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Preface

The annual conference of the European Association for Computer Science Logic
(EACSL), CSL 2008, was held in Bertinoro, near Bologna (Italy), September
16-19, 2008. The conference series started as a program of International Work-
shops on Computer Science Logic, and then at its sixth meeting became the
Annual Conference of the EACSL. This conference was the 22nd meeting and
17th EACSL conference; it was organized by the Department of Computer Sci-
ence of Alma Mater Studiorum — Universita di Bologna.

CSL 2008 was preceded on Monday, September 15th by the symposium Bridg-
ing Logic and Computer Science on the occasion of the 60th birthday of Johann
A. Makowsky.

In response to the call for papers, a total of 102 abstracts were submitted to
CSL 2008 of which 87 were followed by a full paper. The Program Committee
selected 31 papers for presentation at the conference and publication in these
proceedings, during a one-week electronic discussion on the EasyChair platform;
each paper was refereed by three to five reviewers.

The Program Committee invited lectures from Luca Cardelli, Pierre-Louis
Curien, Jean-Pierre Jouannaud, and Wolfgang Thomas. The papers provided by
the invited speakers appear at the beginning of this volume.

Created in 2005, the Ackermann Award is the EACSL Outstanding Disserta-
tion Award for Logic in Computer Science, sponsored for the years 2007-2009 by
Logitech S.A. The award recipient for 2008 was Krishnendu Chatterjee, who was
invited to present his work at the conference. Citation for the award, abstract
of the thesis, and a biographical sketch of the recipient may be found at the end
of the proceedings.

We sincerely thank the Program Committee and all of the referees for their
generous work in reviewing the papers, as well as Ugo Dal Lago, the main local
organizer. We also thank the Alma Mater Studiorum — Universita di Bologna,
the Istituto Nazionale di Alta Matematica — GNSAGA, and the Associazione
Ttaliana di Logica e Applicazioni (AILA) for their financial support.

June 2008 Michael Kaminski
Simone Martini
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The Computability Path Ordering:
The End of a Quest

Frédéric Blanqui', Jean-Pierre Jouannaud?, and Albert Rubio?

L INRIA, Campus Scientifique, BP 239, 54506 Vandceuvre-les-Nancy Cedex, France
2 LIX, Projet INRIA TypiCal, Ecole Polytechnique and CNRS, 91400 Palaiseau, France
3 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

Abstract. In this paper, we first briefly survey automated termination proof meth-
ods for higher-order calculi. We then concentrate on the higher-order recursive
path ordering, for which we provide an improved definition, the Computability
Path Ordering. This new definition appears indeed to capture the essence of com-
putability arguments a la Tait and Girard, therefore explaining the name of the
improved ordering.

1 Introduction

This paper addresses the problem of automating termination proofs for typed higher-
order calculi.

The first attempt we know of goes back to Breazu-Tannen and Gallier [24] and Okada
[44]]. Following up a pioneering work of BreazuTannen who considered the confluence
of such calculi [23]], both groups of authors showed independently that proving strong
normalization of a polymorphic lambda-calculus with first-order constants defined by
first-order rewrite rules was reducible to the termination proof of the set of rewrite
rules: beta-reduction need not be considered. Both works used Girard’s method based
on reducibility candidates -also called sometimes computability predicates. They then
gave rise to a whole new area, by extending the type discipline, and by extending the
kind of rules that could be taken care of.

The type discipline was extended soon later independently by Barbanera and
Dougerthy in order to cover the whole calculus of constructions [3128].

Higher-order rewrite rules satisfying the general schema, a generalization of Godel’s
primitive recursion rules for higher types, were then introduced by Jouannaud and
Okada in the case of a polymorphic type discipline. The latter work was then
extended first by Barbanera and Fernandez and finally by Barbanera, Fernandez
and Geuvers to cover the whole calculus of constructions [[6].

It turned out that recursors for simple inductive types could be taken care of by the
general schema, but arbitrary strict inductive types could not, prompting for an exten-
sion of the schema, which was reformulated for that purpose by Blanqui, Jouannaud
and Okada [16]. This new formulation was based on the notion of computability clo-
sure of a term f(s) headed by a higher-order constant f, defined as a set containing the
immediate subterms s of f(s) and closed under computability preserving operations in
the sense of Tait and Girard. Membership to the general schema was then defined for an

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 1-114] 2008.
(© Springer-Verlag Berlin Heidelberg 2008



2 F. Blanqui, J.-P. Jouannaud, and A. Rubio

arbitrary rewrite rule as membership of its right-hand side to the computability closure
of its left-hand side.

Besides being elegant, this formulation was indeed much more flexible and powerful.
By allowing for more expressive rules at the object level of the calculus of constructions,
it could handle many more inductive types than originally. The general schema was
finally extended by Blanqui in a series of papers by allowing for recursive rules on
types, in order to cover the entire calculus of inductive constructions including strong
elimination rules [13[14].

The definition of the general schema used a precedence on higher-order constants,
as does Dershowitz recursive path ordering for first-order terms [26]. This suggested
generalizing this ordering to the higher-order case, a work done by Jouannaud and Ru-
bio in the case of a simple type discipline under the name of HORPO [37]. Comparing
two terms with HORPO starts by comparing their types under a given well-founded
quasi-ordering on types before to proceed recursively on the structure of the compared
terms, comparing first in the precedence the higher-order constants heading both terms.
Following the recursive path ordering tradition, a subterm of the left-hand side could
also be compared with the whole right-hand side, regardless of the precedence on their
heads.

HORPO was then extended to cover the case of the calculus of constructions by
Walukiewicz [51]], and to use semantic interpretations of terms instead of a precedence
on function symbols by Borralleras and Rubio [21]]. HORPO was also improved by the
two original authors in two different ways: by comparing in the so-called subterm case
an arbitrary term belonging to the computability closure of the left-hand side term with
the right-hand side term, therefore generalizing both HORPO and the general schema;
and by allowing for a restricted polymorphic discipline [40]. An axiomatic presentation
of the rules underlying HORPO can be found in [31]. A more recent work in the same
direction is [27].

The ordering and the computability closure definitions turn out to share many similar
constructs, raising expectations for a simpler and yet more expressive definition, instead
of a pair of mutually inductive definitions for the computability closure and the ordering
itself, as advocated in [17]. These expectations were partly met, on the one hand in [15]
with a single computability oriented definition, and on the other hand in where a
new, syntax oriented recursive definition was given for HORPO. In contrast with the
previous definitions, bound variables were handled explicitly by the ordering, allowing
for arbitrary abstractions in the right-hand sides.

A third, different line of work was started by van de Pol and Schwichtenberg, who
aimed at (semi)-automating termination proofs of higher-order rewrite rules based on
higher-order pattern matching, a problem generally considered as harder as the previous
one [47/49/48]]. Related attempts with more automation appear in [43138], but were
rather unconclusive for practical applications. The general schema was then adapted by
Blanqui to cover the case of higher-order pattern matching [11]]. Finally, Jouannaud and
Rubio showed how to turn any well-founded ordering on higher-order terms including
beta and eta, into a well-founded ordering for proving termination of such higher-order
rules, and introduced a very simple modification of HORPO as an application of this

result [36]].
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A fourth line of work was started by Borralleras and Rubio. Among other material,
Borralleras thesis [20] contained a constraint-based approach to the semantic path or-
dering which was shown to encompass the dependency pairs method of Arts and
Giesl in all its various aspects. Besides the thesis itself, the principles underlying
this work are also described in [21] and [22]. An interesting aspect is that they lift to
the higher-order case. Extending the dependency pairs method to the higher-order case
was also considered independently by Sakai et al [46/43] and Blanqui [10].

Finally, a last line of work addresses the question of proving termination of higher-
order programs. This is of course a slightly different question, usually addressed by
using abstract interpretations. These interpretations may indeed use the general schema
or HORPO as a basic ingredient for comparing inputs of a recursive call to those of the
call they originate from. This line of work includes [32I25I852/TI7UT2I29]]. An impor-
tant related work, considering pure lambda terms, is [19].

We believe that our quest shall be shown useful for all these lines of work, either as
a building block, or as a guiding principle.

In this paper, we first slightly improve the definition of HORPO in the very basic
case of a simple type discipline, and rename it as the Computability Path Ordering. We
then address the treatment of inductive types which remained ad hoc so far, therefore
concluding our quest thanks to the use of accessibility, a relationship which was shown
to generalize the notion of inductive type by Blanqui [13/14]. We finally list which are
the most important question to be addressed for those who would like to start a new
quest.

2 Higher-Order Algebras

Polymorphic higher-order algebras are introduced in [40]. Their purpose is twofold: to
define a simple framework in which many-sorted algebra and typed lambda-calculus co-
exist; to allow for polymorphic types for both algebraic constants and lambda-calculus
expressions. For the sake of simplicity, we will restrict ourselves to monomorphic types
in this presentation, but allow us for polymorphic examples. Carrying out the polymor-
phic case is no more difficult, but surely more painful.

We give here the minimal set of notions to be reasonably self-contained.

Given a set S of sort symbols of a fixed arity, denoted by s : %™ — x, the set of types
is generated by the constructor — for functional types:

Ts = s(1g) | (1s — Ts)
fors:«" —x €8

Function symbols are meant to be algebraic operators equiped with a fixed number
n of arguments (called the arity) of respective types o1, ..., 0y, and an output type o.
Let F = Lﬂo’l;~~~~,0'7n0' Foix... xon—o- The membership of a given function symbol f to
Forx...xo,—0o 18 called a type declaration and written f : 01 X ... X 0, — 0.

The set 7 (F, X) of raw algebraic A-terms is generated from the signature F and a
denumerable set X" of variables according to the grammar:

T =X|(\X:7s.7)| Q(T,T)| F(T,...,T).
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The raw term \r : o.u is an abstraction and @(u,v) is an application. We may omit
o in Ar : o.u and write @(u,v1,...,v,) or u(vy,...,v,), n > 0, omitting applica-
tions. Var(t) is the set of free variables of ¢. A raw term t is ground if Var(t) = 0.
The notation s shall be ambiguously used for a list, a multiset, or a set of raw terms
S1y.v-58n.

Raw terms are identified with finite labeled trees by considering Ax : o.u, for each
variable z and type o, as a unary function symbol taking w as argument to construct the
raw term \r : o.u. Positions are strings of positive integers. t|,, denotes the subterm of
t at position p. We use ¢ &> ¢|,, for the subterm relationship. The result of replacing ¢/,
at position p in ¢ by w is written ¢[u],,.

Typable raw terms are called ferms. The typing judgements are standard. We catego-
rize terms into three disjoint classes:

1. Abstractions headed by \;

2. Prealgebraic terms headed by a function symbol, assuming (for the moment) that
the output type of f € F is a base type;

3. Neutral terms are variables or headed by an application.

Substitutions, rewrite rules and higher-order reduction orderings are as expected,

see [40].

3 The Computability Path Ordering

CPO is generated from three basic ingredients: a type ordering; a precedence on func-
tions symbols; and a status for the function symbols. Accessibility is an additionnal
ingredient originating in inductive types, while the other three were already needed for
defining HORPO. We describe these ingredients before defining the computability path
ordering. We define the ordering in two steps, accessibility being used in the second
step only. The first ordering is therefore simpler, while the second is more expressive.

3.1 Basic Ingredients

— aprecedence > on symbols in F U {@}, with f >z @ forall f € F.

— a status for symbols in F U {@} with @ € Mul.

— and a quasi-ordering on types > 7, called the type ordering satistying the following
properties, where =7, denotes its associated equivalence relation >7, N <75 and
>, its strict part >7, \ <74:

1. Well-foundedness: >?S = >7, U>_, is well-founded,
where 0 — 7 >_, 0;
2. Right arrow subterm: 0 — T >714 T;
3. Arrow preservation: T — o =15 aiffa =7 — o', 7' =7, Tand 0 =1, 0’}
4. Arrow decreasingness: T — o >7, o implies 0 >7, a orelse a = T = o,
7' =7, Tand 0 >7 o';

Arrow preservation and decreasingness imply that the type ordering does not, in
general, have the left arrow subterm property: 0 — 7 %7, 0. A first axiomatic definition
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of the type ordering was given in [39], which did not need right arrow subterm. A new
one, expected to be easier to understand, was given in [40] based solely on >z, which
uses another axiom, arrow monotonicity, to force the right arrow subterm property. As
pointed out to us recently, this set of axioms is unfortunately inconsistent [50]]. However,
the restriction of the recursive path ordering proposed there for a type ordering does not
satisfy arrow monotonicity, but does satisfy instead the corrected set of axioms given
here.
We now give two important properties of the type ordering:

Lemma 1. [40] Assuming o =7 7, 0 is a data type iff T is a data type.
Lemma2. [fao — 0 >7, 0 — Ttheno >7, T.

Proof. If « — o =7, 8 — 7 then, by arrow preservation, « =7, and 0 =7, 7. If
o — o0 >7, 3 — T, then, by arrow decreasingness, either o« =7, B and 0 >7, T, or
else 0 >7, # — 7. In the latter case, 5 — 7 >7, T by right arrow subterm and we
conclude by transitivity. a

3.2 Notations

Our ordering notations are as follows:

s =%t for the main ordering, with a finite set of variables X C A" and the conven-
tion that X is omitted when empty;

S U>—¥St crfors>=Xtand o >7s TS

- |10 =7, r:7asinitial call foreachl — r € R;

s = tis a shorthand for s > u forall u € ¢;

> is the reflexive closure of .

We can now introduce the definition of CPO.

3.3 Ordering Definition

Definition 1. s : o =~ t : 7 iff either:

1. s = f(s)with f € F and either of
(a) te X
(b) t =g(t)with f =r g € F, S>Xtands(>-75)smtft
(c) t=g(t)with f >r g€ FU{Q}ands~*t
(d) t =Xy : Baw and s =X w{y — 2} for 2 : (B fresh
(e) urr tforsomeu € s
2. s = Q(u,v) and either of
(a) te X
(b) t =Q(u',v") and {u, v} (=7, )mu{v';v'}
(c) t =X : Bwands =" w{yw z} for z : 3 fresh
(d) utitorvt%t
(e) u=\r:awandw{x— v} =Xt
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3. s = Ax : a.u and either of
(a) te X
(b) t =Xy : Baw, a =15 B and u{z 2z} =X w{y— 2} for z: 3 fresh
(c) t =Xy : Baw, a #15 Band s =% w{y — z} for z : B fresh
(d) w{x — z} =7t for z : o fresh
(e) u=Q(v,z), x & Var(v) and v ="t

Because function symbols, applications and abstractions do not behave exactly the
same, we chosed to organize the definition according to the left-hand side head symbol:
a function symbol, an application, or an abstraction successively. In all three cases, we
first take care of the case where the right-hand side is a bound variable -case named
variable-, then headed by a symbol which is the same as (or equivalent to) the left-hand
side head symbol -case status-, or headed by a symbol which is strictly smaller in the
precedence than the left-hand side head symbol -case precedence-, before to go with
the -case subterm. The precedence case breaks into two sub-cases when the left-hand
side is a function symbol, because abstractions, which can be seen as smaller than other
symbols, need renaming of their bound variable when pulled out, which makes their
treatment a little bit different formally from the standard precedence case. There are
two specific cases for application and abstraction: one for beta-reduction, and one for
eta-reduction, which are both built in the definition.

This new definition schema appeared first in [I8] in a slightly different format. It
incorporates two major innovations with respect to the version of HORPO defined in
[40]. The first is that terms can be ordered without requiring that their types are ordered
accordingly. This will be the case whenever we can conclude that some recursive call is
terminating by using computability arguments rather than an induction on types. Doing
so, the ordering inherits directly much of the expressivity of the computability closure
schema used in [40]]. The second is the annotation of the ordering by the set of variables
X that were originally bound in the right-hand side term, but have become free when
taking some subterm. This allows rules [Idl 2d and 3d to pull out abstractions from
the right-hand side regardless of the left-hand side term, meaning that abstractions are
smallest in the precedence. Among the innovations with respect to 18] are rules Bd
which compares abstractions whose bound variables have non-equivalent types, and
rule 2dl whose formulation is now stronger.

This definition suffers some subtle limitations:

1. Case[[dluses recursively the comparison s =~X"{*} w{y +— z} for z fresh, implying
that the occurrences of z in w can be later taken care of by Case[Id 2a or[3al This
is no limitation.

Cases 2d and 3d use instead the recursive comparison s =~ w{y+ 2}, with
z fresh, hence z ¢ X. As a consequence, these recursive calls cannot succeed if
z € Var(w). We could have added this redundant condition for sake of clarity. We
prefered to privilege uniformity and locality of tests.

As a consequence, Cases [Idl 2d and Bd cannot be packed together as it was
unfortunately done in [I8]], where correct proofs were however given which did of
course not correspond to the given definition.
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2. The subterm case [Ie] uses recursively the comparison u 14 t instead of the ex-
pected comparison u >§S t.

On the other hand, the other subterm definitions, Cases 2d and Bdl use the ex-
pected comparisons u ti torv t%{s t in the first case, and u{x — z} ti t in
the second. This implies again that the various subterm cases cannot be packed
together.

3. Case[Ihluses recursively the comparison s(>7—s )stat 1t instead of the stronger com-
parison s(>7 ) stat ;-

All our restrictions are justified by their use in the well-foundedness proof of .
There is an even better argument: the ordering would not be well-founded otherwise, as
can be shown by means of counter-examples. We give two below.

We start with an example of non-termination obtained when replacing the recursive
call (> 7, )stat ;£ by 5(>7 ) stat, ¢ in Case[TBl

Example 1. Let a be atype,and {f : a X a — a,¢g : (a — a) — a} be the signature.
Let us consider the following non-terminating rule (its right-hand side beta-reduces to
its left-hand side in one beta-step):

flo.f(z,2)), g\ f (2, 2))) — QM. f (2, ), g(No. f (x, 7))

Let us assume that f > ¢ and that f has a multiset status. We now show that the
ordering modified as suggested above succeeds with the goal

L flgOef(z,2)), g f (2, 2))) =7, @A\ f (2, ), g (M- f (2, 7))

Since type checks are trivial, we will omit them, although the reader will note that
there are very few of them indeed. Our goal yields two sub-goals by Case [Ict

2. flg0w.f(,2)), 90w f(z,2))) = M. f (, ) and
3. FlgOw.fla,)), g0 f(a,2))) = g f (x,)).

Sub-goal Pl yields by Case [Idl

4. flgOa.f(z,z)), g\ f (2, 2))) =} f(2, 2) which yields by Case [H
5. flgOa.f(z,x)), g f(x, x))) =12} 2 twice, solved by Case[[dand
6. {g(.f(z,2)), g\ f(z, :r))}(t%}){z, 2} solved by Case [Ta applied twice.

We are left with sub-goal Bl which yields by Case[Id

7. flg.f(x,x)), g( . f(x,x))) = M. f(x,x), which happens to be the already
solved sub-goal 2l and we are done.

With the definition we gave, sub-goal[f] becomes:
{9 . f(x,2)), g(M. f(z, 7)) } (- 75 )mui{z, 2} and does not succeed since the set of
previously bound variables has been made empty.

The reader can check that chosing the precedence g > f yields exactly the same
result in both cases. a
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Next is an example of non-termination due to Cynthia Kop and Femke van Raams-
dong [50], obtained when replacing the recursive call s =~ w{y — 2z} by s =XY{z}
w{y — z} in Case 2d

Example 2. Let obe a type, and {f : 0 — 0, A : 0, B : 0 — 0 — o} be the signature.
Let us consider the following non-terminating set of rules:

Q(Q(B, A), A) — @Az : 0.f(2),4) (1)
f(A) — a(@(B, A), A) (2)

since

Q(Q(B, A), A) > @z : 0.f(2), A) — f(4) > Q(Q(B, 4), 4)

Let us assume that A > f > B and consider the goals:

1. Q@Q(B,A),A) :0~7,Q(\z:0.f(2),A) : 0,and
2. f(A):0=7,@Q(Q(B,A),A):0

Goal[Ilyields two sub-goals by Case 2Bt

A:o =T A : o, which succeeds trivially, and

Q(B,A) :0— 0>7,Az:0.f(2) : 0 — o which yields by modified Case 2t
. Q(B, A) =12} £(2), which yields in turn by Case 2d

CAorF } f(2) : o which yields by Case[Id

Ao >{ } z : 0o which succeeds by Case[Tal

RS O R NN

Note that we have used B for its large type, and A for eliminating f(z), exploiting a
kind of divide and conquer ability of the ordering. We are left with goal 2l which yields
two subgoals by Case [Id]

8. f(A) > A which succeeds by Case[Id and
9. f(A) > Q(B, A), which yields by Case[Ict
10. f(A) = A, which succeeds by Case[Ie and
11. f(A) > B, which succeeds by Case[Id therefore ending the computation. O

More examples justifying our claim that the quest has come to en end are given in the
full version of this paper.

We give now an example of use of the computability path ordering with the inductive
type of Brouwer’s ordinals, whose constructor [im takes an infinite sequence of ordinals
to build a new, limit ordinal, hence admits a functional argument of type N — O, in
which O occurs positively. As a consequence, the recursor admits a more complex
structure than that of natural numbers, with an explicit abstraction in the right-hand
side of the rule for lim. The strong normalization proof of such recursors is known to
be hard.
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Example 3. Brouwer’s ordinals.

0:0 S:0—-0 lim: (IN— O) — O
rec:0xax(0O—a—a)x(IN—=-0)— (N—a)—a)—>a«a

The rules defining the recursor on Brouwer’s ordinals are:

rec(0,U, X, W) - U
rec(S(n), U, X, W) — Q(X,n,rec(n,U, X, W))
rec(lim(F),U, X, W) — Q(W, F, \n.rec(Q(F,n),U, X, W))

Let us try to prove that the third rule is in .

L. s=rec(lim(F),U, X, W) =1, Q(W, F, A\n.rec(Q(F,n),U, X, W)) yields 4 sub-
goals according to Case [Ict

o >7, o which is trivially satisfied, and

s={W, F, \n.rec(Q(F,n), U, X, W)} which simplifies to:

s = W which succeeds by Case [Tel

5= F, which generates by Case[Ielthe comparison limn(F') >, F which fails since
lim(F) has a type which is strictly smaller than the type of F'.

s> An.rec(Q(F,n),U, X, W) which yields by Case[Idl

s =17} rec(Q(F,n),U, X, W) which yields by Case[IH

{lim(F), U, X, W} (-7 )mu{@Q(F,n), U, X, W}, which reduces to

lim(F) =7, Q(F,n), whose type comparison succeeds, yielding by Case[Id
lim(F) > F which succeeds by Case[Id and

lim(F) > n which fails because track of n has been lost!

