2.fiit.stuba.sk/∼cernans/main/
download.html

http://www2.fiit.stuba.sk/~cernans/main/
download.html
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We have used one-hot encoding for inputs as well as for outputs, so we have
4 inputs as well as outputs – one input/output for each of 4 symbols. With this
setup the prediction probability of the desired symbol is determined as the value
of that element of the output vector which is reserved for given symbol, after
normalizing the output vector (i.e. the sum of its elements equals 1). We chose
the Elman’s network architecture – i.e. the network with one hidden layer, which
is recurrent.

7 Results

We conducted the described experiment with different implementations of EKF
and with BPTT(h). We will use following abbreviations of corresponding imple-
mentations in this section:

EKF GPU EKF implemented using CUBLAS library
EKF ATLASf EKF implemented using ATLAS library with single precision

functions and utilizing single thread
EKF ATLASft EKF implemented using ATLAS library with single precision

functions and utilizing four threads
EKF ATLASd EKF implemented using ATLAS library with double precision

functions and utilizing single thread
EKF ATLASdt EKF implemented using ATLAS library with double precision

functions and utilizing four threads
BPTT(h) Truncated BPTT with double precision – h is truncation depth

Table 1. Elapsed time in seconds for 10 cycles of training and testing of recurrent
neural network with various numbers of hidden neurons and thus weights

hidden neurons 4 8 12 16 30 60
number of weights 56 140 256 404 1174 4144

EKF GPU 67s 108s 179s 279s 951s 4752s
EKF ATLASf 35s 96s 187s 325s 2218s 19858s
EKF ATLASft 35s 103s 199s 332s 1483s 13614s
EKF ATLASd 35s 96s 192s 340s 2005s 28677s
EKF ATLASdt 40s 107s 197s 354s 2026s 23315s

BPTT(h) 31s 76s 136s 214s 621s 2184s

Firstly, we present the results for the elapsed time during training of neural
networks with various numbers of hidden neurons by each method in absolute
numbers in Table 1, as well as relative to EKF GPU in Fig. 1. From these results
we can see that the implementation of EKF on GPU provides significant speedup
for larger networks, but is not beneficial for smaller networks. This stems from
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Fig. 1. Graphical representation of Tab. 1 – the speed comparison of EKF GPU relative
to other implementations. J is number of hidden neurons and w the number of weights
in recurrent neural network. The speedup is significant for networks with many weights
even when compared to the threaded CPU version with single floating point precision.
On the other hand it is not beneficial for small networks. Gradient descent method
BPTT(h) is still faster but converges slowly and achieves worse results [9,10].

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
or

m
al

iz
ed

 n
eg

at
iv

e 
lo

g-
lik

el
ih

oo
d

EKF GPU
EKF ATLASf
EKF ATLASd
BPTT(h)
EKF GPU 30
EKF GPU 60

Fig. 2. The NNL dependence on the training cycles for various implementations and
methods used for recurrent network with 16 hidden neurons. The exception is EKF
GPU 30 and EKF GPU 60 which is a result for 30 and 60 hidden neurons respectively.
The results show that (a) EKF is superior to gradient descent method BPTT(h) (for
details see [9,10]); (b) the various EKF implementations achieve comparable results
(see Fig. 3); (c) the increasing of hidden neurons is beneficial for this problem and was
made more feasible by achieved speedup.
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the fact, that the overhead of copying data from system memory to GPU and of
parallelization alone is not worth when there is not much to compute.

The most “fair” comparison of EKF GPU is with EKF ATLASft, because both
utilize parallelization and work with single precision floating point arithmetic.
EKF GPU achieves nearly 3 times speedup for largest network when compared
to EKF ATLASft. The most significant acceleration by using computation with
EKF GPU – 6 times on largest network – is achieved when compared to EKF
ATLASd, which is probably most similar to existing implementations of EKF.

In Fig. 1 we can further see that method BPTT(h) is consistently the fastest,
whereas EKF ATLASd is generally the slowest one. The obvious question is if
the achieved results are on the one hand worth the speed degradation when
compared with BPTT(h) and on the other hand worth the significant speedup
when compared with potentially more precise EKF ATLASd. The answer is in
Fig. 2 which for each method shows the average results when used for training 10
randomly initialized networks. In this graph we can see the superior convergence
and achieved result of EKF when compared with BPTT(h) (see also [9,10]). We
can also see the comparable results of various implementations of EKF, which is
more obvious from Fig. 3. It means the used floating point arithmetic does not
play a significant role in EKF performance in this experiment.

The achieved speedup of EKF GPU made it also more feasible to conduct
thorough experiments with larger networks, as seen in Fig. 2. This also justifies
the increasing of number of hidden neurons for this problem, as the best achieved
result is by networks with 60 hidden neurons (NNL=0.1156 in training cycle 4).

8 Conclusion

In this paper we have shown that the implementation of the most computational
intensive tasks in the Extended Kalman filter using the CUBLAS library for
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nVidia graphics processing units can significantly speed up the recurrent neural
network training process. What is important, the speedup was achieved only
by means of available library functions, one does not have to overcome steep
learning curve of GPU architecture and its efficient parallel programming.

The drawback in current GPUs is the lack of double precision floating point
arithmetic. This affects the numerical stability as well as overall achieved re-
sult. In our experiments we experienced the numerical stability problem when
computing Cholesky factorization of matrix which became non positive defi-
nite. This was remedied by restarting the training process with different initial
weights. Since the problem usually arose in the early training cycles, and the
training is fast, the restarting did not cause significant delays.

The reduced precision was not significant problem in our experiments. How-
ever, the recommended practice for the time being would be to tune the training
parameters using EKF on GPU and to use CPU only version with double pre-
cision for final experiments.

The presented method can be further enhanced by implementing more parts of
algorithm on the GPU and reduce thus the need to copy data between CPU and
GPU which is a costly operation. This will be the topic of our further research,
namely implementing Cholesky factorization [4], neural network propagation [6]
and BPTT(h) on graphic processing units.
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Abstract. This paper describes a VLSI implementation of the InfoMax algo-
rithm for Independent Component Analysis in mixed-signal CMOS. Our design
uses on-chip calibration techniques and local adaptation to compensate for the ef-
fect of device mismatch in the arithmetic modules and analog memory cells. We
use our design to perform two-input blind source-separation on mixtures of audio
signals, and on mixtures of EEG signals. Our hardware version of the algorithm
successfully separates the signals with a resolution within less than 10% of a soft-
ware implementation of the algorithm. The die area of the circuit is 0.016mm2

and its power consumption is 15μW in a 0.35μm CMOS process.

1 Introduction

Independent Component Analysis (ICA) [1] is a signal processing technique used to
recover the original sources from unknown linear combinations of independent signals
captured by spatially-distributed sensors. ICA makes only weak assumptions about the
nature of the sources, namely that the signals are statistically independent and that at
most one of them exhibits a Gaussian distribution. This allows ICA algorithms to adapt
without an external reference, performing blind source-separation in applications such
as speech recognition, face classification, and data communications [2, 3].

Despite the advantages described above, most algorithms for ICA pose computa-
tional requirements that make them unsuitable for portable, low-power applications.
Low-power embedded processors are unable to provide the throughput required for
computation and adaptation, while high-performance digital signal-processors (DSPs)
are too large and power-hungry. Even custom-VLSI digital implementations can be un-
suited to ultra low-power applications, mainly due to the size and power requirements
of digital multipliers. For problems that require only moderate arithmetic resolution,
analog and mixed-signal circuits offer an attractive tradeoff between performance, die
area and power dissipation. Unfortunately, large-scale analog implementations of sig-
nal processing algorithms are extremely difficult to design due to limitations such as
device mismatch, charge leakage, charge injection, signal offsets, and noise. Often the
design techniques used to overcome these problems significantly increase circuit size
and power consumption, reducing the advantages that make analog circuits attractive in
the first place.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 208–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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This paper describes a novel approach to the implementation of adaptive signal
processing algorithms in analog and mixed-signal VLSI. We take advantage of the
adaptive nature of the algorithm to intrinsically compensate for signal offsets and gain
mismatch with negligible impact on die area and power consumption. We also selec-
tively use on-chip calibration techniques to compensate for learning-rate mismatch in
the analog memory cells used to store the adaptive coefficients. We illustrate our tech-
niques on the implementation of the InfoMax [4, 5] algorithm for ICA. We describe
the computational primitives used by the algorithm and their hardware implementation
and test them using a circuit emulator that uses experimental circuit data to evaluate the
performance of the implementation on audio and biomedical Electroencephalography
(EEG) signals. Our results show that our design is able to blindly retrieve the original
sources from the linear mixtures with a resolution within less than 10% of a software
implementation of InfoMax. A 2-input circuit dissipates less than 15μW with a settling
time of 8μs, a die area of 0.016mm2 in a 0.35μm CMOS process. We obtain similar
performance from 4- and 6-input versions of the network.

2 Independent Component Analysis and InfoMax

Independent Component Analysis (ICA) is a signal processing technique used to sepa-
rate linear mixtures of signals received from spatially-distributed sensors in statistically-
independent components, without using an external reference. ICA makes only weak
assumptions about the statistical properties of the original components and applies a
linear transformation on the available mixtures, adaptively updating its coefficients to
minimize the statistical dependence between the outputs.

The convenient properties of ICA make this technique suitable for performing blind-
source separation in a relatively simple neural network. There are several algorithms
for ICA, but one of the most widely used is the InfoMax [4, 5], which separates the
sources by minimizing the mutual information between the network outputs. Fig. 1
shows the typical structure of a neural network used to implement InfoMax. Like all

Fig. 1. ICA network with Infomax
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ICA algorithms, InfoMax computes the output vector u(k) as the product of the n-input
vector x(k) = [x1(k) . . . xn(k)]T and a weight matrix W(k):

u(k) = x(k)TW(k) (1)

where k is the time step. The algorithm then applies a nonlinear learning rule to update
the coefficients of W. InfoMax maximizes the entropy of the output [4], using the
learning rule W(k + 1) = W(k) + μΔW(k), where μ is the learning rate and

ΔW(k) = (I− ϕ(u(k))uT)W(k) (2)

is the weight increment at time k, where I is the identity matrix, ϕ(u) = ∂g(u)
∂u and g(·)

is an invertible nonlinear function [6].
Both the learning rate and the function g(·) are parameters chosen by the designer,

and affect the dynamic and stationary behavior of the algorithm. Some typical non-
linear functions are shown in [6], and one of the most widely used is g(u) = tanh(u)⇒
ϕ(u) = 2tanh(u), which has the advantage of being easily implemented in analog
VLSI.

The original version of InfoMax published by Bell and Sejnowski [6] operates on
super-Gaussian sources. Later, Lee, Girolami, and Sejnowski [5] generalized the algo-
rithm to also work on sub-Gaussian signals:

ΔW(k) = (I−Ktanh(u)uT − uuT )W(k) (3)

where K = 1 and K = −1 for super-Gaussian and sub-Gaussian sources, respectively.
In this paper, we implement this extended version of the algorithm, because of its wider
applicability.

3 Mixed-Signal VLSI Implementation of InfoMax

In this section, we describe the circuits used for the forward computation and adaptation
phases, as required by the algorithm.

3.1 Multipliers

The main limitations of digital hardware implementations of signal processing algo-
rithms are the large die area and power dissipation required by multipliers. In order to
achieve low power and area, we use analog multipliers to perform the linear transfor-
mation on the inputs shown in Eqn. 1. The current outputs of the multipliers are simply
summed across common wires to form each neuron’s output.

A systems analysis of similar adaptive filters in analog VLSI [7] shows that the
reconstruction error is sensitive to the multiplier linearity with respect to the synaptic
input x, but relatively robust to their linearity of the weight w. Consequently, we use
Gilbert-style multipliers with differential current inputs for x and a differential voltage
representation forw. We use long transistors and above-threshold operation (1μA-input
range for each multiplier) to maximize the linearity of x, but favor a larger range in w
to allow space for intrinsic compensation of weight linearity and offsets. Fig. 2 shows
the transfer function of eight different multipliers on a single chip.
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(a) Output versus input value. (b) Output versus weight value.

Fig. 2. Multiplier transfer functions

3.2 Weight Storage and Updates

Using analog multipliers in the forward path requires that we provide on-chip analog
weight storage. Because the performance of the learning algorithm depends directly
on the accuracy of the stored weights and update rules, conventional VLSI capacitors
are inadequate: Charge leakage and charge injection limit weight resolution, particu-
larly when used with digital pulse-based updates which provide otherwise accurate and
compact learning rules [8].

We use synapse transistors [9] to store and update our analog weights. These de-
vices use charge on a floating gate to provide compact and accurate nonvolatile analog
storage. Fowler-Nordheim tunneling adds charge to the floating gate and hot-electron
injection removes charge. The dynamics of tunneling and injection are exponential on
the control voltages. Therefore, we use a pulse-based approach [9] to provide lin-
ear weight updates as the basis to implement the learning rule depicted in Eqn. 3.
Fig. 3(a) shows our memory cell. Negative feedback around a small operational ampli-
fier pins the floating-gate FG to a fixed voltage. We apply digital pulses of fixed width to
the control terminals Pinc and Pdec, which add or remove fixed amounts of charge to
the floating gate, updating the output voltage Vout in constant increments. As a result,
the weight updates are linearly dependent on the density of the update pulses. Previous
publications [9] describe the operation of the memory cell in detail.

(a) Memory cell with on-chip
calibration.

(b) Memory updates
before calibration.

(c) Memory updates af-
ter calibration.

Fig. 3. Pulse-density modulated memory cell with on-chip calibration
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(a) Tanh circuit. (b) Conversion to differential current.

Fig. 4. Hyperbolic tangent implementation

Fig. 3(b) shows experimental data depicting the magnitude of the voltage updates
for 8 different cells on a single chip (in a 0.35μm process) as a function of the den-
sity of positive and negative update pulses. The cell achieves linear updates, but device
mismatch results in asymmetrical and nonuniform updates across multiple cell. This
translates into variations in the learning rates of different synapses, which affect the
convergence of the InfoMax algorithm. We solve this problem by electronically cal-
ibrating each memory cell, using the boxed circuits in Fig. 3(a). Fig. 3(c) shows the
transfer functions of the same 8 memory cells after calibration. The learning rates are
now linear, symmetric within a single cell and uniform across cells to within a resolu-
tion of 12 bits.

3.3 Learning Rule

The learning rule in Eqn. 3 requires the implementation of a hyperbolic tangent function
at the output of each neuron. Fig. 4(a) shows a circuit that computes the tanh of a
differential current. The circuit outputs a single-ended voltage, which is converted into
differential current using the operational transconductance amplifier shown in Fig. 4(b).

To implement the InfoMax learning rule, we convert the differential analog-current
signals into asynchronous digital pulse signals, using pulse-density modulators (off-
chip in our design) [9]. We compute the products and sums between pulse trains using
simple logical operations (AND and OR gates), effectively reducing the weight update
to a correlational learning rule. As long as the pulses are asynchronous and sparse, this
technique can efficiently trade off time for die area, and implement the learning rule
with an equivalent resolution up to 8 bits [9] in each synapse.

3.4 Effects of Device Mismatch

The local calibration technique described in Section 3.3 successfully compensates for
the effects of device mismatch on the learning rules and weight resolution. However,
the analog multipliers used in the forward path are also sensitive to mismatch, resulting
in gain variations, offsets, and nonlinear behavior.
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(a) Reconstruction error versus multiplier
offset.

(b) Reconstruction error versus multiplier
gain spread.

Fig. 5. Impact of device mismatch on the performance of InfoMax

In previous work [7] we have shown a detailed analysis of the effects of mismatch
on the performance of linear filters with the LMS learning rule. We have demonstrated
that combining local adaptation with simple design techniques and on-chip calibration,
it is possible to implement signal-processing systems that adapt with resolutions of up
to 10 bits in the presence of device mismatch.

Unfortunately, the more complicated learning rules of Infomax and its intrinsic non-
linear dynamics make it very difficult to formally analyze the effects of device mis-
match. Instead, we performed a set of simulations to assess the expected impact of
mismatch on the performance of the algorithm.

First, we analyzed the sensitivity of the algorithm to multiplier offsets in the external
inputs and weights. We simulated the network with offsets up to 10% of the dynamic
range of each multiplier. After each weight update, we stopped adaptation, run the entire
signal through the network, and computed the reconstruction error as ratio between the
Root-Mean Square (RMS) value of the difference between the original source and the
network output, and the RMS value of the output. Fig. 5(a) shows that the performance
of InfoMax is robust against input offsets. Indeed, fixed input offsets introduced by
device mismatch add a nonzero mean to the input, which InfoMax can compensate
through adaptation. Fig. 5(a) also shows that the reconstruction error increases linearly
with weight offsets. This is mainly because the limited linearity of the multipliers with
respect to the weights (Fig. 2(b)) means that small weight offsets can push the target
values out of the linear range, thus degrading the quality of the reconstructed signals.

Next, we randomly varied between 1.0 and 1.5 the gains of the multipliers within the
network. We define the gain spread as the ratio between the maximum and minimum
multiplier gain. Fig. 5 shows that the reconstruction error increases linearly with the
multiplier gain. It is possible to reduce the error by reducing the learning rate as the
gain spread increases, at the cost of increased convergence time. This solution has a
weak impact in the overall performance of the algorithm, because the multipliers do not
exhibit a large gain spread (Fig. 2), so the reconstruction error is dominated by weight
offsets. Our experiments also show that the algorithm is sensitive to the linearity of the
multipliers, therefore their dynamic range must be carefully chosen to operate in the
linear range.
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(a) Mixed signals (b) Separated signals.

Fig. 6. Joint PDF of mixed audio signals before and after separation

(a) Software implementation. (b) Hardware implementation.

Fig. 7. Evolution of reconstruction error for audio signals

4 Experimental Results

We designed and fabricated arithmetic circuits for the building blocks described in the
previous section using a 0.35μm CMOS process, including analog memory cells, mul-
tipliers, and weight-update rules for InfoMax. Spice simulations show that a 2-input
circuit dissipates less than 15μW with a settling time of 8μs. The die area of the circuit
is 0.016mm2 in a 0.35μm CMOS process.

We characterized these circuits in the lab and built a software emulator that allows
us to test the static performance of the network with less than 0.5% error [10], sim-
ulating the pulse-density modulators in software. Using the emulator, we performed
blind-source separation with the network for up to 6 inputs, both for real audio and
electroencephalogram (EEG) signals. In this section, we present the results obtained
for a 2-input version of the network. We obtain similar performance results for more
inputs, though it becomes necessary to reduce the learning rate to compensate for the
larger spread in multiplier gains.

We mixed two independent audio signals and fed them to the 2-input InfoMax net-
work. We used the techniques applied in the EEGLAB toolbox [11] to determine the
sub- or super-gaussianity of the signals and choose the appropriate value ofK in Eqn . 3.
Fig. 6 depicts the joint probability density function (PDF) of the signals before and
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(a) Mixed signals (b) Separated signals.

Fig. 8. Joint PDF of measured EEG signals before and after separation

(a) Software implementation. (b) Hardware implementation.

Fig. 9. Evolution of reconstruction error for EEG signals

after separation, showing that the hardware network successfully removes the statistical
dependencies found in the mixtures.

Fig. 7 compares the reconstruction performance of our hardware network to that of
a software implementation of InfoMax. Fig. 7(a) shows the reconstruction error of the
software implementation of the algorithm, and Fig. 7(b) shows the performance of our
hardware implementation, as a function of the original signal range. The hardware error
settles at 9%–12% above the residual error of the software version. This difference is
due mainly to weight offsets and the nonlinearity of the multipliers in the forward path.

We repeated the above experiment, now using experimental EEG data. Because we
only had access to the measured mixtures and not the original sources, we used the
results of the Matlab Toolbox EEGLAB as a reference in our experiments, limiting the
mixtures to 2 EEG signals. Fig. 8 depicts the joint PDF of the signals before and after
separation, demonstrating that the circuit outputs independent components. Using the
EEGLAB software to evaluate the quality of the reconstruction of the original signals,
Fig. 9 shows that the hardware network settles at a reconstruction error of 10% above the
results of software separation, which is consistent with the results achieved with audio
signals. Again, the reconstruction performance is limited by the linearity of the forward-
path multipliers and the weight offsets. This situation imposes a tradeoff between the
dynamic range of inputs and weights: If we restrict the input dynamic range of the
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(a) EEGLAB. (b) Hardware.

(c) EEGLAB. (d) Hardware.

Fig. 10. EEG signal separated by EEGLAB and hardware InfoMax

multipliers to improve their linearity, the weights converge to larger values, degrading
the results.

Fig. 10 compares the same EEG signal reconstructed by EEGLAB (10(a) and 10(c))
and our circuit (10(b) and 10(d)). Despite the 10% reconstruction difference, both sig-
nals are visually similar, suggesting that the hardware results could be suitable for med-
ical analysis and diagnostics.

5 Conclusions

We presented a mixed-signal VLSI network for ICA using the InfoMax algorithm. We
designed and tested hardware primitives to implement the arithmetic operations, weight
storage and learning rules required by the algorithm. We analyzed the impact of device
mismatch on the performance of the algorithm, and applied a combination of design
criteria, closed-loop operation and on-chip calibration techniques to compensate for
these effects. Using a software emulator based on experimental data with device mis-
match, we tested the performance of our circuit performing blind source separation.
On both audio and EEG signals, the circuit reconstructs the original sources with an
RMS error 10% above that of a software implementation of the algorithm. After cal-
ibration and compensation, the main limitations are the weight offsets and the linear-
ity of the multipliers used in the forward path, which restrict the dynamic range of
the inputs and weights. We are currently working on a more robust implementation
based on adjustable-gain multipliers to extend their linear range, as well as to test other
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learning rules used to implement ICA. We are also developing an FPGA-based hard-
ware accelerator of the circuit emulator, which will allow us to perform more extensive
tests before circuit fabrication.
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Abstract. A model of topographic map development is presented which
combines both weight plasticity and the formation and elimination of
synapses as well as both activity-dependent and -independent processes.
We statistically address the question of whether an activity-dependent
process can refine a mapping created by an activity-independent process.
A new method of evaluating the quality of topographic projections is
presented which allows independent consideration of the development of
a projection’s preferred locations and variance. Synapse formation and
elimination embed in the network topology changes in the weight dis-
tributions of synapses due to the activity-dependent learning rule used
(spike-timing-dependent plasticity). In this model, variance of a projec-
tion can be reduced by an activity dependent mechanism with or without
spatially correlated inputs, but the accuracy of preferred locations will
not necessarily improve when synapses are formed based on distributions
with on-average perfect topography.

1 Introduction

The development of topographic mappings in the connections between brain areas
is a subject that continues to occupy neuroscientists. There have been a number
of investigations of the development of maps through networks with fixed connec-
tivity and changes to synaptic weights [1,2,3,4,5]. Other models have considered
the formation and elimination of synapses with fixed weight [6]. Indeed a mathe-
matical equivalence between such models has been demonstrated for certain con-
ditions [7]. There have been few attempts to include both forms of plasticity in a
model (though see [8,9]) however since both forms of plasticity are known to exist,
we have created a model of topographic map development which combines both
forms of plasticity and we explore some of the consequences of this model. This
work is part of a project to implement synaptic rewiring in neuromorphic VLSI
[10], however the results presented here are purely computational.

Theories of topographic map formation can be divided by the extent to which
activity-dependent processes, based on Hebbian reinforcement of the correlated
activity of neighbouring cells, are deemed responsible for the formation of topog-
raphy. Some assume that activity-independent processes, based on chemoaffinity
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[11] provide an approximate mapping, which is then refined [12]. Others [5] show
how activity-independent processes may fully determine the basic topography,
thus relegating the role of activity-dependent processes to the formation of “func-
tional architecture” e.g. oculardominance stripes etc. [13]. Our model is in the
latter of these categories, assuming that synapses are placed with on-average
perfect topography by an activity-independent process. Miller [7] gives evidence
that the decision whether newly sprouted synapses are stabilised or retracted
may be guided by changes in their strengths; this is a basis for our model.

2 Model

This generalised model of map formation could equally apply to retino-tectal,
retino-geniculate or geniculo-cortical projections. There are 2 layers (i.e. 2D
spaces on which neurons are located), the input layer and the network layer.
Each location in one layer has a corresponding “ideal” location in the other,
such that one layer maps smoothly and completely to the other. For simplicity
neural areas are square grids of neurons and the 2 layers are the same size (16 x
16 in the simulations presented here). We have worked with small maps due to
computational constraints; this has necessitated a rigorous statistical approach.
Periodic boundaries are imposed to avoid edge artefacts.

Each cell in the network layer can receive a maximum number of afferent
synapses (32 in our simulations). Whilst we acknowledge arguments for the util-
ity of inhibitory lateral connections in building functional architecture [8] we
simplified our model using the finding [4] that a topographic projection could
form in the absence of long-range lateral inhibition. Thus, two excitatory projec-
tions are used, a feed-forward and a lateral projection; these projections compete
for the synaptic capacity of the network neurons. We assume that an unspecified
activity-independent process is capable of guiding the formation of new synapses
so that they are distributed around their ideal locations. We assume a Gaussian
distribution, since a process which is initially directed towards a target site and
then randomly branches on its way would yield a Gaussian distribution of ter-
minations around the target site. Our model does not specify the underlying
mechanisms that cause an axon to be guided towards an ideal location. Thus it
is not fundamentally incompatible with lesion studies which show shifts or com-
pression of maps, but rather, to achieve such reorganisation some mechanism for
specifying and changing ideal locations would need to be added.

To implement the Gaussian distributions, where a network cell has less than
its maximum number of synapses, the remaining slots are considered “potential
synapses”. At a fixed “rewiring” rate a synapse from the neurons of the network
layer is randomly chosen. If it is a potential synapse a possible pre-synaptic cell
is randomly selected and synapse formation occurs when:

r < pform.e
− δ2

2σform
2 (1)

where r is a random number uniformly distributed in the range (0, 1), pform is
the peak formation probability, δ is the distance of the possible pre-synaptic cell
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from the ideal location of the post-synaptic cell and σform
2 is the variance of the

connection field. In other words, a synapse is formed when a uniform random
number falls within the area defined by a Gaussian function of distance, scaled
according to the peak probability of synapse formation, (which occurs at δ = 0).
This is essentially a rejection sampling process.

Lateral connections are formed by the same means as feed-forward connections
though σform is different for each projection and pform is set correspondingly to
allow the same overall probability of formation for each projection. In the absence
of a general rule for the relative numbers of feed-forward vs lateral connections
formed, starting with equal numbers of each is a good basis for observing the
relative development of these projections; σform−feedforward is given a larger
value than σform−lateral, in line with generic parameters given in [8].

If the selected synapse already exists it is considered for elimination. In general
we propose that the probability of elimination should be some monotonically
decreasing function of weight. Due to the nature of the learning rule we have
chosen (STDP; see below in this section), which tends to deliver a bimodal
weight distribution, we have simplified probability of elimination to one of 2
values with a higher value for synapses with weights below a certain threshold
(pelim−dep) and vice versa (pelim−pot). Data is scarce on appropriate values for
these probabilities, however dendritic spines have been imaged extending and
retracting over periods of hours compared with others stable over a month or
more [14]. We have used much higher rates so that synapses have several chances
to rewire during the short periods for which it was tractable to run simulations,
while maintaining a large difference between these probabilities (in fact we used
a factor of 180 representing the difference between 4 hours and 1 month).

The rest of our model is strongly based on [4]. We use integrate and fire
neurons, where the membrane potential Vmem is described by:

τmem
δVmem

δt
= Vrest − Vmem + gex(t)(Eex − Vmem) (2)

where Eex is the excitatory reversal potential, Vrest is the resting potential
and τmem is the membrane time constant. Upon reaching a threshold Vthr, a
spike occurs and Vmem is reset to Vrest. A presynaptic spike at time 0 causes a
synaptic conductance gex(t) = ge

−t
τex (where τex is the synaptic time constant);

this is cumulative for all presynaptic spikes. Spike-Timing-Dependent Plastic-
ity (STDP) is known to occur in biology at least in vitro, and has been used
recently to explain map reorganisation in vivo [15]. STDP is implemented such
that a presynaptic spike at time tpre and a post-synaptic spike at time tpost

modify the corresponding synaptic conductance by g → g + gmaxF (Δt), where
Δt = tpre − tpost and:

F (Δt) =

{
A+.e

( Δt
τ+

)
, ifΔt < 0

−A−.e
(−Δt

τ− )
, ifΔt ≥ 0

}
(3)
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where A+/− are magnitudes and τ+/− are time constants for potentiation and
depression respectively. This is cumulative for all pre- and post-synaptic spike
pairs. g is bounded in the range 0 ≤ g ≤ gmax.

Parameters were set starting from parameters given in [4]. A+ was increased
20-fold as a concession to limited computational resources for simulations (this
should not qualitatively change the model since many plasticity events are still
needed to potentiate a depressed synapse). Then key parameters were changed;
namely gmax (the peak synaptic conductivity), τ−/τ+ (the ratio of time con-
stants for depression and potentiation) and B (the ratio of potentiation to de-
pression, i.e. A+/A−) were changed to maintain key conditions, being: the total
weight should be approximately 50% of the maximum possible; the average net-
work neuron firing rate should approximately match the average input firing
rate; and the total weight of lateral synapses should roughly match the weight
of feed-forward ones. In the interests of simplicity we did not allow for different
values of B for different projections feedforward vs recurrent). An unjustified
simplification is that new synapses start strong and then get weakened; the op-
posite case seems more likely. We have used this for simplicity because it avoids
the need for any homeostatic mechanisms to kick-start the network.

Each input cell was an independent Poisson process. A stimulus location was
chosen and mean firing rates were given a Gaussian distribution around that
location based on a peak rate fpeak and variance σstim

2 which was added to a
base rate fbase. The stimulus location changed regularly every 0.02s. This reg-
ularity is a move away from biologically realistic inputs (c.f. [4]); this was a
necessary concession to provide stronger correlation cues given the smaller num-
ber of synapses per neuron. A further concession was the more extreme values of
fbase and fpeak. σstim was chosen to be between the values of σform−feedforward

and σform−lateral and fpeak was set so as to keep the overall mean firing rate at
a mean value fmean which gave sufficient difference between fbase and fpeak.

3 Results

Simulations were run with a C++ function, with initial conditions created and
data analysis carried out with Matlab. Simulations used a time step of 0.1ms.
Parameters are given in table 1. The mean frequency of rewiring opportunities
per potential synapse was 1.22Hz (depressed synapses were therefore eliminated
after an average of 33s). Initial placement of synapses was performed by itera-
tively generating a random pre-synaptic partner and carrying out the test for
formation described in section 2. Initially feed-forward and lateral connections
were placed separately, each up to their initial number of 16 synapses. Weights
were initially maximised. Runs were for 5 minutes of simulated time.

For calculating the preferred location for each target cell, the use of the “centre
of mass” measure as in [6] would be erroneous because the space is toroidal and
therefore the calculation of preferred location would be skewed by the choice of
reference point from which synapses’ coordinates are measured. In [6] the refer-
ence point for calculating centre of mass of the dendritic synapses of a target cell
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Table 1. Simulation parameters

for STDP for rewiring for inputs

gmax = 0.2 σform−feedforward = 2.5 fmean = 20Hz
τm = 0.02s σform−lateral = 1 fbase = 5Hz
τ+ = 0.02s pform−lateral = 1 fpeak = 152.8Hz
τ− = 0.064s pform−feedforward = 0.16 σstim = 2
A+ = 0.1s pelim−dep = 0.0245(= 0.5∗mean formation rate)
B = 1.2 pelim−pot = pelim−dep/180 = 1.36 ∗ 10 − 4

was chosen as the predefined ideal location, therefore the measures of distance of
preferred location were skewed towards the ideal locations dictated by the model.
We avoided this by the novel method of searching for the location around which
the afferent synapses have the lowest “weighted variance” (σaff

2), i.e.:

σ2
aff = argmin

x

∑
i

wi.|pxi|2∑
i

wi

(4)

where i is a sum over synapses, x is a candidate preferred location, |pxi| is the
minimum distance from that location of the afferent for synapse i and wi is the
weight of the synapse (if connectivity is evaluated without reference to weights,
synapses have unitary weight). We implemented this with an iterative search
over each whole number location in each dimension and then a further iteration
to locate the preferred location to 1/10th of a unit of distance (the unit is the
distance between two adjacent neurons). Note that in the non-toroidal case this
measure is equivalent to the centre of mass, as used in [3].

Having calculated the preferred location for all the neurons in the network layer
we took the mean of the distance of this preferred location from the ideal loca-
tion to give an Average Absolute Deviation (AAD) for the projection. By report-
ing both AAD and mean σaff for a projection we have a basis for separating its
variance from the deviation of its preferred location from its ideal location. How-
ever AAD and mean σaff are both dependent on the numbers and strengths of
synapses and these can change during development. Therefore to observe the ef-
fect of the activity-dependent development mechanism irrespective of changes in
synapse number and strength we made comparison in two ways. Firstly, for eval-
uating change in mapping quality based only on changes in connectivity without
considering the weights of synapses we created a new map taking the final num-
ber of synapses for each network neuron and randomly placing them in the same
way as the initial synapses were placed. We then calculated σaff and AD for each
neuron in each of the maps and compared the averages of these (i.e. mean σaff

and AAD), applying significance tests between the values of two populations of
neurons, i.e. all the neurons on the final map vs all those on the reconstructed
map. Having established what effect there was on connectivity we considered the
additional contribution of weight changes by creating a new map with the same



Synaptic Rewiring for Topographic Map Formation 223

Table 2. Summary of simulation results: Case 1: Rewiring and input correlations; Case
2: Input correlations and no rewiring; Case 3: Rewiring and no input correlations

Case 1 2 3

Network neuron mean spike rate 24.7 17.4 10.5

Final mean no. feed-forward incoming synapses per network neuron 14.1 NA 12.5

Weight as proportion of max for the initial no. of synapses 0.60 0.36 0.33

Mean σaff−init 2.36 2.36 2.36

Mean σaff−final−con−shuffled 2.32 NA 2.32

Mean σaff−final−con 1.95 2.36 2.17

Mean σaff−final−weight−shuffled 1.88 2.10 1.99

Mean σaff−final−weight 1.70 1.98 1.95

AADinit 0.78 0.78 0.78

AADfinal−con−shuffled 0.89 NA 0.90

AADfinal−con 0.83 0.78 0.93

AADfinal−weight−shuffled 0.92 1.36 1.21

AADfinal−weight 0.95 1.58 1.34

topology, taking the final weights of synapses for each network neuron and ran-
domly reassigning these weights amongst the existing synapses for that neuron.
We then compared the two maps as described above.

Three main experiments were carried out: Case 1 had both rewiring and in-
put correlations, as described in section 2; case 2 had input correlations but no
rewiring; case 3 had rewiring but no input correlations (i.e. all input neurons
fired at fmean). The results are given in table 2. For comparisons, mean σaff

and AAD were each calculated for the feed-forward connections of the follow-
ing networks: (a) The initial state with weights not considered (recall that all
weights were initially maximised) these results are suffixed “ini”, i.e. AADini;
(b) the final (“fin”) network with weights not considered but only connectivity
(“con”) with all synapses weighted equally, i.e. AADfin−con; (c) for comparison
with AADfin−con, the final number of synapses for each network neuron, ran-
domly placed (“shuf”) in the same way as the initial synapses (not applicable
for simulations with no rewiring), i.e. AADfin−con−shuf ; (d) the final network
including weights, i.e. AADfin−weight; (e) for comparison with AADfin−weight,
the final connectivity for each network neuron with the actual weights of the
final synapses for each network neuron randomly reassigned amongst the exist-
ing synapses, i.e. AADfin−weight−shuf . Results were compared using Wilcoxon
Signed-Rank (WSR) tests on AD and σaff for incoming connections for each
network neuron over the whole network layer for a single simulation of each of
the two conditions under consideration.

4 Discussion

We observe the effect of rewiring by comparing case 1 (with rewiring) and case
2 (without rewiring). Considering topology change, in case 1 mean σaff−fin−con



224 S.A. Bamford, A.F. Murray, and D.J. Willshaw

Fig. 1. A-C: Normalised weight density of incoming lateral synapses (weight/unit area;
y-axis) radially sampled and interpolated at given distances of pre-synaptic neuron from
post-synaptic neuron (x-axis), averaged across population. D-F: ocular preference, i.e.
preference for cells from the two intra-correlated input spaces interspersed in the input
space, for each network cell on a scale from white to black. A,D: initial. B,E: final,
considering synaptic weights. C,F: final, all synapses with unitary weight.

drops to 1.95, c.f. 2.32 for mean σaff−fin−con−shuf ; this drop is significant (WSR,
p=2.4e-25). In case 2 mean σaff−fin−con is constrained to remain at mean
σaff−ini = 2.36. Considering weight change, in case 1 meanσaff−fin−weight drops
to 1.70, c.f. 1.88 for mean σaff−fin−weight−shuf . In case 2, mean
σaff−fin−weight drops to 1.98, c.f. 2.10 for mean σaff−fin−weight−shuf . Both
drops are significant (WSR, p=2.7e-27 and 8.7e-6 respectively).

Mean σaff−fin−weight appears to be lower in case 1 than case 2. We cannot
say for sure that this superior reduction of variance is due to the effect of the
rewiring mechanism because the different numbers of final synapses in each case
make a comparison impossible, however there is a good reason to believe that
this is so: the drop in mean σaff−fin−con. This drop on its own indicates that
the rewiring mechanism has helped to reduce variance and would also lay the
groundwork for different final measures of σaff when weights are considered.

We can also see qualitatively that the effect of rewiring is to embed in the
connectivity of the network input preferences which arise through the weight
changes mediated by the learning rule. STDP favours causal inputs with the
lowest latency and local excitatory lateral connections tend to lose the compe-
tition with excitatory feed-forward connections as they have a higher latency
[4]. The extreme of this effect can be seen in synapses from a network neuron
back to itself (recurrent synapses). The placement rule allows these synapses to
form, however these synapses only ever receive a pre-synaptic spike immediately
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following a post-synaptic spike and therefore they are always depressed by the
learning rule. Figure 1A shows the initial density of incoming lateral synapses
from pre-synaptic partners at given distances out from the post-synaptic neuron.
It can be seen that the average neuron receives more synapses from itself (those
at x-position 0) than from any of its closest neighbours. Figure 1B shows the fi-
nal distribution where synapses are weighted. The recurrent synapses have been
depressed much more than their neighbours. Figure 1C shows the final distribu-
tion only considering numbers of synapses and not their weights. The proportion
of recurrent synapses to lateral synapses with neighbours has reduced from the
initial state, due to the preferential elimination of the weak recurrent synapses.

As a further demonstration of the effect of rewiring a simulation was carried
out with the input neurons divided into two groups, mimicking the effect of
binocular inputs. The groups were interspersed in a regular diagonal pattern,
i.e. each input neuron is in the opposite group to its 4 adjacent neurons; the
stimulus location switched between the two groups every time it changed. To
keep the overall input rate the same the peak firing rate was doubled. Figure 1D
shows the initial preference of each network neuron for input neurons in the two
groups. Figure 1E shows the final ocular dominance map where synapses are
weighted. Although the space used was too small and the result of the learning
rule with a small number of synapses too random for familiar striped ocular
dominance patterns to emerge (c.f. [3]) ocular dominance zones can be seen.
This pattern is reflected in the final map of connectivity in Figure 1F, where
synaptic weights are not considered; another example of weight patterns caused
by input activity becoming embedded in connectivity patterns.

Considering the effect of the algorithm on AAD, in case 2 AADfin−weight is
significantly increased c.f. AADfin−weight−shuf (WSR, p=0.0012). In case 1 the
corresponding change is not significant (WSR, p=0.48). In case 1 the drop in
AADfin−con c.f. AADfin−con−shuf is not significant (WSR, p=0.31).

The basic action of weight-independent STDP on a set of incoming synapses
for a single neuron is to deliver a bimodal weight distribution [4]. Where there are
input correlations these cause the more correlated inputs to be maximised and
the less- or un-correlated inputs to be minimised. The effect of both the input
correlations and the local excitatory lateral synapses on each individual incom-
ing connection field then should be to cause a patch of neighbouring synapses
to become potentiated and for outliers from this patch to be depressed. The
location of the patch will be random; it is likely to form near the ideal location
because there should be a denser concentration of synapses there, however the
centre of the patch is unlikely to fall exactly on the ideal location but rather
a certain mean distance from it. This introduces a shift of preferred location
from the ideal location. Rewiring cannot be expected to eliminate this error but
it might be expected to allow the patch to move towards the centre as σaff

reduces due to the preferential placement of synapses towards the centre. How-
ever in our simulations AAD did not improve. The slight drop in AADfin−con

c.f. AADfin−con−shuf is not significant but in any case a drop in AAD could
only be a result of the reduction in mean σaff because AADfin−weight does not
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decrease, rather it stays the same (as in case 1) or increases (as in case 2). That
is to say, the result of the weight changes is not to drive the preferred location
towards the ideal. Rather, the improvement of topography is driven by the con-
tinued placement of synapses towards the ideal location; the activity-dependent
mechanism simply facilitates by allowing the incoming connection field to be
narrowed by the preferential elimination of outliers.

Considering the role of input correlations, in case 3 (rewiring but no input
correlations) mean σaff−fin−con = 2.17, vs 2.31 for mean σaff−fin−con−shuf ;
this is significant (WSR, p=5.0e-6). Mean σaff−fin−weight = 1.95 vs 1.99 for
mean σaff−fin−weight−shuf ; this is significant (WSR, p=0.028).

The slight drop in mean σaff−fin−weight is a sufficient cue to drive the nar-
rowing of the incoming connection fields, as evidenced by the drop in mean
σaff−fin−con. It was shown [8] that functional architecture could form in the
absence of any input except uncorrelated random noise. We show that this ap-
plies to topographic map refinement as well, although our explanation differs:
A spike from a single input neuron will excite a given network neuron and any
other of its neighbours which have a synapse from that input. Thus the neuron
will also tend to receive some excitation from lateral connections because of that
spike. Network neurons sample afferent neurons more densely around their ideal
locations so they are more likely to share an afferent with a neighbour if that
afferent is close to their ideal location. Thus synapses from afferents closer to
the ideal location are more likely to be potentiated. Therefore the gradient of
connection density set up by activity-independent placement acts as a cue which
allows the preferential elimination of outliers, giving a reduction in variance.

5 Conclusions

We have presented a model of topographic development including both weight
and wiring plasticity, which follows the reasonable assumptions that synapses
preferentially form in locations to which their axons are guided and that weaker
synapses are more likely to be eliminated. We have shown that spatially corre-
lated inputs help to create patterns of synaptic weights which favour narrower
projections, but the spatial correlations are not necessary for some reduction of
variance to occur (extending a result from [8]). A weight-change mechanism and a
rewiring mechanism can work together to achieve a greater effect than the weight
changes alone, with the rewiring mechanism acting to embed patterns of synap-
tic strengths in the network topology; this is as one would expect, though it has
not been demonstrated quantitatively before, to our knowledge. The accuracy
of preferred locations for network neurons however may not necessarily improve
when synapses are formed based on distributions with on-average perfect topog-
raphy to start with. The novel division of mapping quality into the quantities of
mean σaff and AAD is therefore a useful means for investigating these effects,
and we have demonstrated a method of applying statistical significance tests to
extract highly significant effects from small-scale simulations. Future work will
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include the introduction of weight-dependent STDP and of noise in the measures
of proximity and weight used for formation and elimination.
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Abstract. Bayesian statistics is has been very successful in describing
behavioural data on decision making and cue integration under noisy
circumstances. However, it is still an open question how the human brain
actually incorporates this functionality. Here we compare three ways in
which Bayes rule can be implemented using neural fields. The result is a
truly dynamic framework that can easily be extended by non-Bayesian
mechanisms such as learning and memory.

Keywords: Bayesian statistics, Neural fields, Decision making, Popula-
tion coding.

1 Introduction

Bayesian statistics has become a popular framework for describing various kinds
of human behaviour under circumstances of uncertainty [1,2,3]. Generally, it is
assumed that populations of neurons could encode probability distributions and
indeed this can be used to predict overt behaviour in monkey [4]. One way to
implement Bayes’ rule is to let each neuron represent the likelihood of an entire
probability distribution [5,6]. However, in these studies Bayes’ rule is implicit in
the decoding mechanism. Another way is to represent probability distributions
in the log domain [7], so that Bayes’ rule can be implemented by simply adding
neuronal activities.

The neural field architecture has been quite successful in explaining behavioural
data [8,9,10] and as a control architecture in cognitive robots [11]. Neural fields can
support bi-stable activity patterns [12,13], which makes them suitable for mem-
ory and decision mechanisms [14,9]. However, these neural field properties are
non-Bayesian. For one, the reported neural fields cannot support sustained multi-
modal activity patterns in a way that is necessary for representing arbitrary prob-
ability distributions. On the other hand, Bayesian statistics does not incorporate
any temporal dynamics. We wondered whether it is possible to combine the best of
both worlds. In particular, we wanted to know whether it is possible to implement
Bayes’ rule with neural fields.
� Corresponding author.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 228–237, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Implementing Bayes’ Rule with Neural Fields 229

2 Neural Fields of Leaky Integrate-and-Fire Neurons

A common model of a neuron in computational neuroscience is the so-called
sigma node representing the average behaviour of leaky integrate-and-fire neu-
rons [15]. Each sigma node has an internal state ui(t), which is analogous to a
biological neuron’s membrane potential, and an output activity ri(t), which is
analogous to a biological neuron’s firing rate [15]. For ease of reference we will
use the names of the biological analogies. The sigma node reflects the average
behaviour of one or more biological neurons. The firing rate is related to the
membrane potential by:

ri(t) = f(ui(t))

where f is a thresholding function such as the Heaviside step function or the
sigmoid function. The function f is often called the activation function.

The membrane potential changes dynamically depending on the input from
other neurons and the leaking current.

τ
dui(t)
dt

= h− ui(t) +
∑

wijf(uj(t)) , (1)

where τ is a time constant, h is the equivalent of the resting potential, and wij

are the connection weights between neuron i and neuron j. The first term on
the right hand side results in an exponential decay of the membrane potential
with time constant τ and the second term on the right hand side reflects the
weighted sum of inputs from other sigma node neurons (Fig. 1A).

A

r1

r2

rn

. . 
.

Σ f

w1
wi

ri
w2

wn B
-4 -2 2 4

0.2

0.4

0.6

0.8

1

- 1 ____
8

+ 9
8

e -x2

e -x2

(1 - x2)

Fig. 1. a) Schematic diagram of a sigma node neuron i. b) Graphs of the lowered
Gaussian and Mexican hat function with long and short inhibitory tails, respectively.

The structure of a neural network is determined by the connection weights
wij in (1). It has been observed that in biological neural tissues neurons excite
and inhibit nearby neurons in a centre-surround fashion (see e.g. [4]). In the con-
tinuous limit we obtain a neural field, whose dynamics are governed by Amari’s
equation for a neural field [16]:

τ
∂u(x, t)
∂t

= h− u(x, t) + (w ∗ f(u))(x, t) + S(x, t) . (2)
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Here u(x, t) denotes the membrane potential of a neuron at location x, and w is
the kernel imposing the centre-surround structure within the neural field and ∗
denotes spatial convolution, which is defined as f ∗ g =

∫
f(x − y)g(y)dy. The

term S(x, t) denotes the external input of the neural field. The constant h in
Amari’s equation can easily be absorbed in the definitions of u(x, t) and f , so
we will omit it hereafter. The centre-surround excitation-inhibition is commonly
modelled by a lowered Gaussian (Fig. 1B):

w(x − y) = A exp
(
− (x− y)2

2σ2

)
− winhib , (3)

where A and σ denote the amplitude and width of the lowered Gaussian, re-
spectively. The constant winhib determines the amount by which the Gaussian is
lowered. The Gaussian shaped kernel effectively smoothes the neural field activ-
ity locally because it averages the activity of nearby neurons. Other commonly
used kernels, such as the Mexican hat function (Fig. 1B), have similar proper-
ties. With a suitable choice of parameters A and winhib neural fields governed
by (2)(3) can sustain a self-stabilised local bump of activity [12,14,13]. This is
clearly useful for memory-like functions especially because the self-stabilising
capability makes the neural field very robust against noise. The global inhibi-
tion winhib prevents the co-existence of two or more self-stabilising bumps. The
Mexican hat function (Fig. 1B) does admit multiple bumps [14], but their am-
plitudes cannot vary independently. This rules out the possibility to represent
multi-modal probability distributions in this way.

3 Amari’s Equation and Robustness against Noise

3.1 Amari’s Equation with Linearised Recurrent Connection Kernel

Robustness against noise is a key concept that leads to Amari’s equation (2).
In order to obtain robustness against noise, the field activity must be smoothed
spatially as time progresses. A simple way to achieve this is by replacing at every
time step Δt a fraction of the field activity by the smoothed field activity. In the
presence of sustained external input, another fraction is replaced by the external
input. The latter is necessary to prevent exponential growth of the total field
activity. If u(x, t) denotes the activity of neuron x at time t and S(x, t) represents
external input, we can formalise this in the following way:

u(x, t +Δt) = (1− ε)u(x, t) + αε (k ∗ u)(x, t) + (1− α)εS(x, t) , (4)

where u(x, t+Δt) is the updated neural field activity, k(x)is the smoothing kernel
and α, ε are constants. The constant α controls the balance between smoothing
and external input, and ε controls the updating rate. We can rewrite this as a
partial differential equation by having ε = Δt

τ and taking the limit Δt → 0 to
obtain:

τ
∂u(x, t)
∂t

= −u(x, t) + α (k ∗ u)(x, t) + (1− α)S(x, t) . (5)

where τ is some time constant.
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When the external input S(x, t) = s(x) is constant over time, the neural field
activity u(x, t) decays to a stationary solution. Let u∞(x) denote the stationary
solution, then it is easy to show that the external input must have the following
form:

s(x) = (kext ∗ u∞)(x) ≡ 1
1− α ((δ − αk) ∗ u∞)(x) , (6)

where δ(x) is Dirac’s delta function. The kernel defined in (6) has an interesting
property. Suppose that a second neural field receives external input from the
first using connection weights given by kext(x) = (δ(x) − αk(x))/(1 − α), then
the stationary solution of the second field equals the firing rate of the first field.
In other words, the neural field activity u(x, t) decays exponentially to s(x). To
make this statement more precise, we can show that the total activity decays
exponentially over time. If we define the total activity of a neural field z(x, t) as:

z̄(t) =
∫
z(x, t)dx , (7)

then we can rewrite 5 using 7 to:

τ
dū(t)
dt

= −ū(t) + αKū(t) + (1 − α)S̄(t) . (8)

Here we have used the shift invariance of the kernel and definedK =
∫
k(x−y)dx.

If the total external input S̄(t) = s̄ is constant, the solution of (8) is simply:

ū(t) = A exp(−(1− αK)
t

τ
) +

1− α
1− αK s̄ . (9)

This shows that the total activity ū(t) decays exponentially with time constant
(1 − αK)/τ to a constant times s̄. This constant equals 1 independently of the
value of α when K = 1.

3.2 Non-linear Dynamics of Amari’s Equation

Equation (5) resembles Amari’s original equation (2): the constants α and 1−α
can easily be absorbed in the definitions of the kernel and the external input, but
the activation function f introduces a non-linearity that cannot be removed so
easily. However, when the field activity is in the linear range of f , the dynamics of
(5) will approximate that of (2). Amari’s original equation can thus be obtained
by replacing the convolution term k ∗ u→ k ∗ f(u). This gives:

τ
∂u(x, t)
∂t

= −u(x, t) + α(k ∗ f(u))(x, t) + (1− α)S(x, t) . (10)

We obtain the stationary solution of the external input for the non-linear Amari’s
equation in a similar way as in (6):

s(x) =
1

1− α (u∞(x) − α(k ∗ r∞)(x)) (11)

≈ (kext ∗ r∞)(x) , (12)
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where r∞(x) = f(u∞(x)). Clearly, the latter approximation is valid only when
the activation function f is approximately linear.

4 A Probabilistic Interpretation for Neural Fields

In Bayesian decision making the likelihood of an event y for a given hypothesis
x is transformed into a belief in that hypothesis. This inference is governed by
Bayes’ rule, which is defined as:

p(x|y) =
p(y|x)p(x)

p(y)
, (13)

where p(x) is the prior probability, p(x|y) the posterior probability, and p(y|x)
the likelihood of x. Typically, x is variable and y is constant so that the prob-
ability p(y) is an arbitrary normalisation constant. In many decision problems,
making a decision amounts to finding the value of x that maximises the posterior
probability - the so-called maximum-a-posteriori.

In order to implement Bayes’ rule with neural fields we need to represent
the probabilities in such a way that Bayes’ rule can be computed using simple
addition of neural field activities. This can be achieved by representing proba-
bility distributions in the log domain [7]. However, if the dynamics of the neural
fields are governed by Amari’s equation (2) the activation function introduces a
non-linearity in the system. In order to obtain similar dynamics as in the lin-
earised version of Amari’s equation (5) we need to scale the log-probabilities to
the linear range of the activation function. In particular, if we use the following
sigmoid function:

f(x) =
1

1 + exp
(−4(x− 1

2 )
) , (14)

then f(x) is approximately linear within the range (0,1) with slope f ′(1
2 ) = 1 at

x = 1
2 . Thus, we wish the function g(x) to linearly remap the log-probabilities

to the range (0, 1). However, the log-probabilities lie in the range (−∞, 0), so
that such a linear transformation does not exist. Therefore, we define a mini-
mal probability value, say pmin = 10−16, below which we ignore approximation
errors. Then, we can define the function g as:

g(x) = 1− x

ln pmin
, (15)

which maps the range (ln pmin, 0) to (0, 1). We can now make the following
identification:

u(x, t) = g(ln(pt(x))) , (16)

where u(x, t) is the neural field activity of neuron representing x at time t, and
pt(x) is some probability distribution of x at time t. With this identification
we can incorporate Bayes’ rule in the following way. Suppose neural field A is
encoding the likelihood pt(y|x) of x at time t and neural field B is encoding the
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prior probability pt(x). We need to construct a third neural field C receiving
inputs from neural fields A and B as external input, so that it encodes the
posterior probability pt(x|y). Let

uA(x, t) = g(ln pt(y|x)) ,
uB(x, t) = g(ln pt(x)) , (17)

hC = −g(ln p(y)) ,

where uA(x, t) and uB(x, t) are the activities of neural fields A and B and hC is a
constant reflecting homogeneous global inhibition of neural field C. In case of the
linearised Amari’s equation , the stationary activity of neural fieldC can be shown
to encode the posterior probability pt(x|y) by setting the external input to:

SC,linear(x, t) = (kext ∗ uA)(x, t) + (kext ∗ uB)(x, t) +
1− αK
1− α hC , (18)

where kext is the kernel defined in (6). Here we have used the shift-invariance of
the kernel k (see (8)) to simplify the constant term involving hC . By construction
the external input of neural field C equals kext ∗g(ln pt(x|y)) and it follows from
(6) that the steady state activity encodes the posterior probability as desired.

In a similar way we obtained the expression for the non-linear Amari’s equa-
tion without approximating the kernel (11) and with approximated kernel (12):

SC,non−linear(x, t) =
1

1− α (uA(x, t)− α(k ∗ f(uA))(x, t)

+ uB(x, t) − α(k ∗ f(uB))(x, t) (19)
+ hC − αKf(hC)) ,

SC,approximate(x, t) = (kext ∗ rA)(x, t) + (kext ∗ rB)(x, t) +
1− αK
1− α f(hC) .(20)

In the remaining part of this paper we will refer to neural fields with exter-
nal inputs given by (18), (19) and (20) by linear, non-linear and approximate,
respectively.

5 Neural Field Simulations

For the simulations we used a scenario where the field position x represents the
angular position subdivided in 100 intervals. The simulations were done using
discrete versions of (5),(2) using Euler discretisation of both space and time. We
used n = 100 neurons for encoding field position (xi = iΔx with i = 0, . . . , n−1
and Δx = 1). Time was discretised as shown in (4) with Δt = 1. The parameters
τ and α were set to τ = 10 and α = 1

2 . To prevent edge effects we used circular
neural fields so that neuron i = 99 neighbours neuron i = 0. For the recurrent
connections kernel we used a Von Mises distribution - the circular equivalent of
the Gaussian normal distribution - so that K = 1. The Von Mises distribution
is given by:

vonmises(x, κ) =
1

2πI0(κ)
expκ cos(

2πx
nΔx

) , (21)
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where κ is a width parameter and Im(κ) is the modified Bessel function of
the first kind with m = 0. The width parameter was set to κ = 3−2 which
approximately corresponds to a Gaussian width of σ = 3. For the likelihood
p(y|x) and the prior p(x) we used Von Mises distributions centred on x = 60
and x = 30, respectively. The corresponding widths were set to κ = 2−2 and
κ = 3−2. In order to simulate Bayes’ rule the external inputs of the neural fields
representing the posterior distribution are given by (18)-(20). White noise was
added to the external input directly with an amplitude of ±0.05.

How the neural field activities change over time is shown in the top row
of Fig. 2 for linear (left), non-linear (middle), and approximate (right) neural
fields. In the bottom row the corresponding firing rates are shown. Both the
linear and non-linear neural fields converge to the posterior field activity, but the
approximate neural field shows noticeable differences: the neural field activities
are restricted to the range (0,1) due to the sigmoid activation function in (14).
Consequently, the neural field activity due to the prior and the associated firing
rates are not fully suppressed as is evident by the bumps at x = 30.

Fig. 3 shows the decoded probability distributions of the linear (left), non-linear
(middle) and approximate neural fields (right). All neural fields build up activities
at approximately the same location on similar time scales, but their amplitudes
differ considerably. The amplitude of the approximate neural field (right) is much
less than the other two. This is also evident if we plot the cross-section at different
times in comparison to the true posterior probability distribution (bottom). It can
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Fig. 2. Neural field activities u(x, t) (top) and firing rates r(x, t) (bottom) for linear
(left), non-linear (middle) and approximate kernel. Neural field activities and firing
rates are shown for every 10th of 100 iterations (dashed curves). The solid curves
indicate the stationary state corresponding to the true posterior.
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be seen that the approximations of the non-linear and approximate neural fields
mainly affect the amplitudes of the decoded probability distributions.

The error in amplitude is easily amended by normalising the decoded proba-
bility distributions. To address this we compared the location and width of the
normalised decoded probability distribution with those of the true posterior. In
Fig. 4 the average error in peak location (left) and peak width (right) is shown
as a function of time. For the peak location we used the expected value of the
posterior distribution. For the peak width we used the standard deviation. The
averages were taken from 200 randomly generated Von Mises priors and likeli-
hoods. The location of the Von Mises distributions of both prior and likelihood
were randomly drawn from a uniform distribution covering the entire neural field
(x ∈ [0, 99]). The width of the distributions was uniformly drawn from σ ∈ [1, 25]
with κ = 1/σ2. From Fig. 4 it is clear that the average error in peak location
lies within 1 neuronal unit ( 2π

100 = 3.6◦) irrespective of which type of neural field
was used. The average error in peak width is initially largely overestimated after
which it decays to a constant value. Both the linear and non-linear neural fields
approximately converge to the true posterior width within about 20 iterations.
The rate of convergence is somewhat faster for the non-linear field. The approx-
imate neural field does not converge to zero but stabilises on an overestimate
of 3 neuronal units (10.8◦). The angular error can be reduced by increasing the
number of neurons. This is shown by the thin dashed line in Fig. 4. The error
in decoded peak location for n=1000 is the same as for n=100 showing that the
angular error is decimated (left). The error in decoded peak width is about ten
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Fig. 4. The mean error in peak location (left) and width (right) of the decoded peak.
The lines indicate the errors obtained for linear (solid line), non-linear (dashed line)
and approximate (dotted lines) neural field. The time constant was set to τ = 10.

times larger (initial value 100.2) reflecting the fact that the probability distrib-
utions are ten times wider when expressed in neuronal units.

6 Discussion and Conclusions

We have developed a way in which Bayes’ rule can be represented using neural
fields. To do so we superimposed the neural field activities representing the
log-likelihood and the log-prior distribution. Due to the non-linear activation
function in Amari’s equation the superposition of field activities leads to an
approximation error that mainly affects the decoded amplitude of the poste-
rior distribution. The approximation error can be fixed by normalisation, but
the approximate neural field overestimates the width of the decoded posterior
distribution. The approximation error depends on how well the neural field ac-
tivities fall in the linear range of the activation function. If necessary, the linear
approximation could be reduced by adjusting this mapping, but the signal-to-
noise ratio will deteriorate.

The proposed implementation of Bayes’ rule can be used to build a dynamic
version of Bayesian decision making as was used in [17]. Whether the dynamics is
in agreement with experimental findings is still an open issue. An additional ben-
efit is that Bayesian inference can now be smoothly coupled with non-Bayesian
mechanisms such as Hebbian learning, memory and decision mechanisms.
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10. Erlhagen, W., Schöner, G.: Dynamic field theory of movement preparation. Psy-
chol. Rev. 109, 545–572 (2002)

11. Erlhagen, W., Mukovskiy, A., Bicho, E.: A dynamic model for action understanding
and goal-directed imitation. Brain Res. 1083, 174–188 (2006)

12. Guo, Y., Chow, C.C.: Existence and stability of standing pulses in neural networks:
I. existence. SIAM J. Appl. Dyn. Sys. 4, 217–248 (2005)

13. Taylor, J.G.: Neural bubble dynamics in two dimensions: foundations. Bioligal
Cybernetics 80, 393–409 (1999)

14. Erlhagen, W., Bicho, E.: The dynamic neural field approach to cognitive robotics.
J. Neural. Eng. 3, R36–R54 (2006)

15. Trappenberg, T.P.: Fundamentals of computational neuroscience. Oxford Univer-
sity Press, New York (2002)

16. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields.
Biol. Cybern. 27, 77–87 (1977)

17. Cuijpers, R.H., van Schie, H.T., Koppen, M., Erlhagen, W., Bekkering, H.: Goals
and means in action observation: a computational approach. Neural Netw. 19,
311–322 (2006)



Encoding and Retrieval in a CA1 Microcircuit

Model of the Hippocampus

Vassilis Cutsuridis1,�, Stuart Cobb2, and Bruce P. Graham1

1 Department of Computing Science and Mathematics, University of Stirling,
Stirling, FK9 4LA, U.K.

{vcu,b.graham}@cs.stir.ac.uk
2 Division of Neuroscience and Biomedical Systems, University of Glasgow, Glasgow,

G12 8QQ, U.K.
s.cobb@bio.gla.ac.uk

Abstract. Recent years have witnessed a dramatic accumulation of
knowledge about the morphological, physiological and molecular char-
acteristics, as well as connectivity and synaptic properties of neurons in
the mammalian hippocampus. Despite these advances, very little insight
has been gained into the computational function of the different neuronal
classes; in particular, the role of the various inhibitory interneurons in
encoding and retrieval of information remains elusive. Mathematical and
computational models of microcircuits play an instrumental role in ex-
ploring microcircuit functions and facilitate the dissection of operations
performed by diverse inhibitory interneurons. A model of the CA1 micro-
circuitry is presented using biophysical representations of its major cell
types: pyramidal, basket, axo-axonic, bistratified and oriens lacunosum-
moleculare cells. Computer simulations explore the biophysical mecha-
nisms by which encoding and retrieval of spatio-temporal input patterns
are achieved by the CA1 microcircuitry. The model proposes functional
roles for the different classes of inhibitory interneurons in the encoding
and retrieval cycles.

Keywords: Hippocampus, CA1, microcircuit, computer model, pyra-
midal cell, basket cell, bistratified cell, axo-axonic cell, OLM cell, STDP.

1 Introduction

The hippocampus has been studied extensively, yielding a wealth of data on net-
work architecture, cell types, the anatomy and membrane properties of pyramidal
cells and interneurons, and synaptic plasticity [1]. It contains principal excitatory
neurons (pyramidal (P) cells in CA3 and CA1 and granule cells (GC) in the DG)
and a large variety of inhibitory interneurons [2]. Its basic functional role is hy-
pothesized to be the intermediate-term storage of declarative memories [3].

Many computational models have been advanced over the years trying to
understand how memories are stored and retrieved in the hippocampus [12],
[14], [23], [21], [6], [5], [9].
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A conceptual model of how GABAergic interneurons might provide the control
structures necessary for phasing storage and recall in the hippocampus has been
proposed recently [15]. Building on this idea, we construct a functional model of
the CA1 microcircuit, including a number of different neuronal types (pyramidal
(P) cells, basket (B) cells, bistratified (BS) cells, axo-axonic (AA) cells and
oriens-laconosum-moleculare (OLM) cells) and their specific roles in storage and
recall. The recall performance of the model is tested against different levels of
pattern loading and input presentation period.

2 Materials and Methods

2.1 Model Architecture and Properties

Figure 1 illustrates the simulated microcircuit model of the CA1 network. The
model consists of 100 pyramidal (P) cells, 2 basket (B) cells, 1 bistratified (BS)
cell, 1 axo-axonic (AA; chandelier) cell and 18 oriens lacunosum moleculare
(OLM) cells. The cell percentages matched those found in rat hippocampus
[4]. All simulations were performed using NEURON [8] running on a PC under
Windows XP. The morphology of each cell in the model was adapted from exper-
imental studies [24], [25]. The biophysical properties of each cell were adapted
from cell types reported in the literature [16], [17], [19], [18].

Pyramidal Cells. Each P cell was modeled as 15 anatomical compartments.
Membrane properties included a calcium pump and buffering mechanism, a cal-
cium activated mAHP potassium current, an LVA L-type Ca2+ current, an HVA
L-type Ca2+ current, an MVA R-type Ca2+ current, an HVA T-type Ca2+ current,
an h current, an HH current that includes both a sodium and a delayed rectifier cur-
rent, a slow Ca2+ - dependent potassium current, a slow non-inactivating potas-
sium channel with HH style kinetics and a K+ A current [16],[17]. Less than 1%
recurrent connections between pyramidal cells in the network was assumed [26].

Each pyramidal cell received nine somatic synaptic inhibition contacts from
the population of basket cells [27], mid-dendritic excitation from CA3, distal
apical excitation from the entorhinal cortex (EC), proximal excitation from other
pyramidal cells in the network (recurrent collaterals) [1], eight axonic synaptic
inhibition contacts from the population of chandelier cells [27], [28], six mid-
dendritic synaptic inhibition contacts from the bistratified cells population [27]
and two distal synaptic inhibition contacts from each OLM cell.

Axo-Axonic Cells. Each AA cell was modeled with 17 compartments. Mem-
brane properties included a leak conductance, a sodium current, a fast delayed
rectifier K+ current, an A-type K+ current, L- and N-type Ca2+ currents, a
Ca2+ -dependent K+ current and a Ca2+- and voltage-dependent K+ current
[18]. No recurrent connections between AA cells were assumed [2].

Axo-axonic cells received excitatory inputs from the EC perforant path to
their SLM dendrites and excitatory inputs from the CA3 Schaffer collateral to
their SR dendrites. In addition, the axo-axonic cells received inputs from active
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Fig. 1. CA1 microcircuit model of the hippocampus. EC: entorhinal cortex input; AA:
axo-axonic cell; B: basket cell; BS: bistratified cell; OLM: oriens-lacunosum-moleculare
cell; SO: stratum oriens; SP: stratum pyramidale; SR: stratum radiatum; SLM: stratum
lacunosum-moleculare.

pyramidal cells in their SR medium and thick dendritic compartments as well as
inhibitory input from the septum in their SO thick dendritic compartments [1].

Basket Cells. Each B cell was modeled with 17 compartments. Membrane
properties included a leak conductance, a sodium current, a fast delayed rectifier
K+ current, an A-type K+ current, L- and N-type Ca2+ currents, a Ca2+ -
dependent K+ current and a Ca2+- and voltage-dependent K+ current [18].
Recurrent connections between all B cells and between all B and BS cells in the
network were assumed [2].

All B cells received excitatory connections from the EC to their distal SLM
dendrites, from the CA3 Schaffer collaterals to their medium SR dendrites and
from active pyramidal cells to their medium and thick SR dendritic compart-
ments and inhibitory connections from neighboring B and BS cells in their soma
and from the medial septum in their SO thick dendritic compartments.

Bistratified Cells. Each BS cell was modeled with 13-compartments. Mem-
brane properties included the same ionic currents as the B and AA cells. Recur-
rent connectivity between all BS and between BS and B cells in the network was
assumed [2]. All BS cells received excitatory connections from the CA3 Schaf-
fer collaterals in their medium SR dendritic compartments and from the active
pyramidal cells in their thick SO dendritic compartments and inhibitory con-
nections from the medial septum in their thick SO dendritic compartments and
from neighboring B and BS cells in their somas.
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Fig. 2. (A) Model inputs to CA1 microcircuit. EC: entorhinal cortex input. The in-
put arrives asynchronously in CA1 LM P cell dendrites (not shown) between 0-9 ms.
A randomly selected subset of P cells receive the EC input. The CA3 input arrives
asynchronously in CA1 SR P cell dendrites between 10-18ms (that is, 10ms after the
EC input). All P cells non-selectively receive the CA3 input. (B) Input pattern pre-
sentation in the model. An input pattern was defined as the spatio-temporal sequence
of asynchronously arriving spikes to P cells. The presentation of an input pattern is
repeated every Δτ (5ms, 7ms, 8ms, 10ms, 11ms) continuously throughout the encoding
and retrieval sub-cycles of the theta rhythm.

OLM Cells. Each OLM cell was modeled as a reduced 4-compartment model
[19], which included a sodium (Na+) current, a delayed rectifier K+ current, an
A-type K+ current and an h-current. No recurrent connections were assumed
between OLM cells.

Each OLM cell received excitatory connections from the active pyramidal cells
in their basal dendrites as well as inhibitory connections from the medial septum
in their soma.

Model Inputs. Inputs to CA1 came from the medial septum (MS), entorhinal
cortex (EC) and CA3 Schaffer collaterals. All P cells received the CA3 input,
whereas a randomly selected subset of P cells received the EC layer III input (see
figure 2A). All B, AA and BS in the network received the CA3 input, whereas
only the AA and B cells received the EC input. The conduction latency of the
EC-layer III input to CA1 LM dendrites is less than 9 ms (ranging between
5-8 ms), whereas the conduction latency of EC-layer II input to CA1 radiatum
dendrites via the di/tri-synaptic path is greater than 9 ms (ranging between
12-18 ms) [13].

In the model, an input pattern was defined as the spatio-temporal sequence
of asynchronously arriving spikes to corresponding P cells. The size of the input
pattern was equal to the percentage of P cells that received the EC input. Both
EC and CA3 input patterns were presented to P cell apical LM and medial SR
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dendrites respectively at various repeated time window shifts (i.e. each input
was repeatedly presented with a period of 5 ms, 7 ms, 8 ms, 10 ms, or 11 ms)
(see figure 2B). MS input provided GABA-A inhibition to all INs in the model
(strongest to B and AA). MS input was phasic at theta rhythm and was on for
70 ms during the retrieval phase.

Synaptic Properties. In the model, AMPA, NMDA, GABA-A and GABA-B
synapses were included. GABA-A were present in all strata, whereas GABA-
B were present in medium and distal SR and SLM dendrites. AMPA synapses
were present in strata LM (EC connections) and radiatum (CA3 connections),
whereas NMDA were present only in stratum radiatum (CA3 connections).

Synaptic Plasticity. A local spike-timing dependent plasticity (STDP) learn-
ing rule was applied at medial SR AMPA synapses on P cells [22]. Pre-synaptic
spike times were compared with the maximal postsynaptic voltage response at
a synapse. If the interval is positive (a pre-synaptic spike arrives before the
post-synaptic neuron response), then the synapse is potentiated by increasing
the maximum AMPA conductance. If the interval is negative, the synapse is
depressed by reducing the AMPA conductance.

Network Training and Testing. During encoding the maximum synaptic
conductances of the SR AMPA synapses were allowed to change according to
the learning rule explained above. During retrieval, the conductances from the
last time window of input presentation were kept fixed throughout the entire
retrieval cycle.

3 Results

In the model, we make two important assumptions, which are supported by
experimental evidence: (1) Encoding and retrieval are two functionally indepen-
dent sub-cycles of theta rhythm [7], and (2) During the storage sub-cycle the
pyramidal cells that receive the EC input (i.e. the input pattern) do not fire
action potentials [10], [11], [29] and hence the stored pattern does not “leak” out
from the CA1.

3.1 Encoding Cycle

Previous modelling studies emphasized the role of a feedforward association of
the incoming EC and CA3 inputs as the means of storing patterns in the CA1 P
cells [31]. However, recent experimental evidence [13] has shown that in P cells
of CA1 the conduction latency of the EC-layer III input to their LM dendrites is
less than 9 ms (ranging between 5-8 ms), whereas the conduction latency of EC-
layer II input to their radiatum dendrites via the di/tri-synaptic path is greater
than 9 ms (ranging between 12-18 ms). That means that forward association of
the EC- and CA3-inputs is not feasible, given that the information to be stored is
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contained in the coincident activity of cells in layers II and III of EC. Therefore,
a different mechanism is required to associate the two inputs.

During the simulated storage cycle of the theta, we propose the following:
an EC input pattern arrives to the apical SLM dendrites of the B, AA and P
cells at time ti, whereas an indirect CA3 input pattern via the di/trisynaptic
loop arrives to the medium SR dendrites of the B, AA, BS and P cells at time
ti+δt (δt > 9ms) [13]). In the B and AA cells, the EC input is strong enough
to induce an action potential in their soma. Furthermore, the GABAergic cell
population of the medial septum is minimally active and therefore transmits the
least amount of inhibition to the CA1 inhibitory interneurons. Having the least
amount of inhibition impinging on them, the CA1 inhibitory cells are free to
do several things: First, the axo-axonic and basket cells exert tight inhibitory
control on the axons and somas of the pyramidal cells, thus preventing them
from firing during the storage cycle [10]. Second, the basket cells exert powerful
inhibitory control to neighbouring basket cells and to bistratified cells, which
prevents the later from firing during the storage cycle. As mentioned earlier, the
bistratified cells are 180 degrees out-of-phase with the basket and axo-axonic
cells and hence not active during the storage cycle [11].

The CA3 input to P cells provides the contextual information, whereas the
EC input to P cells provides the sensory information, because place cells in
CA1 were found to be maintained solely by direct input from EC and CA1
[20]. Since there is no topography in CA1 [26], during the storage cycle, 20%
of the P cells in the network are randomly selected to receive the EC input
pattern in their apical SLM dendrites (see figure 2). The summed postsynaptic
potentials (PSP) generated in the SLM dendrites are attenuated on their way to
the soma and axon [32], where they are finally “stopped” by the B and AA cell
inhibition. Due to the strong B and AA cell inhibition on their soma and axon,
non-specific hyperpolarizing h-activated cation channels are activated, which
send a rebound back-propagating post-synaptic response (BPPR) towards the
SR and SLM dendrites. In the model, to induce the BPPR, the conductance of
the Ih current is increased 10-fold in the proximal SR dendrites (ghprox = 0.0005
mS/cm2) and 20-fold in the medium and distal SR dendrites (ghmed,dist = 0.001
mS/cm2) compared to the soma (ghsoma = 0.00005 mS/cm2) [30]. In contrast
to the EC input, all P cells in the network are activated by the CA3 input in
their medial SR dendrites. Careful timing between the incoming CA3 Schaffer
collateral spike, the EC spike and the BPPR will induce potentiation (LTP) or
depression (LTD) via a local STDP rule [22] applied in the medium SR dendrites
of the pyramidal cells.

3.2 Retrieval Cycle

The retrieval cycle begins as the GABAergic cells of the septum approach max-
imum activity. Because of this septal input, the basket and axo-axonic cells are
inhibited, releasing pyramidal cells, bistratified cells and OLM cells from inhibi-
tion. Pyramidal cells may now fire more easily, thus allowing previously learned
patterns to be recalled. During the retrieval cycle, the CA3 Schaffer collateral
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input plays the role of a cueing mechanism: If the CA3 input excited a pyramidal
cell during this time, any synapses that were strengthened during the storage
cycle will be activated, recalling the memory. Because the CA3 input is directed
to all P cells, which potentially activates unwanted P cells and hence spurious
memories are recalled, the role of the bistratified cells is to ensure that these
spurious cells will be silenced by broadcasting a non-specific inhibitory signal to
all P cells in the network.

In our model during recall the entorhinal cortical input provides a weak back-
ground excitation to the CA1 region that aids the recall process, causing depo-
larized cells to fire. However, this excitation can potentially give rise to unwanted
or similar memories. In our model, P cells after being released by the basket and
axo-axonic cell inhibition excite the OLM cells. This excitation was assumed
strong enough to overcome the OLM septal inhibition. In return, the OLM cells
strongly inhibit the distal SLM dendrites of the P cells [2], where the direct en-
torhinal input arrives, thus preventing unwanted or similar memories from being
recalled.

Fig. 3. Normalized recall performance during the ’many-trials’ learning paradigm as a
function of input pattern loading (10%, 50% and 75%) and input pattern presentation
period (a pattern is repeatedly presented every 5ms, 7ms, 8ms, 10ms, 11ms). White
bars: 75% pattern loading; Grey bars: 50% pattern loading; Black bars: 10% pattern
loading.

3.3 Recall Performance

Twenty percent of all P cells in the network received the EC input pattern
(EC input pattern: a group of twenty spikes arriving asynchronously within a
time window of 0-9ms (see figure 2B)) in their SLM dendrites, whereas all P cells
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received the CA3 input pattern (CA3 input pattern: the same group of twenty
asynchronous spikes delayed by at least 9 ms) arrive in their SR dendrites. As
we said previously, both the EC and CA3 input patterns were continuously pre-
sented with a period Δτ (Δτ = 5-11ms) throughout the encoding and retrieval
cycles of the theta rhythm. To estimate the recall performance of our network,
we counted the fraction of cells belonging to the stored pattern that were active
during the retrieval cycle.

Figure 3 depicts the model’s recall performance for a particular input pattern.
Different time shifts between pattern presentations during encoding and retrieval
were tried (Δτ = every 5 ms, 7 ms, 8 ms, 10 ms or 11 ms), and different levels of
cue pattern loading (10%, 50% and 75% of EC input pattern vector is presented
to P cells) were used during recall. When 75% of the EC input pattern was
presented during recall (i.e. 75% pattern loading), the recall performance was
nearly perfect (100%) regardless of input presentation period with the exception
at 7 ms (95%). At 50% and 10% pattern loading, the recall performance dropped
by 5% and 20% respectively when the input presentation period was 5 ms. At
larger input presentation periods, the recall performance degraded progressively
for both 50% and 10% pattern loadings reaching a minimum of 45% and 70%
respectively at 11 ms.

4 Conclusion

A detailed model of the CA1 microcircuit has been presented. The model pro-
poses functional roles for a variety of CA1 cells in the encoding and retrieval of
memories in the hippocampus. The performance of the model is tested against
different levels of pattern cueing during recall and different input pattern presen-
tation time shifts during learning. These initial tests indicate that this circuitry
can successfully store and recall patterns of information within a theta cycle. The
quality of storage does depend on the temporal pattern presentation sequence, as
recall performance drops when the time between presentations is increased and
only a small cue is used during recall. Much work remains to be done to further
explore the temporal constraints on this process and to assess more widely the
capacity of this network to operate as an associative memory.
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Abstract. A novel brain inspired cognitive system architecture of an
active visual search model is presented. The model is multi-modular
consisting of spatial and object visual processing, attention, reinforce-
ment learning, motor plan and motor execution modules. The novelty of
the model lies on its decision making mechanisms. In contrast to previ-
ous models, decisions are made from the interplay of a winner-take-all
mechanism in the spatial, object and motor salient maps between the res-
onated by top-down attention and bottom-up visual feature extraction
and salient map formation selectively tuned by a reinforcement signal
spatial, object and motor representations, and a reset mechanism due to
inhibitory feedback input from the motor execution module to all other
modules. The reset mechanism due to feedback inhibitory signals from
the motor execution module to all other modules suppresses the last at-
tended location from the saliency map and allows for the next gaze to
be executed.

Keywords: Visual search, cognitive system, dopamine, saliency, ART,
decision making, attention, perception, action, reinforcement learning.

1 Introduction

Visual search is a type of perceptual task requiring attention. Visual search
involves an active scan of the visual environment for a particular object or feature
(the target) among other objects or features (the distracters). Visual search can
take place either with (active visual search) or without (passive visual search)
eye movements.

Attention has been described as the control system in prefrontal cortex (PFC)
whose role is to generate a top-down signal which will amplify specific tar-
get (spatial and/or object) representations in the posterior dorsal and ven-
tral cortex, while at the same time will inhibit those of distracters [26]. Many
computational theories of visual attention have been proposed over the years
[13,14,15,16,17,18,19,20,21,22]. Some of these models [14,21] emphasized the for-
mation of a bottom-up saliency-map that biases attention. According to these
models scanpaths (sequences of saccadic eye movements) are generated according
to the value of saliency in the map. That means that saccades are generated first
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towards the most salient object in the map, next towards the second most salient
object and so forth. On the other hand, other models emphasized the need of
the interplay between a bottom-up visual feature extraction module (the “what”
and “where” pathways) and a top-down attention selective module (the PFC) to
drive attention to specific regions-of-interest (ROIs) [13,17,18,20,22]. However,
most of these studies failed to show the mechanisms by which the PFC attentive
processes are recruited in order to guide attention in posterior and lower-level
cortical areas.

The goal of the present study is to present a biologically plausible cognitive
system architecture of active visual search model. The model comprises of many
modules with specific as well as distributed functions and it is heavily supported
by neuroscientific experimental evidence. Its novelty lies on its proposed dis-
tributed decision making mechanisms, whose functions rely on the coordinated
actions of its visual, attention, reinforcement teaching, motor plan and motor
execution modules.

2 Proposed Architecture

The proposed architecture of the active visual search model (see Figure 1) is
multi-modular, consisting of a visual processing module, an attention module, a

Fig. 1. Proposed multi-modular and their corresponding brain areas active visual
search model. PFC: prefrontal cortex; FEF: frontal eye fields; PPC: posterior pari-
etal cortex; TC: temporal cortex; SCv: visual superior colliculus; SCm: motor superior
colliculus; SNc: substantia nigra pars compacta; DA: dopamine. See text for the corre-
sponding to the model’s modular functionality of each brain area.
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decision-making module, a reinforcement learning module, a motor plan module
and a motor execution module. In the following section, I will describe each
module, its functionality and will provide experimental evidence for its validity.
Finally, I will describe the stages of information processing from the presentation
of the input image till the execution of an eye movement (see Figure 2).

2.1 Modules

Spatial and object visual processing module. The visual processing mod-
ule up to the formation of global saliency maps in both the dorsal (space) and
ventral (object) streams is the same as in [13,21]. Its functionality is to decom-
pose an input image through several pre-attentive multi-scale feature detection
mechanisms (sensitive to color, intensity and orientation) found in retina, lateral
geniculate nucleus (LGN) of the thalamus and primary visual cortical area (V1)
and which operate in parallel across the entire visual scene, into two streams of
processing, that is the dorsal for space and the ventral for object. Neurons in
the feature maps in both streams then encode the spatial and object contrast
in each of those feature channels. Neurons in each feature map spatially com-
pete for salience, through long-range connections that extend far beyond the
spatial range of the classical receptive field of each neuron. After competition,
the feature maps in each stream are combined into a global saliency map, which
topographically encodes for saliency irrespective of the feature channel in which
stimuli appeared salient [13,14]. In the model, the global spatial saliency map
is assumed to reside in the posterior parietal cortex (PPC), whereas the global
object saliency map resides in the ventral temporal cortex (TC). The speed of
visual information processing from the early multi-scale feature extraction in the
retina till the formation of global saliency maps in the dorsal PPC and ventral
TC is 80-100ms [[27] and references therein].

Attention module. The attention module is represented by prefrontal cor-
tex (PFC) cells. It receive a direct input visual signal from the early stages
of visual processing (retina, LGN, V1) as well as from the FEF (motor plans),
PPC (spatial representations), TC (object representations) and other brain areas
(motivation (medial PFC), value representations (orbito-frontal cortex (OFC);
medial PFC and OFC neuronal responses are not modeled in this study). Its
role is to send feedback signals to every stage of the visual processing module,
which will amplify specific neuronal responses throughout the visual hierarchy
[26] as well as to the selectively tuned via the reinforcement learning DA signals
target (spatial and object) and motor plan representations in the PPC, TC, and
frontal cortices (FC), while at the same time will inhibit those of distracters.

Reinforcement learning module. At the same time and in a parallel man-
ner, the retinal multi-scale low level features propagate to the upper layers of
the superior colliculus (SC), which in turn provide the sensory input to the sub-
stantia nigra pars compacta (SNc) and ventral tegmental area (VTA). Recent
neuroanatomical evidence has reported a direct tectonigral projection connect-
ing the deep layers of the superior colliculus to the SNc across several species
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[7,10,11]. This evidence is confirmed by neurophysiological recordings in alive
animals [8,23].

The SNc and VTA comprise the reinforcement learning module of the model.
Both SNc and VTA contain the brain’s dopaminergic (DA) neurons, which have
been implicated in signaling reward prediction errors used to select actions that
will maximize the future acquisition of reward [9] as well as the progressive
movement deterioration of patients suffering from Parkinson’s disease [1,2,5]].
The conduction latency of the signal from the retina to SC and from there to SNc
is 70-100ms, whereas the duration of the DA phasic response is approximately
100ms [12].

The SC activated SNc DA neurons broadcast reinforcement traching signals
to neurons in prefrontal cortex (PFC), frontal eye fields (FEF), posterior parietal
(PPC) and temporal cortices (TC), but not to visual cortices [[1] and references
therein]. An extensive review of the dopaminergic innervation of the cerebral
cortex has been recently published by [1]). Briefly, the source of the dopaminergic
(DA) fibers in cerebral cortex were found to be the neurons of the substantia
nigra pars compacta (SNc) and the ventral tegmental area (VTA). DA afferents
are densest in the anterior cingulate (area 24) and the motor areas (areas 4, 6, and
SMA), where they display a tri-laminar pattern of distribution, predominating
in layers I, IIIa, and V-VI. In the granular prefrontal (areas 46, 9, 10, 11, 12),
parietal (areas 1, 2, 3, 5, 7), temporal (areas 21, 22), and posterior cingulate
(area 23) cortices, DA afferents are less dense and show a bilaminar pattern of
distribution in the depth of layers I, and V-VI. The lowest density is in area 17,
where the DA afferents are mostly restricted to layer I.

The role of the DA broadcasting signals is to act as the vigilant parameter of
an ART network, which reinforce via selective tuning [1] the relevant according
to previously learned experiences to the visual scene responses of cells in the
areas they target. All other cells that don’t receive or receive reduced DA signals
“perish” as their signal-to-noise ratio responses are extremely low (see Figure 7
in [1]).

Motor plan module. In this module, the global spatial and object saliency
maps formed in the PPC and TC respectively are transformed in their cor-
responding global saliency motor plan maps. The motor saliency plan module
is assumed to reside in the frontal eye fields (FEF) of the frontal lobes [28].
Reciprocal connections between the PPC, TC and FEF ensure the sensorimo-
tor groupings of the spatial and object representations with their corresponding
motor plans [[29] and references therein].

Decision module. The decision to where to gaze next is determined by the
coordinated actions of the Attention, Reinforcement Learning, Visual Process-
ing, Motor Plan and Motor Execution modules in the model. More specifically,
bottom-up, top-down and reset mechanisms represented by the complex and in-
tricate feedforward, feedback and horizontal circuits of PFC, PPC, TC, FEF,
motor SC and the brainstem are making decisions. Adaptive reciprocal connec-
tions between (1) PFC and PPC, (2) PFC and TC, (3) PFC and FEF, (4) FEF
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and PPC, (5) FEF and TC, and (6) PPC and TC operate exactly as the com-
parison and recognition fields of an ART (Adaptive Resonance Theory) system
[24,25].

Briefly, an ART system consists of a comparison field and a recognition field
composed of neuronal populations, a vigilance parameter, and a reset module.
The vigilance parameter has considerable influence on the system: higher vigi-
lance produces highly detailed memories (many, fine-grained categories), while
lower vigilance results in more general memories (fewer, more-general categories).
The comparison field takes an input vector (a one-dimensional array of values)
and transfers it to its best match in the recognition field. Its best match is the
single neuronal population whose set of weights (weight vector) most closely
matches the input vector. Each recognition field neuronal population outputs
a negative signal (proportional to that neuron’s quality of match to the input
vector) to each of the other recognition field neuronal populations and inhibits
their output accordingly. In this way the recognition field exhibits lateral inhi-
bition, allowing each neuronal population in it to represent a category to which
input vectors are classified. After the input vector is classified, the reset module
compares the strength of the recognition match to the vigilance parameter. If
the vigilance threshold is met, training commences. Otherwise, if the match level
does not meet the vigilance parameter, the firing recognition neuronal popula-
tion is inhibited until a new input vector is applied; training commences only
upon completion of a search procedure. In the search procedure, recognition
neuronal populations are disabled one by one by the reset function until the vig-
ilance parameter is satisfied by a recognition match. If no committed recognition
neuronal population’s match meets the vigilance threshold, then an uncommit-
ted neuronal population is committed and adjusted towards matching the input
vector.

In this model, as I mentioned before, the ART’s vigilance parameter is repre-
sented by the broadcasted DA reinforcement teaching signals. High and interme-
diate levels of DA ensure the formation of fine and coarse categories respectively,
whereas low values of DA ensure that non-relevant representations and plans
perish.

The reciprocal connections between (1) PFC, PPC and TC, and (2) PFC
and FEF allow for the amplification of the spatial, object and motor representa-
tions pertinent to the given context and the suppression of the irrelevant ones,
whereas the reciprocal connections between the FEF, PPC and TC ensure for
their groupings.

Decisions in the model are made from the interplay of a winner-take-all mech-
anism in the spatial, object and motor salient maps between the selectively tuned
by DA and resonated spatial, object and motor representations [3,4,6] and a re-
set mechanism due to a feedback signal from the SC to FEF [30], PFC, PPC, TC
and SNc [12] analogous to the IOR in [13], which suppresses the last attended
location and executed motor plan from their saliency maps and allows for the
next salient motor plan to be executed.
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Motor execution module. The motor plan that has won the winner-take-all
competition in the FEF field propagates to the intermediate and deep layers of
superior colliculus (SC) and the brainstem (motor execution module), where the
final motor command is formed. This final motor command instructs the eyes
about the direction, amplitude and velocity of movement. Once, the motor plan
arrives in the SC, inhibitory feedback signals propagate from the SC to PFC,
FEF, PPC and TC in order to reset these fields and set the stage for the salient
point to gaze to. The speed of processing from the input image presentation till
the generation of an eye movement is approximately 200-220ms [3].

2.2 Information Processing

Once an input image is presented three parallel and equally fast processing
modes of actions are initiated. In the first mode of action (visual processing),
pre-attentive multi-scale feature detection and extraction mechanisms sensitive
to color, intensity and orientation operating in parallel at the level of the retina,
LGN and V1 start to work. From the level of V1 and on the features are sepa-
rated into two streams: the dorsal for space processing and the ventral for object
processing. At the end levels of the visual hierarchy, the PPC and TC lie, where
global saliency maps for space and object are formed. In the second mode of
action (reinforcement learning), the retinal signal activates the phasic reinforce-
ment teaching (dopamine) signals via the visual layers of the SC. In turn, the
phasic DA teaching signals will be broadcasted to the whole cortex (PFC, FEF,
PPC and TC) and will selective tune the responses of different neuronal pop-
ulations in these areas according to previous similar acquired experiences. In
the third mode of action (attention), the retinal signal will travel a long dis-
tance to PFC, where will activate the recognition neuronal populations. The
recognition neuronal populations will send/receive top-down/bottom-up feed-
back/feedforward signals to/from the spatial, object and motor saliency maps
of the PPC, TC and FEF. All three modes of action take the same amount of
time (approximately 100ms) [12,27].

In the next step, the spatial and object salient maps will go through a sensory-
motor transformation to generate their corresponding motor salient maps at the
FEF level. Reciprocal connections between the PPC, TC and FEF will bind
the perceptual and motor salient maps together. While this transformation and
grouping is taking place, attentional and reinforcing teaching signals from the
PFC and SNc respectively will amplify/selectively tune the neuronal responses
at the PFC, PPC, TC and FEF levels. A winner-take-all mechanism in these
fields will select the most salient and resonated spatial, object and motor plan
representation. The selected motor plan will then be forwarded to the motor exe-
cution areas (SC and brainstem) where the final motor command will be formed
and the eye movement will be generated. The speed of processing from the start
of the attentive resonance, selective tuning and motor plan formation, selection
and execution takes another approximately 100-120ms (a total of approximately
200-220ms from input image presentation to eye movement execution) [3].
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Fig. 2. Information processing stages of the active visual search model. (A) Visual
processing stage. Once an input image is presented three parallel and equally fast
processing pathways get activated: (1) Visual hierarchy pathways till the level of PPC
(space) and TC (object), (2) sensory activated by the SCv SNc (dopamine) system,
and (3) direct visual input to PFC. (B) DA broadcasting teaching signals to PFC,
PPC, TC and FEF. Different neuronal populations receive different levels of DA. High
and intermediate DA values result in “sharp tuned” neuronal responses, whereas low
DA values result in “broadly tuned” neuronal responses. Neuronal responses are de-
picted by gray-colored towers in each brain area. The height of each tower represents
the neuronal amplitude activation, whereas the width of each tower represents the de-
gree of tuning. (C) Feedforward activation of the SCm by FEF, PFC, PPC and TC.
Red square surrounding the response of a neuronal population represents the winner
salient and resonated according to some value of vigilance (DA signal) representation
in each brain area. (D) Reset mechanism by feedback inhibitory projections from the
SCm to SNc, FEF, PFC, PPC and TC. Reset mechanism prevents previously selected
representation (red crossed square) and allows all other resonated neuronal popula-
tion responses to compete each other for selection. Bottom tower surrounded by red
square represents the winner salient and resonated representation. PFC: prefrontal cor-
tex; PPC: posterior parietal cortex; TC: temporal cortex; FEF: frontal eye fields; DA:
dopamine; SC: superior colliculus; SCv: visual superior colliculus; SCm: motor superior
colliculus; SNc: substantia nigra pars compacta.



A Bio-inspired Architecture of an Active Visual Search Model 255

Coincidently, Redgrave and Gurney [12] recently reported that the duration
of the phasic DA signal (reinforcement teaching signal in this model) is 100ms
and it precedes the first eye movement response. That means that the model’s
assumption about a co-active reinforcing teaching signal with the resonated at-
tention and motor plan selection is valid. All these mechanisms are reset by
a feedback excitatory signal from the SC (motor execution module) to the in-
hibitory neurons of the FEF, PFC, PPC, TC and SNc (all other model modules),
which in turn inhibit and hence prevent the previously selected targets, objects
and plans from being selected again (see Fig. 2D).

3 Comparison with Other Models and Discussion

A very influential model of visual attention has been put forward by Itti and
Koch [13,21]. The model postulated that the decision to where to gaze next is
determined by the interplay between a bottom-up winner-take-all network in a
saliency map, which detected the point of highest saliency at any given time,
and the inhibition-of-return (IOR), which suppressed the last attended location
from the saliency map, so that attention could focus onto the next most salient
location. However, top-down attentional mechanisms were not explicitly modeled
in their model.

A biologically plausible computational model for solving the visual bind-
ing problem was developed over the years by John Tsotsos and his colleagues
[20,31,32,33,34]. Their “Selective Tuning” model relied on the reentrant con-
nections in the primate brain to recover spatial information and thus to allow
features represented in a unitary conscious percept. However, the model fails
to show the neural mechanisms by which attention, recognition and grouping
work together. An engineering control approach to attention was applied in the
Corollary Discharge of Attention Movement (CODAM) model of Taylor and
colleagues [18,35,36,37,38]. Their model is multi-modular and has successfully
simulated a wide range of visual, working memory, attention and higher level
cognitive phenomena.

My model presented herein utilizes similar features with above mentioned
models and extends them. Its visual processing module operates the same way
as in the Itti and Koch model [13,21]. In contrast to their model, it consists also
of an attentional module, whose function is through its re-entrant connections
between the PFC, PPC, TC and FEF to amplify the relevant targets, objects
and plans to the given context. Re-entrant connections also exist, as in the Se-
lective Tuning model [20], between FEF, PPC and TC whose function is to bind
together to a single percept the visuo-motor salient, attentionally resonated and
selectively tuned by reinforcement teaching signals representations. The novelty
of my model lies on the newly discovered sensory driven DA phasic signal [12],
which operates as a reinforcement teaching signal to the neural responses of the
PFC, PPC, TC and FEF. The scalar value of this reinforcing signal (vigilant pa-
rameter) “determines” by selective tuning [1,2,3] the degree of participation of
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the various resonated spatial and object salient representations to the formation,
selection and execution of motor plans.
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Abstract. This paper presents a supervised training algorithm that im-
plements fuzzy reasoning on a spiking neural network. Neuron selectivity
is facilitated using receptive fields that enable individual neurons to be
responsive to certain spike train frequencies. The receptive fields behave
in a similar manner as fuzzy membership functions. The network is su-
pervised but learning only occurs locally as in the biological case. The
connectivity of the hidden and output layers is representative of a fuzzy
rule base. The advantages and disadvantages of the network topology for
the IRIS classification task are demonstrated and directions of current
and future work are discussed.

Keywords: Spiking Neuron Model, Dynamic Synapse, Supervised Learn-
ing, Receptive Field, Fuzzy Reasoning.

1 Introduction

The history of neural network research is characterised by a progressively greater
emphasis paid to biological plausibility. The evolution of neuron modelling with
regard to the complexity of computational units can be classified into three dis-
tinct generations [1]. The third generation of neuron modelling (spiking neurons)
is based on the realisation that the precise mechanism by which biological neu-
rons encode and process information is poorly understood. The spatio-temporal
distribution of spikes in biological neurons holds the key to understanding the
brains neural code.

There exists a multitude of spiking neuron models that can be employed in
spiking neural networks (SNNs). The extensive amount and variety of neuron
models exist in acknowledgement of the fact that there is a trade-off between the
individual complexity of spiking neurons and the number of neurons that can
be modelled in a neural network. In addition to the variety of neuron models,
biological neurons can have two different roles to play in the flow of information
within neural circuits. These two roles are excitatory and inhibitory respectively.
Excitatory neurons are responsible for relaying information whereas inhibitory
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neurons locally regulate the activity of excitatory neurons. Ongoing physiological
experiments continue to illuminate the underlying processes responsible for the
complex dynamics of biological neurons. Therefore it is imperative to determine
which biological features improve computational capability whilst enabling an
efficient description of neuron dynamics. Ultimately neuro-computing seeks to
implement learning in a human fashion. In any kind of algorithm where human
expertise is implicit, fuzzy IF-THEN rules provide a language for describing this
expertise [2]. In this paper, the rationale for the distribution of biologically-
inspired computational elements is prescribed by the implementation of fuzzy
IF-THEN rules.

In Section 2, unsupervised and supervised learning methods, dynamic synapses
and receptive fields are reviewed. Section 3 includes a brief discussion of how fuzzy
reasoning can provide a basis for structuring the network topology and introduces
a generic network topology outlining the specific models and algorithms used to
implement fuzzy reasoning. Experimental results and remarks for the complex
nonlinear Iris classification problem are given in Section 4, and conclusions and
future research directions are presented in Section 5.

2 Review

The modelling of the neurons synapse is an essential aspect for an accurate
representation of real neurons, and one of the key mechanisms to reproducing the
plethora of neuro-computational artefacts in SNNs. From a biologically plausible
point-of-view synaptic modification in spiking neurons should be based on the
temporal relationship between pre and post-synaptic neurons, in accordance with
Hebbian principles . In fact, Hebbian learning and its ability to induce long-
term potentiation (LTP) or depression (LTD) provide the basis for most forms
of learning in SNNs. Hebbian learning gains great computational power from the
fact that it is a local mechanism for synaptic modification but also suffers from
global stability problems as a consequence [3].

2.1 Unsupervised and Supervised Learning

There are several learning algorithms that can be used to evoke LTP or LTD
of synaptic weights. Spike-timing dependent plasticity (STDP) is arguably the
most biologically plausible means of inducing LTP and LTD learning since it is
a temporal interpretation of Hebbs well-known first generation learning rule. In
terms of the temporal coding of spikes it is the order of individual pre and post-
synaptic spikes that determines whether the weight is increased or decreased
using STDP. BCM and STDP are of course unsupervised learning algorithms,
and as such they do not obviously lend themselves to applications requiring a
specific goal definition, since this requires supervised learning.

Table 1 presents a review of supervised learning algorithms and their encoding
schemes. Time-to-first-spike encoding schemes [4] [5] [6] [7] have the disadvan-
tage that they cannot be used to learn sequences involving multiple spikes. Ad-
ditionally, the evolutionary strategy [5] and the linear algebra approach are only
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suitable for offline learning [8]. With the statistical approach [9] the reported
findings have been limited to networks consisting of two neurons so it is diffi-
cult to know how robust the technique will be for larger networks. Supervised
Hebbian Learning [7] is arguably the most biologically plausible of the learning
algorithms. However, it suffers from the limitation that even after the goal firing
pattern has been achieved the algorithm will continue to change the weights.
Of all the supervised learning algorithms presented in Table 1, the ReSuMe [10]
approach is perhaps the most efficient. With this approach synaptic weights can
be altered as training progresses in an accurate and stable manner.

Table 1. Comparison of Supervised Learning Approaches [10]

Approach Coding Scheme References

SpikeProp Time-to-first-spike [4]
Statistical approach Precise spike timing [9]
Linear algebra formalisms Precise spike timing [8]
Evolutionary Strategy Time-to-first-spike [5]
Synfire Chains Relative spike time [6]
Supervised Hebbian Learning Time-to-first-spike [7]
Remote Supervision Precise spike timing [10]

2.2 Dynamic Synapses and Receptive Fields

Synaptic efficacy changes on very short-time scales as well as over the longer
timescale of training. The rate at which synaptic efficacy changes, is determined
by the supply of synaptic resources such as neuro-transmitter and the num-
ber of receptor sites. Dynamic synapse models are typically either deterministic
or probabilistic. However, it is important that the modelled magnitude of the
post-synaptic response (PSR) changes in response to pre-synaptic activity [11].
Further, biological neurons have synapses that can either facilitate or depress
the synaptic transmission of spikes [11].

Modelling the dynamics of limited synaptic resources makes neurons selective
to particular spike frequencies. The filtering effects of dynamic synapses occur
because there is a frequency of pre-synaptic spike trains that optimise the post-
synaptic output [12]. A likely explanation for this specificity of frequency is that
for certain presynaptic spike train frequencies the synapse will not run out of
resources whereas for another it probably will. Between these two pre-synaptic
spike frequencies there will be an optimum state where the post-synaptic spike
frequency is maximised. This means that certain neurons and synapses can po-
tentially be targeted by specific frequencies of pre-synaptic spike trains. This
phenomenon has been described as ’preferential addressing’ [12]. Constructing
a network of neurons using synapses that operate at different frequency bands
is desirable from the perspective of promoting neuron selectivity and richness of
information flow. However, it is particularly difficult to tune dynamic synapse
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models to operate at specific frequency bands by changing the various model
parameters. One way to guarantee that synapses are responsive to certain fre-
quencies is with the use of receptive fields (RF).

As far back as 1953, experiments with retinal ganglion cells in the frog showed
that the cells response to a spot of light grew as the spot grew until some
threshold had been reached [13]. The part of the visual world that can influence
the firing of a neuron is referred to as the RF of the neuron [13]. In Barlow’s
work [13], it was demonstrated that a spot of light within the centre of the
RF produces excitation of the neuron whereas when the spot of light is larger
than the RF or outside the RF inhibition occurs. The implications for SNNs are
that RFs can be used in conjunction with neuron models to promote feature
selectivity and hence enhance the ’richness’ of information flow.

3 Fuzzy SNN Topology

Biological neuron dynamics are determined by the relationships between spike
trains, synaptic resources, post-synaptic currents and membrane potentials. Neu-
ron selectivity can be further strengthened using RFs. The dilemma is in the way
in which all these various elements can be combined in a logical way resulting in
SNNs that provide insight into the biological neurons code, and are useful from
an engineering perspective. Biological neurons obviously implement a form of hu-
man reasoning. Human reasoning is fuzzy in nature and involves a much higher
level of knowledge representation [2]. Fuzzy rules are typically defined in terms
of linguistic hedges, e.g. low, high, excessive, reduced, etc. Taking a cue from
fuzzy reasoning, the aim of this paper is to demonstrate how the components
necessary to define a fuzzy rule in turn dictate the distribution of the various

Fig. 1. Generic FSNN Topology
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biologically plausible computational elements in an SNN. Fuzzy IF-THEN rules
are of the form:

IF (x1isA1)AND...AND(xN isAN )THEN(yisZ) (1)

where x1 to xN represent the network inputs, A1 to AN represent hidden layer
RFs and y is the network output. Figure 1 presents the generic Fuzzy SNN
(FSNN) topology for a typical classification problem. Each layer uses various
computational elements to manage the information flow and implement fuzzy
reasoning.

3.1 Input Layer

The function of the input neurons is to simply encode feature data into an
appropriate frequency range. Spike trains are then generated from the data using
a linear encoding scheme. The encoding scheme takes the frequency data points
and converts them into an inter-spike interval (ISI) which was then used to create
linear input spike trains.

3.2 Hidden Layer

All of the synapses in the FSNN are dynamic. The dynamic synapse model used
in this research has kinetic equations that describe inactive, active and recovered
states, see [11] for further information. Each pre-synaptic spike arriving at a
particular time activates a fraction of synaptic resources, which then quickly
inactivate with a time constant of a few milliseconds and then recover slowly.
The post-synaptic current is taken to be proportional to the fraction of resources
in the active state. The post-synaptic membrane potential is calculated using
a leaky-integrate and fire (LIF) passive membrane function. The hidden layer
neurons in the FSNN are connected to the input layer using facilitating synapses.
Careful choice of parameters in the synapse model determine the type of synapse,
again for further details refer to [11]. Figure 2. A shows an example of the Post-
synaptic Response (PSR) of a facilitating synapse in response to a spike train
of 20 Hertz, whereas Figure 2. B shows the PSR of a depressing synapse to
the same spike train. Gaussian RFs are placed at every synapse between the
input and the hidden neurons. The frequency dependent RFs determine where
an input frequency fi is in relation to the central operating frequency of the
RF FO. The weight is then scaled by an amount ki when calculating the PSR.
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The response of the synapse to an input frequency is determined by the RF.
This whole process relates to the IF (xi is Ai) part of the fuzzy rule, where xi

is the input and Ai represents the RF. In this way the RF makes the synapse
frequency selective in such a way that the numerous parameters in the dynamic
synapse model do not have to be carefully tuned.

The function of each hidden layer neuron is to impose the remaining part of
the antecedent fuzzy IF-THEN rule, namely the conjunctive AND. Simply sum-
ming the post-synaptic potentials is tantamount to performing a disjunctive OR.
The collective aim of the RFs connecting to each hidden layer neuron is to only
allow spikes to filter through to the output layer when all of the input frequen-
cies presented at each synapse are within the Gaussian RFs. This can be ensured
by making the RF excitatory within the RF and inhibitory outside. The excita-
tory (positive) part of the Gaussian RF scales the weight in the range [0,1]. The
inhibitory (negative) part of the RF scales the weight in the range [0, (1 − m)],
where m is the number of input neurons. If even one input frequency lies outside
the RF, the resultant inhibitory post-synaptic potential will have sufficient magni-
tude to negate the post-synaptic potentials from all the other synapses connecting
to the same hidden layer neuron. Figure 3 illustrates this process.

Fig. 3. The conjunctive AND part of the fuzzy rule using excitatory/inhibitory RFs

3.3 Output Layer

Depressing synapses model the fact that biological neurons often only respond to
the first few spikes in a spike train before running out of synaptic resources. This
type of synapse is illustrated by Figure 2. B. The action potential with these
types of synapses is only significantly high in magnitude for a very short interval.
In this way, this type of synapse can be described as being a coincidence detector.
The aim of the depressing synapses connecting the hidden layer to the output
layer is to produce spikes in the output in a regimented stable manner. It is then
the task of the ReSuMe supervised learning algorithm [10] to associate the hidden
layer neurons to the output layer neurons. Thus performing the fuzzy inferencing
between the hidden layer (antecedents), and the output layer (consequents).

With ReSuMe weights are changed whenever there is a correlation (or lack of
correlation) between the spike frequency coming from the hidden layer neurons
(analogous to the ’rule firing strength’) and the target teacher signal at a partic-
ular class output neuron. Refer to [10] for a detailed explanation of the ReSuMe
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algorithm. In summary, the presented FSNN topology provides a rationale for
the use of RFs, excitatory and inhibitory neurons, as well as facilitating and
depressing synapses. The next section of the paper describes how such a net-
work may be used to solve the complex non-linear Iris benchmark classification
problem [14].

4 Iris Classification Results

The Iris classification problem [14] is well-known in the field of pattern recogni-
tion. The data-set contains 3 classes of 50 types of Iris plant. The 3 species of
plant are Iris Setosa, Iris Versicolour, and Iris Virginica. In the interests of clarity
the three classes shall be referred to as class 1, class 2, and class 3 respectively.
Class 1 is linearly separable from classes 2 and 3. Classes 2 and 3 are not linear
separable and make Iris a complex non-linear classification problem.

The Iris data was sorted into two sets, one of 90 samples and the second of
60, to be used for training and testing respectively. Each set contained an equal
number of instances of each class, 30 of each in the training set and 20 of each
in the testing. The Iris training data was normalized and then linearly scaled
into the frequency range [10, 40] (Hertz). The scaled data was then converted
into ISIs and the linear input spikes were generated. A sample length of 1 second
was used to encode each data point, which adequately satisfies Nyquist sampling
criteria. For best results, introducing padding (samples with no spikes) ensures
that the order of the data does not affect the filtering by the hidden layer.

4.1 Positioning Receptive Fields

The task of determining the number, position and spread of RFs is an important
step in tuning a fuzzy system. This is because the maximum number of possible
rules governing the fuzzy inferencing process is determined by R = IM where R
is the number of rules, M is the number of membership functions and I is the
number of inputs. For the Iris classification task there are 4 inputs (4 features),
therefore the number of rules (number of hidden layer neurons) is given by
R = 4M . The number of possible rules grows exponentially as the number of
membership functions increases, this phenomenon is known as ’rule explosion’.
There are many methodologies for optimising RF placement [15]. For this dataset
Fuzzy C-Means (FCM) clustering was used to calculate the optimum positions
for RF placement.

Fuzzy clustering is distinct from hard clustering algorithms such as K-means
in that a data point may belong to more than one cluster at the same time. FCM
clustering was first developed by Dunn in 1973 [16]. FCM is better at avoiding
local minima than K-means but it is still susceptible to the problem in some
cases.

The Iris training set was clustered with FCM in a five-dimensional sense (4
features and the class data). Careful selection of appropriate cluster widths can
ensure, where possible, that hidden layer clusters are associated with a single
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Fig. 4. Hidden Layer Output

class. Matlab’s FCM algorithm was used to perform the clustering. The FCM
program returns the cluster positionss and a fuzzy membership matrix for all
the data samples in the training set. By setting appropriate thresholds on the
fuzzy memberships to each cluster, it is possible to determine which data samples
should be within each cluster and which should be excluded. Once the thresh-
olding has determined which data samples should belong to each cluster, the
variances for each feature can be calculated from the features of each included
data sample. These feature variances are then used to specify the widths of each
Gaussian RF. Figure 4 shows the output of the hidden layer in response to the
training data. As can be seen from Figure 4 there are 3, 3 and 4 clusters (and
hence hidden neurons) associated with classes 1, 2 and 3 respectively. The origi-
nal ordering of the training data is used for clarity, with each successive 60 second
interval corresponding to classes 1, 2 and 3. The thresholding technique could
not exclusively associate hidden neurons 5 and 6 to class 2. Similarly, hidden
neurons 9 and 10 could not be exclusively associated with class 3 without the
hidden layer excluding some points all together. In all there were 9 data points
(10% of the training set) that were not uniquely associated with one particular
class. This means that 10% of the data in the training set is unresolved in terms
of the FSNN associating the data correctly with the class data. It is the task of
the ReSuMe supervised training regime to resolve this error.

4.2 ReSuMe Training

The first step in implementing the ReSuMe training was to specify the super-
visory spike trains to be used. The ReSuMe algorithm was ’forgiving’ in this
respect producing good convergence for a wide range of supervisory frequen-
cies. Therefore supervisory spike trains of a 50 Hertz frequency were delivered
to the appropriate class output neuron whenever the data sample belonged to
that class. The supervisory signal for the other class neurons for the given data
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Table 2. Comparison of FSNN to other Supervised Learning Algorithms

Algorithm Training Testing

SpikeProp 97.4% 96.1%
Matlab BP 98.2% 95.5%
Matlab LM 99.0% 95.7%
Weight Limit Learning 100% 96.6%
FSNN 97.8% 95.0%

sample was of zero frequency. The learning windows were equal and opposite in
magnitude producing a maximum possible weight update of 0.05.

Each training data sample is deemed correctly classified when it produces
the maximum number of output spikes at the correct output class neuron. The
training error smoothly converges to the minimum training error in as few as
6 epochs. The training resulted in 2/90 misclassified data samples (97.78% ac-
curacy), improving the FCM clustering accuracy by 7.33% . Once training was
completed, all weights were then fixed and the unseen testing data (60 sam-
ples) were presented to the network. During the testing phase 3/60 data points
were misclassified (95% accuracy), showing good generalisation. Table 2 com-
pares the training results for FSNN against some other well-known supervised
learning algorithms for the Iris classification task. As can be seen from the table,
FSNN compares well with the other algorithms. It may be possible to improve
on the accuracy of the FSNN algorithm in any number of ways. More hidden
layer neurons and different techniques are among the multitude of modifications
to the FSNN that could be attempted to improve the accuracy. However, for a
preliminary attempt the results are encouraging.

5 Conclusions

This paper presents an FSNN topology which was demonstrated to produce
comparable results to existing ANN and SNN techniques for the Iris classification
problem. The FSNN topology presented provides a rationale for the assembly of
biological components such as excitatory and inhibitory neurons, facilitating and
depressing synapses, and receptive fields. In particular, the paper demonstrates
how receptive fields may be configured in terms of excitation and inhibition to
implement the conjunctive AND of the antecedent part of a fuzzy rule. Currently,
the work relies on the use of FCM clustering as a strategy for combating the
rule-explosion phenomenon of fuzzy logic systems. Ideally, it would be preferable
for the FSNN to determine the number, placement and spread of fuzzy clusters
without relying on an external statistical or clustering technique. For this reason,
future work in recognition of the growing interest in biological receptive fields,
will involve the development of dynamic receptive fields. The ultimate aim is to
develop a biologically plausible FSNN that tunes itself using strictly biological
principles, and in that regard this work represents a significant first step.
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Abstract. Chemical synapses exhibit a wide range of mechanisms that
modulate the postsynaptic response due to presynaptic action potentials
(APs) as a function of the arrival pattern of the presynaptic APs. Here we
demonstrate that combinations of depression, facilitation and frequency-
dependent recovery will give synapses that are either sensitive to the
steady-state input signal, or to the onsets and offsets of signal transients.
In addition, a synapse may be tuned to preferentially respond to low
frequency modulation of an input signal.

Keywords: Synaptic transmission, short term plasticity, depression,
facilitation.

1 Introduction

Arrival of an action potential (AP) at a presynaptic terminal causes probabilistic
release of neurotransmitter, which in turn results in a conductance change in
the postsynaptic membrane due to binding of neurotransmitter to postsynaptic
receptor molecules. Both the probability that neurotransmitter is released and
the amplitude of the postsynaptic conductance change actually depend on the
precise arrival times of presynaptic APs. Thus the postsynaptic response to
a particular AP depends on the history of previous arrivals, ranging back in
time from milliseconds to minutes. Many molecular mechanisms contribute to
the depression or facilitation of the postsynaptic response (for a review of such
mechanisms see [7]). So, in complication of the notion of the long-term strength of
a synapse as determined by mechanisms of long-term depression (LTD) and long-
term potentiation (LTP), a synapse also acts as a temporal filter of a dynamical
input signal on short time scales, up to minutes [5].

Synapses between excitatory neurons in the neocortex tend to display a rapid
depression to repeated stimuli arriving at frequencies from a few Hertz upwards.
The magnitude of depression becomes proportional to the inverse of the stimu-
lation frequency at higher frequencies [6]. As a consequence, the temporally and
spatially summed postsynaptic current from such synapses becomes indepen-
dent of stimulus frequency, and the resultant spiking output of the postsynaptic
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neuron carries no information about the input stimulus rate [1,6]. However, the
time course of depression is dependent on the stimulus rate and the receiving
neuron remains sensitive to changes in the input stimulus frequency. In fact the
postsynaptic neuron may effectively signal the percentage rate change [1].

Recent work has identified both release-independent depression (RID) and
frequency-dependent recovery (FDR) at such neocortical synapses [2]. A major
impact of the FDR is to restore the ability of the synaptic pathway to transmit
information about the steady state input stimulus rate through to the spiking
output of the receiving neuron. Thus different combinations of short term plas-
ticity (STP) mechanisms affect how a receiving neuron ultimately responds to
steady state and changing input signals.

Here we use a mathematical model of a synapse containing mechanisms that
contribute to depression and facilitation to explore the synapse’s ability to trans-
mit steady state and transient information about an input signal. We show that
it is not just the combination of STP mechanisms, but also the configuration
of synaptic release sites that determines the postsynaptic response to changing
input signals.

1.1 Short Term Plasticity

Short term plasticity at a chemical synapse is the result of molecular mechanisms
acting in the presynaptic terminal or in the postsynaptic membrane. Presynaptic
mechanisms affect the occupancy of release sites with readily-releasable vesicles,
and the probability that these vesicles will release their neurotransmitter on
arrival of a presynaptic AP. Postsynaptic mechanisms include receptor desensi-
tization that limits the number of receptor channels that will open on binding
neurotransmitter. Most presynaptic mechanisms ultimately can be traced back
to calcium [7]. Presynaptic STP results from alterations in calcium influx due
to an AP, or due to alterations in downstream molecular targets. In turn these
alterations affect the rates of vesicle endocytosis and exocytosis. Postsynaptic
receptor desensitization is a property of the particular receptor molecules and
how their conformation changes on binding transmitter molecules.

To summarise, STP may increase (facilitate) or decrease (depress) the ampli-
tude of the postsynaptic response to a presynaptic AP. The effect of a mechanism
usually is increased by the arrival of an AP, and then recovers back to a base-
line level with a certain time course, which typically ranges from milliseconds to
minutes. STP mechanisms act essentially through three different variables:

n - the number of vesicles occupying release sites and available for release
p - the probability that an individual vesicle will release
q - the amplitude of the postsynaptic current (PSC) on release of a single vesicle.

2 Model of Short Term Plasticity

We consider a synaptic model containing three presynaptic mechanisms for STP:
1. depletion of the readily releasable vesicle pool (RRVP) by exocytosis (release-

dependent depression: RDD),
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2. frequency-dependent replenishment of the RRVP from an effectively infinite
reserve pool (FDR), and

3. facilitation of the probability that a vesicle will release (fac).

The release pool size, n, and release probability, p, are treated as continuous,
deterministic quantities. Vesicle release sites are assumed to be limited in num-
ber, so that a release pool size of n = 1 corresponds to all release sites being
occupied. The fractional release pool size, n, is given by:

dn

dt
=

1− n
τn

−
∑

s

pv.n.δ(t− ts) (1)

Presynaptic spikes arrive at times ts. The RRVP is assumed to recover be-
tween spikes with a particular time course. The recovery time may be frequency-
dependent, decreasing with each presynaptic spike [2,4]:

dτn
dt

=
τ0
n − τn
τnr

−
∑

s

Δτn.τn.δ(t− ts) (2)

Vesicle release probability facilitates on the arrival of each presynaptic spike and
recovers back to baseline between spikes:

dp

dt
=
p0 − p
τf

−
∑

s

Δp.(1 − p).δ(t− ts) (3)

The amplitude of the postsynaptic response (PSR) is simply p.n in arbitrary
units. How this should be interpreted depends on the particular synaptic con-
figuration. For large numbers of synchronously activated release sites, as found
at giant synapses such as the calxy of Held [3], the PSR represents the average
response to a presynaptic AP. For small synapses, as found in neocortex, the
PSR represents the average found over many trials at one synapse, or a spa-
tial average over many synapses from different neurons onto a single neuron,
provided those synapses are synchronously active.

For a single trial at a small synapse, the PSR should be treated as the probabil-
ity that a vesicle undergoes exocytosis. The above model can be made stochastic
by determining vesicle release as a random process with probability p.n (which
includes the probability that a vesicle is available for release, n, and the prob-
ability that an individual vesicle will release, p) on the arrival of a presynaptic
AP. Instead of decreasing n by p.n, n is set to 0 if a stochastic release occurs,
otherwise it remains unchanged [4].

This model is in essence that proposed by [2] and extended by [4] and is
strongly related to previous models [1,6] (but with the addition of frequency-
dependent recovery). Each equation can be solved iteratively to give values for
n, τn and p at spike time ts in terms of their values at the previous spike time
ts−1 [4]. The model has been implemented in Matlab and NEURON.
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3 Results

3.1 Step Changes in Stimulus Frequency

In the initial experiments we considered the average PSR during a step change
from a regular stimulation frequency of 5Hz to a higher frequency (Fig. 1). Con-
sistent with previous models, when the only STP mechanism is vesicle depletion
(RDD), the PSR depresses as a function of the step frequency, with higher fre-
quencies leading to greater depression (Fig. 1a). Facilitation (fac) amplifies the
magnitude of depression and also speeds the recovery of the PSR back to the
5Hz baseline (Fig. 1b). Frequency-dependent depression (FDR) strongly reduces
the magnitude of depression (Fig. 1c). There is now a transient depression at
the step onset, and a transient over-recovery on stimulus offset. These transients
are strongly amplified (particularly the offset) by facilitation (Fig. 1d).

To test the effect of STP on the spiking output of a receiving neuron, a sin-
gle compartment neuronal model, containing Hodgkin-Huxley style sodium and
potassium channels to produce action potentials, was constructed in NEURON.
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Fig. 1. Step changes after 4s from a base frequency of 5Hz to increasing frequencies,
followed by a step back to base 2s later. Synapse contains (a) pure RDD (τn = 0.5s),
(b) RDD plus facilitation (p0 = 0.25, Δp = 0.1), (c) RDD plus FDR (Δtn = 0.2,
τnr = 0.5s) and (d) RDD plus FDR and facilitation. The model output is PSR= p.n.
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Fig. 2. Neuron driven by 100 stochastic synapses, each driven asynchronously by
Poisson-distributed spike trains of the same mean frequency. Stimulus trains undergo
a step change after 4s from a base frequency of 5Hz to 50Hz, followed by a step back
to base 2s later. Each synapse contains (a,b) pure RDD (τn = 0.5s; synaptic conduc-
tance gsy = 7nS), (c,d) RDD plus facilitation (p0 = 0.25, Δp = 0.1; gsy = 5nS), (e,f)
RDD plus FDR (Δtn = 0.2, τnr = 0.5s; gsy = 5nS) and (g,h) RDD plus FDR and
facilitation (gsy = 3nS). Left-hand column shows postsynaptic current and right-hand
column shows membrane voltage (spiking output).

This neuron was driven by 100 stochastic excitatory synapses, each containing
a single release site. Release of a vesicle resulted in a dual time course EPSC
(τ1 = 0.1ms and τ2 = 1mS; reversal potential 0mV). Each synapse was driven by
a 5Hz stimulus train that stepped to 50Hz after 4 seconds. Results for different
synaptic configurations are shown in Figures 2 and 3.

In Fig. 2 the synaptic configuration is equivalent to excitatory input onto a
neocortical pyramidal cell. Each synapse is driven by an independent, Poisson-
distributed spike train, with all trains having the same mean frequency. Hence
releases from all synapses are independent and asynchronous. Spatial and tem-
poral integration of the postsynaptic currents (EPSCs) results in a larger mean
current at 50Hz, and faster postsynaptic spiking as a consequence. Though these
synapses can transmit steady state information about the input stimulus rate,
synaptic depression reduces the possible difference between the mean postsy-
naptic current at 5Hz and 50Hz (Fig. 2a), and this difference is further reduced
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Fig. 3. Neuron driven by 100 stochastic synapses, each driven synchronously by regular
spike trains of the same mean frequency. Stimulus trains undergo a step change after
4s from a base frequency of 5Hz to 50Hz, followed by a step back to base 2s later. Each
synapse contains (a,b) pure RDD (τn = 0.5s; synaptic conductance gsy = 0.7nS),
(c,d) RDD plus facilitation (p0 = 0.25, Δp = 0.1; gsy = 0.6nS), (e,f) RDD plus FDR
(Δtn = 0.2, τnr = 0.5s; gsy = 0.7nS) and (g,h) RDD plus FDR and facilitation
(gsy = 0.3nS). Left-hand column shows postsynaptic current and right-hand column
shows membrane voltage (spiking output).

by facilitation (Fig. 2c). However, frequency-dependent recovery acts to amplify
this difference, enhancing the ability of the spiking output of the neuron to carry
information about the mean stimulus rate. In this example the synaptic conduc-
tance has been set such that the neuron filters out (does not respond to) the
5Hz input. These results are in line with previous models [1,2,6].

The situation changes, however, if the synaptic configuration is such that all
100 synapses are driven synchronously by the same stimulus train (Fig. 3). This
is equivalent to giant synaptic connections, such as calyces and neuromuscular
junctions. Now the postsynaptic current matches the changes in release proba-
bility, so that depression results in a lower mean current for a stimulus rate of
50Hz, compared to 5Hz (Fig. 3a). In this case the postsynaptic neuron can act to
filter out the higher frequency (Fig. 3b), rather than the lower frequency as with
asynchronous synapses. Facilitation and frequency-dependent recovery both act
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Fig. 4. Sinusoidal modulation of a base frequency of 30Hz between 10Hz and 50Hz.
Modulation frequency increases linearly from 0.05Hz to 3Hz over 100s. Synapse contains
(a) pure RDD (τn = 0.5s), (b) RDD plus facilitation (p0 = 0.25, Δp = 0.1), (c) RDD
plus FDR (Δtn = 0.2, τnr = 0.5s) and (d) RDD plus FDR and facilitation. The model
output is PSR= p.n.

to minimise the difference between the mean currents at different stimulus fre-
quencies (Fig. 3c,e). Consequently the spiking output can begin to follow the
stimulus frequency (Fig. 3d,f). With facilitation and FDR in combination, the
mean current at 50Hz slightly exceeds that at 5Hz, and the transient enhanced
release probability on the step back from 50 to 5Hz (see Fig. 1d) becomes evident
(Fig. 3g). If the synaptic conductance is reduced sufficiently the postsynaptic cell
becomes an offset detector, spiking reliably only on the step from a high to low
frequency (Fig. 3h).

3.2 Continuous Modulation of Stimulus Frequency

In a test of synaptic filtering of a continuously changing signal we examined
the PSR when the input stimulus varied sinusoidally from 10Hz to 50Hz (mean
30Hz). The rate of sinusoidal modulation of the input frequency was varied from
0.05Hz to 3Hz (frequency increasing linearly with time over 100 seconds) (Fig. 4).
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With pure depression, the PSR decreases as the stimulation frequency in-
creases and vice versa, roughly tracking the sinusoidal modulation of the carrier
signal frequency (Fig. 4a). At high modulation frequencies, the time courses
of depression and recovery are too slow for the PSR to reach its steady state
value at the limiting frequencies of 50Hz and 10Hz, respectively. Consequently
the amplitude of the PSR modulation decreases with increasing modulation fre-
quency. The addition of facilitation amplifies the PSR modulation and reduces
the dropoff with modulation frequency as it speeds both depression and recovery
(Fig. 4b).

Frequency-dependent recovery, on the other hand, results in an optimal mod-
ulation frequency at which the amplitude modulation of the PSR is maximal
(Fig. 4c). At low modulation frequencies FDR compensates for the changing
stimulus frequency, resulting in only a small change in PSR amplitude. At higher
modulation frequencies FDR is too slow to compensate and the PSR is limited
by the time courses of depression and recovery. The suppression of PSR modu-
lation amplitude at low and high frequencies results in an optimum modulation
frequency on the order of 1Hz at which the time courses of depression and re-
covery are able to track the stimulus frequency without undue contribution from
FDR. This effect is amplified by the addition of facilitation (Fig. 4d).

4 Conclusions

We have used a mathematical model to explore the temporal filtering properties
generated by mechanisms of short-term plasticity at a chemical synapse. Ex-
tending previous work we highlight that whether or not a synapse can transmit
information about the stimulus rate it is receiving depends both on the particu-
lar STP mechanisms and the synaptic configuration. For asynchronous synapses
depression leads to a reduction in frequency information [1,6], which is restored
by a frequency-dependent recovery mechanism [2]. However, for synchronous
synapses depression may still be evident in the postsynaptic current, leading to
a reduction in spiking output for higher stimulus rates. Facilitation and FDR
make the receiving neuron particularly sensitive to the onset and offset of step
changes in stimulus rate.

Further, we show that a synapse will also filter continuously modulated stim-
ulus rates, with the combination of depression and FDR leading to an optimal
modulation frequency of around 1Hz. This may enhance detection of slowly
changing environmental stimuli and is in the frequency range of saccadic eye
movements.
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Abstract. We present results from a paradigm of infant motor skill
learning, involving selecting the correct approach to grasp a ball placed
on a low stability stand. We also construct a theoretical model, based on
the concept of observational learning as the discovery of non-perceived
affordances and the transfer of actions on affordances, which can explain
some of the experimental data presented. We discuss the underlying con-
cepts of the model (including its basis in neuroanatomy) and how they
relate to the paradigm, and suggest possible model extensions.

1 Introduction

Imitation and observation are key components of learning in humans and other
species. Recent experimental results suggest that one of the components of ob-
servational learning may be the transfer of actions on affordances (meaning that
known parts of a motor repetoire become associated with “new” affordances, we
will discuss this further later), and the discovery of non-perceived affordances. A
very broad definition of affordances is that they provide information about how
to interact with objects, so learning actions on affordances is a critical part of
development.

1.1 Observational Learning

The capacity to learn by observation has important survival value. Trial and
error learning is very inefficient and potentially dangerous in situations where
the cost of failure is high or it is important to learn rapidly. Learning by observa-
tion, however, provides the opportunity to rapidly transfer existing knowledge.
Imitation and observation also seem to be closely connected with how we learn
languages.

Recent experiments on both human and monkey subjects have shown that
during observation of certain actions there is extensive brain activation in areas
usually thought to be involved only with the production of those actions [1].
These results suggest the hypothesis that understanding and recognition of ob-
served actions recruits brain areas involved in producing those actions, possibly
for mental simulation.
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1.2 Affordances

The concept of affordances has considerable value in the study of interactions
with objects. Gibson’s original definintion of affordances was ”What [the envi-
ronment] offers the animal, what it provides or furnishes, either for good or ill.”
[2] For the purposes of this study, we will define an affordance to be “the set
of features of an object that are required to be known before a particular goal
based action can be taken on it”. The action used by the actor to fulfill that
affordance is the affordant action or alternatively, the action on that affordance.
The affordances are properties of the objects, which may or may not be known
to the observer (see the next section), while the affordant actions are part of the
actor’s motor repetoire.

One interesting question is that of how initial affordances are “learned”. In
the Gibsonian view, affordances are part of the properties of the interaction
between actor and object, and therefore are not learned. However, under this
point of view we can distinguish between “perceived” and “non-perceived” affor-
dances. Non-perceieved affordances are those that are possible given the state of
the object, but not known to the actor because the actor does not recognise
the affordance. We define a perceived affordance to be an affordance known to
the observer, and non-perceived affordance to be a potentially learnable affor-
dance for the observer, given either increased motor skill repetoire or discovery
of environmental circumstances.

Associating actions with affordances. As well as the discovery of non-
perceived affordances, there is the question of how we learn to associate actions
with affordances. In situations where the action in question is already part of the
observer’s motor repetoire, this involves learning to use an existing action on an
affordance not already associated with the action. By observational learning, this
requires the observer to recognise the action used, involving both the mechanical
characteristics (such as contact points of a grip), and the affordance it is used
on, then to associate the two.

Various imaging studies have shown that observation of the actions of others
activates considerable areas of the brain previously thought to be used only in
the production of actions [1]. It is possible that this occurs due to attempts to
understand the observed actions by a process of mental simulation, which uses
many of the same pathways as production of actions.

1.3 Model Hypotheses and Construction

As we will show later, one of the things infants appear to be learning by ob-
servation is the objects’ affordances and the way to act upon them. Transfer of
affordances to novel objects/situations by observation would provide a powerful
learning mechanism. We therefore present a hypothesis on which we base our
model:

That one component of observation learning is the discovery of affordances
and of the means to act upon them. Another way of looking at this is that actions
on affordances (or action/affordance pairs) are learned.
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Effectively what is being learned is the observer’s knowledge of the affordances
available to it (the discovery of unperceived affordances), and the actions to use
on those affordances (and the linking of action-affordance pairs).

To model the process of transfer of the means to act upon newly discovered
affordance, our model needs to incorporate the following components:

– Some initial set of affordances and actions.
– A system for recognising the affordances acted upon by the observed actor

and associating the actions used with that affordance and the task.
– Recall of the action used and integration of this information into a motor

plan.

In addition, to be able to consider the parallel mechanism of trial and error
learning, the model also needs to include some form of motor error monitor and
system to correct motor errors.

2 Paradigm and Model

We now turn to look at developing the model and applying it to experimental
paradigms.

2.1 The Simulation Model

Our model comprises several components. These are:

Vision. This represents the basic visual input available to the model. We model
this in an extremely simple manner - the region has dedicated nodes each of
which holds a possible view available to the model, and they are activated
depending on the simulation setup. The possible views represent the initial
setup (the ball on the stand), the ball grasped, and the ball knocked off the
stand.

Goals. Here the simulation’s current goal is stored and used to influence behav-
iour. In the simple paradigm we present here, the only possible goals are to
grasp the object or push it over. Goals are represented by dedicated nodes
that code for an action and an object (i.e grasp-ball/push-ball). In the brain,
these are coded in separate areas, but we simplify here.

Object representation. This module picks out object features to identify ob-
jects. In our simple simulation, the only possible object to be recognised is
a ball. The weights of the projections from the vision module are chosen so
that feature nodes present here can be activated, which then project to the
object codes module where individual objects are represented.

Object codes. Here objects already known to the system are stored, such that
they can be activated by the object representation module.

Stored affordance/action pairs. This contains the set of affordances and re-
lated actions known to the system. These are primed by the object codes
module based on existing learning. The module contains nodes representing
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Fig. 1. Modular architecture for execution of grasping actions

actions, and nodes representing affordances, and the connections between
these are plastic, such that they can be learned by a Hebbian learning mecha-
nism (concurrent activation of an affordance and an action causes an increase
in the connection between them).

Sensorimotor integration. Here proprioceptive information about the cur-
rent state of the system’s hand is fused with visual information to update
the motor plan.

Motor planning. Here the affordance information is combined with sensori-
motor information about current physical state, to form a motor plan. This
involves calculating movements necessary to bring current finger positions
to contact points, give the angle of approach.

Action. This module represents the current action the system is attempting to
perform, consisting of dedicated nodes. We code the possible approaches to
the ball as separate actions.

Proprioceptive feedback. Here the action taken by the system is converted
into feedback about the current state of the system’s arm/hand. Proprio-
ceptive feedback is coded as a vector update indicating the change in hand
position.

Affordance/action recognition. The module processes visual input to at-
tempt to extract information representing the features of an observed affor-
dance and the action used on that affordance, coding here is the same as in
the stored action/affordance pairs module.
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Affordance/action comparison. Here a candidate action/affordance pair can
be compared to the system’s stored list of affordances and actions to see
whether a match occurs. It works with the recognition and storage systems
for affordances and actions to compare and find closest matches.

Mental simulation loop. This module extracts the goals of observed affor-
dance/action pairs by mental simulation - effectively planning out the ob-
served action to determine which goals are associated with it. The module
contains a simple internal fprward model which simulates use of the action,
to determine variables associated with the action that are not directly ob-
servable, in particular the action goal (which is part of the affordance to be
recognised).

2.2 Experimental Paradigm – The Ball and Stand

We now apply our model to a specific paradigm to test observational learning.
In this paradigm, infants are presented with a ball (40 mm in diameter) placed
on a support with a narrow base, such that the ball is easily knocked off the
stand. The stand diameter varies with age as follows:

Table 1. Variation in size of base with age

Age (months) Base diameter (mm) Notes

8 16
10 14
12 10
15 6
18 6 Narrow cylinder placed on stand

The setup is different from that usually encountered by infants at the relevant
developmental stage, where grasping motions for similar sizes of object can be
executed by taking a direct approach path. Here, the top approach is more
successful since it confers less danger of knocking the ball off the support.

2.3 Experimental Results – Trial and Error and Observational
Learning for Ball and Stand Paradigm

We can firstly examine whether the infants significantly improve their perfo-
mance at the task by repeated trial and error. The following table shows the
percentage of success on three sequential trials.

Only the infants at the age of 8 months improve their performance over re-
peated trials, other ages show no significant increase. For the 8 months olds,
the critical increase comes between the first and second trials. Infants at age 15
months actually decrease in performance between the first and second trials, the
reasons for this are not clear.
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Table 2. Change in success at paradigm with repeated attempts, showing percentage
of success on each trial

Age (months) Trial 1 Trial 2 Trial 3

8 12.5 62.5 50
10 44.4 44.4 44.4
12 44.4 44.4 44.4
15 57.1 14.3 57.1
18 50 57.1 50

Table 3. Effects of observational learning on ball/stand paradigm

Age (months) C Success (percentage) E success Significant

8 12.5 75 Y
10 44.4 55.56 N
12 44.4 50 N
15 57.1 70 N
18 50 66.7 N

Next, we can look at how the infants improve in their performance at the task
after a single demonstration by an experimenter. The control group (C) is given
the ball and stand with no demonstration, the experimental group (E) sees the
demonstrator grasp the ball once, then attempts to grasp it themselves.

Considering the performance of the control group compared to the experimen-
tal group, we see that the 8 month old infants demonstrate considerable increase
in success rate at the task after a single demonstration. Infants at all other ages
show a performance increase after the demonstration, however the results are
statistically significant only for the 8 month olds.

Given that the 8 month old infants demonstrate observational learning, we
can consider what the infants are learning. Our hypothesis suggests that the
infants are discovering non-perceived affordances and the ways in which to act
upon them. This might manifest in two ways, one general the other more specific.
The general discovery is that the ball is unstable, and so affords particular types
of grip not immediately obvious (or rather, the obvious types of grip are likely to
fail because of the ball’s instability. The specific mechnism is the way in which
the experimenter demonstrates grasping the ball (which involves a grasp from
above).

2.4 Encoding of Affordance/Action Pairs

In the model, we encode the actions to be used on the affordance of grasping the
ball as a direction of approach to the ball, moving to meet the contact points
defined by the affordance. The contact points are assumed to be already learned
as part of recognising the affordance. The angle of approach can either by vertical
or horizontal. The simulation has an initial bias towards the horizontal angle of
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approach. For both grasps, we assume that the infant already has the action as
part of its motor repetoire, and can recognise it when used by the demonstrator
(such that no new action is being learned). In the model, this translates to
existing representations for the actions in the affordance/action pairs module,
but low weights to the initially less preferred action.

We need to add a component of affordances (the contact points) into the
action activity going to the motor planning module), although the contact point
information would come from a separate affordance map in a more complex
model, since this is not really a component of the action in its pure state.

2.5 Simulation Steps

The simulation of trial and error learning occurs with the following steps:

1) Present object. Object module activated.
2) The projection from the objects module to the affordances/actions module is
used to stochastically select an affordant action from those known.
3) The affordance/action pair (contact points and a direction of approach) is
combinded with information about the current state of the system’s arm/hand
to form a motor plan
4) The motor plan is executed. During execution, sensorimotor feedback updates
the current hand position
5) The plan is recognised to have succeeded (object grasped) or failed (object
knocked over)
6) If the plan failed, reduce the weighting of the affordance used, if it succeeded,
increase the weighting
7) Repeat

We measure the success rate for each trial. For the observational learning
model, the steps are as follows:

1) Present object. Object module activated.
2) Teacher performs action on object. Affordance and action used are matched
to existing affordance/action pairs
3) The weight of the object to the matched affordant action is increased
4) Object presented to simulated infant
5) Simulation proceeds as per trial and error task (results compared to that task)

2.6 Simulation Results – Trial and Error Learning

We firstly look at our results for trial and error learning, simulating the 8 month
old infants improvement in performance by trial and error over a single trial.

We see in Figure 2 that the simulation shows a rapid gain in success rate after
the first trial, from the trial and error learning.
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Fig. 2. Simulation results for the ball and stand paradigm showing improvement by
trial and error between trials

2.7 Simulation Results – Observational Effects

Next we can look at the simulated observation learning, again for the 8 month
old infants. Here we simulate a single demonstration of the task by a teacher
using the grasp from above.

Fig. 3. Simulation results for the ball and stand paradigm showing improvement by
observational effects

In this figure we can see that a single observation allows rapid increase in
success percentage.

3 Methods

For the ball and stand paradigm we define an affordant action (for the affordance
of grasping the ball) to consist of a set of three contact points, each defined in
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physical space coordinates, and a variable specifying the angle of approach to
the ball, which takes two possible values V (for a vertical approach) or H (for
a horizontal approach). The object module is automatically activated with the
ball object during the simulation trial. The projection to the affordance/action
pairs module then activates one of the two possible affordant actions. Initially
the probability of selecting the vertical approach angle action is pV and that of
selecting horizontal pH .

Once an affordance is selected, a motor plan is produced to move the arm
to the contact points involved via the approach specified in the affordance. We
introduce fine motor control error, such that the fingers arrive at the location
of the contact point plus a normally distributed (in three dimensions) error of
magnitude Emotor and standard deviation σmotor. For the horizontal angle of
approach, any errors large enough to move the center of gravity of the ball over
the edge of the stand causes it to fall off, failing the task. For the vertical angle
of approach, the center of gravity of the ball must be moved more than twice the
radius of the base away from its center for it to fall off (a simple way to model
the lower chance of knocking the ball off the stand when the approach is from
above).

If the ball is knocked off the stand, the probability of using that action on
the affordance is adjusted downwards by Treduc and the probability of using the
other affordant action is increased correspondingly (such that the probability of
using either remains 1). If the grasp is successful, the probability of using the
affordant action selected is increased by Tgain and the other affordant action
reduced correspondingly. During the observation section of the simulation, there
is probability precog of the system correctly recognising the affordant action used.
The probability of using this affordant action is then increased by Tobs, and the
probability of the other affordant action decreased correspondingly.

3.1 Neuronal Basis

We describe here the mechanisms by which the model is implemented.

Dedicated representations - graded neurons. Areas where dedicated rep-
resentations are needed use graded neurons, the activation of which represents
whether that representation is active. These graded neurons have a membrane
potential, V , following the equation:

C
dV

dT
= gleak(V − Vleak) + Iinput (1)

and produce output:

O =
1

1 + exp(−V/Vscale)
(2)

Goals are coded with two graded neurons - one for the goal “Get ball” and
one for the goal “Push ball over”. These nodes are mutually interconnected with
inhibitory connections, such that only one can be active concurrently.
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Affordances are also coded with dedicated nodes, for ”Grasp” and ”Push”.
Affordant actions for the grasp affordance are coded with nodes for H and V, rep-
resenting the horizonal and vertical grasps. Again, nodes have mutual inhibition
such that only one can be active at a time.

The connections between affordances and actions are subject to plasticity,
according to the equation:

wij = LViVj (3)

where wij is the weight between nodes i and j, L is a learning rate constant and
Vi and Vj are the membrane potentials of neurons i and j. This connection can
also be modified by the error monitor when a failed attempt to grasp the ball is
detected.

Sensorimotor integration and motor planning. Both the sensorimotor
integration and motor planning modules rely on vector subtraction. The motor
planning module takes as input an action represented as a direction of approach
to contact points of final finger positions and an approach vector, and the current
position of the hand, and so performs the calculation:

Act = C −H (4)

Where Act is the vector representing the action to be performed (as a trajectory
of finger movements), H is the vector representing hand position, and C is the
position of the contact points to be reached.

Mental simulation - goal inference. The mental simulation loop is used
to extract the goal of an observed action on an affordance from the observed
movements. It takes as input an encoding of the movements of the observed actor.
This movement consists of a set of trajectory points, which are nine dimensional
vectors. These are then used to, activate one of two goal nodes, the output of
which is one of two possible goals, corresponding to those described above (get
ball or push ball).

Actions. Actions are simply output as the positions of the end effectors of the
system, resulting in triplet of three dimensional vectors.

3.2 Tube and Stick Paradigm

For the tube and stick paradigm, we use a simpler form of simulation. The system
is presented with the setup, and then chooses a strategy to achieve the goal of
retrieving the object from the tube. Initially the tube presents the affordance of
trying to extract the object manually, Amanual. The stick provides the affordance
of reaching into the tube Ainsert, but there is only a probability pAinitial

of this
being recognised.

The system then chooses an affordance on which to act, either Amanual or
Ainsert. If the former is selected, the probability of success is pmanual, while if the
latter is chosen, pinsert. The probability of success with the insertion affordance
is much higher.
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During observation, the demonstrator shows usage of the affordance Ainsert

which may then be perceived by the system.

4 Brain Basis

Development of the infant brain occurs in a topographic manner, from lower to
higher areas: a hierarchy of visual areas is brought on stream or enabled to become
active by axonal myelination in a successive manner. Such a process has been mod-
elled, for example, in detailed neural network models of the hierarchical visual sys-
tem V1→V2→V3→V4→TEO→TE. Lower level synaptic connections were
trained first in the model and the resulting outputs of the low-level feature detec-
tors used to train the further higher-level feature detectors. In this way it proved
possible to explain the sensitivity of V2 neurons to angles, of V4 neurons to partial
edges of shapes, up to spatially invariant object representations in TE [3].

Such successive training of a hierarchy of modules, on top of the initial skeleton
framework, arising from a genetic inheritance, also applies to prefrontal cortex
starting with motor cortex and pre-motor cortices. Thus we expect that affor-
dances, guiding the set of actions that can be taken on a given object, would
also be developed in such a two-stage manner.

There are two sorts of affordances objects provide: those based on present
experience and those learnt from past experience. The memorised affordances
can be regarded as guiding possible actions that can be made, having been
made in the past. The perceived affordances would then be those which arise
through observation of trial-and-error processing or observational learning, also
guided by the genetic skeleton. The perceived affordances would be stored in
some short-term memory initially, but would, if salient enough, become part of
the set of (long-term) memorised affordances.

We thus arrive at a picture of the learning of affordances as part of the overall
learning of sensori-motor actions. The stored affordances module in figure 1 is to
be regarded as the set of memorise affordances activated by the input of a given
object code. It is this one-to-many mapping which is memorised by an infant in
the process of babbling or making more goal oriented actions. The influence of
goals coded in the goal module of figure 1 will begin to play their influence as goal
creation occurs in the infant brain. Thus the stored affordance module would be
part of long-term memory, very likely associated with developing object codes
in the infant brain.

Results of brain imaging during observational learning and response indicate
that considerable areas of the cortex are activated by observing an action being
performed. In particular parietal and temporal areas are activated in this process,
as well as those in pre-motor cortex; also STS is activated when an object is
observed [4], corresponding to the possible significant points on the object by
which action can be taken on it (such as the contact points).

Besides such features of an object there are also the relevant limb to be used
and its orientation in making an action on the object (such as the horizontal
versus vertical grip on the ball in the paradigm we have discussed). We expect
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these to be encoded in pre-motor cortex (PMC) as part of the action plan, and
in the parietal region as to the limb (associated with a body map)..

The model of figures 1 & 2 is thus related to possible brain sites as follows:

Vision: The hierarchy of visual cortical modules
Object recognition/object codes: The temporal lobe
Goals: Prefrontal cortices (especially DLPFC and VLPFC)
Error detection: Cingulate cortex (and possibly DLPFC)
Contact points of stored affordances: STS
Motor plans for acting on the contact points: PMC
Proprioceptive information: S1, S2
Part of body to be used: Parietal (such as PRR)
Sensorimotor integration: SPL, IPS (parietal reach area, etc)
Hand position: Posterior parietal, such as V6A

5 Discussion

We have shown that the simulation can reproduce experimental results showing
improvement at the ball and stand task from both trial and error experimenta-
tion and observational learning. The observational learning improvement comes
from allowing the transfer of the action on the affordance used.

5.1 Why Eight Months?

One of the most interesting questions posed by the experimental results is why
the infants of 8 months of age demonstrate observational learning so clearly,
while older infants do not (additionally the 8 month olds seem to learn by trial
and error in a manner not shared by older infants). Part of this may be due
to the unusually low success rate of 8 month infants attempting the task for
the first time, which could be low due to the sample size. However the increase
is certainly statistically significant. Another possibility is that the differences
in task difficulty are such that strategy becomes more important than motor
ability only for the 8 month olds, and that strategy is the key component of
observational learning.

5.2 Learning Affordant Actions and Discovering Affordances

Another question we have already raised is that of how initial affordant actions
are learned (and to some extent how affordances are discovered). Our model
covers only the transfer of existing affordance/action pairs to new situations, not
the learning of those affordant actions. This transfer assumes that the actions
are already known to the infant, either in a different context or in the abstract
form, however it is interesting to address how these actions are developed, and
also how they might be modified during transfer.
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Whether these actions can be learned by observation or require trial and error
learning is unclear and yet to be determined. Since many actions are learned very
early, this may be difficult to test. We can assume that there are some action
primitives learned during early infant motor development. These are used to
form basic actions such as finger movements. Experience and trial and error
then allow these to form more complex actions, such as grasps. It may then be
possible to develop these actions by observation.

For developing/associating the affordant actions we see in the experiment
and simulation, we can consider a two stage process. In the first stage, the
action is observed and roughly classified (type of grip, angle of approach, hand
shaping). At this point, fine details such as the exact contact points of fingers
must be inferred if they cannot be observed (possibly by mental simulation). In
the second stage, trial and error allows the representation to be refined, such
that contact points become more established, hand shaping is better, speed of
approach becomes better tuned and so on. Further experiment is needed to
determine whether this two stage mechanism is necessary, particularly looking
at the second stage.

6 Conclusions

Based on the model results and other factors, we can draw some conclusions.

– That transfer/discovery of affordances and actions on those affordances can
explain how observational learning can operate in this paradigm.

– That several other factors involving the infant’s state and state of the object
are important, and a more complex understanding of affordances is likely
needed.

– That the demonstration of non-perceived affordances may be a more effective
method of observational learning than the transfer of actions on affordances.
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Abstract. In the antisaccade task, subjects are instructed to look in the
opposite direction of a visually presented stimulus. Controls can perform
this task successfully with very few errors, whereas schizophrenia patients
make more errors and their responses are slower and more variable. It has
been proposed the fundamental cognitive dysfunction in schizophrenia in-
volves prefrontal dopaminergic hypoactivity. We examine via computer
simulations the effects of dopamine on the variability of aSRTs in a neural
cortico-collicular accumulator model with stochastic climbing activity. We
report the simulated aSRTs for the hypo-DA level havehigher standard de-
viation and mean values than in the normal and hyper DA level. The simu-
lated higher mean and standard deviation for the hypo-DA group
resemble the performance differences in the antisaccade task observed in
patients with schizophrenia and are in accordance with the theory of a
hypo-DA state in the frontal cortical areas of patients with schizophrenia.

Keywords: Accumulator model, schizophrenia, antisaccade task, reac-
tion times, dopamine, cortex, superior colliculus, pyramidal cells, in-
hibitory interneurons

1 Introduction

It has been hypothesized that patients with schizophrenia are hypo-dopaminergic
in their prefrontal cortex and this state has been related to their poor perfor-
mance in decision making and working memory tasks [10]. In this study, we
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examine the effects of dopaminergic state of a cortical input to a collicular neural
model by simulating its performance in the antisaccade task. In particular, we
extend a biophysical cortico-collicular neural model [3], [4], [5], [6] and model
the DA-D1 effects on the generation of slowly varying climbing activity of the
reactive and planned input decision signals of a SC model in the antisaccade task
[1], [2]. Psychophysical parameters such as the decrease of mean and standard
deviation, as well as the independence of the mean of error prosaccades observed
among two groups of individuals are explained qualitatively through the varia-
tion of D1 component of dopamine (DA) in the modeled prefrontal cortex (PFC).
The groups that are compared to the simulations are: (1) a group 2006 normal
subjects and (2) a group of 30 patients suffering from DSM-VI schizophrenia.
This work combines and extends previous biophysical models [3], [4], [5], [6]. A
much larger set of modeled empirical findings have been presented in [30].

2 Materials and Methods

2.1 Basis of the Model

In a modeling attempt of the antisaccade task [1],[2], Cutsuridis and colleagues
[3], [8], [9] hypothesized that the preparation of an antisaccadic eye movement
consisted of two cortically independent and spatially separated decision sig-
nals representing the reactive and planned saccade signals, whose linearly rising
phases were derived from two normal distributions with different means and
standard deviations. These two cortical decision signals were then integrated at
opposite colliculi locations, where they competed against each other via lateral
excitation and remote inhibition. A saccade was initiated when these decision
processes, represented by the neuronal activity of SC buildup neurons with non-
linear growth rates varying randomly from a normal distribution, gradually build
up their activity until reaching a preset criterion level. The crossing of the pre-
set criterion level in turn released the “brake” from the SC burst neurons and
allowed them to discharge resulting in the initiation of an eye movement. One
of the model’s predictions was that there is no need of a top-down inhibitory
signal that prevents the error prosaccade from being expressed, thus allowing
the correct antisaccade to be released. Moreover, the model offered a functional
rationale at the SC neuronal population level of why the antisaccadic reaction
times are so long and variable and simulated accurately the correct and error
antisaccade latencies, the shape distributions and the error probabilities.

In a follow up of this study Cutsuridis and colleagues [4], [5], [6] modeled
the decision signals with adjustable slopes with the population activities of two
cortical networks of pyramidal neurons and inhibitory interneurons and predicted
that only the currents NaP, AMPA and NMDA can produce the range of slope
values of these decision signals in the collicular model.

In this study, we extend the latter model to incorporate and study the effects of
dopamine on the conductances of the predicted NaP, AMPA and NMDA currents
and simulate qualitatively a number of psychophysical parameters in the antisac-
cade task. Preliminary results of this study have been published in [7], [31].
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Fig. 1. Composite model architecture of cortical modules and superior colliculus mod-
ule with reactive and planned inputs. Cortex: triangular neurons symbolize pyramidal
cells and diamond shaped neurons symbolize GABAergic inhibitory inteneurons. Su-
perior colliculus: black nodes are fixation cells, gray nodes are buildup cells, and white
nodes are burst cells. The inputs to this layer are classified as reactive (R) and planned
(P). DA: mesocortical dopamine innervation of prefrontal cortex (PFC). Their respec-
tive time course is shown schematically corresponding to an onset and offset.

2.2 Cortical Network Architecture

Standard Hodgkin-Huxley modeling techniques were used to simulate networks
of single compartmental models of cortical pyramidal neurons and cortical in-
hibitory interneurons (IN). Pyramidal neuron membrane potential obeyed

CdV/dt = −(Ileak+INa+Ik+INaP +Ik(Ca2+)+IAMPA+INMDA+IGABAA+Iinj)

with Cm = 1.2 μF/cm2. GABAergic inhibitory interneuron membrane potential
obeyed

CdV/dt = −(Ileak + INa + Ik + IAMPA + INMDA + IGABAA + Iinj)

with Cm = 1.2 μF/cm2. The synaptic currents IAMPA, INMDA, IGABA−A are
represented by the equation IX= gX (V - EX), where the conductances are
measured in mS/cm2 and the reversal potentials in mV (see fig. 2 for nu-
merical values). In addition INMDA contained a voltage dependent Mg+ gate
s(V)=1.08(1+0.19exp(-0.064V))−1. The persistent sodium current (NaP) was
modeled as in [14]. The calcium activated potassium current is given by

Ik(Ca2+) = gk(Ca2+)Cai(V − Ek(Ca2+))

where the conductance gk(Ca2+)=0.07 mS/cm2 and the reversal potential
Ek(Ca2+)=-95 mV. The variable Cai was the intracellular calcium concentra-
tion measured in μM [24]. Because very little is known about the detailed
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connectivity of neurons and the associated synaptic strengths in the frontal and
posterior parietal cortices, we intentionally kept the network model as general
as possible. Two networks of 20 pyramidal cells and 4 GABAergic interneuron
each were simulated. In each network, we assumed that all pyramidal cells and
GABAergic interneurons were fully connected [5]. The output of each network
was the average population activity of a homogenous population of neurons with
identical connections. These outputs were then used as the input drives of the
superior colliculus (SC) model [3].

2.3 Superior Colliculus Model

The superior colliculus model is a one-dimensional on-center off-surround leaky
competitive integrator of the intermediate layer of the superior colliculus devel-
oped by [13] and extended by our group [3]. The neural architecture of the model
is described in figure 1. Self-excitation and lateral inhibition is assumed between
all neurons in both superior colliculi.

2.4 Dopamine Modification

The effects of DA-D1 on the ion conductances were the following:

1. Enhancement of INMDA (replacing gNMDA with rNMDAgNMDA) [15],[16]
2. Enhancement of INMDA for the inhibitory inteneurons (replacing gNMDA

with rNMDAgNMDA) [17]
3. Suppression of IAMPA (replacing gAMPA with rAMPAgAMPA) [15]
4. Enhancement of INaP (replacing VNaP and ENaP with VNaP+δv and

ENaP+δv) [18]
5. Reduction of IK(Ca2+) (replacing gK(Ca2+) with rK(Ca2+)gK(Ca2+)) [28]
6. No effect on the GABA current [16]

Fig. 2. Synaptic and ionic model parameters. All the other values of the parameters
used in the model were obtained from [5], [6].
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Fig. 3. The effects of D1 receptor activation on the ion channels

The detailed values of the above parameters for the three levels of dopamine
(D1) for which the network was simulated are given in fig. 3. The factor r rep-
resents the amount of available receptors for a given level of dopamine and it
is incorporated in the simplified kinetic model theory [19]. All of the r-values
given in fig. 3 are experimentally measured values of the given currents, in patch
clamp experiments, under the action of D1 agonists-antagonists [20],[14]. In the
case of the persistent sodium current no effect on the amplitude of the current
was observed but rather a shift of the potential at which the maximum ampli-
tude occurred. The GABA current remained unchanged under the action of D1

agonists-antagonists [20].

3 Experimental Setup

The control data used in this study were collected in an antisaccade task [1],[2].
Details of the experimental procedure used for the collection of these data are
described therein [1],[2]. The same experimental setup as in [1],[2] was used for
collecting the reaction times of the group with schizophrenia. The mean and
standard deviation of the aSRT’s for each group was calculated using Ratcliff

Fig. 4. (Top-left)Histogram of correct antisaccade reaction times (aSRT) of normal
subjects. (Top-right) Histogram of error prosaccade reaction times (SRT) of normal
subjects. (Bottom-left) Histogram of correct antisaccade reaction times (aSRT) of
schizoophrenia subjects. (Bottom-right) Histogram of error prosaccade reaction times
(SRT) of schizophrenia subjects.
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analysis [12]. The aSRT’s for each subject were sorted and then divided into
four quantiles, the mean for each quantile was calculated among each group.
This procedure produced a distribution of aSRT’s, which was considered to be
the average distribution of the group under question. From these distributions all
the features of the group reaction times could be calculated, mean and standard
deviation of the whole set of answers as well as mean and standard deviation of
the correct antisaccades and error prosaccades separately. Figure 4 depicts the
correct and error SRT histograms of the normal and schizophrenia populations.

4 Results

In a network of 20 pyramidal neurons and 4 inhibitory interneuron and for each of
the three dopamine levels, for each simulation, 480 reaction times were obtained
from the collicular model. The values of the rising phase of the signals were
obtained from the cortical model described above. A variation for the conduc-
tance of the NMDA current in the pyramidal neurons gave rise to a bell-shaped
rising phase (slope) in the spiking of the cortical network. The spiking of the
cortical network was linearly fit with a line from the beginning of the spiking
to its maximum value. Then this bell-shaped distribution of gradients was fed
into the superior colliculus model to produce the antisaccade reaction times for
each dopamine level. In these simulations we assumed that the signal of the error
prosaccades was not affected by dopamine, since it is not being produced by the
prefrontal cortex, whereas the signal of the correct antisaccades is modified by
dopamine (D1).

4.1 Effects on the Mean of the Antisaccade Reaction Times

The effects of (D1) dopamine modification of the cortical signal was to decrease
the mean of the aSRT’s as indicated by Fig. 5 (Left) of the simulated results for

Fig. 5. (Left) Qualitative simulation results indicating a decrease of mean of the aSRT’s
as D1 level increased. (Right) The experimental data of the mean of the aSRT’s for
the two groups (normal and patients) show a similar decrease.
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Fig. 6. (Left) Qualitative simulation results showing a decrease of the standard devia-
tion of the aSRT distribution as dopamine level is increased. (Right) The experimental
data for the groups under study show a similar decrease.

the three levels of dopamine. In Fig. 5 (Right) the experimental data of the two
groups show a similar decrease in mean aSRT [21],[22].

4.2 Effects on the Standard Deviation of the Antisaccade Reaction
Times

The effect of (D1) modification of the cotical signal was an increase in the stan-
dard deviation of the aSRT’s as the dopamine level was decreased (Fig. 6 Left).
This observation was resembled qualitatively the observed increase of the stan-
dard deviation in the patient group (Fig 6 Right) [21].

5 Conclusion

The psychophysical data and results of the simulations presented in this study
provide evidence that there is a modification of the cortical signal (prefrontal
cortex) due to dopamine component D1, and that this modification can explain
the increase in the mean and variance in the antisaccade reaction times produced
by patients.

Other models concerning the modification of cortical signals by a D1 action
of dopamine can be found in the literature concerning working memory tasks,
the inverted U-shape of firing of the PFC neurons as well as the operation of the
PFC under the action of psychostimulants [24],[14],[25],[26]. In all of the above
studies the action of D1 on the cortical currents was modeled and in all of the
studies the qualitative action of dopamine on ionic currents was the same.

The effect of dopamine on D2 receptors was not investigated in this study.
This effect could be significant at high dopamine levels [28] and may interpret
other sets of data regarding the function of the prefrontal cortex when high levels



Modeling the Effects of Dopamine on the Antisaccade Reaction Times 297

of dopamine are observed. Hence we could conclude that the lack of a principal
neurotransmitter in the prefrontal cortex can have very significant effects in
decision making, generating poorer performance in such tasks.

References

[1] Evdokimidis, I., Smyrnis, N., Constantinidis, T.S., Stefanis, N.C., Avramopoulos,
D., Paximadis, C., Theleritis, C., Efstratiadis, C., Kastrinakis, G., Stefanis, C.N.:
The Antisaccade Task in a Sample of 2006 Young Men I. Normal Population
Characteristics. Exp Brain Res. 147, 45–52 (2002)

[2] Smyrnis, N., Evdokimidis, I., Stefanis, N.C., Constantinidis, T.S., Avramopou-
los, D., Theleritis, C., Paximadis, C., Efstratiadis, C., Kastrinakis, G., Stefanis,
C.N.: The Antisaccade Task in a Sample of 2006 Young Males II. Effects of Task
Parameters. Exp. Brain Res. 147, 53–63 (2002)

[3] Cutsuridis, V., Smyrnis, N., Evdokimidis, I., Perantonis, S.: A Neural Model of
Decision Making by the Superior Colliculus in an Antisaccade Task. Neural Net-
works 20(6), 690–704 (2006)

[4] Cutsuridis, V., Kahramanoglou, I., Smyrnis, N., Evdokimidis, I., Perantonis, S.:
A Neural Variable Integrator Model of decision making in an Antisaccade Task.
Neurocomputing 70(7-9), 1390–1402 (2007)

[5] Cutsuridis, V., Kahramanoglou, I., Perantonis, S., Evdokimidis, I., Smyrnis, N.:
A Biophysical Model of decision making in an Antisaccade Task through variable
climbing activity. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN
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Abstract. We propose a new multi-stage procedure for a real time
brain machine/computer interface (BMI) based on the Steady State Vi-
sual Evoked Potentials (SSVEP) paradigm elicited by means of flickering
checkerboards. The developed system work in asynchronous mode and
it does not require training phase and its able to detect fast multiple
independent visual commands. Up to 8 independent commands, were
tested at the presented work and the proposed BMI system could be
extended to more independent commands easily. The system has been
extensively experimented with 4 young healthy subjects, confirming the
high performance of the proposed procedure and its robustness in respect
to artifacts.

1 Introduction

A brain-machine interface (BMI) is a system that acquires and analyzes brain
signals to create a new communication channel in real-time between the human
brain and a computer or a machine [1].

We propose a new multi-stage procedure for a real time brain machine/computer
interface (BMI) based on the Steady State Visual Evoked Potentials (SSVEP)
paradigm. Applications of the SSVEP to BMI were proposed first by Middendorf
et al. [6] and investigated by many researches [3, 7].

A visual stimulation event elicites a visual evoked potential activity (VEP),
originated on the occipital cortex, that is embedded into the spontaneous brain
activity, measured with the Electro-encephalogram (EEG). When visual stimula-
tion events are repeated and the stimulation frequencies are higher than approxi-
mately 4 Hz the consecutive individual elicited potentials (VEP) overlap leading
to periodic response, named as Steady State Evoked Potential (SSVEP) [2].

The proposed BMI system allows a fast estimation of the energies of the pe-
riodic visual evoked responses elicited when the subject gazes a checkerboard
flickering at a specific frequency. The users can select between different indepen-
dent commands, associated with checkerboards flickering at different frequencies
(in our case 8 commands) that could belong simultaneously to different frequency
visual stimulation ranges, from low stimulation range [4-9 Hz] to middle range
[11-25 Hz]. There is no restriction that the stimulation frequencies are multiple

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 300–307, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Fast Multi-command SSVEP Brain Machine Interface without Training 301

to each other because the algorithm does not depend on the estimation of the
higher harmonics energies but rather relays on the fundamental stimulation fre-
quency [6,3,7]. The developed BMI system allows on asynchronous mode i.e. no
event cue process is required like in synchronous mode.

Although some aspects of the SSVEP paradigm for BCI have been already
exploited in a number of studies [3, 6, 7, 8], our design is innovative, suitable for
real-time applications and robust to artifacts due to the use of a Blind Source
Separation (BSS) method in the preprocessing step, as also applied by us [4, 5].
Moreover, the presented approach does not require a classifier, thus making
possible to be used without initial training phase (plug and play).

To evaluate the performance of the algorithm we have designed a layout on a
computer screen with 8 small checkerboards images flickering and moving along
with a controlled object. Extensive experiments with 4 young healthy subjects
with 5 electrodes placed on occipital area CPz, Pz, POz, P1, P2 and one in the
forehead Fz were performed.

2 Methods

Our BMI system consists of a visual stimulation unit designed as a multiple
choice table in the form of an array of eight small checkerboard images flickering
with different frequencies and moving continuously along with the controlled ob-
ject (see Fig. 1(a)). The eight small checkerboards were flickering at frequencies
{8.8, 9.4, 11.55, 12.5, 13.65, 15 16.7, 18.8 Hz} using a 21-inch CRT monitor with
refresh rate of 170 Hz observed at a distance of 80-100 cm from the center. Each

(a) (b)

Fig. 1. (a) Eight small checkerboards flickering at different but fixed frequencies moving
along with object. Object can move in eighth different directions. The subject should
move the object to reach a target that is located randomly on the screen. (b) Multi-
Input Multi-output model for feature extraction stage. Q-EEG channels are adaptively
filtered using P-references, sinus waves with the same flickering frequencies, to estimate
the SSVEP amplitudes.
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checkerboard/frequency is assigned to a specific direction of movement of the
controlled object separated 45o.

The BCI multistage analysis BMI unit consist in:

Acquisition. A data acquisition amplifier Biosemi c© recording 6 EEG channels
sampled at 512 Hz and prefiltered by means of a high pass filter with a cutoff
frequency of 1 Hz.

Artifact rejection. A second Order Blind Source Separation (BSS) algorithm
AMUSE [10] was applied for artifact rejection. A sliding window of 3 sec-
onds with 0.120 ms of displacement for all channels was selected to apply
AMUSE. The implemented BSS-AMUSE algorithm can be considered as
consisting of two consecutive PCA (principal component analysis) blocks.
First, PCA is applied to the input data of N points; and then a second
PCA (SVD) is applied to the time-delayed covariance matrix (in our case,
the delay is set to one sample or four milliseconds) of the output from the
previous stage. In the rst step standard or robust prewhitening (sphering)
is applied as a linear transformation z(n) = Qx(n) where Q = R1/2

xx of the
standard covariance matrix of the observed data vector x[n]. Next, Singular
value decomposition(SVD) is applied to a time-delayed covariance matrix of
prewhitened data, Rz = E{zT (t)zT (t− 1)} = USVT where S is a diagonal
matrix with decreasing singular values and U, V are matrices of eigenvec-
tors. Then, an unmixing (separating) matrix is estimated as W = UTQ
The estimated independent components were obtained as Y = WX where
X = [x(1),x(2), ...,x(N)]T . The AMUSE BSS algorithm ranks the com-
ponents (EEG components), thus undesired components corresponding to
artifacts (blinking, high frequency noise) were removed at each time auto-
matically. Once removed undesired components, the significant useful com-
ponents were projected back to scalp level using the inverse of W to get the
cleaned signals X̂ = W−1Y.

