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Abstract. In this work, we proposed the use of Support Vector Ma-
chines (SVM) to predict the performance of machine learning algorithms
based on features of the learning problems. This work is related to the
Meta-Regression approach, which has been successfully applied to pre-
dict learning performance, supporting algorithm selection. Experiments
were performed in a case study in which SVMs with different kernel
functions were used to predict the performance of Multi-Layer Percep-
tron (MLP) networks. The SVMs obtained better results in the evaluated
task, when compared to different algorithms that have been applied as
meta-regressors in previous work.

1 Introduction

Algorithm selection is an important aspect to the success of the Machine Learn-
ing applications [1]. This task is traditionally supported by empirically evalu-
ating the candidate algorithms using the avaliable data, which can demand on
expensive computational resources [2]. Algorithm selection can also be guided
by expert rules, however such expert knowledge is not always easy to acquire,
specially for new algorithms [3].

Considering the above context, different authors in literature have investigated
the automatic acquisition of knowledge to predict the performance of learn-
ing algorithms, and to support algorithm selection, in a kind of Meta-Learning
[1,2,3,4,5,6,7,8,9,10,11,12]. The knowledge in Meta-Learning is acquired from a
set of meta-examples, in which each meta-example stores features of a learning
problem solved in the past and information about the performance obtained by
the candidate algorithms (the base-learners) on the problem. The knowledge in
this case can be represented as a learning model (i.e., the meta-learner) that
relates features of the problems and the performance of the learning algorithms.

A specific approach to Meta-Learning consists of using a regression algorithm
to predict the value of a chosen performance measure (e.g., classification error)
of the candidate algorithms based on the features of the problems. This ap-
proach is referred in the literature as Meta-Regression [10]. The meta-learner
is a regression model that may be used to select the best candidate algorithm
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considering the highest predicted performance measure. Different regression algo-
rithms have been applied in this context, such as decision trees, linear regression
and instance-based algorithms [3,5,6].

In the current work, we investigated the use of Support Vector Machines
(SVMs) [13] to Meta-Regression. In the literature, SVMs have been successfully
applied to many different problems, achieving very competitive results when
compared to other machine learning algorithms [14]. In the context of Meta-
Regression, there is no previous work that evaluated the use of SVMs to predict
the performance of learning algorithms.

Experiments were performed in a case study which consists of predicting the
performance of Multi-Layer Perceptron (MLP) networks [15]. A set of 50 meta-
examples was produced from the application of the MLP on 50 different learning
problems. In the meta-level, we applied SVMs with different kernel functions
(among polynomial and RBF kernels) to predict the value of the Normalized
Mean of Squared Errors (NMSE) of the MLPs. The predictions of the NMSE
were based on a set of 10 pre-defined features of the learning problems (e.g.,
number of training examples and correlation between attributes). The perfor-
mance of the SVMs was evaluated in a leave-one-out experiment performed on
the 50 meta-examples.

As a basis of comparison, we also performed experiments in the meta-level us-
ing three different benchmark regression algorithms which were already used in
previous work to Meta-Regression: the M5 algorithm (decision trees), the linear
regression, and the 1-nearest neighbor algorithm. The performed experiments
revealed that the SVMs with simple polynomial kernels obtained better perfor-
mance in the meta-regression task when compared to the benchmark algorithms.
The experiments also revealed that good performance can also be achieved by
using SVM with RBF kernels, depending, in this case, on an adequate choice of
the kernel’s parameters.

Section 2 brings a brief introduction about Meta-Learning, including the
Meta-Regression approach. Section 3 presents details of the proposed work, as
well as the case study. Section 4 brings the experiments and obtained results.
Finally, section 5 presents some final conclusions and the future work.

2 Meta-Learning

According to [16], there are different interpretations of the term Meta-Learning.
In our work, we focused on the definition of Meta-Learning as the automatic pro-
cess of acquiring knowledge that relates the performance of learning algorithms
to the features of the learning problems [1]. In this context, each meta-example is
related to a learning problem and stores: (1) the features describing the problem,
called meta-features; and (2) information about the performance of one or more
algorithms when applied to the problem. The meta-learner is a learning system
that receives as input a set of such meta-examples and then acquires knowledge
used to predict the algorithms performance for new problems being solved.