A

mo v XN

1
1

~— —

Solving this example requires therefore: first, to access directly the subterm F' of s in or-
der to avoid the type comparison for lim(F') and F' when checking recursively whether
the comparison s > An.rec(Q(F,n), U, X, W) holds; and second, to keep track of n
when comparing lim(F') and n.

3.4 Accessibility

While keeping the same type structure, we make use here of a fourth ingredient, the
accessibility relationship for data types introduced in [[11]]. This will allow us to solve
Brouwer’s example, as well as other examples of non-simple inductive types.

We say that a data type is simple is it is a type constant. We restrict here our definition
of accessibility to simple data types. To this end, we assume that all type constructors
are constants, that is, have arity zero. We can actually do a little bit more, assuming that
simple data types are not greater or equal (in >75) to non-constant data types, allowing
the simple data types to live in a separate world.

The sets of positive and negative positions in a type o are inductively defined as
follows:

- Post (o) = {e} if o is a simple data type
— Pos™ (o) = 0if o is a simple data type
- Pos®(oc — 1) =1-Pos™°(c) U2 Pos’(7)
where 6 € {+, —}, —+ = — and —— = + (usual rules of signs)
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Then we say that a simple data type o occurs (only) positively in a type 7 if it oc-
curs only at positive positions: Pos(o,7) C Pos™*(7), where Pos(c,T) is the set of
positions of the occurrences of o in 7.

The set Acc(f) of accessible argument positions of a function symbol f : oy ...
o, — o, wWhere o is a simple data type, is the set of integers i € {1,...,n} such that:

— no simple data type greater than o occurs in o,
— simple data types equivalent to o occurs only positively in o;.

Then a term u is accessible in a term v, written v D>, .cu, iff v is a pre-algebraic term
f(s) and there exists i € Acc(f) such that either u = s; or w is accessible in s; (D is
transitive).

A term w is accessible in a sequence of terms v iff it is accessible in some v € v,
in which case we write s >,..u. Note that the terms accessible in a term v are strict
subterms of v.

We can now obtain a more elaborated ordering as follows:

Definition 2. s: o =X t : 7 iff either:

1. s = f(s)with f € F and either of
(a) te X
(b) t =g(t)with f = g € F, S>Xtands(>7—s U =255 ) stat,
(c) t=gt)with f >rge FU{Q}ands~*t
(d) t =Xy : Baw and s =XV w{y v 2} for 2 : B fresh
(e) U t for some u € s
(f) u=zg t for some u such that s Dgccu
2. s = Q(u,v) and either of
(a) te X
(b) t =Q(u',v") and {u,v}(>7—s)mul{u’, v'}
(c) t =X : Bwands=" w{yw z} for z : 3 fresh
(d) ut%torvi%t
(e) u=\r:awandw{zx— v} ="t
3. s = Az : a.u and either of
(a) te X
(b) t =Xy : Baw, a =75 B and u{x— 2z} =X w{yrs 2} for z: 3 fresh
(c) t =Xy : Baw, a #15 Band s =% w{y — z} for z : B fresh
(d) w{z — z} =5t for z : o fresh
(e) u=Qv,z), z &€ Var(v) and v ="t

wherew : o0 =5t Tiffo > 7, t = Q(v, W), U Bgeev and s =X w.

The only differences with the previous definition are in Case [TH of the main definition
which uses an additional ordering >=X;* based on the accessibility relationship ;.. to
compare subterms headed by equivalent function symbols, and in Case [If] which uses
the same relationship .. to reach deep subterms that could not be reached otherwise.
Following up a previous discussion, notice that we have kept the same formulation in
Cases[2dand[Bd rather than use the easier condition y & Var(w).
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We could of course strengthen =-:¢ by giving additional cases, for handling ab-
stractions and function symbols on the right [TTIT5]]. We could also think of improving
Case [Id by replacing s >4..u by the stronger condition s =:X;¥ u. We have not tried
these improvements yet.

We now revisit Brouwer’s example, whose strong normalization proof is checked
automatically by this new version of the ordering:

Example 4. Brouwer’s ordinals.
We skip goals 2,3,4 which do not differ from the previous attempt.

L. s=rec(lim(F),U, X, W) =, Q(W, F, A\n.rec(Q(F,n),U, X, W)) yields 4 sub-
goals according to Case [Ict

s F, which succeeds now by Case [Tl

s = An.rec(Q(F,n), U, X, W) which yields by Case[Id

s =17} rec(Q(F,n),U, X, W) which yields goals 8 and 12 by Case[IHl

{lim(F), U, X, W} (=7, U=520"),0u{Q(F,n), U, X, W}, which reduces to

lim(F) =14 @(F,n) which succeeds since O =7, O, F is accessible in limn(F)

and s 1™} n by case Case[Tal Our remaining goal
10. s=1"H{@(Fn),U, X, W}
decomposes into three goals trivially solved by Case[I¢] that is
11. s={"H{U, X, W}, and one additional goal
12. s =1} @Q(F, n) which yields two goals by Case[d
13. s =17} F, which succeeds by Case[If} and
14. s =17} n which succeeds by Case[Ial thus ending the computation.

A e

4 Conclusion

The full version including all proofs as well as an implementation of CPO with exam-
ples is available from the web page of the authors.

We want to stress that the basic version of CPO has reached a point where we cannot
expect any major improvement, as indicated by the counter-examples found to our own
attempts to improve the ordering. Perhaps, one last question left open is the possibility
of ordering F U {@} arbitrarily -this would be useful for some examples, e.g., some
versions of Jay’s pattern calculus [33]].

On the other hand, there is room left for improvement of the accessibility relation-
ship, which is restricted so far to terms headed by function symbols having a basic
output type.

A more challenging problem to be investigated then is the generalization of this new
definition to the calculus of constructions along the lines of [51]] and the suggestions
made in [4Q], where an RPO-like ordering on types was proposed which allowed to
give a single definition for terms and types. Starting this work with definition [T is of
course desirable.

Finally, it appears that the recursive path ordering and the computability closure are
kind of dual of each other: the definitions are quite similar, the closure constructing a
set of terms while the ordering deconstructs terms to be compared, the basic case being
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the same: bound variables and subterms. Besides, the properties to be satisfied by the
type ordering, infered from the proof of the computability predicates, almost character-
ize arecursive path ordering on the first-order type structure. An intriguing, challenging
question is therefore to understand the precise relationship between computability pred-
icates and path orderings.
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inviting him in december 2007 at the National Institute for Informatics in Tokyo, whose
support provided him with the ressources, peace and impetus to conclude this quest
with his coauthors. We are also in debt with Cynthia Kop and Femke van Raamsdonk
for pointing out to us a (hopefully minor) mistake in published versions of our work on
HORPO.

References

1. Abel, A.: Termination checking with types. Theoretical Informatics and Applications 38(4),
277-319 (2004)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Com-
puter Science 236, 133—178 (2000)

3. Barbanera, F.: Adding algebraic rewriting to the Calculus of Constructions: strong normal-
ization preserved. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516. Springer,
Heidelberg (1991)

4. Barbanera, F., Fernandez, M.: Combining first and higher order rewrite systems with type as-
signment systems. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664. Springer,
Heidelberg (1993)

5. Barbanera, F., Fernandez, M.: Modularity of termination and confluence in combinations
of rewrite systems with A.. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993.
LNCS, vol. 700. Springer, Heidelberg (1993)

6. Barbanera, F., Ferndndez, M., Geuvers, H.: Modularity of strong normalization and con-
fluence in the algebraic-A-cube. In: Proceedings of the 9th IEEE Symposium on Logic in
Computer Science (1994)

7. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termination of re-
cursive definitions. Mathematical Structures in Computer Science 14(1), 97-141 (2004)

8. Ben-Amram, A.M., Jones, N.D., Lee, C.S.: The size-change principle for program termina-
tion. In: Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(2001)

9. Blanqui, F.: Definitions by rewriting in the Calculus of Constructions (extended abstract). In:
Proceedings of the 16th IEEE Symposium on Logic in Computer Science (2001)

10. Blanqui, F.: Higher-order dependency pairs. In: Proceedings of the 8th International Work-
shop on Termination (2006)

11. Blanqui, F.: Termination and confluence of higher-order rewrite systems. In: Bachmair, L.
(ed.) RTA 2000. LNCS, vol. 1833. Springer, Heidelberg (2000)

12. Blanqui, F.: A type-based termination criterion for dependently-typed higher-order rewrite
systems. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 24-39. Springer, Hei-
delberg (2004)

13. Blanqui, F.: Definitions by rewriting in the Calculus of Constructions. Mathematical Struc-
tures in Computer Science 15(1), 37-92 (2005)



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

The Computability Path Ordering: The End of a Quest 13

Blanqui, F.: Inductive types in the Calculus of Algebraic Constructions. Fundamenta Infor-
maticae 65(1-2), 61-86 (2005)

Blanqui, F.: Computability closure: Ten years later. In: Comon-Lundh, H., Kirchner, C.,
Kirchner, H. (eds.) Jouannaud Festschrift. LNCS, vol. 4600, pp. 68—-88. Springer, Heidel-
berg (2007)

Blanqui, F., Jouannaud, J.-P., Okada, M.: Inductive-data-type Systems. Theoretical Computer
Science 272, 41-68 (2002)

Blanqui, F., Jouannaud, J.-P., Rubio, A.: Higher-order termination: from Kruskal to com-
putability. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
1-14. Springer, Heidelberg (2006)

Blanqui, F., Jouannaud, J.-P., Rubio, A.: HORPO with computability closure: A reconstruc-
tion. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp.
138-150. Springer, Heidelberg (2007)

Bohr, N., Jones, N.: Termination Analysis of the untyped lambda-calculus. In: van Oostrom,
V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1-23. Springer, Heidelberg (2004)

Borralleras, C.: Ordering-based methods for proving termination automatically. PhD thesis,
Universitat Politecnica de Catalunya, Spain (2003)

Borralleras, C., Rubio, A.: A monotonic higher-order semantic path ordering. In: Nieuwen-
huis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250. Springer, Heidelberg
(2001)

Borralleras, C., Rubio, A.: Orderings and constraints: Theory and practice of proving termi-
nation. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud Festschrift. LNCS,
vol. 4600, pp. 28—43. Springer, Heidelberg (2007)

Breazu-Tannen, V.: Combining algebra and higher-order types. In: Proceedings of the 3rd
IEEE Symposium on Logic in Computer Science (1988)

Breazu-Tannen, V., Gallier, J.: Polymorphic rewriting conserves algebraic strong normaliza-
tion. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989.
LNCS, vol. 372. Springer, Heidelberg (1989)

Chin, W.N., Khoo, S.C.: Calculating sized types. Journal of Higher-Order and Symbolic
Computation 14(2-3), 261-300 (2001)

Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17,
279-301 (1982)

Dershowitz, N.: Personal Communication (2008)

Dougherty, D.: Adding algebraic rewriting to the untyped lambda calculus. Information and
Computation 101(2), 251-267 (1992)

Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated termination analysis
for haskell: From term rewriting to programming languages. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 297-312. Springer, Heidelberg (2006)

Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining
techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004.
LNCS (LNAI), vol. 3452, pp. 301-331. Springer, Heidelberg (2005)

Goubault-Larrecq, J.: Well-founded recursive relations. In: Fribourg, L. (ed.) CSL 2001 and
EACSL 2001. LNCS, vol. 2142. Springer, Heidelberg (2001)

Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using sized
types. In: Proceedings of the 23th ACM Symposium on Principles of Programming Lan-
guages (1996)

Jay, C.B.: The pattern calculus. ACM Transactions on Programming Languages and Sys-
tems 26(6), 911-937 (2004)

Jouannaud, J.-P., Okada, M.: A computation model for executable higher-order algebraic
specification languages. In: Proceedings of the 6th IEEE Symposium on Logic in Computer
Science (1991)



14

35.

36.

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

F. Blanqui, J.-P. Jouannaud, and A. Rubio

Jouannaud, J.-P., Okada, M.: Abstract Data Type Systems. Theoretical Computer Sci-
ence 173(2), 349-391 (1997)

Jouannaud, J.-P., Rubio, A.: Higher-order orderings for normal rewriting. In: Pfenning, F.
(ed.) RTA 2006. LNCS, vol. 4098, pp. 387-399. Springer, Heidelberg (2006)

Jouannaud, J.-P., Rubio, A.: The Higher-Order Recursive Path Ordering. In: Proceedings of
the 14th IEEE Symposium on Logic in Computer Science (1999)

Jouannaud, J.-P., Rubio, A.: Rewrite orderings for higher-order terms in eta-long beta-normal
form and the recursive path ordering. Theoretical Computer Science 208, 33-58 (1998)
Jouannaud, J.-P., Rubio, A.: Higher-order recursive path orderings “a la carte”, Draft (2001)
Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings. Journal of
the ACM 54(1), 1-48 (2007)

Kamin, S., Lévy, J.-J.: Two generalizations of the Recursive Path Ordering (unpublished,
1980)

Krishnamoorthy, M.S., Narendran, P.: On recursive path ordering. Theoretical Computer Sci-
ence 40(2-3), 323-328 (1985)

Loria-Saenz, C., Steinbach, J.: Termination of combined (rewrite and A-calculus) systems.
In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656. Springer, Heidelberg
(1993)

Okada, M.: Strong normalizability for the combined system of the typed lambda calculus
and an arbitrary convergent term rewrite system. In: Proceedings of the 1989 International
Symposium on Symbolic and Algebraic Computation. ACM Press, New York (1989)

Sakai, M., Kusakari, K.: On dependency pair method for proving termination of higher-order
rewrite systems. IEICE Transactions on Information and Systems E88-D(3), 583-593 (2005)
Sakai, M., Watanabe, Y., Sakabe, T.: An extension of dependency pair method for proving
termination of higher-order rewrite systems. IEICE Transactions on Information and Sys-
tems E84-D(8), 1025-1032 (2001)

van de Pol, J.: Termination proofs for higher-order rewrite systems. In: Heering, J., Meinke,
K., Moller, B., Nipkow, T. (eds.) HOA 1993. LNCS, vol. 816. Springer, Heidelberg (1994)
van de Pol, J.: Termination of higher-order rewrite systems. PhD thesis, Utrecht Universiteit,
Nederlands (1996)

van de Pol, J., Schwichtenberg, H.: Strict functionals for termination proofs. In: Dezani-
Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902. Springer, Heidelberg (1995)
van Raamsdong, F., Kop, C.: Personal Communication (2008)

Walukiewicz-Chrzaszcz, D.: Termination of rewriting in the Calculus of Constructions. Jour-
nal of Functional Programming 13(2), 339414 (2003)

Xi, H.: Dependent types for program termination verification. Journal of Higher-Order and
Symbolic Computation 15(1), 91-131 (2002)



The Joy of String Diagrams

Pierre-Louis Curien
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Abstract. In the past recent years, I have been using string diagrams to
teach basic category theory (adjunctions, Kan extensions, but also lim-
its and Yoneda embedding). Using graphical notations is undoubtedly
joyful, and brings us close to other graphical syntaxes of circuits, inter-
action nets, etc... It saves us from laborious verifications of naturality,
which is built-in in string diagrams. On the other hand, the language
of string diagrams is more demanding in terms of typing: one may need
to introduce explicit coercions for equalities of functors, or for distin-
guishing a morphism from a point in the corresponding internal homset.
So that in some sense, string diagrams look more like a language "a la
Church”, while the usual mathematics of, say, Mac Lane’s ” Categories
for the working mathematician” are more ”a la Curry”.

Natural transformations are traditionally represented as pasting diagrams, where
natural transformations p : ' — F’ appear as surfaces between an upper border
F and a lower border F’. But the dual notation of string diagrams turns out
to be more adapted to formal manipulations. In this notation, the Godement’s
rule, which says that the pasting diagram obtained by putting aside u : FF — F’
and v : G — G’ makes sense, i.e., can be parsed indifferently as the vertical com-
position (vF") o (Gu) or the vertical composition (G'p) o (vF) —has a “physical”
translation in terms of “moving elevators” up and down. The respective parsings

are, indeed, represented as

F G F G
: : and : :
F’ G’ F’ G’

Hence, the underlying naturality equations remain explicit, in the form of suit-

able deformations of diagrams.

In string diagrams, functors are 1-dimensional (like in the pasting diagrams),
natural transformations are 0-dimensional (think of the circle around p, v as just

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 15-[Z2 2008.
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a node in a graph). As for the categories, if F: C — C', G : C' — C”, and
H : C — C”, then, seeing the edges of the graph as half-lines, the diagram
below representing a natural transformation p : GF — H (we write freely GF
for G o F') delineates three regions, corresponding to the three categories. In
other words, in this representation, categories are 2-dimensional.

F G
C/

H

The situation is thus Poincaré dual to that of pasting diagrams:

categories fonctors natural transformations
pasting diagrams 0 1 2
string diagrams 2 1 0

Another strong point of string diagrams is that they allow us to deal with
identity functors and natural transformations implicity. We represent, say, u :
id > F (with F: C — C),and id : G — G (with G: C — C’) as

and G

F

respectively.

String diagrams are related to boolean circuits, interaction nets, etc... (see
e.g. http://iml.univ-mrs.fr/~lafont). We use string diagrams (originally
designed and used in the setting of monoidal categories, Hopf algebras, quantum
groups, etc... , see e.g. [2]) not only for the 2-categorical machinery of adjunctions
and monads, but also for recasting other basic material of category theory [3].
In this extended abstract, we content ourselves with pointing out the underlying
coercions that we have to make explicit in order to treat this material graphically
(see [1] for more joy!).

1 Hom-Functors

We first notice that we can also use string diagrams to describe morphisms
f: A — B in a category C. It suffices to see A and B as functors from the
terminal category 1 to C, yielding


http://iml.univ-mrs.fr/~lafont
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B

with the left and right half plane corresponding to 1 and C. For Ff, by def-
inition of the horizontal composition of natural transformations, we can write
indifferently (i.e., we can use the following as a valid transformation of string
diagrams):

A A F

B B F

But we can also view a morphism f: A — B as a morphism f : 1 — C[4, B] in
Set (the category of sets and functions). We use overlining to make the coercion
explicit between the two representations. Then it turns out that the action of
the hom functors can be described through the following equations:

EQUATION Homleft:
1 1
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EQUATION Homright:
1 1

CL. Al =

A C[, B] A C[-, B

One can give graphical proofs of Yoneda lemma, and of the density of repre-
sentable presheaves: every functor F' : C°? — Set is the colimit of functors of
the form C[ , C].

2 Limits

Recall that, given a diagram D : I — C, a cone from an object C' can be
described as a natural transformation from AC to D, where A : C — Cl is the
curried form of the first projection functor from C x I to C. This indicates that
we should draw D as a functor from 1 to CY. On the other hand, if we want to
talk e.g. of preservation of limits, we need to deal with F'D, for some functor
F : C — C’, and then we will have to view D as a functor from I to C. Under
this guise, we denote it as D.

Note that in any cartesian closed category, there is a bijective correspondence
betwen the morphisms from A to B and the points of B4, i.e., the morphisms from 1
to BA. We use here underlining as an explicit coercion from the latter to the former.

Graphically, we introduce boxes of the following kind:

Dy

Dy

D,
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where the contents of the box is a string diagram living in Cat[1, CY] (where
Cat is the category of categories) while the whole diagram, once coerced, lives
in Cat[I, C], and can be inserted in a larger diagram (e.g. by placing a wire
F : C — C’ on the right).

We have the following law of commutation between coercion and composition:

D D
D
D/
D’ = D'
D/
D//
D//

D D (1
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As an illustration, given a functor F' : C — C’, we show how to describe the
action of the functor F!: CT — C'T on morphisms:

F'D

FI

D/

D D’ (2)

Notice the introduction of explicit equality nodes on the right hand side, which
in fact describe the action of I on objects:

F'D D F

and

D F F'D

One can give graphical proofs of facts and results such as: if F' 4 G (i.e.. F is
left adjoint to G), then F' 4 GI, or: right adjoints preserve limits.
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3 Explicit Equalities

In the previous section, we have introduced explicit equality nodes, that allowed
us to give the same interface to both sides of the equation describing the behav-
iour of F (respecting the interfaces is a key matter in 2-dimensional proofs).
In this (final) section, we state a “coherence” result for string diagrams written
only using equality nodes, which we call equality diagrams. We impose, besides
associativity, the following three axioms:

H

H 3)
We do not require the converse, i.e.
(=tH—-GF)o(=GF - H)=(id:G—G)-(id: F—F)
for two reasons:

1. The most general type for the left hand side is (=: H — G1Fy)o(=: GoFy —
H), with no other requirement than G1F; = H = GyF,. This contrasts
with the situation above, where the plugging of (=: H — G1F;) above
(=: GoFy — H) forces Fy = Fy and G = Gs.

2. We can have the effect of this equation by inserting it in a context (plugging
(=: H — GF) above and (=: GF — H) below).

GF H GF H
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F HG F HG
g _
GF H GF H (5

These equations suffice to prove that all equality diagrams with the same inter-
face (given by the wires coming in and the wires coming out of the diagram) are
provably equal.
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Abstract. We survey two basic techniques for showing that the monadic
second-order theory of a structure is decidable. In the first approach,
one deals with finite fragments of the theory (given for example by the
restriction to formulas of a certain quantifier rank) and — depending on
the fragment — reduces the model under consideration to a simpler one.
In the second approach, one applies a global transformation of models
while preserving decidability of the theory. We suggest a combination of
these two methods.

1 Introduction

Half a century ago, the first papers appeared on decidability of monadic second-
order theories using concepts of automata theory. In 1958, Biichi, Elgot, and
independently Trakhtenbrot announced the first results on the “logic-automata
connection”, showing that the weak monadic second-order theory of the suc-
cessor structure (N,+1) of the natural numbers is decidable. Results on the
unrestricted monadic second-order theory (short: MSO-theory) were then estab-
lished by Biichi [4] (decidability of S1S, the monadic theory of N' = (N, +1)) and
by Rabin [I3] (decidability of S2S, the monadic theory of the infinite binary tree
7> = ({0, 1}*, Succy, Sucey )). All these results were shown by the transformation
of formulas into finite automata (over infinite words, respectively over infinite
trees).