The first and the last components were rejected: the first component
is related with to ocular and other low frequency artifacts while the last
component is related mainly to muscular activity. This procedure enhances
the overall performance of the system preventing rejection of many EEG
epochs, see our previous publications [4, 5] for more details.

Feature extraction. To estimate the elicited SSVEP amplitude a MIMO mix-
ing model was used. We have applied a Recursive Least Square (RLS) algo-
rithm [9] to estimate it. The cleaned signals from the BSS stage where filtered
by means of a MIMO RLS,(see Fig. 1(b)), where the reference signals were
sinusoidal signals with the same frequencies as the flickering checkerboards.
The output of each FIR transversal filter, of order L, correspond to the
estimated sinusoid/SSVEP per channel and frequency.

Therefore, we assume that we have a MIMO system with Q inputs
dq[n](EEG channels) with P reference inputs xp[n](sinusoidal signals) and
PQ outputs spq[n] representing the estimated SSVEP per channel and fre-
quency, (see Fig.2(a)).
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(a) (b)

Fig. 2. (a) A MIMO system consisting P references xP (n)(sinusoids or SSVEP ap-
proximations) and Q input signals (SSVEP embedded in EEG noise). The outputs
spq(n) of each transversal filter Hpq(z) are the estimations of the SSVEP amplitudes
per frequency p and channel q (b)One channel EEG spectra estimation by FFT and
the smoothing cubic spline approximation function. p = 10−4.

The multivariate model is defined as equation:

e(n) = d(n)−HTx(n) (1)

where

d(n) = [dT
1 (n)dT

2 (n) · · · dT
Q(n)]T

e(n) = [eT
1 (n)eT

2 (n) · · · eT
Q(n)]T

x(n) = [xT
1 (n)xT

2 (n) · · ·xT
P (n)]T

(2)

with buffered reference input xp(n)

xp(n) = [xp(n)xp(n-1) · · ·xp(n-L+1)]T (3)

and with the transfer function hpq between channel q and reference p defined
as a transversal L-order FIR, equation 4, included in the multivariate transfer
function H ∈ R

PL×Q, equation 5.

hpq = [hpq,0hpq,1 · · ·hpq,L−1]T (4)
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H =

∣∣∣∣∣∣∣∣∣
h11 h12 · · · h1Q

h21 h22 · · · h2Q

...
...

. . .
...

hP1 hP1 · · · hPQ

∣∣∣∣∣∣∣∣∣
. (5)

The estimation of the multivariate transfer function H via RLS algorithm
can be performed as follows, (see Eqs.6, 6).

eq(n) = dq − hT
q x(n)

hT
q (n) = hT

q (n− 1) + R−1
xx (n)x(n)eq(n) q = 1 . . .Q

R−1
xx (n) = λ−1R−1

xx (n− 1)− λ−2R−1
xx (n− 1)x(n)xT (n)R−1

xx (n− 1)
1 + λ−1x(n)T R−1

xx (n− 1)x(n)
(6)

The estimation of the SSVEP per channel p and frequency q is given by

spq(n) = hpq
T x(n) (7)

With the multichannel RLS the Kalman gain is defined as K(n)=R−1
xx (n)x(n)

is the same for all the Q EEG channels. It should be noted that we need to
computed it only one time per new sample.

The variance of the last hundred of milliseconds of the estimated sinu-
soidal per each frequency and channels were evaluated as the estimation of
the energies of the SSVEP, Epq = V ar{spq(n)}.

The spectral distribution of the spontaneous of the energies varies de-
pending on each band and the presence of other activities, i.e. the high
frequencies have lower activities than lower bands and frequencies close to
the α band. At the same time, the response level of the SSVEP could be af-
fected depending on the frequency range. In the presented BMI we combine
together different stimulation frequencies, some below α band. To diminish
the intra and inter subject variability we propose to compensate each es-
timated SSVEP energy values by the estimation of the spontaneous EEG
energies estimated by approximating the FFT of the analysis window by a
smoothing cubic spline. It consist on approximating a series of data points
(xi, yi)) by piecewise cubic polynomials g(x), minimizing the the residual
sum of squares, (Eq.8), with a restriction on smoothness of the resulting
cubic spline [13, 12].

S(p) = p
∑

i

{yi − g(xi)}2 + (1− p)
∫
g

′′
(x)2dx (8)

The parameters p of smoothing splines g(x) which controls the level of
smoothness trade off between minimizing the residual error and minimiz-
ing local variation. In the limits of p ∈ [0, 1], for a p value of 1 the function
obtained is a interpolating cubic spline while when p is equal to zero the
spline function is equal to a linear regression. The value of the p is 10−4 was
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Fig. 3. t-statistic evolution when subject is gazing at one of the 8 different checker-
boards/commands. One of each 8 curves represent the t-statistic associated with each
simulation frequency. One t-value increases for a specific frequency/command when
the subject is gazing at the corresponding checkerboard. This picture corresponds to 1
minute of experiment with subject is looking at different checkerboards for few seconds.

found by experiments to be good enough to give a continuous-wise spectral
distribution of the spontaneous EEG, not robust against FFT variations,
(see Fig. 2(b)).

The vales of the energies are compensated by a value the relative values
of the spline function g for the selected P checkerboard flickering frequencies.

Statistical test. At each 120 ms, the evaluation of which checkerboard the
subject is gazing or which frequency elicits the stronger respect to the other
frequencies is evaluated by multiple two-samples t-test statistical compar-
isons. The t -statistics values were used as a decision parameters to determine
which is the desired output, (see Fig. 3), establishing a fix threshold.

3 Results

We tested our SSVEP-based BCI system with 4 healthy young subjects and 8
flickering frequencies. Without any training an experimental evaluation mode
using comparison of voice command requests and the brain responses, in which
the success rate and the transfer rates were determined. The computer generated
randomly requests for movement in each direction using voice messages. The
subject was requested to move the object in one of the 8 directions at intervals
of 7 s in 36 trials (4 request per direction). The experimental results are shown
in table 1.

The presented results exhibit that this multi-stage procedure allow to have a
good performance, with mean delay times lower than 2.5 s and with high success
rates.
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Table 1. Performance mean values for 4 subject during evaluation mode

Subjects Mean
1 2 3 4 results

Success rate (%) 97 89 96.5 100 95.6
Execution Time [s] 2.1±0.8 3.1±1.5 2.3±0.9 2.4±1.2 2.4±1.0
Bit rate (bit/min) 54 30 48 50 45.5

The used bit rate measure [11] integrates the accuracy of the signal-classification
and the number of classes and the time delays:

B = V

(
log(N) + Plog(P ) + (1− P )log

(
1− P
N − 1

))
(9)

where B= bit rate [bits/s] P=proportion correct, N=number of classes/targets
and V: speed [classification/s].

Once the evaluation experimental mode was performed; in order to observe
the subjects ability to control and navigate cursor for demo, it was requested to
the subjects for several minutes to move the object toward a small target located
randomly on the screen.

4 Conclusions

Although the SSVEP paradigm is well known in the BCI community since the
studies performed by several research groups [3, 6, 7, 4, 5], we believe that this
proposed approach offers several advantages for improved usability and efficiency.
This algorithm offers a faster detection of the desired command without losing
classification accuracy.

Also the estimation of the spontaneous EEG activity and noise by mean of
cubic spline approximation allowed to mix different flickering frequencies and at
the same time. Furthermore, a multiple statistical comparison analysis method
indicates that the proposed method does not need any initial training phase
(plug and play concept), because we do not need a classifier.

The system was tested with stimulation using small and close flickering checker-
boards which elicited a sinusoidal-wise response. Future research will concentrate
on other types of visual stimulations were the response are weaker and maybe not
close to sinusoidal waves, e.g. Light Emitting Diode (LED). This type of BMI sys-
tem could have special implications to help paralyzed subjects to control objects
in different environments. Especially, in the design of intelligent house (domotic
house), where distributed flickering visual stimulators can be placed in different
positions to control different house devices or instruments. Without the lack of
multiple cameras combined for eye tracking, where these BMI systems can allow
to detect the subject desired command with a proper detection related to the vi-
sual responses.
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A Phenomenological Analysis
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Abstract. When two distinct movements overlap in the same region of
the visual field, human observers may perceive motion transparency. This
perception requires the visual system to separate informative and non
informative motion signals into transparent components. In this study,
we explored the computational constraints in solving this signal separa-
tion task - particularly for the stimulus configuration where two grating
components move in the same direction at different speeds. We devel-
oped a phenomenological model which demonstrates that separation can
be achieved only for stimuli with a broadband Fourier spectrum. The
model identifies the informative component signals from the non infor-
mative signals by considering edges. This approach is shown to be limited
by an edge sensitive spatial filtering of the image sequence, the threshold
tolerance for local signals considered and the number of iterative com-
putational steps.

Keywords: Motion transparency, Fourier spectra, Global motion, Sig-
nal separation.

1 Introduction

Human observers perceive motion transparency when they simultaneously “see”
several moving components corresponding to separate objects within the same
region of visual field. The computational task of separating local signals into
these components is not trivial [1]. To simultaneously represent multiple moving
components in the same region of an image requires a mechanism that success-
fully groups the local motion signals from each component and excludes non
informative signals from spatial regions where local components directly overlap
to annihilate or make motion responses ambiguous. Separation therefore requires
that local signals are sufficiently sparse for a large number of the component sig-
nals with minimal spatial overlap so that the relative number of non informative
locations are minimal [2,3].

Perceived motion transparency is computed by networks of neurons with a
topography of the input image, which exploit the hierarchical structure of cor-
tex thought to perform local motion detection in primary Visual Cortex (V1)

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 308–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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followed by global pooling of responses for component separation in the motion
sensitive Medial Temporal area (MT)[4,5]. A number of computational mod-
els generally detect local motion, identify signals most likely to come from the
components (informative signals) and separate the resulting distribution into
the components. The approach has been tried with transparently moving ori-
ented gratings or plaids [6,7], random dot kinematograms [2,8] and other less
regularly structured stimuli [9]. The critical model step is the “gating” of local
motion signals to select the informative from the non informative signals. Ma-
chine learning algorithms [6] and Bayesian inference [7] based on responses of
nearby motion detectors both show some success for this with plaid patterns but
require expensive computation.

In this study a phenomenological model is developed to explore space-time
(x-t) representations of transparently moving gratings. The model exploits the
initial observation in x-t that edges are important for separation in its gating
mechanism. Distributions of these local signals contain peaks corresponding to
transparent components and therefore partially solve the information processing
task of motion transparency perception.

2 Transparently Moving Components in Space-Time

The transparent motion of two linearly superimposed vertical gratings is fully de-
scribed by a space time (x-t) function I(x, t). In x-t, horizontal motion determines
the orientation of the grating, illustrated for a sine wave moving at a constant
speed in fig. 2b. The motion dx/dt is related to the orientation angle θ by eq. 1.

dx

dt
= tan(θ) (1)

When more than one vertical grating is linearly superimposed to produce
a transparently moving stimulus, the x-t representation illustrates the signal
separation problem of transparent motion separation as shown in fig. 2. The
visibility of the individual component oriented contours seen in the first two
columns of fig. 2 within the third column determines whether separation can be
achieved for the given stimulus. It can be seen that edges enable the contours
to remain during superposition. For single sine wave gratings, the superposition
in x-t does not retain the component contour orientation and so the stimulus
components cannot be separated. In terms of Fourier spectra, this suggests that
broadband stimuli with edges (superposition of several harmonics in odd phase)
would appear most transparent.

3 Phenomenological Model

The task for the model is to find orientated contours in x-t and return a global
representation of these in which components can be identified. To achieve this,
the input I(x, t) is transformed into a global histogram D(θ) in eq. 2 to 7. For
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Fig. 1. (a) A representation in space I(x, y) of three frames of a sine wave moving
leftwards. The dotted lines show sections through x for the 3 frames in the x-t repre-
sentation of the motion. (b) The x-t representation of the motion of a single leftward
moving sine wave. The orientation θ seen in x-t is constant indicating a constant speed.

sensitivity to edges, a numerical differentiation of I(x, t) is implemented using
neighbouring pixels in a three point Langrangian interpolation approximated by
eq. 2. The method yields poorer estimates for lines tending to the horizontal
orientation and therefore gives an inherently higher sensitivity to slower moving
component edges.

I ′(x, t) � I(x− 1, t)− I(x+ 1, t)
2

(2)

The estimates of the differential given by I ′(x, t) vary with the contrast of the
input gratings and this is removed with operator KT to return a binary image
G(x, t) in eq. 3.

G(x, t) = KT [I ′(x, t)]I
′(x,t)<T ;G(x,t)=0

I′(x,t)>T ;G(x,t)=1 (3)

KT sets I ′(x, t) values below T to 0. T is the first model parameter and
determines the sensitivity of the edge detection. It is set as a fraction of the
maximum of I ′(x, t) with 0 < T < 1. From G(x, t) oriented lines are identified in
an iterative template matching process for orientations θ between 0◦ and 180◦.
The number of discrete θ is the second model parameter N. θ originates from
time t = 0 so that the faster speeds result in angles close to the horizontal, likely
to wrap around beyond the edges of the x− t representation hence less likely to
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A + B
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b) Square

c) Periodic

lines

d) Random

lines

Comp: A Comp: B
x

t

Superposition

Fig. 2. Single moving gratings shown in the left 2 columns and their linear superpo-
sition in the third. (a) Individual sine waves show orientation in x-t, superposition
shows no continuous contours in x-t. (b) Square waves, (c) Periodic lines and (d) Ran-
dom lines all show oriented lines in x-t for both the individual components and the
superposition.

be identified by the algorithm. This could be tackled by starting at later t for
faster speeds. This is not considered here.

H(x, θ) =
Lx,θ∑
n=1

G(x+ rn cos(θ), rn sin(θ)) (4)

Eq. 4 performs a summation of pixel values along an oriented line r which runs
from x at t = 0 at an angle of θ from the horizontal. Lx,θ is the total number of
pixels in the x-t image crossed along the path of rn. The cosine and sine terms
calculate the intermediate orthogonal spatial (x) and temporal (t) coordinates
of the line.

T (x, θ) =
Lx,θ∑
n=1

1 (5)
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Eq. 5 is the template with the expected path length of continuous lines with
orientation θ. A template matching operator (KE) compares the image output
H(x, θ) with the template T (x, θ) within a tolerance given by the term M , the
third model parameter. Alternatively, the ratio H/T could be used to quantify
the energy of a given orientation. M is used for this explorative model to simplify
the output into a binary image. The result is the operation given by eq. 6.

D(x, θ) = KE [H(x, θ)]H(x,θ) =T (x,θ)±M ;D(x,θ)=0
H(x,θ)=T (x,θ)±M ;D(x,θ)=1 (6)

Eq. 6 maintains local spatial information at t = 0 by its x dependence. For a
global consideration of the orientations, a position independent histogram func-
tion D(θ) is generated by eq. 7. X is the spatial extent in pixels of the input x-t
image.

D(θ) =
X∑

i=1

I(xi, θ) (7)

4 Simulations

4.1 Simulation Methods

The model was tested with input 8-bit greyscale functions I(x, t) consisting
of 256 spatial pixels (x) and 256 temporal frames (t). Different grating types
were compared (sinusoidal, square, periodic line & random line) with variable
speeds, relative amplitudes of the superimposed components (superposition is
normalised to full range of the greyscale) and directions of the components (lim-
ited in the x dimension to either right or left in the same or opposite directions).
The routine is written in IDL (by ITT) and run on a single core windows XP
system. The output is eq. 7.

4.2 Simulation Results

The outputs for the four grating types were compared for components mov-
ing in the same and opposite directions. The model’s responses D(θ) for the
transparently moving sine wave gratings given on the left columns of fig. 3 are
uninformative of the motion of the components for both low and a high values
of T (low value of T = 0.002 and a high T = 0.1. For all stimuli, N = 180,
M = 0.4). As sine waves have no edges, their components cannot be separated
using this edge sensitive method. Square waves responses show two prominent
peaks corresponding to the two moving components.

The peaks are seen in the histogram outputs for same direction (left panels
fig. 3a & b) and opposite direction stumuli (fig. 3c). Periodic and random line
stimuli only allow the identification of the slower moving component when both
move in the same direction (right columns fig. 3a & b). The faster grating is not
detected and T does not change separation performance for the tested condi-
tions. Simulations show greater susceptibility to noise for random line gratings
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Fig. 3. Model outputs for gratings transparently moving in the same and opposite
directions. (a) Same direction; low T . The model output does not detect separate
component peaks of the sine wave and detects only the slower component of the periodic
and random line gratings. Both components of the square wave are fully identified in
the left column. (b) Same stimuli as (a) with a high T . No output response for the
sine waves, but the outputs for the periodic and random lines and square wave gratings
remain unchanged. (c) Opposite directions; in the sine waves output components cannot
be separated. For the periodic and random lines and square waves, peaks corresponding
to the two components were observed.
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b) N = 180
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c) N = 360

Orientation angle q (Global Velocity)
-100 -80 -60 -40 -20 0 20 40 60 80 100

N
or

m
al

is
ed

 r
es

po
ns

e 
of

 fu
nc

tio
n 

D
(q

)

d) N = 720 with speed diff. & relative amplitude data
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Fig. 4. Separation of transparently moving gratings in the same direction for different
N . (a) For N = 90, the output for square gratings can be separated into two peaks (line
1). The random lines do not show any distinct peak (line 3), for periodic lines only the
slower component (line 2) is identified. A smaller speed difference between the two square
gratings returns a single wide peak (line 4). A lower amplitude of one of the superim-
posed gratings (line 5) makes no difference to separation. (b) For N = 180, the slower
component is identified for all grating types, and for the square wave the faster mov-
ing component is also identified. (c) For N = 360 results similar to (b) but noise in the
random line output is reduced and a small peak corresponding to the faster component
appears. (d) At N = 720, all except the periodic lines lead to peaks corresponding to both
transparent components. For the random line gratings, non-informative signals reduce
in relative magnitude. The square wave grating with a lower speed difference between
the components (line 4) shows two clear peaks close to each other.

than periodic line gratings. Because of model sensitivity to speed through θ (see
eq. 1), there is no separate processing for the determination of direction and the
same direction configuration should be no more difficult a computational task
than the opposite direction gratings.
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Fig. 5. Model performance for a range of M . (a) For square waves the low M only
enables the detection of the slower moving component. (b) For Random lines, the
responses are dominated by non-informative signals for low M but with increasing M ,
show the components.

The three grating types containing edges were used in further simulations
with the number of iteration steps, N and the template matching parameter,
M . As N is increased from 90 to 720, the output functions for square wave and
periodic lines show little change in their appearance (compare the lines labelled
1 & 2 in fig. 4a to the same lines in 4d). Both components of the square wave are
detected while only the slower component for the periodic line is detected. For
the random lines, outputs contain speeds that are not present in the stimulus, but
this effect reduces as N is increased. The effect of N on component separation
for smaller speed differences is shown by line 4 in fig. 4a & d which can be
separated at N = 720, but not N = 90. When one of the two transparently
moving square wave gratings has lower amplitude (rel. amp = 0.1, line 5 fig. 4a
& d), the output is unaffected by N . The results shown in fig. 3 & 4 suggest
that the detectability is similar for periodic line and square wave gratings at low
speeds, but lines become less detectable at higher speeds. The effect of a range
of values of the template matching factor M is tested for these two stimuli.
For square waves, reducing M to achieve a more stringent template matching
leads to disappearance of the peak corresponding to the faster grating (line 1 in
fig. 5a), similar to what is observed for the periodic lines in fig. 3 & 4. If edge
detection were equally effective for both stimuli, there should be little difference
between the periodic lines and the square wave outputs. From the results shown
in fig. 5b, it appears that with appropriate values of M , separation is possible
for random lines.
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5 Discussion

In this paper, a phenomenological model with a set of operations to detect
separate components of transparently moving gratings was developed and tested.
Taking the problem of detecting motion as that of detecting orientation in x-
t, it was observed that detecting the motion of a single moving pattern in x-t
is easier than detecting transparently moving components. The difficulty arises
when detecting overlapping component contours. Separation is impossible for
superimposed sine waves in which continuous contours in x-t are lost.

Edges are critical for separating moving gratings. It was suggested by Marr
that the human visual system extracts useful features during image process-
ing [10]. Using this principle, the model initially extracts edges as a relevant
“feature”. With an image of edges the complexity of the input is reduced by
removing the contrast dependence and other changes not immediately informa-
tive of motion [11]. This introduces the first parameter T which is a non linear
threshold operating on the differentiated image. An iterative template matching
then returns estimates of their orientation densities, introducing two additional
parameters: N , which is the orientation resolution and M which sets the toler-
ance for a positive match as the line filter searches the image.
T is shown to have little effect on the outputs for the grating model outputs

particularly those with edges above threshold following differentiation. Larger
noise levels of the random line grating outputs may reveal inherent differences
in detecting transparency for stimuli with random positions compared to those
with periodic spatial arrangement. In contradiction, random lines have been
reported to be more transparent than periodic lines in psychophysical experi-
ments [3]. The responses to periodic lines are similar to those of square waves
but square waves are more detectable particularly at higher speeds. The reduced
detectability for periodic lines at higher speeds highlights the limitations of the
computation used for detecting edges and its differential effects on the range of
grating types. N determines the resolution of the transparency detection in x-t.
Such a parameter exponentially relates to the number of calculations required to
separate the components and must be as low as possible where real time process-
ing is a fundamental requirement. M determines the tolerance when performing
template matching and allows for the fact that edges may not be fully detected
in x-t in the initial differentiation and imperfect detection is an inherent edge
detection problem. Higher M makes it more responsive and less vulnerable to
non-informative signals.

The phenomenological model has many limitations and is intended to show
that, under a set of conditions, the motion transparency problem is tractable,
even when components move in the same direction. The parameters introduced
give an insight into the separation of motion signals, demostrating how the iden-
tification of features (using filter T ), the number of calculations performed (N)
and the noise tolerance levels in the processes (M) affect the outcome of the
separation of transparent components.
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Abstract. Primary visual cortex (V1) is the first stage of visual informa-
tion processing; detection of particularly oriented bars. These elemental vi-
sual features are sent to higher visual regions including V2, in which their
combinations such as ”corners” and ”junctions” are processed. A recent
study has demonstrated that corners and T-junctions could be processed
even at the early visual stage (V1), raising the question of why the bind-
ing of bars by V1 is necessary. We simulated a V1 neural network model,
in which the so-called ”orientation-columns” were connected through both
excitatory and inhibitory synapses. The lateral excitatory connections
contributed not only to binding paired bars constituting corners but also to
making membrane oscillations near firing-threshold during ongoing (spon-
taneous) neuronal activity periods. This ongoing subthreshold neuronal
state led to accelerating the reaction speed of neurons to paired bar-stimuli.
The lateral inhibitory connections effectively enhanced the selective re-
sponsiveness of neurons to the stimuli. We suggest that coordinated lateral
excitation and inhibition between orientation-columns in V1 could send
angular information such as corners and junctions, presented to retina,
rapidly to the next stage V2 for its full and precise analyses.

Keywords: Neural network model, Lateral excitation, Feature binding,
Orientation map, Ongoing subthreshold membrane oscillation, Primary
visual cortex.

1 Introduction

Primary visual cortex (V1) is the first stage of visual information processing, and
V1 neurons have orientation specificity; a preference to a particular bar oriented
in a narrow range of angles. It is also well known that V1 neurons that have the
same orientation preference tend to be organized in a close neighbor and form
the so-called ”orientation column” [1]. These elemental visual features are sent to
higher visual regions including V2. V2 neurons respond to more complex stimuli
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such as angles and junctions, which are important visual attributes embedded
within contours to represent the shape of objects [2].

Das and Gilbert [3] demonstrated that corners and T-junctions could be
processed even at the early visual stage (V1). The researchers measured correla-
tion between neuron pairs that have dissimilar orientation preferences; orthog-
onal bars. These neurons showed significant correlated activity, when presented
with paired bar-stimuli constituting corners and T-junctions. It was suggested
that local intracortical circuitry could endow V1 neurons with processing not
only elemental but also their combinations. These findings raise the question of
why the binding of orthogonal bars in V1 is necessary if these attributes are
processed predominantly in V2.

The purpose of the present study is to understand the significance of the
binding of paired bars expressing corners and T-junctions in V1. We propose a V1
neural network model, in which excitatory and inhibitory connections are made
between columns with both similar and dissimilar orientation preferences [4].
The lateral excitation is employed for mutually exciting columnar neurons that
are relevant to paired bar-stimuli, and the lateral inhibition is for suppressing
columnar neurons that are irrelevant to the stimuli. To assess the cognitive
performance of the V1 network, we measure the reaction time of neurons to the
stimuli.

The assumed lateral intracortical (excitatory and inhibitory) connections be-
tween different orientation columns presumably influence not only stimulus-evoked
neuronal activity but also ongoing-spontaneous neuronal activity, which is known
to have a great impact on subsequent sensory information processing [5,6,7,8]. Sta-
tistically analyzing the membrane potentials of neurons, we investigate how the
lateral intracortical circuitry influences ongoing neuronal behaviors, and how it af-
fects the binding of paired bars expressing corners and T-junctions in V1.

2 Neural Network Model

Figure 1A is a schematic drawing of the neural network model functioning as
an orientation preference map. Each orientation-column has a preference to one
specific orientation of a bar-stimulus, ranging from 0 (θ0) to 7π/8 (θ7), and
consists of cell units (Figure 1B; ”gray circle”). Each cell unit contains one prin-
cipal cell (”P”), one feedback inhibitory cell (”F”) and one lateral inhibitory
cell (”L”). Each P-cell receives excitatory inputs from P-cells that belong to the
same orientation-column, a feedback inhibitory input from its accompanying F-
cell, and lateral inhibitory inputs from L-cells that receive excitatory inputs from
P-cells belonging to other orientation-columns. Each F-cell receives excitatory
input from its accompanying P-cell. The recurrent excitatory connections be-
tween P-cells within orientation-columns make the so-called ”cell assemblies”.
P-cells between different orientation-columns (θn and θn′) are mutually con-
nected through lateral excitatory synapses. P-cells receive input signals from
the lateral geniculate nucleus (LGN).
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Fig. 1. (A) A schematic drawing of the neural network model for a primary visual
cortical (V1) area. The network receives combinatorial input signals from LGN. (B)
Orientation-columns consist of cell-units (”gray circle”); one principal cell (”P”), one
feedback inhibitory cell (”F”) and one lateral inhibitory cell (”L”) constitute one cell-
unit.

Dynamic evolution of the membrane potential of the ith P-cell that belongs
to orientation-column θ is defined by

cPm
duP

i (θ; t)
dt

= −gP
m(uP

i (θ; t) − uP
rest) + IP

i,rec(θ; t) + IP
i,fed(θ; t) + IP

i,lat(θ; t)

+ ĨP
i,lat(θ; t) + ILGN (θ; θinp), (1)

where IP
i,rec(θ; t) is a recurrent excitatory current, IP

i,fed(θ; t) a feedback in-
hibitory current, IP

i,lat(θ; t) a lateral inhibitory current, ĨP
i,lat(θ; t) a lateral ex-

citatory current, and ILGN(θ; θinp) an excitatory input current triggered by an
oriented bar-stimulus (θinp), where θ, θinp ∈ {θ0, θ1, θ2, θ3, θ4, θ5, θ6, θ7}. These
currents are defined by

IP
i,rec(θ; t) = −ĝAMPA(uP

i (θ; t)− uAMPA
rev )

Nθ∑
j=1

wP
ij,rec(θ)rP

j (θ; t), (2)

IP
i,fed(θ; t) = −ĝGABA(uP

i (θ; t)− uGABA
rev )wP

i,fed(θ)rF
i (θ; t), (3)

IP
i,lat(θ; t) = −ĝGABA(uP

i (θ; t) − uGABA
rev )

Nθ∑
j=1

wP
ij,lat(θ)r

L
j (θ; t), (4)

ĨP
i,lat(θ; t)=−ĝAMPA(uP

i (θ; t)− uAMPA
rev )

θ7∑
θ′=θ0(θ′ =θ)

Nθ∑
j=1

w̃P
ij,lat(θ, θ

′)rP
j (θ′; t), (5)
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ILGN(θ; θinp) = αP e
−[

(θ−θinp)/(π/8)
τP

]2
. (6)

Dynamic evolution of the membrane potentials of the ith F-cell that belongs to
orientation-column θ is defined by

cFm
duF

i (θ; t)
dt

= −gF
m(uF

i (θ; t)− uF
rest) + IF

i (θ; t), (7)

where IF
i (θ; t) is an excitatory current, and defined by

IF
i (θ; t) = −ĝAMPA(uF

i (θ; t)− uAMPA
rev )wF

i (θ)rP
i (θ; t). (8)

Dynamic evolution of the membrane potentials of the ith L-cell that belongs to
orientation-column θ is defined by

cLm
duL

i (θ; t)
dt

= −gL
m(uL

i (θ; t) − uL
rest) + IL

i (θ; t), (9)

where IL
i (θ; t) is an excitatory current, and defined by

IL
i (θ; t) = −ĝAMPA(uL

i (θ; t)− uAMPA
rev )

θ7∑
θ′=θ0(θ′ =θ)

wL
i (θ, θ′)rP

i (θ′; t), (10)

wL
i (θ, θ′) = wLe

−[ (θ−θ′)/(π/8)
τlat

]2
. (11)

In these equations, cYm is the membrane capacitance of Y (Y = P, F, L) cell,
uY

i (θ; t) the membrane potential of the ith Y-cell at time t, gY
m the membrane

conductance of Y-cell, and uY
rest resting potential. ĝZ and uZ

rev (Z = AMPA or
GABA) are, respectively, the maximal conductance and the reversal potential
for the current regulated by Z-type receptor. Nθ is the number of cell-units
constituting each orientation-column.
wP

ij,rec(θ) is the recurrent excitatory synaptic strength from jth to ith P-
cell within orientation-column θ. wP

i,fed(θ) is the feedback inhibitory synaptic
strength from F-cell to P-cell within cell-unit i belonging to orientation-column
θ. wP

ij,lat(θ) is the inhibitory synaptic strength from the jth L-cell to the ith P-
cell within orientation-column θ. w̃P

ij,lat(θ, θ
′) is the excitatory synaptic strength

between different orientation-columns θ and θ′. wF
i (θ) is the excitatory synaptic

strength from P-cell to F-cell within cell-unit i belonging to orientation-column
θ. wL

i (θ, θ′) is the excitatory synaptic strength from the ith P-cell belonging
to a different orientation-column (θ′) to the ith L-cell belonging to orientation-
column θ (θ′ �= θ), which weakens as the functional distance between orientation-
columns θ′ and θ increases (equation 11).
rP
j (θ; t) is the fraction of AMPA-receptors in the open state induced by presy-

naptic action potentials of the jth P-cell belonging to orientation-column θ at
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time t. rF
j (θ; t) and rL

j (θ; t) are the fractions of GABAa-receptors in the open
state induced by presynaptic action potentials of the jth F-cell and L-cell, re-
spectively. Receptor dynamics is described by [9]

drP
j (θ; t)
dt

= αAMPA[Glut]Pj (θ; t)(1 − rP
j (θ; t)) − βAMPAr

P
j (θ; t), (12)

drY
j (θ; t)
dt

= αGABA[GABA]Yj (θ; t)(1 − rY
j (θ; t))

− βGABAr
Y
j (θ; t), (Y = F,L) (13)

where αz and βz (z = AMPA or GABA) are positive constants. [Glut]Pj (θ; t)
and [GABA]Yj (θ; t) are concentrations of glutamate and GABA in the synaptic
cleft, respectively. [Glut]Pj (θ; t) = GlutPmax and [GABA]Yj (θ; t) = GABAY

max for
1 ms when the presynaptic jth P-cell and Y-cell fire, respectively. Otherwise,
[Glut]Pj (θ; t) = 0 and [GABA]Yj (θ; t) = 0.

Probability of firing of the jth Y-cell belonging to orientation-column θ is
defined by

Prob[Yj(θ; t); firing] =
1

1 + e−ηY (uY
j (θ;t)−ζY )

, (Y = P, F, L) (14)

where ηY and ζY are, respectively, the steepness and the threshold of the sigmoid
function. After firing, the membrane potential is reset to the resting potential.

Unless otherwise stated elsewhere, cPm = 0.5 nF, cFm = 0.2 nF, cLm = 0.6 nF,
gP

m = 25 nS, gF
m = 20 nS, gL

m = 15 nS, uP
rest = -65 mV and uF

rest = uL
rest =

-70 mV. ĝAMPA = 0.5 nS, ĝGABA = 0.7 nS, uAMPA
rev = 0 mV and uGABA

rev = -80
mV [10,11,12]. Nθ = 20, wP

ij,rec(θ) = 8.0, wP
i,fed(θ) = 20.0, wP

ij,lat(θ) = 100.0,
w̃P

ij,lat(θ, θ
′) = 5.0, wF

i (θ) = 50.0, wL = 7.0, αP = 5.0× 10−10, τP = 0.1, τlat =
2.0, αAMPA = 1.1× 106, αGABA = 5.0× 105, βAMPA = 190.0, βGABA = 180.0
and GlutXmax = GABAY

max = 1.0 mM. ηP = ηF = ηL = 350.0 and ζP = ζF =
ζL = -45 mV.

3 Results

Figure 2A presents how neurons respond to a pair of orthogonally oriented bars,
where ”reaction time” denotes the time at which the P-cells corresponding to
the paired stimuli begin to respond. If the lateral excitatory connections be-
tween orientation-columns are not considered in the model, reaction time tends
to be prolonged (Figure 2B). Figure 2C presents a crosscorrelation function of
membrane potential between input (θ1, θ5) relevant P-cells, indicating stronger
correlated activity (see the ”solid” line) if the lateral excitatory connections exist.
This result implies that the lateral excitatory connections between orientation-
columns effectively bind the information about paired bars.
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Fig. 2. Raster plots (P-cells) for orientation columns (θ0 − θ7) when stimulated with a
corner consisting of paired bars (θ1 and θ5). ”reaction time” denotes the time at which
the populations of P-cells corresponding to the pair begin to respond, where lateral
excitatory connections between orientation-columns (A) existed or (B) were cut off.
(C) Crosscorrelation function of membrane potential between θ1- and θ5-responsive
P-cells for the stimulation period with (”solid” line) or without (”dashed” line) lateral
excitatory connections.

Figure 3A presents the membrane potential of a stimulus-relevant P-cell for
these two cases; with (top) or without (bottom) lateral excitatory connections.
An ”arrow” indicates reaction time. Figure 3B presents the distribution of reac-
tion time with (”open” rectangles) or without (”filled” rectangles) lateral excita-
tory connections. We stimulated the network at arbitrary times between 10 and
20 sec. The time-bin for the count was 2 msec. Figure 3C presents a relationship
of reaction time between these two cases. The points deviating away from the
diagonal line (”dashed line”) imply that the reaction time can be reduced if the
lateral excitatory connections exist. These results indicate that the lateral exci-
tatory connections contribute to accelerating the reaction speed of V1 neurons
to sensory input.
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Fig. 3. (A) Reaction of a P-cell to sensory input with (top) or without (bottom) lateral
excitatory connections between orientation-columns. (B) Histogram of reaction time
with (”open” rectangles) or without (”filled” rectangles) lateral excitatory connections.
(C) A relationship of reaction time between the two cases; with and without lateral
excitatory connections. The points on the diagonal line (”dashed line”) indicate equal
reaction times. For details, see the text.

To elucidate how the lateral excitation between different orientation columns
enables the network to respond rapidly to the input, we recorded ongoing mem-
brane potentials. Note that one of the possible mechanisms for the acceleration of
reaction speed might be membrane potentials that oscillate near firing-threshold
prior to sensory input. Figure 4A presents the time courses of membrane poten-
tials of P-cells for an ongoing time period with (left) or without (right) lateral
excitatory connections. Figure 4B presents the distribution of membrane po-
tential for the ongoing period, where the lateral excitatory connections existed
(”solid line”) or were cut off (”dashed line”).

Figure 4C presents ”cumulative hyperpolarization” during an ongoing period,
which measures a degree of membrane hyperpolarization below firing-threshold
and is defined by

Hc(t) =
1

8Nθ

θ7∑
θ=θ0

Nθ∑
i=1

∫ t

0

ũP
i (θ; t′)dt′,

ũP
i (θ; t′) =

{
uP

i (θ; t′)− uP
rest if uP

i (θ; t′) < uP
rest

0 otherwise. (15)

The ongoing membrane potential tends to be less hyperpolarized as the strength
of lateral excitatory connections w̃P

ij,lat(θ, θ
′) increases. Note that excessive lateral
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Fig. 4. (A) Membrane potentials of P-cells for an ongoing time period with (left) or
without (right) lateral excitatory connections between orientation-columns. (B) His-
togram of membrane potential with (”solid line”) or without (”dashed line”) lateral ex-
citatory connections. (C) Dependence of membrane hyperpolarization on the strength
of lateral excitatory connections. ”Cumulative hyperpolarization” was calculated (see
equation 15) during the ongoing neuronal activity period. For details, see the text.

excitation, e.g. w̃P
ij,lat(θ, θ

′) > 5, all P-cells fire (not shown) and therefore the se-
lective responsiveness is no longer possible. The less membrane hyperpolarization
(or rather, depolarization) at w̃P

ij,lat(θ, θ
′) = 2 − 3 allows the V1 network to be

near firing-threshold during the ongoing period, whereby the P-cells can respond
quickly to the input (see Figs. 2A and 3A). We call this network state an ”ongo-
ing subthreshold neuronal state”, whose fundamental dynamic behavior and its
significance in neural information processing have been suggested [5,6,7].

To elucidate how the lateral inhibitory connections contribute to processing
the paired bars, we reduced its strength from the optimal value wP

ij,lat(θ) = 100
to 20. As shown in Figure 5, the selective responsiveness of orientation-columns
(θ1 and θ5) is deteriorated, compared to that shown in Fig. 2A.

4 Discussion

We proposed a V1 neural network model of an orientation preference map, in
which neuronal columns were connected through both excitatory and inhibitory
synapses. Lateral excitatory connections were employed for binding pairs of bar-
stimuli constituting corners. It was found that the lateral excitatory connections
contribute not only to binding the paired bar-stimuli but also to making mem-
brane oscillations near firing-threshold during ongoing (spontaneous) neuronal
activity periods. This enables the V1 to respond rapidly to subsequent sensory
input.
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Fig. 5. Influences of lateral inhibition on selective responsiveness of P-cells. The
strength of lateral inhibitory connections between orientation-columns was reduced.
Raster plots (P-cells) for orientation columns (θ0 − θ7) are shown. The network was
stimulated with a corner consisting of bars θ1 and θ5. For details, see the text.

Since synchronous common input, per se, was sufficient to some extent for
binding paired bars as well (see Figure 2B), the lateral excitation between
orientation-columns may have another important role; establishing an ongo-
ing subthreshold neuronal state. This allows the V1 to send information about
combinations of elemental features (bars) expressing corners and T-junctions,
presented to retina, rapidly to the next stage V2 for its full and precise analyses.

Das and Gilbert [3] demonstrated that connections between dissimilar orien-
tion-columns have suppressive property, and suggested that the suppressive func-
tion could be used to analyze combinatorial bar information including corners
and T-junctions. The present study showed that the combinatorial visual in-
formation was blurred if the suppressive function declined (see Figure 5). We
suggest that coordinated lateral excitation and inhibition among orientation-
columns might be essential for effectively processing angular information at this
early stage of vision.

In this study, we showed the importance of lateral excitation between orienta-
tion columns for establishing an ongoing subthreshold neuronal state. However,
a balance of excitation and inhibition might be crucial for it. In a previous
study [6], we proposed a cortical neural network model that has local excita-
tory and inhibitory circuitry. Simulating the model, we investigated how two
distinct types of inhibitory interneurons (fast-spiking interneurons with narrow
axonal arbors and slow-spiking interneurons with wide axonal arbors) have spa-
tiotemporal influences on the ongoing activity of principal cells and subsequent
neuronal information processing. In the model, dynamic cell assemblies expressed
information about specific sensory features. Within cell assemblies, fast-spiking
interneurons gave a feedback inhibitory effect on principal cells. Between cell
assemblies, slow-spiking interneurons gave a lateral inhibitory effect on principal
cells. These interneurons contributed to depolarizing principal cells below firing-
threshold during ongoing neuronal activity periods, by which the network was
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kept at a subthreshold level for action potential generation. This led to acceler-
ating the reaction speed of principal cells to sensory input. It might be inferred
that a balance of lateral excitation and inhibition among orientation-columns
is also important for achieving the ongoing subthreshold neuronal state in V1.
This will be confirmed in our future studies.
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Abstract. A connectionist model of cortico-striato-thalamic loops uni-
fying learning and action selection is proposed. The aim in proposing the
connectionist model is to develop a simple model revealing the mecha-
nisms behind the cognitive process of goal directed behaviour rather than
merely obtaining a model of neural structures. In the proposed connec-
tionist model, the action selection is realized by a non-linear dynamical
system, while learning that modifies the action selection is realized simi-
lar to actor-critic model of reinforcement learning. The task of sequence
learning is solved with the proposed model to make clear how the model
can be implemented.

1 Introduction

From simplest actions we perform, as deciding which path to take on our way
to home to complicated decisions as choosing a career, our evaluation is deter-
mined by goal-directed behavior. Its main feature that distinguishes it from the
stimulus-response behaviour is that in the goal-directed behaviour presentations
of stimuli depend on the prior occurrence of designated responses. Thus, the
stimuli are direct result of the subject’s behaviour.

Almost for two decades, neuroscientists are trying to comprehend the organiza-
tion and functioning of neural substrates in goal-directed behaviour. In the mean-
while, the pioneering works on cortico-striato-thalamic (C-BG-TH) loops pointed
out that different organizations of these neural substrates are needed to achieve dif-
ferent cognitive, emotional, and motor processes [1,2,3]. It is now well-known that
even though these loops have different roles and are processing in parallel, they do
have interactions and processing of more than one loop in cooperation with others is
required in performing complex behaviors as goal-directed behavior, planning, etc.
� Part of this work is completed during the first author’s visit to LCE, Helsinki Uni-
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[4,5,6]. As shown in [4,5], loops containing ventral striatum take part in limbic sys-
tem, whereas loops through the dorsal striatum have a role in generating the actions
and these two loops together with motor loops progress to perform reward-guided
behaviors while the neurotransmitter systems modulate this process.

Some of the computational models of goal-directed behaviour [11,12,13] uti-
lizes the actor-critic models as they are developed in [14] but there are also
computational models where the actor part is realized considering a biologically
realistic model of basal ganglia-thalamo-cortical pathways as in [16]. The relation
between the ventral and dorsal parts of striatum has been anticipated in [15,11].
In later works, as [17,18,19] the relation between dorsal and ventral parts of
striatum amongst with other neuronal substrates during goal-directed learning
are investigated. In [22], a heterarchical reinforcement learning model based on
[4] is proposed and this model gives an explanation about how the information
is shared and transferred between the loops rather than giving a computational
model of goal-directed behaviour.

There are also computational models for the action selection function of C-BG-
TH loop [9,10,20,21], and models for sequence storage and generation [7,8]. Even
though none of these later mentioned works deal with goal-directed behaviour
and their primary concern is to develop a biologically plausible model for action
selection, they deserve to be mentioned in the context of modelling goal-directed
behaviour as action selection is a part of goal-directed behaviour.

The aim of this work is to propose a connectionist model that reveals the
effect of ventral stream on dorsal stream during goal directed behaviour. Fur-
thermore the model incorporates the connection between premotor and motor
loops. This incorporation is beneficial to explain how one action is selected from
many possible actions which originate due to exploration. This unique choice
emerges from the contribution of noise signal and from the effect of premotor
loop on motor loop. While deriving the model, system theoretical tools, as bi-
furcation diagrams, domain of attractions, are used to understand the behaviour
of nonlinear dynamical systems responsible for action selection. An analogy be-
tween the neural substrates, neurotransmitter systems and dynamical system’s
structure, parameters of the dynamical systems are drawn to explain the behav-
ioral phenomenon. There are already some work using such tools in dealing with
cognitive processes as [7,8,9,10,20,21].

In the next section, a short explanation on how the neural substrates organize
and affect each other during goal-directed behaviour will be given. The computa-
tional model proposed is based on the known functions of these neural structures
and their interrelations. In section 3, the proposed computational model will be
introduced. A simple sequence-learning task given in [12] will be simulated with
the proposed model to show its convenience.

2 Evidence from Neuroscience in Deriving the Model

The roles of C-BG-TH loops in different cognitive, motor processes and in emo-
tional behaviours have been investigated since the papers of Alexander et.al.
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[1,2]. In [1,2], it is stated that parallel C-BG-TH loops have been considered
for different processes which can also work together and furthermore affect each
other for some tasks. Besides the connections of related sub-structures for dif-
ferent processes, the modulatory effect of neurotransmitters, especially the role
of dopamine on these circuits has to be considered [23].

For a goal-directed behaviour the motor, associative and limbic circuits have
to work in harmony [4]. The modulatory effect of midbrain dopamine system
would provide this harmony through mesocortical and nigrostriatal pathways.
In [4,5], based on animal studies, it is stated that anterior cingulate, orbital cor-
tices and ventral striatum process different aspects of reward evaluation, while
the dorsolateral prefrontal cortex and dorsal striatum are involved in cognitive
function during decision making. The relation between dorsal and ventral parts
of striatum is initiated through midbrain dopamine pathways and striatonigros-
triatal subcircuit directs information flow between limbic, cognitive and motor
circuits through an ascending spiral formed by these circuits. A summary of
these connections are depicted in Fig. 1.

Thus, for a goal-directed behaviour, these C-BG-TH loops have to operate
together, first in order to learn to select the appropriate action for a goal and
then to keep up with this knowledge till a new condition in the environment
comes up. In order to realize this process, the ventral part has to evaluate the
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Fig. 1. The neural substrates considered in deriving the computational model
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inputs from cortex, and the dorsal part being in connection with the premotor
cortex has to select some actions out of many according to this evaluation. The
motor-cortex will then consider the result of the action selection, and the ventral
part will either continue evaluation or keep up with the previous decision in case
the result of the selected action is satisfactory. While the mesolimbic pathway is
responsible for dopamine modulation of ventral part, the dopamine modulation
of dorsal part is carried out by nigrostriatal pathway. Following the literature
on computational models of reinforcement learning, ventral part corresponds to
critic and dorsal part corresponds to actor. In the next section, a computational
model of goal-directed behaviour will be proposed which is originated from the
above summarized interactions of neural substrates and the actor-critic method
of reinforcement learning.

3 A Computational Model for Goal-Directed Behaviour

Two essential components of goal-directed behaviour are to select an action
and evaluate the outcome of this action before determining the next action. As
discussed in previous works [11,12,15,17,18], the actor-critic method, especially
with temporal difference (TD) learning is appropriate to have a computational
model of goal-directed behaviour. The computational model proposed in this
work is also an actor-critic model.

However, the actor part which corresponds to action selection module in Fig. 2
is a discrete-time, nonlinear dynamical system model of C-BG-TH loops derived
for action selection [9,10] and the critic part which corresponds to value assigner

STIMULUS

Value Assigner
and 

Critic Module Module

                       Action Selection

Action Evaluator 

Module

Wcpm
Wrpm

Wv

δ

reward

pm

Ventral Dorsal

Fig. 2. A block diagram for the computational model
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and critic module in Fig. 2. The value assigner and critic module adjusts the
parameters of dynamical system via δ to set up the association of stimulus in
cortex and to maintain explore/exploit phenomenon. δ also modifies the value
function in the value assigner and critic module Thus, action selection module,
value assigner and critic module, and δ correspond to dorsal, ventral pathways
and modulatory neurotransmitter, respectively.

3.1 The Proposed Model

In this work, the nonlinear dynamical system proposed in [9,10] for action se-
lection is expanded to include both the motor and premotor loops as given in
Equations 2 and 3.

ppm(k + 1) = f(λppm(k) +mpm(k) +WcpmI(k))
mpm(k + 1) = f(ppm(k)− dpm(k))
rpm(k + 1) = Wrpmf(ppm(k)) (1)
npm(k + 1) = f(ppm(k))
dpm(k + 1) = f(Wdpmnpm(k)− rpm(k))

pm(k + 1) = f(λpm(k) +mm(k) + βppm + noise)
mm(k + 1) = f(pm(k)− dm(k))
rm(k + 1) = Wrmf(pm(k)) (2)
nm(k + 1) = f(pm(k))
dm(k + 1) = f(Wdmnm(k)− rm(k))

The nonlinear function is a sigmoidal function and given as following:

f(x) = 0.5(tanh(a(x− 0.45)) + 1) (3)

In these equations, ppm/m, mpm/m, rpm/m, npm/m, dpm/m are vectors cor-
responding to cortex, thalamus, striatum, subthalamic nucleus and globus pal-
lidus interna/substantia nigra pars reticulate constituents of premotor and motor
loops, respectively. The dimension of these vectors are determined by the num-
ber of actions to be selected. The need to expand the system given for action
selection in [9,10] arised since the fine grain-coarse grain discrimination prop-
erty of action selection module became important for goal-directed behaviour.
The action selection module has to realize a selection based on evaluation of
the value of the presented stimuli, but it is also expected to generate a random
exploration in case the reward is disappointing. So, the premotor part completes
the evaluation and determines possible actions and then the motor part acts
as a fine discriminator and selects one action amongst the many determined by
premotor part. Thus, while the sensory stimulus, denoted by I, affects the cortex
consistituent of the premotor loop , the cortex consistituent of the motor loop
is modulated by the cortex consistituent of the premotor loop. The noise signal
enables the randomness of selection in the motor loop.



A Computational Model of Cortico-Striato-Thalamic Circuits 333

The diffusive effect of subthalamic nucleus is maintained by Wdpm/m
which

have identical entries. The diagonal matrix Wrpm represents the effect of of ven-
tral striatum on dorsal striatum. Finally, the matrix Wcpm corresponds to the
mapping with which the representation of sensory stimulus are formed.

The dynamical behaviour of very similar systems have been investigated in
[9,10] and it has been shown that changing the parameters affects the action
selection process especially its fine grain - coarse grain property. This effect of
parameters has been demonstrated by figures showing the change in domain of
attractions in [9,10]. Utilizing this knowledge,parameters of premotor and motor
loops are either fixed to values to obtain fine grain properties of motor loops or
modified in some range to get coarse grain effect.

The action selection module in Fig. 2 is composed of premotor and motor
loops, but their behaviour is modulated by value assigner and critic module.
This modification is accomplished by adapting the weights Wcpm and Wrpm as
following:

Wcpm(k + 1) = Wcpm(k) + ηcδ(k)pm(k)I(k)
′

(4)
Wrpm(k + 1) = Wrpm(k) + ηrδ(k)f(pm(k))Erm(k) (5)

Here E is the identity matrix. The variable δ which represents the error in
expectation is determined similar to traditional TD learning algorithm [14] as
stated in Eq. 6.

δ(k) = reward(k) + μV (k + 1)− V (k) (6)

The effect of the modification of Wrpm on the premotor system is demonstrated
with the bifurcation diagram in Fig. 3. As the value of the Wrpm ’s elements are
changing from 0.1 to 0.8, the first component of ppm changes from small fixed
values near zero to nonconvergent solutions (possbily quasi-periodic) and then
again to fixed values near one.

The value assigner and critic module represents the role of ventral stream
which evaluates the inputs from cortex considering the action selected and the
reward received in turn. Then it generates an expectation signal based on the
value V which it attains to stimuli. This is given by the equation where Wv is a
row vector and the term base is a row vector with identical entries.

V (k) = (Wv + base)I(k) (7)

This expectation signal, together with the reward, gives rise to the error δ
which represents the modulatory effect of neurotransmitters and modulates the
behaviour of the dorsal stream via Wrpm . So, it strengths the corresponding
representation of the sensory input via Wcpm as given in Eq. 4 and updates the
value of stimuli via Wv as stated in Eq. 8

Wv(k + 1) = Wv(k) + ηvδ(k)I(k)
′

(8)
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Fig. 3. The change in the behaviour of cortex component of premotor system with Wr

3.2 The Simulation Results for the Task of Sequence Learning

To investigate the appropriatness of the proposed model, the task of learning
a sequence of stimulus-action pairs similar to one defined in [11] is considered.
The task is to match the stimuli i.e., letters A, B, C to actions, i.e., numbers
1, 2, and 3, respectively. Reward is delivered at the end of the sequence, when
each letter is correctly matched to numbers. The learning process begins with
letter C as stimulus; once it is matched to correct action number 3 the reward
is given. Then letters B and A are added to the sequence one at a time. Each
time reward is given only when C is matched with 3.

During the simulation of task, first the stimulus C is presented, that is the
vector I in Eq. 2 corresponding to letter C is applied. When the solution of non-
linear discrete time system given by Eq. 2, 3 is settled to a stable equilibrium
point, the action selected by the action selection module is determined consid-
ering the solution of pm . If this action matches with the correct action that is
with number 3, then reward is given, otherwise not given. The value function
and the temporal difference error expressed with Eq.’s 6, 7 are calculated and
the matrices Wcpm , Wrpm and Wv are updated . If the action matches for 40
times then the stage of learning begins. This time the other stimulus B is given.
If the action matches with 2, then stimulus C is given. If first B is matched with
2 and just following it C is matched with 3, then reward is given. The updating
of matrices is made as above. This stage of the training ends if the reward is
obtained for 40 times. In the last stage as the stimulus A is given and same
process is continued.

The parameter values used in the simulation are λ = 0.5, β = 0.03, a = 3,
μ = 0.95, ηc = 0.1, ηr = 0.2, ηv = 0.1 and base= 0.2. The initial values of matrices
Wcpm , Wv are randomly generated small positive real numbers and initial value of
the diagonal matrix Wrpm is ones. During updating the matrix values,Wcpm and
Wrpm are normalized. The matrices Wdpm/m

and Wrm are composed of 0.5’s and
they are constant. The noise signal is created as a very small random number and
the stimuli and are binary coded, as followingA = [1 0 0], B = [0 1 0], C = [0 0 1].



A Computational Model of Cortico-Striato-Thalamic Circuits 335

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
reinforcement signal − delta

Fig. 4. The difference in δ during 255 trials

The reward signal is scalar and its value is one. The responses are the outputs of
the first, second and third motor loops corresponding to numbers 1, 2, 3.

The model completed the task on average 346.35± 115.56 trials. The aveage
of 20 different runs are taken and the difference between each run is due to
randomness in exploration step and the initial values of matrices. During these
20 tryouts, for two times the trials lasted over 600 and stopped before task is
completed. The final matrices for one such case and for one successful trial is
given as following

W (success)
rpm

=

⎡⎣0.3862 0 0
0 0.5680 0
0 0 0.1589

⎤⎦ ,W (fail)
rpm

=

⎡⎣0.0002 0 0
0 0.0010 0
0 0 0.0005

⎤⎦ (9)

W (success)
cpm

=

⎡⎣0.6640 0.1189 0.0782
0.1052 0.8311 0.0667
0.1392 0.0891 2.4192

⎤⎦ ,W (fail)
cpm

=

⎡⎣0.2017 0.1505 0.1023
0.1916 1.7053 0.0882
0.1936 0.1086 1.9519

⎤⎦ (10)

As, it can be followed from the matrices obtained in the sucessful trial, the
values of Wrpm and the values on the diagonal of Wcpm are bigger which reveals
that the association is set up correctly.

In Fig. 4, the change in the value of δ is given for one run. Each time a
stimulus is presented some time is spent for exploration to find out the adequate
response, which can be followed from the Fig. 4 as big values of δ. The value
of δ in other words, the error in expectation decreases as correct responses are
given but then with a different stimuli the value of δ increases again as the old
response is kept in the first trials following the presentation of new stimuli.

4 Discussion and Conclusion

In this work, a model of cortico-striato-thalamic circuits for goal-directed be-
haviour is proposed. This model is composed of two main components, one part
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corresponds to dorsal stream responsible for action selection while the other part
corresponds to ventral stream which modulates the action selection While the
action selection is realized as an interconnected nonlinear dynamical systems
corresponding to premotor and motor loops, the part that affects the action
selection is achieved similar to critic part of well-known actor-critic models of
reinforcement learning. The simulation results of sequence learning task are given
to demonstrate the effectiveness of the proposed model.

This work supports the idea that goal directed behaviour may arise from the
interaction between cortico-striato-thalamic loops [4,3]. Modeling these loops as
dynamical systems gives one possible mechanism of reinforcement learning in
the neural structures.
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Abstract. In this paper, we present adaptive observers for synapti-
cally coupled Hindmarsh-Rose(HR) neurons with the membrane poten-
tial measurement under the assumption that some of parameters in an
individual HR neuron are known. Using the adaptive observers for a sin-
gle HR neuron, we propose a two-stage merging procedure to identify
the firing pattern of a model of synaptically coupled HR neurons. The
procedure allows us to recover the internal states and to distinguish the
firing patterns of the synaptically coupled HR neurons, with early-time
dynamic behaviors.

1 Introduction

In traditional artificial neural networks, the neuron behavior is described only
in terms of firing rate, while most real neurons, commonly known as spiking
neurons, transmit information by pulses, also called action potentials or spikes.
Model studies of neuronal synchronization can be separated in those where mod-
els of the integrated-and-fire type are used and those where conductance-based
spiking and bursting models are employed[1]. Bursting occurs when neuron ac-
tivity alternates, on slow time scale, between a quiescent state and fast repet-
itive spiking. In any study of neural network dynamics, there are two crucial
issues that are: 1) what model describes spiking dynamics of each neuron and
2) how the neurons are connected[2]. Izhikevich considered the first issue and
compared various models of spiking neurons[3,2]. He reviewed the 20 types of
real (cortical) neurons response, considering the injection of simple dc pulses
such as tonic spiking, phasic spiking, tonic bursting, phasic bursting. Through
out his simulations, he suggested that if the goal is to study how the neuronal
behavior depends on measurable physiological parameters, such as the maximal
conductance, steady-state (in)activation functions and time constants, then the
Hodgkin-Huxley type model is the best. However, its computational cost is the
highest in all models. He also pointed out that the Hindmarsh-Rose(HR) model
is computationally simple and capable of producing rich firing patterns exhibited
by real biological neurons. Nevertheless the HR model is a computational one of
the neuronal bursting using three coupled first order differential equations[4,5],
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it can generate a tonic spiking, phasic spiking, and so on, for different parame-
ters in the model equations. Charroll simulated that the additive noise shifts the
neuron model into two-frequency region (i.e. bursting) and the slow part of the
responses allows being robust to added noises using the HR model[6]. The pa-
rameters in the model equations are important to decide the dynamic behaviors
in the neuron[7].

From the measurement theoretical point of view, it is important to estimate
the states and parameters using measurement data, because extracellular record-
ings are a common practice in neuro-physiology and often represent the only way
to measure the electrical activity of neurons[8]. Tokuda et al. applied an adap-
tive observer to estimate the parameters of the Hindmarsh-Rose neuron (HR
neuron) by using membrane potential data recorded from a single lateral pyloric
neuron synaptically isolated from other neurons[9]. However, their observer can-
not guarantee the asymptotic stability of the error system. Steur[10] pointed out
that the HR equations could not transformed into the adaptive observer canoni-
cal form and it is not possible to make use of the adaptive observer proposed by
Marino[11]. He simplified the three dimensional HR equations and write as one-
dimensional system with exogenous signal using contracting and the wandering
dynamics technique. His adaptive observer with first-order differential equation
cannot estimate the internal states of the HR neurons.

We have recently presented three adaptive observers for a single neuron with
the membrane potential measurement under the assumption that some of para-
meters in the HR neuron are known[12]. Using the Kalman-Yakubovich lemma,
we have shown the asymptotic stability of the error systems based on the stan-
dard adaptive control theory[13]. The estimators allow us to recover the internal
states and to distinguish the firing patterns with early-time dynamic behaviors.

In this paper, we focus on synaptically coupled HR neurons. An individual
HR neuron can generate a tonic bursting, tonic spiking, and so on. The firing
pattern can be identified with the parameters of the individual neuron. We couple
two model neurons both electronically and electrochemically in inhibitory and
excitatory fashions. The model neurons synchronize in phase and out of phase
depending on the strength of the coupling. Katayama et al. studied synchronous
phenomena in neural network models with the HR neurons[14]. These neurons
generate periodic spikes, quasiperiodic spikes and chaotic spikes in some range
of bifurcation parameters. We adopt the synaptic coupling function modeled
by the sigmoidal function[1]. First, we numerically confirm that the coupling of
an intrinsic bursting neuron and a spiking neuron generate chaotic phenomena
with strong coupling, and the strong coupling of two bursting neurons generates
a spiking pattern. Next, using the adaptive observers for a single HR neuron[12],
we propose a two-stage merging procedure to identify the firing pattern of a
model of synaptically coupled HR neurons by estimating the parameter and the
applied current of the membrane potential dynamics. Moreover, we propose an
instantaneous Lyapunov exponent that is a real-time decay rate of time series
data. The instantaneous Lyapunov exponent is one of the measures that estimate
the decay rates of flows of nonlinear systems by assigning a criterion function.
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We use the instantaneous Lyapunov exponent to check the firing patterns of
the coupled HR neurons. The MATLAB simulations demonstrate the estimation
performance of the proposed adaptive observers and the instantaneous Lyapunov
exponent.

2 Review of Real (Cortical) Neuron Responses

There are many types of cortical neurons responses. Izhikevich reviewed 20 of the
most prominent features of biological spiking neurons, considering the injection
of simple dc pulses[2]. Typical responses are classified as follows[15]:

– Tonic Spiking (TS) : The neuron fires a spike train as long as the input
current is on. This kind of behavior can be observed in the three types
of cortical neurons: regular spiking excitatory neurons (RS), low-threshold
spiking neurons (LTS), and first spiking inhibitory neurons (FS).

– Phasic Spiking (PS) : The neuron fires only a single spike at the onset of the
input.

– Tonic Bursting : The neuron fires periodic bursts of spikes when stimulated.
This behavior may be found in chattering neurons in cat neocortex.

– Phasic Bursting (PB) : The neuron fires only a single burst at the onset of
the input.

– Mixed Mode (Bursting Then Spiking) (MM) : The neuron fires a phasic
burst at the onset of stimulation and then switch to the tonic spiking mode.
The intrinsically bursting excitatory neurons in mammalian neocortex may
exhibit this behavior.

– Spike Frequency Adaptation (SFA) : The neuron fires tonic spikes with de-
creasing frequency. RS neurons usually exhibit adaptation of the interspike
intervals, when these intervals increase until a steady state of periodic firing
is reached, while FS neurons show no adaptation.

3 Single Model of HR Neuron

The Hindmarsh-Rose(HR) model is computationally simple and capable of pro-
ducing rich firing patterns exhibited by real biological neurons.

3.1 Dynamical Equations

The single model of the HR neuron[1,4,5] is given by

ẋ = ax2 − x3 − y − z + I

ẏ = (a + α)x2 − y
ż = μ(bx+ c− z)

where x represents the membrane potential y and z are associated with fast
and slow currents, respectively. I is an applied current, and a, α, μ, b and c are
constant parameters. We rewrite the single H-R neuron as a vectorized form:

(S0) : ẇ = h(w) +Ξ(x, z)θ
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where

w =

⎡⎣xy
z

⎤⎦T

,h(w) =

⎡⎣−(x3 + y + z)
−y
0

⎤⎦ , Ξ(x, z) =

⎡⎣x2 1 0 0 0 0
0 0 x2 0 0 0
0 0 0 x 1 −z

⎤⎦ ,
θ =

[
θ1, θ2, θ3, θ4, θ5, θ6

]T =
[
a, I, a + α, μb, μc, μ

]T
.

3.2 Intrinsic Bursting Neuron and Spiking Neuron

The HR model shows a large variety of behaviors with respect to the parameter
values in the differential equations[7]. Thus, we can characterize the dynamic
behaviors with respect to different values of the parameters. We focus on the
parameter a and the applied current I. The parameter a is an internal parameter
in the single neuron and I is an external depolarizing current. For the fixed
I = 0.05, the HR model shows a tonic bursting with a ∈ [1.8, 2.85] and a tonic
spiking with a ≥ 2.9. On the other hand, for the fixed a = 2.8, the HR model
shows a tonic bursting with I ∈ [0, 0.18] and a tonic spiking with a ∈ [0.2, 5].
For a small external current,I, the difference between the tonic bursting and the
tonic spiking is only the value of the parameter a. We call the single neuron with
bursting oscillation the intrinsic bursting neuron(IBN) and that with spiking
oscillation the intrinsic spiking neuron(ISN), respectively.

4 Synaptically Coupled Model of HR Neurons

4.1 Dynamical Equations

Consider the following synaptically coupled HR neurons[1]:

ẋ1 = a1x
2
1 − x3

1 − y1 − z1 + I1, I1 = −gs(x1 − Vs1)Γ (x2)
ẏ1 = (a1 + α1)x2

1 − y1,

ż1 = μ1(b1x1 + c1 − z1)
ẋ2 = a2x

2
2 − x3

2 − y2 − z2 + I2, I2 = −gs(x2 − Vs2)Γ (x1)
ẏ2 = (a2 + α2)x2

2 − y2,

ż2 = μ2(b2x2 + c2 − z2)

where Γ (x) is the sigmoid function given by

Γ (x) =
1

1 + exp(−λ(x − θs))

We call the neurons (x1, y1, z1) and (x2, y2, z2) the first and second neurons,
respectively.

4.2 Synchronization of Coupled Neurons

Consider the IBN neuron with a = 2.8 and the ISN neuron with a = 10.8 whose
other parameters are as follows:

αi = 1.6, ci = 5, bi = 9, μi = 0.001, Vsi = 2, θs = −0.25, λ = 10.
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The responses of the membrane potentials in the coupling of IBN neuron and ISN
neuron with the coupling strength gs = 0.05 behave as a pair of intrinsic single
neurons. As increasing the coupling strength, however, the IBN neuron shows
a chaotic behavior. The membrane potential of IBN neuron in the coupling of
IBN neuron and ISN neuron with the coupling strength gs = 1 behaves a chaotic
like response. Though two IBN neurons synchronize as bursting neurons in the
coupling of two same IBN neurons with the coupling strength gs = 0.05, two
IBN neurons synchronize as spiking neurons with the coupling strength gs = 1.

5 Two-Stage Estimation Procedure with Adaptive
Observers

The parameter a and I are key parameters that determine the firing pattern.
When the full states, x, y, and z are measurable, the adaptive observer can esti-
mate two parameters simultaneously with gradient-type adaptive update law[12].
However, it is difficult to measure the ion currents, y and z. We assume that
the membrane potential x1 and the external current I1 of the first neuron are
measurable, but the others are immeasurable.

In this case, we propose a two-stage merging procedure to estimate the states
and the parameters of one of the synaptically coupled HR neurons:

– First stage: Estimate y1, z1,a1 using the available signal x1 and I1 in a short
time range. Distinguish the firing patterns by using early-time dynamic be-
haviors;

– Second stage: After the first stage, the measurement of the external current
I is not required. Estimate y1, z1 and I1 using the estimate of a1 and the
available signal x1. We can monitor the firing pattern using the estimate
of I1.

5.1 Construction of Adaptive Observers

We focus on the first one of the synaptically coupled HR neurons. The parameters
a1 and I1 are key parameters that determine the firing pattern. The HR model
can be rewritten by the following two forms:

(S11) : ẇ1 = A1w1 + h11(x1) + b1(x2
1a1) (1)

(S21) : ẇ1 = A1w1 + h21(x1) + b2(I1) (2)

where

A1 =

⎡⎣ 0 −1 −1
0 −1 0

μ1b1 0 −μ1

⎤⎦ ,h11 =

⎡⎣−x3
1 + I1
αix

2
1

μ1c1

⎤⎦ ,h21 =

⎡⎣−x3
1 + a1x

2
1

(a1 + α1)x2
1

μ1c1

⎤⎦ ,
b1 =

[
1 1 0

]T
, b2 =

[
1 0 0

]T
.

In (S11) and (S21), the unknown parameters are assumed to be a1 and I1, re-
spectively. We use the models (S11) and (S21) in the first stage and the second
one, respectively.
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Since the measurable signal is x1, the output equation is given by

x1 = cw1 =
[

1 0 0
]
w1.

In the first stage, we present an adaptive observer to estimate the parameter
a1 and the states w1 as follows:

(O11) : ˙̂w1 = A1ŵ1 + h1(x1) + b1(x2
1â) + g(x1 − x̂1), ˙̂a1 = γ1x

2
1(x1 − x̂1) (3)

where ŵ1 =
[
x̂1 ŷ1 ẑ1

]T is the estimate of the states and â1 is the estimate of the
parameter a. The vector g is selected such that A1−gc is a stable matrix. Using
the Kalman-Yakubovich (KY) lemma, we can show the asymptotic stability of
the error system based on the standard adaptive control theory[13].

In the second stage, we present another adaptive observer to estimate the
parameter I1 and the states w1 as follows:

(O21) : ˙̂w2 = A1ŵ2 + h2(x1) + b2(Î) + g(x1 − x̂1), ˙̂
I1 = γ2(x1 − x̂1). (4)

where Î is the estimate of the external current I1. The vector g is also selected
such that A1 − gc is a stable matrix.

5.2 Instantaneous Lyapunov Exponent

The Lyapunov exponent gives a measure of the mean decay/divergence rates
of the flows of nonlinear systems and can be utilized to check chaotic behav-
iors. However, the Lyapunov exponent needs an infinite time interval of flows
and the Jacobian matrix of system parameters. Yoden et al.[16] presented the
finite-time Lyapunov exponent that does not require the limit of infinite time
interval. However, it requires the knowledge of systems parameters. We propose
an instantaneous Lyapunov exponent that is a real-time decay rate of time se-
ries data. The instantaneous Lyapunov exponent is one of the measures that
estimate the decay rates of flows of nonlinear systems by assigning a criterion
function.

Thus, we define an instantaneous Lyapunov exponent (ILE) as follows:

λ(t) =
1
t

log
[ ||x(t)||
φ(t)

+ exp
{
−α ||x(t)||

φ(t)

}]
(5)

where φ(t) is a designable function that assign the decay order and satisfies
limt→∞ φ(t) = 0. We apply the ILE to check the decay rate of the error states
between the neuron states and its estimates. Selecting α =∞, the ILE is given by

λ∞(t) =
1
t

log
[ ||x(t)||
φ(t)

]
. (6)

By choosing the signals as x(t) = x1(t) and φ(t) = x2(t), λ∞ is one of the
measures of the synchronization rate of two neurons.
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Fig. 1. The response of â1 by the adap-
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Fig. 2. The response of â1 in the short-
time range(IBN-ISN coupling with
gs = 0.05)
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Fig. 3. The response of I1(IBN-ISN
coupling with gs = 0.05)
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Fig. 4. The response of Î1 by the adap-
tive observer (O21)(IBN-ISN coupling
with gs = 0.05)
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Fig. 5. The response of I1 by the adap-
tive observer (O21)(IBN-ISN coupling
with gs = 1)
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Fig. 6. The response of Î1 by the adap-
tive observer (O21)(IBN-ISN coupling
with gs = 1)

5.3 Numerical Examples

We demonstrate the two-stage estimator using MATLAB/Simulink. Assuming
that the output is x1 in the synaptically coupled Hindmarsh-Rose neurons, we
apply the proposed observers to estimate the parameters of the first neuron with
the available signals x1 and I1.
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The first case is where the IBN neuron with a1 = 2.8(the first neuron) and
the ISN neuron with a2 = 10.8(the second neuron) are synaptically coupled
with a weak coupling. The coupling strength gs = 0.05. Each neuron behaves
intrinsically. Figure 1 shows the estimate â1 by the adaptive observer (O11).
Figure 2 is its response in the short-time range. Figures 3 and 4 show I1 and
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Fig. 7. The ILE λ of the membrane po-
tential x1(IBN-IBN coupling with gs =
0.05)

0 200 400 600 800 1000

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

time

I
L
E

Fig. 8. The ILE λ of the estimate Î by
the adaptive observer (O21)(IBN-IBN
coupling with gs = 0.05)
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tive observer (O11)(IBN-IBN coupling
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its the estimate Î1 by the adaptive observer (O21), respectively. The estimate â1

converges to the intrinsic value and Î1 nearly equal to I except for the negative
values. Though the adaptive estimation law is designed for an unknown constant
parameter, it can follow time-varying parameters. The second case is where the
IBN neuron with a1 = 2.8(the first neuron) and the ISN neuron with a2 =
10.8(the second neuron) are synaptically coupled with a strong coupling. The
coupling strength gs = 1. The estimate â1 converges to the intrinsic values and
Î1 nearly equal to I except for the negative values. Figures 5 and 6 show I1 and
its the estimate Î1 by the adaptive observer (O21). In this case, the first neuron
generates a chaotic firing pattern. The third case is where two bursting neurons
(a1 = a2 = 2.8) are synaptically coupled with the weak coupling, gs = 0.05.
In this case, two neurons synchronize with the bursting firing pattern. Figure 7
shows the ILE, λ(t), of the membrane potential x1 selecting φ(t) = 1

t , α = 10.
Figure 8 shows the ILE, λ(t), of Î1. The last case is where two bursting neurons
(a1 = a2 = 2.8) are synaptically coupled with the strong coupling, gs = 1. In
this case, we can also identify the upper neuron as a bursting neuron by the
estimated parameters, â and Î. Two intrinsic bursting neurons behave spurious
spiking neurons. Figure 9 shows the estimate â1 by the adaptive observer (O11).
Figures 10 and 11 show I1 and its the estimate Î1 by the adaptive observer
(O21). The estimate â1 converge to the intrinsic values and Î1 converge to I.
Figure 12 shows λ∞(t) between x1 and x2. It indicates that two signal x1 and
x2 synchronize since λ∞ ≈ 0.

6 Conclusion

We presented the adaptive estimators of the parameters of the HR model using
the adaptive observer technique with the output measurement data such as the
membrane potential. The proposed observers allow us to distinguish the firing
pattern in early time and to recover the immeasurable internal states in the case
of a model of synaptically coupled Hindmarsh-Rose neurons.
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Abstract. The investigation on the conditions which cause global pop-
ulation oscillatory activities in neural fields, originated some years ago
with reference to a kinetic theory of neural systems, as been further
deepened in this paper. In particular, the genesis of sharp waves and
of some rhythmic activities, such as theta and gamma rhythms, of the
hippocampal CA3 field, behaviorally important for their links to learn-
ing and memory, has been analyzed with more details. To this aim, the
modeling-computational framework previously devised for the study of
activities in large neural fields, has been enhanced in such a way that
a greater number of biological features, extended dendritic trees–in par-
ticular, could be taken into account. By using that methodology, a two-
dimensional model of the entire CA3 field has been described and its
activity, as it results from the several external inputs impinging on it, has
been simulated. As a consequence of these investigations, some hypothe-
ses have been elaborated about the possible function of global oscillatory
activities of neural populations of Hippocampus in engram formation.

1 Introduction

The modality according which the information is coded within the activities
of the neural fields of Hippocampus and the way with which they produce the
memory traces, or engrams, specifically related to the sensory events of brain,
constitute a very elusive problem and no clear elucidation about its nature exists
still now.

Some hypotheses on the possible role of the sharp waves and the global oscil-
latory activities of neural populations of Hippocampus on engram formation are
presented in this article. In fact, the synchronous oscillatory activity constitutes
one of the most characteristic aspects of brain activity and is associated closely
to fundamental behavioral states. In Hippocampus, rhythmic oscillations in the
theta (4-15 Hz) and in the gamma (20-80 Hz) ranges are among the most promi-
nent patterns of activity [4] and the neuroscientists believe that both rhythms,
and sharp waves, reflect essential aspects of the hippocampal functions, mainly
related to learning and memory [5,3,9].

The importance of CA3 field in this setting springs from several elements.
CA3 is the main source of rhythmic activity in the Hippocampus. It has a pyra-
midal axonic structure with one of the highest levels of reentry among all the
� Corresponding author.
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other structures of brain (1.9% of probability of coupling between two pyrami-
dal neurons) [1]. At CA3, not only mossy fibers from granular neurons of DG
arrive, but also fibers directly from EC (III layer) and from sub-cortical nuclei,
among which the most important are Medial Septum (MS) and Diagonal Band,
Raphe and Corpus Coeruleus. They are linked to attention, to overt behavior, to
stress.

We used the CA3 field of the Hippocampus to evaluate the new hypotheses
about the global oscillatory activity of neural populations as base of engrams.

2 The Kinetic Model

The kinetic theory of neural systems, formulated several years ago [12,11] to de-
scribe the activity of large neural fields, has been utilized here for the description
of the activity of the CA3 field. The most original aspect of such a theory is the
statistical description of the neuronal interaction. In fact, the action potentials
traveling along the axonic branches are represented as massless particles with
a volume, the impulses, having only statistical links to the axonic structure. In
general, the impulses are short-range with a span of about 300 − 400μm, but
the CA3 pyramidal neurons can emit also long-range impulses which can reach
distant zones in CA3, also some millimeters far from the emitting neuron. After
the firing the neuron goes in a refractoriness state, for a period of time τ . Vice
versa, in the event that the subthreshold potential, due to an excessive inhibi-
tion, reaches values well under the resting value, the neuron passes in the so
called hyperpolarized state, where it remains until the excitation changes sign.
We associate the variables r,v, e and t to position, velocity, subthreshold mem-
brane potential and time, respectively. Since our model of CA3 is based on a
projection to a two-dimensional surface, both vectors r and v have two dimen-
sions. The different impulses traveling within CA3 are denoted by an index s
and an index s′ is associated to the different families of neurons. Moreover, sex

denotes a generic impulse coming from sources external to CA3 and sin denotes
a generic impulse generated by neurons within CA3. The functions fs(r,v, t)
and gs′(r, e, t) describe, respectively, the velocity distribution of impulses and
the distribution of the subthreshold neuronal excitation within the neural field.
The function ψs′ (r) denotes the local density of neurons of a specific type s′ and
it is related to gs′(r, e, t) via integration on v.

It is necessary to note that the set of equations, reported in previous articles
by the author, do not describe accurately the dynamics of the neuronal interac-
tion. In fact, by considering only local absorptions (restricted to elemental space
(r, dr) where impulses collide with neurons–somata) these equations handle too
grossly the process of absorption and, as a consequence, the activity of the neural
field could not be adequately described. In cerebral structures, indeed, the span
of the mean dendritic arborization of the neurons (about 300−400μm), is much
larger then the diameter of the neuronal somata and probably this is an impor-
tant element to take into account. In a new setting, still based on the methods of
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the kinetic theory of neural systems, the mean number of impulses of type s
absorbed in r at time t from neurons s′ was described by the following function:

Is′s(r, t) =
∫ ∫

D(r)

fs(r′,v, t)dr′ψs′(r)σs′s | v | dv (1)

where σs′s—the absorption coefficient—corresponds to the collision kernel as
defined in the transport theory, and D(r) denotes the region of extension of the
dendritic arborization of neurons located in r. As it appear evident from this
equation, the absorption of impulses is no more a local process, as in equations of
earlier articles, but it interests a larger extension of the neural field from which
the impulses can be absorbed. Accordingly, the previous set of equations will be
denoted local absorption model, while the actual set will be denoted non-local
absorption model.

By using this function, the mean number of impulses of type s absorbed from
each neuron in r at time t is given by:

is′s(r, t) =
Is′s(r, t)
ψs′(r)

. (2)

To compute the time course of the net excitatory effect on subtreshold neurons
s′ in r at time t, induced by all the absorbed impulses, a new function was
introduced. It is denoted by Es(t) and describes the time course of the mean
Post Synaptic Potential associated to the absorption of an impulse of type s—
a positive function for excitatory impulses, negative for inhibitory ones. Based
on this function, the net excitatory effect, εs′(r, t), is given by the following
convolution equation:

εs′(r, t) = Σn
s=1

∫ t

0

Es(t) · is′s(r, t− t′)dt′. (3)

Finally, this function allows the computation of the probable number of neurons
in r which are in a firing state at time t:

Ns′(r, t) =
∫ 1

1−ε(r,t)

gs′(r, e, t)de (4)

While, the probable number of neurons in hyperpolarized state are described by
the equation:

∇tMs′(r, t) =
∫ −ε(r,t)

0

gs′(r, e, t)de−Ms′(r, t)θ(ε) (5)

where Ms′(r, t) denotes the probable number of neurons in r which stay in max-
imum hyperpolarization level at time t. In the above equations, use is made
of the conditions that the function gs′(r, e, t) = 0 if e ≤ 0 or if e > 1, and 0
and 1 represent the normalized maximum hyperpolarization level and neuronal
threshold, respectively. The function θ(.) denotes the step function.
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Based on these preliminary definitions and equations, the time evolution of the
two distribution functions fs(r,v, t) and gs′(r, e, t) is governed by the following
set of coupled differential equations:

∇tfs(r,v, t) + v · ∇rfs(r,v, t) + fs(r,v, t)(Σs′

∫
D(r)

ψs′(r′) | v | σs′sdr′) =

Ss(r,v, t)δ(s − sex) + f s
s (r,v)Ns′ (r, t)δ(s− sin)

+f l
s(v)

∫
A

ξs′s(r, r′) dr′
∫
f

′
(v)Ns′(r′, t− |r− r′|

v
) dvδ(s− sin)(6)

∇tgs′(r, e, t) + μ(er − e)∇egs′(r, e, t) =

[gs′(r, e − ε, t)− gs′(r, e, t)](1 − δ(ε))

+Ns′(r, t− τs′ )δ(e− er)

+Ms′(r, t)θ(ε)δ(e − e0) (7)

where δ(.) denotes the Dirac function. A not standard use of the Dirac function
is done in equation 6. In this case, the Dirac function has been utilized to obtain
a more compact presentation of the set of equations related to different type of
impulses propagating in CA3. In particular, the factor δ(s − sex) in equation 6
means that the source term Ss(r,v, t) is present only for the specific subset
of the impulses coming from external sources. When this term is present, the
other two terms on the right side of the equation, which are multiplied by the
factor δ(s− sin) are lacking, and vice versa. Moreover, also the short-range and
the long-range terms (the second and the third terms on the right member in
equation 6) are mutually exclusive. In the above equations, ε stands for εs′(r, t),
and er and e0 denote the resting potential and the maximum hyperpolarization
level (this last was assumed as normalized to 0), μ is the decay constant of the
subthreshold excitation, and A is the surface occupied by CA3.

The third term on left member side of equation 6 is the other distinguishing
element of the non-local model. It describes the fact that the impulses present
at time t in (r, dr) are absorbed not only by neurons lying there, but by the
entire set of neurons which, having somata occupying the space D(r), extend
their dendrites till to the position r.

The impulses conveyed by the Mossy fibers, which terminate on the base of the
shaft of the dendritic tree (stratum lucidum), can be still described by the non-
local equations. In this case, the absorption space is very close to the pyramidal
soma, and strictly confined within the soma boundary. For the description of
Mossy impulses absorption we use the equation:

Is′s(r, t) =
∫ ∫

D(r)

fs(r′,v, t)δ(r − r′)dr′ψs′(r)σs′s | v | dv. (8)

which is equivalent to the corresponding equation of the local model.
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3 Discretized Model

The activity of the entire CA3 field of the rat, having dimensions of 8.4mm long
(septo-temporal axis) and 3mm large (transverse axis) as reported in the Atlas
of Rat Brain [10], has been simulated by using the non-local absorption equation
set. The integro-differential equations of the non-local model were transformed in
discrete-difference equations, according to a procedure based on the suggestions
of [2], Chapt. 9, for equations related to the theory of invariant embedding. The
space-time course of some macroscopic parameters (local frequency of spikes,
local mean sub-threshold excitation, number of firing neurons), which have close
analogy with the in vivo recorded activity of the hippocampal CA3 field (i.e.,
population spike trains, local field potentials–LFPs), has been analyzed to obtain
information on their ability to simulate oscillating hippocampal activity.

Excitatory stimuli originated from Entorhinal Cortex via Dentate Gyrus
(through the Mossy Fibers) and by a direct path have been simulated. Also, the
effects of inhibitory afferences from Medial Septum have been investigated. In sum-
mary, seven different families of impulses and three families of neurons –pyramidal,
inhibitory fast and inhibitory slow– have been used in the description.

Moreover, to compute Es(t), the time-course of the mean Post Synaptic Poten-
tial produced at the axon hillock by absorption of the different impulses impinging
on pyramidal neurons, we considered that the synapses on pyramidal neurons in
CA3 field of Hippocampus are parceled in four main layers: Oriens, Lucidum—
formed by the mossy synapses of axons coming from granular neurons in Dentate
Gyrus, Radiatum, and Lacunosum-moleculare. Another layer, the stratum Pyra-
midal, containing the somata of pyramidal neurons, is the place of arrival of several
inhibitory terminals. We know also, from [8], that Entorhinal Cortex neurons send
axons in Lacunosum-moleculare layer, some of the pyramidal Schaffer’s collaterals
from CA3 terminate in Oriens and Radiatum layers, and Medial Septum neurons
excite synapses in Oriens and, at a minor extent, synapses in Radiatum.

Due to the passive propagation along the dendritic trees, the distance be-
tween the synapses and the axon hillock produces a widening and weakening of
the synaptic effect at the axon hillock. By using the results of [13], the time-
course of Es(t) produced by input in Lacunosum-moleculare layer (EC input)
was considered maximally widened and weakened, whereas the input in Oriens
and Radiatum layers (MS and pyramidal Short and Long Range impulses) had
a mean widening and weakening time-course, and the input in Lucidum and
Pyramidal layers was only slightly widened and weakened. Dentate Gyrus input,
conveyed by layered mossy fibers in stratum lucidum, was assumed to be distrib-
uted along parallel strips of pyramidal neurons, each strip being 3mm long and
50μm large and containing about 6.250 mossy fibers and 87.500 mossy synapses.
The amplitude of the strip (50μm) being imposed by the space step.

4 Ca3 Global Activity

The genesis of sharp waves and rhythmic oscillations in gamma and theta
ranges has been investigated by computational experiments which simulated the
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reaction of the CA3 model to external stimuli. In general, each simulation had
a duration of 2 seconds, requiring 16000 time steps (δt = 0.125ms).

In all the experiments, the main stimuli came from Dentate Gyrus, Entorhinal
Cortex, and Medial Septum. In the simulations described here, an inhibitory
input from MS has been simulated which inhibited selectively the inhibitory
neural populations of CA3 [7]. The Dentate Gyrus input to each neural strip was
constituted by random volleys of impulses, whose arrival times were distributed
according to a Poisson distribution, while the amplitudes were Gaussian. Once
a volley arrived to a strip, it traveled through all the transverse length of CA3
( 3mm), impulses being absorbed along the route. In some cases the volleys along
the different strips were correlated. The CA3 field was also reached by Poissonian
inputs originating from a direct Entorhinal Cortex path. The Entorhinal Cortex
inputs had Gaussian distributed amplitudes. A Poisson distribution was assumed
also for the inhibitory input coming from MS, but the amplitude was modulated
by a square wave at different frequencies in different simulations.

The main aim of the simulations was the investigation of the effect of the
inhibitory input from Medial Septum on the activity of CA3. A meaningful pa-
rameter was considered to be the summed potentials at the axon hillock of neu-
rons, averaged on all the modules (10080) of the CA3 model. This parameter is
a nice representation of the LFP recorded by micro-electrodes in electrophysio-
logical experiments. At first, to bring forth a CA3 global activity to use as basic
reference, we considered an ineffective MS inhibition, lasting for all the duration
of the simulation. Some results are reported in figure 1, where the LFPs, separated
for the three different neural populations (pyramidal, inhibitory–fast and slow),
are shown. Five volleys (or complex waves) are evident in the activity of the pyra-
midal population, with a global frequency of 2.5Hz, each volley being composed
by three or four waves at about 25Hz, at the lower edge of the gamma range.
But, differently from the results obtained in electrophysiological experiments, the

Fig. 1. Time course of the global input at axon hillock of the average neuron of the
average modulus (local field potentials–LFPs) in CA3 under constant, but otherwise
not effective, inhibitory MS input. The time course is shown for pyramidal, inhibitory
fast and inhibitory slow neurons. The total time displayed is 2s.
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Fig. 2. CA3 global activity linked to the the first wave of LFPs shown in figure 1.
Starting time at 27ms and ending time at 44ms, the inter-frame time step is 1ms. The
upper frames show the course of long-range pyramidal impulses, the medial ones that
of short-range pyramidal impulses, whereas the bottom frames are related to impulses
emitted by fast inhibitory neurons.

model can provide not only this data, but a complete information about the CA3
activity. We can know both the firing space-time course of all the populations of
neurons and the impulse density behavior, in space and time, for all the different
impulses. Interesting aspects are shown by the propagation of short-range and
long-range pyramidal impulses and of fast inhibitory impulses, in figure 2. From
this figure we can describe a typical CA3 activity, when the inhibitory input from
Medial Septum is not meaningful. At the starting time all the activity parameters
are set to null (all the neurons are at the resting level and no impulse is flowing
in the system), then the simulated input from DG and EC begin to influence the
pyramidal neural population. At some times, depending on the characteristics of
the Poisson distributions governing the DG input and the EC input, the first vol-
leys of impulses begin to propagate in one or more strips, for DG input, or to hit
some moduli, for the EC input. The absorption of impulses triggers some pyrami-
dal neurons to fire action potentials. This induces firing in other pyramidal cells
and also in fast and slow inhibitory neurons. In some milliseconds a patterned,

Fig. 3. Time course of LFPs of pyramidal, inhibitory fast and inhibitory slow neurons
in CA3 under 5Hz inhibitory MS input. The total time displayed is 2s.
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self-organized activity begin to appear in the neuronal firing, which stabilizes and
propagates throughout the entire CA3 field, involving both the pyramidal and the
inhibitory neurons. The induced firing of fast and slow inhibitory neurons pro-
duces a level of inhibition sufficient to reduce to a silent state the pyramidal neu-
rons. In such a way they remain unable to react to new inputs originating from the
simulated external sources. The patterned activity of the inhibitory neural popu-
lation remains active for a long period of time, as long as they have sufficient drive
from their excitatory synapses. After, the decaying of the excitation on inhibitory
neurons reduced gradually their firing. This permits the inputs from EC and DG
to ignite again some of the neurons of the pyramidal population of CA3. A new
cycle begins with a patterned activity that could be slightly or strongly different
form the previous one (results not shown).

In a different simulation, a 20Hz inhibitory activity, coming from MS, and
effectively inhibiting both fast and slow inhibitory populations of CA3 was in-
vestigated. The results of the global parameter showed that the CA3 field reacts
to MS input producing an activity with the same frequency of the MS input
(results not shown).

To study the reaction of CA3 to a MS inhibition at a lower frequency, a 5Hz
input was utilized. The results, as expressed by the usual LFP parameter, are re-
ported in figure 3. In this case CA3 is unable to follow the input with a 1 : 1 regime.
Vice versa, some complex waves are produced, each wave showing a time-course
with different frequency contents. A two way course is shown in each wave, a sharp
wave followed by some oscillations in the gamma range (from 21 to 35Hz).

In figure 4 the local density of impulses are represented. In this case, the three
families of impulses show different propagation behaviors during the gamma and
the sharp waves courses.

Fig. 4. CA3 global activity linked to the transition phase in the second wave of figure
3. Two time periods are shown. The first nine frames–from 0.560 to 0.576s–frame step
2ms, fall in a sharp wave. The last nine frames–from 0.648 to 0.664s–frame step 2ms,
belong to a period of gamma waves.

5 Discussion

By simulating an oscillating, inhibitory input originating from Medial Septum,
we investigated how the inhibition of fast and slow inhibitory neurons could
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modulate the CA3 activity. The following results were observed. When reached
by an inhibitory input from Medial Septum at 6.6Hz frequency and higher, the
CA3 field is able to produce oscillating activity at the same frequency of the
driving input. If the frequency of the inhibitory input from MS decreases to
5Hz frequency or lower, a different behavior is manifested. In the simulation
with 5Hz input, we observe five complex waves in 2 seconds. Leaving out the
first one, each wave starts with a kind of sharp wave with a duration going from
80 to 50ms, followed by 3-4 waves at about 30Hz–falling in the range of the
gamma waves.

The simulation suggests that the global processing structure of CA3 is or-
ganized in such a way to present specific time windows for the generation of
excitatory activities by pyramidal neurons. These activities are very character-
istic and depend strictly by the input from Medial Septum. In general, they are
separated by short or long periods of patterned inhibition. A sort of temporal
coding—with a meaning quite different from the common view—seems to be
associated to the function of the entire CA3 field. Among all the inputs from
cortical regions arriving to CA3, only those which reach it in appropriate time
are able to trigger specific, global activities, and can produce effects on the brain
regions driven by CA3. Other volleys, which arrive out of phase with the winning
activity, cannot filter through the inhibitory barrage, and are unable to stim-
ulate reactions. Hence, the information they convey is not allowed to pass to
other brain stages. In such a way, some free periods of time, with a variable du-
ration, are reserved to the successful inputs, during which they can drive specific
activities in cortical regions without interferences by competing inputs. These
activities may result in learning, memory and other cognitive effects.

Based on a long experimental activity also Vinogradova hypothesized a link
between the theta rhythm and the attention mechanism [14]. A weaker, but
similar hypothesis has been proposed in [6] on the inhibitory activity in Hip-
pocampus. These authors suggest that oscillating inhibitory networks may pro-
vide temporal windows for single cells to suppress or facilitate their synaptic
inputs in a coordinated manner.
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Abstract. Tracking moving objects is a vital visual task for the survival
of an animal. We describe oscillatory neural network models of visual
attention with a central element that can track a moving target among
a set of distracters on the screen. At the initial stage, the model forms
focus of attention on an arbitrary object that is considered as a target.
Other objects are treated as distracters. We present here two models: 1)
synchronisation based AMCO model of phase oscillators and 2) spiking
neural model which is based on the idea of resource-limited parallel visual
pointers. Selective attention and the tracking process are represented
by partial synchronization between the central unit and subgroup of
peripheral elements. The simulation results are in overall agreement with
the findings from psychological experiments: overlapping between target
and distractor is the main source of error. Future investigations include
the dependence between tracking performance and neuron frequency.

1 Introduction

Selective visual attention is a mechanism that gives a living organism the pos-
sibility to extract from the incoming visual information a part that is most
important at a given moment and that should be processed in more detail. This
mechanism is necessary due to limited processing capabilities of the visual sys-
tem which does not allow the rapid analysis of the whole visual scene.

The important property of attention is its metastability. This means that after
being fixed, the focus of attention does not change for some time even when ob-
jects in a scene gradually vary their parameters (shape, brightness, position). In
particular, the metastability of attention makes it possible to track a moving ob-
ject. Special conditions should be fulfilled for attention to be switched from one
object to another. These conditions include (a) an abrupt change of parameters of
an object in the focus of attention, (b) appearance and disappearance of objects in
the scene, (c) objects overlapping or hiding due to their movements, (d) termina-
tion or voluntary break of object processing.

In this paper we present two oscillatory neural networks with a central element
for automatic object-oriented attention. The main advantage of these models is
that they can work with non-stationary objects. It is assumed that objects in
the input image can move and change their intensity and form. For simplicity we
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consider the case of greyscale images. The focus of attention is represented by
those oscillators that work synchronously with the central oscillator. It is shown
that a proper synchronization regime can be obtained by a suitable choice of
parameters of oscillators and coupling strengths.

The first model is modification of our Attention Model with Central Oscilla-
tor (AMCO) comprising a layer of the so-called peripheral oscillators interacting
with a special central oscillator [1,2,3]. Advanced phase oscillators have been
used as the elements of this model. The state of such an oscillator is described
by three variables: phase, amplitude, and natural frequency of oscillations. The
functioning of the model has been based on the following main principles: 1) par-
tial synchronization between the central oscillator and some subset of peripheral
oscillators and 2) resonant increase of the amplitude during partial synchro-
nization. The phase-locking mechanism used to synchronize oscillators allows
them to achieve similar frequencies and the focus of attention is assumed to be
formed by those peripheral oscillators whose activity is partially synchronous
with the activity of the central oscillator. Functioning of the system is based on
the principles of phase-locking, adaptation of the natural frequency of the central
oscillator, and the resonance influence of the central oscillator on the assembly
of oscillators that work in-phase with the central element.

The second model of object tracking is built from biologically derived
Hodgkin-Huxley model neurons [4]. In this model we use the synchronization hy-
pothesis [5,6] for implementation of a ’pointer’ that identifies the neural assembly
coding a specified object. Pylyshyn [7] postulated that pointers pick out and stay
attached to individual objects in the visual field independent of the objects’ fea-
tures. The neural mechanism of visual pointers is unclear, but there are studies
which provide some suggestions about its nature. In Intriligator’s study [8], it was
found that the spatial resolution of visual attention is different from (coarser than)
that of the receptive field, suggesting the existence of a separate ’pointer field’ in
the parietal cortex. In the study by Egly et al. [9], it was shown that attention
seems to start at one point, then propagate and fill the object. Another study by
Alvarez and Scholl [10] showed that when tracking lines attention seems to con-
centrate at the middle of a line. This implies that the brain may be capable of
quickly and roughly calculate the centre of an object in the receptive field.

Model descriptions and results are presented in the following sections.

2 Phase Oscillator Model of Object Tracking

2.1 Model Description

The network consists of a central oscillator (CO) that has feedforward and feed-
back connections to a rectangular grid of peripheral oscillators (POs). Each PO
is coupled with its four nearest neighbours except on the boundaries where the
mirror symmetry condition is used. An oscillator is described by three variables:
the oscillation phase, the oscillation amplitude, and the natural frequency of
the oscillator. We do not specify phase oscillator equations here, they can be
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found in our previous publications [3]. The values of these variables change in
time according to prescribed rules of interaction between oscillators. The in-
put to the network is an image on the plane that contains several connected
greyscale objects on the white background. The objects are non-stationary, they
can continuously change their form, brightness and position. Due to movements,
objects can temporarily overlap with each other. While two (or several) objects
are overlapping, it is always specified which object lies on the top. Therefore at
any moment each pixel in the image has a single grey-level associated with it.
The input to the network is an image on the plane grid of the same size as the
grid of peripheral oscillators. So there is a one-to-one correspondence between
the pixels in the image and the peripheral oscillators. Each PO receives an ex-
ternal input from the corresponding pixel. The darker is the pixel, the higher is
the value assigned to the natural frequency of the corresponding oscillator. We
call an assembly a connected set of POs that are stimulated by a single object.
We say that an object is coded by the corresponding assembly of POs.

The coupling strength between oscillators is constant. The connections from
POs to the CO and local connections between POs are synchronizing. The con-
nections from the CO to POs are desynchronising. Due to synchronizing con-
nections from POs to the CO, the latter can be phase-locked by an assembly
of POs. Due to synchronizing connections between POs, the oscillators from an
assembly of active POs become phase-locked and work nearly in-phase after they
reach the resonant state. Desynchronising connections from the CO to POs are
used to break the coherence between different assemblies of POs so that at each
moment the system tends to include only one object in the attention focus.

Depending on the input signal and previous dynamics, a PO can be in one of
three states: active, resonant, and silent. If a PO receives zero input (correspond-
ing to the signal from the background), it is in the silent state. In this state the
oscillator does not participate in the network dynamics and is not included in the
dynamics equations. A PO becomes active as soon as it receives a non-zero signal
from a pixel of an object. CO is synchronised by the assembly of POs that cur-
rently makes the greatest contribution into the controlling the phase dynamics of
the CO. This assembly corresponds to the most salient object. Those POs that
work synchronously with the CO significantly increase the amplitude of their os-
cillations. If the amplitude exceeds a certain threshold, the PO changes its state to
resonant one. Being in the resonant state is interpreted as the fact that this oscilla-
tor is included in the focus of attention. If attention is switched to another object,
the oscillators amplitude drops down and the oscillator returns to the silent state.

The attention focus is kept stable until the object in the focus of attention,
say A, is crossed (overlapped) by another object B. If this event happens, the
combination of two objects is considered by the system as a connected object C.
The assembly of oscillators that codes C will become synchronous (due to local
connections between POs) and will synchronize the CO. The next change of the
attention focus happens when C again separates into two isolated object A and
B. At that moment the focus of attention will move to A or B depending on
their current saliency.
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In biological terms, POs represent cortical columns and are constituted of
locally interacting populations of excitatory and inhibitory neurons of the cortex.
CO represents the septo-hippocampal system whose final position in the pyramid
of cortical convergent zones and feedforward and feedback connections to the
cortex give it a direct or indirect access to cortical structures.

2.2 Simulation Results

In the following examples,the frames show the state of the network at the integer
moments of time. The frames are ordered from left to right and from top to bottom.
The state of an oscillator is represented in the figures according to the following
scheme: a pixel is white, grey, or black depending on whether the corresponding
oscillator is silent, active, or resonant at the current moment of time. Thus, black
pixels represent the focus of attention. The arrows show the direction of movement.

Example 1. Consider the case when the saliency of an object is solely deter-
mined by its size. Let a image contain two circles of a fixed size and intensity
(Fig. 1). The circles move towards each other (the direction is fixed for each
object). The circle of radius 5 moves to the right, the circle of radius 4 moves
to the left. Denote by A and B the assemblies of POs coding the circles in the
network. The natural frequencies of the oscillator in A and B are 5 and 4, re-
spectively. This reflects the fact that the circles have different grey-levels (not
shown in the figure), but in this example this has no influence on the strength
of interaction between A and B and the CO (the difference in grey-level is below
the sensitivity of the attention system).

As can be seen from Fig. 1, after a short transitional period (two time units)
the attention is focused on the larger circle (note that this takes place despite

Fig. 1. Selection of moving objects that is based on the size of the objects. Two circles
of different size move towards each other. Attention is focused on the larger circle all
the time except a short initial transitional period and the time when both circles collide
and form a complex object.
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Fig. 2. Selection of moving objects that is based on the intensity. Two circles of different
size and intensity move towards each other. Attention is focused on the smaller object
since it is darker (and has a better contrast) than the larger one.

the fact that the initial frequency of the CO coincides with the natural frequency
of oscillators in B). When the circles collide and overlap the focus of attention
is spread on both circles as if they form a complex object (see frames 9-15).
Lately, when the circles separate the attention is again focused on the larger and
therefore more salient circle (frames 16-20).

Example 2. This example presents the case when the saliency of an object
depends on its intensity (Fig. 2). The example differs from the previous one
by the value of the natural frequency of oscillators in the assembly B, which is
now equal to 6. This means that the smaller circle is darker than the lager one
and, hence, more salient on the white background. Therefore the influence of
the oscillators from B on the CO is increased in comparison to example 1. As a
result, after a short transient period (two time unites) the attention is focused on
the smaller circle (frame 3). After the collision (overlapping) of the circles, the
focus of attention is temporarily spread on both circles (frames 10-15), but their
separation results in attention returning to the smaller circle (frames 17-20).

Example 3. This example shows the case when the circles simultaneously move
and change size (Fig. 3). It is presented to show that the focus of attention has
the property of metastability. The image of size contains two circles whose radii
periodically changes in the range between 3 and 8. The radii vary in antiphase,
that is while the first radius is increasing the other one is decreasing. At the
initial moment both radii are identical. The natural frequencies of oscillators in
the assemblies A and B are equal to 5. This means that both circles have the
same grey level and therefore their saliency is determined by their size only. At
the moment when the focus of attention is formed, the circle that moves to the
right has larger size (frame 3), therefore attention is attracted by this circles and
is fixed on it during some time (frames 3-8) despite the fact that the circle in
the attention focus becomes smaller than the other circle (frames 7-8). Frames
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Fig. 3. Selection of moving objects of varying size. Two circles of the same grey-level
move towards each other. Initially, attention is focused on the circle moving to the
right but after collision and separation of circles it is switched to the circle moving to
the left.

9-17 correspond to the time when both circles are included in the attention
focus. Then the largest circle (that moves to the left) wins the competition for
attention (frame 18) and holds it even when this circle becomes small (frames
22-24).

3 Spiking Element Model of Object Tracking

3.1 Model Description

The architecture of connections is similar to the first model. There is a central
neuron (CN), which represents a neural ensemble in perhaps hippocampus or
prefrontal cortex. It functions as a central executive which inhibits unwanted
signals and promotes desirable signals. Second, there is a 2D grid of peripheral
neurons (PNs), which represents the receptive field in visual cortex. Third, there
is also a 2D grid of pointer neurons, which represents the attentional pointers
stored in the parietal cortex as suggested by experiments [7,8,9,10]. All neurons
are described using Hodgkin-Huxley equations with synaptic connections [11].

CN receives an external current and also some excitatory synaptic inputs from
all PNs (peripheral neurons). The external current is subthreshold, therefore the
activity of CN has nonlinear dependency with the activities of PNs. Each PN re-
ceives inputs from four sources: the visual image, pointer neurons, the central neu-
ron, and neighboring PNs. Signals from the visual image together with the pointer
neurons would determine which subgroup of PNs has a higher firing rate. CN pro-
vides inhibition so that those PNs with higher firing rates would be selected. Local
connections between neighboring PNs ensure that a complete target object would
be selected (because a physical object is usually locally connected in space). A par-
tial synchronization between CN and a subgroup of PNs would be interpreted as
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attention being focused on the object represented by those PNs (which also means
that that object is under tracking). Finally, the function of pointer neurons is try-
ing to catch up with the objects under tracking. Experiments imply that the point-
ers always try to point to the centre of an object and then propagate outward [9].
In our simulations, an active pointer neuron will collect signals from the vicinity
(9x9) of the current location. The signal is the existence of objects in the receptive
field when PNs fire again. We call these non-background PNs as active pixels. The
system then calculates the centre of the active pixels. This is done approximately
by drawing a minimal rectangle that confines the object. The coordinates of this
centre will be used as the new location of the next active pointer neuron (the pre-
vious one will be deactivated). The process of updating the pointers is assumed
to be discrete and dependent on the operation frequency of the system.

3.2 Simulation Results

Before the tracking starts, the subject would be told which target to track. In
our simulations, we assume that a top-down signal is provided for those PNs
which are encoding the target object. Generally, a PN receives an external cur-
rent from the visual field Iext = 5(1 + 0.5ξ) mA if the peripheral participates in
representation of some object and the a smaller current Iext = 2(1+0.5ξ) mA for
neurons represemting the background, where ξ is a random number uniformly
distributed in [−1, 1] representing the noise. A subgroup of PNs (which are en-
coding the target) receives an additional external current from the top-down
process. Those PNs are therefore receiving a higher total current. We assume
that Iext = 10(1 + 0.5ξ) mA for each of the ’attended PN’. The top-down signal
is turned off once the tracking starts.

After the tracking task starts, the pointer neurons replace the role of the
initial top-down signal. The coordinates of the active pointer keep updated by
calculation approximate position of the centre of object in the vicinity of previ-
ous coordinates. A signal will be sent to the corresponding PN from the active
pointer neuron. The PN at the same coordinates will become ’attended’ and
receives a higher external current (Iext = 10(1+0.5ξ) mA). This current spreads
towards neighbouring PNs through local connections, so neighbouring PNs will
also become ’attended’. Finally, the system will exhibit a partial synchroniza-
tion between CN and a subgroup of PNs which receive higher external currents,
representing selective attention on the object encoded by those PNs.

Fig. 4 shows the potential traces of CN and some of the PNs. The top panel
shows the trace of CN. The next three panels show the potential traces of three
of the attended PNs. The bottom three panels show the traces of three of the
unattended PNs. The unattended PNs remains subthreshold (no spikes are pro-
duced by them), but the attended PNs form stochastic synchronization with CN.
For individual PNs, the trace is quite irregular (due to noise ξ), but as a whole
population the synchronized activities are prominent.

Our simulations show that the system performs reasonably well in the object
tracking task. However, if a target and some distracter overlaps the confusion
will occur and attention might mistakenly shift from target to the distracter.
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Fig. 4. Partial synchronization between attended PNs and CN. The traces in second
to fourth panels are the membrane potentials of attended PNs. They stochastically
synchronized with the CN (top panel). The bottom three traces are the potential
traces of unattended PNs, which produce only sub-threshold fluctuations.

Tracking accuracy also depends on the operating frequency of the system. If the
CN and PN operate at a high frequency, the update rate of pointer coordinates
will also be higher, so the probability of error will be lower. In relation to exper-
imental data [12,13] we propose that the system operates at gamma frequency
band (around 30-40 Hz). It is important to note that this system can be eas-
ily adjusted to track more than one target by using additional active pointer
neurons.

4 Discussion

Two main ideas are combined in the presented models: 1) key role of synchroniza-
tion in formation of the attention focus and 2) connections are realised through
the central unit, therefore the number of connections in the network is of the
same order as the number of elements (i.e. linearly dependant on the size of the
visual field). The functioning of our models is invariant relative to locations of
objects in the image. This is why the processing of non-stationary objects does
not evoke any additional difficulties. Note that the situation is quite different for
winner-take-all models because in these models the modification of connection
strengths is ’attached’ to a definite position of objects.

The models of attention can be subdivided into two main categories. Tra-
ditional connectionist approach to attention modelling [14,15], is based on a
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winner-take-all procedure and is implemented through a proper modification of
the weights of bottom-up and top-down connections in a hierarchical neural net-
work. It works well in solving particular tasks but it is incompatible with modern
hypothesis about distributed representation of visual information in the brain
[5,6]. There are many experimental evidences showing the importance of neural
synchronization and oscillation in various brain functions. Neural oscillations in
the gamma range is found to be correlated to attention and memory (see for
example, [13,16]). The coherence of spikes play a major role in the control of
attention (see for example, [12,17]).

Therefore, an alternative approach to attention modelling is based on the
synchronization principle realized in the frames of an oscillatory neural network.
Usher and Niebur [18] suggested an oscillatory neural network where the com-
petition between oscillator assemblies is biased by a top-down signal. Wang and
Terman [19] developed a network (LEGION) of locally interacting Van-der-Pol
type oscillators whose activity is globally controlled by an inhibitory neuron.
Assemblies of oscillators representing different objects compete for the synchro-
nization with the inhibitory neuron. A winning assembly increases its activity
while the activity of other oscillators is temporarily shut down. A variant of
LEGION developed in [20] is able to select a most salient object from the visual
scene containing stationary objects. Kazanovich and Borisyuk [1], and Corchs
and Deco [21] use a network with a central oscillator to work out a flexible mech-
anism of attention focus formation and switching. Comparing to these models,
the important advantages of our models include: 1) The model can successfully
function even the objects change brightness or size (Fig. 1–3). 2) A biologically
realistic, stochastic neural synchronization can be seen (Fig. 4).

As a conclusion, we presented two models and show how the focus of attention
is formed and can track one object or switch from one object to the other. The
models capture many biological and psychological findings, such as neural syn-
chronization, gamma oscillations, resource-limited parallel tracking mechanism,
visual indexing, and so on. The simulation results are in overall agreement with
the findings from psychological experiments: overlapping between target and dis-
tracter is the main source of error. Future investigations include the dependence
between tracking performance and neuron frequency.
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Abstract. The tempotron is a model of supervised learning that allows
a spiking neuron to discriminate between different categories of spike
trains, by firing or not as function of the category. We show that tem-
potron learning is quasi-equivalent to an application for a specific prob-
lem of a previously proposed, more general and biologically plausible,
supervised learning rule (ReSuMe). Moreover, we show through simula-
tions that by using ReSuMe one can train neurons to categorize spike
trains not only by firing or not, but also by firing given spike trains, in
contrast to the original tempotron proposal.

1 Introduction

The tempotron has been recently proposed as a “new, biologically plausible su-
pervised synaptic learning rule that enables neurons to efficiently learn a broad
range of decision rules, even when information is embedded in the spatiotem-
poral structure of spike patterns rather than in mean firing rates” [1]. A few
other supervised rules for spiking neurons have been previously proposed (for a
review, see [2]). Here we show that a particularization of ReSuMe, one of those
rules [3,4,5], is quasi-equivalent to the tempotron. Moreover, ReSuMe allows the
training of tempotrons that are able to fire specific spike patterns in response to
each input category.

2 The Tempotron

The tempotron learning rule [1] can be applied to a spiking neuron driven
by synaptic afferents. The learning rule modifies the efficacies of the afferent
synapses such that the trained neuron emits one spike when presented with in-
puts corresponding to one category and no spike when the inputs correspond
to another category. The tempotron setup assumes that, before being presented
with an input spike train, the neuron’s potential is at rest, and that after the
neuron emits a spike in response to an input pattern all other incoming spikes
are shunted and have no effect on the neuron. Thus, even if the neuron would fire
more than one spike, the spikes following the first one are artificially eliminated.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 368–375, 2008.
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The subthreshold membrane voltage u of the trained neuron is modeled as a
sum of postsynaptic potentials:

u(t) = u0 +
∑

i

wi

∑
tf
i <t

ε(t− tfi ), (1)

where u0 is the resting potential, wi is the synaptic efficacy of synapse i, and
ε(t− tfi ) describes the form of the postsynaptic potential induced in the neuron
by a spike at tfi received from neuron i. The first sum runs over all presynaptic
neurons, and the second one runs over all spikes of neuron i prior to t. When u
overcomes the firing threshold θ, the neuron emits a spike.

Tempotron learning minimizes the following cost function, for each input pat-
tern [1]:

C =

⎧⎪⎨⎪⎩
θ − umax, if umax < θ and the neuron should fire for this pattern,
umax − θ, if the neuron fired (umax ≥ θ) and it should have been silent,
0, otherwise,

(2)
where umax = u(tmax) is the maximal value of the postsynaptic potential u, in
the case that the neuron did not fire. In the case that the neuron fired, umax is
the maximal value that u would have been reached if the neuron would have not
fired.

Applying the gradient descent method in the space of synaptic efficacies for
minimizing the above cost function leads to the tempotron learning rule [1]:

Δwi =

⎧⎪⎨⎪⎩
λ
∑

tf
i <tmax

ε(tmax − tfi ), if the neuron should fire but it did not,

−λ ∑tf
i <tmax

ε(tmax − tfi ), if the neuron should not fire but it did,

0, otherwise,
(3)

where λ > 0 is the learning rate. During learning, synaptic changes Δwi are
applied after each presentation of an input pattern.

It can be seen that the dynamics of this learning rule has little biological
plausibility, since: a) It requires the monitoring of the maximum of u; b) For
trials when the neuron fires while it should not, it requires, for computing tmax,
simulating a dynamics of the neuron that is different from the real one (since
it ignores that the neuron fired and the membrane potential was reset). The
setup also has little biological plausibility, since: a) While it assumes that the
precision of spike times in input patterns is important, it ignores the time when
the trained neuron fires. If the coding of information in the brain depends on
the precision of spike times, as experimental studies have suggested [6], then the
timing of the firing of both the afferents and the trained neurons should matter;
b) It is assumed that the trained neuron can fire either no spike or just one spike
per input pattern; c) It is assumed that learned input patterns are isolated from
other inputs and thus that the trained neuron is initially at rest, which is not
the case in the brain.
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3 ReSuMe

The ReSuMe learning rule [3,4,5,7,8] also allows the supervised training of a
neuron and is defined by the following equation:

dwi(t)
dt

= λ [Φ̃(t)− Φ(t)]
[
a+
∫ ∞

0

W (s) Φi(t− s) ds
]
, (4)

where Φ̃(t) =
∑ñ

f=1 δ(t− t̃f) is the target spike train to be learned by the neuron,
represented by a sum of Dirac pulses; Φ(t) =

∑n
f=1 δ(t− tf ) is the actual output

of the neuron; Φi(t) is the input spike train coming from synapse i, also a sum
of Dirac pulses; a is a constant; t̃f are the moments of spikes in the target spike
train and ñ their number; tf are the moments of spikes in the actual output
spike train and n their number; and W is a learning window that was originally
proposed to be W (s) = E(s) with

E(s) = A exp(−s/τE) (5)

where A and τE are positive constants. It can be seen that, after a learning trial,
the synaptic change is

Δwi = λ a (ñ− n) + λ
∑
t̃g

∑
tf
i ≤t̃g

W (t̃g − tfi )− λ
∑
tg

∑
tf
i ≤tg

W (tg − tfi ). (6)

4 Applying ReSuMe to the Tempotron Problem

By applying the ReSuMe rule to the tempotron setup (one target output spike
or none, one output spike at t1 or none), and if we note that for having one
output spike, regardless of its timing, it is the easiest to have it at t̃1 = tmax, if
the neuron did not fire, or at the actual time of firing t̃1 = t1, if it fires, we get:

Δwi =

⎧⎪⎨⎪⎩
λ a+ λ

∑
tf
i ≤tmax

W (tmax − tfi ), if ñ = 1, n = 0,

−λ a− λ ∑tf
i ≤t1 W (t1 − tfi ), if ñ = 0, n = 1,

0, if ñ = n.

(7)

In the first and the lase case in the last equation, the ReSuMe learning rule is
equivalent to the tempotron learning rule for a = 0 and W (s) = ε(s). In the
second case, the learning rules can be considered equivalent if we note that, if
the trained neuron fires, the maximum of u, θ, is actually reached at the firing
time t1, and this is the closest approximation to tmax that can be made with
quantities locally available to the neuron. The postsynaptic potential ε can be
well approximated by the exponential E that was originally used for ReSuMe;
for example, for integrate-and-fire neurons with postsynaptic currents that are
Dirac pulses, ε(s) is exactly an exponential. Thus, the tempotron learning rule
can be considered a particular application of ReSuMe for a particular problem.
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But ReSuMe is a more general and more biologically plausible learning rule,
since, in contrast to the tempotron: a) If the trained neuron is assumed to fire in
response to a pattern, one can not only teach it to fire, but also to fire at particular
moments, which is more biologically plausible and also permits a finer control of
the neuron’s behavior; b) It allows discriminating between more than two input
categories; c) It does not require monitoring the maximum of u; d) It allows not
only episodic learning but also online learning. Of course, the biological plausibility
of supervised learning rules for spiking neural networks is limited by the constraint
of providing a teaching signal for each considered neuron.

Because the tempotron learning rule minimizes the cost function defined by Eq.
2 and of the quasi-equivalence of ReSuMe with the tempotron learning rule for the
tempotron problem, ReSuMe, with W (s) = ε(s), is an optimal learning rule for
the tempotron problem. In the case that, additionally to the tempotron setup, we
would like to teach the neuron to fire at a particular moment in time, it is currently
known that ReSuMe, with W (s) = E(s) will converge to an optimal solution at
least for the case of one input with one spike and one target output spike [8].

5 Simulations

In order to verify the assertions presented above, we performed several simula-
tions. We implemented the setup for learning to classify latency patterns, which
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Fig. 1. The number l of learning trials needed for perfect learning of classifying latency
patterns, for various implementation of the learning rule and various problems. For each
rule / setup, averages and standard deviations are computed over 100 experiments with
different, random initial conditions. a) Original tempotron learning rule. b) Modified
tempotron learning rule (tmax replaced by t1 when the output neuron fires), equivalent
to the ReSuMe learning rule with a = 0 and W (s) = ε(s). c) ReSuMe learning rule for
the tempotron setup (with W (s) = E(s)). d) Learning with ReSuMe of a classification
task where, when the neuron fires, it has to fire at a particular moment in time. e)
Learning with ReSuMe of a classification task where, for both categories, the neuron
has to fire one spike at particular moments in time. See text for details. Inset: zoom
over the results of a), b), c).
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was originally used for demonstrating the efficacy of the tempotron learning
rule [1]. The trained neuron must learn to separate p input patterns into two
categories. For each category, the neuron has to have a distinct, characteristic
output. The input patterns are generated randomly and are assigned randomly
to one of the two categories. Each input pattern has a duration T = 500 ms and
consists of one spike for each of the N = 500 afferent synapses of the trained
neuron. The timing of each of these spikes is generated randomly with uniform
distribution between 0 and T . Except where specified, the parameters of the
simulation are as in [1]. The trained neuron is an integrate-and-fire neuron with
the time constant of the membrane decay τ . Each input spike generates an ex-
ponentially decaying current with time constant τs. Thus, for the case that the
neuron has not yet emitted a spike,

ε(t− tfi ) = ε0

[
exp

(
− t− t

f
i

τ

)
− exp

(
− t− t

f
i

τs

)]
, (8)

as in [1]. For the results presented here, we use p = 50 input patterns.
In the original tempotron setup, the two categories are named � and ⊕ and

the trained neuron has to fire no spike for the � patterns and one spike, re-
gardless of its timing, for the ⊕ patterns. Our first simulations implemented the
original tempotron learning rule for this setup and checked whether the changes
suggested by the application of ReSuMe to the tempotron setup affect the effi-
cacy of learning. In the simulations, we trained the neuron until there was no
error (all patterns were classified correctly) and recorded the number l of learn-
ing trials needed for learning. A trial consists of presentations of each of the p
patterns, followed by applying the changes of wi given by the learning rule.

We first reproduced learning with the original tempotron rule (Eq. 3;
Fig. 1a). We then performed the simulation by replacing tmax in Eq. 3, for
the cases where the output neuron spiked, with the actual timing of the output
spike t1. Thus, we effectively implemented the ReSuMe learning rule with a = 0
and W (s) = ε(s). The results are presented in Fig. 1b and show that there is no
increase in learning time, for equal performance.

We then ran the simulation by using an exponential learning window, W (s) =
E(s) (Eq. 5), as originally proposed for the ReSuMe rule, with A = 1 and
τE = τ . Again, we can still achieve learning with no errors, and learning time for
this method is even better than for the tempotron (Fig. 1c). This is consistent
with other results obtained in simulations, that have shown that ReSuMe has
better performance with an exponential learning window (E, Eq. 5) than with a
double-exponential learning window (like ε, Eq. 8) [9]. This is, however, somehow
surprising, given current theoretical understanding of ReSuMe: it has been shown
analytically that ReSuMe with W (s) = E(s) converges to the solution only for
one input [8] (but we use here multiple inputs); while the tempotron learning
rule performs gradient descent towards the solution [1].

We then explored the more difficult, but more general and relevant problem
where we remove the artificial shunting of the inputs after the output neuron
fires (thus allowing it to fire more than one spike) but still require the neuron
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Fig. 2. Histograms of the distribution of spike timings of the output neuron, after
learning, when responding to input spike pattern categories. The distribution contains
the responses of the neuron to each pattern within a category (about p/2 = 250 patterns
per category), for each trial, and for 100 trials with random initial conditions. Bin width
is 0.5 ms. a) The neuron has to either fire a spike at t̃1 = 400 ms in response to one
category or not to fire at all. b), c) The neuron has to fire one spike at t̃1⊕ = 350
ms in response to a ⊕ pattern (b) and one spike at t̃1� = 450 ms in response to a 	
pattern (c).

to learn to fire only one spike for the ⊕ patterns. Thus, there will be one output
spike for the ⊕ patterns not because the number of spikes is restricted artificially
but because the neuron has to adapt its synapses in order to do so. Moreover, we
require the neuron to fire this spike at precisely t̃1 = 400 ms after the beginning of
an input pattern. As previously, the neuron has to fire no spike for� patterns. For
this, we use the general ReSuMe learning rule, Eq. 6, with a = 0, W (s) = E(s),
A = 1, and τE = τ , and we keep training the neuron until the number of output
spikes is the desired one for each input pattern. We now also have to consider
the dynamics of the trained neuron after it emits a spike. We do this according
to the standard integrate-and-fire model [10], and in this case we have, when the
timing of a presynaptic spike tfi precedes the timing of the latest postsynaptic
spike t̂,

ε(t− tfi ) = ε0 exp

(
− t̂− t

f
i

τs

)[
exp
(
− t− t̂

τm

)
− exp

(
− t− t̂

τs

)]
, (9)

while when tfi > t̂ the form of ε from Eq. 8 is still valid. We used a reset potential
equal to the rest potential, so there was no refractory kernel. Again, we achieve
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learning, and even if the problem is significantly more difficult the learning time
is only about 3 times higher than for the simpler tempotron problem (Fig. 1d).
As it can be seen in Fig. 2a, the time at which the neuron fires after learning in
response to ⊕ patterns is very narrowly distributed around t̃1.

Finally, we tackled the still more difficult problem of having the neuron fire
one spike at t̃1⊕ = 350 ms in response to a ⊕ pattern and one spike at t̃1� = 450 ms
in response to a � pattern, in the same conditions as for the previous simulation.
We still achieve learning, after a larger number of training epochs (Fig. 1e), and
the distribution of the moments at which the neuron fires after learning is again
narrowly distributed around the desired times (Fig. 2b,c).

6 Conclusions

We have demonstrated the equivalence between tempotron and ReSuMe, under
certain conditions, and we have shown that ReSuMe is a more general and more
biologically-plausible approach to supervised learning for spiking neurons than
the tempotron. The tempotron learning rule is, in fact, a particular case of the
ReSuMe learning rule for a specific, quite artificial problem. Moreover, we have
shown in simulations that by using the ReSuMe learning rule one can train
neurons to classify input patterns not only by indicating the class by firing or
not firing in a given time interval, but also by firing spikes with precise timings.

If one considers that representing information in the precise spike timings is
relevant, as it was considered for the input spike trains in the tempotron setup,
then the output of spike train classifiers should also be capable of representing
information temporally. Hence general learning rules that are capable of learning
spike times, such as ReSuMe, should be used instead of the tempotron learning
rule for such problems. Having the same type of coding for both input and output
permits using the output of a classifier as the input of another similar classifier,
thus forming networks with higher information processing capabilities. A spiking
classifier with temporally coded output is also important for reservoir computing
[11] when using a spiking reservoir. In this case, one may train a spiking readout
and feed its output back into the reservoir (since information is coded as in the
reservoir), thus improving the computational power of the network [12].

Despite its limitations, the tempotron has been proved quite efficient for spo-
ken digit recognition, outperforming with only 15 spiking neurons complex state-
of-the-art Hidden Markov Model word recognition systems [13]. This shows that
spiking neural networks are quite powerful, and using appropriate learning meth-
ods for training them might reveal even more of their potential.

Acknowledgements. This work has been sponsored by grants of the Romanian
National Authority for Scientific Research (PNCDI II, Parteneriate, contract no.
11-039/2007; CEEX, contract no. 1474/2006). I thank to Filip Ponulak and Raul
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Neural Network Capable of Amodal Completion

Kunihiko Fukushima
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Abstract. When some parts of a pattern are occluded by other ob-
jects, the visual system can often estimate the shape of missing portions
from visible parts of the contours. This paper proposes a neural network
model capable of such function, which is called amodal completion. The
model is a hierarchical multi-layered network that has bottom-up and
top-down signal paths. It contains cells of area V1, which respond selec-
tively to edges of a particular orientation, and cells of area V2, which
respond selectively to a particular angle of bend. Using the responses
of bend-extracting cells, the model predicts the curvature and location
of the occluded contours. Missing portions of the contours are gradu-
ally extrapolated and interpolated from the visible contours. Computer
simulation demonstrates that the model performs amodal completion to
various stimuli in a similar way as observed by psychological experiments.

1 Introduction

When parts of a pattern are occluded by other objects, the visual system can
often estimate the shape of missing portions from visible parts of the contours.
If we see a picture like the one in the upper left of Fig. 8, in which a circular disk
is occluded by a square, we feel as though the contour of the disk is connected
behind the square. Such process of perceptually filling in parts of objects that are
hidden from view is called amodal completion, and a great deal of psychological
research has been performed so far.

This paper proposes a neural network model that has an ability of amodal com-
pletion. In the primary visual cortex (area V1), there are cells that respond selec-
tively to oriented edges, and these cells are classified into simple and complex cells.
Ito, et al. reported that, in area V2 of the monkey, there are cells that show highly
selective responses to a particular angle of bend of line stimuli [1]. We will call them
bend-extracting cells in this paper. Our model is a hierarchical multi-layered neural
network that has bottom-up and top-down signal paths, and contains simple, com-
plex and bend-extracting cells in it. Using the response of bend-extracting cells,
the model predicts the curvature and location of the occluded contours. The miss-
ing contours are then extrapolated a little. Using the extrapolated signals that are
fed back through top-down path to edge-extracting cells, the model predicts the
missing contours again. The process of amodal completion thus progresses gradu-
ally while the signals are circulating in the feedback loop, and finally the missing
contours are interpolated completely.

We demonstrate by computer simulation how our model makes amodal com-
pletion for various stimuli.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 376–385, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2 Neural Network Model

The model is a hierarchical multi-layered network as illustrated in Fig 1. It
has bottom-up and top-down signal paths, by which a feedback loop is formed.
Each layer of the network consists of a number of cell-planes, depending on the
difference in the features to which cells respond selectively. Incidentally, a cell-
plane is a group of cells that are arranged retinotopically and share the same set
of input connections. All cells in a cell-plane have receptive fields of an identical
characteristic, but the locations of the receptive fields differ from cell to cell.
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Fig. 1. Architecture of the model for amodal completion

2.1 Extraction of Oriented Edges

The stimulus pattern is presented to input layer U0, which consists of a two-
dimensional arrayof photoreceptors. The output of U0 is fed to contrast-extracting
layer UG, whose cells resemble retinal ganglion cells or lateral geniculate nucleus
cells. Layer UG consists of two cell-planes: one with concentric on-center receptive
fields, and the other with off-center receptive fields. The former cells extract pos-
itive contrast in brightness, whereas the latter extract negative contrast from the
image presented to the input layer.

The output of UG is fed to edge-extracting layer US1, which consists of S1-
cells. S1-cells resemble simple cells in area V1, and respond selectively to edges
of a particular orientation. Namely, layer US1 consists of K1 cell-planes, and all
cells in the kth cell-plane respond selectively to edges of orientation 2πk/K1.
As a result, the contours of input image are decomposed into edges of every
orientation. We take K1 = 32 in the computer simulation discussed later.
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α
β

α

(a) S1-cell (b) S2-cell

Fig. 2. Training patterns for S1- and S2-cells. These patterns become the preferred
stimuli for S1- and S2-cells, respectively.

S1-cells, like S-cells in the neocognitron, are cells with shunting-inhibition
and yield analog outputs. Their input connections are produced by a supervised
learning, like the one used for the neocognitron [2]. When we train the kth
cell-plane, for example, we first choose an arbitrary cell from the cell-plane. We
present a training pattern like the one shown in Fig. 2(a) to input layer U0. To
be more specific, the training pattern is an edge of orientation α = 2πk/K1 and
crosses the center of the receptive field of the chosen S1-cell. The input connection
to the S1-cell, whose initial values are zero, are increased in proportion to the
responses of the cells of layer UG, from which the connections are leading.

The output of layer US1 is fed to layer UC1, which consists of C1-cells. C1-
cells resemble complex cells in area V1. Similarly to the classical hypothesis by
Hubel and Wiesel, a C1-cell receives excitatory signals from a group of S1-cells
of the same preferred orientation whose receptive fields are spatially deviated. It
responds if and only if at least one of these S1-cells is active. Hence its response is
orientation selective like S1-cells but is more tolerant of shift in location. We can
also express that the response of layer UC1 is a blurred version of the response
of layer US1.

2.2 Masker Layer

The stimulus presented to layer U0 usually contains the images of both occluding
objects and a target pattern partly occluded by them. If the stimulus is processed
directly, edges are extracted in layer US1, not only from the contours of the target
pattern, but also from the contours of the occluding objects. The path, UM →
UMG → UMS1, works to eliminate features irrelevant to the target pattern.

Layer UM, which is called masker layer, responds only to the occluding ob-
jects. We assume here a situation where the segmentation of occluding objects
has already been finished: The shape of the occluding objects is detected and
appears in UM, in the same shape and at the same location as in input layer U0.
The connections from UM through UMG to UMS1 are identical to those from U0

through UG to US1. As a result, only the information on edges of the occluding
objects appears in UMS1. If the response of US1 is inhibited by the response of
UMS1, only the information on edges of the occluded pattern remains in US1.



Neural Network Capable of Amodal Completion 379

It should be noted here that, in the visual scene, the occluding objects can
be either brighter or darker than the target pattern. Hence both positive and
negative edges of the occluding objects have to be used to inhibit the response
of US1. Incidentally, oriented edges of different polarities are extracted by cell-
planes whose preferred orientations differ by π. In our model, a cell-plane of US1

whose preferred orientation is α, for example, is inhibited by two cell-planes of
UMS1 whose preferred orientations are α and α + π.

2.3 Extraction of Bend

The output of layer UC1 is fed to bend-extracting layer US2, which consists of
S2-cells. An S2-cell resembles the cells found in area V2 of the monkey [1]. It
shows a highly selective response to a particular angle in the bend of a contour,
as illustrated in Fig. 2(b). If the input pattern has a curved contour, the cell
extracts the angle between adjacent tangential lines.

Input connections to S2-cells, like S1-cells, are produced by a supervised learn-
ing. The training pattern given to input layer U0, however, is a bent edge, namely,
a pattern in which two edges of different orientations are combined at the center.
We will now represent a pattern shown in Fig. 2(b), in which one of the edge has
orientation α (0 ≤ α < 2π) and the angle of the bend is β (−π < β < π) (this
means that the orientation of the other edge is α + β), using two-dimensional
variable (α, β). In the computer simulation, α and β are chosen with a step of
2π/K1, in the same way as for US1. As a result, α has K1 different values, and
β has K1 − 1 different values because β = ±2π is excluded. Hence the total
number of the cell-planes, K2, comes to be K1(K1 − 1).

2.4 Extrapolation of a Curve

S2e-cells in the next layer US2e receive signals from S2-cells and extrapolate the
curves of the occluded contours. In other words, S2e-cells predict the curvature
to restore partly occluded contours.

Suppose a curved contour shown by the solid line in Fig. 3(a) elicits a response
from a bend-extracting cell whose receptive field center is located at A. Let the
bend extracted by this S2-cell be (α, β), using the notation defined by Fig. 2(b).
We search for the largest-output cell from S2-cells that extract bend (α− β, β)
and are located along the line extended to the direction of the left edge (i.e.,
the edge of orientation α). Let the location of the cell be B, and let the distance
between A and B be p. If this contour extends to the right of A keeping the
same curvature, an S2-cell that extracts bend (α + β, β) will responds strongly
at location C, which is at distance p from A in the direction of α + β.

Our model is so designed that cell C of layer US2e responds when cells A and B
responds in layer US2. This can be realized with a simple network as illustrated
in Fig. 3(b). In the figure, each cell on the extension from the left edge of the
central cell A sends an excitatory signal to the cell at the same distance on
the extension from the right edge, and this excitatory signal is gated by the
output of cell A. The cells on the extension of the left edge compete each other,
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(a) The principle. (b) The network.

Fig. 3. Contour extrapolation from the response of bend-extracting cells

and only the winner can send the excitatory signal. Cell A and the cells on the
extension of the left edge are the cells of layer US2, and the cells on the extension
of the right edge are the cells of layer US2e. Although they are omitted in the
illustration in the figure, there are also signal flows that are reversed bilaterally.
This mechanism works only for bends in the range of |β| ≤ π/4.

2.5 Top-Down Signal Path

The response of layer US2, which represent the bends of visible contours, and the
response of US2e, which shows the bend of occluded contours extrapolated from
the visible contours, are sent to layer WS2 in the top-down path and are added.
We can say that the response of WS2 represents bends of restored contours.

The connections from WS2 to WC1 are identical to those from UC1 to US2

in the bottom-up path, although the direction of signal flow is reversed. Thus
oriented edges are generated from the information on bends of the contours. As
a result, the edges of the restored contours appear in layer WC1.

The response of WC1, which represents the information on the restored edges,
is fed back to UC1 and added to it. Since a feedback loop is thus produced in
the hierarchical network, the missing contours are gradually restored while the
signals circulate in the loop.

2.6 Effect of Blur by C1-Cells

Since the predicted curvature of occluded contours usually contains some amount
of error, the location of the edges restored in WC1 also has some error. Hence
some amount of discrepancy in location arises between two contours that have
been extrapolated from both sides of an occluded area. If there is a discrepancy,
the two contours often extend in different directions without merging into one,
while the signals circulate in the feedback loop.

Layer UC1, which is inserted between layers US1 and US2, works to absorb
this discrepancy. The response of US1 is spatially blurred in UC1. Since the input
connections to S2-cells of US2 have also been produced by the use of blurred
response from UC1, the feedback signals to WC1 from WS2 have also the same
amount of blur. Even if there are small positional errors in the feedback signals
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Fig. 4. Suppressing contradictory contours

from WC1 to UC1, the response to the two contours, whose widths have been
made broader by the blur, can overlap in UC1. The errors are thus absorbed, and
the two contours that have come from both sides merge into a single contour.

2.7 Displaying the Result of Amodal Completion

Layer WG on the top-down path, which corresponds to layer UG on the bottom-
up path, shows positive and negative components of the brightness contrast of
the completed contours. The connections from WC1 to WG are identical to those
from UG to US1 in the bottom-up path, although the direction of signal flow is
reversed. Corresponding to the oriented edges restored in WC1, the information
on brightness contrast thus appears in WG.

Layer W0 at the lowest stage in the top-down path is used only for the pur-
pose of monitoring the result of amodal completion intuitively. It corresponds
to input layer U0 in the bottom-up path, and displays how the contours of the
occluded patterns are restored. On-center cells of WG, which represent positive
components of the brightness contrast, send positive signals to W0, and off-center
cells send negative signals. These signals are diffused to neighboring cells in W0,
where the signal of opposite polarity works as a barrier to the diffusion [3].

2.8 Suppressing Contradictory Contours

In many cases, missing contours are correctly restored by the process discussed
in section 2.4. If one of the two contours that have been extended from different
directions arrives at their meeting point much earlier than the other, however,
the former contour might extend far beyond the meeting point without being
stopped there. This might occur, for example, for a pattern shown in the upper
left of Fig. 10.

When two edges of different orientations meet, the combination of the polari-
ties (namely, the direction of the brighter and darker sides) of the edges like (a)
and (b) in Fig. 4[I] are possible, but combinations like (c) and (d) are impossible
as a visual pattern. It might be thought that contradictory edges can be removed
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by a mechanism of lateral inhibition between edges that make a combination like
(c) or (d), but this is not always the case. The case like (e) becomes possible as
a visual pattern, although it contains an impossible combination like (c). If four
edges are combined as illustrated in (f), both become possible combinations of
edges. These combinations can actually occur, for example, in a pattern like (g).

The difference between (c) and (e) is caused by the condition whether an edge
stops in one side of the meeting point or extends to both sides. Then the problem
can be solved by introducing to WC1 a mechanism that inhibits contradictory
edges, only when the end of an edge exists.

Suppose a horizontal edge, whose upper side is darker, has been extended from
the left and is broken in the middle, as illustrated in Fig. 4[II]. The break of the
edge is detected by end-stopped cell C, which receives excitatory signals from
edge-extracting cells around point A and inhibitory signals from cells around B.
When end-stopped cell C detects the break, it inhibits edge-extracting cells that
are located in the upper ellipse and have selectivity to edges whose right sides
are darker (to be more exact, edges whose orientation is in the range of ±π/2
from the vertical). It also inhibits edge-extracting cells that are located in the
lower ellipse and have selectivity to edges whose left sides are darker.

3 Computer Simulation

We simulated the model on a computer. Fig. 5 shows an example how the cells
in the network respond to a partly occluded circular disk. The figure shows,
however, not all layers, but only important layers. This is the response at the
time when the signals have circulated 7 times through the feedback loop made
by the bottom-up and top-down paths. Layer W0 shows how the model perceives
the contours from the occluded pattern presented to input layer U0.

Fig. 6 shows how the response to this stimulus changes with time in layers
U0, UG, W0 and WG. In other words, it shows how the amodal completion goes
on. We can see that a disk covered by two rectangles is completed smoothly.

Figs. 7 and 8 show the response to occluded disks of different diameters. It can
be seen from these figures that the contours are completed smoothly regardless
of the diameters of the occluded disks.

For all stimuli in Figs. 8–10, the visible contours crosses the same occluding
object at the same locations, but the missing contours are completed differently,
depending on the curvature of the visible contours.

In Fig. 9, although two contours are perpendicular to each other, they stop ex-
tending beyond the crossing point, because they reach the crossing point almost
at the same time. In these cases, the mechanism for suppressing contradictory
contours, which was discussed in secion 2.8, is not necessarily required. We can
have almost the same response without using the mechanism.

It is in the case like Fig. 10 that this mechanism becomes necessary. If this
mechanism does not exist, the contour that has been extrapolated from the
bottom will extend upward without being affected by its counterpart, which
reaches the crossing point later.
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Fig. 5. An example of the response of the cells in the network to a partly occluded
disk. This is the response after 7 times of circulation of signals in the feedback loop.
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Fig. 6. The progress of amodal completion for the same stimulus as Fig. 5

The visible contours on both sides of an occluded area have different curva-
ture in Fig. 11, but the extrapolated contours merge into a single contour of a
natural shape. This is because the blur by C1-cells works effectively to absorb
the discrepancy in location between two contours that have been extrapolated
from both sides of an occluded area, as was discussed in section 2.6.
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Fig. 7. The response to an occluded small disk

U0

UG

W0

WG

t  =  1  2  3  4  5  6  7

Fig. 8. The response to a disk partly occluded by a square
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Fig. 9. The response to a square partly occluded by the same square as Fig. 8
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Fig. 10. The response to a half disk partly occluded by the same square as Fig. 8
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Fig. 11. Even if the visible contours on both sides of an occluding object differ slightly
in curvature, a smooth interpolation can be performed
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Abstract. We investigate the influence of spike timing dependent plas-
ticity (STDP) on the prediction properties of recurrent microcircuits.
We use sparsely connected networks in which the synaptic modifications
introduced by STDP are complemented by two homeostatic plasticity
mechanisms: synaptic normalization and intrinsic plasticity. In the pres-
ence of structured external input, STDP changes the connectivity matrix
of the network such that the recurrent connections capture the partic-
ularities of the input stimuli, allowing the network to anticipate future
inputs. Network activation patterns reflect different input expectations
and can be separated by an unsupervised clustering technique.

Keywords: STDP, intrinsic plasticity, prediction, recurrent networks.

1 Introduction

A fundamental task for any cognitive system is to find the causal relationships
between stimuli and predict future events. The recurrent structure of cortical net-
works is endowed with memory which can provide context for prediction. Network
architectures like the liquid state machine [1] and the echo state network [2] utilize
this memory component of the system in which present responses influence subse-
quent ones. These random recurrent networks nonlinearly transform input streams
into high-dimensional activation patterns partially constrained by the previous
network activation states. The learning required by the computational task is per-
formed entirely outside the recurrent network through trained projections to sep-
arate readout neurons. Since the recurrent connectivity stays fixed, the properties
of these recurrent connections constrain the networks’ performance.

In a more biologically plausible framework local synaptic modulations of the
recurrent connections could reflect statistical properties of inputs and optimize
the network for a required task. Especially in the context of dynamical inte-
gration of information over time a temporal plasticity rule like spike timing
dependent plasticity (STDP) [3,4] could have a significant role in adjusting and
enforcing the computational performance of recurrent networks.
� Corresponding author.
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Learning via STDP in recurrent networks [5,6] has been little studied mostly
because of the instabilities that such a learning rule can bring about. Unless
network parameters are carefully adjusted the level of activity in a neural cir-
cuit can grow or shrink in an uncontrolled manner. Narrow parameter settings
for stable dynamics are implausible in a biological sense. A more appropriate
approach is to complement synaptic learning with additional homeostatic mech-
anisms that are sensitive to the post-synaptic firing rate or to the total level of
synaptic efficacy. We use synaptic normalization to keep the total synaptic input
to a neuron approximately constant. We also use a model of intrinsic plasticity
(IP), to maintain the activity of each neuron in a desired regime. Desai et al.
showed that the excitability of a neuron increases under activity deprivation,
which suggests that the mean firing rate of a neuron is constantly regulated
[7]. We model this with a simple threshold adaptation to keep firing activity
approximately constant.

Together the two homeostatic processes complement STDP such that the re-
sulting network dynamics remains ‘healthy’ and computationally powerful. Our
results show that, under these conditions, STDP embeds the likely transitions of
inputs into the network’s structure, forcing specific connectivity routes. More-
over STDP prunes down competing projections from afferent units and creates
self-organized pathways that tend to separate from each other with respect to
the time dependent transitions they reflect. We use an unsupervised clustering
technique that groups activity patterns based on a distance measure and we
show that the resulting clusters are not random but contain valuable informa-
tion reflecting input expectancy. The network’s dynamics incorporates valuable
prediction properties which vanish in the absence of STDP.

2 Recurrent Network with Plasticity

2.1 Network Architecture

We use a discrete representation of time and a simple recurrent network of
threshold excitatory (E) and inhibitory (I) units, obeying Dale’s law (see Fig.1).
Our cortical microcircuit has NE excitatory and N I = 0.2×NE inhibitory units.
Neurons are connected through weighted synaptic connections, where Wij is the
connection strength from unit j to unit i. All possible E→I and I→E connections
are present, while the E→E connections are random and sparse. For simplicity
we did not consider any I→I connections. Self-connections are prohibited.

Inputs are time series of different symbols, each associated with a specific
group of NU input units, which all receive positive input drive when the associ-
ated symbol is active.

The firing activity of the network at the discrete time t is given by:

xi(t+ 1) = Θ(
NE∑
j=1

WEE
ij (t)xj(t)−

NI∑
k=1

WEI
ik yk(t) + Ui(t)− TE

i (t)); (1)
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Fig. 1. Abstract representation of network model

yi(t + 1) = Θ(
NE∑
j=1

W IE
ij xj(t)− T I

i ); (2)

where x and y are activations of excitatory and inhibitory units respectively,
WEE , W IE , WEI are synaptic weights, TE and T I are threshold values, and
U is the additional input value received only by a predefined selection of input
neurons. The heavyside step function Θ constrains the activation of the network
at time t to a binary representation: the neuron fires if the total drive it receives
is greater then its threshold (xi(t) = 1) otherwise it stays silent (xi(t) = 0).

2.2 Network Dynamics and Plasticity Rules

The network’s activity patterns depend on intrinsic cellular and circuit proper-
ties. The predefined parameters of our model are few: the number of excitatory
units NE , the number of units corresponding to each input state NU , the spar-
sity of the connectivity matrix WEE , an expected rate value H0, and ηIP, ηSTDP

which define the timescales of the two plasticity rules.
The initial threshold values TE and T I are drawn from a uniform distribution

in the interval [0, TE
max] and [0, T I

max], respectively. The ratio TE
max/T

I
max can be

chosen such that the network exhibits on average Ho spikes per time step (see
Appendix). We select a sufficiently strong input drive U so that for any input
state the corresponding group of input neurons will fire, with or without help
from the recurrent network activity, resulting in NU out of H0 × NE input
specific spikes.

We are interested in the properties of activity patterns produced by our re-
current architecture under the influence of synaptic learning via spike timing
dependent plasticity (STDP). STDP refers to the sensitivity of synaptic plastic-
ity to the relative timing of pre and post-synaptic action potentials. We use a
simple model of STDP that strengthens the synaptic weight WEE

ij , from unit j
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to i, by a fixed amount ηSTDP whenever unit i is active in the time step following
activation of unit j. When unit i is active in the time step preceding activation
of unit j, WEE

ij is weakened by the same amount.

ΔWEE
ij (t) = ηSTDP(xi(t)xj(t− 1)− xi(t− 1)xj(t)); (3)

STDP changes the synaptic strength in a temporally asymmetric ‘causal’ fashion.
Recurrent networks are especially sensitive to neuron/circuit properties which

if chosen wrongly will lead to breakdowns or explosions of activity. For a healthy
dynamics we condition the architecture of the circuit in the following way:

– The initial connectivity matrix WEE is sparse (the probability of an initial
connection WEE

ij is set to 0.2 for the following simulations). Learning with
STDP is constrained to this set of initial WEE synapses, with no synapses
incorporated or lost.

– Synaptic normalization proportionally adjusts the values of incoming con-
nections to a neuron so that they sum up to a constant value. The initial
weights are adjusted such that

∑
j W

IE
ij = 1 and

∑
j W

EI
ij = 1. Since time

dependent modulations driven by STDP learning affect WEE connections,
these are rescaled at every time step:

WEE
ij (t) = WEE

ij (t)/
∑

j

WEE
ij (t); (4)

The synaptic normalization rule does not change the relative strengths of
synapses established by STDP but it does introduce an upper limit on the
total incoming drive a neuron receives which has a stabilizing effect on the
network behavior.

– An intrinsic plasticity rule regulates the activity level of each neuron. A unit
that has just been active increases its threshold while an inactive unit lowers
its threshold by a small amount. In our model this is given by:

TE
i (t+ 1) = TE

i (t) + ηIP (xi(t)−H0); (5)

where ηIP is a small learning rate. This rule encourages every excitatory
unit to fire with a rate H0.

In spite of the constant synaptic modulations introduced by STDP, the two
homeostatic mechanisms, intrinsic plasticity and synaptic normalization along
with the sparse connectivity between excitatory units ensure a computationally
powerful network dynamics (see Results section).

3 Predictive Coding

3.1 Structure in Time Sequences

We have chosen input time series identical to the letter sequences used by Elman
[8]. The sequences are formed out of six symbols (b, d, g, a, i, u) and designed
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Fig. 2. Weight matrices (upper panels) and weight histograms (lower panels) for the
E→E connections before (left) and after STDP training (right)

from the following building blocks (‘words’): ba, dii, guuu. These words are fixed
and alternate randomly. An example sequence is: b, a, g, u, u, u, b, a ...

Such a time varying input contains patterns of different durations, which
means that the network has to build inventories of possible sequences with dif-
ferent temporal extents. It also has to deal with the intrinsic differences in the
input statistics (e.g. there will be 3 times more u then a).

In the following experiments we consider networks with NE = 60 (N I = 12),
from which five neurons are randomly selected as input population for each of the
six symbols (NU = 5). E→I and I→E connections are first uniformly distributed
in the [0, 1] interval and then adjusted by synaptic normalization. The initial
connectivity matrix between excitatory units WEE is sparse with 0.2 probability
of having a link between any two nodes. The distribution of WEE is initially
uniform in the interval [0, 0.2] and then rescaled following (4) and looks like
the example figure below (Fig. 2 C). After initialization, each neuron will have
on average 12 outgoing/incoming connections. Only these E-E connections are
affected by STDP learning.

We set TE
max = 1, T I

max = 2 for rates of H0 = 0.6 spikes/time step (see Ap-
pendix), or 10 population spikes/time step. An input drive of U = 1 makes sure
that initially the input populations are responding independent of the recurrent
network drive.

We run the network for 50000 steps while modulating E→E connections via
STDP learning, with the homeostatic influence of synaptic normalization and
intrinsic plasticity. As a result a number of connections grow stronger while
others weaken (see Fig. 2). A training interval of 50000 time steps was enough
for the configuration of the weight matrix to stabilize (with some small jitter,
tested for up to 400000 time steps - not shown).
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3.2 Predictive Learning Via STDP

The effect of time is implicit in the structural changes of the weight matrix since
they are the result of a temporal learning rule under the influence of a time
varying input. Under these conditions, we are interested in the aptitude of the
recurrent network to capture the particularities of the input and make use of
them for a computational task. Specifically we are interested in the capability
of the network, at each moment in time, to anticipate the next symbol in the
input sequence, by projecting drive towards the corresponding coding units.

To this end, we test the network’s ability to generate similar activation pat-
terns when inputs are missing. Using the last 20000 steps produced during STDP
simulation, we group together the activity patterns corresponding to each of the
input symbols. We differentiate between repeated instances of a letter within a
word such that the sequence: b, a, d, i, i, g, u, u, u will count as nine different
conditions. For each of these symbols we compute an average of all the networks
states that resulted in response to that specific input stimulation and refer to it
as a ‘representative’ pattern of activity for this input.

After STDP learning we freeze the trained network and use another random
input sequence of the aforementioned building blocks for 40000 time steps (test
phase). As we are interested in prediction, we analyze the patterns of activity
produced by the network at a specific time step t in the absence of input. Ba-
sically, we record a second network state x′(t + 1), which is influenced by the
complete history of the system but does not receive the present input (U(t) = 0).

For each moment in time we compute the euclidean distance between pattern
x′(t) and each of the nine representative patterns generated during training.
Results are shown in Fig. 3 A for 20 consecutive time steps (out of 40000). On
the horizontal axes we show the missing input at time t, on the vertical the
degree of similarity of x′(t) to each of the nine representative patterns. Darker
colors display stronger similarity (smaller euclidean distance). It is worthwhile

Fig. 3. (A) Sample window of 20 time steps (out of 40000) shows the distance between
the test activity patterns (x′(t)) and each of the 9 representative patterns. Note that the
input at present time is ignored (U(t) = 0) but is ilustrated in the figure for comparison
with the expectancy of the network. (B) Average distance over all occurences of each
input condition to each of the 9 representative patterns.
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to remember that x′(t) is fully determined by the propagation traces of previous
inputs through the network. Thus, we can say that the more similar x′(t) is to
one of the nine patterns, the more prediction it carries.

Given the temporal structure of the input sequence, it is only sometimes
possible to correctly predict the next input. At the end of each word the only
prediction possible is that a new word will start, i.e. a consonant will follow. Time
steps 2, 6, 8, 11, 15, 17, 20 correspond to such situations and the prediction is
mainly distributed across the three consonants. In contrast, within each word,
the predictions point towards the correct incoming symbol and the network state
x′(t) is very similar to the expected network state if the input had been present.

Fig. 3 B groups together the distances obtained for all the test patterns cor-
responding to the same missing input. Again, the network correctly anticipates
the next state despite the missing input if it is a vowel. If a consonant input is
missing, the network anticipates the occurrence of any consonant.

3.3 Self-organized Predictive Patterns

Activity patterns generated by the recurrent connections as prediction for the
same input condition show strong similarity. We tested if these pattens are sim-
ilar enough to cluster together in an unsupervised fashion.

We employed a hierarchical clustering algorithm, namely agglomerative clus-
tering, to analyze the structure of the activity patterns (x′) obtained during the
test phase in the absence of input. Each of the 40000 patterns is a point in a 60
dimensional space. In agglomerative clustering, we start by considering each of
these points to be centers of their own cluster. The distance between two clus-
ters is computed as the euclidean distance between their centers. Repeatedly,
the two closest clusters are merged into a single cluster, until the entire data
is collapsed. In this way we can observe how the data distributes across any
number of clusters without deciding on this number in advance.

Fig. 4 A shows an example hierarchy of the last 20 clusters. The data belonging
to each of these 20 clusters is plotted in Fig. 4 B as a histogram with respect
to the missed input condition. Cluster 18 is expanded for better visibility: it
contains 99 patterns corresponding to input ‘b’, 1368 patterns corresponding
to input ‘d’ and 504 corresponding to input ‘g’. Interestingly clusters tend to
correspond either to one input condition (for ‘a’, ‘i’, ‘u’) or they group together
the input conditions ‘b’, ‘d’, ‘g’. As discussed before, this behavior is sensible:
the consonants (b, d, g) are always succeeded by specific vowels (a, i, u). The
vowels can therefore be predicted properly making use of the activity history of
the network. The position of the vowels inside the words is relevant, e.g. clusters
1, 2 and 3 correspond to the first ‘u’ in a ‘guuu’ sequence, cluster 16 to the second
‘u’ and cluster 10 to the third. At the end of each word no precise prediction
is possible, only a guess towards a new start of a word which is apparent in
the results. This implies that the network has assimilated the rules according to
which the input sequences are structured.

In Fig. 4 C we contrast these results with networks that lack STDP training.
In this situation no reliable structure is found, which is understandable since
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Fig. 4. (A, B) Predictive power of activity patterns produced by networks with STDP.
Top: last 20 steps of the hierarchical clustering method. Middle: each cluster is plotted
as a histogram of the number of patterns corresponding to each input condition (what
the input would have been if present). Clusters show predictive power for each individ-
ual vowel and consonants as a group. (C) Networks in the absence of STDP: the last
20 clusters of the hierarchical clustering method don’t show any structure with respect
to the ‘expected’ inputs.

the connectivity matrix is random and lacks input specificity. It is worth men-
tioning that such randomly connected networks can have good performance in
the case of a supervised readout projection for a prediction task. But even so,
such a supervised mapping might be easier to perform for networks trained with
STDP. In the presence of STDP the patterns of activity group together in space
with respect to their input expectation and a readout is only required to assign
the emergent clusters to correct output conditions. The advantages brought by
the self-organization of the network, prior to any task demand, will be further
addressed in a future study.

4 Conclusions

We have shown that a sparsely connected recurrent network, endowed with a
combination of different forms of plasticity, can capture the temporal struc-
ture of its input stimuli and make use of it as context for prediction. The self-
organization of the connectivity matrix was an outcome of local STDP modula-
tions and thus unsupervised.
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Learning via STDP was only possible in the presence of two homeostatic
mechanisms: synaptic normalization and intrinsic plasticity. In the absence of
synaptic normalization the changes introduced by STDP drive the network into
an unstable regime; the same can happen if the connectivity matrix of the net-
work is not sparse. Intrinsic plasticity spreads activity across all units in the
network leading to distributed representations. In its absence only some of the
units are involved in the activity while half of the network becomes silent.

Our results showed that the network activation after STDP learning was con-
text dependent and carried strong predictive information with regard to the
incoming inputs. The activity patterns became more similar when they reflected
the same input expectation, and different otherwise. Because the size of the net-
work was small and the patterns of activity were short we could make use of
an agglomerative clustering technique to extract the regularities in the space of
activity patterns.

It is important to emphasize that these internal representations were the out-
come of the local modulations of recurrent weights under input stimulation and
the prediction properties emerged naturally with no connection to a task. This
is in sharp contrast to explicitly training a readout in a supervised fashion to
make such predictions.
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Appendix

Let H0 and I0 be the desired rate values of excitatory and inhibitory units,
respectively. For a network activity with small rate fluctuations there will be
approx. H0 × NE excitatory spikes and approx. I0 × N I inhibitory spikes per
time step. All possible WEI and W IE connections are present while WEE are
sparse with probability of a connection between any 2 units of pcon = 0.2. Both
the incoming excitatory connections and the incoming inhibitory connections to
a unit are scaled following Eq. 4 and sum up to 1. Thus the average synaptic
strengths are W

EE
= 1/(pconN

E), W
IE

= 1/NE , W
EI

= 1/N I The initial
threshold values TE and T I are drawn from a uniform distribution in the interval
[0, TE

max] and [0, T I
max], respectively.

From Eq. 2 the probability of an inhibitory unit yi firing at time t+1 is
given by:

P (yi(t + 1) = 1) = P (
∑NE

j=1 W
IE
ij xj(t)− T I

i > 0)

≈ P (W
IE ×H0 ×NE − T I

i > 0) ≈ P (H0 > T I
i ) = H0/T

I
max

For a sufficiently strong input drive U , all the excitatory units which receive
input will be active. We will have NU input specific spikes/ time step with
NU < H0 × NE. Based on Eq. 1 an excitatory unit xi which does not receive
input will fire at time t+ 1 with probability:

P (xi(t + 1) = 1) = P (
∑NE

j=1 W
EE
ij xj(t)−∑NI

k=1 W
EI
ik yk(t)− TE

i > 0)

≈ P (0.2×H0 ×NE ×WEE − I0 ×N I ×WEI − TE
i > 0)

= (H0 − I0)/TE
max

For stable rate regimes: P (yi(t) = 1) ≈ I0 and P (xi(t) = 1) ≈ H0 − NU/NE .
Let rU be the ratio of input specific activations rU = NU/NE and for simplicity
TE

max = 1. The equation reduces to: T I
max = H0/rU .

Thus, for a desired rate of H0 = 10/60 when NU = 5 and NE = 60 we have
to choose T I

max = (10/60)/(5/60) = 2.
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Abstract. We introduce a biologically inspired azimuthal sound locali-
sation system, which simulates the functional organisation of the human
auditory midbrain up to the inferior colliculus (IC). Supported by re-
cent neurophysiological studies on the role of the IC and superior olivary
complex (SOC) in sound processing, our system models two ascending
pathways of the auditory midbrain: the ITD (Interaural Time Difference)
pathway and ILD (Interaural Level Difference) pathway. In our approach
to modelling the ITD pathway, we take into account Yin’s finding that
only a single delay line exists in the ITD processing from cochlea to
SOC for the ipsilateral ear while multiple delay lines exists for the con-
tralateral ear. The ILD pathway is modelled without varied delay lines
because of neurophysiological evidence that indicates the delays along
that pathway are minimal and constant. Level-locking auditory neurons
are introduced for the ILD pathway network to encode sound ampli-
tude into spike sequence, that are similar to the phase-locking auditory
neurons which encode time information to the ITD pathway. A leaky
integrate-and-fire spiking neural model is adapted to simulate the neu-
rons in the SOC that process ITD and ILD. Experimental results show
that our model performs sound localisation that approaches biological
performance. Our approach brings not only new insight into the brain
mechanism of the auditory system, but also demonstrates a practical
application of sound localisation for mobile robots.

1 Introduction

The known performance of animals using two ears in the sound localisation
task has inspired researchers to work on new computational auditory models to
understand the mechanisms of auditory neural networks. During the last twenty-
five years, the structure and function of a number of pathways in the auditory
brainstem have been well studied and become better understood [1]. For example,
multiple spectral representations [2] are known to exist both in the early stages
of sound processing, in cochlea and cochlear nucleus, and in later stage, from
SOC to IC. Excitatory and inhibitory connections in the neural network of the
midbrain sound processing pathways have been clarified [3]. Modelling these
networks can help us to understand the brain mechanisms and provide a robust
approach of sound understanding to mobile robots.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 396–405, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Binaural sound localisation systems take advantage of two important cues [4]
of the arriving sound signals in two ears: (i) interaural time difference (ITD) or
interaural phase difference (IPD), and (ii) interaural level difference (ILD). Using
these two cues, the sound source position can be estimated in the horizontal
or azimuthal plane. ILD is believed to be more efficient at localising low- and
mid- frequency sounds (50 Hz ∼3 kHz) while ILD is better for mid- and high-
frequency sound (>1.2 kHz) [4].

Models of ITD and ILD processing have been developed by several researchers
[4][5]. Jeffress [4] originally proposed a widely used model to detect ITDs, in
which sound from each ear passes different delay lines before reaching a coinci-
dence neuron which fires with a maximum rate when two specific delay times are
present for the sound. Yin [5] improved Jeffress’s model in response to biological
evidence by introducing a single delay line for the ipsilateral ear while retaining
multiple delay lines for the contralateral ear. For ILD, Jeffress suggested a so-
called “latency hypothesis” to explain the processing mechanism, in which the
latency of inhibitory input is delayed relative to the excitatory input from the
ipsilateral ear. Evidence for this idea was provided by Hirsch [6], however, the
mechanism of ILD processing remains unclear.

This paper presents a new auditory processing system designed to provide
live sound source positions via a spiking neural network (SNN). In this SNN, we
implement Yin’s ITD model and additionally propose an ILD model. Then ITD
and ILD are combined together to simulate the function of IC in the human. It
is the first example of applying both ITD and ILD into a spiking neural network
to cover a wide frequency range of sound inputs. The synaptic and soma models
in the system are treated as independent of sound frequency, ITD or ILD as
there is no current evidence for specialisation. This simplifies the system and is
a potential advantage for future adaptive auditory systems.

The rest of this paper is organised as follows. Section 2 presents the neu-
rophysiological data of human auditory pathway. In that section, we make an
assumption of level locking auditory neurons. Section 3 proposes an pyramid
model to calculate ILDs. Section 4 proposes a system model with combines the
ITD pathway and the ILD pathway. In Section 5, experimental results are pre-
sented to show the feasibility and performance of the sound localisation system.
Finally, conclusions and future work are given in Section 6.

2 Biological Fundamentals and Assumptions

When sound arrives at the external ear, it is directed through the ear drum
and then propagates to the inner ear, i.e. cochlea. The inner hair cells along the
cochlea respond to the sound pressure to generate spikes that are sent through
the auditory nerve (AN) up to the central nervous system. The temporal and
amplitude information of the sound wave are encoded by the hair cells up to
auditory nerve [4]. Two properties of the hair cells are important for this en-
coding. First, the cochlea is tonotopically organised so that each inner hair cell
is maximally excited by stimulation at a characteristic frequency (CF) [7]. In
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other words, each hair cell has a specific frequency with a highest sensitivity.
Second, the hair cells are polarised so that their movement is excited during one
specific phase of the sinusoidal sound wave while inhibited during other phases.
This phase locking occurring at frequency of 50 ∼1.2 kHz is the basis for the
encoding of timing information for sound.

As the sound pressure level (SPL) increases, auditory nerve fiber increase
their rate of discharge with a sigmoidal relationship to the decibel of sound over
a relative range of 30 dB. In order to cover a wide SPL range, e.g. 120 dB, the
relative range is adaptively changed according to the background sound level.
However, the mechanism of this adaptivity is still not clear. In this paper, we
assume there are “level locking” auditory nerve fibers which generate spiking
signals only if the sound signal level lies in a specific fixed range.

After encoding the temporal and amplitude information, AN fibers pass the
spiking sequence through the superior olivary complex (SOC) up to the inferior
colliculus (IC) to calculate the ITDs and ILDs. Two separate circuits, the ITD
pathway and the ILD pathway, are involved in the calculation. The ITDs [7]
have been proved to be processed in the medial superior olive (MSO), which is
one part of the SOC, and the ILDs are processed in another part of the SOC,
i.e. the lateral superior olive (LSO). The MSO in one side receives excitation
from the AVCN (anteroventral cochlear nucleus) from both the ipsilateral and
contralateral ears. Besides the excitation, recent neurophysiological studies have
revealed that the MSO also receives inhibition shortly following the excitation [7].
After the ITD processing in the MSO, the results are projected to the IC. For the
ILDs processing, cells in the LSO are excited by sounds that are greater in level
at the ipsilateral ear than the contralateral ear and inhibited by sounds that are
greater in level at the contralateral ear [7]. Therefore, the LSO receives excitation
from the ipsilateral AVCN, but inhibition from the MNTB (medial nucleus of the
trapezoid body) which converts the excitation from the contralateral AVCN to
inhibition. Finally, the spiking output of the LSO is also tonotopically projected
to IC.

3 Model of ILD Processing in LSO

In the LSO, the model of the ILD processing is unclear yet. In this paper, we
propose an ILD model based on the neurophysiological evidence of single delay
line and the assumption of the existing of level locking AN. This model, called
pyramid ILD model, is illustrated in Figure 1. The left slope of the pyramid
receives the inhibition inputs from the contralateral MNTB and the level order
of the inhibition is arranged in the reversed way of the pyramid layer, i.e. the level
number increases from the top to bottom layer. The inhibition of one specific
sound level gets into the network along the dot lines in the figure. The right slope
of the pyramid takes the excitation inputs from the ipsilateral AVCN and the
level order of the excitation is the same way of the pyramid layer. The excitation
of one sound level passes down the network along the dash line. The neuron at
the cross point of the excitatory dash line and the inhibitory dot line is the ILD



A Biologically Inspired Spiking Neural Network for Sound Localisation 399

CF

ILD

levellev
el

high

low

low

hig
h

Contralateral
AVCN AVCN

1.2 kHz 20 kHz

0 dB

30 dB

Ipsilateral

Excitatory
Inhibitory

MNTB

LSO

Fig. 1. Schematic diagram the ILD processing of the LSO in the human

coincidence neuron. It fires only if there are spikes at the excitatory line and
no spike at the inhibitory line. The layer where the coincidence neuron belongs
indicates the ILD, i.e. the lower layer represents the small level difference and
vice versa.

4 System Model of Sound Localisation

Inspired by the neurophysiological data and the proposed ILD pathway assump-
tion presented in Section 3, we designed a system model of sound localisation
by using spiking neural networks (SNNs). The sound is first encoded into spikes
as inputs to the SNN. The synaptic response I(t) to a spike, occurred at t = ts,
is modelled as a constant square current with an amplitude (also called weight)
of ws, a latency ls relative to the timing of the spike, and a lasting time τs.
The sign of the the amplitude indicates whether the synapse inhibits (negative)
or excitates (positive) the following soma. The soma response to I(t) can be
modelled based on the leaky integrate-and-fire model in [8].

u(t) = ur exp(− t− ts
τm

) +
1
C

∫ t−ts

0

exp(− s

τm
)I(t− s)ds (1)

where ur is the initial membrane potential, and τm is a time constant. In this
paper, a typical value for τm is 1.6 ms. C is the capacitor which is charged by
I(t), in order to simulate the procedure of the postsynaptic current charging the
soma. The soma model has one more parameter, the action potential ϕ. When
u(t) = ϕ, the soma will fire a spike, then u(t) is reset to 0.

In contrast to other sound localisation systems, e.g. [9], which only applied
an ITD pathway, our model utilises both the ITD and ILD pathways for both
sides of ear. This feature provides a wide-frequency localisation processing ability
to the model as we will see in Section 5. Furthermore, the SNN of the model
simplifies the model of the synapse, and the parameters of the synapse and
soma are independent to sound frequencies in contrast to the model in [9]. This
feature enables our system to have a real-time computation ability and potential
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Fig. 2. Schematic structure of biologically inspired sound localisation system. This
example assumes the left ear is the ipsilateral ear.

optimisation possibility. Figure 2 shows a schematic structure for the sound
localisation procedure in the left ear side. Please note that there is another
corresponding mode in the right ear side. In the figure, the tonotopical sound
encoding feature of the cochlea is simulated by a bandpass filterbank consisting
a series of Gammatone filters [10]. The filterbank decomposes the sound into
several frequency channels in a similar way as the cochlea processing the sound.

After the Gammatone filterbank, the temporal information of the sound in
each frequency channel is encoded into a spike sequence by the phase locking
module in Figure 2, which simulates the phase locking character of the inner
hair cell in the cochlea. At every positive zero-crossing of the incoming sound, a
spike is triggered. At the same time, the amplitude information is encoded into
several spike sequences by the level locking module.

