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Abstract. Learning and behaviour of mobile robots faces limitations.
In reinforcement learning, for example, an agent learns a strategy to get
to only one specific target point within a state space. However, we can
grasp a visually localized object at any point in space or navigate to
any position in a room. We present a neural network model in which
an agent learns a model of the state space that allows him to get to an
arbitrarily chosen goal via a short route. By randomly exploring the state
space, the agent learns associations between two adjoining states and the
action that links them. Given arbitrary starting and goal positions, route-
finding is done in two steps. First, an activation gradient spreads around
the goal position along the associative connections. Second, the agent
uses state-action associations to determine the actions leading to ascend
the gradient toward the goal. All mechanisms are biologically justifiable.

1 Introduction

Neuro- and computer scientists are trying to formulate and implement models
of human intelligence since decades. A model for learning goal directed actions,
reinforcement learning [1], is among the most influential. While these algorithms
were primarily developed in the field of machine learning, they have behavioral
and algorithmic counterparts in neurobiology, such as the reward prediction error
that may be coded by dopamine neurons in the basal ganglia [2,3].

Reinforcement learning requires an extensive randomized exploration phase.
During this phase, the agent visits every state and makes any possible transition
from one state to another usually several times. Despite this experience, the
agent does not learn a general model of the environment that would allow it to
plan a route to any goal. Instead, for any position it learns an action that leads
to the one trained goal only, or, in the case of multiple goal problems [4], to a
fixed set of trained goals.

The topic of this paper are learning forward- and inverse models when the
agent explores the environment (state space); no goal is present, and no goal-
related value function, as it is often used in reinforcement learning, is assigned
to the states in this phase. Further, a planning algorithm is presented that uses
these trained models to allow the agent then to get from any position in the
environment to any other.
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Forward- and Inverse Models. The brain seems to use forward- and inverse
models in abundance [5,6]. Such models can be involved in the control of simple
movements, but they are also implicated in higher level functions such as action
understanding by mirror neurons [7,8] or a representation of the “self” [9].

Computational models usually train the forward- and inverse models in a
phase in which random motor actions are taken, which is termed “motor bab-
bling”. This concept from infant language development [10] is established in
developmental robotics [11,12] for learning body control (“embodiment”).

In our quest to represent the agent’s actions in the entire environment by
internal models, we will not build one sophisticated model of a complex action.
Instead, we will build many tiny models, each representing only two neighboring
states and the action linking them. All together, they will cover all connected
state pairs.

During exploration, the agent learns three kinds of internal models. (i) As-
sociative models of the environment represent connectedness of states (Fig. 1).
(ii) Inverse models calculate the action necessary to move from one state to a
desired neighboring state (Fig. 2). (iii) Forward models predict a future state
from a current state and chosen action (Fig. 3).

All weights are trained by an error rule in which the difference between the
weight’s prediction and the actual outcome determines the scale and the sign
of a learning step. We have used such a learning rule for a predictive model
interpretation of V1 complex cells in the visual cortex [13].
Planning. The main idea of planning is to use inverse- and forward models
repetitively, so that a trajectory between two states can be formed even if they
are distant. The other idea that actually comes first, is to form a kind of energy
landscape that is maximized toward the goal. We will use associative weights
to spread a “goal hill” as neural activation vector around the goal. Its slope
will then guide the trajectory that forms using the inverse- and forward models’
weights, starting at the agent position and arriving at the goal.

The spread of the “goal hill” along the connections that associate connected
states reminds of the pheromone trails that some ants lay when travelling from
a food source back home [14]. This process is much more efficient than to build
up a value function as reinforcement learning does, even when using the learnt
world model (as opposed to acting in the real world), as in Dyna-Q [1]. This
work recapitulates with neural networks part of the work of [15] who explains
multiple learning paradigms observed in animal behaviour with formal logic.