The present note deals with the ongoing research in establishing larger and
larger classes of infinite structures for which the MSO-theory is decidable (or in
other words: the model-checking problem with respect to MSO-logic is decid-
able). We recall two methods that have been introduced for this purpose. The
first is a transformation of the structure & under consideration into a simpler
structure using a pumping argument. This method involves a finite equivalence
that allows to compress certain parts of S to smaller ones. The finite equiva-
lence takes into account only a finite fragment of the MSO-theory of S; thus
the transformation has to be done separately for any such fragment. The second
method shows decidability of the entire MSO-theory of a structure S in one step,
in which § is obtained by a transformation of another structure whose MSO-
theory is known to be decidable. The purpose of this paper is to describe both
methods and to suggest that a combination of them may be useful.
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As a prerequisite we discuss possibilities to define equivalences that determine
“finite fragments” of a theory. These equivalences come in two forms: referring to
automata with a certain number of states, and referring to formulas of a certain
quantifier rank. We recall these equivalences and their use in the next section.

The paper is a discussion of methods rather than an exposition of results,
and thus adheres to an informal style and assumes knowledge of the basics on
monadic theories (as found e.g. in [I1]).

The MSO-theory of a structure S is denoted MTh(S). In this paper we focus
on the case of labelled transition systems, i.e. vertex- and edge-labelled graphs.
We use the format G = (V, (Ey)eca, (Py)sep) with finite label alphabets A, B,
where FE, is the set of edges labelled a and P, C V the set of vertices labelled b.

2 Equivalences

A natural approach for showing decidability of the (say monadic) theory of a
structure is to settle the problem for any given finite fragment of the theory, and
for this to apply a composition of submodels. A standard option is to restrict
to sentences up to some given quantifier rank. Another approach refers to au-
tomata with a given number of states (when formulas are known to be equivalent
to automata). An extreme case is that one only considers a single automaton
(corresponding to a single formula). In each of these cases one derives a cor-
responding equivalence between structures, and we call the equivalence classes
“types”. One now tries to compose a model from “simple” parts that has the
same type as the original model, and at the same time to compose its type from
the types of the components.

This approach has been most successful over (labelled) linear orderings, but it
can also be applied with more technical work over more complex structures like
trees and certain graphs. For the theory S1S the method involves a composition
of an w-word « (identified here with a labelled w-ordering) from finite segment
orderings (words). It turns out possible to represent a as an “infinite sum”
of summand models such that the types of all finite summands are the same
(except for the first summand). This allows to deduce the corresponding type of
« from the two constituent types (the initial, respectively the repeated type). A
composition of this simple form is guaranteed by Ramsey’s Infinity Lemma [T4].
The types of the segments define a finite coloring of the set of pairs (4,5) (with
(i,7) we associate the type of the segment «fi,j)). By Ramsey’s Lemma there
is an infinite “homogeneous” set H = {hg < h1 < ...}: All segments alh;, h;)
with ¢ < j, and in particular all segments alh;, h;+1) have the same type. In
addition to Ramsey’s Lemma one needs also a summation result for the types:
First, the type of a concatenation (sum) of two words is determined by (and
computable from) their types; so type equivalence is a congruence with respect
to concatenation. Second, the type of an infinite sum of words of the same type
is determined by (and computable from) this type.

This composition occurs in two versions in the literature. In the first version,
one refers to a given Biichi automaton .4 and defines theory-fragments via the
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transition structure of A: One declares two segments (i.e., finite words) u,v
equivalent (written u ~ 4 v) if the following holds: A can proceed from state p
to state ¢ via w iff this is possible via v, and this is possible with a visit to a
final state via w iff it is possible via v. It is easy to show that this equivalence
relation is a congruence of finite index and that the ~ 4-type of a finite word w
determines whether A accepts the infinite word www . . ..

In the world of logic, one cannot achieve the congruence property on the
level of a single formula. One obtains it when passing to the level of formula
sets classified by the measure of quantifier rank: Call u,v n-equivalent (short
u =, v) if u and v satisfy the same sentences of quantifier rank < n. Then again
we obtain an equivalence relation of finite index. The fact that =,, is a congruence
is not as immediate as for ~ 4 but can be established by the standard method
of Ehrenfeucht-Fraissé games. An analogous congruence can also be introduced
in the domain of automata: Define u ~,, v if u ~4 v holds for each automaton
with < n states. It is then clear that the sequences =,, and ~,, are compatible in
the sense that they mutually refine each other and hence that their intersections
coincide.

When monadic formulas can be transformed into automata, it is often conve-
nient to work with the relations ~ 4 or ~,,. This connection to automata exists
over words and trees. Over generalized domains, such as dense labelled order-
ings, it is hard and maybe unnatural to try to invent suitable “automata”; here
the logical equivalence has the advantage to be applicable directly. This is a key
aspect in the “composition method” as developed by Shelah [I7].

3 Reduction to Periodic Structures

In a pioneering paper, Elgot and Rabin [I0] studied structures (N, Suce, P) with
a designated set P C N and showed for certain P that MTh(N, Succ, P) is
decidable. Note that there are examples of recursive predicates P such that
MTh(N, Succ, P) is undecidable. (Consider a recursively enumerable nonrecur-
sive set S with enumeration sg, s1, ..., and introduce P by its characteristic
sequence yp := 10%010°1.... Then P is recursive, and we have n € S iff there
is a number in P such that its (n 4 1)-st successor is the next P-number; thus S
is reducible to MTh(N, Succ, P).) There are also predicates P where the decid-
ability of MTh(N, Succ, P) is open. The most prominent example is the prime
number predicate P.

The examples P given in [I0] such that MTh(N, Succ, P) is decidable are
the predicate of the factorial numbers, the predicate of powers of k (for fixed
k), and the predicate of k-th powers (for fixed k). Another predicate to which
the method can be applied is the set {2 T n | n > 0} of “hyperpowers of 27,
inductively defined by 2 10 = 1 and 2 T (n + 1) = 2217, Further examples are
given in [6].

The starting point for the decidability proof is the transformation of an S1S-
formula ¢(X) into a Biichi automaton A, that accepts a 0-1-sequence iff it is
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the characteristic sequence y p of a predicate P satisfying ¢(X). This allows to
restate the decision problem for MTh(N, Succ, P) as follows:

(x)  Decide for any Biichi automaton whether it accepts the fized w-word x p.

As an example consider the predicate P = Fac of factorial numbers. Given a
Biichi automaton A over the characteristic sequence xp,. of the factorial predi-
cate, one can shorten (by a pumping argument) the segments of successive zeros
between any two letters 1 in xpac in such a way that (1) the distance between
two successive letters 1 in the new sequence x’ is bounded, and (2) A accepts
XrFae iff A accepts x’. More precisely, one replaces each segment 101 by the
shortest segment 10™'1 such that 0™ ~_4 0™ . It turns out that regardless of the
choice of A the resulting “compressed” sequence ' is ultimately periodic. Since
in this case the acceptance problem can be decided, the problem (x) is decidable.

This compression is done for the equivalence ~ 4 associated with a given
automaton A; similarly, one can also use the relation =,, or =, in place of ~ 4
and thus capture all formulas of quantifier rank < n, respectively all automata
with < n states, in one step. In all three cases we deal with a “finite fragment”
of the theory. The essence thus is the transformation of the given structure to a
simpler one (namely, an ultimately periodic one) that is equivalent with respect
to a finite fragment of the MSO-theory.

It is important to note that the transformation into a periodic model is
computable in the parameter A, respectively n. Even without insisting on this
computability requirement, for each w-word x such a transformation into an
ultimately periodic structure ezists (given A, respectively n) — again by apply-
ing Ramsey’s Lemma.

Recently, it was shown that the Elgot-Rabin method can be “uniformized”
in the following sense ([15]): One considers the logical equivalence =,, (or its
automata theoretic analogue =,,) and observes that =,,41 is a refinement of
=,. An iterative application of Ramsey’s Lemma yields for any yp a “uniformly
homogeneous” set Hp = {hg < hy < ...} which supplies periodic decompositions
for all values of n simultaneously: For each n, all segments x p[hi, hiy1) withi > n
are =y,-equivalent. As a consequence, the truth of a sentence of quantifier-depth
n is determined by the =,-types of xp[0, hy,) and xp[hn, hnt1); in fact we have
xXP =n XP[0, hn) + (XP[hn, hnt1))”.

Again, this decomposition is possible for each yp. One can show that a uni-
formly homogeneous set Hp exists which is recursive in P” (the second recur-
sion theoretic jump of P). A recursive uniformly homogeneous set Hp exists iff
MTh(N, Succ, P) is decidable. As an illustration consider a predicate P where
the decidability of MTh(N, Succ, P) is unsettled, namely the prime number pred-
icate P. Let Hp = {ho < h1 < ...} be a corresponding — currently unknown —
uniformly homogeneous set. We may be interested in the truth of the sentence
TPH (twin prime hypothesis) saying “there are infinitely many twin primes”, i.e.
pairs (m, m + 2) with m, m + 2 € P. The truth of TPH is open. Since TPH can
be written as a monadic sentence of quantifier-depth 5, it suffices to inspect the
segment xp|hs, he) of xp for an occurrence of twin primes, to check whether TPH
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holds. If TPH fails then the last twin prime pair would appear up to number hs
and none in xp[hs, he).

A similar theory of model transformation can be developed for expansions of
the binary tree by a unary predicate P, i.e. for models ({0, 1}*, Succo, Succy, P).
The desired “compression” of the structure is then a regular tree. The situation
is much more complicated than it is over N. First, the composition technique is
technically more involved. Second, one does not know (as yet) a decomposition
that corresponds to Ramsey’s Lemma over w-words. For recent work in this
direction see [12].

The case of labelled tree structures is also interesting for its connection with
Seese’s conjecture of decidability of monadic theories. The conjecture can be
stated as follows (see [2]): A structure has a decidable MSO-theory iff it can be
MSO-interpreted in an expansion 7 = ({0, 1}*, Succg, Succy, P) of the binary
tree by a finite tuple P of unary predicates such that MTh(7) is decidable.

4 Transformations Preserving Decidability

In his celebrated paper [I3], Rabin starts with many applications of his main
result, the decidability of MTh(73), before entering the tedious proof. Starting
from MTh(73), several other theories are shown to be decidable by the method
of interpretation. An MSO-interpretation of a relational structure S in 75 is an
MSO-description of the universe and the relations of a copy of S in 73. Given such
a description, the decidability of MTh(S) can be derived from the decidability
of MTh(73).

Another very powerful transformation that preserves the decidability of the
MSO-theory is the “iteration” of a given structure in the form of a tree-like
model. We use here a simple form of iteration which is appropriate for transi-
tion graphs as considered in this paper: the unfolding U(G) of a graph G (from
a definable vertex vg). The structure U(G) is a tree whose vertices are the fi-
nite paths 7 = vpaivy ...amvy in G where (vi,vi11) € Eq,,,, and the pair
(7, (T@m41Vm+1)) belongs then to the edge relation E,, ,, of U(G). A funda-
mental result of Muchnik (announced in [I6]) says that MTh(U(G)) is decidable
if MTh(G) is. Proofs are given in [7J9U18] and the expository paper [IJ.

Caucal observed in [5] that a large class of infinite graphs arises if MSO-
interpretation and unfolding are applied in alternation. The Caucal hierarchy is
a sequence Cg,Cq, ... of classes of graphs where

— Cp consists of the finite graphs,
— Cp+1 consists of the graphs obtained from the graphs in C,, by an unfolding
and a subsequent MSO-interpretation.

The original definition referred to a different transformation (inverse rational
mappings rather than MSO-interpretations); for the equivalence between the
two see [8]. The hierarchy is strict; a method to separate the levels is presented
in [3].

Let C = |, C;. Each structure in C has a decidable MSO-theory. The class C
contains an abundance of structures, and the extension of the higher levels is not
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well understood. Many interesting examples occur on the first three levels. C;
is the class of “prefix-recognizable graphs” (encompassing the transition graphs
of pushdown automata). Moreover, the expansions of A/ by the predicate of the
factorial numbers, by the powers of (some fixed) k, and by the k-th powers
(k fixed), respectively, are all in Cs. This provides a more uniform proof of
decidability than by the Elgot-Rabin method: It is no more necessary to provide
a structure decomposition for each finite theory fragment; rather the membership
of the structure in C suffices as the decidability proof for the full MSO-theory.

Only very few structures are known that have a decidable MSO-theory but are
located outside C. An example noted in the literature (see [812]) is the structure
(N, Succ, P) where P is the set of 2-hyperpowers 2 T n. We shall generate this
structure in an extension of the Caucal hierarchy.

5 Limit Models

By an iterated application of interpretations and unfoldings one can generate
finite trees t; (1 = 0,1,2,...) where ¢; has height 2 7 ¢ and 2 7 (i + 1) leaves. For
1 = 0 we take the binary tree consisting of the root and two sons. In order to
construct t; 1, consider ¢; with 2 T ¢ leaves. Along the frontier we introduce two
identical edge relations S7, S2 (and as universe we take their common domain):
For both S; and Sy start from the rightmost leaf, proceed leaf by leaf towards
the left to the leftmost leaf (which yields 2 1 (i—1) edges), and continue with one
more step to the parent of the leftmost leaf. Clearly S7,Sy are MSO-definable in
t;. The unfolding of this successor structure from its root, which is the rightmost
leaf of ¢;, gives the desired tree t; 1 of height 2 1 (i + 1) with 2 1 (i + 2) leaves.

Let [[,t; be the “limit model” of the t; (¢ > 0) where the rightmost leaf
of ¢; coincides with the root of ¢;11. An interpretation in the limit model will
generate a structure (N, Suce, P) which does not belong to the Caucal hierarchy:
As copy of (N, Succ) one uses the infinite sequence of leaves, and one declares
as P-elements the “first leaves” of the t;. The difference between successive P-
elements is then (2 7 (i +1)) — 1 (for ¢« = 0,1,...). By a refinement of the
construction one can also generate a copy of (N, Succ, H) where H is the set of
hyperpowers of 2. For this, we use a structure [[, ¢, where each t; contributes
only 2 7 (i +1) — 2 1 4 rather than 2 7 (i + 1) — 1 leaves. Technically we work
with the ¢; as above but expanded by a singleton predicate () that marks the
((274)+1)-stof its 2 7 (i+ 1) leaves. To construct the ¢, inductively, one starts
with ¢; and fixes ¢, as the set containing the second leaf. For the step from ¢
to ¢, we have to proceed (in the definition of Q) from a number of the form
2k — k to 22" — 2% this is possible (using a little technical work) by observing
that 22° — 2k = 2k(22"—k _ 1),

The model [, ¢; (and similarly [], ;) is generated by an infinite sequence of
interpretations and unfoldings. However, each of the interpretations is based on
the same formulas defining the universe and the relations, and for each unfold-
ing one uses the same formula for defining the root vertex. So we speak of an
interpretation-unfolding scheme that generates [ [, t; ([, t;, respectively). In our



Model Transformations in Decidability Proofs for Monadic Theories 29

example we referred to a single definable vertex for the “next unfolding”; in this
case we speak of a linear interpretation-unfolding scheme.

The limit models [, ¢; and [], ¢; have decidable MSO-theories. To show this,
we have (presently) to resort to the “non-uniform” method of model reduction
(see Section 3). This requires to invoke the equivalences =,, and the associated
n-types. We observe that the n-type of t;11 is computable from the n-type of
t; (similarly for ¢ and #;, ;). Then — by finiteness of the set of n-types — the
generated sequence of n-types is ultimately periodic, which allows to compute
the n-type of the limit model.

We do not know whether by a linear interpretation-unfolding scheme (and an
extra interpretation in the limit model) one can generate a structure (N, Succ, P)
whose monadic theory is undecidable. This is connected with the old problem
to find (in any way) a non-artificial — i.e. number theoretically meaningful —
recursive predicate P such that MTh(N, Succ, P) is undecidable.

It seems interesting to analyze also non-linear schemes. In this case, one would
allow to expand a given model at several vertices, which leads to a tree-like con-
struction. The formula that defines the set of vertices where the unfolding takes
place is then satisfied by several vertices. We show that such a scheme can lead to
a structure with an undecidable MSO-theory. Consider a Turing machine M (say
with set @ of states and tape alphabet X) that accepts a non-recursive language.
As initial model we use the tree Sy of all initial configurations ggas . ..a, with
initial state go and input word a; ...a, (coded by paths with successive edge
labels qo, a1, ..., a,,$ where $ is an endmarker). This is an infinite tree with a
decidable MSO-theory. By an interpretation-unfolding scheme we generate, level
by level, a tree model Sy, in which all M-computations can be traced as paths.
A word w will be accepted by M iff a sentence ¢,, is true in Sp; that expresses
the following: From the vertex after the initial path gow$ there is a path to a
configuration with an accepting state of M.

We describe the interpretation-unfolding scheme. Consider a tree Sy that is
generated at level k of the construction. We first treat the case £ > 0 and later
k = 0. Let r be the root of S;. The next unfolding will take place at any vertex
v which is the source of an $-labelled edge and such that between r and v there
is no other $-labelled edge. Vertex v is the end of a path from r labelled by an
M-configuration, say w;bgaws. We define a structure S, as follows: The universe
is given by the path from 7 to v, the sequence of edge labels along the path gives
the next M-configuration after wibgaws, and there is a new $-labelled edge from
v back to r. So we obtain S, from S by adding the $-edge and by changing
the bga-labelled path segment to a new one according to the table of M. (In
the case the length of the configuration increases by one, the original $-labelled
edge (v,v") gets a letter from X, and the $-labelled back-edge to r starts at
v".) Tt is clear that for each pair (¢,a) € Q x X (which fixes an M-transition)
the respective structure S, can be defined; a disjunction over all (¢, a) gives the
desired interpretation. The unfolding of S, at v will produce an infinite sequence
of finite paths labelled with the new configuration. In the subsequent step, only
the first such path will stay (by the definition of the new v and the new S,).
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In the initial step (where k& = 0) the initial configuration is simply copied; this
ensures that the first copy stays unmodified by the construction.

Clearly one can express in the limit model Sy; by an MSO-sentence ¢,, that
for input w there is an accepting computation of M. So MTh(S,/) is undecidable.

Interpretation-unfolding schemes are thus a powerful tool to generate models
(and in general too powerful to obtain only structures with a decidable monadic
theory). By a linear interpretation scheme it was possible to synthesize a struc-
ture (N, Succ, P) (namely, where P is the set of hyperpowers of 2) which was
previously just given a priori. The decidability of its monadic theory was shown
using the “non-uniform” method of model reduction. An open issue is to find
easily verified conditions that ensure decidability of the MSO-theory of a limit
model. Also one can study schemes that involve transfinite stages of construction.

6 Conclusion

We surveyed two techniques for proving that the MSO-theory of an infinite
labelled graph is decidable: the “non-uniform” method of model reduction a
la Elgot and Rabin and two “uniform” types of model transformation, namely
MSO-interpretations and unfoldings. We proposed to study models that are gen-
erated by an infinite number of steps involving the latter two operations. It was
illustrated that in this context a combination of the uniform and the non-uniform
approach gives a further small step in building up more infinite graphs that have
a decidable MSO-theory.

We have not touched the rich landscape of recent studies on other types of
interpetations and of model composition. A good survey on the state-of-the-art
is given in [2]. On the side of logics, one should note that for applications in
infinite-state verification weaker logics than MSO-logic are of interest, for which
the class of structures with a decidable model-checking problem can then be
expanded.
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Molecules as Automata

Luca Cardelli

Microsoft Research

Molecular biology investigates the structure and function of biochemical systems
starting from their basic building blocks: macromolecules. A macromolecule is a
large, complex molecule (a protein or a nucleic acid) that usually has inner mutable
state and external activity. Informal explanations of biochemical events trace individ-
ual macromolecules through their state changes and their interaction histories: a mac-
romolecule is endowed with an identity that is retained through its transformations,
even through changes in molecular energy and mass. A macromolecule, therefore, is
qualitatively different from the small molecules of inorganic chemistry. Such mole-
cules are stateless: in the standard notation for chemical reactions they are seemingly
created and destroyed, and their atomic structure is used mainly for the bookkeeping
required by the conservation of mass.

Attributing identity and state transitions to molecules provides more than just a dif-
ferent way of looking at a chemical event: it solves a fundamental difficulty with
chemical-style descriptions. Each macromolecule can have a huge number of internal
states, exponentially with respect to its size, and can join with other macromolecules
to from even larger state configurations, corresponding to the product of their states.
If each molecular state is to be represented as a stateless chemical species, trans-
formed by chemical reactions, then we have a huge explosion in the number of
species and reactions with respect to the number of different macromolecules that
actually, physically, exist. Moreover, macromolecules can join to each other indefi-
nitely, resulting in situations corresponding to infinite sets of chemical reactions
among infinite sets of different chemical species. In contrast, the description of a
biochemical system at the level of macromolecular states and transitions remains
finite: the unbounded complexity of the system is implicit in the potential molecular
interactions, but does not have to be written down explicitly. Molecular biology text-
books widely adopt this finite description style, at least for the purpose of illustration.

At the core, we can therefore regard a macromolecule as some kind of automaton,
characterized by a set of internal states and a set of discrete transitions between states
driven by external interactions. We can thus try to handle molecular automata by
some branch of automata theory and its outgrowths: cellular automata, Petri nets, and
process algebra. The peculiarities of biochemistry, however, are such that until re-
cently one could not easily pick a suitable piece of automata theory off the shelf.
Many sophisticated approaches have now been developed, and we are particularly
fond of stochastic process algebra. In this talk, however, we do our outmost to remain
within the bounds of a much simpler theory. We go back, in a sense, to a time before
cellular automata, Petri nets and process algebra, which all arose from the basic intui-
tion that automata should interact with each other. Our main criterion is that, as in
finite-state automata, we should be able to easily and separately draw the individual
automata, both as a visual aid to design and analysis, and to emulate the illustration-
based approach found in molecular biology textbooks.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, p. 32, 2008.
© Springer-Verlag Berlin Heidelberg 2008
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Abstract. Infinite-state automata are a new invention: they are automata that
have an infinite number of states represented by words, transitions defined us-
ing rewriting, and with sets of initial and final states. Infinite-state automata have
gained recent interest due to a remarkable result by Morvan and Stirling, which
shows that automata with transitions defined using rational rewriting precisely
capture context-sensitive (NLINSPACE) languages. In this paper, we show that
infinite automata defined using a form of multi-stack rewriting precisely defines
double exponential time (more precisely, 2ETIME, the class of problems solvable
in 227" time). The salient aspect of this characterization is that the automata
have no ostensible limits on time nor space, and neither direction of containment
with respect to 2ETIME is obvious. In this sense, the result captures the complex-
ity class qualitatively, by restricting the power of rewriting.