Following the ITD pathway in Yin’s model [5], the spike sequence of the
contralateral ear, i.e. the right ear in Figure 2, passes variable delay lines Δti.
We denote the delayed spike sequence as SCP (Δti, fj), where C stands for the
contralateral, P for phase locking, Δti for the delay time, fj for the frequency
channel j. Similarly, SIP (ΔT, fj) represents the delayed spike sequence of the
ipsilateral ear with a fixed delay time ΔT . SCP (Δti, fj) and SIP (ΔT, fj) are
then input to the ITD coincidence model (please see Figure 3-(a) for details)
to calculate the ITD. The calculated output of the ITD coincidence model is
a new spike sequence represented as SITD((ΔT − Δti), fj). If there are spikes
in SITD((ΔT − Δti), fj), it means the sound arriving to the ipsilateral ear is
earlier than that to the contralateral ear by ITD = ΔT −Δti second. Once the
ITD calculation is implemented for all frequency channels, a three dimension
ITD distribution map can be drawn, where the x-axis is for ITD, y-axis for the
frequency channel and z-axis for the mean spike number in a unit time.

The ILD pathway is modelled in the bottom rectangular box in Figure 2. The
level locking spike sequences from the contralateral and ipsilateral sides pass fixed
delay lines, ΔH and ΔP , respectively. Then they go into the ILD coincidence
model for calculating the level difference. Figure 3-(b) illustrates the coincidence
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model in detail. In the figure, SCL(li, fj) represents the contralateral level locking
spike sequence of frequency channel j and level li, while SIL(lk, fj) the ipsilateral
level locking spike of level lk. The output of ILD model is SILD((lk − li), fj),
which indicates the spike sequence when ILD = lk−li. Once the ILD calculation
is implemented for all frequency channels and for both sides, a ILD distribution
map can be drawn in the similar way to the ITD distribution.

The calculation results of the ITD and ILD coincidence model are finally
merged together as shown in the last module of Figure 2. Considering the com-
plex head transfer function between the ILDs and source source angles [2], we
use the ILD results to identify whether the sound came from the left or right
side. Then we use this information to remove the ambiguity in the ITD results.
For example, if the sum of the negative ILD spikes is larger than that of positive
ILD spikes, we can conclude that the sound came from left side and then all
the positive ITD spikes can be ignored in the following angle estimation of the
sound source. After correcting ITD spikes, we can choose the significant ITD by
using several methods, such as winner-take-all and the weighted mean method.
Finally, the sound source azimuth angle can be calculated by:

θ = arcsin(ITD×Vsound/dear) (2)

where Vsound is the sound speed, typically 344 m/s in 20oC. dear is the distance
between two ears, i.e. microphones in robot.

( , )CP i jS t fΔ

( , )IP jS T fΔ

( , )CL i jS l f

( , )IL k jS l f

ES

ES

ES

IS

IS

IS

soma

soma

(( ), )ITD i jS T t fΔ − Δ

(( ), )ILD k i jS l l f−

(a)

(b)

Fig. 3. (a) ITD coincidence model (b) ILD coincidence model. ES stands for excitatory
synapse, and IS inhibitory synapse.

5 Experimental Results

To justify the feasibility and performance of our sound localisation model, we
designed two groups of experiments: (i) artificial pure tone localisation, and (ii)
real pure tone localisation. The sound in the former experiments is generated
by a computer and it is manually added time difference and level difference on
two sound channels according to the physical parameter of our mobile robot,
MIRA. For example, to simulate a sound coming from the left 90 degree, the
right channel sound is added by an extra time sin(90◦)dear

Vsound
at the beginning and

decreased in level by an arbitrary 50%. The ear distance dear is 21 cm. The sound
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in real pure tone localisation is recorded in a general environment with 30 dB
background noise. The distance of the sound source to the robot is 90 cm and
the sound pressure at the speaker side is controlled to be 90±5 dB. The sample
rate is 22050 Hz and the duration is 100 ms with 10 ms silence at the beginning.
Pure tones with frequency 500, 1000 and 2000 Hz were recorded at the positions
of -90, -60, -30, 0, 30, 60 and 90 degrees. The parameters of the spiking neural
network are listed in Table 1. The Gammatone filterbank is set with 16 channels
to cover from 200 to 3000 Hz.

Table 1. Parameters in experiments

Excitatory Synapse Inhibitory Synapse Soma
ls τs ws ls τs ws ϕ tm C

ITD 2.1 0.08 0.1 2.28 0.08 -0.1 8e-4 1.6 10

ILD 2.1 0.08 0.1 2.28 0.08 -0.1 8e-4 1.6 10

channels channels Δti ΔT ΔH ΔP

ITD 17 n/a [1.4 2.6] 2 n/a n/a

ILD n/a 10 n/a n/a 2 1.8

*Note: the unit of ls, τs, ws, tm,Δti , ΔT , ΔH and ΔP
is ms and the unit of C is mF.

Figure 4 shows the spike distributions in the sound localisation of the artifi-
cial signal. In these distribution figures, the x-axis is the expected angle of sound
localisation and the y-axis is the estimated angle after calculation. The size of
square is proportional to the spiking number in the corresponding angle estima-
tion. For example, in Figure 4(a), a big square at (0 0) means that when the
artificial signal came from 0 degree the spiking number of estimated angle of 0
degree is the majority of spikes of all estimated angles. The localisation efficiency
of the system is defined as a percentage of the spiking number at the correct
estimation point, such as (-30 -30) and (60 60), to the total spiking number.
In the figure, we compare the performance of two methods, i.e. the localisation
using (i) the ITDs only and (ii) the ITDs with the ILDs.

In the top column of Figure 4, the localisation efficiency across all frequencies
(500, 1000, 2000 Hz) and angles is about 70%. 85% of the sound signals across
all frequencies were recognised correctly between -45 to 45 degree. The highest
localisation efficiency occurred at the 0 degree. The efficiency decreases when
the frequency goes high or the sound moves to the sides. This result matches
the fact [7] that (i) the ITDs cue has the highest efficiency for sound localisation
when the sound source is in front of the observer, and (ii) the ITD cue effect on
sound localisation fades down over 1.2 kHz.

After adding the ILDs into our system, the experiments results shown in the
bottom column of Figure 4 demonstrate that the spiking distribution is more
concentrated, especially in the figure of 1000 Hz and 2000 Hz, than that of the
results by only using the ITDs. This results match the fact [7] that the ILDs is
the main cue for the high frequency sound localisation. The overall localisation
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Fig. 4. The artificial sound localisation results for 500, 1000 and 2000 Hz. The size of
square represents the spiking proportion in the corresponding angle estimation.
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Fig. 5. The real sound localisation results for 500, 1000 and 2000 Hz. The size of square
represents the spiking proportion in the corresponding angle estimation.
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efficiency is increased to 80% and 95% of the sound signals across all frequencies
were recognised correctly between -45 to 45 degree.

Figure 5 shows the spike distributions for the sound localisation of a real pure
tone signal. The same experimental methods for the artificial sound localisation
were applied. In these figures, the ambiguity of the estimated sound source angle
is large when only the ITD cue is used. The overall localisation efficiency dropped
down below 50% due to acoustic clatter which affects the ITD calculations be-
cause the phase-locking block in our system will generate more irrespective spike
sequence in terms of these noise. However, after adding ILDs into the system, the
ambiguity in the ITD calculation is improved and the overall localisation efficiency
is raised to 65% because the noise level in the signal generally is not different in
two microphones and therefore does not affect the ILD calculation much.

The time cost for processing a 100 ms sound signal is less than 50 ms on a
2.6 GHz CPU. Comparing the 9.1 s time cost when using the model in [9], our
system performs much quicker without losing localisation efficiency. It is feasible
to apply our system for real time sound localisation in real world.

6 Conclusion and Future Work

In this paper, we implemented a sound localisation system using spiking neural
network inspired by mammalian auditory processing. In this system, both the
ITD and ILD pathway were adopted and modelled based on recent neurophys-
iologic findings. In the ITD pathway, inhibitory inputs to the MSO are added
together with traditional excitatory inputs in order to get a shape localisation
results. In the ILD pathway, we proposed an assumption of the level-locking au-
ditory nerve and built a pyramid model to calculate ILDs. The parameters of the
SNN were set independent to the sound frequency and ITDs (ILDs) in contrast
to similar work in [9]. The experimental results showed that our system can lo-
calise the sound source from the azimuth -90 to 90 degree. The sound frequency
varied from 500 to 2000 Hz. The effect of frequency and sound source position
to the localisation efficiency had a high correspondence with neurophysiologic
data. It proved the reasonability of the proposed system.

In the future, active sound localisation, which can specify the feature frequen-
cies of an interesting object, will be the next step of our research. In addition, an
adaptive relative range of the level-locking encoding by using the feedback from
SOC will increase the localisation efficiency of our system in a cluttered environ-
ment. For the application of our system to a mobile robot, we are planning to
implement a self-calibration sound localisation system which can adaptively ad-
just the synapse and soma parameters according to the environment or electrical
hardware change.
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Abstract. A method for training overlapping feedforward networks on analo-
gous tasks is extended and analyzed. The learning dynamics of simultaneous
(interlaced) training of similar tasks interact at the shared connections of the
networks. The influence of one task on the other can be studied by examining
the output of one network in response to a stimulus to the other network. Using
backpropagation to train networks with shared hidden layers, a “crosstraining”
mechanism for specifying corresponding components between structurally sim-
ilar environments is introduced. Analysis of the resulting mappings reveals the
potential for analogical inference.

1 Background

A fundamental operator for high-level cognition is the establishment of correspon-
dences between analogous components of structurally similar tasks. Thorndike and
Woodworth [1] put forward a theory that two different “mental functions” may share
cognitive structures in their processing. A system that includes common representations
of features in different domains can conceivably establish mappings between them [2].

The intrinsic pattern-matching properties of the connectionist framework can be
brought to bear on feature mapping [3] [4] [5]. Approaches using hybrid symbolic-
connectionist models have addressed the processing of structural mapping in the con-
text of language processing [6]. Skill transfer between similar, if not strictly analogous,
tasks has been the subject of connectionist models that transfer knowledge by reusing
weights learned on one task on a second task [7]. Caruana [8] devised a multitask learn-
ing (MTL) architecture that exhibits faster convergence and better performance learning
multiple tasks simultaneously than on one of the constituent tasks alone.

2 Overlapping Networks

A partially shared network (PSN) is defined here as a feedforward network that processes
several input-output tasks with some input and output units dedicated to individual
tasks, and other intermediate units and connections shared among the tasks.

The strictly layered PSN has an architecture in which the input vector is partitioned
into K (K > 1) subvectors with the output vector is partitioned into K corresponding
subvectors. There are 2 or more hidden layers. The connectivity from the input banks
to the first hidden layer is parallel; hidden layers project from one to the next in serial
fashion; the final step from the last hidden layer to the output banks is again in parallel.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 406–412, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A Strictly Layered PSN. Several banks of input units, Tj , project to a common hidden
layer H1, which in turn projects to a second hidden layer H2, which projects to a subsequent
layer H3, and so on to HN , (N ≥ 2). In the final stage, layer HN projects to several output
banks corresponding to the input banks. Arrows indicate full unit-to-unit connectivity between
connected layers.

3 Methodology

3.1 Interlaced Training

Networks were initialized by setting the weights to small random values from a uni-
form distribution. The networks were trained with two similar tasks (T1 and T2) by
presenting a random input-output pair from T1 to input bank 1, training the net with
backpropagation, then training on a pair from T2 to input bank 2, and proceeding by
alternating between T1 and T2.

3.2 Crosstesting

During training and testing, patterns are only presented on one input bank. This restric-
tion maintains a consistent net input to the units of H1. There is no reason for such a
constraint among the output layers during testing. Thus output patterns across all banks
can be examined in response to input on a single input bank. This makes possible a
correspondence analysis between items in different tasks. That is, the output in T2 gen-
erated by a T1 input (A) can be compared to the outputs in T2 generated by the set of
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T2 inputs. Any T2 input (A′) that generates a T2 output that is sufficiently close to that
generated by A is a candidate for the image of A in the input space of T2.

Another approach to correspondence analysis is to compare representations of inputs
from different input banks at the H1 level. If a T1 pattern and a T2 pattern have iden-
tical (or nearly identical) H1 representations, then they must give the same (or nearly
the same) output patterns on all output banks. Hence they would be considered corre-
sponding points in their respective tasks.

3.3 Crosstraining

The network can be explicitly trained to form a correspondence between a given pattern
A in T1 and a given pattern A′ in T2. A number of techniques were attempted:

1. Pattern A was presented at T1. The resulting output at T2 was compared with the
target output for A′ for training by backpropagation.

2. A more complex network architecture with additional output banks that were
trained as autoencoders for each input bank was examined. With this network de-
sign, pattern A′ was used as a target on its encoder bank for pattern A as input.

3. Patterns generated at H1 by A′ at T2 were used as a target at H1 to directly
crosstrain input A at T1.

4. The backpropagation algorithm is applied by first presentingA′ at the T2 input. The
output at T2 is then used as a training pattern for A on the T1 input. This is very
similar to technique 1 above except the actual output generated by A′ is the target
rather than the target of A′ from the training set.

Of these techniques, only number 1 and number 4 gave good results. Technique 4 was
ultimately chosen since it makes fewer assumptions about knowledge of the training
stimulus.

3.4 Neighborhood Tasks

The networks in the study were trained on a class of tasks defined by Ghiselli-Crippa
and Munro [9] called “neighborhood tasks”, in which each input node represents a lo-
cation on a graph. The set of output nodes is the same, each node representing a graph
location. Each input-output pair in the training set consists of a single input node (a
representation of the graph location L). The corresponding output is the set of nodes
representing the locations that are neighborhood of L on the graph. Thus the neighbor-
hood task is to map L to N(L).

4 Results

All results presented here are results of single simulations. A more complete statistical
analysis is anticipated in the near future. Results are depicted as an array of grids in
which the location of the grid in the array represents he position of the referent of the
input node in the graph. The grid is the corresponding output. That is, the lower left
grid is the output generated by the input unit for the lower left corner.
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Fig. 2. Both tasks are neighborhood tasks on a 4-4 grid. Left: A 4x4 array of 4x4 grids. Each
grid in the array represents the output grid during test mode of a single input. The position in the
array indicates the grid position of the input. Right: The output from T2 generated by a T1 input
(cross-testing).

Fig. 3. H1 representations. Left: H1 representations of T1. The lines indicate neighboring points
from the task. For example the neighbors of 6 are 2, 5, 7, 10. Right: H1 representations of T2.
Note that nodes 16 and 13 are in the same positions in the two plots. These points correspond to
the lower right and uper right corners respectively in Fig 2.

4.1 No Crosstraining – The “Vertical” Condition

In all cases with sufficient resources (number of hidden units) and sufficient time,
networks learned the separate tasks with low error. The left side of Fig. 2 depicts the
network performance on T1 as an array of grids. Note each output grid shows the neigh-
borhood of corresponding input. Visual inspection of the left array confirms that the
network learns his task well (note the small error in the upper right grid). The network
performs as well on T2 (not shown). The right side of Fig 2 shows the T2 output for a
T1 input. This example of cross-testing shows a mapping from the T1 input space to T2
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Fig. 4. The results of cross-training. Cross-training examples are indicated by boxes (corners and
middle). The mapping was a 90 degree rotation (T1-T2 clockwise). Note hat the cross-trained
items show low error, and he non cross-trained items are also correct for the most part.

Fig. 5. The neigborhood task on grids of different sizes. All items in the 3x3 environment (left)
are mapped to the corresponding corner nodes, edge center nodes, and central node of the 5x5
grid (right). Note that the cross-trained grids perform very well, and that the non-crosstrined items
seem to map to the 3x3 output in a relatively consistent fasion.

that is roughly a vertical reflection. That is, the T2 output for the T1 lower right corner
shows the neighborhood of the upper right corner. Layer H1 has only two hidden units,
which enables depiction of the hidden unit representations (Fig 3).

4.2 Assigning Correspondences with Cross-Training

In several simulations, cross-training was used to impose correspondences between the
input spaces of the two tasks. Eight of the sixteen input patterns were mapped to points
that were rotated 90 degrees. Cross-testing (Fig. 4) shows an example for which the
training was successful (boxes indicate cross-trained items). Note that the items that
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were not cross-trained are, in general, consistent with the 90 degree rotation suggested
by the cross-trained items. Other cases using fewer cross-trained items (for example,
corners only) did not give such elegant results.

4.3 Correspondences between Non-identical Spaces

Since the tasks use dedicated input and output banks, they are not constrained to use the
same input or output spaces. In Fig 5, the results of such an experiment are shown.

5 Discussion

The ability to establish correspondences between similar situations is fundamental to
intelligent behavior. Here, a network has been introduced that can identify correspond-
ing items in analogous spaces. A key feature of this approach is that here is no need for
the tasks to use a common representation. Essentially the first hidden layer provides a
common representational scheme for all the input spaces.

Simulations have been a bit uneven with respect to the tendency for items that are
not cross-trained to generalize well. The factors that play a role in determining good
generalization have not yet been identified. But candidates include the dimensionality
of the hidden unit space, noise in the hidden units, and he learning rate.

It should be noted that the partially shared network architecture used here is virtually
identical to the network used in Hinton’s classic ”family trees” example [10]. The net-
work in that paper also had independent inputs and shared hidden units, but only briefly
addresses the notion of generalization.

A possible application of this approach is for ontology mapping. Here, the tasks
would be to learn the structure of various ontologies using a task like the neighborhood
task. Explicit cross-training could be used for specific “known” correspondences.
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Abstract. In this paper we study the impact of presynaptic activity
that is deviating from Poissonian firing onto the postsynaptic firing of
a conductance based integrate and fire neuron. We first show that the
compound activity of a large group of neurons, e.g. presynaptic cells,
cannot be described by a Poisson process in general. Then we demon-
strate that the auto-structure of the presynaptic drive has strong impact
onto the auto-structure of the postsynaptic spike-train. And finally, we
discuss the potential impact of non-Poissonian presynaptic activity on
the structure formation in recurrent networks based on Spike Timing
Dependent Plasticity (STDP).

Keywords: STDP, self-organization, non-Poissonian spike activity, re-
current networks, Gamma-process, Log-normal -process.

1 Introduction

Neuronal self-organization and structure formation in recurrent networks have
been proposed to be crucial elements in shaping the way the brain processes in-
formation [1,2,3,4,7]. However, most theoretical and simulation based approaches
that investigate neuronal self-organization tacitly use the assumption that spik-
ing activity can be modeled by Poisson point processes. Since it is now un-
doubted that real neuronal activity is often strongly deviating from Poisson
processes these theoretical and simulation based approaches might lack a major
component of real neuronal firing.
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2 Presynaptic Activity Deviating from Poisson

A typical cortical neuron receives input from many, up to more than 104, other
neurons. Taking the presynaptic neurons as independent it was believed that the
compound process of the activity of many input spike-trains can be described as
a Poisson process [5,6]. In this case the auto-structure of individual pre-synaptic
neurons could be ignored and a Poissonian statistics would have been a good
approximation.

However, it has been shown analytically that this belief is wrong [8]. Lindner
demonstrated that only the inter-spike interval (ISI) distribution and the ISI cor-
relation at a finite time-lag approaches the ones of a Poisson process in the limit of
large number of presynaptic spike-trains. Nevertheless, the power-spectrum of the
compound process is identical to the power spectrum of the original spike-trains.
This clearly demonstrates that presynaptic activity that is individually non-
Poissonian will lead to a also non-Poissonian compound activity. For example, in-
dividual either regular or oscillatory presynaptic activity will lead to the same type
of regular or oscillatory spiking in the compound process at the same time scale.
This occurs even if many thousands spike-trains are added up. Hence, the impact
of any presynaptic activity that is for example either regular or oscillatory is falsely
ignored by present studies that model the compound activity as Poisson processes.

3 Impact of Non-poissonian Firing on Synchronous Drive

Neurons are very sensitive to the synchronous firing of sub-populations, espe-
cially if they are in a state of balanced excitation and inhibition. Under this

Fig. 1. (A1-3) Raster plot for 50 trials of Gamma-processes with 3 different coef-
ficient of variations of the inter-spike interval distribution (A1: CV =0.1; A2: CV =1,
A3: CV =3). (B) Distribution of coincidence counts shared by pairs of mutually in-
dependent Gamma-processes of the same kind as shown in A. Dashed curves in (B)
shows the coincidence count distribution for the cases of Poisson processes (γ = 1)
and a Gamma-process with CV =0.1. Coincidences were evaluated per trial based on a
binned version (bin-length: Δt = 4 ms) of the original renewal process. Each distribu-
tion in B represents sample from T = 100000 trials of each 5 s length. The spike rate
was chosen to be R = 50 ap/s.
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Fig. 2. Auto-correlation of the coincidences of Gamma-point processes (A), and a log-
normal -point processes (B) with a CV of 0.1 of the inter-spike interval distribution. A
bin-length of Δt = 4 ms was used. The Auto-correlation is computed for time-lags τ
with τ = k ·Δt). The spike rate were chosen to R = 50 ap/s. Solid line indicate results
derived from simulations, while circles locate an analytical evaluation.

regime the membrane potential of a neuron is typically fluctuating around its
spiking threshold and a small number of coincident input can be particularly
effective in driving the cell above threshold. It is therefore important for to
determine the parameters affecting the synchrony of presynaptic spike-trains.
Only recently the influence of the auto-structure of renewal processes on the
likelihood of synchronous firing between mutually independent processes was
studied in Ref.[9]. The authors described the influence of the auto-structure of
different mutually independent renewal processes (Fig. 1, panels A1-A3) on the
shape of the coincidence count distribution (Fig. 1, panel B) and on the auto-
correlation of coincidences (Fig. 2) for individual and independent trials. To this
end the authors described the shape of the distribution by the Fano factor FFC

of the coincidence distribution. Please note that the Fano factor FFC is equal
to a scaled variance in case of a renewal processes, since the expected frequency
of coincidences is independent of the type of the process [9].

Neuronal activity is continuous stream in time. Therefore the concept of in-
dividual and independent trials might look inappropriate. However, if the auto-
correlation time of the spiking activity is short compared to the length of trials,
one can understand trials as subsequent and independent pieces taken form the
same continuous stream of neuronal activity. In this case, the Fano factor ex-
presses the variability of counts of coincident events for different periods of the
neuronal activity. In other words, the Fano factor FFc describes the degree of
clustering of coincidences in time. Please note that since the expected value of
coincidences is independent of the type of the renewal process, different auto-
structures lead only to a redistribution of the same number coincidences and
therefore to different clustering in time.

4 Clustering of Synchronous Activity in Time

We have studied then the Fano factor FFC as a measure of clustering of synchro-
nous activity for renewal processes with Gamma- and log-normal -distributed
interspike intervals. The Fano factor of the coincidence count distribution for
pairs of processes with identical spike-rates is represented in Fig. 3A for several
coefficients of variations (CV ). High values of FFC indicate strong clustering. To
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Fig. 3. (A) Fano factor of the coincidence count distribution as a function of the model
CV , for a Gamma-process and a log-normal -process. Coincidences were evaluated based
on a binned version (bin-length: Δt = 1 ms) of the original renewal process. Both
process types (Gamma- and log-normal) were parameterized by the product of the
bin-length Δt in units of seconds and the firing rate R in units of [ap/s] (see legend).
Each estimation of the CV or Fano factor was based on T = 2000 trials of each 5 s
length. The spike rate were chosen to R = 50 ap/s. (B) Analytically determined Fano
Factor FFC of the coincidence count distribution for two neurons with different rate
R1 = R + ΔR and R2 = R − ΔR as function of ΔR/R. Gamma-processes with shape
parameter γ = 2, 4, 8, 16, 32 are explored. RΔt = 0.2.

describe the changes of FFc we will use the Poisson process as a reference model
since the Poisson process was commonly used in modeling studies. We have ob-
served that only intermediate regularity in the processes (0.2 < CV < 0.8) lead
to smaller values of FFc and consequently to less clustering than in the case
of a Poisson process. For very low and very high CV s (corresponding to very
regular and bursty spiking, respectively) the Fano factor can exceed the FFC

of a Poisson process by a factor larger than 2. However, if the two independent
processes have different rates (Fig. 3B), the FFc and therefore the clustering
of synchrony for Gamma-processes is in general lower than in case of a Poisson
process that exhibits a FFc = 1.4 for the given parameters.

In summary, our first major finding is that deviations from individual Pois-
sonian firing can induce clustering of coincidences between mutually independent
point-processes in time. The amount of clustering depends on the detailed prop-
erties of the inter-spike interval distribution, and can be described by the Fano
Factor FFc of the coincidence count distribution. Our second major finding is
that the clustering depends very critically on whether the rate across different
point-processes it the same or not. We found that small differences of the the
spike-rates of two processes in the order of a few percent can cause changes in
the clustering measured by changes of FFc of up to 50% in some cases (Fig. 3B).
The third major finding is that both, bursty and regular firing, can induce clus-
tering of coincidences. However, the underlying mechanism and cause of the
clustering for bursty and regular processes is different. In the case of bursty
processes clustering is due to a repeated firing of individual neurons in a pe-
riod as short as the bin-width Δt that defines the time-scale of a coincidence. In
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contrast, in case of regular firing clustering is caused by a kind of periodic rep-
etition of the same pattern on a time-scale defined by the expected inter-spike
interval.

5 IF Neurons and Presynaptic Gamma-Processes

A prior step in demonstrating that deviations from Poissonian firing can modu-
late the structure formation in recurrent networks based on neuronal plasticity
like STDP, is to show first that different variations of non-Poissonian presynaptic
activity impact the postsynaptic spiking activity of a neuron.

To this end we simulated a conductance based Integrate and Fire neuron that
receives input from one excitatory and one inhibitory population, with NE = 400
and NI = 100 cells, respectively. Exponentially decaying synaptic currents with
time constants τampa = 2 ms and τgaba = 5.6 ms were used respectively for the
AMPA and GABA mediated receptors. The membrane time constant was set to
τm = 20 ms. The synaptic conductance strength ggaba and gampa were chosen
to be identical across all synapses of the same type. We model the postsynaptic
neuron to be in a state close to balanced excitation and inhibition. To this end we
defined gampa and ggaba based on the balance between excitation and inhibition
β as well as the total conductance in units of the leakage conductance gleak.
Motivated by studies that measured this relation in vivo we have chosen the
total conductance to be four times higher than the leakage.

Panels A in Figure 4 shows the postsynaptic spike triggered average of the
presynaptic spike activity, which describes the average presynaptic activity of
the excitatory population (upper trace) and the inhibitory average activity
(downer trace) in a window center around a postsynaptic spike. For the two
point processes studied (Poissonian in A1 and Gamma-distributed in A2), on
average an increase in the excitatory and/or a decrease in the inhibitory activ-
ity are necessary to drive the postsynaptic neuron to spike. Please note that
both are by definition random fluctuation since the presynaptic activity has
a constant expected spike count and is mutually independent across neurons.
Remarkably, the the presynaptic spike triggered average for regular Gamma-
processes (Fig. 4, A2) shows a damped periodic oscillation with the expected
interspike interval of the presynaptic activity. This demonstrates that random
fluctuations leading to increases of the excitatory or decreases of the inhibitory
drive have the same auto-correlation structure as each of the original presynaptic
point-processes.

This notable feature relies on the thresholding properties of the postsynap-
tic neuron and can be intuitively understood as follows. Since the neuron is
close to a state of balanced excitation/inhibition, synchronous activity from a
rather small subpopulation of neurons is sufficient to make the neuron firing.
For simplicity we assume for now that all presynaptic processes of such driving
subpopulation are identical. We know from the work of Linder [8] that the power-
spectrum of the compound process is the same as for each individual neuron,
and consequently we know that a subpopulation that is synchronous by chance
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Fig. 4. (A1,2) Postsynaptic spike triggered average of the presynaptic activity in units
of number of spikes per 100 μs of the whole presynaptic population of 400 excitatory
(upper trace) and 100 inhibitory (downer trace) cells. (B1,2) Auto-correlation function
of the postsynaptic spiking activity (bin-width Δt=1 ms). (C1,2) Inter-spike interval
distribution of the postsynaptic spiking activity (bin-width Δt=2 ms). The indices
1 and 2 in the panels distinguishes between the individual Poissonian and Gamma-
distributed presynaptic point process cases. The average postsynaptic spike rate was,
15.2 ap/s in the Poissonian case, and 3.36 ap/sec in the Gamma process. In both cases
the presynaptic spike rate of the excitatory population was 28 ap/sec per synapse. The
presynaptic spike rate of the inhibitory population was 20 ap/sec per synapse.

will have a cross-correlation with the same periodicity as the auto-correlation as
each of the individual neurons. Hence, a chance synchronization of a subpopu-
lation will lead to a package of postsynaptic spikes that follow on average the
same auto-structure as each individual presynaptic process. This is illustrated in
the auto-correlation function of the postsynaptic point-process shown in panel
B2 of Figure 4. Interestingly, the ISI distribution shows multiple peaks. This is
because the average postsynaptic spike rate is much lower than the compound
presynaptic activity. Hence, the postsynaptic cell does not fire at the timing cor-
responding at each peak of the auto-correlation of the presynaptic drive. Such
effect can be understood as a modulation of the firing probability of a stochastic
point-process. Therefore, the postsynaptic neurons might do cycle skipping what
induces presynaptic and postsynaptic spike-rates to be different.

6 Non-poissonian Input and Structure Formation in
Recurrent Networks

Once we have evaluated the role of non-Poissonian presynaptic input in the firing
properties of a postsynaptic neuron we are now in position to discuss the potential
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impact of non-Poissonian presynaptic activity on structure formation and learning
via STDP. This form of plasticity has been applied to sequence learning and has
been discussed to be involved in spontaneous and activity driven pattern forma-
tion [10,1,4]. STDP strengthens potentially causal relations between presynaptic
drive and postsynaptic activity by increasing the synaptic strength of all synapses
that have been activated immediately before a postsynaptic spike is generated.
Since the clustering of coincidences in the presynaptic activity has been shown to
impact postsynaptic events, it is also expected to modulate STDP-based pattern
formation. Specifically, bursty presynaptic activity leads to clusters of presynaptic
coincident events on a very short timescale and just a single postsynaptic potential
can be sufficient to modulate the strength of neuronal plasticity.

In case of regular presynaptic activity the situation is different. In case of
regular presynaptic activity the situation is different, such that regular presy-
naptic activity leads to periods postsynaptic activity with the same regularity
as the presynaptic drive. In this scenario the temporal relation of presynaptic
and postsynaptic activity needs to be maintained for a duration of the order of a
few expected interspike intervals of the presynaptic activity to exert a significant
influence. Exactly this maintenance of the temporal order between presynaptic
drive and the postsynaptic activity has been observed in our simulation of an
IF neuron subjected to structured presynaptic input. Hence, the clustering of
coincident presynaptic activity, described by the Fano factor FFC , is a critical
parameter in studying the impact of different point-processes onto STDP.

7 Clustering and Repetition of Presynaptic Synchronous
Spike Pattern in Dependence of the Fano Factor

Given our results concerning the temporal clustering of coincidences described
by FFC we can already distinguish between two scenarios. First, let us start by
the high variance case where FFC is large, and coincidences are more clustered
than in case of Poissonian firing. This case occurs for very regular and bursty
auto-structures (see Fig. 3A), and only in the case that the rates of the all
spikes trains are identical or have a n:m relationship. In the second scenario
FFC is lower, and coincidences are less clustered than in case of Poissonian
firing. This second scenario occurs predominately for non-rational rate relations
of the processes and intermediate regularity.

Whether sets of individual neurons are either in the low FFC , or high FFC

state, can have important implications on the neuronal dynamics and could be
used by the neural system to modulate the clustering of synchronous neuronal
activity that is occurring by chance. For example, the high FFC regime seems
to be well suited for spontaneous and activity driven structure formation due
to neuronal plasticity, like STDP [10,1,4,11]. Spontaneous pattern formation re-
quires a spontaneous symmetry breaking in the activity driving the network
such that a randomly occurring pattern is strengthened and embedded as a reli-
able reoccurring sequence. A regime where the frequency of coincident neuronal
activity is highly clustered in time is especially suited for such a spontaneous
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pattern formation since a pattern that occurs once by chance have a higher like-
lihood to be repeated in a short temporal window than in case of Poissonian
activity. This repetition of individual chance patterns could boost the effect of
STDP for short periods in time since the same patterns occur more than once.
However, there is a critical period length that STDP requires to reinforce a
given pattern. If STDP requires many reoccurrences of the same pattern for
reinforcement the period length will grow larger than, first a couple of inter-
spike intervals, and second the auto-correlation time of the process. For periods
that are long, the advantage of the high variability regime vanishes since periods
with high numbers of coincidences will be followed by periods with low num-
bers of coincidences such that the variability of the coincide count distribution
is reduced.

More relevant is the case where individual neurons have different spike rates.
In that case changing the auto-structure of the individual processes can also
regulate STDP processes. Our findings based on Gamma-processes with rates
that are not related to each other as n:m (with n,m ∈ N ) demonstrate that
Poissonian firing yields the highest FFC and therefore a higher clustering of
coincidences than regular and bursty Gamma-processes. Hence, a Poissonian
profile of spikes boost the effect of STDP compared to other statistics of spike-
trains as long as the spike rates from individual neurons are different and does
not express a n:m relationship.

8 Conclusions

We have described how auto-structure of presynaptic activity results in general
in a compound activity on non-Poissonian statistics. We have also concluded that
the driving of a postsynaptic neuron by spike-trains deviating from a Poissonian
profile influences the statistics of firing the postsynaptic cell in a well defined
relationship with respect to the presynaptic characteristics. Finally, and assum-
ing that a random pattern occurring between mutually independent processes
can be seen as a seed for the process of spontaneous pattern formation, we
have discussed how changes of the auto-structure, such as regularity of presy-
naptic spike-trains, can modulate and boost the efficiency of STDP for short
epochs of the length of a few interspike intervals. Consequently, the regularity
and burstiness of neuronal spike-train can potentially act as a gating or boost-
ing mechanism for the ability of spontaneous symmetry breaking and pattern
formation.
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Appendix

A: Gamma-Process and log-normal-Process

The ISI distribution for a Gamma-process with a given constant spike rate is
described by:

pγ(t) = tγ−1 (γR)γ
e−γRt

(γ − 1)!
for t > 0 . (1)

This distribution is characterized by two variables, the spike rate, R, and
the shape-parameter, γ. The Poisson-process is a special case of the Gamma-
process for which γ = 1. Values of the shape-parameter γ smaller than 1 make
short intervals more likely to occur than for a Poisson-process, and are used
to model bursty firing, while large values of the shape parameter are used to
model regular firing. We use the CV of the ISI distribution to characterize the
processes. The the shape-parameter, γ and the CV value are related as follows:

γ =
1
C2

V

. (2)
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As a second kind of renewal process characterized by two variables we use the
log-normal -process.ts interspike interval distribution (p(t)log−normal) is defined
by:

p(t)log−normal =
1

k
√

2π

exp
(
− (ln(t)−a)2

2k2

)
t

. (3)

The spike rate, R, and coefficient of variation, CV , can be expressed by a and
k as follows:

a = − lnR− ln
(
C2

V + 1
)

(4)

and
k =

√
ln (C2

V + 1) . (5)

B: Coincidences

Given two parallel spike-train processes we define a coincidence based on binned
versions of the original processes. The binned spike trains are obtained by seg-
menting the time axis into exclusive bins, each of length Δt, and counting the
number of spikes per bin k. The number of coincidences in bin k shared by two
spike trains for two simultaneous bins and of neuron 1 and neuron 2 is then
defined by Nk

c = n1
k ∗ n2

k. This definition can be trivially extended to more than
pairs.
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Abstract. A popular view is that the brain is making fast decisions in
temporal and frontal cortices predominantly on the bases of the feed-
forward pathways (FF). In later stages iterations (reverberations) with
delayed feedback connections (FB) may be helpful. We propose, an op-
posite concept, that decisions are made in single neurons from the retina
to the cortex, and that FB is fast as FF, and from the beginning partici-
pates in making decisions. The main differences between FF and FB are
their different logics: FF follows driver logical rules, but FB follows mod-
ulator logical rules. Driver logical rules are gathering all possible infor-
mation together therefore and they are context dependent, FB pathways,
however, using selective modulator logical rules extract only hypotheti-
cally important information. We say that FF FB interaction is prediction
hypothesis testing system. Our psychophysical system is different than
Turing Machine because we are often insensible to changes of some sym-
bols but same symbols in different configuration may lead to different
classification of the same object. In present work we are looking for the
anatomical and neurophysiological basis of these perceptual effects. We
describe interactions between parts and their configurations on the basis
of a single cell electrophysiological activity in cortical area V4. This area
is related to simple shape classification. We have divided area V4 cell
responses into three categories and found equivalent classes of object at-
tributes for each cell response category. On this basis, we found decision
rules for different area V4 cells (rough set theory - Pawlak, 1992 [1]).
Some of these rules are not consistent, which may suggest that the brain
may use different, non-consistent strategies in parallel in order to classify
significant attributes of the unknown object.

Keywords: Imprecise computation, bottom-up, top-down processes,
neuronal activity.

1 Introduction

Primates outperform any AI system in such difficult tasks as complex objects
(like faces) recognition even if they have never seen them in a particular context
before. An important feature of primates brain is insensitive to the exact proper-
ties of an objects parts, as well as recognition based on only partial and variable
information. Therefore, because objects attributes are not sharp and may have
different unknown ahead meanings, to model them we are using rough set theory
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[1]. In this work, we have explored area V4 cells responses stimulated by pair
of bars or light patches placed in variable parts of the receptive field (RF). Our
analysis lead us to propose decision rules related to the neurophysiological basis
of the interactions between parts.

Like Pawlak [1], we define an information system as S = (U,A), where U is
a set of objects and A is set of attributes. If a ∈ A, u ∈ U the value a(u) is
a unique element of Va (a value set of the attribute a). In agreement with the
Leibniz principle we assume that objects are completely determined by their set
of properties, meaning that attributes map objects to a set of attributes values.
The indiscernibility relation of any subset B of A, or IND(B), is defined [1] as
the equivalence relation whose elements are the sets u : b(u) = v as v varies in
Vb, and [u]B - the equivalence class of u form B-elementary granule. The concept
X ⊆ U is B-definable if for each u ∈ U either [u]B ⊆ X or [u]B ⊆ U −X . B

¯
X =

{u ∈ U : [u]B ⊆ X} is a lower approximation of X . The concept X ⊆ U is B-
indefinable if exists such u ∈ U that [u]B ∩X �= ∅. B̄X = {u ∈ U : [u]B ∩X �= ∅}
is an upper approximation of X . The set BNB(X) = B̄X− B

¯
X will be referred

to as the B-boundary region of X . If the boundary region of X is the empty set
then X is exact (crisp) with respect to B; otherwise if BNB(X) �= ∅ X is not
exact (rough) with respect to B. In this paper, the universe U is a set of simple
visual patterns that we used in our experiments [2], which can be divided into
equivalent indiscernibility classes related to their physically measured, computer
generated attributes or B-elementary granules, where B ⊆ A.

The purpose of our research is to find how these objects are classified in
the brain. W will therefore modify the definition of the information system as
S = (U,C,D) where C and D are condition and decision attributes respec-
tively. Decision attributes will classify elementary granules in accordance with
neurological responses from a specific area of the visual brain. From a cognitive
perspective, the percept of the object is classified into different categories in dif-
ferent visual areas, leading to different decisions (actions). In this work we are
looking into single cell responses only in one area - V4 that will divide all pat-
terns into equivalent indiscernibility classes of V4-elementary granules. Neurons
in V4 are sensitive only to the certain attributes of the stimulus, like for example
space localization pattern must be in the receptive field, and most of them are
insensitive to contrast changes. Different V4 cells have different receptive field
properties, which means that one B-elementary granule can be classified in many
ways by different V4-elementary granules.

2 Method

We will represent our experimental data [2]. in the following table. In the first
column are neural measurements. Neurons are identified using numbers related
to a collection of figures in [2]. concatenated with the cell number. Different
measurements of the same cell are denoted by additional letters (a, b, ). For
example, 11a denotes the first measurement of a neuron numbered 1 Fig. 1, 11b
the second measurement, etc. Simple stimuli properties are as characterized as
follows: Most of our analysis will be related to data from Pollen et al. [2].



Decision Making Logic of Visual Brain 425

1. orientation in degrees appears in the column labeled o, and orientation band-
width is sob.

2. spatial frequency is denoted as sf , spatial frequency bandwidth is sfb
3. x-axis position is denoted by xp and the range of x-positions is xpr
4. y-axis position is denoted by yp and the range of y-positions is ypr
5. x-axis stimulus size is denoted by xs
6. y-axis stimulus size is denoted by ys
7. stimulus shape is denoted by s, values of s are following: for grating s = 1,

for vertical bar s = 2, for horizontal bar s = 3, for disc s = 4, for annulus
s = 5, for two stimuli s = 22 - two vertical bars, etc.

Fig. 1. Modified plots from [2]. Curves represent responses of two cells from area V4
to small single (E) and double (F, G) vertical bars. Bars change their position along x-
axis (Xpos). Responses are measured in spikes/sec. Mean cell responses SE are marked
in E, F, and G. Cell responses are divided into three ranges by thin horizontal lines.
Below each plot are schematics showing bar positions giving r1 (gray) and r2 (black)
responses; below (E) for a single bar, below (F and G) for double bars (one bar was
always in position 0). (H) This schematic extends responses for horizontally placed
bars (E) to the whole RF: white color shows excitatory related to r2 responses, gray
color is related to r1 responses and black color inhibitory interactions between bars.
Bars’ interactions are asymmetric in the RF.

Decision attributes are divided into several classes determined by the strength
of the neural responses. Small cell responses are classified as class 0, medium to
strong responses are classified as classes 1 to n-1 (min(n)=2), and the strongest
cell responses are classified as class n. Therefore each cell divides stimuli into its
own family of equivalent objects Cell responses (r) are divided into n+1 ranges:
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category 0 : activity below the threshold 10 - 20 sp/s labeled by r0;
category 1 : activity above the threshold labeled by r1, ...
category n : activity above 30 - 40sp/s labeled by r2.

Stimulus attributes can be express as:B={o, ob, sf, sfb, xp, xpr, yp, ypr, xs, ys, s}.

3 Results

3.1 Analysis of the Interactions between Parts

We have used our model as a basis for an analysis of the experimental data
from the neurons recorded in the monkey’s area V4 [2]. One example of V4 cell
responses to thin (0.25 deg) vertical bars in different horizontal - x positions is
shown in the upper left part of Fig. 1 (Fig. 1E). Cell responses show a maximum
for the middle (XPos = 0) bar position along the x-axis. Cell responses are not
symmetrical around 0. In Fig. 1F the same cell (cell 61 in table 1) is tested with
two bars. The first bar stays at the 0 position, while the second bar changes
its position along the x-axis. Cell responses show several maxima dividing the
receptive field into four areas. However, this is not always the case as responses
to two bars in another cell (cell 62 in table 1) show only three maxima (Fig. 1G).
Horizontal lines in plots of both figures divide cell responses into the three classes:
r0, r1, r2, which are related to the response strength (see Methods). Stimuli
attributes and cell responses divided into two: r1 and r2 classes are shown in
table 1 for cells from Fig. 1 and in table 2 for cells from Fig. 2

We assign the narrow (xprn), medium (xprm), and wide (xprw) x position
ranges as follows: xprn if (xpr : 0 < xpr ≤ 0.6), medium xprm if (xpr : 0.6 <
xpr ≤ 1.2), wide xprw if (xpr : xpr > 1.2).
On the basis of Fig. 1 the decision table the two-bar horizontal interaction study
can be presented as the following

Decision Rules of Two-bar (DRT):
DRT1:

o90∧xprn∧(xp−1.9∨xp0.1∨xp1.5)∧xs0.25∧ys4)1∧(o90∧xp0∧xs0.25∧ys4)0 → r2
(1)

DRT2:

o90 ∧ xprm ∧ (xp−1.8 ∨ xp−0.8 ∨ xp0.4 ∨ xp1.2) ∧ xs0.25 ∧ ys4)1∧

∧ (o90 ∧ xp0 ∧ xs0.25 ∧ ys4)0 → r1 (2)

One-bar decision rules can be interpreted as follows: the narrow vertical bar
evokes a strong response in the central positions, and wide size bars evoke
medium responses in also near the central certain positions. Two-bar decision
rules claim that: the cell responses to two bars are strong if one bar is in the
middle of the RF (bar with index 0 in decision rules) and the second narrow
bar (bar with index 1 in decision rules) is in the certain positions of the RF eq.
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Table 1. Decision table for cells shown in Fig. 1. Attributes o, ob, sf, sfb were constant
and are not presented in the table. In experiments where two stimuli were used, the
shape value was following: for two bars s=22, for two discs s=44.

cell xp xpr xs ys s r

61e -0.7 1.4 0.25 4 2 1
61f1 -1.9 0.2 0.25 4 22 2
61f2 0.1 0.2 0.25 4 22 2
61f3 1.5 0.1 0.25 4 22 2
61f4 -1.8 0.6 0.25 4 12 1
61f5 -0.4 0.8 0.25 4 22 1
61f6 0.4 0.8 0.2 5 4 22 1
61f7 1.2 0.8 0.25 4 22 1
62g1 -1.5 0.1 0.25 4 22 2
62g2 -0.15 0.5 0.25 4 22 2
62g3 -1.5 0.6 0.25 4 22 1
62g4 -0.25 1.3 0.25 4 22 1
62g5 1 0.6 0.25 4 22 1
63h1 -0.5 0 0.5 1 44 2
63h2 1 1 1 1 44 1
63h3 0.2 0.1 0.25 4 22 2

(1). But when the second bar has medium width the max cell responses be-
came weaker eq. (2). Responses of other cells are sensitive to other bar positions
(Fig. 1G). These differences could be correlated with anatomical variability of
connections especially of the descending axons. As mentioned above V4 axons
in V1 have distinct clusters or linear branches. Descending pathways are modu-
lators and therefore their rules contain logical or which consequence is that not
all excitatory areas become more active as a result of the feedback.

The decision table (Table 2) based on Fig. 2 describes cell responses to two
patches placed in different positions along x-axis of the receptive field (RF).
Figure 2 shows that adding the second patch reduced single patch cell responses.
We have assumed that cell response to a single patch places in the middle of the
RF is r2. The second patch suppresses cell responses stronger when is more
similar to the first patch (Fig. 2D)

Table 2. Decision table for one cell shown in Fig. 2. Attributes yp, ypr are constant
and are not presented in the table. We introduce another parameter of the stimulus,
difference in the direction of drifting grating of two patches: ddg = 0 when drifting are
in the same directions, and ddg = 1 if drifting in two patches are in opposite directions.

cell xp xpr xs ys ddg r

64c -4.5 3 1 1 1 2
64c1 -1.75 1.5 1 1 1 1
64c2 -0.5 1 1 1 1 2
64d -6 0 1 8 0 2
64d1 -3.5 4.8 1 8 0 1
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Fig. 2. Modified plots from [2]. Curves represent V4 cell responses to two patches
with gratings moving in opposite direction - patch 1 deg diameter (C) and in the
same (D) directions for patch 1 deg wide and 8 deg long. One patch is always at x-
axis position 0 and the second patch changes its position as it is marked in XPos
coordinates. The horizontal lines represent 95% confidence intervals for the response to
single patch in position 0. Below C and D schematics showing positions of the patches
and their influences on cell responses. Arrows are showing directions of moving gratings.
Lower part of the figure shows two schematics of the excitatory (white) and inhibitory
(black) interactions between patches in the RF. Patches with gratings moving in the
same directions (right schematic) show larger inhibitory areas (more dark color) than
patches moving in opposite directions (left schematic).

Two-patch horizontal interaction decision rules are as follows:
DRT3:

ddg1 ∧ (o0 ∧ xpr3 ∧ xp4.5 ∧ xs1 ∧ ys1)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r2 (3)

DRT4:

ddg1 ∧ (o0 ∧ xpr1 ∧ xp0.5 ∧ xs1 ∧ ys1)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r2 (4)
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DRT5:

ddg0 ∧ (o0 ∧ xpr4.8 ∧ xp3.5 ∧ xs1 ∧ ys8)1 ∧ (o0 ∧ xp0 ∧ xs1 ∧ ys1)0 → r1 (5)

These decision rules can be interpreted as follows: patches with drifting in
opposite directions gratings give strong responses when positioned very near
(overlapping) or 150% of their width, apart one from the other eqs. (3, 4). Inter-
action of patches with a similar gratings evoked small responses in large extend
of the RF eq. (5).

We propose following classes of the objects Parts Interaction Rules:

PIR1: facilitation when stimulus consists of multiple similar thin bars with
small distances (about 0.5 deg) between them, and suppression when dis-
tance between bars is larger than 0.5 deg. Suppression/facilitation is very
often a nonlinear function of the distance. In our experiments (Fig. 1) cells
responses to two bars were periodic along the receptive field with dominating
periods of about 30, 50, or 70% of the RF width. These nonlinear interac-
tions were also observed along vertical and diagonals of the RF and often
show strong asymmetries in relationship to the RF middle.

PIR2: strong inhibition when stimulus consists of multiple similar patches
filled with gratings with distance between patch edges ranging from 0 deg
(touching) to 2 deg, weak inhibition when distance is between 3 to 5 deg
through the RF width.

PIR3: if bars or patches have different attributes like polarity or drifting direc-
tions than suppression is smaller and localized facilitation at the small distance
between stimuli is present. As in bars interaction, suppression/facilitations be-
tween patches or bright/dark discs can be periodic along different RF axis and
often asymmetric in the RF.

We have tested above rules in nine cells from area V4 by using discs or annuli
filled stimuli with optimally oriented and variable in spatial frequencies drifting
gratings (Pollen et al. [2] Figs. 9, 10). Our assumptions were that if it is a strong
inhibitory mechanism as described in the rule PRI2 than responses to annulus
with at least 2 deg inner diameter will be stronger than to disc. In addition by
changing spatial frequencies of gratings inside the annulus, we have expected
eventually to find other periodicities along the RF width as described by PIR3.

In summary, we wanted to find out what are relations between stimulus prop-
erties and area V4 cell responses or whether B-elementary granules have equiv-
alence classes of the relation IND{r} or V4-elementary granules, or whether
[u]B ⇒ [u]B4. It was evident from the beginning that because different area V4
cells have different properties their responses to the same stimuli will be differ-
ent, therefore we wanted to know if the rough set theory will help us in our data
modeling. We can also ask what percentage of cells we fully classified. We have
obtained consistent responses from 2 of 9 cells, which means that γ = 0.22. This
is related to the fact that for some cells we have tested more than two stim-
uli. What is also important from an electrophysiological point of view is there
are negative cases. There are many negative instances for the concept 0, which
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means that in many cases this brain area responds to our stimuli; however it
seems that our concepts are still only roughly defined.

We have following decision rules:

DR V4 7:
sfl ∧ xo7 ∧ xi2 ∧ s5 → r1 (6)

DR V4 8:
sfl ∧ xo7 ∧ xi0 ∧ s4 → r0 (7)

DR V4 9:
sfl ∧ xo8 ∧ xi0 ∧ s4 → r0 (8)

DR V4 10:
(sfm ∨ sfh) ∧ xo6 ∧ xi2 ∧ s5 → r2 (9)

These can be interpreted as the statement that a large annulus (s5) evokes
a weak response, but a large disc (s4) evokes no response when there is modu-
lation with low spatial frequency gratings. However, somewhat smaller annulus
containing medium or high spatial frequency objects evokes strong responses.
It is unexpected that certain stimuli evoke inconsistent responses in different
cells [3]:

103: sfl ∧ xo6 ∧ xi0 ∧ s4 → r0
106: sfl ∧ xo6 ∧ xi0 ∧ s4 → r1
107: sfl ∧ xo6 ∧ xi0 ∧ s4 → r2

A disc with not very large dimension containing a low spatial frequency grating
can evoke no response (103), a small response (106), or a strong response (107).

4 Discussion

In this work we have concentrated on the decision rules in pre-attentive processes.
These so-called early processes extract and integrate into many parallel channels
the basic features of the environment. These processes are related to the human
perceptions property of objects with unsharp boundaries of values of attributes
put together by similarities [4]. These similarities may be related to synchroniza-
tions of the multi-resolution parallel computations that are difficult to simulate
in the digital computer [5] On the basis of the objects physical properties we can
define values of it attributes and in agreement to it classify or named the object.
General problem appears when the same object in different conditions changes
values of its attributes, or in other words its parts became unsharp. One solution
is that the brain extracts as elementary parts so-called basic features [6].

Our eyes constantly perceive changes in light colors and intensities. From these
sensations our brain extracts features related to different objects. The basic
features were identified in psychophysical experiments as elementary features
that can be extracted in parallel. Evidence of parallel extraction comes from
the fact that their extraction time is independent of the number of objects.
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Other features need serial search, so that the time needed to extract them is
proportional to the number of objects. The high-level serial process is associated
with the integration, and consolidation of items and with a conscious report.
Other, low-level parallel processes are rapid, global, related to high efficiency
categorization of items and largely unconscious [6] . Our work is related to the
constitution of decision rules extracting basic features from the visual stream.

In conclusion, we have demonstrated previously [3] that the brain may use
multi-valued logic in order to test learned predictions about object attributes
by comparing them with actual stimulus-related hypotheses. Neurons in V4 in-
tegrate objects attributes from its parts in two ways: one is related to local
excitatory-inhibitory interactions described here as PIR (parts interaction rules),
and another way by changing possible part properties using feedback connections
tuning lower visual areas. Different neurons have different PIRs watching objects
by multiple unsharp windows (Fig. 1). If objects attributes fit to the unsharp
window, neuron sends positive feedback [8] to lower areas filters which in end-
effect sharpen the attribute-extracting window changing neuron response from
class 1 to class 2 (Fig. 1).

We have suggested [8] that the role of FB pathways is related with extraction
of the expected, significant information (hypothesis testing) from a large amount
of incoming information (predictions). In this Separation Rule different logics are
used: incoming information in related to AND logic (driver rules), whereas FB
pathways are choosing (OR rules) certain information.

In summary, we have shown that using rough set theory we can divide stimulus
attributes in relationships to neuronal responses into different concepts. Even if
most of our concepts were very rough, they determine rules on whose basis we
can predict decision of the brain to new, natural images.

Acknowledgement. The Parts Separation Theory (PST) was originally pro-
posed and implemented in different system by George Sporzynski. Thanks to
Diane Muhr for explaining to me the PST theory.
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Abstract. When searching for a target in a visual scene filled with dis-
tractors, the mechanism of inhibition of return prevents revisiting previ-
ously attended locations. We proposed a new computational model for
the inhibition of return, which is able to examine priority or saliency map
in a manner consistent with psychophysical findings. The basic elements
of the model are two neural integrators connected with two inhibitory
interneurons. The integrators keep the saliency value of the currently
attended location in the working memory. The inhibitory inter-neurons
modulate a feedforward flow of information between the saliency map
and the output map which points to the location of interest. Computer
simulations showed that the model is able to read-out the saliency map
when the objects are moving or when eye movements are present. Also, it
is able to simultaneously select more then one location, even when they
are non-contiguous. The model can be considered as a neural implemen-
tation of the episodic theory of attention.

Keywords: Attention, Computational model, Neural integrators,
Saliency, Target selection, Visual search.

1 Introduction

Visual search for targets of interest constitute an important function performed
by the brain. Initial psychophysical investigations suggest that the search can
be performed in two distinctive modes: 1) the fast, parallel mode when a target
differs from distracters in a single feature and 2) the slow, effortful, serial mode
when a target is distinguished from distracters by a conjunction of two or more
features. Later research indicated that this distinction is not as simple and some
conjunctions of features can be processes in a fast, parallel manner [19].

Computational models of visual search assume the existence of a saliency
or a priority map, which represents the measure of the relative importance of
spatial locations in the visual field [18]. The saliency map combines a registered
feature contrast in feature maps for colours, brightness, orientations, etc. [10,11].
Different features are conjoined into a unique map over which serial process is
issued to select the most active location. It is not yet clear where in the brain
the saliency map is computed, but there are several candidate regions, including
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parts of the parietal cortex, the frontal cortex and the thalamus [18]. Lateral
inhibition implementing winner-takes-all (WTA) behaviour is assumed to read-
out points of interest in the saliency map. In order to move attention to a new
location, the most active location is inhibited and, therefore, removed form the
competition, which allows the selection of the next most salient location. This
process is called the inhibition of return. Psychophysical investigation confirmed
the existence of such a mechanism [12].

However, the proposed mechanism for the inhibition of return has several
limitations; it can search a visual field only if all the objects are stationary and
if eye movements are not allowed. That is, it does not operate on an object-level
frame of reference because there is no way to move an inhibitory tag with the
moving object [11]. Furthermore, it can select only one location at a time, while
the psychophysical data indicates that humans are able to group elements based
on their features, and to evaluate them through a single processing step [7]. Also
there is evidence that the focus of attention could be split into more than one
location [15]. All these facts point to a need for a more elaborate mechanism
for spatial shifts of visual attention. The aim of the presented research is to
introduce a new model of visual search which exhibits flexibility observed in
psychophysical studies. It incorporates two neural integrators and two neural
modulators, as a central part which keeps track of the history of the visited
locations.

2 The Model

A new proposal for a neural model of serial visual search is based on the idea
that there are two specialised neurons which modulate the feedforward flow of
information between the saliency map and the output map which points to the lo-
cation of interest (Fig 1.). This is a minimal neural architecture that can support
sampling of neural activity in the saliency map by its magnitude [5]. It enables
selective amplification of inputs with different magnitudes using simple opera-
tions such as neural integration and thresholding. Proposed neurons operate as
neural integrators. They store the saliency value of the current spatial location
in the working memory until a decision is made to move attention to a new
location. The integrators are connected with two inhibitory neurons which con-
tact dendrites of the neurons in the output map. These inhibitory interneurons
can be called modulators or gating cells [3]. Neural modulators do not influence
target neurons directly, rather, they modulate the amount of activation that
a target neuron receives from other sources. Effectively, interneruons create slid-
ing thresholds for the neurons in the output map. The neurons in the saliency
map project excitatory and inhibitory connections to the output map which sig-
nals the current location of the focus of attention. Projections are one-to-one
without the lateral spread. Inhibitory connections are mediated through a sepa-
rate set of feedforward inhibitory interneurons. The neurons in the output map
operate as a simple McCullogh-Pitts type of units. They are activated only if
the excitatory input cross the threshold but the inhibitory input does not cross
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Z1

X1 Y1

X2 Y2

I(t)

Z2

Saliency Map

Output Map

Fig. 1. A neural model for the inhibition of return which reads-out the saliency map
and the result is presented in the output map. Open circles are excitatory neurons and
filled circles are inhibitory neurons. Arrows indicates connections and the direction of
the signal flow. Dendrites are depicted as lines with T endings. The feedforward signal
flow between the saliency and the output map is dynamically modulated by two neural
integrators (x1 and x2), which are connected to two inhibitory interneurons (y1 and
y2). Interneurons are connected with dendrites of the neurons in the output map and
their corresponding interneurons.

the threshold set up by the interneurons. Formally, the model is described as
follows. The activity, Oi, in the output map at spatial location, {i}, is given by

dOi

dt
= −AOi + (B −Oi)f [Si − y1]− (C +Oi)f [Si − y2] (1)

where A is a passive decay, B(C) is an excitatory (inhibitory) saturation point.
The term, Si, denotes activity in the saliency map at the corresponding location,
{i}. The function, f[a], denotes the output from separate dendritic branches of
the Oi neurons and it is modelled as a 0-1 function with the value 1 if a > 0 and
0 if a ≤ 0. The total activity in the output map is denoted as

OT =
∑

Oi (2)

The activity of the inhibitory modulators y1 and y2 is given by

dy1

dt
= −y1 + x1 and

dy2

dt
= −y2 + x2 (3)

Inhibitory modulators receive excitation from two neural integrators x1 and x2

described as
dx1

dt
= (−x1I(t)) ∗ (I(t) + [z1]+) (4)

and
dx2

dt
= (−x2I(t)) ∗ (I(t) + [z2]+) (5)
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where

dz1
dt

= −Az1 + (B − z1)(R(t) ∗ f [1−OT ])− (C + z1)wf [1 −OT ] (6)

and
dz2
dt

= −Az2 + (B − z2)(R(t) ∗ f [OT ])− (C + z2)wf [OT ] (7)

The term −x1 and −x2 describes the passive decay of the neural activity in
the absence of the input I. However, the passive decay is multiplicatively gated
by top-down signals z1 and z2, which enable or disable activity decay. Term
w denotes synsaptic weight of inhibitory influence to top-down signals, which
can assume values in the range between -1 and 2 due to the fact that we set
B = 2 and C = 1 in the simulations. Top-down cells are driven by the reset
signal R(t) which provide information about mismatch between input pattern
at currently attended location and target pattern which is searched [7]. When
R(t) is 0, there is no mismatch, z1 and z2 remains inacitve and the passive decay
is disabled so the integrators x1 and x2 sustain a current activity value. In this
way, the basic property of the neural integrator is achieved without a need to go
deeper into a complicated network and cellular mechanisms responsible for the
neural integration [2].

Prior to the start of the visual search, z1 and z2 are 0 while x1 and x2 are set
to a certain high value by the non-specific input signal, I(t). Non-specific input
signals are above zero for an initial period of time t < t0 after which they are
set to I(t0) = 0 for the rest of the visual search, t > t0. When the mismatch
between target pattern and input pattern occurs at t > t0, the reset signal, R, is
set to 1 (for a short period of time), which enables activity decay of the x1 but
not x2 due to the fact that OT = 0. The decay is stopped when the activity of
the x1 reaches the value of the location with the highest saliency in the saliency
map. This moment is signalled by the presence of the activity in the output
map. Therefore, z1 = 0 when OT > 0. The activity in the output map emerges
as a result of the reduced inhibition in the dendrite which transmits excitation
to the Oi. In this way, the location with the highest saliency is represented in
the output map. When the template matching between input and target pattern
is finished and if another mismathch occured, another reset signal, R, is issued,
which enables activity decay of the x2 becasue, now OT > 0. The decay of the x2

is stopped when it reaches the value of the x1. This moment is signalled by the
removal of the activity in the output map OT = 0. That is, z2 becomes 0 when
OT = 0 due to the fact that excitation and inhibition cancel each other out at a
particular Oi. After the disengagement, the attention may be directed to a new
location by next reset signal R, which enables x1 activity to decay further to the
next most salient value.

The saliency map, Si, is assumed to be computed in a manner proposed
previously [10]. Synaptic weights between the saliency map and the output map
are all set to the unit strength and they are not explicitly represented in the
model. Therefore, excitatory and inhibitory connections cancel each other and
the output map can not be activated directly by Si alone. However, the inhibition



A Computational Model of Saliency Map Read-Out during Visual Search 437

from modulators enables selective gating of feedforward signal flow between Si

and Oi. Modulators operate like a gate which opens or closes depending on the
top-down signals. The gate opens when the first modulator y1 decreases in its
activity up to the level of the location with the highest salience. This location is
selected in the output map and it can be evaluated by other visual areas. When
the reset signal forces the network to move attention to a new location, the
second modulator y2 decreases its activity to the level of the first modulator. At
that moment, the gate is closed and attention is disengaged form the old location.
Closing of the gate is signalled by the absence of the activity in the output map.
However, the first integrator (and modulator) is pushed to further decrease in
its activity (by another R) due to the mismatch between target pattern and
empty inputt. The new location is selected when its activity is bellow the second
most active cell in the saliency map (the gate is open again). The same cycle
of activity reduction can be repeated as long as the target is found or all the
locations are visited. With the constraint that the integrator activity can only
decrease during visual search, we implemented the mechanism of inhibition of
return. A similar model has been proposed for the read-out from visual short-
term memory [5]. The difference between these two models is the introduction of
neural integrators in the present proposal which were not necessary for modelling
a feature binding.

The proposed mechanism depends on an assumption that every object is rep-
resented in the saliency map with a single node or with several nodes of the same
activity value. However, activity in the saliency map is distributed and can be
described with The Gaussian Function of Distance from the object’s centre-of-
mass. This poses a problem for the model because neural integrators decrease
their activity in a continuous fashion. Therefore, the visual search may be stuck
on the same object because many of its points may have greater activity value
than other objects due to the Gaussian spread of activity. A simple solution to
this problem is to add a processing stage between the saliency map and the out-
put map which sharpen the saliency representation by using lateral inhibition.
This extra network layer should implement the local WTA behaviour where the
locally strongest nodes remain active, while the other nodes are shut down.

3 Computer Simulations

Computer simulations illustrate several important characteristic of a new model.
Fig 2 illustrates the network state at different points in time during the visual
search. The simulations start with integrators set to a high activity above the
saliency value of any point in the saliency map (Fig 2A). When the first inte-
grator reduces its activity, the most salient location is selected as it is shown in
the output map (Fig 2B). When the second modulator reduces its activity, the
output map is silenced until the first modulator reduces its activity further and
the next most salient location is found. Fig 2 demonstrates that attention jumps
between nonadjacent locations without visiting intermediate locations because
activity in the output map is silenced during the jump. Furthermore, the model
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Fig. 2. Computer simulation illustrating the basic properties of the proposed model.
A) Activity of neural integrators, x1 and x2. B) Activity of the cells in the output map
positioned at the location of stimulus, Oi. C) Activity of the top-down signals, z1 and
z2. D) Activity of the cell summing the total activity in the output map, OT .

is also able to select more than one location at once due to the fact that the
inhibitory modulation is global and there are no lateral interactions between
nodes in the output map. The selection of multiple locations does not depend
on whether they are connected or not. Therefore, the model can exhibit object
based attentional selection and split attentional focus at the same time [11,15].
Moreover, the present model can select simultaneously all locations belonging
to the object’s representation. This is true under the assumption that saliency
computation is able to assign the same activity amplitude to all locations that
belong to the same object [6].

Figure 3 illustrates the model ability to select objects despite their movements
or the movements of the eyes. This ability depends on the assumption that
integrators (and modulators) can only decrease in their activity level during the
search. When the attention is moved from the most salient object to another
place, the object’s saliency level will remain above both modulators so it cannot
be selected again. The same issue arises with eye movements. They disrupt
spatial memory and disable visual search in serial models. In the present model
this problem is avoided by using the parametric working memory which keeps
track of the saliency value of the object and not of its spatial location.

Fig 3 also showed that the model is able to perform object-based inhibition-
of-return. This is true under the assumption that the object during motion will
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Fig. 3. Computer simulation illustrating the model ability to perform visual search
even when the objects are moving or eye movements are present. Top row indicates
stimulus movement and bottom row shows the response of the output map. A) Three
objects with different saliency values moves to the right and then to the left. During
the right movement they visited the same locations as during the left movement. Nev-
ertheless, visual search proceeds from the more salient stimulus to less salient stimulus
without interruption. B) Saccadic eye movement to the right and then second saccadic
movement to the left do not disrupt the visual search either.

not change the level of saliency. If they come close to each other they may
interfere with the process of saliency computation. However, in the experiments
with object-based inhibition of return, objects are usually far apart and there is
probably no violation of this assumption. Similar issue arises with eye movements
which can introduce new objects in the field of view. Adding of new objects
may disrupt the saliency of the old objects. Therefore, the visual search should
be stopped and restated. In cases where eye movements do not introduce new
objects in the saliency map, the visual search may proceed without interruptions.

4 Discussion

Computer simulations illustrate that the new model for the visual search has
several advantages over previous proposals. Firstly, it can select more than
one location simultaneously since it does not depend on the recurrent lateral
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inhibition. It is enough that two or more locations have the same level of activ-
ity in order to be selected together. Secondly, it is able to search the saliency map
even if eye movements are allowed and if object can move. Finally, the model is
a simple feedforward network without recurrent connections in the output map
which enable it to perform fast searches. Recurrent connections are necessary
only for integrators in order to be able to temporary sustain the current activity
level. A recent research showed that the sustained neural activity arises even if
network connections are disabled, suggesting that the intracellular mechanisms
are responsible for maintaining the elevated firing rate [2]. Here, the specific in-
stantiation of the neural integrator is not the issue. The important point is that
neural integrators are able to store the saliency value of the currently attended
location and to guide visual search by a gradual decrease in activity.

The new model can be considered as a neural implementation of the episodic
theory of the dynamics of visual attention. Based on a paradigm of attentional
gating, Sperling and Weichselgartner [17] suggest that attention moves across
space in discrete episodes. Each episode starts with opening of the attentional
gate in a particular location, extracting information at that location and closing
the attentional gate, which enables attention to jump to a new location. In
the proposed model, the opening of the attentional gate begins when the first
integrator (x1) reduces the activity bellow the level of activity in the saliency
map. In that moment, the location with the highest saliency is read-out in the
output map and can be processed by other visual areas. When the attention
should be directed to new location, the attentional gate is closed by reducing
the activity in the second integrator (x2). The activity of the second integrator
decays until the activity levels of both integrators are equal. At that moment,
attention is disengaged from a previously selected location which is observed as
a lack of activity in the output map. After that, the first integrator is again
pushed towards the lower activity levels by a top-down signal. The activity of
the first integrator decays until the next location is found. The implication of
the episodic theory of attention is that the time course of attention shift does
not depend on the spatial separation between objects, which is observed in the
behavioural study [17]. This result suggests that attention does not traverse
through intermediate locations between objects during the shift.

The proposed model shares some similarities with the model of the pointer
map for attentional recruitment. Hahnloser et al. [8] proposed that the atten-
tional influence on neural activity could be instantiated by pointer neurons which
are connected with all neurons in a sensory (or saliency) map. However, the
pointer map is a feedback model where pointer neurons modulate the recurrent
signal flow between neurons in a spatial map. Attention can be redirected to
a new location by moving the activity hill continuously over the map. On the
other hand, in the model presented here, pointers (integrators and modulators)
do not directly influence neurons in a saliency map but redirect the focus of
attention due to the gradual decrease in their activity. The pointer’s activity is
not registered in the output map. Their influence on the signal flow is indirect.
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In this way, the attentional shift between two nonadjacent points is achieved
without visiting intermediate locations consistent with psychophysical findings.

In order to remember the current level of activity during the attention engage-
ment at a certain location, we proposed that pointers should have the properties
of neural integrators [13]. That is, they should be able to sustain a certain level of
activity as long as the top-down signal is issued to reduce their activity. Neural
integrators are a biophysically plausible mechanism for temporary storage of
activity magnitude. They are discovered in various brain areas where they sub-
serve short-term memory for analogue quantities such as current eye position,
frequency of vibration or spatial position. Also, there are several models which
explain how they may operate in real neurons [2,13]. Here, gated decay is used
as a simple variant of neural integrators, just to illustrate the point that they
may be responsible for visual search behaviour. Another feature of our model
is the introduction of the special inhibitory neurons which have modulatory in-
fluence on the feedforward flow of signals between the saliency map and the
output map. Anatomical studies suggest that calretinin-expressing interneurons
may operate in this way. Callaway [3] hypothesized that these cells may dynam-
ically route the signal flow by selectively inhibiting one pathway while at the
same time disinhibiting another pathway. Inhibitory interactions are assumed to
occur at dendrites of the neurons in the output map and their corresponding
inhibitory interneurons. Dendrites are modelled as independent computational
units with their own output function, f(a), consistent with recent theoretical and
experimental work on dendritic computation [14].

Several models of visual search propose that the saliency map is not neces-
sary and there is no need for serial searching over it. The search is assumed to
occur in parallel within feature maps, and longer time of searching for targets de-
fined by conjunction of features is ascribed to dynamic properties of competition
within the maps [4,9]. However, recent brain imaging and electrophysiological
studies reveal that there is a serial component in the visual search. Muller et
al. [16] used fMRI to show that activity in the right intraparietal sulcus (IPS)
is modulated in proportion to the difficulty of the search task. Woodman and
Luck [20] showed that the attention shift between two objects requires about
100-150 ms and there is no temporal overlap in the allocation of processing re-
sources between two locations. They used event-related potentials (N2pc) as a
measure of the allocation of attention in the visual field during demanding the
search task. Behavioural evidence also supports the view that there is a serial
process in the visual search [1]. Here, we showed how the serial search could
be implemented in the brain using biophysically realistic mechanisms such as
neural integrators, modulators and dendritic computation. The model is able to
read-out the saliency map and to move spatial attention in a manner consistent
with several behavioural findings.

Acknowledgment. This work was supported by the Bial Foundation grant
80/06 and by the Croatian Ministry of Science, Education and Sport grant 009-
0362214-0818.
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Abstract. The purpose of this study is to construct a computational
model of metaphor understanding based on statistical corpora analysis.
The constructed model consists of two processes: a categorization process
and a dynamic interaction process. The model expresses features based
not only on adjectives but also on verbs using adjective-noun and three
types of verb-noun modification data. The dynamic interaction is realized
based on a recurrent neural network employing differential equations. Gen-
erally, in recurrent neural networks, differential equations are converged
using a sigmoid function. However, it is difficult to compare the estimated
meaning of the metaphor to the estimated meaning of the target which
is represented with conditional probabilities computed through statistical
language analysis. In the presentmodel, the differential equations converge
over time, which makes it possible to compare the estimated meaning. Ac-
cordingly, the constructed model is able to highlight the emphasized fea-
tures of a metaphorical expression. Finally, a psychological experiment is
conducted in order to verify the psychological validity of the constructed
model of metaphor understanding. The results from the psychological ex-
periment support the constructed model.

1 Introduction

This paper constructs a computational model that realizes the understanding
processes for metaphorical expressions, represented in the form of ”A like B”.
Metaphor understanding basically requires a knowledge structure for concepts
(a target, a vehicle and so on)[1]. However, it is not practically feasible to collect
sufficient data to cover enough concepts by psychological methods alone, be-
cause participants cannot rate the entire range of concepts that are commonly
used in metaphorical expressions within limited amounts of time. Thus, a model
based only on psychological experimentation cannot be extended to computa-
tional systems (e.g. search engines). Accordingly, in this paper, a computational
model is constructed based on a knowledge structure for concepts extracted from
linguistic corpora.

One theory within psychology seeks to account for the understanding process
of metaphors. It is the categorization theory which explains metaphor under-
standing in terms of class-inclusion statements, where a target is regarded as a
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member of an ad hoc category of which the vehicle is a prototypical member
[2]. For example, in comprehending the metaphor ”Socrates is like a midwife”,
the target ”Socrates” can be regarded as belonging to a ”helpful” category that
could be typically represented by a vehicle such as ”midwife”.

Some computational models of metaphor understanding have been constructed
using linguistic corpora based on categorization theory[3][4]. Kintsch’s and Ut-
sumi’s models have employed knowledge structures estimated with Latent Seman-
tic Analysis (LSA)[5]. Even though concept meanings are represented by vectors
in LSA, the vector dimensions themselves do not have meaning. Thus, the mean-
ing of a metaphor represented by a particular vector must generally be defined
in terms of the cosines of the angles between other vectors according to the LSA
method. This aspect of LSA makes it quite difficult to interpret metaphors repre-
sented by vectors.

It is worth noting that some studies have focused on the low-salient features
of a target and a vehicle that are emphasized in the process of metaphor un-
derstanding; a phenomenon referred to as feature emergence[6][7]. Feature emer-
gence has also been described in terms of an interaction among features[8][9][10].
However, one model[8] does not represent the dynamic interaction among at-
tribute values. While another model[9] represents the dynamic interaction with
a recurrent neural network, the model has a problem in that it is difficult to
explain the role differences between targets and vehicles. In contrast, The other
model[10] (Terai&Nakagawa’s model) consists of two processes; the first is a
categorization process and the second is a dynamic interaction process. The dy-
namic interaction process, realized with a recurrent neural network, represents
feature emergence in terms of the dynamic interaction among features. How-
ever, Terai&Nakagawa’s model[10] was constructed only using frequency data
for adjective-noun modifications. Thus, the represented features for concepts
in the model were limited to adjectives, and, consequently, the model cannot
represent the understanding process for metaphors involving ”verbs” (e.g. ”a
rumor like a virus” with the underlying meaning of ”a rumor that spreads like
a virus”). Moreover, while the meaning of a target is represented using the con-
ditional probabilities of features given the target, the meaning of a metaphor
is represented by the sigmoid function outputs through dynamic interaction.
Thus, the output values that represent the meaning of the metaphor meaning
cannot be compared directly to the output values that represent the meaning
of the target. That is, the model cannot clearly indicate what kinds of features
are emphasized by a metaphorical expression comparing to the meaning of the
target.

Similar to Terai&Nakagawa’s model[10], the present study also assumes that
metaphor understanding is realized through two processes (categorization and
dynamic interaction processes). In order to overcome problems with previous
models, the present model is constructed as follows. First, concepts are repre-
sented using vectors that are estimated from a statistical language analysis[11]
for four kinds of modification patterns (frequency data for adjective-noun modi-
fications and three kinds of verb-noun modifications). The meanings of concepts
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estimated from the statistical language analysis are represented by conditional
probabilities of the concepts given the features. This makes it easier to deter-
mine estimated meanings than with the LSA approach. In addition, features
are expressed using not only adjectives but also for verbs for four modification
patterns. Second, the categorization process model is constructed. The model
assigns the meaning of a target to an ad-hoc category for the vehicle using
estimated concept vectors. Third, the recurrent neural network model using dif-
ferential equations to represent the dynamic interaction process estimates the
meaning of the metaphor based on the assigned meaning of the target (the re-
sults of the categorization model). In order to indicate the emphasized features
of the metaphor expression, the differential equations that converge over time are
developed for the dynamic interaction process. Finally, a psychological experi-
ment is conducted in order to verify the psychological validity of the constructed
model.

2 Representation of Nouns Using Vectors

2.1 Statistical Language Analysis

This study applies Kameya and Sato’s statistical method[11] using extracted
frequency data for adjective-noun modifications and three types of verb-noun
modifications. g The statistical method assumes that the terms ni (noun) and
aj (adjective or verb) co-occur through latent classes and that the co-occurrence
probabilities of these terms, P (ni, aj), can be computed using the following for-
mula(1):

P (ni, aj) = ∑
kP (ni|ck)P (aj |ck)P (ck), (1)

where ck indicates the kth latent class assumed in the method. The parameters
(P (ni|ck), P (aj |ck), and P (ck)) are estimated as the value that maximizes the
log likelihood of the co-occurence freaquency data between ni and aj using the
EM algorithm.
P (ck|ni) and P (ck|aj) are computed using Bayes’ theorem, as follows:

P (ck|ni) =
P (ck)P (ni|ck)∑
k′ P (ck′ )P (ni|ck′)

, (2)

P (ck|aj) =
P (ck)P (aj |ck)∑
k′ P (ck′ )P (aj |ck′)

. (3)

The meanings of the latent classes are identified from the conditional probability
of the latent class ck given the adjective aj and the conditional probability of
the latent class ck given the noun ni.

2.2 The Results of the Statistical Language Analysis

The present analysis employs four kinds of frequency data extracted for adjective-
noun modifications (Adj) and three kinds of verb-noun modifications: noun
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(subject)-verb (S-V), verb-noun(modification) (M-V) and verb-noun(object) (O-
V). As an example, let us take the sentence ”A little child drops a letter into
the post box”, ”little-child” is extracted as an adjective-noun, ”child drop” as
a noun(subject)-verb, ”drop (into) the post box” as a verb-noun(modification)
and ”drop a letter” as a verb-noun(object). The data were extracted from the
Japanese newspaper MAINICHI SHINBUN for the period 1993-2002 by using a
modification analysis tool known as ”CaboCha”[12]. The extracted data consists
of 21,671 noun types and 3,403 adjective types for adjective-noun modifications,
29,745 noun types and 22,832 verb types for verb-noun(object), 26,113 noun types
and 21,487 verb types for noun(subject)-verb, and 28,451 noun types 24,231 verb
types for verb-noun(modification). The statistical language analysis is individu-
ally applied to each set of co-occurrence data fixing the number of latent classes
at 200.

This model deals with the 18,142 noun types (nh) that are common to all
four data sets. The nouns are represented by vectors using four kinds of condi-
tional probabilities of latent classes given the nouns (P (cAdj

k |nh), P (cS−V
k |nh),

P (cM−V
k |nh), P (cO−V

k |nh)), which are computed using the four data sets, as
follows.

Vp(nh) = P (crk|nh), (4)

where Vp(nh) indicates the pth component of the vector that corresponds to
the noun nh. crk indicates the latent classes extracted from the four data sets
and r refers to the kind of data set (adjective-noun modification, noun(subject)-
verb (S-V), verb-noun(modification) (M-V) and verb-noun(object) (O-V) data).
p refers to the successive number of latent classes extracted from the four data
sets. When 1 ≤p≤ 200, r indicates the ”Adj” modification and k = p, when 201
≤p≤ 400, r indicates the ”S-V” modification and k = p − 200, when 401 ≤p≤
600, r indicates the ”M-V” modification and k = p − 400, and when 601 ≤p≤
800, r indicates the ”O-V” modification and k = p− 600. The dimensions of the
vectors represent the latent classes.

3 The Metaphor Understanding Model

The model consists of two kinds of process. One is the categorization process
and the other is the dynamic interaction process.

3.1 The Categorization Process

A vector, representing an assigned target as a member of an ad hoc category for
a vehicle, is estimated based on categorization theory using the meaning vectors
of concepts. The algorithm for the categorization process is as follows.

First, the semantic neighborhood (N(nh)) of a vehicle of size s1 is computed
on the basis of similarity to the vehicle, which is represented by the cosine of the
angles between meaning vectors using formula(5):

sim(nh, n
′
h) =

V (nh) · V (n′
h)

‖V (nh)‖‖V (n′
h)‖ , (5)
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where sim(nh, n
′
h) indicates the similarity between concept nh and concept n′

h.
Next, L concepts are selected from the semantic neighborhood (N(nh)) of the
vehicle on the basis of similarity to the target. Finally, a vector (V (M)) is com-
puted as the centroid of the meaning vectors for the target, the vehicle and the
selected L concepts (nl: l = 1, 2, .., L). The computed vector (V (M)) indicates
the assigned meaning of the target as a member of the ad-hoc category of the
vehicle in the metaphor M . V (M) is computed using formula(6):

V (M) =
∑

l V (nl) + V (target) + V (vehicle)
L+ 2

, (6)

where nl indicates the lth selected concepts and L denotes the number of the
selected concepts. This algorithm is the same as Kintsch’s [3] algorithm, that
used in Utsumi1’s categorization model [4] and the categorization process in
Terai&Nakagawa’s model[10]. The category consisting of the vehicle and the
selected k concepts is regarded as an ad hoc category of which the vehicle is a
prototypical member.

In order to estimate the meanings of V (M), the conditional probability of
an adjective or a verb given M , P (ar

j |M) is computed using the function(7) for
P (ar

j |crk) based on Bayes theory:

P (ar
j |M) = ∑

kP (ar
j |crk)Vp(M), (7)

when r indicates ”Adj” modification, p = k, when r indicates ”S-V” modifica-
tion, p = k + 200, when r indicates ”M-V” modification, p = k + 400 and when
r indicates ”O-V” modification, p = k + 600. Similarly, in order to estimate the
meanings of a certain concept, the conditional probability of an adjective or a
verb given nh, P (ar

j |nh) is computed using function(8):

P (ar
j |nh) = ∑

kP (ar
j |crk)P (crk|nh). (8)

3.2 The Dynamic Interaction Process

The meaning of the metaphor is computed using the vector estimated by the
categorization process (P (ar

j |M)) by applying the dynamic interaction process
model. The algorithm for the dynamic interaction process is as follows.

First, features are selected if P (ar
j |M) exceeds the threshold ζr. The selected

features are related to metaphor understanding. Next, the recurrent neural net-
work model is constructed using the selected features (Fig. 1). Each node corre-
sponds to a selected feature. These nodes have both inputs and outputs.

The dynamics of the network are based on the following set of simultaneous
differential equations(9):

dxq(t)
dt

=
1
αt

(−xq(t) + β
∑

q′wqq′xq′ (t) + Iq(M)), (9)

where xq(t) represents the activation strength of the qth node at time t. The
range is between 1 and 0. 1

αt is the coefficient for convergence. When dxq/dt = 0,
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Fig. 1. Architecture of the model for ”conversation like a gear (=M)”. The nodes
represent the selected features. These are both input and output nodes.

the node outputs Oq(M) = xq(t). The vector (O(M)), which is a set of Oq(M),
represents the meaning of the metaphor M . Iq(M) represents the input value
of the qth node related to the metaphor M . The value of P (ar

j(q)|M) is used as
the input value Iq(M) where ar

j corresponds to the meaning of the qth node. In
formula(9), β denotes the influences of the dynamic interaction among features.
wqq′ denotes the weight of the connection from the q′th to the qth node and is
the correlation coefficient among the qth and q′th features related to the sibling
concepts of the target and the vehicle. A sibling neighborhood (Ns(vehicle)) for
a vehicle of size s2 and a sibling neighborhood (Ns(target)) for a target of size
s2 are computed on the basis of similarity. The concepts included in Ns(vehicle)
and Ns(target) are regarded as sibling concepts.

Thus, the mutual and symmetric connections among nodes (wqq′ ) represent
the interactions among features in metaphor understanding. If the metaphor is
changed, then the weights for the connection between the same pair of features
may change. For example, in the case of ”a dog like a cloud”, ”white” and ”puffy”
should be connected strongly. On the other hand, in the case of ”skin like snow”,
”white” and ”puffy” should only be weakly connected. Therefore, each weight for
mutual connections between nodes is estimated using the correlation coefficient
between the two features.

The differential equations converged based on the sigmoid function in the pre-
vious model. In this model, the differential equations (formula(9)) converge over
time. The output values of the present model include the influences of interaction
among the features. Thus, the output values that represent a metaphor meaning
could be directly compared to the meaning of the target which is computed using
formula(8). Accordingly, the model clearly indicates what kinds of features are em-
phasized by the metaphor expression in comparison with the meaning of the target.

3.3 Model Simulation

In this study, the model is simulated using the parameters s1 = 250, L = 5,
s2 = 100, α = 10, β = 0.15, ζAdj = 0.0294 (= 100/the number of adjectives),
ζS−V = 0.0047 (= 100/the number of verbs(S − V )), ζM−V = 0.0041 (=
100/the number of verbs(M −V )), and ζO−V = 0.0044 (= 100/the number of
verbs(O− V )). The simulation results for the metaphors of ”conversation like a
gear” and ”discussion like a war” are shown in Table1. Only the results for the
categorization process model (P (ar

j |M)) and for the dynamic interaction process
model (Oq(M)) are presented.
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Table 1. Metaphor meaning computed by the categorization process model (CPM) and
the two-process model (TPM) (”conversation like a gear”, ”discussion like a war”). The
output values are shown in parentheses.

M = conversation like a gear M = discussion like a war

CPM(P (ar
j(q)|M)) TPM (Oq(M)) CPM (P (aj(q)

r|M)) TPM (Oq(M))

1 match up (0.1103) match up (0.0922) furious (0.2065) furious (0.1755)
2 rotate (0.1008) rotate (0.0868) come up (0.0966) expand (0.1029)
3 fun (0.0656) get off (0.0468) start (0.0843) long (0.0959)
4 huge (0.0391) capture (0.0422) long (0.0806) come up (0.0873)
5 get off (0.0283) engage (0.0372) expand (0.0620) start (0.0805)
6 be sent (0.0234) huge (0.0364) new (0.0466) unfurl (0.0795)
7 capture (0.0197) fun (0.0361) hot (0.0459) be expanded (0.0764)
8 come up (0.0194) film (0.0351) strict (0.0450) get furious (0.0763)
9 go (0.0176) respond (0.0232) end (0.0442) be unfurled (0.0751)

10 appear (0.0162) encounter (0.0228) participate (0.0341) be repeated (0.0739)

The results for both models (the categorization process model (CPM) and
the two-process model (TPM)) seem to be appropriate. However, the following
psychological experimentation is necessary in order to verify which model is more
appropriate and to examine the validity of the two-process model.

4 Psychological Experiment

In order to examine the validity of the model, a psychological experiment was
conducted. The participants were 85 undergraduates. The participants were di-
vided into two groups (Group A: 42 undergraduates; Group B: 43 undergradu-
ates). Two metaphorical expressions were used in the experiment (”conversation
like a gear” and ”discussion like a war”). First, the target, the vehicle and the
metaphor were presented to the participants (Group A: ”conversation”, ”gear”
and ”discussion like a war”, Group B: ”discussion”, ”war” and ”conversation
like a gear”). Next, they were asked to respond with the appropriate features of
the target, of the vehicle and of the metaphor.

Table 2 lists features that were given by three or more participants when the
vehicle, and the target, and the metaphor (”conversation like a gear” or ”dis-
cussion like a war”) were presented. The features of ”conversation like a gear”,
such as ”engage”, ”match up”, ”fun”, ”progress” and ”stop” that were provided
by two or more participants were also identified in both models. In particular,
the most frequently responded features (”engage”, ”match up” and ”fun”) were
estimated to be among the top 10 features by the two-process model, although
”engage” was not estimated as one of the top 10 features by the categorization
process model. Correlation coefficients were calculated for these features. The cor-
relation coefficient is 0.414(n.s.) for the output values for the two-process model
and response frequency in the experiment, and is 0.079(n.s.) for the output val-
ues for the categorization process model and experimental response frequencies.
While both correlation coefficients are not significant, the results are supportive of
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Table 2. Results of the psychological experiment (”conversation like a gear” or ”dis-
cussion like a war”). The numbers of the participants who responded with a particular
feature are shown in parentheses.

conversation like a gear discussion like a war

conversation gear conversation discussion war discussion
like a gear like a war

engage (18) fun (21) engage (19) die (11) quarrel (9) furious (9)
rotate (14) speak (8) match up (10) sad (8) difficult (7) quarrel (9)
get off (5) get lively (5) fun (9) awfull (7) say (6) swirl around (5)
move (5) know (5) good (7) kill (6) come up (5) noisy (3)

difficult (3) convey (5) bitter (5) hot (5) hot (4)
boring (3) quick (4) painful (4) think (4) do (3)

warm up (3) speak (4) use (3) discuss (4) say (3)
long (3) stop (3) come up (3) brainstorm (3)
sad (3) understand (3) live (3) agree on (3)

listen (3) various (3)

the two-process model. The experimental results suggest the existence of emer-
gent features. In particular, the feature of ”progress” was more appropriately
estimated by the two-process model (Oprogress(M) = 0.0118) than the catego-
rization process model (P (progress|M) = 0.0093). In addition, the output values
for the two-process model are compared with target meanings (Fig.2, Table 4).
The shifts from the meaning of ”conversation” (P (feature|conversation)) to
the image of ”a conversation like a gear” are consistent with the experimental
results. Both sets of results indicate an emphasis on the images of ”engage”,
”match up”, ”progress” and ”stop” and a weakening of the image of ”fun” (The
value decreases from P (fun|conversation) = 0.0978 to Ofun(M) = 0.0361).
While 21 of the participants responded with ”fun” as an appropriate feature of
”conversation”, only 9 participants responded that it is an appropriate feature
of ”conversation like a gear”. Thus, decline from 21 to 9 responses suggest that
while ”fun” is an image elicited from the noun ”conversation” as a single entity, it
is much less likely to be evoked for the metaphorical expression of ”conversation
like a gear”.

Both the categorization process model and the two-process model successfully
estimate the features of ”discussion like a war”, such as ”furious” which was given
by most of the participants in the experiment. Although the experimental results
indicate that ”furious” is an emergent feature, the categorization process model
without interaction among features successfully estimated ”furious”. This can be
account for by the fact that ”furious” is strongly estimated as a feature for both
”discussion” and ”war” in the statistical language analysis. Actually, participants
did not respond to ”get furious”. However, ”get furious”, as a verbal phrase from
”furious”, can be considered as an emergent feature of the metaphor. In the sim-
ulation results, the value for gget furioush in the context of the meaning of
”discussion” (P (getfurious|discussion) = 0.0294) is emphasized in the output
value for the two-process model (Ogetfurious(M) = 0.0763), while it is weakened
in the output value for the categorization model (P (getfurious|M) = 0.0203).
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Fig. 2. The shifts from the meaning
of ”conversation” to the meaning of
”conversation like a gearh in terms of
the images of ”engage”, ”match up”,
”fun”, ”progress” and ”stop”

feature gear conversation conversation
like a gear

engage 0.0278 (18) 0.0004 (0) 0.0922 (19)
match up 0.2792 (1) 0.0000 (0) 0.0372 (10)

fun 0.0019 (1) 0.0978 (21) 0.0361 (9)
progress 0.0001 (1) 0.0075 (0) 0.0118 (5)

stop 0.0007 (1) 0.0019 (1) 0.0049 (3)

Fig. 3. Simulation results (”conversation like a
gear) relating to ”engage”, ”match up”, ”fun”,
”progress” and ”stop”. The numbers of partic-
ipants responding with a particular feature are
shown in parentheses.

This can be explained in terms of the value for gget furioush in the context of
the meaning of ”war” (P (getfurious|war) = 0.0099) which is relatively small,
but ”get furious” is emphasized by the interaction among the features. The two-
process model can estimate not only the features estimated by the categorization
process model but also emergent features that the categorization process model
cannot estimate. Consequently, the experimental results support that the con-
structed model, which consists of two processes.

5 Discussion

In order to represent features not only from adjectives but also from verbs,
this study has constructed a computational model of metaphor understanding
based on statistical language analysis of corpora. Accordingly, the constructed
model handles frequency data for adjective-noun modifications and three kinds
of verb-noun modifications. The model consists of both a categorization process
and a dynamic interaction process. In order to indicate the features emphasized
by the metaphor expression, the dynamic interaction process was improved us-
ing a recurrent neural network model with differential equations that converge
over time. A psychological experiment was conducted in order to verify the con-
structed model. The results from the experiment support the constructed model.
Emergent features estimated by the model were also validated by the psycho-
logical experiment.

However, in the psychological experiment, the participants were asked to
respond with appropriate features for the target, for the vehicle and for the
metaphor. Therefore, the features provided by the participants could tend to
rather limited. That is, it is possible that there are other appropriate features
that were not provided by participants (e.g. ”get furious” in the case of ”discus-
sion like a war”). Thus, it is necessary to evaluate the strength of relationships
between the target, the vehicle and the metaphor and the features by the Se-
mantic Differential (SD) method in order to elucidate the images evoked by
the target, the vehicle and the metaphor. An experiment into the strengths of
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relationships between the target, the vehicle and the metaphor and the features
as determined by the SD method could possibly provide further insights into the
kinds of features that are emphasized by metaphorical expressions compared to
target meanings.
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Abstract. A model of one integrate-and-firing (IF) neuron with two af-
ferent excitatory synapses is studied analytically. This is to discuss the
influence of different model parameters, i.e., synaptic efficacies, synap-
tic and membrane time constants, on the postsynaptic neuron activity.
An activation window of the postsynaptic neuron, which is adjustable
through spike-timing dependent synaptic adaptation rule, is shown to
be associated with the coincidence level of the excitatory postsynap-
tic potentials (EPSPs) under several restrictions. This simplified model,
which is intrinsically the deterministic coincidence detector, is hence ca-
pable of detecting the synchrony level between intercellular connections.
A model based on the proposed coincidence detection is provided as an
example to show its application on early vision processing.

Keywords: Coincidence detection, Leaky integrate and fire neuron,
Model parameters, Time constant, Synchrony.

1 Introduction

Recent Biophysical and Neurobiological advances have revealed that temporal
asymmetric Hebbian learning, a generalized version of the traditional Hebbian
learning rule [1], may be the intrinsic mechanism underlying synaptic plasticity
in various brain regions to coordinate pre- and postsynaptic neuronal activities
within a critical time window to conduct information storage and processing
[2,3,4]. Usually, such synaptic plasticity, termed spike timing dependent plasticity
(STDP), involves a large amount of synaptic connections and, is stochastic in
nature for either single- or multiple-compartment models of neuronal nets [5].
On the other hand, the physiological and anatomical data shows that nearby
neurons usually fire in a correlated way and share similar functionalities [6], a
property hence forms a basic principle in neuronal development [7].

By considering both theoretical formalism and application feasibility, we study
the input-output relationship of a simplified model consisting of one postsynaptic
neuron and two afferent excitatory synapses from the perspective of potential
neuromorphic implementation. It has been shown that analog very large scale
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integrated (aVLSI) circuit design of as few as four synapses converging to a
postsynaptic neuron is able to induce competition among synapses and hence
STDP [8,9]. However, in our case the competition mechanism vanishes due to the
fact that there are only two synaptic connections whilst each of their EPSPs from
the spontaneous poisson current source is not sufficient alone to depolarize the
resting postsynaptic neuron. A joint contribution from both synapses rather than
competition between them is thus necessary to activate the postsynaptic neuron.
We will show that this simplified model is fundamentally a leakage coincidence
detector which can use either the synapse and membrane decay rates or the
synaptic efficacies to associate the neuron response with input delays. Following
the fact that EPSP decay rate adjustment has the same effect as adjusting the
axonal conduction delay [10], we will further characterize the neuronal dynamics
on delayed inputs analytically and numerically. An early vision model is then
taken as an example to describe the effect of adjusting the synaptic efficacy. It is
possible to generalize this simple, two-input coincidence detector by cascading
them to formulate a multiple-input coincidence detector.

2 Model

In the model we have one leaky IF neuron fed by two spontaneous Poisson
δ-function pulse streams through two identical excitatory synapses. For analyt-
ical simplicity we have the following assumptions.

1. No delay during input pulse propogation within the axons; Or in other words,
since our purpose is to deal with the time difference of two events represented
by the pulse inputs to an IF neuron, the axonal delays can be absorbed by
the original event time difference.

(b1)

(b2)

(b3)

S
pre
1 (t)

Spre2 (t)

I
syn
1 (t)

I
syn
2 (t)

W1

W2

Vepsp1 (t)

(a)

Vepsp2 (t)

Fig. 1. A schematic circuit diagram and simulated pulse stream propogation in one
afferent synapse. (a) two synapses converge to an IF neuron, with Poisson δ-function
current pulse streams propogate from the dendritic input terminals Spre

i (t) (b1) to
dendritic output terminals Isyn

i (t) (b2), and induce the EPSPs V epsp
i (t) (b3), where

dashed line represents the neuron threshold. The IF neuron adds up the EPSPs and
has a threshold mechanism.
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2. The pulses of either synapse have large interspike intervals due to spontaneous
nature so that no cumulative effect of the consecutive input pulses from a
same synapse can activate the neuron. One individual EPSP from either
synaptic input does not, by itself, exceed the voltage threshold of the IF
neuron (see Fig. 1).

3. Two pulses from two synapses are regarded as being synchronized (possi-
bly with small tolerant delay) if and only if the postsynaptic IF neuron is
depolarized to issue a spike.

Hence in this ideal, simplified model, the activation of the IF neuron only
depends on the interaction of two synaptic inputs. A traditional input correla-
tion detection has a multiplicative nature to use the convolution of the received
signal contaminated by the noise in an information channel with the channel
impulse response [11]. This approach has been widely used to detect signals
in telecommunication. In biology, however, the subthreshold membrane activity
summarizes the current charges before it can fire a spike due to the additive
nature of the postsynaptic membrane activities [4].

2.1 Coincidence of Inputs

As shown in Fig. 1, the additive operation of two inputs is a basic 2-input
coincidence detector. The dynamics of the postsynaptic membrane potential can
be described by the following differential equation,

τmem
dv(t)

dt = vm − v(t) + rm
∑

i I
syn
i (1)

where the afferent, post-dendrite current is,

τsyn
dIsyn

i (t)

dt = −Isyn
i (t) + wi

∑
j δ(t− tj) (2)

here, τmem and τsyn are the membrane and synaptic time contants, respectively,
rm is the membrane resistance, wi is the synaptic efficacy, δ(t − tj) is a δ-
function dendritic input at time tj , Isyn

i (t) is the current pulse at the post-
dendrite terminal, v(t) is the EPSP induced by Isyn

i (t), in our case i = 1, 2.
We are interested in any more restrictions for the firing of postsynaptic neuron,

given the fact that the sum of two synchronized EPSPs will activate it. It is hence
necessary to estimate, quantitatively, the synchrony level of two post-dendrite
current pulses which will (or will not) result in a spike from IF neuron. Since
the time constant reflects the basic activation property of a neuronal or synaptic
circuit, the dynamic range of the IF neuron, in terms of the variation of its
membrane and synaptic time constants, is measured to form a window, within
which the sum of EPSPs reaches the neuron threshold and a spike is issued. A
larger window allows more delay between two input pulses to depolarize the IF
neuron.

By solving the current equation in (2) through Laplace transform we get,

Isyn
i (t) = wi

τsyn
exp(− t

τsyn
) (3)
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Since two EPSPs induced by the input current pulses arise on the neuron
membrane at different time, we set the time difference explicitly using t1 for the
first EPSP and t2 the second with a delay Δt, i.e., t1 = t and t2 = t+Δt. Use the
current solution to the membrane voltage equation of (1), we get the neuron’s
membrane potential with Laplace tranform,

v(t,Δt) = ( w1
τsyn−τmem

+
w2exp(− Δt

τsyn
)

τsyn−τmem
)(exp(− t

τsyn
)

−exp(− t
τmem

))
(4)

This membrane potential equation is the summation of two α-function caused
by the dendritic propagation of afferent pulse waves, where τsyn is the rising
time and τmem the decay time of each α-function, usually τmem � τsyn. The
amplitude of the second α-function decays exponentially depending on its peak-
peak delay with the first one. Since two afferent excitatory stimuli will lead to,
if synchronized, only one postsynaptic spike due to the IF neuron’s refractory
period, by making the neuron’s membrane potential equal to its threshold and
gradually increasing the input delay Δt we can get a postsynaptic neuron’s
response window. The explicit analytical solution on the subthreshold activity
of an IF neuron is often not easy while numerical analysis is a good alternative
[12]. The numerical solution of the postsynaptic neuron’s firing window width
with respect to the change of synaptic and membrane time constants is shown in
Fig. 2. It is obvious that larger synaptic time constant leads to more energy loss
of input pulse on larger value of synaptic resistance or capacitance, hence less
response window width; larger membrane time constant leads to more gradually
decayed EPSP, hence the possibility that the neuron’s membrane potential is
greater than its threshold is increased.

Fig. 2. Numerical solution of variation of the postsynaptic neuron’s firing window size
with respect to the change of synaptic (top) and membrane time constant (bottom),
respectively. The synaptic efficacies w1 = w2 = 20, reversal potential vm = 0, threshold
vthres = −54mv, resting potential vrest = −70mv, refrectory period tref = 3ms.
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2.2 Delay Adaptation Mechanism

The proposed model is not only a coincidence detector but also an efficient delay
adaptor in the sense that it can adjust the activation window size of the post-
synaptic neuron to adapt different input delays between two afferent synapses.
The correlation between two pulses in two synapses can be displayed by depo-
larizing an IF neuron. The possible delay between the EPSPs of two pulses can
be measured, in advance and offline, and then be saved in a memory to optimize
the window size and to modify the circuit parameters through a priori adap-
tation. The initial random window width will thus converge to a deterministic
value allowing the correlated stimuli to activate the postsynaptic neuron whilst
rejecting the uncorrelated signals or noises out of the window.

Although both membrane and synaptic time constants are adjustable for the
purpose of optimizing the activation window size, the adjustment of synaptic
efficacies is usually preferred in neural computing because of the straightforward
computational significance of adaptable synapses. The adaptation of window
size is iteratively realized through depressing/potentiating a synaptic efficacy
by a small amount according to whether the second (delayed) stimulus stays
outside/inside the activation window of the last iteration. Thus we can have the
adaptation as,

wsyn
i (t) = wsyn

i (t− 1)±Δwsyn
i (5)

where wsyn
i (t) is the synaptic efficacy, Δwsyn

i is the change amount in an adap-
tation iteration. The activation window size of the IF neuron will be increased
if its initial size is too small, otherwise it can be reduced.

3 The Retinotopic Application – A Case Study

When a three-dimensional object is mapped to a two-dimensional plane, its depth
information is lost. Although binocular disparity is the overwhelming method used

Center of Focal Plane

Receptive Field

IF neuron axis

(Photoreceptors)

p1

p2

p3

n1 n2 n3

Fig. 3. Architecture of an axis of IF neurons and the corresponding photoreceptors. The
photoreceptors align radially in the receptive field to transfer the irradiance edge inputs
in the optical flow field to electrical pulse for the IF neurons. The dotted photoreceptors
have actual connection with a corresponding neuron.
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Fig. 4. Membrane dynamics of a neuron shows the temporal correlation of stimuli and
response, and window adaptation. The first membrane depolarization is caused by the
flow synapse spike, and the second by the edge from the receptive synapse. If the edge
comes within a time window, then the neuron spikes. (a) An edge arrives at 52ms; (b)
an edge arrives at 60ms; (c) an edge arrives at 71ms; and (d) an edge arrives at 87ms.
A time window of [53, 99] is applied for (a), (b), and [58, 86] for (c), (d). wrecept = 13.91
for (a) and (b), wrecept = 13.20 for (c) and (d), the flow synapse wflow = 20, membrane
time constant τmem = 40ms, synapse time constant τsyn = 2ms, neuron reset potential
vreset = −65mv, resting potential vrest = −70mv.

to recover the depth [13], in this study we use a monocular depth perception al-
gorithm which uses the optical flow in a dynamic scene to restore depth [14]. Our
monocular vision model consists of a large amount of IF neurons. Since there is no
vision comparison between two devices and each IF neuron is an independent com-
putational unit which has only two inputs and one outputs, this model is highly
scalable for different vision resolutions and amenable to aVLSI implementation.

We chose to use 400 identical radial axes arranged in a polar coordination
plane to achieve a balance between image resolution and simulation time (and,
ultimately, aVLSI hardware cost). There are 74 IF neurons in one axis, where
the neurons have only nearest-neighbor, on axis connections (see Fig. 3). Besides
this flow synapse connection, a neuron has another connection with a fixed pixel
in the input layer, which is termed the receptive synapse. In the input layer we
use 512 × 512 pixel array which records the input image sequence at the same
resolutoin. An edge is detected if a pixel has more than 10% irradiance difference
compared to its surrounding pixels.

If a neuron spikes due to the correlation of input stimuli from both synapses,
it stimulates its neighboring neuron through the flow synapse. After a while
when the corresponding edge comes, that neighboring neuron’s membrane is
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Fig. 5. Pixel maps of a real scene. (a) and (b) Snapshots of image frames at the start
and 170 steps respectively. (c) Still contour of the first frame without depth detection
processing, the size of the short lines signifies the strength of optical flow in the 2-D
space. (d) A pixel map with the depth boxes corresponding to badminton racquet, toy
pendulum, maze board and book, respectively, from left to right. Upper values in the
boxes are the actual original depth of each object, lower values are estimated depth,
both in millimeters.

further stimulated by its receptive synapse. If the EPSPs caused by the flow and
receptive synapses are not correlated, then the neighboring neuron will not issue
a spike (Fig. 4a). Otherwise a spike is issued (Fig. 4b). By adjusting the flow
synaptic efficacy the activation window of a neuron can be changed (Fig. 4c,d),
for more details of the model including the threshold mechanism see [15]).

The depth information of different objects in a real scene can be restored
by feeding a sequence of recorded image frames to the model (Fig. 5). In the
experiment we recorded 250 frames with a camera motion speed approximately
1.1 mm/frame. The image frames are saved in a bitmap forrmat with a resolutoin
of 1276×1016 and 24 bits of color. The recording speed is 24 frames per second.
The image frames are thereafter preprocessed to fit the final resolution of 512×
512 and 8 bits of gray level, and transferred to a SUN Blade 100 workstation for
processing.

The contours of the toy pendulum and book are easily recognizable from the
pixel map in Fig. 5d. However, as the distance between edges in the maze board
approximates that of the pixel layout density, significant detail cannot be seen.
The less density of the badminton racquet pixels is due to its location at the
periphery of the visual plane, where the photoreceptors and neurons are less
dense. These results show that our model works well in a realistic setting with
a reliable recovery of the depth information.
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4 Conclusion

In this paper we have explored a simplified coincidence detection model in which
the postsynaptic neuron’s activity is dependent on the correlation of two synap-
tic inputs. We demonstrate that the intrinsic neuronal circuit parameters will
determine a temporal tolerant window within which the effect of delayed in-
puts can result in the postsynaptic neuron’s response. Afferent synchrony can
thus be detected between the intercellular connections. The window size is ad-
justable through various model parameters such as synaptic efficacies, synaptic
and membrane time constants which are directly related with the aVLSI circuit
parameters, hence render the model applicable in hardware application. Our
study thus provides an approach to the realization of transmission delay adap-
tation which has been recently suggested to coexist with traditional synaptic
weight adaptation [16,17]. It is worth noting that coincidence detection can also
be performed on multiple intercellular connections converging onto a postsynap-
tic cell by cascading many of this simple model together.

We have also proposed a vision application of this coincidence detection model
in the optical flow field of an artificial retina algorithm. We suggest that it
be possible to implement the neuromorphic information flow and noise/outlier
rejection in an artificial retina by employing this biological synaptic plasticity
mechanism.
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Abstract. We study the shape of patterns formed under different values
of a control parameter in a model system for the ontogenesis of retinotopy
proposed by Häussler and von der Malsburg. Guided by linear modes,
their eigenvalues and nonlinear interactions, a few deciding values of
the synaptic formation rate α are chosen, under which final states are
obtained using computer simulations of the full dynamics. We find that a
precise topographic mapping can only be developed under a very narrow
range of α close to its critical value. The allowed range of α is relaxed if
the system is equipped with a proper structure, presumably by evolution.

1 Introduction

Mathematical models have made significant progress in understanding biological
pattern formation and morphogenesis [1,2,3,4], with notable examples in corti-
cal map formation [5,6,7,8]. Most studies focus on determining conditions under
which an inhomogeneous pattern can emerge from a homogeneous state [1,9,8].
A less studied but very important question concerns the shape of the final pat-
tern. Which pattern will actually appear not only determines how beautiful the
coat of an animal is [10], or what hallucination patterns one sees [9], but, more
importantly, can have functional consequences.

In this paper, we study the shape of patterns formed in a model system for
the ontogenesis of retinotopy proposed by Häussler and von der Malsburg (here
called the Häussler system) [7]. In particular, we are interested in conditions un-
der which the desired patterns, which in retinotopy development are topographic
mappings, can be developed. It has been shown that the Häussler system is able
to develop a precise topological projection [7]. A spatial pattern is possible when
the homogeneous state becomes unstable as the control parameter, the synaptic
formation rate α, passes its critical value αc (α < αc). The proof in [7] is per-
formed where α is slightly below αc. For such a large α the formed mapping is
rather broad, so α has to be reduced to 0 for a precise mapping to be formed.
However, we have proven that when α = 0, the system has exponentially many
fixed points, including at least all permutation matrices [11]. A random sample
showed that over half of the fixed points are in fact stable. As random permu-
tation matrices rarely correspond to topographic mappings, it has thus been a
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puzzle why normal development does not end up at discontinuous mappings,
which could lead to functional disaster. We attempt to answer this question by
studying the range of α under which the desired topographic mappings can be
formed. By studying this particular system, which is typical for brain organiza-
tion and is simple enough to allow analytical treatment, we hope to gain insights
on general self-organizing systems.

Our study uses a combination of analysis and simulation. Whereas a linear
analysis can determine whether patterns are possible, it is a nonlinear problem to
specify what patterns will emerge. A systematic approach to nonlinear systems is
the weakly nonlinear analysis which is an analysis performed near the bifurcation
point, where the system can be reduced into a low dimensional manifold of modes
that become unstable [12,4]. When control parameters are far away from their
critical values, however, a large number of modes could become unstable, and the
weakly nonlinear analysis can at most provide a guidance. We therefore resort
to using computer simulations of the full dynamics to obtain final patterns. This
simulation, however, is no longer aimless as we will be able to choose a few
deciding values of α, from the analysis of linear modes, their eigenvalues and
nonlinear interactions.

2 The Häussler System for the Ontogenesis of Retinotopy

2.1 System Description

The Häussler system [7] addresses the establishment of ordered projections be-
tween two brain areas, retina and tectum. These are modelled as one-dimensional
chains with N elements each (for generalization to general manifolds, see [13]).
The projection between the two brain areas is represented by a set of links (τ, ρ),
where τ and ρ are points in the tectum and retina, respectively. The weight wτρ

of link (τ, ρ) indicates the strength with which τ and ρ are connected, with a
value zero representing the absence of a connection. The set of all links forms a
mapping W = (wτρ). The Häussler system is described by the set of n = N ×N
differential equations:

ẇτρ = fτρ(W )− 1
2N

wτρ

⎛⎝∑
τ ′

fτ ′ρ(W ) +
∑
ρ′
fτρ′(W )

⎞⎠ (1)

where the growth term fτρ(W ) of link wτρ expresses the cooperation from all
its neighbors, and α is a non-negative synaptic formation rate:

fτρ(W ) = α + wτρ

∑
τ ′,ρ′

C(τ, τ ′, ρ, ρ′)wτ ′ρ′ . (2)

The coupling function C(τ, τ ′, ρ, ρ′), which in [7] was assumed to be separa-
ble and isotropic, describes the mutual cooperative support that link (τ, ρ) re-
ceives from its neighbor (τ ′, ρ′). Here we model the C function as a 2D Gaussian
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(a) C (b) T

Fig. 1. Coupling functions in the form of 2D Gaussian. (a): C function, isotropic; (b):
T function, more structured.

C(τ, τ ′, ρ, ρ′) = C(τ −τ ′, ρ−ρ′) = 1
2πσ1σ2

exp(− (τ−τ ′)2

2σ2
1
− (ρ−ρ′)2

2σ2
2

). An example of
an isotropic C function is shown in Fig. 1(a), with σ1 = σ2 = 1 and support size
7×7. The coupling function can also be more structured, such as the T function
shown in Fig. 1(b), which is a Gaussian with σ1 = 1, σ2 = 5 rotated by π/4. T
is elongated toward one orientation, favoring mappings in that orientation.

Unless otherwise stated, we use N = 32, C coupling function as in Fig. 1(a)
and periodic boundary conditions in all examples throughout this paper. A final
pattern in simulation means the steady state solution obtained by simulating
the full dynamics (1) using the fourth-order Runge-Kutta method.

2.2 System Analysis

The goal of analyzing the Häussler system is to prove that it develops a precise
topographic projection. Specifically, starting from around a homogeneous state,
the steady state solution of system (1) is a diagonal matrix. A complete proof is
given in [7], and we briefly describe the method here.

Under periodic boundary conditions, the homogeneous state W0 = 1 (where 1
is the unit matrix in which all entries equal 1) is a fixed point of the system. By
introducing the deviation V = W −W0 as a new variable, the system becomes,
in a more general form,

V̇ = LV +Q(V ) +K(V ), (3)

where V = (v1, · · · , vn)T (with T for transpose) is the n-dimensional state vec-
tor (n = N2). LV,Q(V ),K(V ), indicating linear, quadratic and cubic terms,
respectively, are functions of N , α and the coupling function, whose exact form
can be found in [7].

The field V can be represented as the superposition of modes ui which are
eigenfunctions of the linear term: Lui = λiu

i, i = 1 · · ·n. An example of modes,
together with their respective eigenvalues (with α = 0) is shown in Fig.2. The
control parameter α shifts the eigenvalues of all modes uniformly (i.e., eigenvalue
λ becomes λ− α).

The temporal dynamics of the mode amplitude ξi ( V (t) =
∑

i ξi(t)u
i ) are

ξ̇i = λiξi +
∑
ll′

ξlξl′ ũ
iQll′ +

∑
ll′l′′

ξlξl′ξl′′ ũ
iK ll′l′′ . (4)
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λ =0.9623 λ =0.9623 λ =0.9623 λ =0.9623 λ =0.9084 λ =0.9084 λ =0.9084 λ =0.9084

λ =0.9084 λ =0.9084 λ =0.9084 λ =0.9084 λ =0.8576 λ =0.8576 λ =0.8576 λ =0.8576

Fig. 2. Modes and their eigenvalues of the Häussler system with N = 32, C coupling
function as in Fig. 1(a), calculated at α = 0. Shown are the 16 modes with the largest
eigenvalues.

where ũi, i = 1, · · · , n are the left eigenvectors of L: ũiL = λiũ
i, which are

orthonormal to the modes (ũiuj = δij). Qll′ (K ll′l′′) are vectors computed from
the quadratic (cubic) term with modes ul, ul′ (and ul′′). Definition of these terms
and a derivation of (4) are given in [14]. These mode amplitude equations give
the nonlinear interaction between modes. In weakly nonlinear analysis, they are
reduced to those of the unstable modes only, by adiabatic elimination [14,12,7].
In the Häussler system the control parameter α is set to be slightly below its
critical value, such that only the 4 modes with the maximum eigenvalue become
unstable (see Fig. 2). The two diagonal orientations compete with each other,
and the winning one activates modes of the same orientation, forming a narrow
diagonal [7].

3 Control Parameter α

We study patterns formed in the Häussler system under different values of the
control parameter α. Its critical value αc is equal to the largest eigenvalue of the
system calculated when α = 0. When α > αc, W = 1 is stable and therefore
no pattern will be formed. With the specific values of N and C function we use,
αc = 0.9623, which can be read out from the eigenvalues in Fig. 2.

An initial state is a random perturbation around the homogeneous state
W = 1. In our experiments, perturbation is a number uniformly distributed
in [−0.1, 0.1], independent for each element of the matrix. An example is shown
in Fig. 3. In the following experiments, we show final patterns formed starting
from this initial state. Other such randomly generated initial states give qualita-
tively similar behavior. Especially we are interested in whether the final pattern
is a precise topographic mapping, a term we reserve for the diagonal matrices.
By precise we mean one-to-one.

3.1 α Close to Its Critical Value

The pattern formed at α = 0.95 is shown in Fig. 4(a). This is a topographic
mapping, as the analytical treatment implies. Note that the diagonal in the
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W0 ([9.052469e−01, 1.091294e+00])

Fig. 3. Initial state, a random perturbation around W = 1. The numbers on top are
the actual range of link weights.

(a) α = 0.95 (b) α = 0.90

Fig. 4. Final state at different α values

figure is shifted, but it is still a topographic mapping because of the periodic
boundary condition.

In the theoretical analysis, α needs to be very close to αc. If α−αc is beyond
a certain scale, the weakly nonlinear analysis no longer holds. Simulations can
provide hint on this scale in real systems. Fig. 4(b) shows the finial pattern for
α = 0.90. It can be seen that this mapping, although still continuous, is distorted
from the diagonal. From this example, we can see that only a narrow range of
the control parameter α can lead to a perfect topographic mapping.

3.2 α Decreases at a Stable Pattern

A precise mapping needs α = 0, as final patterns obtained when α is big could
be rather broad. When a control parameter is changed, the stability of states
needs to be reevaluated. Assume that a stable pattern with amplitudes ξ∗ is
formed under α. When the control parameter is decreased to α′ < α, we have,
at ξ∗, ξ̇i = (α − α′)ξi, which is nonzero unless ξi = 0. This means that pattern
ξ∗ is no longer a fixed point of the system when α changes.

Linear stability analysis performed at the stable pattern formed under α =
0.95 (Fig. 4(a)) shows that all eigenvalues are still negative when α = 0. A plot of
the first 150 largest eigenvalues, at both α = 0.95 and α = 0, is shown in Fig. 5.
In this case the decrease of α does not lead to any bifurcation. The dynamics is
simply that all nonzero amplitudes approach their respective equilibrium expo-
nentially fast, which help to sharpen the mapping. The evolution of this stable



Synaptic Formation Rate as a Control Parameter in a Model 467

0 50 100 150
−7

−6

−5

−4

−3

−2

−1

0

ei
ge

nv
al

ue

 

 
α=0
α=0.95

Fig. 5. Linear analysis at the final state formed under α = 0.95 (Fig. 4(a)). The first
150 largest eigenvalues are shown, for α = 0.95 and α = 0.
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Fig. 6. Dynamics of mode amplitude when α is decreased to 0. The left figure shows
one row of the final state with α = 0.95 (Fig. 4(a)); When α is decreased to 0, this
state settles down to another pattern, whose same row is shown in the right figure.
The transition between the two states is shown in the middle figure, plotted as mode
amplitudes versus the number of iterations. Each curve is for one mode.

pattern (Fig. 4(a)) when α is decreased to 0 is shown in Fig. 6. The amplitudes
are based on modes calculated at W = 1.

3.3 α = 0

The pattern formed at α = 0 is shown in Fig. 7. It is not even a continuous
mapping, but nonetheless a stable fixed point of the system. One hypothesis to
explain why development does not end up at mappings like this was that these
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discontinuous stable fixed points have impractically small basins of attraction
that do not include normal initial conditions. In light of the example here, how-
ever, we now believe that it is the proper value of the control parameter that
defines the path to a precise topographic mapping.

Fig. 7. Final state, α = 0

3.4 T Coupling Function

In this section we show a few examples of pattern formation in the Häussler
system with the more structured T coupling function. Presumably evolution
provides biases like this.

The modes of the Häussler system with the T coupling function as in Fig. 1(b),
together with their respective eigenvalues (with α = 0) are shown in Fig.8. The
critical value for α is now 0.9685, comparable to that of the C system.

λ =0.9685 λ =0.9685 λ =0.8812 λ =0.8812 λ =0.8812 λ =0.8812 λ =0.8799 λ =0.8799

λ =0.8033 λ =0.8033 λ =0.7738 λ =0.7738 λ =0.7738 λ =0.7738 λ =0.7504 λ =0.7504

Fig. 8. Modes and their eigenvalues of the Häussler system with coupling function T .
Shown are the 16 modes with the largest eigenvalues.

A few final patterns formed at different values of α are shown in Fig. 9. In
this setting, a perfect topographic mapping fails to develop only when α < 0.81.
Compared to the C function, a larger range of α can give topographic mappings
in the T system. (The choice of 0.81 is guided by the intuition to exclude modes
of the other orientation, which first show as the first two modes on the second
row in Fig. 8. Justification of the intuition is currently under way. )
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(a) α = 0.95 (b) α = 0.81 (c) α = 0.80

Fig. 9. Final state of T coupling function at different α values

4 Conclusions and Discussions

We have studied the shape of patterns formed in the Häussler system at different
values of a control parameter, the synaptic formation rate α. A better under-
standing of the system behavior has been obtained by following the system at
a few deciding values of α using computer simulations of the full dynamics. We
found that in order to develop a topographic mapping, α has to be first set to be
close to its critical value. When α is subsequently reduced to zero, the broader
topographic mapping formed under larger α is no longer a fixed point, and will
approach exponentially to its final state, a precise mapping. Moreover, the inter-
val of values that permit a topographic mapping is very narrow: α too large, no
patterns will be formed; α too small, mappings become discontinuous. We also
found that, if the system has more structure, as in the T coupling function, the
range of α under which a topographic mapping can be developed is bigger. This
less sensitivity on the control parameter gives a more robust system.

It would be interesting to measure α in biological systems at different stages of
development. Note that α is a synaptic formation rate which is different from ac-
tual number of synapses. A related concept in biology is that during development
there are more synapses formed which are selectively eliminated in later stage [15].

The methodology we use in this work shows an effective way to explore the
behavior of a system. Guided by the concept of mode analysis, a few examples
can be designed and solutions be obtained by simulating the full dynamics, from
which intuitive understanding of the system can be obtained. Although not a
rigorous proof, the results can be very revealing.
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Abstract. Neurodynamical systems are characterized by a large number of sig-
nal streams, measuring activity of individual neurons, local field potentials, ag-
gregated electrical (EEG) or magnetic potentials (MEG), oxygen use (fMRI) or
concentration of radioactive traces (PET) in different parts of the brain. Various
basis set decomposition techniques try to discover components that carry mean-
ingful information are used to analyze such signals, but these techniques tell us
little about the activity of the whole system. Fuzzy Symbolic Dynamics (FSD)
may be used for dimensionality reduction of high-dimensional signals, defining
non-linear mapping for visualization of trajectories that shows various aspects
of signals that are difficult to discover looking at individual components, or to
notice observing dynamical visualizations. FSD can be applied to raw signals,
transformed signals (for example, ICA components), or to signals defined in the
time-frequency domain. Visualization of a model system with artificial radial os-
cillatory sources, and of the output layer (50 neurons) of a neural Respiratory
Rhythm Generator model (RRG) that includes 300 spiking neural units, are pre-
sented to illustrate the method.

1 Introduction

Neuroimaging data and simulated neurodynamical systems are characterized by multi-
ple streams of nonstationary data, and thus may be represented only in highly dimen-
sional signal spaces. Understanding such signals is not easy because of high volume
of data that quickly changes in time. Simulation of complex dynamics is usually de-
scribed in terms of attractors, but precise characterization of their basins and possible
transitions between them is never attempted. Popular signal processing techniques re-
move artifacts by various filtering techniques, involve waveform analysis, morphologi-
cal analysis, decomposition of data streams into meaningful components using Fourier
or Wavelet Transforms, Principal and Independent Component Analysis (ICA), etc
[1,2]. Interesting events are then searched for using processed signal components, with
time-frequency-intensity maps calculated for each component. Such techniques are very
useful, but do not show global properties of the processes in the high-dimensional sig-
nal spaces. Global analysis is needed to see attractors that trap dynamics, characterize
the type of system’s behavior, notice partial desynchronization or high frequency noise
that blurs the trajectories. For brain-computer interfaces and other applications a quasi-
static snapshot of the whole trajectory, showing its main characteristics, could be very
useful.
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Most important properties of the dynamics may be uncovered if dimensionality of
the problem is sufficiently reduced. This may be done with the help of fuzzy symbolic
dynamics (FSD), introduced in this paper. To see the trajectories of the global system
state “probes”, or localized functions that are activated by the trajectories that pass
near their center, are placed in the signal space. Using k such functions, strategically
placed in important points of the signal space, a non-linear reduction of dimensionality
suitable for visualization of trajectories is achieved. Inevitably a lot of details will be
lost but with a proper choice of parameters the information that correlates with observed
behavior or experimental task may be preserved, while irrelevant information will be
suppressed.

In the next section FSD mapping that captures interesting properties of trajectories
is described. To understand how to set up mapping parameters and how to interpret re-
sulting images a model EEG situation is analyzed in Sec. 3, with several waves sources
placed in a mesh, and sensors that record the amplitude of the incoming waves in dif-
ferent points of the mesh. As an example of real application in Sec. 4 trajectory visual-
izations for neural Respiratory Rhythm Generator model (RRG) are analyzed. The final
section contains a brief discussion with a list of several open questions.

2 Fuzzy Symbolic Dynamics

Assume that some unknown sources create a multi-dimensional signal that is changing
in time, for example an EEG signal measured by n electrodes:

x(t) = {xi(t)} i = 1, . . . , n t = 0, 1, 2, . . . . (1)

Vectors x(t) represent the state of the dynamical system at time t, forming a trajectory
in the signal space. Observing the system for a longer time should reveal the landscape
created by this trajectory, areas of the signal space where the state of the system is
found with the highest probability, and other areas where it never wonders. Recurrence
maps and other techniques may be used to view this trajectory, but do not capture many
important properties that it reflects.

In the symbolic dynamics [3] the signal space is partitioned into regions that are la-
beled with different symbols, emitted every time the trajectory is found in one of these
regions. The sequence of symbols gives a coarse-grained description of dynamics that
can be analyzed using statistical tools. Dale and Spivey [4] argue that symbolic dynam-
ics gives an appropriate framework for cognitive representations, although discretization
of continuous dynamical states looses the fluid nature of cognition. Symbols obviously
reduce the complexity of dynamical description but partitioning of highly-dimensional
signal spaces into regions with sharply defined boundaries is highly artificial.

The notion of symbolic dynamic is generalized in a natural way to a Fuzzy Symbolic
Dynamics (FSD). Instead of discrete partitioning of the signal space leading to symbols,
interesting regions are determined analyzing probability density p(x) of finding the tra-
jectory x(t) in some point x, averaging over time. Local maxima of this probability
define quasi-stable states around which trajectories tend to clusters. Such maxima may
serve as centersμk of prototypes associated with fuzzy membership functions yk(x;μk)
that measure the degree to which the x(t) state belongs to the prototypeμk. Membership
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functions may be defined using knowledge-based clustering [5], or as prototype-based
rules with context-based clustering techniques [6]. Context is defined by questions that
are of interest, for example discrimination between different experimental conditions,
or searching for invariants in one of these condition. For visualization Gaussian mem-
bership functions are quite useful:

yk(x;μk, Σk) = exp
(
− (x− μk)T

Σ−1
k (x− μk)

)
(2)

Diagonal dispersions Σk are frequently sufficient, suppressing irrelevant signals, but
general covariance matrices (used in Mahalanobis distance) may extract more meaning-
ful combinations of signals that correlate with experimental conditions, or with qualities
that may be estimated in a subjective way. Such brain-mind mapping will be closer to
the idea of cognitive representations than symbolic dynamics [4]. Symbolic descrip-
tion may be easily generated by strongly activated prototypes, but other prototypes may
correspond to sensorimotor actions that are not directly connected with symbolic labels.

Selecting only two prototypes trajectories x(t) may be visualized in a two-dimen-
sional space {yi(t), yj(t)}. If all Gaussian components have the same variance a single
parameter will define dispersion. For visualization each pair of functions should have
sufficiently large dispersions σi and σj to cover the space between them, for example
σi = σj = 1

2 ‖μi − μj‖. 3D visualization can also be done by plotting transformed
points for three clusters, one for each dimension. Dispersions should then be set to the
largest among the 3 pairs. Pairwise plots can be used to observe trajectory from different
points of view. Normalization of vectors in the signal space is assumed. To distinguish
several experimental conditions optimization of parameters of membership functions
should be done using learning techniques, creating clear differences in corresponding
maps. Adding more localized functions in some area where dynamics is complex will
show fine structure of the trajectory.

An alternative to fuzzy membership functions is to define reference points in the sig-
nal space, and measure the distance between the trajectory and these points using some
metric function. Non-linear metric functions should have some advantage in analysis
of neurodynamics, as the influence of the trajectory on prototypes should sharply de-
crease to zero with the distance, reflecting non-linear properties of neurons. We shall
not consider here adaptation of parameters or distance-based visualization, concentrat-
ing instead on the interpretation of global mappings.

3 Plane and Radial Waves on a Grid

To understand the structure of complex EEG and similar signals a very simple artifi-
cial model has been created. Sensors are placed on a quadratic grid with n × n points,
where plane and radial waves generated by several sources are traveling, creating addi-
tive patterns and activating these sensors. Similar assumptions are made about electric
potentials reflecting neuronal activity in the brain (for example, in the low resolution
electromagnetic tomography, LORETA1).

1 See http://www.unizh.ch/keyinst/loreta
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The grid has equally spaced points pij = (xi, yj) inside the square:

xi, yj ∈
{

0,
1

n− 1
, . . . ,

n− 2
n− 1

, 1
}

i, j = 1, . . . , n . (3)

The activation of the sensor due to a plane wave F (l)(t, x) traveling through the square
in the grid point pij at the time t = 0, 1, 2, . . . is given by the equation:

F (l) (t, pij) = cos (ωlt− kl · pij) , (4)

where ωl is the frequency of the wave (defining time intervals), the wave vector kl

defines the direction of the wave movement and its length is equal to the inverse of the
wave length and pij is the vector pointing to the grid point pij . Thus, for horizontal
plane wave

(
k = ||k||[1, 0]T

)
formula (4) becomes:

F (t, pij) = cos (ωt− kxi) . (5)

Radial wave reaching the sensor at grid point pij leads to an activation:

R(l) (t, pij) = cos
(
ωlt− klr

(l)
)

, (6)

where

r(l) =

√(
xi − x(l)

0

)2

+
(
yj − y(l)

0

)2

(7)

is the distance between point pij and the wave source (x0, y0).
The final activation A (t, pij) of the sensor in point pij at time t = 0, 1, 2, . . . is

obtained by summing and normalizing all wave values in every grid point:

A (t, pij) =

(
Nf∑
l=1

F (l)(t, pij) +
Nr∑
l=1

R(l)(t, pij)

)
/(Nf +Nr) . (8)

Sensor activations form a n × n matrix A(t) containing values for all sensors at
time t. Elements of A(t) are defined in n2-dimensional signal space and are in the
[−1, 1] interval. Gaussian membership functions (2) may serve as probes (detectors of
activity) in this space. Placing their centers in two opposite vertices of the hypercube
S = [−1, 1]n

2
:

μ1 = [−1, . . . ,−1]T μ2 = [1, . . . , 1]T (9)

the membership functions take all n2 sensor activations A(t) as their argument:

Gk(A(t);μk, σk) = exp
(
−‖A(t)− μk‖

2σ2
k

)
, (10)

where σk is the dispersion.
A lot of experiments have been conducted using the 16 × 16 grid with 256 points

(maximum number of electrodes used in real EEG experiments), and various num-
ber of stationary and non-stationary sources, frequencies and directions. For this grid
σ1 = σ2 = ‖μ1 − μ2‖ /10 gives relatively wide range of sensor activations. In Fig. 1
examples of trajectories for one and two radial waves are presented, using ω = 0.1,
which is sufficient for smooth trajectory change, and the wave vector length ‖k‖ = 2π.
Specific position of sources and combinations of planar and radial waves may be iden-
tified with correct placement of centers and dispersions of the membership functions.
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Fig. 1. Trajectories for one radial wave with the source at point ( 1
2
, 1

2
) (left side), and two radial

waves with the sources at ( 1
4
, 1

4
) and ( 3

4
, 3

4
) (right side)

4 Visualization of the Activity of Respiratory Rhythm Generator

FSD approach has been used to study behavior of the neural Respiratory Rhythm Gen-
erator model (RRG). The RRG is a parametric neural network model constructed from
three populations of spiking neurons: beaters (200 in the model), bursters (50 units)
and followers (50 units). The last population produce an output of model activity that
is used for synaptic excitation of motoneurons and in consequence control of upper and
lower lung muscles. Our implementation of RRG is based on the spiking neural network
model described in [7].

Below visualization of the followers (output layer neurons) is examined. The first
trajectory for time series corresponding to a single burst is presented in Fig. 2. The
number of samples along these trajectory was 49090, each vector containing membrane
potentials of 50 follower cells (normalized in every dimension). Clusterization was done
with the k-means algorithm, for two clusters where Gaussian probe functions have been
placed. Trajectories have been drawn with a thick pen to account for a jitter that blurs
them when longer time sequences are taken.
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Fig. 2. The time series plot (left) representing average membrane potential vs. iteration number,
and the mapping of the corresponding trajectory (right)
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In Fig. 3 three cluster centers have been defined using the k-means algorithm
(k = 3). Pairwise diagrams show trajectories for all three cluster pairs. Distances be-
tween cluster centers are printed above the graphs. The second pair is more sensitive to
variability that appears during building of the discharge activity, showing quite a bit of
variance in this process.

The RRG model may generate various rhythms that correspond to different breathing
patterns. Trajectory examples in Fig. 4 compare two distinct cases, one for normal,
regular burst generation, and one for pathological case with different burst strengths
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Fig. 3. Pairwise diagrams for 3 clusters found by k-means algorithm representing trajectories for
time series with one burst
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Fig. 4. Trajectory plots (bottom) done with thick pen for 19600 vectors containing membrane
potentials of 50 follower cells from RRG, and time series plots (top) representing average mem-
brane potential vs. iteration number. Graphs on the left correspond to a normal rhythm case, and
on the right to a pathological one, both presented using the same membership functions.
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Fig. 5. Comparison of two similar normal rhythm cases. Time series plots (top) look very similar
while trajectory plots (bottom) show noticeable differences (19600 points).

(i.e. different peak heights). The trajectories have been drawn using 19600 vectors, each
containing values of membrane potentials of 50 follower cells, covering about 20 spikes.
Two clusters have been found using the k-means algorithm, and the same parameters
of membership functions used in both cases. Pathological case seems to reach the same
amplitude but as a whole behaves quite differently, reaching much smaller values in
first dimension, due to the lack of synchronization between different output neurons.

When two similar time series plots are compared small differences between them
may not be noticeable. The FSD method is sensitive to small changes in the global
dynamical state and consequently it allows for quite accurate comparison. Figure 5
compares two normal rhythms that differ only slightly. Time series plots looks very
similar but global trajectories in FSD graphs show significant differences.

In all examples presented in this section dispersions of Gaussians were set to the half
of the distance between centers (‖μ1 − μ2‖ /2).

5 Discussion

Symbolic dynamics has found many applications, while its fuzzy version has never been
developed. It seems to be a very interesting method that should find many applications.
In this paper it has been applied to visualization of high-dimensional neurodynamical
systems. Many aspects of dynamics may be analyzed using this technique:
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1. In which part of the signal space the state of the system spends most of its time?
2. How many attractors can be identified?
3. What are the properties of basins of attractors (size, depths)?
4. What are the probabilities of transition between them?
5. What type of oscillations occur around the attractors?

Quantitative measures to compare different dynamical systems should be introduced,
for example:

– the number of attractors;
– percentage of time spent by the system in a given attractor basin;
– character of oscillations around attractors, including some measures of chaos;
– distances between attractors, measured by the time of transitions;
– probabilities of system transitions between attractors.

Such measures will give interesting characterization of dynamical systems. Application
of FSD to recurrent networks should show transitions between their states. Applica-
tions to real EEG signals will require careful optimization of membership functions,
with conditional clustering to remove irrelevant information by finding most informa-
tive center locations and weights for different signals. Visualization of highly-
dimensional trajectories obviously depends on what aspects of the system behavior is
of interest. Methods of parameter adaptation that include context [5,6] will soon be ap-
plied to visualization of real experimental data. For strongly non-stationary signals the
whole landscape containing basins of attractors may slowly rotate, preserving relations
between main attractors. For example, change in the level of neuromodulation may in-
fluence the landscape by increasing the overall activations in some regions of signal
space. Parametrization of probes that should then change in time to counter this effect
would be important. The great challenge is to find quantitative measures of the FSD rep-
resentations that would be useful in brain computer interfaces, and to find meaningful
combinations of signals correlated with inner experiences.
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Abstract. Seizure prediction for untreatable epileptic patients, one of
the major challenges of present neuroinformatics researchers, will allow
a substantial improvement in their safety and quality of life. Neural net-
works, because of their plasticity and degrees of freedom, seem to be a
good approach to consider the enormous variability of physiological sys-
tems. Several architectures and training algorithms are comparatively
proposed in this work showing that it is possible to find an adequate
network for one patient, but care must be taken to generalize to other
patients. It is claimed that each patient will have his (her) own seizure
prediction algorithms.

Keywords: Epilepsy, data mining, seizure prediction, classification,
neural networks.

1 Introduction

About one third of epileptic people, meaning 0.4% of population, are not treat-
able by medication or ressective surgery [1]. At any time, anywhere, they can
suffer from a seizure, “like a bolt from the sky”, during some seconds or some
minutes, seriously affecting their motoricity, perception, language, memory and
conscious. If they could predict the seizures, their life would change substantially.

Seizure prediction has been the object of extensive and intensive research
for the last 20 years. For an excellent review see for example [2] and [3]. More
recently computational intelligence techniques, such as neuron-fuzzy systems [4]
or neuron-fuzzy systems associated with wavelets [5], have been identified as
having a high potential for seizure identification. Seizure prediction, the object
of the present work, is a different problem from seizure identification. Prediction
is much harder than identification. However, from the clinical point of view, no
significative practical advance has been verified: there is not any system usable
by patients allowing them to predict a coming seizure and to take action to
preserve his (her) safety and privacy, improving substantially his (her) social
integration. This is probably because most of the researchers look for a general
method and algorithm that would work for every patient. And although several

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 479–487, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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authors propose methods to which they claim a high performance, the considered
performance criteria is only partial, neglecting other parts of the problem that
prevent them to be used in a clinical environment. Physiological systems, as
every biological one, have a high variability, and, in the case of seizure prediction,
it seems more advisable to look for a predictor well designed for each patient.
Neural networks, by their diversity in architectures and training algorithms, have
a high plasticity well suited for that purpose.

In the present study this problem is worked out as a classification task. The
ElectroEncephaloGram (EEG) is the main electrical measure of the activity of
the brain. It is supposed that epileptic seizures are an abrupt change in the
electrical activity of the brain and that these changes are captured by the EEG.
The challenge is then to process the EEG in such a way that four brain states can
be identified: the normal state, the time interval preceding a seizure, the seizure
itself, and the time interval for (re)normalization of the brain activity. This
cannot be done directly with the EEG; instead some special features must be
extracted from the EEG signal. These features must change as the brain evolves
among these states and these changes, particularly during the pre-seizure period,
may eventually lead the seizure prediction.

In the present work a set of features is extracted from the EEG signal.
They quantify several characteristics about energy, time-frequency decompo-
sition, nonlinear behavior, composing a 15 dimensional features space where
classification is then to be done into the four classes (brain states): inter-ictal,
pre-ictal, ictal, pos-ictal. These features have been considered by several authors
with a high potential for the discrimination of the brain state with respect all
or some of these four classes For example [6] and [7] used energy variation, [8]
accumulated energy, [9] nonlinear systems concepts, [10] wavelet transform, [11]
Fourier and wavelet transform, [12] wavelets and similarity analysis.

In this work two patients from Freiburg Database [13] are considered. They
have been chosen by their different epileptic zones, one in frontal lobe, and the
other in temporal lobe. Only one EEG channel is considered (the focus one)
to test the possibility of prediction in such circumstances. Other authors (for
example [14]) use more channels for other kind of approaches.

Several architectures and training algorithms are comparatively used for
seizure prediction in one and in the other. The performance criterion has three
facets: specificity, sensitivity, overall classification rate. The results show that
there are several architectures adequate for a patient but they do not work
properly for the other patient.

In the next Paragraph 2 the data and the features used for the classification
stage are presented. Then in Paragraph 3 the results obtained with several net-
work architectures are discussed. Conclusions and future work are set in the last
Paragraph 4.

2 The Data and the Set of Features for Classification

The data used in this investigation has been collected from the epilepsy database
of Freiburg Center for Data Analysis and Modeling (FDM) of Albert Ludwig
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University of Freiburg [13]. Two patients have been selected, patient A with
frontal lobe epilepsy and patient B with temporal lobe epilepsy. The intracranial
recordings utilized were acquired using Neurofile NT digital video system with
128 channels, 256 Hz sampling rate, and a 16 bit analogue-to-digital converter.

Applying energy concepts, wavelet transform, nonlinear dynamics, 14 features
have been extracted, listed in Table 1.

Intracranial EEG data is processed by the developed methods. The time in-
terval between two consecutive computations of the 14 presented features is 5
seconds. One single channel of the EEG, the focal one, is used. Other studies
use more channels [14] for an approach based on synchronization of neurons in
different regions of the brain.

This section presents an overview of the methods which lead to this set of
features. The methods were developed in Matlab and its toolboxes (including
Neural Networks Toolbox) [15], and other freely available software, like the non-
linear time series analysis TSTOOL) [16].

Energy variation analysis is based on the algorithm presented in [7]. EEG
signal is processed through two windows with different length to analyze energy
patterns. The main objective is to confirm the increase of energy bursts in the
periods that precede seizures. Accumulated energy was approximated by using
moving averages of signal energy (using a short-term energy observation window
versus a long-term energy observation window). A similar displacement was ap-
plied to both windows and both ended at the same time point. These features
allow the observation of energy patterns before epileptic seizures.

Wavelet coefficients have been submitted to a similar energy analysis, al-
lowing by this way the identification of variations in the different frequency
bands that constitute the EEG signal. Based on the mechanism previously ex-
plained, the coefficients obtained by wavelet decomposition are processed and the

Table 1. The 14 extracted features from EEG to be used in classification of the brain
state

Concept Feature

Signal Energy Accumulated energy
Signal Energy Energy level
Signal Energy Energy variation (short term energy)
Signal Energy Energy variation (long term energy)
Wavelet Transform coeficient energy short term energy band (0Hz – 12,5Hz)
Wavelet Transform coeficient energy long term energy band (0Hz – 12,5Hz)
Wavelet Transform coeficient energy short term energy band (12,5Hz – 25Hz)
Wavelet Transform coeficient energy long term energy band (12,5Hz – 25Hz)
Wavelet Transform coeficient energy short term energy band (25Hz – 50Hz)
Wavelet Transform coeficient energy long term energy band (25Hz – 50Hz)
Wavelet Transform coeficient energy short term energy band (50Hz – 100Hz)
Wavelet Transform coeficient energy long term energy band (50Hz – 100Hz)
Nonlinear system dynamics Correlation dimension
Nonlinear system dynamics Max Lyapunov Exponent
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accumulated energy of these series is determined. As before, accumulated en-
ergy was approximated by using moving averages of coefficients energy (using
a short-term energy observation window versus a long-term energy observation
window). The mother wavelet used in the presented study was daubechies-4; the
decomposition was completed with four levels.

Nonlinear analysis faces the EEG as trajectories of a nonlinear system. Two
nonlinear dynamic features, maximum Lyapunov exponent and correlation di-
mension through a sliding window, are computed using [15]. The construction
of the attractor, after the determination of the parameters delay time and em-
bedding dimension, allows the calculation of the maximum Lyapunov exponents
and correlation dimension. The estimation of the maximum Lyapunov exponents
consists in the quantification of the exponential growth of the average distance
between two nearby trajectories of the attractor, through error approximation.
Correlation dimension is determined by takens estimator method [15].

The joint analysis of the extracted features created a 14-dimension space which
represents the EEG signal in several components (energy signal, frequency and
system dynamics). The objective of the study is to investigate the eventual
occurrence of hidden characteristics in data such that clusters can be discovered
allowing an acceptable classification of EEG data into 4 classes:

- inter-ictal (normal EEG pattern)
- pre-ictal (two minutes prior to the seizure onset)
- ictal (the seizure onset)
- pos-ictal (two minutes subsequent to seizure end)

One cycle is composed of one series of these classes.
The overall approach is illustrated in Fig. 1.

Fig. 1. The approach EEG features extraction-classification
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3 The Applied Neural Network Architectures and Its
Results

The data sets have the following characteristics: patient A- 2 cycles, 1366 points;
patient B- 3 cycles, 1824 points. Data have been normalized feature by feature
in [0 1].

3.1 The Best Found Architectures and Training Algorithms

After an extensive experimentation, the following neural network structures have
been applied and compared, because they have been found to be the most
promising:

(i) Three layer logsig feedforward (FFNN): 14 neurons in the first layer, 56 in
the second and 4 in the output layer, Fig. 2. The output layer numerical values
are rounded to integers and it has been trained to classify each class accordingly
to the following coding:

Fig. 2. The best architecture found patients A and B. Bias and weights are proper to
each patient.

Class 1 (inter-ictal) : [1 0 0 0] Class 2 (pre-ictal): [0 1 0 0] Class 3 (ictal): [0
0 1 0] and Class 4 (pos-ictal) [0 0 0 1].Training was done using the Levenberg-
Marquardt algorithm, better that the backpropagation one.

(ii) In order to catch the nonlinear dynamic nature of the signal, experiments
have been made introducing a taped delay line in the network inputs (first layer),
as implemented in the Matlab Neural Networks Toolbox. Delays of 1 and 2 have
been experimented.

(iii) Radial Basis Function neural network (RBF) with variable size of the
first (radial) layer and 4 linear neurons in the output layer. It was trained by
the hybrid algorithm.

3.2 The Performance Criteria of the Classifier

In seizure prediction (as in the general problem of medical diagnosis) there are
four possible outcomes to a diagnosis operation:

– positive true (PT), when the diagnose is positive and the event has been
confirmed,
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– positive false (PF) when the diagnose is positive and the event has not been
confirmed,

– negative true (NT), when the diagnose is negative and the event has been
confirmed as not existing,

– negative false (NF) when the diagnose is negative abut the event has finally
been confirmed as true.

For clinical applications any automatic diagnosis systems must give all the PT
events and all the NT events. But it must also give zero PF and zero NF answers.
Two performance indexes are defined:

Sensitivity: related to the Positive outcome, given by (1)

SENSIT =
PT

PT +NF

Specificity: related to Negative outcome, given by (2)

SPECIF =
NT

NT + PF

We can also define the overall index given by (3)

OV ERALL =
PT +NT

PT + PF +NT +NF
=
PT +NT

ALL

It is frequent that one author presents one of these indexes to measure the
performance of a seizure prediction algorithm. However from a clinical judgment,

Fig. 3. The interface for testing the networks. It works under Matlab 2007b
with NN Toolbox. The networks, data sets and interface are freely available at
http://eden.dei.uc.pt/dourado/seizureprediction/ICANN2008BESTNNETS.zip.
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only when the sensitivity and the specificity are both near to 1 can the algo-
rithm be applied. A perfect system has both sensitivity and specificity equal to
one. Probably that is why very few application of automatic diagnosis systems
are really working today, although there is an extensive published literature on
diagnosis algorithms with or high sensitivity or high specificity.

All the three indexes are used, as shown in the interface in Fig. 3.

Results. Table 2 shows some results for patient A. The FFNN has been used
with and without input delays. But, although in theory a better result could be
expected with delays (considering the brain as a dynamic system), in fact these
two networks have a much worse performance. RBF shows also a poor perfor-
mance. If one only cares about specificity, then all four nets are very good. The
FFNN with 2 delays shows an absolutely good specificity of 1 and an absolutely
bad sensitivity of 0. This illustrates the fact that only one of these parameters is
not a proper performance index. The data set has 1366 instants (70% for train-
ing and 30% for testing). When the input delay isn’t zero, the data is separated
in two blocks: the first 70% instants of the data set are used for training, the
remaining 30% are used for testing, avoiding the separation to be done in the
midlle of a crisis. When the input delay is zero the data is separated selecting
in each 3 successive instants of the data set, 2 for training and 1 for testing.

Table 2. Some results for patient A wth FFNN and RBF in test training set. The
training criteria has been SSE (sum of Squared Error), with Levenberg-Marquard al-
gorithm. Data is normalized. The last line is for RBF.

Input Delay Size of test No well PT PF NT NF SENSIT SPECIF
(FFNN) data set classified

0 455 442 31 5 418 1 0.9688 0.9812
1 409 252 0 2 348 59 0 0.9943
2 409 203 0 0 350 59 0 1

RBF 455 391 14 1 422 18 0.4375 0.9976

Table 3 shows similar results for patient B and the same comments can be
done. The RBF in last line has been trained and tested, in this case, with original,
non normalized data. It shows a slightly better specificity but a much worse
sensitivity. The data set is bigger, with 1824 instants, and the training and
testing data separation was done the same way as for patient A.

If the FFNN is trained simultouneously for the datasets of both patients, the
training performance is rather poor. It is very hard, because of the different
patients and different types of epilepsy, to find a network that, with the same
weights and bias, works well for both. Of course one can always increase the
dimension and improve training, until probably overtraining, loosing the gener-
alization capability of the network. From a pratical clinic use, for example in
ambulatory, where a patient transports with him some alarmig device forecast-
ing the eminent coming of a seizure, the need for a personalized neural network
is not a serious problem.
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Table 3. Some results for patient B wth FFNN and RBF in test training set. The
training criteria has been SSE (sum of Squared Error), with Levenberg-Marquard al-
gorithm. Data is normalized. The last 2 lines are for RBF: normalized and original
data.

Input Delay Size of test No well PT PF NT NF SENSIT SPECIF
(FFNN) data set classified

0 608 594 55 4 544 5 0.9167 0.9967
1 547 167 0 0 486 61 0 1
2 547 409 0 0 486 61 0 1

RBF 608 499 48 52 496 12 0.8 0.9051
RBF 608 465 1 0 548 59 0.0167 1

Table 4. Case of joining the data sets of both patients (training results) with
Levenberg-Marquardt algorithm

Input Delay Size of test No well PT PF NT NF SENSIT SPECIF
(FFNN) data set classified

0 1064 912 18 12 958 75 0.20 0.98

Table 5. Testing patient A network into patient B and vice-versa

Case Size of test data set No well classified PT PF NT NF SENSIT SPECIF

A in B 608 406 0 35 513 60 0 0.9361
B in A 455 255 2 69 354 30 0.625 0.8368

Testing the network A in patient B, or network B in patient A, gives the
results presented in table 5. The degradation of performance is evident.

4 Conclusions

There is still a long way to set extensive guidelines for building seizure predictors
for epileptic patients. However the shown results evidence two simple principles:
(i) there is no general predictor good for all patients, and (ii) the predictor of
one patient is not acceptable for other patient. This has as consequence that
each patient must be the object of a personalized study, using as much data
as possible, following its behavior and training it permanently. Neural networks
have a high plasticity that can be profitably used for this purpose. However, other
techniques should also be studied, such as support vector machines (SVM) that
may have an important role in constructing nonlinear boundaries in the high
dimensional features space, resulting eventually in better classification among
the four classes in the context of seizure prediction.
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11. Kemal Kiymik, M., Guler, Í., Dizibuyuk, A., Akin, M.: Comparison of STFT and
Wavelet Transform Methods in Determining Epileptic Seizure Activity in EEG
Signals for real-time application. Computers in Biology and Medicine 35, 603–616
(2005)

12. Ouyang, G., Li, X., Li, Y., Guan, X.: Application of wavelet-based similarity analy-
sis to epileptic seizures prediction. Computers in Biology and medicine 37, 430–437
(2007)

13. Freiburger Zentrum fur Datenanalyse und mollbildung,
http://www.fdm.uni-freiburg.de/groups/timeseries/epi/EEGData/download/

infos.txt

14. Le Van Quyen, M., Amor, F., Rudrauf, D.: Exploring the dynamics of collective
synchronizations in large ensembles of brain signals. J. Physiol. (in press, 2007)

15. The Mathworks, Inc.
16. Merkwirth, C., Parlitz, U., Wedekind, I., Lauterborn, W.: TSTOOL User Manual,

Version 1.11,
http://www.dpi.physik.uni-goettingen.de/tstool/HTML/index.html

http://www.fdm.uni-freiburg.de/groups/timeseries/epi/EEGData/download/infos.txt
http://www.fdm.uni-freiburg.de/groups/timeseries/epi/EEGData/download/infos.txt
http://www.dpi.physik.uni-goettingen.de/tstool/HTML/index.html


Real and Modeled Spike Trains:

Where Do They Meet?

Vasile V. Moca1, Danko Nikolić2,3, and Raul C. Mureşan1,2
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Abstract. Spike train models are important for the development and
calibration of data analysis methods and for the quantification of certain
properties of the data. We study here the properties of a spike train
model that can produce both oscillatory and non-oscillatory spike trains,
faithfully reproducing the firing statistics of the original spiking data
being modeled. Furthermore, using data recorded from cat visual cortex,
we show that despite the fact that firing statistics are reproduced, the
dynamics of the modeled spike trains are significantly different from their
biological counterparts. We conclude that spike train models are difficult
to use when studying collective dynamics of neurons and that there is no
universal ’recipe’ for modeling cortical firing, as the latter can be both
very complex and highly variable.

1 Introduction

The activity of cortical neurons arises from complex firing patterns that are
determined by the intricate brain architecture, the external stimuli and the in-
teraction with subcortical structures [1]. Each cortical neuron receives on the
order of 103 − 104 inputs from other neurons, and hence it is prone to being ex-
posed to a high input bombardment [2]. Indeed, it has been suggested that such
a bombardment exists, and, in addition to a balanced excitation-inhibition state,
it keeps the neuron in a so-called ”high-conductance state” [3]. Moreover, un-
der such heavy input, cortical neurons have a tendency to fire highly irregularly,
such that the distribution of their inter-spike intervals (ISI) takes an exponential
form [4]. As a result, numerous models of spike trains have been proposed [5,6],
which assume an underlying homogenous (constant firing probability over time)
or inhomogeneous (the instantaneous firing probability can fluctuate over time)
Poisson process [7]. Recently however, the heavy input bombardment hypothesis
has been challenged [8], new [9] and old [10] data suggesting that the assumption
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that neurons are simple Poisson spike generators is an extreme oversimplifica-
tion. The firing properties of neurons depend critically on neuron type [11], brain
structure [12], brain state [13], arousal [14], and other factors.

A particular case, where firing is non-Poissonian, is represented by the os-
cillatory discharge of cortical neurons. In such cases, neurons can engage into
various rhythms in multiple frequency bands [15]. The oscillatory firing proper-
ties of neurons can be characterized by computing auto-correlation histograms
(ACH), and we have previously introduced a measure, called Oscillation Score
[16] that is useful in determining the degree to which a neuron oscillates. In or-
der to precisely quantify the oscillation strength we needed to develop a model
of oscillatory spike trains, in which the oscillatory behavior and the firing rate
could be independently controlled [16]. Here, we explicitly study the properties
of this model: the precision with which firing rate and oscillation strength can
be controlled and the ability to independently express the two properties in the
simulated spike trains. In addition, we are interested in the degree to which arti-
ficial spike trains, generated from statistical parameter distributions of recorded
neuronal data, reflect the temporal structure of the latter.

2 The Model

The model produces artificial spike trains that retain basic properties of a
recorded data set. The considered properties are: the firing rates, burst probabil-
ity, oscillation strength and frequency, spike counts in bursts, refractory periods,
and intra-burst inter-spike intervals, all of which are quantitatively determined
from biological data. Two processes are used to generate the spike trains: at a
coarse scale a discharge probability function ps(t) (Fig. 1A, B), and at a finer
scale another process (Fig. 1C) that controls the exact spike timings (refractori-
ness, burst properties, etc). Since our model is not a biophysical one, most of
the parameters that we used have no direct biological correspondents.

The spike discharge probability ps(t) should have the following properties:
first, it should allow the spike train to exhibit a preferred oscillation frequency
for transient periods of time; second, it should allow control over the strength and
stability of the desired oscillation; and third, it should enable the control over
the firing rates. To control the amount of oscillations, two discharge probabilities
po(t) and pb(t) corresponding respectively to an oscillatory and a background
process are intermixed with a factor o (oscillation strength) (1). To obtain the
transient oscillatory behavior we modulate the frequency of a sine probability
function po(t) (2) by a random process fo(t) (4). This random process takes
into account past values and thus, it has memory. The history dependence is
given by a decay constant, τ , while another factor, m, controls the amount
of noise added to the random process. After a duration of 3τ , a value fades
to less than 5% and its effect is very small. The interplay between τ and m
controls how the oscillation frequency changes over time. The frequency range
of the modulatory function, fo(t), can be bounded to increase the stability of
the oscillation. It is assumed that prior to t = 0 the function fo(t) varies slightly
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around the desired oscillation frequency. The background probability pb(t) (3) is
generated in the same way except that in this case, the frequency of the process
fb(t) (which has the same form as fo(t)) varies in a much broader frequency
range (Fig. 1B). For a spike to be generated, ps(t) must be positive. The greater
ps(t), the greater is the chance that a spike will be generated and thus, most of
the spikes will be concentrated at the peaks of the probability functions (Fig.
1C). By manipulating the offset (1) we can control how well the spikes are
aligned to the desired oscillation (negative values of ps(t) mean that no spike is
generated), and by manipulating the spike-probability-positive-integral (SPPI)
(5) trough the amplitude parameter, A (1), we control the firing rates (Fig. 1A
and Fig. 2 - left column) for the duration T of the spike train. Thus, the value
of ps(t) controls the periodicity and firing rates of spike-trains in a manner that
realistically mimics the oscillatory behavior of the recorded neurons.

ps(t) = A · [o · po(t) + (1− o) · pb(t)− offset] (1)

po(t) =
1
2

+
1
2
· sin

(
2 · π ·

∫ t

0

fo(x)dx
)

(2)

pb(t) =
1
2

+
1
2
· sin

(
2 · π ·

∫ t

0

fb(x)dx
)

(3)

fo(t) = lim
ε→0

∫ 3τ

ε e−
x
τ · fo(t− x)dx∫ 3τ

ε
e−

x
τ dx

+m · rand[−1,1](t) (4)

SPPI =
1
T

∫ T

0

p+
s (t)dt (5)

where: p+
s (t) =

{
ps(t), ps(t) ≥ 0
0, ps(t) < 0 (6)

At smaller time scales, the model controls the timings between the spikes and
the burstiness of the spike trains. The burst probability, pburst, is modeled as
a constant ratio between the count of bursts relative to the number of tonic
spikes and burst occurrences altogether. These values can be extracted from a
recorded data set. Once a discharge is initiated based on, ps(t), pburst determines
whether that discharge will be a burst or tonic spike. If a burst is generated,
the number of spikes in the burst bSpkCnt and the spacing between the spikes
within the burst bISI (Fig. 1C) are set according to probabilities measured from
real data. After a tonic spike a refractory period, r, prevents the occurrences of
other discharges in a given period of time. The model makes a clear distinction
between the tonic spikes and bursts. The bursts are defined as groups of spikes
with successive ISIs smaller or equal to 8 ms [17]. Thus, the refractory period,
r, is set to 8 ms such that tonic spikes can occur with an ISI of at least 9 ms.
The control over these timings at a small scale produces a realistic center-peak
shape in the ACH (Fig. 3) of artificial spike trains which model real spike trains.
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Fig. 1. Model for simulation of oscillatory spiking activity. A: Spike discharge prob-
ability. The spike discharge probability ps(t) is obtained by mixing two time-varying
processes pb(t) and po(t) with frequencies fb(t) and fo(t), respectively and with a mix-
ing factor o = 0.3 (see Eq. 1). The amplitude and offset of the two processes are fixed
for one run of the algorithm. A spike can be generated only where ps(t) is positive
(grey band). B: Fluctuations of the modulation functions fb(t) and fo(t). While fb(t)
varies between 0 and 100 Hz (gray) fo(t) varies slowly around 25 Hz due to its strong
history dependence and boundaries (20 to 30 Hz). C: Spiking. A burst of spikes is
represented by grey vertical bars, while a tonic spike is depicted in black. The spikes
are generated taking into account the refractory period after a burst or a tonic spike
r, the intra-burst inter-spike interval bISI and the burst spike count bSpkCnt.

3 Results

We addressed here two important aspects related to the model: the relationship
between firing rate and oscillation strength, and the degree to which the model
can reproduce the fine temporal structure of recorded spike trains.

3.1 Firing Rate and Oscillation Strength

We computed the relationship between firing rate and oscillation strength by
producing artificial spike trains, with a length of 30 s, and controlling indepen-
dently the two parameters for rate and oscillation strength. The rate parameter
(SPPI; see Methods) and the oscillation strength parameter (o) were varied
in 24 steps. For each combination, two spike trains were produced, yielding a
total of 1152 spike trains. In addition, we generated such spike trains for each
oscillation frequency band separately: theta (4-8 Hz), alpha (8-12 Hz), beta-low
(12-20 Hz), beta-high (20-30 Hz) and gamma (30-80 Hz) [16]. For the oscilla-
tion frequency in the model (fo), we took the central (middle) frequency for
each frequency band. The firing rate and the oscillation score [16] (the mea-
sured strength of oscillation) were measured for each spike train. We found that,
the firing rate could be more precisely controlled for higher than for lower fre-
quency bands (Fig. 2, left column, note the lower variance for higher frequency
bands) while the oscillation score seemed to be controlled equally well across
all frequency bands (Fig. 2, middle column). Moreover, the firing rate scaled as
a power function (R2 > 0.93) with respect to the SPPI while the oscillation
score scaled as a sigmoid with respect to the oscillation strength parameter. The
noisy clouds in Fig. 2 (middle column), that deviate from the sigmoid shape are
due to trials with very small firing rates, for which the oscillation score estimate
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becomes imprecise [16]. Finally, there was no correlation between the firing rate
and oscillation score, as shown in Fig. 2, right column (R2 < 0.08). Thus, the
resulting firing rate and oscillation strength can be independently controlled by
the two corresponding parameters in the model.

3.2 Temporal Structure of Spike Trains

Although our model is quite detailed, including statistics of bursting, oscillatory
modulation, and other spike train properties, we wanted to estimate how closely
some model spike trains resemble their corresponding, real, spike trains recorded
from cat visual cortex. We considered data recorded from an anaesthetized cat on
two experimental sessions: one without or poor oscillatory responses (col11b44;
see Fig. 3) and one with strong oscillations (col11b68; see Fig. 3) in the beta-
high frequency band. Since the experimental trials were rather short (6.5 s) we
selected, from one single electrode, multi-unit activity (MUA) such as to yield
sufficient number of spikes when computing single-trial statistics (see next). We
also chose a stimulation condition (center-surround stimulus, with a small sinu-
soidal grating placed in the center and a larger one in the surround) for which
the MUA showed strong oscillatory behavior in col11b68 session but not in
col11b44. For this stimulation condition, we obtained 20 experimental trials in
both sessions. Next, for each experimental trial, one corresponding model trial
(spike train) was generated. We computed the ISI distributions of spikes within
bursts (burst ISI), the burst spike-count distributions, and the firing rate on
the experimental trial, and plugged these parameters into the model, producing
an artificial spike train having the same statistics (see Methods). Importantly,
we wanted to model each trial independently such that the temporal structure
of firing is maximally similar to the corresponding recorded trial. Statistics are
thus computed separately for each trial. For oscillatory spike trains, the oscilla-
tion frequency was computed on the whole stimulation condition and plugged
into each model trial (because the oscillation frequency was very stable across
trials in the analyzed dataset). Next, the autocorrelation histograms (ACH) per
stimulation condition were computed by averaging the ACHs computed on each
of the 20 trials. The inter-spike interval (ISI) distributions were also computed.

In Figs. 3A and 3B we show that the ACHs and ISI distributions of the real
and model spike trains were remarkably similar, both for the non-oscillatory
and oscillatory case. This indicates that statistically, the real and modeled spike
trains had similar local structure. At a first look, one could say that the model
spike train can successfully replace the real one. To get further insight into this
hypothesis, we computed the cross-correlation histograms (CCH) between the
model and their corresponding, real, spike trains. Ideally, if the model success-
fully replaces the real spike train, the CCH should be very similar to the ACHs
of both the real and modeled spike trains. This was, however, not the case. For
non-oscillatory spike trains (Fig. 3A) the CCH was flat, without a peak, indicat-
ing that there was no consistent relationship (fine temporal correlation) between
real and modeled spike timings. The oscillatory case was somewhat better, such
that weak oscillatory modulation could be seen in the CCH (Fig. 3B), but the
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central peak was missing here as well. These results suggest that, although the
statistical properties of the original spike trains are faithfully reproduced, the
temporal dynamics of the trials are not. We show in Fig. 3C that, for a given
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Fig. 2. Control of rate and oscillation strength. On the left column, scatter plots show
the dependence of firing on the spike-probability-positive-integral: SPPI (5). The black
line shows a power fit. The center column depicts the dependency of the measured
oscillation score on the oscillation strength parameter, o, in the model (1). In the right
column, scatter plots of the rate and oscillation score show no dependency between
these two, as indicated by linear fits (black lines).
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Fig. 3. (continued)

spike train and its model, the ACHs and ISI distributions had reasonably close
structure, but the location of spikes within the real and model trials was strik-
ingly different. In the real spike train there was a clear modulation of the firing
by the drifting sinusoidal grating stimulus. In the modeled spike train, the fir-
ing events were more or less arbitrarily located, despite the fact that global ISI
statistics and ACHs structure were accurately reproduced (Fig. 3C).

4 Discussion

We have shown that the proposed spike train model allows one to independently
control firing rate and oscillation strength. Thus, the spike train model can
isolate reasonably well the two processes such that one can use it to calibrate
data analysis methods which need to separate the effects of the firing rate from
those of the oscillation strength [16].

Moreover, our results indicate that the model can reproduce the statistical
properties of the real data quite faithfully. The ACHs and the ISI distributions of
the model were strikingly similar to those of the real data and thus, we validated
the model as being appropriate for studying properties of spike trains in terms
of their ACHs. On the other hand, we have found that reproducing the statistics
of neuronal firing can not account for the dynamics of the spike trains. There
are multiple conclusions that stem from the above. First, given the complexity
required by our model in order to reproduce realistic spike trains, we infer that
simple, homogenous or inhomogeneous Poisson processes are crude and largely
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inappropriate approximations of cortical firing. These two types of processes
need to be complemented by other, more complex ones, as real spike trains are
very hard to model. One needs to add many constraints to the model and these
constraints vary across neurons, stimuli, cortical states, and so forth. There is
no universal ’recipe’ for generating spike-trains, since neuronal behavior can be
very rich and highly variable.

Second, modeling the fine temporal structure of spike trains, including their
temporal dynamics can become very difficult because one needs to know the
underlying drive received by neurons from the sensory (thalamic) and cortical
inputs. An important implication of this fact is that collective coding strategies
(where multiple, simultaneous spike trains are analyzed) cannot be easily studied
with model spike trains. The reason is that, for collective codes, the relative
dynamics of different neurons plays a crucial role. Reproducing the statistical
properties of each individual spike train is obviously not enough. One could use
a hybrid approach and also measure some instantaneous firing probability over
time, but it is doubtful that the exact spike times can be accurately reproduced.
Some have been able to achieve accurate modeling of firing processes, but only
when the visual stimulus is known and mostly for early processing stages, such
as the retina or LGN [18].

Finally, we want to emphasize that it is always important to properly assess
the usefulness of a given spike train model. Models can prove useful for develop-
ing and calibrating data analysis methods [16], or for studying and quantifying
given properties of the data [18]. In general however, the spiking behavior of
neurons is both complex and variable. One needs to judge carefully which model
captures the interesting properties relevant for a given scientific question. Fur-
thermore, one has to be aware that, even if statistical properties of neuronal
firing are precisely reproduced, the exact spiking dynamics stem from the com-
plex interactions with other neurons and the drive from external stimuli. When
one needs to generate a spike train that is very close to the original, the best
model for the spike train is probably the spike train itself.
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14. Steriade, M., Timofeev, I., Dürmüller, N., Grenier, F.: Dynamic properties of corti-
cothalamic neurons and local cortical interneurons generating fast rhythmic (30-40
Hz) spike bursts. J. Neurophysiol. 79, 483–490 (1998)
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Appendix

To generate the data for Fig. 2 the following parameters were used: for fo(t), τ =
0.5 ∗ 1, m = 0.5 and fo(t) was allowed to deviate from the target oscillation fre-
quency with at most 1 Hz; for fb(t), τ = 0.1,m = 3 and fb(t) was bounded between
0 and 100 Hz. Note that τ is given relative to the period of the target oscillation fre-
quency. The oscillation strength, o, took values from 0.2 to 0.8 in 24 steps, SPPI
was varied between 0.004 to 0.1 in 24 steps and the offset was set to 0.5. To gen-
erate the artificial data presented in Fig. 3, some of the parameters given above
had to be adapted to each recorded spike train (trial) that was modeled.

http://www.cns.nyu.edu/david/handouts/poisson.pdf
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Abstract. We present a novel method that can be used to characterize
the dynamics of a source neuronal population. A set of readout, regular
spiking neurons, is connected to the population in such a way as to facil-
itate coding of information about the source in the relative firing phase
of the readouts. We show that such a strategy is useful in revealing tem-
porally structured processes in the firing of source neurons, which have
been recorded from cat visual cortex. We also suggest extensions of the
method to allow for the direct identification of temporal firing patterns
in the source population.