The meta-features are, in general, statistics describing the training dataset
of the problem, such as number of training examples, number of attributes,
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correlation between attributes, class entropy, among others [7,8]. In a strict for-
mulation of Meta-Learning, each meta-example stores, as performance informa-
tion, a class label which indicates the best algorithm for the problem, among
a set of candidates [4]. In this case, the class label for each meta-example is
defined by performing a cross-validation experiment using the available dataset.
The meta-learner is simply a classifier which predicts the best algorithm based
on the meta-features of the problem.

Although the strict Meta-Learning approach (as described above) has been
applied by different authors (such as [2,4,9,17,18]), certain information loss may
be introduced in the definition of the class labels associated to meta-examples.
For instance, the performance of two algorithms may be very similar, and this
information will be lost by merely recording the best algorithm as class label [5].

In order to overcome the above difficulty, the Meta-Regression approach [10]
tries to directly predict the numerical value of accuracy (or alternatively the error
rate) of each candidate algorithm. In this case, the meta-examples store as per-
formance information the numerical values of accuracy obtained in previous prob-
lems. The meta-learner, in turn, is a regression model that may be used either to
select the best candidate algorithm based on the highest predicted accuracy or to
provide a ranking of algorithms based on the order of predicted accuracies.

In [3], the authors evaluated different algorithms as meta-regressors, including
linear regression models, piecewise linear models, decision trees and instance-
based regression. In [6], the authors used linear regression models to predict
the accuracy of 8 classification algorithms, and the experiments revealed good
results. In [5], the authors performed comparative experiments with both the
strict Meta-Learning and Meta-Regression approaches, and observed that the
latter one performed better when used to support algorithm selection.

3 Meta-Regression with SVMs

As seen in section 2, Meta-Regression is a flexible approach to predicting the
performance of learning algorithms, supporting a more informative solution to
algorithm selection.

In the current work, we investigate the use of Support Vector Machines
(SVMs) in the context of Meta-Regression. SVM is a state-of-the-art algorithm
in the Machine Learning field, successfully applied to different classification and
regression problems [13,14]. Previous work in Meta-Regression has applied differ-
ent regression methods to produce meta-learners (as seen in section 2), yielding
relative success. However, to the best of our knowledge, there is no evaluation
of the use of SVMs in this task.

Figure 1 brings the architecture of the Meta-Regression which summarizes our
proposal. Each meta-example is composed by the meta-features of a learning task
and the performance information derived from the empirical evaluation of the
learning algorithm on the task. The set of generated meta-examples is given as
input to the SVM algorithm, which will produce a regression model responsible
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Fig. 1. Architecture of Meta-Regression

for predicting the algorithm’s performance for new problems based on its
meta-features.

A case study was performed in our work in a meta-learning task which corre-
sponds to predict the performance of Multi-Layer Perceptron (MLP) networks
[15] in regression problems. In this case study, we generated a set of 50 meta-
examples from the application of the MLP in 50 regression problems (see section
3.1). Each meta-example is associated to a single problem and stores: (1) the
value of 10 descriptive meta-features (see section 3.2); and (2) the test error ob-
tained by the MLP when evaluated in the regression problem (see section 3.3).
The set of meta-examples is given as input to a regression algorithm which will
be able to predict the error of the MLP for new problems only based on the
meta-attributes of the problems.

In the following sections, we provide details about the construction of the set
of meta-examples, as well as the details on the SVMs used for Meta-Regression.

3.1 Datasets

In order to generate meta-examples, we collected 50 datasets corresponding to
50 different regression problems, available in the WEKA project1. On average,
the collected datasets presented 4,392 examples and 13.92 attributes.

We observed in these datasets a large variability in both the number of training
examples and the number of attributes. This variation may be convenient to Meta-
Learning studies, since it is expected that the algorithms present significantly dif-
ferent patterns of performance, depending on the problem being solved.

The attributes in the original datasets were normalized to the [-1; +1] interval,
aiming a better treatment by the MLP network. The order of the examples in
each dataset were randomly permuted, in order to avoid eventual biases derived
from the original dataset acquisition.