2 Methods

2.1 Exploration

During exploration, the agent moves around randomly in the environment and
learns the relations between states and actions1. At a given time step let the agent
1 In models of purposive actions, the agent moves so as to acquire specifically use-

ful information [16,17,18,19]. For us, however, simple, purely random exploration
suffices.
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Fig. 1. The model consists of a state space (shown below) and action units (top). For a
one-dimensional state space as shown here, only two actions (move left or right) exist.
The weights W s′s associate neighboring states s and s′ irrespective of action taken.
For planning, they will be used to find a route between the goal and the agent.

s s’

a

w a s’ s

Fig. 2. The weights W a s′s “postdict” the action a that has been taken in state s when
arriving at state s′. For planning, they will be used to identify the action necessary to
get to a desired state.
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Fig. 3. The weights W s′a s predict the next state s′ given the current state s and the
chosen action a. During planning they will allow mental simulation, without the agent
having to move physically.

be in state s and perform action a that leads it to state s′. The environment
forms a grid world, and the agent is at one node of the grid. Hence s is a vector
with an entry for any node, and all entries are zero except the one corresponding
to the position of the agent, which is 1. a is a vector with one component for each



From Exploration to Planning 743

action, and the component denoting the chosen action is 1, the others are zero.
We assume there is no noise. After sufficient exploration of the environment, we
assume that every possible triplet (s, a, s′) has been sampled a few times. That
is, from every state, every possible action has been taken and every directly
reachable (neighboring) state has been reached from it.

To build a model of how actions are related to states, the agent learns three
sets of weights. First, W s′s tells how likely it is to get to state s′ from state
s, irrespective of (averaging over) the chosen actions (Fig. 1). Second, W a s′s

tells, which action a has been used to get from s to s′ (Fig. 2). Third, W s′a s

tells, which state s′ the agent will arrive at after performing action a in state s
(Fig. 3).

The inverse model W a s′s and the forward model W s′a s combine dual input
(state-state and state-action, respectively) to generate their output. To activate
such a weight, both input conditions must be met, hence it acts as a logical AND
gate. Since each state and every action are described by one specific unit being
active, the product of the two inputs forms this AND gate. Units that take a
sum over such products are called ΣΠ (Sigma-Pi) units.

If s has N elements and a has K elements, then W s′s has N2 elements and
W a s′s and W s′a s have KN2 elements each. Note that most elements of these
matrices will be zero, because from a given state only a small number of other
states can be reached directly.

At any point during exploration the agent moves from state s using action a
to state s′. This triplet (s′, s, a) has all the values necessary to learn the three
weight types. Each weight type learns to predict its respective outcome value by
adjusting the weight incrementally to reduce the prediction error.

For the associative weights W s′s the prediction of s′ from s is

s̃′i =
∑

j

ws′s
ij sj . (1)

They are trained to reduce the prediction error ‖s′ − s̃′‖ according to

Δws′s
ij = ε (s′i − s̃′i) sj (2)

with learning rate ε. Since these weights do not consider the action being taken,
they compute an average over the possible reachable states rather than a precise
prediction of the actual next state.

The W a s′s make a “postdiction” ã of the action a that was taken in s before
the agent arrived at s′:

ãk =
∑

ij

wa s′s
kij s′i sj . (3)

Note that wa s′s
kij is distinguished from wa s′s

kji , that is, the direction of movement
matters. They are trained to reduce the error ‖a − ã‖ as follows:

Δwa s′s
kij = ε (ak − ãk) s′i sj . (4)
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Here the ãk are continuous values while ak is 1 for the action that is taken during
the random exploration and zero otherwise.

The W s′a s predict the actual next state s′ by taking into account both s
and a:

ŝ′i =
∑

kj

ws′a s
ikj ak sj . (5)

They are trained to reduce the prediction error ‖s′ − ŝ′‖ as follows:

Δws′a s
ikj = ε (s′i − ŝ′i) ak sj . (6)

2.2 Planning

After learning the weights in the exploration phase, a trajectory between any
two states can be planned. The planning process consists of two phases. In the
first phase, the unit in state space at the goal position is set active. Activation
spreads far around the goal using the associative weights W s′s. It is important
that this emerging activation hill decreases monotonously away from the goal
and that the agent position happens to be at its slope. Hence, along a line
from the agent to the goal there will be an activation gradient that the agent
follows to reach the goal. This gradient ascent is the second phase of the planning
process.

Spreading the Goal Hill (Phase 1). Let the goal be at unit g in the state space,
so we initialize our “hill” h of activation at the goal with hi = 1, for unit i which
is the goal position g, and hi = 0, for all other units.