Keywords: Spiking neurons, temporal coding, readouts, visual cortex.

1 Introduction

Information coding in the brain remains, to this date, the subject of lively de-
bate. It has been proposed that in addition to the traditional firing-rate coding
[1], the temporal structure of spike-trains also carries a significant amount of
information [2]. A special case of temporal code is represented by neuronal syn-
chronization, which has been recently shown to correlate with the perception of
brightness [3], and also with conscious perception [4]. Beyond synchronization,
temporal codes might assume more generalized forms, whereby spikes are not
perfectly aligned, but arranged into temporal patterns. Polychronization, which
relies on synaptic delays, is such an example [5]. A different putative mechanism
organizing spikes into temporal patterns is represented by timed inhibition, pre-
cisely controlled by fast oscillatory rhythms in the gamma band [6]. In this latter
case, temporal phase patterns may even be expressed within a single gamma cy-
cle, with more excited neurons firing earlier relative to the onset of the cycle
than less excited ones. Furthermore, we now know that there is a tight interplay
between the expression of neuronal oscillations and temporal coding in the cor-
tex [7], with rhythms expressed in different frequency bands [8]. Even further,
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temporal codes could be defined beyond single-spike timing. For example, bursts
or very fast rate fluctuations could be timed relative to each other, as dictated
either by internal network constraints, or by the temporal dynamics of the stim-
ulus. It is very likely that multiple timescales play important roles [9] and the
relative timing of processes evolving on these different timescales, is of crucial
importance to the brain. Identifying these processes and their specific combi-
nations, which carry information about stimuli, remains however a tremendous
challenge. Various methods have been put forward, so far, for the detection and
proper interpretation of synchronous spike patterns [10,11] or temporal struc-
ture of membrane potential fluctuations [12,13]. However, the difficulty remains
to identify, in a flexible way, more general activity patterns (beyond synchrony)
across a large population of neurons. There are two categories of problems: First,
one cannot always know the timescale on which the relevant processes should
be searched since these are likely to coexist on multiple timescales. Second, it
is unclear how much history dependence one should take into account when de-
tecting candidate correlation patterns. Nontrivial combinations of single spikes,
bursts or even fast rate fluctuations, could be co-occurring in a stimulus spe-
cific manner and precisely timed relative to each other. The number of possible
combinations far exceeds the analysis capabilities of most modern techniques.
Thus, one needs to narrow down the search to a specific temporal window and
a specific process/timescale. We wanted to break this limitation by considering
that in the brain, neuronal information is read out by other neurons which in-
tegrate complex input patterns. Following a similar previous approach [14], we
considered a readout set of simulated regular spiking (RS) neurons (observers)
that preferentially sample subpopulations of a larger neuronal pool (the source
neurons), the latter being recorded from the brain. We attempt to recover the
information coded in the source neurons’ dynamics by observing the relative fir-
ing phase of the readouts. At least to a first degree of approximation, interesting
events can be assumed to span the timescale defined by the time constant of
the neuronal membrane and the dynamics of synaptic currents. Except for the
implicit time constants of readouts and their corresponding synapses, we did
not restrict the information extraction to a fixed timescale, allowing for a broad
range of temporal processes to be observed in a biologically relevant fashion.
Moreover, the activation of readouts could reveal nontrivial combinations in the
activity of source subpopulations, even when having source processes delayed
with respect to each other on a broad temporal interval.

2 Methods

Since the method we describe here relies on information encoded in the relative
firing phases of artificial readout neurons, we called the method ”InfoPhase”.

2.1 Experimental Procedures, Stimulation and Recording

The experiment was performed in the visual cortex of a lightly anesthetized,
paralyzed cat. Anesthesia was induced with ketamine (Ketanest, Parke-Davis,
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10 mg kg−1, intramuscular) and xylazine (Rompun, Bayer, 2 mg kg−1, intramus-
cular) and maintained with a mixture of 70% N2O and 30% O2 supplemented
with halothane (0.5%-1.0%). The animal was paralyzed with pancuronium bro-
mide (Pancuronium, Organon, 0.15 mg kg−1 h−1). Visual stimuli were presented
binocularly on a 21 inch computer screen (HITACHI CM813ET) with 100 Hz
refresh rate. Data were recorded from area 17 by inserting multiple silicon-based
multi-electrode probes (16 channels per electrode) supplied by the University
of Michigan (Michigan probes). Signals were amplified 10,000× and filtered be-
tween 500 Hz and 3.5 kHz for extracting multi-unit activity. Offline spike-sorting
techniques were next applied and 61 single units were extracted. The investi-
gated neuronal activity was acquired in response to sinusoidal gratings moving
in 12 directions in steps of 30◦. For each condition, 20 trials have been recorded,
yielding a total of 240 trials. Each trial had a length of 4800 ms. After a sponta-
neous activity lasting for 1000 ms, the stimulus was presented for 3500 ms, and
subsequently, after the stimulus was removed, 300 ms additional OFF response
activity was recorded.

2.2 The Readout Model

For the artificial readouts we used the two-dimensional phenomenological model
of Izhikevich [15]. Each neuron is described by a set of differential equations:

dv/dt = 0.04v2 + 5v + 140− u+ I (1)

du/dt = a · (bv − u) (2)

where v - membrane potential, u - recovery variable, I - total post-synaptic
current (I =

∑
psci), a,b - parameters. When the membrane potential reaches

a value larger than 30 mV, a spike is recorded and the membrane potential is
reset to its resting value (-65 mV), while the recovery variable is increased by a
given amount (8 for the RS neuron).

We used the parameter settings for the RS neurons, as they best represent
the dynamics of pyramidal neurons in the cortex [15]. We next connected 10 RS
readouts to the recorded population of cortical neurons (61 source neurons). This
was the most important step, as we wanted to obtain the following: reduce the
dimensionality of the data by projecting the activity of the source neurons onto
the readouts, preserve as much temporal information as possible, and finally,
reduce the influence of the firing rate. To this end, we created balanced synapses
for each readout: Every readout was connected with all source neurons via ex-
citatory synapses that produced exponentially decaying post-synaptic currents
[16]:

psci = A ·Wi · gi · (Esyn − vpost) (3)

dgi/dt = −gi/τsyn (4)

where, psci - post-synaptic current contributed by synapse i, A - an amplitude
parameter determining the maximal amplitude of psc (global constant that al-
lows scaling all synapses), Wi - synaptic strength, gi - instantaneous synaptic
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conductance, Esyn - reversal potential of the synapse (taken 0 mV for excitatory
synapses), vpost - membrane potential of the post-synaptic neuron, τsyn - time
constant for the decay of the synaptic conductance (here 30 ms).

The synapses of neurons are balanced in the sense that the total synaptic
gain (sum of all input weights) is similar for all readouts. Each connection is
instantiated such that it represents a relatively small random fluctuation (<
28%) on top of a constant baseline:

Wi = 0.9 + rand[−0.25...+0.25] (5)

where rand[] represents the uniform random function in a given interval.
The instantiation scheme for the synapses is crucial. Each readout neuron is

receiving roughly the same amount of excitation but samples slightly differently
the source population of cortical neurons. By choosing a small enough value for A
(here 0.05) the readouts will engage into quasi-periodic firing, with slight differ-
ences in their phases (Fig. 1). Because all synapses have very similar strengths,
except for the small random fluctuation (< 28%), when one source cortical neu-
ron increases its firing rate, all readout neurons receive simultaneously increased
excitation, and hence tend to shift their phase together. The exact amount of
phase shift, for each readout, will depend on the particular sampling given by the
synaptic distribution, and the activity of the underlying source subpopulations.
Each readout can be considered as an independent observer that integrates, over
time, the activity of preferred source subpopulations.

Phase pattern

Cortical neurons (source)

Readout
neurons #1

#61

#1

#10

Fig. 1. Schematic representation of the InfoPhase readout method. Readout neurons
are connected via conductance-based synapses to recorded cortical neurons, and pro-
duce quasi-periodic phase patterns.

We can now go one step further and extract the phase relationships among
readout neurons (Fig. 2). These relative phases represent differences in the ac-
tivation of various source subpopulations (randomly selected by the particu-
lar synaptic instantiation) that were integrated over time by the readouts and
translated into small phase differences. Thus, we are observing non-trivial com-
binations of spatio-temporal patterns evolving in the source population (cortical
neurons) and reflected in the phases of the readouts.
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2.3 The Classifier

To assess the amount of information that can be extracted by the readout pop-
ulation from the cortical source, we next constructed a simple classifier, in three
steps: extraction of phase vectors, clustering, and training. First, the phase pat-
terns of the readouts are isolated using a sliding window for detection (Fig. 2A)
and then converted into phase vectors by computing the relative phases with
respect to neuron 1 (Fig. 2B). We obtained a sequence of phase vectors that
represents the mapping of the cortical firing onto the activity of the readouts
(Fig. 2C). Each experimental trial can then be represented as a sequence of phase
vectors.
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Fig. 2. Building of phase vectors. A. A sliding window is used to detect and isolate the
firing phase patterns of the readouts. B. The isolated phase pattern is converted into
a phase vector by computing the relative phases with respect to a reference neuron. C.
The information from the cortical population is reflected in the readout phase patterns
which are then converted into a sequence of phase vectors. Schematic illustration only.

Many phase vectors that represent a trial are similar to each other such that
the vector space appears clustered. There are a few dense clouds and many
scattered points. To have a good representation of this space we first applied a
K-Means clustering with K being determined empirically (for this dataset the
optimal K=40). Clustering, ensures that dense clouds are represented only by
one phase vector (cluster center), and hence, increases robustness against noise.
We should mention, however, that the method functions reasonably well without
this step. For simplicity, we chose a classifier that memorizes, for each stimulus
class, a set of representative, specific, phase vectors, called model vectors. The
model vectors are computed during the training phase. We used a split-half
procedure by randomly selecting, for each condition, half the trials (10 trials)
for training and half for testing. From each training trial, the phase vectors are
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considered one by one. For a given vector, the closest phase vector (in Euclidian
distance) is searched in the other training trials (of all conditions). If the closest
vector belongs to the same stimulus condition, then the vector is marked as being
stimulus specific and added to the list of model vectors for the corresponding
stimulation condition. After training, each stimulation condition (class) will be
represented by a variable number of model vectors, assigned by the previously
described procedure. During testing, for each test trial, we first compute the
predicted stimulus class by applying a scoring procedure. The score is computed
as follows: For each phase vector from the trial to be classified, we search for the
closest model vector among all models. For the matching condition, a value is
added to the corresponding global scoring:

Sk = Sk + 1/NrModels(k) (6)

where, Sk - global score corresponding to the matching condition k,
NrModels(k) - the number of model vectors describing stimulus class k.
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Class (experiment condition)
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Fig. 3. A typical result of the scoring procedure for a trial. The trial is assigned the
predicted class (stimulus) with the highest score.

The scoring protocol normalizes against the number of model vectors of each
class such that classes having different number of models are treated equally. All
phase vectors of the trial to be classified are scored in a similar manner. Finally,
the predicted class of the trial is computed as the class with the maximum
score (Fig. 3). After classifying all the test trials, we computed the classification
performance as being the percent correctly classified trials from the testing set.
Trials for which there were two or more classes sharing the same maximum score
were considered as unclassifiable and were not included in the computation of
the classification performance. This case appeared however very rarely.

3 Results

We applied the InfoPhase method to a dataset recorded from cat area 17, stim-
ulated with drifting sinusoidal gratings moving in 12 different directions (30◦

steps, see Methods). We classified the test trials, computed the classification
performance, and tried to identify the time scale of the information that has
been extracted from the cortical population’s activity.
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3.1 Classification Performance

After training on 120 trials and classifying the other 120 trials we obtained a
classification performance of 57%.
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Fig. 4. Classification performance on the original data (57%) and distribution of clas-
sification performances when the labels (classes) are randomly permuted (H0)

We next wanted to determine whether this performance was obtained by
chance or it reflected legitimate information about the stimuli that was extracted
by the method from the cortical spikes. We hypothesized that the observed per-
formance was obtained by chance (H0) and computed the distribution of the
performance when the trial labels (classes) were randomly permuted. We used
5000 permutations to estimate the distribution. The expected performance un-
der H0 was (as can also be computed theoretically) 8.3%. More importantly, the
performances obtained by chance never exceeded 18% (Fig. 4). Thus, the differ-
ence between chance performance and the observed classification performance
of 57% on the original, unpermuted data, was highly significant (p � 0.001).

3.2 Temporal Dynamics of Cortical Neurons

Sinusoidal gratings, which were used in the experimental protocol, are known to
produce robust rate responses [17]. By integrating 3.5 seconds of activity across
the 61 source neurons and computing the mean firing rate, one can classify the
test trials 98.3% correct. The mean firing rate code is completely insensitive to
the temporal structure of the spike trains. At the other extreme, there might be
fast codes, where information is coded in up to tens of milliseconds of activity.
We estimated the sensitivity of the readouts to the temporal structure of the
source spike trains by progressively altering the original cortical spike times, in
a way that preserves mean firing rates but destroys the fast temporal structure
of the data.

We applied progressive jittering of spike times in the source dataset (Fig. 5A)
by independently shifting each spike with a value drawn from a Gaussian distri-
bution with 0 mean and standard deviations between 5 and 30 ms, changed in
steps of 5 ms. The classification performance dropped rapidly with the amount of
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Fig. 5. Determining the temporal scale of the information extracted by the readout
population. A. The temporal structure of the source spike trains can be progressively
altered by jittering individual spike times. B. The classification performance drops
steeply with the amount of jitter, indicating sensitivity of the method to the temporal
structure of the source spike trains (error bars are SD). C. Autocorrelation histogram
on the spike train of a source unit.

jitter applied to the source spike trains (Fig. 5B), hinting towards the possibility
that the method extracts information that is encoded on fast temporal scales.
Also note that the classification performance remained significantly better than
chance, regardless of the amount of jitter. This suggests that, despite using phase
readout patterns to classify, the readouts can also take advantage of the firing
rate codes in the source dataset and thus the influence of the rate code cannot be
completely eliminated. In addition, autocorrelation analysis of the source spike
trains (Fig. 5C) revealed oscillatory activity with an oscillation period around
25-27 ms (beta-high band [8]) suggesting that the oscillation cycles might play
an important role in enabling the coding of fine-grained temporal information
in the source neurons [6].

4 Discussion

As we have seen, artificial spiking neurons can be successfully used to read out in-
formation from cortical spike trains. The method we presented here relies on reg-
ular spiking neurons that represent biased observers, sampling subpopulations of
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the cortical neuron set. The bias is minimal such that differences in the acti-
vation of the respective subpopulations are only enough to bring readouts out
of phase but not enough to change their mean firing rate. The information can
be thus extracted without imposing a rigid, fixed time scale for the observers.
Moreover, the specificity of phase differences among the readouts seems to corre-
late with the fine temporal structure of the cortical spike trains. However, there
are several aspects that need to be addressed in future studies.

First, the synapses of the readouts are biased in a random way. Thus, each
readout represents an independent observer of the source population, transform-
ing the input in a non-linear fashion, with a fixed amount of memory that is given
by the membrane and synaptic time constants. However, the collective memory
(phase relations between readouts) might go well beyond the individual time con-
stants, as the advancement/delay of readouts relative to each other could last
for much longer durations than the individual time constants. A future improve-
ment of the method should consider some synapse training procedure allowing
the readouts to optimally encode information in their relative firing phases.

Second, we need to address more in depth the exact signature of the informa-
tion that is extracted by the readouts from the cortical spike trains. The high
sensitivity of the classification performance with respect to the temporal struc-
ture of the cortical source suggests that the extracted information is coded on
very fast time scales. Nonetheless, there is always the possibility that jittering
affects only the capability of the method to correctly extract the information,
even if the latter is coded on slow time scales and is thus insensitive to jittering.
However, this possibility is remote since we always retrain the classifier after
each jittering of the inputs. Retraining insures that the best possible model vec-
tors are built, given the structure of the source spike trains. To find the exact
source of the information and the relevant time scale, we need to go back to
the original spike trains, guided by the occurrences of the phase patterns that
were specific to each class (model vectors). A possibility would be to compute
”phase pattern-triggered average” of the source spike trains. In this case, one
computes an average of the source spike trains, around the time stamps where
a specific pattern occurs, thus identifying the combination of source spikes that
produced the pattern. If, indeed, a specific constellation of input spikes produced
a specific readout pattern, then the next question is how fast can the readouts
extract information? Or how much time is needed to integrate the relevant input
and reach a decision? Even more so, what is the role of oscillatory activity in
structuring these input patterns?

Finally, we conclude that using artificial spiking neurons to read out informa-
tion from cortical neurons can be extremely fruitful and opens the path for a new
generation of studies that might help us reveal the nature of the neuronal code.
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Abstract. The present paper is devoted to the suppression of spurious signals
(artifacts) in records of neural activity during deep brain stimulation. An algo-
rithm of adaptive filtering based on the signals synchronization in phase space is
presented. The algorithm was implemented and tested using synthetic data and
recordings collected from patients during the stimulation.

1 Introduction

High-frequency (100-300 Hz) DBS is an effective treatment of a variety of disabling
neurological symptoms, in particular motor symptoms associated with Parkinson’s dis-
ease. Studies of the appropriate signal of neuronal activity during the stimulation,
namely the extracellular microelectrode recording of action potentials (spikes), are
hampered by stimulation artifacts presence in the records (Fig. 1a). The artifacts are
induced by the periodically repeated electrical pulses delivered to the target zone in the
brain. The artifacts have a common waveform but are not identical due to sampling
errors and irregularities of stimulus production. Stimulus artefacts have amplitudes 5
to 20 times lager then spikes of neuronal activity. Typical artifact duration in the time-
line is 20%-50% of each stimulation period. Such artefacts hamper spike detection and
sorting leading to the problems to studies of mechanism of DBS [1].

There are several recent studies focused on removal, subtraction, or filtering of stim-
ulation artifacts. Subtraction techniques were developed to avoid the suppression of the
high frequency components. However, most subtraction techniques suffer from an in-
ability to adapt to the nonlinear dynamics of the artifacts and hence suffer from the
residual artifacts. Estimates of representative stimulus artifact waveforms were studied
by [2]. The template is generated by averaging a set of peri-stimulus segments adjusted
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Fig. 1. Record S1529, the ratio of the amplitude of the artifacts to the averaged amplitude of
spikes of neuronal activity equals 5.1; (a) signal of neuronal activity before, during and after
DBS; (b) the same signal after filtering

by time shifting and scaling. [3] created several templates in order to account for arti-
fact variability. Residual artifacts of 0.8-0.9 ms duration ([3], and [4]) are cut from the
signal before further analysis. This part (about 11% of the recording time for DBS at
130Hz) is no longer available for spike sorting, etc.

In existing algorithms (solutions) only one-dimensional recordings are processed,
although actual recordings are taken simultaneously from 3 to 16 microelectrodes lo-
cated in the same brain nucleus. In this case spikes of most of neurons are not observed
at least in one channel; but artifacts have exactly the same timing everywhere.

So, dealing with vector recordings helps to increase processing reliability and spike
detection rate. Here we focus on this case of multi-channel data analysis.

This paper presents an algorithm and software implementation for filtering the stim-
ulus artefacts from the signal of neuronal activity during DBS. It is based on the use of
a multidimensional nonlinear oscillation model to explain variability of the artifacts of
stimulation. After signal synchronization, templates are estimated and subtracted from
signal in the phase space. Presented algorithm shows better results then previous ap-
proaches (2-5 times less residuals on the synthetic data).
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2 Methods

2.1 Signal Characteristics

The following indices of original and processed signal are used. Artifact level (AL) is
a mean of maximal (original or processed) signal absolute values, such maxima were
taken across artifact peaks. Spike level (SL) is a mean of spikes amplitudes in the ab-
sence of stimulation. Confidence interval (at confidence level 0.95) in assumption of
Gaussian distribution of noise was used to estimate Noise level (NL). Then artifact-spike
ratio ASR=AL/SL, artifact-noise ratio ANR=AL/NL, spike-noise ratio SNR= SL/NL.

2.2 Modelling

For the sake of simplicity we consider a scalar (single-channel) case. The general case
differs only by phase space dimension which is nd for degree of model d and number
of channels n.

Basic methods [3] treat artifacts as a periodic function with additive noise:

xSt(t + kT ) = xSt
0(t) + ξk(t), 0 < tT (1)

where T is the period of stimulation; k is the number of stimuli; xSt
0(t) is the mean

stimulus; ξk(t) are independent random variables with zero mean and finite variance
σ2

ξ (t) . In this case, the mean artifact can be estimated by averaging the observed signals
of stimulation. Subtracting this mean from the signal can achieve a relatively rough
signal cleaning (Fig. 2b).

To improve artefacts synchronisation the approach based on the use of oscillation
models was recently proposed [5,6]. It is based on stimulus description as a solution of
an ordinary differential equation with perturbation. Namely observed signal x(t), t =
1, 2, . . . is considered as a sum of the stimulation artifacts xSt(t) and the signal xNr(t)
of neuronal activity: x(t) = xSt(t) + xN r(t). Observations are available for discrete
time moments. The signal of stimulation is assumed to be a solution of an ordinary
differential equation with perturbation

dnxSt

dtn
= f(x, . . . ,

dn−1xSt

dtn−1
) + F (x, . . . ,

dn−1xSt

dtn−1, t
) (2)

where n is the order of the equation, F () is a perturbation function, and equation

dnxSt

dtn
= f(x, . . . ,

dn−1xSt

dtn−1
) (3)

describes a self-oscillating system with stable limit cycle x0(t) = (x0
1(t), . . . , x0

n(t)),

0 < t ≤ T , in phase space with coordinates x1 = xSt, x2 = dxSt
dt , . . . , xn = dxStn−1

dtn−1 .
Here T is a period of stable oscillations which is the period of stimulation. The pertur-
bation function F (), bounded by a small value, is a random process with a zero mean
and a correlation time Δtcorr which is small in comparison to the period of stable os-
cillations: B(F (·, t), F (·, t + Δt)) ≈ 0ifΔt > Δtcorr, Δtcorr << T .
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Fig. 2. Signal #S467, first channel ASR= 4.1 sliced into the stimulation-period windows (a) before
filtering; (b) after filtering based on the model with additive noise; (c) after filtering according to
phase-space algorithm

For the following parameterization the local coordinates in the neighbourhood of the
limit cycle, phase deviation γ(θ) and normal deviations n(θ) are introduced. n(θ) is
defined by orthogonal projection of current point on the limit cycle. Phase deviation
γ(θ) = t(θ) − θ, where t(θ) is a time shift along the trajectory from the initial point
θ = 0. New independent variable θ is a time shift from initial point through the limit
cycle. Then Eq. (2) is rewritten in linear approximation in the deviations:

n(θ)
dθ

+N(n) = Fn(θ)
dγ

dθ
+ (Θn) = FγΘ (4)

HereN(θ) andΘ(θ) are the functions of the parameters. As a result the signal trajectory
in phase space is presented in linear approximation as a sum of periodic components of
limit cycle and function of deviation x(t(θ)) = x0(θ) + n(θ), where n(θ) and t(θ) =
γ(θ)− θ are following Eq.4.

Thus, both models of the artifacts (Eq. 1 and Eq. 2) describe signals close to periodic
ones. The model with additive noise (Eq. 1) explains the distortion of the amplitude
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of the signal only, while the model of nonlinear oscillations with perturbations (Eq. 2)
explains the distortion of both amplitude and phase (Eq. 4).

For the following artifact filtering, the limit cycle that represents a periodic compo-
nent of signal should be estimated and then subtracted from the signal.

2.3 Algorithm

The algorithm consists of the following stages: (1) Unsupervised learning procedure;
(2) On-line filtering. More detailed description of this algorithm could be found in [5].

Unsupervised learning procedure.

– Approximate the signal trajectories in phase space and detect artifacts. For this
purpose we compute the smoothed signal and the approximation of signal deriva-
tives using convolution [7]. Artifacts are detected by the smoothed signal threshold
crossing.

– Collect the set of periods of stimulation to the training set.
– Estimate a limit cycle. The element from training set that provides the maximum of

probability density in the neighbourhood were used to estimate the limit cycle [8].
The time scale of the estimated limit cycle was considered as a phase.

On-line filtering has the following steps.

– Approximate the signal trajectories in phase space and detect i-th artifact xi(t).
– Synchronize artifact with the limit cycle by computing

ti(θ) = argmind(θ) = argmin‖xi(t)− x0(θ)‖ (5)

– Subtract the mean cycle from each artifact in phase space, according to the syn-
chronization.

– Present the result in the time domain.

The parameters of algorithms were chosen as follows.
Degree of the model, n = 3 allows observing the limit cycles without self-

intersection in the region of peak of artifact.
Maximal phase deviation was estimated directly from a set of peak times.

2.4 Software Implementation

Artifact-processing algorithms were implemented in software package called Artifact
Processor. The software consists of multi-platform library written in C++; and a
Windows-based GUI. Implementation includes classes for reading data from text and
binary files; there is an API that enables extension for direct reading from an electro-
physiological device.

Then, the learning and subtraction procedures are implemented in the main class
Signal. The output could be saved in text files readable by spike sorting systems like
CED Spike2. The GUI (Fig. 3) has windows that visualize original and processing sig-
nal, as well as controls for navigating in the signal, setting up processing interval and
parameters, loading and saving data etc.
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Fig. 3. Artifact Processor, synthetic data filtering, ASR=4

Speed test showed, that the training took about 30 sec for 1000 artifact training set
(7 sec. recording at 130 Hz). Since the training is made, subtraction itself needs approx-
imately same time as the recording time. These tests were mad for a standard PC with
Intel Centrino 1400 MHz processor and 512MB RAM. So, we can conclude that the
software might be used online during DBS surgery.

3 Results

3.1 Test of the Algorithm

Synthetic Dataset. In order to explore the algorithms behaviour depending on artifact
amplitude, we constructed a set of artificial signals with predefined ASR. In the record-
ings (6-second segments) containing artifacts with no neuronal activity, another signal
with single-neuron spikes and no stimulation was added. Appropriate constant K gives
the desired value of ASR. So, for m-th channel we have:

XSyntethic(t) = XArtifacts(t) +KXSingle−Neuron(t). (6)

Collection of such signals for ASR from 2 to 16 was generated. Here we mean ASR
values for the first channel, the second and the third ones had ASR about 1.5 and 2
times bigger respectively.

Tests of the Algorithm with Synthetic data. The test intends to reveal what happens
to spike trains in the presence of stimuli and cleaning procedures. Spike trains obtained
from an original signal of neuronal activity XSingle−Neuron(t) before mixing with ar-
tifacts and after full processing were compared. A simple threshold filter was used for
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Fig. 4. Post-filtering spike quality for synthetic data: percentage of errors of spike detection in first
channel after filtering. ASR=0 corresponds to the original neuronal activity with no stimulation
added.

spike trains extraction. The percentages of spikes found at their correct positions in the
processed signal were measured. Results are presented at Fig. 4. For the signals with
ASR ∈ [2, 10] (in the first channel) the percentage of wrong detection is from 1 to
3.8%. In particular there are 1.6% of errors for ASR=5 while in previous study [3], and
[4] at least 11% of information is lost.

Real Data Description. Eight records collected from five human patients during DBS
surgery were used to test the algorithm. Neuronal activity is recorded before, during,
and after high-frequency stimulation within the subthalamic nucleus, Globus Pallidus
or Substantia Nigra (for some records the post-stimulation segment is not available).
Stimulation as produced using a Medtronic external stimulator, and the neuronal signals
(measured in volts after amplification) were captured using the AlphaOmega Microgu-
ide TM recording system. The recordings, using a sampling rate of 48 kHz, had 9 to
100 seconds duration, the stimulation lasting for 7-80 seconds. Periodic stimuli were
delivered through microelectrodes placed 2mm apart in the same brain nucleus, with a
frequency of 130Hz (i.e. with period approx 370 sampling ticks) and a pulse width of
60 μs. The pulse current intensities were in the range of 1000 μA - 6000 μA.

The recordings described above were used to test the algorithm on real data. Actually,
only 5 channels were related to microelectrodes and bore neuronal activity together with
artifacts. For processing we selected 3 most suitable channels from each recording,
containing both stimulation artifact and spikes.

The signals are characterized by ASR ∈ [1.3, 14], ANR ∈ [3, 160] and SNR ∈ [1.4,
5.1]. Examples of original and filtered signals are shown in Fig. 1. Fig. 2 displays the
signal sliced into sets of stimulation-period windows, before and after filtering. The
figure demonstrates the shape of the original artifacts and of the residuals left after full
processing. One can see also the neuronal spikes.

Dependences between Artifact Spike Ratio before and after signals filtering, both in
phase space and time domain are presented in the Fig 5. For comparison, we have also
shown such results for synthetic data. Results for eight real records and synthetic signals
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Fig. 5. Residual-spike ratio depending on pre-filtering ASR comparing time-domain and phase-
space algorithms for synthetic and real data. ASR was measured by the first channel. Results for
seven real records (markers) and synthetic signals (dash and continuous lines) are in a good fit.

are in a good fit. The use of phase space filtering produced smaller artifact residuals in
all experiments: An advantage of phase space filtering augments with increasing of
initial ASR of the signal.

4 Discussion

This paper presents algorithm and software for the filtering of the multi-channel signal
of neuronal activity during DBS. The method is based on artifact template subtraction
in phase space. Its implementation and the tests on the synthetic and real data sets are
provided. The use of the proposed algorithm allows a 2-3 times reduction of the resid-
ual artifact of stimulation in comparison with the standard model with additive noise.
The tests with 3-channeled artificial signals that are the combination of real signals of
neuronal activity and stimulus artifacts showed that spike trains are less corrupted: we
can increase spike detection reliability 7 times in comparison to existing methods (1.6%
vs. 11% of spikes dropped). This promising approach will enable analysis of neuronal
activity during DBS to more effectively study the mechanism and to therefore improve
the DBS technique.
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Abstract. Magnetic resonance has proven to be a successful method of in-vivo
imaging. Although MRI can help detect various pathologies, its ability to classify
the nature of the pathological tissue is limited. Magnetic resonance spectroscopy
allows identifying metabolite content of the tissue and estimating the metabolite
concentration. Map of metabolite concentration along with the MR image allows
proper classification of many pathologies, for example progressive tumorous tis-
sue identification in brain. Standard methods used to analyze nuclear magnetic
resonance spectra such as singular value decomposition or curve fitting algo-
rithms are very time consuming taking several minutes to analyze spectrum from
a single voxel. To analyze the spectra from a chemical shift imagine sequence
(CSI) in maximal resolution hundreds of spectra need to be processed. The sug-
gested ANN framework proved to be much faster. Networks were trained on the
outputs of LCModel curve fitting algorithm. Time needed to process a spectrum
from a single voxel was reduced to the order of seconds. The total time needed to
analyze a CSI in full resolution (hundreds of spectra) was significantly reduced
to 5 minutes.

1 Introduction

Accurate quantification of cerebral metabolites by in vivo proton magnetic resonance
spectroscopy is essential to the study of many brain disorders. Proton nuclear magnetic
resonance (NMR) spectroscopy remains one of the few methods by which the chemical
content of brain tissue may be probed non-invasively.

Several procedures have been applied in biomedical NMR spectroscopy to quantify
areas of metabolite resonances from frequency domain spectra. With methods such as
the lineshape fitting analysis [1] and the linear combination of model spectra [2], noisy
1H NMR spectra or overlapping peaks in spectra can be assessed. However, the reli-
able use of the lineshape fitting analysis methods needs spectroscopic expertise, so that
a fully automated analyzer by these methods is rather difficult to develop. All these
procedures involve relatively long computational times [3].

It has recently been shown that ANN analysis offers some important advantages for
biomedical NMR data analysis [4],[5]. However, these techniques were limited to the
use of simulated artificial inputs with mathematically estimated outputs for training.
The proposed study shows the ability of an artificial neural network (ANN) to estimate
concentrations of 3 main metabolites from human brain spectrum measured.
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In this work, absolute spectra of Free Induction Decay (FID) signals were used as
input vectors. Matching metabolite concentrations acquired from the LCModel curve
fitting algorithm [6] are set as targets.

Curve fitting algorithms, used to analyze NMR spectra in frequency domain, calcu-
late the best possible combination of base signals (simulated or previously measured
in-vitro) to fit the spectrum of the measured FID signal. Currently, the most commonly
used quantification methods are based on curve fitting using a non linear least square
optimization, such as Levenberg - Marquardt algorithm [2].

Once the network is trained the processing of a new (unknown) input is reduced to a
set of matrix multiplications and can be done within seconds. The developed ANN gives
comparable results in much shorter time than widely used curve fitting algorithms.

2 Methodology

The suggested methodological approach is summarized in Figure 1. The raw NMR
spectrum is acquired by performing Fourier transform of nuclear spin echo of a free
induction decay (FID) signal. The former case of NMR spectra derived from FID signal
was used in this study. To increase a spatial resolution, the original 16 x 16 voxel matrix
was interpolated to 32 x 32 voxel NMR spectra matrix by inverse 2D FFT. First, noise
reduction was carried out by multiplying signal by a time damped exponential. Since
the contribution of water is very significance, HLSVD (Singular Value Decomposition
of Hankel matrix using Lanczos algorithm) method for water component removal was
applied. Next, spectrum was calculated and frequency band between 0 ppm and 4 ppm
was selected. The final vector representing the metabolite spectrum used as an input for
the neural network was 800 points long. After ANN training the metabolic CSI map
was reconstructed.
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Fig. 1. Algorithm flow-chart diagram
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2.1 Free Induction Decay

During the measurement a patient is placed in a strong magnetic field. Then a sequence
of radio frequency pulses is applied for excitation. It consists of the signals from all
the nuclei in the volume preselected by phase coding of the gradient fields added to
the external field during the measurement. With a strong enough field and the right
sequence of excitation pulses the sum of all the components of magnetization vectors
perpendicular to the external field can be measured. The time evolution of the magnetic
field in the plane perpendicular to the external field measured by a set of coils is called
free induction decay (FID). It consists of the signals from all the nuclei in the patient.
The frequency components of the FID correspond to the resonance frequencies of the
nuclei in the patient.

In-vivo NMR spectra are measured from relatively large volumes (1.5 ml) of tissue
enclosed within human body. Therefore homogeneity of the magnetic field within the
measured volume is much harder to achieve. Moreover, in-vivo measurement has to
be short with respect to the patient. As a result, in-vivo FID signal spectrum is noisy,
the peaks representing various hydrogen nuclei are relatively wide and overlap - see
Figure 2.

The FID signal of a single nucleus is a time damped complex exponential (complex
plane allows expressing the orientation of the magnetization vector within the plane
perpendicular to the external field). Singular value decomposition can be used to de-
compose the FID signal to a sum of such exponentials. These exponentials represent
various groups of hydrogen nuclei.

2.2 Data Acquisition

Data were measured on a 3T Siemens Trio Tim system. Spin echo sequence with echo
time of 30 ms and repetition time of 1510 ms for chemical shift imaging was used. Due
to small SNR ratio, 4 measurement which were futher avereged were taken. The signal
was sampled at 2048 samples per second. With the acquisition time of 1 second the
length of the measured vector for each voxel was 2048 points. The signal was measured
from a 15 mm thick matrix of 16 by 16 voxels of 10 mm on a side. The matrix is
schematically represented in Figure 2(a). While the signal was acquired from the whole
matrix the number of voxels excited by the selective radio frequency pulse (RF) during
the measurement was patient specific.

Data for ANN modeling and testing were taken from clinical examinations of pa-
tients and healthy volunteers with written consent. The measurement procedures fol-
lowed a protocol approved by the Ethic Committee. A set of 10 measurements in 9
subjects was used for training. Four of the subjects were healthy individuals, three were
patients diagnosed with epilepsy, one patient diagnosed with a brain tumor, and one
with a metabolic disease. The measured volume was from various locations within hu-
man brain. For each subject two measurements were taken, one with water suppression
using a water saturation RF pulse, one with no water suppression. The mean frequency
of the excitation RF pulse was set to -2.2 ppm for measurements with water suppression
and to 0 ppm with no water suppression.
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2.3 NMR Spectra Preprocessing

The signal of hydrogen bound in molecules of water is the strongest component of the
FID signal from human brain tissue. During water saturation a RF pulse is used to keep
the hydrogen in water molecules fully excited so that it can not contribute to the FID
signal. With no water suppression the FID consists almost only of the water compo-
nent. The signal of water is used as a scale and allows quantifying the concentration of
metabolites from the signal with suppressed water by comparing it to the strength of the
signal of unsuppressed water. The signal of unsuppressed water is so strong that only
one acquisition needed to be taken compared to four averages without the suppression.
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Fig. 2. Absolute NMR spectrum illustation. (a) Spatial configuration (16x16 voxel) of NMR
recording. (b) example of NMR raw spectra. (c) after HLSVD water suppression apodisation
and zero filling. (d) Same spectrum after baseline correction.

Data Interpolation. Before the spectra are calculated the signals are preprocessed. The
measured signals were stored by the 3T Siemens Trio Tim system in spatial domain.
To increase spatial resolution the data were interpolated. In order to interpolate a two
dimensional inverse Fourier transform was preformed, then the data were padded by
zeros to double resolution, then again transformed back to spatial domain by a 2D-FFT.
That way the size of the matrix acquired from one subject was 32 by 32 voxels with a
signal of 2048 time points each.

Noise Removal. To reduce noise the signal was multiplied by a time damped exponen-
tial exp(−t/500ms). The significant signal components are time damped as well. After
multiplication by a damped exponential the significance of noise does not increase as
rapidly with time. The same is done for the signals measured with no water suppression
so that the amplitudes of both signals are processed equally. The FFT of the reference
signal of water, measured with no water suppression, is then calculated and integrated
across all frequencies. The integral corresponds to the water content in the voxel. For
each voxel the signal with water suppression is divided by the integral of the water
spectrum of that voxel.
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Residual Water Removal. Even after application of water suppression a significant
remainder of the signal of water persists in the signal. To remove the remaining water
component HLSVD (Singular Value Decomposition of Hankel matrix using Lanczos al-
gorithm) was used [7]. The most significant component of the signal after SVD shows
to be a good approximation of the remaining water signal. In order to quickly calculate
the first singular value and the corresponding vectors, the Lanczos algorithm was ap-
plied on a Hankel matrix composed for the signal from each voxel. Once the component
corresponding to the first singular value is calculated it is subtracted from the signal.
The example of water suppression is shown in Figure 2(b).

NMR Spectrum Calculation. After removing the remaining water components the
signal is padded with zeros to double resolution, FFT is preformed and an absolute
value is taken. The spectrum now consists of a few metabolite peaks and an underlying
baseline. The points of the spectrum that are part of the peaks are usually a part of
a steep slope. To identify the location of the peaks for each point of the spectrum a
standard deviation of the points in its near neighborhood is calculated. If the standard
deviation is above a certain threshold the point is classified as a part of a metabolite
peak. The remaining points are classified as a part of the baseline. Through these a
polynomial of the order of 6 is fitted and subtracted from the spectrum resulting in
baseline correction. The baseline correction is depicted on Figure 2(d).

Finally only 800 points of the spectrum in frequency band from approximately 0
ppm to 4 ppm (all the metabolite peaks are within this band) is cut. Therefore, the final
vector representing the metabolite spectrum used as an input for the neural network is
800 points long.

A spectrum before processing is depicted in Figure 3(b) and after processing is
shown in Figure 2.

ANN Set-Up. The neural network has three layers. 800 points in the input layer are
necessary to meet the length of the input vector. The number of neurons in the hidden
layer was set to 100 experimentally (values between 50 and 300 were tested). The output
layer consists of only one neuron. The best results were achieved when a separate net-
work was trained for each metabolite. The output is a real number and is directly equal
to the approximation of the concentration of the metabolite for which the network was
trained. Concentrations are in laboratory units (no correction for T1, T2, white and gray
matter and CSF or field inhomogeneity were done). The output function for the hidden
layer is tansig. There is no output function in the output layer (it remains purely linear).
Three networks were trained to calculate concentrations of three main metabolites in
the NMR spectra of human brain (NAA, Choline, and Creatine). As a convergence cri-
terion the sum of squared error was used. Scaled conjugate gradient backpropagation
algorithm was used to train the network. The convergence criterion was set to total sum
of error squared of 0.5 in all 700 inputs used for training. The time needed for the train-
ing algorithm to converge was approximately 10 minutes and 3000 to 5000 iterations
were needed.

Because of bad homogeneity of the magnetic field, some of the signals were not
good enough to be processed correctly. While such signals were present in the training
set the training algorithm could not converge. To enable the convergence of the training
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Fig. 3. Processed NMR spectrum with metabolites assessment. The concentrations are the fol-
lowings: Choline: 4.39, Creatine: 7.32, NAA: 3.21.

algorithm the number of vectors in the training set was reduced to 700 spectra randomly
selected from the spectra of the training subjects. Moreover, the spectra too different an
average spectrum from the training set were restricted from the training. The similarity
was determined by the correlation coefficient of the spectrum an average spectrum cal-
culated from a large set of manually picked spectra used for training. The right threshold
needed to detect useless spectra was found experimentally and set to 0.8.

For a CSI signal from a MR tomograph to be analyzed it needs to be preprocessed
as were all the training signals. Once the set of 32 by 32 spectra is calculated it is
fed one by one to the three neural networks to calculate the concentrations of NAA,
Choline, and Creatine respectively for each voxel. Once the concentrations are calcu-
lated a metabolite map can be plotted over a corresponding MR image to demonstrate
the spatial distribution of the metabolite.

3 Results

The performance of the system was tested on three healthy volunteers, one patient with
a progressive brain tumor, one patient with a suspicion for a brain tumor and one patient
with a suspicion for a metabolic disease. The resulting metabolic maps for Creatine
Choline and NAA are displayed in Figures 4,5,6, respectively.

An MRI scan showed pathological tissue in the brain of the patient, possibly a brain
tumor - see Figure 4. High concentration of Choline and low NAA points out low con-
tent of healthy neurons, rapid cell membrane decay along with high amount of Creatine
showing intense metabolic processes. The pathological tissue is probably a progressive
brain tumor. Both LCM and ANN models show the location and point out the nature of
the pathology.
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Fig. 4. Comparison of Choline, Creatine and NAA metabolite map calculated by LCM. (a) MR
image of suspicious brain tumour. (b) and ANN model. (c) in case of patient with brain tumor.
(d) The tumor was detected very precisely in both cases.

Analysis of 7 month old patient with a suspicion for a metabolic disorder is reported
in Figure 5. In this examination it is vital to detect possible asymetry in metabolite
distribution in the two hemispheres. Both LCM and ANN models showed good symetry
and almost exactly the same space distribution. The diagnose would not differ no matter
which model would be used. However, ANN approach takes 5 minutes compared to
several hours in case of LCM.

In total over 1000 FID spectra were registered. The spatial distribution represented
by the metabolite map according to LCModel curve fitting algorithm was visually very
close to the approximation calculated by the neural network. For each subject the mean
relative error and sum of square error was calculated as can be seen in Table 1. Also
mean and variance of the targets and the calculated values were compared. The method
did not show to be biased and the concentrations estimated by the neural networks
showed to have a similar variance.

Performance results are summarized in Table 1. Subject 1 is an adult patient with
a progressive brain tumor, subject 2 is a 7 month old patient with a suspicion for a
metabolic disease, subject 3 is an adult healthy individual. High error and discrepancies
in mean or variance are usually caused by a small number of voxels near the border of
a measured volume with the poorest signal quality.
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Fig. 5. Comparison of Choline, Creatine and NAA metabolite map calculated by LCM (a) and
ANN model (b) in case of patient with a suspicion for a metabolic disorder

Table 1. Metabolite concentrate evaluation for LCM and ANN method

Choline Creatine NAA
Subject Method avg std er(%) avg std er(%) avg std er(%)

1 LCM 1.40 3 5.16 1.83 6.86 1.89
ANN 1.42 2.56 17.7 5.42 3.15 34 6.75 2.20 13.50

2 LCM 1.63 0.46 5.37 1.89 5.16 1.5
ANN 1.58 0.45 8.90 5.15 2.10 12.90 5.23 1.29 12.5

3 LCM 1.48 0.61 7.45 2.43 6.36 2.07
ANN 1.51 0.46 19.1 7.63 2.32 15.9 6.13 1.67 16.2

The data of adult healthy volunteer was acquired from the cerebellum as can be seen
in Figure 6. The surrounding brain cavities and bone tissue causes magnetic field inho-
mogeneities and therefore the signal measured from this region is characteristic for its
low quality. The results manifest the ability of the ANN model to follow the pattern of
the curve fitting algorithm even in case of these low quality inputs. Although the error is
significantly higher than in case of signals measured from the upper parts of the brain.
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Fig. 6. Comparison of Choline,Creatine and NAA metabolite map calculated by LCM (a) and
ANN model (b) in case of adult healthy volunteer

4 Conclusions

Even though the processing through the neural network is almost immediate the pre-
processing of the signals takes up to a couple of seconds for each signal. Commercial
software LCModel takes in order of minutes to process a signal from a single voxel.
The processing of a full CSI signal takes several hours to run. The approximation using
neural networks can give results with the mean error of under 15% within 5 minutes.
Since the whole measurement is affected by a significant error due to high amount of
noise and bad homogeneity of the magnetic field the error of 15% is acceptable.

The method is limited by the error of the LCModel algorithm. It is a black box algo-
rithm and has limited generalization ability. It is impossible to ensure proper function
for inputs significantly different from the training set. For best results the training set
needs to be as large as possible with maximum possible variety. The optimal topology
of the network can not be derived. Due to the size of the inputs the training process for
a large training set is time and memory demanding. Testing the performance for more
possible topologies as well as reducing the length of the input vector could improve
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the convergence of the training algorithm and that way enable larger training sets to
be used. The preprocessing does not count for possible phase shift. Some spectra are
improperly classified because of being out of phase. Phase correction as a part of the
preprocessing might be considered.

Acknowledgment

The project was supported by MZOIKEM2005 and by Ministry of Education, Youth
and Sport of the Czech Republic with the grant No. MSM6840770012 entitled “Trans-
disciplinary Research in Biomedical Engineering II”. We thank Filip Jı́ru̇ for technical
discussion and remarks.

References

1. Ala-Korpela, M., Usenius, J.P., et al.: Quantification of metabolites from single-voxelin vivo
1h NMR data of normal human brain by means of time-domain data analysis. Magma 3(3–4),
129–136

2. Provencher, S.W.: Estimation of metabolite concentrations from localized in vivo proton nmr
spectra. Magn. Reson. Med. 30(6), 672–679 (1993)

3. Poullet, J., Sima, D.M., Van Huffel, S.: Mrs signal quantitation: a review of time- and
frequency-domain methods. Technical report, ESAT-SISTA, K.U.Leuven (2008)

4. Kaartinen, J., Mierisova, S., Oja, J.M.E., Usenius, J.P., Kauppinen, R., Hiltunen, Y.: Auto-
mated quantification of human brain metabolites by artificial neural network analysis from in
vivo single-voxel 1h nmr spectra. Journal of Mag. Res. 134, 176–179 (1998)

5. Bhat, H., Sajja, B.R., Narayana, P.A.: Fast quantification of proton magnetic resonance spec-
troscopic imaging with artificial neural networks. Journal of Mag. Res. 183, 110–122

6. Provencher, S.: LCModel & LCMgui Users Manual (2007)
7. Cabanes, E., Confort-Gouny, S., Le Fur, Y., Simond, G., Cozzone, P.: Optimization of residual

water signal removal by hlsvd on simulated short echo time proton mr spectra of the human
brain. Journal of Magnetic Resonance 150, 116–125 (2001)



Multi-stage FCM-Based Intensity Inhomogeneity

Correction for MR Brain Image Segmentation
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Abstract. Intensity inhomogeneity or intensity non-uniformity (INU)
is an undesired phenomenon that represents the main obstacle for MR
image segmentation and registration methods. Various techniques have
been proposed to eliminate or compensate the INU, most of which are
embedded into clustering algorithms, and they generally have difficulties
when INU reaches high amplitudes. This paper proposes a multiple stage
fuzzy c-means (FCM) based algorithm for the estimation and compensa-
tion of INU, by modeling it as a slowly varying additive or multiplicative
noise, supported by a pre-filtering technique for Gaussian and impulse
noise elimination. The slowly varying behavior of the bias or gain field
is assured by a smoothing filter that performs a context dependent av-
eraging, based on a morphological criterion. The experiments using 2-D
synthetic phantoms and real MR images show, that the proposed method
provides accurate segmentation. The resulting segmentation and fuzzy
membership values can serve as excellent support for 3-D registration
and segmentation techniques.

Keywords: Intensity inhomogeneity, fuzzy c-means algorithm, image
segmentation, context dependent filter, magnetic resonance imaging,
morphological operations.

1 Introduction

Magnetic resonance imaging (MRI) is a very popular medical imaging tech-
nique, mainly because of its high resolution and contrast, which represent great
advantages above other diagnostic imaging modalities. Besides all these good
properties, MRI also suffers from three considerable obstacles: noises (mixture
of Gaussian and impulse noises), partial volume effect (pixels containing at least
two types of tissues), and intensity inhomogeneity [14]. This latter one, also
known as intensity non-uniformity (or INU artefact), manifests as a spatially
slowly varying function, that makes pixels belonging to the same tissue be ob-
served having different intensities. In order to produce a correct segmentation
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or registration of MR images, the INU artefact needs to be modeled and com-
pensated.

INU has two different types of sources: those related to the MRI device, and
those related to the imaged patient’s shape, position, structure and orientation.
While the first type of source has efficient compensation and calibration methods,
the second type of INU artefacts are much more difficult to handle [17]. A widely
used technique, handling mostly the first type of INU, consists of the usage of a
uniform phantom to produce prior information [2].

Homomorphic filtering represents a popular compensation method [4,7], built
upon the theoretical assumption, that the frequency spectra of the image struc-
tures and of the INU artefact are not overlapping each other. The efficiency of
such methods are limited because the initial assumption does not hold.

Although several INU compensation approaches exist [8,11,12,19], one of the
most widely used methods is the adaptation of the fuzzy c-means (FCM) clus-
tering algorithm to iteratively approximate the INU as a smooth varying bias
or gain field. In this order, Pham and Prince introduced a modified objective
function producing bias field estimation and containing extra terms that force
this artefact vary smoothly [12,13]. They also provided a multigrid technique to
speed up the computationally heavy algorithm, but even this way, the algorithm
performs slowly. A probabilistic formulation leading to the same objective func-
tion was given in [9]. Liew and Hong created a log bias field estimation technique
that models the INU with smoothing B-spline surfaces [10].

Further FCM-based bias field estimation techniques were introduced recently
by Ahmed et al. [1] and Siyal and Yu [14]. The modification introduced by
Ahmed et al. allows the labeling of a voxel to be influenced by its immediate
neighbors. This approach has reduced some of the complexity of its ancestors,
but the zero gradient condition that was used for bias field estimation leads
to several misclassifications [14]. The other approach provided a mean spread
filtering method to smoothen the estimated bias field in every cycle of the FCM
algorithm. This approach reduces the amount of necessary computations, but the
result of the segmentation is not deterministic due to the nature of the smoothing
filter. All these clustering techniques suffer from sensitivity to high amplitude
INU artefact: when the INU-contaminated intensities of different tissue types
overlap, segmentation accuracy falls, as the clustering algorithm is unable to
correctly compensate the disturbing phenomenon.

In order to handle this latter problem, in this paper we propose a multi-
stage FCM-based technique for bias- or gain field estimation of the intensity
inhomogeneity. Furthermore, we introduce two filtering techniques to improve
the segmentation accuracy. The proposed methods are tested using real MR
images and artificial phantoms.

The rest of the paper is organized as follows: section 2 describes the proposed
filtering techniques and the multi-stage FCM-based bias- and gain field estima-
tion approaches. Section 3 provides a qualitative analysis and short discussion
of segmentation results. In Section 4 the conclusions are formulated.
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2 Methods

2.1 Context Dependent Pre-filtering

Impulse and Gaussian noises are removed from the original MR image using a con-
text dependent local filtering, which combines averaging and median filtering ef-
fects based on physical distances and gray level differences between neighbor pixels.

The proposed technique acts like a low-pass masking, but the mask weights are
separately computed for each pixel, based on the distances and gray level differ-
ences encountered within a neighborhood. The weight of each neighboring pixel
is the product of two terms: a distance term that decreases exponentially with
Euclidean distance measured from the middle pixel; and a gray level term, which
is high for pixels that have similar intensities with the middle pixel and low if they
differ significantly. The middle pixel gets its weight based on the reliability of its
gray level intensity. Details of such techniques are described in [5,16].

2.2 Conventional FCM Clustering and Derivations

The conventional FCM algorithm has been applied successfully in a wide variety
of clustering problems [3]. This algorithm optimally partitions a set of object data
into a previously set number of c clusters based on the iterative minimization of
a quadratic objective function. When applied to segment grayscale images, FCM
clusters the intensity value of each pixel xk, k = 1 . . . n. The objective function
to be minimized is given as follows:

JFCM =
c∑

i=1

n∑
k=1

um
ik||xk − vi||2 , (1)

where m > 1 is the fuzzy exponent or fuzzyfication parameter, vi represents the
centroid or prototype of the i-th cluster, and uik ∈ [0, 1] is the fuzzy membership
function indicating the degree to which pixel k belongs to cluster i. The defini-
tion of fuzzy logic implies that for any k = 1 . . . n, we have

∑c
i=1 uik = 1. The

constrained optimization of the objective function is achieved using Lagrange
multipliers. The minimization is reached by alternately applying the optimiza-
tion of JFCM over {uik} with vi fixed, i = 1 . . . c, and the optimization of JFCM

over {vi} with uik fixed, i = 1 . . . c, k = 1 . . . n [3]. In each cycle, optimal fuzzy
membership and optimal centroid values are computed using the formulas:

u�
ik =

||xk − vi||−2/(m−1)∑c
j=1 ||xk − vj ||−2/(m−1)

∀ i = 1 . . . c, ∀ k = 1 . . . n , (2)

and

v�
i =

∑n
k=1 u

m
ikxk∑n

k=1 u
m
ik

∀ i = 1 . . . c . (3)

After adequate initialization of cluster prototype values vi, eqs. (2) and (3) are
alternately applied until the norm of the variation of the vector v, composed of
the centroid values, stays within a previously set bound ε.
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The above presented algorithm clusters the set of data {xk}, which was
recorded among ideal circumstances, containing no noise. However, in the real
case, the observed data {yk} differs from the actual one {xk}: there are impulse
and Gaussian noises, which were treated in the previous subsection, and there
is the intensity non-uniformity (INU) artefact, which will be handled here.

Literature recommends two different data variation models for intensity in-
homogeneity: the bias and the gain field model. If we consider the INU as a
bias field, for each pixel k we will have yk = xk + bk, where bk represents the
bias value at pixel k. In case of gain field modeling, there will be a gain value
gk for each pixel k, such that yk = gkxk. In case of both models, the variation
of the intensity between neighbor pixels has to be slow. This is assured by the
smoothing filter presented in the next section.

In case of modeling INU as a bias field, the objective function becomes:

JFCM−b =
c∑

i=1

n∑
k=1

um
ik||yk − bk − vi||2 . (4)

Using the Lagrange multiplier technique, taking the derivatives of JFCM−b, with
respect to uik, vi and bk, respectively, and equaling them to zero, we obtain the
following optimization formulas:

u�
ik =

||yk − bk − vi||−2/(m−1)∑c
j=1 ||yk − bk − vj ||−2/(m−1)

∀ i = 1 . . . c, ∀ k = 1 . . . n , (5)

v�
i =

∑n
k=1 u

m
ik(yk − bk)∑n

k=1 u
m
ik

∀ i = 1 . . . c , (6)

and

b�k = yk −
∑c

i=1 u
m
ikvi∑c

i=1 u
m
ik

∀ k = 1 . . . n . (7)

If we approximate the INU artefact as a gain field, the objective function
should be:

JFCM−g =
c∑

i=1

n∑
k=1

um
ik||yk/gk − vi||2 . (8)

Because the derivatives of this function are hard to handle, we slightly modify
this objective function the following way:

JFCM−g =
c∑

i=1

n∑
k=1

um
ik||yk − gkvi||2 . (9)

This is an affordable modification, which distorts the objective function such a
way, that it gives slightly higher impact to lighter pixels (as their gain field value
will probably be over unity). Taking the derivatives of JFCM−g, with respect to
uik, vi and gk, respectively, and equaling them to zero, we obtain the following
optimization formulas:
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u�
ik =

||yk − gkvi||−2/(m−1)∑c
j=1 ||yk − gkvj ||−2/(m−1)

∀ i = 1 . . . c, ∀ k = 1 . . . n , (10)

v�
i =

∑n
k=1 u

m
ikgkyk∑n

k=1 u
m
ikg

2
k

∀ i = 1 . . . c , (11)

and

g�
k = yk

∑c
i=1 u

m
ikvi∑c

i=1 u
m
ikv

2
i

∀ k = 1 . . . n . (12)

Similarly to the conventional FCM, these optimization formulas are applied al-
ternatively in each iteration.

2.3 Smoothening Filter

The intensity inhomogeneity artefact varies slowly along the image. This prop-
erty is ignored by both the bias or gain field estimation approaches presented
above. To avoid this problem, a filtering technique is applied in each computa-
tion cycle, to smoothen the bias or gain field. This filtering introduces an extra
step into each optimization cycle, after proceeding with eq. (7) or (12).

Several, not only FCM-based INU compensation approaches apply large sized,
11-31 pixels wide averaging filters performed once or several times in each cycle
[18]. These filters efficiently hide tissue details, which may appear in the esti-
mated bk or gk values, at the price of transferring bias or gain components to
distantly situated pixels. Using larger averaging windows amplifies this latter
undesired effect. In order to reduce the transfer of bias data to distant pixels, we
need to check the necessity of averaging at all locations, and decide to proceed
or skip the averaging accordingly. Averaging is declared necessary or not, based
on the maximum intensity difference encountered within a small neighborhood
of the pixel. The computation of the maximum difference is accomplished by a
morphological gradient operation using a 3 × 3 square or slightly larger cross-
shaped structuring element. Wherever the morphological gradient value exceeds
the previously set threshold value θ, the averaged bias or gain value will be used;
otherwise the estimated value is validated. The proposed filter can be easily im-
plemented and efficiently performed by batch-type image processing operations.

2.4 Multi-stage Bias and Gain Field Estimation

Bias or gain field estimation using the previous FCM-based approaches [1,14]
can only handle the INU artefact to a limited amplitude. For any pixel, the
FCM algorithm assigns the highest fuzzy membership to the closest cluster.
Consequently, when the INU amplitude is comparable with the distance between
clusters, these pixels will be attracted by the wrong cluster, and the bias or gain
field will be estimated accordingly. The smoothing of the bias and gain field may
repair this kind of misclassifications, but the larger these wrongly labelled spots
are, the harder will be to eliminate them via smoothing.
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In order to deal with high-amplitude INU artefacts, we propose performing the
bias or gain field estimation in multiple stages. When the FCM-based algorithm
given by eqs. (5)-(7) or (10)-(12) has converged, we modify the input (observed)
image according to the estimated bias or gain field:

yk = y
(old)
k − bk or yk = y

(old)
k /gk , (13)

and then restart the algorithm from the beginning, using the modified input
image.

2.5 Algorithm

The presented algorithm can be summarized as follows:

1. Remove the Gaussian and impulse noises from the MR image using the
context dependent pre-filtering technique.

2. Initialize cluster prototypes vi, i = 1 . . . c, with random values differing
from each other.

3. Initialize the bias (gain) field values with 0-mean (1-mean) random numbers
having reduced variance, or simply set bk = 0 (gk = 1) for all pixels.

4. Compute new fuzzy membership function values uik, i = 1 . . . c, k = 1 . . . n,
using (5) or (10).

5. Compute new cluster prototype values vi, i = 1 . . . c, using (6) or (11).
6. Perform new bias or gain field estimation for each pixel k using (7) or (12).
7. Smoothen the bias or gain field using the proposed smoothing filter.
8. Repeat steps 4-7 until there is no relevant change in the cluster prototypes.

This is tested by comparing any norm of the difference between the new and the
old vector v with a preset small constant ε.

9. Modify the input image according to the estimated bias or gain field using
(13), and repeat steps 2-8 until the INU artefact is compensated. The algorithm
usually requires a single repetition.

3 Results and Discussion

We applied the presented filtering and segmentation techniques to several T1-
weighted real MR images, artificially contaminated with different kinds of noises.
Figure 1. demonstrates the efficiency of the pre-filtering technique on a real MR
slice taken from Internet Brain Segmentation Repository [6].

The results of bias and gain field estimation performed on a phantom image
are shown in Fig. 2. Conventional FCM is unable to compensate the INU artefact,
but with the use of smoothened bias or gain field, this phenomenon is efficiently
overcome.

In case of low-amplitude inhomogeneity, a single stage of bias or gain field es-
timation is sufficient. Figure 3. shows the accuracy and efficiency of the proposed
segmentation technique, using a real T1-weighted MR brain slice. The presence
of the smoothening filter supports the accurate segmentation, while the pre-filter
has a regularizer effect on the final result.



Multi-stage FCM-Based Intensity Inhomogeneity Correction 533

Fig. 1. Elimination of impulse and Gaussian noises demonstrated with a real T1-
weighted MR brain image contaminated with artificial noise: (a) original, (b) filtered,
(c) FCM segmentation after correction

Fig. 2. Inhomogeneity correction using a phantom: (a) original, (b) FCM segmentation
result without correction, (c) estimated bias field, (d) segmentation result with bias field
estimation, (e) estimated gain field, (f) segmentation result with gain field estimation

Fig. 3. Inhomogeneity correction demonstrated on an artificially contaminated real
MR image: (a) original, (b) FCM segmentation without correction, (c) result of FCM-
based segmentation with no pre-filtering, (d) result of FCM-based segmentation with
context sensitive pre-filtering
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Fig. 4. Segmentation of a heavily inhomogeneous real MR image: (a) original, (b)
segmentation without compensation, (c) bias field estimated in the first stage, (d)
compensated MR image after first stage, (e) FCM-based segmentation after first stage,
still unusable, (f) bias field estimated in the second stage, (g) final compensated image,
(h) segmented image, (i) a smoothening mask computed by the proposed filter

Table 1. Misclassification percentages with various smoothening filters, in case of
heavily INU-contaminated MR images

Structuring Window size 11 Window size 11 Window size 19 Window size 19
element execution once 3 times execution once 3 times

Averaging 7.357 % 5.766 % 4.368 % 7.141 %
3 × 3, square 6.281 % 6.201 % 2.852 % 3.379 %
5 × 5, cross 6.711 % 5.674 % 3.873 % 3.938 %
7 × 7, cross 6.254 % 5.518 % 3.470 % 5.029 %
11 × 11, cross 6.351 % 4.432 % 3.271 % 6.437 %
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Figure 4. shows the intermediary and final results of a segmentation process,
performed on a heavily INU-contaminated MR image. The inhomogeneity cor-
rection succeeds after two stages. Figure 4(i) shows the behavior of the proposed
smoothing technique: white pixels indicate places which required averaging in a
given computational cycle, while black ones signify those places where averaging
was unnecessary.

Table 1. shows the misclassification percentages of the proposed INU com-
pensation and MR image segmentation method, depending on the size of the
averaging window expressed in pixels, the structuring element of the morpholog-
ical criterion of the proposed filter, and the number of smoothening iterations
performed in each cycle of the modified FCM algorithm. The experimental data
reveal that the proposed filtering technique improves the segmentation quality
assured by the averaging filter. The best segmentation was obtained using a
3 × 3 square shaped structuring element used by the morphological criterion,
combined with averaging using a window size of 19× 19 pixels.

Using several repetitive stages during INU compensation may reduce the in-
tensity difference between tissue classes, which leads to misclassifications. That
is why the estimation is limited to two steps, performing several stages is not
recommendable.

4 Conclusions

A novel multi-stage approach has been proposed to produce accurate segmen-
tation of INU-contaminated magnetic resonance images. A new smoothing filter
has been proposed to assist bias or gain field estimation embedded into the
FCM-based algorithmic scheme.

The proposed method proved to segment accurately and efficiently MR im-
ages in the presence of severe intensity non-uniformity. Although the proposed
method segments 2-D MR brain slices, it gives a relevant contribution to the
accurate volumetric segmentation of the brain, because the segmented images
and the obtained fuzzy memberships can serve as excellent input data to any
level set method that constructs 3-D cortical surfaces.

Further works aim at developing a context sensitive pre-filter for the elimina-
tion of INU artefacts, too, so that the segmentation can be performed using a
histogram-based quick FCM algorithm [15].
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Abstract. Most of the current advanced clinical decision support sys-
tems rely on some form of computational intelligence methodologies. As
the machine intelligence paradigm shifted towards brain-inspired com-
puting approach, it is interesting to investigate the performance of such
a computing methodology in clinical data analysis. The human cere-
bellum constitutes a vital part of the brain system that possesses the
capability to accurately model highly nonlinear physical dynamics. This
paper presents a novel brain-inspired computational model of the human
cerebellum named the kernel density-based CMAC (KCMAC) model for
clinical decision support. The structure of the KCMAC model is inspired
by the neurophysiological aspects of cerebellar learning and development
process. The proposed KCMAC model is then applied to two medical case
studies; namely, breast cancer diagnosis and the modeling of the human
glucose metabolic process. The experimental results are encouraging.

1 Introduction

In recent years, medical information processing and decision support systems
have become increasingly important with the need to analyze the huge amount
of medical data that is generated through various clinical procedures. Such sys-
tems provide an objective and consistent approach to information handling that
enable doctors and clinicians to extract valuable knowledge from existing data
to enhance their diagnosis and clinical decisions. Computational intelligence and
machine learning techniques have been the predominating approach to medical
decision support systems, with the ultimate objective of developing an intelligent
system that is capable of large-scale human-like analysis of clinical data.

The traditional approach to machine intelligence thus far has provided many
achievements, but has generally fallen short of the vision of developing ver-
satile human-like intelligent systems. Revolutionary advances may be possible
by building upon new approaches inspired by cognitive psychology and neuro-
science. Such approaches have the potential to help researchers understand and
model significant aspects of intelligence thus far not attained by classic formal
knowledge modeling techniques. With regard to this notion, brain-inspired com-
puting (BIC) architectures are an actively pursued topical research [1,2], where
the primary focus is to develop advanced computing structures and information

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 537–546, 2008.
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processing systems that are often inspired by the neurophysiologic understanding
of the underlying neural organisation, physiological functions and signal path-
ways of the various brain systems. Given that the most fundamental aspects
of the human intelligence are arguably the capacity for learning and memory,
the main objective of BIC research is therefore to emulate and replicate facets
of the human intelligence via a functional description of the mechanisms and
processes involved in human learning and memory formation. This is achieved
through the use of computational intelligence and soft computing techniques to
construct intelligent brain-inspired computing systems that possess human-like
information processing capabilities.

One of the most extensively explored regions of the human brain is the cere-
bellum. As a motor movement calibrator [3], the human cerebellum possesses
the capability to model highly complex and nonlinear physical dynamics to
facilitate the precise and rapid executions of dexterous movements and fluid
motor reflexes. The rapid and non-linear function learning capability of the hu-
man cerebellum has motivated the development of many computational models
to solve ill-defined, complex problems. The Cerebellar Model Articulation Con-
troller (CMAC) [4] is an established computational model of the human cere-
bellum. CMAC manifests as an associative memory network, and employs error
correction learning to drive its memory formation process. This allows for advan-
tages such as fast computation and ease of hardware implementation. However,
CMAC employs a rigid and highly regularized grid-like computing structure that
leads to poor memory utilization and a trade-off between the generalization ca-
pability and the modeling accuracy of the model [2]. Moreover, the multi-layered
structure of CMAC often renders the network operation difficult to comprehend.

This paper proposes a brain-inspired cerebellar-based learning memory model
named kernel density-based CMAC (KCMAC) as a functional model of the hu-
man cerebellum to facilitate knowledge construction for medical decision sup-
port. The proposed KCMAC model adopts a zero-ordered Takagi-Sugeno-Kang
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Fig. 1. Comparison of CMAC and KCMAC architectures for a 2D input problem
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(TSK) [5] fuzzy model to define its network computations. This novel archi-
tecture differs from the CMAC network in two aspects. Firstly, the KCMAC
network employs only one layer of network cells but maintained the computa-
tional principles of the multi-layered CMAC network by adopting a fuzzy neigh-
borhood activation of its computing cells. This facilitates: (1) smoothing of the
computed output; (2) a distributed learning paradigm; and (3) enhanced data
generalization ability. Secondly, instead of a uniform quantization of the memory
cells, the KCMAC model employs kernel density estimation [6] to form an adap-
tive fuzzy partitioning of its network cells. Figure 1 illustrates this fundamental
architectural distinction. The proposed KCMAC model is inspired by various
neurophysiological studies on the cerebellar learning and development process,
where it has been shown that motor skill learning and experience results in the
multi-resolution characteristics of the cerebellar connections [7]. In addition, un-
like CMAC which assigns equal weightage to all of its activated memory cells,
KCMAC employs a fuzzy neighborhood activation scheme that modulates the
activation level of each activated cell based on its computed fuzzy similarity
to the input. Such a graded activation not only ehances the accuracy of the
computed output, but also increases the interpretability of the computation.

The rest of the paper is organized as follows. Section 2 briefly describes the
neurophysiological properties of the cerebellum that inspired the development
of the KCMAC model and outlines the basic computational principles of the
CMAC network. In Section 3, the architecture of the proposed KCMAC model
is presented. Section 4 evaluates the performance of the KCMAC model on two
medical applications; namely: (1) breast cancer diagnosis; and (2) modeling the
human glucose metabolic process. Section 5 concludes this paper.

2 Human Cerebellum and the CMAC Network

The human cerebellum functions primarily as a movement regulator, where it is
provided with an extensive repertoire of information about the objectives, motor
commands and feedback signals associated with a physical movement. Studies in
neuroscience have established that the cerebellum performs an associative map-
ping from the input sensory afferent and cerebral efferent signals to the cerebellar
output, which is subsequently transmitted back to the cerebral cortex [3]. This
physiological process of constructing an associative pattern map constitutes the
underlying neuronal mechanism of learning in the cerebellum.

Learning in the human cerebellum is facilitated by the modifiable synaptic
transmissions (cerebellar synaptic plasticity) and the synaptic reorganization ca-
pability (cerebellar structural plasticity) of the neuronal connections. Research
into the physiology of the cerebellum has sufficiently demonstrated that Long
Term Depression (LTD) modifies the synaptic weights of the cerebellar neu-
ronal connections and it is the underlying cellular mechanism responsible for
cerebellar synaptic plasticity [3]. However, further studies have suggested that
synaptic depression alone may not be adequate for forming permanent, long term
memories of motor programs [8]. Instead, there are evidences of morphological
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alterations of the cerebellar cortex following extensive cerebellar learning. Stud-
ies on the experience-driven cerebellar structural plasticity phenomenon have
demonstrated that motor skill learning actually leads to an increased dendritic
aborization of the activated cerebellar Purkinje cells [7]. This implies that during
the motor learning process, the activated Purkinje cells grow to be more com-
plex to encode more of the training episodes. Such an observation constitutes
a learning-driven biological manifestation of the multi-resolution nature of the
cerebellar circuitry. These neurophysiological properties of cerebellar learning
and memory formation subsequently provides the neuroscience inspirations for
the development of the proposed KCMAC model presented in this paper.

The CMAC network [4] is an established computational model of the human
cerebellum. It is essentially a multi-dimensional memory array, where an input
acts as the address decoder to access the respective memory (computing) cells
containing the adjustable weight parameters that constitute the corresponding
output. In the CMAC network, the memory cells are uniformly quantized to
cover the entire learning space (see Figure 1(a)). The operation of the CMAC
network is then characterized by the table lookup access of its memory cells.
Each input vector to the CMAC network selects a set of active computing cells
(one winner neuron from each layer) from which the output of the network is
computed. CMAC employs equal activation for all its activated computing cells
such that the network output is the aggregate of the weights of these activated
cells. Following that, CMAC learns the correct output response to each input
vector by modifying the contents of the selected memory locations.

Although the look-up table structure of the CMAC network allows for rapid
algorithmic computations, the static uniform allocation of the CMAC mem-
ory cells saddles the network with several major limitations [2]. The uniform
quantization of each input into crisp receptive fields results in a static output
resolution for the entire input range. Its output granularity thus depends on the
network size. There is also a trade-off between the generalization capability and
the modeling fidelity of the network. That is, a small-sized CMAC is able to bet-
ter generalize the characteristics of the training data, while a large-sized CMAC
produces more accurate outputs. Finally, the layered structure of the CMAC
computing cells often leads to limited comprehensibility of the computation.

3 The KCMAC Model

In this section, a novel cerebellar model that addresses the above-mentioned
CMAC problems is presented. The proposed KCMAC model employs a two-
phased learning process; namely: structural learning and parameter tuning. The
objective of the structural learning phase is to construct the KCMAC’s asso-
ciative structure by performing adaptive fuzzy partitioning of its input dimen-
sions. Subsequently, the input to output associative information of the training
data samples is learnt by adapting the memory contents of the KCMAC model
during the parameter tuning phase. The initial step in the KCMAC structural
learning phase is to identify the data density profile of each input dimension.
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Fig. 2. Gaussian kernel density estimation for an input dimension

Subsequently, a fuzzy receptive field is assigned to each of the identified den-
sity clusters to emulate the biological experience-driven dendritic aborization
phenomenon observed in the cerebellar learning process during skill acquisition.

The structural learning process of the KCMAC model proceeds as follows:

1. Computation of the data density clusters
Figure 2 illustrates the computation for the density profile of an input di-
mension of the KCMAC model. To generate the density profile of a given
dimension, KCMAC employs the kernel density estimation technique. Each
training data point generates a stand alone gaussian-shaped density distrib-
ution. An overall density profile is then obtained by aggregating the density
contributions of all the training points. Following that, the appropriate num-
ber of density clusters of a given dimension is determined by locating the
local maximas (peaks) of the generated data density profile (see Figure 2).

2. Definition of the KCMAC receptive fields
Each of the identified density clusters subsequently forms a fuzzy receptive
field in the corresponding input dimension. KCMAC adopts a fuzzy pseudo-
partition with asymmetric gaussian membership functions, where the fuzzy
receptive fields are centered at the respective centroids of the density clusters.

3. The KCMAC memory allocation
Finally, each KCMAC computing cell is formed from the multi-dimensional
intersection of a receptive field from each of the input dimensions.

In the parameter tuning stage, KCMAC employs a fuzzy neighborhood ac-
tivation of its computing cells to learn the correct output response to a given
stimulus. For each input stimulus X, the computed output is derived as follows:

1. Determine the fuzzy neighborhood activation
Each input stimulus X = [x1, · · · , xd, · · · , xD]T activates a fuzzy neighbor-
hood of KCMAC computing cells, which consists of the cells that are de-
fined by the intersections of the activated fuzzy receptive fields in each input
dimension (see Fig 1(b)). Each fuzzy receptive field Qd,j in each input di-
mension d generates a membership value μd,j(xd) with respect to the input
stimulus for that dimension. A KCMAC input fuzzy receptive field Qd,j is
activated if and only if μd,j(xd) ≥ εμ, where εμ is the activation threshold.

2. Compute the strength of the activated rules
Each activated rule (computing cell) has a varied degree of activation that
is proportional to the membership values of its receptive fields. The rule
activation strength of the kth activated computing cell is computed as:
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λk = min
d∈[1,D]

μd,jd,k
(xd) (1)

where jd,k is the index of the receptive field of the kth activated cell in the dth

input dimension. These degrees of activation functioned as weighting factors
to the stored contents of the active cells.

3. Compute the KCMAC output
The output Y is the weighted sum of the memory contents of the active cells:

Y =
∑
k∈K

λk∑
k′∈K λ′k

W (k) (2)

where K denotes the set of activated KCMAC computing cells and W (k) is
the stored weight value of the kth activated cell.

Following this, the network learning process is briefly described as follows:

1. Computation of the network output at the ith training iteration
The output Y (i) of the network corresponding to the input stimulus X(i) is
computed as described above.

2. Computation of the learning error at the ith training iteration
The learning error Err(i) is defined as the difference between the expected
output Ŷ (i) and the current output of the KCMAC model Y (i).

Err(i) = Ŷ (i) − Y (i) (3)

3. Update of the activated KCMAC cells
The learning error is subsequently distributed to all of the activated cells
based on their respective activation strength:

W (i+1)(k) = W (i)(k) + α
λk∑

k′∈K λ′k
Err(i), k ∈ K (4)

where α is the network learning constant.

4 Case Studies

4.1 Breast Cancer Diagnosis

Breast cancer is a malignant tumor that develops when cells in the breast tissue
divide and grow without the normal controls regulating cell death and cell divi-
sion [9]. Although breast cancer is the second leading cause of cancer death in US
women, the survival rate is high when treated early. With early diagnosis, 97%
of the patients survive for 5 years or more [10]. The traditional method of surgi-
cal biopsy for breast cancer diagnosis is painful and highly invasive. Currently,
the Fine Needle Aspiration (FNA) method offers the best alternative to biopsy
as it is cost effective, non-traumatic and one of the most non-invasive meth-
ods available. The Wisconsin Diagnostic Breast Cancer (WDBC) dataset [11]
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Table 1. Classification performance of the various benchmarked systems

Classification Rate (CR) [%] Mean CR StdDev CR
System CV1 CV2 CV3 CV4 CV5 [%] [%]

CMAC 92.43 88.64 91.20 91.95 89.63 90.77 1.5945
KCMAC 95.28 96.15 95.70 95.98 96.52 95.93 0.4675
GenSoFNN 94.52 92.73 93.40 94.36 94.57 93.916 0.8159
LR 95.67 93.52 95.93 94.06 96.55 95.15 1.2926
IDTM 89.61 91.57 92.17 87.5 92.83 90.74 2.1723
RBF 93.64 94.39 88.11 91.43 94.39 92.39 2.6834

is commonly used as a benchmarking data set to evaluate the performances of
medical decision support systems. The data is based on the FNA test. There
are two classes of tissue samples; namely malignant (denoted as “1”) and benign
(denoted as “0”). The dataset comprises of 569 samples with 357 and 212 in-
stances of benign and malignant cases respectively. A total of thirty real-valued
features of the cell nucleus were computed for each data sample, as described
in [11]. Due to the large number of input features available, a feature selection
algorithm named Monte Carlo Evaluative Selection (MCES) [12] is employed
to identify the prominent features for the correct classification of the cancerous
tissues. From the MCES algorithm, the top five features are selected for this
classification study. These five features are: worse area, mean concave points,
worse concave points, worse texture, and mean perimeter.

Based on the five selected features, the breast cancer diagnosis task is per-
formed using KCMAC and several benchmarked architectures that include the
basic CMAC, a well-established fuzzy rule-based system named Generic Self-
Organizing Fuzzy Neural Network (GenSoFNN) [13], as well as the classical
techniques of Linear Regression (LR), Decision Table (IDTM), and Radial Basis
Function (RBF) network. The parameters of all the models have been empirically
optimized for best performance. Five cross-validation (CV) groups are created to
evaluate the classification performances of the various models. Each CV group
consists of one training and one test set. The WDBC dataset is initially segre-
gated into positive and negative data pools. For each CV, 50% of both pools are
randomly selected as training data and the remaining 50% constitutes the test
set. Table 1 tabulates the classification rates achieved by the various evaluated
models. The classification rate is computed as the point where sensitivity equals
specificity in the receiver-operating-characteristic (ROC) curve. As shown in
Table 1, KCMAC achieved the best average classification rate (Mean CR) and
the lowest CR variation across all the evaluated models. The multi-resolution
structure and the fuzzy neighborhood computation of the KCMAC model results
in a substantial improvement of 5.7% in the mean CR value as compared to that
of the basic CMAC model. This set of results further reinforced the importance
of judicious allocation of the computing cells in a cerebellar-based model. In ad-
dition, the adaptive memory allocation of the KCMAC model is able to derive
an appropriate number of fuzzy receptive fields in each input dimension based on
the characteristics of the training data. Finally, the implementation of the TSK
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Table 2. Sample fuzzy rules extracted from the KCMAC model with training set CV1

Positive Rule
IF worse area is medium and mean concave points is medium-large and worse con-
cave points is large and worse texture is medium and mean perimeter is medium-
large THEN data sample is MALIGNANT

Negative Rule
IF worse area is medium and mean concave points is medium-small and worse con-
cave points is small and worse texture is medium and mean perimeter is medium-
small THEN data sample is BENIGN

fuzzy operations on the proposed KCMAC model also allows for the extraction
of fuzzy rules for human analysis as tabulated in Table 2.

4.2 Modeling the Human Glucose Metabolic Process

Diabetes is a chronic disease where the body is unable to properly and efficiently
regulate the use and storage of glucose in the blood. The key component to a
successful management of diabetes is essentially to develop the ability to main-
tain long-term near-normoglycaemia state of the patient. With respect to this
objective, accurate modeling of the human glucose metabolic process precedes
the search for a suitable therapy regime.

In this study, the function approximation capability of the proposed KCMAC
model is evaluated through the modeling of the dynamics of the healthy human
blood glucose cycle. A well-known simulator named GlucoSim [14] is employed
to simulate a healthy subject to generate the blood glucose data needed for
the study. The simulated healthy person, referred to as Subject A, is a typical
middle-aged Asian male. Based on the profile of Subject A, his recommended
daily allowance (RDA) of carbohydrate intake from meals is computed and this
RDA is used to design his simulated eating patterns. It is hypothesized that
the instantaneous human blood glucose level is a non-linear function of prior
food intakes and the historical traces of the insulin and blood glucose levels. To
properly account for the effects of prior food ingestions to the fluctuations of
the blood glucose level, three normalized weighting functions are introduced to
compute the carbohydrate content of the meal(s) taken within the recent (i.e.
previous 1 hour), intermediate past (i.e. previous 1 to 3 hours) or long ago (i.e.
previous 3 to 6 hours) periods. The details on the data collection process is
reported in [2]. There are a total of five inputs to the KCMAC glucose model.

A total of 100 days of glucose metabolic data for Subject A are generated using
GlucoSim. The carbohydrate contents and the timings of the daily meals were
varied on a daily basis during the data collection phase. The collected data set is
partitioned into two non-overlapping groups: 20 days of data for training and the
remaining 80 days for evaluation. Simulations to model the dynamics of the blood
glucose level of Subject A using the KCMAC model were performed and the
results were benchmarked against those of the basic CMAC, the Hierarchically
Clustered Adaptive Quantization CMAC (HCAQ-CMAC) [2], the GenSoFNN
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Table 3. Comparison of modeling performances for the various benchmarked models

Recall Generalization
Models RMSE [mg/ml] Pearcorr RMSE [mg/ml] Pearcorr

CMAC 16.3755 0.9210 17.8086 0.9190
HCAQ-CMAC 9.9606 0.9715 10.4312 0.9748
GenSoFNN 13.7240 0.9600 13.8150 0.9400
KCMAC 5.5115 0.9914 6.2974 0.9900
MLP 4.9314 0.9962 5.2116 0.9962
RBF 10.6622 0.9673 11.8027 0.9638

model, as well as the classical MLP and RBF networks. The parameters of all the
models have been empirically optimized for best performance, and the structure
of the MLP network consists of five input, ten hidden and one output nodes
respectively. Table 3 details the recall (training) and generalization (testing)
performances of the various models. Two performance indicators are employed
to quantify the modeling quality of the networks: the root mean-squared error
(RMSE) and the Pearson correlation coefficient between the actual and the
computed blood glucose level.

From Table 3, one can observe that MLP possesses the most accurate mod-
eling performance as compared to the other benchmarked systems. However, it
is a black-box model as its complex synaptic connections are hardly human in-
terpretable. Moreover, the need to empirically determine the network structure
often renders the MLP network hard to use. On the other hand, the proposed
KCMAC model achieved a highly comparable modeling performance to the MLP
network while at the same time offers interpretability of its network computa-
tions. Furthermore, the accuracy of the computed KCMAC glucose output far
exceeded those of the other benchmarked models as evidenced by the simulation
results tabulated in Table 3. To further analyze the modeling performance of the
KCMAC model, a three-days modeling result of the KCMAC glucose model is
compared against the actual observed blood glucose dynamics and the results
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are depicted as Figure 3. The glucose plots in Figure 3 clearly demonstrated the
superior modeling performance of the KCMAC model.

5 Conclusions

This paper proposes a novel neurophysiologically-inspired computational model
of the human cerebellum named KCMAC for medical decision support. The pro-
posed KCMAC model extends from the classical CMAC by employing a multi-
resolution organization scheme of its computing cells and adopting the TSK
fuzzy model to define its network computation. The proposed KCMAC model
was subsequently evaluated on two medical problems; namely, breast cancer di-
agnosis and the modeling of the human glucose metabolic cycle. The simulation
results presented in Section 5 of the paper have sufficiently demonstrated the
strengths of the proposed KCMAC model as a medical decision support system
when benchmarked to other established computational models.
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Abstract. In this paper the use of topological clustering for decod-
ing population neuronal responses and reducing stimulus features is de-
scribed. The discrete spike trains, recorded in rat somatosensory cortex
in response to sinusoidal vibrissal stimulations characterised by different
frequencies and amplitudes, are first interpreted to continuous temporal
activities by convolving with a decaying exponential filter. Then the self-
organising map is utilised to cluster the continuous responses. The result
is a topologically ordered clustering of the responses with respect to the
stimuli. The clustering is formed mainly along the product of amplitude
and frequency of the stimuli. Such grouping agrees with the energy coding
result obtained previously based on spike counts and mutual information.
To further investigate how the clustering preserves information, the mu-
tual information between resulting stimulus grouping and responses has
been calculated. The cumulative mutual information of the clustering re-
sembles closely that of the energy grouping. It suggests that topological
clustering can naturally find underlying stimulus-response patterns and
preserve information among the clusters.

Keywords: Spike trains, clustering, self-organising maps, mutual in-
formation, barrel cortex.

1 Introduction

The stimulus information encoded in spike trains from multiple neurons or sites
is a primary focus of research in neuroscience and is often examined in terms of
various responses or features such as spike counts, firing rate, first spike latency,
mean response time and interspike interval. Recent advances allow recordings
up to hundreds of channels simultaneously [4][7][8]. However interpretation of
these recordings and therefore interactions among neurons critically depends
on accurately identifying activity of individual neurons. The massive response
data arrays recorded in a large number of experiments pose great challenges
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for analysis and modelling of neuronal functions [3]. Not enough progress has
yet been made on developing suitable data analysis methods that can efficiently
analyse the wealth of the data and help determine how neurons encode external
stimuli and exchange information to produce a reliable neuronal population code
of sensory events.

Spike trains from multiple neurons are multi-dimensional point process [4].
These processes are stochastic in nature and their properties change over time
in a manner that can often be characterised by a probability model describing
the likelihood of spikes at a given time. Most of the standard signal processing
methods are designed primarily for continuous-valued signals. It is difficult to
directly evaluate how two spike trains synchronise or how they differ in their
firing patterns. In addition, high dimensionality and massive response arrays of
the spike trains in a growing number of experiments make systematic interpreta-
tion of the data and decoding of neuronal functions one of the biggest challenges
facing the field.

Clustering is a classic technique of statistical data analysis and is used in many
fields for discovering interesting patterns and underlying structures of the data
[5]. Clustering can help discover intrinsic groups in the data and summarise
the data. Many clustering methods have been proposed and studied [5]. The
self-organising map (SOM) [6] has recently become a one of the widely used
clustering algorithms (e.g. [11]) owing to its topology preserving property along
the data manifold. The SOM uses an array of nodes, often arranged in 2-D, to
quantise the data space, so forming a set of prototypes. In such a way the SOM
can be and has been used to visualise high dimensional data sets. The SOM has
been linked with the principal manifold as well as multidimensional scaling [15].

The aim of this paper is to use cluster analysis for population spike trains
so that to prototype the neuronal responses and reduce the response space and
stimulus features. It is also to study whether or how clustering will preserve
the information among the responses with respect to stimuli. The binary point
processes of spike trains are first interpreted as continuous synchronous processes
by inserting a causal decaying exponential kernel at each spike. Then interpreted
spike functions are grouped by the topology-preserving SOM. Clustering reveals
the underlying response patterns and their relationship with the stimuli. The
paper is organised as follows. In Section 2 the neuronal response data is de-
scribed, along with the previous work on decoding such data sets. Preprocessing
of binary spike train is described and training the SOM is presented in Section
3, together with the results and comparison of mutual information preservation
of various groupings. Section 4 concludes the work.

2 Neuronal Responses and Mutual Information

This section describes the stimuli and neuronal responses studied in the paper.
Spike count and spike timing are two principal media in conveying information
in neuron population in existing studies. Mutual information is used to quantify
the information between stimuli and responses.
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2.1 Data

The data set used in this study consists of simultaneously recorded spike re-
sponses obtained from the whisker representation in the rat somatosensory (“bar-
rel”) cortex taken from a previously published series of experiments of Diamond
and colleagues [1][2], where full details of the experiments are reported.

The stimuli were sinusoidal whisker vibrations characterised by different am-
plitudes (A) and frequency (F ) and induced with high repeatability and tem-
poral precision by a piezoelectric wafer. Seven A’s and seven F ’s give a total
of 49 combinations. Recorded signals of 100 channels (electrodes) were analysed
using standard neurophysiological criteria [9], and only channels containing well
detectable spiking responses from barrel cortex neurons were retained for further
analysis [1]. In this study, a set of 24 simultaneously recorded responses (in spike
format) were used. The data is in the form of bit-arrays (0 = no spike and 1= a
spike in the considered time bin). In each trial, the 0-100 ms post-stimulus time
was divided into 100 1-ms long time bins.
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Fig. 1. Stimuli in terms of 7 frequencies (horizontal axis) and 7 amplitudes (vertical
axis) of the sinusoidal whisker vibrations. In total there are 49 stimuli indicated by the
number in each box. Colour map denotes the spike counts recorded in all channel.

Each stimulus is a combination of two features, frequency and amplitude, of
the vibration. The frequency and amplitude on each trial were taken from the set
of seven values (frequency = 19, 30, 50, 81, 131, 211 and 341 Hz; and amplitude =
8, 12, 21, 33, 54, 87 and 140 μm). The resulting 49 different frequency-amplitude
combinations are represented in Fig. 1, with horizontal axis representing the fre-
quency and vertical the amplitude. The number in each box represents the stim-
ulus number (1-49). The stimuli 1 to 7 are the seven amplitudes combined with
the lowest frequency. Similarly, stimuli 8 to 14 are the seven amplitudes com-
bined with the second-lowest frequency, and so on. These stimuli were presented
in the experiments in pseudo-random order 200 times per stimulus [1].
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The previous studies have shown that the spike-count responses to these stim-
uli were not proportional to amplitude or frequency of the vibration alone, but
were related to the product of the both, i.e. AF [1][2]. Since AF represents the
vibration energy, this type of stimulus selectivity corresponds to the hypothe-
sis that neurons respond to the energy and would lead to an idealised stimulus
grouping by energy. The stimuli are grouped on the basis of their log(AF ) values.
The energy coding hypothesis can be approximately verified by considering the
spike counts (on 0-500 ms post-stimulus [1]). Fig. 1 reports such spike counts,
in which the colour in each box (A and F combination) denotes the total spike
count of that stimulus in all channels. It can be appreciated that the spike count
is approximately proportional to log(AF ).

However, it has been demonstrated that, in addition to spike counts, the
timing of individual spikes also carry information about the stimulus [9]. It is
therefore important to investigate whether the neurons tend to respond primar-
ily to energy even when we take into account the timing of the individual spikes
and not only the spike counts. This issue is difficult to investigate with previ-
ously used algorithms [10]. We therefore developed a new approach to decoding
population spike trains. We consider spike trains as temporal firing patterns or
events and then we cluster synchronous spike trains in order to uncover under-
lying stimulus-response relationships. In this paper, we use the first 100 ms of
the data set as most information is retained in this period [2].

2.2 Mutual Information Analysis of Population Responses

Information theoretical approach employs Shannon information theory (entropy)
to quantify the “information” encoded in the responses with respect to the stim-
uli. Mutual information between a stimulus and evoked response tells the excess
amount of code (information) produced or required by erroneously assuming
that the two are independent, and thus is a natural way to quantify the devia-
tion from independence between the stimulus and the response. In other words
it shows how relevant the response is with respect to the stimulus.

In the vibrissal stimulation experiment on the “barrel” cortex, the mutual
information between the stimuli, combinations of frequency and amplitude, {(A,
F )}, and the response, r, can be expressed as [2],

MI({A,F};R) =

〈∑
r

P (r|A,F ) log2

P (r|A,F )
P (r)

〉
{A,F}

, (1)

where P (r|A,F ) is the conditional probability of observing a neuronal response
r given a stimulus, i.e. a combination of (A,F ); P (r) is the marginal probability
of response r, i.e. the average of P (r|A,F ) across all stimuli; and < . . . >{A,F}
denotes the average over all stimuli. As all stimulus, {(A,F )}, were set equally
probable, such an average is used. If different stimuli have different probabilities,
then the probabilities P (A,F ) should be used as the weightings in the average.

To study which stimulus feature or what combination of features are encoded
in the response. The mutual information between the response and individual
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features as well as various groupings of the features can be studied. It is widely
believed that neurons encode few stimulus features. Previous studies [1][2] re-
veal that the grouping of AF carries the most information compared to other
combinations. The mutual information between a (hypothetical) grouping of the
stimulus features, g, and the response, r, can be expressed as [2],

MI(g;R) =

〈∑
r

P (r|g) log2

P (r|g)
P (r)

〉
g

(2)

Comparing MI(g;R) and MI({A,F};R) can tell whether the grouping encode
the information conveyed in the response.

3 Topological Clustering of Population Responses

The use of clustering for spike trains can reveal underlying or natural grouping
of the stimulus features encoded in the responses and reduce data quantity and
feature dimension. To use any clustering algorithm on spike trains, a metric has
to be defined. There exist a number of distance measures for spike trains [13].
Recently a novel spike distance has been proposed [12]. Spike trains are con-
volved with a causal decaying exponential kernel, so resulting continuous spike
functions. Then the Euclidean distance or correlation function can be used to
differentiate the spike functions. The SOM is chosen as the clustering algorithm
due to its various advantages such as topology preservation among clusters and
robust to noise and outliers. The SOM and its variants (e.g. ViSOM [14]) have
been widely used to dimension-reduction mapping and data visualisation and
have recently been associated with the principal manifold and multidimensional
scaling [15].

3.1 Interpolating Spike Trains

There are several measures for spike trains such as edit distance and Euclidean
distance (see [13] for a review). In [12], it has been proposed to apply a causal
exponential kernel on each spike so that bit-arrays occupy a range of values or
become a continuous function to enable comparison (such as correlation) between
the spike trains - thus giving more appropriate interpretation.

Previous work on clustering of spike trains mainly relies on binning [7]. How-
ever, binning may not be effective when measuring synchronous neural (spiking)
activities. In order to observe similarity between spike trains, one can convolve
each spike with a decaying exponential kernel [12]. The parameter τ is carefully
chosen so that if spike count is needed to be calculated, it remains very close to
the spike count of the original bit-array.

Decaying exponential smoothed spike train can be expressed as,

f =
N∑

k=1

e−(t−tk)/τu(t− tk), (3)
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Fig. 2. (a) A typical spike train, (b) a (continuous) spike function after convolving a
causal decaying exponential kernel with each spike

where N is the total number of spikes in the spike train, k denotes the k-th spike
and tk its time, τ is the decaying constant, and u(.) is the unit step function.

The resulting response function of a typical spike train shown in Fig. 2(a)
is plotted in Fig. 2(b). A decaying exponential kernel is inserted at each spike
location. The decaying constant reflects the decaying speed. In calculation a
window is used for each kernel, whose size covers its effective range for convolving
the spike. It can be from 5-10 ms [12]. The window size is set to 10 ms in this
study.
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on spike functions interpreted by causal decaying exponential kernel. Horizontal axis:
time (ms).
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Euclidean distance can then be used to measure the similarity between the
kernel-smoothed spike trains. The distance between two spike trains Si(t) and
Sj(t) is calculated as,

dij =

(
T∑

t=1

[Si(t)− Sj(t)]2
)1/2

, (4)

where T is the total number of time points. T=100 in this study.

3.2 Topological Clustering of Population Responses

As it has been shown, the “barrel” cortex neuronal response to simulated vibra-
tion is a function of a single feature, i.e. product of A and F [2]. Thus we have
chosen to use a 1-D SOM. The size of the SOM was chosen through a validation
process. The best results were verified on the size of 1×13. The SOM was trained
on randomly selected spike trains from all the trials. The neighbourhood size was
varied slowly from 13 to 1 whereas the learning rate decreased slowly from 0.6
to 0.05. This seemed to ensure a good convergence of SOM [6].

Table 1. Main SOM clusters of stimuli and corresponding AF and spike count codes

Cluster Stimuli log(AF ) ln(spike count)

35 4.26 4.47
41 4.26 4.47

Cluster 1 42 4.47 4.63
48 4.47 4.63
49 4.68 4.53

28 4.05 4.32
34 4.06 4.23

Cluster 2 40 4.06 4.22
46 4.05 4.43
47 4.27 4.47

21 3.85 4.04
27 3.85 3.99
33 3.85 3.89

Cluster 3 38 3.65 3.69
39 3.84 3.99
44 3.61 3.91
45 3.85 4.23

14 3.62 3.61
Cluster 4 20 3.64 3.71

26 3.64 3.61
32 3.64 3.53
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One of the unique properties of SOM -compared to other clustering methods
-is that the resulting clusters are topologically ordered on the map, at least par-
tially if a global topological order is not achievable or does not exist. In other
words, the mapping is to cluster the data and also to preserve the topology (the
order) among the clusters. The SOM has been linked with the principal manifold
as well as multidimensional scaling [14][15]. The SOM forms or extracts a mani-
fold in the response space. In this study, the SOM is trained on the spike trains
smoothed by the decaying kernel. The nodes of the SOM will present stimuli
clusters or prototypes topologically formed on a 1-D manifold. The resulting
prototypes of the SOM are shown in Fig. 3 (row by row). The stimulus-response
relationship captured by the resulting manifold can be confirmed by mutual
information preservation, as it will be seen in the next sub-section.

In total 7 significant clusters have been formed. The first four main clusters
formed by the SOM are listed in Table 1. Stimuli and their corresponding AF
and spike count codes are shown. The other clusters are mainly weak responses.
From the table, it can be seen that the grouping yields similar codes to the
energy code revealed in the previous studies [1][2].

3.3 Mutual Information Decoding

To further investigate how the clustering preserve the information encoded in
the responses, the cumulative mutual information between the clusters and the
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responses is calculated using Eq. (2). The mutual information of the responses
with respect to the idealised grouping (i.e. energy grouping, AF ), the entire
stimulus set (i.e. no grouping), individual features (F and A), and A/F grouping
are also calculated for comparison. The results are shown in Fig. 4. It can be seen
that the mutual information of the SOM clustering follows closely that of the
energy grouping and that the clustering preserves the most information encoded
in the response set. The small discrepancy may be due to the limited sample
effect as well as the further reduction of the stimulus groups (from 13 to 7).

One advantage of using clustering for decoding spike trains information is
that when idealised grouping cannot be inferred and is not obtainable in ana-
lytical forms, clustering can simply form response groups among key stimulus
features. Clustering is often nonlinear and thus can detect naturally nonlinear
relationships among stimuli and responses.

4 Conclusions

In this paper, clustering of decaying-exponential-kernel smoothed spike trains
using the self-organising map is investigated. The resulting topological cluster-
ing can reveal the underlying manifold of the stimulus space and thus decode
the stimulus-response relationship. This new approach has been applied to de-
coding the responses recorded from rat somatosensory cortex to whisker vib-
rissal stimulation. The result of this experiment supports the hypothesis that
neurons encode mainly the energy - the product of amplitude and frequency
of the vibration stimuli. Spike timing codes are implicitly considered here when
converting spike trains into continuous spike trains and clustering the entire spike
train functions. The mutual information of the clustering also confirms that the
topologically formed clusters are analogous to the energy code as well as that
the clustering preserves the information transfer between stimuli and responses.
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Abstract. We present a neural network model that learns to find cor-
respondences. The network uses control units that gate feature infor-
mation from an input to a model layer of neural feature detectors. The
control units communicate via a network of lateral connections to co-
ordinate the gating of feature information such that information about
spatial feature arrangements can be used for correspondence finding. Us-
ing synaptic plasticity to modify the connections amongst control units,
we show that the network can learn to find the relevant neighborhood
relationship of features in a given class of input patterns. In numeri-
cal simulations we show quantitative results on pairs of one-dimensional
artificial inputs and preliminary results on two-dimensional natural im-
ages. In both cases the system gradually learns the structure of feature
neighborhood relations and uses this information to gradually improve
in the task of correspondence finding.

1 Introduction

Neural network models that use mechanisms to actively route information be-
tween stages of neural processing have repeatedly been suggested for invariant
object recognition. Examples are early sketches, e.g., by Hinton [1] and promi-
nent systems such as shifter circuits [2] and the dynamic link matching architec-
ture (DLM) [3]. All these systems use an active control of information transfer
between neural layers, which allows to establish correspondences between the
presented input and a memory. Such systems are therefore sometimes referred
to as correspondence-based [4]. In the technical domain correspondence-based
systems represent state-of-the-art technology [5].

A common way to implement the control of information flow is to use neural
control units [1,2,6,7] which, by their activities, gate the information flow between
feature sensitive cells of different layers. Control units can up- or down-regulate
the strengths of connections between two neural layers and are themselves driven
by the input stimulus and the system’s memory.

In all of the prominent neural systems so far suggested, the control of infor-
mation flow has been fixed from the beginning using hand-crafted connections
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that excite or inhibit control unit activities. In this paper we present a system
that can learn to control the flow of information from a set of examples.

2 The Correspondence Problem

Let us briefly illustrate the correspondence problem. Consider the sketch in
Fig. 1A which shows two images of a woman, one on the input side and one
on the model side. Both images are represented by a layer of feature detectors or
nodes (black circles). The correspondence problem is now simply the problem to
find those connections between input and model nodes that connect correspond-
ing points, i.e., connections linking two feature detectors that represent the same
part of an object (for instance head to head, neck to neck etc). In Fig. 1A the
black connections or links show the correct correspondences as a subset of all
possible ones.

To be able to find correspondences between images it is obvious that we need
a mechanism to compute feature similarities. Unfortunately, such a mechanism
alone is not sufficient to find correspondences in realistic applications. This is
due to the fact that a pair of reaflistic inputs, e.g. different images of the same
object, usually have a high variability, which frequently results in situations in
which one feature is more similar to a feature at a location different from its
corresponding one. Fig. 1B shows a cartoon of such a situation: the black lines
connect the features with highest similarity, which results in a wrong correspon-
dence mapping in this case. For realistic inputs such situations are the norm and
the ambiguities increase the more feature detectors are used.

For the human observer it is, however, very easy to find the correct correspon-
dences, e.g., between the images in Fig. 1B. The reason for this is that an object
is defined by its features and their spatial arrangement rather than by an un-
ordered collection of them. Correspondence-based systems therefore try to take

A B

Fig. 1. In vision the correspondence problem is the task to find the corresponding
points between two images. In A an input and a model images are represented by arrays
of feature nodes (black circles). All potential corresponding points in this architecture
are symbolized by links between the feature nodes. The real correspondences are the
black links. B shows an example for wrong wrong correspondences.
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both into account. Shifter circuits, for instance, relatively rigidly control subsets
of links whereas DLM has a more flexible dynamic control that lets neighboring
links communicate with each other. In this paper, we base our modeling on a
recently suggested system [7] that uses neural control units similar to those in
shifter circuits and a flexible recurrent dynamics to drive their activity reminis-
cent of the dynamics in DLM systems. This new dynamics is in the following
shown to be readily extendable to a system that learns to structure the control
of information routing.

3 Control Dynamics

The neural architecture used in this paper is essentially given in Fig. 1A, i.e., the
system consists of an input layer and a model layer each of which contains an
array of nodes that represent an input and a model datum by a set of abstract
features. Input and model nodes are all-to-all connected (see Fig. 1A gray and
black lines). To select the links that connect the corresponding points, each
model node contains a set of control units to regulate the strength of each link
of the node, i.e., there is one control unit per link. If the control unit is active,
so is its link. To be consistent with the literature [7], we will refer to the set of
all control units for one model node as its control column. Fig. 2 shows such a
control column for model node Mi and for an input layer of three feature nodes
I1, I2 and I3.

The activity of a control unit (and thus the link activity) is determined by
its inputs which consist of two parts: (1) input from the pair of feature nodes
associated with the controlled link and (2) input from other control units (see
Fig. 2). Let us denote the activity of control unit j in model nodeMi by wMi Ij

and its input by IMi Ij . This control unit is responsible for the link from input
node Ij to model node Mi. The actual local features, which describe k different

J I1

J I3

J I2

link control
link

feature nodes

feature input

control columns

J Mi

input from other

control column

Fig. 2. Sketch of a model node with control units. Each control unit regulates the
strength of one incoming link. The units themselves receive input from the pair of
feature nodes whose link they control and from other control columns.
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local properties (indexed by α or β) that are connected via such a link, are
represented by a set of different feature node activities pIj

β pMi
α within each

node IjMi. With this, the over-all input IMi Ij to control unit wMi Ij is given
by:

IMi Ij = CI

∑
αβ

pMi
α Rαβ p

Ij
β︸ ︷︷ ︸

similarity term

+ (1− CI)
∑
k =i,l

T i j
k lw

Mk Il

︸ ︷︷ ︸
topology term

(1)

The similarity term has the form of a dot product of the mean free1 activities
at two linked feature nodes. The topology term takes account of the spatial fea-
ture relations via the lateral interaction between control units. The matrix T i j

k l

parameterizes this interaction. Without any input from the topologic term, the
correspondence are computed only on the basis of similarity between linked fea-
ture nodes. Both types of input, the feature similarity and the preferred feature
arrangement, drive the control units activities. To select a subset or just one of
these links for each node, they compete through mutual inhibition. We use a
kind of soft-max competition given by a set of non-linear differential equations
as suggested in [7,8]:

f(w, h) := a
(
w2 − w · h− w3

)
+ η (2)

d

dt
wMi Ij = f(wMi Ij , ν ·max

j̃
{wMi I j̃}) + κIMi Ij (3)

where wMi Ij denotes the activity of control unit j of model node Mi, η is a
noise term2, and ν denotes the strength of inhibitory coupling. If ν is increased,
a control column is forced to successively deactivate its control unit until, for
relatively high values of ν, just one unit survives. On the basis of this mechanism
the routing or matching process is managed and within each so called ν-cycle
one result of correspondence finding is established.

To neurally represent the features by activity distributions within feature
nodes, the same dynamics can be used, e.g., for the feature unit pLi

α : d
dtp

Li
α =

f(pLi
α , ν ·max{pLi

α̃ })+κILi
α with L ∈ {M, I} (compare equation 3). The input to

feature nodes within the input and model layer is given directly by the feature
vectors they represent IIj

α = J Ij
α and IMi

α = JMi
α , where α again denotes the

different types of features at a given position.
Much of the dynamics has been discussed in [9,7]. Important differences in

this work are, however, the restriction of information flow to one direction (from
input to model layer). As a consequence, control units are just needed in the
model layer, which significant reduces the complexity of the dynamics and the
computational cost for its simulation. However, the most important difference
to earlier systems is the usage of learning.

1 Rαβ = δαβ − 1
k
.

2 Normally distributed iid noise.
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4 Learning

The learning rule used, modifies the lateral connections amongst the control
units. The form is similar to the learning rule for component extraction as used
in [8] but uses a slow decay of synaptic weights in addition.

d

dt
T i j

k l = ε

⎛⎝ wi j wk l − (
∑
ḱ ĺ

wi jwḱ ĺ)T i j
k l

⎞⎠ Θ(χ−
k∑
j́

wi j́)− ρT i j
k l (4)

To improve readability we have dropped the index prefixes I M in equation
4. This is possible because for w and T the left index always refers to a link
destination (model node) and the right to the link origin (input node).

The decay term is necessary to avoid learning of strong receptive fields for
control units of links which are wrongly activated during correspondence finding.
Such control units would, withought the slow decay, develop strong receptive
fields similar to control units which are frequently used (even though much more
slowly).

In general, the learning rule is of Hebbian type (positive term) with a normal-
ization term to avoid divergence of the synaptic weights (first negative term).
Additionally there is a Heaviside function Θ which prevents the synapses from
learning when too many control units within a control column are active.

5 Simulation Results

Now we have to test the ability of our model system to learn regularities in feature
arrangements from example data. If the system is able to find such regularities,
the quality of correspondence finding should slowly improve and should result
in topologic connections adapted to the presented kind of data.

At first the system is tested with sets of artificially created feature vectors.
This input is usefull because the identified correspondences can easily be com-
pared to ground truth and thus a mean error can be computed to observe the
progress during learning. In a second set of trails preliminary results for natural
images are shown.

5.1 Learning of Lateral Connection for 1-dimensional Data

The artificial feature vectors3 used for this experiments have 10 entries, i.e.,
10 single scalar feature values describe the state of any node. The network has
to find corresponding positions for 5 model nodes within an input of 10 input
nodes in this experiment. For every ν-cycle (within each ν-cycle the system tries
to find corresponding points) a new set of model features is generated and noisily
copied to the input layer. The noise, applied to the feature vectors is additive and
3 We use randomly generated feature vectors that are composed of random numbers

drawn from a uniform distribution in the range of [0; 1].
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Fig. 3. Simulation results of routing quality before and during learning. The learning
is enabled after 2000 ν-cycles. Each point shows the mean percentage of wrong corre-
spondences of the respective past 100 ν-cycles together with its standard deviation.

uniformly distributed4 in the range of [−0.3, 0.3]. Thereby the 5 model feature
vectors keep their neighborhood relationship but are collectively shifted to a
random position within the input layer. The remaining 5 input nodes of the
input are filled with other random feature vectors.

We simulated the dynamics for control columns (equation 3), the feature
nodes and the learning rule (equation 4) by using the explicit Euler method for
stochastic differential equations using the following paremeters: a = 200, κ = 5,
C = 0.2, ε = 0.01 ,χ = 0.55, ρ = 0.01 · ε. The results, which are calculated
using a stepsize of  t = 0.02 are shown in Fig. 3. The plotted values of wrong
correspondences are a mean of 100 routing results and the error bars correspond
to standard deviation of the mean value. For comparison, we run the system
without learning for the first 2000 ν-cycles (lateral connections T are initialized
to zero). From 2000 ν-cycles onwards, we use equation 4 to modify them. During
the first 2000 ν-cycles, due to the very noisy feature vectors, about 1

3 of the
correspondences found are not between originally identical feature vectors (see
Fig. 3). After enabling synaptic plasticity, the error rate decrease because of
growing lateral connections. Over time connections adapt increasingly to the
structure of the presented data.

Note that the presented arrangement of features and model nodes is initially
not encoded in the network connectivity. The only connections which can account
for a neighborhood structure are the lateral connections amongst control units,
which we initialized to zero. The connectivity of the 10 control units (horizontally
arranged) whithin each of the 5 control columns (vertically arranged) are shown

4 Experiments with other types of artificially created input and other types of noise
have not shown any significant changes.
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Il

MkIj

T i j
k l

Mi

T 5 9
k l

Fig. 4. Simulation results showing the receptive fields of all lateral connections after
learning (7000 cycles) of 1-dimensional artificial input. Horizontally arranged are the
receptive fields of control units for different link origins within the input layer. The
destination position within the model layer changes vertically. The receptive field, for
the Link from input node I9 to model node M5 is highlighted as an example. Each
single value within this receptive filed is again ordered in the same way while the
weight to itself is set to zero (black). The diagonal structure reflects the neighborhood
preserving mapping of the presented 1-dimensional shifts.

in Fig. 4. Initially they were all set to zero but the more a special structure of
common link probability emerge, they are bind together through growing lateral
connections.

This improvement can be reproduced for a great variety of input structures.
We have tested, e.g., input at always the same position, shifted input with cyclic
boundary conditions, scaled/stretched positions or for shifts at which some fea-
ture positions disappear form the input.

5.2 Learning of Lateral Connection from Natural Images

The proposed network has shown to be able to learn the constraints of e.g. a
1-dimensional, position invariant mapping. In other words, it has learned the
variations due to position invariance alongside with the restrictions due to the
maintenance of neighborhoods. The thereby observed improvement in routing
quality results from the learned lateral connections between control units. Due
to all-to-all connectivity, a huge amount of different kinds of routing constraints
and variations are possible and can potentially be learned from example data,
e.g., from pairs of natural images.

To extract a set of local features from natural images, we use Gabor wavelets
with different spatial frequencies and orientations (we use five spatial frequencies
and eight orientations as, e.g., in [10,7]). The feature vectors presented to the
network are taken from a regular square grid at a randomly selected position.
The data to the input layer consists of 7 ·7 feature vectors and the smaller model
layer receives its input from a square grid of 5 · 5 feature vectors. The images,
used for this experiment are taken from three different objects (teapot and two
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different stapler). The 3 · 10 = 30 images were taken with a standard compact
camera freehand out of approximately the same position.

For the simulations with this new kind of input the same network dynamics
as before is used, just its size is adapted to the new data and the synamptic
decay is drecreased to ρ = 0.0005 · ε. This is neccesary because the amount of
links increases which results in less learning time per link. In comparison with
the experiments in the previous secition, for example, the number of possible
variations is increased by a factor of 49 : 5. To that, the amount of synaptic
weights which have to be learned increses by the factor of (49 · 25)2 : (5 · 10)2.
This results in simulation time, increased by a factor of about 6000 and is the
price to pay, if no constraints are applied initially. For this reason, for such a
large network, only some preliminary results in form of an example routing (see
Fig. 5) and learned receptive field for one link (see Fig. 6) can be shown.

Fig. 5. Corresponding points, between grids (model gird: left and input grid: middle
and right) for one example image. The middle result was produced withought any
topological connecctions and the right one with the learned connections.

Fig. 6. Learned connectivity after 15000 ν-cycles for the link from the center of the
input layer to the center of the model layer. Its structure matches what is expected
from a 2-dimensional neighborhood relationship but has not jet (after 15000 ν-cycles)
reached its final strength.
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6 Discussion

In this paper we have presented a system that learns regularities in feature re-
lations for correspondence finding. The system uses a set of control units to
gate feature information between neural layers. Unlike dynamic routing sys-
tems such as [1,2,7], information routing in the system presented can be trained
on examples. If these examples contain a typical neighborhood relationship of
features, the system is able to learn it and to use feature relations for corre-
spondence finding. For instance, we have seen that the system is able to learn
the for images typical two-dimensional feature relationship. That is, the system
has learned that the image of an object is characterized by its features and
their two-dimensional relation. Note again, that the initial architecture of the
system is not biased towards any neighborhood relationship (the lateral con-
nections that define the model nodes’ neighborhood relations are initially zero).
For the one-dimensionally structured inputs, e.g. as used in Sec. 5.1, the sys-
tem has learned a control unit connectivity that reflects one-dimensional feature
relations. Likewise, inputs with other feature neighborhood relations result in
other corresponding control unit connections. If the appropriate features are
used, any neighborhood relationship typical for the used set of input images can
in principle be learned in this way. These relationships are not necessarily re-
stricted to be one-, two- or n-dimensional but can be more complex. An example
would be to use training images of translated objects together with their mirror
images.

Importantly, control unit connectivity captures information about feature re-
lations and their variations in contrast to a fixed relation of specific features (as
in a variety of other systems, e.g. [11,12]). This is illustrated by the fact that, for
instance, training on images of different translations of an object can improve
correspondence finding between images of translations of a different object. The
mechanism investigated in this paper is thus addressing a problem complemen-
tary to the problem of learning input features, namely the problem of learning
the typical variations in feature arrangements in a given class of inputs. While
learning from training inputs is a well-established paradigm to obtain class spe-
cific features, the same can not be said about learning of feature arrangements
which is usually just dealt with in hand-crafted ways (e.g., [12,2,7]; but see [13]
for an exception on artificial data). Here we have shown how variations in feature
arrangements can be learned from examples and how this knowledge can be used
to improve correspondence finding. In future work such mechanisms hold some
promise in improving more complex recognition systems, especially if combined
with state-of-the-art systems for feature learning.

Acknowledgments. We thank Rolf Würtz and Christoph von der Malsburg
for helpful discussions and acknowledge funding by the EU project FP6-2005-
015803 (Daisy), the EU project FP7-2007-216593 (Seco), and the Hertie
Foundation.
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A Globally Asymptotically Stable Plasticity

Rule for Firing Rate Homeostasis

Prashant Joshi1,2,� and Jochen Triesch2

1 Computation and Neural Systems Program, Division of Biology, 216-76 California
Institute of Technology, Pasadena, CA 91125 USA

joshi@fias.uni-frankfurt.de
2 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University,

Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany

Abstract. How can neural circuits maintain stable activity states when
they are constantly being modified by Hebbian processes that are notori-
ous for being unstable? A new synaptic plasticity mechanism is presented
here that enables a neuron to obtain homeostasis of its firing rate over
longer timescales while leaving the neuron free to exhibit fluctuating
dynamics in response to external inputs. Mathematical results demon-
strate that this rule is globally asymptotically stable. Performance of the
rule is benchmarked through simulations from single neuron to network
level, using sigmoidal neurons as well as spiking neurons with dynamic
synapses.

1 Introduction

External environment and experiences modify the properties of cortical neurons
using various synaptic plasticity mechanisms. Correlation-based Hebbian plas-
ticity is accepted as the principal mechanism that modifies synaptic strengths,
enabling the organism to adapt to a new environment and/or to learn new tasks
[1]. Nevertheless, it is a well known fact that Hebbian plasticity by itself is a pos-
itive feedback process and will lead a circuit into unstable activity regimes in the
absence of some kind of regulatory mechanism [2]. Recent neurobiological studies
suggest that slow homeostatic plasticity mechanisms enable the neurons to main-
tain average firing rate levels by dynamically modifying the synaptic strengths in
the direction that promotes stability [3,4]. For example, pharmacological block-
ing of activity in cultured networks causes an increase in the amplitudes of the
miniature excitatory postsynaptic currents (mEPSCs), and increasing activity
by blocking inhibition scales down the mEPSCs amplitude. This global regu-
latory mechanism known as ’synaptic scaling’ has been observed in cultured
networks of neocortical [5], hippocampal [6] and spinal-cord [7] neurons.

Several learning rules from the more classical ones such as BCM rule [8], Oja’s
rule [9] to more recent ones [10,11] have been proposed that provide some sort
of homeostatic or normalizing mechanism. A new biologically plausible synaptic
� Corresponding author.
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modification mechanism is presented here that provides firing rate homeostasis.
Rigorous mathematical results demonstrate that this learning rule is globally
asymptotically stable. Results from computer simulations using spiking neurons
and dynamic synapses are also provided showing the working of the rule from
monosynaptic to network levels.

2 Computational Theory and Learning Rule

The simplest plasticity rule following Hebb’s premise is given by:

τw
dw
dt

= νpre(t) · νpost(t), (1)

where νpre(t) and νpost(t) are the pre and postsynaptic firing rates and τw is
the time constant that controls the rate of change of synaptic weights. A simple
analysis1 can show that the only stable points for the above equation are the
trivial cases of νpre(t) = 0 and/or νpost(t) = 0 when the whole system goes into
a quiescent state. A new rule that enables the postsynaptic neuron to maintain
an average firing rate of νbase over time is obtained by adding a multiplicative
term of νbase − νpost(t) to equation 1, where νbase is the steady state firing rate
to which the postsynaptic neuron relaxes over time:

τw · dw(t)
dt

= νpre(t) · νpost(t) · (νbase − νpost(t)). (2)

Theorem 1 shows that the plasticity mechanism described in equation 2 is globally
asymptotically stable. Furthermore, Theorem 2 demonstrates that an analytical
solution for the postsynaptic firing rate is possible.

For the sake of simplicity and intuitiveness, the learning rule is analyzed for
the single input, single output (SISO) case, i.e. when a pre- and postsynaptic
neuron are connected via a synapse with weight w. Both the pre- and postsy-
naptic neurons are assumed to be linear and excitatory in nature, so the output
of the postsynaptic neuron is just the weighted value of its input. It is to be
noted that the stability of the learning rule is not dependent on linearity, as is
shown by simulation results in section 3.

Theorem 1. For a SISO case, with the presynaptic input held constant at νpre,
and the postsynaptic output having the value ν0

post at time t = 0, and νbase being
the homeostatic firing rate of the postsynaptic neuron, the system describing
the evolution of νpost(.) is globally asymptotically stable. Further νpost globally
asymptotically converges to νbase.

Proof of Theorem 1. For the SISO case, with the pre- and postsynaptic
neurons being excitatory, the weight update is given by:

τw · dw(t)
dt

= −νpre · νpost(t) · (νpost(t)− νbase). (3)

1 Set dw
dt

= 0 in equation 1.
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Since the neurons are linear, we have:

νpre · w(t) = νpost(t). (4a)

On differentiating equation 4a we get:

νpre · dw(t)
dt

=
dνpost(t)

dt
. (4b)

By substitution in equation 3 we get:

dνpost(t)
dt

= −ν
2
pre

τw
· νpost(t) · (νpost(t)− νbase). (5)

The temporal evolution of νpost(.) is described by the system in equation 5. To
prove that the system in equation 5 is globally asymptotically stable, the global
invariant set theorem is used (see Appendix).

Consider as the Lyapunov function candidate (see Appendix), the scalar func-
tion V (νpost) defined as:

V (νpost) = τw(νpost − νbase · ln(νpost)). (6)

The function V (νpost) is radially unbounded, since V (νpost) → ∞ as ‖νpost‖ →
∞. Its derivative is:

V ′(νpost) = τw ·
(

1− νbase

νpost

)
· dνpost

dt
. (7a)

Substituting from equation 5 we get:

V ′(νpost) = τw ·
(

1− νbase

νpost

)
·
(
−ν

2
pre

τw
· νpost · (νpost − νbase)

)
. (7b)

or
V ′(νpost) = −ν2

pre · (νpost − νbase)2. (7c)

From equation 7c, it is evident that V ′(νpost) is negative definite, i.e. V ′(νpost) ≤
0 over the whole state-space.

The set R defined by V ′(νpost) = 0 consists of the single point νpost = νbase.
Furthermore, in this case the set M( the largest invariant set in R) equals the
set R, i.e. M = R.

Thus by global invariant set theorem (see Appendix), all trajectories globally
asymptotically converge to M as t → ∞. Further since the set M contains the
single point νpost = νbase, which is thus the attractor, the value of νpost(t) as-
ymptotically converges to νbase

Theorem 2. For a SISO case, with the presynaptic input held constant at νpre,
and the postsynaptic output having the value ν0

post, at time t = 0, and νbase being
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the homeostatic firing rate of the postsynaptic neuron, the postsynaptic value at
any time t > 0 is given by:

νpost(t) =
ν0

post · νbase

ν0
post + (νbase − ν0

post) · e−
ν2

pre·νbase·t
τw

.

Proof of Theorem 2. To prove the statement in theorem 2, we have to solve
the differential equation described by equation 5. To solve it, we first convert
the above equation into a linear form. Dividing equation 5 by ν2

post(t), we get:

1
ν2

post(t)
· dνpost(t)

dt
− ν2

pre · νbase

τw
· 1
νpost(t)

= −ν
2
pre

τw
. (8)

Now let:
− 1
νpost(t)

= y(t), (9a)

On differentiating equation 9a we get:

1
ν2

post(t)
· dνpost(t)

dt
=
dy(t)
dt

. (9b)

Substituting in equation 8 we get:

dy(t)
dt

+
ν2

pre · νbase

τw
· y(t) = −ν

2
pre

τw
. (10)

Equation 10 is a linear differential equation. Taking the Laplace transform on
both sides of equation 10, we get:

s · Y (s)− y(0) +
ν2

pre · νbase

τw
· Y (s) = −ν

2
pre

τw
· 1
s
, (11a)

or

Y (s) ·
(
s+

ν2
pre · νbase

τw

)
=

(
y(0)− ν2

pre

τw
· 1
s

)
=
y(0) · τw · s− ν2

pre

τw · s , (11b)

or

Y (s) =
y(0) · τw · s− ν2

pre

s(τws+ νpre2 · νbase)
=

y(0) · s− ν2
pre

τw

s(s +
ν2

pre·νbase

τw
)
. (11c)

Expanding the RHS of equation 11c into partial fractions we get:

Y (s) =
1 + y(0) · νbase

νbase
· 1(
s + ν2

pre·νbase

τw

) − 1
νbase · s . (11d)

Taking the inverse Laplace transform of equation 11d we get:

y(t) =
1 + y(0) · νbase

νbase
· e−

ν2
pre·νbase·t

τw − 1
νbase

. (12)
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Now substitute y(t) = − 1
νpost(t)

and y(0) = − 1
ν0

post
(from equation 9a) into

equation 12:

− 1
νpost(t)

=

(
1− νbase

ν0
post

νbase

)
e−

ν2
pre·νbase·t

τw − 1
νbase

, (13a)

or

− 1
νpost(t)

=
(ν0

post − νbase)e−
ν2

pre·νbase·t
τw − ν0

post

ν0
post · νbase

. (13b)

From equation 13b we get:

νpost(t) =
ν0

post · νbase

ν0
post + (νbase − ν0

post) · e−
ν2

pre·νbase·t
τw

, (14)

which is the statement of theorem 2.

3 Results

The computational theory and learning rule introduced in this article were ver-
ified through simulations using sigmoidal neurons as well as integrate-and-fire
neurons with dynamic synapses.

As a first test2, a postsynaptic neuron with sigmoidal transfer function was
used that was receiving presynaptic inputs from two different and independent
Gaussian input streams3. Panel A of figure 1 shows the two input streams. Panel
B shows the output of the postsynaptic neuron when the synaptic weights are
being modified according to equation 2. Note the convergence of the output
to νbase. Panel C shows the corresponding evolution of synaptic weights. The
postsynaptic rate converges to baseline value at a slower timescale from below
than above due to the nature of equation 2, i.e. the magnitude of weight change
is proportional to the value of presynaptic input. Panel D shows the temporal
evolution of νpost(n) when the postsynaptic neuron was receiving a single fixed
presynaptic input of νpre(t) = 0.5, for various initial values of ν0

post and the initial

value of synaptic weight w0 = 1
νpre

ln( ν0
post

1−ν0
post

). Panel E shows similar results for

various initial values of νpre and ν0
post. Panel F shows the surface corresponding

to the numerical solution of equation 14. Finally panel G shows the phase plane
diagram. It is interesting to note that despite the inherent non-linearity in the
neuron, the postsynaptic firing rate consistently converges to the baseline value
in all the simulations.
2 The simulation was run for n = 5000 steps. Initial weights 〈w0

1, w
0
2〉 uniformly drawn

from [0, 0.1], νbase = 0.6, τw = 30.
3 Input channel 1: mean = 0.3, SD = 0.01 for n ≤ 2500, mean = 0.6, SD = 0.04

otherwise. Input channel 2: mean = 0.8, SD = 0.04, for n ≤ 2500, mean = 1.6, SD
= 0.01 otherwise.
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Fig. 1. For this experiment νbase = 0.6, τw = 30 (A) The two presynaptic inputs (B)
The output of the postsynaptic neuron (C) Evolution of synaptic weights (synaptic
homeostasis) (D) Evolution of νpost to the baseline rate νbase over time, for a fixed
value of νpre and different initial values of ν0

post (E) 3D plot showing system evolution
for different initial conditions (F) Surface plot corresponding to a numerical solution of
equation 14 with the value of ν0

post = 0.9 and with different values of νpre. The plane
marked with yellow color indicates the baseline rate (G) The weights evolve so that
the postsynaptic rate reaches the baseline.

Another setup4 studied the performance of the learning rule when a sin-
gle postsynaptic integrate-and-fire neuron received presynaptic inputs from 100
Poisson spike trains5 via dynamic synapses. Panel A of figure 2 plots the presy-
naptic input spike trains and panel B shows the membrane potential Vm and
the spikes in the postsynaptic neuron while the synaptic weights were being
modified according to the learning rule. In panel C, the mean-firing rate of the
4 The simulation was run for t = 10 sec with a simulation time step of 1 msec. Initial

weights w0
j = 10−8, j = 1, . . . , 100, νbase = 40 Hz, τw = 3600.

5 First 50 Poisson spike trains (shown in red in Pannel A of figure 2): drawn at 3 Hz
for 0 < t ≤ 5 sec and 60 Hz for t > 5 sec. Remaining 50 Poisson inputs (shown in
blue in Panel A of figure 2): drawn at 7 Hz for 0 < t ≤ 5 sec and 30 Hz for t > 5 sec.
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Fig. 2. Firing rate homeostasis in a single postsynaptic integrate-and-fire neuron re-
ceiving Poisson spiking inputs via 100 dynamic synapses. (A) The presynaptic input,
and (B) the membrane potential and spikes, (C) the mean-firing rate, and (D) the his-
togram of firing rate of the postsynaptic neuron. (E) Temporal evolution of synaptic
weights shown on a logarithmic scale.

postsynaptic neuron is illustrated and it is seen that νpost(t) converges to base-
line value6. Panel D shows the histogram of firing rate of the postsynaptic neuron
over the course of simulation. The sharp peak at 40 Hz is attributed to the value
of νbase. In panel E, the evolution of synaptic weights on a logarithmic scale
is shown and it is observed that the plasticity mechanism uses different weight
update strategies to maintain the steady state firing rate during the first and
second half respectively, depending on the strength of presynaptic input.

Can synaptic homeostasis mechanism be used to maintain stable ongoing
activity in recurrent circuits? The next experiment7 used a circuit made of 250
integrate-and-fire neurons, with 20% of these neurons chosen to be inhibitory.

6 The synapses were modified using equation 2 by computing instantaneous mean
firing rate (running average).

7 Simulation was run for t = 5 sec with a simulation time step of 1 msec.
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Fig. 3. Homeostasis of firing rate in a circuit of 250 integrate-and-fire neurons that
received Poisson spiking input via 20 dynamic synapses. (A) The presynaptic input
and (B) mean firing rate of the input. (C) The circuit response, (D) mean firing rate
of circuit dynamics, and (E) histogram of mean-firing rate.

In addition models for dynamic synapses were used whose individual mixture of
paired-pulse depression and facilitation is based on experimental data [12,13].
Sparse connectivity between neurons with a biologically realistic bias towards
short connections was generated by a probabilistic rule, and synaptic parameters
were randomly chosen, depending on the type of pre-and postsynaptic neurons,
in accordance with empirical data (see [14] for details). Inputs to this circuit
came from 20 Poisson spike trains that were drawn at the rate of 5 Hz for
0 < t ≤ 3 sec, and 100 Hz for t > 3 sec. Panel A of figure 3 shows the input
spike trains while panel B shows the mean firing rate of the external input to
the circuit. In panel C the circuit response is illustrated and panel D shows the
mean firing rate of the neural circuit. The learning rule enables the circuit to
maintain the mean firing rate of νbase over time as is also evident from panel E
which shows the histogram of firing rates. It should be noted that the time-scale
of firing-rate homeostasis in biological systems is several orders of magnitude
slower than what is observed in these simulations. Such fast time-constants were
used to reduce computational time.
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4 Discussion

This article describes a new synaptic plasticity mechanism that enables a neuron
to maintain a stable firing rate over slower time scales while leaving it free to
show moment-to-moment fluctuations in its activity based on variations in its
presynaptic inputs. It should be noted that this plasticity mechanism is com-
pletely local. The rule is shown to be globally asymptotically stable through
mathematical analysis. It is to be noted that the assumption of linearity used in
the mathematical analysis is for the sake of simplicity only as the rule is able to
obtain homeostasis of firing rate even in presence of non-linearity in the neuron
and synaptic dynamics as is evident from the simulation results. Furthermore,
computer simulations demonstrate that the rule is able to achieve firing rate
homeostasis from single neuron to network level. A potential advantage of this
learning rule is its inherent stability without the need for a sliding threshold as
required by the BCM rule. Future work shall also explore the working of this
rule in conjunction with other plasticity mechanisms, for example STDP.
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Appendix

Mathematical Definitions

Lyapunov Function. Let V be a continuously differentiable function from !n

to !. If G is any subset of !n, we say that V is a Lyapunov function on G for
the system da/dt = g(a) if

dV (a)
dt

= (∇V (a))T g(a) (15)

does not change sign on G.
Note that this is a generalization of the classical definition of Lyapunov func-

tion (c.f. definition 3.8 in [15] for example). More precisely, it is not required
that the function V be positive-definite (just continuously differentiable). The
only requirement is on the derivative of V , which can not change sign anywhere
on the set G.

Global Invariant Set Theorem. Consider the autonomous system dx/dt =
f(x), with f continuous, and let V(x) be a scalar function with continuous first
partial derivatives. Assume that

a) V (x)→∞ as ‖x‖ → ∞
b) V ′(x) ≤ 0 over the whole state space

Let R be the set of all points where V ′(x) = 0, and M be the largest invariant
set in R. Then all solutions of the system globally asymptotically converge to
M as t→∞.
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Abstract. Recurrent neural networks unlike feed-forward networks are
able to process inputs with time context. The key role in this process
is played by the dynamics of the network, which transforms input data
to the recurrent layer states. Several authors have described and an-
alyzed dynamics of small sized recurrent neural networks with two or
three hidden units. In our work we introduce techniques that allow to
visualize and analyze the dynamics of large recurrent neural networks
with dozens units, reveal both stable and unstable points (attractors
and saddle points), which are important to understand the principles of
successful task processing. As a practical example of this approach, dy-
namics of the simple recurrent network trained by two different training
algorithms on context-free language anbn was studied.

1 Introduction

It is well-known fact that recurrent neural networks (RNNs) have universal ap-
proximation capability, although development of desired dynamics in training
might be difficult or even unfeasible task. Various training sets on various ar-
chitectures of RNNs were studied in many works which confirm that RNNs
can learn to become perfect finite state recognizers of regular grammars [1,2].
Higher classes of grammars from Chomsky hierarchy have also been studied.
For successful processing of context-free languages (CFL), a stack or counter in
RNN memory is required [3]. On the other hand when RNN is used to process
symbolic sequences, activations of hidden units show considerable amount of in-
formation about input sequence prior to training [4]. It was theoretically and
experimentally shown that RNNs initialized with small weights are inherently
biased towards Markov models [5,6,7].

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 577–586, 2008.
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All these phenomena in discrete time RNNs can be characterized and studied
as a discrete time dynamical systems [8] with inputs, outputs, and state variables.
For example Markovian dynamics of randomly initialized RNN is quite simple
and can be explained by the iterated function theory [9,10]. The state space of
RNN initialized with small weights contains a set of attractors that are respon-
sible for producing organization of state space closely related to variable length
Markov models. When RNN is trained on regular grammars, attractive sets are
rearranged to perform desired classification [11]. Analysis of RNNs processing
context-free and complex context-sensitive languages demonstrated that their
nonlinear state space can incorporate counting mechanism [12].

These analyses bring new insight into the internal mechanisms of the symbolic
sequences processing by RNNs. Their performance should be studied by means
of activities of hidden units (network state) and their changes in time (network
dynamics). In our work, we focus on the RNN state space analysis by combi-
nation of visualisation and numerical techniques. Basic concepts were presented
in previous works [12,13] on small recurrent networks with 2 dimensional state
space, where so-called fixed points and their relation to network dynamics was
analysed. We extended these techniques for analysis of networks with dozens of
hidden units.

In following sections, method for visualisation and localization of unstable
fixed points in its high dimensional state space of simple recurrent network
(SRN) architecture will be described. As a practical example analysis of various
sized SRNs trained on context-free language anbn and classification of counters
developed in their nonlinear dynamics is performed. Bias of backpropagation
through time (BPTT) [14] and extended Kalman filter (EKF) [15] algorithm to
specific class of dynamics is demonstrated.

2 Dynamics of Simple Recurrent Network Processing
Symbolic Sequences

As it was mentioned earlier RNN for symbolic sequences processing can be
thought of as a set of dynamical systems. Consider activation of hidden units
s(t) and output units o(t) of simple recurrent network with sigmoid activation
function f :

s (t) = f (M · s (t− 1) + W · i (t) + b) , (1)

o (t) = f (V · s (t) + d) , (2)

where M, W, V are matrices of recurrent, input and output weights, respec-
tively. Vectors b and d represent bias. When SRN process symbolic sequences,
i.e. finite set of symbols from alphabet A = {a, b, . . .}, each symbol x ∈ A is
encoded by one predefined input activation vector ix. Network dynamics (Eq. 1)
thus can be reduced to:

Fa : s (t) = f (M · s (t− 1) + ha)
Fb : s (t) = f (M · s (t− 1) + hb)

· · ·
Fx : s (t) = f (M · s (t− 1) + hx)

(3)
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where hx is a fixed vector assigned to input symbol x, i.e. hx = W · ix + b.
System of equations 3 is a set of autonomous discrete time dynamical systems
{Fa,Fb . . .}, each corresponds to one symbol of alphabet A. Although, these
dynamical systems are autonomous, they are sharing network state - vector of
hidden unit activities s (t). When a new symbol from input sequence is presented,
corresponding transformation is applied to the network state. Network dynamics
thus should be studied on two different levels:

1. Analysis of partial dynamical systems Fx, i.e. exploration of network state
trajectory while processing only one input symbol of A.

2. Analysis of whole system, i.e. exploration of network state trajectory while
processing real input sequence.

Each particular dynamical system is mostly influenced by the location and char-
acter of so-called fixed points. A fixed point s̃ of system Fx is a point in the
state space which is mapped to itself:

s̃ = Fx (s̃) . (4)

When network state space contracts to a fixed point, that point is an attractor
(Fig. 1a), otherwise that point is repelling (Fig. 1b). In some cases, the repelling
point may be contracting in one direction and expanding in another direction,
so we call it a saddle point (Fig. 1c).

Although, dynamical systems from equation 3 are not linear (nonlinearity is
introduced by activation function f), linearization can be performed to study
character of fixed points. The eigenvalues λi and eigenvectors vi of Jacobian
J(̃s) (partial derivative matrix) calculated at fixed point s̃ express how system
changes in time [16]. They must satisfy condition J(̃s) · vi = λi · vi and vi �= 0,
i.e. they are expressing direction and intensity of linear contraction/expansion of
linearized system. If the complex eigenvalue λi lies in the unit circle, fixed point
is contracting in the direction vi, otherwise is repelling. Moreover, the non-zero
imaginary part of eigenvalue is a sign of rotation around the fixed point. The

 a) attractor b) repelling point c) saddle 

1λ
2λ

1λ

2λ
1λ

2λ

1λ

2λ

1λ2λ 1λ 2λ

Fig. 1. State space topology near the fixed point s̃ and its relation to the eigenvalues
λi of partial derivative matrix J(̃s). a) attractor - state trajectories lead state to fixed
point; b) repelling point; c) saddle - repelling in one direction and contracting in other.
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negative value of λi indicates that the state is driven to/from fixed point by a
2-periodic oscillations (Fig. 1c, left).

3 Visualisation and Fixed-Point Analysis of SRN

3.1 Visualization of Network State Space

The vector ’flow’ field plot represents popular approach for state space visualiza-
tion. Direct insight into network dynamics is performed by arrows showing how
particular transformation from equation 3 affects state (Fig. 2). Vector flow field
thus can be used for both localization and analysis of the fixed-point character
[12]. Since vector flow field of dynamical systems can be created only in networks
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Fig. 2. a) Vector flow field visualisation of Fa and Fb systems of SRN with 2 hidden
units processing anbn language (a - red, b - blue). Axes x and y represent activities of
hidden units s1 and s2, respectively.

with n = 2 or 3 hidden units, we have decided to use a plot of state trajectory
while processing small section of test sequence in case of n > 3 hidden units.

At first, projection of the state space trajectory into 2D or 3D subspace is
performed. For this purpose well-known data analysis & reduction technique -
principle component analysis (PCA) is used. PCA looks for orthogonal directions
with maximal variance of input data, i.e. principal components. Coordinates c (t)
in 2D or 3D subspace are calculated as:

c (t) = P · s (t) , (5)

where s (t) is a state vector at time step t and P is projection matrix composed
of 2 or 3 principal components vectors of PCA analysis. In our work, we decided
to use this simple linear visualisation technique, because more advanced nonlin-
ear visualisation techniques will affect original nonlinearity of studied dynamical
system. On the other hand, projection matrix P can be used several times in



Analysis and Visualization of the Dynamics of RNNs 581

−2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

•   a
1

•   a2

•   a
3

•
   a

4

•
   a

5

•

   b
1

•   b
2

•   b3

•   b
4

•   b5

−2 −1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

 × 

× s
b

  s
a

Fig. 3. a) Visualisation of state trajectory of SRN with 10 hidden units while process-
ing anbn language (a - red, b - blue). Projection to 2D subspace is performed by PCA
technique. b) Fixed points: attractor s̃a in red Fa dynamics and saddle s̃b in blue Fb

dynamics. Sequence aaaa . . . leads network state from random position to s̃a attractor.
Sequence bbbb . . . drives network state to 2-periodic oscillations around saddle s̃b.

consequent visualisations of specific network state space areas, allowing us to
view various parts of the state space from the same direction. Since state trajec-
tory is influenced by set of autonomous dynamical systems, we distinguish them
by colour of line connecting two states (Fig. 3a). In the black and white print
out, unfortunately, one has to rely on direction of arrows, thickness of lines and
the labels to deduce the trajectories.

3.2 Revealing Unstable Fixed Points

In previous works, localisation of fixed points was performed either visually
by already mentioned vector flow field plot or numerically [12,17]. Numerical
localization of fixed point works only for stable points, which attract network
state. In figure 3b sequence aaaa . . . drives network state after few iterations to
attractor s̃a. If fixed point is unstable, i.e. saddle or repelling point, dominant
expansive manifold drives network state away from it.

For localisation of unstable fixed points in high dimensional state space, we
make use of property, which is common for both stable and unstable fixed points.
According to equation 4, the Euclidean distance of two states:

||s(t)− s(t+ 1)|| (6)

in neighbourhood of fixed point is close to zero. Network state space thus can
be explored by hill climbing algorithm, searching for areas where value of Eq. 6
is minimal. In our experiments states located by hill climbing algorithm have
Euclidean distance ||s(t)− s(t+ 1)|| < 10−5.

Then, each candidate area is explored more precisely by Newton’s method.
Denote by J(sj) the Jacobian matrix of examined system F evaluated at a point
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sj . If sj is close to fixed point s̃ and matrix J(sj) is invertible then we could
calculate sj+1 as:

sj+1 = sj − J(sj)−1 · F (sj
)
, (7)

which would be closer to s̃ than sj . If this iteration converge to some sj then sj

is a fixed point.
The use of Newton’s method improved robustness of our localization method.

Sometimes, even when Euclidean distance (Eq. 6) is small, fixed point was not
in the area localized by hill climbing algorithm (Fig. 4c). To determine character
of the fixed point, detailed analysis described in the next section is carried out.

3.3 Recognition of a Fixed Point Character

Two different methods for recognition of a fixed point character can be used.
The first is visualisation of the network dynamics near the fixed point by PCA
projection (Eq. 5). Figure 4 shows three time steps of 10 state trajectories in
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Fig. 4. Visualisation of 10 state trajectories near the fixed point - random starting
positions are denoted as black dots: a) attractor sa; b) saddle point sb; c) false fixed
point sb

small neighbourhood of fixed point. Visualisation demonstrates contracting be-
haviour near attractor, unstable direction (with 2–periodic oscillating behaviour)
near saddle and uniform divergence of state trajectories from wrongly localized
fixed point. The second method of analysis uses linearization near fixed point by
Jacobian matrix calculation. As it was mentioned earlier, its eigenvalues allows
us to recognize both stability and rotation/oscillations around fixed point.

4 Experiments and Results

To provide a practical example of our approach we performed experiments on
context-free language anbn according to [12]. To our knowledge, no one has yet
attempted to analyse dynamics of SRN with more than 3 hidden units on CFL
language. All previous works were limited to small networks in which visualisa-
tion and fixed point analysis of network dynamics can be done in a straightfor-
ward way.
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Fig. 5. Three typical solutions of counter in the SRN state space: a) monotonic counter
- two attractive points; b) oscillating counter - attractor sa and oscillating saddle sb; c)
exotic counter - attractor sa and unstable fixed point sb. First and second network have
15 hidden units. Third network has 5 hidden units. The eigenvalues of Jacobian matrix
calculated at sa and sb points are shown as red crosses and blue dots, respectively.

We trained SRNs with 2, 5, 10, 15 hidden units to predict next symbol of
the anbn sequence. There were more short strings in training sequence, i.e.: 1800
strings of n = 1, 1200 strings of n = 2, 800 strings of n = 3, 600 strings of n = 4
and 200 strings for n > 5. Sigmoid activation function f(x) = 1/(1 + e−x) was
used on hidden and output neurons. Network weights and biases were initialized
to small random values from interval 〈−0.3, 0.3〉. Input sequence was encoded
by one-hot coding, i.e. ia = (1, 0) and ib = (0, 1).

We used both backpropagation through time (BPTT) and extended Kalman
filter training (EKF) algorithms. EKF training was 100 times shorter due to
fast convergence in terms of training epochs. Each network was trained 50 times
by both BPTT and EKF, then weights were frozen and network dynamics was
analyzed. For correct processing of the anbn sequence network is required to build
a stack or a counter in its state space. According to previous results [12,18] on
small networks with 2 and 3 hidden units there are three basic classes of SRN
dynamics when trained on anbn: monotonic, oscillating and exotic (Fig. 5).

The first solution contains two attracting points in opposite corners of the
state space (Fig. 5a) All eigenvalues of Jacobian matrix in both fixed points sa
and sb lay in the unit circle indicating attracting behaviour. While processing a
and b inputs, the network state is moving between these two attractors, which
can be interpreted as symbol counting. However, this type of counter has limited
capacity, because once network state converges to attractor it stops counting.
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The oscillating dynamics, which is known to achieve some kind of generaliza-
tion, is performed by combination of attractive and saddle points (Fig. 5b). In
this case counting is performed by oscillating towards the attractive point (Fa

system) and from the saddle point (Fb system). Better capacity of this solution
is provided by good symmetry of count-up and count-down operations. This is
caused by inverse speed of contraction and expansion of sa and sb fixed points,
respectively. In the bottom figure 5b the largest eigenvalue of sa is inverse to the
largest eigenvalue of sb.
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Fig. 6. Proportions of different dynamics which emerged in 50 training of the four
SRNs with 2, 5, 10 and 15 hidden units: a) BPTT training; b) EKF training

The third exotic solution is mostly present in small networks. Fa system con-
tains attractor and Fb system contains unstable fixed point. Complex eigenvalues
outside unit circle of Fb indicate rotation around unstable fixed point. This can
be interpreted as counting of b symbols (Fig. 5c).

The proportions of different dynamics which emerged in 50 training of the four
SRNs (2, 5, 10 and 15 hidden units) are shown in Fig. 6. As you can see results
for BPPT differs from EKF. In both cases, exotic dynamics is dominating only
in small networks with 2 hidden units. This is due the fact that exotic dynamics
appears only if network training stuck in local minima. Increasing number of
hidden units results in larger ratio of two other dynamics. In the case of BPTT
monotonic counter is dominant. As opposite, EKF training more often led to
interesting oscillating dynamics. Analysis why this happens is intended for future
work, but it may be related to a more robust convergence of the EKF training
algorithm [19].

5 Conclusion

Our work describes visualisation and numerical analysis of the dynamics of re-
current neural networks. This approach allows us to perform a visualisation of
multidimensional network state space, localize both stable and unstable fixed
points, and analyze behaviour of system near these points. This information can
be useful for classification of different types of network dynamics emerged during
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training. Another option is to visualize process of network dynamics evolution
and study various bifurcation mechanisms that drive network to desired solution.

As a practical example four networks with 2, 5, 10 and 15 hidden units were
trained by BPTT and EKF training algorithms on context-free language anbn.
Training was repeated for 50 times and proportions of three different types of
counters were studied. Results showed bias of BPTT training towards simpler so-
lution. Here counter is performed by combination of two attracting fixed points.

On contrary, dynamics composed of both stable and unstable fixed point
dominated in the case of EKF training. This difference points to EKF as being
a better training algorithm than BPTT for the next-symbol prediction tasks.
Why this type of dynamics develops more often in EKF trained RNNs deserves
future analysis. Our simulations showed usefulness of proposed techniques for
recurrent networks with dozens hidden units. In the future, various architectures
and training dataset can be examined by these visualisation techniques.
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Abstract. The traveling salesman problem (TSP) is one of the widely
studied combinatorial optimization problems. Because, the TSP belongs
to a class of NP-hard, it is almost impossible to obtain an optimal
solution in a reasonable time frame. To find the near optimum solutions of
TSPs, a method with chaotic neurodynamics has already been proposed.
In this paper, we propose a new method to solve TSP introducing chaotic
neurodynamics, which uses not only the 2-opt algorithm but also the Or-
opt algorithm, which is one of the powerful local searches. Namely, in the
proposed method, the 2-opt and the Or-opt algorithms are adaptively
driven by the chaotic neurodynamics. Thus, the local minimum problem
in these algorithms is resolved by controlling executions of these local
searches. As a result, the proposed method shows higher performance
than the previous chaotic search methods.

1 Introduction

The traveling salesman problem (TSP) is one of the famous combinatorial op-
timization problems. Many real world problems can be formulated the TSP, for
example, drilling problem, computer wiring, routing problem, VLSI design, job
sequencing, and so on. Then, if we can develop an effective algorithm for solving
TSPs, we can adapt the algorithm for these different problems.

The TSP is described as follows. First, a set of cities C(c1, c2, · · · , cN ) is given.
Let d(ci, cj) be distance from city ci to city cj . Then, the goal of TSP is to find a
permutation σ of the cities that minimizes the following objective function f(σ):

f(σ) =
N−1∑
i=1

d(cσ(i), cσ(i+1)) + d(cσ(N), cσ(1)). (1)

If d(ci, cj) equals to d(cj , ci), this problem is a symmetric traveling salesman
problem (STSP). For the other case, this problem is asymmetric. In this paper,
we only deal with the STSP.

The TSP generally belongs to a class of NP-hard. Therefore, it is believed to
be almost impossible to obtain an optimal solution in a reasonable time frame.
Thus, it is inevitable to develop an approximate algorithm for finding near op-
timum solutions or approximate solutions. To find the approximate solutions

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 587–596, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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to TSPs, many local search algorithms, for example, the 2-opt, the 3-opt, the
Or-opt [1], the k-opt and the Lin-Kernighan algorithm [2], have already been
proposed. However, the local search algorithms cannot find an optimal solu-
tion, because the local search algorithms are usually trapped by local minima.
To avoid getting trapped into the local minimum, it needs to jump from the
local minimum to other regions in a searching state space. Several methods us-
ing different strategies for avoiding local minima have already been proposed.
Stochastic approaches, for example, a simulated annealing [3] and a genetic al-
gorithm, avoid local minima by changing a solution space stochastically. On the
other hand, a tabu search method avoids local minima by a deterministic rule
[4,5,6,7]. One of the essential idea of the tabu search is that a deterministic ap-
proach can be diversified by using a list of prohibited solutions known as a tabu
list. A previous state is added to the tabu list and is not allowed to jump the
searching states in the tabu list for a while.

In recent years, we have already proposed several effective methods for differ-
ent type of combinatorial optimization problems such as TSP [8,9,10], quadratic
assignment problems [11] and motif extraction problems [12,13,14,15]. In these
methods, a chaotic neural network [16] model is used to realize a chaotic search.
The chaotic neural network model, which can reproduce chaotic behavior ob-
served in real nerve membrane, was proposed by K. Aihara, T. Takebe and
M. Toyoda[16] in 1990. A chaotic neuron in the chaotic neural network is a
one-dimensional map which can produce chaotic dynamics. The chaotic neuron
realizes a refractory effect, which is one of the important characteristics of a real
biological neuron: once a neuron fires, this neuron becomes hard to fire for a
begin.

In the chaotic methods for solving TSPs [8,9,10], an execution of the 2-opt al-
gorithm is driven by chaotic neurodynamics. The 2-opt algorithm is the simplest
and the most common local search algorithm (Fig. 1(a)). It exchanges two paths
for other two paths until no further improvement can be obtained (Fig. 1(a)),
However, an improved tour by the 2-opt algorithm is not a global optimum but
a local optimum. To escape from such a local optimum, we applied the chaotic
neurodynamics to the 2-opt algorithm [8,9,10]. As a result, this method shows
good results [8,9,10].

However, it is natural to expect that the chaotic search can explore much
better solutions by modifying this algorithm, or introducing another powerful
local search [8,9,10]. In general, performance of the k-opt algorithm becomes
better, if k increases. However, calculating costs of the k-opt becomes larger
as k increases. These facts indicate that it is very important to improve the
conventional chaotic search by using a simpler algorithm.

Then, we proposed a new chaotic algorithm by introducing another simple
local search, the Or-opt [1]. It attempts to improve the current tour by moving
a partial tour of maximum three consecutive path in a different location until
no further improvement can be obtained (Fig. 1(b)). The Or-opt algorithm is
considered to obtain solutions that are comparable to the 3-opt in terms of
quality of solutions and an amount of time is closer to that of the 2-opt algorithm.
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(a) 2-opt (b) Or-opt
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Fig. 1. Executions of the 2-opt algorithm and the Or-opt algorithm. In this example,
a(i) is the next city to i. (a) Two paths (i-a(i) and j-a(j)) are deleted from the current
tour, then new two paths, i-j and a(i)-a(j), are connected to obtain a shorter tour. (b)
A partial tour a(i)-· · · -k is inserted into another path (j-a(j)).

In this paper, we propose a new method to solve TSP introducing both the 2-
opt and the Or-opt algorithms which are driven by the chaotic dynamics. As
a result, the proposed method obtains better solutions for the previous chaotic
search methods [8,9,10].

2 The Proposed Method

In the proposed method, two local search algorithms, the 2-opt and the Or-opt
[1], are driven by chaotic neurodynamics. To realize chaotic search, we use a
chaotic neural network (CNN) composed of chaotic neurons [16]. Each chaotic
neuron [16] is assigned to each city. If a neuron fires, the local searches related
to the corresponding city are carried out. The firing of the ith chaotic neuron
is defined by xi(t) = f(yi(t)) > 1

2 , where f(y) = 1/(1 + exp(−y/ε)), and yi(t)
is the internal state of the ith chaotic neuron at time t. If xi(t) > 1

2 , the ith
chaotic neuron fires at the time t, otherwise resting. In the proposed method,
yi(t) is decomposed into two parts, ζi(t) and ξi(t). Each component represents a
different factor to the dynamics of neurons, a gain effect and a refractory effect,
respectively.

The gain effect is expressed as:

ξi(t + 1) =

⎧⎨⎩max
j
{β2(t)Δij(t) + ζj(t)} (2-opt),

max
j,k
{βOr(t)Δijk(t) + ζj(t)} (Or-opt),

(2)

where Δij(t) is a difference between the length of a current tour and that of
a new tour when the city j is an adjacent city of the city i after applying the
2-opt algorithm to the city i (Fig.1(a)); ζj(t) is a refractory effect of the city j at
time t which is defined by Eq. (3). Namely, the city corresponding to the smaller
refractory effect ζj(t) and the larger gain Δij is chosen. In Eq. (2), Δijk(t) is
a difference of the tour length in case of the Or-opt algorithm (Fig.1(b)). β2(t)
and βOr(t) are scaling parameters. Both of them increase in proportion to time
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t: β2(t + 1) = β2(t) + λ, and βOr(t + 1) = βOr(t) + γ. If we use these functions,
the searching space is gradually limited as the simulated annealing [3]. If the
β2(t) (or βOr(t)) takes a small value, the proposed method can explore a large
solution space. On the other hand, if β2(t) (or βOr(t)) takes a large value, the
proposed method works like a greedy algorithm.

The second factor is a refractory effect which works to avoid the local minima.
The refractory effect has a similar memory effect as the tabu search [4,5]: the
same selection of a solution can be avoided by the refractory effect. In the tabu
search, to avoid a local minimum, previous states are memorized by adding them
to a tabu list and are not allowed for a certain temporal duration called a tabu
tenure. In case of the chaotic search, past firings are memorized as previous states
to decide strength of the refractory effect. The strength of the refractory effect
increases just after corresponding neuron firings and recovers exponentially with
time. Thus, while the tabu search perfectly inhibits to select the same solutions
for a certain temporal period, the chaotic search might permit to select the same
solutions if a corresponding neuron fires due to a larger gain than the refractory
effect or an exponential decay of the refractory effect. The refractory effect is
expressed as:

ζi(t + 1) = −α
t∑

d=0

kd
rxi(t− d) + θ (3)

= krζi(t)− αxi(t) + θ(1 − kr), (4)

where α controls the strength of the refractory effect after the firing (α > 0); kr

is a decay parameter of the refractory effect (0 < kr < 1); θ is a threshold value.
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t < Iteration
No

Yes

β2(t + 1) = β2(t) + λ

βOr(t + 1) = βOr(t) + γ

(a) 2-opt+CNN

(b) Or-opt+CNN

t = t + 1

Or-opt

2-opt

Improve
the best tour length

No

Yes

End

Fig. 2. Flow chart of the proposed method. Two main parts (a) 2-opt + CNN and (b)
Or-opt + CNN are described in Fig. 3.
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Fig. 3. Detailed flow charts of (a) the 2-opt algorithm driven by chaotic dynamics and
(b) the Or-opt algorithm driven by chaotic dynamics in the proposed method. In the
both methods, if the best solution is updated, the 2-opt algorithm is carried out to the
corresponding tour to obtain a local optimal solution.
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Table 1. Percentages of how nearer neighbors are connected as a next city. For
example, in case of kroA100, 43 cities are connected to their nearest neighbor (the 1st
near neighbor) city in the optimal solutions. In case of pcb442, 178 cities out of 442
cities. Thus, 178/442 = 40.3%.

near neighbor (clockwise / counterclockwise)
Problem 1st 2nd 3rd 3rd∼ 10th 10th∼
kroA100 43.4 / 43.4 25.3 / 25.3 13.1 / 13.1 18.2 / 18.2 1.0 / 1.0
pcb442 40.3 / 40.3 47.7 / 34.4 7.2 / 16.1 4.3 / 8.6 0.5 / 0.6
pr2392 43.4 / 43.4 34.5 / 32.3 12.0 / 12.8 9.6 / 10.9 0.5 / 0.6

pla33810 38.3 / 38.3 56.0 / 35.0 4.2 / 17.4 1.3 / 9.1 0.2 / 0.2
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Fig. 4. Relationship between the number of neighbors and solving performance for
pcb442

Then, ζi(t + 1) expresses a refractory effect with a factor kr, because the first
term of the right hand side of Eq. (3) becomes negative, if the neuron frequently
fires in its past history, which then depresses the value of ζi(t+1), and relatively
leads the neuron state to a resting state.

Figs.2 and 3 show flow charts of the proposed method. The 2-opt and the Or-
opt driven by the chaotic neurodynamics are carried out just one time in one iter-
ation (Fig. 2). First, an initial tour is constructed by the nearest neighbor method
(Fig. 2). This method constructs the initial tour by exploring nearest cities. Then,
the initial tour is improved by the proposed method to find shorter tours. In the
proposed method, if the best solution is updated, the corresponding tour is im-
proved to obtain a local optimal solution by the 2-opt algorithm (Fig. 3).

Even if the simple local search algorithms, or the 2-opt and the Or-opt, are
used in the proposed method, if we apply the large scale TSPs, such as 104

order problem, it requires heavy calculation. To reduce computational loads, we
introduced an idea of a near neighbor. In the case of Euclidean TSPs, it is rare to
connect longer paths. It means that connections between two cities can usually
be limited to shorter paths. Then, we investigate how close city is visited as a
next city in case of optimal solutions with several TSP instances. Depending
on a direction on the tour, the next city of a city becomes different one, then,
we searched both directions, clockwise and counterclockwise. Table 1 shows the
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results for several problems in TSPLIB [17]. From the results in Table 1, about
40 percents of all cities are connected to their 1st near neighbor (the nearest
neighbor), and almost cities are connected to the near neighbor cities in the top
10. This result indicates that when we search a next city of a city i, it is possible
to use the near neighbors of the city i only. In the proposed method, the next
city is searched as a city j in Eq. (2). Therefore, when we search the best j in
Eq. (2), we use the near neighbors of the city i only.

The near neighbors of a city i is decided by the distance between the city i and
other cities. If the number of near neighbors is m, m cites are selected in the as-
cending order. If there exist many cities with the same distance, all the cities can
be selected as near neighbors of the city i. Figure 4 shows relationship between
the number of neighbors and solving performance for pcb442 in TSPLIB [17].
From this result, the performance does not depend on the number of neighbors.
This result indicate that introduction of near neighbors is an effective idea for
proposed method.

3 Results

To evaluate the performance of the proposed method, we solved benchmark
problems in TSPLIB [17], and compared the performance between the proposed
method and the conventional chaotic search methods: the 2-opt algorithm driven
by chaotic dynamics [10], the 2-opt algorithm driven by chaotic dynamics which
includes control and annealing of parameters [10,9], an adaptive k-opt algorithm
is driven by chaotic dynamics which includes control and annealing of parameters
[10,9]. The 2-opt algorithm is the simplest local search (Fig. 1(a)). The adaptive
k-opt algorithm is almost the same as the Lin-Kernighan algorithm which is
considered to be the best local search for the TSP. In this method, the value of
k is not fixed but varied [9]. First, the 2-opt (k = 2) algorithm is applied to a
current tour to improve the tour. Second, if a positive gain value is obtained by
the 2-opt algorithm, the 3-opt (k = 3) algorithm is applied to improve the tour
by a deterministic rule [9]. While the positive gain value is obtained, the k-opt
algorithm is applied by increasing the value of k. Moreover, a double bridge (DB)
algorithm is applied to change the solution space, when a better solution could
not be obtained within 100 iteration. The double bridge algorithm is a special
case of the 4-opt algorithm (Fig. 5).

Fig. 5. Example of the double bridge algorithm
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When we apply the proposed method to real life problems, one of the impor-
tant issue to be solved is how to decide parameters. In fact, the proposed method
has many parameters. To investigate how the parameters should be decided, we
analyzed the proposed method in the following way. For the sake of simplicity,
we fixed the values of α, kr, θ and ε for all problems: α = 0.95, kr = 0.30, θ = 1.0
and ε = 0.002. Then, the scaling parameters in Eq. (2) are changed to several
values to investigate the issue. The key idea we introduced in this paper is based
on spatial ranges and spatial densities of city-distributions of TSP instance. The
value of Δij(t) (or Δijk(t)) in Eq.(2) represents a difference between the length
of the current tour and that of a new tour. Then, if the spatial range becomes
larger, the scaling parameters must be tuned to smaller values, because the value
of Δij(t) (or Δijk(t)) becomes larger. In addition to the spatial range, the spatial
density of the cities also affects the scaling of Δij(t) (or Δijk(t)), because even if
the spatial range is same, the value of Δij(t) with lower densities is larger than
that with higher density. First, we decided a nominal problem instance. In this
experiment, we used pcb1173. Next, using pcb1173, we searched good parame-
ter values of β2(0), λ, βOr(0) and γ manually. Then, we calculated the spatial
density of city-distribution of pcb1173 (Table 2). Using the following equation:

β2(0) = 0.008×
√

(the density for a problem)
2.1418

, (5)

Table 2. The values of the scaling parameters, and densities of each problem

Problem β2(0) λ βOr(0) γ Density

pcb442 0.0033988 0.000008497 0.0033988 0.000012745 0.3877
pcb1173 0.0080000 0.000020000 0.0080000 0.000030000 2.1481
pr2392 0.0022834 0.000005709 0.0022834 0.000008563 0.1750
rl5915 0.0028591 0.000007148 0.0028591 0.000010721 0.2744

rl11849 0.0040852 0.000010213 0.0040852 0.000015319 0.5601

Table 3. The results of the 2-opt based chaotic search [10], the results of the 2-opt
based chaotic search with double bridge [9], the adaptive k-opt based chaotic search
with double bridge [9] and, the proposed method. For each method, 5, 000 iterations
are used. Results are expressed by percentages of gaps between obtained solutions and
the optimal solutions.

2-opt [10] 2-opt+DB [9] k-opt+DB [9] The proposed method

Problem Ave. Ave. Ave. Ave. Min Max Std

pcb442 1.034 0.982 0.825 0.409 0.002 0.906 0.300
pcb1173 1.692 1.748 1.569 0.804 0.436 1.366 0.234
pr2392 1.952 2.000 1.839 1.153 0.716 1.614 0.239
rl5915 2.395 2.273 1.742 1.291 0.824 1.825 0.304

rl11849 2.223 1.730 1.186 1.139 0.690 1.496 0.200
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where 0.1 of the right hand side of Eq.(5) is the manually decided value of β2(0)
of pcb1173, and the denominator of the right hand side of Eq.(5), 2.1418, is
the spatial density of pcb1173. Using Eq.(5), we set the parameters of β2(0),
λ, βOr(0) and γ for other problem instances. For example, for pcb442, β2(0) =

0.008×
√

0.3877
2.1481 = 0.0033988, λ = 0.00002×

√
0.3877
2.1481 = 0.000008497, βOr(0) =

0.008 ×
√

0.3877
2.1481 = 0.0033988 and γ = 0.00003 ×

√
0.3877
2.1481 = 0.000012745. The

scaling parameters for other cases are summarized in Table 2
In this experiment, we have applied only 5, 000 iteration for each calculation,

and the number of near neighbors m is set to 10. The results in Table 3 are
shown by percentage of gaps between obtained best solutions and the optimal
solutions. From Table 3, the proposed method obtains shorter tours than the
other methods.

4 Conclusions

In this paper, we proposed a new method for solving the TSP using two lo-
cal searches, the 2-opt algorithm and the Or-opt algorithm, driven by chaotic
neurodynamics. From the computational results, although the proposed method
is simple, it obtains good solutions comparing with the previous chaotic search
methods it is important to clarify why the proposed method can improve
performance with statistical methods [13]. It is also desirable to solve much
larger problems, such as 105 order problems. To improve the proposed method,
we also consider how to control different types of two local search algorithms.
Moreover, we will apply more effective parameter adjustment methods to the
proposed method [10]. The authors thank K. Aihara, Y. Horio, M. Adachi
and M. Hasegawa for their valuable comments and discussions. The research
of T.M. is partially supported by a Grant-in-Aid from the JSPS Fellows. The
research of T.I. is partially supported by Grant-in-Aid for Scientific Research (B)
(No.20300085) from the JSPS and research grant from the Mazda Foundation.
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Abstract. Neural networks applied in control loops and safety-critical
domains have to meet more requirements than just the overall best func-
tion approximation. On the one hand, a small approximation error is
required, on the other hand, the smoothness and the monotonicity of se-
lected input-output relations have to be guaranteed. Otherwise the sta-
bility of most of the control laws is lost. Three approaches for partially
monotonic models are compared in this article, namely Bounded Deriv-
ative Network (BDN) [1], Monotonic Multi-Layer Perceptron Network
(MONMLP) [2], and Constrained Linear Regression (CLR). Authors in-
vestigated the advantages and disadvantages of these approaches related
to approximation performance, training of the model and convergence.

1 Introduction

Incorporating prior knowledge in order to improve the modelling quality of neural
networks is a popular approach. Neural networks are universal approximators
but practical applications often show problems due to insufficient training data.
Prior knowledge about monotonicity, smoothness, upper or lower bounds of in-
puts and/or targets can increase robustness of neural network’s training proce-
dures. We address in this article monotonicity. Simple rules like ”if A increases
then B will increase as well” can be transferred to a monotonicity constraint
dB/dA > 0. Such behavior is often known so that we can extend the classical
training approach which is minimization of cost functions consisting of target
values and corresponding output values of a neural network. Early research in
this area [5] recommends the extension of cost functions by penalty terms re-
lated to the derivatives. Monotonicity is evaluated at all training data. The
two objectives minimization of target error and minimization of derivative error
can compete with each other. To sum up, this approach improves the train-
ing procedure but cannot guarantee monotonic behavior for the complete input
space. Other approaches provide topologies of function networks with guaran-
teed monotonicity [1,2]. Such monotonicity constraints do no longer depend on
input values x but on corresponding weights only. In this paper we focus on
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such function networks, namely with partial monotonicity: monotonic behavior
related to selected input-output relation but not necessarily for all inputs.

2 Monotonicity Issues

In order to induce monotonicity for some inputs of the input space one should
mine monotonic behavior from the data. The acquisition of the monotonic be-
havior can be divided into two parts. First one is context acquisition which means
that one should extract monotonicity from deep understanding of the process
he or she is dealing with. Second possibility is the extraction of prior knowledge
from the data using scatter plots. Using scatter plots one can analyze potential
monotonic behavior in input-output relations. An example is given by figure 1.

Fig. 1. Scatter plot of the data. Output vector against input vectors

Analyzing figure 1 one can assume monotonic (increasing) behavior between
e.g. 3rd input and output. This information can be used for the introduction of
an inequality constraint described in eq.(1):

dY

dXk
≥ 0, (1)

where k is an input number, X is an input vector and Y is an output vector.
Authors refer to [2,4,5,7] for more details about embedding monotonic behavior.