1 Introduction

The theory of infinite-state automata is a new area of research (see [21] for a recent
survey). Infinite-state automata (not to be confused with finite state automata on infinite
words) are automata with infinitely many states that can read finite words and accept or
reject them, in much the same way as finite-state automata would. In order to represent
infinite-state automata using finite means, the states, the transitions, and the initial and
final state sets are represented symbolically.

The infinite-state automata we study in this paper are defined by using words to
represent the states of the automaton. Let us fix a finite alphabet 3 as the input alphabet
for the infinite-state automata. The set of states of an infinite-state automaton over X' are
words over a finite alphabet I7 (which does not need to be related to X' in any way). The
initial and final sets of states of this automaton are defined using word-languages over
1T accepted by finitely presented devices (e.g. finite-state automata over 7). Transitions
between states are defined using rewriting rules that rewrite words to other words: for
each a € Y, we have a rewrite rule that rewrites words over I1. A state u € I1* leads
to state v’ € I1* on a € X iff the rewrite rule for a can rewrite u to u’. There is a
variety of choices for the power of rewriting, but in any case the rewriting rules are
presented finitely (e.g. using finite transducers). The language accepted by an infinite-
state automaton is defined in the natural way: a word w € X* is accepted if there is a
path from some initial state to some final state tracing w in the automaton.

* The first and third authors were partially supported by the MIUR grants ex-60% 2006 and
2007 Universita degli Studi di Salerno.
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Infinite-state automata are naturally motivated in formal verification, where, intu-
itively, a state of the model can be represented using a word, and the system’s evolution
can be described using rewriting rules. Classic examples include boolean abstraction
of recursive programs [2] (where a system is described using a state and a stack en-
coded into words, and the rewriting corresponds to prefix rewriting) and regular model-
checking, where parameterized finite-state systems are represented with finite words
and transitions defined using synchronous rational rewriting [3].

Infinite-state automata are radically different computation models than Turing ma-
chines especially when computational complexity issues are at hand. The notion that
rewriting words (or terms) can be a basis for defining computability goes back to the
works of Axel Thue [22] (Thue systems) and Emil Post (Post’s tag systems). For-
mal languages defined using grammars (the Chomsky hierarchy) are also in the spirit of
rewriting, with semi-Thue systems corresponding to unrestricted grammars and hence
Turing machines. While Turing machines can be viewed as rewrite systems (rewriting
one configuration to another), the study of computational complexity is often based on
time and space constraints on the Turing machine model, and natural counterparts to
complexity classes in terms of rewrite systems don’t currently exist.

Given a word w € X'*, note that infinite automata have possibly an infinite number
of paths on w. Hence, deciding whether w is accepted by the infinite-state automaton
is in no way trivial. However, if rewriting rules can be simulated by Turing machines
(which will usually be the case), the language accepted by the infinite-state automaton
is recursively enumerable.

Recently, Morvan and Stirling showed the following remarkable result: infinite state
automata where states are finite words, initial and final sets are defined using regular
languages, and transitions are defined using rational relations, accept precisely the class
of context-sensitive languages (nondeterministic linear-space languages) ([13]; see also
[3]). Rational relations are relations R C IT* x IT* that can be effected by finite-state
automata: (u,u’) € R iff the automaton can read u on an input tape and write «’ on
the output tape, where the two tape heads are only allowed to move right (but can move
independent of each other).

Note that the only constraint placed in the above result is the power of rewriting (ra-
tional relations) and there is no ostensible limit on space or time. In other words, the
constraint on rewriting is a qualitative constraint with no apparent restriction on com-
plexity. Indeed, even establishing the upper bound (the easier direction), namely that
these automata define languages that are accepted by linear-bounded Turing machines
is non-trivial. A naive simulation of the infinite-state automaton will not work as the
words that represent states on the run can be unboundedly large even for a fixed word
w. Notice that we do not allow e-transitions in infinite automata, as allowing that would
make infinite automata with even regular rewriting accept the class of all recursively
enumerable languages.

Our main contribution here is an infinite automaton characterization for the class
2ETIME, the class of languages accepted by Turing machines in e:rp(e:rp(O(n))
time, using a qualitative constraint on rewriting, which is a restricted form of multi-
stack pushdown rewriting.

! eap(x) denotes 2”.
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A simple generalization of regular rewriting is pushdown rewriting, where we allow
the rewriting automata the use of a work stack which can be used for intermediate stor-
age when rewriting a word to another. For example the relation {(w,ww")|w € IT*}
(where w” denotes the reverse of w) is not regular but can be effected by a pushdown
rewrite system. However, defining infinite automata with the power of pushdown rewrit-
ing quickly leads to undecidability of the membership problem, and these automata can
accept non-recursive languages.

We hence place a restriction on pushdown rewriting. We demand that the rewriting
device takes its input in a read-only tape and writes it to a write-only tape, and has
access to some stacks, but it can switch only a bounded number of times the source
from which it is reading symbols (i.e., the input tape and the stacks). In other words,
the pushdown rewriting can be split into k phases, where in each phase, it either reads
from the input tape and does not pop any stack, or pops from just one stack but doesn’t
read from the input tape. This restriction puts the problem of checking membership just
within the boundary of decidability, and results in an automaton model that defines a
class of recursive languages.

We show that infinite automata restricted to bounded-phase pushdown rewriting pre-
cisely defines the class 2ETIME.

The upper bound, showing the membership problem for any such infinite automa-
ton is decidable in 2ETIME, is established by reducing it to the emptiness problem for
finite-phased multi-stack visibly pushdown automata, which we have shown recently
to be decidable [12]. Note that (non-deterministic) Turing machines that directly and
naively simulate the infinite automaton could take unbounded space and time. Visibly
pushdown automata are pushdown automata where the input symbols determine
the operation on the stack, and multi-stack visibly pushdown automata generalize them
to multiple stacks [12]]. Intuitively, the accepting runs that are followed by an n-stack
pushdown rewriting system when it transforms a word u to «’ can be seen as a multi-
stack ((n + 2)-stack) visibly pushdown automaton. Hence membership of w for an in-
finite automaton reduces to checking emptiness of the language of accepting runs over
w. Moreover, if each rewriting step in the infinite automaton is bounded phase, then
the number of phases in the multi-stack automata is O(Jw|). In [12]], we show that
the k-phase reachability for multi-stack automata is solvable in exp(exp(O(poly(k))))
time using (monadic second-order) logic interpretations on finite trees. We sharpen the
above result in this paper to obtain exp(exp(O(k))) time decision procedure for empti-
ness by implementing two crucial subprocedures that correspond to capturing the linear
ordering and the successor relation from the tree directly using nondeterministic tree
automata and two-way alternating tree automata, respectively.

Turning to the lower bound, we establish that all 2ETIME languages are accepted
by infinite automata defined using bounded-phase pushdown rewriting. We show that
for every alternating ESPACE Turing machine (i.e. working in space 2°(™), which is
equivalent to 2ETIME [9])), there is an infinite automaton with bounded-phase rewriting
accepting the same language.

Related Work: A recent result by Rispal [18]] shows that infinite automata defined using
synchronous rational relations, which are strictly less powerful than rational relations,
also define exactly the class of context-sensitive languages (see also [3]]). Meyer [14]
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has characterized the class ETIME (the class of languages accepted by Turing machines
in time exp(O(n))) with infinite automata defined via automatic term transducers.

Bounded-phase visibly multi-stack pushdown automata have been introduced and
studied by us in [12]]. These automata capture a robust class of context-sensitive lan-
guages that is closed under all the boolean operations and has decidable decision prob-
lems. Also, they turned out to be useful to show decidability results for concurrent
systems communicating via unbounded FIFO queues [13].

Capturing complexity classes using logics on graphs in descriptive complexity the-
ory [[10], which was spurred by Fagin’s seminal result capturing NP using 350, also has
the feature that the characterizations capture complexity classes without any apparent
restriction of time or space.

Finally, there’s a multitude of work on characterizing the infinite graphs that corre-
spond to restricted classes of machines (pushdown systems [[16]], prefix-recognizable
graphs (7], higher-order pushdown automata [4]], linear-bounded automata [6]], and the
entire Chomsky hierarchy [8]]).

2  Multi-stack Pushdown Rewriting

A multi-stack pushdown transducer is a transducer from words to words that has access
to one or more pushdown stacks.

For any set X, let X, denote X U {e}, and let X* denote the set of finite words over
X. Also, forany 4, j € N, let [¢, j] denote the set {é,7+ 1,...,7}.

Fix finite alphabets /I and I'. An n-stack pushdown transducer over I is a tuple
T = (@, qo,0,I', F) where @ is a finite set of states, gy € @ is the initial state, I is
the stack alphabet, and F' C () is the set of final states. The transition relation is § C
(QxQxII.x II. x[0,n] x I x I.), with the restriction that if (¢, ¢’, a, b,4,v,7") € 6,
theny =~ = ¢iff i = 0.

A transition of the form (¢, ¢’, a, b, i,7y,~'), witha, b € II. and v, € I, intuitively
means that the pushdown transducer, when in state ¢ with + on the top of its 7 ’th stack
(provided 7 > 0) can read a from the input tape, write b onto the output tape, replace ~y
with 7/ onto the i’th stack, and transition to state ¢’. When ¢ = 0,y = v’ = € and hence
no stack is touched when changing state though input symbols can be read.

Note that v = ¢ and 7/ # ¢ corresponds to a push transition, v # ¢ and v = ¢
corresponds to a pop transition. Without loss of generality, let us assume that in every
transition, 7 = ¢ or v/ = ¢ holds, and if a # ¢ then v = ¢ (i.e., when reading a symbol
from the input tape, none of the stacks can be popped).

A configuration of the pushdown transducer 7 is a tuple (w1 qws, {s;},,w’) where
wy,wa,w € II*, ¢ € Qand s; € I'* for each 7 € [1,n]. Such a configuration means
that the input head is positioned just after w; on the input tape that has w; ws written on
it, ¢ is the current state, s; is the current content of the 7’th stack, and w’ is the output
written thus far onto the output tape (with the head positioned at the end of w’).

Transitions between configurations are defined by moves in ¢ as follows:

(¢:4",a,b,5,7,7")
RCI RN

(wigaws, {si}i—y, w") (wiaq'wa, {s;}i-;, w'b),
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where (¢,q',a,b,3j,7,7') € 6,if j # 0 then s; = 5y and s} = 57/, and s} = s; for
eachi # j.

Let us define the configuration graph of the transducer 7 as the graph whose vertices
are the configurations and whose edges are the transitions between configurations as
defined above. A multi-stack pushdown transducer 7 rewrites w to w’, if there is a
path in the configuration graph from configuration (qow, {e}?"_;,€) to configuration
(wgy, {si}p_i,w'), with gy € F.

Pushdown rewriting is powerful, and the problem of deciding whether w can be
rewritten to w’ even in two steps by even a one-stack transducer is undecidable (see
Appendix for a proof):

Lemma 1. The problem of checking if a word w can be rewritten to a word w' in two
steps by a 1-stack pushdown transducer is undecidable.

We want a tractable notion of transducers in order to define infinite automata that accept
recursive languages. We hence introduce a bounded version of pushdown transducers.

We say that a pushdown transducer is k-phase (k € N), if, when transforming any
wy to we, it switches at most k times between reading the input and popping either
one of the stacks, and between popping different stacks. More formally, a transition of
the form (q, ¢, a, b, ,7,7’) is a not-pop transition if it’s not a transition that pops any
stack, i.e. if v # € or ¢ = 0. Let NotPop denote the set of not-pop transitions. Let
Pop, (i # 0) denote the set of all transitions except those that read from the input tape
or pop from a stack j different from i, i.e. Pop, is the set of transitions of the form
(¢,q',a,b,7,7v,7") where a = € and if j # i then v = e.

A k-phase transducer is one which on any run ¢y RN c1 ST Co... RUIN c; the
sequence myms ... m; can be split as wyws ... wy where for every h € [1,k], wy, €
NotPop™ U, (Pop}).

A bounded-phase pushdown transducer is a pushdown transducer which is k-phase
for some k£ € N.

Infinite Automata Defined by Multi-stack Pushdown Transducers

We define now infinite-state automata over an alphabet 2. The states in this automaton
will correspond to words over an alphabet I/, the set of states one can transition to
from a state on a letter d in X’ will be defined using a multi-stack pushdown transducer
corresponding to d, and initial and final state sets will be identified using regular sets of
words over I1.

Fix a finite alphabet J. An infinite-state pushdown transducer automaton (PTA) over
Yisatuple A = (11, {74} acx, Init, Final), where IT is a finite alphabet, for each d €
X7, 75 is a pushdown transducer over I7, and Init and Final are finite-state automata
(NFAs) over I1.

APTA A = (I, {74} e s, Init, Final) defines an infinite graph G = (V, E') where
the set of vertices V' is set of words over /I and F is the set of all edges v 4, o' such
that the pushdown transducer 7 can rewrite v to v’.

A bounded-phase PTA (BPTA) is a PTA in which every transducer is of bounded-
phase.
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A run of the PTA A on a word over d; ...d,, € X* is a sequence vg, V1, - .. Up,

where vy is accepted by the automaton Init, and for each i € [1,n], v;_1 LN v; 1S in
G. Such a run is accepting if the final vertex is accepted by Final, i.e. v,, € L(Final).
A word w is accepted by a PTA A if there is some accepting run of A on w. The
language accepted by A, denoted L£(A) is the set of all words it accepts.
In the rest of the paper we often write exp(z) for 2%. Let 2ETIME(X') denote the
class of all languages over X' that can be accepted by Turing machines working in time
exp(exp(O(n)).

We can now state our main theorem:

Theorem 1
A language L over X is accepted by a bounded-phase PTA iff L €2ETIME(X).

3 The Upper Bound

In this section, we show that bounded-phase pushdown transducer automata define a
class of languages contained in 2ETIME.

Letus fixaBPTA A = (I1, {7} ac s, Init, Final). The proof that L(.A) is contained
in 2ETIME is structured as follows:

(a) First, we show that the problem of checking if a word w is accepted by a BPTA
can be reduced to the emptiness problem for k-phase multi-stack visibly pushdown
automata (defined below) of state-space O(|w|) and such that & = O(|w|).

(b) In [12]], we have shown that the emptiness problem for k-phase multi-stack push-
down automata with state-space ) can be decided in exp(|Q| - exp(O(poly(k))))
time. Applying this would give a 2EXPTIME procedure and not a 2ETIME proce-
dure for our problem (2EXPTIME is the class of problems that can be solved by
a Turing machine using exp(exp(O(poly(n)))) time). Consequently, we sharpen
the result above, and show that emptiness can be indeed decided in time exp(|Q)] -
exp(O(k))), which establishes our theorem.

Bounded Phase Multi-stack Pushdown Automata

Multi-stack visibly pushdown automata (MVPA) are automata with a finite number
of stacks, where the input letter determines which stack the automaton touches and
whether it pushes or pops from that stack. We refer to actions that push onto a stack as
calls and actions that pop a stack as returns.

An n-stack call-return alphabet is a tuple X, = ({(X7%, 2%)}ici1 n), Zint) of pair-
wise disjoint finite alphabets. For any ¢ € [1, n], X7 is a finite set of calls of the stack 1,
Ef, is a finite set of returns of stack i, and X;,, is a finite set of internal actions. Let )
denote the union of all the alphabets in 2.

An n-stack visibly pushdown automaton M = (Q, Q, I, 0, Q r) (where @ is a finite
set of states, @y C @ and Qr C (@ are initial and final sets of states, I" is the stack
alphabet and 0 is the transition relation) over such an alphabet can push on the i’th
stack exactly one symbol when it reads a call of the 7’th call alphabet, and pop exactly
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one symbol from the 7’th stack when it reads a return of the 7’th return alphabet. Also,
it cannot touch any stack when reading an internal letter. The semantics of MVPAs is
defined in the obvious way, and we refer the reader to for details.

A k-phase MVPA (k-MVPA) is intuitively an MVPA which works in (at most) k
phases, where in each phase it can push onto any stack, but pop at most from one stack.
Formally, given a word w € X, we denote with Ret(w) the set of all returns in w. A
word w is a phase if Ret(w) C X¢, for some i € [1,n], and we say that w is a phase
of stack i. A word w € Yt isa k-phase word if k is the minimal number such that w
can be factorized as w = wjws ... wy, where wy, is a phase for each h € [1, k]. Let
Phases(X,,, k) denote the set of all k-phase words over X,,.

_ For any k, a k-phase multi-stack visibly pushdown automaton (k-MVPA) A over
Y'n is an MVPA M parameterized with a number k; the language accepted by A is
L(A) = L(M) N Phases( Xy, k).

Reduction to k-MVPA Emptiness

Consider a BPTA A = (I1,{74}4cx, Init, Final). Recall that given a word w =
dy...d, € X*, the automaton A accepts w iff there is a sequence of words ug, . . ., U,
such that ug € L(Init), u,, € L(Final), and for each i € [1,m], u;—; can be rewritten
to u; by the transducer 7.

Suppose that the transducers of A have at most n stacks. We consider the (n + 2)-
stack call-return alphabet X, 15 = ({(Z%, X2)}iep1,nto)s {int}) where each 7 = {¢;}
and X! = {r;}. Le., we have exactly one call and one return for each stack, and exactly
one internal letter.

Assume that an (n + 2)-stack MVPA starts with u;_; on stack 1. Using stacks
2,...,n + 1 as the intermediate stacks, it can generate u; on stack n + 2 by simu-
lating the transducer 7, (the word it reads is dictated by the actions performed on the
stack). Then, it can replace stack 1’s content with the reverse of stack (n + 2)’s content
to get u; on the stack 1, and empty stacks 2,...,n + 1. Since the pushdown rewrite
system is bounded phase, it follows that the above rewriting takes only a bounded num-
ber of phases. Simulating the rewrites for the entire word w (i.e. ug — u; — ... Up),
and checking the initial words and final words belong to Init and Final, respectively,
takes at most O(m) phases. Moreover, we can build this MVPA to have O(m) states
(for a fixed BPTA A). We hence have:

Lemma 2. The problem of checking whether a word w is accepted by a fixed PTA is
polynomial-time reducible to the emptiness problem of an O(|w|)-phase MVPA with
O(|wl) states.

Solving k-MVPA Emptiness

In [12], the decidability of emptiness of k-MVPA proceeds by first defining a map from
words over X' to trees, called stack trees, by showing that the set of stack trees that
correspond to words forms a regular set of trees, and reducing k-MVPA emptiness to
emptiness of tree automata working on the corresponding stack trees.
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The map from words to trees rearranges the positions of the word into a binary
tree by encoding a matching return of a call as its right child. This mapping hence
easily captures the matching relation between calls and returns, but loses sight of the
linear order in w. Recovering the linear order is technically hard, and is captured using
monadic second-order logic (MSO) on trees.

Fix a k-phase word w of length m. We say that a factorization wy, ..., wy of w is
tight if: (1) the first symbol of wy, is a return for every h € [2,k], (2) if & > 1 then
Ret(wy) # 0, and (3) wy, and wy,+1 are phases of different stacks for every h € [1,k —
1]. Tt is easy to see that, for every k-phase word w there is a unique tight factorization,
and thus we can uniquely assign a phase number to each letter occurrence within w
as follows: for w = w'dw”, d € X, the phase of d is h iff wy, ..., wy is the tight
factorization of w and d is within wy,.

A stack tree is defined as follows:

Definition 1. Let w be a k-phase word over X, with |w| = m, and wy, . .., wy, be the
tight factorization of w. The word-to-tree map of w, wt(w), which is a (X x [1,k])-
labeled tree (V, \), and the bijection pos : V' — [1,m] are inductively defined (on |w))

as follows:

- Ifm=1, then V={root}, A(root)=(w, 1), and pos(root)=1.
— Otherwise, let w = w'd, d € X, and wt(w') = (V', X). Then:
o V=V U{v}withvgV'.
o \v) = (d, k) and \(v') = XN (V), for every v’ € V.
o [fthereisaj < m suchthatd is a return and the j'th letter of w is its matching
call (of the same stack), then v is the right-child of pos~(j).
Otherwise v is the left-child of pos—*(m — 1).
e pos(v) = m.

The tree wt(w) is called the stack tree of w. A k-stack tree is the stack tree of a k-phase
word.

The proof that the set of stack trees that correspond to words accepted by a k-MVPA
forms a regular set of trees requires showing that: (a) the set of all stack trees is regular
and (b) given a stack tree, checking whether a k-MVPA has an accepting run over the
corresponding word can be done by a tree automaton.

Part (a) involves the definition of a linear order < on tree nodes which corresponds
the linear order on the word from the stack tree, and [12] shows that given a tree au-
tomaton of size r accepting the < relation (formally, accepting trees with two nodes
marked x and y such that x < y), we can build an automaton of size exponential in r to
accept all stack trees. It is further shown in [12] that the < relation can be captured by an
automaton of size r = exp(poly(k)). In order to get a exp(exp(O(k))) automaton for
accepting stack trees, we show now that the < relation can be defined using automata
of size r = exp(O(k)) (LemmaM below).

Part (b) requires traversing the stack tree according to the linear order on w using a
two-way alternating automaton. We show below that there is a two-way alternating tree
automaton of size 29(*) that traverses the tree consecutively from one node to its suc-
cessor. More precisely, we show that given a tree where the first and last events of each
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phase are marked, there is a 2-way alternating automaton that, when placed at a node z
in the tree, will navigate to the successor of x (reaching a final state) (Lemma[3] below).
It follows from that using this automaton, we can check whether the word corre-
sponding to the stack tree is accepted by a k-MVPA using a nondeterministic automaton
of size exp(exp(O(k))). This primarily involves an exponential conversion of alternat-
ing tree automata to nondeterministic automata [19123], followed by other checks that
can be effected by nondeterministic automata of similar size.
We present the above two results in two technical lemmas below.

Tree Automata Accepting Stack Trees

Here we give a characterization of < which leads to a direct construction of a tree
automaton of size exp(O(k)) that captures it.

Fora (X x [1, k])-labeled tree T = (V, \), we define a map phasep : V — [1, k] as
phaser(x) = hiff A(z) = (d, h) for some d € X.

Stack trees must first satisfy some simple conditions. A tree is well-formed if (i) the
phase numbers are monotonically increasing along any path in the tree, (ii) every right
child is a return, with a call of the same stack as its parent, and (iii) the phase of the
rootis 1.