We spread the activations along those pathways captured in the associative
weights W s′s by repeating the following three equations for all state space units

h′
i =

∑

j

ws′s
ij hj (7)

h′′
i = hi + h′

i (8)
hi = scale(h′′

i ) (9)

until the goal hill reaches the position of the agent. Eq. 7 carries the goal unit’s
activation one step along all connections {ws′s

ij }. Eq. 8 adds up the arriving
activations so that they do not become too small away from the goal. In Eq. 9,
scale(.) is a non-local function that scales all activities by a constant so that the
largest value is 1. It prevents the activations from diverging to large values.

Note that the activation hill spreads primarily along the W s′s connections
that denote movements away from the goal, instead of toward the goal. This is
no problem if actions from state unit j to unit i have been taken as often as
actions into the other direction during exploration. The W s′s ought to be used
in the opposite direction by the goal hill as compared to the movements.

Hill Ascent (Phase 2). We start by placing the agent to unit m by defining
fi = 1, at position i = m, and fi = 0, elsewhere.
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Next we activate the action units from combined input of h and f :

ak =
∑

ij

wa s′s
kij hi fj. (10)

Since fj is non-zero only at unit m, only those hi are effective where i is reachable
from m. (This is because all wa s′s

kij are zero if state i cannot be reached from
state j by any action.) Each of the effective hi corresponds to one action, and
since the hi nearest to the goal is the largest, the corresponding action unit will
be most activated. (This is assuming that the weights are approximately equal.)
A winner-take-all function then sets the maximally activated action unit to 1,
others to zero.

Finally, we either perform the action of the selected unit in the world, or we
mentally simulate it by predicting the next state as follows:

f ′
i =

∑

kj

ws′a s
ikj ak fj (11)

A winner-take-all function over the f ′
i then determines the next position of the

agent. We write this new position as fi and repeat from Eq. 10 until the agent
reaches the goal.

3 Results

First, we tested the model successfully on a plain grid world (not shown). The
agent explored the grid and was then able to navigate to several given goal
positions. Next, we put some obstacles into the grid world and created the maze
shown in Fig. 4 a). The agent explored the space by randomly activating one
of its four motor units to move north, west, south or east. Whenever the agent
aimed into a wall it was placed to the current position, instead.

All weights were initialized with zero values. Self-connections of W s′s were not
allowed to grow. 25000 individual movements in the maze, and hence learning
steps, were performed with a learning rate of ε = 0.01 for all weights. Longer
exploration would lead to more homogeneous weights, but was not necessary.

As a result of learning, Fig. 4 b) shows the weights W s′s of a few units, those
that are boxed in Fig. 4 a). Units on a wall have only zero weights. The other
units have non-zero weights from all accessible neighboring fields. The weights
are noisy, because the transitions between states s and s′ have occurred with
different frequencies for different state pairs during exploration.

The planning process is shown in Fig. 5. The two phases, spreading of the
“goal hill” and hill ascent are done for a fixed number iterations each, here 48,
to cover at least the distance between the agent and the goal. In the first phase,
the activation hill h spreads from the goal position throughout the entire maze,
avoiding the walls, as shown in Fig. 5 a) and c) for two slightly different goal
positions. In the second phase, shown in Fig. 5 b) and d), the agent “travels”
without actual interaction with the real world, but only by simulating its move-
ment using Eqs. 10 and 11. Avoiding the wall positions, it navigates toward the
goal along a short path. Planning is fully deterministic.
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a) b)

Fig. 4. a) The grid-world, with impenetrable fields shown in red color. b) A part of the
associative weight matrix W s′s. Each little square shows the input weights (receptive
field) of one unit; on one unit’s input the maze is overlayed. Blue denotes strong weights.
Units have no self-connections as seen in the white square “between” a unit’s weights
to the neighbors. Only units in the upper left part, corresponding to the box in a), are
shown.

4 Discussion

Reinforcement Learning. Our small maze example suggests that our planning
algorithm greatly enhances reinforcement learning. Are there any cases of goal-
finding that can be learnt by reinforcement learning but not by planning?