3 Constrained Linear Regression (CLR)

In statistics, linear regression is a regression method that models the relationship
between a dependent variable Y , independent variables X1..p and a random term
ε. The model can be written as:

Y = β0 + β1X1 + . . . + βpXp + ε, (2)

where β0 is the intercept (the so-called bias parameter), βi are the respective
parameters of independent variables, and p is the number of parameters to be
estimated in the linear regression. In order to induce prior knowledge about the
data into training procedure one can use monotonic behavior in input-output
relation. Constructing scatter plots (see ”Monotonicity issues”) one can extract
monotonicity in the data. Using eq.(1) one can obtain a system of equations
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which consists of eq.(2) and several inequality constraints which describes Con-
strained Linear Regression, namely:{

Y = β0 + β1X1 + . . .+ βpXp + ε
dY
dXk

≥ 0 (3)

4 Monotonic Multi-Layer Perceptron Network
(MONMLP)

Multi-layer perceptron networks (MLP) consist of multiple layers of computa-
tional units, usually interconnected in a feed-forward way. Each neuron in one
layer has directed connections to the neurons of the subsequent layer. In many
applications the units of these networks apply a hyperbolic tangent function as
an activation function (see fig.2).

Fig. 2. Feed forward network, namely MLP is shown in the figure. Here X are in-
puts, W are weights between layers, Y are outputs. Connections between nodes are
presented with the lines. One can see activation functions within dotted rectangulars.
Bold numbers display the layer number.

Authors used nonlinear hyperbolic tangent function since it is differentiable
and has two saturation limits. An MLP with four layers is described by eq.(4).

Y =
nh4∑
k=1

w4,6
k tanh

⎛⎜⎜⎜⎜⎝
nh2∑
l=1

w2,4
k,l tanh

R︷ ︸︸ ︷(
ni∑

i=1

w0,2
i Xi + w0,1

i

)
+w3,4

l

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Q

+w5,6 (4)

where upper index of the w shows layer number and lower index shows node
number inside the layer, i stands for input number, l is the node number in
layer 2 (see fig. 2), k is the node number in layer 4. In [2] it was shown that
two hidden layers are required for the universal approximation capability under
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monotonicity constraints. Let’s say, that one knows that the input - output
relation has monotonic increasing behavior. Then, related constraints for eq.(1)
can be derived from eq.(5)):

dY

dXk
=

nh2∑
k=1

w4,6
k

(
1− tanh2(Q)

)︸ ︷︷ ︸
>0

nh4∑
l=1

w2,4
k,l

(
1− tanh2(R)

)︸ ︷︷ ︸
>0

w0,2
i,m ≥ 0 (5)

Simple constraints for signs of the weights w0,2
i,m related to input i can be derived

over the equation w0,2
i,mw

2,4
k,lw

4,6
k ≥ 0 (see in detail in [2]).

5 Bounded Derivative Network (BDN)

Following the work [1] one should integrate a standard three-layer MLP (ex-
pression Q of eq.(4)) in order to obtain the architecture of the BDN – Bounded
Derivative Network [1] described by eq.(6).

Y = w6,1
1,1 +

ni∑
i=1

w6,2
1,iw

2,0
i,i Xi +

nh∑
j=1

w6,5
1,jw

5,4
j,j ×

×
[

log

(
cosh

(
w3,1

j,1 +
ni∑

i=1

w3,2
j,i w

2,0
i,i Xi

))
+

+w5,3
j,j

(
w3,1

j,1 +
ni∑

i=1

w3,2
j,i w

2,0
i,i Xi

)]
(6)

Following the idea one should calculate the constraint, which can take into
account monotonic behavior. To do so, one should use eq.(7):

∂Y

∂Xk
= w2,0

k,k ×

×
⎛⎝w6,2

1,k +
nh∑
j=1

w6,5
1,jw

3,2
j,k

(
w5,3

j,j + w5,4
j,j tanh

[
w3,1

j,1 +
ni∑

i=1

w3,2
j,i w

2,0
i,i Xi

])⎞⎠ (7)

Then it is possible to see, that eq.(7) is bounded by its nature due to the limi-
tation of the hyperbolic tangent function. Eq.(7) is very similar to the expression
Q of eq.(4) - general equation for standard three-layer perceptron network. Tak-
ing into account limx→±∞ tanh(x) = ±1 leads to eq.(8):

∂Y

∂Xk bound

= w2,0
k,k ×

×
⎛⎝ nh∑

j=1

w6,5
1,jw

3,2
j,kw

5,3
j,j ±

nh∑
j=1

| w6,5
1,jw

3,2
j,kw

5,4
j,j | +w6,2

1,k

⎞⎠ (8)
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Fig. 3. Bounded Derivative Network. Here X are inputs, W are weights between lay-
ers, Y are outputs. Connections between nodes are presented with the lines. Activation
functions are depicted within dotted rectangulars. Bold numbers display the layer num-
bers.

Depending on the sign of the w2,0
k,k derivative ∂Y

∂Xk bound
can be maximum (further

max) or minimum (further min) bound. In the present paper assume w2,0
k,k > 0

Then the derivative lies in some bounded region: min < ∂Y
∂Xk

< max⇒ if ∂Y
∂Xk

> 0.
Then taking min > 0 it is sufficient that ∂Y

∂Xk
> 0. To constrain the model deriv-

ative minimal value for the derivative should be greater then zero. On the figure
4 one can find visualization of the activation function for the BDN network and
the visualization for the activation function for the MONMLP network. From the
figure 4 it is clear, that MONMLP has constrained activation function as well as
constrained derivative. Activation function is limited due to its nature and allow
to smooth outliers. In contrast BDN has constrained derivative and unconstrained
activation function. In case BDN one can see that extrapolation (activation func-
tion) is linear in its major part and has very small nonlinear domain [1].

6 Comparison of MONMLP, BDN and CLR for the
Benchmark Data

In order to show how powerful constrained networks are, authors decided to
compare performance of each constrained network on benchmark datasets. To
estimate the quality of the result one should use two measures, namely Root
Mean Squared Error (RMS) and R2 which is a statistic that provides informa-
tion about the goodness of fit of a model. In regression, the R2 coefficient of de-
termination is a statistical measure of how well the regression line approximates
the real data points. An R2 of 1.0 indicates that the regression line perfectly fits
the data (see eq.(9)).

R2 = 1− (x− x̃)2

(x− x)2
(9)
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Fig. 4. Visualization of activation functions and their derivatives

where x is a real value,x - is an average value over all real values, x̃ - is a value
obtained in experiment. The results of the research work are presented below.
All data except last two rows were taken from De Moor B.L.R. (ed.), DaISy:
Database for the Identification of Systems, Department of Electrical Engineering,
ESAT/SISTA, K. U. Leuven, Belgium.
URL http://www.esat.kuleuven.ac.be/sista/daisy/.

6.1 Description of the Data (Inputs, Outputs, Monotonicity)

Abalone dataset. Description: predicting the age of abalone from physical
measurements. Monotonicity for this data set: the larger all inputs the larger
the age is.

Ethane-Ethylene dataset. Description: Data of a simulation (not real) related
to the identification of an ethane-ethylene distillation column. Monotonicity for
this data set: the larger ratio between the distillate and the feed flow, the lower
top ethane composition.

CD player Arm dataset. Description: Data from the mechanical construction
of a CD player arm. Monotonicity: the larger the force the lower the tracking
accuracy.

Boston housing problem. Description: Concerns housing values in suburbs
of Boston. Monotonicity: The higher crime level, the lower median value, the
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higher nitric oxide concentration the lower median value, The higher average
number of rooms per dwelling the higher the median value, the higher distances
to center the lower median value, the higher tax rate the lower the median value,
the higher lower status of the population the lower median value.

Steel dataset. Description: this is the real world dataset. Each strip of steel in
a hot rolling mill must satisfy customer quality requirements. Monotonicity: the
higher pressure of carbon the higher the quality, the higher the proportion of
Mn the higher the quality, and the higher the temperature the lower the quality.

Dow Jones dataset. Description: this is real world dataset for DJIA index.
This dataset is available at http://finance.yahoo.com. Monotonicity: there was
no monotonicity found.

6.2 Training Procedure and Architecture Parameters

For the training of the MONMLP and BDN Sequential Quadratic Programming
(further SQP) technique was used due to the constrained optimization procedure
required. The implementation of the SQP was done by Optimization toolbox of
MATLAB. Due to the fact, that all datasets (except DJIA) were not time series,
for the cross validation randomly chosen points were used. Each network (CLR,
MONMLP and BDN) was used 10 times for the same data set to find the range
for the RMS and R2. The architecture was chosen to be like following: for the
MONMLP one should use 8 to 4 units in first hidden layer and 4 to 3 units in
second layer, for the BDN one should use 1 to 4 units in hidden layer. For each
data set number of epochs was chosen to be 400. Moreover early stopping for the
training procedure was used. Early stopping means that in case the error on the
test set starts ascending (after it was descending) and at the same time error on
the training set continue descending, one should stop training procedure. In the
table below (see table 1) one can find results for each dataset.

7 Convergence Issues

Figure 5 depicts the convergence of training procedure based on the ”Functional
value” label. This is the functional constructed by MATLAB while solving the
optimization problem. All figures were provided for the ”Abalone” benchmark
dataset. Both architectures (MONMLP and BDN) were used and compared. One
should not pay attention to the initial functional values, since different number
of hidden neurons was used in order to show possible outcomes.

As one can see from the figure 5 the convergence for MONMLP is not guar-
anteed in case of infeasible start point. The opposite story is with the BDN (see
figure 5). For the BDN one can watch absence of the convergence for some re-
gions (epochs 20−150 at the figure 5) but at the end solution converges to some
local optimum. The final error for the MONMLP as the final error for the BDN
does not depend very much on the weight initialization (in case of feasible start
point). Nevertheless, one should note that according to experiments presented
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Table 1. Comparison of the results for each dataset

Data set CLRRMS MLPRMS BDNRMS CLRR2 MLPR2 BDNR2

ABALONE 2.45± 0.05 2.3± 0.05 2.0 ± 0.7 0.4±0.1 0.53±0.8 0.37±0.1

ETHANE 1.26±0.2 1.40±0.1 1.30±0.1 -0.55±0.4 -1.0±0.1 -0.6±0.1

CD ARM 0.1±0.00 0.09±0.00 0.09±0.00 0.87±0.01 0.90±0.00 0.90±0.00

BOSTON 9.1±0.3 3.80±0.2 3.30±0.4 -1.9±0.2 0.45±0.15 0.4±0.1

DJIA 56.80±0.1 31.0±1.0 31.5±0.5 0.37±0.02 0.45±0.05 0.45±0.1

STEEL 35.45±0.65 6.75±0.5 6.80±0.5 -0.07±0.03 0.96±0.01 0.96±0.01

Av.Var ±0.22 ±0.32 ±0.38 ±0.12 ±0.18 ±0.06

in the table 1 even in case of infeasible start point solution provided by BDN
converge to some local optimum. For MONMLP the situation is worse, since in
case of optimization start from infeasible start point, one can see absence of con-
vergence. In order to start from a feasible start point, one can compute feasible
start point for MONMLP and BDN. In case of MONMLP feasible start point
can be computed like following: if w0,2

i,mw
2,4
k,lw

4,6
k ≥ 0 then any positive combina-

tion of weights will provide feasible start point and more over monotonicity can
be fixed by the signs of weights in the initial layer (w0,2

i,m) if other weights are
fixed as positive (w2,4

k,lw
4,6
k ≥ 0). Therefore, fixing the sign of the input weights

w0,2
i,m > 0 or w0,2

i,m < 0 leads to guaranteed monotonicity in I/O relation. In case
of BDN the situation is a bit more difficult (see eq.(10)).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑nh
j=1 w

6,5
1,jw

3,2
j,k

(
w5,3

j,j + w5,4
j,j

)
+ w6,2

1,k < 0, if ∂Y
∂Xk

< 0∑nh
j=1 w

6,5
1,jw

3,2
j,k

(
w5,3

j,j − w5,4
j,j

)
+ w6,2

1,k > 0, if ∂Y
∂Xk

> 0

w0,2
k,k > 0

w6,5
1,jw

3,2
j,kw

5,4
j,j > 0, ∀j = 1 . . . nh

(10)

In order to fulfill eq.(10) in case inputs have ascending behavior ( ∂Y
∂Xk

> 0) one
should initialize weights according to eq.(11):⎧⎪⎪⎨⎪⎪⎩

w5,3
j,j = − w6,2

1,k

w6,5
1,j w3,2

j,k

w0,2
k,k > 0 ∀j = 1 . . . nh

w6,5
1,j < 0, w5,4

j,j < 0, w3,2
j,k > 0

(11)

eq.(11) clearly shows how to start from a feasible start point for BDN.
Authors used Pentium 4 DUO processor, 2.2 GHz, 2 GB RAM to train neural

networks. Training time varies for different data sets. Nevertheless, a basic es-
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Fig. 5. Convergence of BDN and MONMLP for different start points

timation for all data sets is presented: one should spend 10-60 seconds to train
CLR, 3-10 minutes for the MONMLP and 10-20 min for the BDN.

8 Conclusions

Present paper clearly shows that it is difficult to say what architecture to use.
In any case, one has to mine for monotonicity in the input-output relation. But
on the other hand, one can see that constrained neural networks are better in
modelling quality than unconstrained ones, since such networks obey monotonic-
ity rules induced during training into the structure. Compared architectures are
more or less equal in the results. Obviously monotonicity constraints make the
optimization problem more difficult for any architecture. SQP method should be
used instead of other methods. Moreover, optimization to a reasonable minimum
takes much more time (see Convergence issues).

Optimization time in case of the BDN should be considered, since the math-
ematical expressions of the BDN and its constraints are much more difficult
than the corresponding expressions of the MONMLP. This makes usage of the
MONMLP easier and faster in computational time. Convergence for the BDN
is more robust with respect to the starting point but setting feasible starting
points is easier for the MONMLP. The solution for BDN always converges to
some optimum (fig. 5). In case of infeasible starting point for MONMLP training
converges to an insufficient local optimum (fig.5).

Obtained results show the possibility to use monotonic neural networks in
different applications. Note that wrong monotonicity rules can lead to very poor
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approximation results. Nevertheless, if monotonic rules were selected in a proper
way and optimization procedure finished successfully according to some crite-
ria, monotonic neural networks not only have the same approximation capa-
bility as neural networks without monotonicity constraints, but also guarantee
monotonicity in input-output relation by their structure.
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Abstract. Deterministic nonlinearity has been observed in experimen-
tal electrophysiological recordings performed in several areas of the brain.
However, little is known about the ability to transmit a complex tempo-
rally organized activity through different types of spiking neurons. This
study investigates the response of a spiking neuron model represent-
ing five archetypical types to input spike trains including deterministic
information generated by a chaotic attractor. The comparison between
input and output spike trains is carried out by the pattern grouping algo-
rithm (PGA) as a function of the intensity of the background activity for
each neuronal type. The results show that the thalamo-cortical, regular
spiking and intrinsically busting model neurons can be good candidate
in transmitting temporal information with different characteristics in a
spatially organized neural network.

1 Introduction

The time series of the exact timing of the occurrences of neuronal action poten-
tials is referred to as “spike train” and can be searched for detecting embedded
temporal structures. Since a neuron can be considered as a nonlinear filter of
spike trains, a neuronal network may be considered as a highly complex nonlinear
dynamical system able to exhibit deterministic chaotic behavior, as suggested
by experimental observations [1,2,3]. Previous studies [4,5] showed that deter-
ministic nonlinear dynamics in noisy time series could be detected by applying
algorithms aimed at finding preferred firing sequences with millisecond order
time precision from simultaneously recorded neural activities. A neural network
is also characterized by the presence of background activity of unspecified or

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 607–616, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.neuroheuristic.org/


608 Y. Asai and A.E.P. Villa

unknown origin, usually referred to as “spontaneous activity”, that is generally
represented by stochastic inputs to each cell of the network. Then, a neuron
belonging to a cell assembly within the network is expected to receive inputs
potentially characterized by an embedded temporal structure as well as inputs
corresponding to the stochastic background activity.

The purpose of the present work is to investigate how different types of
archetypical neurons react to an input spike train generated by a deterministic
dynamical system in presence of a stochastic background activity with several in-
tensities. The assessment of the performance of the transmission of the temporal
structure in the spike train is carried out by comparing various indices derived
by applying the pattern grouping algorithm [6,7] to the input and output spike
trains in presence and absence of background activity.

2 Method

2.1 Spiking Neuron Model

The simple spiking neuron model [8] used in this work is described as follows;

dv

dt
= 0.04v2 + 5v + 140− u+ Ibg + Iext (1)

du

dt
= a(bv − u) ,

with the auxiliary after-spike resetting, v ← c and u← u+d when v ≥ +30 mV .
v represents the membrane potential [mV ], and u is a membrane recovery vari-
able. The time unit is millisecond. a and b control the time scale of the recovery
variable and its sensitivity to the subthreshold fluctuation of the membrane
potential. Five neuron types were considered in this study according to the liter-
ature [8,9]: (i) a neo-cortical neuron of regular spiking (RS) type with parameters
a = 0.02, b = 0.2, c = −65, d = 8; (ii) a thalamo-cortical (TC) neuron with
parameters a = 0.02, b = 0.25, c = −65, d = 2; (iii) a neuron type character-
ized by its sustained subthreshold oscillation of the membrane potential called
resonator (RZ) with a = 0.1, b = 0.25, c = −65, d = 2; (iv) an intrinsically
bursting neuron (IB) that fires burst of spikes then generates single spikes with
parameters a = 0.02, b = 0.2, c = −55, d = 4; (v) an chattering neuron (CH)
making repetitive bursty spikes with a = 0.02, b = 0.2, c = −50, d = 2;

Let us denote Iext the input synaptic current, defined as

Iext = −Aextgsyn(V − V syn) , (2)

where V syn is the synaptic reversal potential, set to 0 in this study; Aext is an
intensity of the synaptic transmission of the spike received as an external input.
gsyn is the post synaptic conductance represented by

gsyn = C0
e−t̃/τ1 − e−t̃/τ2

τ1 − τ2 , (3)
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where t̃ is interval between the last pre-synaptic neuron’s discharge and current
time; τ1 and τ2 are time constants given by 0.2 and 2 ms, respectively and C0

is a coefficient used to normalize the maximum amplitude of gsyn to 1.
Let us assume that each neuron receives multiple inputs called background

activity whose current is denoted Ibg. We assume that Ibg is defined by the
same type of Eq. 2 with different intensity of the transmission denoted by Abg.
Aext and Abg were tuned for each cell type such that a single pulse of the pre-
synaptic input can evoke a spike in the post-synaptic cell, if the membrane
potential is at rest, but a single pulse of the background activity cannot. The
values of (Aext, Abg) for TC were set to (0.033, 0.032), for RS (0.15, 0.14), for RZ
(0.018, 0.017), for IB (0.15, 0.14), and for CH (0.15, 0.14). We also used Abg = 0
as a control case, meaning that there is no background activity.

2.2 Input Spike Train

We considered one deterministic and two stochastic processes as input spike
trains. Ten thousand points (N = 10, 000) were generated in each series. We
used the Zaslavskii map [10] to generate the deterministic spike train, which is:{

xn+1 = xn + v(1 + μyn) + εvμ cosxn (mod. 2π)
yn+1 = e−γ(yn + ε cosxn) , (4)

where x, y ∈ R, the parameters are real numbers with μ = 1−e−γ

γ , v = 4
3 ·100 and

initial conditions set to x0 = y0 = 0.3. The system exhibits a chaotic behavior
with this parameter set. Time series {xn} are generated by iterative calculation.
A new time series {wn} corresponding to the sequence of the inter-spike-intervals
is derived by wn = xn+1 − xn + C, where C = min{(xn+1 − xn)} + 0.1 is a
constant to make sure wn > 0. The dynamics was rescaled in milliseconds time
units with an average rate of 3 events/s (i.e., 3 spikes/s) in order to let the
Zaslavskii spike train be comparable to neurophysiological experimental data.
Similarly Poissonian and Gaussian spike trains were generated according to the
corresponding probability density function.

The background activity was simulated as the Poissonian spike train. To
investigate the effect of the background intensity to the performance of the
spike pattern detection from the neural outputs, we used the average firing rate
of 0.5, 1, 2, 3, 6, 9, 12 events/s. Return maps of the Zaslavskii, Poissonian and
Gaussian spike trains are shown in Fig. 1.

2.3 Pattern Detection and Reconstruction of Time Series

Time series that are subset of neural spike trains referred to as “reconstructed
time series” were obtained by using the Pattern Grouping Algorithm (PGA)
as described in previous work [5]. The procedure can be briefly described as
follows. At first, the PGA [11,6,7] detects a minimum number of spatiotemporal
patterns of spikes (at least n times set to n = 5 in this study) that repeated
above the chance level (significance set to p = 0.05 in this study), where the spike
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Fig. 1. Return maps of input spike trains. The n-th inter-spike-interval were plotted
against the (n − 1)-th inter-spike-interval. The axes are scaled in ms time units. Each
panel shows Zaslavskii, Poissonian, and Gaussian spike trains from left to right. Each
map includes 10, 000 spikes and the mean firing rate was 3 spikes/s.

patterns were defined as sequences composed of three or four spikes which were
not necessarily separated by immediately successive intervals. The maximum
duration of the pattern was set to 1, 000 ms. A clusterization procedure allows to
group patterns whose difference in spike timing is below a threshold of accuracy
(in this study the accuracy was set to 3 ms). The representative pattern of one
such group is called a template pattern. For example if there are 10 triplets
(i.e., patterns formed by 3 spikes) in one cluster, then the group is formed by
10×3 = 30 spikes. All events belonging to all such template patterns detected by
PGA are pooled together and form a subset of the original spike train referred
to as “reconstructed time series”[5].

Let us term V0 the set of spikes of the output spike train in the absence of any
background activity and V the set of spikes of the output spike train, otherwise.
The set of points reconstructed from V0 is referred to as R0 and from V as R. We
evaluated the effect of the background activity by the number of spikes involved
in both of R0 and R denoted as R0 ∪R using the logical expression, i.e., spikes
in spike pattern groups associated to template patterns found in both of R0 and
R were counted as elements in R0 ∪R.

3 Result

We investigated the response of the neuron model to the input spike trains,
i.e. Zaslavskii, Poissonian and Gaussian spike trains, in the absence of the
background activity. Return maps of spike trains of the neural outputs and
corresponding reconstructed spike trains are shown in Fig. 2. For Zaslavskii spike
train one can recognise the sets of points which reflect the original Zaslavskii
attractor in the return map of the output spike train of all neuronal types (Fig. 2
panels in the top row) except CH neuronal type. Cell type CH generated doubled
spikes for one input pulse with a short interval, and hence the points in the
return map stayed near the ordinate and abscissa axes. Notice that the margins
without points near both axes in each panel are related to the refractoriness of
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Fig. 2. Return maps of the neural outputs and corresponding reconstructed spike
trains. Zaslavskii, Poissonian and Gaussian spike train were given to the neuron model
of chattering (CH), intrinsically bursting (IB), regular spiking (RS), resonator (RZ) and
thalamo-cortical (TC) neurons without the background activity. The axes are scaled
in ms time units.

the neuronal dynamics. Panels in the second row of Fig. 2 show the return maps
of the reconstructed spike trains which include principal features of the shape of
the attractor. Even in the case of CH neuron, the shade of the attractor which
was invisible in the return map of the neural output was revealed by applying
the reconstruction method. An example of a preferred spike pattern found by
PGA in the RS neural output without (i.e., with background activity set to
0 spikes/s) and in presence of background activity of 6 spikes/s were shown
in Fig. 3.

We analyzed at first the responses to stochastic inputs. In case of a Poissonian
input spike train the time series is entirely stochastic and PGA could not detect
any preferred spike pattern in it. However, a few patterns were found in the
corresponding output spike train due to the intrinsic dynamics of the neuron
model.
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Fig. 3. Raster plot of an example spike patterns aligned by the first spike in the pattern.
The upper panel shows a quadruplet found in the output of RS neuron receiving the
Zaslavskii spike train at the absence of the background. The lower panel shows a
triplet corresponding to a subpattern shown in the upper panel found in presence of
the background with mean firing rate 6 spike/s.

In case of a Gaussian input spike train all neuron types were characterized by
nearly 30% more spikes in the output train compared to the Poissonian input.
In the corresponding reconstructed time series, about 3 times more spikes were
observed for neuronal types IB, RS and TC, and about twice for RZ and CH.
The stripe pattern near the axes was clearly observed in RZ following its typical
subthreshold oscillatory dynamics.

The number of spikes in the output spike trains and in the corresponding re-
constructed time series as a function of several intensities of background activity
were summarized in Table 1. With a Poissonian input and for all cell types ex-
cept RZ the number of spikes in the output time series tended to decrease when
the background activity increased up to the range [3, 6] spikes/s. Beyond this
range of background intensity the number of spikes increased in parallel with an
increase of background activity. For the reconstructed time series the number of
events tended to decrease with an increase in background activity. The dynam-
ics of cell type RZ was such that the number of events in the output trains in-
creased monotonously with an increase in background activity. With a Gaussian
input the cell types responses were similar to those observed with a Poissonian
input.

Figure 4 shows that an increase in background activity tended to blur the
contour of the Zaslavskii attractor, especially in RZ neuron, Notice that for all
cell types the background activity up to a mean rate near 6 spikes/s tended to
reduce the number of spikes in the output train. Beyond this intensity higher
levels of background activity provoked an increase in the firing rate of the output
spike train. The number of events belonging to the reconstructed spike trains
decreased almost linearly with an increase in background activity except for RZ
cell type.
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Table 1. Summary of the spike number in the spike train of the neural output (V), and
corresponding reconstructed time series (R). V0 and R0 represent the spike set at the
absence of the background activity, respectively. BG indicated by the mean firing rate
(spikes/s) of the background activity. R0 ∪ R represents number of spikes composing
the spike patterns found in both of R0 and R. The Detected Ratio: DR = R0∪R

R0
, and

the Affected Pattern ratio: AP = R−(R0∪R)
R0

are shown for the case of the Zaslavskii
input spike train.

Zaslavskii Poissonian Gaussian
BG V R R0 ∪ R DR AP V R V R

CH

0 15,676 5,690 13,573 102 17,824 180
0.5 15,402 5,239 4,441 0.78 0.14 13,378 39 17,509 167
1 15,189 4,821 3,950 0.69 0.15 13,321 90 17,361 143
2 14,906 4,055 3,119 0.55 0.16 13,057 15 16,801 172
3 14,628 3,358 2,357 0.41 0.18 12,965 0 16,421 144
6 14,612 1,823 841 0.15 0.17 13,320 21 16,019 21
9 15,411 767 355 0.06 0.07 14,610 0 16,665 15
12 17,061 96 0 0 0.02 16,226 15 17,902 36

IB

0 7,861 5,887 6,778 290 8,989 1,163
0.5 7,689 5,408 4,507 0.76 0.15 6,651 172 8,786 1,051
1 7,539 5,031 3,793 0.64 0.21 6,581 140 8,664 717
2 7,323 4,119 3,286 0.55 0.14 6,384 111 8,312 646
3 7,148 3,634 2,705 0.45 0.15 6,283 76 8,046 531
6 6,888 1,990 1,322 0.22 0.11 6,247 51 7,589 321
9 7,098 1,007 467 0.07 0.09 6,683 69 7,697 225
12 7,739 355 118 0.02 0.04 7,306 45 8,110 117

RS

0 7,587 5,543 6,422 335 8,670 1,093
0.5 7,427 5,096 4,174 0.75 0.16 6,306 228 8,483 1,091
1 7,287 4,663 3,739 0.67 0.16 6,237 226 8,366 925
2 7,055 3,808 2,775 0.50 0.18 6,057 149 8,022 737
3 6,874 3,090 2,227 0.40 0.15 5,943 174 7,777 712
6 6,579 1,656 994 0.17 0.11 5,911 75 7,279 402
9 6,736 1,109 474 0.08 0.11 6,243 62 7,359 232
12 7,266 378 0 0 0.07 6,772 93 7,607 203

RZ

0 8,840 6,914 8,503 293 9,763 630
0.5 8,860 6,463 5,224 0.75 0.18 8,512 187 9,776 345
1 8,906 5,825 4,786 0.69 0.15 8,613 226 9,842 407
2 9,186 5,132 3,717 0.53 0.27 8,892 602 10,075 487
3 9,710 4,811 3,058 0.44 0.25 9,390 1,155 10,422 900
6 11,432 3,239 799 0.11 0.35 11,318 1,916 12,176 2,106
9 14,495 4,592 196 0.02 0.67 14,141 3,568 15,017 3,798
12 17,528 6,072 652 0.09 0.78 17,386 6,852 18,052 6,870

TC

0 8,005 6,232 7,052 395 9,192 1,350
0.5 7,758 5,375 4,525 0.72 0.13 6,855 272 8,896 886
1 7,580 4,739 3,850 0.61 0.14 6,752 260 8,687 781
2 7,300 3,580 2,600 0.41 0.15 6,573 256 8,336 721
3 7,111 2,661 1,809 0.29 0.13 6,493 150 8,032 434
6 7,270 1,239 563 0.09 0.10 6,841 162 7,892 170
9 7,963 472 140 0.02 0.05 7,756 182 8,446 232
12 9,138 603 21 0 0.09 8,834 90 9,492 131
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Fig. 4. Return maps of raw output spike trains and reconstructed output spike trains
by PGA for a Zaslavskii input with several intensities of background activity

The similarity between the reconstructed spike trains in absence (R0) and
presence (R) of background activity was analyzed for each cell type. The events
found in both R0 and R are denoted by R0∪R and their number is summarized
in Table 1. For all neuron types but RZ, the number of such events decreased
as the background activity increased. We defined two indexes, DR and AP , to
assess the performance of the reconstruction method (Table 1). The detection
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ratio (DR) was defined as the ratio of the number of spikes in R0∪R to R0. Thus,
large values of DR correspond to good reconstructions of the attractor dynamics.
The affected pattern ratio (AP ) was defined as the ratio of the number of spikes
in R but not in R0 to R0. Thus, large values of AP mean that many spike
patterns were spurious, i.e., many patterns were associated to the background
noise and were formed by events not belonging to R0. According to DR, the
performance of TC neurons (for BG=3 DR = 0.29) appeared somehow slightly
lower than for the other cell types (DR ≥ 0.4). According to AP the RZ neurons
showed more spurious patterns than other cell types (Fig. 4). In the case of TC
neurons AP values were lower, thus suggesting that TC cell type might be better
suited to transmit some temporal information embedded in the input spike train
despite increasing levels of background activity.

4 Discussion

We investigated the responses of five types of modeled neurons, i.e. regular spik-
ing (RS), thalamo-cortical (TC), resonator (RZ), intrinsically busting (IB) and
chattering (CH) neurons [8,9] to inputs characterized by deterministic temporal
structure or stochastic properties in presence of several intensities of background
activity. RS and IB types are characterized by a rather long refractory period
and RZ is characterized by subthreshold oscillations of the membrane potential.
In the case of RZ its peculiar dynamics provoked the appearance of stripe pat-
terns in the return maps of the output spike trains and increased the number
of spurious patterns which are irrelevant to deterministic temporal information
embedded in the inputs.

It is interesting to notice the nonlinear effect of the background intensity to
the output firing rate. The background activity near 6 spikes/s provoked the
minimal output rates for CH, IB and RS neurons. Low values of AP indicate
less spurious patterns detected by PGA in the neural output. According to this
index the TC cell type appeared to be the best model investigated here to
preserve the input deterministic dynamics. The fact that TC neurons appear
as a good candidate for the transmission of temporal information may raise
several hypotheses on the role of the thalamo-cortical loop with respect to feed-
forward networks formed by cortical regular spiking neurons [12]. According to
the detection rate RD IB and RS cell types could also transmit information
associated to the temporal structure embedded in the input spike train even in
presence of background intensity larger than the input firing rate.

The current work is only at an incipient state but it clearly address the need
to investigate in detail the ability of transmitting detailed temporal information
as a function of neuronal internal dynamics and the background activity level in
the network composed of these neurons. Furthermore, the nature of additional
stochastic inputs might act as additional controlling parameters on the trans-
mission of temporal information through chains of different types of neurons.
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Abstract. The formation of temporal coding assemblies requires syn-
chronizing mechanisms to establish the coherence of the corresponding
patterns, as well as desynchronizing mechanisms that separate it from
other possibly overlapping patterns. Here, we use a recently proposed
desynchronizating mechanism, denoted as acceleration. This mechanism
lets each unit of the network oscillate with higher frequency in case of
stronger and/or more coherent input from the other units. In the context
of Hebbian memory, it implies a competition for coherence among the
stored patterns. The profound effect on the segmentation of patterns is
demonstrated. Going beyond earlier discussions, we also illustrate the
concept of an assembly as a collection of phase-locked coherent patterns.
This points to a role of synchronization strength as controlling the de-
gree of association, that is, determining the number of patterns that are
collected in the assembly.

Keywords: Associative memory, complex-valued neural networks, oscil-
latory networks, pattern recognition, synchronization, temporal coding.

1 Introduction

Neural information processing has to combine cooperative with competitive
mechanisms. In the context of temporal coding, the cooperative mechanisms
should be based on excitation and some form of temporal correlation, commonly
identified with synchronization; see [1,2] for introductions to temporal coding
and the related concepts of assemblies and binding. Without desynchronizing
interactions present, however, neural systems may reach global coherence and
the superposition catastrophe would be present. In fact, it was this superposi-
tion catastrophe that motivated the temporal correlation hypothesis in [3]. In
consequence, merely adding synchronization mechanisms to the classical neural
couplings does not realize temporal coding. Instead, identifying the appropriate
competitive mechanisms, resulting in meaningful desynchronization, is of utmost
importance for realizing the benefits that temporal coding may hold.
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c© Springer-Verlag Berlin Heidelberg 2008



618 T. Burwick

As a counterpart of excitation, inhibition is a natural first candidate to im-
plement competition for activity among the units of the network. Nevertheless,
in particular with a view on the workings of the brain, it should be noticed
that inhibition rather may serve to implement competition on a local scale; see
[4] for a recent review where the local nature of the competition resulting from
the cortical inhibitory (interneuron) system is emphasized. Cooperation among
the neural units serves to establish assemblies that are distributed and, in the
context of temporal coding, bound together through synchronization among its
different parts. Given the distributed nature of assemblies versus the local nature
of the competition based on inhibition, another competition may be needed that
complements the local one by acting in a distributed manner.

Recently, it was demonstrated that temporal coding may provide such a com-
petition mechanism based on surprisingly simple assumptions. Assuming that a
number of patterns are stored in a network according to the rules of Hebbian
memory, a competition for coherence among the patterns may be established
through complementing synchronization with another interaction, denoted as
acceleration, that lets the units of the network tend to oscillate with higher fre-
quency in case of stronger and/or more coherent (synchronous) input from the
connected units [5,6,7,8]; see also [9].

In section 2, the model is briefly reviewed. Moreover, following a proposal
made in [8, section 6] in the context of hierarchical architectures, an assembly is
defined as a set of phase-locked patterns (here, we discuss only auto-associative
memory). In section 3, first examples are given to demonstrate the formation of
such configurations. Section 4 contains the summary and discussion.

2 Neural Dynamics with Amplitudes and Phases

2.1 The Model in Real Coordinates

The model that is used in the following arises from an appropriate complex-
valued generalization of the Cohen-Grossberg-Hopfield model; see [5]. Thereby,
it implements temporal coding through an oscillatory network model that shares
important features with the classical models, for example, the saturation prop-
erty of activities and the presence of on- and off-states.

Consider a network with N units, where each unit k is described in terms of
amplitude uk and phase θk, k = 1, . . . , N . Then, in terms of these real coordi-
nates, the model takes the form

τ(uk)
duk

dt
= Ik − uk +

α

N

N∑
l=1

hklc(θl − θk)Vl (1a)

τ
dθk

dt
= τωk (u, θ) +

σ

N

N∑
l=1

hkls(θl − θk)Vl︸ ︷︷ ︸, (1b)

synchronization terms
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with

ωk (u, θ) = ω1,k + ω2,kVk +
ω3

N

N∑
l=1

hklΔ(θl − θk)Vl︸ ︷︷ ︸ . (2)

acceleration terms

Here, t is the time, τ is a time-scale, Ik is an external input, the ω1,k are the
eigenfrequencies of the oscillators, and the ω2,k parameterize the shear terms.
The activity Vk is related to uk via the activation function g, chosen as:

Vk = g(uk) =
1
2

(1 + tanh(uk)). (3)

Equation 1 may be described as complex-valued gradient system [5]. This
form implies the phase-dependent couplings

c(θ) = 1 +
σ

2α
cos θ − τω3

2α
sin θ = 1 +

β

2α
cos(θ + φ), (4)

τω3Δ(θ) + σs(θ) = τω3 cos θ + σ sin θ = β sin(θ + φ), (5)

and the scaling factor
τ(uk) = (1 − Vk)τ , (6)

where α > 0 is the classical (that is, phase-independent) coupling strength, σ > 0
is the strength of synchronization, and ω3 > 0 is the acceleration parameter.
Equations 4, 5 also introduce β, φ with β cos φ = σ, β sin φ = τω3, where φ may
be referred to as acceleration phase, since φ = 0 implies ω3 = 0.

The fact that acceleration and synchronization terms may be combined into
single terms in equations 4 and 5 points to their common origin as imaginary
and real part of the coupling terms in the complex-valued formulation.

See [6] for a list of references to implementations of temporal coding through
oscillatory networks. What makes the approach of equations 1 to 6 special is the
phase- and amplitude-dependency of the ωk as given by the acceleration terms.
It implies that a more coherent and/or stronger input to unit k will lead to a
higher phase velocity through increasing the value of ωk (the contributions from
τω3hkl cos(θl − θk) increase as θk → θl).

2.2 Hebbian Memory and Competition for Coherence

The storage of P patterns ξp
k, with p = 1, . . . , P , and k = 1, . . . , N , enters

equation 1 through the couplings hkl. In this paper, it will be sufficient to assume
that ξp

k ∈ {0, 1}, where 1 (0) corresponds to an on-state (off-state). We refer to
the units k with ξp

k = 1 as the units of pattern p. In equations 1 with 2, Hebbian
memory may be used that is defined by

hkl =
P∑

p,q=1

λp ξp
kξp

l , (7)

with λp > 0. The λp give the weights for patterns p.
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In the following, the collective dynamics of the network is described in terms
of pattern activities Ap, coherences Cp, and phases Ψp, given by

Ap =
1

Np

N∑
k=1

ξp
kVk (8)

Zp = Cp exp(iΨp) =
1

NpAp

N∑
k=1

ξp
kVk exp(iθk), (9)

where Np denotes the number of units of patterns p, that is, the number of units
k with ξp

k = 1. The quantities Ap,Cp,Ψp are real and 0 ≤ Ap, Cp < 1.
These quantities allow to understand that the interplay of synchronization

and aceleration terms introduces a competition for coherence among the stored
patterns. A pattern p may win this competition (it is then said to be dominating)
through having a larger value of λpnp than the other patterns, where λp is
the pattern weight (see equation 7) and np is the number of active units of
pattern p, that is, units k with ξp

k = 1 and Vk � 1; see [6, section 2.3] or
[8, section 3].

2.3 Assemblies as Phase-Locked Pattern Sets

The earlier discussions of equation 1, given in [5,6,7,8], concentrated on the case
that the competition for coherence results in a single dominating pattern. This
pattern gets segmented from the other patterns through taking a coherent state.
Such a case will be reviewed with example 1 in section 3.2.

Here, we want to take a more general point of view. While the case of only one
pattern being retrieved corresponds to identifying a neural assembly with a single
pattern, we now allow for assemblies made up of several patterns. Given certain
values for the acceleration strength ω3, it should be obvious that increasing values
of synchronization strength σ lead to global synchronization of the connected
units of the network when σ is sufficiently large. Examples 2 and 3 in section 3.3
demonstrate two steps on this way to global coherence. These examples illustrate
an interesting aspect: increasing the synchronization strength does not imply a
gradual increase in synchronization of the complete network. Instead, a stability
hierarchy among the patterns is observed, that is, subsets of the stored patterns
form well-defined sets of phase-locked groups. The cardinality of this subsets
increases with synchronization strength.

The units of the network may be interpreted as representing features. Accord-
ingly, phase-locking of the units may be interpreted as association of features.
Then, given the described behavior in the context of associative memory, syn-
chronization strength may be seen as controlling the degree of association.

More will be said on this phenomenon in the context of the corresponding
examples 2 and 3 in section 3.3 and the discussion of section 4.
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3 Examples

3.1 Network Architecture and Parameters

In this section, examples are given that use a network with N = 30 units and
P = 6 overlapping patterns ξp

k, where k = 1, ..., N and p = 1, ..., P . The overlap
between patterns p and q may be described through

Opq =
N∑

k=1

ξp
kξq

k . (10)

The patterns of the following examples have

(Opq) =

⎛⎜⎜⎜⎜⎜⎜⎝
19 4 5 3 3 2
. 7 2 0 1 1
. . 7 1 1 1
. . . 6 0 0
. . . . 4 0
. . . . . 3

⎞⎟⎟⎟⎟⎟⎟⎠ , (11)

where the symmetric elements are not repeated. For example, patterns p = 1
and p = 3 have N1 = 19 and N3 = 7 units, respectively, and they are overlapping
at five units. We ordered the patterns so that Np ≥ Np+1. With our examples,
we assume that the patterns enter the Hebbian couplings with equal weight,
λp = 1/P for every p.

The examples use acceleration strength ω3/N = 2π/τ . Eigenfrequency and
shear parameters are chosen to vanish, ω1,k = ω2,k = 0 for any k. This as-
sures that any observed desynchronization (and the corresponding segmenta-
tion) may be traced back to the presence of acceleration. The inputs are chosen
as Ik = −(α/(2N))

∑N
l=1 hkl + Jk, with Jk = 0, thereby describing a kind of

“neutral” input (see [10, subsection 4.1]).
As with the foregoing studies of equation 1, the discretized dynamics is ob-

tained by introducing a parameter 1 � ε > 0, replacing the scaling factor of
equation 6 with τε(uk) = (1 − Vk + ε)τ , and applying a simple Euler discretiza-
tion with time step dt = ετ [5]. Here, we choose ε = 0.01.

Initial values are chosen that let each unit get active, Vk � 1, thereby reducing
the system to the phase dynamics. (Examples for pattern retrieval, where only
part of the network gets active may be found in [6,7]).

Each of the following example uses the same initial values and parameters,
except for an increasing value of synchronization: example 1 uses σ = σ1 = τω3,
while examples 2 and 3 use σ = 3σ1 and σ = 4σ1, respectively. We also mention
(without demonstration) the behavior for even larger values.

3.2 Example 1: Retrieval of Dominating Pattern

Example 1 uses σ = σ0 = τω3. It may serve to illustrate the competition for
coherence that results from equation 1, as mentioned in section 2.2. Thereby,
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Fig. 1. Example 1: Synchronization strength is σ = σ1 = τω3, where ω3 gives the
strength of acceleration and τ is the time scale; see equations 1 and 2. The solid curves
show the pattern coherences Cp, while the dotted curves give the pattern activities Ap.
The superposition problem is present, since all units get active, due to the chosen inputs
and initial values. Temporal coding resolves this problem by making the dominating
pattern p = 1 coherent, while the other patterns return to states of decoherence. This
segmentation is a result of the interplay of synchronization and acceleration. Pattern
p = 1 is dominating, that is, it takes a state of enduring coherence, because it has
the highest number of active units (given that each pattern enters Hebbian memory of
equation 7 with same weight λp), as mentioned in section 2.2. See also the additional
remarks in section 3.2.

we review the case of a dominating pattern that is unambigously retrieved as
coherent part of the network [5,6,7,8].

As mentioned in section 3.1, the initial values are chosen such that the network
gets completely active, that is, each of the pattern activities approaches Ap � 1.
Thus, from a classical point of view, the superposition problem is present. Tem-
poral coding has to resolve this problem with respect to coherences Cp by iden-
tifying the retrieved patterns as the ones that take coherent states: the retrieved
patterns p show a dynamic that approaches and remains close to Cp � 1.

The patterns compete with each other for coherence with an effective weight
given by the product λpnp, as mentioned in section 2.2. Since the λp = 1/P
are identical for all patterns and each pattern gets completely active, that is,
np = Np, we may expect from equation 11 that pattern p = 1 is the dominating
pattern. Indeed, we find that this pattern wins the competition for coherence;
see figure 1.

In order to value the described behavior, it is essential to notice that winning
the competition for coherence is a dynamical process that is determined by
choosing external inputs Ik and initial values. Here, to illustrate a most simple
situation, we chose external inputs and initial values such that each unit of the
networks gets active: Vk � 1 for each k. However, other inputs and initial values
may cause only a subset of the units to get active. Then, the np may differ from
the Np and the competition will decide for the pattern with the most active units
(or the pattern with highest value of λpnp in case of different Hebbian pattern
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Fig. 2. Example 2. The synchronization is stronger than with example 1: σ = 3σ1, while
the other parameters and initial values are identical. Now, three patterns, p = 1, 3, 6,
are phase-locked, with Cp � 1. Simulations confirmed that for an intermediate range
of synchronization strength values σ (for example, σ = 3σ1/2) only patterns p = 1 and
p = 6 are phase locked. See the additional remarks in section 3.3.

weights). Obviously, this is a remarkably reasonable behavior that realizes a
useful complementary behavior of classical (amplitude) and temporal coding
(phase) dynamics. Examples illustrating this behavior were given in [6,7].

3.3 Examples 2 and 3: Retrieval of Phase-Locked Pattern Sets.
Synchronization Strength as Degree of Association

The following examples result from increasing the synchronization strength σ.
Other parameters, including the acceleration strength ω3, as well as initial values
remain the same as with example 1. It should be obvious that a sufficiently large
value of σ leads to global coherence among the active and connected units. The
examples will illustrate that the road to global coherence is not through gradually
increasing the coherence of each pattern but through assembling an increasing
set of patterns that are phase locked to each other in a coherent state.

Example 2 uses σ = 3σ1, while example 3 uses σ = 4σ1; see figures 2 and
3 and read the captions for remarks on results of other simulations that are
not displayed here. Notice, the phase locking follows from the fact that the
overlapping patterns could not reach Cp � 1 without phase-locking. Substantial
phase differences would make one of the patterns decoherent.

The examples confirm the stability hierarchy among patterns that was de-
scribed in section 2.3. Here, we cannot give a detailed discussion of this phe-
nomenon. At least, we want to mention one systematic behavior that may be
observed when going from example 2 to example 3. This observation concerns
the fact that the pattern with lowest rate of transitions to decoherent states is
phase-locked when the synchronization is strengthened: compare the coherence
of pattern p = 2 in figure 2 with the other coherences. This may be understood
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Fig. 3. Example 3 uses synchronization that is stronger than the value in example 2:
σ = 4σ1. Again, the other parameters and initial values are identical with examples 1
(that is, they also are the same as with example 2). Now, an additional pattern, p = 2,
is phase-locked to the set that is observed with example 2. Simulations confirmed that
for even higher values the assembly is extended to pattern p = 4 (for example, with
σ = 5σ1), and additionally to p = 5 (for example, with σ = 7σ1). The latter state does
then correspond to global coherence. See the additional remarks in section 3.3.

through realizing that the behavior of the drifting patterns is related to interfer-
ence phenomena; see [6]. Roughly speaking, this mentioned rate is given by the
difference of frequencies between the part of pattern p = 2 that is overlapping
with the phase-locked pattern set (patterns p = 1, 3, 6) and the non-overlapping
part. Thus, the lowest rate of transitions to decoherent states indicates that
this frequency difference is smaller for pattern p = 2 than for the other drifting
patterns. With example 2, the synchronization strength is not large enough to
balance the frequency difference. However, with example 3, due to larger syn-
chronization strength, small phase differences may establish (approximately) the
same phase velocities for the overlapping and non-overlapping part of pattern
p = 2, thereby making the phase locking of pattern p = 2 possible.

With example 1, the drifting pattern with the lowest rate of transitions to deco-
herence isp = 6. Correspondingly, a simulation showed that withσ = 3σ1/2 (larger
than the value of example 1 but smaller than the value of example 2), pattern p = 6
is phase locked to pattern p = 1, while the other patterns remain drifting. This con-
firms the above argument. Moreover, consider the situation of example 3. There,
the drifting pattern with lowest rate is pattern p = 4. Correspondingly, a simula-
tion confirmed that this pattern is phase-locked when σ is increased, for example,
to σ = 5σ1. To complete the road to global coherence, let us also mentioned that
even larger values, for example, σ = 7σ1, let all P = 6 patterns get phase-locked.

4 Summary and Discussion

Here, we continued the discussion of a recently proposed mechanism that serves
to segment patterns in the context of temporal coding. The segmentation is
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achieved through establishing a competition for coherence among the patterns
that are assumed to be stored according to Hebbian memory. This competition
results from the interplay of synchronizing and accelerating interactions, where
the accelerating interaction imply desynchronization of the patterns that loose
the competition, as discussed in [5,6,7,8].

The present discussion dealt with the changes that arise through increasing the
strength of synchronization while keeping the strength of acceleration constant.
Considering the extremal case, it should be evident that strong enough synchro-
nization causes global coherence of the network. Therefore, our consideration
deals with the road towards such global coherence. The interesting observation
reported here is that this road reveals a stability hierarchy among the stored
patterns.

The discussions in [5,6,7,8] concentrated on the case that the synchronization
strength is in a range where exactly one of the overlapping patterns is winning
the competition for coherence (or none, in case of undecided situations gestalt-
switching like phenomena were observed). Here, we find that strengthening the
synchronization versus acceleration leads to the phase locking of more than one
pattern to each other, thereby letting a set of patterns win the competition
rather than only a single pattern. The number of patterns that get coherent
and phase-locked to each other increases with increased synchronization while
keeping acceleration strength constant (it may be expected that the same effect
occurs through lowering the acceleration strength while keeping the synchroniza-
tion strength constant).

This observation is interesting in at least two respects. First, the observed
stability hierarchy may point to some interesting bifurcation structure that arises
with Hebbian memory in the context of oscillatory networks. As such, it may
deserve some further studies as a dynamical phenomenon.

Second, one may wonder whether the observed phase-locking has functional
relevance with respect to information processing. There is an argument that
pattern storage through Hebbian memory may rather be a local mechanism, in a
sense that is explained in the following. Hebbian coupling strengths are supposed
to be the result of repeated experience. However, the notion of an assembly (see
[1,2] for reviews) is hardly compatible with the necessity to repeat. After all,
intelligent systems have to deal with complex situations that may have never
occurred to them before. For example, the system may look at a visual scene
with a composition that it sees the first time. Nevertheless, on a local scale, for
example, with respect to orientations in a small part of the visual field, patterns
may be present that occurred in several situations. Therefore, these patterns
may be memorized through Hebbian couplings. However, the complete scene or
particular objects of this scene, realized through the formation of assemblies,
may need a more flexible representation.

Following these arguments, one could speculate that patterns should rather be
building blocks for the more complex and flexible assemblies. Temporal coding is
understood as binding features through temporal correlation. Correspondingly,
one may also consider temporal coding as binding patterns, thereby providing a
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flexible mechanism to collect the patterns into an assembly. The examples given
here may illustrate a particular form of this binding of patterns.

Evidently, more studies are needed to apply the described mechanisms to
complex applications as well as understanding of brain dynamics phenomena.
In particular, the competition for coherence that arises through the mechanisms
described here should be embedded into some hierarchical architecture and be
combined with competition for local activity through inhibitory couplings; see,
correspondingly, [8, section 6] and [9] for some steps into these directions.
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Abstract. Recent experimental evidence has reported that the profiles
of spike-timing-dependent plasticity (STDP) in the CA1 pyramidal neu-
ron can be classified into two types depending on the location along
the stratum radiatum (SR) dendrite: (1) A symmetric STDP profile
centered at 0 ms (largest LTP value) with two distinct LTD windows
at about ±20ms in the proximal SR dendrite, and (2) an asymmet-
ric one in the distal SR dendrite. Bicuculline application revealed that
GABAA is responsible for the symmetry of the STDP curve. We in-
vestigate via computer simulations the STDP symmetry-to-asymmetry
transition in the proximal SR dendrite. Our findings indicate the transi-
tion from symmetry-to-asymmetry is indeed due to decrease of GABAA,
but the simulated symmetrical STDP profile is centered at +10ms (and
not at 0ms) with two distinct LTD tails at -10ms and +40ms (and not at
±20ms). The simulated LTD tails are strongly dependent on the GABAA
conductance.

Keywords: Hippocampus, CA1 pyramidal neuron, computer model,
STDP, GABA, LTP, LTD, calcium.

1 Introduction

In 1949, Hebb [1] postulated that a synapse is strengthened only if the pre- and
postsynaptic neurons are activated simultaneously. Recently, Hebb’s law has
been refined ever further with STDP, where the precise timing of presynaptic
and postsynaptic action potentials (spikes) determines the sign and magnitude
of synaptic modifications [5]. Bi and Poo [7] showed that the profile of the STDP
curve in the in-vitro hippocampal network has an asymmetrical shape with the
largest LTP/LTD value at Δτ = tpost − tpre = ±10ms, respectively.

Recently, a study by Nishiyama and colleagues [4] reported that “the profile
of STDP induced in the hippocampal CA1 network with inhibitory interneurons
� Corresponding author.
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Fig. 1. Pyramidal cell. Asymmetric STDP learning curve at distal dendrite. Symmetric
STDP learning curve at proximal dendrite.

is symmetrical for the relative timing of pre- and post-synaptic activation”. Two
long-term depression (LTD) windows at ±20ms and a central long-term poten-
tiation (LTP) peak at 0 ms have been observed (see figure 1) [4]. Further optical
imaging studies revealed that the shape of the STDP profile depended on the
location on the SR dendrite. A symmetric STDP profile was observed in the
proximal SR dendrite and an asymmetric STDP profile in the distal one [2], [3].
It was reported that the transition from symmetry-to-asymmetry is due to the
presence of GABAA inhibition in the proximal SR dendrites.

In this study, we investigate via computer simulations the validity of the re-
ported GABAA effects on the symmetry-to-asymmetry transition. To do so, we
employed and extended a well established Ca2+ dynamics model of the CA1 pyra-
midal neuron [6] by incorporating the effects of inhibitory interneurons in the SR
dendrites. In support of the experimentally observed evidence, we report that the
symmetry-to-asymmetry transition is indeed due to GABAA depletion. However,
in the model, the simulated symmetrical STDP curve is centered at +10ms (Δτ
= tpost - tpre > 0) and not at 0ms [2],[3]. Two distinct LTD tails are present at
-10ms and +40ms and not at ±20ms [2],[3]. Finally, the presence/absence of LTD
tails strongly depends on the conductance value of GABAA, with high GABAA
conductance (gGABA = 0.5) leading to the lift-off of both LTD tails (and not only
the positive LTD tail [2],[3]) towards the LTP region.

2 The Model

Rubin and colleagues [6] have recently advanced a Ca2+ dynamics model for the
CA1 pyramidal cell. Briefly, their model neuron had two compartments: a soma
and a dendrite. The generation of action potentials was due to the interplay of
a wealth of Na+, K+, Ca2+-activated K+ and Ca2+ currents as well as synaptic
currents (AMPA and NMDA) [8],[9],[10]. Two excitatory transient inputs to the
soma and SR dendrite were used to simulate the experimental STDP protocol.
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Fig. 2. Rubin and colleagues [6] calcium detection system. P detector: potentiation
detector, D detector: depression detector, V detector: veto detector, LTP: long-term
potentiation, LTD: long-term depression.

Their mechanism for plasticity had a modular structure consisting of three bio-
chemical detectors, which responded to the instantaneous calcium level in the
SR dendrite. More specifically, their detection system (see figure 2) consisted of:
(1) a potentiation detector which detected calcium levels above a high-threshold
(4 μM) and triggered LTP, (2) a depression detector which detected calcium
levels that exceeded a low threshold level (0.6 μM) and remained above it for
a minimum time period and triggered LTD, and (3) a veto detector which de-
tected levels exceeding a mid-level threshold (2 μM) and triggered a veto of the
model’s depression components. Their detector system was inspired by the mole-
cular pathways of protein phosphorylation and dephosphorylation. Their poten-
tiation detector was an abstraction of the phosphorylation cascade of CaMKII,
whereas the depression detector represented the kinetics of dephosphorylation
agents such as PP1. The veto system represented the competition of kinases and
phosphatases such as the inhibitory action of PKA.

We extended the Rubin et al. model [6] by incorporating the GABAA effects
of inhibitory interneurons in the form of a second transient input to the SR
dendrite.

3 Experiments

To investigate the transition of the STDP curve from symmetry to asymmetry
in the SR dendrite, we designed the following experimental paradigms (figure 3):

1. Excitatory spike pairs repeatedly applied to the SR dendrite and soma for
2s (7 times at about 3 Hz) in the absence of GABA for various interspike
intervals Δτ .

2. Excitatory spike pairs repeatedly applied to the SR dendrite and soma for
2s (7 times at about 3 Hz) in the presence of a single pre-synaptic GABA
spike slid between the interspike interval Δτ .

3. Spike pairs repeatedly applied to the SR dendrite and soma for 2s (7 times
at about 3 Hz) in the presence of a GABA inhibitory spike train presented
at 100 Hz (gamma frequency) between the interspike interval Δτ .
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Fig. 3. (A) Our model CA1 neuron with its three transient inputs to the soma and
SR dendrite. (B) Experimental paradigm 1: spike doublets in the absence of GABA.
Δτ is the relative interval between the pre- and post-synaptic pairing. Δτ is positive
(> 0) if pre-activation precedes the post-activation and negative (< 0) otherwise. (C)
Experimental paradigm 2: spike doublets in the presence of a single GABA spike occur-
ring during the interspike interval (gray dashed square). (D) Experimental paradigm
3: spike doublets in the presence of a GABA spike train at 100 Hz (individual spikes
presented every 10ms) during the interspike interval (gray dashed square).
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Fig. 4. Simulated asymmetric STDP profile in the absence of GABA. Δτ (tpost - tpre)
ranges from -100 to 100 in increments of 5ms.
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During experimental paradigms 2 and 3, we varied the conductance of GABA
and observed its effects on the amplitude of the proximal SR Ca2+ spike and the
STDP curve. These results are reported in the next section.

4 Results

4.1 Spike Doublets in the Absence of GABA

Figure 4 depicts the saturated synaptic weight values (W∞) as a function of the
interspike interval, Δτ = tpost - tpre. Simulations were performed with Δτ ranging
from -100 to 100 in increments of 5ms. An asymmetrical STDP curve is shown with
the largest LTP value at +10ms and the largest LTD value at -15ms [7].

4.2 Spike Doublets in the Presence of a Single GABA Event
Introduced in the Interspike Interval

Figure 5 is a composite graph of W∞ as a function of Δτ (figures 5A and
5D) and the time course of the calcium spike for different values of the GABA
conductance (gGABA = 0.05 mS/cm2 and gGABA = 0.1 mS/cm2) (figures 5B, C,
E and F) in the SR dendrite in the presence of a single GABA transient input
spike occuring at different times in the interspike interval.

More specifically, figures 5A (GABA spike is introduced in the middle of the
pre-post interval) and 5D (GABA spike is introduced at 15ms after the pre- ac-
tivation) depict that as the conductance of GABA is increased, the STDP curve
amplitude is reduced, but the asymmetry is preserved. As we further increased
the conductance of GABA (gGABA = 0.2 mS/cm2 and gGABA = 1 mS/cm2), the
STDP curve amplitude decreased even further (data not shown). The amplitude
reduction is more pronounced with the GABA spike occurring 15ms after pre-
activation, and also there is a shift in the peak LTP (LTD) changes to more
positive (negative) time intervals.

Figures 5B, C, E and F show that even a single GABA spike has significant
effects on the amplitude of the calcium spike. The effects are more pronounced
for higher values of GABA as well as for shorter Δτ intervals and earlier GABA
spike onset times (compare the [Ca2+] values in figures 5B and 5C and in figures
5E and 5F).

4.3 Spike Doublets in the Presence of an 100Hz GABA Spike Train
Introduced in the Inter-spike Interval

In this experimental paradigm, we tested the hypothesis of whether the frequency
of GABA input presentation has any effect on the STDP profile. A GABA spike
input train was presented at a frequency of 100Hz (i.e. a spike event every 10ms;
see figure 3D). The GABA spike train was bounded by the onsets of the pre-
and post-synaptic activations.

Direct comparison of figures 4 and 6A shows that the absence or presence of
low conductance (gGABA = 0.05 mS/cm2) of GABA has no effect on the STDP
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Fig. 5. Composite graph of the saturated synaptic weight values (W∞) as a function
of interspike interval, Δτ = tpost - tpre (5A and 5D) and time course of the calcium
spike in the SR dendrite (5B, C, E and F) when no GABA is present or a single GABA
spike is introduced in the middle of the interspike interval Δτ (5A, B and C) and after
15ms from the pre-synaptic activation (5D, E and F) and for gGABA = 0.05 mS/cm2

(5B and E) and 0.1 mS/cm2 (5C and F)
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Fig. 6. Plot of the STDP profile in the presence of 100Hz GABAA input during the
interspike interval, as a function of the interspike interval Δτ for different levels of
GABAA conductance

asymmetry. At gGABA = 0.2 mS/cm2, the width of the negative LTD window
decreases considerably and it is present only at +10ms (compare Figs. 6A and
6B). At gGABA = 0.225 mS/cm2 (0.2 < gGABA ≤0.3), the asymmetrical STDP
curve becomes symmetric centered at +10ms (and not at 0ms [2], [3]) with
two distinct LTD windows. In contrast to experimental evidence [2], [3], which
indicate the presence of two distinct LTD windows at ±20ms, our simulated
negative LTD window is centered at -10ms, whereas the simulated positive one
is centered at +40ms. At high GABAA conductance values (see fig. 6D), the
two LTD windows are lifted-off towards the LTP regime. This finding supports
and extends recent experimental evidence, which showed that in the presence of
bicuculline, a GABA blocker, only the positive LTD tail is blocked [2], [3].

5 Conclusion

A well established Ca2+ dynamics model of the CA1 pyramidal neuron with
three calcium amplitude detectors was extended by incorporating the effects of
GABAergic interneurons to simulate the symmetry-to-asymmetry transition of
the STDP profile in the proximal SR dendrite. In support of the experimental
evidence [2], [3], [4], the transition was found to be due to the GABAA deple-
tion. From our simulation results, we conclude that the transition is strongly
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dependent on the conductance value of GABAA, where (1) at low GABAA con-
ductance, the asymmetry is preserved, but the width of the negative LTD tail
is reduced as GABAA is increased, (2) at intermediate conductance values, the
symmetry appears with the positive LTP window centered at +10ms and two
equal in height LTD tails at -10ms and +40ms, and (3) at high GABAA con-
ductance values, the two distinct LTD tails disappear and a symmetrical LTP
curve centered at +10ms becomes evident. Furthermore, an inverse relationship
was found to exist between the Ca2+ spike amplitude in SR dendrite and the
GABAA conductance. As the GABA conductance is increased, the amplitude of
Ca2+ is decreased.

While GABA-A inhibition is sufficient to achieve a symmetric STDP curve,
it does not provide the peak of LTP at 0ms, as found experimentally. So the
question remains, is GABA-A inhibition sufficient, or is there another timing
mechanism, perhaps outside the interspike interval, or another synaptic mech-
anism (e.g. GABA-B) that produces this shift? Several computational models
[11], [12] have been published over the years that have modelled in detail the
biochemical intracellular mechanisms of synaptic (meta)plasticity. To gain per-
haps a better understanding of the symmetry-to-asymmetry transition in the
CA1 SR dendrite, we need to incorporate some of this knowledge into our Ca2+

dynamics model.
Moreover, a more detailed compartmental model of the CA1 pyramidal neuron

needs to be constructed to model the conditions under which the STDP asym-
metry in the distal SR dendrites appears. Experimental evidence has shown that
both distal and proximal SR dendrites receive excitatory inputs from CA3 cells as
well as inhibitory inputs from local CA1 interneurons. An additional excitatory
input drives the lacunosum-moleculare (LM) dendrites of the CA1 pyramidal
neuron. Pairings of the SR and LM presynaptic excitatory and inhibitory inputs
with the postsynaptic somatic activation will provide us with a more realistic
picture of STDP in the SR dendrites.
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Abstract. Associative neural network models are a commonly used
methodology when investigating the theory of associative memory in the
brain. Comparisons between the mammalian hippocampus and neural
network models of associative memory have been investigated [7]. Bio-
logically based networks are complex systems built of neurons with a
variety of properties. Here we compare and contrast associative mem-
ory function in a network of biologically-based spiking neurons [14] with
previously published results for a simple artificial neural network model
[6]. We investigate biologically plausible implementations of methods for
improving recall under biologically realistic conditions, such as a sparsely
connected network.

Keywords: Associative memory, mammalian hippocampus, neural net-
works, pattern recall, inhibition.

1 Introduction

Graham and Willshaw [6] tested the pattern recall performance of an artificial
neural network model of associative memory comprised of binary units with 10%
partial connectivity, with the intention of improving the quality of the pattern
recall. They used a method known as the winners-take-all (WTA) approach to
decide which output units should fire based on the weighted (dendritic) sum
of their inputs [16]. The WTA approach simply chooses the required number of
units with the highest dendritic sum to fire during pattern recall. Various mathe-
matical transforms of the dendritic sum compensated for the partial connectivity
and noise due to pattern overlap. We investigate whether biologically-plausible
implementations of these transforms can be found.

Sommer and Wennekers [14] studied associative memory using a pool of
Pinsky-Rinzel two-compartment model CA3 pyramidal cells [12] connected by a
structured connectivity matrix. They found that this biologically realistic net-
work provided robust associative storage of sparse patterns at a capacity close to
� Corresponding author.
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that of theoretical neural networks [14]. Starting with the Sommers and Wennek-
ers model, we test how well global inhibition implements standard WTA recall
of a stored pattern. Then further inhibitory circuitry and a change in the mem-
brane properties of the pyramidal cells is implemented in an attempt to improve
recall quality and match the methods of Graham and Willshaw [6].

2 The Model

2.1 The Cell

The Pinsky-Rinzel two-compartment, eight-variable reduced model of a CA3
pyramidal cell [12] has soma-like and dendrite-like compartments, which are
coupled electrotonically using parameters gc, which represents the strength of
coupling and p, the percentage of total area in the soma-like compartment (fig. 1).

Fig. 1. Pinsky and Rinzel [1] two-compartment model of a CA3 pyramidal cell. Voltage
traces show the bursting response of the model in the soma and dendrite.

The soma-like compartment has fast sodium (INa) and potassium (IKdr) cur-
rents that can generate action potentials (spikes). The dendrite-like compartment
contains slower calcium and calcium-modulated currents.

A distinctive characteristic of this two-compartment neuron is the effect of the
interactions between the soma and the dendrite mediated by the coupling pa-
rameters. Compared to simple integrate-and-fire neurons, the two-compartment
cell gives a variety of modes due to the dynamics between the soma and the
dendrite such as spiking, bursting or joined spiking/bursting sequences (fig. 1).
The exact dynamic equations and parameter settings can be found in [12].

2.2 The Associative Net

The network model contains 100 Pinsky-Rinzel pyramidal cells.The model was
created and simulated using the Neuron computer simulation package [1]. Each
pyramidal cell is connected to every other pyramidal cell (non-reciprocal) with
a certain probability, ranging from 0.1 (for 10% physical connectivty) up to
1 (for full connectivity). Connections use an AMPA synapse which generates a
fast excitatory post-synaptic potential. These excitatory connections were tested
with varying values of synaptic delay from 0.3 to 1 ms, and with similarly varied
peak conductances up to GAMPA = 0.0154 μS. Higher conductance is required
at lower levels of connectivity to maintain synaptic drive onto each cell.
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The actual connectivity is dependent upon the number of patterns stored, in
combination with the physical connectivity, which is determined randomly with
a minimum connection probability of 10%, but tested at various intermediate
levels between 10% and 100%. A pattern consists of 10 randomly-chosen active
neurons out of the population of 100. Patterns are stored by clipped Hebbian
synaptic modification, resulting in a structured connectivity matrix. For a given
pattern, the Hebbian rule specifies a weight of 1 for a connection between two
neurons that are both active in the pattern, with all other weights being 0. The
connectivity matrix, possibly containing multiple patterns that may overlap,
where one cell may be active in one or more patterns, is imposed upon the
actual network by randomly choosing connections with a weight of 1 up to the
percentage of the physical connectivity.

Within the model there is also global inhibition, similar to the inhibition pro-
vided by basket cells. This inhibition acts as a threshold control that moderates
the activity level in the network and keeps that activity from unphysiological
states where all cells fire at very high rates [14]. It restricts firing rates to approx-
imately gamma frequencies [2]. In the model, the inhibitory dynamics are not
induced by interneurons individually, but it is assumed that action potentials of
pyramidal cells evoke not only EPSPs on their target cells, but also IPSPs on
all cells in the network via inhibitory connections [14]. Accordingly, any spike
of a principal cell evokes equally weighted IPSCs onto all principal cells. These
inhibitory synapses employ a fast GABA-ergic conductance change with reversal
potential VCL = -75 mV and a fast rise-time and slow decay. The connection
delay was around 2 ms. The inhibitory peak conductance was fixed at GGABA

= 0.00017 μS.

Fig. 2. Circuit diagram of the network. Pyramidal cells have an apical dendrite and
soma with excitatory connections between cells but with no connections onto the same
cell. Network is fully connected in this example. The IN cell represents the global
inhibition mediated by activity from spiking pyramidal cells.

Recall from the network was tested by tonically stimulating 5 from a known
pattern of 10 pyramidal cells using current injection to either the soma or den-
drite with a strength ranging between 0.00075 and 0.0075 nA. Successful recall
would result in the remaining 5 pyramidal cells in the pattern becoming active,
but no other cells.
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3 Thresholding Strategies for Recall

3.1 Standard Winners-Take-All (WTA)

As described above, the connectivity matrix is determined both by the physi-
cal connectivity between cells and the learnt connection weights during pattern
storage. Pattern recall proceeds by only those pyramidal cells that receive the
greatest excitatory input (dendritic sum) becoming active. For a network with
full physical connectivity and not too many patterns stored, this should result in
accurate recall of a stored pattern when starting from an initial partial pattern
cue [6]. An interesting problem is how well the network can recall a pattern when
there is partial connectivity or corruption due to noise (possibly by overlap in
pattern storage). In this network of spiking neurons, the standard winners-take-
all (WTA) method recalls a pattern where the threshold of PC’s firing is set
by the intrinsic threshold of the PC itself and the pseudo-basket-cell inhibition.
The intrinsic threshold of a PC is largely determined by membrane resistance
and sodium channel density.

3.2 Normalised WTA Network (Localized Inhibition)

Partial connectivity complicates recall as a neuron cannot distinguish between
missing physical connections, and connections that have not been modified dur-
ing storage (and consequently have a weight of 0 and so cannot contribute to
the cell’s dendritic sum). This adds to the variance of dendritic sums across the
network. The dendritic sums of cells that belong to a pattern and should be
active (high cells) and the sums of cells that should be silent (low cells) may
overlap, leading to errors in recall. The overlap between the dendritic sums of
high cells and low cells can be reduced by using a normalised winners-take-all
approach [6]. The normalised WTA uses the fact that all dendritic sums lie be-
tween a range 0 and some maximal level of input activity, which equates with
the number of physical connections onto a cell that are active, irrespective of
the learnt synaptic weight. Thus this input activity is the amount of excitation
each cell could receive, whereas the dendritic sum is the amount of excitation
the cell actually receives. Graham and Willshaw [6] found that by normalising
a cell’s dendritic sum by its input activity, giving an input value between 0 and
1, reduces the error/overlap during recall. This technique is not transferable to
a network of realistic pyramidal cells in a direct form but by using a method of
localized inhibition proportional to the excitation a cell could receive, the range
of EPSPs and thus the dendritic sums produced, are better separated between
high and low cells.

The local inhibition is implemented by having inhibitory connections between
pyramidal cells corresponding to all possible modified excitatory connections in
a partially connected net. Thus the local inhibition inhibits a PC in proportion
to the excitation it could receive. This inhibition could be considered as part of
a disynaptic inhibitory drive with a fast acting GABAa type synapse [4]. The
actual model implements a form of synaptic circuitry that allows two pyramidal
cells to rapidly inhibit one another [13]. There is experimental data which implies
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Fig. 3. Normalised WTA with two pyramidal cells: basic global inhibition and a local
inhibitory connection

that glutamatergic synapses from pyramidal cells directly excite presynaptic
GABAergic terminals, which then inhibit pyramidal cell somata [3]. Fast GABAa
mediated events through basket cells perhaps are a more realistic possibility.
Such connections have very fast kinetics, short synaptic delays and are very
robust. Basket cells are endowed with ionic conductances and specific glutamate
receptors to enable very fast forward activation.

3.3 Amplified WTA Method

Another source of noise in the recall process arises from the number of stored
patterns each cell belongs to (unit usage). The average excitation a cell receives
during recall increases with cell’s unit usage, leading to increasing overlap be-
tween the dendritic sums of high and low cells. Graham and Willshaw [6] found
that for cells with a given unit usage, the variations/overlap due to unit usage
can be reduced by a suitable transformation of the dendritic sum as a function of
a cell’s unit usage. It is not clear how this transformation could be implemented
in a biological network, so an alternative method to increase separation between
the dendritic sums of low and high cells was tried.

Graham [5] used a method of signal (EPSP) amplification to help discrimi-
nate between low and high cells and therefore improve pattern recognition. The
summation of EPSPs has a near linear distribution in our PC model. We want
to create a non-linear increase in this summation so that cells, after reaching
a certain membrane potential, increase the summed amplitude of EPSPs. This
has the presumption that cells in a pattern (high cells) will receive slightly more
excitation than cells out-with a pattern (low cells). Adding a persistent sodium
channel to the soma with a low voltage activation range and appropriate max-
imum conductance should amplify the signal (summed EPSPs). Testing on a
single cell shows a non-linear increase in dendritic summation above a given
threshold (fig. 4). We call this the amplified WTA method when incorporated
into the network model.
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Fig. 4. The difference in membrane potential between the summed EPSPs from n and
(n + 1) synapses, where n = 1, 2...8. Summation is slightly sublinear, but it becomes
supralinear at high n in the amplified case.

4 Results

Recall performance was tested by storing 50 random patterns, each consisting
of 10 active cells, in the network, and then using 5 of the 10 cells of a stored
pattern as a recall cue. Physical connectivity was set at 100% or 10%.

Figure 5 shows the spiking activity in a fully connected network resulting
from cued input activity when global inhibition is absent (fig. 5a) and present
(fig. 5b). Clearly, without inhibition all cells in the network become active, but
only cells belonging to the cued pattern largely are active when PC activity is
thresholded by global inhibition. The nature of the network determines that the

Fig. 5. Spiking activity from a fully connected network. Excitatory conductances are
GAMPA = 0.003 μS. There are 50 stored patterns in the network and Id = 0.0075
nA is applied to the input cue (5/10 active cells in a pattern) and all hyperpolarizing
currents in the cells not associated with the input cue are relaxed i.e. set to 0 nA. (a)
no inhibition present. (b)network with global inhibition, GGABA(g) = 0.00017 μS.
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recall process is synchronous in which cell activation out with the input cue is
dependent on action potentials from the cued cells. Thus the recalled cells are
in synchrony with the activity of the input cue. The banks of excitation become
further apart over time and show no noticeable pattern recall. The introduction
of a global inhibitory circuit synchronises the activity to more even time steps
approaching the gamma frequency range (fig. 5b). Now the stored pattern is
approximately recalled.

Quality of recall was measured by examining spiking activity over 1500ms and
calculating a quality measure as:

C =
∑N

i=1(Bi − B̄)(B∗ − αB)(∑N
i=1(Bi − B̄)2

∑N
i=1(B∗ − αB)2

)1/2

where C is the recall quality, B is a recalled output vector, B∗ is the required
output, N is the number of cells, αB is the mean output activity and B̄ is the
mean activity of the recalled pattern. The required output vector is the selected
memory pattern stored in the structured connectivity matrix. The actual output
vector is determined by the action potentials from any cell occurring within a
given sliding time window of 16 ms. This time was selected on the basis of spiking
frequency during recall, so that at most a single spike from a cell would occur
in the window.

Recall quality was tested in a 10% partially connected net. With standard
WTA recall the mean pattern recall quality over 1500ms is approximately 61%
(fig. 6a). Using the normalised WTA approach (fig. 6b) the addition of localised
inhibition improves the mean pattern recall quality over 1500ms to approxi-
mately 64%. Also a significant improvement can be measured using the amplified
WTA where the addition of a persistent Na channel [5] to the PCs gives a mean
pattern recall quality over 1500ms of approximately 65%.

Pattern recall is not perfect for any of the recall methods, suggesting confusion
from the noise due to overlap in patterns during the pattern storage procedure
and partial physical connectivity. The global inhibition tends to synchronize the

Fig. 6. Recall quality over time in a 10% partially connected network when recalling a
single pattern using (a) standard WTA, (b) normalised WTA and (c) amplified WTA.
Throughout, Id = 0.0075 nA and GGABA(g) = 0.00017 μS. (a) GAMPA = 0.0154 μS;
(b) GAMPA = 0.0154 μS, GGABA(l) = 0.00748 μS; (c) GAMPA = 0.008 μS, GpNa =
0.000165 μS. The horizontal lines are qualitative indicators of the main spread of recall
performance in each case.
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Fig. 7. (a) Mean recall quality of each of the 50 stored patterns over a 1500 ms trial,
and (b) mean and standard deviation of recall quality averaged over all stored patterns,
for the three recall methods

activity of pyramidal cells in the network. The standard WTA approach (fig. 6a)
shows an oscillation between high and low values of recall and a wide variation in
the quality of pattern recall over time. The normalised WTA (fig. 6b) has a faster
rate of cell spiking due to the localised inhibitory circuit. Also, the variation in
recall quality is greatly reduced, with a range of 60% to 80% (excluding some
outliers), compared to the standard WTA (fig. 6a) at approximately 40% to 80%.
Similarly, the amplified WTA approach (fig. 6c) shows less variation in quality
of recall per iteration with a range of 60% to 80% and fewer outliers. Inherent
outliers can be attributed to increased iterations from the extra inhibition in the
normalised WTA method and the persistent Na channel increasing the likeliness
of an action potential.

The quality of recall varies across the 50 stored patterns due to the noise
from pattern overlap and partial connectivity (fig. 7a). The mean quality over
all stored patterns shows a statistically significant (95% confidence interval)
increase when using the normalised and amplified methods compared to the
standard WTA method (fig. 7b).

5 Conclusion

Our modelling experiments demonstrate that the results from methods to im-
prove recall in a network of spiking neurons show significant correlations with the
results found in artificial neural networks of associative memory [6]. Biologically
plausible methodology using inhibitory microcircuits, based on linear algebraic
functions (see [6]), to improve recall in a network of cells has resulted in an
overall improvement in the quality of pattern recall from a partially connected
network with high pattern loading.

Inhibitory microcircuits can play a variety of roles within autoassociative
memory spiking neural networks. As shown experimentally [2, 10], global feed-
back inhibition acts to synchronize principal cell activity to regular firing within
the gamma frequency range (40-100Hz). Reduction in GABA synthesis in a sub-
population of inhibitory GABA-ergic neurons results in a diminished capacity
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for the gamma-frequency synchronized neuronal activity [9]. Such network activ-
ity is seen in our model and other similar models [4, 8, 11, 14, 15]. These models
also show that, within the context of associative memory, such global inhibition
provides a simple thresholding of PC activity that can lead to pattern recall.
Here we show that an additional localised inhibitory circuit can improve pattern
recall in partially connected networks. Another use of inhibition in associative
memory models is for setting the negative weights that result from the general
Hebbian learning rule for pattern storage [4, 11]. This also requires a specifi-
cally structured inhibition in which the negative affect of one PC on another is
generated by a disynaptic pathway involving an interposed inhibitory cell.

In our model, adding a persistent Na channel to the cell to amplify large
EPSPs also improved the quality of pattern recall. This result suggests that the
membrane properties of pyramidal cells may be able to reduce noise in patterns of
synaptic input. The added persistent Na channel confirms the methods explored
in [5], where it was found that voltage-gated ion channels act to boost synaptic
input and thus improve recall in a model of associative memory.

Acknowledgement. This work was funded by an EPSRC project grant to B.
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Abstract. We simulated the coupling of two large spiking neural net-
works (104 units each) composed by 80% of excitatory units and 20%
of inhibitory units, randomly connected by projections featuring spike-
timing dependent plasticity, locality preference and synaptic pruning.
Only the first network received a complex spatiotemporal stimulus and
projected on the second network, in a setup akin to coupled semiconduc-
tor lasers. In a series of simulations, the strength of the feedback from
the second network to the first was modified to evaluate the effect of
the bidirectional coupling on the firing dynamics of the two networks.
We observed that, unexpectedly, the number of neurons which activity is
altered by the introduction of feedback increases in the second network
more than in the first network, suggesting a qualitative change in the
dynamics of the first network when feedback is increased.

1 Introduction

Recent studies have shown analogies between the dynamics of neurons and
lasers [1]. In a series of experiments and simulations [2], collective dynamics
were investigated in the case of two lasers coupled by mutual injection of their
emitted light beams in presence of a transmission delay. The experimental setup
featured a first semiconductor laser L1 operating in the low-frequency fluctuation
(LFF) chaotic regime [3] in presence of optical feedback from an external mirror.
The LFF regime is characterized by sudden drops in the emitted light at irregu-
lar times with periods on the order of tens of nanoseconds, followed by a gradual
recovery. When the L1 output beam was injected into a second semiconductor
laser L2 exhibiting similar physical properties but operating in a non-chaotic
mode, synchronized power dropouts were induced in L2 with a lag correspond-
ing to the transmission delay. Then, by injection of variable amounts of L2 light
into L1, the leader-laggard dynamics could be controlled in a reversible way such
that, given enough feedback, L1 dynamics could be synchronized with L2 with
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a lag equal to the transmission delay, thus exchanging at will the leader and
laggard roles between the lasers.

For this study, a similar setup was prepared where two simulated large spik-
ing neural networks substituted the semiconductor lasers chaotic dynamics. The
simulations reported here investigate the effect of different injection/feedback
strength on the networks spiking dynamics. The effect of the number of pro-
jecting units, the relative sizes of the injection and the feedback, as well as the
number of projections involved in the injection/feedback were tested.

2 Neural Network Model

The complete neural network model is described in details elsewhere [4]. A short
description of the model with specific model parameters related to the current
study follows below.

As sketched in Figure 1, we assume that at time t = 0 of the simulation each
of the two networks N1 and N2 are characterized by two types of integrate-and-
fire units and by its maximum over growth in terms of connectivity. The amount
of units in each network is 10,000 (8,000 excitatory and 2,000 inhibitory) laid
down on a 100×100 2D lattice according to a space-filling quasi-random Sobol
distribution, summing to a total of 20,000 units.

The network model features cell death mechanisms that may be provoked
by: (i) an excessive firing rate and (ii) the loss of all excitatory inputs. An
excessive firing rate is assumed to correspond to the biological effect known as
glutamate neurotoxicity [5]. During an initial phase called “early developmental

Fig. 1. A sketch of the experimental layout. Two networks N1 and N2 with identical
connectivity properties are synchronously simulated. A group Sin of N1 composed by
a fix number of units (800) receives a spatio-temporally organized stimulus. A group
Iout composed by a number of N1 units projects to Iin, an equal number of N2 units.
In a similar way, a group Fout composed by a variable number of N2 units projects to
Fin, an equally variable number of N1 units. Two procedures are used for the wiring of
the injection I and the feedback F : procedure ψt in which the number of projections
is fixed to 105 for I and F ; and procedure ψu in which the number of projections is
fixed to 100 per unit of Iout and Fout. The size of the F group is defined as a ratio
of the size of the corresponding I group. All units of Sin, Iin, Iout, Fin and Fout are
excitatory.
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phase”, at each time step and for each unit a maximum firing rate was arbitrarily
determined following a parameter search procedure described in [6]. Whenever
the rate of discharges of a unit exceeds the maximum allowed rate the cell had a
probability to die according to a “genetically” determined probability function.
A dead unit is characterized by the absence of any spiking activity.

From the network N1, two sets of 400 “sensory units” (Sin) are randomly
selected among the 8,000 excitatory units at time t = 0. The units belonging
to these sets are the “sensory units” of the network, meaning that in addition
to sending and receiving connections from the other units of both types they
are stimulated by patterned activity organized both in time and space described
elsewhere [6]. This stimulus is assumed to correspond to content-related activ-
ity generated elsewhere in the brain. The overall stimulus duration is set to
100 ms, followed by a period without stimulation that lasted 1900 ms. Thus,
the rate of stimulation was 0.5 stim/s. Such a stimulus was not delivered to the
network N2.

Some randomly selected excitatory units of network N1 (Iout) project on an
equal number of randomly selected excitatory units of network N2 (Iin), such
that the activity of Iout units is transmitted with a fixed 1 time step delay to some
units of Iin. The exact number of projections depends on the wiring procedure.
Two wiring procedures were used in this study: (ψt) a fixed total number of
105 projections from Iout to Iin and (ψu) a fixed number of 100 projections
per projecting units from Iout to Iin. In a similar way, some units of network
N2 (Fout) project feedback on an equal number of units in network N1 (Fin).
The exact number of projections is determined with the corresponding wiring
procedures ψt and ψu described above.

At the end of the early developmental phase, the synaptic plasticity [7] is
enabled. It is assumed a priori that modifiable synapses are characterized by
discrete activation levels [8] that could be interpreted as a combination of two
factors: the number of synaptic boutons between the pre- and post-synaptic units
and the changes in synaptic conductance. In the current study we attributed a
fixed activation level (meaning no synaptic modification) Aji(t) = 1, to (inh,
exc) and (inh, inh) synapses while activation levels were allowed to take one
of Aji(t) = {0, 1, 2, 4} for (exc, exc) and (exc, inh), Aji(t) = 0 meaning that
the projection was permanently pruned out. For Aji(t) = 1, the post-synaptic
potentials were set to 0.84 mV and −0.8 mV for excitatory and inhibitory units,
respectively. According to the wiring procedure [ψt, ψu] and to I and F values,
the number of projections varied between 6.1 and 6.9 ·106 at time t = 0. Between
0.1 and 13.2% of these were related to the injection and feedback. The projections
from and to “dead” units undergo a decay of their synapses leading eventually to
their pruning when Aji(t) = 0. Other projections may be pruned due to synaptic
depression driven by STDP and also leading to Aji(t) = 0. Thus, some units that
survived the early phase can also remain without any excitatory input. The loss
of all excitatory inputs also provokes the cell death and these units stop firing
(even in presence of background activity) immediately after the pruning of the
last excitatory afference from within the network.
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3 Simulations

The values of the set of parameters specified above were kept constant through-
out all this study. Each simulation run lasted 5 · 105 discrete time steps (Tend),
with 1 time step corresponding to 1 ms in the model, that means 500, 000 ms
as total duration of a simulation run. The states (spiking/not spiking) of all N1

and N2 units were updated synchronously and recorded for further investiga-
tion. After spiking, the membrane potential was reset to its resting potential,
and the unit entered an absolute refractory period lasting 3 and 2 time steps for
excitatory and inhibitory units, respectively. Starting at time t = 0 and through-
out all the simulation run each unit received a background activity following an
independent Poisson process of 5 spikes/s on average.

The early developmental phase, characterized by cell death provoked by ex-
cessive firing rate, begins at time t = 0 and lasts until t = Tedp, that was fixed
at 700 ms for this study. The spike timing dependent plasticity is enabled at
t = Tedp + 1 for all projections, including those involved in the injection and the
feedback. At time t = 1001 ms the first stimulation is applied to Sin units of N1,
lasting 100 ms until t = 1100 ms. Between t = 1101 ms and t = 3000 ms only
the background activity is getting into the two networks. At time t = 3001 ms
another stimulation is applied and so forth until the end of the simulation
run. Overall this corresponds to 250 presentations of the stimulus along one
simulation run.

The events belonging to the univariate time series formed by the spike train
may have different origins. Spikes may be simply associated to the Poisson back-
ground noise whenever the cell excitability is high and close enough to the thresh-
old of activation. Other spikes can be produced by the convergence of synchro-
nous activity (i.e., temporal summation of excitatory post-synaptic potentials)
generated within the network or through the injection/feedback projections.

Fig. 2. The experimental conditions alter the spike timing of the units with respect
to a control condition. An effective spike train is computed by subtracting the spikes
recorded in the control simulation (including the background activity) to the spikes
recorded in the experiment in order to quantify these changes. Three types of differences
can be accounted for (A) deleted episodes relative to the control condition; (B) inserted
episodes relative to the control condition; and (C) drifted (anticipated or delayed)
episodes which result in both a deleted and an inserted episode in the effective spike
train.
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In order to study the spikes associated to the network activity in presence of
injection and feedback for 1000 < t < Tend (i.e. during the STDP and synaptic
pruning phase of the simulation), those spikes associated to the background noise
and generated within each network were discarded from the spike trains and the
so-called “effective spike trains” were extracted [9] as sketched in Figure 2. In
this study, for each value of I and for each procedure (fixed total number of
projections ψt or fixed number of projections per unit ψu), the control condition
was defined as being the simulation where the corresponding size of F = 0, i.e. in
presence of injection but in absence of feedback. This method permits to subtract
the noisy background activity, the intrinsic network activity and the change of
activity in N2 induced by the direct injection N1 → Iout → Iin → N2, as those
are also recorded in the control condition in absence of feedback. The changes
in activity induced in N1 by the feedback N2 → Fout → Fin → N1, and those
induced in N2 through one (or multiple) complete loops N2 → Fout → Fin →
N1 → Iout → Iin → N2 → . . . are isolated and studied for each simulation in
the respective effective spike train.

4 Results

For each I and F values and for each ψt, ψu procedure, we computed from the
effective spike train previously described the fraction of units of N1 /∈ Fin and
N2 /∈ Iin which spiking activity was altered by the introduction of the feedback
with respect to the control condition. In order to compare the results obtained
with the different values of I and F , the data was normalized by using the
relative size F/I. Therefore, in the following figures, a value of F/I < 1 means
that there are more units projecting from N1 to N2 than units projecting from
N2 to N1 while a value of F/I > 1 means that there are more units projecting
from N2 to N1 than units projecting from N1 to N2. The number of injection and
feedback units is balanced when F/I = 1. We investigated the network activity
for F/I between 1

4 and 3.
Figure 3 shows the results for the fixed total number of projections ψt pro-

cedure. The ratio ρN1
ψt

of units in N1 /∈ Fin which activity is modified by the
presence of the feedback from N2 to N1 is plotted in Fig. 3A for different values
of I and F , while the corresponding ratio ρN2

ψt
in N2 /∈ Iin is plotted in Fig. 3B.

The effect of the increasing I and F sizes is visible at F/I = 1 where, despite the
fact that with the ψt procedure all have the same total number of projections
(105), larger I and F lead to larger ρN1

ψt
and ρN2

ψt
. It is noticeable that this group

size effect in N1 is canceled for F/I > 1 while it is amplified in N2, suggesting
that, when the total number of projections is kept constant, recruiting more N2

units to send feedback to N1 counterintuitively leads to relatively more changes
in the dynamics of N2 (through Fin → N1 → Iout → Iin) without recruiting
more units from N1 where ρN1

ψt
is constant and below 10%.

The situation is different for the fixed 100 projections per Iout and Fout units
ψu procedure depicted in Figure 4. Again, the ratio ρN1

ψu
of units in N1 /∈ Fin
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Fig. 3. The effective spike trains were computed between 1000 < t < Tend for all the
units of N1 and N2 for different values of I and F group sizes in the ψt procedure,
maintaining a fix total number of projections (105) from Iout to Iin and from Fout

to Fin, respectively. (A) ratio ρN1
ψt

of excitatory units in N1 /∈ Fin which activity is
modified by the presence of feedback; (B) ratio ρN2

ψt
of excitatory units in N2 /∈ Iin

which activity is modified by the presence of feedback. × I = 500; ∗ I = 1000; � I =
2000; � I = 4000.

Fig. 4. The effective spike trains were computed between 1000 < t < Tend for all the
units of N1 and N2 for different values of I and F group sizes in the ψu procedure,
maintaining 100 projections from each unit of Iout to Iin and from each unit of Fout

to Fin, respectively. Note that this results in an increasing number of projections for
increasingly larger I and F . (A) ratio ρN1

ψu
of excitatory units in N1 /∈ Fin which

activity is modified by the presence of feedback; (B) ratio ρN2
ψu

of excitatory units in
N2 /∈ Iin which activity is modified by the presence of feedback. + I = 250; × I = 500;
∗ I = 1000; � I = 2000; � I = 4000.
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Fig. 5. Comparing the relative effect of the feedback in N1 and N2: (A) ratio ρN2
ψt

/ρN1
ψt

between the effect in N2 and N1 in the procedure ψt with fixed total number of projec-
tions from Iout to Iin and from Fout to Fin, as presented in Figure 3 ; (B) ratio ρN2

ψu
/ρN1

ψu

between the effect in N2 and N1 in the ψu procedure with 100 projections from each unit
of Iout to Iin and from each unit of Fout to Fin, as presented in Figure 4 ; + I = 250;
× I = 500; ∗ I = 1000; � I = 2000; � I = 4000.

which activity is modified by the presence of the feedback is plotted in Figure 4A
for different values of I and F , while the corresponding ratio ρN2

ψu
in N2 /∈ Iin is

plotted in Figure 4B. With this ψu procedure, the total number of projections
increases with the size of I and F , resulting in a stronger group size effect in
both N1 (Fig. 4A) and N2 (Fig. 4B) as can be seen at F/I = 1. Note that the
number of projections is equal for Fig. 3 and 4 in the specific case of F/I = 1
and I = 1000, providing a direct comparison point. With this wiring procedure
ψu, increasing F/I values result in almost linear increase of ρN1 and above linear
increase of ρN2 .

We investigated the relative effect on the dynamics of N2 and N1 across the
different simulations. For that purpose, for each values of I and F , we plotted
in Figure 5A (Figure 5B) the ratio computed between the values of ρN2

ψt
and

ρN1
ψt

shown in Fig. 3B and Fig. 3A (ρN2
ψu

and ρN1
ψu

from Fig. 4B and Fig. 4A,
respectively). A value above 1 for this ratio results from a relatively larger effect
of the presence of feedback in N2 than N1. With both procedures, this ratio
is roughly above 1 for F/I > 1 and, most importantly, increases with F/I in
every condition, confirming that the addition of feedback results in increasingly
more changes in the activity of N2 than in N1. It is also interesting to notice
that Fig. 5A and Fig. 5B can be almost perfectly superimposed, suggesting that
this ratio ρN2/ρN1 cancels the differences between the two procedures ψt and ψu

used for the simulations.



Effect of Feedback Strength in Coupled Spiking Neural Networks 653

5 Discussion

In an experimental setup inspired by semiconductor laser experiments [2], we sim-
ulated two coupled large scale spiking neural networks, with the time resolution
of 1 ms, characterized by a brief initial phase of cell death [6]. During this phase
the units that exceeded a certain threshold of firing had an increasing probability
to die with the passing of time until 700 time units. After the stop of the massive
cell death, spike timing dependent plasticity (STDP) and synaptic pruning were
made active. Selected sets of units of only one of the networks were activated by
regular repetitions of a spatiotemporal pattern of stimulation. During the STDP
phase, the cell death could occur only if a unit became deafferented, i.e. it lost all
its excitatory afferences because of synaptic pruning.

We recorded the spike trains of all excitatory units that were not directly
stimulated either by the external stimulus or the injection/feedback projections
for 1000 < t < Tend. For different injection/feedback strength and wiring proce-
dures, we extracted the effective spike train by subtracting the activity recorded
in absence of feedback from networkN2 to networkN1, removing the background
activity, the intrinsic networks activity and the unidirectional injection-induced
activity. We searched the effective spike trains for the units which activity was
modified by the introduction of feedback, either through insertion or deletion of
episodes.

We observed that the relative number of units affected by the injection tended
to increase with an increase in the size of the injection/feedback groups, with
both constant and increasing number of projections wiring protocols. As ex-
pected, the group size effect is amplified by the presence of an increased number
of projections, but the main difference resides in the modified response to the
change in the balance of injection/feedback.

A less expected feature of the system is that recruiting more feedback units
(i.e. increasing F/I) leads to more alteration of the dynamics of network N2 than
of N1. In the case of the ψt wiring procedure, in which the total number of in-
jection/feedback projections is not altered by changes of F/I, the ratio ρN1

ψt
of N1

units remains constant for allF/I > 1, while this ratio increases inN2. This might
be explained by qualitative changes of the dynamics ofN1 which are not taken into
account by the ρN1 ratio. Understanding this aspect will require a precise analysis
of the effective spike trains recorded during the simulations. Indeed, similar net-
works have been shown to produce precise firing sequences when stimulated with
spatially and temporally organized stimuli [10]. In future work, the recorded effec-
tive time series will be studied to characterize the dynamical changes involved in
their alteration in order to determine if the activity organized in time is exchanged
and reinforced through the injection/feedback loop.
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Abstract. This paper is devoted to the bifurcation analysis of a two-
dimensional discrete-time delayed Hopfield-type neural network. In the
most general framework considered so far in the known literature, the
stability domain of the null solution and the bifurcations occurring at
its boundary are described in terms of two characteristic parameters. By
applying the center manifold theorem and the normal form theory, the
direction and stability of the existing bifurcations are analyzed.

1 Introduction

Since the pioneering work of [1], the dynamics of continuous-time Hopfield neural
networks have been thoroughly analyzed. However, discrete-time counterparts of
continuous-type neural networks have only been in the spotlight since 2000, al-
though they are essential when implementing continuous-time neural networks
for practical problems such as image processing, pattern recognition and com-
puter simulation.

One of the first problems that needed to be clarified, concerned the discretiza-
tion technique which should be applied in order to obtain a discrete-time system
which preserves certain dynamic characteristics of the continuous-time system.
In [2] a semi-discretization technique has been presented for continuous-time
Hopfield neural networks, which leads to discrete-time neural networks which
faithfully preserve some characteristics of the continuous-time network, such as
the steady states and their stability properties.

In recent years, the theory of discrete-time dynamic systems has assumed
a greater importance as a well deserved discipline. Many results in the theory
of difference equations have been obtained as natural discrete analogs of cor-
responding results from the theory of differential equations. Nevertheless, the
theory of difference equations is a lot richer than the corresponding theory of
differential equations. For example, a simple difference equation resulting from
a first order differential equation may exhibit chaotic behavior which can only
happen for higher order differential equations. This is the reason why, when
� This work has been supported by the Romanian National Authority for Research

under the contract PN-II-11028/14.09.2007 (NatComp - New Natural Computing
Models in the Study of Complexity).
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studying discrete-time counterparts of continuous neural networks, important
differences and more complicated behavior may also be revealed.

The analysis of the dynamics of neural networks focuses on three directions:
discovering equilibrium states and periodic or quasi-periodic solutions (of fun-
damental importance in biological and artificial systems, as they are associated
with central pattern generators [3]), establishing stability properties and bifur-
cations (leading to the discovery of periodic solutions), and identifying chaotic
behavior (with valuable applications to practical problems such as optimization
[4,5,6,7], associative memory [8] and cryptography [9]).

We refer to [10,11] for the study of the existence of periodic solutions of
discrete-time Hopfield neural networks with delays and the investigation of ex-
ponential stability properties.

In [12,13] and in the most general case, in [14], a bifurcation analysis of two
dimensional discrete neural networks without delays has been undertaken. In
[15,16], the bifurcation phenomena have been studied, for the case of two- and
n-dimensional discrete neural network models with multi-delays obtained by
applying the Euler method to a continuous-time Hopfield neural network with
no self-connections. In [17,18], a bifurcation analysis for discrete-time Hopfield
neural networks of two neurons with self-connections has been presented, in
the case of a single delay and of two delays. In [19], a generalization of these
results was attempted, considering three delays; however, only two delays were
considered independent (the third one is a linear combination of the first two)
and the analysis can be reduced to the one presented in [17].

The latest results concerning chaotic dynamics in discrete-time delayed neural
networks can be found in [20] and [21].

In this paper, we study the discrete-time Hopfield-type neural network of two
neurons with finite delays defined by:{
xn+1 = a1xn + T11g1(xn−k11) + T12g2(yn−k12)
yn+1 = a2yn + T21g1(xn−k21 ) + T22g2(yn−k22) ∀n ≥ max(k11, k12, k21, k22) (1)

In this system ai ∈ (0, 1) are the internal decays of the neurons, T = (Tij)2×2

is the interconnection matrix, gi : IR → IR represent the neuron input-output
activations and kij ∈ IN represent the delays. In practice, due to the finite
speeds of the switching and transmission of signals in a network, time delays
unavoidably exist in a working network, therefore, they should be incorporated
into the model equations of the network.

In order to insure that delays are present, we consider max(k11, k12, k21, k22) >
0. The non-delayed case was extensively studied in [14]. In the followings, we will
denote k1 = max(k11, k21) and k2 = max(k12, k22).

We will suppose that the activation functions gi are of class C3 in a neighbor-
hood of 0 and that gi(0) = 0. In the followings, let g : IR2 → IR2 be the function
given by g(x, y) = (g1(x), g2(y))T and

B = TDg(0) =
(
T11g

′
1(0) T12g

′
2(0)

T21g
′
1(0) T22g

′
2(0)

)
=
(
b11 b12
b21 b22

)
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Considering equal internal decays a1 = a2 = a, delays satisfying k11 + k22 =
k12 + k21 and supposing that b11 = b22, we will present a complete stability and
bifurcation analysis in a neighborhood of the null solution of (1). This analysis
allows the description of the stability domain of the null solution and the types of
bifurcation occurring at its boundary, in terms of the characteristic parameters
β = b11 = b22 and δ = b11b22− b12b21. By applying the center manifold theorem
and the normal form theory, the direction and stability of the existing bifurca-
tions will be analyzed. A numerical example will be presented to substantiate
the theoretical findings.

2 Stability and Bifurcation Analysis

We transform system (1) into the following system of k1 + k2 + 2 equations
without delays:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x
(0)
n+1 = a1x

(0)
n + T11g1(x(k11)

n ) + T12g2(y(k12)
n )

x
(j)
n+1 = x

(j−1)
n ∀j = 1, k1

y
(0)
n+1 = a2y

(0)
n + T21g1(x(k21)

n ) + T22g2(y(k22)
n )

y
(j)
n+1 = y

(j−1)
n ∀j = 1, k2

∀n ∈ IN (2)

where x(j) ∈ IR, j = 0, k1 and y(j) ∈ IR, j = 0, k2.
Let be the function F : IRk1+k2+2 → IRk1+k2+2 given by the right hand side of

system (2). The jacobian matrix of system (2) at the fixed point 0̄ ∈ IRk1+k2+2

is Â = DF (0̄).
The following characteristic equation is obtained:

(z − a1 − b11z−k11)(z − a2 − b22z−k22)− b12b21z−(k12+k21) = 0 (3)

Studying the stability and bifurcations occurring at the origin in system (1)
reduces to the analysis of the distribution of the roots of the characteristic equa-
tion (3) with respect to the unit circle. The difficulty of this analysis is due to
the large number of parameters appearing in the characteristic equation.

In the followings, we suppose that the following hypotheses are satisfied:

– the internal decays are equal: a1 = a2 = a;
– the delays satisfy k11 + k22 = k12 + k21;
– b11 = b22.

To the best of our knowledge, this framework is the most general one considered
so far in the existing literature. It includes the cases studied in [17] - where all
four delays were considered equal, [18] - where it was assumed that k11 = k21

and k12 = k22, and [19] - where it was additionally assumed that k11 = k22.
The characteristic equation becomes

zk11+k22 (z − a)2 − βzk22(z − a)− βzk11(z − a) + δ = 0 (4)
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where β = b11 = b22 and δ = b11b22 − b12b21. This equation is the same as the
one obtained and analyzed in [17], for k11 = k22 and in [18], for k11 �= k22. The
results from [17,18] provide us with the conclusions presented below.

First, a list of notations will be introduced and some mathematical results
will be presented, which can be proved using basic mathematical tools:

– m = 1
2 (k11 + k22) and l = 1

2 |k11 − k22|;
– [x] denotes the integer part of x;
– the function c : [0, π]→ IR, c(θ) = cos(m + 1)θ − a cosmθ;
– the function s : [0, π]→ IR, s(θ) = sin(m+ 1)θ − a sinmθ;
– S1 = {φ0 = 0, φ1, φ2, ..., φ[m]+1} the set of all solutions of the equation
s(θ) = 0 from the interval [0, π] (see [18] for details);

– S2 = {ψj = (2j−1)π
2l /j ∈ {1, 2, ..., [2l+1

2

]} if l �= 0 and S2 = ∅ if l = 0;
– θ1 = min(φ1, ψ1) if l �= 0 and θ1 = φ1 if l = 0;
– the strictly decreasing function h : [0, θ1)→ IR, h(θ) = c(θ) sec(lθ);

– α = lim
θ→θ1

h(θ) =
{
c(φ1) sec(lφ1) < 0 if l �= 0 and φ1 < ψ1 or if l = 0
−∞ if l �= 0 and φ1 ≥ ψ1

– h−1 : (α, 1 − a]→ [0, θ1) the inverse of the function h;
– the function U : (α, 1 − a]→ (0,∞), U(β) = 1 + a2 − 2a cos(h−1(β));

remark: U is strictly decreasing on the interval (α, 1− a];
– the functions λj : IR → IR, λj(β) = 2c(φj) cos(lφj)β − c(φj)2, j ∈ {0, 1,
..., [m] + 1};

– the function L : (α, 1− a]→ IR, L(β) = max (λj(β)/j ∈ {0, 1, ..., [m] + 1});
– βij the solution of the equation λi(β) = λj(β), i �= j;
– β0 = max(β0j/j ∈ {1, 2, ..., [m] + 1}, β0j < 0);

remark: L(β) = λ0(β) = 2(1− a)β − (1 − a)2 for any β ∈ [β0, 1− a];
– if the equation U(β) = L(β) has some roots in the interval (α, β0), then β1

is the largest of these roots; otherwise, β1 = α.

The following three cases will be referred to:

(C1) k11 = k22 = 0 (i.e m = l = 0);
(C2) k11 = k22 > 0 (i.e. m = k11 = k22 ≥ 1 and l = 0);
(C3) k11 �= k22 (i.e. m ≥ l ≥ 1

2 ) with the subcases:
(C3.1) At least one of the delays k11 or k22 is odd;
(C3.2) Both delays k11 and k22 are even.

Theorem 1. The null solution of (1) is asymptotically stable if β and δ satisfy
the following inequalities:

β1 < β < 1− a and L(β) < δ < U(β). (5)

On the boundary of the set DS = {(β, δ) ∈ IR2 : β1 < β < 1 − a and L(β) <
δ < U(β)} the following bifurcation phenomena causing the loss of asymptotical
stability of the null solution of (1) take place:

i. For β ∈ (β1, 1 − a) and δ = U(β) system (1) has a Neimark-Sacker bifur-
cation with multipliers z = e±ih−1(β), except the following situations:
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(C1) if k11 = k22 = 0 then
• for β = −a and δ = U(β) = 1 + a2 the system (1) has a strong 1 : 4

resonant bifurcation;
• for β = −a − 1

2 and δ = U(β) = 1 + a + a2 the system (1) has a
strong 1 : 3 resonant bifurcation;

(C3) if k11 + k22 = 1 then
• for β = −a− 1 and δ = U(β) = 1 + a2 the system (1) has a strong

1 : 4 resonant bifurcation;
ii. For β ∈ (β1, β0) such that the function L is differentiable at β, and δ =

L(β), system (1) exhibits, depending on the case, the following type of bi-
furcation:
(C1) a Flip bifurcation.
(C2) and (C3.1) a Neimark-Sacker bifurcation, with multipliers z=e±iφj ,

where j ∈ {1, 2, ..., [m] + 1} such that L(β) = λj(β).
(C3.2) a Flip or a Neimark-Sacker bifurcation, with multipliers z = e±iφj ,

where j ∈ {1, 2, ..., [m] + 1} such that L(β) = λj(β).
iii. For β ∈ (β0, 1 − a) and δ = L(β) = 2(1 − a)β − (1 − a)2 system (1) has a

Fold bifurcation.
iv. For β = (1 − a) and δ = (1 − a)2, system (1) has a strong 1 : 1 resonant

bifurcation.
v. For β = β0 and δ = L(β0) = 2(1 − a)β0 − (1 − a)2, system (1) exhibits,

depending on the case, the following type of bifurcation:
(C1) a Fold-Flip bifurcation.
(C2) and (C3) a Fold-Neimark-Sacker bifurcation.

vi. For β = β1 and δ = U(β1) system (1) exhibits, depending on the case, the
following type of bifurcation:
(C1) a strong 1 : 2 bifurcation.
(C2) and (C3.1) a double Neimark-Sacker bifurcation.
(C3.2) a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation.

vii. (applies only to the case (C3)) If there exists β� ∈ (β1, β0) such that the
function L is not differentiable at β�, then for β = β� and δ = L(β�),
system (1) exhibits, in the case:
(C3.1) a double Neimark-Sacker bifurcation.
(C3.2) a double Neimark-Sacker or a Flip-Neimark-Sacker bifurcation.

We underline that Theorem 1 completely characterizes the stability domain (in
the (β, δ)-plane) of the null solution of (1) and the bifurcations occurring at its
boundary, if the given hypotheses hold.

3 Direction and Stability of Codimension 1 Bifurcations

Let be the function F : IRk1+k2+2 → IRk1+k2+2 given by the right hand side of
system (2). Let be the operators Â = DF (0̄), B̂ = D2F (0̄) and Ĉ = D3F (0̄).

In this section, we will describe a method [22] for analyzing the direction and
stability of Neimark-Sacker, Fold and Flip bifurcations that occur at the origin
in system (1), according to Theorem 1.

The following result plays an important role in studying the direction and
stability of codimension 1 bifurcations.
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Proposition 1. Let z ∈ C be an eigenvalue of modulus 1 of the matrix Â. The
vectors q and p of Ck1+k2+2 which verify

Âq = zq ; ÂT p = z̄p ; 〈p, q〉 = 1

are given by:
q = (zk1q1, z

k1−1q1, ..., zq1, q1, z
k2q2, z

k2−1q2, ..., zq2, q2)T

p = (p1, (z̄−a)p1, z̄(z̄−a)p1, ..., z̄
k1−1(z̄−a)p1, p2, (z̄−a)p2, z̄(z̄−a)p2, ..., z̄

k2−1(z̄−a)p2)T

where q1 = zk22(z − a) − β; q2 = b21; p̄1 = 1
P ′(z) ; p̄2 = zk11 (z−a)−β

b21P ′(z) and P (z) is
the polynomial defined by P (z) = [zk11(z − a)− β][zk22(z − a)− β].

In the case of a Neimark-Sacker bifurcation, matrix Â has a simple pair (z, z̄)
of eigenvalues on the unit circle, such that z is not a root of order 1, 2, 3, 4 of
the unity. The restriction of system (2) to its two dimensional center manifold
at the critical parameter value can be transformed into the normal form written
in complex coordinates:

w #→ zw(1 +
1
2
c1|w|2) +O(|w|4), w ∈ C (6)

where

c1 = z̄〈p, Ĉ(q, q, q̄) + 2B̂(q, (I − Â)−1B̂(q, q̄)) + B̂(q̄, (z2I − Â)−1B̂(q, q))〉
and the eigenvectors p and q are given by Proposition 1. The direction and sta-
bility of the Neimark-Sacker bifurcation is determined by the sign of Re(c1). If
Re(c1) < 0 then the bifurcation is supercritical, i.e. the closed invariant curve
bifurcating from the origin is asymptotically stable. If Re(c1) > 0, the bifurca-
tion is subcritical, i.e. the closed invariant curve bifurcating from the origin is
unstable.

In the case of a Fold bifurcation, matrix Â has a simple root z = 1. The
restriction of system (2) to its one dimensional center manifold at the critical
parameter value can be transformed into the normal form:

w #→ w +
1
2
c2w

2 +
1
6
c′2w

3 +O(w4), w ∈ IR (7)

where c2 = 〈p, B̂(q, q)〉 and the eigenvectors p and q are given by Proposition 1
(considering z = 1). If c2 �= 0, then a Fold bifurcation occurs at the origin. If
the activation functions satisfy g′′i (0) = 0, then c2 = 0, and a Cusp (degenerate
Fold) bifurcation occurs at the origin. In this case, the parameter c′2 appearing
in the normal form (7), which characterizes the Cusp bifurcation is given by
c′2 = 〈p, Ĉ(q, q, q)〉.

In the case of a Flip bifurcation, matrix Â has a simple root z = −1 on the
unit circle. The restriction of system (2) to its one dimensional center manifold
at the critical parameter value can be transformed into the normal form:

w #→ −w +
1
6
c3w

3 +O(w4), w ∈ IR (8)
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where
c3 = 〈p, Ĉ(q, q, q) + 3B̂(q, (I − Â)−1B̂(q, q))〉

and the eigenvectors p and q are given by Proposition 1 (considering z = −1).
The direction and stability of the Flip bifurcation is determined by the sign of
c3. If c3 < 0 then the bifurcation is subcritical, i.e. the period-2 orbit bifurcating
from the origin is unstable. If c3 > 0, the bifurcation is supercritical, i.e. the
period-2 orbit bifurcating from the origin is asymptotically stable.

4 Example

In the following example, we will consider the delays k11 = 2, k22 = 6, k12 = 5
and k21 = 3. We will also choose a = 0.5 and b11 = b22 = β. In this case, using
Mathematica, we compute:

– case (C3.2), m = 4, l = 2;
– S1 = {0, 0.543422, 1.15252, 1.80265, 2.46923, π} (rad), S2 = {π

4 ,
3π
4 };

– θ1 = φ1 = 0.667561 (rad), α = −1.34916, β1 = −0.867628, β0 = −0.0909356;
– β� = −0.794888, β�� = −0.695344.

Bifurcations at the boundary of DS (according to Theorem 1):

– For β ∈ (β1, β0) and δ = U(β) a Neimark-Sacker bifurcation occurs, with
the multipliers e±ih−1(β);

– For β ∈ (β0, 1− a) and δ = λ0(β) = 2(1− a)β − (1 − a)2 a Fold bifurcation
occurs;

– For β ∈ (β1, β
�) and δ = L(β) = λ5(β) a Flip bifurcation occurs;

– For β ∈ (β�, β��) and δ = L(β) = λ2(β) a Neimark-Sacker bifurcation
occurs, with the multipliers e±iφ2 ;

– For β ∈ (β��, β0) and δ = L(β) = λ1(β) a Neimark-Sacker bifurcation
occurs, with the multipliers e±iφ1 ;

– For β = 1− a and δ = (1− a)2 a 1 : 1 resonant bifurcation occurs;
– For β = β1 and δ = U(β1) a Flip-Neimark-Sacker bifurcation occurs;
– For β = β� and δ = L(β�) a Flip-Neimark-Sacker bifurcation occurs;
– For β = β�� and δ = L(β��) a double Neimark-Sacker bifurcation occurs;
– For β = β0 and δ = L(β0) = λ0(β0) a Fold-Neimark-Sacker bifurcation

occurs.

More precisely, we consider the delayed discrete-time Hopfield neural network:{
xn+1 = 0.5xn + β tanh(xn−2)− sin(yn−5)
yn+1 = 0.5yn + (δ − β2) tanh(xn−3) + β sin(yn−6) ∀n ≥ 6 (9)

The stability domain in the (β, δ)-plane for this network is the one presented in
Fig. 1.

For β = −0.82, a supercritical Flip bifurcation occurs at δ = L(β) = 0.21, and
a supercritical Neimark-Sacker bifurcation occurs at δ = U(β) = 0.348902. The
bifurcation diagram presented in Fig. 2 shows the existence of asymptotically
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Fig. 1. Stability domain of (9) in the (β, δ)-plain
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Fig. 2. Bifurcation diagrams in the (δ, x)-plain for system (9) considering β = −0.82
and β = −0.5 respectively. For each β value (step size of 0.001), the initial conditions
were reset to (x0, y0) = (0.01, 0.01) and 105 time steps were iterated before plotting
the data (which consists of 102 points per β value).

stable period-2 orbits for δ ∈ (0.15, 0.21) and asymptotically stable limit cycles
for δ ∈ (0.348902, 0.4).

For β = −0.5, a supercritical Neimark-Sacker bifurcation takes place at δ =
L(β) = −0.101981 and another supercritical Neimark-Sacker bifurcation takes
place at δ = U(β) = 0.322838. The bifurcation diagram presented in Fig. 2 shows
the existence of asymptotically stable limit cycles for δ ∈ (−0.2,−0.101981) ∪
(0.322838, 0.4).

For β = 0.25, a Fold bifurcation takes place δ = L(β) = 0 and a supercritical
Neimark-Sacker bifurcation takes place at δ = U(β) = 0.267028 (see Fig. 3).
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Fig. 3. When b = 0.25, a supercritical Neimark-Sacker bifurcation at δ = U(β) =
0.267028. For δ = 0.26, the null solution is asymptotically stable, and the trajectory
converges to the origin. For b = 0.27, an asymptotically stable cycle (1-torus) is present,
and the trajectory converges to this cycle.

5 Conclusions

In the most general framework considered so far in the existing scientific lit-
erature, a complete bifurcation analysis has been presented for a discrete-time
Hopfield-type neural network of two neurons with several delays, uncovering the
structure of the stability domain of the null solution, as well as the types of
bifurcations occurring at its boundary. A numerical example has been provided
which illustrates the theoretical findings. A generalization of these results to
more complicated networks of two or more neurons may constitute a direction
for future research.
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Abstract. There is evidence that the same neural substrate may sup-
port different dynamical regimes and hence give rise to different EEG
signals. However, the literature lacks successful attempts to systemati-
cally explain the different regimes —and the switching between them—
within a coherent setting. We explore a mathematical model of neural
tissue and call upon concepts from dynamical systems to propose a pos-
sible explanation of such processes. The model does not aim to capture
a high degree of neurophysiological detail. It rather provides an oppor-
tunity to discuss the change in the signals from a dynamical perspective.
Notwithstanding, realistic values are adopted for the model parameters,
and the resulting EEG also shows typical frequencies in a realistic range.
We identify three mechanisms accounting for change: external forcing,
bifurcation, and small perturbations of a chaotic attractor.

Keywords: EEG, neurodynamics, spatiotemporal dynamics, chaos.

1 Introduction

Laboratory experiments indicate that, for a given animal, a common neural
substrate may display different spatiotemporal electrical activities corresponding
e.g. to different behaviors or to the processing of different input patterns [1,2,3].
The switching between dynamical states occurs much faster than the typical
time-scales of synaptic adaptation associated with learning. These findings do
not contradict the well-known fact that the brain is organized in a modular
fashion, with each module responsible for some type of task. However, it can be
said that there continues to be a bias toward trying to identify different sub-
populations that are responsible for different behaviors, rather than identifying
a single population capable of a high degree of multitasking. For instance, in
a study of the mouse sleep-wake behavior [4], the Authors tend to emphasize
the role of the neural sub-populations that are active exclusively during either
the wake stage or the sleep stages —considering also the necessary distinction
between REM and non-REM sleep. These Authors attribute a minor role to the
sub-populations that show activity overlapping wake and any of the sleep stages.
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In the present paper we aim to unveil some of the possible dynamical mech-
anisms that might explain multitasking by a common neural population. This
exploration is done within the framework of dynamical systems and requires a
not-too-complicated model of neural tissue in order to be effective. We hope
that the evidence gathered in the following numerical simulations may provide
further arguments in support of the multitasking view. We have to emphasize
once more that this approach does not preclude a —complementary— modular
view of the brain.

A ’single-channel’ model electroencephalogram (EEG) is used as a tag to con-
firm the switching between dynamical regimes, whenever it occurs. However, we
will assess that the underlying neural dynamics is spatiotemporal. We agree with
other authors in that single-channel EEG provides an incomplete account of the
dynamics [5]. Yet, the type of dynamical tagging that it allows is considered suf-
ficient for the present purposes. Furthermore, generalizing to the multi-channel
case would be trivially accomplished via minor modifications of the model dis-
cussed below.

In summary, this paper tries to model those specific EEG transitions that
result from some neural population changing its dynamics. It does not address
the case where different neural populations are alternatingly responsible for the
observed EEG.

2 Mathematical Model

We adopt a ’minimal’ model in what concerns biological realism. We wish to
retain the main properties of neurons which may influence the dynamical be-
havior both at the single cell and at the network level. At least at an abstract
level, these dynamics should be comparable to those of biological neurons. On
the other hand, we assume that the intricacies of multi-compartment neurons
and different types of real neuron connections are not necessary at this level
of abstraction, as they should not invalidate the main dynamical mechanisms
that we wish to unveil. When considering the full network, a range of diverse
spatiotemporal dynamical regimes is our target for study. Some of these regimes
may be denoted as complex, or even chaotic.

Neural oscillations in electrical activity, which are ultimately responsible for
the observed EEG, result from an interplay between neural excitation and in-
hibition. Hence we consider two different neural populations, respectively, of
excitatory and inhibitory neurons. Our model is based on an original proposal
of Kaczmarek to explain neural firing patterns during epileptic seizures [6], but
we believe it is general enough to be of use in modeling different brain states,
notably in the cases of comparing different awareness states or states support-
ing cognitive actions. See also the model developments in [7]. The model of the
individual cell can be described as a leaky integrator. Passive as well as ac-
tive membrane properties are incorporated, but neural connectivity is simplified
to the point where only first-neighbor coupling is considered. This elimination
of distant connections provides a means to study those particular dynamical
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processes where the spatial dimension plays a crucial role, such as the develop-
ment of certain complex spatiotemporal dynamics. This includes wave propa-
gation and related phenomena. Biological plausibility is enhanced by a highly
nonlinear neural coupling, as well as the consideration of delays in signal trans-
mission between neurons. These model features account for the nonlinear trans-
formation between membrane potential and firing rate, as well as for the several
synaptic and axonal processes contributing to a non-instantaneous information
propagation. Realistic values are chosen for the parameters wherever possible.

2.1 A Model of Neural Tissue

For lack of space in the present publication, we refer the reader to the detailed
derivation of our model in [8]. Here we summarize only the main features.

The instantaneous values of each neuron’s membrane potential are taken as
network state variables. Since delays are considered, the dynamical evolution
also depends on past membrane potential values; hence the latter also define
the state vector, which is thus infinite-dimensional. The neurons communicate
their state to each other trough a firing rate code. Therefore, there is no explicit
spiking in the model. In spite of this, it can be noted that a stationary state
corresponds to the firing of action potentials with a frequency constant in time.
This frequency can be close to zero, or have some finite value. An oscillatory
state, on the other hand, implies a time-modulation of the firing frequency.

The derivation starts with a resistive-capacitive equation for the electrical
equivalent of each neuron’s membrane potential, and ends up with a coupled
set of delay differential equations for the neural population. The network com-
prises Nex excitatory neurons Xi, and Nin inhibitory neurons Yj . Their dy-
namics is given by dXi/dt = −γ(Xi − VL) − (Xi − E1)

∑
k =i ω

(1)
ik FX [Xk(t −

τik)] − (Xi − E2)
∑

l =i ω
(2)
il FY [Yl(t − τil)] and dYj/dt = −γ(Yj − VL) − (Yj −

E1)
∑

k =j ω
(3)
jk FX [Xk(t − τjk)], respectively, where i, k = 1, . . . , Nex and j, l =

1, . . . , Nin . The inverse of the membrane’s time-constant takes the value γ =
0.25 msec−1. The propagation delay τik between neurons k and i would generally
depend on the distance between the two neurons. Since we consider only first-
neighbor connections, a fixed value τ = 1.8 msec is adopted. Other parameter
values are VL = −60 mV, E1 = 50 mV, and E2 = −80 mV, these being the differ-
ent equilibrium potentials. The sigmoidal transfer function is defined by F (V ) =
1/(1 + e−α(V −Vc)), with parameter values Vc=−25 mV, αX = 0.09 mV−1, and
αY = 0.2 mV−1. Notice the different α slopes for excitatory and inhibitory neu-
rons, respectively. The synaptic weights ω(1)

ik , ω(2)
il , and ω

(3)
jk refer, respectively,

to excitatory-to-excitatory, inhibitory-to-excitatory, and excitatory-to-inhibitory
connections. No inhibitory-to-inhibitory connections are considered. We study
a spatially homogeneous network, where all synaptic weights of the same type
have the same value. Furthermore, the ω values are constant in time, thus no
adaptation or learning takes place. However, we will consider deviations from
a set of adopted nominal ω values, for instance in a bifurcation setting. The
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XiXi−1 Xi+1

iYi−1Y i+1Y

Fig. 1. Neural network where the dynamics takes place. Excitatory neurons and in-
hibitory neurons are represented as triangles and circles, respectively. Connections
Xi → Xi±1 and Xi → Yi±1 are excitatory, whereas connections Yi → Xi±1 are in-
hibitory.

weights of types (1) and (3) are fixed at ω(1) = 3.15 and ω(3) = 2.5 respectively.
Parameter ω(2) can have different values; a reference value is ω(2) = 1.68.

In the isolated model neuron, the response of the membrane to some
finite-duration perturbation from the resting state would be a simple relaxation.
However, through the coupling of the neurons, new dynamical regimes can be
observed depending on details of the coupling and on the initial conditions of
the network. One can observe multiple steady states, including global quiescence
and global saturation, as well as a variety of oscillatory regimes for the electrical
activity of the neurons. A form of spatiotemporal chaos is one of the observed
complex regimes, as discussed in more detail in [8].

Different connectivity configurations have been explored for this general
neural arrangement, including the case of bi-dimensional networks with many
excitatory and inhibitory neurons. However, here we consider only a 1-D spatial
arrangement. The network features 16 neurons, equally divided into an excita-
tory and an inhibitory population. Hence Nex = Nin = 8. The network topology
is depicted in Fig. 1.

The previous dynamical equations are simplified such that only first-neighbor
connections are kept. The boundary conditions are of the zero-flux type.

2.2 A Model of EEG

Our model EEG measurement is best regarded as a signal denoting a field poten-
tial. We follow a few basic assumptions in defining this potential, or the resulting
EEG. We avoid the complicated practical issues that involve the actual measure-
ment of the EEG in a laboratory. The EEG results from extracellular current
flow associated with integrated synaptic potentials in activated neurons. The
intracellular potentials are not directly accessible via EEG measurements. Pyra-
midal cells, which are excitatory, are the major source of the EEG. They are
oriented parallel to one another, and most of their dendrites are oriented per-
pendicularly to the surface of the cortex [9]. Therefore, current flows are mostly
oriented in the same fashion. In contrast, other types of cells do not share any
common orientation and thus their individual contributions do not sum up.

In the context of our model, the synaptic current sources are those corre-
sponding to excitatory neurons Xi at spatial locations ri and are given by

Im(ri, t) = Cm

[
−(Xi − E1)

∑
j=i±1 ω

(1)
ji FX [Xj(t − τji)]− (Xi − E2)

∑
j=i±1 ω

(2)
ji FY [Yj(t − τji)]

]
,
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Fig. 2. Relative positions of the current sources and of the EEG voltage measurement
site

where i = 1, . . . , Nex and Cm is the membrane capacitance. The field potential
at a point re of the extracellular space incorporates the contributions from all
excitatory neurons: V (re, t) = (1/(4πσ))

∑
i (Im(ri, t)/|ri − re|) , where σ repre-

sents the electrical conductivity of the extracellular medium. The measurement
of the model EEG is performed according to the scheme of Fig. 2.

3 Change in the Dynamics and the Resulting EEG

We take, as the network’s typical dynamical state, one where spatiotemporal
oscillations of the membrane potential are observed. This is the case for the
parameter region considered [8]. Traveling waves are mathematically possible.
However, due to the relation between wavelength, system size, and boundary
conditions, the waves are in this case geometrically constrained. Details of the
full dynamics are out of the scope of this paper. We focus on the fact that the
underlying neural network may undergo specific changes in its dynamical state
through any of the mechanisms identified in the next sections. The EEG follows
these changes and may be used as a tag thereof.

3.1 Change in Response to External Forcing

Let us take ω(2) = 1.68 and all other parameters as indicated in Section 2.1.
The dynamics of the unperturbed network is spatiotemporal. This means that,
at any time, different neurons generally display different values of the membrane
potential. However, the dynamics of the full network is periodic as revealed by
a EEG signal which has a period T = 25.62 msec.

From this reference dynamical condition, we perturb a fraction of the neurons
with an external stimulus of finite magnitude. Namely, we perturb excitatory
neurons X1 through X4 with a simulated injected electric current. In the math-
ematical model, this is actually equivalent to momentarily shifting the value of
the resting potential VL. The external perturbation signal could also have its
own intricate dynamics, and the network’s response to such a signal might be
viewed as an analog computation performed over an input pattern. Such ideas
are discussed e.g. in [10], but they are not the focus of the present paper.

Here we use a static perturbation with a simple form. Having allowed the
network to evolve autonomously for some time, we choose a certain instant to
activate the perturbation, and mark this instant as t = 0. The perturbation then
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Fig. 3. Comparison between the EEG measured from a network which suffers a finite-
size perturbation, and the EEG from an unperturbed network. An arbitrary 300 msec
interval is shown. The transient dynamics right after the onset of perturbation is not
depicted since we choose to make it occur prior to the plotted interval. See text for
details of the perturbation. ω(2) = 1.68 and the remaining parameters are as indicated
in Section 2.1.

remains activated for the duration of the numerical experiment. The perturba-
tion consists in shifting VL by + 5 mV for neurons X1 through X4.

As a result of the perturbation, the dynamics remains periodic but the EEG
period changes to T = 50.13 msec. Figure 3 displays the EEG signal, respectively,
without and with the described perturbation activated.

3.2 Change by Following a Bifurcation Path

Let us now consider that no external perturbation is present. Instead, an internal
system parameter is available for change. We select the value of the synaptic
weight ω(2) to be varied.

We take the values ω(2) = 3.00 and ω(2) = 1.68, one at a time, and inspect the
dynamics that occurs for each of these values. Again, all other parameters are
as indicated in Section 2.1. Also in this case, the EEG is used as a probe of the
dynamics. Lowering ω(2) from 3.00 to 1.68 is actually just walking a small path
in the complex parameter space of the neural network. However, it is enough to
elicit a visible transition in the dynamics. This parameter variation is part of
a larger bifurcation path. A larger ω(2) range than the one shown here would
produce a full period-doubling bifurcation scenario [8]. Figure 4 displays the
EEG signal for ω(2) = 3.00 and ω(2) = 1.68, respectively. The EEG period is
T = 17.28 msec when the inhibition is higher and T = 25.62 msec when the
inhibition is lower. This numerical experiment, if taken isolatedly and resorting
only to the EEG signal, would not suffice to suggest the occurrence of period-
doubling bifurcations.
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Fig. 4. Comparison of the EEG measured for two different values of synaptic inhibition
in the network. As in Fig. 3, an arbitrary 300 msec interval is shown. The vertical scale
is also the same as in Fig. 3. The higher inhibition corresponds to ω(2) = 3.00 and
the lower inhibition to ω(2) = 1.68. The remaining parameters are as indicated in
Section 2.1.

3.3 Switching within a Chaotic Attractor

We now take ω(2) = 1.64 and let all other parameters have the usual values as
indicated in Section 2.1. Finite perturbation of the neural system is excluded,
be it through some external influence or through parameter change as in the bi-
furcation scenario. However, ’infinitesimal’ perturbations are allowed. The latter
can consist in occasional minute changes to system variables, or in occasional
minute shifts in a system parameter. Any of the the latter types of perturbations
are to be distinguished from the finite perturbations of sections 3.1 and 3.2, since
they correspond to different orders of magnitude.

As reported in [8], for these parameter values the system displays a form of
low-dimensional spatiotemporal chaos. The dynamics is not periodic, but mod-
erate coherence is observed in the neurons’ activities. The change in electrical
activity across the network tends to follow a wavy pattern. This is quite far
from, say, a regime of fully developed turbulence. Furthermore, the dynamics is
coherent enough that it can be switched in a controlled way via an infinitesimal
perturbation such as the ones referred above. For this to be possible, two essen-
tial properties of chaos come into play: 1) the chaotic dynamics is very flexible
and extremely sensitive to small perturbations; 2) under appropriate conditions
(verified here), the chaotic attractor contains an infinite number of unstable peri-
odic orbits (UPOs). Infinitesimal perturbations, if adequately tuned, may switch
the chaotic dynamics into one of those UPOs, or switch the dynamics between
different UPOs. These transitions can be very fast.

In [11,8,10], it is argued that this mechanism may place the chaotic system in
an appropriate state for some type of information processing. This UPO selec-
tion need not last longer than the time required for a particular computational
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Fig. 5. With ω(2) = 1.64 and the remaining parameters as indicated in Section 2.1,
the unperturbed network displays a chaotic regime. Its corresponding EEG is show at
the top of the figure. Via infinitesimal perturbations, the dynamics can be switched
into a number of different UPOs. In contrast to the broadband frequency spectrum of
chaos, the UPOs possess well-defined natural frequencies. Their respective values are:
(a): 39.79 Hz; (b): 18.96 Hz; (c): 9.61 Hz. Notice the different time-scale as compared
to the one in Figs. 3 and 4. In the present figure an arbitrary 400 msec interval is shown.
Also, the vertical scale is compressed by a factor of 1.875 with respect to the one in
Figs. 3 and 4.

task. We do not intend to further re-state those ideas here, but rather put forth
the EEG signal as a side-effect of, or a tag for, some of those UPOs that can
be selected in practice. Since the UPOs are unstable by nature, they cannot be
sustained in time unless some control mechanism performs occasional infinites-
imal perturbations obeying a so-called control algorithm. This too is out of the
scope of the present paper.

Figure 5 allows to compare the EEG signal, respectively, for the unperturbed
chaotic attractor, and for three particular UPOs that are embedded in the chaotic
attractor. allows to compare the EEG signal, respectively, for the unperturbed
chaotic attractor, and for three particular UPOs that are embedded in the chaotic
attractor. Thus a multitude of possible dynamical regimes coexist within
the chaotic attractor. They are in principle accessible through tiny perturbations
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of the attractor. The EEG of the dynamical regimes illustrated in Fig. 5 turns out
to possess natural frequencies in a realistic range. It should be noted that these
EEG signals are all produced by the same neural population, which is (infinitesi-
mally) perturbed in different manners starting from a common chaotic regime.

4 Discussion

We identified three different mechanisms that may account for changes in the
spatiotemporal neural dynamics. These changes imply transitions in the EEG,
which is a scalar observable, or tag.

The first type of change, through external forcing, requires that a finite-size
perturbation reach the neurons. ’External’ here means external to the neural pop-
ulation we are modeling, not necessarily external to the organism. As it comes, a
primary cue, eventually one with limited time-span, may be used by some distinct
neural population for it to enter a state in which it provides afferent input to our
particular neural population —the one that does the dynamical multitasking.

The second type of change depends on an internal parameter being available
for change. If the parameter range so allows, bifurcations may be observed. In the
latter case, the transitions in the dynamics will be clearly noticeable. However, an
adequate parameter is not always available, or the time-scales for the parameter
change might be slower than required. Furthermore, such type of change might
be metabolically costly. Notwithstanding, certain neuromodulators might play
a role in these processes. Acetylcholine, for instance, has a confirmed action in
the modulation of attentional processes. Interestingly, attentional processes also
provide distinct EEG frequencies directly associated with behavior. We also note
that the variation of certain internal parameters may have an effect equivalent
to that of an external forcing.

The third type of dynamical switching is the fastest and most flexible, since the
dynamics is not constrained to some limit-cycle behavior. Rather, the spatiotem-
poral chaotic regime allows that multiple behaviors be simultaneously available
in the form of UPOs. Yet, this generally requires that an adequate mechanism
be available to select the most favorable UPO for a given task.

Of course, a combination of more than one of the scenarios is possible. For
instance, in separate articles we discuss the consequences of perturbing a chaotic
regime with a finite-size external perturbation [10,11], apart from the infinites-
imal perturbations that provide UPO switching. This is done from a computa-
tional standpoint, and the aim is to assess the pattern processing capabilities of
chaotic neural networks.

The model that we discussed in this article supports all three scenarios in a
homogeneous way. The chaotic ’mode’ could be the most promising. However, the
dispute over the very existence of low-dimensional chaos in the brain has not been
settled even if more than 20 years have passed since the seminal claims [12,13].
Here we keep an open perspective, and try to determine what actual use chaos
may have for any system —natural or artificial— where it may occur [11].
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Our last comment is on the particular set of EEG frequencies that are some-
what ’hidden’ in our chaotic model, and that can be elicited trough minute
perturbations. The 9.61 Hz falls into the alpha range, whereas the 39.79 Hz
is in the gamma range. The latter range contains the famous “40 Hz” oscilla-
tions. These frequencies have been obtained without any purposeful tuning of
the system’s parameters. They can be regarded as an emergent phenomenon.

Acknowledgments. The author acknowledges the partial support of Fundação
para a Ciência e a Tecnologia and EU FEDER via Instituto de Telecomunicações
and via the project PDCT/MAT/57976/2004.

References

1. Wu, J.-Y., Cohen, L., Falk, C.: Neuronal activity during different behaviors in
Aplysia: A distributed organization? Science 263, 820–823 (1994)

2. Freeman, W.: The physiology of perception. Scientific American 264, 78–85 (1991)
3. Freeman, W.: Chaos in the CNS: Theory and practice. In: Ventriglia, F. (ed.)

Neural Modeling and Neural Networks, pp. 185–216. Pergamon Press, New York
(1994)

4. Diniz Behn, C., Brown, E., Scammell, T., Kopell, N.: Mathematical model of net-
work dynamics governing mouse sleep-wake behavior. Journal of Neurophysiol-
ogy 97, 3828–3840 (2007)

5. Lachaux, J.-P., Pezard, L., Garnero, L., Pelte, C., Renault, B., Varela, F., Mar-
tinerie, J.: Spatial extension of brain activity fools the single-channel reconstruction
of EEG dynamics. Human Brain Mapping 5, 26–47 (1997)

6. Kaczmarek, L.: A model of cell firing patterns during epileptic seizures. Biological
Cybernetics 22, 229–234 (1976)

7. Destexhe, A.: Ph.D. Dissertation, Université Libre de Bruxelles (March 1992)
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Abstract. We implement a model of the large-scale dynamics of the
brain, and analyze the effect of both short- and long-range connectivity
degradation on its coordinated activity, with the ultimate goal of com-
paring the structural and functional characteristics of neurodegenerative
diseases such as Alzheimer’s. A preliminary comparison between the re-
sults obtained with the model and the activity measured in patients
diagnosed with mild cognitive impairment (a precursor of Alzheimer’s
disease) and healthy elderly controls is shown.

1 Introduction

Optimal brain function requires coordinated activity at a wide range of length
scales, from the microscopic, at the single-neuron level, all the way to the macro-
scopic, at the level of the whole brain. But modeling full-brain dynamics with
detailed neuronal network models is currently unfeasible, due to both limited
computational capacity and lack of experimental understanding of brain tissue
at the microscopic level (see, however, recent progress in this direction, in [1]).
Therefore, mesoscopic models have been developed in order to reproduce the
dynamics of cortical columns from the perspective of large neuronal popula-
tions. Among these, special interest has been devoted to neural mass models,
which were designed to simulate electrical brain activity (both spontaneous and
evoked) as measured by the electroencephalogram (EEG).

Originally, neural mass models were aimed at modeling the nonlinear dynam-
ics of a single cortical column [2]. In such models, the cortical column is described
by a population of pyramidal neurons receiving feedback from local populations
of excitatory and inhibitory neurons. Additional excitatory input from neigh-
boring or more distant columns is represented by an external input signal, not
coupled dynamically to the column itself. The model reproduces the dynamical
behavior of the average excitatory and inhibitory post-synaptic potentials for the
neural populations in the cortical column. Following these initial steps, neural
mass models for two coupled cortical columns were introduced [3,4]. No varia-
tions in the average external input levels with respect to the single-column case
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were considered in those works, but in Ref. [4] the coupling coefficient between
columns was tuned such that the standard deviation of the total presynaptic
input in each area is conserved. More recently, a neural mass model was used
to infer effective connectivity among a small number of cortical regions from
high-resolution EEG data [5].

To our knowledge, the only attempt so far to use a massively coupled neural
mass model to describe the large-scale activity of the brain is the one by Sotero et
al [6]. In that work, the authors generalized Jansen’s model [3], valid at the level
of cortical columns, to voxels taking into account both local connectivity among
neighboring cortical areas and long-range connectivity among more distant brain
regions. Here we build upon that approach to study in a systematic way the effect of
local and long-range connectivity on the collective dynamics of the brain, with the
final goal of relating the synchronization loss observed in patients with Alzheimer’s
disease [7,8] to the cortical thinning reported in radiological studies [9].

2 The Model

As explained above, we use a neural mass model that describes three neuronal
populations within a voxel: pyramidal cells and excitatory and inhibitory in-
terneurons. The average postsynaptic potentials (PSPs) of each of these popu-
lations can be described by:

d2yni
1

dt2
+ 2a

dyni
1

dt
+ a2yni

1 = Aa
{
c5S(yni

1 − yni
2 ) + c2S(yni

3 )

+pn
lr + pni

sr,exc + pn
th(x4) + pn

ext

}
(1)

d2yni
2

dt2
+ 2b

dyni
2

dt
+ b2yni

2 = Bb
{
c4S(yni

4 ) + pni
sr,inh

}
(2)

d2yni
3

dt2
+ 2a

dyni
3

dt
+ a2yni

3 = Aa
{
c1S(yni

1 − yni
2 ) + pn

th(x5)
}

(3)

d2yni
4

dt2
+ 2a

dyni
4

dt
+ a2yni

4 = Aa
{
c3S(yni

1 − yni
2 ) + pn

th(x6)
}
, (4)

where yni
1 (yni

2 ) represents the average excitatory (inhibitory) PSP acting on
the pyramidal population in voxel i located in area n. yni

3 (yni
4 ) represents the

average excitatory PSP acting on the excitatory (inhibitory) interneurons. The
left-hand side of the differential equations implement a linear filter that trans-
forms incoming pulse trains into average postsynaptic potentials with ampli-
tudes A, B and inverse time constants a and b. The corresponding impulse
response functions are he(t) = Aat exp (−at) and hi(t) = Bbt exp (−bt) for the
excitatory and inhibitory PSPs, respectively. The functions S(y) are sigmoidals
that transform average PSPs into an average pulse density of action potentials:
S(y) = 2e0/(1 + er(v0−v)), with 2e0 representing the maximum pulse density
and v0 the PSP corresponding to e0. The constants ci are average number of
synaptic connections between the corresponding neuronal populations.
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Besides the terms described above, which correspond to synaptic connections of
populations within a voxel, other inputs coming from outside the voxel are consid-
ered in the model. First, input from distant brain areas is represented by the term

pn
lr =

N∑
m=1
m =n

Kmn
Mm∑
j=1

c6S(ymj
5 ) , (5)

where the first sum runs over areas and the second one over voxels in area m,
which has a total of Mm voxels, and S(ymj

5 ) represents afferent input from the
pyramidal population of distant voxels. Pyramidal neurons also receive excita-
tory input from neighboring voxels of the same area, given by

pni
sr,exc =

Mn∑
j=1
j =i

(
kij
exc1c7S(ynj

6 ) + kij
exc2c8S(ynj

7 )
)

(6)

Here the coupling strengths depend on the distance between voxels:

kij
exc1 =

1
2σexc1

e−
|xi−xj |

σexc1 , kij
exc2 =

1
2σexc2

e−
|xi−xj |

σexc2 . (7)

Inhibitory input from neighboring voxels of the same area into the interneurons
is given by

pni
sr,inh =

Mn∑
j=1
j =i

kij
inhc9S(ynj

8 ), (8)

where the coupling strength kij
inh is given by an expression analogous to Eq. (7).

Input from the thalamus into voxels of area n is described by pn
th = Kth,nct3S(x4),

where x4 is described below. Finally, we consider an additional input coming from
other sources besides the cortex and the thalamus, to be given by the external sig-
nal pn

ext, which acts equally upon each pyramidal population in all voxels of area n.
The incoming PSPs from voxels in the same area and other areas are described

by the following relations:
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where the inverse time constants adi and bd4 are chosen now to account for delays
in the different transmission mechanisms.

Finally, given the thalamus has strong reciprocal connections with the cere-
bral cortex, it is represented in the current model as a single voxel obeying the
following equations:
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where all constants have meanings analogous to those of the cortical voxels
equations above.

3 From Single Voxels to Cortical Areas

We begin by reviewing the influence of the external input pext on the dynamics
of a single voxel. A detailed bifurcation analysis of the classic Jansen’s model
was performed by Grimbert and Faugeras [10] showing that a cortical column
becomes unstable for an intermediate range of external input values. For the
specific model and parameter values used here, the bifurcation diagram for a
single voxel is shown in Fig. 1. The figure represents the extrema of y = y1 − y2

during its time evolution at each pext. The system exhibits a constant state for
low enough and high enough input, while for intermediate input levels y oscil-
lates for the parameter values used (given in the figure caption). In the stability
analysis performed by Grimbert and Faugeras [10] two types of dynamical ac-
tivity are observed when the system becomes unstable: a “sinusoidal” type of
activity, limited by two Hopf bifurcations, and a spike-like type of activity, lim-
ited by a homoclinic and a Hopf bifurcation and observed in a smaller region

-60

-30

 0

 30

 60

 0  1000  2000  3000  4000

y 
[m

v]

pext [Hz]

Fig. 1. Stability diagram for a single voxel. Parameters are those for an alpha voxel
defined in Tab. 1 of [6], with c5 = 0.25 c1.
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Fig. 2. (a) and (b) Stability diagram for voxels showing the effect of inhibition in local
coupling for an area with 7 voxels. Parameters are those for alpha voxels defined in
Tab. 1 of [6], with c5 = 0.25 c1 and c7 = 100, c8 = 100, c9 = 5, 100. (c) Examples of
spike-like and “sinusoidal” activity exhibited by two voxels for c9 = 100 and pext = 160.

of parameter space, coexisting with the “sinusoidal” activity. For the parameter
values used in this paper, we obtain spike-like activity for isolated voxels, but
we will observe coexistence with “sinusoidal” activity when voxels are coupled
(see Fig. 2(c)). The previous results show that a single cortical column requires a
minimum input level to become active (i.e. to exhibit oscillatory behavior), but
if the input becomes too large its activity becomes saturated at a high y state.

When the model is scaled up by incorporating neighboring voxels to form a
cortical area, one would expect that signals coming into a given column from
its neighboring voxels could replace, at least partially, the external input needed
to produce activity in the column. To verify this possibility, we simulated the
activity of an area with 7 voxels, coupled via the short-range connectivity func-
tions given in Eqs. (6) and (8) (and therefore in the absence of any long-range
connectivity). As shown in Fig. 2(a), the influence of short-range coupling on the
onset of the first activating bifurcation depends on the amount of the inhibitory
short-range connections, measured by parameter c9. For weak enough inhibition
(small c9, dotted line) the bifurcation point moves towards the left, and thus
less external input is indeed necessary for the column to be active. This does not
happen, however, for large values of c9 (dashed line), in which case the bifurca-
tion point moves towards the right, and stronger external input is required to
overcome the excess of inhibition and thus activate the column. Note the strong
variability exhibited by the different voxels in both cases, with the bifurcation
point being shifted differently for the different voxels.
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The effect of short-range coupling on the higher limit of the bifurcation di-
agram, at high pext values, is shown in Fig. 2(b). In contrast with the case of
the first bifurcation, here the short-range coupling shifts the bifurcation point
towards the right, thus increasing the region of activity, for both low and high
values of c9 (even though the shift is certainly stronger for higher c9).

It is interesting to note that although most of the voxels exhibit spike-like
type of activity when they become unstable (as the single voxel does) there are
examples, for the same parameters, in which the “sinusoidal” type of activity is
also observed. Examples of both activities are presented in Fig. 2(c). Notice also
that the period of the spike-like oscillations is more irregular than that of the
”sinusoidal” oscillations. The amplitude is, however, much larger for spikes than
for the ”sinusoidal” activity.

4 System-Size Effects on the Dynamics of Cortical Areas

The strength of the short-range connectivity terms, Eqs. (6) and (8), also changes
when the number of voxels in the cortical area varies. We now study these effects
in the case of a weak inhibitory short-range coupling, in order to determine
whether the size of a cortical area might be a relevant factor in the relationship
between the level of activity and the strength of the external input. In the same
spirit of the previous Section, Fig. 3 shows the variation in the bifurcation points
limiting the active region of pext values for three cortical areas with different
number of voxels. The simulations show that, in the case where excitatory short-
range coupling dominates over inhibitory interactions, larger areas requires a
weaker external input in order to become active Fig. 3(a). Note again the large
variability among voxels regarding the location of their activation threshold. The
second bifurcation, on the other hand, is not very much affected by the number
of voxels in the area (Fig. 3(b)).

Together, the results of these previous two Sections show that intra-area short-
range coupling among voxels enhances the activity of a cortical area when such
coupling has a weak inhibitory component (pni

sr,inh) with respect to the excitatory
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Fig. 3. Stability diagram for areas of increasing number of voxels. Only 7 voxels are
represented in each case. Parameters are the same as those shown in Fig. 2 with c9 = 5.
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one (pni
sr,exc), and reduces it when the former dominates over the latter. This fact

will have implications when building a large scale model in Sec. 5.

5 Effects of Connectivity Loss in Large-Scale Brain
Dynamics

Now, areas are connected, through the term defined in Eq. (5), to form the
whole brain. The intensity of this coupling is controlled by the connectivity
matrix Km,n. Thalamus dynamics is also introduced as explained in Section 2.
Thus, the model defines a system composed by 22 cortical areas (see Table II in
Sotero et al [6]) and the thalamus. The signal obtained at each voxel (yni

1 − yni
2 )

contributes with a different weight to the signal obtained at an electrode located
in the scalp. Distant voxels contribute much less than closer ones. So, the voltage
measured at each electrode is obtained by averaging the signals of all voxels with
weights coming from a kernel called “electric lead field” [6]. As a result of this
convolution, we obtain the voltage that would be measured in 120 electrodes
distributed in the scalp for the system considered. See examples of time traces
for several of these electrodes in Fig. 4(a). These signals are equivalent to those
measured experimentally, as the ones considered below.
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Fig. 4. Example of time traces of the electrode signals from simulations (left), and
the corresponding correlation matrix (right). Parameters for voxels are those of Fig. 2
with c9 = 5 and the connectivity matrix of [6] scaled such that Max(Km,n)= 10−1.
Parameters for thalamus are those defined in Tab. 1 of [6]. pext=0 and pext,th=110. For
simplicity, pn

th(xi) are mantained constant in each area and proportional to Max(Km,n).

To analyze the degree of coordinated activity produced at different coupling
strengths we will calculate the correlation matrix among the 120 electrodes con-
sidered, plus the thalamus. As a result we obtain, from each realization of the
model evolution, a correlation matrix as that one shown in Fig. 4(b). From these
matrices we want to extract a quantitative measure of the synchronization pro-
duced in the system, to be compared with the behavior observed experimentally.
Other characterizations of the signal could be considered (e.g. the power spec-
trum), but we will only examine here the histogram of correlations calculated
from the matrix.
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Fig. 5. (a) Histogram of correlations obtained for different short-range coupling inten-
sities (given in the legend) and the rest of parameters as in Fig. 4. (b) Histogram of
correlations obtained for different long-range coupling intensities (given in the legend)
and the rest of parameters as in Fig. 4.

Note that when calculating the voltage at each electrode from the signal, y,
of all voxels, we introduce artificial correlations between the different electrodes
(termed background correlation in what follows). Therefore, before studying in
detail the effect of increasing short- and long-range coupling on the correlation
histograms, we analyze the signal that would produce a model with a random
value of y (gaussian white noise, with zero mean and standard deviation equal to
1) in each voxel. The average histogram of correlations obtained from 25 noise
realizations appears in Figs. 5(a) and 5(b) as a thick line. Observe that the
histogram increases almost monotonically when correlation increases. A peak
is observed for zero correlation (which presumably corresponds to correlations
between distant electrodes) and a decrease at correlations close to 1, showing
that full correlation is almost never attained.

Figure 5(a) shows the correlation histograms for increasing amounts of short-
range coupling (maintaining the excitatory-to-inhibitory strength ratio). For low
couplings (thin solid line), the correlation profile is very close to the background
correlation induced by the lead-field convolution. For intermediate values of the
short-range coupling (dashed line), on the other hand, deviations from the back-
ground correlations appear. Specifically, correlation peaks emerge around 1 and
-0.5. Finally, for even larger coupling intensities (dotted line), differences with
the background correlations decrease again.

In Fig. 5(b) we show the histograms produced when scaling up the connectiv-
ity matrix by a constant factor. For a system without long-range coupling (thin
solid line) the correlations are again similar to their background level (although
certainly, some increase of the number of correlations close to 1 and close to -0.5
is observed). A further increase of the connectivity matrix (dashed line) enhances
very significantly the number of correlations close to 1. Finally, for the largest
value of the connectivity matrix considered (dotted line), a substantial increase
in correlations close to -0.5 is produced, together with a corresponding reduction
of the correlation peak close to 1. The behavior of both panels of Fig. 5 seems to
suggest that there are optimal strengths of the short- and long-range coupling
that produce the strongest coordinated activity in our simulated model.
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Fig. 6. Comparison of experimental correlation histograms of EEG measurements of
the brain activity in healthy elderly subjects and MCI patients

To conclude this section, we show in Fig. 6 the same type of analysis for data
obtained from EEG recordings for MCI patients and healthy elderly subjects [11].
Notice that control subjects exhibit a correlation histogram very similar to those
shown in Figs. 6(a) and (b). The histogram of MCI patients shows a decrease in
the correlation peak at 1 and a smaller anticorrelation. This behavior is consistent
with that shown in cases with less connectivity, both in short and long range.

6 Conclusion

We have studied the effect of short- and long-range coupling on the dynami-
cal behavior of a neural mass model, with the goal of modeling the dynamical
consequences of a loss of synchronization at the level of the whole brain. Our
results show that while isolated cortical columns require a minimum amount of
input signal to become active (i.e. to exhibit non-stationary, dynamical behav-
ior such as oscillations), short-range coupling between voxels in a given cortical
area may elicit active behavior for weaker inputs, or even in the absence of input
altogether, provided the excitatory component of the coupling dominates over
the inhibition. Using this fact to establish meaningful parameter values, we have
built a full-brain neural mass model in order to examine the effects of varying
the strengths of short- and long-range coupling on the synchronization level of
the brain, and compared it with experimental measurements taken from MCI
patients and healthy elderly subjects. The results show that synchronization
in our model is enhanced for optimal levels of short- and long-range coupling
strengths. Thus both types of coupling seem to work together in establishing
functional connectivity in the brain.
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Abstract. We examine the dynamics of object recognition in a multi-
layer network of oscillatory elements. The derivation of network dynamics
is based on principles of sparse representation, and results in system be-
havior that achieves binding through phase synchronization. We examine
the behavior of the network during recognition of objects with missing
contours. We observe that certain network units respond to missing con-
tours with reduced amplitude and temporal delay, similar to neuroscien-
tific findings. Furthermore, these units maintain synchronization with a
high-level object representation only in the presence of feedback.

Our results suggest that the illusory contour phenomena are formal
consequences of a system that dynamically solves the binding problem,
and highlight the functional relevance of feedback connections.

1 Introduction

An important goal of building computational models of neural function is to
be able to explain the behavior of neural mechanisms as measured in biological
organisms. This is a highly challenging task, as models do not generalize well.
For instance, conventional neural network models ignore the temporal aspects
of neural signaling [1]. Thus, a major issue in the area of computational neural
models is appropriate model validation.

In an effort to address this issue, we investigate a recent model of oscillatory
neural networks [2]. The model dynamics were derived using an optimization
framework based on a sparse coding principle, which states that the goal of the
cortex is to create a sparse and faithful representation of the inputs it receives.
Desirable properties of the derived model include its ability to separate super-
posed objects in a simulated visual field and to associate multiple high-level
object categories with their lower-level constituents. This is achieved through
phase synchronization in oscillatory elements. This behavior is learnt in an un-
supervised manner through the modification of synaptic weights. The model was
initially developed for a two-layer system, and has been extended to multi-layer
systems [3].

Using the network in [2,3], we performed simulations that mimic the biolog-
ical experiments [4] in probing the neural responses during illusory contour
perception. The model in [3] corroborates many of the biological findings, and

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 685–694, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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thus could serve as a viable building block for more complex neural systems.
We emphasize that our model was not explicitly created to explain illusory con-
tour perception, as others in the literature have [5]. Rather the illusory contour
responses arise as a natural consequence in a network that achieves a sparse
representation.

Furthermore, from our experiments, we derive a testable hypothesis for the
neuroscientific field, which states that disabling feedback connections should
impair the phase (or timing) relation between higher and lower level units that
represent a common percept, while having relatively little effect on the formation
of the percept. The pursuit of this hypothesis should shed further light on the
role of feedback in object perception.

2 Background

Lee and Mumford [4]. measured the response in visual cortical area V1 to a
missing contour such as the side of a square. A neuron that responds vigorously
to a complete contour still responds to a missing contour, with reduced amplitude
and a temporal delay. This is depicted in Figure 1(A). We would like to observe
whether the computational model in [2,3] can reproduce such a phenomenon.
To the best of our knowledge, such a validation has not been performed for an
oscillatory neural network model.

Engel et al [6] review the neuroscientific evidence regarding oscillatory phe-
nomena observed in neural recordings and establish the importance of synchrony
in the grouping of of neuronal populations. Bar et al [7] investigated the role of
top-down processing in visual perception, and propose that low-spatial frequency
information allows rapid formation of high-level representations.

Li [8] has investigated the phenomenon of contour formation in the primary
visual cortex. The units in his model do not learn their synaptic connection
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Fig. 1. (A) Stylized depiction of actual neural responses to contrast contours, and
illusory contours. Derived from Lee and Mumford [4]. (B) The result derived from the
computational model in Section 4.7, which compares the real valued output ρ2

1 when
the entire square is presented, with the output ρ2

2 when the square with missing contour
is presented. Feedback is present. The input is presented for 300 iterations, and then
removed.
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weights. In contrast, our model learns weights in an unsupervised manner, and
the overall system achieves the desirable properties of separation of inputs and
segmentation.

Fukushima created the Neocognitron to model neural processing in the visual
pathway [9]. Our proposed system is similar in terms of the hierarachical nature
of processing. However, the precise computations carried out in our model are
totally different, and have been derived from a sparse coding perspective.

3 Experimental Methods

Our model uses oscillatory units, whose state is defined by an amplitude, a
frequency and a phase, which is represented by a phasor Aeiθ where A is the
amplitude, θ the phase. Rao et al [2,3] used an optimization approach based on
sparse coding to derive the following state update equations.

Consider a network with three layers, a lower input layer {x}, a middle layer
{y} and an upper layer {z}, as shown in Figure 2. The amplitudes of units in
these layers are denoted by x, y and z respectively. Phases are represented by φ
in the lower layer, θ in the middle layer, and ξ in the upper layer.

The dynamics of the middle layer evolve as follows.

Δyn ∼
∑

j

Wnjxj [1 + cos(φj − θn)] + κ1

∑
k

Wnkzk sin(ξk − θn)

− αyn − γ
∑
m

Wnmym[1 + β cos(θm − θn)]

Δθn ∼ β
∑

j

Wnjxj sin(φj − θn) + κ2βγ
∑
m

Wnmzm sin(ξm − θn)

− βγ
∑

k

Wnkyk sin(θk − θn) (1)

The dynamics of the upper layer evolve as follows.

Δzn ∼
∑

j

Wnjyj[1 + cos(θj − ξn)]− αzn − γ
∑

k

Wnkzk[1 + β cos(ξk − ξn)]

Δξn ∼ β
∑

j

Wnjyj sin(θj − ξn)− βγ
∑

k

Wnkzk sin(ξk − ξn) (2)

The dynamics of the lower layer evolve as follows.

Δφn ∼
∑

j

Wjnyj sin(θj − φn) (3)

A phase-dependent Hebbian learning rule is used to learn synaptic weights
between a source node with index j and a target node with index i as follows

ΔWij ∼ SjTi[1 + β cos(Δ)] (4)

where Sj is amplitude of the source node, Ti is the amplitude of the target node,
and Δ is the phase difference between the source and target node.
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Fig. 2. Illustrating the network connectivity. (A) Feedforward connections. (B) Lateral
connections. (C) Feedback connections.

4 Experimental Results

The system undergoes unsupervised learning to discriminate between 16 simple
objects shown in [2]. This is done in accordance with the learning rules in Sec-
tion 3 that achieve separation and segmentation, which are required to solve
the binding problem. When the trained system is presented with an individual
object, the response in the upper z layer consists of a single winner unit that
uniquely represents the object. When presented with a superposition of objects
that it has learnt, the system recognizes the individual objects, and also seg-
ments the lower layer into components that represent the superposed objects.
This segmentation is exhibited through phase synchronization between the up-
per z layer unit that constitutes a high-level representation of an object and
lower x layer units that form the object pixels.

The response of such a trained network to a missing contour is measured with
the following visual stimuli. Figure 3(a) shows the original stimulus consisting of
one of the 16 input objects, a square. Figure 3(b) shows the modified stimulus
consisting of this square with its left edge missing.

4.1 Experimental Protocol

We examine the network behavior by varying the type of stimulus used, and
the presence of feedback. For the stimulus type, we either use the full object in

(a) (b) (c) (d) (e) (f)

Fig. 3. (a) Original stimulus consisting of a complete square. (b)-(d) Modified stim-
ulus consisting of the square with missing contours. (e) Original stimulus consisting
of a complete triangle. (f) Modified stimulus consisting of the triangle with a missing
contour.
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Figure 3, or the object with missing contour. For the feedback we either use, or
disable feedback connections from the z to y layer. This is explored as follows.

4.2 Spatial Phasor Maps in the Presence of Feedback

The system dynamics is visualized through a spatial phasor map. The first two
columns in Figure 4 are for the full square stimulus and square with missing
contour with feedback. Note that the winner in the z layer, the encircled unit1

number 4, z4, stays the same even when the square stimulus contains a missing
contour. In the y layer, the encircled unit y35 shows an attenuated response to
the missing contour. This unit receives feedforward connections from the region
surrounding the missing contour.

4.3 Temporal Evolution of Amplitudes in the Presence of Feedback

Figures 5(A) and 6(A) show the amplitude evolution in the z layer and y35.
Note that in Figure 5, the winner in the z layer, z4, stays the same even

when the square stimulus contains a misssing contour. In Figure 6(A), y35 shows
an attenuated response to the missing contour, similar to the biological finding
reported in [4]. In the first two columns of Figure 4, observe that y35 is syn-
chronized in phase with the winner in the z layer, z4. Since the winner in the
z layer represents the higher-level percept ‘square’, this phase synchronization
demonstrates that y35 is indeed responding to the square.

4.4 Spatial Phasor Maps in the Absence of Feedback

In order to demonstrate the importance of feedback, after training, we disabled
the feedback connections from the upper z layer to the middle y layer.

The third and fourth columns in Figure 4 show the spatial phasor map for the
presentation of the full square stimulus and square with missing contour with no
feedback. Note that the encircled winner in the z layer, z4, stays the same even
when the square stimulus contains a misssing contour, and feedback is disabled.
Also, y35 still responds to the missing contour.

4.5 Temporal Evolution of Amplitudes in the Absence of Feedback

Figures 5(B) and 6(B) show the amplitude evolution in the z layer and y35

respectively, when feedback from the z to y layer is disabled. Again, the winner
in the z layer, the encircled z4 stays the same in all cases. In Figure 6(B), y35

shows an attenuated response to the missing contour. Very interestingly, y35 is
not synchronized with the winner z4.

Figures 6(A) and 6(B) show that the amplitude response of y35 is essentially
similar. Hence the amplitude response cannot be used to distinguish whether
feedback from the z to y layer is present or absent. This leads us to examine
whether the phase response is sensitive to the presence of feedback.
1 Unit numbers are measured in sequential raster order starting from the upper left

corner. They will be indicated with subscripts.
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Fig. 4. This figure shows the phasor plot for units in the three layers at iteration
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Fig. 5. The amplitude response in the z layer as displayed as a function of the iteration
number. Each panel represents the amplitude response of a given z layer unit. In all
figures, the response to the complete square is indicated in blue, and the response to
the square with a missing contour is indicated in red. The encircled unit, number 4,
is the winner in the z layer, and can be considered to represent the object ‘square’.
(A) Responses in the presence of feedback connections from the z to the y layer. (B)
Responses in the absence of feedback connections from the z to the y layer.
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Fig. 6. The evolution of amplitude activity in y35 as a function of the iteration number.
(A) Feedback is present from the z to y layer. (B) Feedback is absent.

4.6 Temporal Evolution of Phases with and without Feedback

From Figure 6(A) we see that y35 shows an attenuated response to the missing
edge of the square. This occurs when feedback connections from the z to y layer
are present.

When the same set of stimuli are used after the feedback connections from the
z to y layer are disabled, we get the activity pattern shown in Figure 6(B) Again,
y35 shows an attenuated response to the missing edge of the square. However,
it’s phase response is very different in the case when feedback is removed.

This is shown in Figure 7. When feedback connections are present,
Figure 7(A), the y layer units, even those responding in an attenuated fash-
ion to missing contours, synchronize rapidly in phase with the winner in the z
layer that represents the input object (cosΔ → 1 as Δ → 0). Note that syn-
chronization is fastest when the full object is presented, such as the complete
square. When feedback connections are removed, Figure 7(B), the same y layer
unit that responded to the missing contour, y35 fails to synchronize in phase
with the winner in the z layer that represents the input object. The measure
of synchrony is poor even when the full object is presented, and is worse when
there is a missing contour.

However, as can be seen in the phasor plots of third and fourth columns of
Figure 4, the y layer units that receive direct input from existing features of the
object are fairly synchronized with the z layer winner. This causes the units in
the x layer to also be fairly synchronized with the winner in the z layer. This
indicates that a behavioral task such as ‘pick up the square’ can still be carried
out, but with less certainty, as the synchronization is not perfect.

Though the phase evolution of only one pair of units is presented here due
to space constraints, we observed the same qualitative behavior when deleting
different contours of the objects such as the square and triangle.

4.7 Real Valued Output of the Oscillating Units

As presented in Section 3, an oscillating unit is described by a phasor, Aeiθ.
The real part of this is given by ρ = A cos(θ). We plot the real valued output
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Fig. 7. (A) Shows the phase difference between z4 and y35. The phase difference is
plotted as cos(Δ) where Δ = ξz − θy, and ξz and θy are phases of z4 and y35. Feedback
is present. The two cases shown are for the presentation of the complete square and for
the square with the missing left edge as in Figure 3(B). (B) In this plot, the evolution
of phase differences is shown with no feedback.

of y35 when the square with and without the left contour is presented. Instead
of using the absolute phase of y35 we compute a relative phase Δ, with respect
to z4. Let ρ1(t) = y35(t) cos(Δ(t)), which is the real valued output when the full
square is presented. In Figure 1(B), we compare ρ2

1 with ρ2
2, when the missing

contour is present. Note the resemblance of the plots in Figure 1. Specifically, the
real-valued output for y35 shows an attenuated amplitude, as well as a temporal
delay.

4.8 Further Results

Figure 8 shows abbreviated results when a triangle with and without a missing
contour is presented. This type of behavior was also observed when other edges
of the square were removed. They are not shown here for lack of space.
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Fig. 8. (A) Shows the evolution of amplitude response of unit 55 in the y layer, which
shows an attenuated response to a missing in the triangle. Feedback is present in this
case. (B) Shows the response of the same unit when there is no feedback.
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5 Discussion

The results in Figure 4 indicate the following: (1) The winner in the z layer, z4,
stays the same even when the square stimulus contains a misssing contour. (2)
This holds true whether or not there is feedback from layer z to layer y. This
strongly suggests that the formation of the percept ‘square’ at the higher level is
driven primarily through feedfoward connections. Unit y35 in Figure 4 responds
with reduced amplitude to a missing contour. However, phase synchronization
with the winner in the z layer occurs only when feedback present.

The reduced amplitude response in the y layer in Figures 6, and Figure 1(B)
are similar to Figure 1(A). Lee and Mumford [4] report that neurons in V1
respond to illusory contours, and that the V2 response precedes the V1 response.
In Figure 5(A), the winner representing the square emerges early. Also, the unit
in the y layer responding to the missing contour is not initially synchronized
with the winner in the z layer, but eventually becomes so, as in Figure 7. The
qualitative behavior of our model is in agreement with the findings in [4].

The results in Figures 4 and 7 show that when the full square is presented as
stimulus, the elimination of feedback disrupts the synchronization in the middle
y layer. Note that the feedback connections from the z to y layer affect both
amplitude and phase of the units in the y layer (Equation 1). Furthermore,
the feedforward connections also have an effect on the phase, and hence on the
synchronization process, so synchronization cannot be assumed to depend on
feedback connections alone.

This is an interesting result as it generates a testable hypothesis. The sug-
gested biological experiment is to temporarily disable feedback connections be-
tween V2 and V1, and examine its effect on the response of V1 neurons. Our
prediction is that there will be reduced activity in V1 neurons, and that they will
not be synchronized with the activity of V2 neurons. So we show that feedback
has a greater effect on synchronization, ie the phase than on the amplitude.
A generalization of our hypothesis states that disabling feedback connections
should impair the phase (or timing) relation between higher and lower level
units that represent a common percept, while having relatively little effect on
the formation of the percept. The pursuit of this hypothesis should shed further
light on the role of feedback in object perception.