Let T be a well-formed tree, 2 be anode of T', 2’ be an ancestor of 2, and x; . . . 2, be
the path in T from 2/ to x. Let I = {iq,i2,...,4p—1 } be the set of all indices i € [1,£—
1] such that phasey(x;) # phasep(ziy1). Assume that iy < ia < ... < ip—_1. We
denote by PhasePathr(x', ) the sequence p1, pa, . . ., per such that p; = phasep(z;,)
forevery j € [1,¢' — 1], and pyr = phasep(x).

In the following, <, is the linear order of nodes according to a preorder visit of
the tree, and 7", denotes the largest subtree of 7" which contains z and whose nodes are
labeled with the same phase number as z.

Definition 2. Let T' = (V, \) be a well-formed tree. For every x,y € V, x <. y if one
of the following holds:

1. phaser(x) < phaser(y);

2. T, =Tyand v <pre y;

3. There exists an ancestor z, of x and 2
an ancestor z, of y such that

parent(zg) parent(zy )

-z F 2ys

phasep(parent(z;)) < phasep(zy),
phase(parent(zy)) < phases(zy),
PhasePathr (2, x)

= PhasePathr(zy,y)

=p1,...,pw ‘o ‘v

2 ,
gy Yigr_y

(see figure on the right, where similarly shaded regions belong to the same phase),

and one of the following holds

(a) 0" is odd and phaser(parent(z,)) < phasep(parent(zy)), or ¢’ is even and
phasep(parent(zy)) < phaseq(parent(zy)).
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(b) Tparent(zy) =Tparent(z, ), and either ' is odd and parent(z,) <pre parent(z),
or U is even and parent(z;) <pre parent(zy) .

It is not hard to see that there is a non-deterministic automaton that guesses the
phase-path p1,...,py (since this sequence is always ordered in increasing order, we
can represent it as the set {p1, . .., ps }, and hence the number of guesses is O(2*)) and
checks whether x < y.

The following lemma states that <, and < indeed coincide.

Lemma 3 (CHARACTERIZATION OF <). Let T' = (V, \) be a (X x [k])-labeled tree
that is well-formed. Then, x <, y if and only if v < y for every z,y € V.

From the above argument and lemma, and the result shown in [12] we get:

Lemma 4. For any k, there is a nondeterministic tree automaton of size exp(O(k))
that accepts a well-formed tree with two nodes labeled x and y iff x < y.

Thus, we have the following theorem.

Theorem 2. For any positive integer k, there is a nondeterministic tree automaton of
size exp(exp(O(k))) which accepts the set of all k-stack trees.

Tree Automata Traversing Stack Trees

Given a k-stack tree 7" and two nodes x, y of T, we say that y is the successor of x if
corresponds to a position j of w and y to position j + 1 of w, where wt(w) = T

In this section, we show that there is a two-way alternating tree automaton (see
for a definition), with ezp(O(k)) states, that when started at a node x on a k-
stack tree T', navigates to the successor of x. We will assume that we are given markers
that mark the first letter (marked with s) and last letter (marked with e) of each phase. In
fact, we can build conjunctively another automaton that checks using exp(exp(O(k)))
states that these markers are correct.

Formally, let T = (V,\) be a (¥ x [1,k] x {s, e, L })-labeled tree and T" = (V, ')
be the (X x [1, k])-labeled tree where N (z) = (a, i) if () = (a, i, d). We say that T
is a k-stack tree with markers, if T’ is a k-stack tree, and all the vertices corresponding
to positions of wt ~*(T") where a phase starts (resp. ends) are labeled in 7" with s (resp.
e). For z,y € V, we say that y is the successor of x if y is the successor of x in T".

Lemma 5. There exists a two-way alternating tree automaton, with exp(O(k)) states
that given a k-stack tree 'T', when started at a node x of T, will navigate precisely to the
successor of x (reaching a final state).

Proof. The 2-way alternating automaton is best described algorithmically. It will be
easy to see that this algorithm can be executed by a 2-way alternating automaton of
the required size. The algorithm is shown in Fig. [l With EndPhase(z) we denote a
predicate that holds true whenever z is the last letter of a phase. With NextPhase(i),
i < k, we denote the first letter of phase 7 + 1. With PrefixSucc(z), we denote the next
letter in the preorder visit of T ,. With ParentRoot(z), we denote the parent of the root
of T,.. BeginPhase(x), PrevPhase(:) and PrefixPred(z) are defined analogously.
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Procedure Successor(x) Procedure Predecessor(z)
if EndPhase(z) then if BeginPhase(z) then
return (NextPhase(phase(x))); return (PrevPhase(phase,(x)));
elseif ( y < PrefixSucc(z) exists ) then elseif ( y < PrefixPred(z) exists)
return (y) ; then return (y) ;
else {z «— ParentRoot(x); else {z — ParentRoot(x);
2" « Predecessor(z); 2" « Successor(z);
while ( phaser (right Child(z")) while ( phaser(rightChild(z))
# phaser(x)) do # phaser(x)) do
2" « Predecessor(z'); 2" « Successor(z');
return (rightChild(z')); } return (rightChild(z')); }

Fig. 1. Successor and predecessor in stack trees

Intuitively, if x is the last letter of a phase, we navigate to the first letter of the
next phase (effected by the first clause). Otherwise, we check whether we can find the
successor locally, in the same subtree 77 ; this corresponds to finding the next element
in the preorder visit of 7, and is delegated to the second clause. If x is the last letter of
T, then the successor is hard to find. Let z be the parent of the root of T, and ¢ be the
phase number of x. Intuitively, the successor of z is obtained by taking the last node
before z that has a matching return whose phase is . We hence execute the function
Predecessor iteratively till we reach a node that has a right-child of phase 1.

Implementing the above requires a 2-way alternating automaton to keep a list of
phase numbers. Such list can be maintained as a set (since the phase numbers on the list
are ordered), and we can engineer the automaton to have ezp(O(k)) states. Alternation
is used to prove falsity of conditional clauses that are not pursued in the algorithm. 0O

From the above lemmas and the result from [12]], we get:

Theorem 3. The emptiness problem for k-MVPAs of state-space Q) is decidable in time
exp(|Q| - exp(O(k))).

Combining Lemma[l and the above theorem we get:

Theorem 4. The membership problem for BPTAs is decidable in 2ETIME.

4 The Lower Bound

In this section, we show that any language in 2ETIME is accepted by an infinite-state
bounded-phase pushdown transducer automata, thereby completing the proof that such
automata exactly characterize 2ETIME (Theorem/[T)).

We start giving a lemma which describes an interesting feature of the bounded-phase
multi-stack pushdown rewriting. It states that if we have an unbounded number of pairs
of bounded-length words, say bounded by N, then we can check whether every pair
(w,w") is such that |w| = |w’| and for each 4 the i’th symbol of w and w’ belong to some
relation over symbols, using at most [log N'| /c-steps of 2°-phase multi-stack pushdown
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rewriting. Consider a finite relation ® C II x II, and two words w = aj ...a,, and
w' = a}...al, over II. We say that (w,w’) satisfies R if and only if m = m' and
(a;,ai) € Rfori=1,...,m.

K3

Lemma 6. Let II be a finite alphabet, # be a symbol which is not in II, R C II x
11, and w be any word of the form wi#Hv1#Hus#HVoH# . . . #FUpFHVm, with m > 0 and

Uiy Vi € HQCnforz' =1,...,mwithc,n > 0.
There exists a 2¢-phase 2-stack pushdown transducer T that rewrites within n. steps
each such word w to a symbol $ if and only if (u;, v;) satisfies R for everyi=1,...,m.

Proof sketch. The transducer 7 splits each pair (u;, v;) into 2¢ pairs of words, and writes
them onto the output tape. This transducer can be implemented using two stacks and
2¢-phases. In n steps, the transducer hence reduces the problem of checking whether
every (u;,v;) satisfies R to that of checking whether a large number of pairs of letters
belongs to R, which can be effected by a regular automaton. O

A transducer, as stated in the above lemma, can be used to check for a Turing machine
whether a configuration is a legal successor of another one. We apply this result as a
crucial step in proving the following theorem which states the claimed lower bound.

Theorem 5. For each language L in 2ETIME(X), there is a bounded-phase pushdown
transducer automaton A such that L = L(A).

Proof sketch. We reduce the membership problem for alternating Turing machines
working in 2°9(") space to the membership problem for BPTAs. The result then fol-
lows from [9].

We briefly sketch a BPTA A that accepts a words w if and only if w is accepted by a
20(") space Turing machine M. First A guesses a word w and a run ¢ of M encoding
them as a sequence of pairs of words (u;, v;) such that all the steps taken in ¢, and w
along with the initial configuration, are all represented by at least one such pair. Then,
it checks if the guessed sequence indeed encodes an accepting run of M on w.

In the first task we make use of a slight variation of a standard encoding of trees by
words where each pair of consecutive configurations of M are written consecutively in
the word. The second task is by Lemma 6l We observe that it suffices to have single
initial and final states for A. O

5 Discussion

We have shown an infinite-automata characterization of the class 2ETIME. This result
was obtained independently of the work by Meyer showing that term-automatic infinite
automata capture the class ETIME [14]. These two results, along with the characteriza-
tion of NLINSPACE [[13], are currently the only characterizations of complexity classes
using infinite automata.

The power of multi-stack rewriting. While infinite automata capture fairly complex
languages, there has been little study done on how simple infinite automata can be
designed to solve natural algorithmic problems. In this section, we investigate the power
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of our rewriting. We give infinite automata that solve SAT and QBF (crucially using
Lemmal6)), and explore connections to infinite automata based on term rewriting. While
this of course follows from the lower bound shown in Section [ the construction is
instructive.

We start observing some interesting features of bounded-phase multi-stack push-
down rewriting. We can generate words corresponding to tree encodings, or, in gen-
eral, belonging to a context free language. (Checking whether a word belongs to a
context free language while rewriting can be a problem though: for example, it is not
clear how to rewrite in 1-step a word w to a symbol 1 iff w € {a"b™ | n > 0}.)
Also, in each rewriting we can duplicate a bounded number of times any portion of
the read word. This can be useful to start many threads of computation on the same
string thus speeding-up the total computation. Finally, words can be (evenly) split into
a bounded number of sub-words. By iterating such splitting, we can check simple rela-
tions between an unbounded number of words, each of exponential length, as shown in
Lemmal6l

SAT and QBF. Let us encode Boolean formulas in the standard way, by representing
each quantifier, connective, constant and bracket with different symbols, and variables
with unbounded length binary strings.

On the first step, A prepares the computation by rewriting its initial state with a
triple (w1, w2, w3) where w; is the encoding of a well-formed formula, wo is a copy of
w; along with a valuation for each variable occurrence, and ws is the list of variable
occurrences coupled with their valuation as annotated in wsy. The word w; is guessed
nondeterministically using a stack to ensure it is well-formed, and is used by A to match
the input formula. The word wy is obtained by copying w; and nondeterministically
guessing on each variable occurrence a valuation (note that two occurrences of the
same variable may be assigned with different values along some runs). Word wy, is used
to evaluate the formula in the guessed valuation. Word w3 is extracted from w9 and is
later used to generate all pairs (zb, 2'b") where z, 2’ are variable occurrences and b, b’
are respectively their assigned values. Such pairs are then checked to see if they define
a consistent valuation.

Observe now that evaluating the formula requires a number of steps of rewriting
bounded by its height. Also, the pairs of occurrences can be generated in n — 1 steps
of rewriting where n is the number of variable occurrences in the formula: a sequence
X1 ...xT, is rewritten according to the recurrence pairs(xy ...x,) is (x1,x2) along
with pairs(zi23 ... x,) and pairs(zaas . .. x,). Finally, from Lemmal[6] checking for
pair consistency can be done in the length of the variable representation. Therefore, all
tasks are accomplished by the time A terminates its input and therefore it can correctly
accept or reject the input word.

This construction can be generalized to encode QBF. The main difference is that
variables are assigned one at each step: when the corresponding quantifier is eliminated.
The elimination of universal quantifiers requires duplication of the formula, which can
be effected using a work stack.

Term-automatic rewriting. Another way to define infinite automata is to represent
states using terms (or trees), and use term rewriting to define relations. In [[14], term
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automatic rewriting infinite automata are considered, and it is shown that they precisely
capture ETIME (the class of languages accepted by Turing machines in time 2°(") ).

A binary relation R over terms is automatic if it is definable via a tree automaton
which reads overlappings of the pair of terms, i.e., the terms are read synchronously on
the parts where the corresponding domains intersect (see [[14]).

Intuitively, a stack allows us to faithfully represent terms using a well-bracketed
word. We now show how to directly translate a term-automatic infinite automaton A to
a multi-stack rewriting infinite automaton B accepting the same language. Automaton
B on the first step nondeterministically guesses the entire run of A4, i.e., a sequence of
terms t1,...,tx where N — 1 is the length of the word which will be read. Then, it
checks if it is indeed an accepting run by generating all the pairs of consecutive terms
in the sequence, and then checking them as in Lemmal[@l To ensure that terms match
when paired, we need to guess terms which all have the same shape (with dummy labels
used to mark unused parts of the tree). Also, in order to have all tasks processed on time
(i.e., before the input to the automaton is completely read), the guessed terms must be
of size at most exponential in V. It is not hard to show by standard techniques that if a
term-automatic infinite automaton has an accepting run over a word w, then it has also
an accepting run on it which visits terms of size at most exponential in the length of w.
Hence the infinite automaton 3 accepts the same language as A.

Conclusions and future directions. We have defined (B)PTA with possible infinite
initial and final states. Restricting the definition to single initial and final state does
not alter the class of recognized languages. In fact, for each (B)PTA A, we can easily
construct a language equivalent (B)PTA A" which has only an initial and a final state.
We observe that, since the construction in Theorem 3] showing 2ETIME hardness
uses transducers with only two stacks, the full power of BPTA can be achieved with
just two stacks. If we allow transducers with only one stack we can show 22" lower

bound but it is left open whether we can capture all 2ETIME (i.e. time 220(")) using
just one-stack transducers.

There are several choices for rewriting that can be studied. For example, prefix
rewriting (where essentially the input word is treated as a stack, and an automaton
works on it to produce a new stack) precisely defines context-free languages [21]]. Reg-
ular and synchronized regular rewriting leads to automata that accept context-sensitive
languages [T5I18]]. Reducing the power of rewriting to one that is weaker than synchro-
nous regular relations seems hard (for e.g., consider relations R C X* x X* where the
language {w#w’ | (w,w’) € R} is regular; this leads to infinite automata that only
capture regular languages).

We believe that our results may open a new technique to finding rewriting classes
that capture complexity classes. Intuitively, a rewriting mechanisms for which checking
whether any word in a regular language L can be rewritten in n steps to a word in
a regular language L’ can be solved in time (or space) C'(n) may be a good way to
come up with conjectur rewriting schemes that define infinite automata for the class
C(n)-time (or space).

Along this vein, consider bounded context-switching rewriting where the input word
is rewritten to an output word using a finite number of stacks, but where there is only
a bounded number of switches between the stacks (including the input tape). This is
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weaker than the rewriting in this paper as the automaton is not allowed to push onto all
stacks in one phase. The membership problem for bounded-context-switching automata
can be seen to be NP-complete, and it will be interesting to see if this leads us to an
infinite automaton characterization of NP.

The most interesting question would be to investigate if any complexity-theoretic re-

sult can be proved in a radically different fashion using infinite automata. As mentioned
in [21]], given that we have infinite automata for the class NL, showing that NL=C0O-NL
using infinite automata seems an excellent idea to pursue.
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Abstract. We give a recursion-theoretic characterization of the com-
plexity classes NCF for & > 1. In the spirit of implicit computational
complexity, it uses no explicit bounds in the recursion and also no sepa-
ration of variables is needed. It is based on three recursion schemes, one
corresponds to time (time iteration), one to space allocation (explicit
structural recursion) and one to internal computations (mutual in place
recursion). This is, to our knowledge, the first exact characterization of
NC* by function algebra over infinite domains in implicit complexity.

1 Introduction

Since the seminal works of Simmons [19], of Leivant [11,12], of Bellantoni and
Cook [3], and of Girard [8], implicit computational complezity has provided mod-
els over infinite domains of major complexity classes which are independent from
the notion of time or of space related to machines.

These studies have nowadays at least two twin directions. The first direction
concerns the characterization of complexity classes by means of logics or of recur-
sion schemes. A motivation is to have a mathematical model of resource-bounded
computations. The second direction is more practical and aims to analyze and
certify resources, which are necessary for a program execution. One of the major
challenges here is to capture a broad class of useful programs whose complexity
is bounded. There are several approaches [1, 6, 10, 16].

This paper falls in the first direction which can be seen as a guideline for the
second approach. We give a recursion-theoretic characterization of each class
NCF by means of a function algebra INC* based on tree recursion. We demon-
strate that INC* = NCF for k > 1.
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The classes NC* were firstly described based on circuits. NC* is the class
of functions accepted by uniform boolean circuit families of depth O(logk n)
and polynomial size with bounded fan-in gates, where n is the length of the
input—see [2] or [9]. In [18], Ruzzo identifies NC* with the classes of languages
recognized by alternating Turing machines (in short ATMs) in time O(log® n)
and space O(logn).

In fact, the main difficulty in this characterization of NC* relies on the double
constraint about time and space. Other previous characterizations based on tree
recursion fail to exactly capture for this reason. In 1998, Leivant [13] characterized
NC using a hierarchy of classes RSR, such that RSR;, C NCF C RSR.y o for k > 2.
In the sequence of [4] and [17], this result was refined in [5] by defining term systems
Tk such that T € NC*F C T++1 for k > 2. Both approaches are defined in a sorted
context, either with safe/normal arguments or with tiered recursion.

We define INCF as classes of functions, over the tree algebra T, closed under
composition and three recursion schemes over T: time iteration, explicit struc-
tural recursion and mutual in place recursion. No explicit bounds are used in the
schemes and also no separation of variables is needed. The mutual in place re-
cursion scheme, one main point of our contribution, is related to previous work
of Leivant and Marion, see [14]. The absence of tiering mechanism is related
to [15], so that similar diagonalization argument should be possible.

2 Preliminaries

Let W be the set of words over {0,1}. We denote by e the empty word and by
W; the subset of W of words of length exactly i. We consider the tree algebra
T, generated by three O-ary constructors 0,1, L and a binary constructor x, in
other words, binary trees with leaves are labeled by {0,1, L}. S(¢) denotes the
size of a tree, H(t) corresponds to the usual notion of height. We say that a tree
t is perfectly balanced if it has 2"(*) leaves. All along, 0 serves as false, 1 as true
and L as the undefined.

Given a non-empty (enumerable) set of variables X', we denote by T(X) the
term-algebra of binary trees whose leaves are labeled by 0, 1, L or variables from
X. If t,u denote some terms and x is a variable, the term t[z <« u] denotes the
substitution of z by u in ¢. Then, tfz «— u,y — v] = t[fr — u]ly — v]. All
along, we take care to avoid clashes of variables. When we have a collection I
of variable substitutions, we use the notation t[(xy, «— ty)wer]|. Again, we will
avoid conflicts of variables.

We now introduce some convenient notations, used extensively all along the
paper. Given a set of variables X' = (zy),,yy, we define a family of perfectly
balanced trees that we call tree patterns (t;), .y in T(X) where each leaf is
labeled by a distinct variable:

to = .

tir1 = ti[(zw — wa)wEWi] * 4 [(T — xlw)wewi]
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Observe that the index in a variable of some tree pattern indicates the path
from the root to it. For example, to = (zgo * zo1) * (z10 * £11). The use of
the t's and substitutions makes notations very short. For instance, to[(z, «—

fu(@w))yew,] = (foo(zoo) * for(zo1)) * (fio(z10) * fi1(z11)). This notation is
particularly useful to define “big-step” recursion equations as in:

f((woo * zo1) * (w10 * 711)) = (f(200) * f(01)) * (f(210) * f(211))
which we shall note: f(t2) = to[(zw — f(xw))weWJ

3 The Classes INC*

Definition 1. The set of basic functions is B = {0,1, L, x, (7 )1<J,cond do,d1}
where 0,1, L and % are the constructors of the algebm T, do and dy are the
destructors of T, cond is a conditional and ! are the projections. Destructors
and conditional are defined as follows:

do(c) =di(c) =¢, ce€{0,1,1}
do(to * 1) = to, di(toxt1) = t1,
cond(0, zg, T1, %1, Ty) = X0 cond(1,zg, 21,21 ,7y) = 71,
cond(L, zg, 21,21 ,%) =21 cond(tg * t1, 0, T1,T1,Ty) = Ty.

The set of basic functions closed by composition is called the set of explicitly
defined functions. If the output of a function is 0,1 or L, then we say that the
function is boolean. If the definition of a function does not use %, the function
is said to be x-free. As a shorthand notation, we use dp,..», for the function
dy, 0---ody,.

Definition 2. INC® is the closure of the set B under composition, mutual in
place recursion (MIP), explicit structural recursion (ESR), and time iteration

(T1) for k.

The mentioned schemes are described below.

To relate functions over words to functions over trees, we encode words of
W by perfectly balanced trees of T. For this, we define tr(w) as the perfectly
balanced tree of height [log(Jw|)] whose leaves read from left to right are the
letters of w padded by L on the right if necessary.

A function ¢ : W" — W is represented by a function f € T" — T iff for
all words wy, ..., wy, f(tr(wy),...,tr(w,)) = tr(d(ws,. .., wy)). Actually, the
representation of ¢(wy, ..., w,) does not need to be canonical, that is the height
of the output tree may be greater than [log(|¢(wr, ..., wy)])].

Theorem 3. For k > 1, the set of functions over words represented in INC* is
exactly the set of functions computed by circuits in NCF.

The proof of the theorem is a direct consequence of Proposition 13 and Propo-
sition 15 coming in Section 4 and 5.
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3.1 Mutual in Place Recursion

As a shorthand for finite sequences, we use (- ). The notation can be nested
such as in (@) which denotes a sequence o1 (U1, ..., Uk, )., On(Us, ..., Uk, ).

The first recursion scheme, mutual in place recursion, is the key element of
our characterization.

Definition 4. The functions (f;)icr (with the set I finite) are defined by mutual
in place recursion (MIP) if they are defined by a set of equations, with i,j,1 € I
and ¢ € {0,1, L}, of the form

fi(t[) *x 11, 'l._L) = fj(to, C_Ti’()(t() *t1, 1_1,)) * fl(tl; 5’1"1(150 *x 11, 'I._L)) (1)
file,u) = gi(a) (2)

where ;0 and 0,1 are sequences of x-free explicitely defined functions and the
functions g; . are explicitely defined boolean functions.