Planning requires access to the internal representation of the entire state
space, including the goal position. Before the agent actually reaches the goal, it
might not be possible for it to imagine the goal and to seed the “goal hill” for
initializing phase 1 of the planning process. For example, we can plan to navigate
a maze if we know the layout, but we have to resort to other strategies if we
have only local information.

Experiments which are typical for reinforcement learning often combine inco-
herent stimuli like a sound, a light and food. In these experiments, the forming
of the associative weights W s′s may become difficult. Reinforcement learning
does not require direct links between neighboring states, but only links from all
state space units to a critic and actor units.

In experiments with rats who have to find a hidden platform in a water maze,
the rats learn new positions of the platform faster after several blocks of learning.
A reinforcement leaning model explained these experiments using a “direction
computer” that was not neurally specified [20]. We suggest an alternative expla-
nation, that the rats learn the goals faster, because they have acquired internal
models of the water maze.

Robustness. In Fig. 5 d) we can see that the agent misses the goal narrowly. The
reason, we conjecture, is that the “goal hill” has become very flat around the
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Fig. 5. Network activations in the planning phase. a) and c) show the “goal hill”
h spreading over the entire maze during 48 time steps. Only every 4th time step is
displayed. To make small activations better visible, the square root of hi is taken four
times. b) and d) show the agent position (dark blue point). The starting- and goal
positions are marked by a red point. The agent’s trajectory is marked light blue.

goal, while there is noise in the W a s′s weights that are responsible to choose the
action together with information from the gradient of the hill (Eq. 10). Generally
for a hill of limited height, the wider it is, the narrower becomes its slope, making
it harder to identify2.

The weights W a s′s and W s′a s are not expected to be uneven in a deterministic
scenario such as our grid world. However, in our simulation the weights are
noisy because we have stopped learning well before convergence (neither have
we annealed the learning rates).

A possible remedy to deal with a flat slope is to spread the “goal hill” several
times, and let the agent ascend it only when it perceives changes in the hill’s ac-
tivations. Another remedy may be to use the timing of arriving spikes (cf. [21]).
The idea is to let spikes (or bursts) travel away from the hill center along the W s′s

and to let the agent move toward the direction from which it first receives a spike.
A noisy environment as well as a probabilistic description of the model are to

be tackled in the future. Furthermore, since the implementation is neurally and

2 Note that in Eq. 10 the relative activations h around the agent are important for
determining the action. A slope with a fixed relative gradient could range indefinitely,
however, the values would become infinitesimally small.
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not table-based, it may not require discrete states. Hence, we may test in future
whether the model works with distributed representations.

Short Path. The agent does not necessarily take the shortest path to the goal.
In the exploration and learning phase, the agent may prefer certain actions

over others when in certain states (just like in the maze some actions are without
an effect when directed at a wall, but in a realistic scenario, an agent might have
just a weak tendency to avoid rough terrain). This would lead to uneven W s′s,
and in the first phase of planning, the “goal hill” would be increased along the
typically preferred paths. This will lead to — wanted or unwanted — preferences
for well experienced paths during goal seeking as well.

Furthermore, when spreading the “goal hill”, the input to a unit will be higher
when arriving via multiple paths rather than via one path only. Accordingly, this
would lead to a preference to travel along “safe” states from which multiple paths
lead to the goal. If this is undesired, schemes that consider only the strongest in-
put to spread the “goal hill” are conceivable (cf. Riesenhuber & Poggio’s “MAX”
operator in a model of visual cortex).

Embedding Architecture. Our simple model includes only state space and action
units. Allowing for a variable goal, it is distinguished from a purely reactive
sense-action mechanism. However, the question of who sets the goal is not in
the scope of the model. This might come from sensory input, for example if an
attractive object, such as a fruit, is seen in the visual field. It might as well be
determined by a more abstract thought process on a cognitive level.

A challenging question also in reinforcement learning is, how does the state
space emerge from the raw sensory stimuli. Models of sensory preprocessing that
should fill this gap are mostly trained in an unsupervised fashion, so sensory
representations are not optimized for action or planning. Some models learn
to represent sensory input following the requirements of reinforcement learning
(e.g. [22,23]). Consequentially, one might consider whether sensory processing
could be designed to aid planning processes.
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