Such experimentation is possible, as Galuske et al [10] selectively deactivated
feedback connections, leading to a disruption in the direction response for motion
encoding direction in V1. Thus, our prediction seems reasonable, and could lead
to further investigation in neuroscience.

Bar [7] showed that the feedback signal specifically accentuates the most likely
input interpretation. This is explicitly exhibited in our model, as the feedback
signals have a synchronizing effect on the target unit, thus accentuating likely
interpretations.

Bar [7] states that a low spatial frequency representation of the input image
may suffice to generate a high-level percept, which occurs rapidly. Indeed, our
results support this observation, as the removal of specific object contours does
not change the object’s low frequency representation. In Figure 5, the high-level
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object percept does not change. Also, the temporal dynamics show that the
correct high-level representation (of a ‘square’) emerges rapidly.

Lamme [11] observed a fast feedforward sweep of information processing. The
behavior of the z layer in our system rapidly determines the winner that repre-
sents the input object, even when the object contains missing contours.

Engel et al [6] report that modulatory top-down effects may influence average
neuronal firing rates, and also the temporal structure of neuronal responses.
Our experiments validate this observation, as Figure 7 clearly demonstrates the
importance of feedback in determining the phase response, which is homologous
to the temporal structure of the neural response.

6 Conclusions

By exploring recent biological findings about feedback processing [7], and illusory
contour perception [4], with a computational model [2,3], we offer a unique, inte-
grated perspective on object recognition and feedback processing. Illusory con-
tour phenomena naturally arise in a system that dynamically solves the binding
problem. Our results highlight the functional relevance of feedback connections,
and show that they have a greater effect on synchronization than on the ampli-
tude. For illusory contour perception, our model predicts reduced activity in V1
neurons when feedback from V2 is disabled, and a lack of synchronization with
the activity of V2 neurons.
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Abstract. Chemical coupling between neurons is only active when the
pre-synaptic neuron is firing, and thus it does not allow for the propa-
gation of subthreshold activity. Electrical coupling via gap junctions, on
the other hand, is also ubiquitous and, due to its diffusive nature, trans-
mits both subthreshold and suprathreshold activity between neurons. We
study theoretically the propagation of spikes between two neurons that
exhibit strong subthreshold oscillations, and which are coupled via both
chemical synapses and gap junctions. Due to the electrical coupling, the
periodic subthreshold activity is synchronized in the two neurons, and
affects propagation of spikes in such a way that for certain values of the
delay in the synaptic coupling, propagation is not possible. This effect
could provide a mechanism for the modulation of information transmis-
sion in neuronal networks.

1 Introduction

Information transmission in the form of spike propagation plays a vital role
in the functioning of the nervous system [1]. The excitable nature of the neu-
ronal response to perturbations allows for the untarnished propagation of action
potentials along chains of neurons, coupled chemically to one another via uni-
directional synaptic connections. But synapses are only activated when the pre-
synaptic neuron undergoes an action potential, which elicits a constant-shaped
post-synaptic potential (PSP) at the receiving neuron. Therefore, the only kind
of information that is transmitted between neurons due to synaptic coupling is
the timing at which spikes occur. However, an increasing amount of evidence
shows that subthreshold oscillations constitute an important part of the dy-
namical activity of neurons [2,3], and thus the question arises as to what is the
functional role of subthreshold activity. Here we study a potential effect of sub-
threshold oscillations in modulating the propagation of spikes along a chain of
neurons.

Indeed, since successful propagation of a spike requires that the post-synaptic
neuron overcomes its excitation threshold upon receipt of the synaptic current,
the state of the post-synaptic neuron at the time at which it receives the synap-
tic pulse determines strongly whether a post-synaptic spike will be produced.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 695–702, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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This is specially relevant for neurons with subthreshold oscillations: if the pulse
arrives to the neuron at around a minimum of a subthreshold oscillation, the
effective distance to the excitation threshold will be large, and one could ex-
pect that producing a spike would become more difficult. Oppositely, when the
pulse arrives near a maximum of a subthreshold oscillation, excitation should
be easier. Consequently, one would expect that the propagation efficiency of a
neuronal system would depend on the relationship between the period of the
subthreshold oscillations and the delay incurred in the propagation due to the
time required by the synaptic mechanism to operate. A coherent modulation of
the propagation efficiency along a chain of neurons should be expected when the
subthreshold activity between all neurons in the chain is synchronized. This can
be accomplished by means of diffusive coupling due to gap junctions, which is
also ubiquitous in neural tissue [1]. In this paper, we examine this possibility by
studying the propagation of a spike train between two neurons, coupled via both
synapses (with a delay) and gap junctions (instantaneously). Our results show
that propagation appears resonantly, only for certain values of the synaptic de-
lay such that the pre-synaptic pulse arrives at the receiving neuron at the right
time to elicit a spike in it.

2 Model Description

We consider two coupled neurons whose dynamical behavior is described by
a FitzHugh-Nagumo model, modified in order to obtain relatively strong sub-
threshold oscillations [4]. In dimensionless form, the model reads

εu̇i = ui(ui − a)(1 − ui)− vi + Ielec
i + Ichem

i + Iapp
i , (1)

v̇i = g(ui − b) (2)

where i = 1, 2 index the neurons, ui is the voltage variable, and vi is the recovery
variable, which represents the effective membrane conductivity. The parameter ε
is the ratio between the characteristic times of u and v, and Ielec

i , Ichem
i and Iapp

i

are the electrical, chemical and applied currents, respectively. In the absence
of noise, an isolated FitzHugh-Nagumo neuron can exhibit different types of
dynamical behavior. We consider in what follows the excitable regime, by setting
a = 0.9, ε = 0.005 and b = 0.316. The function g(x) determines the dynamics
of the recovery variable; for certain nonlinearities in g(x) the neuron exhibits
subthreshold oscillations. Here we use

g(u) = k1u
2 + k2

(
1− exp

(
− u

k2

))
(3)

where k1 and k2 are chosen to give a period of the subthreshold oscillations larger
than the duration of a spike. In what follows, we choose k1 = 7.0 and k2 = 0.08.

The current applied externally to each neuron Iapp
i is a train of pulses of 2

units of amplitude with a period of 10 units of time, while the other current
terms provide two mechanisms of coupling between the two neurons: a linear



Resonant Spike Propagation in Coupled Neurons with Subthreshold Activity 697

electrical coupling and a nonlinear pulsed coupling through chemical synapses.
The electrical coupling term, which arises at gap junctions between adjacent
neurons, depends on the membrane-potential difference between the two neurons:

Ielec
i = gelec(ui − uj) (4)

where gelec is the effective conductance of the gap junction, whose value will be
tuned in Sec. 3 in order to maximize the synchronization between the neurons
without destroying the subthreshold activity.

Chemical coupling can be modeled by the following current term [5]:

Ichem
i = gchemrj(ui − Es) (5)

where gchem is the conductance of the synaptic channel, rj represents the fraction
of bound receptors, and Es is fixed to 0.7 in order to make the synapse excitatory.
The fraction of bound receptors has the following dynamical behavior [6]

ṙj = αCj(1− rj)− βrj (6)

where α and β are rise and decay time constants, respectively, and

Cj = Cmaxθ
(

(T j
0 − τ) + τsyn − t

)
θ
(
t− (T j

0 − τ)
)

is the concentration of neurotransmitter released into the synaptic cleft. T j
0 is

the time at which the presynaptic neuron j fires, which happens whenever the
pre-synaptic membrane potential exceeds a predetermined threshold value, in
our case chosen to be 0.7. The time during which the synaptic connection is
active is given by τsyn. We add a delay time τ into the chemical current in order
to model a more realistic situation in which some time is needed to get the signal
of the pre-synaptic cleft, and then the neurotransmitters take a time to reach
the post-synaptic neuron. The values of the coupling parameters that we use in
what follows are α = 2.0, β = 1.0, Cmax = 1.0, and τsyn = 0.006. The term
Ichem only affects the postsynaptic neuron, since the chemical current flows in
only one direction. The coupling strength gchem will be tuned in Sec. 4 so that
activation of spikes in the post-synaptic neuron is modulated by the subthreshold
oscillations.

3 Electrical Coupling: Resynchronization Versus
Damping

Synchronization of subthreshold activity takes place only via gap junctions.
Figure 1 shows the time evolution of the membrane potential ui of the two
neurons for increasing values of the electrical coupling strength gelec and in
the absence of chemical coupling (gchem = 0). For small enough gelec, a spike
in neuron 1 (represented by a solid line in the figure) does not excite a spike
in neuron 2, but perturbs sufficiently the dynamics of both neurons such that
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Fig. 1. Time traces for the two coupled neurons in the absence of chemical coupling and
for increasing strength of the electrical coupling: (a) gelec = 0.001, (b) gelec = 0.005,
(c) gelec = 0.01, (d) gelec = 0.1

synchronization of their subthreshold activity is temporarily lost [Fig. 1(a)].
The resynchronization time decreases as gelec is increased [Fig. 1(b)]. For larger
strengths of the electrical coupling, the subthreshold oscillations become heavily
damped [Fig. 1(c)], and eventually the second neuron pulses as a response to
the first [Fig. 1(d)]. For an intermediate level of electrical coupling [Fig. 1(b)],
the resynchronization time is relatively small, the subthreshold oscillations are
not heavily damped, and the second neuron does not pulse as a response to the
first. We will use gelec = 0.005 in what follows.

4 Chemical Coupling: Modulating Spike Excitation Via
Subthreshold Oscillations

As mentioned above, chemical coupling is only able to propagate suprathreshold
activity. If gchem is too high the post-synaptic neuron will fire whenever the
pre-synaptic neuron does, and if it is too low it will never fire. In both such
cases, the subthreshold activity of the post-synaptic neuron does not play a
relevant role. For intermediate values of gchem, on the other hand, the receiving
neuron will fire depending on its state at the time at which the input pulse
from the first neuron is received. We examined the behavior of the neurons
for different values of gchem in the absence of electrical coupling in order to
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determine whether subthreshold oscillations have an effect on the propagation
of a spike. Figure 2(a) shows the case of a low value of gchem, for which the second
neuron never fires irrespective of the instant at which the pulse from neuron 1 is
received with respect to the subthreshold oscillation state (which can be varied
by changing the delay τ ; results not shown, see next Section for results in the
presence of electrical coupling). For higher coupling strength gchem [Fig. 2(b)],
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Fig. 2. Time traces for the two coupled neurons in the absence of electrical coupling and
for increasing strength of the chemical coupling. A delay τ = 5 is externally added in
order to clearly separate the spikes of the two neurons. (a) gchem = 0.1, (b) gchem = 1.0.

on the other hand, the receiving neuron fires in response to the emitting one
for the case presented in the figure, while it does not fire for other delay values
(results not shown). We choose that coupling value, gchem = 1.0, in what follows
when adding the electrical coupling, in order to synchronize the background
subthreshold oscillations.

5 Effect of the Delay in Synaptic Transmission

We now wish to compare the behavior of the two coupled neurons for different
values of the delay introduced in the chemical current, in the presence of both
synaptic and electrical couplings. To that end, we vary the delay and check the
behavior of the receiving neuron for different values of gchem. As mentioned in
the previous section, it turns out that gchem = 0.1 is too small and the spike
of the pre-synaptic neuron does not propagate for any value of the delay. For
larger values of gchem, such as gchem = 1.0 suggested above in the case of no
electrical coupling, we obtain the desired behavior: spike transmission depends
on the delay.

Figure 3 shows how the spiking behavior of the postsynaptic neuron changes
in relation to the delay introduced. By varying this delay we can look at different
situations. For example, the post-synaptic neuron can be at the maximum of its
subthreshold oscillations, or at the minimum, or somewhere in between, at the
moment at which it receives an external signal from the pre-synaptic neuron.
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Fig. 3. Time traces for the two coupled neurons with gelec = 0.005 and gchem = 1.0
for different values of the delay introduced. (a) τ = 5.0, (b) τ = 5.25, (c) τ = 5.5, (d)
τ = 5.75.

We are interested on how the subthreshold oscillations of the post-synaptic neu-
ron can increase the probability to propagate a spike when it is excited by the
previous neuron. As shown in Fig. 3, at different situations the response of the
receiving neuron is different, it can either fire or not.

The results of Fig. 3 allow us to infer a non-monotonic dependence of the spike
propagation efficiency on the timing at which the post-synaptic neuron receives
the stimulus. That timing is controlled by the synaptic delay in our case, with
certain delay values at which propagation is optimal and others at which it is
absent. In order to quantify this observation, we vary the delay from τ = 5 to
τ = 6 in units of 0.05, stimulate the pre-synaptic neurons in multiple realizations
(100 in the results presented here), and calculate the percentage of successful
spike transmission events for increasing delay. As shown in Fig. 4, some delays
lead to a 100% success rate, while for some others the postsynaptic neuron never
fires. The figure also includes a time trace with the subthreshold oscillations that
underlie the activity of the post-synaptic neurons. Comparing the top plot with
the bottom time trace, one can see that the post-synaptic neuron fires when it
receives the input pulse while the value of its membrane potential is growing.
This can also be seen by looking carefully at Fig. 3.
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Fig. 4. Success rate for increasing delay in the chemical synaptic coupling, for gelec =
0.005 and gchem = 1.0. The bottom time trace shows the underlying subthreshold
oscillation of the post-synaptic neuron.

6 Conclusions

We have seen that subthreshold oscillations play a relevant role in the propagation
of spikes through two neurons coupled via chemical synapses. Electrical coupling
via gap junctions leads to a synchronization of the background subthreshold activ-
ity, and would thus allow to scale up the phenomenon in a coherent manner to an
array of coupled neurons, something which we are currently investigating. In the
present case, when the membrane potential of the post-synaptic neuron is increas-
ing the success rate of spike propagation is at its maximum, and spike propagation
is achieved. When the membrane potential is decreasing, on the other hand, the
success rate drops to zero and no propagation is carried out. We expect such type
of mechanism to be of general importance, given the ubiquity of gap-junction cou-
pling and subthreshold activity in neural tissue.
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References

1. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn.
McGraw-Hill, New York (2000)

2. Llinas, R.R., Grace, A.A., Yarom, Y.: In vitro Neurons in Mammalian Cortical
Layer 4 Exhibit Intrinsic Oscillatory Activity in the 10- to 50-Hz Frequency Range.
Proceedings of the National Academy of Science, 88, 897–901 (1991)

3. Giocomo, L.M., Zilli, E.A., Fransen, E., Hasselmo, M.E.: Temporal frequency of sub-
threshold oscillations scales with entorhinal grid cell field spacing. Science 315(5819),
1719–1722 (2007)

4. Makarov, V.A., Nekorkin, V.I., Velarde, M.G.: Spiking behavior in a noise-driven
system combining oscillatory and excitatory properties. Physical Review Let-
ters 86(15), 3431–3434 (2001)

5. Balenzuela, P., Garcia-Ojalvo, J.: Role of chemical synapses in coupled neurons with
noise. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 72(2),
021901–7 (2005)

6. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: An efficient method for computing
synaptic conductances based on a kinetic model of receptor binding. Neural Com-
put. 6(1), 14–18 (1994)



Contour Integration and Synchronization in

Neuronal Networks of the Visual Cortex
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Abstract. The visual perception of contours by the brain is selective.
When embedded within a noisy background, closed contours are detected
faster, and with higher certainty, than open contours. We investigate this
phenomenon theoretically with the paradigmatic excitable FitzHugh-
Nagumo model, by considering a set of locally coupled oscillators subject
to local uncorrelated noise. Noise is needed to overcome the excitation
threshold and evoke spikes. We model one-dimensional structures and
consider the synchronization throughout them as a mechanism for con-
tour perception, for various system sizes and local noise intensities. The
model with a closed ring structure shows a significantly higher synchro-
nization than the one with the open structure. Interestingly, the effect is
most pronounced for intermediate system sizes and noise intensities.

1 The Introduction

Object representation in the brain relies on two properties: first, the detection
of specific features (such as location and orientation) by individual neurons,
and second, the integration of features of extended objects through dynamic
association of neuronal assemblies [1]. Seminal experimental studies showed, for
instance, that assembly coding allows for scene segmentation in the cat visual
cortex [2,3]: the response to individual objects in a scene, in that case a single
moving bar, was characterized by synchronization among neuronal assemblies
corresponding to the different parts of the scene, while correlations were ab-
sent in response to different objects, such as two moving bars with different
orientations. When the stimulus is a static contour, the different sections of the
contour map to different neurons in the visual cortex. It is hypothesized that
these neurons fire synchronously when the contour is perceived. The potential
beneficial role of synchrony in that context lies in the possibility that at the
following stages of cortical processing the receiving or downstream neurons will
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be much more reactive to synchronous input than to temporally dispersed input.
In this way synchrony can effectively impact the dynamics of further stages of
information processing, and neurons that synchronize can have a higher saliency
than the ones that do not. Experimental observations show that contours em-
bedded within a noisy background are detected more efficiently if they are closed
than if they are open. Here we study this phenomenon theoretically in a one-
dimensional array of model neurons subject to noise, considering the effect of
boundary conditions in the synchronization efficiency. We also show that noise
has a beneficial role in this process by leading to a near zero-lag synchronization
in the firing of all neurons in the array.

The effect of noise in brain activity has evoked a large interest in recent
years. Stochasticity in neurons originates from different sources, including ran-
dom synaptic input from other neurons, stochastic switching of ion channels,
and quasi-random release of neurotransmitter by synapses. Despite (or maybe
because of) the many noise sources in neuronal networks, the brain acts very
reliably and needs only a very small amount of energy (about 12 W according
to Ref. [4]). A growing number of scientific results suggests that noise plays a
constructive role in brain activity. For instance, a noise-induced effect has been
demonstrated in the visual processing area of the human brain [5]. In that ex-
periment a periodic light signal was sent to one eye, whereas the other eye was
subjected by noise, represented by light with fluctuating intensity. The result was
that noise improved the processing of the periodic signal sent to the first eye.

Coherence resonance (CR), also known as stochastic coherence, is a noise-
induced effect through which periodic oscillatory behavior arises and its coherece
is optimized by noise. It has been found that at a certain noise intensity the sys-
tem responds with a maximal periodicity, i.e. with an enhanced coherence. Both
an increase and a decrease of the noise amplitude away from this optimal value lead
to a decreasing of the coherence. CR has been observed in excitable systems like
the Hodgkin-Huxley model [6], the FitzHugh-Nagumo systems [7], leaky integrate-
and-fire models [8], the Plant/Hindmarsh-Rose neural model [9], and in dynamic
systems which besides show jumps between several attractors [10]. Besides the
neural context, CR can be found in climate [11] and laser models [12,13].

Array-enhanced coherence resonance (AECR) [14] is an extension of the de-
scribed noise-induced rhythm generation to an ensemble of many coupled ex-
citable oscillators. Interestingly, the quality of the coherence in a large ensemble
with diverse oscillators can be larger than in a single one with the same mean
properties. The results presented below show that AECR provides a potential
mechanism for contour perception, whose efficiency depends on the network
topology, which should explain why a closed contour is better perceived than an
open one.

2 The FitzHugh-Nagumo Model

The FitzHugh-Nagumo (FHN) model is a paradigmatic model describing the
behavior of firing spikes in neural activity [15]. The model was proposed in



Contour Integration and Synchronization in Neuronal Networks 705

Refs. [16,17] as a simplification of the famous model by Hodgkin and Huxley
[16] and is a simple example of two-dimensional excitable dynamics. It describes
qualitatively the response of an excitable nerve membrane to external stimuli.
Important features are the inclusion of a refractory mechanism and the exis-
tence of different refractory states, as well as states of enhanced and depressed
excitability depending on the external stimulation. Beside the paradigmatic de-
scription of the firing spikes of neural activity [15], the FHN model is represen-
tative for activator-inhibitor dynamics of excitable media in general [18]. The
model reads:

εẋi = xi − x3
i

3
− yi + ξi(t) +Di−1(xi−1 − xi) +Di(xi+1 − xi) (1)

ẏi = a− xi (2)

In a neural context, x(t) represents the membrane potential of the neuron and
y(t) is related to the time-dependent conductance of the potassium channels in
the membrane [15]. The dynamics of the activator variable x is much faster than
that of the inhibitor y, as indicated by the small time-scale-ratio parameter ε
and is fixed to ε = 0.01 throughout the following calculations. It is well known
that for |a| > 1 the only attractor is a stable fixed point. For |a| < 1, the limit
cycle generates a periodic sequence of spikes. The parameter a is the bifurcation
parameter and is fixed below to a = 1.05, in order to tune the system to the
excitable regime. The index i distinguishes the separate oscillators and runs
from 1 to N , the total number of coupled elements. The Gaussian (white) noise
sources ξi(t) satisfy 〈ξi(t)ξj(t′)〉 = σ2

aδ(t− t′)δi,j with the noise intensity σ2
a.

We model the neurons in the visual cortex by diffusively coupled FHN and
consider in the present model only those neurons that map the visual contour.
We assume a constant and equal external stimulus to all neurons mapping the
contour, which leads to a constant reduction of the excitation threshold for
all involved neurons. This assumption results in a permanent reduction of the
parameter a in the model closer to the bifurcation point for all neurons, so
that the external stimulus need not appear explicitly in the model equations.
The neurons not involved in the contour mapping remain with high threshold
of excitation and are ignored. All FHN elements are thus in a excitable state
and remain in their rest state without spiking activity if no noisy stimulus is
present. The noise is absolutely needed to overcome the excitation threshold
and evoke spikes. We assume local Gaussian white noise subject to every neuron
with the same intensity σ2

a. The spikes are noise-evoked and mediated by the
local nearest neighbor coupling with diffusive property and the coupling strength
Di. Note that the coupling is instantaneous, i.e. it does not include any explicit
delay. Effective delay in the signal transmission will appear, however, due to the
natural inertia of each neuron in the chain to react to an input (see sec. 4 below).
We consider three spatial architectures: the uncoupled situation (Di = 0.0), a
linear chain (D1,...,N−1 = 0.02, DN = 0.0, Fig 1 bottom), and a closed loop
(Di = 0.02, Fig 1 top).
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Fig. 1. Schemes of a closed loop and a linear open chain

3 Comparison of the Synchronization of an Open and a
Closed Contour

This section should shed light on the question of whether synchronization is
better in a closed contour than in an open one. We measure the degree of syn-
chronization Rsyn as the ratio of the variance of the mean field to the mean
variance of the individual elements [19]:

Rsyn =
〈x̄2〉 − 〈x̄〉2

1
N

∑N
i=1(〈x2

i 〉 − 〈xi〉2)
=

Var(x̄)
Meani(Var(xi))

(3)

with the mean membrane potential x̄

x̄ =
1
N

N∑
i=1

xi . (4)

The fully desynchronized state results in a synchronization measure Rsyn = 0,
whereas the complete synchronization amongst all oscillators is becoming man-
ifest by Rsyn = 1. Values between 0 and 1 describe states of partial synchro-
nization. The measure Rsyn detect only zero-lag synchronization, i.e. delay free
synchronization and express the average difference between the mean field and
the dynamics of the individual oscillators. For small ensembles Rsyn results in
values larger than zero also if one compares completely independent elements,
e.g. for only two oscillators each of them influences the mean field to 50%. To
eliminate this effect of the system size, we considere the fully uncoupled ensemble
as the baseline to compare open and closed structures.

We consider two main influences on Rsyn: the noise intensity σ2
a and the sys-

tem size N . First we discuss the synchronization measure Rsyn as a function of
the system size N for different fixed noise intensities σ2

a (Fig. 2). In the first case
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Fig. 2. Synchronization measure Rsyn versus system size N . The plots differ by the
noise intensities: a) σ2

a = 0.01, b) σ2
a = 0.025, c) σ2

a = 0.2, d) σ2
a = 1.0, e) σ2

a = 5.0.
Each plot compares the synchronization in a closed loop, an open chain and in the
fully uncoupled case as the reference.

(σ2
a = 0.01) the noise intensity is sub-threshold and only few and irregular spikes

were evoked. The dynamics is determined by the small noisy and uncorrelated
sub-threshold fluctuations. Hence the coupling does not play a significant role
and the loop and chain configuration are close to the reference of the uncoupled
chain. An increased noise intensity leads to a spiking behavior and the coupling
contributes to the dynamics. The next plot (σ2

a = 0.025) shows a clear difference
between the loop, the chain and the uncoupled case. For intermediate system
sizes the loop synchronizes the ensemble more effectively than the open chain.
Further increase of the noise to σ2

a = 0.2 optimizes the synchronization. The
difference between loop and chain is less pronounced, but the absolute synchro-
nization quality is enhanced, especially for large system sizes, i.e. the zero lag
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Fig. 3. Synchronization measure Rsyn and correlation coefficient versus noise intensity
σ2

a. The left plot depicts a small ensemble (N = 16) and the right one shows the
behavior of a larger system (N = 64).

synchronization becomes stronger. σ2
a = 1.0 is beyond the optimal noise intensity

and the synchronization is less than in the optimal case over the complete range
of N . Interestingly, in the non-optimal noise case but close to it, the closed loop
configuration shows a significant better performance than the open chain for
intermediate system sizes. Further increase of the noise intensity (σ2

a = 5.0) de-
stroys the synchronization. The system is determined by the random fluctuations
and the coupling is too small to smoothen the irregular spikes.

The previous plots of the synchronization measure Rsyn as a function of the
system size (Fig. 2) have shown a strong dependence of the performance on
the noise intensity. The noise evoking a maximal difference between open and
close contour differs from the overall optimal noise, and we see that intermediate
system sizes demand a noise strength for optimization different than larger sizes.
To investigate this issue further, we calculated Rsyn as a function of the noise
intensity σ2

a for two fixed system sizes (N = 16 and N = 64) and the same
coupling, in the spirit of stochastic and coherence resonance as a noise-induced
effect with a resonance like response curve. Besides the synchronization measure
Rsyn, we also computed the correlation coefficient ri,j and the mean correlation
coefficient r̄. The correlation coefficient ri,j is the value of the cross-correlation
function at time delay τ = 0.0 and reads:

ri,j =
〈xixj〉 − 〈xi〉〈xj〉√〈x2

i 〉 − 〈xi〉2
√
〈x2

j 〉 − 〈xj〉2
(5)

and r̄ is:

r̄ =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ri,j (6)

All these measures (Rsyn, ri,j , and r̄), plotted in Fig. 3, quantify the level of
zero-lag synchronization, and express the same behavior.

Figure 3 reveals a typical resonance-like behavior. Too small noise leaves the
oscillators near the stable fixed point without crossing the threshold. Too large
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noise dominates the overall dynamics and the coupling can not provoke synchro-
nization. Only intermediate noise is able to improve the synchronization amongst
the neurons in combination with the coupling. For the two system sizes consid-
ered, the closed contour of the loop surpasses the synchronization results of the
open chain. In the case of intermediate size N = 16, the relative advantage of
the loop to the chain is most striking before and after the absolute maximum
located at σ2

a ≈ 0.3, and the bell-shaped resonance curve is relatively broad
compared to the narrower one for the large ensemble. For N = 64 the overall
maximal synchronization is reached at σ2

a ≈ 0.1, i.e. for a smaller noise intensity.

4 Near Zero-Lag Synchronization by Additive
Uncorrelated Noise

The measures used above take into account only zero-lag synchronization. Local
coupling and the limited transmission velocity of the signal leads normally to a
time lag along the signal chain, as can be seen in Fig. 4(a). In contrast to this,
experimental measurements show that synchronization with cell assemblies does
not exhibit a significant time lag [2,3]. We therefore study in what follows the
time-lag in the cross-correlation function as a function of the noise intensity.

Specifically, we investigated an ensemble of N = 64 FHN oscillators in the
loop configuration, for varying additive noise intensity σ2

a. The results for the
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Fig. 4. Raster plots to illustrate the behaviour of the spiking dynamics. The noise
intensity increases from top to bottom and left to right: a) σ2

a = 0.04, b) σ2
a = 0.06, c)

σ2
a = 0.2, and d) σ2

a = 1.0. Compare with the cross-correlation functions in Fig. 5.



710 E. Ullner et al.

0 1 2 3 4 5 6 7 8 9 10
time lag τ

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
cr

os
s-

co
rr

el
at

io
n

6:6
6:9
6:18
6:38

a)

0 1 2 3 4 5 6 7 8 9 10
time lag τ

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cr
os

s-
co

rr
el

at
io

n

6:6
6:9
6:18
6:38

b)

0 1 2 3 4 5 6 7 8 9 10
time lag τ

-0.2

0

0.2

0.4

0.6

0.8

1

cr
os

s-
co

rr
el

at
io

n

6:6
6:9
6:18
6:38

c)

0 1 2 3 4 5 6 7 8 9 10
time lag τ

-0.2

0

0.2

0.4

0.6

0.8

1

cr
os

s-
co

rr
el

at
io

n

6:6
6:9
6:18
6:38

d)

Fig. 5. Cross-correlation functions for different noise intensities and oscillator pairs of
the closed contour of N = 64 FHNs. The noise intensity increases from top to bottom
and left to right: a) σ2

a = 0.04, b) σ2
a = 0.06, c) σ2

a = 0.2, and d) σ2
a = 1.0.

open chain are not shown but they are comparable. We calculate the cross-
correlation functions of various pairs of elements, noted in the legend of each
diagram (Fig. 5), choosing oscillator #6 as a reference, without loss of general-
ity. The pair 6-6 is the auto-correlation function of the time series of oscillator
#6, and the pair 6-38 depicts the cross-correlation function for two oscillators
separated the maximal spatial distance in the system of 64 coupled FHNs. The
rasterplots corresponding to the cross-correlation functions Fig. 5 are plotted
in Fig. 4, and give a snapshot of the spiking activity in the three situations:
insufficient noise, optimal noise and too large noise intensity.

In the case of small noise nucleation occurs rarely and each excitation travels
from its nucleating oscillator to all the others. The locations of the noise-induced
nucleation events are fully random, The finite traveling time of the signal pro-
duces a time delay of the spike time of elements far from the nucleation site.
Hence a growing spatial distance between neurons increases the time delay of the
signal response, as one can see in the raster plot Fig. 4(a), and in the correspond-
ing cross-correlation functions in Fig. 5(a). Small noise results in a non-zero-lag
synchronization, with the lag time depending on the spatial distance.

In the situation of optimal and intermediate noise intensity (σ2
a ≈ 0.2), multi-

ple nucleation points appear almost simultaneously in the rasterplot [Fig. 4(c)].
The cross-correlation functions for all pairs, independently of their spatial sepa-
ration, show maximal correlation at zero lag. Thus an optimal noise intensity in
combination with local coupling leads to a zero-lag synchronization of all neurons
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in the ensemble [Fig. 5(c)]. As we noted there is no input signal in the model,
thus the effect is fully noise driven.

Finally, too strong noise destroys the effect. In that case, noise is strong enough
to evoke spikes everywhere at random times. The formation of small local syn-
chronized cluster destroys the long range correlation completely, i.e. the zero-lag
and the non-zero lag synchronization. Only very adjacent pairs like 6:9, 6:6 (triv-
ially) and 6:3 show correlations [Fig. 5(d)].

5 Conclusion

We compared the synchronizability of open and closed structures of noisy neu-
ronal networks, and relate it with the efficiency of contour perception in the
visual cortex. For small and intermediate sized neuronal networks, a closed con-
tour can be recognized better than a equally sized open contour. The effect shows
a resonance-like relation between synchronization and the noise intensity. Fur-
thermore, noise compensates the time lag in the signal transduction caused by
the finite value of the signaling velocity. Note that the coupling in our model is
instantaneous, so that the signaling velocity is not caused by axonal conduction
delays, but by the inertia of each neuron to react to an input. In the case of
insufficient noise, a clear time-lag can be seen in the cross-correlation function,
increasing with the spatial distance between the neurons. An optimal non-zero
noise enhances the correlation and synchronization amongst the neuron ensem-
ble, and shifts the maximal of the cross-correlation function to zero-lag as one
can see in experimental measurements [2,3].
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Abstract. Hierarchical Self-Organizing Networks are used to reveal the
topology and structure of datasets. Those structures create crisp parti-
tions of the dataset producing branches or prototype vectors that repre-
sent groups of data with similar characteristics. However, when
observations can be represented by several prototypes with similar ac-
curacy, crisp partitions are forced to classify it in just one group, so
crisp divisions usually lose information about the real dataset structure.
To deal with this challenge we propose the Fuzzy Growing Hierarchical
Self-Organizing Networks (FGHSON). FGHSON are adaptive networks
which are able to reflect the underlying structure of the dataset, in a
hierarchical fuzzy way. These networks grow by using three variables
which govern the membership degree of data observations to its proto-
type vectors and the quality of the network representation. The resulting
structure allows to represent heterogeneous groups and those that present
similar membership degree to several clusters.

1 Introduction

It is usual to create representations of data relationships to improve the analysis
of datasets, and hence permitting to reveal its topology and structure. These
representations are used in different ways, some of their applications include:
partitioning (i.e. clustering), classification and prototypes selection. However,
producing an optimal dataset representation is a subjective process, since it
depends on the application and on the complexity of the analysis to which it
will be applied. Nevertheless, several methodologies are used in order to reduce
the degree of subjectiveness and to improve the dataset representations.

On the one hand, hierarchical methods are used to help explain the inner
organization of datasets, since the hierarchical structure imposed on the data
produces a separation of clusters that is mapped onto different branches. There-
fore, this hierarchy enables to analyze complicated structures as well as it allows
the exploration of the dataset at multiple levels of detail. On the other hand,
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algorithms for learning topology-preserving mappings are employed to discover
the topology of datasets in a self-organizing way (using fixed [7] or growing
networks [9]). These algorithms attempt to distribute a certain number of vec-
tors (prototype vectors) in a possibly low-dimensional space. The distribution of
these vectors should reflect the probability distribution of the input signals.

Different approaches have been introduced in order to combine the capabili-
ties of hierarchical and learning topology-preserving mapping methods [10], [5],
[3], [12]. Hence, obtaining networks that permit representing the topology and
the structure of datasets in a hierarchical self-organizing way. These networks
are able to grow and adapt their structure in order to represent the characteris-
tics of the datasets in the most accurate manner. Although these hybrid models
provide satisfactory results, they generate crisp partitions of the datasets. The
crisp segmentations tend to split the dataset in clusters which are represented
in the network by one branch of the hierarchy or by unique prototype vector.
Nevertheless, in many applications crisp partitions are not optimal dataset repre-
sentations, since would be useful to have a degree of membership of each sample
data to different branches or vector prototypes. With the purpose of represent-
ing degrees of membership, fuzzy logic is a feature that could be added to the
aforementioned characteristics of hierarchical self-organized hybrid models.

We propose, thus Fuzzy Growing Hierarchical Self-Organizing Networks (FGH-
SON), which intends to synergistically combine the advantages of Self-Organizing
Networks, hierarchical structures, and fuzzy logic. FGHSON are designed to im-
prove the analysis of datasets where it is desirable to obtain a fuzzy representation
of a dataset in a hierarchical way, then discovering its structure and topology. This
new model will be able to obtain a growing hierarchical structure of the dataset in a
self-organizing fuzzy manner. These kind of networks are based on the Fuzzy Ko-
honen Clustering Networks (FKCN) [1] and Hierarchical Self-Organizing Struc-
tures (HSS) [8], [11], [10], [12].

This paper is organized as follows: In the next section the Hierarchical Self-
Organizing Structures and the FKCN will be explained serving as a base, to
subsequently, introduce our model. Section three focuses on the application of
the methodology using the Iris benchmark an a toy dataset. Finally, in Section
four are presented some conclusions and future extensions of this work.

2 Methods

2.1 Hierarchical Self-Organizing Structures

The ability of obtaining hierarchically structured knowledge from a dataset using
autonomous learning has been widely used in many areas. This is due to the fact
that the Hierarchical Self-Organizing Structures (HSS) allow to the unevenly
distributed real-world data to be represented in a suitable network structure,
during an unsupervised training process. These networks capture the unknown
data topology in terms of hierarchical relationships and cluster structures.

Different methodologies have been presented in this area with various ap-
proaches. Therefore, it is possible to classify the HSS in two classes taking into



Fuzzy Growing Hierarchical Self-Organizing Networks 715

account the algorithm of self-organization used. The first family of models is
based on Kohonen Self-Organizing Maps (SOM) [7], and the second on Growing
Cell Structures (GCS) [4].

The algorithms derived on GCS [2], [5], [3] are based on periodic node dele-
tion based on node activity and on the volume of the input space classified by
the node. This approach tends to represent mainly the examples with high oc-
currence rates, and therefore takes as outliers or noise low frequency examples.
As a result, examples with low presence rates are not represented in the model.
Nevertheless, in many cases it is desirable to discover novelties in the dataset,
so taking into account the observations with low occurrence rates could permit
to find out those exceptional behaviors.

For the aforementioned reason, we focused our research in approaches based
on SOM [8], [11], [10] particularly in the Growing Hierarchical Self-Organizing
Map (GHSOM)[12] due to its ability to take into account the observations with
low presence rates as part of the model. This is possible since the hierarchical
structure of the GHSOM is adapted according to the requirements of the input
space. Therefore, areas in the input space that require more units for appropriate
data representation create deeper branches than others, this process is done
without eliminating nodes that represent examples with low occurrence rates.

2.2 Fuzzy Kohonen Clustering Networks

FKCN [1] integrate the idea of fuzzy membership from Fuzzy c-Means (FCM)
with the updating rules from SOM. Thus, creating a self-organizing algorithm
that automatically adjust the size of the updated neighborhood during a learn-
ing process, which usually, terminates when the FCM objective function is min-
imized. The update rule for the FKCN algorithm can be given as:

Wi,t = Wi,t−1 + αik,t(Zk −Wi,t−1); for k = 1, 2, ..., n; for i = 1, 2, ..., c (1)

where Wi,t represents the centroid1 of the ith cluster at iteration t , Zk is the kth

vector example from the dataset and αik is the only parameter of the algorithm
and according to [6]:

αik,t = (Uik,t)m(t) (2)

Where m(t) is an exponent like the fuzzification index in FCM and Uik,t is the
membership value of the compound Zk to be part of cluster i. Both of these
constants vary at each iteration t according to:

Uik =

⎛⎝ c∑
j=1

( ‖Zk −Wi‖
‖Zk −Wj‖

)2/(m−1)
⎞⎠−1

; 1 ≤ k ≤ n ; 1 ≤ i ≤ c (3)

m(t) = m0−mΔ · t ; mΔ = (m0−mf )/iterate limit (4)

1 In the perspective of neural networks it represents a neuron or a prototype vector. So
the number of neurons or prototype vectors will be equal to the number of clusters.
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Where m0 is a constant value greater than the final value (mf ) of the fuzzifi-
cation parameter m. The final value mf should not be less than 1.1, in order
to avoid the divide by zero error in equation (3). The iterative process will stop
if
∥∥Wi,(t) −W(i,t−1)

∥∥2 < ε , where ε is a termination criterion or after a given
number of iterations. At the end of the process, a matrix U is obtained, where
Uik is the degree of membership of the Zk element of the dataset to the cluster
i. In addition, the centroid of each cluster will form the matrix W where Wi is
the centroid of the ith cluster. The FKCN algorithm is given below:

1. Fix c, and ε > 0 to some small positive constant.
2. Initialize W0 = (W1,0,W2,0, · · · ,Wc,0) ∈ !c.

Choose m0 > 1 and tmax = max. number of iterations.
3. For t = 1, 2, · · · , tmax

a. Compute all cn learning rates αik,t with equations (2) and (3).
b. Update all c weight vectors Wi,t with
Wi,t = Wi,t−1 + [

∑n
k=1 αik,t(Zk −Wi,t−1)] /

∑n
j=1 αij,t

c. Compute Et =
∥∥Wi,(t) −W(i,t−1)

∥∥2 =
∑c

i=1

∥∥Wi,(t) −W(i,t−1)

∥∥2
d. If Et < ε stop.

2.3 Fuzzy Growing Hierarchical Self-Organizing Networks

Fuzzy Growing Hierarchical Self-Organizing Networks (FGHSON) are based on a
hierarchical fuzzy structure of multiple layers, where each layer consists of several
independent growing FKCNs. This structure can grow by means of an unsuper-
vised self-organizing process in two manners (inspired by [12]): individually, in
order to find the more suitable number of FKCN units that may represent, in an
accurate manner, the input dataset. On the other hand on groups of FKCNs in a
hierarchical mode, permitting to the hierarchy to explain a particular set of char-
acteristics of data. Both growing processes are modulated by three parameters
that regulate the so-called breadth (growth of the layers), depth (hierarchical
growth) and membership degree of data to the prototype vectors. The FGH-
SON works as follows:

1) Initial Setup and Global Network Control:
The main motivation of the FGHSON algorithm is to properly represent a given
dataset. The quality of this representation is measured in terms of the difference
among a prototype vector and the example vectors represented by this. The
quantization error qe is used to reach this aim. The qe measures the dissimi-
larity of all input data mapped onto a particular prototype vector, hence it can
be used to guide a growth process with the purpose of achieving an accurate
representation of the dataset reducing the qe. The qe of a prototype vector Wi

is calculated according to (5) as the mean Euclidean distance between its pro-
totype and the input vectors Zc that are part of the set of vectors Ci mapped
onto this prototype.

qei =
∑

Zc∈Ci

‖Wi − Zc‖ ; Ci �= φ (5)
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The first step of the algorithm is focused on obtaining a global measure that
allows to know the nature of the whole dataset. For this purpose the training
process begins with the computation of a global measure error qe0. qe0 represents
the qe of the single prototype vector W0 that form the layer 0, see Fig. 1(a),
calculated as shown in (6). Where, Zk represents the input vectors from the whole
data set Z and W0 is defined as a prototype vector W0 = [μ01 , μ02 , . . . , μ0n ],
where μ0i for i = 1, 2, . . . , n; is computed as the average of μ0i in the complete
input dataset, in other words W0 is a vector that corresponds to the mean of
the input variables.

qe0 =
∑

Zk∈Z

‖W0 − Zk‖ (6)

The value of qe0 will help to measure the minimum quality of data repre-
sentation of the prototype vectors in the subsequent layers, therefore the next
prototypes have the task of reducing the global representation error qe0.

Fig. 1. (a) Hierarchical structure showing the prototype vectors and FKNC in the
layers (b) Membership degrees in each layer

2) Breadth growth process:
The construction of the first layer starts after the calculation of qe0. This first
layer consists of a FKCN (FKCN1) with two initial prototype vectors. Hence,
the growth process of FKCN1 begins by adding a new prototype vector and
training it until a suitable representation of the dataset is reached. Each of these
prototype vectors is an n-dimensional vectorWi (with the same dimensionality as
the input patterns), which is initialized with random values. FKCN1 is trained
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as is shown in section 2.2, taking as input (in the exceptional case of the first
layer) the whole dataset. More precisely, FKCN1 is allowed to grow until the
qe present on the prototype of its preceding layer (qe0 in the case of layer 1) is
reduced to at least a fixed percentage τ1. Continuing with the creation of the
first layer, the number of prototypes in the FKCN1 will be adapted. To achieve
this, the mean quantization error of the map (MQE) is computed according to
expression (7), where d refers to the number of prototype vectors contained in
the FKCN, and qei represents the quantization error of the prototype Wi.

MQEm =
1
d
·
∑

i

qei (7)

The MQE is evaluated using (8) in an attempt to measure the quality of data
representation, and is used also as stopping criterion for the growing process of the
FKCN. In (8) qeu represents the qe of the corresponding prototype u in the upper
layer. In the specific case of the first-layer, the stopping criterion is shown in (9).

MQE < τ1 · qeu (8)

MQElayer1 < τ1 · qe0 (9)
If the stopping criterion (8) is not fulfilled, it is necessary to aggregate more

prototypes for a more accurate representation. For this aim, the prototype with
the highest qe is selected and is denoted as the error prototype e. A new proto-
type is inserted in the place where e was computed. After the insertion, all the
FKCN parameters are reset to the initial values (except for the values of the
prototype vectors) and the training begins according to the standard training
process of FKCN. Note that the same value of the parameter τ1 is used in each
layer of the FGHSON. Thus, at the end of the process, a layer 1 is obtained with
a FKCN1 formed by a set of prototype vectors W , see Fig. 1(a). In addition,
a membership matrix U is obtained. This matrix contains the membership de-
gree of the dataset elements to the prototype vectors, as explained in section 2.2.

3) Depth growth process:
As soon as the breadth process of the first layer is finished, its prototypes are ex-
amined for further growth (depth growth or hierarchical growth). In particular,
those prototypes with a large quantization error will indicate us which clusters
need a better representation by means of new FKCNs. The new FKCNs thus
form a second layer, namely W1 and W3 in Fig. 1(a). The selection of these
prototypes is regulated by qe0 (calculated previously in step 1) and a parameter
τ2 which is used to describe the desired level of granularity in the data represen-
tation. More precisely, each prototype Wi in the first layer that does not fulfill
the criterion given in expression (10) will be subject to hierarchical expansion.

qei < τ2 · qe0 (10)

After the expansion process and creation of the new FKCNs, the breadth process
described in stage 2 begins with the newly established FKCNs, for instance,
FKCN2 and FKCN3 in Fig. 1(a). The methodology for adding new proto-
types, as well as the termination criterion of the breadth process is essentially
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the same as used in the first layer. Nevertheless, the difference among the train-
ing processes of the FKCNs in second the layer and the subsequent layers in
comparison with the first, is that only a fraction of the whole input data is se-
lected for training. This portion of data will be selected according to a minimal
membership degree (ϕ). This parameter ϕ (the well known α − cut) represents
the minimal degree membership of an observation to be part of the dataset rep-
resented by a prototype vector. Hence, ϕ is used as selection parameter, so all
the observations represented by Wi have to fulfill expression (11), where Uik is
the degree of membership of the Zk element of the dataset to the cluster i. As
an example, Fig. 1(b) shows the membership functions of the FKCNs in each
layer, and how ϕ is used as a selection criteria to divide the dataset.

ϕ < Uik (11)

At the end of the creation of layer two, the same procedure described in step
2 is applied in order to build the layer 3 and so forth. The training process of
the FGHSON is terminated when no more prototypes require further expansion.
Note that this training process does not necessarily lead to a balanced hierarchy,
i.e. a hierarchy with equal depth in each branch. Rather, the specific distribution
of the input data is modeled by a hierarchical structure, where some clusters
require deeper branching that others.

3 Experimental Testing

3.1 Iris Data Set

In this experiment the Iris dataset2 is used in order to show the adaptation of
the FGHSON to those areas where an absolute membership to a single prototype
is not obvious. Therefore, FGHSON must (in an unsupervised manner) look at
the representation of the dataset on the areas where observations of the same
category share similar zones. For instance in the middle of the data cloud formed
by the Virginica and Versicolor observations, see Fig. 2(a). The parameters of
the algorithm were set to τ1 = 0.2, τ2 = 0.03, and ϕ = 0.2. After training, a
structure of four layers was obtained. The zero layer is used to measure the whole
deviation of dataset (see section 2.3). The first layer consist of a FKCN with
three prototype vectors as is shown in Fig. 2(b), this distribution of prototypes
attempt to represent three Iris categories.

The second layer as shows Fig. 2(c) reach a more fine-grain description of the
dataset, placing prototypes in almost all the data distribution, adding prototypes
in the zones where more representation was needed. Finally in Fig. 2(d), it
is possible to observe an over population of prototypes in the middle of the
cloud of Virginica and Versicolor observations. This occurs because this part of
the dataset present observations with ambiguous membership in the previous
2 There are three categories in the data set : Iris setosa, Iris versicolor and Iris virgini-

cal. Each having 50 observations with four features: sepal length (SL), sepal width
(SW), petal length (PL), and petal width (PW).
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Fig. 2. Distribution of the prototype vectors, represented by stars, in each layer of
the hierarchy. (a) Iris data sets. There are three Iris categories: Setosa, Versicolor, and
Virginica represented respectively by triangles, plus symbols, and dots. Each having 50
samples with 4 features. Here, only three features are used: PL, PW, and SL. (b) First
layer (c) Second layer and (d) Third layer of the FGHSON, in this layer prototypes
are presented only in the zone where observations of Virginica and Vesicolor share the
same area, so the new prototypes represent each category in a more accurate manner.

layer, then in this new layer, several prototypes are placed in this zone for a
proper representation. Hence, permitting to those observations to obtain a higher
membership to its new prototypes. Finally, to obtain at the end of the process
a more accurate representation of this zone.

3.2 Toy Set

A toy set, as the one presented by Martinez et al [9] is used in order to show
the capabilities of the FGHSON to represent a dataset that has multiple
dimensionalities. In addition, it is possible to illustrate how the model stops the
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Fig. 3. Distribution of the prototype vectors (represented by black points) (a) First
layer (b) Second layer (c) Third layer

growing process in those parts where the desired representation is reached and
keep on growing where a low membership or poor representation is present. The
parameters of the algorithm were set to τ1 = 0.3, τ2 = 0.065, andϕ= 0.2 forϕ. Four
layers were created after training the network. In Fig. 3(a) the fist layer is shown,
in this case seven prototypes were necessary to represent the dataset at this level,
one for the 1D oval, one for the 2D plane and five for the 3D parallelepiped (note
that there are no prototypes clearly associated to the line).

In the second layer (see Fig. 3(b)), a more accurate distribution of proto-
types is reached, so it is possible to observe prototypes adopting the form of
the dataset. Additionally, in regions where the quantization error was large, the
new prototypes allow a better representation (e.g., along the line). In layer three
(see Fig. 3(c)), no more prototypes are needed to represent the circle, the line
and the plane; but a third hierarchical expansion was necessary to represent the
parallelepiped. In addition, due to the data density in the parallelepiped, many
points share memberships to different prototypes, so a several prototypes at this
level were created.

4 Conclusion

The Fuzzy Growing Hierarchical Self-organizing networks are fully adaptive net-
works able to hierarchically represent complex datasets. Moreover, it allows for
a fuzzy clustering of the data, allocating more prototype vectors or branches to
heterogeneous areas and where there is presented similar membership degree to
several clusters, this can help to better describing the dataset structure and the
inner data relationships. Future work will be focused on a more accurate way
to find the parameters used to tune the algorithm, more specifically ϕ. In some
cases this value can change in order to find better fuzzy sets to represent the
structure of the dataset.
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Abstract. The essential characteristic of constructive neural network
(CoNN) algorithms is the incremental construction of the neural network
architecture along with the training process. The BabCoNN (Barycentric-
based constructive neural network) algorithm is a new neural network con-
structive algorithm suitable for two-class problems that relies on the BCP
(Barycentric Correction Procedure) for training its individual TLU
(Threshold Logic Unit). Motivated by the good results obtained with the
two-class BabCoNN, this paper proposes its extension to multiclass do-
mains as a new CoNN algorithm named MBabCoNN. Besides describing
the main concepts involved in the MBabCoNN proposal, the paper also
presents a comparative analysis of its performance versus the multiclass
versions of five well known constructive algorithms, in four knowledge do-
mains as an empirical evidence of the MBabCoNN suitability and effi-
ciency for multiclass classification tasks.

Keywords: Constructive neural network algorithm, LS-discriminant
learning, Barycentric Correction Procedure, Multiclass classification.

1 Introduction

There are many algorithms that allow the automatic learning of concepts, as can
be seen in [1], [2]. A particular class of very relevant learning algorithms is based
on the concept of linear separability (LS). The concept of linear separability
permeates many areas of knowledge and based on the definition given in [3]
it can be stated as: Let E be a finite set of N distinct patterns {E1, E2, ...,
EN}, each Ei (1 ≤ i ≤ N) described as a set of K pairs attribute - attribute
value. Let the patterns of E be classified in such a way that each pattern in E
belongs to only one of Cj classes (1 ≤ j ≤ M). This classification divides the
set of patterns E into the subsets EC1, EC2, ..., ECM . If a linear machine can
classify the patterns in E into the proper class, the classification of E is a linear
classification and the subsets EC1, EC2, ..., ECM are linearly separable. Stated
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another way, a classification of E is linear and the subsets EC1, EC2, ..., ECM ,
are linearly separable if and only if linear discriminant functions g1, g2, ..., gn

exist such that,

gi(E) > gj(E) for all E ∈ ECi (1)
j = 1, . . . ,M, j �= i for all i = 1, . . . ,M.

Since the decision regions of a linear machine are convex, if the subsets EC1,
EC2, ..., ECM are linearly separable, then each pair of subsets ECi, ECj , i,
j = 1, ..., M , i �= j, is also linearly separable. As proposed in [4], linearly
separable based methods can be divided into four groups, depending on their
main focus be based on linear programming, computational geometry, neural
networks (NN) and quadratic programming.

This paper describes a linearly separable based NN method that is a multiclass
version of the two-class CoNN named BabCoNN (Baricenter-based Constructive
Neural Network) proposed in [5] and is organized as follows. Section 2 describes
the basics of the two-class BabCoNN algorithm and briefly presents the main
concepts and strategies used by the algorithm. Section 3 highlights the main
characteristics of the four well-known CoNN multiclass algorithms used in the
empirical experiments, described in Section 4, and also details the new algorithm
i.e., the multiclass MBabCoNN. Section 5 highlights some conclusions and tasks
to be accomplished for continuing the research work.

2 Constructive NN, the BCP and the BabCoNN
Algorithms

Constructive neural network (CoNN) algorithms enable the network architecture
to be constructed simultaneously with the learning process; both sub-processes
i.e., learning and constructing the network, depend on each others performance.
There are many CoNN algorithms suitable for two-class learning tasks such as
the Tower and Pyramid [6], Tiling [7], Upstart [8], Pti and Shift [9], etc. A
description of a few well-known CoNN algorithms can be found in [6] and [10].

2.1 Training Individual TLUs

Usually the basic step performed by a CoNN algorithm is the addition to the
network architecture of a new TLU and its subsequent training. For training
a TLU a constructive algorithm generally employs the Perceptron or any of its
variants, such as Pocket or Pocket with Ratchet Modification (PRM) [6]. Consid-
ering that CoNN algorithms are very dependable on an efficient TLU training
algorithm, there is still a need for finding new and better methods, although
some of the Perceptron variants (especially the PRM) have been broadly used
with good results. The Barycentric Correction Procedure (BCP) algorithm [11]
[12], although not widely employed, has shown very good performance when used
for training individual TLUs [12] and has established itself as a good competitor
compared to the PRM when used by CoNN algorithms [13].
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The BCP is an efficient TLU training algorithm that is based on the geometric
concept of the barycenter of a convex hull and the algorithm iteratively calculates
the barycenter of the regions defined by the positive and the negative training
patterns. Unlike Perceptron based algorithms, the BCP calculates the weight
vector and the bias separately. The algorithm defines the weight vector as the
vector that connects two points: the barycenter of the convex hull of positive
patterns and the barycenter of the convex hull defined by negative patterns.
Further details of the BCP algorithm can be found in [11], [12] and [14].

2.2 The Two-Class BabCoNN Algorithm

The BabCoNN [5] is a new two-class CoNN algorithm based on some of the
concepts used by the geometric-based algorithm (BCP) algorithm. As typical of
constructive neural network algorithms, BabCoNN constructs the neural network
at the same time as the learning process takes place. The network construction
starts by training the output neuron, using the BCP. Next, the algorithm identi-
fies all the misclassified training patterns; if there are none, the algorithm stops
and outputs a BCP network, otherwise it starts adding neurons (one at a time)
to the unique hidden layer of the network, aiming at not having misclassified
patterns. A hidden neuron added to the hidden layer will be trained with the
training patterns that were misclassified by the last added neuron. The process
goes up to the point that no training patterns remain or all the remaining pat-
terns belong to the same class. The process of building the network architecture
is described in Fig. 1, where E = {E1, E2, . . . , En} represents the training set.

function void babconn etworkConstruction(E) 
begin 

output ← bcp(E);  
h ← 0; 
nE ← removeClassifiedPatterns(E); 
while bothClasses(nE) do 
begin 

h ← h + 1; 
hiddenLayer[h] ← bcp(nE); 
nE ← removeClassifiedPatterns(nE); 

end while 
end function

Fig. 1. The BabCoNN algorithm for constructing a Neural Network

As explained in [5], the output and the hiddenLayer variables from Fig. 1 de-
fine the neural network. The output variable represents a single neuron, and the
hiddenLayer is a vector representing all the hidden neurons added to the single
hidden layer of the network. The function bcp() stands for the BCP algorithm,
used for training individual neurons. The function removeClassifiedPatterns()
removes the patterns that were correctly classified by the last neuron added to
the hidden layer and bothClasses() is a Boolean function that returns ‘true’ if
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the current training set still has patterns belonging to both classes and ‘false’
otherwise.

Due to the way the learning phase is conducted by BabCoNN, each hidden
neuron of the network is trained using patterns belonging to a region of the
training space (i.e., that defined by the patterns that were misclassified by the
previous hidden neuron added to the network). Given an input pattern to be
classified, each hidden neuron has three possible outputs: 1, when the input
pattern is classified as positive; −1, when the pattern is classified as negative
and 0, when the pattern is classified as undetermined.

3 Multiclass Classification Using CoNN Algorithms

Multiclass classification tasks are common in pattern recognition. Frequently a
classification task with M(> 2) classes is treated as M two-class tasks. Although
this approach may be suitable for some applications, there is still a need for
more effective ways of dealing with multiclass problems. CoNNs have proved to
be a good alternative for two-class tasks and have the potential to become good
alternatives for multiclass domains as well. Multiclass CoNNs start by training
as many output neurons as there are classes in the training set. For training
neurons there are mainly two strategies, the individual (I) and the winner-takes-
all (WTA) [6]. The main goal of this section is to provide a brief overview of the
five well-known multiclass CoNN used in the experiments described in Section
4 and to describe the new multiclass algorithm MBabCoNN.

3.1 MTower, MPyramid, MUpstart, MTiling and
MPerceptron-Cascade

The MTower algorithm [15] can be considered a direct extension of the two-
class Tower algorithm [6]. The Tower creates a NN with only one TLU per
hidden layer; each hidden neuron is connected to all the input neurons and
to the hidden neuron previously created. Similarly to the two-class Tower, the
MTower adds TLUs to the network; instead of adding one at a time, however,
for an M -class problem the MTower adds M hidden neurons per hidden layer.
Each one of the M neurons in a certain hidden layer has connections with all the
neurons of the input layer as well as with all the M neurons of the previously
added hidden layer. The multiclass MPyramid [15] is also a direct extension
of its two-class algorithm, Pyramid [6]. The difference between the Tower and
Pyramid algorithms (and consequently between their multiclass versions) relies
on the connections. In a Pyramid network each newly added hidden neuron has
connections with all the previously added hidden neurons as well as with the
input neurons.

The two-class Upstart algorithm [8] constructs the neural network as a binary
tree of TLUs starting with the output neuron and is governed by the addition
of new hidden neurons specialized in correcting wrongly-on or wrongly-off er-
rors made by the previously added neurons. The MUpstart [16] creates a single
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hidden layer. Every hidden neuron is directly connected to every neuron in the
output layer. The input layer is connected to the hidden neurons as well as
to the output neurons. The Tiling algorithm [7] constructs a neural network
in successive layers where each hidden layer has a master neuron and a few
auxiliary neurons. The output layer has only one master neuron. Similarly to
the Tiling, the MTiling [17] constructs a multi layer neural network where the
first hidden layer has connections to the input layer and each subsequent hidden
layer has connections only to the previous hidden layer. Each layer has master
and auxiliary neurons with the same functions they perform in a Tiling network
i.e., the master neurons are responsible for classifying the training patternss and
the auxiliary are responsible for turning the corresponding layer faithful. While
the Tiling algorithm adds one master neuron per layer, the MTiling adds M
master neurons (where M is the number of different classes in the training set).

The Perceptron-Cascade algorithm [18] constructs a neural network with an
architecture that resembles the one constructed by the Cascade Correlation al-
gorithm [19] and uses the same approach for correcting the errors adopted by
the Upstart algorithm [8]. Differently from the Cascade Correlation, however,
the Perceptron-Cascade uses the Perceptron (or any of its variant) for training
individual TLUs. Similarly to the Upstart, the Perceptron-Cascade starts the
construction of the network by training the output neuron. Hidden neurons are
added to the network similarly to the process adopted by the Cascade Corre-
lation. The MPerceptron-Cascade [15] is similar to the MUpstart. Their main
difference is the neural network architecture induced. The MPerceptron-Cascade
adds new hidden neurons in new layers while the MUpstart adds them in a single
layer.

3.2 The Multiclass MBabCoNN Algorithm

The MBabCoNN constructs a network beginning with the output layer contain-
ing as many neurons as there are classes in the training set (each output neuron
is associated to a class); the algorithm is flexible enough to allow the neurons
to be trained using any TLU algorithm combined with either strategy, individ-
ual or WTA. After adding the M output neurons, the algorithm starts to add
neurons to its single hidden layer in order to correct the classification mistakes
made by the output neurons. Each hidden neuron can be considered a two-class
BabCoNN-like neuron, i.e. it only outputs 1, −1 or 0 values. The constructive
process continues by finding which output neuron (class) is responsible for the
greatest number of misclassifications in relation to patterns belonging to all the
other classes. A hidden neuron is then added to the hidden layer and is trained
with a set containing patterns of two classes only: those belonging to the class
the output neuron represents (which are labeled 1) and those belonging to the
misclassified class (which are labeled −1). Each newly added hidden neuron is
then connected only to the two output neurons whose classes it separates; the
connection to the neuron responsible for the misclassifications has weight 1 and
the other −1. The process of adding hidden neurons continues until the network
converges (i.e., makes no mistakes). Figure 2(a) shows a simple example (six
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pattern            outputs           class 

#1            1     −1    −1         1 
#2          −1     −1      1         2 
#3          −1       1    −1         1 
#4          −1     −1      1         2 
#5          −1     −1      1         1 
#6          −1       1    −1         3 

u1 u2 u3

Hidden Layer 

Input Layer

u1 u3u2

h1

−11

Output Layer 

. . . 
x1 x2 xn

(a) (b)

Fig. 2. The MBabCoNN architecture

training patterns identified by numbers 1 to 6 describing three classes identified
by numbers 1 to 3) of the process for identifying the output neuron responsible
for the greatest number of misclassifications.

In Fig. 2 the output neuron u1 is associated with class 1, u2 with class 2 and u3

with class 3 and suppose that the three output neurons have been trained. As it
can be seen on the left side of the figure, the pattern #1 was correctly classified
and all the others were misclassified by the current network which up to this
point only has output neurons. Neuron u3 is responsible for the greatest number
of misclassifications (it misclassified two patterns belonging to class 2 (i.e., #2
and #4) as class 3). All patterns belonging to classes 2 and 3 are then selected
to compose the training set for the first hidden (h1) neuron. Patterns from class
2 are relabeled as class 1 and those from class 3 as class −1; a connection is then
established between h1 and u2, with weight 1 and between h1 and u3 with weight
−1. This is justified by the fact that hidden neurons are two-class neurons and
the weights allow the neuron to identify either two classes from the others. When
h1 fires 1 it favors class 2 and neglects class 3 and when h1 fires −1, the opposite
happens. As mentioned before, in situations of uncertainty BabCoNN neurons
fire 0; this is convenient in a multiclass situation because it will not interfere with
the patterns that do not belong to either of the two classes responsible for the
hidden neuron creation. After a hidden neuron is added, the whole training set
is input to the network constructed so far and training resumes. Depending on
the misclassification results, new hidden neurons may be added to the network
in a similar fashion as the one previously described.

For the classification process an output neuron that has any connections to
hidden neurons is said to have dependencies. In Fig. 2(b) the neuron u1 has
no dependencies, while both u2 and u3 have dependencies. The classification
process benefits the lack of dependency; if an output neuron fires 1 and has
no dependencies then the class given to the pattern being classified is the class
the neuron represents. Intuitively, a neuron that does not induce dependencies
reflects the fact that it has not been associated with misclassifications during
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training. This can be an indication that the class represented by this particular
neuron is reasonably ease to identify from the others (i.e., it is linearly separable
from the others). If, however, the output neuron that classifies the pattern has
dependencies, the classification result will be given by the sum of the outputs of
all hidden neurons; if the sum is 0 the input pattern is classified as the class the
output neuron represents.

4 Experimental Results and Discussion

This section presents and comparatively discusses the results of using MBab-
CoNN and the five other multiclass CoNN algorithms previously described, when
learning from four multiclass knowledge domain data. Each of the five algorithms
was implemented in Java using two different algorithms for training TLUs, PRM
and BCP. All the multiclass CoNN algorithms use the respective WTA versions,
PRMWTA and BCPWTA, for training the output neuron. The MBabCoNN al-
gorithm, as have already explained, always uses the BCP for training its hidden
neurons. For comparison purposes, results from running a multiclass version of
the PRM and of BCP, each using the two training strategies (WTA and indi-
vidual(I)) are presented. The four knowledge domains used in the experiments
have been downloaded from the UCI-Repository [20]: Iris (150 patterns, 4 at-
tributes and 3 classes), E.coli (336 patterns, 7 attributes and 8 classes), Balance
(625 patterns, 4 attributes and 3 classes) and Glass (214 patterns, 9 attributes
and 6 classes). Taking into consideration the MBabCoNN proposal and five al-
gorithms used for comparison (MTower, MPyramid, MUpstart, MTiling and
MPerceptron-Cascade) each implemented in two versions and the two different
strategies employed for implementing the MPRM and the MBCP, a total of 16
different algorithms have been implemented and evaluated. In the experiments
the accuracy of each neural network is based on the percentage of successful
predictions on test sets for each domain. For each of the four datasets the exper-
iments consisted of performing a ten-fold cross-validation process. The results
are given by the average of the ten runs followed by their standard deviation.

Runs with the various learning procedures were carried out on the same train-
ing sets and evaluated on the same test sets. The cross-validation folds were the
same for all the experiments on each domain. For each domain, each learning
procedure was run considering one, ten, a hundred and a thousand iterations. All
the results obtained with MBabCoNN and the seven other algorithms (and their
variants) are presented in Table 1 to 4, organized by knowledge domain. Each
algorithm version is identified after the TLU training algorithm it employ, PRM
or BCP, by the suffixes P and B added to their names respectively. The following
abbreviations were adopted for presenting the tables: #I: number of iterations,
TR training set, TE testing set. The accuracy (Acc) is given in percentage fol-
lowed by the standard deviation value. The ‘Absolute Best’ (AB) column gives
the best performance of the learning procedure (in TE) over the ten runs and
the ‘Absolute Worst’ (AW) column gives the worst performance of the learning
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Table 1. Iris

Algorithm # I AccTR AccTE # HN ABTE AWTE ABHN AWHN

MBabCoNNP 103 98.7∼0.4 98.0∼3.2 3.1∼0.3 100.0 93.3 3.0 4.0
MBabCoNNB 102 94.2∼3.1 94.0∼4.9 4.9∼0.6 100.0 86.7 4.0 6.0

PRMWTA 102 98.7∼0.4 95.3∼8.9 - 100.0 73.3 - -
PRMI 102 89.3∼2.6 86.7∼18.1 - 100.0 46.7 - -

BCPWTA 102 87.9∼1.4 84.0∼13.4 - 100.0 53.3 - -
BCPI 1 85.0∼7.3 72.7∼41.3 - 100.0 6.7 - -

MTowerP 102 98.9∼0.4 96.7∼6.5 3.6∼1.3 100.0 80.0 3.0 6.0
MTowerB 102 87.8∼1.6 83.3∼14.5 3.3∼0.9 100.0 53.3 3.0 6.0

MPyramidP 102 98.8∼0.4 96.0∼8.4 3.3∼0.9 100.0 73.3 3.0 6.0
MPyramidB 102 88.3∼1.4 82.7∼13.8 3.6∼1.3 100.0 53.3 3.0 6.0

MUpstartP 102 98.9∼0.4 93.3∼12.9 3.3∼0.0 100.0 60.0 3.0 3.0
MUpstartB 102 88.6∼1.6 80.7∼13.9 3.6∼0.5 100.0 53.3 3.0 4.0
MTilingP 10 98.2∼0.8 95.3∼8.9 3.0∼0.0 100.0 73.3 3.0 3.0
MTilingB 102 89.6∼4.7 84.0∼14.5 7.0∼8.8 100.0 53.3 3.0 28.0

MPCascadeP 102 98.8∼0.4 95.3∼8.9 3.0∼0.0 100.0 73.3 3.0 3.0
MPCasdadeB 102 88.5∼1.4 80.7∼13.5 3.3∼0.5 100.0 53.3 3.0 4.0

Table 2. E. Coli

Algorithm # I AccTR AccTE # HN ABTE AWTE ABHN AWHN

MBabCoNNP 102 90.6∼0.6 83.9∼5.3 8.2∼0.6 91.2 75.8 8.0 9.0
MBabCoNNB 102 85.1∼1.5 81.0∼5.2 9.1∼0.7 88.2 73.5 8.0 10.0

PRMWTA 102 90.8∼1.3 77.8∼18.9 - 100.0 52.9 - -
PRMI 102 87.2∼2.6 73.8∼24.0 - 100.0 42.4 - -

BCPWTA 102 76.5∼3.0 69.1∼15.0 - 97.1 42.4 - -
BCPI 10 85.1∼3.3 72.0∼28.2 - 100.0 27.3 - -

MTowerP 10 90.2∼1.5 78.4∼22.2 27.8∼14.1 100.0 30.3 6.0 56.0
MTowerB 102 76.6∼2.9 69.2∼14.4 9.2∼3.2 97.1 48.5 8.0 16.0

MPyramidP 10 90.1∼1.3 79.6∼18.3 29.1∼10.3 100.0 42.4 14.0 48.0
MPyramidB 102 76.6∼2.8 69.5∼16.2 8.4∼2.1 97.1 36.4 6.0 14.0

MUpstartP 102 90.7∼1.6 76.9∼19.7 8.1∼1.3 100.0 50.0 6.0 10.0
MUpstartB 102 80.5∼2.8 75.2∼10.4 8.9∼1.3 97.1 60.7 6.0 11.0
MTilingP 10 87.9∼2.2 76.3∼20.7 7.7∼0.7 100.0 38.2 6.0 8.0
MTilingB 102 76.3∼3.3 67.3∼18.0 25.3∼55.4 97.1 33.3 6.0 183.0

MPCascadeP 10 88.8∼1.2 82.9∼16.2 8.6∼1.3 100.0 57.8 8.0 11.0
MPCasdadeB 102 79.6∼2.7 70.1∼15.3 9.0∼1.7 97.0 42.4 6.0 12.0

procedure (in TE) over the ten runs; #HN represents the number of hidden
nodes; ABHN gives the smallest number of hidden nodes created and AWHN
gives the highest number of hidden nodes created. Obviously the PRMWTA,
PRMI, BCPWTA and BCPI do not have values for #HN, ABHN and AWHN
because the networks they create do not have hidden layer.

Considering the results obtained in the experiments shown in Table 1 to 4,
it can be said that as far as accuracy in test sets is concerned, MBabCoNNP
outperformed all the others in three out of four domains, namely the Iris, E. Coli
and Glass. In the domain Balance, although its result is very close to the best
result (due to MTilingP), it is worth noticing that MTilingP created 28.1 hidden
neurons, on average while MBabCoNN created only 3.5. The number of hidden
neurons constructed particularly by the MBabCoNNP version (in comparison
to the other multiclass CoNN algorithms) is much smaller - this is more evident
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Table 3. Glass

Algorithm # I AccTR AccTE # HN ABTE AWTE ABHN AWHN

MBabCoNNP 102 100.0∼3.2 99.1∼2.0 6.2∼0.4 100.0 95.2 6.0 7.0
MBabCoNNB 10 99.3∼0.6 98.6∼3.2 6.3∼0.7 100.0 90.5 6.0 8.0

PRMWTA 102 99.9∼0.2 90.6∼15.2 - 100.0 57.1 - -
PRMI 102 77.4∼3.7 49.9∼40.9 - 100.0 0.0 - -

BCPWTA 10 98.5∼0.5 87.7∼22.1 - 100.0 33.3 - -
BCPI 1 72.1∼3.7 68.3∼47.1 - 100.0 0.0 - -

MTowerP 102 100.0∼0.0 92.9∼16.9 6.0∼0.0 100.0 47.6 6.0 6.0
MTowerB 102 99.6∼0.6 85.8∼25.8 9.4∼2.9 100.0 23.8 6.0 12.0

MPyramidP 102 100.0∼0.0 95.4∼10.6 7.7∼2.9 100.0 68.2 5.0 12.0
MPyramidB 10 98.8∼0.7 84.8∼24.7 7.7∼2.9 100.0 23.8 5.0 12.0

MUpstartP 102 97.3∼1.8 88.3∼18.6 6.6∼0.8 100.0 54.5 5.0 8.0
MUpstartB 102 99.7∼0.4 86.3∼24.2 6.5∼0.9 100.0 23.8 5.0 8.0

MTilingP 102 100.0∼0.0 94.4∼9.2 7.5∼3.4 100.0 77.3 5.0 14.0
MTilingB 102 100.0∼0.0 82.5∼26.2 12.7∼5.1 100.0 23.8 5.0 19.0

MPCascadeP 102 96.6∼1.4 79.2∼32.1 6.7∼0.8 100.0 9.5 5.0 8.0
MPCasdadeB 10 98.7∼0.7 82.9∼26.2 6.0∼0.5 100.0 28.6 5.0 7.0

Table 4. Balance

Algorithm # I AccTR AccTE # HN ABTE AWTE ABHN AWHN
MBabCoNNP 10 92.1∼0.8 91.4∼2.3 3.5∼0.7 93.7 87.1 3.0 5.0
MBabCoNNB 10 92.1∼0.9 89.3∼2.5 5.3∼0.5 93.5 85.5 5.0 6.0

PRMWTA 102 92.2∼0.5 90.1∼3.7 - 96.8 84.1 - -
PRMI 10 89.1∼1.6 89.3∼4.8 - 98.4 84.1 - -

BCPWTA 102 80.1∼4.4 77.9∼9.9 - 91.9 65.1 - -
BCPI 10 89.5∼1.7 88.0∼3.5 - 93.5 82.3 - -

MTowerP 10 94.8∼1.1 90.6∼6.2 20.4∼5.8 98.4 79.4 12.0 30.0
MTowerB 102 83.6∼4.8 80.8∼8.0 9.0∼3.5 91.9 65.1 6.0 15.0

MPyramidP 10 95.1∼0.9 90.1∼6.3 24.0∼6.2 96.8 76.2 15.0 33.0
MPyramidB 102 83.3∼4.1 83.1∼5.8 6.2∼2.2 93.5 76.2 3.0 9.0
MUpstartP 10 91.8∼0.4 91.2∼4.7 3.4∼0.9 98.4 85.5 3.0 6.0
MUpstartB 102 82.1∼4.9 81.1∼6.9 4.0∼0.8 91.9 69.8 3.0 5.0

MTilingP 102 95.5∼2.9 92.3∼3.3 28.1∼21.8 96.8 88.9 3.0 49.0
MTilingB 102 79.8∼4.5 76.4∼8.4 3.0∼0.0 91.9 66.7 3.0 3.0

MPCascadeP 102 92.1∼0.6 90.0∼4.5 3.2∼0.4 98.4 84.1 3.0 4.0
MPCasdadeB 102 81.6∼4.7 78.6∼9.9 4.0∼0.8 91.9 66.7 3.0 5.0

in domains E. coli and Balance where some of the algorithms induced over 20
hidden neurons.

5 Conclusions

This paper proposes a multiclass version of a recently proposed constructive
neural network algorithm, named BabCoNN, based on the geometric concept
of convex hull, which uses the BCP algorithm for training the individual TLU
added to the network during learning. The paper presents the accuracy results of
learning experiments conducted in four multiclass knowledge domains, using the
proposed algorithm MBabCoNN implemented in two different versions: MBab-
CoNNP and MBabCoNNB, versus five well-known multiclass algorithms (each
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implemented in two versions as well). Both versions of the MBabCoNN use the
BCP for training the hidden neurons and differ from each other in relation to
the algorithm used for training their output neurons (PMRWTA and BCPWTA
respectively). As far as results in four knowledge domains are concerned, the
new MBabCoNN proposal, particularly in its MBabCoNNP version has shown
superior performance in relation to both, accuracy in test sets and size of the
induced neural network. The work will continue by extending the comparative
evaluation to a broader set of knowledge domains.

Acknowledgments. To CAPES and FAPESP for the project financial help
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Abstract. The Recursive Deterministic Perceptron (RDP) feed-forward multi-
layer neural network is a generalisation of the single layer perceptron topology.
This model is capable of solving any two-class classification problem as opposed
to the single layer perceptron which can only solve classification problems deal-
ing with linearly separable sets. For all classification problems, the construction
of an RDP is done automatically and convergence is always guaranteed. A gen-
eralization of the 2-class Recursive Deterministic Perceptron (RDP) exists. This
generalization allows to always separate, in a deterministic way, m-classes. It is
based on a new notion of linear separability and it falls naturally from the 2 val-
ued RDP. The methods for building 2-class RDP neural networks have been ex-
tensively tested. However, no testing has been done before on the m-class RDP
method. For the first time, a study on the performance of the m-class method
is presented. This study will allow the highlighting of the main advantages and
disadvantages of this method by comparing the results obtained while building
m-class RDP neural networks with other more classical methods such as Back-
propagation and Cascade Correlation. The networks were trained and tested using
the following standard benchmark classification datasets: IRIS, SOYBEAN, and
Wisconsin Breast Cancer.

1 Introduction

The RDP for 2-class classification problems was introduced in [1]. This topology is a
generalization of the single layer perceptron topology (SLPT) developed by Rosenblatt
[2]. This generalization is capable of transforming any non-linearly separable (NLS) 2-
class classification problem into a linearly separable (LS) one, thus making it possible
for the SLPT to find a solution to the problem. An extension of the RDP algorithm to
m-class problems (with m ≥ 2) was introduced in [3]. This extension is based on, a
new notion of linear separability and, it falls naturally from the 2 valued RDP.
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1.1 Preliminaries

We use the following standard notions:

• Sm stands for the set of permutations of {1, ...,m}.
• If u = (u1, ..., ud),v = (v1, ..., vd) ∈ IRd, then uT v stands for u1v1 + ... + udvd;
and u(j) = uj (i.e. u(j) is the jth component of u).
• Π{i1,...,ik} u = (ui1 , ..., uik

) and by extension, if S ⊂ IRd then Π{i1,...,ik} S =
{Π{i1,...,ik} x | x ∈ S}.
• Let r ∈ IR, Adj(u, r) = (u1, ..., ud, r) and by extension, if S ⊂ IRd Adj(S, r) =
{Adj(x, r) | x ∈ S}.
• We define Im(E,F ) = {(x1, ..., xd, xd+1) ∈ F | (x1, ..., xd) ∈ E} for E ⊂ IRd

and F ⊂ IRd+1.
• P(w, t) stands for the hyperplane {x ∈ IRd | wT x + t = 0} of IRd.

1.2 Some Definitions and Properties

In this section, we introduce the notions of convex hull (CH) and of linear separability.

Definition 1. [4] Let S be a sub-set of IRd

CH(S) = {t1x1 + . . . + tkxk | x1, . . . ,xk ∈ S, t1, . . . , tk ∈ [0, 1] and t1 + . . . +
tk = 1}. Thus, if S is finite, then there exists a1, ...,ak ∈ IRd and b1, ..., bk ∈ IR such
that CH(S) = {x ∈ IRd | aT

i x ≥ bi for 1 ≤ i ≤ k}.
Definition 2. Two subsets X and Y of IRd are said to be linearly separable if there
exists a hyperplane P(w, t) of IRd , such that (∀x ∈ X, wT x + t > 0 and ∀y ∈
Y, wT y + t < 0). In the following we will denote the fact that X and Y are LS
by X || Y or X || Y (P(w, t)) if we want to specify the hyperplane which linearly
separatesX and Y . A discussion on the different methods for testing linear separability
can be found in [1].

This paper is divided into four sections. The m-class generalisation of the RDP neural
network, based on a notion of linear separability for m classes, is presented in section
two. In this section also, some of the notions used throughout this paper are introduced.
In section three, the procedure used to evaluated the generalisation of the m-class RDP
model is presented. Three machine learning benchmarks (Iris, Soybean, and Wisconsin
Breast Cancer) were used [5] and datasets were generated using cross validation. The
method is compared with Backpropagation and Cascade Correlation in terms of their
level of generalisation. A summary and some conclusions are presented in section four.

2 The m-Class RDP Algorithm

Them-class RDP algorithm is an adaptation of the 2-class RDP based on the following
notion of linear separability for m classes (m > 2):

Definition 3. Let X1, ..., Xm ⊂ IRd and a0 < a1 < ... < am, X1, ..., Xm are said to
be linearly separable relatively to the ascending sequence of real numbers a0, ..., am if
∃σ ∈ Sm, ∃w ∈ IRd, ∃t ∈ IR such that ∀i, ∀x ∈ Xσ(i), ai−1 < wT x + t < ai.
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Remarks
Let X1, ..., Xm ⊂ IRd and a0 < a1 < a2 < ... < am,

• X1, ..., Xm are linearly separable relatively to a0, ..., am iff CH(X1), ..., CH(Xm)
are linearly separable relatively to a0, ..., am.
• let σ ∈ Sm. Put :
Xσ = Adj(Xσ(1),−a0)∪ Adj(Xσ(2),−a1)...∪ Adj(Xσ(m),−am−1), Y σ =
Adj(Xσ(1),−a1)∪ Adj(Xσ(2),−a2)...∪ Adj(Xσ(m),−am), then, X1, ..., Xm are lin-
early separable relatively to a0, ..., am by using σ iff Xσ || Y σ . In other words, we
reduce the problem of linear separability for m classes into the problem of linear sepa-
rability for 2 classes. We do this by augmenting the dimension of the input vectors with
the ascending sequence a0, ..., am.
• If X1 || X2 (P(w, t)) and α = Max({|wT x + t| ; x ∈ (X1 ∪X2)}, then X1, X2

are linearly separable relatively to −α, 0, α.

Proposition 1. Let X1, ..., Xm ⊂ IRd, a, b ∈ IR, h, k > 0 and let ai = a + ih, bi =
b+ ik, for 0 ≤ i ≤ m , then X1, ..., Xm are linearly separable relatively to a0, ..., am

iff they are linearly separable relatively to b0, ..., bm. In other words, the linear separa-
bility between m classes is independent of the arithmetic sequence.

Proof. Let σ ∈ Sm represent a class, and let w ∈ IRd, t ∈ IR such that ∀i,
∀x ∈ Xσ(i), ai−1 < wT x + t < ai. Thus, ∀i, ∀x ∈ Xσ(i), bi−1 < k

hwT x +
k
h (t− a) + b<bi %&

Definition 4. X1, ..., Xm ⊂ IRd are said to be linearly separable if there exists a ∈
IR, h > 0 such thatX1, ..., Xm are linearly separable relatively to a, a+h, ..., a+mh.

Definition 5. A m-SLPT with the weight w ∈ IRd, the threshold t ∈ IR, the values
v1, v2, ..., vm ∈ IR and the characteristic (c, h) ∈ IR× IR+ (c represents the value cor-
responding to the starting hyperplane, and h a chosen distance between a hyperplane
which we will call the step size), has the same topology as the 2-class SLPT. The only
difference is that the function corresponding to a m-SLPT is a m−valued function f
defined by : ∀y ∈ IRd

f(y) =

⎧⎪⎨⎪⎩
v1 if wT y + t < c+ h

vi if c+ (i− 1)h < wT y + t < c+ ih, for 1 < i < m

vm if wT y + t > c+ (m− 1)h
(1)

2.1 The Specialized NLS to LS Transformation Algorithm for m Classes

A specialized version of the transformation algorithm , from two to m classes, was
proposed in [1]. This extension is based on the notion of linear separability form classes
described above.

Let c ∈ IR, h > 0, b = −(m − 3
2 )h and let bi = c + (m − i)b + ( (m−1)(m−2)

2 −
(i−1)(i−2)

2 )h for 1 ≤ i < m and bm = c.
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Table 1 shows the specialized NLS to LS transformation algorithm form classes. We
proceed as in the 2-class specialized transformation algorithm. That is to say, at each
step we select a LS sub-set which belongs to a single class and add an artificial variable
to the entire input data set. To this artificial variable we assign as value bi for all the
input vectors belonging to the selected LS sub-set and a value bj to the rest of the set of
input vectors, where bi �= bj . Two cases for assigning the values to the artificial inputs
are possible depending on the class to which the LS sub-set belongs:

1. If the selected LS sub-set belongs to the jth class, with j < m, we add to its input
vector a new component with value bj and we add to the rest of the input vector a
new component with value bj+1.

2. If the selected LS sub-set belongs to the last class (mth class), we add to its input
vector a new component with value bm and we add to the rest of the input vector a
new component with value bm−1.

In the following theorem we prove the correctness and the termination of the algo-
rithm presented in table 1 which allows to construct an m−RDP for linearly separating
any given m classes.

Theorem 1. If X i
1, ..., X

i
m are not linearly separable, then there exists Zi such that

(Zi ⊂ X ′
1
i or ... or Zi ⊂ X ′

m
i), Zi �= ∅ and Zi || (Si \ Zi).

Proof. We will prove that, there exists x ∈ X ′
1
i∪...∪X ′

m
i such that {x} || (Si \ {x}).

Assume that ∀x ∈ X ′
1
i ∪ ... ∪X ′

m
i, {x} and (Si \ {x}) are not linearly separable,

then X ′
1
i ∪ ... ∪X ′

m
i ⊂ CH(Si \ (X ′

1
i ∪ ... ∪X ′

m
i)).

So, if Si = {v1, ...,vk,vk+1, ...,vk+r1 ,vk+r1+1, ...,vk+r1+r2 , ...,vk+r1+...+rm}
where X ′

1
i ∪ ... ∪X ′

m
i = {v1, ...,vk} and

X i
j \ X ′

j
i = {vk+r1+...+rj−1+1, ...,vk+r1+...+rj} for 1 ≤ j ≤ m.

Let x ∈ X ′
1
i ∪ ... ∪X ′

m
i, then x = t1vk+1 + ...+ tr1+...+rmvk+r1+...+rm

t1, ..., tr1+...+rm ≥ 0 and t1 + ...+ tr1+...+rm = 1
Let j < m, 1 ≤ l ≤ rj and el such that vk+r1+...+rj−1+l(el) = bj and vf (el) = bj+1

for vf �∈ X i
j \ X ′

j
i ( bj < bj+1, x(el) = bj+1 ) . If tr1+...+rj−1+l > 0 then

bj+1 = x(ej) < (t1 + ... + tk+r1+...+rm)bj+1 = bj+1, which is absurd; thus, ∀j ≤
r1 + ... + rm−1, tj = 0,
Let j < rm and 1 ≤ l ≤ i such that vk+r1+...+rm−1+j(l) = bm and vf (l) = bm−1

for vf �∈ X i
m \ X ′

m
i (bm−1 < bm, x(l) = bm−1). If tr1+...+rm−1+j > 0 then

bm−1 = x(l) > (tr1+...+rm−1+1 + ... + tr1+...+rm−1+rm)bm−1 = bm−1, which is
absurd;
then, ∀j ≤ rm, tr1+...+rm−1+j = 0. Thus x �∈ CH((Si \ (X ′

1
i ∪ ... ∪X ′

m
i)).

So, there exists x ∈ X ′
1
i ∪ ... ∪X ′

m
i such that {x} || (Si \ {x}) %&

Theorem 2. if X ′
1
i ∪ ... ∪ X ′

m
i = ∅ then X ′

1
i
, ..., X ′

m
i are linearly separable. Thus,

the algorithm stops, in the worse case, after Card(X1∪, ...,∪Xm) − 1 steps, and the
result [(w0, t0, a0, h0, b0,1, b0,2), ..., (wi−1, ti−1, ai−1, hi−1, bi−1,1, bi−1,2), (wi, ti,
ai, hi, b1, ..., bm)] is a m-RDP separating X1, ..., Xm where bj,1, bj,2 are bk, bk+1 if at
step j, Zj ⊂ X ′

k
j and k ≤ m− 1 or bm−1, bm if at step j, Zj ⊂ X ′

m
j .
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Table 1. Specialized NLS to LS transformation algorithm for m classes

SNLS2LS(X1, .., Xm, X0i, .., Xmi)
– data: m data set vectors, X0, .., Xm representing m NLS classes
– result: A m-RDP [(w0, t0, a0, h0, b0,1, b0,2), ..., (wi−1, ti−1, ai−1, hi−1, bi−1,1, bi−1,2),
(wi, ti, ai, hi, b1, ..., bm)] which linearly separates X1, ..., Xm.
INITIALIZE : Let i := 0; X0

1 := X1; ...; X
0
m := Xm; X ′

1
0

:= X1; ...; X
′
m

0
:= Xm;

S0 = X1 ∪ ... ∪ Xm;
WHILE (Xi

1, ..., X
i
m) are not linearly separable

BEGIN
SELECT : Select a non-empty sub-set Zi from X ′

1
i or ... or from X ′

m
i

(if it exists) such that Zi, (Si \ Zi) are linearly separable
(i.e. (Zi ⊂ X ′

1
i or ... or Zi ⊂ X ′

m
i) and Zi || (Si \ Zi)) (P(wi, ti)) ;

CASE :
Case Zi ⊂ X ′

1
i :

Si+1 := Adj(Zi, b1) ∪Adj(Si \ Zi, b2);

X ′
1

i+1
:= Im(X ′

1
i
, Si+1) \ Im(Zi, Si+1);

X ′
2

i+1
:= Im(X ′

2
i
, Si+1); ...;

X ′
2

i+1
:= Im(X ′

m
i
, Si+1);

Xi+1
1 := Im(Xi

1, Si+1);
Xi+1

2 := Im(Xi
2, Si+1); ...;

Xi+1
m := Im(Xi

m, Si+1);
i := i + 1;
.........

Case Zi ⊂ X ′
j
i :

Si+1 := Adj(Zi, bj) ∪Adj(Si \ Zi, bj+1);

X ′
1

i+1
:= Im(X ′

1
i
, Si+1); ...;

X ′
j−1

i+1
:= Im(X ′

j−1
i
, Si+1);

X ′
j
i+1

:= Im(X ′
j
i
, Si+1) \ Im(Zi, Si+1);

X ′
j+1

i+1
:= Im(X ′

j+1
i
, Si+1); ...;

X ′
m

i+1
:= Im(X ′

m
i
, Si+1);

Xi+1
1 := Im(Xi

1, Si+1);
Xi+1

2 := Im(Xi
2, Si+1); ...;

Xi+1
m := Im(Xi

m, Si+1);
i := i + 1;
.........

Case Zi ⊂ X ′
m

i :
Si+1 := Adj(Zi, bm) ∪Adj(Si \ Zi, bm−1);

X ′
1

i+1
:= Im(X ′

1
i
, Si+1); ...;

X ′
m−1

i+1
:= Im(X ′

m−1
i
, Si+1);

X ′
m

i+1
:= Im(X ′

m
i
, Si+1) \ Im(Zi, Si+1);

Xi+1
1 := Im(Xi

1, Si+1);
Xi+1

2 := Im(Xi
2, Si+1); ...;

Xi+1
m := Im(Xi

m, Si+1);
i := i + 1;

END
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Proof. Let w = (0, ..., 0, 1, ..., 1) ∈ IRd+i with d times 0 and i times 1, and let t =
−(kX1(i)b2+...+kXm−1(i)bm+kXm(i)bm−1). Thus, ∀j < m, ∀x ∈ X i

j , wT x+t =
bj − bj+1 = b + (j − 1)h, and ∀x ∈ X i

m, wT x + t = bm − bm−1 = b + (m− 1)h.
Let a0 = b − h

2 , ai = a0 + ih for 1 ≤ i ≤ m, thus ∀j ≤ m, ∀x ∈ X i
j , aj−1 ≤

wT x + t ≤ aj .
So, X i

1, ..., X
i
m are linearly separables by the hyperplane P(w, t) %&

3 Comparison Procedure

The three machine learning benchmark data sets used in the comparison study were
identified in section 1.

The IRIS dataset classifies a plant as being an Iris Setosa, Iris Versicolour or Iris
Virginica. The dataset describes every iris plant using four input parameters (Table 2).
The dataset contains a total of 150 samples with 50 samples for each of the three classes.
All the samples of the Iris Setosa class are linearly separable from the rest of the samples
(Iris Versicolour and Iris Virginica). Some of the publications that used this benchmark
include: [6] [7] [8] and [9].

The SOYBEAN classification problem contains data for the disease diagnosis of
the Soybean crop. The dataset describes the different diseases using symptoms. The
original dataset contains 19 diseases and 35 attributes. The attribute list was limited to
those attributes that had non trivial values in them (Table 3). Thus there were only 20
out of the 35 attributes that were included in the tests. Only 15 of the 19 have no missing
values. Therefore, only these 15 classes were used for the comparisons.

Table 2. Inputs and outputs used on the IRIS classification problem

Attributes (In cm) Output Output Classes

Sepal Length Iris plant type Iris Setosa
Sepal Width Iris Versicolour
Petal Length Iris Virginica
Petal Width

Table 3. Inputs and outputs used in the SOYBEAN classification problem

Attributes Output Output classes

Date leaf-shred Disease type brown-spot
plant-stand stem alternarialeaf-spot
precipitation stem-cankers frog-eye-leaf-spot
temperature canker-lesion
hail fruiting-bodies
crop-hist external decay
area-damaged fruit-pods
severity fruit spots
seed-tmt seed
germination plant-growth
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Table 4. Inputs and outputs used on the Wisconsin Breast Cancer classification problem

Attributes (1 - 10) Output Output Classes

Clump Thickness Class Benign
Uniformity of Cell Size Malignant
Uniformity of Cell Shape
Marginal Adhesion
Single Epithelial Cell Size
Bare Nuclei
Bland Chromatin
Normal Nucleoli
Mitoses

The Wisconsin Breast Cancer dataset [10,11,12] consists of a binary classification
problem to distinguish between benign and malignant breast cancer. The data set con-
tains 699 instances and 9 attributes (Table 4). The class distribution is: Benign 458
instances (65.5 %), and Malignant 241 instances (34.5 %).

The technique of cross validation was applied to split the benchmarks into training
and testing data sets. The datasets were randomly divided into ’n’ equal sized testing
sets that were mutually exclusive [13]. The remaining samples were used to train the
networks. In this study, the classification benchmark data sets were divided into ten
equally sized data sets. Sixty percent of the samples were used for training the networks
and the remaining forty percent were used for testing purposes.

The simplex algorithm was used on this study for testing for linear separability. This
algorithm was remarkably faster than the Perceptron one when searching for LS sub-
sets. Other algorithms for testing linear separability include the Class of Linear Sepa-
rability [14] and the Fisher method (see [15] for a survey on methods for testing linear
separability).

These results provide a good basis to further develop this study and to compare
the topology size (number of intermediate neurons), and convergence time obtained
with the m-class RDP method and Backpropagation and Cascade Correlation. After
describing the experimental setup, some conclusions are presented in the next section.

4 Results and Discussion

We now give a comparison between the m-class RDP construction method, Backprop-
agation and Cascade Correlation based on their level of generalisation on previously
unseen data. As specified before, the m-class RDP uses a single output neuron for mul-
tiple classes.

Table 5 shows the results obtained with the Iris data set. A single output unit was
used for the three neural network models. As it can be seen, the generalisation figures
obtained with the m-class RDP are slightly lower but comparable with those obtained
with the Backpropagation and the Cascade Correlation neural network models.

Table 6 summarizes the results obtained with the Soybean data set. Topologies for
the backpropagation and the cascade correlation methods included both 1 and 15 output
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Table 5. Results obtained with the m-class RDP learning method, backpropagation, and cascade
correlation using the Iris benchmark data set in terms of the level of generalisation. The topologies
for all three methods used a single output neuron.

m-class RDP Back Propagation Cascade Correlation

Data
Set
1 98.33 98.33 98.33
2 98.33 98.33 98.33
3 95.00 96.67 96.67
4 95.00 98.33 100
5 91.67 98.33 98.33
6 91.67 96.67 98.33
7 96.67 96.67 96.67
8 96.67 98.33 100
9 95.00 96.67 98.33
10 93.33 95.00 96.67

Table 6. Results obtained with the m-class RDP learning method, backpropagation, and cas-
cade correlation using the Soybean benchmark data set in terms of the level of generalisation.
Topologies with 1 and 15 output neurons (one per class) were tried.

m-class RDP Back Propagation Cascade Correlation

Data 1 output 15 output 1 output 15 output
Set neurons neurons neurons neurons
1 83.18 49.53 87.85 54.21 87.85
2 73.83 54.21 87.85 50.47 89.71
3 74.77 45.79 84.11 47.66 85.98
4 61.68 37.38 80.37 54.21 83.17
5 75.70 45.79 84.11 51.4 84.11
6 70.09 39.25 81.31 51.4 85.05
7 75.70 43.93 84.11 52.34 85.5
8 74.77 47.66 78.50 52.34 82.24
9 73.83 45.79 84.11 52.34 85.98
10 71.03 48.60 85.05 57.94 91.58

neurons. This problem is more difficult than the Iris one. Therefore, as can be seen from
these results, both the backpropagation and the cascade correlation methods did not
produce good results using a single output neuron. In order to improve results, it was
necessary to use 15 output neurons (one per class).

The generalisation levels obtained with the Wisconsin breast cancer data set are
shown in table 7. Contrary to the previous two classificatio problems, this is a 2 class
classification problem. This is why results obtained with the 2-class RDP neural net-
work are also provided. As can be seen, the generalisation results obtained with the
m-class RDP are ovefrall slightly lower than the ones obtained with the backpropa-
gation and the cascade correlation methods. In some of the data subsets, the m-RDP
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Table 7. Results obtained with the m-class and 2-class RDP learning methods, backpropagation,
and cascade correlation using the Wisconsin Breast Cancer data set benchmark in terms of the
level of generalisation. Since this is a two class classification problem a single output neuron was
used on the topologies.

2-class RDP m-class RDP Back Propagation Cascade Correlation

Data
Set
1 90 94.16 96.35 98.17
2 97 95.62 95.26 97.08
3 92.7 94.53 95.99 96
4 94.2 95.62 95.62 97
5 95.7 93.07 97.45 96.35
6 90.0 91.61 96.72 97
7 97.0 94.16 96.35 96.7
8 92.7 89.78 97.45 97
9 94.2 91.61 97.08 97.45
10 95.7 94.53 97.81 98.54

provides a slightly higher level of gereralisation than the ones obtained witht the 2-
class RDP method. This is probably linked to the extra degrees of freedom provided by
the m-class RDP.

Overall, results in terms of generalisation obtained with them-class RDP method are
slightly lower than those obtained with the backpropagation and the cascade correlation
methods. Results however are higher for the m-class RDP than for the two other when
considering topologies with a single output neuron. This can be interested when consid-
ering reduced topologies. An extension of this work could include a comparison of the
three methods in terms of topology size (number of intermediate neurons) and conver-
gence time. This is of special interest since, contrary to the backpropagation method, the
topology of an RDP neural network is automatically produce with no used intervention.
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Abstract. A general constructive approach for training neural networks
in classification problems is presented. This approach is used to con-
struct a particular connectionist model, named Switching Neural Net-
work (SNN), based on the conversion of the original problem in a Boolean
lattice domain. The training of an SNN can be performed through a
constructive algorithm, called Switch Programming (SP), based on the
solution of a proper linear programming problem. Simulation results ob-
tained on the StatLog benchmark show the good quality of the SNNs
trained with SP.

Keywords: Switching Neural Network, constructive technique, positive
Boolean function, Switch Programming.

1 Introduction

Backpropagation algorithms [1] have scored excellent results in the training of
neural networks for classification. In general any technique for the solution of
classification problems consists of two steps: at first a class Γ of functions is
selected (model definition), then the best classifier g ∈ Γ is retrieved (training
phase).

The choice of Γ must take into account two considerations. If the set Γ is
too large, it is likely to incur in the problem of overfitting: the optimal classifier
g ∈ Γ has a good behavior on the examples of the training set, but scores a high
number of misclassifications on the other points of the input domain. On the
contrary, the choice of a small set Γ prevents from retrieving a function with a
sufficient level of accuracy on the training set.

In a multilayer perceptron the complexity of the set Γ depends on some
topological properties of the network, such as the number of hidden layers and
neurons. The drawback of this approach is that the architecture of the neural
network must be chosen by the user before the training phase, often without any
prior information.

In order to avoid the drawbacks related to backpropagation algorithms, two
different approaches can be introduced: pruning methods and constructive tech-
niques [2]. Pruning methods consider an initial trained neural network with a

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 744–753, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Constructive Technique Based on Linear Programming 745

high number of neurons and adopt smart techniques to find and eliminate those
connections and units which have a negligible influence on the accuracy of the
classifier.

The complementary approach is followed by constructive methods. At the
beginning of the training process the neural network only includes the input
and the output layers. Then, hidden neurons are added one at a time until the
input-output relations in the training set are satisfied within the desired level
of accuracy. Generally, the connections between neurons are decided a priori so
that only a small part of the weight matrix has to be updated at each iteration.
Constructive methods usually present a rapid convergence to a well-generalizing
solution and allow also the treatment of complex training sets. Nevertheless, since
the inclusion of a new hidden unit involves only a limited number of weights, it is
possible that some correlations between the data in the training set are missed.

In the following sections we will introduce a constructive algorithm, based
on the solution of a linear programming problem, for training Switching Neural
Networks (SNN), a recent connectionist model for the solution of classification
problems [3].

SNN includes a first layer containing a particular kind of A/D converters,
called latticizers, that suitably transform input vectors into binary strings. Then,
the subsequent two layers of an SNN realize a positive Boolean function that
solves in a lattice domain the original classification problem.

Preliminary results show that, with this constructive technique, SNN can
achieve generalization errors comparable with those of the best machine learning
techniques.

2 A General Structure for a Class of Constructive
Methods

The following classification problem will be considered: d-dimensional vectors x ∈
X have to be assigned to one of two classes labeled by a Boolean value y ∈ {0, 1}.
According to possible real world situations, the type of the components xi, i =
1, . . . , d, can be either continuous ordered, when xi belongs to a subset of R, or
discrete ordered, when xi assumes values inside a finite ordered set, or nominal,
when xi can assume values inside a finite set, where no ordering is defined.

The decision function ĝ realizing such classification must be inferred from a
set S of examples {xk, yk}, k = 1, . . . , s. Denote with S1 = {xk | yk = 1} the
set of positive examples and with S0 the set of negative examples. Moreover, let
s1 = |S1| and s0 = |S0|, where | · | denotes the number of elements in the set.

In many constructive methods the function ĝ is realized by a two layer neural
network; the hidden layer is built incrementally by adding a neuron at each
iteration of the training procedure. In order to characterize the hidden neurons
consider the following

Definition 1. A collection {{Lh, ŷh} , h = 1, . . . , r + 1}, where Lh ⊂ X and
ŷh ∈ {0, 1} for each h = 1, . . . , r, will be called a decision list for a two class
problem if Lr+1 = X.
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In [2] the decision list is used hierarchically: a pattern x is assigned to the class
yh, where h is the lower index such that x ∈ Lh. It is possible to consider more
general criteria in the output assignment: for example a weight wh > 0 can
be associated with each domain Lh, measuring the reliability of assigning the
output value ŷh to every point in Lh.

It is thus possible to associate with every pattern x a weight vector u, whose
h-th component is defined by

uh =
{
wh if x ∈ Lh

0 otherwise (1)

for h = 1, . . . , r. The weight uh can be used to choose the output for the pattern
x. Without loss of generality suppose that the decision list is ordered so that
ŷh = 0 for h = 1, . . . , r0, whereas ŷh = 1 for h = r0 + 1, . . . , r0 + r1, where
r0 + r1 = r. The value of ŷr+1 is the default decision, i.e. the output assigned to
x if x �∈ Lh for each h = 1, . . . , r.

In order to fix a criterion in the output assignment for an input vector x let
us introduce the following

Definition 2. A function σ(u) ∈ {0, 1} is called an output decider if

σ(u) =

⎧⎨⎩
yr+1 if u1 = . . . = ur0 = ur0+1 = . . . = ur = 0
1 if u1 = . . . = ur0 = 0 and some uh > 0 with r0 < h ≤ r
0 if ur0+1 = . . . = ur = 0 and some uh > 0 with 0 < h ≤ r0

This classifier can then be implemented in a two layer neural network: the first
layer retrieves the weights uh for h = 1, . . . , r, whereas the second one realizes
the output decider σ. The behavior of σ is usually chosen a priori so that the
training phase consists in finding a proper decision list and the relative weight
vector w. For example, σ can be made equivalent to a comparison between the
sum of the weights of the two classes:

σ(u) =

⎧⎨⎩
0 if

∑r0
h=1 uh >

∑r
h=r0+1 uh

1 if
∑r0

h=1 uh <
∑r

h=r0+1 uh

ŷr+1 otherwise

The determination of the decision list {Lh, ŷh}, h = 1, . . . , r, can be performed
in a constructive way, by adding at each iteration h the best pair {Lh, ŷh} accord-
ing to a smart criterion. Each domain Lh corresponds to a neuron characterized
through the function introduced by the following

Definition 3. Consider a subset Q ⊂ Sy, y ∈ {0, 1}. The function

ĝh(x) =
{

1 if x ∈ Lh

0 otherwise

is called a partial classifier for Q if Q∩Lh is not empty whereas Lh ∩S1−y = ∅.
If ĝh(x) = 1 the h-th neuron will be said to cover x.

Since the target of the training phase is to find the simplest network satisfying
the input-output relations in the training set, the patterns already covered by
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Constructive training for a two layer perceptron

For y ∈ {0, 1} do

1. Set Q = Sy and h = 1.
2. Find a partial classifier ĝh for Q.
3. Let R = {{xk, yk} ∈ Q | ĝh(xk) = 1}.
4. Set Q = Q \R and h = h+ 1.
5. If Q is nonempty go to step 2.
6. Prune redundant neurons and set ry = h.

Fig. 1. General constructive procedure followed for neural network training

at least a neuron can be ignored when training further neurons having the same
value of ŷh.

Fig. 1 shows a general constructive procedure for training a neural network in
case of binary output. At each iteration the set Q contains the patterns belonging
to the current output value not covered by the neurons already included in
the network. Notice that removing elements from Q allows a high reduction of
the training time for each neuron since a lower number of examples has to be
processed at each iteration.

A pruning phase is performed at the end of the training process in order to
eliminate redundant overlaps among the sets Lh, h = 1, . . . , r.

Without entering in details about the general theoretical properties of con-
structive techniques, which can be found in [2], in the following sections we
will present the architecture of Switching Neural Networks and an appropriate
training algorithm.

3 Switching Neural Networks

A promising connectionist model, called Switching Neural Network (SNN), has
been recently developed [3]. According to this model the input variables are
transformed into m-dimensional Boolean strings by means of a particular map-
ping ϕ : X → {0, 1}m and a positive Boolean function f (such that f(v) ≤ f(v′)
for v ≤ v′) is built starting from a converted training set S′. The mapping ϕ,
called latticizer, is obtained by discretizing the ordered inputs and by applying
a proper binary coding that preserves ordering and distance [4].

If a ∈ {0, 1}m, let P (a) be the subset of Im = {1, . . . ,m} including the
indexes i for which ai = 1. It can be shown [4] that a positive Boolean function
can always be written as

f(z) =
∨

a∈A

∧
j∈P (a)

zj (2)
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where A is an antichain of the Boolean lattice {0, 1}m, i.e. a set of Boolean
strings such that neither a < a′ nor a′ < a holds for each a, a′ ∈ A. The
symbol

∨
(resp.

∧
) in (2) denotes a logical sum (resp. product) among the

terms identified by the subscript. In particular,
∧

j∈P (a) zj is an implicant for
the function f ; however, when no confusion arises, the term implicant will also
be used to denote the corresponding binary string a ∈ A.

A drawback of the model described in [3] is that it treats in an asymmetrical
way positive and negative patterns. In fact the SNN is built to assign positive
labels whereas negative ones are associated by default. A possible way to recover
this drawback consists in using a separate positive Boolean function fy (i.e. an
antichain Ay to be employed in (2)) for each value assumed by the output y.

In order to combine the functions relative to the different output values, each
generated implicant can be characterized by a weight wh > 0, which measures
its significance level for the examples in the training set. Thus, to each Boolean
string z can be assigned a weight vector u whose h-th component is

uh = Fh(z) =
{
wh if

∧
j∈P (ah) zj = 1

0 otherwise

where ah ∈ A0 ∪A1 for h = 1, . . . , r.
At the final step of the classification process an output decider σ(u) assigns

the correct class to the pattern z according to a comparison between the weights
uh of the different classes. If no h exists such that uh > 0, the default output is
assigned to z.

The device implementing the function ĝ(x) = σ(F (ϕ(x))) is shown in Fig. 2.
It can be considered as a three layer feedforward neural network. The first layer
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Fig. 2. The schema of a Switching Neural Network
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is responsible of the latticization mapping ϕ; the second realizes the function
F assigning a weight to each implicant. Finally, the third layer uses the weight
vector u = F (z) to decide the output value for the pattern x.

Every and port in the second layer is connected only to some of the outputs
leaving the latticizers; they correspond to values 1 in the associated implicant.
The choice of such values is performed by a switch port. For this reason the
connectionist model shown in Fig. 2 is called Switching Neural Network.

Notice that the device can be subdivided into two parts: the left part includes
the r0 neurons characterizing the examples having output y = 0, whereas the
right part involves the r1 = r − r0 implicants relative to the output y = 1.
For this reason, the generalization of an SNN to a multiclass problem (where
y ∈ {1, . . . , c}, c > 2) is immediate: it is sufficient to create a set of implicants
for each output value.

It is interesting to observe that, unlike standard neural networks, SNNs do
not involve floating point operations. In fact the weights w are provided by the
training process and can be chosen in a set of integer values. Moreover, the
antichain A can be converted into a set of intelligible rules in the form

if < premise > then < consequence >

via the application of a smart inverse operator [3] of ϕ to the elements of A.

4 Training Algorithm

In this section the constructive algorithm for building a single fy (denoted only
by f for simplicity) will be described. The procedure must be repeated for each
value of the output y in order to find an optimal classifier for the problem at
hand. In particular, if the function fy is built, the Boolean output 1 will be
assigned to the examples belonging to the class y, whereas the Boolean output
0 will be assigned to all the remaining examples.

The architecture of the SNN has to be constructed starting from a set S′

containing s1 positive examples and s0 negative examples. Suppose, without loss
of generality, that the set S′ is ordered so that the first s1 examples are positive.
Since the training algorithm sets up, for each output value, the switches in the
second layer of the SNN, the constructive procedure of adding neurons step by
step will be called Switch Programming (SP).

4.1 Implicants Generation

When a Boolean string z is presented as input, the output of the logical product∧
j∈P (a) zj at a neuron is positive if and only if a ≤ z according to the standard

ordering in the Boolean lattice. In this case a will be said to cover z.
The target of a training algorithm for an SNN is to find the simplest antichain

A covering all the positive examples and no negative examples in the training
set. A constructive approach for this target consists in generating implicants one
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at a time according to a smart criterion of choice determined by an objective
function Φ(a).

In particular Φ(a) must take into account the number of examples in S′

covered by a and the degree of complexity of a, usually defined as the number
of elements in P (a) or, equivalently, as the sum

∑m
i=1 ai. These parameters will

be balanced in the objective function through the definition of two weights λ
and μ.

In order to define the constraints to the problem, define, for each example
zk, the number ξk of indexes i for which ai = 1 and zki = 0. It is easy to show
that a covers zk if and only if ξk = 0. Then, the quantity

∑s1
k=1 θ(ξk), where θ

represents the usual Heaviside function (defined by θ(u) = 1 if u > 0, θ(u) = 0
otherwise), is the number of positive patterns not covered by a. On the contrary,
it is necessary that ξk > 0 for each k = s1+1, . . . , s, so that any negative pattern
is not covered by a.

Starting from these considerations, the best implicant can be retrieved by
solving the following optimization problem:

min
ξ,a

λ

s1

s1∑
k=1

ξk +
μ

m

m∑
i=1

ai

subj to
m∑

i=1

ai(ai − zki) = ξk for k = 1, . . . , s1

m∑
i=1

ai(ai − zki) ≥ 1 for k = s1 + 1, . . . , s (3)

ξk ≥ 0 for k = 1, . . . , s1 , ai ∈ {0, 1} for i = 1, . . . , d

where the Heaviside function has been substituted by its argument in order to
avoid nonlinearity in the cost function.

Since the determination of a sufficiently great collection of implicants, from
which the antichainA is selected, requires the repeated solution of problem (3), it
must be avoided at any extraction the generation of an already found implicant.
This can be obtained by adding the following constraint

m∑
i=1

aji(1− ai) ≥ 1 for j = 1, . . . , q − 1 (4)

where a is the implicant to be constructed and a1, . . . , aq−1 are the already
found q − 1 implicants.

Additional requirements can be added to problem (3) in order to improve the
quality of the implicant a and the convergence speed. For example, in order to
better differentiate implicants and to cover all the patterns in a fewer number of
steps, the set S′′

1 of positive patterns not yet covered can be considered separately
and weighted by a different factor ν �= λ.

Moreover, in presence of noise it should be useful to avoid excessive adherence
of a with the training set by accepting a small fraction ε of errors.
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In this case a further term is added to the objective function, measuring the
level of misclassification, and constraints in (3) have to be modified in order to
allow at most εs0 patterns to be misclassified by the implicant a. If the training
set is noisy, the optimal implicant can be found by solving the following LP
problem, where it is supposed that the first s′1 positive patterns are not yet
covered:

min
ξ,a

ν

s′1

s′
1∑

k=1

ξk +
λ

s1 − s′1

s1∑
k=s′

1+1

ξk +
μ

m

m∑
i=1

ai +
ω

s0

s∑
k=s1+1

ξk

subj to
m∑

i=1

ai(1− zki) = ξk for k = 1, . . . , s1

m∑
i=1

ai(1− zki) ≥ 1− ξk for k = s1 + 1, . . . , s (5)

s∑
k=s1+1

ξk ≤ ε0s0 , ai ∈ {0, 1} for i = 1, . . . ,m

ξk ≥ 0 for k = 1, . . . , s1 , ξk ∈ {0, 1} for k = s1 + 1, . . . , s

4.2 Implicant Selection

Once the antichain A′ has been generated, it should be useful to look for a subset
A of A′ which is able to describe the data in the training set with sufficient
accuracy. To this aim both the number of implicants included in A and the
number Nk of nonnull components in each element ak ∈ A must be minimized.

Denote with a1, a2, . . . , aq the q implicants obtained in the generation step
and with ckj a binary variable asserting if the input vector zk, k = 1, . . . , s1, is
covered by aj :

ckj =
{

1 if zk is covered by aj

0 otherwise

In addition, consider the binary vector ζ having as jth component the value
ζj = 1 if the corresponding implicant aj will be included in the final collection
A. Then, an optimal subset A ⊂ A′ can be found by solving the following
constrained optimization problem:

min
ζ

q∑
j=1

ζj(α + βNj))

subj to
q∑

j=1

ckjζj ≥ 1 for k = 1, . . . , s1 (6)

ζj ∈ {0, 1} for j = 1, . . . , q

where α and β are constants.
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Additional requirements can be added to the problem (6) in order to improve
the generalization ability of A. For example, if the presence of noise has to be
taken into account, the antichain A can be allowed not to cover a small fraction
of positive examples.

5 Simulation Results

To obtain a preliminary evaluation of performances achieved by SNNs trained
with SP, the classification problems included in the well-known StatLog bench-
mark [5] have been considered. In this way the generalization ability and the
complexity of resulting SNNs can be compared with those of other machine
learning methods, among which backpropagation algorithm (BP) and rule gen-
eration techniques based on decision trees, such as C4.5 [6].

The complexity of an SNN is measured through the number of and ports in the
second layer (corresponding to the number of intelligible rules) and the average
number of conditions in the if part of a rule. Table 1 presents the obtained results.
Performances of resulting SNNs are compared with those of models produced
by C4.5 and BP. In the same table is also shown the best generalization error
included in the StatLog report [5] for each problem, together with the rank
scored by SNN when its generalization error is inserted into the list of available
results.

Table 1. Generalization error and complexity of SNN, compared with C4.5, BP and
other methods, on the StatLog benchmark

Test Generalization error # Rules # Conditions
Problem SNN C4.5 BP Best Rank SNN C4.5 SNN C4.5

Heart 0.554 0.781 0.574 0.374 15 1.22 11.4 5.09 2.68
Australian 0.138 0.155 0.154 0.131 3 31.2 11.5 5.72 2.76
Diabetes 0.246 0.270 0.248 0.223 7 180.4 9.4 4.59 2.58
Vehicle 0.299 0.266 0.207 0.150 18 143.7 26.1 5.19 4.03
German 0.696 0.985 0.772 0.535 10 66.1 21.1 6.45 2.77
Segment 0.0424 0.040 0.054 0.030 8 105.5 28.0 6.50 3.94
DNA 0.0658 0.076 0.088 0.041 7 30.0 34 11.00 4.47
Satimage 0.168 0.150 0.139 0.094 19 607 80.0 6.42 5.41
Shuttle 0.0001 0.001 0.43 0.0001 1 18.0 20.0 3.00 3.14

Notice that in one case (Shuttle), SP achieves the best result among the
methods in the StatLog archive, whereas in other five problems SP achieves one
of the first ten positions. Moreover, the classification accuracy achieved by C4.5
and BP is significantly lower than that obtained by an SNN trained with the
SP algorithm in all the considered datasets, except for Vehicle and Satimage.
This points out the good quality of the solutions offered by the SNNs.

Nevertheless, the performances obtained by SP are conditioned by the number
of examples s in the training set and by the number of input variables d. Since
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the number of constrains in (3) or (5) depends linearly on s, SP becomes slower
and less efficient when dealing with complex training sets. In addition, increasing
the number of input bits may cause approximation errors while converting the
optimal solution of the LP problem into a {0, 1} domain. For these reasons
the performances of SP get worse when the dimensionality of the training set
increases.

In particular, the number of implicants generated by SP is in many cases is
higher than that of the rules obtained by C4.5, causing an increasing in the
training time.

Notice that the minimization of (3) or (5) is obtained using the package Gnu
Linear Programming Kit (GLPK) [7], a free library for the solution of linear pro-
gramming problems. It is thus possible to improve the above results by adopting
more efficient tools to solve the LP problem for the generation of implicants.
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project “Laboratory of Interdisciplinary Technologies in Bioinformatics
(LITBIO)”.
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Abstract. Linear projection pursuit index measuring quality of projected clus-
ters (QPC) is used to discover non-local clusters in high-dimensional multiclass
data, reduce dimensionality, select features, visualize and classify data. Construc-
tive neural networks that optimize the QPC index are able to discover simplest
models of complex data, solving problems that standard networks based on error
minimization are not able to handle. Tests on problems with complex Boolean
logic, and tests on real world datasets show high efficiency of this approach.

1 Introduction

Theoretical analysis of non-separable classification problems, introduced in [1], shows
that complexity of data classification is proportional to the minimum number of in-
tervals that are needed to separate pure clusters of data in a single linear projection.
Problems that require at least k such intervals are called k-separable. For example, n-
bit parity problems are n + 1-separable [2], because linear projection of binary strings
exists that forms n + 1 separated alternant groups of vectors for odd and even cases.
Neural networks based on basis set expansions, such as the Radial Basis Function (RBF)
networks, Multi-Layer Perceptrons (MLPs), other standard neural models [3] that use
error minimization techniques, Support Vector Machines (SVMs) and almost all other
classifiers are not able to discover simple data models when the k index is high. Yet
many problems in bioinformatics or text analysis may have inherent complex logic that
needs to be discovered.

Transformations of original features should help to find interesting low dimensional
representations, revealing structures that are hard to anticipate looking at the original
dataset. The simplest transformations with easy interpretations are linear projections.
For many data distributions projection on a single direction creates two or more pure
clusters. Even if such k-separable solution exist clusters may be small and close to each
other. More reliable predictions are possible if all data vectors are projected into large
pure clusters. Some additional projections may provide different useful solutions giving
large clusters too. For example, in parity problem projection on a [1, 1, 1..1] direction
and [1,−1, 1,−1...] direction creates pure clusters of different size allowing for high
confidence predictions for all data vectors.

A lot of methods that search for optimal and most informative linear transforma-
tions have been developed. A general projection pursuit (PP) framework to find inter-
esting data transformations by maximizing some “index of interest” has been proposed

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 754–762, 2008.
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by Friedman [4,5]. PP index assigns numerical values to data projections (or general
transformations). For example, the Fisher Discriminant Analysis (FDA) algorithm [6]
defines an index that measures the ratio of between-class scatter to within-class scatter.
Local FDA (LFDA) can deal with multimodal class distributions [7], trying to preserve
local structure of data. The approach presented below also belongs to the general pro-
jection pursuit framework, and may be implemented as a constructive neural network.
In the next section a new index based on the Quality of Projected Clusters (QPC) is
proposed. It allows to find compact and pure (from the same class) groups of vectors,
separated from other clusters. In contrast to most similarity-based methods [8,9] that
optimize metric functions to capture local clusters, projection pursuit may discover non-
local structures. A few practical issues related to the application of the QPC index are
presented in the next section. Searching for projections into two or more-dimensional
spaces allows for visualization of data, as shown in section three. The use of QPC index
as a basis for constructive neural network is described in section four. The final section
contains discussion and future perspectives.

2 The QPC Projection Index

The celebrated MLP backpropagation of errors training algorithm does not define spe-
cific target for hidden layers, trying instead to adapt all weights in a way that contributes
to the overall reduction of some error function. It has been quite successful for problems
that have relatively low complexity, but fails most of the time for Boolean functions that
are 4 or 5-separable. The PP index should help to discover interesting linear projections
of multiclass data, and localize vectors from the same class in compact clusters sepa-
rated from other clusters. Consider a dataset X = {x1, . . . ,xn} ⊂ Rd, where each
vector xi belongs to one of k different classes. For a given vector x ∈ X with a label C
QPC index is defined as:

Q(x; w) = A+
∑

xk∈C
G
(
wT (x− xk)

)−A− ∑
xk /∈C

G
(
wT (x− xk)

)
(1)

where G(x) is a localized function achieves maximum for x = 0 and should have
compact ε-support for all x ∈ R. The first term in Eq. (1) is large if projection on a line,
defined by weight vector w, groups many vectors from class C close to x. The second
term estimates separation between a given vector x and vectors from classes other than
C. It introduces penalty for placing projected x too close to projected vectors from other
classes. The average of the Q(x; w) indices for all vectors:

QPC(w) =
1
n

∑
x∈X

Q(x; w) , (2)

provides a leave-one-out estimator measuring quality of projection on w. This index is
large if projected clusters are pure, compact and well separated from clusters of vectors
with other labels. For linearly separable problems function QPC(w) achieves maxi-
mum if projection wx creates two well-separated pure clusters. If dataset is k-separable
then maximization of this index should find a projection with k separated clusters, that



756 M. Grochowski and W. Duch

may then be easily classified defining simple intervals or using a special neural archi-
tecture [2].

Parameters A+, A− control influence of each term in Eq. (1), and may simply be
fixed to balance and normalize the value of projection index, for example at A+ =
1/p(C) and A− = 1/(1 − p(C)) (where p(C) is the a priori class probability). If A−

is large strong separation between classes is enforced, while large A+ impacts mostly
compactness and purity of clusters. Influence of each vector on projection index is de-
termined by properties of G(x) function. This function should be localized, achieving
a maximum value for x = 0. If G(x) is continuous then gradient-based methods may
by used to find maximum of the QPC index. All bell-shaped functions are suitable for
G(x), including Gaussian and an inverse quartic function:

G(x) =
1

1 + (bx)4
(3)

where parameter b controls the width of G(x), and thus determines influence of the
neighboring vectors on the index value. Another useful function is constructed from a
combination of two sigmoidal functions (a bicentral function [10,11]):

G(x) = σ(x+ b)− σ(x− b) (4)

Constructive MLP networks with special architecture could be used to implement ap-
proximations to the QPC(w) index using several hidden layers. Neurobiological justi-
fication for constructive models of networks calculating PP indices is given in the final
section.

Multistart gradient approach has been quite effective in searching for interesting
projections. Although solutions are not always unique they may sometimes provide
additional insight into the structure of data. Calculation of function (2) requires O(n2)
operations. Various “editing techniques” used for the nearest neighbor methods with
very large number of vectors [12] may decrease this complexity to O(n log n). This
may be done by sorting projected vectors and restricting computations of the sum in
Eq. (1) only to vectors xi with G(w(x−xi)) > ε. The cost is further decreased if cen-
ters of projected clusters are defined and a single sum G(w(x − t)) is used. Gradient
descent methods may be replaced by more sophisticated approaches [3,13]). Technical
improvements are important, but here the potential of the model based on the localized
projected clusters is explored.

Figure 1 presents examples of projections that give maximum value of theQPC(w)
index for 4 very different datasets. All projections were obtained taking Eq. (3) for
G(x), with b = 3, simple gradient descent maximization initialized 10 times, selecting
after a few iterations the most promising solution that is trained until convergence.
Values of weights and the value of QPC(w) are shown in the corresponding figures.
Positions of vectors from each class are shown below the projection line. Smoothed
histograms may be normalized and taken as estimations of class conditionals p(x|C),
from which posterior probabilities p(C|x) = p(x|C)p(C)/p(x) are easily calculated.

The top left figure shows the Wine dataset from the UCI repository [14], with 13
features and 3 classes. It can be classified using a single linear projection that gives 3
groups of vectors (one for each class). The weight for “flavanoids” dominates and is
almost sufficient to separate all 3 classes.
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Fig. 1. Examples of projections found by maximization of the QPC index using gradient descent
for Wine data (top-left), Monk’s 1 problem (top-right), 10-bit Parity (bottom-left) and Concentric
Rings with noise (bottom-right)

The top right figure shows artificial Monk 1 datasets [14], with 6 symbolic features
and two classes. All vectors of the Monk 1 problem can be classified correctly with two
simple rules. Large cluster of vectors in the middle of the projection presented in Fig. 1
(first two coefficients are equal, others are essentially zero) corresponds to a rule: if
head shape = body shape then object is called a Monk. To separate the remaining cases
a second projection is needed (see below). These logical rules may also be extracted
from an MLP networks [15].

The lower left figure shows parity problem in 10 dimensions, with 512 even and 512
odd binary strings. This problem is 11-separable, with a maximum value of projection
index obtained for diagonal direction in the 10 dimensional hypercube, therefore all
weights have the same value. Although a perfect solution using a single projection has
been found clusters at the extreme left and right of the line are quite small and finding
another direction that puts these vectors in larger clusters is useful. Convergence of
MLP or RBF networks for such complex data is quite unlikely.

The final dataset represents concentric rings, with 4 classes, each with 200 samples
defined by 4 features. The first two features define points inside 4 concentric rings, and
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the last two are uniformly distributed random numbers. For this dataset best projection
that maximizes the QPC index reduces influence of noisy features, with weights for di-
mensions 3 and 4 close to zero. This shows that the QPC index may be used for feature
selection, but also that linear projections have limited power, and in this case leads to
complicated solution requiring many projections at different angles, while much sim-
pler network using localized functions is sufficient. The need for networks with different
types of transfer functions [10,11] has been stressed some time ago, but still there are
no programs capable of finding the simplest data models in all cases.

3 Visualization

Additional directions for interesting projections can be found in several ways. New di-
rection may be generated by the same procedure used in the subspace orthogonal to all
directions found earlier. This warrants that different directions are found at each itera-
tion. Second, one can focus on clusters of vectors that overlap in the first projection, and
use only subset of these vectors to maximize the PP index to find the second direction.
The third possibility is to search for the next linear projection with additional penalty
term that will punish solutions similar to those found earlier:

QPC(w; w1) = QPC(w)− λf(w,w1) . (5)

The value of f(w,w1) should be large if the current w is close to previous direction
w1. For example, some power of the scalar product between these directions may be
used: f(w,w1) = (w1

T ·w)2 . Parameter λ controls the influence of additional term on
the optimization process. Scatterplots of data vectors projected on two directions may
be used for visualization. Figure 2 presents such scatterplots for the four datasets used
in the previous section. The second direction w, found by gradient descent optimization
of function (5) with λ = 0.5, is used for the horizontal axis. The final weights of the
second direction, value of the projection index QPC(w) and the inner product of w1

and w are shown in the corresponding graphs.
For the Wine problem first projection was able to separate almost perfectly all three

classes. Second projection (Fig. 2) gives additional insight at data structure leading to
better separation of vectors placed near decision boundary. Two-dimensional projection
of Monk’s 1 data shows separate and compact clusters. The 5th feature (which forms the
second rule describing this dataset: if it is 1 then object is a Monk) has significant value,
and all unimportant features have weights equal almost to zero, allowing for simple
extraction of correct logical rules. In case of the 10-bit parity problem each diagonal
direction of a hypercube representing Boolean function gives a good solution with large
cluster in the center. Two such orthogonal directions have been found, projecting each
data vector into large pure cluster, either in the first or in the second dimension. Results
for the noisy Concentric Rings dataset shows that maximization of the QPC index has
caused vanishing of noisy and uninformative features, and has been able to discover
two-dimensional relations hidden inside this data. Although linear projections in two
directions cannot separate this data, such dimensionality reduction is sufficient for any
similarity-based method, for example the nearest neighbor method, to perfectly solve
this problem.
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Fig. 2. Scatterplots created by projection on two directions for Wine and Monk 1 data (top-
left/right), 10-bit parity and the noisy Concentric Rings data (bottom-left/right)

4 Constructive Neural Network

A single projection allows for estimation and drawing class-conditional and posterior
probabilities, but may be not sufficient for optimal classification. Projection on 2 or
3 dimensions allows for visualization of scatterograms, showing data structures hid-
den in the high-dimensional distributions, suggesting how to handle the problem in a
simplest way: adding linear output layer (Wine), localized functions, using intervals
(parity), or nearest neighbor rule (Concentric Rings). Reduction to higher number of
dimensions will be useful as a pre-processing for final classification. Coefficients of
the projection vectors may be used directly for feature ranking and feature selection
models, because maximization of the QPC index gives negligible weights for noisy
or insignificant features, while important attributes have distinctly larger values. This
method might be used to improve learning for many machine learning models sensitive
to feature weighting, such as kNN. Interesting projections may also be used to initialize
weights in various neural network architectures.

The QPC index Eq. (1) defines specific representation for the hidden layer of a con-
structive neural network. This may be used in several ways to construct nodes of the
network. In most cases, projections that maximize QPC(w) contain at least one large
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cluster. The center of this cluster can be directly estimated during maximization of the
Q(x; w) index, because it is associated with some vector xi ∈ X that gives the maxi-
mum value of Q(xi; w) in Eq. (1). Consider the node M implementing the following
function:

M(x) =
{

1 if |G(w(x− t))− θ| ≥ 0
0 otherwise

(6)

where the weights w are obtained by maximization of the QPC index, and t is the
center of cluster associated with maximum Q(x; w). This node splits input space into
two disjoint subspaces, with output 1 for each vector that belongs to the cluster and 0
for all other vectors. It is fairly easy to solve the parity-like problems with such nodes,
summing the output of all nodes that belong to the same class.

Further adjustments of weights and center of the cluster can enlarge the cluster and
give better separation between classes. This can be done by maximizing Q(t; w) with
respect to weights w and cluster center t, or by minimization of an error function:

E(x) = Ex||G (w(x− t))− δ(cx, ct)|| (7)

where δ(cx, ct) is equal to 1 when x belongs to the class associated with cluster with
center t, and 0 if not (error functions that are more sensitive to a number of separated
vectors and purity of solution have been considered [2]).

This method has twice as many parameters to optimize (weights and center), but
computational cost of calculation of functionQ(t; w) is linear in the number of vectors
O(n), and since only a few iterations are needed this part of learning is quite fast.
Final neuron should give good separation between the largest possible group of vectors
with the same labels, and the rest of the dataset. In the general sequential constructive
method [16] next node is trained only on vectors that have not been correctly handled
by previous nodes. This leads in a finite number of steps to a neural network which
classifies all samples of a given multiclass dataset, where each neuron derived by this
method is placed in hidden layer, and weights in the output layer are determined from a
simple algebraic equation (for details see [16]). Although we do not have space here to
report detailed results they are an improvement over already excellent results obtained
in [2] and similar to [7].

5 Discussion

Projection pursuit networks that reduce dimensionality and use clustering, such as the
QPC networks described in this paper, are able to find the simplest data models (includ-
ing logical rules) in case of quite diverse and rather complex data. They create interest-
ing features, allowing for visualization and classification of data. Should such networks
be called neural? Inspirations for the projection pursuit networks should be searched
at a higher level than single neurons. Non-local projections that form low-dimensional
clusters may be realized by neural columns that are activated by linear combinations of
incoming signals, learn to remember vectors that give similar projections, and learn bet-
ter weights to increase their excitations, inhibiting at the same time competing columns.
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Different mechanisms may then be used to extract interesting transformation from such
columns, reducing noise in data, selecting relevant information, learning to estimate
similarity of responses. A column may learn to react to inputs of specific intensity,
solving complex logical problem by clustering data in low-dimensional projections that
are not linearly separable.

Linear separability is not the best goal of learning. The QPC index helps to solve
problems that go well beyond capabilities of standard neural networks, such as the par-
ity or the noisy Boolean functions. The class of PP networks is quite broad. One can
implement many transformations in the hidden layer, explicitly creating hidden repre-
sentations that are used as new inputs for further network layers, or used for initial-
ization of standard networks. Brains are capable of deep learning, with many specific
transformations that lead from simple contour detection to final invariant object recog-
nition. Studying PP networks should bring us a bit closer to powerful methods for deep
learning.
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Abstract. The paper introduces new valuable improvements of perfor-
mance, a construction and a topology optimization of the Self-Optimizing
Neural Networks (SONNs). In contrast to the previous version (SONN-
2), the described SONN-3 integrates the very effective solutions used in
the SONN-2 with the very effective ADFA algorithms for an automatic
conversion of real inputs into binary inputs. The SONN-3 is a fully con-
structive ontogenic neural network classificator based on a sophisticated
training data analysis that quickly estimates values of individual real, inte-
ger or binary input features. This method carries out all computation fully
automatically from a data analysis and a data input dimension reduction
to a computation of a neural network topology and its weight parameters.
Moreover, the SONN-3 computational cost is equal O(nlog2n), where n is
a sum of a data quantity, a data input dimension and a data output di-
mension. The results of the SONN-3 construction and optimization are
illustrated and compared by means of some examples.

Keywords: Binary factorization, automatic conversion, discrimination,
artificial intelligence, factorization neural networks.

1 Introduction

Nowadays, various types of constructive neural networks and other incremen-
tal learning algorithms play even more important role in neural computations.
These algorithms usually provide an incremental way of building neural net-
works with reduced topologies for classification problems. Furthermore, these
neural networks produce a multilayer topology, which together with the weights,
are determined automatically by the constructing algorithm and thus avoid the
search for finding a proper neural network architecture. Another advantage of
these algorithms is that convergence is guaranteed by the method [1],[3],[4],[8],[9].
A growing amount of current research in neural networks is oriented towards this
important topic. Providing constructive methods for building neural networks
can potentially create more compact models which can easily be implemented
in hardware and used on various embedded systems.

This paper introduces a new extended and generally improved version (SONN-
3) of the constructive ontogenic SONNs, that are not only able to develop a net-
work architecture and compute weights fully automatically but also to optimize
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an input data dimension, automatically convert any integer and real data into
the discriminative bipolar binary vectors necessary for further SONN-3 compu-
tations. The previous version (SONN-2) was not be able to use integer and real
input vectors at all. The SONN-3 can automatically use various inputs (boolean,
integer, real) thanks to the ADFA conversion algorithms. This automatic con-
version makes possible to optimize a final SONN-3 network architecture even
more than it was possible using the SONN-2. The manual conversion necessary
for the SONN-2 was usually not optimal nor it can assure discrimination prop-
erties of the converted data. Moreover, the simple manual factorization usually
does not cover input data space sufficiently, spoils a quality of generalization
and wastes potential of the further SONN-2 construction process. The described
SONN-3 is free from these limitations. Many neural methods compete for a
better generalization using various training strategies and parameters, neuron
functions, various quantities of layers, neurons and interconnections. This paper
confirms that generalization potential is also hidden in data preprocessing and
a wideness of input data space that neurons can cover and suitably represent.
The introduced SONN-3 can be successfully used to various classification tasks.
The mentioned thesis is illustrated by means of some training data samples from
MLRepository (e.g. fig. 2.-3).

2 The SONN-3 Construction Process and Elements

The SONN-3 construction process starts from a sophisticated training data (TD)
analysis. First, the SONN-3 examines all input features of all training samples
and then automatically factorizes integer and real inputs into bipolar binary
vectors not loosing discrimination properties of input data. Next, it counts and
estimates all factorized input features and starts a process of a neural network
architecture development and an optimal weights calculation. The SONN-3 tries
to compress input data features with the same discrimination coefficients values
(7) for a selected subgroup of training samples by grouping them together and by
transforming same features into single connections. The compression process is
associated with the process of training samples divisions into subgroups that are
used to create neurons. The described algorithm creates still smaller subgroups
of training samples unless all training samples are correctly discriminated.

The SONN-3 consists of three types of neurons (fig. 1) that play a very impor-
tant role in an input data transformation into a final classification achieved on
network outputs. These neurons are arranged in layers. The number of layers is
dependent of correlation between training samples. If TD of various classes are
more correlated then a neural network architecture is also more complicated and
has got more layers and neurons and vice versa. If there are little correlations
between same class training samples there are more neurons in layers and vice
versa. The SONN-3 outputs determine the similarity of given inputs to classes
defined in TD. Many times some input features turn out to be redundant. The
SONN-3 can automatically reduce the minor input features and a data input
dimension as well (fig. 2-3). As a result, the SONN-3 qualifies some groups of
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Fig. 1. Three types of SONN-3 neurons: (a) Discriminatively-Factorization Neuron
(DFN) (b) Aggregation-Strengthening Neuron (ASN), (c) Maximum-Selection Neuron
(MSN)

inputs to be more important and pays no attention to the inputs which are less
or by no means important for a classification.

A very important part of a data transformation is processed by Aggregation-
Strengthening Neurons (ASNs) (fig. 1b) placed in the middle part of the SONN-
3 architecture (fig. 2-3). These neurons demand bipolar binary inputs during
their adaptation process. They aggregate same inputs together (without loosing
any information) and strengthen these of them that better discriminate training
samples in-between various classes. The strengthening factors are called global
discrimination coefficients (7). The ASNs always produce their outputs in the
range of [−1; +1] and are interconnected to next ASNs in such a way to propa-
gate the sum of discrimination coefficients values of all previous connections to
next layers (2). The discrimination coefficients values directly influence weights
values (3)-(4) of the network. In this way, the proper strengthening is appro-
priately promoted and propagated through a network without a discrimination
information lost.

xr = fAS
r (uks , ..., ukt , xp) = w

xp

0 xp +
∑

j∈{ks,...,kt}
wxr

j uj (1)
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d

ASp

0 =
∑
j∈J

dj (2)

w
ASp

0 =
d

ASp

0∑
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(3)

wASr

j =

⎧⎨⎩
un

i d+
i∑

j∈{ks,...,kt} dj
if un

i ≥ 0
un

i d−
i∑

j∈{ks,...,kt} dj
if un

i < 0
(4)

The bipolar binary inputs necessary for an ASNs adaptation are computed by
Discriminatively-Factorization Neurons (DFNs) (fig. 1a) that can automatically
factorize integer and real TD inputs in such a way that existing discriminative
TD properties are not lost after this transformation. After the conversion, the



766 A. Horzyk

input space of raw TD data is represented enough to discriminate all TD from
various classes if only TD are not contrary. If simultaneously all associated inputs
vt lie in appropriate factorization ranges [Lt

m;P t
m] of a considered DFN then it

produces the value +1 on its output and the value −1 otherwise (5).

fDF
k (vni , ..., vnj ) =

{
1 if

∧nj

t=ni
v

Lt
m

t ≤ vt ≤ v
P t

m
t

−1 otherwise
(5)

The maximum similarity to each class is computed by Maximum-Selection
Neurons (MSNs) (fig. 1c) that are used to select a maximal value from all con-
nected ASNs that represent aggregated most important input features of training
samples of appropriate same classes (6). There could be sometimes connections
between factorized inputs and these neurons (fig. 3) for some trivial or very
correlated training samples of same classes.

ym = fMS
m (uks , ..., ukt , xni , ..., xnj ) = max{ uks , ..., ukt , xni , ..., xnj} (6)

The above described three types of neurons are used to construct a partially
connected multilayer neural network topology that can be precisely adjusted to
whatever training data set and a classification task. Such adjustment is similar
to the plasticity [5] processes that take place in natural nervous systems [10].

The SONN-3 is an extended and generalized version of the SONN-2 and the
SONN-1 widely described and discussed in many papers (e.g. [4],[8]). The most
important aspect of the SONN-3 is the ability to automatically factorize integer
and real training data and thanks this to achieve a more optimized and better
representative neural network topology and better generalization results. These
are possible because the automatic factorization algorithm (ADFA) better covers
an input data space and makes possible to represent a more important TD
information in a neural network in a more consistent form.

The main goal of the ADFA-1 is to find out a possibly minimal set of fac-
torization ranges for all integer and real data input features and to convert the
values from these ranges into binary unipolar {0; 1} or bipolar {−1; +1} values.
First, the real data inputs have to be sorted separately for each data input fea-
ture in order to start the computation of these ranges. There is preferred the
heapsort algorithm which computational cost is always O(nlogn). The stability
of the sorting algorithm does not matter.

After all input data features are sorted, the ADFA-1 starts to search for
optimal factorization ranges taking into account the following two criteria:

1. the optimal range should contain as many samples of the same class as
possible and no samples of other classes (i.e. a maximum quantity of samples
of the same class is looked for),

2. the optimal range containing maximum samples of the same class (there can
be more than one) should be as wide as possible and be placed as far as
possible from data samples of other classes (i.e. a maximum size of the range
and its maximum distances from values of samples of other classes are looked
for).
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These two criteria are important to satisfy the requirements mentioned at the
beginning of this paper, especially in a view of good generalization properties.
The ADFA-1 is looking for those optimal ranges in the following way:

1. All data samples are marked as not discriminated at the beginning.
2. The ADFA-1 is looking through all input features of all yet not discriminated

data samples in the sorted order and is looking for the range that contains
a maximum quantity of training samples of the same class (to meet the
criterion 1 described above). If there are two or more ranges that meet this
criterion, there is selected this one which meets the criterion 2 described
above. Each optimal range is described by the minimal and maximal values
and the feature for which this range has been found. This input feature is
called the winning input feature here.

3. All not discriminated samples which winning input feature is in the chosen
optimal range are marked as discriminated.

4. Next, all input data features except the winning one are looked through in
order to remove the indexes from the sorted index tables if only these indexes
point out the already discriminated data samples.

5. The steps 2, 3 and 4 are repeated until all training data samples are dis-
criminated and the sorted index tables for all input data features are empty
or there can not be fixed any new range of not discriminated samples of the
same class.

If there can not be found any new range and some training samples left not to
be discriminated it means that TD are contrary or they can be discriminated
only by some combination of various feature ranges. The combinations can be
constructed by the ADFA-M (that will be introduced in a not too distant future).
On the other hand, the ADFA-1 can successfully process a large majority of TD
and is much faster than the ADFA-M.

Moreover, the SONNs require all data available at the beginning of the adap-
tation process, so they can process various global optimization processes. In a
result, the SONNs can globally estimate importance of each input feature for all
training samples and adapt the network structure and weights reflecting these
estimations. The importance of each k-th input feature for each n-th training
sample un of the m-th class Cm is globally measured by the use of the defined
so called global discrimination coefficients (7):

∀m∈{1,...,M}∀un∈Cm∀n∈{1,...Q}∀k∈{1,...K} :
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k

Qh

)
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0 if un
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(7)

where M denotes a number of trained classes, Q is a number of all training
samples, K is a number of factorized input features, un

k is the k-th feature value
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for the n-th training sample and Pm
k , Nm

k , Qm are defined by the following
formulas:

∀m∈{1,..,M} Qm =
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}∥∥∥ (8)
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Those discrimination coefficients (7) qualify the discrimination property of
each k-th feature for the n-th training sample of the m-th class and have the
following properties:

– they are insensitive for a different quantity of training samples that represent
various classes,

– a discrimination property of each feature of each training sample is globally
estimated,

The SONN topology optimization process is so designed to compute a mini-
mal network structure using only these features that have maximal discrimina-
tion properties for each class. The SONN-2 topology and the middle part of the
SONN-3 topology are created in a specific process of a TD division and a features
aggregation. Each division produces a single neuron that represents a subgroup
of training samples that meets a division criterion. The selected training samples
represented by a neuron always deal at least one same discrimination coefficient
value. They are computed in such a way to maximize a quantity of aggregated
same obligatory discrimination coefficients by single connections. Neurons pro-
duce a simple weighted sum output (1) but the weight of inter-neuron connection
(3) is so computed to reflect the sum of all discrimination coefficients values rep-
resented by all input connections of this neuron (2). This makes possible to keep
the influence on a classification of all inputs at a level determined by the val-
ues of their corresponding discrimination coefficients. This assures appropriate
influence on a resultant classification and provides a very good generalization.

The SONN-3 topology optimization process is based on discrimination coeffi-
cients (7) computed for all training data samples as well as for some subgroups of
them. In order to find an optimal SONN-3 topology there is necessary to create
only these connections which are necessary to classify correctly and unambigu-
ously all training data using only the input features with maximal discrimination
properties [5],[8]. Weights parameters and a topology are computed simultane-
ously during the SONN-3 construction process [4],[8]. Such strategy makes pos-
sible to precisely assign each feature representing a subgroup of training samples
to an accurate optimal weight value (3)-(4) arising from its discrimination prop-
erties. It is fundamental in decision processes and a classification. The SONN
classification results have been compared with the other AI methods (tab. 1-2)
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for the Wine and Iris data from MLRepository. The comparison results show
that the SONN-3 is not only very fast [4],[8] but also it achieves very good gen-
eralization properties in the comparison with the other popular AI classification
methods. There is not many other neural network training algorithms that can
directly and optimally fit a topology and all weights to all training samples after
a global information about them. Moreover, the SONNs have many interest-
ing features that can be compared with biological neural networks and various
neural processes in biological brains [5].

Moreover, the SONN-3 uses two kinds of information for the discrimination:
an existence and a non-existence of some input values for some classes (7). The
second kind of information is rarely used by other AI models. The majority of
AI models and methods use only the information about an existence of some
input values in some classes. The SONN methodology expands these abilities
and supplies better possibilities for a generalization.

TD and relations between trainings samples of a same class can be very vari-
ous. The described SONN methodology does not find dependencies between data
different features but uses their given values to probabilistically estimate their
discriminative properties (7) individually. The SONN-3 topology puts together
the most important information about discriminative properties of different fea-
tures constructing a uniform classification model for any given TD. The SONN-3
is always built up after the most important, well-differentiating and discriminat-
ing features of all training samples. The SONN-3 also automatically excludes
artifacts of data bacause it focuses on the most discriminative features which ar-
tifacts are not. The SONN generalization property reflects the most important
and characteristic information of individual classes for any given TD set.

3 Experiments and Comparisons

The SONN-3 has been applied to many classification problems in order to com-
pare this method with other AI methods. The figures 2-3 and the tables 1-2
illustrate the sample architectures and compares various methods applied to the
same TD sets from MLRepository.

The Wine data have been divided into disjunctive 101 training samples and
77 test samples and the Iris data into 75 training samples and 75 test samples in
order to compare classification results of the various AI classification methods.
GhostMiner 3.0 was used for developing and evaluation some AI models with the
default training parameters. First, all classification methods have been trained
and adapted to fit the training samples and then all methods have been tested.
The comparisons of the classification results is shown in the tables 1-2. More-
over, the figure 3 shows the comparison of the SONN-3 network architectures
automatically created for all and for 101 selected training Wine samples.

The presented samples from the figures 2-3 illustrate that:

– The original input data dimension have been really reduced in the both
examples: There have been used only 3 from 4 available inputs for the Iris
data and only 5 from 13 available inputs for the Wine data.
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Fig. 2. The SONN-3 constructed automatically for the Iris data

Fig. 3. The comparison of SONNs-3 constructed automatically for (a) all Wine samples
and (b) for 101 selected training Wine samples from MLRepository

– The factorized input dimension for the ASNs have been also reduced in the
both examples: There have been used only 11 from 12 available inputs for
the Iris data and only 6 from 7 available inputs for the Wine data.

– The selected reduction of the original input dimensions and the factorized in-
put dimensions have not spoil the discrimination properties of the processed
data and have enabled the correct classification of them.
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– In spite of the creation of only a few neurons and connections for the both
examples all training data and almost all test data have been correctly clas-
sified.

– The whole process of the neural networks development and the optimization
and the weights computation have taken 1-2 seconds.

– The generalization properties of the created neural networks are at the top
level in the comparison with the other AI methods (Table 1).

Table 1. The comparison of the Wine data classification results

Table 2. The comparison of the Iris data classification results

4 Conclusions

The paper deals with the fully automatic construction of the universal onto-
genic neural network classificator SONN-3 that is able to automatically adapt
itself using binary, integer and real data without any limitations. It analyses
and processes TD very fast and finds out the optimal SONN-3 architecture and
weights for any given TD set. It can also optimize an input data dimension - au-
tomatically limiting a number of necessary inputs - what can have a special value
in many practical uses. Not many methods can effectively select most discrimina-
tive inputs, so many times classification results are influenced under minor or not
important parameters that can also spoil classification results and generalization
properties of a finally adapted neural network. The SONN-3 reduces original real
inputs to a set of the best discriminating inputs and then reduces binary bipolar
inputs in the second phase of computations as well what can be noticed in the
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neural networks created for the Wine and Iris data shown in the fig. 2-3. Finally,
the SONN-3 is very fast, cost-effective and fully automatic. On the other hand a
computer implementation of this method is not easy because of a huge number
of optimization algorithms that gradually analyze TD, transform them, develop
a final neural network topology and compute its weights. The interactive web
with SONN-3 will be publish soon at the site http://home.agh.edu.pl/˜horzyk.
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Abstract. A novel method for the creation of machine controllers au-
tonomously is presented. The method is based on reward values which
can represent the internal state of the machine or the rating of its task
performance. The method consists of a biologically sound constructive
neural network model with a minimum number of neurons and no con-
nections initially. New connections and neurons are added when feedback
is fed into the neural network using positive and negative reward values.
This way the topology and the level of connectivity of the network are
kept to a minimum. The method will be applied to a controller for an
autonomous mobile robot.

Keywords: Constructive Neural Network, Spiking Neural Network, Re-
inforcement Learning, Growing Machine Controllers.

1 Introduction

Machines make decisions based on sensory input that bring them closer to certain
goals. It has been shown that artificial neural networks can learn how to select
adequate actions [1]. Neural networks can also be used for classification tasks
[9]. In many cases the classes themselves are wanted as a result. In a machine
controller classification those classes can also be used to reduce the size of the
network that learns the action selection task.

A novel method, which does not only include the classification task and the
action selection task into a single neural network is presented. It is also capable of
defining the classes autonomously and it can grow new neurons and connections
to learn to select correct actions from experience based on reward values. Positive
and negative reward values build the feedback, which can be generated internally,
without human intervention. Alternatively it is possible that a human feeds the
controller with feedback during runtime acting as a teacher.

The initial neural network consists of a minimum number of neurons and no
connections. The designer of the controller does not need to take care of the
topology of the network. Only the interface from the controller to the machine
has to be defined, which reduces the design effort considerably.
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The interface includes:

– Input neurons, which convert sensory input into values that can be sent to
other neurons. For our experiments we used spiking neurons, so the sensory
values are converted into spikes by the input neurons.

– Output neurons, which convert the output of the neural network into values
that can be interpreted by the actuators.

– A reward function, which feeds feedback into the machine controller.

This paper first shows the characteristics of the neural network that is used
for the novel methods to grow machine controllers autonomously in section 2.
Section 3 discusses the crucial issue of how feedback can be defined, how it is
fed into the neural network and how it is used for basic learning strategies.
Section 4 shows how to use the feedback for the more sophisticated methods
of growing new neurons and connections. A simulation of a mobile robot was
used to test the novel methodology. The robot should learn to wander around
in a simulated environment avoiding obstacles, such as walls. The results are
presented in section 5. Section 6 draws some conclusions and future prospects.

2 Controller Characteristics

Our growing machine controller consists of a layered spiking neural network as
illustrated in Fig. 1.a, in which neurons send Boolean signals that transport the
information depending on whether or not the presynaptic neuron (the first of
two connected neurons) was activated and has fired (a spike). The hidden layer
B contains two neurons that store input combinations. One of them excites den-
drite a via axon d, which itself excites an output neuron. The neuron in layer
C inhibits the same output neuron by axon c. Also axon b inhibits that neuron
but implements local inhibition. A neuron is activated when a certain threshold
potential is exceeded. The neuron potential is increased by spikes arriving at ex-
citatory connections and decreased by spikes arriving at inhibitory connections.
A basic explanation of spiking neural networks can be found in [12].

The use of sparse neural networks was has been discussed in [3] and [5]. These
models result in less computation requirement and better development of the
network as well as smaller topologies. The main reason for obtaining smaller
topologies when using classification is obvious:

If there are no neurons, which represent a certain class, all neurons of this class
have to connect to the next layer in the network separately and not with a single
connection. There is no problem if one neuron connects only to one neuron. An
additional connection in this case is required. However, when a neuron connects
to a second neuron, only one additional connection is made instead of more con-
nections from all neurons of a class. Also the total number of neurons is reduced if
the neurons are representing the possible combinations of neurons in the previous
layer, because in a succeeding layer only the class neurons have to be considered.

To achieve an efficient topology along with action selection and classification,
in a single neural network, we separate the connections into two parts: artifi-
cial dendrites and axons. An axon of the presynaptic neuron is connected to
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(a) (b)

Fig. 1. (a) Neural network topology after a short period of a simulation run. For
clarity not all connections are shown. Layer A consists of the input neurons which are
connected to sensors A to F from the robot shown in (b). Layer D contains the motor
neurons, connected to G and H in (b).

a dendrite of the postsynaptic neuron. Excitatory connections have to be used
for operations that are similar to the logical AND and OR. For inhibitory con-
nections this separation is not necessary, because they represent an operation
similar to the logical NOT.

A dendrite has got a low threshold potential and is activated when only one
presynaptic neuron (or a few neurons) have fired a spike via their axons. All
presynaptic neurons are handled equally at this point (logical OR) and represent
neurons which are combined into one class. An axon weight defines how much
one presynaptic neuron belongs to the class.

In the following we want to show the computations when signals travel from
one neuron to another.

Input of a dendrite:
Id =

∑
Oa+ · wa+ (1)

where Id is the dendrite’s input. Oa+ is the output of an excitatory axon, which
is 1, if the presynaptic neuron has fired and 0 otherwise. wa+ is the weight of
the same excitatory axon, which has to be a value between 0 and 1.

Output of a dendrite:

Od =
1

1 + e−b·(Id−θd)
(2)

where Od is the dendrite’s output and Id is its input. θd is a threshold value for
the dendrite. b is an activation constant and defines the abruptness of activation.
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Input of a neuron:

Ij =
∑

Od · wd −
∑

Oa− · wa− (3)

where Ij is the input of the postsynaptic neuron j, Od is the output of a dendrite,
wd is the weight of this dendrite, Oa− is the output of an inhibitory axon and
wa− is the weight of this inhibitory axon. Dendrite weights and axon weights
are in the range [0, 1] and all dendrite weights sum up to 1.

Change of neuron potential:

Pj(t + 1) = δ · Pj(t) + Ij (4)

where the new neuron potential Pj(t+ 1) is calculated from the potential of the
last time step t, Pj(t), and the current contribution by the neuron input Ij . δ is
a constant between 0 and 1 for recovering to the resting potential (which is 0 in
this case) with time.

The postsynaptic neuron is activated when its potential reaches the threshold
θj and becomes a presynaptic neuron itself for neurons which its own axons are
connected to. After firing the neuron resets its potential to the resting state. In
contrast to similar neuron models that are for example summarised by Katic [8],
a refractory period is not implemented here.

3 Feedback and Reward Values

The main challenge for a designer of a machine controller that uses the meth-
ods described in this paper to evolve itself, is to define an appropriate reward
function. Positive and negative reward values are fed into the neural network
as explained below and are used for all adaptation processes, like basic learning
(adaptation of connection weights), creating new connections and creating new
neurons (growing mechanisms).

In our experiments we have used a single global reward value, which represents
a positive “rewarding“ or negative “aversive” feedback relative to the machine’s
performance in the task that has been assigned. The objective is to create a
network which maximises positive feedback.

Depending on current measurements like fast movement, crashes, recovering
from crashes, or the energy level the reward value is set from -1, very bad,
to 1, very good. The challenge is to provide a useful value in all situations.
For example, as experiments have shown (see Sect. 5), a reward function that
is not capable of providing enough positive feedback may result in a hang-up
of the machine, because all of its effort to find a good action is not evaluated
properly. Also uniform positive feedback may result in a similar situation because
of lacking contrast.

The reward value Π(t), which is the result of the reward function at time t,
has to be back-propagated to all neurons, where it is analysed and used for the
adaptation mechanisms. To do so, the neurons of each layer, starting with the
output layer and going back to the input layer, calculate their own reward value.
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The value of the output neurons is equivalent to the global reward value. All
other neurons calculate their reward as follows:

Πi(t) =
∑
Πj+(t)−∑Πj−(t)

N+ +N−
(5)

where Πi(t) is the reward value of the presynaptic neuron i at time step t.
Πj+(t) is the reward value of a postsynaptic neuron that has got an excitatory
connection from neuron i, while j− refers to a postsynaptic neuron that has got
an inhibitory connection from neuron i. N+ is the number of the postsynaptic
neurons of the first kind and N− is the number of the other postsynaptic neurons.

First the reward value of a neuron is used to adapt the connection weights.
This is done after the basic processes of Sect. 2 for each neuron. All calculations
for all neurons are done once at each time step t.

The reward value can be added to a learning rule as an additional factor.
Different authors, all of them using different neuron functions and learning func-
tions, have shown that this surprisingly simple method can successfully be used
to implement reinforcement learning in a neural network [2,4,7]. They do not
need an external module that evaluates and changes the connections of the net-
work after each processing step any more.

Activation Dependent Plasticity is used to adapt connection weights in the
experiments. Activation Dependent Plasticity (ADP) is based on Hebb’s ideas
of strengthening connections that fire together [6]. As shown by [4,7] reward can
also be integrated into the more sophisticated Spike Time Dependent Plasticity
(STDP) learning model.

Adaptation of an excitatory axon weight (axon connected to dendrite):

wa+(t + 1) = wa+(t) + ηa ·Πj(t) · φi · φj (6)

where wa+(t) and wa+(t + 1) are the axon weights before and after the adap-
tation. ηa is the learning factor for axons and Πj(t) is the current reward value
of the postsynaptic neuron. φi and φj represent the recent activity of the presy-
naptic and the postsynaptic neuron. In our experiments φi was kept between
-1 and 0 for very little activity and from 0 to 1 for more activity, φj is kept
between 0 and 1. For positive reward much activity in the presynaptic neuron
strengthens the axon weight if also the postsynaptic neuron was active but little
presynaptic activity weakens the axon weight. A negative reward value turns
around the direction of change.

Adaptation of a dendrite weight (always excitatory):

wd(t + 1) = wd(t) + ηd ·Πj(t) · φd · φj (7)

where wd(t) and wd(t + 1) are the dendrite weights before and after the adap-
tation. ηd is the learning factor for dendrites. φd represents the recent activity
of the dendrite (which joins the activity of the connected axons) and is kept be-
tween 0 and 1. Πj(t) and φj are discussed with Equ. 6. When all dendrite weights
of a neuron are adapted they are normalised to sum up to 1 again because of
the dependencies between the weights (see Sect. 2).
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Adaptation of an inhibitory axon weight (axon connected to neuron):

wa−(t + 1) = wa−(t)− ηa ·Πj(t) · φi · φj (8)

where wa−(t) and wa−(t + 1) are the axon weights before and after the adap-
tation. ηa, Πj(t), φi and φj are discussed in Equ. 6. Axons that are part of
local inhibition, were not changed in our experiments. Also if φi is negative, the
weight was kept equal. An inhibitory axon is strengthened, if it was not able to
prevent from bad reward, and it is weakened, if it tried to prevent good reward.

4 Autonomous Creation of the Neural Network

The methods that were discussed in the previous section tune a neural network.
They are necessary to reinforce neural paths that were responsible for good
actions and to weaken and finally remove connections that made a neuron output
to classify incorrectly.

There are different methods that result in new connections or even new neurons.
If a neuron has got no input connections, it can connect to a random new pre-

decessor in the previous layer. In our experiments the randomness was reduced
by looking for neurons that have similar relative positions. Such a new connec-
tion is always excitatory and consists of a single axon and a single dendrite. This
makes the postsynaptic neuron (or better: its single dendrite) representing a new
class and having the potential to carry out a new action when activated. Other
neurons can be added to the class by creating new axons occasionally. An axon
that does not fit into the class will be weakened by the mechanisms of Sect. 3.

New neurons are created to remember activation patterns that were respon-
sible for good or bad actions. Liu, Buller and Joachimczak have already shown
that correlations between certain input patterns and a certain reward can be
stored by creating new neurons [10] [11]. For this task we add a new potential
value to each neuron. The common “neuron potential” function defines when a
neuron fires a spike. Our new “reward potential” function defines when a neuron
has got enough feedback to create a new neuron:

Rj(t+ 1) = δR ·Rj(t) + φj ·Πj(t) (9)

where Rj(t + 1) is the new reward potential of neuron j while Rj(t) is the old
one. φj is the value for the recent activity that was also used in Sect. 3 and Πj(t)
is the current reward value of neuron j.

When |Rj | reaches a certain threshold θR (different thresholds for positive
and negative feedback are possible) all dendrites (excitatory connections) that
were active recently are evaluated. Young dendrites are ignored, because they
have not proved themselves already. For a dendrite with more than one axon it
may be worth to remember an activation combination. A single axon may still
be interesting if there was bad feedback, because the axon should have been
inhibitory in this case. A list of axons, that had influence on the activation of
the neuron, is kept. If this combination is not yet stored in an existing preceding
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neuron, a new neuron is created and each axon of the list is copied. However,
each of the new axons is connected to its own dendrite to record the combination.
The new neuron will only be activated when the same combination is activated
again. When the reward potential was positive, the new neuron is connected to
the existing one by a new axon to the currently evaluated dendrite (neurons in
layer B in Fig. 1.a). A negative reward potential results in a new inhibiting axon
to the existing neuron (neuron in layer C in Fig. 1.a).

The new neuron is then inserted into the previous layer. However, if there is a
neuron in that layer, that is connected to the new one, a new layer is created between
the layers of the presynaptic and the postsynaptic neuron. The relative position of
the new neuron will be similar to the relative position of the existing one.

Once the new neuron is inserted, local inhibition will be generated. Experi-
ments have shown that local inhibition makes learning much faster and much
more reliable (see Sect. 5). Hence, new inhibiting axons are created to and from
each new neuron. This inhibitory web has been automatically created within
one layer in our experiments. In more sophisticated future developments this
web should maybe be limited to certain areas within a layer. Nested layers with
neuron containers, which are basically supported by our implementation but are
not used for the growing mechanisms yet, could help with this task.

5 Experiments

5.1 Setup

Our novel method for the creation of machine controllers autonomously was
tested in a simulation of a mobile robot which moves using differential steering,
as shown in figure Fig. 1.b. The initial neural network consists of 12 input neurons
(2 for each sensor) and 4 output neurons (2 for each motor, see Fig. 1.a).

The input neurons are fed by values from 6 sonar sensors as shown in Fig. 1.b,
each sensor feeds the input of 2 neurons. The sonar sensors are arranged so that
4 scan the front of the robot and 2 scan the rear as shown in the figure. The
distance value is processed so that one input neuron fires more frequently as the
measured distance increases and the other neuron connected to the same sensor
fires more frequently as the distance decreases.

For the actuator control, the output connections are configured so that the
more frequently one of the output neurons connected to each motor fires, the
faster this motor will try to drive forward. The more frequently the other output
neuron connected to the same motor fires, the faster that motor will try to
turn backward. The final speed that each motor will drive is calculated by the
difference between both neurons.

With this experimental setup the robot should learn to wander around in a
simulated environment while avoiding obstacles.

The original robot’s bumpers are included in the simulation and are used to
detect collisions with obstacles, and are used to penalise significantly the reward
values when such a collision occurs. The reward is increased continuously as the
robot travels farther during its wandering behaviour. Backward movement is
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only acceptable when recovering from a collision, therefore it will only be used
to increase the robot’s reward value in that case, while it is used to decrease this
value for all other cases. As time increases, linear forward movement will receive
higher positive reward and this will discourage circular movement.

5.2 Results

The reward function that we have used in our experiments delivers−1 in the case
the robot crashes into an obstacle. Backward movement is punished (negative
value). There are two features that are not implemented in all three simulation
runs of Fig. 2.a: First, no or small forward movement is punished; second, back-
ward movement is rewarded (positive value), if the robot received bad feedback
for a while, to keep the robot active.

(a) (b)

Fig. 2. (a) The three curves show the reward values the robot received in simulation
runs of the same duration and starting at the same position. In “Run 1” only forward
movement is rewarded. The robot learns to hold its position to minimise negative
feedback. In “Run 2” and “Run 3”, the same reward algorithm is used, but in “Run
3” no or small forward movement is punished. The robot learns to receive positive
feedback with time which makes it more stable. (b) “Run 1” shows the development
of the reward value without local inhibition. This contrasting method increases the
produced reward values significantly in “Run 2”.

Figure 2.b shows the importance of local inhibition. Without local inhibition
the simulation run did not produce a single phase in which significant positive
feedback is received. Only short spots of positive reward can be identified where
the robot acted in a good way by chance. Local inhibition increases the contrast
of spiking patterns, which makes single neurons and hence single motor actions
more powerful and the assignment of reward to a certain spiking pattern more
reliable.

Table 1 shows the results of a test of 50 simulation runs. In many cases the
robot was able to learn the wandering task with the ability to avoid obstacles.
Each run of the test sample was stopped after 20000 control cycles (processing
the whole neural network in each cycle).
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Table 1. Results of 50 simulation runs

Performance of the controller

Min. Max. Avg.

Total reward 664.82 7486.24 4014.02

Average reward 0.03 0.37 0.20

Maximum speed 657.00 1056.00 1015.92

Average speed 102.74 971.63 260.37

Crashes 0.00 13.00 4.50

Topology of the controller

Min. Max. Avg.

Neurons 16.00 38.00 22.46

Excitatory axons 14.00 178.00 45.28

Excitatory dendrites 4.00 139.00 27.88

Inhibitory axons 4.00 7.00 4.36

The neural network contained no hidden neurons and no connections at the
beginning. Connections for local inhibition were created at the very beginning.
The speed values of the table are given in internal units of the simulation.

6 Conclusions and Further Work

We have shown that a neural network can be grown based on the reward mea-
sured by a feedback function which analyses the performance of a task in real
time. The neural network can control a machine such as a mobile robot in an
unpredictable or unstructured environment.

Since the controller constructs itself, only the input layer, the output layer
and a feedback function that measures the task performance of the machine
and rewards the controller have to be defined. This means that the task of the
designer involves only the definition of these elements, no effort is required for
the actual design of the network.

Because controlling the machine and learning from experience in a continuous
way when running is integrated into a single and robust stage, the system can
adapt to completely new situations without changing the complete control struc-
ture manually. This implicates three advantages additional to the possibility of
evolving a control system from scratch:

1. The machine can learn to react appropriately in situations that did not occur
before but can use the experience it has gathered so far.

2. The machine can learn to handle changes to its hardware, for example if a
sensor breaks.

3. When new machines are developed, it may be possible to use the neural
network of established machines to reduce the time necessary for training
them by starting from a semi-optimal state rather than from scratch.

Further analysis and improvements of the growing methodology are necessary
to gain more results of the potential of the growing methods for the neural
network. For example it will be necessary to investigate the behaviour of the
system with concurrent tasks and conflicting or noisy sensory data.
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2. Daucé, E., Henry, F.: Hebbian Learning in Large Recurrent Neural Networks.
Movement and Perception Lab, Marseille (2006)

3. Elizondo, D., Fiesler, E., Korczak, J.: Non-ontogenetic Sparse Neural Networks.
In: International Conference on Neural Networks 1995, vol. 26, pp. 290–295. IEEE,
Los Alamitos (1995)

4. Florian, R.V.: Reinforcement Learning Through Modulation of Spike-timing-
dependent Synaptic Plasticity. Neural Computation 19(6), 1468–1502 (2007)
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Abstract. The mathematical background of MNNs can be found in
mathematical morphology (MM). Since MM can be conducted very gen-
erally in the complete lattice setting, MNNs are closely related to other
lattice-based neurocomputing models.

This paper reviews some important types of feedforward morpho-
logical neural networks including their mathematical background. In
addition, we analyze and compare the performance of feedforward mor-
phological models and conventional multi-layer perceptrons in some clas-
sification problems.
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cal Neural Network, Pattern Classification.

1 Introduction

The theory of morphological neural networks (MNNs) and its applications has
experienced a steady and consistent growth in the last few years [1]. An artificial
neural network is said to be morphological if every neuron performs an elemen-
tary operation of MM [17,3], which is generally non-linear, possibly followed by
the application of an activation function. Thus, MMNs are drastically differ-
ent from conventional semi-linear artificial NNs which are endowed with linear
aggregation functions. Morphological and hybrid morphological/linear neural
networks [9] have been successfully applied to a variety of problems such as au-
tomatic target recognition, handwritten character recognition, and time series
prediction [13,9,19]. MNNs include morphological perceptrons [6], dendritic mor-
phological perceptrons [7], (fuzzy) morphological associative memories [17,19,5],
modular morphological neural networks [8], and morphological shared-weight
neural networks [13]. This paper clarifies that fuzzy lattice neural networks [10]
can also be viewed as MNNs.