Notice that the first argument is shared by the entire set of mutually defined
functions as recursion argument. While for the others, copies, switch and visit can
be performed freely. As a consequence, for any such function f, one may observe
that f(¢, ) is a tree with the exact shape of ¢ but, possibly, with different leaves.
This results from the constraints on 7,0, ;,1, and g; .. Actually, informally, to
compute the value corresponding to each leaf, one first runs a transducer using
the path to that leaf as input. At the end, one computes the bit by a conditional
using the outputs of the transducer as pointers to some bits in the input tree.

Example 5. The following function turns the leaves of its argument to some fixed
constant ¢ € {0,1, L}:

const,(tg * t1) = const.(to) * const.(t1)
const.(c') = ¢ def{o0,1,1}

Taking the convention that bV L = 1 Vb = 1, one may compute (with
MIP-recursion) the bitwise-or of two perfectly balanced trees of common size.

or(to * t1,u) = or(tg,do(u)) x or(ty,dy(uw))
or(0,u) = cond(u,0,1, 1, 1)
or(1,u) = cond(u,1,1, 1, 1)
or(L,u) =1

Actually, all ”bitwise boolean formula” of several balanced trees of the same
size can be written in a similar manner.

We now give some closure properties of MiP-definable functions, the first one
allows us to define a family of MiP-definable functions in terms of the shorthand
notation introduced above.
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Lemma 6. We suppose given a (finite) family (n;)icr of integers, and a family
(fi)ier of functions satisfying equations of the form:

fZ(t7L77 ) =ty [(xw — fp(z w) (a’:w,O', w( )))wEW,L ] (3)
fi(tm[(xw — Cw)wewm}va) = tm[(xw — Gi,w,cw (a))wewm]’ 0<m <mny, (4)

where p is a finite mapping from I x W to I, ¢,, € {0,1, L}, 754, are vectors of
*-free explicitly defined functions, and (giw.c.);icr weW.e. ef0,1,1} Ore explicitely
defined boolean functions. Then, the functions (f;)ier are MIP-definable.

One may note that the equations above specify the functions only for well bal-
anced trees. Since we use this Lemma only for such trees, we do not care with
the values for other inputs given by the proof below.

Proof. In an equation such as Equation (3), we call n; the level of the definition
of f;. The proof is by induction on the maximal level of the functions N =
max;crn;. If N =1, then the equations correspond to usual MIP-equations.

Suppose now N > 1. For all the indices ¢ such that f; has level N, we replace
its definitional equations by:

f'(tO*tlyi):fz-O(th )*fz-l(tla )

Jiow(to xt1,) = fiawo(to, @) * fiewt (t1, ), (1<|w <N-1)
fiow(toxt1,u) = fpu w0) (0, Ti,00(@)) * fo(iw1) (1, Tiw1 (@), (lw] =N —1)
fiow(e, 1) = giw,e(u), (1 <fwl<N)

fi(e, @) = gie.o(@)

where the indices 7 @ w are fresh. One may observe that the level of each of these
functions is 1. We end by induction.

The following Lemma is easy to verify:

Lemma 7. Suppose that [ € (fi)icr ts defined by MiP-recursion. Then, any
function g(t,u) = f(t,o(t,u)) where the & are x-free explicitly defined functions
can be defined by MIP-recursion.

3.2 Explicit Structural Recursion

The recursion scheme defined here corresponds to the space aspect of functions
definable in INC*. Tt will be used to construct trees of height O(logn), see the
following Lemma.

Definition 8. Explicit structural recursion (ESR) is the following scheme:

f(toxti,u) = h(f(to,u), f(t1,u))
f(e,u) = g(e,u) cE {0,1,L}

where h and g are explicitely defined.
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As usual, when characterizing implicitely small classes of complexity, one pre-
vents the step function, h, to be itself defined by recursion of its critical argu-
ments. This is often achieved by imposing some tiering discipline. Here, we just
ask that the functions involved in the recursion are not themselves defined by
any recursion scheme, i.e.; that they are explicitely defined.

Lemma 9. Given two natural numbers cvg and o, there is a function f defined
by ESR such that for any tree t, H(f(t)) = a1H(t) + ap.

Proof. The proof is immediate, taking f defined by explicit structural recursion
with h = hy, and g = ha,(1,1) where hq(wo, w1) = wo x w1 and h;(wo, w1) =
hi—1(wo,w1) x hij—1(wo,wq) for i > 1.

3.3 Time Iteration

The following scheme allows us to iterate MiP-definable functions. It serves to
capture the time aspect of functions definable in NC¥. The scheme depends on
the parameter k used for the stratification.

Definition 10. Given k > 1, a function f is defined by k-time iteration (k-T1)
from the function h which is MIP-definable and the function g if:

Fty*t tay o tey s, @) = h(f(t), tay . tr, S, 0), 1)
fler, thxty ta, ... g, s,1u) = f(s,thts... tr, S, 1U)

!/ 1 — / —
f(clv"'vciflati*tiati+13"'atkasvu) = f(cla'"7Ci72vsativti+la"'7tkasvu)

f(cla"'ackvsva) = g(S,’l_l,)
where c1,...,c, €{0,1, L}.

Notice that if (k-T1) would allow the function h to be, for instance, * then, by the
following lemma, we would obviously violate the space constraint of the classes
NC*. Informally, (k-T1) enables us to iterate O(log”n) times functions which
do not increase the space needs; as remarked above, MiP-definable functions are
such ones.

Lemma 11. Given a MiP-definable function h, a function g and constants (1
and [y, there is a function [ defined by k-T1 such that for all perfectly balanced
trees t

Flt.0) = Aok (o(t0).0) ).

B1(H(t))k+Bo times

Proof. The proof follows the lines of Lemma 9.
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4 Simulation of Alternating Turing Machines

We introduce alternating random access Turing machines (ARMs) as described
in [14] by Leivant, see also [7, 18]. An ARM M = (Q, qo, 0) consists of a (finite) set
of states Q, one of these, qo, being the initial state and actions ¢ to be described
now. States are classified as disjunctive or conjunctive, those are called action
states, or as accepting, rejecting and reading states. The operational semantics
of an ARM, M, is a two stage process: firstly, generating a computation tree;
secondly, evaluating that computation tree for the given input. A configuration
K = (q,w1,ws3) consists of a state ¢ and two work-stacks w; € W, i € {1,2}.
The initial configuration is given by the initial state ¢y of the machine and two
empty stacks.

First, one builds a computation tree, a tree whose nodes are configurations.
The root of a computation tree is the initial configuration. Then, if the state
of a node is an action state, depending on the state and on the bits at the top
of the work-stacks, one spawns a pair of successor configurations obtained by
pushing/popping letters on the work-stacks. The ¢-time computation tree is the
tree obtained by this process until height t.

Wlog, we assume that for each action state g, one of the two successor config-
urations, let us say the first one, lets the stacks unchanged. And for the second
successor configuration, either the first stack or the second one is modified, but
not both simultaneously. We write accordingly the transition function § for ac-
tion states: d(q,a,b) = (¢',¢"”, pop;) with ¢ € {1,2} means that being in state
g with top bits being a and b, the first successor configuration has state ¢’ and
stacks unchanged, and the second successor has state ¢’ and pops one letter on
stack i. When we write d(q,a,b) = (¢, ¢”, push,(c)), with ¢ € {1,2} and ¢ € Wy,
it is like above but we push the letter ¢ on the top of the stack 7.

The evaluation of a finite computation tree T is done as follows. Beginning
from the leaves of T until its root, one labels each node (g, wy,ws) according to:

— if ¢ is a rejecting (resp. accepting) state, then it is labeled by 0 (resp. 1);

— if ¢ is a ¢, j-reading state (¢ = 0,1,j = 1,2), then it is labeled by 0 or 1
according to whether the n’th bit of the input is ¢, where n is the content
read on the j’th stack. If n is too large, the label is L;

— if ¢ is an action state,

e if it has zero or one child, it is labeled L;

e if it has two children, take the labels of its two children and compute
the current label following the convention that ¢ = (¢VvV L) = (L Ve¢) =
(eANLl)=(LAc)withece{0,1,1}.

The label of a computation tree is the label of the root of the computation
tree thus obtained.

We say that the machine works in time f(n) if, for all inputs, the f(n)-time
tree evaluates to 0 or 1 where n is the size of the input. It works in space s(n)
if the size of the stacks are bounded by s(n).

Actually, to relate our function algebra to the NCF, we say that a function is
in ATM(O(log® n, O(logn)), for k > 1 if it is polynomially bounded and bitwise
computed by an ATM working in time O(log® n) and space O(logn).
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Theorem 12 (Ruzzo [18]). NC* is exzactly the set of languages recognized by
ARM working in time O(log(n)¥) and space O(log(n)).

From that, one inclusion (from the right to the left) of our main theorem is a
corollary of:

Proposition 13. Given k > 1 and constants a1, ag, 51, 8o, any ARM working
in space aqlog(n) + ag and time [y logk(n) + 8o, where n is the length of the
input, can be simulated in INCF.

Proof (sketch). We consider such a machine M = (Q, qo,9). Take d = [log(|Q])].
We attribute to each state in @ a word w € W, taking the convention that the
initial state gy has encoding 0---0. From now on, the distinction between the
state and its associated word is omitted.

Let us consider the encoding of two stacks s; = ajas---a; € W and so =
biby---b; € W of length less or equal than «; - log(n) + ao:

P(317 52) = |(a1)|(bl)|(a2) T |(ai)|(#)|(b2) T |(bj)|(#)|(#) ()

where 1(0) = 10,1(1) = 11 and I(#) = 00, in such a way that this word has length
exactly 2(aq -log(n)+ap+1). The “+1” origins from the extra character # which
separates the two (tails of the) stacks. For convenience we use a typewriter font
for the encoding |. Then, the encoding of stacks above is written

P(81,82) :a1b1a2a3~~~ai#b2b3~~~bj##~~~#.

To perform the computations for some input of size n, we use a configuration
tree which is a perfectly balanced tree of height d + 2(ay - log(n) + ag + 1). It
is used as a map from all' configurations to (some currently computed) values
{0,1, L}. Given a configuration K = (g, wi,wz), the leaf obtained following
the path ¢P(w1,ws) from the root of the configuration tree is the stored value
for that configuration. In other words, given a configuration tree ¢, the value
corresponding to the configuration (g, s1,s2) is dgp(s, s, (%)-

We describe now the process of the computation. The initial valued config-
uration tree has all leaves labeled by L (this tree can be defined by explicit
structural recursion, cf. Lemma 9). The strategy will be to update the leaves of
the initial valued configuration tree, as many times as the running time of the
machine. We will show that updates can be performed by a MiP-function. Then,
we use Lemma 11 to iterate this update function. After this process, the output
can be read on the left-most branch of the configuration tree, that is the path of
the initial configuration (qo, €, ¢€). So, to finish the proof, we have to show that
such an update can be done by MIP-recursion.

Lemma 14. There exists a MiP-definable function next(z,y) which takes as in-
put the currently computed valued configuration tree and the input tree, and which
returns the configuration tree updated according to the explanations above.

! Actually, all configurations with stacks smaller than O(log(n)).
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next(z,y) works by finite case distinction just calling auxiliary functions. By
Lemma 6 it is shown MiP-definable?:

next(ti+a,y) = tara[(Tgap—nexty o b(Tqans tata, y))qewd acW, ,beWQ]

where next, ., are the auxiliary functions. The role of these functions is to
update the part of the configuration tree they correspond to. More precisely,
each path corresponding to a state g and bits a, b identifies a subtree containing
all configurations with state ¢ and top bits a,b. nexty q, updates this subtree
using MIP recursion.

The definition of these auxiliary functions depends on the kind of states (ac-
cepting, rejecting, etc) and, for action states, on the top bits of the stacks.

e Accepting and rejecting states. We define

nexty q.5(,t,y) = consty (z) if ¢ is accepting
nextq q.5(,t,y) = constg(z) if ¢ is rejecting
and use Lemma 7 to get MIP-definability.

e Reading states. We only provide the definition corresponding to a 1,1-
reading state. Other cases are similar, nexty q (2, t,y) = read(z,dq(y)) with:

read(tz,y) = (read’ (xo0,y) * read(zo1,y)) * (read(x10, d10(y)) * read(z11,d11(y)))
read’(xo * 21,y) = read’ (o, y)  read(z1,y)

read(c,y) = L

read’(c,y) = cond(y, 0,1, L, 1)

e Action states. These are the hard cases. To compute the value of such
configurations, we need the value of its two successor configurations. The key
point is that the transitions of a configuration (g, as ---a;, b1 ---b;) to its suc-
cessors are entirely determined by the state ¢ and the two top bits a; and by so
that nexty q, 5, “knows” exactly which transition it must implement. We have
to distinguish the four cases where we push or pop an element on one of the
two stacks: 1. 6(q,a1,b1) = (¢',¢", pushy(ao)); 2. (g, a1,b1) = (¢',¢", pop,); 3.
6(Q7 ar, bl) = (q/’ q//7 pUShQ(bo)); 4. 6(Q7 ar, bl) = (q/a q//7 pop2)'

Let us see first how these action modify the encoding of configurations. So,
we suppose the current configuration to be K = (¢,a1---a;,b1---b;). By as-
sumption, the stacks of ¢’ are the same as for ¢, so that the encoding of the first
successor of K is

q’a1b1a2a3~~~ai#b2b3~~~bj##~~~#

For the second successor of K, the encoding depends on the four possible actions:
1.q”aob1a1 as a3-~-ai#b2b3-~-bj#-~-#
2.q"asbrag--- a; # bobs---by # ##---#
3.q”a1b0a2 as -+ aj #b1b2b3"'bj#"'#
4.¢q"ajboap az --- a; #bz---by # #H#---#

2 Since, wrt the simulation, Equations for m < d 4 4 play no role, we do not write
them explicitly.
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As for accepting and rejecting states, we will use auxiliary functions nexts i,
nexts 2p,, Nexts 3p,, and next, 4, which correspond to the four cases mentioned
above (and where o is A or V according to the state ¢). Then we use Lemma 7
to show the functions nexty 4, p, defined by MIP-recursion.

We come back now to the definition of the four auxiliary functions nexts 1,
nexts 2.p,, Nexto 35,, and next, 4. The principle of their definition is to follow in
parallel the paths of the two successor configurations. To do that, we essentially
use substitution of parameters, in the mutual in place recursion scheme.

1. For the case 6(g,a1,b1) = (¢, ¢”, push, (ag)), we define nextq 4, . (2,t,y) =
nexto 1(x, dgrasby (t), dg7agbras (t)). With respect to the configuration tree encod-
ing and to the definition of next, observe that nexts 1(x,u,v) is fed with the
arguments (dga, b, (t), dgrayp: (£); dgagbras (t)) where ¢ is the configuration tree to
be updated. So that the height of the last argument is two less than the others
(one bit of the stack is encoded as two bits in the configuration tree). In this
case, we can go in parallel, with the only previso that the second stack is shorter.
Equations below cope with that technical point. Formally we define next, ; as:

nexto1(t2, u,v) = ta[(zw — nexto,1 (Tw, dw (), dw(v))),,cw,]
nexto, 1/ (ta, u, v) = ta[(Tw — nexto,1/ (Tw, dw(u), dw(v))) ,cp,]
nexto 1/ (t2[zw — cu], u,v) = t2[(Tw — dw(u) 0 v), w,]

where the ¢, are to be taken in {0,1, L} and o is the conditional corresponding
to the state.

2. If 6(q,a1,b1) = (¢',¢",pop;), we define nexty a, b, (T,t,y) = nexto 2, (2,
dg/asb, (t),dg7(+)). In that case, it is the last argument which is the bigger one.

nexto, 2n, (t2v u,v) = tz[(l'w — neth,Q(mwv dw(u)v dUJbl (U)))wGWQ]

)
next’oyg(tz,u,v) = t(zw — next;’Q(mw,dw(u),dw(v)))wEWQ]
nexts, o(c, u, v) = u o doo(v)
3. If §(q,a1,b1) = (¢',¢", pushy(by)), we define next, , b, by the equation:
nextqa; by (l‘, t, y) = nexto 3,b, (ZE, dq’a1b1 (t)a dq”albo(t))
nexts 3 b, (tz, u, 1)) = (nexto,1 (3200, doo(u), doob1 (11)) * nexto 1 (3201, do1 (u), dou,1 (11))) *
(nexto 3,6, (710, d10(u), d10(v)) % nexto 3,6, (w11, d11(u), d11(v))
nexto 3., (¢, u,v) = L
4. For the last case, that is 0(q,a1,b1) = (¢, ¢”, pop,), we use four auxiliary
arguments to remind the first letter read on the stack of the second successor.
neth,al,bl (ZB, ta y) = neXt0v4,6(xa dq’a1b1 (t)v dq”OO(t), dq7’01 (t)v
dg»10(t), dg11(2))
nexto,4,oo(t2, U, Voo, Vo1, V10, 1)11) = fz[(lﬂw — neth,2(1’wa dw (u)a Uw))ngQ]
nexto,4m(t2,u, voo,vm,mo,vu) = ’tz[(itw — neXto,4,w($w,dw(u),dw(voo),
dw(vo1), dw (v10), dw(v11)),, W, ]

next, 4 ./ (¢, u, Yoo, vo1, V1o, v11) = L

with v € {¢,01,10,11} and v' € Wy U W.
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5 Compilation of Recursive Definitions to Circuit

This section is devoted to the proof of the Proposition:
Proposition 15. For k > 1, any function in INC* is computable in NCF.

We begin with some observations. All along, n denotes the size of the input.
First, to simulate theoretic functions in INC*, we will forget the tree structure
and make the computations on the words made by the leaves. Actually, since
the trees are always full balanced binary trees, we could restrict our attention
to input of size 2% for some k.

Second, functions defined by explicit structural recursion can be computed
by NC! circuits. This is a direct consequence of the fact that explicit struc-
tural recursion is a particular case of LRRS-recursion as defined in Leivant and
Marion [14].

Third, by induction on the definition of functions, one proves the key Lemma:

Lemma 16. Given a function f € INC®, there are (finitely many) MIP-functions
hi, ..., hm and polynomials Py, . .., Py, of degree smaller than k such that f(t,u) =

hfl(log(n)) (--- hyl,p{"(log(n))(g(ﬂ)) ...) where g is defined by structural recursion.

Now, the compilation of functions to circuits relies on three main ingredients.
First point, we show that each function h; as above can be computed by a circuit:

1. of fixed height with respect to the input (the height depends only on the
definition of the functions),

2. with a linear number of gates with respect to the size of the first input of
the circuit (corresponding to the recurrence argument),

3. with the number of output bits equal to the number of input bits of its first
argument.

According to 1), we note H the maximal height of the circuits corresponding to
the h;’s.

Second point, since there are ), ,  Pi(log(n)) applications of such h;, we
get a circuit of height bounded by H x>",_,  P;(log(n)) = O(log"(n)). That is
a circuit of height compatible with NC”. Observe that we have to add as a first
layer a circuit that computes g. According to our second remark, this circuit has
a height bounded by O(log(n)), so that the height of the whole circuit is of the
order O(log"(n)).

Third point, the circuits corresponding to g, being in NC!, have a polynomial
number of gates with respect to n and a polynomial number of output bits with
respect to n. Observe that the output of g is exactly the recurrence argument
of some h; whose output is itself the first argument of the next h;, and so on.
So that according to item 3) of the first point, the size of the input argument of
each of the h; is exactly the size of the output of g. Consequently, according to
item 2) above, the number of circuit gates is polynomial.

Since all constructions are uniform, we get the expected result.
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5.1 NCP° Circuits for Mutual Recursion

In this section, we prove that functions defined by mutual in place recursion can
be computed by NC? circuits with a linear number of gates wrt the size of the
first argument. Since MIP-functions keep the shape of their first argument, we
essentially have to build a circuit for each bit of this argument.

Lemma 17. Explicitely defined boolean functions can be defined without use
of *.
Lemma 18. Ezplicitly defined boolean functions are in NCP.

Proof. Consider the following circuits. To stress the fact that circuits are uni-
form, we put the size of the arguments into the brackets. n corresponds to the
size of x, ng to the size of z¢ and so on. z(k) for k € N corresponds to the k-th
bit of the input x. The "long” wires correspond to the outputs. Shorter ones are
simply forgotten.

Colml s | ... | Glnls | Cg[1] = Ca,[1] = |

0 1 T
Cayl2+n) = | | |

z(0)---x(n/2) x(n/24 1) z(n)

o= | o |
B0 a2 atnsz+1) o)
C jny, -, n4):

ﬁ[ ! il \ f{\ s \f;;ﬂ‘ i{“aﬁ¥1‘ \ 7
Ccond[l,no,no,n*] =
b‘ ‘ Ty ngii \5#\

Ccond[2+”b7”0-,”17”*]: [ oo | oee || eee “ ‘
Ty, o ' xq Ty

We see that composing the previous cells, with help of Lemma 17, we can
build a circuit of fixed height (wrt to the size of input) for any explicitly defined
boolean function. Observe that the constructions are clearly uniform.

5.2 Simulation of Time Recursion

Lemma 19. Any MIP-function can be computed by a circuit of fixed height wrt
the size of the input.
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Proof. Let us consider a set (f;)ier of MiP-functions. Write their equations as
follows:

filtoxtr, @) = fpe0)(to, Gio(@) * fpein)(t, 741 (1))
fi(ca 'L_L) = gi(ca 'L_L)

where p(i,b) € I is an explicit (finite) mapping of the indices, 7,0 and ;1
are vectors of x-free explicitely defined functions and the functions g; . (and
consequently the g;) are explicitly defined boolean functions.

First, observe that any of these explicitly defined functions g; can be computed
by some circuit B; of fixed height as seen in Lemma 18. Since [ is finite, we call
M the maximal height of these circuits (B;)ier.

Suppose we want to compute f;(¢,Z) for some t and Z which have both size
smaller than n. Remember that the shape of the output is exactly the shape
of the recurrence argument t. So, to any k-th bit of the recurrence argument
t, we will associate a circuit computing the corresponding output bit, call this
circuit C. Actually, we will take for each k, Cy, € {B; : i € I'}. Putting all the
circuits (C) in parallel, we get a circuit that computes all the output bits of
fi, and moreover, this circuit has a height bounded by M. So, the last point is
to show that for each k, we may compute uniformly the index i of the circuit B;
corresponding to Cj and the inputs of the circuit Cy.