1 These datasets are specifically the sets provided in the files numeric and regression
available to download in http://www.cs.waikato.ac.nz/ml/weka/
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3.2 Meta-features

In the developed work, a total number of 10 meta-features was used to describe
the datasets of regression problems:

1. LogE - Log of the number of training examples;
2. LogEA - Log of the ration between number of training examples and number

of attributes;
3. MinCT, MaxCT, MeanCT and StdCT - Minimum, maximum, mean and

standard deviation of the absolute values of correlation between predictor
attributes and the target attribute;

4. MinCAtr, MaxCAtr, MedCAtr and DesvCAtr - Minimum, maximum, mean
and standard deviation of the absolute values of correlation between pairs
of predictor attributes.

The meta-feature LogE is an indicator of the amount of data available for
training, and LogEA, in turn, indicates the dimensionality of the dataset. The
meta-features MinCT, MaxCT, MedCT and DesvCT indicate the amount of
relevant information available to predict the target attribute. The meta-features
MinCAtr, MaxCAtr, MedCAtr and DesvCAtr, in turn, indicate the amount
of redundant information in the dataset. This set of meta-features was chosen
by considering features adopted in previous work. As this set is probably non
optimal, in future work, we will consider new features.

3.3 Performance Information

The final step to generate the meta-examples is to evaluate the performance
of the MLP in the 50 collected regression tasks. From this evaluation, we can
produce the performance information stored in the meta-examples which will
correspond to the target attribute in the Meta-Regression task. In order to mea-
sure the performance of the MLP in each problem, the following methodology
of evaluation was applied.

Each dataset was divided in the training, validation and test subsets, in the
proportion of 50%, 25% and 25%, respectively. As usual, the training subset was
used in the adjustment of the MLP’s weights, the validation subset is used to
estimate the generalization performance of the MLP during training, and the
test subset is used to evaluated the performance of the trained MLP. In our
work, we applied the standard Backpropagation (BP) algorithm [15] to train the
MLP network2. The optimal number of hidden nodes3 was empirically defined,
by testing the values 1, 2, 4, 8, 16 and 32. For each number of hidden nodes, the
MLP is trained 10 times with random initial weights. The stopping criteria of
the training process followed the benchmarking rules provided in [20].

The optimal number of hidden nodes was finally chosen as the value in
which the trained MLP obtained the lowest average NMSE (Normalized Mean of
2 The BP algorithm was implemented by using the NNET Matlab toolbox [19]. Learn-

ing rates were defined by default.
3 The MLP was defined with only one hidden layer.
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Squared Errors) on the validation subset over the 10 training runs. The NMSE
measure is defined as:

NMSE =
∑n

i=1(yi − ỹi)2∑n
i=1(yi − y)2

(1)

In the equation, n is the number of examples in the validation subset, yi and
ỹi are respectively the target and the predicted value for example i, and y is the
average of the target attribute.

The performance information which is stored in the meta-example is the aver-
age NMSE obtained by the trained MLP (with optimal number of hidden nodes)
on the test subset. According to [21], a property of NMSE which is interesting
for Meta-Learning is that the values have no scale and are comparable across dif-
ferent datasets (which it would not be feasible if we had used a non-normalized
error measure). Values of NMSE lower to 1 indicate that the MLP provided
better predictions than the mean value. Values higher than 1 indicate that the
MLP was not useful in the regression problem.

We highlight here that there are different algorithms to train MLPs, as well
as other methodologies of training, that could have been used to improve per-
formance. However, our aim in this work is not to achieve the best possible
performance with MLPs but to predict the learning performance. Other learn-
ing algorithms to train MLPs (such as the Levenberg-Marquardt algorithm [22])
can be applied in the future as new case studies, possibly with more effective
strategies to train the networks.

3.4 Meta-regressor

In our case study, the Meta-Regression task is to predict the NMSE measure of
the MLP based on the features of the problems given as input. In our experi-
ments, this task is dealt with SVM regressors.

An important aspect in the development of SVM is the chosen kernel function.
In our work, we evaluated the use of two different types of kernel functions in
the SVMs. First, we evaluated homogeneous polynomial kernels represented as:

K(x, x′) = (x· x′)p (2)

In the above equation, x and x′ are instances in an attribute space. In our
experiments, we used the values p = 1 (linear kernel) and p = 2 (quadratic
kernel), which are the more common options for polynomial kernels. We also
deployed in our work a Radial Basis Function (RBF) kernel in the form:

K(x, x′) = e−γ·‖x−x′‖2
(3)

The RBF kernel is a non-linear function that, in comparison to the polynomial
kernels, it is expected to handle more complex relationships between predictor
and target attributes. In our experiments, we evaluated the values 0.01, 0.05 and
0.1 for the parameter γ.
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Obviously, there are other possibilities of kernel functions (e.g., sigmoid ker-
nels), as well as parameter settings that we intend to experiment in future work.
Besides, automated procedures can be used in the future to define the values of
these parameters [23].