Although the theory of morphological neural networks (MNNs) and its appli-
cations has experienced a steady and consistent growth in the last few years [1],
an overview and a comparison of MNNs such as the one presented in this paper
has not yet appeared in the literature.
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The paper is organized as follows. After presenting the lattice background of
MNNs, we review some of the most important types of MNNs. Section 3 com-
pares the performances of morphological models and MLPs in some classification
problems. We finish the paper with some concluding remarks.

1.1 Lattice Background for Morphological Neural Networks

Morphological neural networks consist of morphological neurons, which perform
elementary operations of mathematical morphology. Complete lattices provide
for a general framework in which MM can be conducted [18].

A complete lattice is a partially ordered set L in which all subsets (finite or
infinite) have both a supremum and an infimum in L [14]. For any Y ⊆ L, we
denote the infimum of Y by the symbol

∧
Y and we write

∧
j∈J yj instead of∧

Y if Y = {yj , j ∈ J} for a index set J . We use similar notations to denote
the supremum of Y . The extended real numbers R̄ and the unit interval [0, 1]
represent specific examples of complete lattices. We say that an operator νL :
L −→ L is a negation on L if νL is a involutive bijection that inverts the partial
order relation of L.

A central point in mathematical morphology is the decomposition of mappings
between complete lattices in terms of elementary operations [4].

Definition 1. Let ε, δ, ε̄, δ̄ be operators from the complete lattice L to the com-
plete lattice M, and let Y ⊆ L.

ε is called erosion ⇔ ε(
∧

Y ) =
∧

y∈Y

ε(y); (1)

δ is called dilation ⇔ δ(
∨

Y ) =
∨

y∈Y

δ(y); (2)

ε̄ is called anti-erosion⇔ ε̄(
∧

Y ) =
∨

y∈Y

ε̄(y); (3)

δ̄ is called anti-dilation ⇔ δ̄(
∨

Y ) =
∧

y∈Y

δ̄(y). (4)

The following theorem establishes representations of anti-dilations and anti-
erosions in terms of erosions, dilations, and negations [17].

Theorem 1. Let L and M be complete lattices with negations νL and νM, re-
spectively.

• An operator δ̄ : L→M is an anti-dilation ⇔ δ̄ = ε ◦ νL or δ̄ = νM ◦ δ, where
δ is a dilation and ε is a erosion.

• An operator ε̄ : M→ L is an anti-erosion ⇔ ε̄ = δ ◦ νM or ε̄ = νL ◦ ε, where
ε is an erosion and δ is a dilation.

Banon and Barrera [4] showed that for every mapping ψ : L −→ M there exist
erosions εi and anti-dilations δ̄i for some index set I such that

ψ =
∨
i∈I

(εi ∧ δ̄i) . (5)
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Similarly, the mapping ψ can be written as an infimum of supremums of pairs
of dilations and anti-erosions. In the special case that ψ is increasing, ψ can be
represented as a supremum of erosions or as an infimum of dilations.

2 Some Models of Feedforward Morphological Neural
Networks

Morphological neural networks are equipped with morphological neurons. We
speak of a morphological neuron if its aggregation function corresponds to an
elementary morphological operation. In the following subsections, we describe
some types of feedforward morphological neural networks.

2.1 Morphological Perceptron (MP)

Given a vector of inputs x ∈ R
n, a vector of synaptic weights w ∈ R̄

1×n and an
activation function f , a neuron of the morphological perceptron calculates the
output y according to one of the following rules:

y = f(εw(x)), where εw(x) = ∧n
i=1(xi + wi);

y = f(δw(x)), where δw(x) = ∨n
i=1(xi + wi);

y = f(ε̄w(x)), where ε̄w(x) = ∨n
i=1(−xi + wi);

y = f(δ̄w(x)), where δ̄w(x) = ∧n
i=1(−xi + wi).

The values of the morphological perceptron’s weights must be determined
before it can act as a classifier. Actually, the weights are determined in a learning
stage where the supervised learning algorithm [6] constructs n-dimensional boxes
around sets of points which share the same class value. Convergence occurs in a
finite number of steps.

Originally, a training algorithm for MPs was proposed to solve two-class clas-
sification problems [6]. This training algorithm automatically produces the ar-
chitecture illustrated in Figure 1(a).

After training, the MP calculates the following output pattern y for an input
pattern x:

y = f(∨m
j=1(εvj (x) ∧ δ̄wj (x))) (6)

According to Equation 6, MP calculates a supremum of erosions and anti-
dilations which is a decomposition suggested by Banon and Barrera [4] followed
by the application of a hard-limiting function f . Equation 6 implies the set of
points that are classified as belonging to class 1 (y = 1) is given by a union of
hyperboxes. Note that the operators εw, δw, ε̄w, δ̄w constitute examples of the
elementary operators introduced in Definition 1.

2.2 Morphological Perceptrons with Dendrites (MPD)

Based on recent research in neuroscience, Ritter and Urcid [7] developed a new
paradigm for computing with morphological neurons where the process occurs
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Fig. 1. Architectures of a morphological perceptron (a) and of an MPD (b),
respectively

in the dendrites. The MPD training algorithm [7] resembles the one for MPs [6].
As is the case for MPs, the MPD training algorithm is guaranteed to converge
in a finite number of steps and, after convergence, all training patterns will be
classified correctly. Figure 1(b) provides a graphical representation of an MPD.
The architecture of an MPD is not determined beforehand. During the training
phase, the MPD grows new dendrites while the input neurons expand their
axonal branches to synapse on the new dendrites. The output of an MPD is
defined by the following equation:

y(x) = f(pk

n∧
i=1

∧
l∈L

(−1)l+1(xi + wl
ki)), (7)

where f is a hard limiting function, L = {0, 1} and pk = {−1, 1} denotes the
excitatory or inhibitory response of the kth dentrite.

2.3 Morphological/Rank/Linear Neural Network (MRL-NN)

MRL-NNs [9] employ a linear and a rank/morphological aggregation function at
each node followed by the application of an activation function. The MRL-NN
aggregation function generalizes the morphological operators δw(x) = ∨n

i=1(xi +
wi) and εw(x) = ∧n

i=1(xi + wi). By sorting the components of the list t =
(x1 +w1, . . . , xn +wn) in decreasing order, which yields t(1) � t(2) � . . . � t(n),
we pick the rth element of the sorted list. In this way, we define the rth rank
function of t by

Rr(t) ≡ t(r), r = 1, . . . , n. (8)

The equations that formally define the lth layer of the MRL are given by:

x
(l)
k = λ

(l)
k α

(l)
k + (1 − λ(l)

k )β(l)
k , (9)
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α
(l)
k = R

r
(l)
k

(y(l−1) + a(l)
k ), (10)

β
(l)
k = y(l−1)�b(l)

k + θ
(l)
k , (11)

where r(l)k ∈ Z, λ(l)
k , θ

(l)
k ∈ R and a(l)

k ,b(l)
k ∈ R

Nl−1 represents the parameters
needed to be estimated by the MRL-NN. Thus, we denote the synaptic weight
associated with a MRL-NN neuron by w(l)

k = (a(l)
k , ρ

(l)
k ,bl

k, θ
(l)
k , λ

(l)
k ). Figure 2(a)

illustrates the lth layer of a MRL-NN.

Fig. 2. lth layer of the MRL-NN (a), architecture of the FLNN (b), respectively

During the training phase, the non-differentiability of rank functions is over-
come by using rank indicator vectors [9] which simply mark the locations in t
where Rr(t) occur [9].

2.4 Modular Morphological Neural Network (MMNN)

The decompositions of Banon and Barrera [4] have provided the basis for the
development of modular morphological neural networks (MMNNs) by Sousa et
al. [12]. The architecture of a modular morphological neural network resembles
the MP’s architecture of Figure 1(a).

MMNN training [8] can be achieved using a simple genetic algorithm (SGA)
or a modified backpropagation (BP) algorithm, which uses the methodology of
Pessoa and Maragos [9] for estimating the derivatives of the training equation.

2.5 Fuzzy Lattice Neural Network-FLNN

The theoretical framework of FLNN constitutes a successful combination of fuzzy
sets [15], lattice theory [2] and adaptive resonance theory [16]. Let L be a com-
plete lattice. Given a vector of inputs x ∈ L and a vector of synaptic weights
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w ∈ L, a neuron of an FLNN [10] computes p(x,w) which is a fuzzy partial
order relation that calculates the degree of inclusion of x in w. The function
p : L × L → [0, 1] is such that p(x,y) = 1 ⇔ x ≤ y and p represents both an
anti-erosion and an anti-dilation. In general, L is given by the complete lattice
of the so called generalized intervals.

Figure 2(b) illustrates the architecture of the FLNN that consists of an input
layer and a category layer. The input layer has N artificial neurons used for
storing and comparing input data. The category layer has L artificial neurons
that define M classes.

FLNNs can be trained in supervised or unsupervised fashion. Both versions
generate hyperboxes that determine the output of the FLNN. In this paper, we
focus on the supervised learning algorithm [10].

3 Experiments Results

In order to assess the classification performance of our feedforward morphological
models, we have conducted a series of experiments on two well known datasets:
Ripley’s synthetic problem [22] and the Pima Indian dataset [20].

3.1 Ripley’s Synthetic Experiment

Ripley’s synthetic dataset [22] consists of data samples characterized by two
features in two classes. The training and test sets, respectively, consist of 250
and 1000 samples with the same number of samples belonging to each of the two
classes. We employed 25-fold cross-validation to the training set.

As a result from the application of 25-fold cross-validation, we obtained four
MPs that exhibited the same least validation error. After testing these four MPs,
the overall error of testing arises as the average of the corresponding four testing
errors. The training algorithms of the MPD and the FLNN generated 16 and 47
neurons. With respect to the other morphological models and the MLP, we used
the same training parameters and network topologies as in the Pima Indians
experiment that is described below.

Based on the results in Table 1, the FLNN achieved the best performance
and the MP, MPD and MLP also exhibited favorable results whereas the MRL
and MMNN did not perform well for the same reasons that we discussed in the
preceding subsection. Figures 3 and 4 visualize the decision surfaces produced
by the MP, MPD, FLNN, and MLP models after completion of the respective
training phases.

3.2 Pima Indian Diabetes Experiment

The Pima Indian dataset [20] is not already partitioned into training and testing
sets and it consists of 768 samples taken from patients who show signs of dia-
betes. The task is to diagnose whether a patient is diabetic or not. Each sample
is described by 8 numerical variables representing clinical findings. There are 376
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Fig. 3. Decision surfaces of an MP (represented by the difference in shading) and of an
MPD (represented by the continuous line)

Fig. 4. Decision surfaces of an FLNN (represented by the difference in shading) and of
an MLP (represented by the dashed line)

incomplete samples, mainly in variable 5. For this reason, we used the partition
suggested by Ripley [22] where the 532 complete samples, excluding variable 5,
are divided into 200 samples for training and 332 samples for testing. We applied
20-fold cross-validation to the training set.

In conjunction with 20-fold cross-validation, the MP’s training algorithm [6]
automatically generated 50 and 25 neurons in the first and the second hidden
layer, respectively. In a similar manner, training an MPD using the constructive
algorithm of Ritter and Urcid [7] yielded 27 dendrites. Furthermore, we em-
ployed an MRL-NN with one hidden layer consisting of 5 neurons and applied a
modified backpropagation (BP) algorithm [9], using a step size μ = 0.01 and a
smoothing parameter σ = 0.05. We also used a simple genetic algorithm (SGA)
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to train an MMNN, considering an initial population of 50 elements (synaptic
weights), maximum of 100 generations, crossover weight w = 0.9 and mutation
probability of 0.1. The FLNN generated 72 neurons during the training phase.
Moreover, we compared the morphological models with an MLP with ten hidden
nodes that was trained using gradient descent with momentum and adaptive step
backpropagation rule (learning rate η = 10−4, increase and decrease parameters
1.05 and 0.5 respectively, momentum factor α = 0.9).

We report our experimental results in Table 1. As Table 1 indicates, the FLNN
outperformed all the other models in this experiment. The MP, MPD and MLP
models exhibited favorable results. The MRL-NN and the MMNN presented
the worst testing error rate. The poor generalization obtained by MRL-NN is
probably due to the discontinuity of the rank variable r

(l)
k . The performance

of the MMNN model in classification problems strongly depends on the initial
feature and the corresponding shapes of the decision regions. Hence, it would
be appropriate to employ pre-processing of the data. Table 1 also compares the
computational effort that arises in the training phase of various models on the
Pima Indian Diabetes experiment.

Table 1 shows that the morphological models converge much faster than the
MLP. Table 1 also reveals that more neurons are needed in morphological models
compared to an MLP. However, the artificial neurons of MNNs are much less
complicated than those of MLPs since their calculations only involve operations
of maximum, minimum, addition and subtraction.

Table 1. Percentage of misclassified patterns for training (Tr) and testing (Te) in the
experiments, # of epochs (Ne) and # of neurons (Na)

Ripley’s synthetic dataset Pima Indian dataset

Model Tr(%) Te(%) Ne Na Tr(%) Te(%) Ne Na

MP 0.0 11.2 17 52 0.0 20 25 76

MPD 0.0 12.9 16 49 0.0 28 26 79

MRL 13.1 26.4 250 41 33.4 36.4 250 41

MMNN(BP) 15.0 26.8 250 31 32.0 39.2 250 31

MMNN(SGA) 14.6 33.0 150 31 24.0 33.3 150 31

FLNN 0.0 10.0 141 47 0.0 15.1 234 72

MLP 5.1 11.6 25000 11 23.6 21 3500 11

4 Conclusions

Several models of feedforward morphological neural networks were presented in
this paper. Morphological models employ elementary morphological operations
in every node. Many times, these elementary operations can be expressed in
terms of maximums (or minimums) of sums, which lead to fast neural computa-
tional [7] and easy hardware implementation [21]. Unlike traditional feedforward
neural networks, the MPD, MP and FLNN update their network topologies
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during learning, which eliminates the problem of choosing a network topology
including a fixed number of neurons in advance. Their training algorithms re-
quire only a finite number of epochs to converge, resulting in a decision surface
that perfectly separates the training data.

The effectiveness of feedforward morphological models has been demonstrated
empirically using Ripley’s synthetic dataset [22] and the Pima Indian Diabetes
dataset [20]. The results in terms of classification error rate and computational
effort have been analyzed and compared. Cross-validation has been used to pro-
vide a fair performance comparison.

In general, the FLNN outperformed all other models in the experiments.
The MLP, MP and MPD exhibit similar percentages of misclassified patterns,
whereas the MRL and the MMNN exhibit the worst performances among the
models we tested.
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Abstract. Growing Neural Gas is an incremental vector quantization
algorithm with the capabilities of topology-preserving and distribution-
matching. Distribution matching can produce overpopulation of proto-
types in zones with high density of data. In order to tackle this drawback,
we introduce some modifications to the original Growing Neural Gas al-
gorithm by adding three new parameters, one of them controlling the
distribution of the codebook and the other two controlling the quantiza-
tion error and the amount of units in the network. The resulting learning
algorithm is capable of efficiently quantizing datasets presenting high and
low density regions while solving the prototype proliferation problem.

Keywords: Large Datasets, Vector Quantization, Topology-Preserving
Networks, Distribution-matching, Growing Neural Gas.

1 Introduction

Processing information from large databases has become an important issue since
the emergence of the new large scale and complex information systems (e.g., satelli-
tal images, bank transactions databases, marketing databases, internet). Extract-
ing knowledge from such databases is not an easy task due to the execution time
and memory constraints of current actual systems. Nonetheless, the need for using
this information to guide decision-making processes is imperative.

Classical data mining algorithms exploit several approaches in order to deal
with this kind of datasets [3, 7]. Sampling, partitioning or hashing the dataset
drives the process to a split and merge, hierarchical or constructive framework,
giving the possibility of building large models by assembling (or adding) smaller
individual parts. Another possibility to deal with large datasets is incremental
learning [8]. In this case, the main idea is to transform the modelling task in an
incremental task1 by means of a sampling or partitioning procedure, and the use

1 A learning task is incremental if the training examples used to solve it become
available over time, usually one at a time [8].
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794 H.F. Satizábal, A. Pérez-Uribe, and M. Tomassini

of an incremental learner that builds a model from the single samples of data
(one at a time).

Moreover, large databases contain a lot of redundant information. Thus, hav-
ing the complete set of observations is not mandatory. Instead, selecting a small
set of prototypes containing as much information as possible would give a more
feasible approach to tackle the knowledge extraction problem. One well known
approach to do so is Vector Quantization (VQ). VQ is a classical quantization
technique that allows the modelling of a distribution of points by the distrib-
ution of prototype or reference vectors. Using this approach, data points are
represented by the index of their closest prototype. The codebook, i.e., the col-
lection of prototypes, typically has many entries in high density regions, and
discards regions where there is no data [1].

A widely used algorithm implementing VQ in an incremental manner is Grow-
ing Neural Gas (GNG) [6]. This neural network is part of the group of topology-
representing networks which are unsupervised neural network models intended
to reflect the topology (i.e., dimensionality, distribution) of an input dataset
[11]. GNG generates a graph structure that reflects the topology of the input
data manifold (topology learning). This data structure has a dimensionality that
varies with the dimensionality of the input data. The generated graph can be
used to identify clusters in the input data, and the nodes by themselves could
serve as a codebook for vector quantization [5].

In summary, building a model from a large dataset could be done by splitting
the dataset in order to make the problem an incremental task, then applying
an incremental learning algorithm performing vector quantization in order to
obtain a reduced set of prototypes representing the whole set of data, and then
using the resulting codebook to build the desired model.

Growing Neural Gas suffers from prototype proliferation in regions with high
density due to the absence of a parameter stopping the insertion of units in
sufficiently-represented2 areas. This stopping criterion could be based on a local
measure of performance. One alternative that exploits this approach to overcome
the aforementioned drawback was proposed by Cselenyi [4]. In this case, the pro-
posed method introduces eight new parameters to the GNG algorithm proposed by
Fritzke [6]. In our case, we propose a modification that adds three new parameters
to the original GNG algorithm in order to restrict the insertion of new units due
to points belonging to already covered areas. Thus, promoting the insertion of new
units in areas with higher quantization error in order to produce network structures
covering a higher volume of data using the same number of units.

The rest of the article is structured as follows. In section 2 we make a brief
description of the original GNG algorithm. Section 3 describes the proposed
modifications made to the algorithm. Section 4 describes some of the capabil-
ities of the resulting method using some “toy” datasets. Section 5 shows one
application using a real large size dataset and finally, in section 6 we give some
conclusions and insights about prototype proliferation and the exploitation of
large datasets.

2 Areas with low quantization error.
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2 Growing Neural Gas

Growing Neural Gas (GNG) [6] is an incremental point-based network [2] that
performs vector quantization and topology learning. The algorithm builds a
neural network by incrementally adding units using a competitive hebbian learn-
ing strategy. The resulting structure is a graph of neurons that reproduces the
topology of the dataset by keeping the distribution and the dimensionality of
the training data [5]. The classification performance of GNG is comparable to
conventional approaches [9] but has the advantage of being incremental. Hence,
giving the possibility of training the network even if the dataset is not completely
available all the time while avoiding the risk of catastrophic interference.

Fig. 1. a) Two dimensional non-uniform data distribution. b) Histogram of variable
X. c) Histogram of variable Y.

The algorithm proposed by Fritzke is shown in table 1. In such approach, every
λ iterations (step 8), one unit is inserted halfway between the unit q having the
highest error and its neighbour f having also the highest error. Carrying out this
insertion without any other consideration makes the network to converge to a
structure where each cell is the prototype for approximately the same number of
data points and hence, keeping the original data distribution. As an example, a
GNG network was trained using the dataset shown in figure 1, and the training
parameters shown in table 2. These values were selected after several runnings
of the algorithm.

Figure 2 shows the position and distribution of the 200 cells of the result-
ing structure. As we can see, the distribution of each one of the variables is
reproduced by the group of prototypes.

If we have a huge dataset where there is a lot of redundant information, and
we want to keep only a relatively small number of prototypes describing the
data with some distortion, then we are not interested in reproducing the data
distribution. Instead, we want to distribute the prototypes over the whole volume
of data without exceeding a maximum quantization error or distortion. In this
case some modifications to the original algorithm are needed.
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Fig. 2. Positions of neurons of the GNG model. a) Position of the neuron units. b)
Distribution of X. c) Distribution of Y.

Table 1. Original growing neural gas algorithm proposed by Fritzke

Step 0: Start with two units a and b at random positions wa and wb in �n

Step 1: Generate an input signal ξ according to a (unknown) probability density
function P (ξ)

Step 2: Find the nearest unit s1 and the second-nearest unit s2

Step 3: Increment the age of all edges emanating from s1

Step 4: Add the squared distance between the input signal and the nearest unit in
input space to a local counter variable:

Δerror (s1) = ‖ws1 − ξ‖2

Step 5: Move s1 and its direct topological neighbours towards ξ by fractions εb and
εn, respectively, of the total distance:

Δws1 = εb (ξ − ws1)
Δwn = εn (ξ − wn) for all direct neighbours n of s1

Step 6: If s1 and s2 are connected by an edge, set the age of this edge to zero. If
such an edge does not exist, create it

Step 7: Remove edges with an age larger than amax. If the remaining units have
no emanating edges, remove them as well

Step 8: If the number of input signals generated so far is an integer multiple of a
parameter λ, insert a new unit as follows:

• Determine the unit q with the maximum accumulated error.
• Insert a new unit r halfway between q and its neighbour f with the

largest error variable: wr = 0.5 (wq + wf )
• Insert edges connecting the new unit r with units q and f , and remove

the original edge between q and f .
• Decrease the error variables of q and f by multiplying them with a

constant α. Initialize the error variable of r with the new value of the
error variable of q.

Step 9: Decrease all error variables by multiplying them with a constant d
Step 10: If a stopping criterion (e.g., net size or some performance measure) is not

yet fulfilled go to step 1
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Table 2. Parameters for the Growing Neural Gas algorithm

Parameter εb εn λ amax α d

value 0.05 0.005 100 100 0.5 0.9

3 Including a Fixed Quantization Error

The criterion driving the insertion of units in the GNG algorithm is the accu-
mulated error of each unit (step 4). This local error measure grows each time a
cell becomes the winner unit (i.e., the closest unit to the current data point),
producing the insertion of more cells in zones with higher densities of data.

In order to attenuate that effect, we propose to modulate the error signal
Δerror when it is produced by a data point having a quantization error smaller
than a threshold qE.

accumulatedError =
{
accumulatedError +Δerror if Δerror ≥ qE
accumulatedError + (h ∗Δerror) if Δerror < qE

0 ≤ h ≤ 1

The proliferation of prototypes could also be due to neuron movement. Neuron
units located in zones with higher densities are chosen as winners with higher
probability, attracting their neighbours belonging to less populated zones. As in
the previous case, parameter h can be used to modulate the change of position
of the units in each iteration (step 5).

Δws1 =
{
εb (ξ − ws1) if Δerror ≥ qE
h ∗ εb (ξ − ws1) if Δerror < qE

Δwn =
{
εn (ξ − wn) if Δerror ≥ qE
h ∗ εn (ξ − wn) if Δerror < qE

for all direct neighbours n of s1

Parameter qE is the radius of an hypersphere determining the region of in-
fluence of each prototype. These regions of influence could overlap to a certain
extent. In our approach this amount of superposition can be controlled by a pa-
rameter sp. Every λ iterations (step 8), one unit is inserted halfway between the
unit q having the highest error and its neighbour f having also the highest error.
Knowing the distance between unit q and unit f , and taking the quantization
error qE as the radius of each unit, one could change the step 8 of the original
algorithm proposed by Fritzke as shown in table 3.

In summary, the proposed modifications add three parameters, qE, sp and
h, to the original GNG algorithm. Parameters quantization error qE and su-
perposition percent sp depend on the application and are strongly related. Both
control the amount of units in the resulting neural network structure, the former
by controlling the region of influence of each unit, and the latter by controlling
the superposition of units. In a less obvious sense, parameter h controls the
distribution of units between high and low density areas. Examples using these
parameters are given in section 4.
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Table 3. Proposed modification to the original algorithm

Step 8: If the number of input signals generated so far is an integer multiple of a
parameter λ, insert a new unit as follows:

• Determine the unit q with the maximum accumulated error.
• Determine the unit f in the neighbourhood of q with the maximum

accumulated error.
• Calculate the distance dist between units q and f .

dist = ‖q − f‖
• Calculate the available space between the two units as follows:

available = dist − qE

If (available > (sp ∗ qE)) go to step 9. 0 ≤ sp ≤ 1
Else,

• Insert a new unit r halfway between q and its neighbour f with the
largest error variable: wr = 0.5 (wq + wf )

• Insert edges connecting the new unit r with units q and f , and remove
the original edge between q and f .

• Decrease the error variables of q and f by multiplying them with a
constant α. Initialize the error variable of r with the new value of the
error variable of q.

4 Toyset Experiments

In section 2, a non-uniform distribution of points in two dimensions was used
to train a GNG network. Figure 2 shows a high concentration of prototypes
in the zone with higher density due to the property of density matching of the
model. This is an excellent result if we do not have any constraint on the amount
of prototypes. Having more prototypes also increases the execution time of the
algorithm and this is not desirable if we have a very large dataset. Adding the
parameters that control prototype proliferation by introducing the measure of
quantization error allows us to overcome this situation.

Fig. 3. Results of the modified algorithm varying parameter h (qE = 0.1 and sp =
0.75). a)Using h = 1.00 b)Using h = 0.75 c)Using h = 0.50 d)Using h = 0.25 e)Using
h = 0.00.
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Figure 3 shows the results of the modified algorithm when trained with the
data distribution showed in figure 1. Figure 3 shows how parameter h effectively
controls the proportion of units assigned to regions with high and low densities.
In this case the parameters qE and sp were kept constants (qE = 0.1 and
sp = 0.75) because their effects are more global and depend less on the data
distribution. The rest of parameters were set as shown in table 2.

Another interesting test consists on using a dataset similar to the one proposed
by Martinetz [12] in the very beginnings of this kind of networks (neural gas,
growing cell structures, growing neural gas) [5]. This distribution of data has
been used by several researchers [4, 5, 6, 11, 12] in order to show the ability of the
topology-preserving networks in modelling the distribution and dimensionality of
data. The generated dataset shown in figure 4.a) presents two different levels of
densities for points situated in three, two and one dimension, and has points
describing a circle.

Fig. 4. The original and the modified version of GNG trained with a dataset like the
used by Cselenyi [4]. a) Training data. b) Algorithm of GNG by Fritzke. c) Modified
GNG algorithm, qE = 0.1, h = 0.1, sp = 0.5.

When this dataset is used, the model has to deal with data having different
dimensionalities, different densities and different topologies. Figures 4.b) and
4.c) show the position of the units of two GNG networks, one of them using the
original algorithm and the other one using the modified version. Both structures
preserve the topology of the data in terms of dimensionality by placing and con-
necting units depending of local conditions. Conversely, the two models behave
differently in terms of the distribution of the data. The codebook of the original
GNG algorithm reproduces the distribution of the training data by assigning
almost the same quantity of data points to each vector prototype. In the case of
the modified version, the parameter h set to 0.1 makes the distribution of proto-
types more uniform due to the fact that the insertion of new units is conditioned
with the quantization error. Other parameters were set as shown in table 2.
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5 Obtaining a Codebook from a Large Dataset

This section summarizes a series of experiments using a large database of climate.
The database contains information of the average temperature over approxi-
mately the last fifty years in Colombia, with a spatial resolution of 30 seconds
(≈900m) (WORLDCLIM) [10]. There are 1’336.025 data points corresponding
to the amount of pixels covering the region, and each one has twelve dimensions
corresponding to the months of the year (i.e., one vector of twelve dimensions
per pixel). The main objective of modelling this dataset is to find zones with
similar environmental conditions (i.e, temperature) by means of some measure
of distance.

Processing the whole dataset implies the use of a lot of memory resources and
takes hours of calculation. Moreover, the situation could get even worse if we
consider the addition of other variables (e.g., precipitation). Instead of process-
ing every pixel in the dataset, we could use vector quantization to extract a
codebook representing the data, and then process this set of prototypes finding
the zones having similar properties. Figure 5 shows the resulting quantization
errors using both algorithms.

Fig. 5. Histogram of the quantization error for a large dataset. a) Fritzke’s original
GNG algorithm. b) Modified GNG algorithm, qE = 1 ◦C, h = 0.1, sp = 0.5.

Both neural networks have only 89 neuron units, which means having a code-
book with only 0.007% of the original size of the dataset. Nonetheless, the quan-
tization error is astonishing low. This reduction is possible due to the low local
dimensionality of the data, and the low range of the variables. Figure 5 shows
that the modified algorithm presents quantization error values that are compara-
ble to those from the original version, but with a sligthtly different distribution.

Having a dataset that allows a representation over two dimensions has some
advantages. In this case, we can draw some information from the geographic dis-
tribution of the prototypes. Figure 6 shows the geographic representation of the
boundaries (white lines) of the voronoi region of each prototype. The region de-
limited with a circle is a wide plain at low altitudes which presents homogeneous
conditions in terms of temperature. Therefore, this large amount of pixels belong
to a zone with high density in the space of twelve dimensions of our data. In this
case, this high density zone does not mean more information to quantize. How-
ever, the original GNG algorithm is “forced” to proliferate prototypes due to its
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Fig. 6. Prototype boundaries. a) Original algorithm. b) Modified algorithm.

property of distribution matching. Thus incurring in a high computational cost
when one uses the resulting model. Instead of representing better these areas,
our approach is to avoid prototype proliferation in regions with regular condi-
tions in order to better represent heterogeneous zones (e.g., mountains). Figure
6.b) shows that the modified version of GNG places less prototypes in flat areas
(i.e., high density regions) than the original version (Figure 6.a), and assigns
more prototypes (i.e., cluster centres) to the lower density points belonging to
mountain areas (i.e., low density regions).

6 Conclusions

There is a increasing need of dealing with large datasets nowadays. A large
dataset can be split or sampled in order to divide the modelling task into smaller
subtasks that can be merged in a single model by means of an incremental learn-
ing technique performing vector quantization. In our case, we chose the Growing
Neural Gas (GNG) algorithm as the vector quantization technique. GNG allows
us to get a reduced codebook to analyse, instead of analysing the whole dataset.
Growing Neural Gas is an excellent incremental vector quantization technique,
allowing to preserve the topology and the distribution of a set of data.

However, in our specific application, we found the necessity of modulating
the topology matching property of the GNG algorithm in order to control the
distribution of units between zones with high and low density. To achieve this,
we modified the original algorithm proposed by Fritzke by adding three new pa-
rameters, two controlling the quantization error and the amount of neuron units
in the network, and one controlling the distribution of these units. The modified
version continues to perform topology-preserving, but contrary to the original
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version it permits the modulation of the distribution matching capabilities of
the original algorithm. These changes allows the quantization of datasets hav-
ing high contrasts in density while keeping the information of low density areas
using a limited number of prototypes.
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Abstract. Constructive neural network algorithms suffer severely from
overfitting noisy datasets as, in general, they learn the set of examples
until zero error is achieved. We introduce in this work a method for
detect and filter noisy examples using a recently proposed constructive
neural network algorithm. The method works by exploiting the fact that
noisy examples are harder to be learnt, needing a larger number of synap-
tic weight modifications than normal examples. Different tests are car-
ried out, both with controlled experiments and real benchmark datasets,
showing the effectiveness of the approach.

1 Introduction

A main issue at the time of implementing feed-forward neural networks in classi-
fication or prediction problems is the selection of an adequate architecture [1,2,3].
Feed-forward neural networks trained by back-propagation have been widely used
in several problems but yet the standard approach for selecting the number of lay-
ers and number of hidden units of the neural architecture is the inefficient trial-
by-error method. Several constructive methods and pruning techniques [1] have
been proposed as an alternative for the architecture selection process but it is a
research issue whether these methods can achieve the same level of prediction ac-
curacy. Constructive algorithms start with a very small network, normally com-
prising a single neuron, and work by adding extra units until some convergence
condition is met [4,5,6,7]. On the other hand, pruning techniques start with a very
large architecture and work by eliminating unnecessary weights and units [8].

Despite the existence of many different constructive algorithms, they have not
been extensively applied in real problems. This fact is relatively surprising, given
that they offer a systematic and controlled way of obtaining an architecture and
also because they offer the possibility of an easier rule extraction procedure.
In a 1993 work, Smieja [9] argued that constructive algorithms might be more
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efficient in terms of the learning process but cannot achieve a generalization
ability comparable to back-propagation neural networks. Smieja arguments were
a bit speculative more than based on obtained results, but nevertheless might
explain the fact that constructive methods have not been widely applied to real
problems. In recent years new constructive algorithms have been proposed and
analyzed, and the present picture might have changed [7,10].

One of the problems that affects predictive methods in general, is the prob-
lem of overfitting [11,12]. In particular, overfitting affects severely neural network
constructive algorithms as they, in general, learn towards zero error. The overall
strategy in constructive algorithms for avoiding overfitting is by creating very
compact architectures. Unfortunately, this approach is not enough when the
input data is noisy as it is normally the case of real data. A solution to this
overfitting problem might be the implementation of methods that exclude noisy
instances from the training dataset [13,14,15,16,17]. In this work, we use a re-
cently introduced constructive neural network algorithm named C-Mantec [18]
for detecting noisy examples. The method can detect and filter noisy instances
leading to an improvement in the generalization ability of the algorithm and
permitting to obtain more compact neural network architectures.

2 The C-Mantec Algorithm

The C-Mantec algorithm is a constructive neural network algorithm that cre-
ates architectures with a single layer of hidden nodes with threshold activation
functions. For functions with 2 output classes, the constructed networks have a
single output neuron computing the majority function of the responses of the
hidden nodes (i.e., if more than half of the hidden neurons are activated the out-
put neuron will be active). The learning procedure starts with an architecture
comprising a single neuron in the hidden layer and adds more neurons every
time the present ones are not able to learn the whole set of training examples.
The neurons learn according to the thermal perceptron learning rule proposed
by Frean [5], for which the synaptic weights are modified according to Eq. 1.

δwi = (t− o) ψi
T

T0
exp{−|φ|

T
} , (1)

where t is the target value of the example being considered, o represent the actual
output of the neuron and ψ is the value of the input unit i. T is an introduced
temperature, T0 the starting temperature value and φ is a measure of how far is
the presented example from the actual synaptic vector. The thermal perceptron
is a modification of the perceptron rule that incorporates a modulation factor
forcing the neurons to learn only target examples close to the already learnt
ones, in order to avoid forgetting the stored knowledge. For a deeper analysis of
the thermal perceptron rule, see the original paper [5].

At the single neuron level the C-Mantec algorithm uses the thermal perceptron
rule, but at a global level the C-Mantec algorithm incorporates competition be-
tween the neurons, that makes the learning procedure more efficient and permit-
ting to obtain more compact architectures [18]. Competition between neurons is
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implemented as follows: for a given input example, the neuron with the smallest
value of the parameter φ is picked as the neuron that will learn the presented input
(note that the weights are modified only for wrongly classified inputs). The temper-
ature, T , controlling each individual perceptrons, is lowered every time the neuron
gets an update of its weights. When a new unit is added to the network, the temper-
ature of all neurons is reset to the initial valueT0. The learning procedure continues
in this way until enough neurons are present in the architecture, and the network
is able to learn the whole sets of inputs. Regarding the role of the parameters, an
initial high temperature T0 ensures a certain number of learning iterations and an
initial phase of global exploration for the weights values, as for high temperature
values changes are easier to be accepted. The parameter setting for the algorithm
is relatively simple as C-Mantec has been shown to be very robust to changes. The
convergence of the algorithm is ensured because the learning rule is very conserva-
tive in their changes, preserving the acquired knowledge of the neurons and given
by the fact that new introduced units learn at least one input example. Tests per-
formed with noise-free Boolean functions using the C-Mantec algorithm show that
it generates very compact architectures with less number of neurons than exist-
ing constructive algorithms [18]. However, when the algorithm was tested on real
datasets, it was observed that a larger number of neurons was needed because the
algorithm overfit noisy examples. To avoid this overfitting problem the method in-
troduced in the next section is developed in this work.

3 The “Resonance” Effect for Detecting Noisy Examples

In Fig. 1, an schematic drawing shows the “resonance” effect that is produced
when a thermal perceptron tries to learn a set of instances containing a

P2

P1

C1

C2

Fig. 1. Schematic drawing of the “resonance effect” that occurs when noisy examples
are present in the training set. A thermal perceptron will learn the “good” examples,
represented at the left of the figure, but will classify rightly only one of the noisy
samples. Further learning iterations in which the neuron tries to learn the wrongly
classified example will produce an oscillation of the separating hyperplane. The number
of times the synaptic weights are adjusted upon presentation of an example can be used
to detect noisy inputs.
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Fig. 2. The effect of attribute noise. Top: Generalization ability as a function of the level
of attribute noise for the “modified” Pima indians diabetes dataset for the C-Mantec
algorithm applied with and without the filtering stage. Bottom: The number of neurons
of the generated architectures as a function of the level of noise. The maximum number
of neurons was set to 101.

contradictory pair of examples. In the figure, the set of “good” examples is
depicted in the left part of the figure, while the contradictory pair is on the
right. When a single neuron tries to learn this set, the algorithm will find an hy-
perplane from a beam of the possible ones (indicated in the figure) that classifies
correctly the whole set except for 1 of the noisy examples. Further learning iter-
ations produce a resonant behavior, as the dividing hyperplane oscillates trying
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Fig. 3. The effect of class noise. Top: Generalization ability as a function of the level
of class noise for the modified Pima indians diabetes dataset for the cases of imple-
menting the filtering stage and for the case of using the whole raw dataset. Bottom:
The number of neurons of the generated architectures for the two mentioned cases of
the implementation of the C-Mantec algorithm.

to classify correctly the wrong example. Eventually, the iterations will end and
as the whole set cannot be learnt, a new neuron will be added to the network.
It was observed that these noisy examples make the network to grow excessively
and degrade the generalization ability, and thus a method for removing them is
quite useful. The method is based on counting the number of times each training
example is presented to the network; and if the number of presentations for an
example is larger by two standard deviations from the mean, it is removed from
the training set. The removal of examples is made on-line as the architecture is
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constructed but a second learning phase with the selected set of examples was
implemented as better results can be obtained. In this second phase, the training
set is fix as no removal of examples is permitted.

To test the new method for removal of noisy examples a “noise-free” dataset is
created from a real dataset, and then controlled noise was added on the attributes
(input variables) and on the class (output), separately to see if there was any evi-
dent difference between the two cases [19]. The dataset chosen for this analysis is
the Pima Indians Diabetes dataset, selected because it has been widely studied
and also because it is considered a difficult set with an average generalization
ability around 75%. To generate the “noise-free” dataset, the C-Mantec algo-
rithm was run with a single neuron, that classify correctly approximately 70% of
the dataset, and then the “noise-free” dataset was constructed by presenting the
whole set of inputs through this network to obtain the “noise-free” output. Two
different experiments were carried out: in the first one, noise was added to the
attributes of the dataset and the performance of the C-Mantec algorithm was
analyzed with and without the procedure for noisy examples removal. In Fig. 2
(top) the generalization ability for both mentioned cases is shown for a level of
noise between 0 and 0.8 and the results are the average over 100 independent
runs. For a certain value of added noise, x, the input values were modified by a
random uniform value between −x and x. The bottom graph shows the number
of neurons in the generated architectures when the filtering process was and was
not applied as a function of the added attribute noise. It can be clearly seen
that the removal of the noisy examples help to obtain much more compact ar-
chitectures and a better generalization ability. The second experiment consisted
in adding noise to the output values and the results are shown on Fig. 3. In
this case the noise level indicate the probability of modifying the class value to
a random value. The results in this case also confirm the effectiveness of the
filtering approach in comparison to the case of using the whole “noisy” dataset.

4 Experiments and Results

We tested the noise filtering method introduced in this work using the C-Mantec
constructive algorithm on a set of 11 well known benchmark functions. The set
of functions contains 6 functions with 2 classes and 5 multi-class problems with
a number of classes up to 19. The C-Mantec algorithm was run a maximum
number of iterations of 50.000 and an initial temperature (T0) equals to the
number of inputs of the analyzed functions, but it is worth noting that the algo-
rithm is quite robust to changes on these parameters. The results are shown in
Table 1, where it is shown the number of neurons of the obtained architectures
and the generalization ability obtained, including the standard deviation values,
computed over 100 independent runs. The last column of Table 1 shows, as a
comparison, the generalization ability values obtained by Prechelt [20] in a work
where he analyzed in a systematic way the prediction capabilities of different
topologies neural networks, and thus we believe that the reported values are
highly optimized. The number and the set of training and test examples were



Active Learning Using a Constructive Neural Network Algorithm 809

chosen identically in both compared cases. The results shows that the C-Mantec
algorithm outperforms the ones obtained by Prechelt in 6 out of 11 problems
and on average the generalization ability is 2.1% larger. Regarding the size of the
networks obtained using the method introduced in this work, the architectures
are very small for all problems with 2 or 3 classes, for which the architectures
contain less than 4 neurons (on average) for all these cases. For the multi-class
problems the algorithm generates networks with a larger number of hidden neu-
rons but this is because of the method used to treat multiclass problems that
will be reported in [18].

Table 1. Results for the number of neurons and the generalization ability obtained
with the C-Mantec algorithm using the data filtering method introduced in this work.
The last column shows the results from [20] (See text for more details).

Function Inputs Classes Neurons Generalization Generalization
C-Mantec NN [20]

Diab1 8 2 3.34 ± 1.11 76.62 ± 2.69 74.17 ± 0.56
Cancer1 9 2 1 ± 0.0 96.86 ± 1.19 97.07 ± 0.18
Heart1 35 2 2.66 ± 0.74 82.63 ± 2.52 79.35 ± 0.31
Heartc1 35 2 1.28 ± 0.57 82.48 ± 3.3 80.27 ± 0.56
Card1 51 2 1.78 ± 0.87 85.16 ± 2.48 86.63 ± 0.67

Mushroom 125 2 1 ± 0.0 99.98 ± 0.04 100.00 ± 0.0
Thyroid 21 3 3 ± 0.0 91.91 ± 0.59 93.44 ± 0.0
H orse1 58 3 3 ± 0.0 66.56 ± 5.08 73.3 ± 1.87
Gene1 120 3 3.03 ± 0.22 88.75 ± 1.07 86.36 ± 0.1
Glass 9 6 17.84 ± 1.19 63.75 ± 6.38 53.96 ± 2.21

Soybean 82 19 171 ± 0.0 91.63 ± 1.89 90.53 ± 0.51

Average 50.27 4.18 18.99 ± 0.43 84.21 ± 2.03 82.50 ± 0.63

5 Discussion

In this work we have introduced a new method for filtering noisy examples us-
ing a recently developed constructive neural network algorithm C-Mantec. The
filtering method is based on the fact that noisy examples are more difficult to
be learnt, and this fact is evident during the learning process in which the con-
structive algorithm tries to classify correctly the examples using the minimum
number of neurons. Noisy examples need more learning updates of the synaptic
weights, and this fact permits its identification and further removal. Simulations
performed on benchmark datasets show that the generalization ability and size
of the resulting network are very much improved after the removal of the noisy
examples and a comparison, done against previous reported results [20], shows
that the generalization ability was on average a 2.1% larger, indicating the ef-
fectiveness of the C-Mantec algorithm implemented with the new filtering stage.
It has to be noted that the introduced method of data selection can be used
as a pre-processing stage for its use with other prediction algorithms. We have
also analyzed the performance of the filtering stage on datasets contaminated by
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only attribute or class noise, but did not find any clear difference between these
two cases for which the filtering process worked equally well.
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Département d’Informatique BP 812
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Abstract. Multi-layer neural networks have been successfully applied
in a wide range of supervised and unsupervised learning applications.
However defining its architecture is a difficult task, and might make
their usage very complicated. To solve this problem, a rule-based model,
KBANN, was previously introduced making use of an apriori knowledge
to build the network architecture. Neithertheless this apriori knowledge
is not always available when dealing with real world applications. Other
methods presented in the literature propose to find directly the neural
network architecture by incrementally adding new hidden neurons (or
layers) to the existing network, network which initially has no hidden
layer. Recently, a novel neural network approach CLANN based on con-
cept lattices was proposed with the advantage to be suitable for finding
the architecture of the neural network when the apriori knowledge is not
available. However CLANN is limited to application with only two-class
data, which is not often the case in practice. In this paper we propose
a novel approach M-CLANN in order to treat multi-class data. Carried
out experiments showed the soundness and efficiency of our approach on
different UCI datasets compared to standard machine learning systems.
It also comes out that M-CLANN model considerably improved CLANN
model when dealing with two-class data.

1 Introduction

An artificial neural network (ANN) is an adaptive system that changes its struc-
ture based on external or internal information that flows through the network
during the learning phase. ANN are useful especially when there is no a pri-
ori knowledge about the analyzed data. They offer a powerful and distributed
computing architecture, with significant learning abilities and they are able to
represent highly nonlinear and multivariable relationships. ANN have been suc-
cessfully applied to problems in pattern classification, function approximation,
optimization, pattern matching and associative memories [13]. Different types
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of ANN have been reported in the literature, among which the multilayer feed-
forward network, also called multi-layer perceptron (MLP), was the first and
arguably simplest type of ANN devised. MLP networks trained using the back-
propagation learning algorithm are limited to searching for a suitable set of
weights in an a priori fixed network topology. The selection of a network archi-
tecture for a specific problem has to be done carefully. In fact there are no known
efficient methods for determining the optimal network topology of a given prob-
lem. Too small networks are unable to adequately learn the problem well while
overly large networks tend to overfill the training data and consequently result in
poor generalization performance. In practice, a variety of architectures are tried
out and the one that appears best suited to the given problem is picked. Such
a trial-and-error approach is not only computationally expensive but also does
not guarantee that the selected network architecture will be close to optimal or
will generalize well. An ad-hoc and simple manner deriving from this approach
is to use one hidden layer with a number of neurons equal to the average of
the number of input neurons and the number of output neurons. In the liter-
ature, different automatic approaches have been reported to dynamically build
the network topology. These works could be divided into two groups:

1. Search an optimal network to minimize the number of units in the hid-
den layers [13]. These techniques bring out a dynamic solution to the ANN
topology problem when a priori knowledge is not available. One technique
suggests to construct the model by incrementally adding hidden neurons or
hidden layers to the network until the obtained network becomes able to
better classify the training data set. Another technique is network pruning
which begins by training a larger than necessary network and then eliminate
weights and neurons that are deemed redundant. An alternative approach
consists of using the genetic approach [4], which is computationally expen-
sive. All these (incremental, pruning, genetic) techniques results to neural
network that can be seen as black box system, since no semantic is associ-
ated to each hidden neuron. Their main limitation is the intelligibility of the
resulting network (black-box prediction is not satisfactory [1,5]).

2. Use a set of an a priori knowledge (set of implicative rules) on the problem
domain and derive the neural network from this knowledge [15]. The a priori
knowledge is provided by an expert of the domain. The main advantage here
is that each node in the network represents one variable in the rules set
and each connection between two nodes represents one dependence between
variables. The obtained neural network, KBANN (Knowledge-Based ANN),
is a comprehensible ANN since each node is semantically meaningful, and the
ANN decision is not viewed as deriving from a black-box system, but could
be easily explain using a subset of rules from the initial apriori knowledge.
But this solution is limited while the apriori knowledge is not available as it
might be the case in practice.

There are also in the literature many works which help user to optimise [19] or
prune networks by pruning some connections [10] or by selecting some variables [3]
among the entire set example variables. But these works do not propose an efficient
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method to build neural network. We propose here a novel solution, M-CLANN
(Multi-class Concept Lattices- based Artificial Neural Networks), to build a net-
work topology where each node has an associated semantic without using an a
priori knowledge. M-CLANN is an extended version of the CLANN approach [17].
Both approaches uses formal concept analysis (FCA) theory to build a semi-lattice
from which the NN topology is derived and trained by error backpropagation. The
main difference between M-CLANN and CLANN are two-folds. First M-CLANN
can deal with multi-class classification problem, while CLANN is limited to
two-class. Second, the derived topology from the semi-lattice is different in both
systems. Our proposed approach presents many advantages: (1) the proposed ar-
chitecture is a multi-layer feed-forward neural network, such that the use of learn-
ing algorithm such as back propagation is obvious; (2) each neuron has a semantic
as it corresponds to a formal concept in the semi-lattice, which is a way to justify
the presence of a neuron; (3) each connection (between input neuron and hidden
neuron, and between hidden neurons) in the derived ANN has also a semantic as it
is associated to a link in the Hasse diagram of the semi-lattice; (4) the knowledge
for other systems (such as expert system) could be extracted from the training data
through the model; (5) It better classifies the dataset after training, as observed
during experimentations on some datasets of UCI repository [11].

The paper is organized as follows: Section 2 gives preliminary definitions. Sec-
tion 3 presents the CLANN model. Section 4 is dedicated to our novel approach
M-CLANN. The empirical evidences about the utility of the proposed approach
are presented in Section 5.

2 Definitions – Preliminaries

A formal context is a triplet K = (O,A, I) where O is a not empty finite set
of objects, A a not empty finite set of attributes (or items) and I is a binary
relation between elements of O and elements of A (formally I ⊆ O ×A).

Let f and g be two applications defined as follows: f : 2O −→ 2A, such that
f(O1) = O′

1 = {a ∈ A / ∀o ∈ O1 , (o, a) ∈ I} , O1 ⊆ O and g : 2A −→ 2O, such
that g(A1) = A′

1 = {o ∈ O / ∀a ∈ A1 , (o, a) ∈ I} , A1 ⊆ A; a pair (O1, A1) is
called formal concept iff O1 = A′

1 and A1 = O′
1. O1 (resp. A1) is the extension

(resp. intension) of the concept.
Let L be the entire set of concepts extracted from the context K and ≤ a

relation defined as (O1, A1) ≤ (O2, A2)⇒ (O1 ⊂ O2) (or A1 ⊃ A2). The relation
≤ defines the order relation on L [7]. If (O1, A1) ≤ (O2, A2) is verified (without
intermediated concept) then the concept (O1, A1) is called the successor of the
concept (O2, A2) and (O2, A2) the predecessor of (O1, A1). The Hasse diagram
is the graphical representation of the relation successor/predecessor on the entire
set of concepts L. More details on FCA could be found in [7]. Different works in
the literature (e.g. [2]) have shown how to derive implication rules or associations
rules [8] from this join semi-lattice, sometimes named iceberg concept lattice [16];
or to use the lattice structure in classification [12]. Neithertheless CLANN only
treats problem with binary-class data, which is not often the case in practice.
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3 The CLANN Model

We describe in this section the different steps of our new approach as shown by
figure 1. The process of finding the architecture of neural networks are three-
folds: (1) build a join semi-lattice of formal concepts by applying constraints
to select relevant concepts; (2) translate the join semi-lattice into a topology of
the neural network, and set the initial connections weights; (3) train the neural
network.

Learning 

semi - lattice

Neural network topology

Training
data

Translation

and setting

Neural classifier

Training

dataHeuristics

Fig. 1. Neural network topology definition

3.1 Semi-lattice Construction

There are many algorithms [6] which can be used to construct concept lattices;
few of them build the Hasse diagram. Lattice could be processed using top-down
or bottom-up techniques. In our case, a levelwise approach presents advantage
to successively generate concepts of the join semi-lattice and the Hasse diagram.
For this reason, we choose to implement the Bordat’s algorithm [6] which is
suitable here. Concepts included in the lattice are only those which satisfy the
defined constraints.

3.2 Constraints

In order to reduce the size of lattice and then the time complexity, we present
some constraints regularly used to select concepts during the learning process.

Frequency of concept. A concept is frequent if it contains at least α (also
called minsupp is specified by the user) objects. The support s of a concept
(X,Y ) is the ratio between the cardinality of the set X and the total number of
objects (|O|) (s = 100×|X|

|O| %). Frequency is an anti-monotone constraint which
helps in pruning the lattice and reduce it computational complexity. Support
could be seen as the minimal number of objects that the intention of one concept
must verified before being taken in the semi-lattice.
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Algorithm 1. Modified Bordat’s algorithm
Require: Binary context K
Ensure: concept lattices (concepts extracted from K) and the Hasse diagram of the

order relation between concepts.
1: Init the list L of the concepts (G, {}) (L ← (G, {}))
2: repeat
3: for concept c ∈ L such that his successors are not yet been calculated do
4: Calculate the successors c′ of c.
5: if the specified constraint is verified by c′ then
6: add c′ in L as successor of c if c′ does not exist in L else connect c′ as

successor of c.
7: end if
8: end for
9: until no concept is added in L.

10: derive the neural network architecture as described in section ?? from the concept
semi-lattice.

Validity of concept. Many techniques are used to reduce the size of lattice.
The following notions are used in order to select concepts: a concept (X,Y ) is
complete if Y recognize all examples in dataset. A concept (X,Y ) is consistent
if Y throws back all counterexamples (formally, the set of consistent concept is
{(X,Y )/Y ∩O− = {}} where O = O+∪O−). To reduce the restriction imposed
by these two constraints, other notions are used:

1. Validity. A concept (X,Y ) is valid if its description recognizes most ex-
amples; a valid concept is a frequent concept on the set of examples O+;
formally the set of valid concepts is defined as {(X,Y ) / |X+| ≥ α} where
0 < α ≤ |O+|.

2. Quasi-consistency. A concept (X,Y ) is quasi-consistent is if it is valid
and its extension contains few counterexamples. Formally the set of quasi-
consistent concepts is defined as {(X,Y ) / |X+| ≥ α and |X−| ≤ β}.

Height of semi-lattice. The level of a concept c is defined as the minimal
number of connexions from the supremum concept to c. The height of the lattice
is the greatest value of the level of concepts. Using levelwise approach to gener-
ate the join semi-lattice, a given constraint can be set to stop concept generation
at a fixed level. The height of the lattice could be performed as the depth with-
out considering the cardinality of concepts extension (or intention). In fact at
each level, concept extensions (or intentions) do not have the same cardinality.
The number of layers of the semi-lattice is a parameter corresponding to the
maximum level (height) of the semi-lattice.

4 The M-CLANN Model

As CLANN, M-CLANN defines the topology of a neural network in two phases:
in the first phase, a join semi-lattice structure is constructed and in the second
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one, the join semi-lattice structure is translated into a neural network architec-
ture.

M-CLANN builds the join semi-lattice using a modified version of Bordat’s
algorithm [6]. The modified algorithm uses monotonic constraints to prune the
lattice and then reduce its complexity. The semi-lattice construction process
starts by finding the supremum element. The process continues by generating
the successors of the concepts that belong to the existing set until there are
no concept which satisfies the specified constraints. Algorithm 2 presents the
M-CLANN method to translate the semi-lattice into ANN.

Objects used in this algorithm are defined as follows: K is a formal context
(dataset); L is the semi-lattice built from the training dataset K; c and c′ are
formal concepts; n is the number of attributes in each training pattern; m is the
number of output classes in the training dataset; c a formal concept, element of
L; NN is the comprehensive neural network build to classify the data.

Algorithm 2. Translation of semi-lattice into ANN topology
Require: L a semi-lattice structure built using specified constraints.
Ensure: NN initial topology obtained from the semi-lattice L
1: for each concept c ∈ L do
2: if the set of predecessor of c is empty, mark its successor as “last hidden neuron”;
3: Else c becomes neurons and add to NN with the successor and predecessor as

in L; if the set of successor of c is empty then mark c as “first hidden neuron”.
4: Endif
5: end for
6: Create a new layer of n neurons and connect each neuron of this layer to the

neurons marked as “first hidden neuron” in NN .
7: Create a new layer of m neurons and connect each neuron of this layer to the

neurons marked as “last hidden neuron” in NN .
8: Initialize connection weights and train them.

Among the constraints used in CLANN, the validity of concept is not use in
M-CLANN since M-CLANN does not consider the class of each object during the
semi-lattice building process. The constraints used in M-CLANN are frequency
of concept and the height of the semi-lattice.

Threshold is zero for all units and the connection weights are initialized as
follows:

– Connection weights between neurons derived directly from the lattice is ini-
tialized to 1. This implies that when the neuron is active, all its predecessors
are active too.

– Connection weights between the input layer and hidden layer is initialized as
follows: 1 if the attribute represented by the input appears in the intention
Y of the concept associated to the ANN node and -1 otherwise. This implies
that the hidden unit connected to the input unit will be active only if the
majority of its input (attributes including in its intention) is 1.



818 E.M. Nguifo, N. Tsopzé, and G. Tindo

5 Experimentations

To examine the practical aspect of the approach presented above, we run the
experiments on the data available on UCI repository [11]. The characteristics
of these data are collected in table 1 which contains the name of the dataset
(dataset label), the number of training patterns (#Train), the number of test
patterns (#Test), the number of output classes (#Class), the initial number of
(nominal) attributes in each pattern (#Nom), the number of binary attributes
obtained after binarization (#Bin). Those attributes were binarized by the Weka
[18] binarization procedure “Filters.NominalToBinary”. The diversity of these
data (from 24 to 3196 training patterns; from 2 to 19 output classes) helps in
revealing the behaviour of each model in many situations. There is no missing
values in these datasets.

Table 1. Experimental data sets

Dataset #Train #Test #Class #Nom #Bin

Balance-scale (Bal) 625 0 3 4 20
Chess 3 196 0 2 36 38
Hayes-roth (Hayes) 132 28 3 5 15
Tic-tac-toe (Tic) 958 0 2 9 26
Spect 80 187 2 22 22
Monsk1 124 432 2 6 15
Monsk2 169 432 2 6 15
Monsk3 122 432 2 6 15
Lymphography (lympho) 148 0 3 18 51
Solar-flare1 (Solar1) 323 0 7 12 40
Solar-flare2 (Solar2) 1066 0 7 12 40
Soybean-backup (Soyb) 307 376 19 35 151
Lenses 24 0 3 4 12

The two constraints presented above have been applied in selecting concepts
during experimentation. In the first step we separately use each constraint and
we combine them in the second step during the join semi-lattice construction
process.

The experiment results are obtained from the model trained by backpropaga-
tion algorithm [14] and validated by 10-cross validation or holdout [9]. The para-
meters of the learning algorithm are the following: as activation function, we use
the sigmoid (f(x) = 1

1+expx ), 500 iterations in the weight modification process
and 1 as learning rate. In the result table, the symbol “-” indicates that no con-
cept satisfies the constraint and the process has not converged. Table 2 presents
the accuracy rate (percentage) obtained with data in table 1 and those obtained
using other classifiers. These classifiers are MLP (a WEKA implementation
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of the multilayer perceptron classifier), C4.5 (a decision tree based classifier),
IB1 (a case based learning classifier model). The result presented is the accuracy
rate. In this table, MCL1 is M-CLANN built using only one level of the semi-
lattice; MCL30 and MCL20 are M-CLANN built using respectively 30 and 20
percent as frequency of the concepts. CLANN column represents the accuracy
rate obtained using the original version of CLANN (with a constraint of one
level; x indicates that it is not possible to use CLANN since it is a multi-class
dataset). Finally MC1-30 and MC1-20 are respectively M-CLANN built with
a combination of one level lattice and 30% minimum support and M-CLANN
built with a combination of one level semi-lattice and 20% minimum support
as constraints. The best results (accuracy rate) of M-CLANN are obtained with
the α value equal to 20% (MCL20). With high minimum support values, the
semi-lattice does sometimes not contain sufficient concepts to better classify the
data. For instance, with the minimum support value set to 35%, the semi-lattice
built from Balance-scale is empty.

M-CLANN was not compared with KBANN because we haven’t an apriori
knowledge about these data. The goal of this comparison is to see the behav-
iour (on the supervised classification problems) of M-CLANN regarding those
of other learning models. From the average of accuracy rate presented in the
table 2, MCL20 is the best classifier in average. Using different parameters set-
tings, M-CLANN is still better than other classifiers. MLP of Weka platform is
the best one compared to C4.5 and IB1. Another advantage of M-CLANN over
MLP is that each neuron is meaningful and this can be used to explain its de-
cision. During the experimentations, the running times of MLP and M-CLANN
are much more greater than that of C4.5 and IB1. The difference between the
running times of M-CLANN and those of MLP is not significative.

Table 2. Accuracy rate of used classifiers with data of table 1

Dataset CLANN MCL1 MCL30 MCL20 MC1-30 MC1-20 MLP C4.5 IB1

Bal x 99,76 - 99,89 - 99,89 98,40 77,92 66,72
Chess 93,60 99,87 93,60 93,78 99,87 99,87 99,30 98,30 89,9
Hayes x 75,72 78,58 85,72 78,57 85,71 82,15 89,28 75,00
Tic 94,45 89,64 99,67 99,86 99,32 100 96,86 93,21 81,63
Spect 93,90 72,74 92,56 96,73 73,66 77,57 65,77 66,70 66,31
Monsk1 82,70 91,67 91,17 91,17 91,67 91,71 100 100 89,35
Monsk2 78,91 100 100 100 100 99,67 100 70,37 66,89
Monsk3 83,61 93,51 91,17 93,52 92,59 93,52 93,52 100 81,63
Lympho x 80,78 84,67 88,91 85,71 92,56 81,76 74,32 80,41
Solar1 x 79,42 78,67 69,58 71,10 71,10 72,79 74,30 68,39
Solar2 x 75,00 76,71 70,91 75,34 78,95 68,11 69,97 66,56
Soyb x 81,33 89,34 86,95 83,11 84,04 92,02 88,83 89,89
Lenses x 98,67 100 99,87 98,67 99,87 95,83 91,67 100

Average 86,05 86,62 89,67 90,53 87,57 90,37 88,57 84,22 78,67
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6 Conclusion

This paper shows how concept lattices can help to build a comprehensible ANN
for a given task, by providing clear significance to each neuron. In this work,
we use some monotonic constraints to reduce the size of the lattice and also the
training time. Particularly for the classification tasks, looking at the experiment
results, our model is better in average than many other classifiers in different test
cases. M-CLANN model also uses binary data set. Our ongoing research firstly
consists of extending M-CLANN to nominal and numeric data. Many attempts
exist in the literature to build concept lattices for such data sets. We will also
compare extracted rules from our model to those of other models as KBANN,
or decision trees.
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Abstract. This paper focuses on method developed for classifications
of the speech with disorders. We are interested in children’s neurolog-
ical disorder called developmental dysphasia and its influence on the
speech. Described classification method is based on children’s speech sig-
nal analysis and allows observing the trend of the speech disorder during
therapy. The classification is based on the fact that the disorder has an
direct impact on speech production (i.e. movement of vocal tract). Thus,
we can measure the trend of the disorders comparing patterns obtained
from speech of healthy children to the patterns obtained from children
with disorder. Described method is based on cluster analysis of Koho-
nen Self-Organizing Maps (KSOMs) trained on speech signals. The main
advantage of using artificial neural network is adaptability to specific at-
tributes of the signal and tolerance for the noise contained in recordings.

1 Introduction

The aim of described method is to distinguish between healthy and ill children
and describe the trend of the disorder during therapy.

The method is based on a comparison of the differences in the parametrized
speech. Purpose of the parametrization is not to give perfect representation for
recognition, but describe the differences. Therefore, the MFCC parametrization
is not convenient, as will be shown in the following experiment. We intentionally
utilize LPC-based parametrization, that is not suitable for recognition. However,
LPC coefficients are suitable for our analysis because it describing the differences
in the speech better than MFCC coefficients.

The analysis itself is complicated with the fact that the regularity in chil-
dren’s speech evolution must be considered. Therefore our team created chil-
dren’s speech database. In the database are stored both the recordings of healthy
and ill children from 4 to 10 years old. The recording utterances are divided into
classes based on their phonetics properties (vowels, monosyllables, etc.).

The process of analysis is divided into the two phases. In the first phase, the
samples from selected subset of healthy children are taken and the patterns are
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worked out. Input set is divided in two disjunctive parts. The first part is used
for training KSOMs. The second part is utilized in computing the patterns using
these trained KSOMs. There is one map for each class of samples from database.

In the second phase, patterns for selected ill children are calculated and com-
pared with the patterns for training set. Whereas in the first part utilized only
samples from healthy children, the computation in the second part is done using
the samples from only one (ill) child acquired during one session. Comparing
these two results we can observe the trend of the disorder. Important conditions
are sufficient size of the training set and using different samples for computing
the patterns. Satisfy these conditions ensures generalization of children’s speech
signal and avoid adaptation on individual speakers.

2 Description of Method

The patterns are estimated from the subset consisting only samples (speech)
from healthy children. The speech is processed common way, firstly, the signal
is divided into segments and weighted by the Hamming window. Then, every
segment is represented in the terms of standard parameters: MFCC, PLP [2]
and LPC coefficients [4] and [5]. For each segment, three different vectors are
created one for each type of parameters. Whole speech is then represented by
the series of such a vectors. These series are then processed using artificial neural
network, namely by KSOM. Overview of the method is in Figure 1.

MFCC and PLP coefficients are utilized generally. With the respect to the
results of previous experiments with processing of speech signals with KSOMs

Fig. 1. Overview of the method
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[6], our analysis involving also LPC coefficients. Whereas MFCC and PLP co-
efficients were created for recognition and thus, they tend to generalize, LPC
coefficients clearly describes parameters of vocal tract with respect for these dif-
ferences. Generated vectors are used to train KSOMs. There is three independent
networks, one for each type of representation (i.e. one KSOM for MFCC, one for
PLP and another for LPC). The greater part of the input data (training set) is
used as the input for the training. The rest is for calculation of the patterns.

After training, the cluster analysis of each KSOM [3] is performed. For this
purpose we utilize k-means algorithm. The analysis is utilized to obtain higher
level of abstraction of the speech - every cluster represents specific features in
the speech.

Using the clusters, patterns are generated. Patterns are vectors, which dimen-
sion is equal to the number of clusters in particular KSOM. Each component of
the pattern represents the percent occurrence of the input vectors in the corre-
sponding cluster. The patterns are calculated using the rest of the samples from
the input set (verification set). These vectors are important for following com-
parison. The patterns are derived from map trained only on healthy children’s
speech.

Then we compute patterns for the child with disorder. After comparison with
patterns estimated from healthy children’s speech, we get observable differences.
The measure of those differences (euclidean distance of these two vectors) quali-
fies differences between the ill child’s speech and the speech of healthy children.
The euclidean distance between representative vectors and the particular vector
serves as a main criterion. Observing distances on the various classes of speech,
we can approximate the trend of disease.

3 Experiment

The experiment with classification of vowels A, E, I, O and U is described in the
following section. For the training set consisted of recording (samples) taken from
twenty-one children (seven boys and fourteen girls). As was described above,
whole training set was divided into two parts, the first part consisted of samples
from that were used for training KSOMs, while the second part of the training
set was utilized to calculate the patterns.

There was also verification set consisting of seven healthy children (two boys
and five girls) and three children with speech disorder (two boys and one girl).

Table 1. Overview of the number of units

sets boys girls together samples

training 7 14 21 90

verification 2 5 7 35

children with disorder 2 1 3 43

total 11 20 31 168
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The samples in this set were intended to confirm the results obtained from the
described method. For every ill children, three recordings from various sessions
were used. The overview of the division of the children taken to the experiment
is in Table 1.

Speech signal was processed in the following way: whole recordings of the
vowels were segmented by the 30ms Hamming window with 10ms overlay. The
MFCC, PLP and LPC coefficients were calculated from these segments. For
MFCC and PLP coefficients, the basic band (22kHz) was divided into twenty
sub bands. The LPC coefficients were of the 8th order, the MFCC and PLP
coefficients were counted for 20 bands.

We used three different sizes of the maps in the experiment 10× 10 neu-
rons, 20× 20 neurons and 30× 30 neurons. All the computation was done using
Matlab and SOM Toolbox [7].

The maps of 10× 10 neurons were too small. The exceedingly generalisation
was performed and therefore the distribution function has not been captured in
details. Better results were obtained using maps with 20× 20 neurons, where
the best results were observed for map trained on LPC coefficients. The approx-
imation in the map trained for MFCC was worse compared to the maps trained
on PLP or LPC.

Fig. 2. Clusters in LPC-trained map

There is completely different situation with the maps containing 30× 30 neu-
rons. Maps trained on MFCC and PLP coefficients generalized excessively. This
is suitable for recognition, but not for our purposes. In the analyses of the differ-
ences in the speech maps trained for LPC gave better results. Nevertheless, the
maps with dimension 30 neurons are not suitable for described training group
because of the effect of limited generalization. For classification for described
purposes, the 20× 20 maps are appropriate.
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The k-means algorithm was then utilized for clustering maps. The calcula-
tions were randomly initialized. The lowest number of clusters was extracted
from maps trained on MFCC coefficients - from 10 to 14 clusters. For the maps
trained on LPC and PLP the k-means sensitivity was better. For LPC coeffi-
cients there were extracted from 19 to 24 clusters, for PLP coefficients algorithm
found between 20 and 24 clusters.

Fig. 3. Clusters in MFCC-trained map

Examples of clustered maps are in Figure 2 and in Figure 3. Each area filled
in different shade of grey represents one cluster. The cluster is a group of the
one or more neurons, which consist of neurons that represents similar features
in the speech. Dividing the trained network into cluster bring a higher level of
abstraction into analysis - instead 400 (almost) similar prototypes represented
by the neurons, there will be only about 20 distinctive features represented by
the clusters. As could be seen in Figure 3, MFCC parametrization gives fewer
clusters. It means that this parametrization does not describing so much details
as LPC based parametrization (Fig. 2). The reasons of such a differences is
mentioned in previous section.

Then the patterns were calculated using the second part of the training set.
Then the samples from the verification set and also the samples obtained from
children with disease was compared against these vectors. In Table 2 and Table 3,
there are results of comparison for the vowel A. In Table 2, each row represents
results from different speaker from verification set. In Table 3, each row repre-
sents one recording session form one of the three children with disorder.

As could be seen, there is difference between result obtained from various
parametrizations. For MFCC coefficients, there is not satisfactory variability
and therefore these coefficients are not suitable for classification of children with
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Table 2. Results for healthy children (vowel A)

speaker LPC PLP MFCC

H1 1.4878 1.1767 1.1939

H2 1.1741 0.4844 0.6514

H3 0.8275 1.3865 1.1705

H4 0.9739 0.5795 0.7437

H5 0.7824 0.4418 0.4904

H6 1.3211 1.3218 1.1320

H7 0.6218 0.6435 0.7373

average 1.0269 0.8620 0.8742

Table 3. Results for the children with disorder (vowel A)

speaker LPC PLP MFCC

D1R1 1.1273 1.1983 1.7149

D1R2 1.3461 1.2415 1.7149

D1R3 1.4625 1.1907 1.7149

D2R1 1.5789 1.2703 1.7151

D2R2 1.4989 1.2553 1.7149

D2R3 1.5127 1.2208 1.7149

D3R1 1.5613 1.3012 1.7149

D3R2 1.5663 1.3012 1.7149

average 1.4568 1.2474 1.7149

Table 4. Results for both groups of children – all parametrizations

vowel health condition LPC PLP MFCC

A healthy 1.0269 0.8620 0.8742
disorder 1.4568 1.2474 1.7149

E healthy 1.3924 1.2464 1.2868
disorder 1.7652 1.2795 2.0644

I healthy 1.9056 0.4446 0.7204
disorder 2.0020 0.9438 1.4936

O healthy 1.1604 0.9426 1.0637
disorder 1.4143 1.2510 1.4122

U healthy 0.7170 0.6567 0.6683
disorder 0.5177 1.3335 1.6071

disorders using KSOMs. For this task, the LPC and PLP parametrization giving
better results. It is in accordance with the reasons mentioned above.

The average results obtained for both groups of children and all parametri-
sations are in Table 3. The result are distinguished by the method used to ob-
tain coefficients from segments. As one could be seen, the LPC parametrization
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gives the best result in distinguish between healthy children and children with
disorder. The PLP is also possibly useful, but MFCC parametrization giving
unsatisfactory results that are not suitable for described purposes.

The result are strongly depended on the type of speech units. We suppose
that vowels are the simplest units to analyse and in the more complicated cases,
the result could be only worse. The method well detect ordinary problems in
speech of the children with Developmental Dysphasia - interchange of the high
wovels in the vocalic triangular. The performance of described method depends
on using proper KSOMs size according to the cardinality of a training set.

4 Conclusion

Utilization of the KSOM allows modifications of the process that distinguish
between speakers, to the process where common attributes are extracted and
allows to distinguish between healthy children and children with disorder [1].
We plan to extend described method in order to get more information about
children’s speech and to reliable describe trend of the disorder.

We plan to validate method on larger, representative base and statistically
prove the results, including comparison with the records of specialists. We hope
that described method or its modification will bring new opportunity in diagnosis
of the children with developmental dysphasia and other developmental disorders.
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Miroslav Burša and Lenka Lhotská
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Abstract. In present we benefit from the use of nature processes which
provide us with highly effective heuristics for solving various problems.
Their advantages are mainly prominent in hybrid approach. This paper
evaluates several approaches for learning neural network based on Radial
Basis Function (RBF) for distinguishing different sets in RL. RBF net-
works use one layer of hidden RBF units and the number of RBF units
is kept constatnt. In the paper we evaluate the ACOR (Ant Colony Ap-
proach for Real domain) approach inspired by ant behavior and the PSO
(Particle Swarm Optimization) algorithm inspired by behavior of flock
of birds or fish in the nature. Nature inspired and classical algorithms
are compared and evaluated.

Keywords: RBF, RBF Neural Network Learning, Radial Basis Function,
Particle Swarm Optimization, PSO, Ant Colony Optimization, ACO,
ACOR.

1 Introduction

In the last two decades, many advances in computer sciences have been based
on the observation and emulation of processes of the natural world. The origins
of bioinspired informatics can be traced up to the development of perceptrons
and artificial life, which tried to reproduce the mental processes of the brain and
biogenesis respectively, in a computer environment [1]. Bioinspired informatics
also focuses on observing how the nature solves situations that are similar to
engineering problems we face.

Radial basis function (RBF) neural networks (RBF-NN) have been introduced
by Broomhead and Lowe in 1998 [2]. Their model is inspired by the locally tuned
response observed in biologic neurons that can be found in several parts of the
nervous system, for example cells in the auditory systems which are selective
to small bands of frequencies, in visual cortex, etc. Such locally tuned neurons
show response characteristics bounded to a small range of the input space.

Ant Colony Optimization (ACO) is an optimization technique that is inspired
by the foraging behavior of real ant colonies. Originally, the method was intro-
duced for the application to discrete and combinatorial problems. K. Socha pre-
sented variant for optimization in continuous domain: ACOR [3] which is closest
to the ACO approach.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 829–838, 2008.
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Particle Swarm Optimization (PSO) is an optimization technique inspired
by the behavior of the flocks of birds, schools of fish, or swarms of bees, and
even human social behavior. PSO is a population-based optimization tool, which
could be implemented and applied easily to solve various function optimization
problems, or the problems that can be transformed to function optimization
problems.

In this paper we apply and evaluate the ACOR and PSO methods in the RBF
neural network training process. First, an overview of the RBF neural networks
and the learning methods are presented. Next, the learning algorithms are eval-
uated over the freely available datasets (UCI database [4]) in the experimental
section.

2 RBF Neural Network

Radial basis function networks consist of a layer of units with radial basis acti-
vation function (RBF) and an output layer of linear summation unit(s). As the
RBF, often Gaussian activation functions are used (2), therefore the correspond-
ing units are called Gaussian (kernel) units. The number of the units has to be
known in advance, however techniques for dynamic growth of the structures have
been introduced. See [5] for more information.

Fig. 1. An illustration of the RBF (Radial Basis Function) network (1). The input
vector passes through a hidden layer of RBF (Gaussian) units. Then a weighted sum-
mation is performed. It can be easily extended for multiple outputs.

Each Gaussian unit c has an associated vector mc ∈ Rn, indicating the po-
sition of the Gaussian in the n-dimensional input vector space, and a standard
deviation σc. The response of the network R(◦) for the data vector x is given by
the following equation:

R(x) =
c∑

i=0

wiΦi(x) (1)

where Φ(◦) stands for the RBF function (2), wi represents the weight for linear
summation output of the kernel functions. The equation can be simply generalized
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for multiple summation units. The response of the RBF unit in the case Gaussian
function is used is given by the following equation:

Φi(x) = exp
(
−‖x−mi‖

2σ2
i

)
(2)

where m is the vector determining the center (basis) of the RBF function Φi(x).
The parameter σ stands for the standard deviation and determines the width of
the RBF function. Each kernel function returns higher output when the input is
closer to its center, and the value decreases monotonically as the distance from
the center increases. Note that normalized and non-normalized versions exist.

3 Learning Method Description

The goal of the learning algorithm is to set the free parameters of the network
such that the output units produce suitable values for given input data. We can
define an error function which measures the difference between the correct and
predicted response on the given dataset. The task of the learning algorithm is
to minimize such function.

The free parameters in the case of RBF networks are the centers mi of kernel
units i ∈ c, their widths σi and the weights wi to the output unit(s). For each
RBF unit and n-dimensional input we therefore obtain n + 2 free parameters,
total number of parameters for the whole network is then |c| · n+ 2.

The learning phase of RBF NN basically consists of two consecutive phases,
an unsupervised one and a supervised one:

1. Training of the first layer weights – determining the kernel function centers –
by means of a clustering procedure. Moody and Darken [6] propose the use of
k-means clustering algorithm. For the width parameter (standard deviation
in the Gaussian function) they report good results for using the distance to
the other nearest RBF kernel unit.

2. Calculation of the weights between the hidden layer and the output layer by
solving a system of linear equations. The delta rule (least mean square rule)
is commonly used.

Another approach for learning the network introduce growing cell structures,
however such approach is beyond the scope of this paper. See [5] for more in-
formation. Many approaches for supervised training have been proposed using
k-means [7], orthogonal least squares (using the Gram-Schmidt algorithm) [8],
expectation-maximization [9], etc.

In this paper we evaluate three different learning methods: The simplest one
reduces the network to behave like the k-means algorithm: the weight and the
width of each unit are kept constant, only the centers are updated. In such
way we minimaze the k-means objective function (sum of squared distances of
each datum to it’s relevant center). Other approaches update all free parame-
ters according to the error function evaluation over the training data set. After
the learning phase is finished, the learned network is evaluated on a different
(unknown) data set (testing data set).
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3.1 Ant Colony Optimization

Ant Colony Optimization [10] is a metaheuristic approach, inspired by the abil-
ity of ants to discover shortest path between nest and food source. The process
is guided by deposition of a chemical substance (pheromone). As the ants move,
they deposit the pheromone on the ground (amount of the pheromone deposited
is proportional to the quality of the food source discovered). The pheromone
is sensed by other ants and the amount of pheromone changes the decision be-
havior of the ant individual. The ant will more likely follow a path with more
pheromone.

The ants communicate indirectly through their environment. Such autocat-
alytic communication is called stigmergy (communication through the environ-
ment) (introduced by Grassé [11]).

The basic idea of ACO can be described as follows:

1 Repeat until stopping criterion is reached
2 Create ants
3 Construct solutions
4 Evaporate Pheromone
5 Daemon Actions (pheromone deposit)
6 End Repeat

New solutions are constructed continuously. It is a stochastic decision process
based on the pheromone amount sensed by the ants. In the same way as it does
in nature, the pheromone slowly evaporates over time (over iterations) in order
to avoid getting stuck in local minimum and to adapt to dynamically changing
environment. Daemon actions represent background actions which consist mainly
of pheromone deposition. The amount is proportional to the quality of solution
(and appropriate adaptive steps).

Several versions of the ACO strategy have been proposed, but they all follow
the same basic ideas:

– search performed by a population of individuals
– incremental construction of solutions
– probabilistic choice of solution components based on stigmergic information
– no direct communication between the individuals

Many approaches to perform an optimization in continuous domain exist:
CACO [12], API [13], CIAC [14]. The most related to ant colony metaphor is
the ACOR method presented by K. Socha [3]. In his work, a probabilistic density
function (PDF) is used to estimate the distribution of Gaussian function.

A review of ACO-related methods can be found in [15] and [16].

Ant Colony Optimization for Continuous domain. Ant Colony Optimiza-
tion (ACO) algorithms were originally introduced to solve discrete optimization
(i.e., combinatorial) tasks. The ACO variants achieved interesting results in the
field of NP-problem solving (traveling salesman, vehicle routing problem, etc.),
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therefore the methods for optimization in continuous domain have been intro-
duced. Method that follows the original ACO framework as much as possible is
the ACOR algorithm [3].

ACOR uses a solution archive T for the derivation of a probability distribution
over the search space. While a pheromone model can be seen as an implicit
memory of the search history, a solution archive is an explicit memory. Given
an n-dimensional optimization problem and a solution sl, ACOR stores in T the
solutions together with their objective function denoted hereby by f(sl) (also
called error function, fitness). The capacity of the solution archive is denoted by
k. The value of ith variable of the lth solution can be denoted as si

l .
At the beginning the archive is initialized with k random solutions. At each

algorithm iteration, a set of m solutions is probabilistically generated and added
to T . The same number of the worst solutions is removed. This biases the search
process towards the best solution.

The probabilistic generation of solutions uses probability density functions
(PDF). PDF may be any function P (x) : R ∈ x→ P (X) ∈ R such that:∫ ∞

−∞
P (x)dx = 1 (3)

For a given probability density function P (x), an associated cumulative distri-
bution function (CDF) D(x) may be defined, which is often useful when sampling
the corresponding PDF. The CDF D(x) associated with PDF P (x) is defined as
follows:

D(X) =
∫ x

−∞
P (t)dt (4)

The general approach to sampling the PDF P (x) is to use the inverse of
its CDF, D−1(x). Then it is sufficient to use a pseudo-random number genera-
tor that produces uniformly distributed real numbers. More information can be
found in [3].

As the PDF function, Gaussian kernel PDF are used. They are formed from
the weighted sum of Gaussian functions gi

l(x) (2):

Gi(x) =
k∑

l=1

ωlg
i
l(x) =

k∑
l=1

ωl
1

σi
l

√
2π

exp

(
−
(
x− μi

l

)2
2σi

l
2

)
(5)

where i = 1, . . . , n, that is, for each dimension of the given continuous optimiza-
tion problem we define different Gaussian kernel PDF. Each kernel is parame-
trized by three vectors of parameters: ω is the weight vector associated with the
individual Gaussian function, μi and σi are the vectors of means and standard
deviations respectively. See Fig. 2 for illustration.

The construction of the solutions is performed as follows: At each construction
step, the ant chooses a value for decision variable. This is done by sampling a
Gaussian kernel PDF Gi(x), which is derived from the k solutions stored in the
solution archive T . The values of the i-th variable of all solutions in the archive
become the elements of the vector μi and the vector of weights ω is created in
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Fig. 2. Figure shows an example of four Gaussian functions and their superposition
– the resulting Gaussian kernel PDF. Note that the x axis is limited to the range
〈−10; 10〉 in this illustration.

the following way. The solutions in the solution archive T are sorted according
to their rank and the weight of the l-th solution is computed as follows:

ωl =
1

qk
√

2π
exp

(
(l − 1)2

2q2k2

)
(6)

which defines the weight to be a value of the Gaussian function with argument l,
mean value 1.0 and standard deviation qk where q is a parameter of the algorithm
and k is the number of solutions. The q parameter causes the strong preference
of the best-ranked solutions when it has a small value; when it has larger value,
the probability becomes more uniform.

Only one Gaussian function to compose the Gaussian kernel PDF is selected.
The probability pl of choosing the l-th Gaussian functions is linearly proportional
to the value of the correspondent weight ωl. The standard deviation σi

l of the
correspondent Gaussian function gi

l(x) is then computed (there is no need to
recompute the whole vector σi):

σi
l = ρ

k∑
e=1

|xi
e − xi

l |
k − 1

(7)

where the parameter ρ > 0 has an effect similar to the pheromone evaporation
in ACO for combinatorial optimization. The higher the value of ρ, the lower the
convergence speed of the algorithm.

The whole process is repeated for each dimension i = 1, . . . , n and each time
the average distance σi

l is calculated only with the use of a single dimension i.
This ensures that the algorithm is able to adapt to linear transformation of the
considered problem.
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3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) technique [17] is inspired by the behavior
observed in flocks of birds, schools of fish, or swarms of bees. PSO model consists
of a swarm of k particles which are initialized with a population of random
candidate solutions. During the iterative process, they move through the n-
dimensional problem space and search for new solutions. The method needs
an objective (fitness) function to be defined in the search space Rn. Each i-th
particle has its own position (in the solution space) – solution vector xi, and a
velocity represented by a velocity vector vi.

In the adaptive process, each particle uses the local and global information:
Each particle remembers its own best so far solution achieved lBest (local in-
formation) and is provided with the information about the best so far solution
of the algorithm gBest (global information). During the iteration process, the
position xi of the i-th solution is updated according to the following rule:

xi(t+ 1) = x(t) + vi(t + 1) (8)

where t denotes time (iteration number) and the velocity vector vi is computed
as follows:

vi(t + 1) = wvi(t) + c1r1‖xlBest(t)− xi(t)‖ + c2r2‖xgBest(t)− xi(t)‖ (9)

where gBest and lBest denote the global and local best so far solution respec-
tively. Parameter w is called the inertia factor, r1 ∈ 〈0; 1〉 and r2 ∈ 〈0; 1〉 are
uniformly distributed random numbers which serve for maintaining the diversity
of the population. Parameter c1 > 0 is called coefficient of the self-recognition
component and the parameter c2 > 0 is called coefficient of the social component.

Usually a maximum and minimum velocity constraint is used in order to
increase the effectiveness of the algorithm.

4 Experimental Part

The experiments have been performed using the training and validation set with
classification known in advance (a priori). These sets are used during the learning
process of the classifier and to validate the model (avoid over-learning). After
successful evolutionary process of the classifier finishes, the testing is performed
(where the classification is not needed a priori, but should be known in order
to be able to evaluate the performance of the classifier) on testing (unknown)
data. If the classification is not known a priori, cluster validation techniques as
described in [18] and [19] can be used to measure the classification (or clustering)
efficiency of the clustering obtained.

4.1 Preliminary Tests

Numerous tests have been performed to estimate the optimal parameters and
measure the dependency of error ratio on relevant parameters. As an objective
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Table 1. Dataset characteristics

Data set Examples Categorical
attributes

Continuous
attributes

Classes

Ljubljana breast cancer 282 9 0 2

Wisconsin breast cancer 683 0 9 2

Cleveland heart disease 303 8 5 5

Hepatitis 155 13 6 2

Tic-tac-toe 958 9 0 2

Iris 150 0 4 3

function, the ratio of incorrectly classified data to the whole (training) data set
has been used (e ∈ 〈0; 1〉). The minimization of this function is desired. First,
the tests on artificial data set with Gaussian distribution have been performed.
Then the iris data set [4] with 150 data items and 3 classes has been used to
measure the performance and for preliminary parameter estimation.

4.2 Tests

Experimental evaluation of the test has been performed similarly to [20], where
the description of the datasets can be found. However, we use the predefined
number of RBF units which is equal to the number of classes in the data. Char-
acteristics of the datasets are summarized in Table 1. Categorical attributes have
been assigned integer number from linear sequence, starting with the value of 1.

4.3 Parameter Estimation

Based on the results of the preliminary experiments, the population size has
been set to 20 for both ACOR and PSO algorithm. The stopping criterion has
been set to 300 iterations which allows the algorithms to stabilize.

For the ACOR, the values of ρ = 1.0 and q = 0.5 have been used, for the
PSO, the values c1 = 1.0, c2 = 1.0 and w = 0.5 have been used. These values
have been determined experimentally. Adaptive methods can be also used.

Table 2. Table presents mean accuracy (%) in classification of the UCI datasets se-
lected. Different learning algorithms are compared. The result is a mean average over
one hundred independent runs. For the evaluation, the testing data set has been used.

Data Set K-means RBF PSO RBF ACOR RBF

Ljubljana breast cancer 69.84±3.75 71.25±7.58 72.58±4.86

Wisconsin breast cancer 96.16±1.08 96.11±1.10 96.72±1.12

Cleveland heart disease 55.11±4.18 49.99±15.36 57.14±4.27

Hepatitis 82.50±5.92 81.73±7.20 83.46±6.65

Tic-tac-toe 65.44±2.10 70.38±12.24 68.36±2.36

Iris 86.75±8.78 90.33±7.60 90.75±4.40
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5 Results

The results are summarized in the Table 2. Every result represents an average
over one hundred of independent runs. The testing data set has been selected
randomly for each test run. A standard deviation of the results is also presented.
First column of the results table (K-means RBF ) provides results for the basic
algorithm where only the RBF mean vector has been updated. The next colums
provide results for the PSO and ACOR learning methods respectively.

It is obvious that the ACOR method outperformed the other approaches in
the datasets containing continuous attributes (both Breast cancer, Cleveland,
Hepatitis and Iris data sets). In the case of more categorical attributes (Tic-tac-
toe dataset), the PSO method performed better, however it often introduced
higher standard deviation.

6 Conclusion

In this paper we have presented, applied and evaluated two nature inspired
methods in the task of RBF neural network learning process: ACOR and PSO
algorithms for continuous optimization and compared them with deterministic
approach. The networks have been used in the process of classification. The use
of nature inspired methods increases robustness of the learning process.

The nature inspired methods have been compared with a simple algorithm
for RBF neural network learning which effectively reduces the network to k-
means algorithm. We have shown that the nature inspired methods increased
the accuracy of the basic algorithm, and have proved to be an efficient tool for
optimalization in the continuous domain and for ANN learning.
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Czech Technical University, Faculty of Electrical Engineering,
Department of Computer Science and Engineering

Karlovo náměst́ı 13, 121 35, Prague, Czech Republic

Abstract. This paper focuses on TWEANN (Topology and Weight
Evolving Artificial Neural Network) methods based on indirect develop-
mental encodings. TWEANNs are Evolutionary Algorithms (EAs) which
evolve both topology and parameters (weights) of neural networks. In-
direct developmental encoding is an approach inspired by multi-cellular
organisms’ development from a single cell (zygote) known from Nature.
The possible benefits of such encoding can be seen in Nature: for exam-
ple, human genome consists of roughly 30 000 genes, which describe more
than 20 billion neurons, each linked to as many as 10 000 others. In this
work we examine properties of known tree-based indirect developmental
encodings: Cellular Encoding and Edge Encoding. Well known Genetic
Programming is usualy used to evolve tree structures. We have employed
its successors: Gene Expression Programming (GEP) and Grammatical
Evolution (GE) to optimize the trees. The combination of well designed
developmental encoding and proper optimization method should bring
compact genomes able to describe large-scale, modular neural networks.
We have compared GE and GEP using a benchmark and found that GE
was able to find solution about 7 times faster then GEP. On the other
hand GEP solutions were more compact.

1 Introduction

Using Evolutionary Algorithms (EAs) [1] to learn Artificial Neural Networks
(ANNs) [2] is a well examined approach as EAs are very robust. Even harder
optimization problems must be solved for TWEANNs (Topology and Weight
Evolving Artificial Neural Networks) – these algorithms are not limited to search
for proper weight settings only but they also optimize the topologies of neural
networks. TWEANN approach is useful for ANN user, who does not have to ex-
periment with different topologies. Also finding (at least near) optimal topology
leads to better data modeling results.

The problem of most recent TWEANN algorithms is in their inability to
evolve large-scale modular ANNs. This is mainly caused by the so-called curse
of dimensionality, where optimization methods fail because of high-dimensional
space to search through. Most current TWEANN methods use direct encoding
approaches to represent ANNs. In direct encoding a single gene describes a sin-
gle feature (e.g. a connection or a neuron) of an ANN. This is unlike in Nature
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where genome rather represents a “program” to build the target organism. Hu-
man genome consists of roughly 30 000 genes and is able to encode more than
20 billion neurons, each linked to as many as 10 000 others, plus, of course, the
rest of the organism. This efficient information storage can be seen as a kind
of compression. Hence, the translation of a genotype to phenotype is a decom-
pression process. Of course, such a high level of compression is only possible, if
the information is highly regular. This is true for Nature, as organisms and their
brains are known to be highly modular, hierarchical systems. Artificial encodings
which are trying to possess such attributes are known as indirect encodings.

In Nature, phenotypes are created by process of development (embryogeny).
Multi-cellular organisms are grown from a single cell. The natural development,
according to [3], involves 5 main processes: cleavage division, pattern formation
(e.g. location of axes), morphogenesis (cell movement), cellular differentiation
and cellular growth. The whole process of a cellular development is controlled
by a complex interplay of protein diffusion and detection by binding on genes
regulatory sites. It is often referred to a Gene Regulatory Network (GRN).

Reisinger [4] and Mattiussi [5] developed TWEANN systems which employ
GRN models similar (although very simplified) to those in Nature. However, the
target ANNs are not created by a development. Rather ANNs are directly asso-
ciated with evolved GRNs – the number of genes in a GRN exactly corresponds
to neurons of a final network. These approaches do not use generative represen-
tations. In [6,7] Eggenberger used very complex artificial embryogeny system to
grow ANNs. Such system is computationally very demanding. The question is,
if it is possible to model the involved Natural phenomena on a higher level of
abstraction.

In [8,9] Stanley et al. presented very different approach – a HyperNEAT algo-
rithm. It evolves neural networks in a two stage process: the standard NEAT [10]
TWEANN is used to create ANNs with special transfer functions. These net-
works are called the Compositional Pattern Producing Networks (CPPNs). In
the second step, planned neurons are given coordinates on an n-dimensional grid.
The previously evolved CPPN is then used to determine synaptic weights be-
tween all pairs of neurons. The spatial coordinates of both neurons are fed into
the CPPN’s inputs and the CPPN then outputs their connection weight. The
HyperNEAT itself is not a typical TWEANN method as the number of neurons
and their spatial distribution has to be known in advance. Interesting feature of
HyperNEAT is that its developmental process is not simulated in time – complex
phenotypes are built just by questioning the relevant CPPN.

This work particularly focuses on experiments with tree-based indirect encod-
ings of ANNs. In [11] Gruau introduced an indirect encoding called Cellular Encod-
ing (CE), where the development of ANNs is controlled by evolved program trees.
Trees are well examined data structures and there was already a great amount of
interest in development of tree structure optimization Evolutionary Algorithms.
The most widely known, Koza’s Genetic Programming (GP) [12], which was orig-
inally used to evolve LISP program trees, was adopted by Gruau and used to op-
timize CE development trees. Here, we employ GP’s successors Gene Expression
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Programming and Grammatical Evolution. Along with Cellular Encoding we make
experiments using a similar approach – the Edge Encoding (EE)[13].

The paper is organized as follows: Section 2 contains a brief decription of
Gene Expression Programming and Grammatical Evolution. Section 3 describes
Cellular and Edge encodings. In Section 4, experiments are performed. The last
section concludes.

2 Evolution of Tree Structures

Koza’s Genetic Programming (GP) [12] is a well-known Evolutionary Algorithm
for optimization of tree structures. GP trees can represent mathematical models
of data or programs. Figure 1 shows a simple function of two variables described
by an evolved GP tree. The tree nodes are labeled by symbols which can repre-
sent either operations, variables or constants. Each node has a predefined arity
(number of child nodes). Constants and variables are localized in leaf nodes. GP
was already used for evolution of ANNs [14]. However, the encoding was direct.

Fig. 1. Genetic Programming evolved tree. This tree is assembled of 7 symbols, it uses
three operations (+, ×, /), two variables (x, y) and two constants (2, 5). It represents
a function f(x, y) = (x × 2) + (5/y).

2.1 Gene Expression Programming (GEP)

Gene Expression Programming(GEP) is a method developed by Ferreira [15].
GEP is based on GP and it was reported to surpass the traditional GP by a
factor 100 to 10 000 on many benchmarks. Unlike GP, where a genome is the
evolved tree itself, GEP works with linear representation. Ferreira already used
GEP for evolution of ANNs. The approach used similar direct encoding to the
one mentioned in the GP section above.

Figure 2 clarifies the situation – it shows a two stage process of genotype
to phenotype transformation. A genotype represented by a linear genome is
translated into a development tree which is later used to grow the target ANN
by simulated embryogenesis. Trees are efficiently encoded into a linear form by
use of the Karva language, such encoded tree is then called a K-expression. In
Karva, trees are read layer by layer starting by the root node The K-expression
for the program tree shown in Figure 1 would be “+*/x25y”. Karva facilitates
efficient mutation and crossover by keeping newly created individuals valid. GEP
allows multigenic genomes, where multiple trees are evolved simultaneously and
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Fig. 2. The figure shows a two stage process of genotype to phenotype transformation
for both Grammatical Evolution (GE) and Gene Expression Programming (GEP) Evo-
lutionary Algorithms. Both approaches work with population of linear genomes. In the
first stage, these genotypes are translated into development trees. In the second stage
the simulated development starts by progressively traversing the tree from its root
node, effectively growing the phenotype – a target ANN. The ANN is then evaluated
in the domain. Its fitness is used by selection mechanisms during evolution.

later combined by a linking function. GEP also includes a possibility of Random
Numerical Constants (RNCs) where an array of numerical constants is coevolved
together with the tree. These constants can parametrize tree symbols which are
connected to a special ’?’ terminal.

2.2 Grammatical Evolution

In [16] Ryan, Collins and O’Neil introduced a Grammatical Evolution (GE)
which is an Evolutionary Algorithm able to evolve solutions according to a user-
specified grammar. Unlike GP or GEP, GE brings more flexibility as user is
able to constrain the way in which the program symbols are assembled together.
In both GP and GEP it is impossible to control their order – any symbol can
become a child or a parent of any other symbol. The GE approach is therefore
able to radically cut down the search space. The grammar in GE is specified
using Backus Naur Form (BNF). GE uses linear genome of integer numbers.

3 Tree-Based Indirect Encoding

3.1 Cellular Encoding

Cellular Encoding (CE) was introduced by Gruau in [11], where more detailed de-
scription can be found. In CE, ANN development starts with a single cell
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(neuron). A development tree is traversed using breath-first search starting from
the root node. CE uses symbols for cell division (PAR, SEQ) and updating of cell
registers like biases or input register (B+, INC etc.). The original Cellular Encod-
ing was limited to Boolean Neural Networks where network’s input and output
is binary. Boolean Neural Networks use neurons which fire 1 for activities above
given threshold and 0 for lower. Weights can be either 1 or −1. The following list
contains short description of symbols used in CE development trees:

– SEQ sequential division – a new cell inherits mother cell’s outputs, input
of a new cell is connected to the mother cell’s output using a connection
of weight 1. Development instructions for a mother cell continues in a left
subtree, while for a new cell in the right.

– PAR parallel division – create a new cell which has the same set of inputs
and outputs as the mother cell.

– INC, DEC increase/decrease internal input register.
– W+, W- set weight of an input link designated by an internal input register to

1 or −1.
– B+, B- increase/decrease bias by 1.
– CUT cut incoming connection given by the internal input register.
– WAIT do nothing – continue with the next step (needed for synchronization).
– END end processing of this cell.

Gruau has later developed a modified method which is capable to encode real-
valued weights [17].

3.2 Edge Encoding

In [13] Luke and Spector pointed out that Gruau’s Cellular Encoding bias the
evolutionary search towards highly connected networks. This is mostly due to its
Cell-centric approach and its rather inefficient internal input register operators
(INC and DEC). They developed a new technique called Edge Encoding (EE),
which in contrast to Cellular Encoding grows trees rather by modification of
edges then nodes. Edge Encoding was designed to be a tool for evolution of
general networks. Hornby in [18] evolved ANNs with a slightly modified EE. EE
is able to create general recurrent networks, the development starts with a single
cell with a self-loop (the initial edge). In our work we have used the following
symbols which can be applied to edges (from cell A to cell B):

– SPLIT creates a new cell C. New edges A→ C and C → B are added.
– REVERSE creates a new edge B → A.
– CONNECT creates a new edge A→ B.
– LOOP creates a self loop B → B.
– BIAS(n) sets B’s bias to n.
– INPUT(n), OUTPUT(n) connects to the n-th input/output.
– WAIT do nothing – continue with the next step (needed for synchronization).
– END end processing of this cell.

Here, we have used a simplified version of Hornby’s Parametric Edge Encoding –
symbols dest to next, source to next and source to parent were not used
as the above mentioned set of symbols was sufficient for our experiments.
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4 Experiments

In this section we describe our experiments concerning Cellular and Edge en-
codings. The optimization methods chosen were the Grammatical Evolution and
Gene Expression Programming described above. For our experiments we have
chosen a well known XOR benchmark where ANN is evolved to approximate the
XOR Boolean function. XOR was often used as a preliminary benchmark for
TWEANN algorithms [11,10]. XOR is simple enough but it still requires hidden
nodes in phenotype.

At first the Boolean Neural Network model as described in 3.1 was employed.
Results of all experiments are summed up in a Table 1.

4.1 Grammatical Evolution

Cellular Encoding. To use a Grammatical Evolution for optimization of de-
velopment trees one has to define a grammar in the BNF. For a basic set of
Cellular Encoding symbols as described in 3.1 the grammar is straightforward:

<tree> ::= SEQ<tree><tree>|PAR<tree><tree>
|INC<tree>|DEC<tree>
|W+<tree>|W-<tree>|B+<tree>|B-<tree>

|CUT<tree>|WAIT<tree>|END

Note that END is the only terminal symbol. One of possible handcoded solutions
for ANN can be: SEQ(PAR(B-(END),END),W-(END)) (for better readability the
tree is written in the infix notation).

Results of this (and all following experiments) are summarized in Table 1. GE
was able to evolve solution on average in 240 generations. It never achieved as
compact development as the presented handcoded one. One of shorter solutions
found was the following:

SEQ(PAR(END,END),SEQ(PAR(B-(PAR(DEC(END),W-(B-(B+(W+(W-(END))))))),
END),DEC(W+(W-(W-(END))))))

The average symbol count was 25 which is much worse result than the 7 sym-
bols of the handcoded one. It is obvious, that the solution uses unnecessary
combinations of alternating symbols (W+, W- and B+, B-).

Edge Encoding. For Edge Encoding as described in 3.2 we have used the
following grammar:

<tree> ::= SPLIT<tree><tree><tree>|REVERSE<tree><tree>
|CONNECT<tree><tree>|LOOP<tree><tree>
|WAIT<tree>|END

|INPUT<input><tree><tree>|OUTPUT<output><tree><tree>
|B+<tree>|B-<tree>|W+|W-

<input> ::= 0|1
<output> ::= 0
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Table 1. A comparison of GE and GEP vs. Cellular Encoding and Edge Encoding on
a XOR problem. Average number and standard deviation of generations and symbols
needed are given. The values were measured on 50 runs. If solution was not found
within 5000 the run was considered a failure. Edge Encoding was measured only for
GE. All experiments were done using population of 1500 individuals.

GE GEP
Failures Generations Symbols Failures Generations Symbols

avg stdv avg stdv avg stdv avg stdv

Cellular Encoding 4 240 173 25 17 4 1509 1256 15.2 2.7
Edge Encoding 3 173 97 135 135 - - - - -

Here, the grammar is adapted for two inputs and one output given by the solved
XOR problem. EE in its basic form can evolve general recurrent neural networks
in order to keep the results at least somewhat comparable to CE we removed
REVERSE and LOOP symbols, which greatly reduced number of recurrent links in
developed ANNs. Additionally each developed ANN was pruned off all recurrent
links. One of possible handcoded solutions can be:

SPLIT(END,INPUT(0,INPUT(8,OUTPUT(0,END,W+),W+),W+),
INPUT(0,INPUT(8,OUTPUT(0,B-(END),W-),W+),W+))

A mean number of generations needed to evolve XOR was 173. The number of
solution symbols was 135, which is extremely high in comparison with the hand-
coded solution (23 symbols). An example of a shorter evolved solution follows:

OUTPUT(6,INPUT(1,INPUT(3,OUTPUT(1,INPUT(8,W-,WAIT(W+)),
WAIT(SPLIT(B+(OUTPUT(1,W-,END)),WAIT(W-),
INPUT(3,END,B-(SPLIT(WAIT(W-),INPUT(8,W+,WAIT(W-)),B+(W+)))))))
B+(SPLIT(W-,W+,W-))),B-(W+)),WAIT(W+))

Interestingly, when recurrent ANNs were allowed, GE was able do develop shorter
solutions as the recurrent version of the XOR network is topologically simpler.

4.2 Gene Expression Programming

In case of Gene Expression Programming we have performed experiments with
Cellular Encoding only. Combination of Edge Encoding and GEP is currently
being subject of research.

Cellular Encoding. For GEP we have used a classical set of Gruau’s Cellular
Encoding symbols as described in 3.1. We have evolved single gene genomes with
END being the only one terminal symbol. An average number of generations was
1509 which is approximately 6.3 times more than in the case of GE. On the
other hand GEP produced smaller solutions – only 15.2 symbols were needed
(compared to 25 for GE). An example of the evolved solution:

SEQ(PAR(END,WAIT(WAIT(END))),WAIT(SEQ(PAR(PAR(END,B-(END)),
PAR(END,END)),W-(INC(END)))))
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4.3 Real-Valued Weights

After experiments with Boolean Neural Networks we performed experiments
with real-valued weights using GE and GEP. The GE grammar was modified in
the following way:

<tree> ::= SPLIT<bias><tree><tree><tree>|REVERSE<tree><tree>
|CONNECT<tree><tree>|LOOP<tree><tree>
|WEIGHT<weight>|WAIT<tree>|END

|INPUT<input><tree><tree>|OUTPUT<output><tree><tree>
|BIAS<bias><tree>

<bias> ::= <number>
<weight> ::= <number>
<neuron> ::= <number>
<number> ::= <digit><digit><digit><digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<input> ::= 0|1
<output> ::= 0

Note that <number> describes an integer from interval 0..9999. This integer was
transformed to [−1, 1] for weights and [−10, 10] for thresholds. The activation
function used in the developed ANNs was a logistic sigmoid.

In the case of GEP, we used of its RNCs (see 2.1). The result of experiments
for both GE and GEP were unsatisfactory as none approach was able to solve
the XOR problem. In fact, even evolving simple functions OR and AND needed
thousands of generations.

5 Conclusion

We performed experiments with Cellular and Edge indirect encodings. We em-
ployed Grammatical Evolution (GE) and Gene Expression Programming (GEP)
for evolution of development trees. The comparison of GE and GEP was done us-
ing Cellular Encoding. We found that GE outperforms GEP in a smaller number
of generations needed to optimize development trees. On the other hand, GEP
tends to produce smaller solutions. A comparison of Cellular and Edge Encoding
has shown that although Edge Encoding produced very large development trees
(135 symbols on average), the solutions were found faster.

Still, looking at the results, we can see than even in the best case of GE and
Edge Encoding 1500×173 = 259 500 evaluations were needed on average, which
is not satisfactory for a such simple problem as XOR. The experiments with
real-weight ANNs were complete failures. The following observations might be
helpful for improvement of current developmental TWEANNs:

– The use of a 2-stage phenotype construction as shown in Figure 2 brings
complications: even very small change (mutation) of a development tree may
cause massive changes in the final ANN. This effect must be minimized as
much as possible.
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– In [19] Stanley has shown advantages of a complexification – a gradual
growth from a simple form. The complexification makes the traversal through
the search space more efficient because its dimension grows as needed. The
implementation of this approach might be very useful in the case of GE and
GEP.

– As we have seen in the case of GE and Edge Encoding, development trees
used 135 symbols on average which is unacceptable. We claim that devel-
opmental indirect encodings need mechanisms which will prevent such bloat
(uncontrolled growth).
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Abstract. Biological neural systems and the majority of other
real-world networks have topologies significant different from fully or
randomly connected structures, which are frequently applied for the de-
finition of artificial neural networks (ANN). In this work we introduce
a deterministic process generating strongly connected directed graphs of
fractal dimension having connectivity structures very distinct compared
with random or fully connected graphs. A sufficient criterion for the gen-
eration of strongly connected directed graphs is given and we indicate
how the degree-distribution is determined. This allows a targeted gen-
eration of strongly connected directed graphs. Two methods for trans-
forming directed graphs into ANN are introduced. A discussion on the
importance of strongly connected digraphs and their fractal dimension
in the context of artificial adaptive neural systems concludes this work.

1 Introduction

Within the context of neural computation and cognitive science artificial neural
networks (ANN) are frequently utilized as the basic building blocks for large-scale
neural models in order to explore the nature of complex information processing
exploited in animals and human beings. The majority of such neural models
are based on connectivity structures which match with the classical types of
ANN, such as, Multi-layered-perceptrons, Hopfield- or Elman-networks [5,7]. All
these network types establish a connectivity structure close to fully connected
networks. The application of fully connected networks, however, might become
crucial with respect to plausibility if they are intended to model biological sys-
tems. Fully connected ANN can hardly represent brain-like neural structures,
if, as only one example, approximately 1011 neurons in the human brain are
coordinated by “only” 1015 synapses [10].

An alternative, in particular for large-scale neural models, to overcome fully
connected neural networks is the creation of random graph structures [1]. Nev-
ertheless, random graph models do not well describe some essential properties
of real-world or biological networks, such as degree-distribution [13]. Therefore,
we argue, while modeling large-scale neural networks one must consider alterna-
tives for the projections between neural assemblies; alternatives which go beyond
random graphs and fully connected structures.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 849–858, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Furthermore, large-scale neural models are applied for robot control more and
more [8,16]. Such implementations on autonomous robots might be motivated
as a proof of concept as well as for targeting specific issues of embodiment [14].
However, autonomous robots have usually very limited computational resources
CPU and memory. Hence, for performance reasons it becomes important to
utilize highly connected networks established by as less connections as possible.

The objective of this paper is to introduce a deterministic method which en-
ables us to create strongly connected directed graphs [15] established by a number
of edges magnitudes smaller than in fully connected graphs / networks. The gen-
eration process is inspired by fractal sets, namely Sierpiński carpets [12]. This
makes the resulting structures very distinct compared with random and fully
connected graphs. Due to the simplicity and deterministic character of the gen-
eration process, this method seems to be a promising alternative for the targeted
generation of directed graphs in general as well as it opens a wide field for ap-
plications in many areas of neural modeling. We will introduce two strategies
which allow alternative definitions of connectivity structures for feedforward and
recurrent neural networks.

2 Directed Graphs, Sierpiński Carpets, and Strongly
Connected Digraphs of Fractal Dimension

In this section we demonstrate how Sierpiński carpets motivate a process for a
targeted generation of strongly connected directed graphs (digraphs), which will
lead us to the definition of digraphs of fractal dimension.

2.1 Directed Graphs and Sierpiński Carpets

A directed graph or a digraph is a pair G(V,E), where V is a set of vertices
(sometime also called nodes) and E is a subset of V × V . An edge eij ∈ E
represents an edge from node vi to vj , where eij is the in-coming edge for vj and
the out-going for vi. In the following we also allow edges eii and therefore, edges
can be in-coming as well as out-going edge for one and the same node. We call
the number of in-coming edges of node vi in-degree din(vi) and the number of
out-going edges the out-degree dout(vi). In a digraph the number of in-coming
edges is equal to the number of the out-going:

∑n
i din(vi) =

∑n
i dout(vi), where

n is the number of nodes in G. A directed path between node vs and vt in G is
a sequence of edges e1, e2, . . . ek such that the end node of edge ei is the start
node of e(i+1), i = 1, 2 . . . k. If there exists a directed path between each pair of
nodes in a digraph, we call it strongly connected.

The structure of a digraph G(V,E) can be represented by an adjacency matrix
M . Each matrix element mij of an adjacency matrix can either be zero or one.
The element mij is one, if and only if eij ∈ E.

In the following section we describe how adjacency matrixes can build a bridge
between Sierpiński carpets and digraphs as well as they give us a process for the
deterministic development of strongly connected digraphs.
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Sierpiński carpets result from an iterative process where a pattern is succes-
sively used to replace specific regions in an evolving pattern. In Fig. 1 an example
is shown which illustrates this process. One starts with a given pattern, here a
square divided into 3 × 3 equal sub-squares. The sub-squares are labeled either
black or white, which creates a specific pattern. In each iteration the original
pattern is used to replace all the black labeled regions, by this pattern again.
This leads to a finer partition of the originally given pattern. Thus, after the first
iteration, when each black labeled square is replaced by the pattern, we have a
square subdivided into 9× 9 = 81 regions, instead of the 9 regions given in the
original pattern. As we see, after 5 iterations we have a “fractal set” represented
on a square, regularly subdivided into 729× 729 equal sub-squares. For infinity
iterations we get the Sierpiński carpet, that is a set of fractal dimension.

In this process towards a fractal set we have to distinguish between the pattern
P which is transformed into a new pattern P ′ and the pattern which determines
this transformation. The latter we call mask M. In the following we only allow
masks and patterns with dimension n × n (n > 1), where n indicates the seg-
mentation. Obviously, a mask of segmentation S, written as MS , applied to a
pattern P of segmentation m results in a new pattern P ′ of segmentation S ·m.

We utilize this transformation process to generate digraphs simply by inter-
preting the resulting patterns as an adjacency matrix. Namely, the black labeled
sub-squares are interpreted as edges, i.e. black color represents value 1 in the
corresponding adjacency matrix, while white squares indicate the zero entries,
i.e. no edge. In this way a pattern or a mask of segmentation S is transformed
into an adjacency matrix representing a digraph of S nodes and k edges, where
k is the number of black labeled sub-squares in the pattern. Examples of 3× 3
patterns transformed into digraphs are given in Figure 1.

With respect to adjacency matrixes we see that the Kronecker product [6]
can be applied in order the define an algorithm which is isomorph to the process
generating Sierpiński carpets:

D0 := MS

Dn+1 := Dn ⊗MS,

where MS is an adjacency matrix (M(i, j) ∈ {0; 1}) of dimension S × S. In the
following we refer to this algorithm as the digraph generating process DGP.

Due to the direct interpretation of patterns and masks as adjacency matrixes
and digraphs we make use of these terms synonymously. The only important
thing here is that a mask, either written as patternMS or adjacency matrix MS ,
is the only seed which initializes the DGP and therefore completely determines
the resulting connectivity structure.

2.2 Masks Creating Strongly Connected Digraphs

We now ask which masks of a given segmentation S create strongly connected
digraphs. For the investigation of this question we start with the simplest form
of strongly connected digraphs: cycles, also called rings. Each strongly connected
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Fig. 1. Top: An example of the first five iterations towards Sierpiński carpets. After 5
iterations the original given 3 × 3 partition is transformed into a 729 × 729 partition,
which can be interpreted as adjacency matrix for a digraph containing 729 nodes. See
text for explanation. Bottom: Examples of digraphs derived from 3 × 3 patterns.

digraph G(V,E) containing as many edges as nodes forms a cycle. Consequently
such a digraphs has no loops (also called self-connections), i.e. eii /∈ E. Further
more, each node has only one in-coming and one out-going edge.

Assume the general case where we have a mask MS and a digraph of seg-
mentation T represented by the adjacency matrix D0. Both, MS and D0, are
digraphs forming cycles. Due to the digraph generation process we can deduce,
that D1 := D0 ⊗MS :

1. has as many nodes as edges (T · S),
2. only contains nodes with one out-going and one-incoming edge, and
3. has no node with a self-connection (loop).

Therefore, D1 forms either a cycle or is fallen apart into “sub-cycles”. In the
latter case D1 wouldn’t be strongly connected anymore.

Whether D1 is a cycle or not is actually determined by the number of nodes in
MS andD0, in other words it depends on their segmentation. The cycles whichMS

and D0 are forming can be represented by the corresponding sequence of nodes.
Taking the example shown in Fig. 2 we get for the following sequence for D0:

(1∗)→ (3∗)→ (2∗)→ (4∗)→ (1∗),

for MS we have:
(1+)→ (3+)→ (2+)→ (1+),

and D1 is represented by:

(1∗, 2+)→ (3∗, 1+)→ (2∗, 3+)→ (4∗, 2+)→ (1∗, 1+)→ (3∗, 3+)→ . . .
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Fig. 2. Example of a process where a cycle with 4 nodes (D0) is transformed by a mask
(MS, cycle with 3 nodes) into a new cycle of 12 nodes, D1. See text for details.

In order to relate these two sequences to the sequence of the resulting graph
D1 we apply a numbering for D1 which somehow preserves the numbering of
D0 and MS . Fig. 2 shows how this can be achieved. Each node in D1 is now
represented by a number of two components (a∗, b+). Starting with an arbitrary
node (a∗1, b

+
1 ) we can now write down the sequence of nodes forming a directed

path in the following general form:

(a∗1, b
+
1 )→ (a∗2, b

+
2 )→ . . .→ (a∗k, b

+
k )→ (a∗1, b

+
1 ).

Note, due to the definition of DGP each node in D1 can have only one successor,
which is not the node itself. Therefore, we can conclude: if k = S · T then we
have a cycle formed by S ·T nodes, which is the number of nodes in D1. Thus, it
would follow: D1 is still strongly connected. On the other hand, if k < S ·T then
D1 consist of sub-graphs forming cycles and therefore D1 isn’t neither strongly
connected nor connected at all.

We see, it is the value of k which indicates whether or not the result is strongly
connected. However, the crucial point for calculating k is to understand how the
two sequences a∗i and b+i are determined by D0 and MS . In fact, the sequence for
a∗i (first component of the D1 numbering) is exactly the same of D0. No matter
how the sequence of D1 actually looks like, considering only the a∗-sequence, we
see the same sequence as for D0:

(1∗, b+t )→ (3∗, b+t+1)→ (2∗, b+t+2)→ (4∗, b+t+3)→ (1∗, b+t+4)→ . . .

The same holds for the b+i -sequence (second component of the D1 numbering).
It is determined by the “cycle sequence” of MS :

(a∗t , 1
+)→ (a∗t+1, 3

+)→ (a∗t+2, 2
+)→ (a∗t+3, 1

+)→ . . .

Combining these two observation we get: k = S ·T if, and only if S is not divisor
of T or vice versa. In other words D1 remains strongly connected. While for
the other case, i.e. S is divisor of T or vice versa, then we get k = max(S, T ),
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meaning D1 consist of min(S, T ) sub-graphs with k nodes forming separated
cycles and therefore D1 isn’t connected at all.

This result tells us that DGP doesn’t create strongly connected digraphs if it
is initialized with a cycle, because D0 and MS have the same segmentation per
definition.

However, examining the same argumentation we see that by extending MS

with a single loop (i.e. one self-connection) all separated sub-cycles will be
connected. An additional self-connection operates like a junction connecting all
separated sub-cycles. In this case the resulting digraph D1 remains strongly
connected. Further more, all resulting digraphs Dn (n > 1) would also be
strongly connected, because, due to the definition of DGP, the given mask (with
its self-connection) is always applied to a strongly connected digraph. Speaking
precisely, the mask is always applied to a digraph containing a sub-graph forming
a cycle which involves all nodes.

At this point we are able to formulate a sufficient criterion which guarantees
strongly connected graphs for the DGP: If MS represents a cycle with at least
one self-connection then all the resulting digraphs Dn are strongly connected. In
the following we call such masks complete.

We also see that each mask containing a complete mask as sub-structure will
generate strongly connected digraphs as well.

2.3 Digraphs of Fractal Dimension and Their Degree Distribution

The generation of strongly connected digraphs therefore has always to start with
a mask MS containing at least S + 1 edges. The maximal number of edges in
MS is S2 and it is easy to see that such a mask generates only fully connected
digraphs. Hence, the non-trivial cases of connected graphs are generated by
masks with n edges, where S < n < S2. Interestingly enough, masks with this
number of labeled segments generate Sierpiński carpets of fractal dimensions
df between 1 and 2 [12], since: df = log(n)

log(S) , from which follows: 1 < df < 2.
Therefore, we say a fractal digraph or a digraph of fractal dimension df is defined
as a strongly connected digraph resulting from a mask of fractal dimension df .

The degree distribution is an important property in order to classify networks.
Due to the deterministic nature of the DGP the mask determines this distribu-
tion in the following way. Be MS the adjacency matrix. Out- and in-degree for
each node in the digraph are directly given by the sums over the entries in the
column or row of MS :

din(vn) =
S∑

j=1

MS(n, j), dout(vn) =
S∑

j=1

MS(j, n), 1 ≤ n ≤ S.

Considering only the in-degree we can calculate the degree for each node in
digraph Di (i.e. resulting digraph after i iterations of DGP initialized with MS

and i ≥ 0) as follows:

(din(v1) + din(v2) + . . .+ din(vS))i+1
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Fig. 3. Two ways of transforming a given digraph of fractal dimension (left) into
a artificial neural networks. First, the digraph is directly interpreted as ANN with
recurrent neural connections (middle). Second, the adjacency matrix as a description
of a feed-forward network (right).

Solving this equation in a symbolic manner we get Si+1 products each repre-
senting the in-degree of one node in Di. The distribution of these product values
is the actual distribution of the in-degrees in Di.

As an example let us assume we have a complete mask where only one node has
an in- and out-degree greater 1, for all the other nodes in- and out-degree is one.
The resulting digraphs will have a degree distribution characteristic of scale-free
networks. Thus, the majority of nodes have very less in-coming and out-going
edges but a few nodes (usually called hubs) have degrees magnitudes larger then
the average [2]. On the other hand we can create digraphs out of masks, where
each node has the same number of in- and out-degree. The resulting digraphs
are going to have equal in- and out-degree as well. Due to this relation of the
degree distribution between mask and resulting digraphs one is able to generate
networks of specific degree-distribution.

3 From Fractal Digraphs to Artificial Neural Networks

There are in principle two strategies to turn a digraph of fractal dimension into
an artificial neural network (see Figure 3). First, the adjacency matrix / the
digraph can directly be interpreted as a neural network containing recurrences
of any kind. Second, the adjacency matrix can purely be seen as the connec-
tions between two separated layers of neurons: input and output layer. Both
layers contain the same number of neurons. In this way a feed-forward struc-
ture between two neuron layers is created. One can also think about a chain of
feedforward connections where each projection layer might be based on different
digraphs of fractal dimension.

The recurrent case might be interesting as method for the generation of reser-
voirs of non-linear dynamics. Based on random graphs, this has been done in
the echo-state [9] and liquid-state-machine [11] approach. The intention of using
digraphs of fractal dimension as dynamical reservoir is one reason for us to aim
for strongly connected digraphs only. The dynamics of echo-state and liquid-
state-machines rely on the recurrences. If an underlying digraph would be only
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Fig. 4. Three examples of feedforward connections between two neural layers of an
ANN. The left shows a non-degenerated matching between input and output signal.
Each neuron in the left layer does only activate one neuron in the right layer. Due to the
introduced representation this can be described as a cycle. On the right a completely
degenerated matching. Each neuron on the left activates each neuron on the right. This
is represented by a fully connected digraph. In between a degenerated matching formed
by a digraph of fractal dimension.

connected (i.e. not strongly connected) neurons can emerge which only project
signals out of the reservoir or which would feed constant signals into it. This is
obviously not the intention of a dynamical reservoir for both approaches. In the
worst case a connected digraph could have no recurrences at all and therefore no
complex dynamics would emerge. Only strongly connected digraphs guarantee
recurrent neural structures involving all components of the network.

For feedforward structures the use of strongly connected digraphs is also essen-
tial. Strongly connected digraphs guarantee that a signal feed into an arbitrary
node can be propagated through several layers to any other node. Assume a
multi-layered network structure and each projection between the layers is based
on the same digraph of fractal dimension. In this case we know there must exist
a finite number of layers between the input and output layer which guarantees
that each neuron of the input layer has at least one path to each neuron in the
output layer. In theory the number of layers cannot be larger than the number
of nodes in the underlying strongly connected digraph. It is not shown here,
but simulations indicate that the mean value of the shortest path scales with
log(n) (n number of nodes). Hence, the number for layers supporting a signal
flow through all network components scales with log either.

ANN with feedforward structures based on fractal digraphs might become an
object of investigation within the Neural Darwinism approach to the function
of the brain introduced, developed and promoted by Edelman [3]. According
to this approach, an essential element for the brain-function is the matching
between specific signal configurations and neural groups, which respond in a
specific manner. Obviously, this matching must be sufficient specific in order
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to allow distinction among different signals, called recognition. However, more
important within the Neural Darwinism approach is the argumentation, that
such a matching must be degenerated. The assumption is, that there is more
than one way to recognize a signal, that is, one signal configuration activates
different neural groups as well as one neural group can be activated by differ-
ent signal configurations. Two extremes of degeneration can be distinguished: a
non-degenerated (unique) matching on one side and the completely degenerated
matching on the other side. The Neural Darwinism approach claims that the
variability of brain functions occurs within a neural organization is, somehow,
located between these two extremes of non- and complete degeneration.

It is interesting to see that the introduced digraphs of fractal dimension create
feedforward networks between these two extremes. The examples shown in Figure
4 are only simple schemas. However, it is not hard to imagine that the fractal di-
mension and degree distribution of a digraph determine the grad of degeneration.
Therefore, we argue, that within the Neural Darwinism approach the introduced
digraphs of fractal dimension might be a promising substrate for future research in
order to model brain-like mechanisms of adaptation which take into account not
only weight dynamics but also specific neural connectivity structures.

4 Conclusion

In this work we have introduced a process, called DGP, which allows the deter-
ministic generation of strongly connected digraphs. This process is inspired by
Sierpiński carpets. In order to apply this process for the development of con-
nectivity structures for recurrent and feedforward structures of ANN we have
formulated a sufficient criterion which guarantees the generation of strongly con-
nected digraphs. The resulting digraphs are called digraphs of fractal dimension.

Furthermore, we have shown how the degree-distribution of the resulting di-
graphs is determined by the initial structure. This allows us a targeted generation
of strongly connected digraphs with respect to the size (number of nodes) and
the degree distribution of the network. We have indicated that strongly con-
nected digraphs with scale-free network topologies can be expected to emerge
for specific initializations. Thus, the introduced process is an efficient tool for
the generation of a wide variety of connectivity structures for ANN establishing
interactions beyond those provided by fully connected or random graphs.

Within the context of Neural Darwinism, we have highlighted the impor-
tance of ANN based on digraphs of fractal dimensions for the implementation
of adaptive processes. Due to the fractal dimension, the resulting strongly con-
nected networks are established by a number of edges magnitudes smaller then
given in fully connected topologies. Hence, graphs of fractal dimension support
the instantiation of highly connected ANN with much less computational costs.
Therefore, the DGP might be an efficient tool for the instantiation of ANN on
autonomous robot systems having limited computational resources. In addition
to this, fractal digraphs within the context of cognitive robotics and “brain-based
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devices” might be become a promising method for a systematic investigation and
modelling of biological neural systems and “their combinations of interactions
that we don’t fully understand yet” [4]. Our future work will be focused on this
issue.
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Abstract. Complex fractionated atrial electrograms (CFAEs) represent
the electrophysiologic substrate for atrial fibrillation (AF). Individual sig-
nal complexes in CFAEs reflect electrical activity of electrophysiologic sub-
strate at given time.To identifyCFAEs sites,wedeveloped algorithmbased
on wavelet transform allowing automated feature extraction from source
signals. Signals were rankedby three experts into four classes. We compiled
a representative data set of 113 instances with extracted features as inputs
and average of expert ranking as the output. In this paper, we present re-
sults of our GAME data mining algorithm, that was used to (a) predict av-
erage ranking of experts, (b) classify into three classes. The performance
of the GAME algorithm was compared to well known data mining tech-
niques using robust ten times tenfold cross validation.Results indicate that
wavelet signal decomposition could carry high level of predictive informa-
tion about the state of electrophysiologic substrate and that the GAME al-
gorithm outperforms other data mining techniques (such as decision trees,
linear regression, neural networks, Support Vector Machines, etc.) in both
prediction and classification accuracy.

1 Introduction

Atrial fibrillation (AF) is a cardiac arrhythmia characterized by very rapid and
uncoordinated atrial activation with a completely irregular ventricular response
[8]. Radiofrequency ablation of atrial areas that triggers or sustains AF is a
nonfarmacological treatment available recently [4].

During AF, multiple wavefronts propagate continuously through the right and
left atria, separated by anatomical and functional barriers [10]. This can be elec-
trophysiologically manifested as hierarchical distribution of dominant frequency
[19] or complex fractionated electrograms (CFAEs) [17] during endocardial map-
ping. Local dominant frequency analysis of AF is burdened by many method-
ological problems of spectral analysis [18]. Therefore the software support for
electroanatomical mapping system is focused on objective description and space
representation of CFAEs distribution most recently. Till now there is no single
automated classifier of A-EGMs, that would enable independently on operator
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classify A-EGMs and suggest its level of fractionation of CFAEs during mapping
procedure.

Our approach is based on the idea, that there are signal complexes (Fig. 2) in
every AEGM signal, which are related to electrical activation of electropatholog-
ical substrate during AF. These signal complexes (SCs) can be found automat-
ically and then used for several features extraction (degrees of freedom of the
signal), which could be used for automatic evaluation of electrogram complexity
(or level of fractionation).

In this paper we used these and other features to construct an automated clas-
sifier using the FAKE GAME approach [13]. The GAME algorithm constructs
hybrid feedforward neural networks that enable to give an operator indepen-
dent look on A-EGM signal and classify its degree of fractionation. The FAKE
methods allow to extract useful knowledge from data.

In this contribution we studied optimal settings if the GAME algorithm and
compared its performance to several well established methods available in the
WEKA data mining environment [1]. For the comparison, we needed to repeat
ten-fold cross validation 10 times to get reliable results. Results are presented in
form of box plot charts.

2 Methodology

We used a representative data set (n = 113) of atrial electrograms (A-EGMs),
which were pre-selected by an expert from large database of A-EGMs. This
database was recorded during AF mapping procedures. Signals were sampled by
frequency 977Hz during AF procedure and resampled to 1kHz after that. Each
pre-selected A-EGM signal in this data set is 1500ms long. The expert signal
selection was tailored to get a good quality signals with respect to low noise
and high information value of signal for later evaluation of degree of A-EGMs
fractionation by an expert. Although the degree of fractionation is supposed to
be naturally continuous we decided to make a four degree set of classes (Fig.
2). Three experts used these four classes for ranking (1 – organized atrial ac-
tivity, n = 24; 2 – mild, n = 40; 3 – intermediate, n = 36; 4 – high degree of
fractionation, n = 13.).

Individual points of interest were found automatically after filtering of the
signal. Both steps were performed by novel algorithm based on wavelet trans-
form [15] for every A-EGM in data set (Fig. 2) using following parameters of
the algorithm: discrete wavelet decomposition into 5 levels [5] was performed.
Detail coefficients were thresholded by soft-tresholding [6] with these settings of
thresholds (level 1 to level 5): 0.02, 0.04, 0.008, 0.008 and 0.008. Reconstruction
of the signal was computed by wavelet reconstruction based on the original ap-
proximation coefficients and the modified detail coefficients of levels from 1 to
5. Thresholding of the signal with value of threshold 0.003mV was performed.

The filtered signal was decomposed again into 5 levels using Coiflet wavelet of
order four. The reconstruction of the detailed coefficients of a signal (L3) of given
wavelet decomposition structure was performed at level 3 (L3). Normalization of
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Fig. 1. Four complex fractionated electrograms are shown. These are representatives
of each ranking class of degree of fractionation ranked by three independent experts.
From the top to bottom: 1 – organized atrial activity; 2 – mild, 3 – intermediate; 4 –
high degree of fractionation.

L3 was performed with respect to maximal absolute value of given L3 values to
obtain uniform signals across the data set for next stages of SCs detection. Thresh-
olding of normalized L3 signal values was performed with value of threshold 0.014.
Then all parts of the signal, where absolute value of amplitude was higher than 0,
and whose inter-distance was closer than threshold 5ms were joined together and
they were marked as one individual SC.

Several feature extraction was performed to prepare input of classifier.

1. Number of inflection points in particular A-EGM signal (IP).
2. Mean value of number of inflexion points in the found SCs in particular

A-EGM signal (MIPSC).
3. Variance of number of inflexion points in the found SCs in particular A-EGM

signal (VIPSC).
4. Mean value of width of found SCs in particular A-EGM signal (MWSC).
5. Number of inflection points in found SCs in particular A-EGM signal (IPSC).
6. IPSC normalized per number of found SCs in particular A-EGM signal

(NIPSC).
7. IP + MIPSC (IPMIPSC).
8.
√
IPSC2 + TDM2 (IPSCTDM).

9. Number of zero-level crossing points in found SCs in particular A-EGM
signal (ZCP).

10. Maximum of IPSC in particular A-EGM signal (MIPSC).
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Fig. 2. Original CFAE signal recorded during AF mapping procedure. All expert rank-
ings of the signal were into class I. Depicted amplitude is normalized with respect to
maximal absolute value of this particular CFAE signal. Green circles denote the be-
ginnings of SCs and red circles the ends of SCs found automatically.

11. Time domain method (see below) with rough (unfiltered) input A-EGM
signal (TDM).

12. Time domain method using input A-EGM signal filtered by above described
wavelet filter (FTDM).

13. Correlation power (number of correlated SCs in the A-EGM signal/number
of found SCs in the A-EGM signal)(CP).

TDM extraction method used here was based on an algorithm which worked
with A-EGM signals only in time domain. TDM described signal as mean of the
intervals between discrete peaks of A-EGMs, which were detected using input
parameters of TDM method: peak-to-peak sensitivity, signal width and refrac-
tory period. Input parameters were optimized by exhaustive search with respect
to the used data set (sensitivity 0.02mV , signal width 8ms, refractory period
14ms). Spearman’s correlation coefficient between indexes of fractionation of
TDM method and categories ranked by an experts was used as optimization
criteria for exhaustive search of optimal input parameters.

3 Group of Adaptive Model Evolution

Group of Adaptive Models Evolution (GAME) [12] proceeds from the Group Model
Data Handling (GMDH) theory [11]. GMDH was designed to automatically gen-
erate model of the system in the form of polynomial equations. An example of in-
ductive model created by GAME algorithm is depicted on the Figure 3. Similarly
to Multi-Layered Perceptron (MLP) neural networks, GAME units (neurons) are
connected in a feedforward network (model). The structure of the model is evolved
by special niching genetic algorithm, layer by layer. Parameters of the model (coef-
ficients of units’ transfer functions) are optimized independently [14]. Model can be
composed from units of different transfer function type (e.g sigmoid, polynomial,
sine, linear, exponential, rational, etc). Units with transfer function performing
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Fig. 3. The structure of the GAME model is evolved layer by layer using special genetic
algorithm. While training an unit, selected optimization method adjusts coefficients
(a1, ..., an) in the transfer function of the unit.

well on given data set survive the evolution process and form the model. Often,
units of several different types survive in one model, making it hybrid.

In this paper, we use GAME models as predictors (continuous output vari-
able) and also as classifiers (four output classes). The evolutionary design of the
GAME algorithm makes this possible without need to change the learning strat-
egy. For classification purposes, the GAME model consists mainly of units with
sigmoid transfer function and for regression, polynomial, linear or exponential
units are often selected to fit the input-output relationship.

4 Data Analysis

Each A-EGM signal in the data set (n = 113) was ranked by three independent
experts. This resulted in a total of 339 rankings distributed among four classes
of fractionation. Table 1 shows the distribution of the rankings assigned to given
classes of fractionation by the three experts. The rankings of the three experts
were averaged for each A-EGM signal and used as a class of fractionation of
the signal for comparing the classifiers studied here. Table 2 shows the number
of signals in the averaged classes of fractionation. The observation of particular
importance is that expert rankings differ mostly for two inner classes (2 and 3).
Several times happened that one two experts ranked the signal as class 2 and
the third expert included the signal to class 3. This case was observed 19 times
(class 2.3 in Table 2).
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Table 1. Number of A-EGM signals in the data set assigned by three independent
experts to the four classes of fractionation

CF1 1 2 3 4

NS2 76 116 102 45
1Four classes of fractionation used in the study.
2Number of A-EGM signals assigned by three independent ex-
perts to each CF.

Table 2. Number of A-EGM signals in the data set assigned to averaged classes of
fractionation and used for comparison of classifiers

ACF1 1 1.3 1.7 2 2.3 2.7 3 3.3 3.7 4

NS2 19 5 9 17 19 4 21 4 4 11
1 Classes of fractionation, determined as the average of the rank-
ings assigned by three independent experts.
2Number of A-EGM signals in the data set assigned to the ACF.

The character of the data set, particulary the uncertain boundary of middle
classes excludes the possibility to classify into 10 classes of fractionation with
reasonable error. Even for classification into four classes, we got perfect (95%)
accuracy for class 1 and 4 only, the accuracy for other two classes was bad
(around 65%).

Reflecting these preliminary experiments we projected the data into two di-
mensions (using [7]) and found boundaries better separating the data vectors. We
prepared two versions of the data set. The first was A-EGM-regression data set,
where the output was continuous number - the average experts ranking (AER).
The second was A-EGM-classification data set with three output classes: (1 – or-
ganized atrial activity; 2 – intermediate; 3 – high degree of fractionation), where
for class one the AER was below 1.9, for class two the AER in 〈1.9, 3〉 interval
and for the class three the AER was above 3.

5 Results

At first, we studied the regression performance of GAME models produced by
different configurations of the algorithm. The target variable was the average
A-EGM signal ranking by three experts (the A-EGM-regression data set). We
found out, and it is also apparent in the boxplot charts, that comparison of the
10-fold cross validation error is not stable enough to decide, which configuration
is better. Therefore we repeated the 10-fold cross validation ten times, each time
with different fold splitting. For each box plot it was necessary to generate and
validate hundred models.

For all experiments we used three default configurations of the GAME algo-
rithm available in FAKE GAME environment [2]. The std configuration uses just
subset of units (those with implemented analytic gradient for faster optimization).
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Fig. 4. The comparison of RMS cross validation errors for several configuration con-
figuration of the GAME engine(left). Selected GAME models compared with models
generated in Weka environment(right).

It evolves 15 units for 30 epochs in each layer. The quick configuration is the
same as std except that it do not use the niching genetic algorithm (just 15
units in the initial population). The linear restricts type of units that can be
used to linear transfer function units. The all configuration is the same as std,
in addition it uses all units available in the FAKE GAME environment. This
configuration is more computationally expensive, because it also optimizes com-
plex units such as BPNetwork containing standard MLP neural network with
the back-propagation of error [16].

The GAME algorithm also allows to generate ensemble of models [9,3]. En-
semble configurations contain digit (number of models) in their name.

The Figure 4 shows that the regression of the AER output is not too diffi-
cult task. All basic GAME configurations performed similarly (left chart) and
ensembling of three models further improved their accuracy. The ensemble of
three linear models performed best in average, but the difference from all−ens3
configuration is not significant.

In Weka data mining environment, LinearRegression with embedded feature
selection algorithm was the best performing algorithm. Ensembling (bagging)
did not improved results of generated model, quite the contrary. The Radial
Basis Function Network (RBFN) failed to deliver satisfactory results in spite of
experiments with its optimal setting (number of clusters).

Secondly, our experiments were performed on the A-EGM-classification data
set. The methodology remained the same as for regression data. Additionally
we tested classification performance of 5 models ensembles. Figure 5 left shows
that the classes are not linearly separable - linear configuration generates poor
classifiers and ensembling does not help. Combining models in case of all other
configurations improve the accuracy. For all configuration the dispersion of cross
validation errors is quite high. The problem is in the configuration of the genetic
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Fig. 6. Classification performance for different ratios of training/validation data split.
Left - results for single game models generated by std configuration. Right - results for
GAME ensemble (std − ens3).

algorithm - with 15 individuals in the population some “potentially useful” types
of units do not have chance to be instantiated. Ensembling models generated by
this configuration improves their accuracy significantly.

Comparison with Weka classifiers (Figure 5 right) shows that GAME ensemble
significantly outperforms Decision Trees (j48), MultiLayered Perceptron (mlp)
and Radial Basis Function network (rbfn) implemented in Weka data mining
environment.

The last experiment (Figure 6) showed that the best split of the training and
validation data set is 40%/60% (training data are used by optimization method
to adjust parameters of GAME units transfer functions, whereas from validation
part, the fitness of units is computed).

Implicitly, and in all previous experiments, training and validation data set
was divided 70%/30% in the GAME algorithm. Changing the implicit setting to
40%/60% however involves additional experiments on different data sets.
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6 Conclusion

Our results show, that extracted features for Complex Fractionated Atrial Elec-
trograms bear significant information allowing us to classify signals into three
classes with 80% accuracy. That is good result with respect to 60% of consis-
tent assignments into four classes performed by experts. For this data set, the
GAME algorithm outperforms well established methods in both classification
and regression accuracy. What is even more important, both winning configura-
tions were identical all− ens. Natural selection evolved optimal models for very
different tasks - that is in accordance with our previous experiments and with
our aim to develop automated data mining engine.
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Abstract. This paper constructs a balanced training used in the hairy
network [1] to balance the vulnerable memory parts and improve the
memory. It provides a perspective view on the geometrical structure of
memory patterns. This training fixes many drawbacks of the Hopfield
network, such as loading capacity, limit cycle and error tolerance.

Keywords: Hairy network, hologram, conscious, neural network, asso-
ciative memory, Hopfield network, Elman network, homeostasis, gene
regulatory network.

1 Introduction

This paper presents a new training used in the hairy network [1][2] to balance
the vulnerable parts of memory patterns. It enlarges the memory basins evenly
in order to resist corruptions [3]. We briefly review the associative memory (AM)
and notations.

Associative memory
Hopfield model (HM) has drawbacks in loading capacity, limit cycles, and error
tolerance with respect to noisy patterns. Various designs aimed at remedying
these drawbacks have achieved varying degrees of success [1][2][4][5]. Auto-AM
is a connected network with N neurons. Each neuron i has N neural weights
connecting it to all the neurons j, including itself, a threshold θi, and a state
value vi. The state value is evolved according to the formula

vi(t + 1) = sgn

⎡⎣ N∑
j=1

wijvj(t)− θi

⎤⎦ , (1)

or in matrix form,
V (t+ 1) = sgn

[
WTV (t)− θ] , (2)

where W is an N ×N neural weight matrix, θ is an N ×1 threshold vector, V (t)
is an N × 1 state vector representing the state at iteration (or evolution) time
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t, and sgn() is the signum function returning 1 with input greater than or equal
to zero and -1 with negative input. During the training phase, the network is
trained by P memory patterns Xk, k = 1, . . . , P, using any training algorithm.
During the retrieving phase, the input is presented to the network as V (0). The
network operates repeatedly according to Eq.(1) or Eq.(2) until the evolution
converges to a stable state or falls into a limit cycle. A stable state (memory
pattern) meets the requirement

V (t) = sgn
[
WTV (t)− θ] . (3)

Fig. 1. 3-D cube network with three neurons. Black dots denote memory patterns. The
patterns connected by dashed lines are used to determine the position of the decision
(shaded) plane and they will be discussed in this paper.

Each neuron has a bipolar state (a bit), and there are 2N states in total. There-
fore, we view the network as an N -dimensional (N -D) hypercube with each state
located at a cube corner [6]. The current state is located at a corner and serves
as the next input to the network. After evolution proceeds according to Eq.(1) or
Eq.(2), the current state either moves to another corner or stays at the original
corner. Corners that remain unchanged are stable states. The memory patterns
we intend to save are located at certain stable corners. The goal of AM is to evolve
an arbitrary initial state to a nearby stable corner where a pattern is stored. Figure
1 shows a 3-D cube corresponding to a network with three neurons (three bits).
In this figure, a neuron, the third bit, represents a plane (the dark shaded plane
(blue)) dividing the cube into positive and negative regions (sides).

The state of each neuron i is determined by an (N−1)-D decision hyperplane
(the shaded surfaces in Fig. 1) with the following equation:

wi1v1 + wi2v2 + wi3v3 + · · ·+ wiNvN − θi = 0, i = 1, . . . , N. (4)

The N × 1 weight vector Wi = (wi1, wi2, . . . . , wiN )T of neuron i is the nor-
mal vector of the corresponding hyperplane, and this hyperplane divides the
hypercube into a positive region (side) to which the normal vector points and a
negative region. The length of vector Wi, |Wi|, is normalized to one. The hairy
network adjusts the hyperplane to make all the P patterns stable. That is, when
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the ith bit of a pattern is equal to 1, this stable pattern should be located in the
positive region of the ith hyperplane; on the other hand, if its ith bit is equal to
-1, it should be located in the negative region.

Since each decision hyperplane can be trained separately in the hairy net-
work, we will discuss the hyperplane for neuron i only. For neuron i, we have P
equations, k = 1, . . . , P :{

wi1X
k
1 + wi2X

k
2 + · · ·+ wiNX

k
N − θi = WT

i X
k − θi > 0, if Xk

i = 1
wi1X

k
1 + wi2X

k
2 + · · ·+ wiNX

k
N − θi = WT

i X
k − θi < 0, if Xk

i = −1 .

(5)
We discard the case in Eq.(5), where WT

i X
k− θi = 0, because it rarely happens

in analog operation. For computational convenience, we multiply every element
in Eq.(5) by Xk

i and obtain a compact formula:{
sk

i ={wi2X
k
2 + · · ·+ wiNX

k
N − θi}Xk

i

={WT
i X

k − θi}Xk
i >0, for both cases Xk

i =1 and Xk
i =−1, k = 1, . . . , P.

(6)
Whenever we say that the ith hyperplane is stable, we mean that all P patterns
in the correct (stable) region of the hyperplane satisfy Eq.(6). This hyperplane
is not stable whenever there is a pattern in the wrong region.

The basin of a stable pattern is defined as the collection of all states, see
[1], which eventually evolve to this stable pattern according to the dynamic
equation, that is, Eq.(2). We further subdivide a basin according to the number
of iterations, λ. Therefore, basin-λ of a stable pattern contains all the states that
will evolve to this stable pattern in λ iterations. Basin-0 contains only the stable
pattern. All such basins, {basin-λ; λ = 0, 1, 2, .... }, constitute the overall basin
of a stable pattern. The states in basin-0 and basin-1 of a memory pattern are
contained in the cube region enclosed by the N decision hyperplanes and this
region has a shape like an open polyhedral cone[7]. The hairy network increases
the number of states in basin-1 and increases the size of the overall basin for a
stable pattern indirectly.

The basin radius of a stable pattern is defined as the maximal number of
errors for which recovery is guaranteed, no matter which bits are wrong [1][5].
The value of this radius is the distance (with a unit of one bit or a Hamming
distance of 2 for each bipolar bit) between the stable pattern and a nearest
state right on basin-1’s border. This is the most rigorous definition. Hence, ‘0’
radius means that there exists at least one bit or pixel that is vulnerable to noise
contamination no matter how large the basin is.

To calculate the radius of each pattern, we calculate sk
i for all the neurons

according to Eq.(6) for each memory pattern, Xk, after the learning process is
completed. If a bit j of the pattern Xk is reverted, sk

i will increase or decrease
by 2wij , depending on whether the signs of Xk

j X
k
i and wij are identical or not.

If sk
i is just larger than the sum of the rk

i largest weight terms multiplied by
two, then rk

i is the radius of neuron i for pattern Xk. That is,

2
rk

i +1∑
r=1

{wijX
k
j X

k
i }r > sk

i = |sk
i | > 2

rk
i∑

r=1

{wijX
k
j X

k
i }r, (7)
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where {wijX
k
j X

k
i }r is the rth largest weight term sorted in descending order

according to the values of the terms in the set {wijX
k
j X

k
i | j = 1, 2, ..., N}.

The radius of the pattern Xk, rk, is the smallest one among the radii of all the
neurons, rk = min{rk

i ; i = 1, ..., P}.
We expect that increasing sk

i will enlarge the size of basin-1 and will enlarge
the overall basin size and improve tolerance. To achieve this goal, et-AM [5] and
e-AM [1] maximize the minimum of {sk

i , k = 1, . . . , P} to improve the hyper-
plane’s tolerance for noisy neighbors as much as possible. The et-AM is designed
with a distance sk

i and the e-AM is designed with a quadratic distance (sk
i )2.

They provide biologically plausible solutions in order to increase the memory
basin without using any hidden neurons or an annealing process. They explore
the flexible space in between the two pattern sets, Ui,1 = {Xk; k = 1, . . . , P,
and Xk

i = 1} and Ui,−1 = {Xk; k = 1, . . . , P, and Xk
i = −1}, in order to

locate the decision hyperplane under the stability conditions in Eq.(5). Partial
differentiation of the distance, sk

i , gives

∂sk
i

∂wij
= Xk

j X
k
i and

∂sk
i

∂θi
= −Xk

i . (8)

This equation is consistent with Hopfield model and Hebb’s postulate [8].
The idea of the proposed balanced training comes from a selection proposed

in (Eq.(14) in [1]; Eq.(9) in [5]). This selection says that one selects a nearest pair
of patterns {ci,p, ci,n} from each of the two sets, Ui,1 and Ui,−1, where ci,p is a
pattern in Ui,1 and ci,n is a pattern in Ui,−1, |ci,p− ci,n| = min{|Xk−X l|, Xk ∈
Ui,1, X

l ∈ Ui,−1}. We suppose that both sets, Ui,1 and Ui,−1, are not empty.
This pair is the nearest pair (in terms of the Euclidean distance) among all the
pairs across the two sets (see Fig. 1(b)). These two nearest patterns are most
vulnerable to each other’s corrupted patterns. The weights are set as

wij = ci,p,j − ci,n,j , normalize Wi , (9)

θi =
N∑

j=1

wij

(
ci,p,j + ci,n,j

2

)
.

This hyperplane is right in the middle between the two nearest patterns. It is
perpendicular to the line section connecting the two patterns {ci,p, ci,n} and
passes through the center of this section. ci,p− ci,n is the direction of the normal
vector of this hyperplane. From our evidence, this sclection may not be useful
when there are multiple minima (see Fig. 1(a)) [2]. In other words, many pattern
pairs, {ci,p, ci,n}, across the two sets will share the same minimum distance.
There are many vulnerable pair patterns. To keep the balance of such multiple
minima, we devised a constrained training to balance the hyperplane among all
the minimal pair patterns. We expect that this training can effectively reduce
the number of training iterations and achieve the tolerance.
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2 Balanced Training

For the multiple minima, we save those patterns which have the same minimum
pair distance in two sets, Ui,p and Ui,n, where Ui,p = {Xk; pattern Xk with the
minimum distance, k = 1, . . . , P, and Xk

i = 1} and Ui,n = {Xk; pattern Xk

with the minimum distance, k = 1, . . . , P, and Xk
i = −1}. Suppose there are

Ni,p patterns in set Ui,p and Ni,n patterns in Ui,n. In Fig. 1(a), there are two near-
est pairs: N3,p = 1, N3,n = 2, U3,p = U3,1 = {(1, 1, 1)T}, U3,n = {(1,−1,−1)T ,
(−1, 1,−1)T}, U3,−1 = {(1,−1,−1)T , (−1, 1,−1)T , (−1,−1,−1)T}.

Since we prefer a hyperplane which evenly balances the minimum distance
patterns. We formulate the balance in a set of constraints. This constraint sets
all sk

i equal for those patterns in Ui,p and Ui,n. This is, in some sense, analogous to
the mean-field theory for the extensive memory loading case [4], where the basin
size is equal for all neurons and all patterns. We expect that this constraint can
evenly distribute the neighboring corrupted patterns for each memory pattern
as much as possible and alleviate competition for basin borders.

For each neuron i, we require that all sk
i be equal for the patterns in sets Ui,p

and Ui,n. All patterns, {Xk
i , k = 1, . . . , P}, must contain both −1 and 1 elements

in their ith elements.
According to the constraint, we have s1i = s2i = · · · = s

Ni,p+ Ni,n

i = Si and,
hence, Ni,p + Ni,n − 1 homogeneous equations. The setting of these equations
is discussed in Appendix. Note that we rearrange the pattern numbers in sets
Ui,p and Ui,n to ease the expression. After performing Gaussian elimination and
back substitution in these Ni,p + Ni,n − 1 equations, we obtain a simple row
echelon form of these equations with free variables. To increase Si, we proceed in
the ascending direction with respect to these free variables wiqn , wiqn+1 , . . . , wiqN

and θi, ∂Si

∂wij
, j = qn, . . . , qN . That is,

wij(t + 1) = wij(t) + η1
∂Si

∂wij

θi(t + 1) = θi(t) + η2
∂Si

∂θi
,

where η1 and η2 are training rates.
As an example, there is a six-neuron associative memory storing three pat-

terns [9]: X1 = (1, 1, 1,−1,−1, −1)T , X2 = (1,−1, 1, 1,−1, 1)T , and X3 =
(1, 1,−1, 1,−1,−1)T . There are six hyperplanes to be set in a 6-D hypercube.
Since the first bits of all the patterns are equal to 1, we simply put the first hy-
perplane outside the hypercube and allocate all the corners to the positive region
of this hyperplane. We may set W1 to (1, 0, 0, 0, 0, 0)T and θ1 to −√6. Similarly,
since all the fifth bits are equal to −1, we may set W5 to (0, 0, 0, 0, 1, 0)T and
set θ5 to

√
6. The second hyperplane is set using the proposed method. In this

case, N = 6, P = 3, N2,p = 2, N2,n = 1, U2,p = {X1, X3}, U2,n = {X2}. We
have the following equations:
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⎡⎣s12s22
s32

⎤⎦ =

⎡⎣ 1 1 1 −1 −1 −1 −1
−1 1 −1 −1 1 −1 1
1 1 −1 1 −1 −1 −1

⎤⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w21

w22

w23

w24

w25

w26

θ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎣> 0
> 0
> 0

⎤⎦ .

Let s12 = s22 = s32 = S2. After performing Gaussian elimination and back substi-
tution of the two equations s12 = s22 and s22 = s32, we obtain a row echelon form
with P − 1 equations:

[
1 0 0 1 −1 0 −1
0 0 1 −1 0 0 0

]
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w21

w22

w23

w24

w25

w26

θ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

0
0

]
.

Now, we have w21 = −w24 + w25 + θ2 and w23 = w24. Consider X1
2 = 1; we

calculate S2 as follows:

S2 = s12 = w21 + w22 + w23 − w24 − w25 − w26 − θ2 = w22 − w24 − w26,

S2 = s22 = −w21 + w22 − w23 − w24 + w25 − w26 + θ2 = w22 − w24 − w26,

S2 = s32 = w21 + w22 − w23 + w24 − w25 − w26 − θ2 = w22 − w24 − w26,

w22, w24, w25, w26, and θ2 are free variables and can be assigned any values.
Then, we update these free variables to increase the distance S2.

Initial condition
The initial weights are set as follows:

wij(0) =
{

1, if i = j
0, if i �= j

, (10)

θi(0) = 0.

The distance Si is linearly proportional to the weights wij and threshold θi

in the training. This distance will increase linearly following the updating of wij

and θi, reach a limit, and then decrease linearly after further updating.

Experiments on associative memory
We performed simulations to compare the performance of the Little model (LM)
[10], the error-correction rule (ECR) [11] and the proposed balanced training
(bal-AM). The light shaded (green) planes in Fig. 1 are obtained by using the
Hopfield model. In all the simulations, we set η1 = η2 = 0.00011 in the balanced
training.
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Table 1. Preformances of the bal-AM with different (N,P) values

N = 10; 10 sets of patterns N = 20; 30 sets of patterns

α = 0.5 α = 1 α = 1.25 (> 1) α = 2.25 (> 2)

P = 5 P = 5 P = 5 P = 20 P = 25 P = 45

LM ECR bal-AM bal-AM bal-AM bal-AM

SP (/P ) 1.9 5 5 20 25 45

SS (/2N ) 5.0 43.9 219 5.4 × 105 6.9 × 105 8.8 × 105

TS (/2N ) 744.8 978.4 805 5.0 × 105 3.5 × 105 1.6 × 105

C 44.3 0.2 0 0 0 0

IC (/2N ) 88.6 0.4 0 0 0 0

TC (/2N ) 185.6 1.3 0 0 0 0

R (/(P × N)) 12.1 13.5 20.8 16.5 13.0 5.9

BR N.A. N.A. 0.44 0.045 0.028 0.0071

Experimental Results
Table 1 lists experimental results for (N = 10, P = 5). In this case the stor-
age parameter α = P

N = 0.5 [12]. In this experiment, we presented 10 sets of
randomly produced patterns to the networks and then got the averaged results.
The labels of rows in this table are: ‘SP’, given P patterns, the number of pat-
terns successfully stored; ‘SS’, the number of stable states; ‘TS’, the number of
transient states converging to all stable states; ‘C’, the number of limit cycles;
‘IC’, (≥ 2C) the number of states involved in all limit cycles; ‘TC’, the number
of transient states falling into limit cycles; ‘R’, given NP 1-bit-error patterns,
the number of patterns converging to the original stored patterns; ‘BR’, average
basin radius of each pattern. Table 1 lists the performances of a network with 20
neurons. In this table, we presented 30 sets of randomly produced patterns to
the networks and then got the averaged results for P = 20, P = 25 and P = 45
separately. Note that the loading capacity α under various conditions has been
studied [12], α = 0.14 [13]; α < (1/[2(lnN)]) [14]; α = 0.16 [15]; α = 1 [16].
The bound α < 2 has been derived in [17] based on thermal statistic average.
All of them are derived for imperfect recalls. The methods based on the basin-λ,
et-AM, e-AM and bal-AM are designed for perfect recalls.

From Table 1, LM has rather limited capacity; it could not even store five
patterns in a ten-neuron network, and neither could the Hopfield model. ECR
produces cycles. The given five patterns can be successfully memorized using
the bal-AM. All bal-AM’s spurious stable states have very small basins and
cannot withstand thermal pertubation. The bal-AM produced no limit cycles,
as we expected. The performance of bal-AM in recovery from noisy patterns was
excellent. This is because we tuned the decision hyperplane so as to enlarge the
local (polyhedral) region, basin-1, for each memory pattern and include as many
its noisy patterns as possible in that region. The total number of states in each
basin for the bal-AM case with P = 5 is listed in Table 2. Note that one of the
traits of the basin-λ is: 674 ≥ 59 ≥ 3 ≥ 1 ≥ 0 ≥ 0; 674 ≥ (59 + 3 + 1 + 0 + 0);
59 ≥ (3 + 1 + 0 + 0); 3 ≥ (1 + 0 + 0). The number of overall states in these ten
sets is 10240 = 210 × 10.



876 C.-Y. Liou

Table 2. Total number of states in basin-λ in the all ten sets

basin-o basin-1 basin-2 basin-3 basin-4 basin-5 basin-6

states 50 674 59 3 1 0 0

3 Summary

In almost all of our simulations, many states evolved in a single iteration to
their memory patterns during recall, for example, 674 in basin-1 in Table 2.
This is very different from the evolutionary recall process in many other models.
The bal-AM operates in one shift. Each iteration improves the location of a hy-
perplane. Each hyperplane is independent of all others during training. This is
beneficial for training in asynchronous mode. This is very different from corre-
lation matrix designs, such as the pseudo-inverse method [16]. The basins other
than basin-1, for example, basin-2, can be enlarged similarly by backward tracing
and stabilization. This means that the proposed bal-AM can be used to enlarge
the local regions whose states will evolve to the memory patterns in exactly two
evolutions.

The hairy network can be used in the study of the hologram hypothesis [18] and
in the study of conscious [19]. The spatial temporal mode of the network provides
a basis to study the remembering process, a reconstructive process -the assembly
of dismembered events [20], see the website on the perception and generation of
similar melodies after learning http://red.csie.ntu.edu.tw/MG/index.htm

Since the network possesses collective memories that are held by a group of
populations, these stubborn memories can highly resist local corruptions and
tolerate containmination. The states in basin-λ may resemble those serious mu-
tations that can be self-restored automatically after λ generations [3]. There is
no need to save a prototype copy for the restoration in the back mutation mode
or reverse mode. Heritable traits can be well preserved by a group of dense
canalized sites in the cell.
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Appendix

This appendix discusses the setting and several intuitive arguments in manip-
ulating the balanced constraint. These arguments also reveal the geometrical
operations of the method. Here we have Ni,p ≥ 1, Ni,n ≥ 1, and P ≥ Ni,p +
Ni,n. Let DP , Dp,n, Dp, and Dn be the dimensionality of the spaces spanned and
sustained by all P patterns, Ui,p and Ui,n patterns, Ui,p patterns, and Ui,n pat-
terns, respectively. We have N ≥ Dp,n, P ≥ Dp,n, Dp,n > Dp, and Dp,n > Dn.
In cases where Dp = N−1 (or Dn = N−1), the all stable hyperplane in Eq.(10)
satisfies the constraint with distances {sk

i = 1| k = 1, ..., P}. This hyperplane
has dimension N − 1 and parallels the hyperplane spanned by all patterns in
Ui,p (or Ui,n). If both Dp < N − 1 and Dn < N − 1, a solution hyperplane
parallels (and is in between) the two hyperlines Dp, and Dn. This parallel hy-
perplane guarantees the constraint. When Dp,n = N , the hyperplane in Eq.(10)
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satisfies the constraint with distances {sk
i = 1| k = 1, . . . , P}. In all cases, we

may start with the hyperplane in Eq.(10) and move it according to the con-
straint to improve the basin-1 solution. In summary, when {Dp = N − 1}, or
{Dn = N−1}, or {Dp,n = N}, we can construct a hyperplane directly by setting
Wi = (wi1 = 0, wi2 = 0, . . . , wi(i−1) = 0, wii = 1, wi(i+1) = 0, . . . , wiN = 0)T and
θi = 0 as in Eq.(10).

For the six-neuron associative memory in [9], these parameters are Dp = 1,
Dn = 0, Dp,n = 2, and DP = Dp,n. As for the five cases in Fig.1 in the reference
[2] (Fig.1, [13]), (a) N = 3, P = 2, DP = Dp,n = 1, Dp = Dn = 0; (b) N =
3, P = 4, DP = 3, Dp,n = 2, Dp = 0, Dn = 1; (c) N = 3, P = 4, DP = Dp,n = 3,
Dp = 1, Dn = 1; (d) N = 3, P = 4, DP = Dp,n = 2, Dp = 1, Dn = 1; (e)
N = 3, P = 3, DP = 2, Dp,n = 1, Dp = 0, Dn = 0.

When {Dp < N −1, and Dn < N −1, and Dp,n < N}, we apply the following
procedure. We arbitrarily select Dp,n + 1 patterns from both the Ui,p and Ui,n

sets. These Dp,n + 1 patterns must span and sustain the whole Dp,n space (and
contain at least one pattern from each set). The solution hyperplane is parallel
to (and is in between) the two hyperlines, Dp and Dn.

For each neuron i, there are N + 1 variables, N weights, and one threshold.
The selected Dp,n + 1 patterns are used to set the Dp,n homogeneous equations.
Because N + 1 > Dp,n, there may exist an infinite number of solutions for the
N + 1 variables. Then the method searches for a set of weights to make all of
the identical {sk

i | Xk
i ∈ Ui,p or Ui,n} as large as possible. The remaining P−

(Ni,p + Ni,n) memory patterns, { Xk
i |Xk

i /∈ { Ui,p, Ui,n}, k = 1, ...P}, must be
kept stable with distances larger than {sk

i | Xk
i ∈ Ui,p or Ui,n} during learning.

In practice, when the Dp,n + 1 patterns are not prepared in advance, we may
use all the patterns in { Ui,p, Ui,n} to solve the hyperplane. This is a rather
straightforward approach.

Let {sk
i | Xk

i ∈ Ui,p or Ui,n, k = 1, .., Ni,p+ Ni,n} be the distance for the
patterns in Ui,p and Ui,n. According to the constraint, we have s1i = s2i = · · · =
s

Ni,p+ Ni,n

i and, hence, Ni,p + Ni,n − 1 homogeneous equations. The number
of free variables is large when both Dp and Dn are small values.
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Abstract. FFT and Multilayer neural networks (MLNN) have been ap-
plied to ‘Brain Computer Interface’ (BCI). In this paper, in order to
extract features of mental tasks, individual feature of brain waves of
each channel is emphasized. Since the brain wave in some interval can
be regarded as a vector, Gram-Schmidt orthogonalization is applied for
this purpose. There exists degree of freedom in the channel order to be
orthogonalized. Effect of the channel order on classification accuracy is
investigated. Next, two channel orders are used for generating the MLNN
input data. Two kinds of methods using a single NN and double NNs are
examined. Furthermore, a generalization method, adding small random
numbers to the MLNN input data, is applied. Simulations are carried out
by using the brain waves, available from the Colorado State University
website. By using the orthogonal components, a correct classification rate
Pc can be improved from 70% to 78%, an incorrect classification rate Pe

can be suppressed from 10% to 8%. As a result, a rate Rc = Pc/(Pc +Pe)
can be improved from 0.875 to 0.907. When two different channel orders
are used, Pe can be drastically suppressed from 10% to 2%, and Rc can
be improved up to 0.973. The generalization method is useful especially
for using a sigle channel order. Pc can be increased up to 84 ∼ 88% and
Pe can be suppressed down to 2 ∼ 4%, resulting in Rc = 0.957 ∼ 0.977.

Keywords: BCI, Brain waves, Neural network, Mental task, Orthogonal
components, Gram-Schmidt, Generalization.

1 Introduction

Among the interfaces developed for the handicapped persons, Brain Computer
Interface (BCI) has been attractive recently [1], [2]. Approaches to the BCI
technology includes nonlinear classification by using spectrum power, adaptive
auto-regressive model and linear classification, space patterns and linear classi-
fication, hidden Markov models, and so on [3],[4]. Furthermore, application of
neural networks have been also discussed [5],[6],[7], [8], [9], [10]. In our works,
FFT of the brain waves and a multilayer neural network (MLNN) have been

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 879–888, 2008.
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applied to the BCI. Efficient pre-processing techniques have been also employed
in order to achieve a high score of correct classification of the mental tasks [16].
Furthermore, the generalization methods have been applied to the neural net-
work based BCI. The method of adding small random noise to the MLNN inputs
can improve classification performance [17].

The multi-channel brain waves have some common features, which make fea-
tures vague, and make mental task classification difficult. We will try to remove
the common and vague features and emphasize individual features of each men-
tal task. For this purpose, essential features of the multi-channel brain waves
are extracted. Conventional methods have employed Independent Component
Analysis (ICA), Blind Source Separation (BSS) and so on [11],[12]. However,
these methods have an essential problem, that is ‘Permutation’. Order of the
components, which are extracted, is not fixed. It can be changed depends on
data sets. Thus, these methods are difficult to be combined with the MLNN.

In this paper, the BCI using the FFT amplitude of the brain waves and the
MLNN is employed. The brain wave in some time interval, that is a frame,
can be regarded as vectors. Letting M be the number of channels, M vectors
are obtained for one mental task and one measuring trial. Let M vectors be
{x1,x2, · · · ,xM}. This vector set is transferred to the orthogonal vector set
{v1,v2, · · · ,vM}. This vector set is further pre-processed and is used for the
MLNN input data.

2 Brain Waves and Mental Tasks

2.1 Mental Tasks

In this paper, the brain waves, which are available from the web site of Colorado
State University [13], are used. The following five kinds of mental tasks are used.

– Baseline - Relaxed situation - (B)
– Multiplication (M)
– Letter-composing (L)
– Rotation of a 3-D object (R)
– Counting numbers (C)

2.2 Brain Wave Measurement

Location of the electrodes to measure brain waves is shown in Fig.1. Seven
channels including C3, C4, P3, P4, O1, O2, EOG, are used. EOG, which does
not appear in this figure, is used for measuring movement of the eyeballs. In this
paper, channel numbers Ch1 through Ch7 are assigned to C3, C4, P3, P4, O1,
O2 and EOG, respectively, for convenience.

The brain waves are measured for a 10sec interval and sampled by 250Hz for
each mental task. Therefore, 10sec × 250Hz = 2, 500 samples are obtained for
one channel and one mental task. One data set includes 2,500 samples for each
channel and each mental task. Five mental tasks and seven channels are included
in one data set.
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Fig. 1. Location of electrodes measuring brain waves

2.3 Mental Task Classification by Using Multilayer Neural Network

An MLNN having a single hidden layer is used. Activation functions used in the
hidden layer and the output layer are a hyperbolic tangent and a sigmoid func-
tion, respectively. The number of input nodes is 10 samples×7 channels=70. Five
output neurons are used for five mental tasks. The target for the output has only
one non-zero element, such as (1, 0, 0, 0, 0). In the testing phase, the maximum
output becomes the winner and the corresponding mental task is assigned. How-
ever, when the winner have small value, estimation becomes incorrect. Therefore,
the answer of the neural network is rejected, that is any mental task cannot be
estimated. The error back-propagation algorithm is employed for adjusting the
connection weights.

3 Pre-processing of Wave Forms

Several techniques for pre-processing proposed in [16] are also employed in this
paper, and are briefly described here.

3.1 Amplitude of FFT of Brain Waves

In order to avoid effects of brain wave shifting along the time axis, which is not
essential, the brain wave is first Fourier transformed and its amplitude is used.

3.2 Reduction of Samples by Averaging

In order to make the neural network size to be compact and to reduce effects
of the noises added to the brain waves, the FFT samples in some interval are
averaged. By this averaging, the number of samples is reduced from 2,500 to 20.
Since the brain waves are real values and their FFT amplitude are symmetrical,
a half of the 20 samples can represents all information. Finally, 10 samples are
used.
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3.3 Nonlinear Normalization

The amplitude of the FFT is widely distributed. Small samples also contain
important information for classifying the mental tasks. However, in the neural
networks, large inputs play an important role. If large samples do not include
important information, correct classification will be difficult. For this reason, the
nonlinear normalization as shown in Eq.(1) has been introduced [17]. x is the
FFT amplitude before normalization and f(x) is the normalized amplitude. In
Eq.(1), xmin and xmax mean the minimum and the maximum values of x in all
channels. The small samples are expanded and the large samples are compressed.
In this paper, usefulness this nonlinear normalization method for the orthogonal
components of the brain waves will be also investigated.

f(x) =
log(x− xmin)

log(xmax − xmin)
(1)

The linear normalization given by flinear(x) = (x−xmin)/(xmax−xmin) will
be examined for comparison.