To denote the k-th bit of the input, consider its binary encoding where we
take the path in the full binary tree ¢ ending at this k-th bit. Call this path w.
Notice first that w itself has logarithmic size wrt n, the size of t. Next, observe
that any sub-tree of the inputs can be represented in logarithmic size by means
of its path. Since all along the computations, the arguments @ are sub-trees of
the input, we can accordingly represent them within the space bound.

To represent the value of a subterm of some input, we use the following data
structure. Consider the record type st = {r;w;h}. The field r says to which input
the value corresponds to. r = 0 corresponds to ¢, r = 1 correspond to z; and
so on. w gives the path to the value (in that input). For convenience, we keep
its height h. In summary {r=i;w=w’;h=m} corresponds to the subtree d,(u;)
(where we take the convention that ¢ = wug). We use the ’.” notation to refer
to a field of a record. We consider then the data structure val = st 4 {0,1}.
Variables u, v coming next will be of that ”type”.

To compute the function (0ip)ier,pefo,1} appearing in the definition of the
(fi)ier, we compose the programs:

zero (u){ one (u){
return O; return 1;

} }

pi_i_jCu_l,...u_j{
return u_i;

}
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do(u){ if(u == 0 || u == || u.h = 0) return u;
else return [r=u.r;w=u.w O;h= u.h-1]; }

di(w){ if(u == 0 || u == || u.h == 0) return u;
else return [r=u.r;w=u.w 1;h= u.h-1]; }

cond(u_b,u_0,u_1,u_s){

if (ub == 0 ||
(u_b.h == 0 &% last-bit(u_b.w) == 0))
return u_0;

elseif (u_b == 1]|

(u_b.h == 0 & last-bit(u_b.w) == 1))
return u_1;
else return u_s;

}

Then we compute the values of i and the @ in g;(c,a) corresponding to the
computation of the k-th bits of the output. Take d + 1 the maximal arity of
functions in (f;);er. To simplify the writing, we take it (wlog) as a common
arity for all functions.

G@i,w,u_0,...,u_d){
//u_0 corresponds to t,
if(w == epsilon) {

return(i,u_0,...,u_d);

}

elseq{

a := pop(w); //get the first letter of w

w := tail(w); //remove the first letter to w

switch(i,a){//i in I, a in {0,1}

case (i1,0):

v_0 = d_0(u_0);

foreach 1 <= k <= d:
v_k = sigma_il1_0_k(u_0,...,u_d);
//use the sigma defined above
next_i = p_il_0;
//the map p is hard-encoded

break;

case (im,1):

v_0 = d_1(u_0);

foreach 1 <= k <= d:
v_k = sigma_im_1_k(u_0,...,u_d);
next_i = p_im_1;

break;

¥

return G(next_i,w,d_a(u_0),v_1,...,v_d);

Observe that this program is a tail recursive program. As a consequence, to
compute it, one needs only to store the recurrence arguments, that is a finite
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number of variables. Since the value of these latter variables can be stored in
logarithmic space, the computation itself can be performed within the bound.
Finally, the program returns the name i of the circuit that must be build, a
pointer on each of the inputs of the circuit with their size. It is then routine to
build the corresponding circuit at the corresponding position w.
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Abstract. Imposing an extensional uniformity condition on a non-uni-
form circuit complexity class C means simply intersecting C with a uni-
form class £. By contrast, the usual intensional uniformity conditions
require that a resource-bounded machine be able to exhibit the circuits
in the circuit family defining C. We say that (C, £) has the Uniformity
Duality Property if the extensionally uniform class CN L can be captured
intensionally by means of adding so-called L£-numerical predicates to the
first-order descriptive complexity apparatus describing the connection
language of the circuit family defining C.

This paper exhibits positive instances and negative instances of the
Uniformity Duality Property.

Keywords: Boolean circuits, uniformity, descriptive complexity.

1 Introduction

A family {C,},>1 of Boolean circuits is uniform if the way in which Cj4q
can differ from C,, is restricted. Generally, uniformity is imposed by requiring
that some form of a resource-bounded constructor on input n be able to fully
or partially describe C,, (see @, B, , , ] or refer to @] for an overview).
Circuit-based language classes can then be compared with classes that are based
on a finite computing mechanism such as a Turing machine.

Recall the gist of descriptive complexity. Consider the set of words w € {a, b}*
having no b at an even position. This language is described by the FO[<, EVEN]
formula —3i (EVEN(i) A P,(7)). In such a first-order formula, the variables range
over positions in w, a predicate P, for o € {a,b} holds at i iff w; = o, and a
numerical predicate, such as the obvious 1-ary EVEN predicate here, holds at its
arguments iff these arguments fulfill the specific relation.

The following viewpoint has emerged E, 5, ] over two decades: when a circuit-
based language class is characterized using first-order descriptive complexity, the
circuit uniformity conditions spring up in the logic in the form of restrictions on
the set of numerical predicates allowed.

* Supported in part by DFG VO 630/6-1, by the NSERC of Canada and by the
(Québec) FQRNT.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 64-[T8 2008.
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As a well studied example [5,[12], FO[<, +, x] = DLOGTIME-uniform AC® C
non-uniform AC® = FOlarb], where the latter class is the class of languages
definable by first-order formulae entitled to arbitrary numerical predicates (we
use a logic and the set of languages it captures interchangeably when this brings
no confusion).

In a related vein but with a different emphasis, Straubing ﬂz_lﬂ presents a
beautiful account of the relationship between automata theory, formal logic and
(non-uniform) circuit complexity. Straubing concludes by expressing the proven
fact that AC® C ACCP and the celebrated conjectures that AC?[q] € ACC® and
that ACC? C NC! as instances of the following conjecture concerning the class
REG of regular languages:

Qlarb] NREG = Qjreg]. (1)

In Straubing’s instances, Q is an appropriate set of quantifiers chosen from
{FFuU{3@") . 0 < 7 < ¢} and reg is the set of regular numerical predicates,
that is, the set of those numerical predicates of arbitrary arity definable in a
formal sense by finite automata. We stress the point of view that intersecting
{3}[arb] = FO[arb] with REG to form FO[arb]"REG in conjecture (IJ) amounts
to imposing uniformity on the non-uniform class FO[arb]. And once again, im-
posing uniformity has the effect of restricting the numerical predicates: it is a
proven fact that FO[arb] N REG = FO[reg], and conjecture () expresses the
hope that this phenomenon extends from {3} to other Q, which would determine
much of the internal structure of NC'. We ask:

1. Does the duality between uniformity in a circuit-based class and numerical
predicates in its logical characterization extend beyond NC!?

2. What would play the role of the regular numerical predicates in such a
duality?

3. Could such a duality help understanding classes such as the context-free
languages in AC%?

To tackle the first question, we note that intersecting with REG is just one
out of many possible ways in which one can “impose uniformity”. Indeed, if L is
any uniform language class, one can replace Qlarb] "REG by Q[arb| N L to get
another uniform subclass of Q[arb]. For example, consider any “formal language
class” (in the loose terminology used by Lange when discussing language theory
versus complexity theory ﬂﬂ]), such as the class CFL of context-free languages.
Undoubtedly, CFL is a uniform class of languages. Therefore, the class Qarb] N
CFL is another uniform class well worth comparing with Q[<, +] or Q[<, +, X].
Of course, FO[arb] N CFL is none other than the poorly understood class AC? N
CFL, and when @ is a quantifier given by some word problem of a nonsolvable
group, (FO+{Q})[arb]NCFL is the poorly understood class NC! N CFL alluded
to 20 years ago [11].

The present paper thus considers classes Q[arb] N £ for various Q and L. To
explain its title, we note that the constructor-based approach defines uniform
classes by specifying their properties: such definitions are intensional definitions.
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By contrast, viewing Qlarb] "REG as a uniform class amounts to an extensional
definition, namely one that selects the members of Q[arb]| that will collectively
form the uniform class. In this paper we set up the extensional uniformity frame-
work and we study classes Qlarb] N £ for Q D {3}.

Certainly, the uniform class £ will determine the class of numerical predicates
we have to use when trying to capture Qarb| N L, as Straubing does for £ =
REG, as an intensionally uniform class. A contribution of this paper is to provide
a meaningful definition for the set LN of L-numerical predicates. Informally, £Y
is the set of relations over the natural numbers that are definable in the sense
of Straubing m, Section II1.2] by a language over a singleton alphabet drawn
from £. When £ is REG, the L-numerical predicates are precisely Straubing’s
regular numerical predicates.

Fix a set Q of monoidal or groupoidal quantifiers in the sense of ﬂﬂ, , ]
(As prototypical examples, the reader unfamiliar with such quantifiers may think
of the usual existential and universal quantifiers, of Straubing’s “there exist r
modulo ¢” quantifiers, or of threshold quantifiers such as “there exist a majority”
or “there exist at least t”). We propose the Uniformity Duality Property for
(Q, L) as a natural generalization of conjecture (I):

Uniformity Duality Property for (Q, L)
Qlarb] N L = Q[<, LN N L.

Barrington, Immerman and Straubing [i] have shown that Qarb] equals
AC°[Q], that is, non-uniform AC? with Q gates. Behle and Lange [6] have shown
that Q[<, L] equals FO[<, £N]-uniform AC[Q], that is, uniform AC°[Q] where
the direct connection language of the circuit families can be described by means
of the logic FO[<, £Y]. Hence the Uniformity Duality Property can be restated
in circuit complexity-theoretic terms as follows:

Uniformity Duality Property for (Q, L), 2nd form
AC[QINL = FO[<, LN-uniform AC°[Q] N L.

By definition, Qlarb]N £ O Q[<, LY]N L. The critical question is whether the
reverse inclusion holds. Intuitively, the Uniformity Duality Property states that
the “extensional uniformity induced by intersecting Q[arb| with £” is a strong
enough restriction imposed on Qarb] to permit expressing the uniform class
using the L-numerical predicates, or in other words: the extensional uniformity
given by intersecting the non-uniform class with £ coincides with the intensional
uniformity condition given by first-order logic with £-numerical predicates. Fur-
ther motivation for this definition of Q[<,£N] N L is as follows:

— when constructors serve to define uniform classes, they have access to input
lengths but not to the inputs themselves; a convenient logical analog to this
is to use the unary alphabet languages from £ as a basis for defining the
extra numerical predicates
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— if the closure properties of £ differ from the closure properties of QJarb], then
Qlarb] N £ = Q[<, £N] may fail trivially (this occurs for example when £ =
CFL and Q = {3} since the non-context-free language {a"b"c" : n > 0} is
easily seen to belong to Q[<, L] by closure under intersection of the latter);
hence intersecting Q[<, L] with £ before comparing it with Q[arb] N L is
necessary to obtain a reasonable generalization of Straubing’s conjecture for
classes £ that are not Boolean-closed.

We now state our results, classified, loosely, as foundational observations (F)
or technical statements (T). We let £ be any class of languages.

(F) By design, the Uniformity Duality Property for (Q, REG) is precisely Strau-
bing’s conjecture (), hence its conjectured validity holds the key to the
internal structure of NC?.

(F) The Uniformity Duality Property for ({3}, NEUTRAL) is precisely the Crane
Beach Conjecture M], here, NEUTRAL is the class of languages L that have
a neutral letter, i.e., a letter e that may be arbitrarily inserted into or deleted
from words without changing membership in L. The Crane Beach conjecture,
stating that any neutral letter language in AC® = FO[arb] can be expressed
in FO[<], was motivated by attempts to develop a purely automata-theoretic
proof that Parity, a neutral letter language, is not in AC°. The Crane Beach
Conjecture was ultimately refuted M], but several of its variants have been
studied. Thus [4]:

—the Uniformity Duality Property for ({3}, NEUTRAL) fails

—the Uniformity Duality Property for ({3}, NEUTRAL N REG) holds

—the Uniformity Duality Property for ({3}, NEUTRAL N {two-letter lan-
guages}) holds.

(T) Our definition for the set £ of L-numerical predicates parallels Straubing’s
definition of regular numerical predicates. For kernel-closed language classes
L that are closed under homomorphisms, inverse homomorphisms and in-
tersection with a regular language, we furthermore characterize £ as the
set of predicates expressible as one generalized unary L£-quantifier applied to
an FO[<]-formula. (Intuitively, £-numerical predicates are those predicates
definable in first-order logic with one “oracle call” to a language from L.)

(T) We characterize the numerical predicates that surround the context-free lan-
guages: first-order combinations of CFLY suffice to capture all semilinear
predicates over N; in particular, FO[<, +] = FO[DCFL"Y] = FO[BC(CFL)"],
where DCFL denotes the deterministic context-free languages and BC(CFL)
is the Boolean closure of CFL.

(T) We deduce that, despite the fact that FO [BC(CFL)N} contains all the semi-
linear relations, the Uniformity Duality Property fails for ({3}, £) in each of
the following cases:

—L =CFL
— L = VPL, the “visibly pushdown languages” recently introduced by E]
— L = Boolean closure of the deterministic context-free languages
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— L = Boolean closure of the linear context-free languages

— L = Boolean closure of the context-free languages.

The crux of the justifications of these negative results is a proof that the
complement of the “Immerman language”, used in disproving the Crane
Beach Conjecture, is context-free.

(T) At the opposite end of the spectrum, while it is clear that the Uniformity
Duality Property holds for the set of all languages and any Q, we show that
the Uniformity Duality Property already holds for (Q, £) whenever Q is a
set of groupoidal quantifiers and £ = NTIME(n)*; thus it holds for, e.g.,
the rudimentary languages, DSPACE(n), CSL and PSPACE.

The rest of this paper is organized as follows. Section 2] contains preliminaries.
Section [ defines the £-numerical predicates and introduces the Uniformity Du-
ality Property formally. The context-free numerical predicates are investigated
in Section @l and the duality property for classes of context-free languages is
considered in Section [Bl Section [B] shows that the duality property holds when
L is “large enough”. Section [0 concludes with a summary and a discussion. For
the sake of brevity, proofs are omitted and will be included in the full verion.

2 Preliminaries

2.1 Complexity Theory

We assume familiarity with standard notions in formal languages, automata and
complexity theory.

When dealing with circuit complexity classes, all references will be made
to the non-uniform versions unless otherwise stated. Thus ACY refers of the
Boolean functions computed by constant-depth polynomial-size unbounded-fan-
in {V, A, —}-circuits. And DLOGTIME-uniform AC? refers to the set of those
functions in AC® computable by a circuit family having a direct connection lan-
guage decidable in time O(logn) on a deterministic Turing machine (cf. ﬂﬂ, ])

2.2 First-Order Logic

Let N be the natural numbers {1,2,3,...} and let Ny = NU {0}. A signature
o is a finite set of relation symbols with fixed arity and constant symbols. A
o-structure 2 = (U, 0™) consists of a set U?, called universe, and a set o>
that contains an interpretation R®* C (U™)F for each k-ary relation symbol
R € 0. We fix the interpretations of the “standard” numerical predicates <, +,
X, ete. to their natural interpretations. By BIT we will denote the binary relation
{(x,i) € N? : bit i in the binary representation of x is 1}. For logics over strings
with alphabet X, we will use signatures extending oz, = {P, : a« € X} and
identify w = wy -+ w, € X* with 2, = ({1,...,n},0%*}), where P = {i €
N : w; = a} for all a € ¥. We will not distinguish between a relation symbol
and its interpretation, when the meaning is clear from the context.
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Let Q be a set of (first-order) quantifiers. We denote by Q[o] the set of first-
order formulae over o using quantifiers from Q only. The set of all Q[o]-formulae
will be referred to as the logic Q[o]. In case @ = {3} (Q = {I} U Q'}), we will
also write FO[o] (FO+4Q'[0], respectively). When discussing logics over strings,
we will omit the relation symbols from o;.

Say that a language L C X* is definable in a logic Q[o] if there exists a Q[o]-
formula ¢ such that 2, | ¢ <= w € L for all w € ¥*, and say that a relation
R C N" is definable by a Q[o]-formula if there exists a formula ¢ with free

variables z1, ..., z, that defines R for all sufficiently large initial segment of N,
ie,if {1,...,m},0) E ¢lc1,...,cn) < (c1,...,¢y) € R for all m > cpax,
where ¢max = max{cy,...,c,} [20, Section 3.1]. By abuse of notation, we will

write L € Q[o] (or R € Q[o]) to express that a language L (a relation R, resp.) is
definable by a Q[o]-formula and use a logic and the set of languages and relations
it defines interchangeably.

3 The Uniformity Duality Property

In order to generalize conjecture (), we propose Definition B2l as a simple gen-
eralization of the regular numerical predicates defined using V-structures by
Straubing [21, Section I11.2].

Definition 3.1. Let V,, = {x1,...,2,} be a nonempty set of variables and let
X be a finite alphabet. A V,-structure is a sequence

w = (a1, V1) (am, Vim) € (2 x PV))*

such that ay,...,a;, € X and the nonempty sets among Vi, ..., Vy, form a par-
tition of V,, (the underscore distinguishes V,,-structures from ordinary strings).
Define I, = {0} x PBV,,). We say that a V,-structure w is unary if w € I\,
i.e., if ay---a, is defined over the singleton alphabet {0}; in that case, we de-
fine the kernel of w, kern(w), as the mazimal prefiz of w that does not end
with (0,0); to signify that z; € V., for all 1 < i < n, we also write kern(w) as
[£1 =c1,..., 2, = c,] and we let wN stand for (c1,...,cn).

We define Struc,, as the language of all such words in Iy that are unary

Vn-structures and let Struc = (J,, ., Struc,,.

Any set L of unary V,-structures naturally prescribes a relation over the nat-
ural numbers. Hence, a set of such L prescribes a set of relations, or numerical
predicates, over N.

Definition 3.2. Let L C I} be a unary V,-language, that is, a set of unary
Vp-structures. Let LN = {w" : w € L} denote the relation over N defined by L.
Then the L-numerical predicates are defined as

LN ={IN:Le L and L C Struc}.

We say that a language L is kernel-closed if, for every w € L, kern(w) € L.
We further say that a language class L is kernel-closed if, for every L € L there
exists an L' € L such that LN = L'N and L' is kernel-closed.
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We point out the following facts, where we write =, r for the unary predicate
{z:xz=7r mod ¢}.

Proposition 3.3. Let APER and NEUTRAL denote the set of aperiodic lan-
guages and the set of languages having a neutral letter respectively. Then

1. APER" = FO[<],
2. REGY = (AC° NREG)N = FO[<,{=,7:0 < r < ¢}] = reg, and
3. NEUTRAL" C FO[<].

Having discussed the £-numerical predicates, we can state the property express-
ing the dual facets of uniformity, namely, intersecting with an a priori uniform
class on the one hand, and adding the corresponding numerical predicates to
first-order logics on the other.

Property 3.4 (Uniformity Duality for (Q,£)). Let Q be a set of quantifiers
and let L be a language class, then

Qlarb] N £ = 9[<, LN N L.

As QJarb] = AC°[Q] [5] and Q[<, £N] = FO[<, £N-uniform AC°[Q] [d], the
above property equivalently states that

AC°[Q] N £ = FO[<, £N]-uniform AC°[Q] N L.

As a consequence of Proposition B3|([IHZ), the Uniformity Duality Property
is equivalent to the instances of the Straubing conjectures obtained by setting
Q and £ as we expect, for example Q C {3} U{3(®") : 0 <7 < ¢} and £ = REG
yield exactly (). Similarly, as a consequence of Proposition B3I([]), the Unifor-
mity Duality Property is equivalent to the Crane Beach Conjecture if FO[<] C L.
Property B4l is thus false when Q@ = {3} and £ is the set NEUTRAL of all neu-
tral letter languages. For some other classes, the Crane Beach Conjecture and
thus Property 3.4 hold: consider for example the case £L = REG N NEUTRAL
[4], or the case Q = {3} and £ C NEUTRAL N FO[+]. Accordingly the Unifor-
mity Duality Property both generalizes the conjectures of Straubing et al. and
captures the intuition underlying the Crane Beach Conjecture. Encouraged by
this unification, we will take a closer look at the Uniformity Duality in the case
of first-order logic and context-free languages in the next section.

In the rest of this section, we present an alternative characterization of £
using FO[<]-transformations and unary Lindstrom quantifiers. This is further
justification for our definition of £L-numerical predicates. The reader unfamiliar
with this topic may skip to the end of Section [3

Digression: Numerical Predicates and Generalized Quantifiers

Generalized or Lindstrom quantifiers provide a very general yet coherent ap-
proach to extending the descriptive complexity of first-order logics ﬂﬁ] Since
we only deal with unary Lindstrém quantifiers over strings, we will restrict our
definition to this case.
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Definition 3.5. Let A = {ay,...,a;} be an alphabet, p1,...,p1—1 be FO[<]-
formulae, each with k + 1 free variables x1,x2,...,xk,y, and let & abbreviate
X1,%2, ..., x. Further, let STRUCT (o) denote the set of finite structures A =
U™, o) over a. Then ¢1,...,¢1—1 define an FO[<]-transformation

[p1(Z), ..., 0t-1(D)]: STRUCT({<, 21, ..., 21 }) = A*

as follows: Let A € STRUCT({<,x1,...,2x}), o3 = ¢; € UH, 1 < i < k, and
s = U], then [p1(F), ..., 1—1(Z)](]) = vy -+ vs € A*, where

a1, fAEpi(er,... ek, 1), ‘
vi=19a;, ifAEepc,... ki) /\/\{;11 —pi(cry ..y ek,i), 1 < j<t,
a,,  if A= N ~pi(ers ..o cr, i)

A language L C A* and an FO[<]-transformation [¢1(Z), ..., i—1(Z)] now nat-
urally define a (unary) Lindstrém quantifier Q" via

A= Qiyler(Z,y), - o1 (T y)] == [p1(@), -, o1 (D)](RA) € L.

un

Finally, the set of relations definable by formulae Q" y[o1(Z,y), ..., 0i—1(Z, y)],
where L € L and ¢1,...,¢—1 € FO[<], will be denoted by QFFO[<].

The notation [p1(Z),...,pr—1(F)] is chosen to distinguish the variables in ¥
from y; the variables in & are interpreted by 2 whereas y is utilized in the
transformation.

Theorem 3.6. Let L be a kernel-closed language class which is closed under ho-
momorphisms, inverse homomorphisms and intersection with reqular languages,
then LN = QWFO[<]; that is, the L-numerical predicates correspond to the
predicates definable using a unary Lindstrom quantifier over £ and an FO[<]-
transformation.