In this work, we deployed the implementation of SVMs provided in the WEKA
environment [24], which applies the sequential minimal optimization algorithm
proposed by [13] for training the SVM regression model.

4 Experiments and Results

In this section, we evaluated the performance of the Meta-Regression process
for the generated set of meta-examples. In our experiments, the SVM meta-
regressor was evaluated by using a leave-one-out procedure. At each step, 49
meta-examples are used as the training set, and the remaining meta-example
is used to test the trained meta-learner. This step is repeated 50 times, using
at each time a different test meta-example. The meta-learning performance is
then evaluated based on the predictions generated by the meta-learner in the
test samples.

Two different criteria were used to evaluated the meta-learner: (1) the Nor-
malized Mean of Squared Errors (NMSE) computed for the predictions of the
meta-learner in the test meta-examples; and (2) the Correlation (COR) between
the predictions generated by the meta-learner and the true values of the target
attribute stored in the test meta-examples.

As a basis of comparison, the above methodology of experiments was also
applied using three different methods as meta-regressors:

1. M5 algorithm: which was proposed by Quinlan [25] to induce regression trees;
2. 1-Nearest Neighbor (1-NN) algorithm: a special case of instance-based learn-

ing algorithm [26];
3. Linear Regression (LR) model.

All these methods were already used in previous work as meta-regressors
(see, for instance, [3]). We highlight that these algorithms are representatives of
different families of regression methods, providing different inductive biases for
the learning problem being solved in the case study.

As it can be seen in Table 1, the SVM regressor with polynomial kernels
(linear and quadratic) obtained better results on both evaluation measures when
compared to the benchmark methods M5, 1-NN and LR. The best result among
the polynomial kernels was obtained by the quadratic kernel, which also yielded
a very competitive result (the second best one) when we include the SVM with
RBF kernel in the comparison.

Considering the runs with RBF kernel, we observed that the performance of
the SVM was very sensitive to the value of parameter γ. For γ = 0.1, the SVM
obtained the best result over all evaluated algorithms and parameter settings.
For γ = 0.05, the SVM also performed well compared to the other algorithms
(yielding the third best result). However, for γ = 0.01 , the SVM obtained a
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Table 1. Results obtained by Meta-Regression in the leave-one-out experiment

NMSE COR
SVM (linear) 0.486 0.731
SVM (quadratic) 0.457 0.758
SVM (RBF, γ = 0.1) 0.374 0.794
SVM (RBF, γ = 0.05) 0.484 0.724
SVM (RBF, γ = 0.01) 0.595 0.701
M5 0.605 0.631
1-NN 0.539 0.710
LR 0.595 0.658

performance which was only better than the method M5. This result indicates
that an adequate choice of the parameter of RBF kernels (i.e., the model selec-
tion) is an aspect that should be more carefully addressed in the case of SVM
meta-regressors. Model selection is in fact a relevant topic of research in SVMs,
which can be handled, for instance, by considering the characteristics of the data
[13,21,27] and by deploying search techniques [23,28,29]. Such strategies will be
considered in future work to model selection in our case study.

5 Conclusion

In this work, we presented the use of SVMs to Meta-Regression, which aims
to predict the performance of learning algorithms based on the features of the
learning problems being solved.

Experiments were performed in a case study which consisted in predicting the
numerical performance of MLP networks when applied to regression tasks. A set
of 50 meta-examples was generated in this case study in order to perform a com-
parative analysis of different meta-regressors. The results of a leave-one-out ex-
periment revealed the viability of using SVMs in the investigated case study. The
performance of the SVM meta-regressor was in general better than the perfor-
mance obtained by the benchmark algorithms applied as a basis of comparison.

The current work has limitations that will be dealt with in future work. Al-
though we applied, in the case study, polynomial and RBF kernels which are
widely used in the literature, different other functions can be evaluated. Fur-
thermore, we only tested few values for the kernel parameters, which could be
optimized by using more sophisticated approaches. We also include as future
work, the evaluation of SVM meta-regressors in new case studies related to
other machine learning algorithms.
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