4 Generalization by Adding Small Random Numbers

The brain waves are very sensitive, which easily change depending on health
conditions of the subjects and the measuring environment. The data sets mea-
sured for the same subject, have different features. Therefore, generalization is
very important for the BCIs. In our previous work, two kinds of generalization
techniques, which are adding small random numbers to the MLNN input data
[14] and a weight decay technique [15], have been applied. The former method
can provide good classification performance [17].

In this paper, the method of adding small and different random numbers to
the MLNN input data at each epoch of the learning process is applied, and its
usefulness for the orthogonal components of the multi-channel brain waves will
be investigated.

5 Orthogonal Components of Multi-channel Brain Waves

5.1 Orthogonal Component Analysis

There are several kinds of methods for analyzing orthogonal components, in-
cluding blind source separation (BSS), independent component analysis (ICA),
principal component analysis (PCA) and so on. They have an essential prob-
lem, that is ‘Permutation’. In these methods, it is not guaranteed that the same
component is analyzed in the same order. This point is described in detail here.

LettingM be the number of channels, a set ofM vectors is measured for one men-
tal task and one measuring trial. Let a whole vector be X =[xT

1 ,x
T
2 , · · · ,xT

M ]T . xi

corresponds to the brain wave measured at the ith channel. Let the correspond-
ing orthogonalized vector be V = [vT

1 ,v
T
2 , · · · ,vT

M ]T . The whole vector V is used
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as the MLNN input data after the pre-processing. Therefore, the order of vi in V
is very important. Let consider two sets of the vectors V 1 and V 2 for the same
mental task and for different measuring trials. Let v1i and v2j be the ith and jth
vectors in V 1 and V 2, respectively. If v1i is most similar to v2j , i �= j, for instanse
vT

1iv2j/ ‖ v1i ‖‖ v2j ‖ is most close to 1, then V 1 and V 2 cannot express the same
feature even though they belong to the same mental task. BSS, ICA and PCA can-
not guarantee the same order of the orthogonal components in the different mea-
suring trials due to ‘Permutation’ problem [11],[12]. This is an essential problem
to use the orthogonal components as the MLNN input data.

For this reason, in this paper, Gram-Schmidt orthogonalization is applied to
the vector set {x1,x2, · · · ,xM}. The order of the orthogonal components can be
controlled by selecting the channels to be orthogonalized in the specified order.
‘Permutation’ of the orthogonal components does not occur.

5.2 Gram-Schmidt Orthogonalization

The vectors {x1,x2, · · · ,xM}, which express the brain waves at M-channels, are
usually linearly independent. This set can be transferred into the orthogonal
vector set {v1,v2, · · · ,vM} by Gram-Schmidt orthogonalization [18]. x1 is used
for v1. v2 is a part of x2, which is orthogonal to v1. In the same way, vk is
a component of xk, which is orthogonal to all the previous orthogonal vectors
v1,v2, · · · ,vk−1.
{vi} are Fourier transformed and their amplitude are pre-processed as de-

scribed in Sec.3, and are used as the MLNN input data.

5.3 Order of Orthogonalization

There exists degree of freedom of selecting the channel order, in which the brain
waves are orthogonalized by the Gram-Schmidt method. The first channel can
hold a whole information, and the following channels provide only a part of the
vector, which is orthogonal to the previous orthogonal vectors. Therefore, the
order of the channels will affect accuracy of classifying the mental tasks. We will
investigate effects of the channel order through simulation.

5.4 Input Data Sets by Using Two Channel Orders

As described in the previous sections, we can use a plural number of the channel
orders for generating the MLNN input data. Let the input data sets, which are
generated from the same brain waves by using two kinds of the channel orders,
be I1 and I2. Thus, the input data are equivalently doubled for each mental task.

Single MLNN Method. A single MLNN, denoted NN, is used for classifying
the mental tasks. In the training phase, both I1 and I2, generated from the
training brain waves, are used to train NN. In the testing phase, I1, generated
from the test brain waves, is applied to NN, and the output O1 is obtained.
Separately, I2, generated from the same brain waves, is applied to NN, resulting
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in the output O2. The final output Ot is given by Ot = (O1 +O2)/2. The mental
task is estimated based on the maximum value of Ot.

Double MLNN Method. Two independent MLNNs are used, denoted NNa

and NNb. I1 of the training brain waves is used to train NNa, and I2 of the
same brain waves is used to train NNb, respectively. In the testing phase, I1 of
the test brain waves is applied to NNa and the output Oa1 is obtained. In the
same way, I2 of the same brain waves is applied to NNb and Ob2 is obtained.
The final output Ot is evaluated by Ot = (Oa1 + Ob2)/2. The mental task is
classified based on the maximum value of Ot.

The threshold of rejection, that is ‘No estimation’, is also employed in all
methods. If all the outputs are less than the threshold, then the MLNN answers
‘any mental task cannot be estimated’.

6 Simulations and Discussions

6.1 Simulation Setup

Training and Testing Brain Waves
The brain waves with a 10 sec length for five mental tasks were measured 10
times. Therefore, 10 data sets are available. Among them, 9 data sets are used
for training and the remaining one data set is used for testing. Five different
combinations of 9 data sets are used for the training. As a result, five different
data sets are used for testing. Thus, five independent trials are carried out.
Classification accuracy is evaluated based on the average over five trials [3].

Score of Correct and Error Classifications
Estimation of the mental tasks is evaluated based on a correct classification
rate (Pc) and an error classification rate (Pe), and a rate of correct and error
classification (Rc) as follows:

Pc =
Nc

Nt
× 100%, Pe =

Ne

Nt
× 100% (2)

Rc =
Nc

Nc +Ne
, Nt = Nc +Ne +Nr (3)

Nc, Ne and Nr are the numbers of correct and incorrect classifications and
rejections, respectively. Nt is the total number of the testing data. Rc is used to
evaluate a correct classification rate except for ‘Rejection’.

Parameters in Neural Network Learning
A hyperbolic tangent function and a sigmoid function are used fin the hidden
layer and the output layer, respectively. The number of hidden units is 20. The
threshold for rejection is 0.7. A learning rate is 0.02.

6.2 Brain Waves before and after Orthogonalization

Figure 2 shows the brain waves before (gray) and after (black) orthogonalization.
The horizontal axis shows the sample number in the time domain. The channel
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Fig. 2. Brain waves of 7 channels before (gray) and after (black) orthogonalization

order of orthogonalization is Ch1, 2, 3, 4, 5, 6, 7. The orthogonalized brain waves
are gradually decreased along the channel order. Since Ch7 is used for detecting
blinking, which is not the mental task, its brain wave is not correlated with that
of the other channels, resulting in a large orthogonal component.

Figure 3 shows the MLNN input data before (dashed line) and after (solid
line) orthogonalization. They are normalized by using the nonlinear function
Eq.(1) [16]. The FFT amplitude responses are arranged from Ch1 through Ch7
along the horizontal axis from the left side to the right side. One channel includes
10 samples.

6.3 Classification by Using Orthogonal Components

Table 1 shows classification rates by using the orthogonal components of the
brain waves. 7 kinds of channel orders are used, which are selected by circular
shifting. Although they do not include all permutations, effects of the channel
order can be investigated. ‘Conventional’ means our method, which employs
the original brain waves and the pre-processing techniques [16]. By using the
orthogonal components, Pc can be improved from 70% to 78%, and Pe can be
suppressed from 10% to 8%, and Rc is increased from 0.875 to 0.907.

As expected in the previous section, also from Table 1, the classification accu-
racy depends on the channel order to be orthogonalization. The channel orders
Ch2, 3, 4, 5, 6, 7, 1 and Ch3, 4, 5, 6, 7, 1, 2 can provide good classification
accuracy. The optimum channel order can be searched for in advance, and can
be fixed for an individual subject.

Furthermore, the generalization method of adding small random numbers to
the MLNN input data was carried out for the best channel order Ch2, 3, 4, 5, 6,
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Fig. 3. Input data of MLNN. Dashed line and solid line indicate input data before and
after orthogonalization, respectively.

Table 1. Score of classification by using orthogonal components

Pc Pe Rc

Conventional 70 10 0.875

Ch1, 2, 3, 4, 5, 6, 7 70 12 0.854

Ch2, 3, 4, 5, 6, 7, 1 78 8 0.907

Ch3, 4, 5, 6, 7, 1, 2 74 8 0.902

Ch4, 5, 6, 7, 1, 2, 3 70 12 0.854

Ch5, 6, 7, 1, 2, 3, 4 68 12 0.85

Ch6, 7, 1, 2, 3, 4, 5 66 24 0.733

Ch7, 1, 2, 3, 4, 5, 6 70 12 0.854

Generalization ±0.1
Ch2, 3, 4, 5, 6, 7, 1 88 4 0.957

Generalization ±0.05
Ch2, 3, 4, 5, 6, 7, 1 84 2 0.977

7, 1. Random numbers uniformly distributed during ±0.1 and ±0.05 are used.
As shown in the same table, Pc is well improved from 78% up to 84 ∼ 88%, Pe

is well suppressed from 8% to 2 ∼ 4%, resulting in R = 0.957 ∼ 0.977.
The linear normalization flinear(x) described in Sec.3.3 is also examined. The

best channel order is Ch5, 6, 7, 1, 2, 3, 4, and Pc = 62%, Pe = 14% and
Rc = 0.816, which are not good compared with the nonlinear normalization.

6.4 Classification by Using Two Channel Orders

Two channel orders, Ch2, 3, 4, 5, 6, 7, 1 and Ch3, 4, 5, 6, 7, 1, 2, which provide
good classification accuracy in Table 1, are used to generate the MLNN input
data I1 and I2, respectively.

Table 2 shows simulation results. A method of using a single NN is not good.
By using double NN, Pe is well suppressed and Rc can be well increased before
the generalization. After the generalization, its performances Pc = 82%, Pe = 2%
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Table 2. Score of classification by using two channel orders

Pc Pe Rc

Conventional 70 10 0.875

Single NN 66 8 0.892

Generalization ±0.1 76 6 0.927

±0.05 78 8 0.907

Double NN 72 2 0.973

Generalization ±0.1 82 2 0.976

±0.05 72 4 0.947

and Rc = 0.976 are almost same as those of the method using a single channel
order Ch2, 3, 4, 5, 6, 7, 1.

When the generalization method, adding random numbers to the MLNN input
data, is embedded in the learning process, a single channel order can provide
good performance by optimizing the channel order.

6.5 Dependence on Individual Subjects

Since brain waves are dependent on the subjects, the MLNN is needed to be
optimized or tuned up for individual subjects. It is not useful to apply the same
MLNN to different subjects. From our experiences, the best channel order of
orthogonalization also depends on both the subjects and mental tasks. However,
it can be searched for by using the training data in advance. The proposed
method, using the orthogonal components, has been applied to three subjects,
and almost the same improvement on the classification rates have been achieved.

7 Conclusion

In this paper, the BCI based on the FFT amplitude and the MLNN is dealt
with. Especially, the orthogonal components of the multi-channel brain waves
are used to generate the MLNN input data. Gram-Schmidt orthogonalization is
applied. The proposed approach can improve Pc from 70% to 78%, Pe from 10%
to 8%, and Rc from 0.875 to 0.907. When two channel orders are used, Pe can
be well suppressed from 10% to 2%, and Rc can be well improved up to 0.973.
The generalization method is also useful, which can improve Pc up to 88% and
Pe down to 2%, resulting in Rc = 0.977.
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Abstract. Most common feature ranking methods are based on the sta-
tistical approach. This paper compare several statistical methods with
new method for feature ranking derived from data mining process. This
method ranks features depending on percentage of child units that sur-
vived the selection process. A child unit is a processing element trans-
forming the parent input features to the output. After training, units are
interconnected in the feedforward hybrid neural network called GAME.
The selection process is realized by means of niching genetic algorithm,
where units connected to least significant features starve and fade from
population. Parameters of new FR algorithm are investigated and com-
parison among different methods is presented on well known real world
and artificial data sets.

1 Introduction

Nowadays data with few input features is the exception. Each feature adds one
dimension to the dimensionality of data vectors. For effective, more accurate data
mining, it is necessary to use preprocessing methods which reduce dimensionality
of input data or describe the relevance of each feature of data. Set of methods
to reduce data dimension, so called Feature Selection(FS) [12], search for subset
of relevant features from an initial set of features while Feature Extraction(FE)
methods [14] create subset of new features containing information extracted from
original set of features. Relaxed setting for FS are methods known as Feature
Ranking [5], ranking of all original features in correspondence to their relevance.

Feature Selection algorithms may be divided into three categories. Algorithms
in the first category are based on filters [2], where the significance of features
is computed outside from classification algorithm. On the other side Wrapper
methods [6], from the second category, depends on classifier to evaluate quality of
selected features. Finally Embedded methods [3] selects relevant features within
learning process of internal parameters (e.g. weights between layers of neural
networks). The goal of feature selection is to avoid selecting too many or too
few variables than necessary. In practical applications, it is impossible to obtain
complete set of relevant features. Therefore, the modelled system is open system,
and all important features that are not included in the data set (for what reason
ever) are summarised as noise [11].
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On the other hand, it is not recommended to select as much features as pos-
sible. In fact, even if theoretically more variables should provide one with better
modelling accuracy, in real cases it has been observed many times that this is
not the case. This depends on the limited availability of data in real problems:
successful models seem to be in good balance of model complexity and avail-
able information. In facts, variables selection tends to produce models that are
simpler, clearer, computationally less expensive and, moreover, providing often
better prediction accuracy [12].

In statistical analysis, forward and backward stepwise multiple regression
(SMR) are widely used [12]. The resulting subset of features generated by adding
features until the addition of a new feature no longer results in a significant in-
crement in an R2 (correlation coefficient) value.

Siedlecki and Sklansky [13] use genetic algorithms for variable selection by en-
coding the initial set of n variables to a chromosome, where 1 and 0 represents
presence and absence respectively of variables in the final subset. They used classi-
fication accuracy, as the fitness function and obtained good neural network results.
Mutual information (MI) [3] between features can be computed by integrating the
probability density functions of input and output variables. MI is very often used
in FS algorithms to distinguish between useful and irrelevant features. Several FS
algorithms for the WEKA [15] data mining environment are based on measuring
the mutual information of attributes. In this paper, we compare the performance
of FS algorithms available in WEKA on synthetic data set generated by Tesmer
and Estevez to measure the performance of the AMIFS method [14]. Then we in-
troduce new methods for FR which are byproducts of the GAME data mining
algorithm [7]. We adjust their performance to improve results on syntectic data
sets. Finally, we applied all FS algorithms to real-world data set.

2 Feature Ranking Methods in WEKA

Seven Weka FR methods will be used for comparison of ranking performance.
ChiSquared method evaluates the worth of an attribute by computing the value
of the chi-squared statistic with respect to the class, GainRatio by measuring the
gain ratio with respect to the class, InfoGain by measuring the information gain
with respect to the class, OneR by using the OneR classifier. ReliefF evaluates
the worth of an attribute by repeatedly sampling an instance and considering
the value of the given attribute for the nearest instance of the same and different
class. SVM evaluates the worth of an attribute by using an SVM classifier and
SymmetricalUncert(SU) evaluates the worth of an attribute by measuring the
symmetrical uncertainty with respect to the class.

3 FeRaNGA: Novel Method for Feature Ranking

In this section, we propose a method for FR derived from information gained
during the data mining process. The GAME data mining engine needs to be
briefly described.
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3.1 Group Method of Data Handling

There are several algorithms for inductive models construction commonly known
as Group Method of Data Handling (GMDH) introduced by Ivachknenko in 1966
[8]. The Multilayered Iterative Algorithm (MIA) uses a data set to construct a
model of a complex system. Layers of units transfer input variables to the out-
put of the network. The coefficients of units transfer functions are estimated
using the data set describing the modeled system. Networks are constructed
layer by layer during the learning stage. the Group of Adaptive Models Evo-
lution (GAME) algorithm proceeds from the MIA algorithm. Modifications of
the original algorithm are the following: maximal number of unit inputs equals
to the number of layer the unit belongs to, interlayer connections are allowed,
transfer function and learning algorithm of units can be of several types, niching
genetic algorithm is used to select surviving units and an ensemble of models is
generated. The more detailed description can be found in [7].

The niching genetic algorithm used in GAME is a cornerstone of feature
ranking algorithm and needs to be described.

3.2 Niching Genetic Algorithm

Niching methods [10] extend genetic algorithms to domains that require the
location of multiple solutions. They promote the formation and maintenance
of stable subpopulations in genetic algorithms (GAs). One of these methods
is deterministic crowding [9]. The basic idea of deterministic crowding is that
offspring is often most similar to parents. We replace the parent who is most
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similar to the offspring with higher fitness. The reason why we employ deter-
ministic crowding instead of using just simple GA is the ability to maintain
multiple subpopulations (niches) in the population. When the model is being
constructed units connected to the most important input would soon dominate
in the population of the first layer if we have used traditional GA(see Fig.1). All
other units connected to least important inputs would show worse performance
on the validation set and disappear from the population with exponential speed.

In inductive modeling we need also to extract and use information from least
important features and therefore we prefer maintaining various niches in the
population. The distance of genes is based on the phenotypic difference of units
(to which inputs are connected). Each niche is thus formed by units connected
to similar set of inputs. In the first layer just one input is allowed, therefore
niches are formed by units connected to the same feature. After several epochs
of GA with deterministic crowding the best individual (unit) from each niche is
selected to survive in the layer of the model. The construction of the model goes
on with the next layers, where niching is also important.

Proposed method of feature ranking takes into account two factors. First is
the significance of feature for modelling the output variable. The second is the
amount of additional information to the information carried by already selected
variables. This resembles to state of the art methods based on mutual informa-
tion analysis. These methods select set of features of the highest mutual infor-
mation with the output variable while minimizing mutual information among
the selected features.

We found out that by monitoring which genes exist in the population we can
estimate the significance of each feature.

3.3 Significance Estimation

In the initial population of the first layer units are randomly generated. Connec-
tion to certain feature is represented as ”1” in corresponding gene locus. Numbers
of ones in locus are therefore uniformly distributed at the beginning of GA. After
several epochs of GA with DC, numbers of ones in gene loci representing more
important features increases whereas numbers in loci of least significant features
decreases (see Fig. 1.).

This fact can be used for the estimation of features significance. In each layer
of the network, after the last epoch of GA with DC, before the best gene from
each niche is selected, we count how many genes (units) are connected to each
input variable. This number is accumulated for each feature and when divided by
sum of accumulated numbers for all features, we get the proportional significance
of each feature.

3.4 FeRaNGA Algorihtm for Feature Ranking

The ranking of features can be easily extracted from their proportional signifi-
cance estimated by the above described procedure. This is what we call Feature
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Ranking utilizing information from Niching Genetic Algorithm (FeRaNGA) algo-
rithm. The configuration of the GAME engine, particulary size of the population
and number of epochs of Niching Genetic Algorithm (NGA) has considerable in-
fluence on results of the FeRaNGA algorithm. For very low number of epochs,
significance of features is close to random number, because the niching genetic
algorithm is unable to eliminate units connected to irrelevant features from the
population. The GAME engine typically constructs ensemble of models [4]. We
found out, that by applying FeRaNGA to all ensemble models and computing
the median from estimated significance of features greatly improves the results.
We will refer to this method as FeRaNGA-n where n is the number of ensemble
models.

4 Data Sets Overview

Two artificial and one real data sets were used in experiments. Artificial data
sets were generated to measure the performance of the AMFIS feature selection
algorithm [14].

4.1 Gaussian Multivariate Data Set

This artificial data set consists of two clusters of points generated from two
different 10th-dimensional normal Gaussian distributions. Class 1 corresponds to
points generated from N(0, 1) for each dimension and Class 2 to points generated
from N(4, 1). This data set consists of 50 features and 500 samples per class. By
construction, features 1-10 are equally relevant, features 11-20 are completely
irrelevant and features 21-50 are highly redundant with the first ten features.
Ideally, the order of selection should be: at first relevant features 1-10, then the
redundant features 21-50, and finally the irrelevant features 11-20.

4.2 Uniform Hypercube Data Set

Second artificial data set consists of two clusters of points generated from two
different 10th-dimensional hypercube [0, 1]10, with uniform distribution. The
relevant feature vector (f1, f2, . . . , f10) was generated from this hypercube in
decreasing order of relevance from feature 1 to 10. A parameter α = 0.5 was
defined for the relevance of the first feature and a factor α = 0.8 for decreasing
the relevance of each feature. A pattern belongs to Class 1 if (fi < γi−1 * α / i =
1, . . . , 10), and to Class 2 otherwise. This data set consists of 50 features and
500 samples per class. By construction, features 1-10 are relevant, features 11-20
are completely irrelevant, and features 21-50 are highly redundant with first 10
features. Ideally, the order of selection should be: at first relevant features 1-10
(starting with feature 1 until feature 10 in the last position), then the redundant
features 21-50, and finally the irrelevant features 11-20.
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4.3 Housing Data Set

This real-world multivariate data set consist of 506 instances, 13 continuous at-
tributes [1]. The last attribute, MEDV, was for experiments in Weka discretized
into 4 classes, because the nominal character of the output variable is expected.

5 Experimental Analysis

The first experiment compares the performance of feature ranking methods in
their implicit configuration on three different data sets. The GAME used stan-
dard configuration with 15 individuals in the NGA and 30 epochs. We run the
algorithm severel times to show the unstable behavior. Second part of analysis
describe experiments with making the FeRaNGA algorithm more restrictive to
prevent irrelevant features being selected by a chance. Finally the results of the
FeRaNGA-n algorithm with well configured GAME engine are presented.

5.1 FeRaNGA Algorithm vs. WEKA FR Methods in Default
Settings

Most of FR methods in Weka are giving exact results corresponding to artificial
data sets characteristic, except SVM(as is shown in Table 1 and 2). In these tables
only the interesting columns are displayed. The reference ranking of features is
displayed in first rows. A light gray background cells with black coloured numbers
represent features which have zero significance (no units connected to them were
able to survive the evolutionary process) and dark gray with white coloured
numbers redundant features. Black background cells with white numbers are
irrelevant features and cells with white background are relevant. This colour
separation is valid for all tables except number 3.

Results of the FeRaNGA algorithm are presented under label GAME followed
by number of model used for significance extraction. For the Gaussian data set,

Table 1. Ranks of features for Gaussian Multivariate Data Set used in WEKA and
GAME with default settings
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Table 2. Uniform Hypercube Data Set analysed with default settings of WEKA and
GAME methods

Table 3. Housing data set - resutls from GAME vs Weka. Every column represents
ranks of one feature by all compared methods.

Method Features Significance Method Features Significance

ChiSquare 1 6 4 7 5 2 8 10 11 3 9 12 GAME 1 1 6 7 4 5 10 9 2 3 11 8 12

GainRatio 1 10 3 2 7 12 5 11 9 8 4 6 GAME 2 1 7 6 4 2 8 9 10 11 3 12 5

InfoGain 1 4 6 7 2 5 8 10 11 3 9 12 GAME 3 1 7 4 6 3 9 8 2 10 5 12 11

OneR 1 7 6 5 4 2 11 8 3 10 9 12 GAME 4 1 6 7 5 2 12 10 9 4 8 11 3

ReliefF 1 7 6 4 11 5 9 3 12 10 8 2 GAME 5 1 7 6 8 5 9 10 2 4 3 11 12

SVM 1 6 2 7 4 12 3 8 5 11 9 10 - - - - - - - - - - - - -

SU 1 4 2 6 7 5 8 10 3 11 9 12 - - - - - - - - - - - - -

Average 1 7 6 4 2 5 3 10 8 11 12 9 Average 1 7 6 4 2 9 5 10 8 3 12 11

the order in which first ten features were selected is not important, because all
10 features are equally significant. WEKA’s methods (except the SVM) ranked
features correctly (see Table 1). The FeRaNGA algorithm demonstrated worse
results in comparison with WEKA’s methods. Due to randomness of niching
genetic algorithm used and insufficient number of epochs, ranks are different for
each GAME model. Table 2 shows more or less similar results. All methods from
WEKA ranked first ten features correctly, except ReliefF and SVM methods.
Results of the FeRaNGA method are unstable, except the first position. The
most significant feature was identified correctly for all 5 models.

In the Table 3 we can see results for real-world data, Housing Data Set. This
time, even methods from WEKA differ in their ranking. It indicates that this
problem is more complex than synthetic data. All methods found first feature
(Criminality in the area) as the most significant for the value of the value of
housing in Boston. When the average ranking is computed from WEKA methods
and from several GAME models, results are very similar.

5.2 Restricted FeRaNGA Algorithm – More Selective Ranking

The results of the FeRaNGA algorithm applied to synthetic data (Table 1) show
that some redundant features received higher ranking then expected. This
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Table 4. Restricted FeRaNGA algorithm on the Hypercube data set. The bigger num-
ber of UNC causes the bigger number of used features.

behavior is caused by insufficient selection pressure in the niching genetic algo-
rithm - number of epochs was to low to eliminate all redundant features.

In this section, we experiment with the restriction of the FeRaNGA algorithm.
The ranking is computed just from best chromosomes (feature lists) from the
population. Number of unique chromosomes (UNC) used for the ranking varies
from 1 to all (Table 4). Results were measured on Hypercube Data Set with
NGA number of epochs 150 and size of initial population 150. It can be observed,
that when UNC is lower, number of used features is also reduced. For very low
values of UNC only relevant features are ranked, while for all UNC redundant
and irrelevant features are ranked as well. The FeRaNGA algorithm restricted
to one UNC (the best chromosome from the population) can be used to find
and rank just few most important features of the data set. In the next section
we present results of the FeRaNGA-n algorithm which is powered by ensemble
methods.

5.3 Results for FeRaNGA-n Algorithm

The GAME algorithm usually generate more models for one purpose (ensemble
of models). The idea of FeRaNGA-n algorithm is to improve results of ranking
by combining unstable FeRaNGA ranks from n GAME models. Final ranks of
features are computed as median ranking of features from n models. In the
Table 5 we show results of the FeRaNGA-5 algorithm on Hypercube data set.
Restrictive trend corresponding with number of UNC is again evident. NGA

Table 5. Results of FeRaNGA-5 algorithm on Hypercube data set. All selected features
are relevant and have correct ranks.
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configuration was 150 epochs and size of initial population as well. Results of
the FeRaNGA-n are very accurate. All selected features are relevant and have
correct ranks. For full nr. of UNC only 7 from 10 relevant features is selected(last
row in Table 5), but their ranks are accordant with their real ranks. To change
the number of selected features, we can reconfigure the NGA.

5.4 Parameters of NGA for FR

The performance of the FeRaNGA-n algorithm on Hypercube data can be im-
proved by reconfiguration of NGA parameters. The table 6 presents results of
FeRaNGA-7 algorithm with all UNC and NGA’s configurations displayed in the
first column. First is size of initial population and second is number of epochs.
When the ranks for more (or for all) features are needed, one can easily recon-
figure parameters of NGA. Results in table 6 are not quite accurate, but it can
be improved by increasing number of epochs or number of GAME models from
which medians are chosen.

Table 6. Different configuration of FeRaNGA-7 on Hypercube data set

6 Conclusion

FeRaNGA-n algorithm for FR was presented and fine tuned. The comparison of
FeRaNGA-n algorithm and FR methods from WEKA showed that on Hypercube
data set results are equivalent, but the number of selected features depends on
the configuration of NGA and on number of GAME models from which the
median ranks are chosen. FeRaNGA-n algorithm can be used for FR as well as
for feature selection. The advantage of the algorithm is that it is primary designed
for data with continuous output variable, but it can be also used for categorical
variables. It does not require any additional computation, all information for
ranking are extracted from process of data mining (GAME) models evolution.
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Abstract. In this paper, we present a connectionist approach to prefer-
ence learning. In particular, a neural network is trained to realize a com-
parison function, expressing the preference between two objects. Such
a “comparator” can be subsequently integrated into a general ranking
algorithm to provide a total ordering on some collection of objects. We
evaluate the accuracy of the proposed approach using the LETOR bench-
mark, with promising preliminary results.

1 Introduction

Recently, the topic of Preference Learning received considerable attention in
Artificial Intelligence (AI). For instance, in many tasks related to “Intelligent
Agents” and “Planning”, the best action to be taken at each step can not be
unique, and could be appropriately chosen by exploiting an underlying “prefer-
ence model”. Similarly, the goal of “Object Ranking” can be cast in a framework
where the criterion used to order a set of given objects is not predefined but in-
ferred from users’ preferences. In all these cases, the system behaviour should
be adapted based on a set of feedbacks, provided by an user or by sensors. The
approaches proposed in the literature vary from approximating the utility func-
tion of a single agent on the basis of a question-answer process (often referred
to as “preference elicitation”) to “collaborative filtering”, where the preferences
of a given user are estimated from the preferences of the other users. In this
scenario, it is not surprising that, in recent years, automatic methods for learn-
ing and predicting preferences have been widely investigated in disciplines such
as machine learning, knowledge discovery, and recommender systems. In the AI
literature, preference learning problems have been formalized in various different
settings, depending on the underlying preference model or the type of informa-
tion provided to the learning system. However, two formalisms mainly appear to
be central: the “Learning Labels Preference (LLP)” and the “Learning Objects
Preference (LOP)”.

This paper presents a neural model for Learning Objects Preferences based on a
pairwise approach. In particular, a comparison function, referred to as a “compara-
tor”, is learned using a set of examples. Given an ordered input pair of examples,

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 899–908, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the comparator decides which of the two examples is preferable. The performances
of the proposed approach are firstly tested in a classification framework by evalu-
ating the accuracy of the preference assignment for each input pair, and then the
comparator is applied to a ranking task by using three different schemes. These
tests are performed using the LETOR (LEarning TO Rank) dataset [1], which is
a standard benchmark for the “Learning to Rank” task. The comparison considers
several state-of-the-art ranking algorithms for this task, like RankSVM [2], Rank-
Boost [3], FRank [4], ListNet [5], and AdaRank [6].

The paper is organized as follows. In the next section, we introduce the model
and provide a brief mathematical description, whereas, in Section 3 we describe
the three ranking algorithms used to test the comparator. Subsequently, in Sec-
tion 4, we present the experimental setup, the LETOR dataset, the related eval-
uation measures, and some comparative experimental results. Finally, in Section
5, same conclusions are drawn.

2 The Comparator Model

The connectionist method proposed in this paper is based on a pairwise prefer-
ence learning approach. In particular, let S be a set of objects described by a
vector of features, and let < x, y >∈ S × S be the pair of objects to be com-
pared. The model is trained to decide if x has to be preferred to y or vice-versa.
Formally, a pairwise preference function realizes a function f such that:

f(x, y) =

⎧⎨⎩
> 0 if x + y
< 0 if x ≺ y
= 0 if x ∼ y

(1)

where x + y means that x is preferred to y, x ≺ y if y is preferred to x, and x ∼ y
if there is no preference between x and y (i.e. x and y are considered equivalent).
In many cases, the equivalence relationship can be ignored. To induce a correct
ordering, the function f has to meet the following constraints:

– anti-simmetry: if x + y then y ≺ x. It means that: f(x, y) = −f(y, x).
– self-equivalence: if x = y, then f(x, x) = 0.
– transitivity: if x + y and y + q, then x + q. It means that if f(x, y) > 0 and
f(y, q) > 0, then f(x, q) > 0.

The transitivity property is not guaranteed by the proposed model, even if it
can be learnt from data.

2.1 The Comparator Neural Network

The comparator neural network is a feed-forward neural network with a single
output neuron such that:

– all neurons (hiddens and output) have an anti-symmetric transfer function;
– all neurons have no biases;
– the input pattern is the difference between the two exampels in the pair:
z = (x− y).
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This particular architecture realizes an anti-symmetric function f(z) : f(−→z ) =
−f(←−z ), where−→z indicates the ordered pair< x, y >, while←−z indicates< y, x >.
This can be easily shown as follows. The output, for the inputs −→z and ←−z can
be expressed as

f(−→z ) = s(
∑

i

wi
−→
hi + b)

f(←−z ) = s(
∑

i

wi
←−
hi + b)

where s is the transfer function of the output neuron, and hi and wi are the hid-
den neurons’ outputs and the hidden-output weights, respectively . By imposing
the anti-symmetry of f , we can write:

s

(∑
i

wi
−→
hi + b

)
= −s

(∑
i

wi
←−
hi + b

)
.

If s is an anti-symmetric function, it follows that

∑
i

wi
−→
hi + b = −

∑
i

wi
←−
hi − b =⇒

{−→
hi = −←−hi

b = −b = 0

where −→hi and ←−hi represent the output of the ith hidden neuron for the inputs −→z
and ←−z , respectively. Similarly, −→hi and ←−hi can be expressed as:

−→
hi = g(

∑
j

vxj ,ixj +
∑

j

vyj ,iyj + bi)

←−
hi = g(

∑
j

vxj ,iyj +
∑

j

vyj ,ixj + bi)

where vxj ,i and vyj ,i are the weights between the jth feature of x and y, and the
hidden neuron i. By imposing −→hi = −←−hi, we can write:

g(
∑

j

vxj ,ixj +
∑

j

vyj,iyj + bi) = −g(
∑

j

vxj ,iyj +
∑

j

vyj ,ixj + bi) .

If the function g is anti-symmetric, it follows that∑
j

vxj ,ixj +
∑

j

vyj ,iyj + bi = −
∑

j

vxj ,iyj −
∑

j

vyj ,ixj − bi

=⇒
∑

j

vxj ,i(xj + yj) + bi =
∑

j

−vyj,i(xj + yj)− bi =⇒
{
vxj ,i = −vyj ,i

bi = −bi = 0 .

Therefore, the weight between the ith hidden neuron and the jth feature of x has
to be the opposite of that between the ith neuron and the jth feature of y, which
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simply corresponds to consider zj = xj − yj as the jth input to the network.
Thus, the function implemented by each hidden neuron i is

hi = g

⎛⎝∑
j

vxj ,i (xj − yj)

⎞⎠ .

This neural architecture also satisfies the self-equivalence property, since the
network output is zero when the input pair is < x, x >. In fact, since g and s
are anti-symmetric functions,

hi = g

⎛⎝∑
j

vxj ,i (xj − xj)

⎞⎠ = 0

f(z) = s(
∑

i

wihi) = 0 .

The hyperbolic tangent can be used as transfer function both for the hidden and
output neurons. When training the model, for each pair of inputs < e1, e2 >,
the target is assigned as ⎧⎨⎩

t = 1 if e1 + e2
t = 0 if e1 ∼ e2
t = −1 if e1 ≺ e2

.

However, in the experimental phase, we noticed that the model obtains better
performances when trained without using the equivalence relationship. In fact,
the network is still able to learn the “no-preference” relationship hidden in the
training set even without using explicit examples.

3 The Ranking Algorithm

A trained neural network comparator can be exploited to rank objects by means
of a sorting algorithm, an one-vs-all scoring scheme, or a page-rank like
approach.

Ranking by a Sorting Algorithm
In this approach, the trained preference function is used as the comparison func-
tion in a sorting algorithm. The set of objects can be ordered with O(n log n)
time complexity, according to the ordering defined by the preference function. It
must be noticed that the proposed model does not realize a perfect comparison
function since the transitivity property is not guaranteed. This could result in
the definition of a partial ordering for which different rankings are admissible.
However, the experimental results show that, when the transitivity is implicit in
the training set, it is learnt quite well by the proposed model. In these experi-
ments, the same sorting algorithm was applied to different shufflings of the same
objects, and different sorting algorithms were used on the same set of objects.
The obtained final orderings were the same in most of the cases and seldom they
differed only by a very small number of object positions (1− 5 over 1000).
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Ranking by One-vs-All Scoring
The objects are ranked by exploiting a sort of “championship” consisting in all
the “matches” between pairs of competitors. The ith object is compared with
the n − 1 remaining objects using the trained preference model. If oi + oj , oi

wins the match and its total score is incremented by 1, otherwise the score of
oi is unchanged. When oi ∼ oj , there is a draw and the corresponding scores
are not modified. This algorithm has an O(n2) time complexity, since it requires
n(n− 1)/2 matches.

Ranking by Page-Rank Scoring
This ranking algorithm exploits the PageRank algorithm [7]. In particular, the
neural network comparator is used to build the preference graph on the ob-
jects: the sign of the network output is used to determine the direction of
the arc between the nodes corresponding to the compared objects. The graph
adjacency matrix is normalized, such that the elements on each row sum to
1, and the PageRank vector x ∈ RN is computed by the following iterative
computation {

xt+1 = d ·W · xt + (1−d)
N · 1

x0 = 1
N · 1

where W ∈ RN×N is the transpose of the normalized adiacency matrix, N is
the number of nodes in the graph (the number of objects to rank), and d ∈ [0, 1]
is the dumping factor, typically set to 0.85. The resulting score vector x is then
used to order the objects.

4 Experimental Results

The performances of the proposed schemes have been evaluated on the LETOR
dataset [1], a package of benchmark datasets1 for LEarning TO Rank, released
by Microsoft Research Asia. This dataset collects objects which correspond
to query-document pairs on the OHSUMED and TREC document collections.
The documents are represented using several classical information retrieval (IR)
features, such as term frequency, inverse document frequency, BM25, language
models, and other features proposed in the recent literature, such as HostRank,
Feature propagation and Topical PageRank. For the experiments reported in this
paper, we considered only the TREC collections, since the OHSUMED dataset
considers three relevance degrees. LETOR contains two TREC datasets, TD2003
and TD2004. TD2003 is composed by 50 sets of documents from TREC 2003,
each one containing the 1000 most relevant documents returned to one out of 50
different queries. Similarly, TD2004 contains documents from the TREC 2004
returned to 75 different queries. Each query-document pair is represented by 44
features described in the LETOR technical report. A label is provided for each

1 http://research.microsoft.com/users/LETOR/

http://research.microsoft.com/users/LETOR/
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document to define its actual relevance with respect to the corresponding query,
defining the set R of relevant documents and the set NR of the not-relevant ones.
For all queries, the number of relevant documents is roughly the 1% with respect
to the whole set of documents. Each dataset is partitioned into five subsets in
order to apply a 5-fold cross-validation. Thus, for TD2003 there are 10 queries
for each subset, whereas for TD2004 each subset collects the results of 15 queries.
For each fold, three subsets are used for training, one subset for validation, and
one for testing.

The feature vectors have been normalized to [−1, 1]. In particular, if N i doc-
uments di

j , j = 1, ..., N i, are returned as result to the i-th query, and xi
j,r, with

j = 1, ..., N i, indicates the r-th feature of the document di
j , the corresponding

normalized feature x̂i
j,r is

x̂i
j,r =

xi
j,r − x̄i

r

maxs=1,...,Ni|xi
s,r|

(2)

where x̄i
r =

�Ni

s=1 xi
s,r

Ni represents the average of xi
j,r . The learning set is built

by selecting a pair < x, y > of documents, each from one of the two relevance
classes. The corresponding target value for the network output is 1 if x ∈ R
and y ∈ NR, -1 otherwise. The number of hidden neurons was chosen by a
trial-and-error procedure using the validation set.

To evaluate the accuracy of the comparison function learnt by the neural
network, the network output is compared with respect to the actual preference
order for each pair of documents in the test set, as defined by the relevance
classes to which the two documents belong. The evaluation considers only pairs
of documents belonging to different classes. In fact, the available labeling allows
only a clear preference ordering when the two documents belong to different
classes, and it is too restrictive to assume a strict equivalence relationship when
they belong to the same class. Documents inside the same class can have any
ordering, since no information is provided to prefer one ordering to the other.
Finally, it should be noticed that if the network provides an erroneous value for
the comparison of the pair < x, y >, then, due to its anti-symmetry, also the
comparison of < y, x > is wrong.

For this task, the best performances were obtained using a network with 20
hidden neurons. The total accuracy, averaged on the 5 folds, is quite different on
the two datasets. On TD2003, the neural network was able to compare correctly
83, 53%± 0.1 of the test pairs, while on TD2004 the performances were signif-
icantly better, yielding an accuracy of 96, 51%± 0.05. This is probably due to
the different characteristics of the two document sets and the related relevance
criterion. However, the results show that, in the best case, the neural network
comparator was able to approximate the pairwise preference ordering with an
error at most of 3.5% on the considered pairs.

Since the final goal is to rank the results sets, the neural network comparator
was exploited to order the documents in each set using the three algorithms
described in Section 3. In this setting, a good ordering is characterized by the
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(a) NDCG@n

(b) P@n

(c) MAP (d) Legend

Fig. 1. Results on the test set of TREC2003

presence of the documents belonging to the relevant class in the top positions.
The obtained results are compared to those reported in [1]: RankSVM [2], Rank-
Boost [3], FRank [4], ListNet [5], and AdaRank [6].

The performances of these algorithms are compared using the ranking mea-
sures proposed in the LETOR technical report, defined as follows.
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(a) NDCG@n

(b) P@n

(c) MAP (d) Legend

Fig. 2. Results on the test set of TREC2004

– Precision at position n (P@n) — This value measures the relevance of
the top n results of the ranking list with respect to a given query.

P@n =
relevant docs in top n results

n
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– Mean average precision (MAP) — Given a query q, the average precision
is evaluated as

APq =
∑N

n=1 P@n · rel(n)
total relevant docs for q

where N is the number of documents in the result set of q and rel(n) is
1 if the nth document in the ordering is relevant, 0 otherwise. Thus, APq

averages the values of the P@n when n equals the positions of each relevant
document. Finally, the MAP value is computed as the mean of APq over a
set of queries.

– Normalized discount cumulative gain (NDCG) — This measure is
able to handle multiple levels of relevance. The NDCG value of a ranking
list at position n is calculated as

NDCG@n ≡ Zn

n∑
j=1

2r(j) − 1
log(1 + j)

where r(j) is the rating of the jth document in the list (0 is the worst), and
Zn is chosen such that the ideal ordering (the DGC-maximizing one) gets a
NDCG score of 1.

For each ranking algorithm, we report the results for the best neural network
architecture. In particular, for the experiments using the TD2003 dataset, the
best performances were obtained with 10 hidden neurons for the one-vs-all and
the PageRank algorithms, whereas 20 hidden neurons were used for the neural
network exploited in the sorting algorithm. The results on TD2003 dataset are
shown in Figure 1. All the three algorithms show values of P@n and NDCG@n
that are comparable to the RankBoost, AdaRank-MAP, and AdaRank-NDCG
algorithms. In particular, the results improve when increasing the parameter n.

In the experiments on the TD2004 dataset, 20 hidden neurons were used for
the neural network exploited in the one-vs-all and PageRank algorithms, whereas
the neural network used as comparison function in the sorting algorithm had 10
hidden neurons. The results are shown in Figure 2. We can notice that the NDCG
of the sorting algorithm is better than the values of the AdaRank-MAP and
AdaRank-NDCG algorithms. Moreover, for increasing values of n, the algorithm
reaches the performances of RankSVM.

5 Conclusions

In this paper a connectionist approach to the preference learning task has been
proposed. A neural network is trained using patterns formed by pairs of exam-
ples. Given an ordered input pair, the comparator decides which of the two ob-
jects is preferable. The model is then exploited in a ranking algorithm to obtain
a total ordering over a set of objects. Experiments were carried out to evalu-
ate the performance of the proposed algorithm using the datasets TD2003 and
TD2004, available among the LETOR benchmarks. RankingSVM, RankBoost,
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FRank, ListNet and AdaRank were compared with the proposed approach and
the results show that the neural comparator combined with different ranking
algorithm obtains comparable performances with respect to all the methods,
except AdaRank, that is outperformed.
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Abstract. Most of the recent neuroevolution (NE) approaches explore
new network topologies based on a neuron-centered design principle. So
far evolving connections has been poorly explored. In this paper, we pro-
pose a novel NE algorithm called Evolving Efficient Connections (EEC),
where the connection weights and the connection paths of networks are
evolved separately. We compare our new method with standard NE and
several popular NE algorithms, SANE, ESP and NEAT. The experi-
mental results indicate evolving connection weights along with connec-
tion paths can significantly enhance the performance of standard NE.
Moreover the performances of cooperative coevolutionary algorithms are
superior to non-cooperative evolutionary algorithms.

1 Introduction

Neuroevolution (NE) techniques evolve artificial neural networks (ANNs) by
using evolutionary algorithms; it has been shown to have a promising efficacy in
reinforcement learning problems [1] [2] [3]. As summarized by Yao, these kinds
of techniques can be roughly classified into three levels: evolving connection
weights; evolving architectures and evolving learning rules [4]. In the past decade,
more and more approaches have focused on simultaneously evolving connection
weights and architectures of ANNs [5] [6] [3] [7] [8] [9].

A major challenge in NE is to find both optimal weights and network topolo-
gies. Several recent approaches have been proposed to achieve this purpose.
Moriarty and Miikkulainen [5] developed a cooperative coevolutionary model,
SANE, that coevolves neurons with predefined numbers of connections in one
population and evolves blueprints in another population to form functioning
neural networks. Potter and De Jong [6] proposed an architecture for evolving
coadapted subcomponents and applied this architecture to cascade networks, in
which each hidden neuron was evolved in an independent population. In their
model, a subcomponents can be removed or added based on the current per-
formance of cooperative subcomponents. ESP [7], developed by Gomez and Mi-
ikkulainen, had some similarities with the model proposed by Potter and De
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Jong. More precisely, ESP evolves three-layer networks as SANE does, but re-
places the blueprints with a fixed sequence of neurons and coevolves neurons in
independent sub-populations. A Hierarchical Cooperative CoEvolution (HCCE)
model was introduced by Maniadakis and Trahanias [10]. The model also coe-
volves subcomponents. In addition, a Coevolved agent Group (CG), similar to
blueprint, is employed to explore effective cooperative subcomponents. A high
level CG can enforce the cooperation of the lower ones. NEAT [3] is a new
NE technique that works differently from all of the above. NEAT evolves both
the connection weights and connection topologies of ANNs in one population.
The topologies of networks are changed by using mutation operators. This mu-
tation could change weights values, or insert a new node between an existing
connection, or create a connection between two unconnected nodes, or delete a
connection between two connected nodes. Garcia-Pedrajas et al. [8] developed
a new cooperative coevolutionary model for evolving ANNs, called COVNET,
where each subcomponent is not a neuron but a subnetwork called a nodule. The
design of COVNET integrates the ideas of the above methods. Each nodule is
evolved in an independent sub-population. A network population works similar
to blueprints to evolve efficient combination of nodules. The mutation operators
can change the network topologies as NEAT does.

Most of the recent NE approaches explore new network topologies based on a
neuron-centered design principle [5] [7] [8] [6]: 1) networks are decomposed into
and combined with neuron-centered subcomponents, and 2) network topologies
are altered by evolving cooperative subcomponents. Few authors have devoted
their attention to evolve connection topologies of ANNs. SANE defines evolvable
connection paths in the representation scheme of a neuron population, but the
number of connections is predefined and fixed. NEAT has very limited possibili-
ties to exploit the connection topologies, since they are changed merely through
mutation operators.

In this paper, we propose a new NE algorithm, called Evolving Efficient Con-
nections (EEC). We break through the neuron-centered design principle, and
introduce a novel connection-centered concept. EEC evolves connection weights
and connection paths that are respectively represented in their own popula-
tions, which cooperatively coevolve. The most important contributions of EEC
are twofold. First, it builds a new cooperative coevolutionary model for evolving
ANNs. Second, it corrects the one-sided understanding that the learning capac-
ity of an ANN is mainly dependent on the efficient number of hidden neurons.
Our model demonstrates that efficient connections also play an important role
in the performance of ANNs.

2 EEC: Evolving Efficient Connections

EEC is a cooperative coevolutionary model that separates the search space of
a network into two sub-spaces: connection weights space and connection paths
space. Thus, it contains two populations.
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The population of connection weights evolves weight vectors for fully con-
nected networks as does standard NE. Each individual represents connection
weights of a network, in which each neuron hypothetically connects with all
neurons in the next layer. The population of connection paths evolves switches
of these connections; each individual represents a series of binary bits to spec-
ify the status of the connections: connected (1) and disconnected (0). Figure 1
shows how the connection-weights individuals, and the connection-paths indi-
viduals are related.

Fig. 1. In EEC, connection-weights individuals represent weight vectors of fully con-
nected networks, complete networks switch on a partial connections specified by
connection-paths individuals

EEC borrows many ideas from both SANE and ESP. Below we provide a
briefly description of the EEC algorithm.

1. Initialization. The number of hidden neurons of the networks has to be speci-
fied at the beginning. Each chromosome of connection weights encodes fully-
connected weight vectors with random real numbers. The chromosome of
connection paths encodes connection status with a random string of binary
bits, corresponding to the connection weights.

2. Evaluation. A complete network is formed through sampling paired indi-
viduals from the connection-weights population and the connection-paths
population. To achieve the best performance, we suggest evaluating every
individual of both populations. The top n individuals are regarded as elite
based on their previous evaluation. An elite-rate percent of the cooperative
individuals are selected from the elite to cooperative with the current evalu-
ated individuals, while the rest are selected randomly from the cooperative
population. The resulting network is evaluated on the task and assigned a
fitness score. Each individual is awarded an average of the cumulative fitness
of the networks in which it participated during one generation.

3. Recombination. The same recombination process of ESP is employed in our
algorithm. All the individuals will be ranked according to their fitness within
each population. The top 1/4 individuals are breeding members. The lowest
ranking half of the individuals will be replaced by offspring of the breeding
pairs. One-point crossover and one-point mutation are employed.
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4. Iteration. During the generation process, the stagnation-handling strategy
of ESP is also used in our method. A similar delta-coding technique of ESP
will be employed when the best fitness of networks has not improved after a
specified number of generations. In our delta-coding process, the connection-
weights individual and the connection-paths individual from the current best
network are regarded as seeds of each population. We replace all the indi-
viduals of each population with new individuals generated by perturbations
of the selected seed. The generation is iterated until an optimal solution is
found or the maximum generation is reached.

Besides evolving weights, EEC evolves efficient connection topologies of net-
works. Although we evolve a three-layer feedforward network using EEC in our
experiments, this algorithm is applicable to other types of networks, such as
recurrent networks, multi-hidden layer networks and so on.

3 Performance Evaluation

In order to get a clear impression of the performance of the proposed model,
this section empirically evaluates it through comparisons with standard NE and
several current popular NE techniques, SANE, ESP and NEAT1.

Two board games, Tic-Tac-Toe (TTT) and Gobang, were selected as our
benchmark tasks. The reasons that these two games are chosen as our test do-
mains are twofold. First, games are widely used for evaluating NE methods, espe-
cially board games, and are easily implemented. Second, TTT can be regarded
as an abbreviated version of Gobang since the two games have similar game
rules but different board sizes. By performing simple tasks and then processing
to more difficult problems, we may be able to analyze if EEC is able to evolve
optimal structures and keep its learning capacities better than other methods.

All the networks were evolved to play with hand-coded strategies in both
games in our experiments.

3.1 Board Games

Tic-Tac-Toe. TTT is a classic game that is commonly used to evaluate NE
algorithms [11] [12]. In TTT two players alternately mark their symbols on
a board. The one who first obtains three in a row horizontally, vertically, or
diagonally wins. The game ties if all grids are filled with symbols and no one
wins.

James and Tucker [12] evolved networks with three NEAT dynamics, simplifi-
cation, complexification and blended, to play with five hand-coded strategies of
TTT, called BEST, FORKABLE, CENTER, RANDOM and BAD. The same
five strategies were employed in our TTT experiments.
1 SANE, ESP and NEAT (ANJI) experiments of our work were implemented based on

the relative software developed by Neural Networks Research Group at the University
of Texas, see http://nn.cs.utexas.edu/
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Gobang. Gobang is also known as GoMoku, or 5-in-a-row. This game has some
similar game rules to TTT, but plays on a bigger size board with the goal of
achieving five in a row. Gobang is as easy to learn as TTT but much more
difficult to master even by humans, because the size of the board is bigger than
the goal number of symbols in a row. To both reduce the time consumption for
evolving networks and simplify the structure of networks, we chose to do the
experiments of Gobang on a 7× 7 size board.

The hand-coded strategy of Gobang used in our experiments was developed
by Vladimir Shashin2. 106 patterns composed of four symbols, “*”, “-”, “o” and
“x”, with a length of five each (such as “-*ooo”, “-x*x-”) were created in his
program. These patterns were used to make a decision of the best move for each
next step after scanning the board state. We divided the hand-coded strategy
into three increasingly difficult levels through disabling partial patterns:

1. BEST strategy employed all the 106 patterns.
2. MIDDLE strategy disabled six patterns that include four same symbols, such

as “o*ooo” and “*xxxx”. It contained 100 patterns.
3. BAD strategy disabled 30 patterns that included four or three same symbols.

It employed 76 patterns.

3.2 Networks Representation and Evaluation

In both games, the board states are represented to the networks through mapping
each grid to both an input neuron and an output neuron. An input neuron is:
1) 1 if play-1 marks its symbol in the corresponding grid of the board, 2) -1
if the corresponding grid is occupied by player-2, and 3) 0 denoting a blank
grid that is one of legal moves for both players. After performing the activation
computation, a move decision is made by the output neurons. The one with
the highest output value corresponding to a legal move is chosen as the move
decision of the network player.

To evaluate the performances of a network, 100 matches are played between
the network player and a predefined hand-coded player. Each player takes turns
going first. The network player is awarded 5 points for a win, 2 points for a tie
and 0 for a loss. The fitness of the network, of course, is the cumulation of the
points from the 100 matches. Due to the BEST hand-coded strategy of Gobang
is too strong, no one network is able to evolve the ability to force a win or even
a tie using the above fitness evaluation. So a bonus is awarded additionally to
the network player. The bonus is the number of filled board grids divided by the
total number of the board grids.

3.3 Parameter Setting

For the purpose of implementing the evaluation as fairly as possible, we evolved
the solutions with the same number of generations and built the same number of
2 The Java game of Gobang developed by Vladimir Shashin can be download at

http://down1.tech.sina.com.cn/download/down Content/2004-03-16/9313.shtml



914 M. Shi and H. Wu

Table 1. Parameter settings for TTT and Gobang experiments

Methods Parameters Value Parameters Value

All Num. of Gen. 200 Num. of Evaluation per Gen. 200

NE Pop. size 200 Hidden neurons 10
Mutation rate 0.2 Breeding rate 0.25

NEAT Pop. size 200 Initialized hidden neurons 0
Weight mutation rate 0.75 Survival rate 0.2
Add connection mutation rate 0.2 Add neuron mutation rate 0.2
Excess gene coefficient 1.0 Disjoint gene coefficient 1.0
Common weight coefficient 0.4 Speciation threshold 0.9
Delete connection mutation 0.02

SANE Pop. size of neurons 1000 Pop. size of blueprints 200
Num. of connection for TTT 36 Num. of connection for Gobang 196
Hidden neurons 10 Breeding neurons 250
Elite neurons 250 Mutation rate 0.02
Num. of top network 100 Num. of top network breedings 20

ESP Sub-population size 100 Num. of trial networks 200
Initialized hidden neurons 10 Mutation rate 0.2
Gen. of stagnation 20 Breeding rate 0.25

EEC Connection-weights Pop. size 200 Connection-paths Pop. size 200
Num. of evaluated networks 200 Hidden neurons 10
Mutation rate 0.2 Gen. of stagnation 20
Elite of connection-weights 10 Elite rate of weights 0.2
Elite of connection-paths 10 Elite rate of paths 0.2
Breeding rate 0.25

networks in each generation for all the experiments. Besides using some related
work [2] [13] [12] in the same or similar problem domains, a number of experi-
ments were carried out at the beginning to search effective parameters. Table 1
summarizes the parameters chosen for both TTT and Gobang experiments.

As we have presented, EEC performs full-evaluation on all the individuals.
For the comparison purpose, however, only 200 evaluations were carried out in
each generation. So a half-evaluated ECC was performed in our experiment, in
which only every individual in the connection-weights population was evaluated
actively. The individuals of connection-paths population were evaluated passively
only if they were selected to participate in the cooperation. Using the half-
evaluation, thus, some very good connection paths could be lost due to a failure
to participate in the cooperation.

3.4 Experimental Results

We carried out 20 runs for each type of evaluation. These methods were compared
based on the average performances of our experiments. Table 2 and table 3 lists
the average results of wins, ties, losses and fitness for the 20 best solutions from
each type of performance for TTT and Gobang tasks.
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Table 2. Average performances of different networks playing with five hand-coded
strategies of TTT (20 runs each)

NE NEAT SANE ESP EEC

BAD Wins 100 100 100 100 100
Ties 0 0 0 0 0
Losses 0 0 0 0 0
Fitness 500 500 500 500 500

RANDOM Wins 94.35 95.8 93.45 95.95 95.65
Ties 2 1.05 1.85 1.8 1.2
Losses 3.65 3.15 4.7 2.25 3.15
Fitness 475.75 481.1 470.95 483.35 480.65

CENTER Wins 95.3 96.95 96.55 97.6 96.55
Ties 2.3 1.65 1.7 1.15 1.75
Losses 2.4 1.4 1.75 1.25 1.7
Fitness 481.1 488.05 486.15 490.3 490.45

FORKABLE Wins 39.6 56.15 54.7 47.6 50.45
Ties 38.95 25.65 28.15 38.3 30.3
Losses 21.45 18.2 17.15 14.1 19.25
Fitness 275.9 332.05 329.8 314.6 312.85

BEST Wins 0 0 0 0 0
Ties 91.05 98.1 97.7 97.7 96.9
Losses 8.95 1.9 2.3 2.3 3.1
Fitness 182.1 196.2 195.4 195.4 193.8

Table 3. Average performances of different networks playing with three hand-coded
strategies of Gobang (20 runs each)

NE NEAT SANE ESP EEC

BAD Wins 96.3 97.95 100 100 100
Ties 0.3 0.1 0 0 0
Losses 3.4 1.95 0 0 0
Fitness 482.1 489.95 500 500 500

MIDDLE Wins 77.6 61.4 97.4 99.5 96.1
Ties 0.05 0.1 0.05 0 0
Losses 22.35 38.5 2.55 0.05 3.9
Fitness 388.3 307.2 487.1 499.75 480.5

BEST Wins 0 0 1.65 0 0
Ties 9.4 2.42 60.5 69.3 56.05
Losses 90.6 97.58 37.85 30.7 43.95
Fitness 65.33 45.51 210.25 218.04 181.73

From these results we can see that, after 200 generations the average final
results came out from half-evaluated EEC were quite close to NEAT, SANE,
ESP and appreciably better than standard NE for TTT task. While for Gobang
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Fig. 2. Comparison of average learning speeds between EEC and some other methods.
EEC1 is half evaluated EEC and EEC2 is full-evaluated EEC. (A) is the performances
for the BEST strategy of TTT. (B) is the performances for the BAD strategy of
Gobang. (C) is the performances for the MIDDLE strategy of Gobang. (D) is the
performances for the BEST strategy of Gobang. (20 runs each).

task the performances of half-evaluated EEC were obviously better than that of
standard NE and NEAT, but slightly inferior to SANE and ESP.

To facilitate a more explicit comparison, figure 2 shows the average learning
curve for the BEST strategy of TTT and all the strategies of Gobang from 20
runs. In this figure we also show the performances of full-evaluated EEC (line
EEC2). As a whole, ESP learned faster than all of the others. Half-evaluated
EEC performed as well as SANE for the simple TTT task, the two curves of
SANE and half-evaluated EEC almost overlapped each other. For the difficult
Gobang task half-evaluated EEC achieved much better results than standard NE
and NEAT. The performances of full-evaluated EEC were obviously superior to
that of half-evaluated EEC, and even outperformed SANE.

It’s not surprising that the learning speed of NEAT was slower than all of other
methods, since NEAT started its search from zero hidden neurons. New neurons
and new connections are added only when beneficial. For the tasks of MIDDLE
and BEST strategies of Gobang, however, the evolutionary process of NEAT
nearly stagnated after a few generations. Almost no hidden neurons were added
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Table 4. Average complexity of best networks found by different methods (20 runs
each)

NE NEAT SANE ESP EEC

Hidden neurons 10 3.35 10 7.25 10
connections 180 61.3 180 130.5 90.3

during 200 generations. A significant advantage of NEAT could be in evolving
minimal complexity of networks rather than in finding optimal solutions.

Table 4 lists the average complexity of the best networks evolved by differ-
ent methods for the BEST strategy of TTT. NEAT found the most compact
networks that, on average, contained 3.35 hidden neurons and 61.3 connections.
ESP removed neurons that did not contribute to the solutions, and eventually,
found simpler networks than the initialized ones, which, on average, contained
7.25 hidden neurons and 130.5 connections. The networks evolved by EEC, on
average, contained 90.3 efficient connections. SANE evolved fully-connected net-
works in our experiments, so the networks of SANE contained the same number
neurons and connections as those of standard NE.

EEC has achieved remarkable results for both domains, especially, for the
hardest task, the BEST strategy of Gobang. Our model was able to keep the
growth of learning even when NE and NEAT encountered premature convergence
for the hardest problem.

4 Conclusion

Evolving connections has been poorly explored in ANNs so far. In this paper
a novel cooperative coevolutionary algorithm, EEC, was presented. EEC, was
developed based on standard NE model. An additional connection-paths popu-
lation is evolved simultaneously in order to cooperate with connection weights
to build complete networks with efficient connections. The experimental results
have demonstrated that evolving connection weights along with connection paths
can significantly enhance the performance of standard NE.

A fully-connected network could generate noise. As we have known, a neuron
will be activated when its input signal reaches a threshold value, where that
signal is the sum of weighted output signals from upstream neighbor neurons.
Redundant products that come from inefficient connection could result in in-
correct activation of neurons. Standard NE restricts inefficient connections by
evolving their connection weights toward 0. However, a holistic search served by
standard NE will be inefficient when the search space is large. Our experiments
also indicate that decomposition will be helpful for complex domains. SANE,
ESP and EEC are three cooperative coevolutionary algorithms, which search
optimal solutions through decomposition and combination processes. They have
shown highly robust performance compared to standard NE and NEAT.



918 M. Shi and H. Wu

Acknowledgments

The author would like to thank Keith Downing and all the members of the SOS
group for their support.

References

1. Moriarty, D.E., Miikkulainen, R.: Efficient reinforcement learning through symbi-
otic evolution. Machine Learning 22, 11–32 (1996)

2. Richards, N., Moriarty, D., Mcquesten, P., Miikkulainen, R.: Evolving neural net-
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Abstract. Energy is an important feature for electroencephalogram
(EEG) signal classification in brain computer interfaces (BCIs). It is not
only physiologically rational but also empirically effective. This paper
proposes extreme energy ratio (EER), a discriminative objective func-
tion to guide the process of spatially filtering EEG signals. The energy of
the filtered EEG signals has the optimal discriminative capability under
the EER criterion, and hence EER can as well be regarded as a feature
extractor for distilling energy. The paper derives the solutions which op-
timize the EER criterion, shows the theoretical equivalence of EER to the
existing method of common spatial patterns (CSP), and gives the com-
putational savings EER makes in comparison with CSP. Two paradigms
extending EER from binary classification to multi-class classification are
also provided.

Keywords: Brain computer interface (BCI), common spatial patterns
(CSP), EEG signal classification, feature extraction, optimal spatial
filter.

1 Introduction

The development of recently emerging brain computer interface (BCI) technol-
ogy has both theoretical and practical significance. Theoretically, a BCI provides
a platform through which the biological brain (e.g., human brain) and the com-
puter can communicate with each other in terms of information exchange. This
makes it possible not only to decode the nature of life and cognition of the
biological brain, but also to reconstruct the computer according to the informa-
tion processing mechanism of the biological brain, although the realization of
this process is definitely long-term and full of obstacles [1]. Practically, a BCI
can serve as a communication and control channel for motion-disabled people,
because it is a direct connection between the brain and external devices and
thus independent of peripheral nerves and muscles [2,3]. Other potential appli-
cations include alarming paroxysmal diseases for neuropaths (e.g., epilepsy), and
manipulating robot control in dangerous environments for healthy people.

Electroencephalogram (EEG) signal-based BCIs, our underlying concern in
this paper, adopt electroencephalography as the recording technique for brain
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activities. Feature extraction of EEG signals is one of the important compo-
nents for the operation of this kind of BCIs. Generally, the features used in
current BCIs can be divided into three categories: spatial, temporal, and spatio-
temporal. Most of these features represent some form of brain events that can be
physiologically distinguished [3]. In this paper, we attempt to extract one sort
of such features, namely energy features for the sake of subsequent EEG signal
classification in BCIs. The specific form of energy features can be power spec-
tral amplitudes, such as μ (8-13 Hz) and β (14-26 Hz) rhythm amplitudes, or
equivalently the variances of temporally and/or spatially filtered signals. Here
we propose a new criterion to spatially filter EEG signals for energy feature
extraction.

Spatially filtering methods intend to transform EEG signals by combining
recordings from different and often adjacent electrodes with examples such as
bipolar derivation, Laplacian derivation, common average reference and common
spatial patterns (CSP) [3]. The bipolar derivation calculates the first spatial
derivative and thus reflects the voltage difference in some chosen direction. The
Laplacian derivation derives the second spatial derivative and can be quantified
by manipulating the voltages of the current site and its surrounding sites [4]. As
the item itself tells, the method of common average reference converts voltages
employing the mean voltage of all the recording electrodes as a reference.

The spatially filtering method of CSP led to signals which discriminate opti-
mally between two classes of brain activities [5]. The point is to linearly project
EEG signals to the most discriminative directions found after the simultaneous
diagonalization of two covariance matrices respectively belonging to two differ-
ent categories. Later it was extended to the multi-class scenario [6]. As reported
in the literature, using the same classifiers the recognition rates obtained by the
CSP method are usually as good as, or higher than, those obtained previously
by other filtering methods [5]. Recently, to overcome the restriction of its linear-
ity and make it suitable for feature extraction of time-varying signals, Sun and
Zhang have proposed the nonlinear CSP and adaptive CSP methods [7,8].

The above mentioned spatial filters have been widely adopted in feature ex-
traction of EEG signals. However, from a general review, we find that they lack
an explicit discriminative objective function to help people understand the in-
tuitive signification and conceivable efficacy of the corresponding method. To
overcome this shortcoming, this paper devises a discriminative criterion for en-
ergy feature extraction of EEG signals. It also shows the computational savings
of the new approach compared to the popular CSP method, and proves the
theoretical equivalence relation between these two methods.

The remainder of this paper is organized as follows. In Section 2, the dis-
criminative extreme energy ratio (EER) criterion for energy feature extraction
in the case of two different classes is proposed, and the optimal solutions for
extracting one or multiple sources from each class are also provided. In Section
3, after briefly summarizing the computational details of the CSP method, we
show the theoretical equivalence of EER to CSP. Section 4 compares the com-
putational complexities of CSP and EER, and gives the computational savings
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EER generates. Section 5 proposes two possible paradigms for extending EER
to the multi-class case. Finally, concluding remarks are made in Section 6.

2 The EER Criterion for Energy Feature Extraction

It is acknowledged that observed EEG waves are smeared brain activities gen-
erated by some inherent signal sources underneath the surface of the brain cor-
tex [9,10]. We assume the process of spatial filtering to recover these latent
sources. The energy features to be pursued can consequently be taken as the
variances of these sources.

2.1 Feature Extraction of One Source

The proposed EER criterion is based on the EEG covariances of two different
classes of brain activity patterns denoted by class A and class B, e.g., two differ-
ent mental imagery tasks: imagination of repetitive left or right hand movements.
Given some EEG samples (an EEG sample can correspond to the EEG signal
of a trial or just a segment), each of which belongs to one of these two classes,
below we provide the computation of covariances CA and CB. The covariances
are applicable whether for feature extraction of one source or multiple sources.

Denote an EEG sample as an N ×T matrix Xraw, where N is the number of
recording electrodes and T is the number of total points in the recording period.
Consequently, the observation from a snapshot can be represented as a vector in
the N -dimensional Euclidean space, and an EEG sample is thus a distribution of
T such vectors. For EEG signal analysis, bandpass filters are usually employed
to remove the constant components. Therefore, we can take it for granted that
the mean value of each EEG sample is zero. In addition, to eliminate the energy
difference resulting from the varying recording time, a normalization is often
executed in advance of further processing. The normalized EEG sample X is
defined as

X � Xraw/‖Xraw‖F , (1)

where ‖Xraw‖F = (
∑N

i=1

∑T
j=1 |Xraw

ij |2)1/2 is the Frobenius norm [5,8].
Without loss of generality we can ignore the multiplicative factor 1

T in the fol-
lowing calculation of covariance, and thus write the estimation for the covariance
of one EEG sample as

C � XX� . (2)

Usually there are a number of samples which belong to the same class. Thus the
covariance of this specific class can be computed as the average of all these single
covariances. One merit of this averaging operation is that it could enhance the
accuracy and stability of the estimated covariance. In this way, the covariances
CA and CB respectively for class A and class B are obtained.

Assume only one latent signal source from each class is to be recovered. For
the EEG sample X , the spatially filtered signal with a spatial filter denoted by
φ(N×1) will be φ�X . The signal energy after filtering can be represented by the



922 S. Sun

sample variance as φ�XX�φ = φ�Cφ, where similarly to (2) the multiplicative
factor is also omitted.

Keeping in mind feature extraction for binary classification, we define the
discriminative criterion of EER as

R(φ) � φ�CAφ

φ�CBφ
, (3)

where R(φ) indicates the energy ratio after spatial filtering for two classes A and
B. To make it well defined, we regularize CA and CB as

CA = CA + σ2I, CB = CB + σ2I, (4)

where I is an identity matrix, σ2 is a positive number made small enough so that
the value of R(φ) is basically not affected. So far, matrices CA and CB are both
positive definite. For the purpose of succeeding classification, we can optimize
(3) to find the filter φ∗ which maximizes or minimizes the ratio. Therefore, about
the energy feature extraction of one latent source from each class, there are in
fact two optimal spatial filters φ∗max and φ∗min to be sought which satisfy⎧⎪⎨⎪⎩

φ∗max = arg max
φ

R(φ) = arg max
φ

φ�CAφ
φ�CBφ

,

φ∗min = arg min
φ
R(φ) = arg min

φ

φ�CAφ
φ�CBφ

.
(5)

The EER objective function R(φ) shown in (3) is a generalized Rayleigh quo-
tient whose maximum denoted by Rmax(φ) and minimum denoted by Rmin(φ)
have the following conclusions [11,12]{

Rmax(φ) = λmax, if CAφ = λmaxCBφ,
Rmin(φ) = λmin, if CAφ = λminCBφ,

(6)

where λmin = λ1 ≤ λ2 ≤ . . . ≤ λN−1 ≤ λN = λmax are the eigenvalues of matrix
C−1

B CA, that is, the generalized eigenvalues of the matrix pair (CA, CB).
Thus far, we have completed the process of deriving the two optimal spatial

filters φ∗max and φ∗min in (5), which are two eigenvectors respectively correspond-
ing to the maximal and minimal eigenvalues for the matrix pair (CA, CB). For
a new EEG sample, its energy feature will be a vector consisting of two entries
which are the energy values of the sample respectively filtered by φ∗max and φ∗min.

2.2 Feature Extraction of Multiple Sources

On energy feature extraction for classifying two classes of brain activities, as
shown above, a pair of spatial filters can be obtained by optimizing the EER
criterion if we assume one latent source from one class. Nevertheless, sometimes
one source is insufficient to describe the inherent brain activities. Therefore, the
demand of extracting multiple sources from one class is put forward.
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The key to extending the former EER criterion to suit the case of feature
extraction of multiple sources is in grasping the meanings of energy. When only
one source is defined, EER criterion searches for a direction so that the variance
of the EEG signal projected to this direction is maximized or minimized. For
1-dimensional signals, the variance actually reflects the energy value. For multi-
dimensional signals, the following lemma indicates that the determinant is closely
related to the concept of energy.

Lemma 1 ([13]). For any matrix U(n×n), denote its eigenvalues as {γi} (i =
1, ..., n). The determinant of U is equal to the product of its all eigenvalues, that is

|U | =
n∏

i=1

γi . (7)

Since eigenvalues of a covariance matrix can be explained as the variances on
principal directions of data distribution, the equality of (7) manifests that the
determinant of a covariance matrix represents the product of signal energy from
all the principal directions. As a result, the concept of determinant can be used
to extend the former EER criterion to feature extraction of multiple sources.

Suppose there are m sources to be extracted from one class of brain activity
pattern, then EER will seek totally 2m sources, half of which maximize the
objective function while the other half minimize the objective function. The
m spatial filters for extracting m sources constitute a spatial filter bank Φ �
[φ1, φ2, . . . , φm]. Now the discriminative criterion of EER can be rewritten as

R(Φ) � |Φ
�CAΦ|

|Φ�CBΦ| , (8)

where like R(φ) in (3), R(Φ) shows the energy ratio after spatial filtering for
two classes A and B, and CA and CB are also regularized in a similar way as
in (4). The optimization process is to find the filter bank Φ∗ which maximizes or
minimizes the ratio. On the analogy of (5), the two optimal spatial filter banks
Φ∗

max and Φ∗
min should satisfy⎧⎪⎪⎨⎪⎪⎩

Φ∗
max = arg max

Φ
R(Φ) = arg max

Φ

|Φ�CAΦ|
|Φ�CBΦ| ,

Φ∗
min = arg min

Φ
R(Φ) = arg min

Φ

|Φ�CAΦ|
|Φ�CBΦ| .

(9)

The process of raveling out the equalities in (9) is a bit tricky. Fukunaga
has already given the details for solving problems of this type [14]. That is,
Φ∗

max consists of m generalized eigenvectors of the matrix pair (CA, CB) which
correspond to the m maximal eigenvalues, while Φ∗

min consists of m generalized
eigenvectors whose eigenvalues are minimal. We can see that when m = 1,
(9) degenerates to (5) with the same solutions, and therefore (9) is actually
a superset of (5). For a new EEG sample, its energy feature will be a vector
consisting of 2m entries which are the energy values of the sample respectively
filtered by 2m spatial filters coming from two filter banks Φ∗

max and Φ∗
min.
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3 Theoretical Equivalence to CSP

3.1 The Computational Details of CSP

To facilitate further statements, we first briefly summarize the spatially filtering
method of CSP, mainly on its computational aspect. Readers can refer to [5] for
a comprehensive description. The summary here is only for facilitating the latter
comparison between EER and CSP.

The CSP method was first introduced in the field of EEG analysis in 1990 [15],
and recently Müller-Gerking et al. developed this method and used it for single-
trial EEG signal classification in movement tasks [5,16]. It decomposes the raw
multi-channel signals into new spatial signals based on a kind of transformation
that is obtained from the data of two populations of EEG signals in a manner
that maximizes their differences. The transformation actually provides a weight-
ing of the electrodes [5].

Computationally, the CSP method is implemented by the simultaneous diago-
nalization of two covariance matrices, and specifically whitening transformation
and projection transformation are included. With the conventions of CA and CB

discussed in Section 2.1, CSP defines a composite covariance matrix CCom as

CCom � CA + CB . (10)

Being the summation of two covariance matrices, CCom is positive semidefinite.
And it has the following eigenvalue decomposition

CCom = UCΣCU
�
C , (11)

where UC is the eigenvector matrix and ΣC is the diagonal matrix of eigenvalues.
The whitening transformation matrix for CCom can be defined as

W � Σ
− 1

2
C U�

C . (12)

In case of ΣC being singular, the above equation can be replaced by the subspace
whitening transformation. If CA and CB are transformed by W as

SA = WCAW
�, (13)

SB = WCBW
�, (14)

then SA and SB would share common eigenvectors, i.e., there exists an eigenvec-
tor matrix U and two diagonal eigenvalue matrices ΣA and ΣB, which satisfy

SA = UΣAU
�, (15)

SB = UΣBU
�, (16)

ΣA +ΣB = I , (17)

where the diagonal elements of ΣA are assumed to be sorted in descending order.
Since the sum of two corresponding eigenvalues in ΣA and ΣB is always equal

to one as shown in (17), the eigenvector with largest eigenvalue for SA has the
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smallest eigenvalue for SB and vice versa. Consequently, the projection of the
whitened EEG onto the first and last eigenvectors in U (i.e., projection transfor-
mation matrix) will give waveforms optimal for discriminating two populations
of EEG in the least squares sense [16]. To sum up, the total transformation
matrix of CSP is

PCSP = W�U , (18)

which will transform the EEG sample X to a new sample as

X ′ = P�
CSPX . (19)

Based on the new sample, energy features can be extracted which are the vari-
ances of some of its row vectors.

3.2 Theoretical Equivalence

Lemma 2 ([14]). We can diagonalize two symmetric matrices Q and Q1 as

ΦTQΦ = I and ΦTQ1Φ = Λ, (20)

where Λ and Φ are respectively the generalized eigenvalue and eigenvector ma-
trices of the matrix pair (Q1, Q), i.e.,

Q−1Q1Φ = ΦΛ. (21)

According to Lemma 2, we see that to implement the simultaneous diagonaliza-
tion of two symmetric matrices Q and Q1, as in (20), we only need to decom-
pose Q−1Q1 as in (21), and then normalize the eigenvector matrix Φ to meet
ΦTQΦ = I.

In fact, the spatial filter of CSP is an instantiation of Lemma 2 if we take

Q = CCom, Q1 = CA, Φ = W�U, Λ = ΣA. (22)

Therefore, the final transformation directions found by CSP are identical to the
directions of the eigenvector matrix of C−1

ComCA.
Based on the discussions Fukunaga gave on linear discriminative analysis [14],

we present the following theorem.

Theorem 1. For two symmetric matrices Q1 and Q2, if defining Q = Q1 +Q2

then Q−1Q1 and Q−1
2 Q1 have the same eigenvectors.

Proof. From Lemma 2, we can have Q−1Q1Φ = ΦΛ. That is

Q1Φ = (Q1 + Q2)ΦΛ

and thus
Q1Φ(I − Λ) = Q2ΦΛ.

The last equality can be converted to

Q−1
2 Q1Φ = ΦΛ(I − Λ)−1,

which means that Φ is the eigenvector matrix of Q−1
2 Q1 and Λ(I − Λ)−1 is

the corresponding eigenvalue matrix. Considering Lemma 2, Q−1Q1 and Q−1
2 Q1

have the same eigenvector matrix Φ.
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Naturally, we can let Q2 be the covariance of the second class of EEG pattern,
i.e., CB . Thus, matrices C−1

B CA and C−1
ComCA have identical eigenvectors which

are respectively the results derived by EER and CSP. The theoretical equivalence
of EER and CSP is therefore proved.

4 Computational Savings

EER is a discriminative objective function which helps to show the explicit
nature of energy feature extraction. Although theoretically the EER criterion
is equivalent to CSP, these two methods for learning spatial filters may have
different computational burdens. In this section we derive the computational
complexity of EER and give a comparison with that of CSP.

CSP mainly involves two kind of operations: whitening transformation and
projection transformation. In order to get the total transformation matrix PCSP ,
given the class covariances CA and CB, the least amount of computation required
is: 1 (matrix addition (10)) + 1 (eigenvalue decomposition (11)) + 1 (matrix in-
version (12)) + 1 (matrix multiplication (12)) + 2 (matrix multiplication (13)) +
1 (eigenvalue decomposition (15)) + 1 (matrix multiplication (18)) = 1 (matrix
addition) + 4 (matrix multiplication) + 1 (matrix inversion) + 2 (eigenvalue
decomposition). The numbers in brackets indicate the equations where the cor-
responding operations appear.

Given a matrix U(n×n), we know the fact that the computational complexity
for matrix addition is O(n2), while the computational complexities for matrix
multiplication, matrix inversion, and eigenvalue decomposition are all O(n3).
Therefore, the computational complexity of CSP can be represented as O(n3).

To obtain the final filtering matrix or transformation matrix, EER only needs
one kind of operation: the generalized eigenvalue decomposition for (CA, CB)
after the regularization as in (4). In order to compare the computational burden
with CSP, suppose we use the eigenvalue decomposition for C−1

B CA to calcu-
late the generalized eigenvalue decomposition, though this is of course not an
efficient way. Given the preregularized class covariances CA and CB , the com-
putation required is: 2 (matrix addition) + 1 (matrix inversion) + 1 (matrix
multiplication) + 1 (eigenvalue decomposition). At the moment, we can see that
the computational complexity of EER can also be represented as O(n3).

Let us carry out a more fine comparison. Compared to the computational
burden of CSP, EER brings forth several savings: 3 (matrix multiplication) + 1
(eigenvalue decomposition), and one more matrix addition. Remember that the
computational complexity of matrix addition is O(n2), therefore it is computa-
tionally neglectable to other matrix operations. Thus we can draw the conclusion
that EER has lower computational cost than CSP does. The low computational
cost can make the derivation of optimal spatial filters in EER more economical
and feasible than in CSP, and facilitates the utilization of the EER criterion for
EEG signal feature extraction. For those applications requiring fast responses,
e.g., on-line analysis, low computational cost would be more desirable.
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5 EER for Multi-class EEG Signal Classification

Although the EER criterion is initially presented for feature extraction in binary
EEG signal classification, it can, like the CSP method, be easily extended to the
case of feature extraction in multi-class EEG signal classification. Using the idea
of extending the CSP method to the multi-class case for reference [5,6], we give
two possible paradigms of extending the EER criterion. For each paradigm, the
number of total spatial filters to be learned, which is equal to the number of
features for describing an EEG sample, is also listed.

One class versus another class. The multi-class problem, e.g., L classes, can
be divided into C2

L groups where each group corresponds to a binary classifi-
cation problem. For each binary classification problem, the EER criterion can
apply naturally and get 2m spatial filters to recover m sources from each class.
Therefore, totally 2m×C2

L spatial filters are obtained for extracting features of
a new EEG sample. The resultant feature vector for each EEG sample would
have 2m× C2

L entries.

One class versus the remaining classes. This paradigm divides the L classes
into two parts, with one part containing only one class and the other part con-
taining the remaining L−1 classes. L such pairs would be generated where each
pair is treated as a binary classification problem. The EER criterion can apply
and get 2m spatial filters for each pair. As a result, totally 2m×L spatial filters
are obtained for feature extraction of a new EEG sample. The feature vector for
each EEG sample would have 2m× L entries.

6 Conclusion

In this paper, a discriminative and intuitive criterion EER for learning opti-
mal spatial filters with the intent of energy feature extraction for subsequent
EEG signal classification is proposed. In binary classification, we give the opti-
mal spatial filters derived from the criterion, whether for extracting one source
or multiple source from one class. Besides proving the theoretical equivalence to
the CSP method, we also show its computational superiority. The computational
savings are very important for the application of BCIs, especially for those sce-
narios requiring fast responses, such as on-line analysis. Further to extend the
feature extractor to cope with the case of multi-class classification, we also give
two possible paradigms based on the existing extensions for CSP.

Since the effectiveness of CSP has already be confirmed, e.g., empirical eval-
uations in the literature [5,6,16], and EER is equivalent to CSP in principle, it
is redundant for the current paper to further conduct experiments to validate
the effectiveness of EER. Hence, this paper is mainly about the theoretical as-
pects of the related methods. Future research can consider generalizing the EER
criterion to cope with the case of nonlinear feature extraction by means of the
kernel trick [17], and comparing the performance of different kernel functions.



928 S. Sun

Acknowledgments. This work was supported in part by the National Natural
Science Foundation of China under Project 60703005, and in part by Shanghai
Educational Development Foundation under Project 2007CG30.

References

1. Sun, S.: Research on EEG Signal Classification for Brain-Computer Interfaces
Based on Machine Learning Methodologies. Ph.D. Thesis, Tsinghua University,
Beijing (2006)

2. Nicolelis, M.A.L.: Actions from thoughts. Nature 409, 403–407 (2001)
3. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.:

Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113,
767–791 (2002)

4. Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Sil-
berstein, R.B., Cadusch, P.J.: EEG coherency I: Statistics, reference electrode, vol-
ume conduction, laplacians, cortical imaging, and interpretation at multiple scale.
Electroenceph. Clin. Neurophysiol. 103, 499–515 (1997)

5. Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial fil-
ters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110,
787–798 (1999)

6. Dornhege, G., Blankertz, B., Curio, G., Müller, K.R.: Boosing bit rates in nonin-
vasive EEG single-trial classifications by feature combination and multiclass par-
digms. IEEE Trans. Biomed. Eng. 51, 993–1002 (2004)

7. Sun, S., Zhang, C.: Adaptive feature extraction for EEG signal classification. Med.
Biol. Eng. Comput. 44, 931–935 (2006)

8. Sun, S., Zhang, C.: An optimal kernel feature extractor and its application to EEG
signal classification. Neurocomputing 69, 1743–1748 (2006)

9. Curran, E.A., Stokes, M.J.: Learning to control brain activity: A review of the
production and control of EEG components for driving brain-computer interface
(BCI) systems. Brain Cogn. 51, 326–336 (2003)

10. Kamousi, B., Liu, Z., He, B.: Classification of motor imagery tasks for brain-
computer interface applications by means of two equivalent dipoles analysis. IEEE
Trans. Neural Syst. Rehabil. Eng. 13, 166–171 (2005)

11. Golub, G.H., Van Loan, C.F.: Matrix Computation, 2nd edn. The John Hopkins
University Press, Baltimore (1989)

12. Zhang, X.: Matrix Analysis and Applications. Tsinghua University Press, Beijing
(2004)

13. Searle, S.R.: Matrix Algebra Useful for Statistics. John Wiley & Sons, New York
(1982)

14. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic
Press, San Diego (1990)

15. Koles, Z.J., Lazar, M.S., Zhou, S.Z.: Spatial patterns underlying population differ-
ences in the background EEG. Brain Topogr. 2, 275–284 (1990)

16. Ramoser, H., Müller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of
single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8,
441–446 (2000)
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Abstract. A unifying picture to the hermeneutical approach to schizophrenia is
given by combining the philosophical and the experimental/computational
approaches.

1 Introduction

Hermeneutics is a branch of continental philosophy which treats the understanding and
interpretation of texts. For an introduction for non-philosophers please see [1]. One of the
most important concepts in hermeneutics is the hermeneutic circle. This notion means
that the definition or understanding of something employs attributes which already pre-
suppose a definition or understanding of that thing. The method is in strong opposition
to the classical methods of science, which do not allow such circular explanations.

Motivated by Ichiro Tsuda [2,3] who applied the principles of hermeneutics to the
brain by using chaos as a mechanism of interpretation, one of us (PE) played with
the idea [4] of how, if at all, two extreme approaches, the “device approach" and the
“philosophical approach" could be reconciled. It was cautiously suggested by turning
to the philosophical tradition that hermeneutics, i.e., the “art of interpretation", which
is neither monist nor dualist a priori, can be applied to the brain. Further, we stated that
the brain is both the “object" of interpretation as well as the interpreter: therefore the
brain is itself a hermeneutic device. For our dialog with Tsuda see [5].

Recently new initiatives for applying hermeneutics in the context of neuroscience
and cognitive science have emerged. Chris Firth [6] uses neural hermeneutics as the
neural basis of social interaction, and explains psychiatric disorders, such as schizophre-
nia, as failure in the ability to interpret (represent and model) the world. Shaun
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Gallagher‘s analysis points out that hermeneutics and cognitive science have an over-
lapping interest [7].

Independently from our interest in hermeneutics we have started to work on com-
bined behavioral, brain imaging and computational approaches to associative learning
in healthy and schizophrenia patients to explain their normal and reduced performance.
The working hypothesis we adopt is that schizophrenia is a ”disconnection syndrome",
as was suggested among others by Friston and Frith [8] and our aim is to qualitatively
and quantitatively understand the functional bases of these disconnections.

Rethinking these studies from the perspective of the hermeneutic approach together
with the preliminary results of our combined experimental and computational studies
[9,10] leads us to believe that the hermeneutic circle necessary to associative learning
is broken for schizophrenic patients, and that therapeutic strategies should act to repair
this circle.

In this paper we provide a unifying picture by combining the philosophical and
the experimental/computational approaches. First, we briefly review both our own old
perspective and newer developments on neural hermeneutics (Sec. 2, Sec. 3). Then
we provide a sketch of the associative learning paradigm (Sec. 4), specific neural im-
plementations (Sec. 5), and the results of simple and a more complex computational
models (Sec. 6). Simulation results suggest that reduced performance of schizophrenia
patients may be due to reduced cognitive capacity and learning rate related to impair-
ment of functional connectivities between brain regions.

2 The Brain as a Hermeneutic Device

The brain can be considered as different types of device. Among these: the brain can be
seen as a thermodynamic device, a control device, a computational device, an informa-
tion storing, processing and creating device, or a self-organizing device.

The device approach is strongly related to the dynamic metaphor of the brain [11]. Dy-
namic systems theory offers a conceptual and mathematical framework to analyze spa-
tiotemporal neural phenomena occurring at different levels of organization. These include
oscillatory and chaotic activity both in single neurons and in (often synchronized) neural
networks, the self-organizing development and plasticity of ordered neural structures,
and learning and memory phenomena associated with synaptic modification. Systems ex-
hibiting high structural and dynamic complexity may be candidates of being thought of as
hermeneutic devices. The human brain, which is structurally and dynamically complex
thus qualifies as a hermeneutic device. One of the characteristic features of a hermeneu-
tic device is that its operation is determined by circular causality. Circular causality was
analyzed to establish self-organized neural patterns related to intentional behavior [12].

The world of systems determined by linear (and only linear) causal relationships
belongs to the class of “simple systems" or mechanisms. The alternative is not a “sub-
jective" world, immune to science, but a world of complex systems, i.e., one which
contains closed causal loops.

Systems with feedback connections and connected loops can be understood based on
the concepts of circular and network causality. Leaving aside the clear and well-organized
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world of linear causal domains characterizing ”simple systems” we find ourselves in the
jungle of the complex systems [13].

As we know from engineering control theory, large systems consist of both controller
and controlled units. The controller discharges control signals towards the controlled
system. The output of the controlled system is often sent back to the controller ("feed-
back control") forming a closed loop. Negative feedback control mechanisms serve to
reduce the difference between the actual and the desired behavior of the system. In
many cases, specific neural circuits implement feedback control loops which regulate
specific functions.

Analyzing the question of whether the technical or ”device approach” to the brain
and the ”philosophical approach” can be reconciled, it was concluded that the brain is a
physical structure which is controlled and also controls, learns and teaches, process and
creates information, recognizes and generates patterns, organizes its environment and
is organized by it. It is an “object" of interpretation, but also it is itself an interpreter.
The brain not only perceives but also creates new reality: it as a hermeneutic device [4].

3 Hermeneutics, Cognitive Science, Schizophrenia

Frith’s research group is working on establishing a scientific discipline they call neural
hermeneutics dealing with the neural basis of social interaction. The key elements of
their approach is the assumption that there representations of the external world can be
shared with others, and this share representation may be the basis of predicting oth-
ers actions during interactions. They use combined behavioral and brain imaging stud-
ies to uncover both the normal neural mechanisms, and pathological ones leading to
schizophrenia.

Gallagher’s analysis implies: (i) Hermeneutics and cognitive science is in agreement
on a number of things. An example is the way we know objects. The interpretation
of objects needs “schema theory" (a modern version is given by Michael Arbib [14]);
(ii) Hermeneutics can contribute to cognitive science. The basis of the argument is that
understanding situations needs hermeneutic interpretation. The usual critique is that
logic, rule-based algorithms, and other similar computational methods are too rigid to
interpret ill-defined situations, but hermeneutics “the art of interpretation” can do it.
(“Mental models”, which also helps to analyze situations also should have mentioned.
Mental models have played a fundamental role in thinking and reasoning, and were
proposed in a revolutionary suggestion by Kenneth Craik (1914 - 1945) [15]. The idea
that people rely on mental models can be traced back to Craik’s suggestion that the
mind constructs ”small-scale models” of reality that it uses to predict events.) (iii) Cog-
nitive science also has something to offer to hermeneutics, particularly to understand
other minds. The most popular notion today is the theory of mind or more precisely
“theory of other’s minds”. The most effective method of cognitive science to under-
stand other minds, i.e. to show empathy is to simulate other minds by using analogical
thinking [16]. The neural basis of theory of mind now seems to be related to mirror
neurons, which is the key structure of imitation, and possibly language evolution [17].
A failure of attributing self-generated action generated by the patient himself (what we
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may label as the lack of ability to close the hermeneutic circle) can be characteristic for
schizophrenic patients [18].

4 Associative Learning

Our own studies investigate the associative learning performance of healthy control
and schizophrenic patients. The learning procedure does not happen during ”one shot”,
but over a series of encoding/consolidation and retrieval epochs: learning has an it-
erative characteristic. Associative learning relies on the consolidation and retrieval of
associations between diverse memoranda, sensory inputs and streams of neural activ-
ity, particularly by hippocampal and medial temporal lobe neurons. During the task
subjects alternate between blocks of consolidation, rest/rehearsal and retrieval. Dur-
ing consolidation, nine equi-similiar objects with monosyllabic object names are pre-
sented in sequential random order (3s/object) in grid locations for naming (e.g. “bed”
and “book”). Following a brief rest/rehearsal interval, memory for object-location as-
sociations is tested by cuing grid locations for retrieving objects associated with them
(3s/cue). Object names are monosyllabic to minimize head motion. Eight blocks (each
cycling between consolidation, rest and retrieval) are employed. Learning dynamics in
controls and schizophrenia patients are shown on Figure 1.

Fig. 1. Left: Learning dynamics in controls and schizophrenia patients over time are plotted. The
data provide evidence of generally asymptotic learning in both groups, with reduced learning rates
in patients compared to controls. Right: Hypothetical scheme showing the cortical regulation of
the activity of the monoaminergic brainstem neurons by means of a direct glutamatergic pathway
(“accelerator”) and an indirect glutamatergic/gabaergic pathway (“brake”). Based on Fig. 1 of
[21]. The impairment of the balance between “brake” and “accelerator” may explain both increase
and decrease of dopamine level.

5 Specific Implementation of Neural Circular Causality

There are several neural implementations of circular causality for our system under
studies. Three levels of connections - an anatomical, a functional and a neurochemical
- will be mentioned.
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5.1 Cortico-Hippocampal Loop

It is generally agreed that the hippocampal formation has a crucial role in learning and
memory processes. The hippocampus is reciprocally connected to many neural centers
and is thought to prepare information for long term storage. The cortico-hippocampal-
cortex loop might be considered as the structural basis of a circular causal chain, where
information can be stored, circulated, recalled and even created. Such kinds of loops
have control functions.

5.2 The Functional Macro-network for Associative Memory

Based on the available data on the activity of five interconnected regions (superior pari-
etal cortex, inferio-temporal cortex, prefrontal cortex, primary visual cortex and the hip-
pocampus) are supposed to form the functional macro-network (Fig. 2). In accordance
with the spirit of the “disconnection syndrome” a question to be answered is which
connections are impaired during schizophrenia, and what is the measure of functional
reduction of the information flow?

Fig. 2. Left: Information flow during object-location associative memory (based on [19].). The
cortical pathway is overlaid on a medial slice depicting brain activity (p<.001) during memory
consolidation during object-location associative learning (see Preliminary data for further de-
tails). Regions labeled are: V1: Primary Visual Cortex; IT: Inferior Temporal Cortex; SP: Superior
Parietal Cortex; Hipp: Hippocampus; PFC: Dorso-lateral prefrontal cortex. Right: An enlarged
view of the brain areas involved.

5.3 The Glutamate – Dopamine Interplay

There is another type of loop (characterizing the neurochemical machinery), failures of
which may be related to schizophrenia. The dopamine hypothesis, which has been the
predominant hypothesis, postulates that symptoms of schizophrenia may result from
failure of the dopaminergic control system. Both increases (mostly in striatum), and
decreases (mostly in prefrontal regions) in dopaminergic levels have been found.
Glutamatergic mechanisms also seem to have a major role. Drugs by blocking neu-
rotransmission at NMDA-type glutamate receptors cause symptoms similar to those
of schizophrenia. The understanding of dopamine-glutamate interaction may lead to
new therapeutic strategies [20]. A simple control loop for glutamatergic regulation of
dopamine release [21] is illustrated on Fig. 1.
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6 Computational Modeling

6.1 A Simple Learning Model

Our initial modeling efforts were directed toward a simple model to simulate behav-
ioral performance on the associative learning task, with model output as learning curves
depicting performance over each iteration of recall [9].The model incorporates the sep-
aration between encoding/consolidation and cued recall while also retaining biologi-
cally plausible relationships between model architecture and neural systems, as well
as known learning parameters in the brain. In particular, the model accounts for (i)
the separation between ”where” and ”what” regions (ii) reduced synaptic plasticity in
schizophrenia and reduced cognitive capacity in schizophrenia.

Separate neural systems are represented by two separate nine (nine objects and nine
locations) dimensional binary vector inputs supplied to the model representing the ob-
ject shown to the subject and the location of the object named aL and aO respectively.
Nine unique object-location vector pairs for each trial represent the nine unique object-
location relationships in the task. Background neural activity is simulated by the addi-
tion of a normally distributed noise term (mean= .5) to each element. Each vector pair
is dyadically multiplied to form a single object-location association matrix A, which
has elements that fall into three categories. The element that results from multiplying
the active signal of aL and aO contains the strongest association. Every other element
in the row and column that it occupies is the product of active signal and a noise term.
The remaining elements are the product of only noise terms and contain no meaningful
signal.

The learning rule adopted was motivated by the Rescorla-Wagner rule [22]. Each A
is added to form W (t) with nine elements that hold correct multiplicative associations
with noise, and 72 elements that hold incorrect additive associations.W (t) is multiplied
by a learning rate r(t) modulating the strength of associations on a trial-wise basis to
form W (t + 1) as in 1. Synaptic plasticity can be represented by the rate parameter
rmax, modulating the learning rate r(t):

r(t) = rmax(Smax − S(t− 1)) (1)

Cognitive capacity is indexed by Smax and S(t − 1) is performance on the previous
iteration of the task. During encoding, the learning rate r(t) functions as a supervisory
parameter by modulating the strength of the encoding matrix W at any instant during
learning, depending on its own parameterization. Crucially, at any given time ”t” during
learning the association matrix W (t) represents the strengths between associations to
be learned during the task. During recall, the model is given a noiseless input aL which
represents the location cue. aL is multiplied with the encoding matrixW (t+1) to select
the column of W (t) that contains the information of which object is associated with the
chosen aL. This recalled column is a vector y:

y = aLW (t) (2)
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Each element in y is tested by a threshold function (τ to determine if it is an active
recall or a noise induced value:

τ := 1/81
9∑

i=1

9∑
j=1

Wij(t + 1) + π[maxW (t + 1))], (3)

where i is a column, and j is a row of W (t) and π is a chosen multiplier between 0
and 1. The threshold is determined by averaging the elements of W (t) and adding the
largest element in W (t + 1) multiplied by π. This premium controls the sensitivity of
the model to noise. As seen in Figure 3, model performance for ”controls” (Smax = 1
and rmax = 0.4) and ”patient” behavior (Smax = 0.7 and rmax = 0.2) provide
reasonable simulations of control and patient data (see Figure 1).

Fig. 3. (a) Maximum, minimum, and average values for healthy control patients. Produced with
parameter values Smax = 1 and rmax = 0.4. Maximum and minimum curves are the basis for
finding the parameter ranges. (b) Maximum, minimum, and average values for “schizophrenia”
patients. Produced with parameter values Smax = 0.7 and rmax = 0.2.

These results indicate how limitations/changes in synaptic plasticity and memory
capacity can predict control or schizophrenia-like behavior during learning and memory
dynamics.

6.2 Models of Interconnected Brain Regions

We also developed a neural model incorporating the brain regions involved in paired-
associate learning in order to analyze the mechanism underlying behavioural differ-
ences between schizophrenic and control subjects. The model has two parts: A simple
visual system, and a more detailed model of the hippocampal formation.

We did not intend to model the visual signal processing system in its details, be-
cause these mainly sensory areas are presumably not affected by the illness. However,
we implemented a feed-forward network to analyse the retinal image, and to create the
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representation of the object (the model of the area IT in the ventral stream), and its
location (as the area SP in the dorsal stream). The proposed role of the hippocampus
is to bind these two representation together [23] so that when cued by the location,
the correct object can be recalled. The highly processed sensory input enters the hip-
pocampus through the mossy fiber pathway, originating in the entorhinal cortex (which
is not explicitly modeled here). The EC itself has reciprocal connections with both the
hippocampus and various neocortical, including visual areas and considered as a re-
lay for information coming from multimodal association areas. Mossy fibers terminate
on the dentate granule cells and hippocampal pyramidal neurons. Two regions of the
hippocampal formation were modeled: the dentate gyrus and the CA3 region. We used
firing rate models, where the activation of each unit was calculated by the linear sum of
its input. Synaptic connections in the IT, DG and CA3 was modified by simple Hebbian
plasticity [24]. Parameters rDG, rCA3 and rIT govern the amount of learning during
a single epizode in the corresponding areas. We used large number of neurons in the
simulations (typically 500 in one layer) in order to be able to implement distributed
encoding in a realistic range of sparsity (0.1 in the hippocampus). Our hippocampal
model was built according to the following key assumptions [25]:

– The DG performs pattern separation by competitive learning: it removes redundan-
cies from the input and produce a sparse representation for learning in the CA3
region. This process can be considered as a translation from the neocortical to the
hippocampal language.

– The granule cells in the DG innervates CA3 pyramidal cells with particularly large
and efficient synapses (the mossy fiber pathway) that makes postsynaptic neurons
fire. Hebbian plasticity between active CA3 neurons and the perforant path axons
associates the activity pattern in the CA3 to its incoming input (hetero-associative
plasticity). After the encoding, the same CA3 assembly can be activated by the
presentation of the partial or noisy version of the original input (e.g., only the object
or the location).

– Next, connections between CA3 cells and IT cells are modified, to translate back
the hippocampal to the neocortical code.

– Finally, objects are stored in a long term memory system in the inferio-temporal
cortex forming an attractor network. During recall, the activity of this subsystem
converges to one of the previously stored items (objects). The parameter npatterns

is the number of objects stored in the IT.

The performance of the hippocampal model on the associative learning task is shown
on Figure 4. We note, that this is not the ideal performance of the model: The capacity
of the system with 500 units and 0.1 sparsity is around a few hundreds of associations.
However, with random initial synaptic weights and small learning rate, it requires some
repetitions to learn new associations appropriately. The other bottle-neck of the sys-
tem’s learning ability is the attractor network in the IT. If the attraction basin is smaller,
than the recall cue should be more precise. If more objects are stored, the basin of at-
traction becomes shallower. Our results with the hippocampal model indicate, that the
poorer performance of schizophrenic patients on the associative memory task is mainly
due to the shallower attractor basin and not necessary to a lower learning rate in the
hippocampus.
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Fig. 4. Upper row: Comparison of the performance of the model with the experimental data. Red
and green circles: the same experimental data as on Fig. 1. Black: performance of the model. Error
bars show the standard deviation. Learning rate and the number of pre-learned objects are higher
in schizophrenic subjects. Lower row: Illustration shows that learning more objects swallows the
basin of attraction of each individual items, and results in the recall of not learned items.

7 Concluding Remarks

There are converging intellectual efforts, accumulating data, models and arguments,
which connects neural hermeneutics to potential explanation of schizophrenia. Em-
bedded neural control loops implement hermeneutic circles, and breaking of the circle
implies schizophrenic symptoms. Combined pharmacological psychotherapeutic strate-
gies should act to repair the circle.
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Abstract. Mirror neurons in monkey premotor cortex of are active
during the motor planning and the visual observation of actions. These
neurons have recently received a vast amount of interest in cognitive
neuroscience and have been discussed as potential basis of imitation
learning and the understanding of actions. We present a model that ex-
plains visual properties of mirror neurons without a reconstruction of the
three-dimensional structure of action and object. The proposed model is
based on a small number of physiologically well-established principles.
In addition, it postulates novel neural mechanisms for the integration of
information about object and effector movement, which can be tested in
electrophysiological experiments.

1 Introduction

Mirror neurons have been found in the premotor and the parietal cortex of
monkeys. These neurons respond when the animal prepares motor actions, but
also when it perceives motor actions executed by other monkeys or humans [1].
Mirror neurons have received a vast amount of interest in cognitive neuroscience,
and have been discussed as physiological substrate for the imitation learning of
actions and action understanding [2,3]. Beyond the fact that they are active
during motor planning, mirror neurons have a number of very interesting visual
tuning properties. They are selective for subtle differences between actions, like
power vs. precision grip. At the same time, they are highly invariant against the
position of the action in the visual field, and partially also against the view of
the action. However, their response is critically dependent on the correct spatial
arrangement of the effector and the goal object, and they are activated often
only by functionally effective actions. In addition, mirror neurons typically fail
to respond to mimicked actions without goal object [4,5].

The aims of this paper are twofold: First, we try to develop a model for the
visual tuning properties of mirror neurons that is physiologically plausible and
which, at a later stage, can be compared to electrophysiological data. For this
purpose, we require the model to work real video sequences making it possible
to compare model behavior and physiological recordings for the same stimuli.
Contrasting with many existing models, we focus on the visual processing and
model in detail the pathway from primary visual cortex up to the level of mirror
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neurons. Second, we try to devise a model that explains visual tuning properties
of mirror neurons based on an integration of information that can be extracted
from two-dimensional views of objects [6,7,8] without the need for 3D recon-
structions of effector and object geometry.

Most existing approaches have focused on motor properties of mirror neurons
and possible interactions with visual processing (e.g. [9,10,11,12]). Many existing
models make simplifiying assumptions about the visual processing up to the pari-
etal areas and STS, assuming for example the existence of a three-dimensional
representation of effector and object structure (e.g. [13,14,15,16,17]). Other ex-
isting models exclude explicitly a detailed modeling of the visual processing
(e.g. [18,19]). While only very few models work on real images at all [20,14,16],
none of them exploits physiologically plausible circuits for modeling of the visual
pathway. However, such physiological plausibility is a core requirement for the
comparison with single cell data on visual tuning properties.

In the following, we first present the model and its components (Section 2). We
then show some example simulations that reproduce typical properties of mirror
neurons (Section 3). Finally, we discuss implications and further extensions of
this work (Section 4).

2 Architecture for Recognizing Goal-Directed Movements

The developed model combines various principles that have been successfully
applied before for the modeling of object recognition [21,22,23,24], movement
recognition [25], and in the context of coordinate transformations [26].

The architecture consists of three main components: (1) A hierarchical neural
model for the recognition of goal objects and effector (hand) shapes from video
frames, where the central levels are optimized by feature learning, (2) a simple
recurrent neural circuit for the realization of temporal sequence selectivity of
effector movements, and (3) a physiologically plausible mechanism that combines
the spatial information about the goal object and the posture, position and
orientation of the effector. The highest level of this mechanism is formed by
the model ’mirror neurons’. An overview of the model architecture is shown in
Figure 1.

2.1 Neural Hierarchy for Recognizing Objects and Effector Shapes

The first component of our model is a hierarchical neural model for the recogni-
tion of the shapes of the goal object and the effector (hand). Each video frame
is analyzed by a hierarchy of neural feature detectors with increasing complex-
ity as well as increased receptive-field size and invariance to position along the
hierarchy. Very similar models have been proposed to account for a variety of
experimental results in object recognition [24,22] and motion recognition [25].
The individual steps are further lined out below and we refer to [24] for further
details.
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Fig. 1. Overview of the model

Local orientation filters (areas V1/V2). We extract local orientations by
applying Gabor filters with four orientations and five different scales (receptive
fields sizes ranging from 11x11 to 31x31 pixels). The corresponding filter para-
meters were taken from [24]. Signifying by Gk(u, v) a normalized Gabor filter
with zero mean, the response xk of a Gabor filter Gk to a patch of pixels P (u, v)
from the input image is given by:

xk =
∣∣∣∣ < P,Gk >

β +
√
< P,P >

∣∣∣∣ (1)

In this expression the scalar product is defined as < f, g >=
∑

u,v f(u, v)g∗(u, v),
and the positive constant β avoids division by zero.

On the second level of the hierarchy we modeled ’complex cells’ with partial
position invariance by pooling of the normalized responses of filters for the same
orientation and scale, within a spatial neighborhood of 3 x 3 filters were pooled
using a maximum operation [22].

Detectors for intermediate form features (area V4/IT). The outputs
from the previous layer, pooled over all scales, were used to construct detectors
for more complex intermediate level features. These detectors were modeled by
radial basis functions of the form ym = exp(‖Y − Um‖2F )/(2σ2), where the ma-
trix Y signifies the responses of the detectors on the previous layer within a local
patch (σ = 1). The RBF centers Um are defined by a template patterns that
are established by learning (see below). As on the previous layer, the responses
within a spatial neighborhood of 3 x 3 filters are pooled using maximum compu-
tation. This defines a hierarchy layer with model neurons that detect optimized
mid-level features.

Detectors for complete object forms and hand shapes (area IT/STS).
The next hierarchy layer is formed by feature detectors whose receptive field sizes
encompass whole objects and effector configurations. These feature detectors are
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implemented in exactly the same way as the layers before. They respond selec-
tively to views of objects and hands, being sensitive to configuration, orientation
and size.

Again detectors with the same selectivity were realized for different spatial
positions and their responses were pooled with a maximum operation within a
spatial neighborhood to achieve position invariance. However, contrasting with
many object recognition models, the neurons on the highest hierarchy level of
our recognition hierarchy have still a coarse tuning for the positions of the object
and the effector. This is necessary for extracting the relative positions of effector
and object and is consistent with neurophysiological data [27,6].

Learning of mid-level features. The goal of the learning stage is to extract
a set of templates Um that respond selectively to the goal-object and effector
shapes during the grasping movement. As training data set, we used images
that contain only the relevant object or effector view. To balance for the dif-
ferent rates of change of the effector shape along the grasping movement, we
clustered the different hand shapes using a k-means algorithm in order to obtain
10 representative hand shapes per grip type. These shapes are defined by the
training images that are closest to the cluster centers. In addition, the images
belonging to the goal object form a separate class. Novel intermediate features
were generated with the following algorithm:

1. Extract a number of templates from a fixed regular 8 x 8 position grid from
each of the stored frames.

2. Merge features belonging to the same class whose similarity is above a given
threshold.

3. Retain a fixed number of features per class whose average similarity with
the features of then other classes is below a certain threshold.

This algorithm implements a form of competitive feature learning, which prefers
strongly activated features that are representative for the frame clusters, and
which at the same time are discriminative between different shapes over time.
The same effect might be achieved by appropriate competitive learning rules.

2.2 Temporal Sequence Selectivity (Area STS)

We assume that the outputs of the neural detectors for individual effector shapes
of a specific grip type l, signified by zl

k(t), provide input to snapshot neurons
that encode the temporal order of individual effector shapes [25]. Selectivity
for temporal order is achieved by introducing asymmetric lateral connections
between these neurons. The dynamics of the resulting network is given by the
equation

τr ṙ
l
k(t) = −rl

k(t) +

(∑
m

w(k −m) [rl
m(t)]+

)
+ zl

k(t)− hr

where hr is a parameter that determines the resting level, and where the para-
meter τr determines the time constant of the dynamics. The function w is an
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asymmetric interaction kernel that, in principle, can be learned efficiently by
time-dependent Hebbian learning [28].

The responses of all snapshot neurons that encode the same action pattern are
integrated by motion pattern neurons, which smooth the activity over time. Their
response depends on the maximum of the activities rl

k(t) of the corresponding
snapshot neurons:

τsṡ
l(t) = −sl(t) + max

k
[rl

k(t)]+ − hs (2)

The motion pattern neurons are active for individual grip types, independent
of the presence of a goal object. Such neurons have been found in the superior
temporal sulcus of monkey [29].

2.3 Mirror Neurons: Integration of Information from Object and
Effector (Areas AIP, PF, F5)

The highest levels of the model integrate the different types of information about
object and effector: (1) Types of effector movements, as signalled by the motion
pattern neurons, and (2) spatial relationship and movement between the effector
and the goal object. The necessary information about the positions of object
and effector are extracted from the highest level of the form-hierarchy, which is
not comletely position-invariant. The recognized effector view predicts a range
of object positions that are suitable for effective grips. This permits to derive
whether the effector action likely will be successful or not, dependent on object
position.

We postulate a simple physiological mechanism for the integration of these dif-
ferent pieces of information that is centrally based on a relative position map that
is constructed by pooling of the outputs from the neurons encoding effector and
object views. More precisely, by pooling the activity of all object view neurons that
represent objects close to the position (u, v) in the retinal frame of reference, one
can derive a field of population activity aO(u, v) that has a peak at the position
(uO, vO) of the object. In the same way, one can derive an activity field aE(u, v)
that has a peak at the position (uE, vE) of the effector. Based on these two activity
fields we constructed a relative position map that integrates these pooled signals
in a multiplicative manner, realizing a form of ’gain field’ [26]:

aRP (u, v) =
∫
aO(u′, v′) aE(u′ − u, v′ − v) du′ dv′ (3)

The last equation, spatially discretized, can be implemented by summation
(pooling) and multiplication of the signals of the appropriately chosen neu-
rons. The relative position map represents the object as an activity peak in
an effector-centered 2D frame of reference. Due to the multiplication, all neu-
rons of the relative position map will be inactive if either object or effector are
not present in the visual stimulus.

The recognized view of the effector provides also information about the object
positions that are suitable for effective grasping with grip type l. For example,



944 F. Fleischer, A. Casile, and M.A. Giese

a grip is dysfunctional if the objects is positioned next to the hand instead of
between the thumb and the other fingers. It is easy to learn the spatial region
within the relative position map that corresponds to functional grips (indicated
by an orange line in the relative position map in Figure 1). One can easily define
a ’receptive field’ function gl(u, v) that corresponds to this region, which has
high values within the region and values close to zero outside. We postulate the
existence of affordance neurons whose response is constructed by computing the
output of the relative position map weighted by this receptive field function in
the form:

al =
∫
aRP (u, v) gl(u, v) du dv (4)

The output of the affordance neurons is only positive if object and effector are
present and positioned correctly relative to each other. Neurons that are tuned
to the relationship between objects and grips have been found in the parietal
cortex of monkeys, e.g. in area AIP [30].

The highest level of the model is given by mirror neurons that multiply the
output of the motion pattern neurons with that of the corresponding affordance
neurons: ml(t) = al(t) · sl(t). By the multiplicative interactions, the mirror neu-
rons only respond when the appropriate action is present with an appropriately
positioned goal object.

3 Results

The model was tested with unsegmented video sequences (640x480 pixels, 30
frames/sec, grayscale) that contained object and effector. The sequences had a
length between 34 and 54 frames. From the original videos subregions of 360x180
pixels were extracted that contained the whole effector movement and the goal
object. In addition for the training, images with a size of 120x120 pixels were
extracted that contained only the hand or the goal object. Image sequences for
the testing of the model were disjoint from the training sequences. The goal
object was a ball (diameter 8 cm).

3.1 Performance of the Shape-Recognition Hierarchy

Figure 2 shows the classification performance (percent correct) for the neural
responses at the the highest level of the form recognition hierarchy (hand shape
detectors) for the precision and the power grip. Averaged over all clusters and
types we achieve a performance of 75% correct classifications on the testset,
determined by cross-validation (leave-one-out on 10 videos per grip type). The
weak performance in recognizing power grips in the classes that correspond to
the end of the grip is largely caused by confusions of the corresponding hand
shapes with the one at the beginning of the sequence. This problem can largely
be reduced by the sequence selection mechanism described in Section 2.2.
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Fig. 2. Recognition performance of the shape recognition hierarchy for hand shapes of
power and precision grip over time

3.2 Reproduction of Visual Tuning Properties of Mirror Neurons

Consistent with electrophysiological data [4], the simulated mirror neurons show
high selectivity for the grip type. Figure 3 shows that neurons trained with a
power grip (left panel), in presence of the goal object, respond only for power grip
(blue) and not for precision grip stimuli (red), and vice versa (right panel). At the
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Fig. 3. Average response of modeled mirror neurons trained for power grips (left panel)
and precision grips (right panel) to video sequences showing a) a power grip (blue), b)
a precision grip (red), c) an action in reversed order (green), and d) an action without
goal object (yellow)
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level of mirror neurons the model achieves a correct classification performance
of 100% on the testset videos.

Figure 3 shows two additional properties that are typical for real mirror neu-
rons: The activity of the modeled mirror neurons for an action without goal
object remains at baseline (yellow bar). This is consistent with data showing the
lack of responses of mirror neurons without objects [4]. Furthermore, the graph
shows the efficiency of the sequence selectivity mechanism. Playing the movie
in reverse order leads to a response with strongly reduced activity of the mirror
neurons (green bar). While such sequence selective responses have been observed
in STS [29], mirror neurons still have to be tested with videos played in reverse
order - an experiment which we are presently realizing in our laboratory.

4 Conclusions and Future Work

We have presented a neurophysiologically plausible model for the visual tuning
properties of mirror neurons. The proposed architecture provides only a first step
towards a more detailed modeling of physiological data. However, the model is
based on a number of simple neural mechanisms that, in principle, can be vali-
dated in electrophysiological experiments. In spite of this simplicity, the model
works on real video sequences. In its present elementary form, the model repro-
duces qualitatively a number of key properties of mirror neurons: (1) tuning for
the subtle differences between grips; (2) failure to respond to mimicked actions
without goal object, and (3) tuning to the temporal order of the presented action.
All these properties were reproduced without an explicit reconstruction of the
3D geometry of the effector or the goal object. It seems thus that at least some
of the visual tuning properties of mirror neurons can be reproduced without a
precise metric three-dimensional internal model.

Due to the embedded mechanism for sequence selectivity the proposed model
is predictive and can, in principle, account for psychophysical results that show
a facilitation of the recognition of future effector configurations from previously
observed partial actions [31,32]. Differing from several other models, which as-
sume prediction in a high-dimensional space of motor patterns [3], our model
assumes the existence of prediction also in the domain of visual patterns.

In general, the question arises how predictive visual representations interact
with representations for motor patterns. Recordings in our own lab show that
the responses of many mirror neurons in area F5 are view-dependent. This ar-
gues against a uniform representation in area F5 in terms of effector-centered
coordinates, as assumed by some other models. However, further experiments
are required in order to clarify how different frames of reference are represented
and transformed at the level of mirror neurons.

Future work will focus on refining the individual components of the model
and fitting it in detail to available electrophysiological, behavioral and imaging
data. In addition, specific electrophysiological experiments will be devised that
test directly some of the postulated neural mechanisms at the level of mirror
neurons in premotor cortex (area F5).
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Abstract. This paper describes emergent neurobiological characteris-
tics of an intelligent multiple-controller that has been developed for con-
trolling the throttle, brake and steering subsystems of a validated vehicle
model. Simulation results demonstrate the effectiveness of the proposed
approach. Importantly, the controller exhibits discrete behaviours, gov-
erned by its two component controllers. These controllers are selected
according to task demands by a fuzzy-logic based supervisor. The sys-
tem therefore displays ‘action selection’ under central switched control,
as has been proposed to take place in the vertebrate brain. In addition,
the supervisor and modular controllers have analogues with the higher
and lower levels of functionality associated with the strata in layered
brain architectures. Several further similarities are identified between the
biology and the vehicle controller. We conclude that advances in neuro-
science and control theory have reached a critical mass which make it
timely for a new rapprochement of these disciplines.

Keywords: Neurobiology, Brain Structure, Proportional-Integral-
Derivative and Pole-Zero Placement Control, Fuzzy Tuning, Autonomous
Vehicle Control.

1 Introduction

The field of autonomous vehicles is a rapidly growing one which promises improved
performance, fuel economy, emission levels, comfort and safety. An important com-
ponent of autonomous vehicle control (AVC) aims to control the throttle, wheel
brake and steering systems so that the vehicle can follow a desired path and target
speed (possibly governed by a ‘lead vehicle’) and at the same time keep a safe inter-
vehicle spacing under the constraint of comfortable driving [1]. This is the prob-
lem considered here and, while conventional methods based on analytical control
generate good results, they exhibit high design and computational costs since the
target plant is complex and nonlinear, and a veridical analytic representation is
impossible. In addition, unpredictable environmental changes, (for example yaw-
disturbances caused by unsymmetrical car-dynamics, or side-wind forces) com-
pound the problem of control. There is therefore a pressing need for alternative
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approaches to AVC. One particularly promising alternative is to break the task
space into a series of distinct operating regions and to switch between them when
required [2]. If we can interpret this scheme as one in which the plant (an auto-
mobile) switches between distinct ‘behaviours’, then one high level aspect of the
control task is that of action selection [3].

The problem of action selection appears in many forms across various
disciplines but a common formulation may be framed as follows: how can an
autonomous agent (animal or robot) under bombardment from a plethora of
external (sensory) and internal (cognitive and homeostatic) information, decide
‘what to do next’. This problem arises because agents have limited motor re-
sources e.g. limbs/wheels or hands/effectors and must decide, from moment to
moment, to what use each motor plant will be put. Within ethological studies
of animal behaviour the problem of action selection is often referred to as the
problem of ‘behavioural switching’ or ‘decision-making’; the latter terminology
is also used by psychologists in perceptual tasks [4].

We contend that similar problems arise in a wide class of embedded con-
trol systems which require a continuous sensing of internal (state of the plant)
and external (environmental) variables, and computation of appropriate control
operations (‘actions’). Given this common problem space, presented to both an-
imals and control systems, we might expect similar solutions to emerge. Here,
we describe a particular controller for AVC and show how several of its features
have intriguing similarities with those of the overall functional architecture of the
vertebrate brain. We argue that this emerges because both animals and real-time
control systems have to solve the problem of action selection.

This paper is organized as follows. Sect. 2 describes the principal architectural
features of the controller (a detailed description can be found in [5]). Sect. 3
presents new simulation results for an automobile case study demonstrating the
efficacy of the controller. Sect. 4 describes the basic architectural features of the
vertebrate brain that we believe are implicated in solving the problem of action
selection in animals. Finally, in Sect. 5, we present comparisons between the two
architectures - controller and brain respectively.

2 A Controller for Autonomous Vehicle Control

2.1 Multiple Controllers

A common approach to control complex dynamic systems is to design a set of dif-
ferent controllers, each of which is optimized for a particular operating region or
performance objective, and then to switch between them in real-time to achieve
the overall control objective [2]. This multiple model approach has been used ex-
tensively and in various guises - e.g. Gain-Scheduling Controllers, Tagaki-Sugeno
Fuzzy Models and Logic-based Switching Controllers (a good overview can be
found in [5]). An important category of such systems are those consisting of a
process to be controlled, a family of fixed-gain or variable-gain candidate con-
trollers, and an event-driven switching logic called a supervisor whose job is to
determine in real-time which controller should be applied to the process.
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In this paper we use a multiple-controller architecture (see Fig. 1) to con-
trol a plant via a set of controller modules (all derived from a single minimum
variance based control law [5]), with each module activated and optimized for a
special operating regime of the plant. A top level supervisor switches between
the controller modules to determine the active module. The decision to switch
from one controller to the next is made on the basis of (quantitative and heuris-
tic based) performance measurements of the plant and external signals from the
environment and the user, including a desired target or ‘set-point’ [6].

Fig. 1. Intelligent multivariable adaptive controller framework. For clarity, not all tun-
ing signal pathways are shown.

The supervisor employs a fuzzy-logic based switching technique, in order to
automatically select between two candidate (minimum variance based) adaptive
controllers, namely a Proportional-Integral-Derivative (PID) controller or a PID
structure-based (simultaneous) pole and zero placement controller. Moreover,
the supervisor can tune the parameters of the candidate controllers on-line. This
novel tuning strategy builds on the conventional fuzzy gain scheduling strategies
that have been conventionally employed for only PID controllers [6].

2.2 An Internal Plant Model

The controller also incorporates an internal model of the plant it is controlling
which is tuned, or learned, online. This so termed Generalized Learning Model
(GLM) [7] consists of separate linear (recursive least squares) and nonlinear sub-
models with the latter comprising a Radial Basis Function Neural Network (RBF
NN). The latter aims to account for any unknown time-delays, uncertainty and
non-linearity in the complex plant model and may be thought of as modelling the
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non-linear prediction error (that is, the difference between the estimate supplied
by the linear sub-model, and the actual output of the plant [7]).

2.3 Fuzzy Logic Based Tuning Supervisor

The fuzzy logic based switching and tuning supervisor can use any available
relevant data from the control system and the environment to characterise the
system current behaviour and environmental state [6]. It then uses this informa-
tion to determine which controller to choose, which parameters to tune, and the
tuning value for each parameter that is required to ultimately achieve the desired
specification. The supervisor employed in this work comprises two subsystems
[5,8]: a behaviour recogniser and a switching and tuning logic.

Behaviour Recogniser: The behaviour recogniser seeks to characterize the
current behaviour of the plant in a way that will be useful to the switching
and tuning logic subsystem [5]. The behaviour of the system is characterized
through the on-line estimation of four parameters: the overshoot of the closed-
system output signal, the variance of the control input signal, rise and fall times
of the output signal (used for tuning purposes), and the PID controller steady
state error (used for tuning the PID gain). In this way, the behaviour recogniser
can sense if the controller currently being used is starting to fail to achieve
satisfactory performance; that is it senses conditions under which errors are
starting to develop and are more likely to occur in the immediate future.

Switching and Tuning Logic: The first task of the switching and tuning logic
sub-system is to generate a switching signal which determines, at each instant of
time, the candidate controller module that is to be activated [9]. The switching
logic is implemented using fuzzy logic rules. The premises of the rules use the
output of the behaviour recogniser as input parameters, namely the overshoot of
the output signal and variance of the control input signal,. The middle-of-max
approach is used for de-fuzzification in order to identify the selected controller.
The second task of the switching and tuning logic sub-system is to tune the
parameters of the multiple-controller on-line, including poles and zeros of the
(simultaneous) pole-zero placement controller in addition to the PID gains. The
tuning facility helps the system achieve the desired speed of response and good
long term performance [6]. One problem that many multiple controllers suffer
from is a transient in control signals (and thereby plant behaviour) when switch-
ing takes place. This can occur because of incompatible initial conditions in the
controllers. The novel switching mechanism introduced in this work guarantees
that such transients are minimized; that is bumpless switching occurs (see [6]
for more details).

3 Simulation Results for Autonomous Vehicle Control

The controller described here has been implemented and tested in simulation us-
ing a validated realistic multiple-input multiple-output vehicle model including
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interacting nonlinearities from the throttle, braking and wheel steering subsys-
tems (details can be found in [10]). We show results here to demonstrate the
efficacy of the controller and the switching behaviour between controllers. Re-
call that the system’s task is to control the steering wheel angle, throttle angle,
and brake torque, assuming that the desired path and vehicle speed have been
determined. In addition excessive control action was penalised and efficient con-
trol sought under internal tuning processes. The particular task consisted of
mixed-mode driving along straight segments and around obstacles over a time
period of 20 sec. Thus, during times 0 to 8.6sec the autonomous vehicle had to
follow the path with a speed of 30m/sec, then slow down to 20m/sec to follow
the left side turn. This was to be followed by slowing down to a speed of 10m/s
to track a sharp turn right within the target path, and then speeding up to
20m/sec and lastly attaining the target speed of 30m/sec.

Figures 2a and 2b illustrate the path and speed tracking, and show that
the proposed methodology is able to follow control decisions within the desired
path and speed trajectories. Figures 3a, 3b and 3c show the results of applying
the control signals to the throttle, brake and steering systems respectively. In
Fig. 3a, during time 10.0sec to 10.4sec the throttle plate was set to its minimum
(0.15) in order to slow down the speed to 10m/sec. However, as this minimum
throttle angle was not sufficient to reach this target speed, simultaneously the
wheel brake system was triggered to produce the required braking torque as
shown in Fig. 3b. Figure 3c shows the output steering wheel angle during the
operation of tracking the target path.

Fig. 2. Simulation results with AVC controller. a) Target path tracking. b) Target
speed tracking during the operation following the target path. Each arrow indicates a
point of switching between the two controller modes: from pole-zero placement to PID
and vice-versa (starting with pole-zero placement at time 0).



954 A. Hussain et al.

Fig. 3. Simulation results with AVC controller. a) The performance of the throttle
system for reaching the required throttle angle. b) The performance of the brake system
for reaching the required braking torque. c) Performance of the steering system for
reaching required steering angle.

An emergent phenomenon of the system that enables the link to be made with
ideas in biological action selection is that, each component controller appears to
be responsible for a different ‘driving behaviour’. Thus the pole-zero controller is
activated when ‘navigating tight bends’ and the PID controller is engaged when
‘cruising in a straight line’ (as indicated by the arrows in Fig. 2b).

4 A Vertebrate Solution to Behavioural Control

4.1 Action Selection and the Basal Ganglia

Neurobiology suggests that the action selection problem is solved in the animal
brain using a central switch which receives requests for behavioural expression
from cortical and sub-cortical subsystems throughout the brain. In [11], we out-
lined the proposal that the basal ganglia (BG) - a set of sub-cortical nuclei - are
well suited to play the role of this central ‘switch’. The BG are evolutionarily
highly conserved throughout the vertebrate lineage, suggesting they are solv-
ing a fundamental problem in animal behaviour - of which action selection is a
prime example. Further, the BG receive input from a wide variety of cortical and
sub-cortical systems, and project back to these systems a connection scheme
consistent with the functionality of a central switch.
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Fig. 4. The basal ganglia as the central action selection ‘switch’ in the brain

Functionally, we suppose that brain subsystems requesting behavioural ex-
pression send excitatory signals to BG whose strength is determined by the
salience or ‘urgency’ of the requests. Output from the BG is inhibitory and nor-
mally active. Actions are selected when competitive processes between action
channels in the BG result in withdrawal of inhibition from the target subsystem.
This process is illustrated for two action channels in Fig. 4. Here, channel 1
is sending a highly salient request to BG, whereas channel 2 is sending a weak
request. Internal competitive processes in BG ensure that the inhibition (default-
ing to a high value) on the BG output for channel 1 is reduced to a point where
it is ineffective. This allows the ‘command system’ associated with behavioural
request 1 to take control of brainstem motor plant and ultimately to express
its behaviour. In contrast, channel 2 has its inhibitory BG output increased,
effectively preventing any command signal reaching the motor plant (thalamic
connectivity between BG and cortex has been suppressed for simplicity).

The basal ganglia selection hypothesis has been confirmed in both computa-
tional [12,13] and embodied models [14].

4.2 Layered Architectures in the Brain

A key feature of the overall architecture of the brain is that it appears to imple-
ment multiple levels of sensorimotor competence [15]. Here, a single sensorimotor
modality, for example, saccadic gaze control directed by visual input, is associ-
ated with several levels of competence. In the oculomotor example, low level
sub-cortical structures enable simple gaze control based on transient luminance
change, whereas higher cortical circuits enable gaze strategies driven by complex
visual features and task demands. Note that this kind of subsumption architec-
ture also figures in an influential strand of contemporary robotics [16].

Integrating the general idea of a layered scheme with the hypothesis that the
basal ganglia act as a central switch yields the architecture shown in Fig. 5
[15]. Each level of competence has its own competition between multiple action
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Fig. 5. Layered architecture of the brain: cartoon schematic showing role of BG

requests mediated by the BG, and may also take control of the motor plant.
Further, action representations in higher layers can influence those in lower layers
thereby exerting ‘top-down’ control. One very high level of control in the brain
is provided by the anterior cingulate cortex (ACC) which appears to monitor
performance to regulate behavior. In particular, recent work by Carter et al
[17] showed that the ACC contributes to performance monitoring by detecting
errors, and conditions under which errors are likely to occur.

4.3 Cognitive World Models: Learning Action-Outcome
Associations

The term ‘cognition’ is usually used to encompass psychological notions such as
problem solving, memory, language, emotion, attention, and planning. However,
a common thread in all these competences is the adaptive use of some stored in-
ternal representation of the world, thereby endowing the animal with the ability
go beyond simple reactive ‘stimulus-response’ behaviour. In particular, one class
of internal model has to do with the ability to know what actions are effective
in producing useful environmental consequences. For example, knowing that a
certain class of wall-mounted objects (light-switches) produce illumination is po-
tentially extremely useful. Recently, Redgrave et al [18] have described how the
basal ganglia may serve to help establish these action-outcome forward models
under reinforcement learning. One of the key features of this scheme is that it
uses sensory prediction errors (mediated by the neurotransmitter dopamine) to
bias the action selection policy in basal ganglia so as to ensure repeated execu-
tion of actions that produce novel sensory outcomes. In this way, new actions
and combinations of existing action-components may be learned.

5 A Comparison of the Biological and AVC Solutions to
Behavioural Control

Both the brain architecture and the AVC system use a central switch for de-
termining which ‘command system’, and thereby which behaviour or action,
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is selected. The mechanisms for selection and switching are, however, rather
different. The brain uses signals (salience) derived from the command systems
themselves. In contrast, the AVC system does not use signals intrinsic to either
component controller but, rather, signals derived from a supervisory system -
the fuzzy controller.

This top level control may, however be likened to the top down influence in the
layered architecture. Thus we make the identification that the fuzzy controller
is an analogue of some high level (pre-frontal) cortical system that is able to
influence a lower level competence (component controllers). The way in which
the fuzzy-controller provides the top down-influence is, of course, rather differ-
ent from its biological counterpart; it uses rules rather than distributed neural
representations. Further, the fuzzy controller has an analogue of the anterior
cingulate cortex in so far as it has a behaviour recognition sub-system which is
monitoring for errors.

The AVC system also contains a ‘cognitive model’ in the form of its internal
model of the plant. In particular, we may liken it to an action-outcome associ-
ation because it represents the plants response (outcome) if driven with certain
control signals (‘action’). Further, this model is used to derive a signal analo-
gous to a sensory prediction error which is used for tuning or ‘learning’. Thus,
we consider the linear sub-model to be the basic internal model and the RBF
network to represent discrepancies with respect to this sub-model that are due to
nonlinearities, uncertainties and disturbances in the controlled plant. This class
of phenomena - analogous to prediction errors - are used to tune (or ‘train’)
the component controllers, thereby shaping the possible behaviors in exactly the
same way that we propose that phasic dopamine can help in the shaping of new
actions in the basal ganglia [18,19].

6 Conclusion

We have described an autonomous vehicle control (AVC) system which makes
use of multiple conventional controllers, whose selection is governed by a central
switch under control of a novel fuzzy-logic based controller. This system, which
was not designed from the ground up to be bio-inspired, shows emergent prop-
erties akin to animal behaviour in that it displays a discrete behavioural reper-
toire. Moreover, the AVC system has functional architectural similarities with
the vertebrate brain - central switching, layered control, internal action-outcome
models, error-monitoring, and use of prediction errors to shape behaviour.
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Abstract. In [1] we have developed a computational model for multiple
goals. The agent behaviour is organised in families of competing goals
(plans) for determining priorities of execution. This paper extends the
previous model by providing a method for executing complex plans con-
sisting of a number of goals and/or other sub-plans. The various depen-
dencies among goals/plans are analysed and a mechanism is suggested
which provides additional voting to the priority of a component goal.
For the class of independent goals it is possible to interleave sub-goals
for achieving better performance. A number of simulation experiments
are described and results indicate a more flexible behaviour. We conclude
with a summary of findings and a discussion for future work.

1 Introduction

Nowadays there is great interest in building cognitive agents that will drive ro-
botic or other software agents. Among all the other aspects one needs to tackle
the question of how best to organize the complex behaviour that is generated by
having a number of concurrent (high-level) goals inside a cognitive agent. We sep-
arate the overall problem of regulating behaviour in two complementary aspects:
these of reasoning and execution. The first part, the problem of ’reasoning’, deals
mainly with the development of a suitable plan that will achieve a target state
while the second part, the problem of ’execution’, is related to the monitoring of
the plans, the provision of re-planning requests to the ’reasoning’ component for
each under-performing plan, the initiation of learning processes in cases of failures
and the generation of coherent behaviour. In both aspects there has been intensive
research effort in the past. The issue was and is still being pursued by the AI com-
munity under the names of planning algorithms and constraint satisfaction prob-
lems, for example see [3] (and references therein). For autonomous agents, with
arbitrary long lifetimes, situated in a dynamic and partially observable environ-
ment the above approach was extended with execution monitoring and re-planning
facilities. Usually the framing of the problem took the form of Hierarchical Task
Networks [3], or that of Abstraction and Hierarchical Planning [4], [5].

However, while the above approaches clearly attack an important aspect of the
overall problem, they do not attack the full problem. For example attention move-
ment (and the implied change of focus) is not easily included in these approaches.

V. Kůrková et al. (Eds.): ICANN 2008, Part II, LNCS 5164, pp. 959–968, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Contribution from internal agent motivational and drive systems is also not eas-
ily integrated. For this reason we have developed an efficient executive system for
the GNOSYS cognitive architecture in order to regulate the complex behaviour of
a robotic agent that is controlled by the GNOSYS architecture. In this paper we
will discuss the ’execution’ component of the planning process inside the agent.
The planning process is the complex interaction of three modules of the architec-
ture: of the executive system (which is the focus of this paper), of the reasoning
system and of the motivational system. The work presented here is a continuation
of previous work on the system. In [1] we have proposed the initial model, while
in [2] this model was extended so as to accommodate factors such as the threat
level perceived from the environment and factors contributing to the complexity
of the task. In this paper our focus is in defining a further extension which is able
to handle the execution of arbitrary plans which are composed in a recursive way.
For a description of the reasoning system see [6] while for the motivational system
see [7]. For further details on these and other components present in the GNOSYS
architecture one can see [8]. The paper is structured as follows: in section 2 we will
provide an analysis of the various dependencies of goals and we will suggest plan
types and a uniform mechanism that handles the priority of constituent goals. In
section 3 we present simulation scenarios that help us clarify the operation of the
system. In the same section simulation results are given on the presented scenar-
ios. We conclude in section 4 with a summary of key features and points of interest
for future work.

2 Handling the Complexity of Execution

The GNOSYS Architecture aims to control robotic agents in arbitrary complex,
novel and unstructured environments. It consists of a number of high-level mod-
ules that provide the basic cognitive capabilities of the agent. Figure 1 provides the
main information flows inside the agent so as to provide the context of operation
for the executive system (denoted as Goals). The information flow starts with the
request for the achievement of a target state. This request comes from two primary
sources: a user request or a request from the motivational system. The realisation
of the request takes the form of Goal object, which is characterized by a num-
ber of parameters; see [1] for details. The Goal object represents either a complex
high-level goal or a primitive one. In the former case, we need a Plan, which will
produce the required target state that is specified as one of the Goal parameters.
In this sense a Goal is a self-contained execution scope (i.e. a thread of activity
inside the agent). For a Goal to be achievable we need to find of a suitable plan.
The term Plan here is used in the sense that describes a collection of (sub-) Goals
that are executed with a specific pattern and time order. Except of the primitive
Goals, all other Goals are actually plans of more concrete sub-Goals. The problem
of producing a plan is solved by the reasoning system. We will not discuss here
this process. It suffices to say that the GNOSYS project has produced a reason-
ing system, which operates using forward/inverse model pairs and emulates well
reasoning processes in animals. See for example [6] and [9].
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Fig. 1. Main information flows inside the GNOSYS agent. The executive component
handles the execution of a plan to the real world. It forms a feedback loop with the
motivation and reasoning systems.

The motivation system implements an internal value map in the sense that it
can provide reward or penalty to the currently executing Goals depending on the
effects of their actions to the value of an internal drive which represents the well-
being of the agent. Except of the reinforcement aspect it also crucially influences
the termination of non-converging or under-performing Goals. The complexity
of the planning process arises from the ability to tackle the uncertainty in the
environment (partial information, availability of tools, constraints and the abil-
ity to exhibit novelty in strategy). In terms of a functional decomposition, the
reasoning system solves the ’How’ part of the problem. The motivational system
and the executive solve the ’When to do what’ part of the problem. This de-
composition ensures that maximal rewards will be gained by optimal use of the
agent’s resources and opportunistic possibilities afforded by the environment.

2.1 Goals, Plans and Dependencies

Plans include either primitive Goals or other Plans (sub-Plans). The type of
the Plan determines how its constituent Goals are executed. We have analysed
in [1] the type of dependencies that exist among Goals. For our purposes here
we are interested in three classes of Plans, which capture the corresponding
dependencies. We can identify:

A. Independent;
B. Sequential;
C. Optional;
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In the first case, the Plan has many Goals. All of them must be completed for
the Plan to be completed. The Goals can be executed concurrently in any order,
thus enabling opportunistic execution. In the second case the all the Goals of the
Plan are executed strictly in a predetermined sequential manner. The third class
describes a pattern where some Goals, N, out of the total number, M, must be
completed for the Plan to be completed, where N ¡ M. An interesting sub-case is
where N=1. This pattern allows a form of decomposition where Goals are ORed.
The Goals can be executed in parallel and the Plan terminates when the first N
of them complete.

Using the above three classes we can compose (or decompose) arbitrary com-
plex plans with non-trivial overall behaviour. A way to clarify the interactions
is by representing a Plan as a network structure where an activation variable
is defined per Goal. Weights then represent the specific pattern applied. The
diagrams in figure 2 show the three cases:

G1

Gm

GpG2

A. Independent

1/m
1/m

1/m

G1

Gm

GpG2
1

1
1

B. Sequential

Net1

Net2

Netm

1

1

1

G1

Gm

GpG2

C. Optional

1
1

1

Fig. 2. Types of Plans. G1, ..., Gm are children Goals of a Plan, while Gp represents
the Plan (root Goal). The type of the Plan determines the pattern of the information
flow and the weighting coefficients. See text for details.

In figure 2 Gp represents the Goal whose the Plan consists of the sub-Goals
G1, . . . , Gm. We can associate an activation variable, TermG, with each root
Goal and sub-Goal G. The corresponding activations, to figure 2, are written as:

Termp(t) = Step(Netp(t) + Termp(t− 1)− 1)

Netp(t) = (
∑

j

wj ∗ Termj(t)) = (
∑

j

(1/M) ∗ Termj(t)) (1)

Termp(t) = TermM (t)
Termj(t) = Step(Netj(t) + Termj(t− 1)− 1)
Netj(t) = (Termj−1(t) +Netj(t− 1)) (2)

Termp(t) = Step(Netp(t) + Termp(t− 1)− 1)

Netp(t) = (
∑

j

wj ∗ Termj(t)− n) = (
∑

j

1 ∗ Termj(t)− n) (3)

Where the variables Net correspond to the input coming to the node, while TermP
is the activation of the root node, P, corresponding to the plan in question. The
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variable indicates the termination status of the Goal and it is assumed that a plan
has terminated when the activation of the root node reaches 1.0. All variables ap-
pearing in (1)-(3) are assumed scaled in the interval [0,1]. There are in general M
nodes to the plan, j=1M. Step(·) is the step function. Equation (1) corresponds
to the case of the independent Goals, while (2) in the case of the Sequential type
and (3) in the Optional case. In the case of a primitive Goal the Net variable is
calculated as it is shown in figure 3:

State Module
(Pre -conditions){ State }

ExecutionAction Index

Competition

Net

Terminating
Conditions

Fig. 3. Diagram for the calculation of the Net input to a primitive Goal. The calculation
takes into account a number of factors. See text for more details.

In figure 3 each module provides as output an activation in the range [0,1]. The
state module uses the current state to calculate pre-conditions. If pre-conditions
are met then the output is 1.0 else is 0.0. The activation of the module indicates
a state where all prerequisites are fulfilled and thus the Goal can start execution.
Terminating conditions are also calculated so as to indicate the arrival to the
target state. The box also provides a binary activation. The action index box
indicates the relative priority of the goal as it is evaluated using the current state.
The index varies in [0,1]. The box Competition represents a global competition
among goals that determines the one with the highest priority. The output of
this module is 1.0 if the current Goal is the global winner, otherwise is 0.0. This
competition takes place in the scope of the executive system and outside the
scope of a Goal. Under these interactions the activation of the box Execution is
evaluated by (4):

Exec(t) = Step(PC(t) + COM(t) +AI(t) − 2) (4)

Where in (4) Exec represents the activation of the Execution module and PC,
COM and AI the corresponding activations of the State Module, Competition
and Action Index respectively. When the Execution module is active this indi-
cates the actual operation of the Goal. The Net input and Termination for a
primitive Goal is then calculated by (5):

Net(t) = Exec(t) + TC(t)− 2
Term(t) = Step(Net(t)) (5)

Where TC represents the binary output from the Terminating Conditions box
and the Step function is assumed to be 1.0 when x ≥ 0.

Using equations (1)-(5) one can calculate in a recursive manner the overall
Termination and Action Index of the whole Plan depending on the Plan type.
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At the top root of a Plan the calculated Net activation represents a factor of
priority that is then fed back to the primitive Goals’ Action Index calculation.
This is accomplished by use of (6):

ActionIndex=(W+EW+TP+S−AI+M−AI+B−AI+TL+Cost+Netp

+
∑

j

δ(j, contrib.)/(9 +No.ofContributingChildren) (6)

Let us explain the main components of formula (6). We assume that each
Goal has an extrinsic value (W) that comes either by the User or by experi-
ence (built by RL and it is thus stored in the value maps). This weight, as all
other terms in (6), is suitably scaled in the interval [0, 1]. The term EW repre-
sents the intrinsic value of the Goal. This value is updated in every processing
step by the Motivation System and captures the influence of the Goal to the
agent’s well being. The Termination Probability (TP) indicates the probability
to be completed given the current state. This is calculated in general as a func-
tion of the distance between the current and target states in a suitable metric
space. The terms S-AI, M-AI and B-AI correspond to three different (local) at-
tention mechanisms that capture complimentary aspects. S-AI corresponds to
sensory attention, which captures novelty in the environment. M-AI captures
related motor attention events. The B-AI captures attention events coming from
the internal agent environment; more specifically the deviation of one or more
homeostatic variables from their equilibrium state. The term TL represents a
threat level, which is provided by the Threat module in figure 1 and corresponds
to an estimated threat potential function due to a number of moving agents in-
side the observation horizon of the agent. The Cost corresponds to the Maximum
Expected Utility (MEU), which will be gained by the Goal if it is executed in the
next processing step. The idea of MEU provides a good mechanism for reaching
decisions that balance the rewards that are expected against the probability of
gaining them. This idea is at the basis of decision theory. For details see [3] and
[10]. Finally NetP corresponds to the activation received by the parent of the
family. The model provides also for the opportunity of interleaving primitive
Goals that belong to separate Plans of independent type. Thus one in practice
can take two or more Plans and schedule more efficiently the actions from the
two Plans, considering them as a larger combined plan. Such scheduling can be
seen as an optimisation problem and a number of methods can be used for this
purpose, such as Simulated Annealing, Genetic Algorithms and others. We use
an approach based on Ant Colony Optimisation (ACO) Methods, which has the
benefit to be quite fast for real-time implementation in the GNOSYS robotic
platform. See [11] for details.

3 Results

To clarify the operation of the system consider the setup shown in figure 4a.
We assume that we have two high-level Goals. The first is about carrying

objects A1 and A2 to point G1, while the second one is about moving B1 to G2.
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Fig. 4. A robot is always starting from point R. Ai and Bj are objects that need to
be moved to target points G1 and G2 respectively. In (a) we assume that we have full
observability while in (b) the robot has a limited range of observation, which is 20
percent of the distance from R to B1.

The reasoning system is called and two Plans are returned as an answer. In the
first case the Plan P1: R→ A1 → G1 → A2 → G1 is returned while in the second
case the Plan P2: R→ B1 → G2 is the result. The question is: in which order we
should execute the plans in order to optimize the response of the system given all
other factors equal? Here the function we want to optimize is the accumulated
distance after all plans have been executed. One can try to execute first P1
and then P2; that results to Plan P3 (concisely P1+P2=P3). Alternatively the
opposite order can be used resulting to P4 (P2+P1=P4). However we see from
table 1 that there is a better solution P5 that is to interleave the steps of the
two basic plans.

Table 1. Plans and accumulated distances after execution of the scenario of figure 4a

Plan ID Sequence Total path length

P1 R → A1 → G1 → A2 → G1 20.141
P2 R → B1 → G2 12.784
P3 R → A1 → G1 → A2 → G1 → B1 → G2 29.447
P4 R → B1 → G2 → A2 → G1 → A1 → G1 30.836
P5 R → A1 → G1 → B1 → G2 → A2 → G1 25.327

Indeed the Plan P5 is the best solution in this case as it is possible to combine
the steps from the two plans to form a better execution sequence. We have dis-
covered solution P5 by using the ACO algorithm with 50 ants, initial pheromone
at 0.2 for all segments in the graph (of all object and target locations) and the
evaporation rate was =0.05. 100 iterations were used for the algorithm. It con-
verged in all cases. The Plans P1 and P2 are retuned separately by the reasoning
system because in the GNOSYS architecture we consider each reasoning prob-
lem in isolation from others while trying to formulate an initial solution. Only
during the execution stage, interactions of the Plans are taken into account and
a search for more optimal behaviour takes place.
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Now consider that the range of observation of the agent is quite limited. This is
shown in the case of figure 4b. In this case, while the agent knows the coordinates
of the target points and the starting one it does not know the locations of the
needed objects. In this case it enters in an exploratory mode. Most of the times
it will find first object B1 and thus it will satisfy the pre-conditions of the Plan
P2. We will describe next this solution, as it is more common and the near
optimal one given partial information. After locating B1 it will go towards G2,
but while in transit it will find object A1. In setting (4b) it will drop object B1

and then peek up and carry to G1 object A1. It will then return to B1 (where
it was left) and it will carry it to G2 at which point it will be in range of A2.
It will finally carry A2 to G1 and at this time both Goals will be completed
successfully. The average length of the path for this non-trivial behaviour is
45.632 (after averaging in 20 simulation runs). This is a longer path, from the
fully observable case, but this is due to the fact that larger distances are covered
while in exploratory mode.

We now describe a third scenario where two additional high-level goals exist.
Assume that the setup is as in figure (4b) but this time there are also objects
A3 and B2 present. The agent has again the same limited observation range
of the previous scenario. This time the Goals are to collect objects Ai to G1

and to built a stack. The second Goal is similar, i.e. to collect objects Bj to
G2 and to build a second stack. Each Goal taken separately can be solved by
either of the following two ways: Either collect first all necessary objects to the
neighbourhood of the target point and then try to stack one object on top of
the other, or try to stack an object directly to a partial stack left over from
previous stacked objects. While both solutions can produce the same results, we
have decided to give different utility functions to the two types of solutions. In
the former case more utility can be gained by first collecting the objects in the
neighbourhood of the target point and trying the stacking actions next. In the
second case less utility will be gained; this choice was made in order to simulate
the delay in time and increasing effort needed if the stacking actions are not
successful and need to be retried. Given this differentiation the former strategy
was preferred completely. In a true situation the agent can, through trial and
error, estimate the probability of having a successful stacking action in both
situations. It is expected that in the former case the probability will be higher
due to smaller number of micro-adjustments needed in order to align its body
to a good posture against the stack. Given the previous assumption (i.e. that
the stacking actions follow the transportation of the objects) the agent for the
whole Goal arrived effectively to a sequential type of plan. However, the first
step of collecting the necessary items is still an independent type of Plan (class
A in 2.1) as it was discussed before. With two high-level Goals to build two
stacks, the agent interleaved the steps of searching for the objects of both Goals.
However, when all the necessary objects were carried at the target point for one
of the Goals, then, due to the nature of the sequential plans, the stacking actions
followed; thus the exploratory behaviour stops and no effort is given to locate
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the rest of the items for the second Goal. When the first stack was successfully
completed the agent resumed the search for the rest of the objects.

4 Discussion

We have presented an extended model for the executive system of the GNOSYS
Architecture. Its main features are: It uses hierarchical planning (i.e. decomposes
high-level goals to plans of simpler sub-goals recursively); It uses a partial order
strategy (see [3]) in order to achieve the correct time ordering of individual
Goals and to satisfy constraints; It provides a feedback between the Goals of
a Plan and the Plan’s overall completion so as to reinforce persistence to a
target state; While at the same time provides a mechanism for opportunistic
execution; It provides a mechanism to eliminate non-convergent Goals; It allows
the interleaving of independent Goals which belong to different Plans; Finally
it allows the construction of arbitrary complex hierarchical plans which can be
executed using a uniform scheme.

We have provided a number of challenging simulation scenarios in which the
agent performed optimally or near optimally as evidence for the efficiency of
the executive system. It is worth noting the important contribution of the Cost
factor to the determination of priorities of Goals. In the third example with the
stacking actions, this mechanism captures the intuitive idea that it becomes more
and more improbable to build a taller stack as the number of objects increases
without accidentally destroying the stack. Thus a strategy where first we collect
all the objects around the stacking location is probably a more efficient option.
This selection was done taking into account experience with the GNOSYS robot
while trying to create stacks using both strategies. It was found that the first
option was working better. Thus we have not really equipped the system with
the ability to learn real utilities functions but such a capability can be added as
needed. For now it works with this bias.

The problem that the system solves can be presented also in the distributed
problem solving framework of mutli-agent systems, for example see [12]. This is
an alternative view to the problem. However, the benefit of the current system is
that it uses a principle (that of a spreading activation mechanism) that is used
widely in the rest of the GNOSYS architecture. In this way representational co-
herency of the architecture is maintained. In addition the hierarchical recursive
nature of higher-level goals is mapped directly to the corresponding conceptual
representation which is used by the reasoning system while recursively refines
sub-plans; for example this is done when information on termination conditions
is sought. The hierarchical nature of the Goal concepts allows the easy accumu-
lation of the termination conditions for a given Goal due to family inheritance;
the same mechanism operates on all concepts either being Goals or not. The
same cannot be claimed easily in the case where one uses a multi-agent system
approach to solve the problem. While the latter approach also works, it lacks
the conceptual integration with the rest of the cognitive architecture.
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Further work includes: searching for better priority functions, as in (6); ana-
lyzing more dependency relations among Goals; suggesting new ways for achiev-
ing more flexible behaviour. Also further factors will be investigated so as to
determine their influence in achieving more flexible behaviour of the system.
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Abstract. We develop a general neural network-based architecture for
the process of mental simulation, initially treated at a somewhat abstract
level. To develop the theory further it is shown how the theory can handle
observational learning as a specific form of mental simulation: simulations
are presented of simple paradigms and results obtained on children un-
dergoing tests on observational learning. Questions of learning and other
aspects are treated in a discussion section.

1 Introduction

Mental simulation has become an area of interest to a number of branches of re-
search: philosophy, psychology, engineering, brain imaging, military studies and
many more. It is of particular relevance in trying to understand how human sub-
jects can empathise with those they meet, and build a .theory of mind. about
these others. There are two distinct branches to these studies of mental simula-
tion. There are general analyses of how such mental simulation can help people
empathise with others, and develop understanding of what decision-making had
occurred, and what range of beliefs it could have been based on [4]. This is to be
regarded as .putting yourself in someone else’s place.. Such an approach has led
to numerous studies of the manner in which beliefs and desires can be involved
in such internal simulations. In particular mental simulation has been recognised
as central in planning, decision-making, hypothesis generation and testing and
in belief revision. On the other hand there has been a flurry of interest asso-
ciated with mirror neurons and the associated brain processes discovered when
people (or monkeys) watch an actor perform some salient action [7]. Initially it
was considered that such mirror neurons were in very specialized areas of the
monkey (and human) cortex. However more recently it has been realised that
a considerable amount (although not all) of those sites active during execution
are also active during observation of the same actions of another [6]. Because of
this more extended view of mirror neurons we will term neurons active in the
paradigms associated with observation of others executing actions as .simulation
neurons.

These two approaches are especially different in terms of the cognitive level of
processing occurring in the brain of the subject: the first (related to an approach
through the “theory of mind”) is at a much higher cognitive level than paradigms
used to observe simulation neurons. However we suggest that the higher level
can be regarded as a more sophisticated version of the lower one. For cognitive
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simulations of the results of actions or of how to achieve certain goals must
depend on internal simulations of these actions based on those goals. The further
mental simulations associated with decisions between various goals or actions
and on beliefs as the bases of such decisions will depend on various long-term
memories and decision processes (such as choosing between various courses of
action or goals) which are beyond the scope of this paper. However they can be
seen only as biases to the mental simulation process itself, so that simulation
can be regarded as the place to start analysis of possible appropriate brain
architectures.

In this paper we therefore begin an attack on possible brain neural networks
involved in mental simulation by starting at the lower level. Thus we consider
how goals, as objects or actions, can be mentally simulated by observation of an
actor achieving the goals; later the actors actions and goals achievements can be
imitated (although the actions may not be exactly as those carried out by the
actor). This analysis thus covers more fully the process of observational learning
and imitation. We then go on to consider how mental simulation as internally
driven could occur with this architecture. This is a further step beyond the ex-
ternally driven process of observational learning, involving as it does internally
created goals and their manipulation leading to reasoning (which should be in-
cluded as a part of mental simulation). However we will not consider reasoning
per se, but only note how it fits into the architecture we are considering.

In the next section a general architecture is presented which we propose as
being at the basis of the low-level mental simulation powers of humans. In the
following section we present a simulation of this architecture for simple tasks
being performed by infants, and relate this to results obtained by colleagues [2].
The paper finishes with a set of conclusions and further work.

2 A General Neural Architecture

We start by extending the architecture used in a simulation of data on ob-
servational learning on infants [3] to the more general case of internal mental
simulation. The former architecture is shown in figure 1; containing the set of
modules:

The extended architecture, shown in figure 2, uses much of this except for the
addition of two specific features:

1) The mental simulation loop of figure 1 is expanded to allow for looping
through a sequence of actions and states as part of the process of “imagining”
the action needed to cause a state to change to another, and the result of the
action on the state to generate the next state ahead in time to function as a goal
so as to generate a further action to achieve it. Such goal generation and action
creation require the use of well-trained forward and inverse models, the training
of which we will not discuss in detail here (but see the discussion).
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Fig. 1. Neural architecture for observational learning and production of actions based
on the learning of affordances

2) The addition of various working memory buffers (possibly with some episodic
or longer term powers) so as to hold the results of these computations of sequences
of states and actions. Such computations will very likely require the bringing to
bear of attention (of both motor and sensory form) so as to enable them to be em-
ployed at various levels. Thus if only imitation of the goal of the observed actions is
required then only the final state of the generated sequence will be needed, whilst
if both final state and sequence of actions is required then either or both of the se-
quences of internally generated actions and states will need to be held in suitable
working memory sites.

We note that the architecture of figure 2 can perform internal simulations to-
tally on its own, provided it has built up a suitable set of memories. It can also be
driven by outside inputs to simulate observed actions of another, so perform in
an observational learning paradigm. Naturally it can also execute a series of ac-
tions with goals set up by the system itself. Thus the architecture can handle all
three of the important processes involved in internal simulation processes: inter-
nal simulation as self-driven “imagining”, internal simulation through observing
another in action and internal simulation as part of action planning before and
during execution.

It was noted in the introduction that mental simulation is basic to a number of
mental activities: planning, decision-making, hypothesis generation and testing
and belief revision. Let us consider in general how the architecture of figure 2
can provide a basis for such mental activities. We begin with planning.

Planning is based on the attempt to find a route through a suitable space
(of concepts or as physical space itself in the case of planning a trip); a final
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Fig. 2. Figure 2 - Extended mental simulation architecture containing internal models
for generating a sequence of actions

goal is given as to where the voyage will end. This can be solved by use of the
IMC alone in figure 2, if such a one has been created. For given the goal and
the present state of the subject, the IMC can generate a (possibly sequence
of) action to achieve the goal. Then the action (sequence), stored in a suitable
working memory, therefore provides the plan.

Decision making requires further modules to be added to the architecture of
figure 2. One of these is a reward map of goals, so that several of them can
be differentiated between by their value. Then any decision module (modelled
as a competitive net, for example) would function by having as input a set of
goals biased by their reward values, and as output the most highly valued of
the goals. A similar mechanism could function to provide a decision between
different actions. In this case mental simulation, using suitable FMs of figure 2,
would allow assessment of the final goals reached by the various possible actions;
choice between these goals by the previous decision mechanism would thus lead
to a choice between the actions.

Hypothesis generation and testing can also be handled by the architecture
of figure 2 with suitable further modules. We denote here a hypothesis as an
assumption conjectured in order to test its empirical or logical implications. The
testing we consider under the heading of mental simulation is purely at a mental
level, but this is important since it could lead to results already contradicted by
experience or which are later discovered to be contradicted by experience.

Consider for example the hypothesis “water is lighter than air”. This would
lead us to predict that water floats in the air or even above it. This is clearly
contrary to experience, so the original hypothesis must be false. But we can also
consider this hypothesis as a counter-factual, and explore its consequences. One
of these is that we would expect the seas to be floating in or above the sky above
us, a situation which we can visualise (although knowing it is not true). This
counterfactual situation can be simulated in the architecture of figure 2 by using
the general (learnt) causal law that “if A is lighter than B then A moves above
B”. To move A above B from its present position of A being below B (when
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A = water, B = air) a suitable IMC would generate the action of moving A
from below to above B. This action would then change the state on a working
memory site as an FM holding A below B, into A being above B on the site.
If we identify imagining the scene of A and B as arising from activity on this
working memory module, then we have the process of testing a hypothesis and
arriving at an imaginary world in which the seas literally do float in or above
the skies.

Thus the process of hypothesis testing may be handled by the architecture
of figure 2. However the process of hypothesis generation is outside the scope
of this paper (involving a number of more complex processes using long-term
memory, salience and possible outside inputs, such as being in a group playing
an .as if. game). The same should be said about belief revision, although it can
partake of the same processes as hypothesis testing in some situations.

Consider an observer of an actor performing some action towards a goal. Is the
observer also undergoing mental simulation as well as observation learning? The
answer is that they are not in an autonomous sense since the observer is being
mentally stimulated from outside, they obviously are simulating in an externally-
driven sense however. Later they can then perform a mental simulation of the
situation they had observed as if they were doing it themselves (thus performing
mental planning). This aspect emphasises the important part played by mem-
ory in the process of autonomous mental simulation, be it short or long-term.
Provided the final goal and a suitable IMC is available to the subject then they
can call on this memory of the goal to generate the required action (or action
sequence) in their minds. Thus the process of observational learning will be very
important to expand the repertoire that can be called on for autonomous men-
tal simulation provided that the suitable FM/IMC pairs are created (trained)
as part of the observational learning process, or are already available to be used
in the new observational learning context.

Before concluding this general discussion, it is important to point out that
sensory attention will also have a role to play: it is unlikely that one can perform
mental simulation without attending to the ongoing processes in one.s mind.
Thus the visual states would be those very likely on a working memory buffer
so be available for report. These visual states will thus have been attended to as
stimulus inputs to be able to attain the working memory sites for use in mental
simulation.

At the same we note that the mental simulation loop itself is very likely at the
heart of the motor attention (or intention) control system. Motor attention has
been studied over a number of years by brain imaging, such as by Rushworth
and colleagues [8], as well as by others. A neural model was proposed for this [9]
but suffered the defect that there was no clear link between the motor attention
and the visual attention control systems except for the feeding of attended visual
input to bias the motor control system. In the architecture of figure 1 we see that
there is much better fusion now (as compared to that in the Taylor-Fragopanagos
model), in that the motor IMC generates what can be termed the motor atten-
tion control signal; that can be used or stored internally in the case of mental
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simulation but also be sent to lower level motor planning systems if execution
is to be performed; that was at the basis of the motor attention model of [9].
Now however we have, in the mental simulation loop of figure 2 a more natural
fusion, since the FM allows for the internal action of this motor attention-based
action signal to modify the visual state of the system. Thus we can regard the
component of the output of the IMC sent to the FM as a corollary discharge
of the main signal (to be sent to the lower level motor system to bias a motor
plan) under execution.

We also need to turn back to the visual attention system as a further site for
mental simulation. If we consider purely spatial rearrangements in one.s mind
of various structures in space, such as moving a ball from the floor up to the
ceiling, this may be done purely by spatial attention. The visual attention goal
to achieve that is clear (the corresponding trajectory in a frontal site such as
the frontal eye fields), and the resulting bias of the visual attention IMC would
thus produce a movement of the focus of attention vertically upwards. This
would have a corollary discharge to achieve this on a suitable buffer working
memory (the visuospatial sketchpad of [1]). The corresponding movement would
then results, using visual attention throughout. This covert attention movement
(with the eyes fixed) breaks the similarity with the motor imagination system
above, since the action sequence corresponding to the imagined action could in
actuality be taken if inhibition to the execution system was cancelled.

3 Model Details

Unless specified otherwise, all dedicated nodes consist of graded neurons, the
membrane potential of which obeys the equation:

C
dV

dt
= gleak(Vleak − V ) + Iinput (1)

Where C is the capacitance of the neuron, gleak its leak conductance, Vleak its
equilibrium potential and I its input current. The output of these graded neurons
follows the form:

Iout =
Ibase

1 + e
V

Vscale

(2)

Here Ibase and Vscale are constants controlling the maximum neuron output and
its scaling. Connections between modules are subject to a time delay of 250ms.

The visual state working memory module consists of dedicated nodes coding
for the possible stages of box opening (Closed box, Part open box (latch closed),
Part open box (latch open), Open box). Initially the Closed box node is primed
by the visual system, later these nodes are activated by the forward model.

The inverse model (IM) takes input from the current visual state and the goal
and uses these to produce an action. Actions are again coded as dedicated nodes
(Pull cover, Unfasten latch, Open box, Remove reward), and weights are chosen
so that the correct action is activated by the combination of appropriate goal
and visual state (we discuss how the IM might be trained later).
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The action working memory buffer holds representations of the actions gen-
erated by the IM so that they can be passed to the FM. These representations
are dedicated nodes with recurrent connections to maintain their activity.

The forward model (FM) takes an action provided by the IM and a description
of the current state and uses these to calculate the next state that would result
from performing the action. In this simple simulation, weights are chosen so that
the correct state is generated by connectivity from the action/state inputs.

The visual working memory holds the next state calculated by the forward
model and represents these states as dedicated nodes (with the same coding as
the current visual state module). If some information about the next state must
be filled in from memory (such as the contents of the box), this is done by the
bidirectional connection to the memory module.

4 Specific Simulations

We apply the architecture of figure 2 to the paradigm mentioned briefly in
(ICANN2008). In this paradigm children open a box which requires several stages
of manipulation. In the simplest example, these stages are:

1) Remove a cover by grasping and pulling.
2) Unfasten a latch.
3) Open the box.
4) Remove a reward from a transparent tube inside the box.

To operate the system in full mental simulation mode, we need to activate
the goal of opening the box and provide the system with the initial visual state
of the closed box. Our inputs to the system are therefore to the goals module
where we prime the goal node corresponding to the desire to open the box and
extract the reward, and the current visual state of the closed box (it would
be possible to perform mental simulation with no external stimulus but then
some other method of providing the desire to simulate would be needed, and
the initial visual state would have to be provided by memory). The goal node
activates a suitable subgoal based on memory (the knowledge that to obtain
a reward, the box must be opened), and together, these provide the necessary
initial conditions to activate the IMC. The mental simulation “loop”. Current
state→IMC→Buffer action WM→FM→Buffer state WM→IMC) then supplies
the rest of the information with assistance from other modules.

5 Simulation Results

We can examine the output from the nodes representing goals, visual states and
actions to look at the time progression of activations. In the first figure we can
see the initial stages of simulation . the goal of opening the box and obtaining
the reward combined with the visual state of the closed box generate the action
of pulling the top of the box, and simulation continues from there:



976 M. Hartley and J. Taylor

Fig. 3. First 2000ms of simulation

In the second figure we see the final states of the simulation:

Fig. 4. Final 2000ms of simulation

Another way to represent the system.s operation is to look at the flow of
activations of components of the mental simulation. In this we can see how the
IMC and FM work through the progression of states needed to simulate the
stages of opening the box.

In the diagram, we can also see that the long term memory fills in information
about the projected visual states to assist the forward model. After the initial
visual state, these later visual states are imagined and held in a buffer visual
working memory so they can be acted on.

6 Discussion

One of the important questions about the model’s operation is how we could
train the inverse and forward models (since in our simulation these are pre-
wired). One possible system for training the IM by observation of another.s
actions is shown here:

The visual input and goals module prime the inputs to the IM. A buffer
working memory holds the visual description of the movements taken by whoever
is performing the demonstration. These are then passed through a classifier
which extracts an action code based on the actions known to the observer. This
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Fig. 5. Flow of activations during model operation showing the process by which the
IM and FMC generate the next state/action from the previous state/action

action code primes one of the actions available to the IM, and associative learn-
ing between the inputs and output form a suitable connection, such that when
presented with the inputs at a later time, the correct action results.
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Fig. 6. Proposed architecture for learning the connectivity of the internal model, by
priming of the correct action output by a teacher module

This question of training the IM is related to the idea of observational learn-
ing, during which performance at motor tasks can be improved by observing
others performing those tasks [5]. The mechanism described above, of allowing
the observed action to prime part of the IM for associative learning provides a
possible mechanism for some parts of observational learning.

We assume that the forward model is based on an existing internal prediction
model based on the physics of the world. It operates based on spatial transfor-
mations to determine what will result from performing a given action. The long
term memory can then fill in needed information to complete the description of
the next visual state.

We can also use the model, particularly the action of the mental simulation
loop, to make predictions for verification. Since we suggest that each stage of
mental simulation involves use of the whole simulation loop, it may be possible
to use event related FMRI to detect activations occurring during these different
stages (for example, by examining the difference in activations between mentally
simulating a two stage task and a three stage task).

7 Conclusions

We have described an architecture for mental simulation based on internal mod-
els and extending our existing neural architecture for observational learning. A
version of the system using graded neurons was used to simulate a simple men-
tal simulation task based on an infant learning paradigm. We also suggested a
method of associative learnin for the inverse model as well as presented some
predictions for experimental verification based on the timings of activations to
be studied using event related FMRI.
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Krömer, Pavel I-543
Kryzhanovsky, Boris I-553
Kryzhanovsky, Michael II-150
Kryzhanovsky, Vladimir I-553, II-72
Kudenko, Daniel I-357
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Tučková, Jana II-822

Ujfalussy, Balázs II-929
Ullner, Ekkehard II-703
Urso, Alfonso I-583
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Väyrynen, Jaakko I-603
Vazquez, Roberto A. II-111
Velikova, Marina I-917
Ventriglia, Francesco II-348
Vicen-Bueno, Raul II-121
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