We stress that the above result provides a logical characterization of the L£-
numerical predicates for all kernel-closed classes £ forming a cone, viz. a class
of languages L closed under homomorphisms, inverse homomorphisms and in-
tersection with regular languages ﬂﬁ] As the closure under these operations is
equivalent to the closure under rational transductions (i.e., transductions per-
formed by finite automata [d]), we obtain:

Corollary 3.7. Let L be kernel-closed and closed under rational transductions,

then LN = QWFO[<].

4 Characterizing the Context-Free Numerical Predicates

In order to examine whether the Uniformity Duality Property for first-order logics
holds in the case of context-free languages, we first need to consider the counter-
part of the regular numerical predicates, that is, CFLY. Our results in this section
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will relate CFLY to addition w. r. t. to first-order combinations, and are based upon
aresult by Ginsburg ﬂ@] Ginsburg showed that the number of repetitions per frag-
ment in bounded context-free languages corresponds to a subset of the semilinear
sets. For a start, note that addition is definable in DCFLY.

Lemma 4.1. Addition is definable in DCFLY.

Next, we restate the result of Ginsburg in order to prepare ground for the exam-
ination of the context-free numerical predicates. In the following, let w* abbre-
viate {w}* and say that a language L C X* is bounded if there exists an n € N
and w1, ...,w, € X7 such that L C w} - w.

Definition 4.2. A set R C Ny is stratified if

1. each element in R has at most two non-zero coordinates,
2. there are no integers i,j,k,l and x = (x1,...,2,),2" = (2,...,2),) in R
such that 1 <i<j<k<Il<n and mia:;mkmg #0.

Moreover, a set S C N" is said to be stratified semilinear if it is expressible
as a finite union of linear sets, each with a stratified set of periods; that is,
S = U;il{&io + Z;h:l k- &ij ke No}, where d;y € N™, 071‘]‘ eNg, 1 <5 <n,,
1<i<m, and each P; = {&;; : 1 <j <mn;} is stratified.

Theorem 4.3 (|9, Theorem 5.4.2]). Let X be an alphabet and L C w} - - - w},

n

be bounded by w1, ...,w, € XT. Then L is context-free if and only if the set
E(L)={(e1,...,en) € Ng :wi' ... wi" € L}
s a stratified semilinear set.

Theorem 3] relates the bounded context-free languages to a strict subset of the
semilinear sets. The semilinear sets are exactly those sets definable by FO[+]-
formulae. There are however sets in FO[+] that are undefinable in CFL": e. g., if
R = {(x,2x,32) : x € N} was definable in CFL" then {a"b"c" : n € N} € CFL.
Hence, FO[+] can not be captured by CFLY alone. Yet, addition is definable in
CFLY, therefore we will in the following investigate the relationship between first-
order logic with addition, FO[+], and the Boolean closure of CFL, BC(CFL).

Theorem 4.4. BC(CFLY) C BC(CFL)" C FO[+].

That is, the relations definable in the Boolean closure of the context-free unary
V,,-languages are captured by FO[+]. Hence, FO[BC(CFL)"] C FO[+]. Now
Lemma ] yields the following corollary.

Corollary 4.5. FO[DCFL"] = FO[CFL"] = FO[BC(CFL)"] = FO[+].

We note that in particular, for any k£ € N, the inclusion (), CFL)" C FO[+]
holds, where (1), CFL denotes the languages definable as the intersection of < k
context-free languages: this is deduced from embedding numerical predicates
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derived from the infinite hierarchy of context-free languages by Liu and Weiner
into CFLY HE] Hence,

CFLY ¢ - € (M CFL)N € (N4, CFL)Y & -+ © (NCFL)Y C FO[+].

Unfortunately, we could neither prove nor refute FO[+] € BC(CFL)". The dif-
ficulty in comparing FO[+] and BC(CFL)" comes to some extent from the restric-
tion on the syntactic representation of tuples in CFL; viz., context-free languages
may only compare distances between variables, whereas the tuples defined by unary
V,-languages count positions from the beginning of a word. This difference matters
only for language classes that are subject to similar restrictions as the context-free
languages (e. g., the regular languages are not capable of counting, the context-
sensitive languages have the ability to convert between these two representations).
To account for this special behavior, we will render precisely CFLY in Theorem[Z6l

But there is more to be taken into account. Consider, e. g., the relation R =
{(z,z,2) : = € N}. R is clearly definable in CFL", yet the set E(L) of the
defining language L, LN = R, is not stratified semilinear. Specifically, duplicate
variables and permutations of the variables do not increase the complexity of a
unary V,-language L but affect L.

Let ¢t be an order type of ¥ = (x1,...,2,) and say that a relation R C N"
has order type t if, for all ¥ € R, ¥ has order type t. For & of order type t,

let @ = (2),...,2),), m < n, denote the variables in # with mutually distinct
values and let m; denote a permutation such that . < .4y, 1 <1 <m.

We define functions sort: P(N") — P(N™) and diff : P(N") — P(Ny) as
sort(R) = {m(Z') : ¥ € R has order type t},

diff (R) = {(xi)lgign : (ixﬁ>1§i§n < R}'

The function sort rearranges the components of R in an ascending order and
eliminates duplicates, whereas diff transforms a tuple (z1,...,z,) with 27 <

. n—1 .
xp < -+ < Ty into (21,20 — 21,83 —T2—21,..., T — D ., T;), & representation
more “suitable” to CFL (cf. E(L) in Theorem [L3]).

Theorem 4.6. Let R C N*. R € CFLY if and only if there exists a partition
R = R U---U Ry such that each dijj‘(sort(Ri)), 1 < i <k, is a stratified
semilinear set.

5 The Uniformity Duality and Context-Free Languages

Due to the previous section, we may express the Uniformity Duality Property for
context-free languages using Corollary .5lin the following more intuitive way: let
Q = {3} and £ be such that FO[£Y] = FO[<, +] (e.g., DCFL C £ C BC(CFL)),
then the Uniformity Duality Property for ({3}, £) is equivalent to

FOlarb| N £ = FO[<,+] N L. (2)

We will hence examine whether (2) holds, and see that this is not the case.
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For a binary word u = ty_1un—2---ug € {0,1}*, we write u for the integer
Up—12""1 4+ -+ + 2u; + up. Recall the Immerman language L; C {0,1,a}*,
that is, the language consisting of all words of the form zjaxsa---axon, where
x; €4{0,1}", 2+ 1 =T, 1 <4< 2" and 27 = 0™, 290 = 1™. For example,
00a0lal0all € Ly and 000a001a010a011a100a101al10al1l € L;. We prove that
despite its definition involving arithmetic, L; is simply the complement of a
context-free language.

Lemma 5.1. The complement L of the Immerman language is context-free.

For a language L C X*, let Neutral(L) denote L supplemented with a neu-
tral letter e ¢ X i.e., Neutral(L) consists of all words in L with possibly
arbitrary repeated insertions of the neutral letter. The above Lemma implies
that Neutral(L;) € BC(CFL). From [4] we know that Neutral(L;) € FOlarb] \
FO[<, +]. This finally leads to the following:

Theorem 5.2. FO[arb] N BC(CFL) 2 FO[<, +] N BC(CFL).

Theorem implies that the Uniformity Duality Property fails for @ = {3}
and £ = BC(CFL), since FO[<,BC(CFL)"] = FO[<, +]. Yet, it even provides
a witness for the failure of the duality property in the case of £ = CFL, as the
context-free language Neutral(Ly) lies in FO[arb] \ FO[<, +]. We will state this
result as a corollary further below. For now, consider the modified Immerman
language R; defined as Lj except that the successive binary words are reversed
in alternance, i.e.,

Rr = {...,0002a(001)%a010a(011)"a100a(101)®al10a(111)%,. . .}.

Ry is the intersection of two deterministic context-free languages. Even more, the
argument in Lemma [B.1] can actually be extended to prove that the complement
of Ry is a linear CFL. Hence,

Theorem 5.3. 1. FOlarb] N BC(DCFL) D FO[<, +] N BC(DCFL).
2. FO[arb] N BC(LinCFL) 2 FO[<, +] N BC(LinCFL).

The role of neutral letters in the above theorems suggests taking a closer look
at Neutral(CFL). As the Uniformity Duality Property for ({3}, Neutral(CFL))
would have it, all neutral-letter context-free languages in ACY would be regular
and aperiodic. This is, however, not the case as witnessed by Neutral(L;). Hence,

Corollary 5.4. In the case of Q = {3}, the Uniformity Duality Property fails
i all of the following cases.

1. £L=CFL,

2. L =BC(CFL),

3. L =BC(DCFL),
4. £ =BC(LinCFL),
5. L = Neutral(CFL).
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Remark 5.5. The class VPL of visibly pushdown languages @] has gained promi-
nence recently because it shares with REG many useful properties. But despite
having access to a stack, the VPL-numerical predicates coincide with REGY, for
each word may only contain constantly many characters different from (0, ).
It follows that the Uniformity Duality Property fails for VPL and first-order
quantifiers: consider, e.g., L = {a"b" : n > 0} € FO[arb] N (VPL \ REG) then
L € FO[arb] N VPL but L ¢ FO[<, VPL"] N VPL.

6 The Duality in Higher Classes

We have seen that the context-free languages do not exhibit our conjectured
Uniformity Duality. In this section we will show that the Uniformity Duality
Property holds if the extensional uniformity condition imposed by intersecting
with £ is quite loose, in other words, if the language class £ is powerful.

Recall the notion of non-uniformity introduced by Karp and Lipton ]

Definition 6.1. For a complezity class L, denote by L/poly the class L with
polynomial advice. That is, L/poly is the class of all languages L such that, for
each L, there is a function f: N — {0,1}* with

1. 1f(2)] < p(jal), for all 2, and

2. LT = {(x, f(|z])) ;2 € L} € L,

where p is a polynomial depending on L. Without loss of generality, we will
assume | f(z)| = |x|* for some k € N.

Note that, using the above notation, DLOGTIME-uniform AC?/poly = ACO.
As we further need to make the advice strings accessible in a logic, we define the
following predicates.

Following ﬂﬂ], we say that a Lindstrom quantifier @y, is groupoidal, if L € CFL.

Definition 6.2. Let Q be any set of groupoidal quantifiers. Further, let L €
DLOGTIME-uniform ACC[Q]/poly and let f be the function for which LI €
DLOGTIME-uniform ACY[Q]. Let r = 2kl + 1, where k and | are chosen such
that the circuit family recognizing L in DLOGTIME-uniform AC° has size n!
and |f(x)| = |z|*. We define ADVICEQQ € FO+Qlarb] to be the ternary relation

ADVICEQQ ={(i,n,n") : bit i of f(n) equals 1},
and denote the set of all relations ADVICEQQ, for L € L, by ADVICE. o.

The intention of ADVICEQQ is to encode the advice string as a numerical rela-
tion. A point in this definition that will become clear later is the third argument
of the ADVICEQQ—predicate; it will pad words in the corresponding unary V,,-
language to the length of the advice string. This padding will be required for
Theorem

Theorem 6.3. Let L be a language class and Q be a set of groupoidal quanti-
fiers. Then the Uniformity Duality Property for ({3} U Q, L) holds if BiT € LN
and ADVICE o € LV,
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We can now give a lower bound beyond which the Uniformity Duality Property
holds. Let NTIME(n)* denote the class of languages decidable in linear time by
nondeterministic Turing machines with oracles from L.

Theorem 6.4. Let Q be any set of groupoidal quantifiers and suppose L =
NTIME(n)*. Then the Uniformity Duality Property for ({3} U Q, L) holds.

Corollary 6.5. Let Q be any set of groupoidal quantifiers. The Uniformity Du-
ality Property holds for ({3}UQ, L) if L equals the deterministic context-sensitive
languages DSPACE(n), the context-sensitive languages CSL, the rudimentary
languages (i. e., the linear time hierarchy [@]), PH, PSPACE, or the recursively
enumerable languages.

7 Conclusion

For a set Q of quantifiers and a class £ of languages, we have suggested that
Qlarb] N L defines an (extensionally) uniform complexity class. After defining
the notion of L-numerical predicates, we have proposed comparing Qlarb] N £
with its subclass Q[<, £LN] N L, a class equivalently defined as the (intensionally)
uniform circuit class FO[<, £N]-uniform AC°[Q] N L.

We have noted that the duality property, defined to hold when both classes
above are equal, encompasses Straubing’s conjecture () as well as some positive
and some negative instances of the Crane Beach Conjecture.

We have then investigated the duality property in specific cases with Q =
{3}. We have seen that the property fails for several classes £ involving the
context-free languages. Exhibiting these failures has required new insights, such
as characterizations of the context-free numerical predicates and a proof that the
complement of the Immerman language is context-free, but these failures have
prevented successfully tackling complexity classes such as AC°NCFL. Restricting
the class of allowed relations on the left hand side of the uniformity duality
property from arb to a subclass might lead to further insight and provide positive
examples of this modified duality property (and address, e.g., the class of context-
free languages in different uniform versions of AC?). Methods from embedded
finite model theory should find applications here.

More generally, the duality property widens our perspective on the relation-
ship between uniform circuits and descriptive complexity beyond the level of
NC!. We have noted for example that the property holds for any set of groupo-
idal quantifiers @ O {3} and complexity classes £ that are closed under nonde-
terministic linear-time Turing reductions.

A point often made is that a satisfactory uniformity definition should apply
comparable resource bounds to a circuit family and to its constructor. For in-
stance, although P-uniform NC! has merit [1], the classes AC°-uniform NC!
and NC!-uniform NC! ﬂa] seem more fundamental, provided that one can make
sense of the apparent circularity. As a by-product of our work, we might suggest
FO[<, £N] N £ as the minimal “uniform subclass of £ and thus as a meaning-
ful (albeit restrictive) definition of L-uniform L. Our choice of FO[<] as the
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“bottom class of interest” is implicit in this definition and results in the contain-
ment of L-uniform L in (non-uniform) ACY for any L. Progressively less uniform
subclasses of £ would be the classes Q[<, £N] N £ for Q D {J}.

Restating hard questions such as conjecture ([II) in terms of a unifying property
does not make these questions go away. But the duality property raises further
questions. As an example, can the duality property for various (Q, £) be shown
to hold or to fail when Q includes the majority quantifier? This could help
develop incisive results concerning the class TCY. To be more precise, let us
consider @ = {3, MAJ}. The majority quantifier is a particular groupoidal (or,
context-free) quantifier HE], hence it seems natural to consider the Uniformity
Duality Property for ({3, MAJ}, CFL):

FO+MAJ[arb] N CFL = FO+MAJ[<,+| N CFL. (3)

It is not hard to see that the Immerman language in fact is in FO+MAJ[<, +],
hence our Theorem that refutes (2)), the Uniformity Duality Property for
(FO,BC(CFL)), does not speak to whether ([B]) holds. (Another prominent ex-
ample that refutes (@) is the “Wotschke language” W = {(a”b)" : n > 0}, again
a co-context-free language ] Similar to the case of the Immerman language
we observe that W € FO+MAJ[<, +], hence W does not refute (B]) either.)

Observe that FO+MAJ[arb] = TC° [5§] and that, on the other hand,
FO+MAJ[<,+] = MAJ[<] = FO[+]-uniform linear fan-in TC? [d, [15]. Let us
call this latter class sTCY (for small TCY or strict TCY). It is known that
sTCY C TCO [16]. Hence we conclude that if (F) holds, then in fact TC*NCFL =
sTC® N CFL. Thus, if we can show that some language in the Boolean closure
of the context-free languages is not in sTC?, we have a new TC® lower bound.
Thus, to separate TC? from a superclass it suffices to separate sTC? from a
superclass, a possibly less demanding goal. This may be another reason to look
for appropriate uniform classes £ such that

FO+MAJ[arb] N £ = FO+MAJ[<,+] N L.
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Abstract. Many LOGSPACE algorithms are naturally described as programs that
operate on a structured input (e.g. a graph), that store in memory only a constant
number of pointers (e.g. to graph nodes) and that do not use pointer arithmetic.
Such “pure pointer algorithms” thus are a useful abstraction for studying the na-
ture of LOGSPACE-computation.

In this paper we introduce a formal class PURPLE of pure pointer programs
and study them on locally ordered graphs. Existing classes of pointer algorithms,
such as Jumping Automata on Graphs (JAGs) or Deterministic Transitive Closure
(DTC) logic, often exclude simple programs. PURPLE subsumes these classes and
allows for a natural representation of many graph algorithms that access the input
graph by a constant number of pure pointers. It does so by providing a primitive
for iterating an algorithm over all nodes of the input graph in an unspecified order.

Since pointers are given as an abstract data type rather than as binary digits
we expect that logarithmic-size worktapes cannot be encoded using pointers as is
done, e.g. in totally-ordered DTC logic. We show that this is indeed the case by
proving that the property “the number of nodes is a power of two,” which is in
LOGSPACE, is not representable in PURPLE.

1 Introduction

One of the central open questions in theoretical computer science is whether LOGSPACE
equals PTIME and more broadly an estimation of the power of LOGSPACE computation.

While these questions remain as yet inaccessible, one may hope to get some use-
ful insights by studying the expressive power of programming models or logics that
are motivated by LOGSPACE but are idealised and thus inherently weaker. Examples
of such formalisms that have been proposed in the literature are Jumping Automata on
Graphs (JAGs) [2] and Deterministic Transitive Closure (DTC) logic [3]]. Both are based
on the popular intuition that a LOGSPACE computation on some structure, e.g. a graph,
is one that stores only a constant number of graph nodes. Many usual LOGSPACE algo-
rithms obey this intuition and are representable in those formalisms. Interestingly, there
are also natural LOGSPACE algorithms that do not fall into this category. Reingold’s
algorithm for st-connectivity in undirected graphs [13]], for example, uses not only a
constant number of graph nodes, but also a logarithmic number of boolean variables,
which are used to exhaustively search the neighbourhood of nodes up to a logarithmic
depth.

Indeed, Cook & Rackoff [2]] show that st-connectivity is not computable with JAGs.
On the other hand, JAGs cannot compute some other problems either, for which there

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 79-193] 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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does exist an algorithm obeying the above intuition, such as a test for acyclicity in
graphs. Thus, important though this result is, we cannot see it evidence that “constant
number of graph nodes” is strictly weaker than LOGSPACE.

Likewise, DTC logic without a total order on the graph nodes is fairly weak and
brittle [8I3], being unable to express properties such as that the input graph has an even
number of nodes.

By assuming a total order on the input structure these deficiencies are removed, but
DTC logic becomes as strong as LOGSPACE, because the total order can be used to
simulate logarithmically sized work tapes [3].

We thus find that neither JAGs nor DTC logic adequately formalise the intuitive con-
cept of “using a constant number of graph variables only.” In this paper we introduce a
formalism that fills this gap. Our main technical result shows that full LOGSPACE does
not enter through the backdoor by some encoding, as is the case if one assumes a total
order on the input structure.

One reader remarked that it was known that LOGSPACE is more than “constant num-
ber of pointers”, but up until the present contribution there was no way of even rigorously
formulating such a claim because the existing formalisms are either artificially weak or
acquire an artificial strength by using the total order in a “cheating” kind of way.

To give some intuition for the formalism introduced in this paper, let us recall that
a JAG is a finite automaton accepting a locally ordered graph (the latter means that
the edges emanating from any node are uniquely identified by numbers from 1 to the
degree of that node). In addition to its finite state a JAG has a finite (and fixed) number of
pebbles that may be placed on graph nodes and may be moved along edges according
to the state of the automaton. The automaton can check whether two pebbles lie on
the same node and obtains its input in this way. Formally, one may say that the input
alphabet of a JAG is the set of equivalence relations on the set of pebbles.

JAGs cannot visit all nodes of the input graphs and therefore are incapable of evalu-
ating DTC formulas with quantifiers. To give a concrete example, the property whether
a graph contains a node with a self-loop is not computable with JAGs.

Rather than as an automaton, we may understand a JAG as a while-program whose
variables are partitioned into two types: boolean variables and graph variables. For
boolean variables the usual operations are available, whereas for graph variables one
only has equality test and, for each ¢, a successor operation to move a graph variable
along the i-th edge.

Our proposal, which we call PURPLE for “PURe Pointer LanguagE”, consists of
adding to this programming language theoretic version of JAGs a forall-loop construct
(forall z do P) whose meaning is to set the graph variable x successively to all graph
nodes in some arbitrary order and to evaluate the loop body P after each such setting.
The important point is that the order is arbitrary and will in general be different each
time a forall-loop is evaluated. A program computes a function or predicate only if it
gives the same (and correct) result for all such orderings.

The forall-loop in PURPLE can be used to evaluate first-order quantifiers and thus
to encode DTC logic on locally ordered graphs. Moreover, PURPLE is strictly more
expressive than that logic. The following PURPLE-program checks whether the input



Pure Pointer Programs with Iteration 81

graph has an even number of nodes: (b:=true; forall z do b:=—b). It is known
that this property is not expressible in locally-ordered DTC logic, which establishes
strictness of the inclusion.

Beside the introduction of PURPLE, the main technical contribution of this paper
is a proof that PURPLE is not as powerful as all of logarithmic space and that thus in
particular one cannot use the forall-loop to somehow simulate counting, as one can in
totally ordered DTC logic [3]]. We do this by showing that the property “the number of
nodes is a power of two” is not computable in PURPLE. We believe that st-connectivity
in undirected graphs is not computable in PURPLE either.

In order to justify the naturality of PURPLE we can invoke, besides the fact that
formulas of locally-ordered DTC logic may be easily evaluated, the fact that iterations
over elements of a data structure in an unspecified order are a common programming
pattern, being made available e.g. in the Java library for the representation of sets as
trees or hash maps. The Java API for the i terator method in the interface Set or its
implementation HashSet says that “the elements are returned in no particular order”.

Efficient implementations of such data structures, e.g. as splay trees, will use a dif-
ferent order of iteration even if the contents of the data structure are the same. Thus, a
client program should not depend upon the order of iteration. A spin-off of PURPLE is
arigorous formalisation of this independence.

This research was supported by the DFG project programming language aspects of
sublinear space complexity (ProPlatz).

2 Pointer Structures

We define the class of structures that serve as input to pure pointer programs.

Definition 1. Let L = {ly,...,1,} be a finite set of operation labels. A pointer structure
on L, an L-model for short, is a set U with n unary functions ly, ..., l,: U — U.

An L-model can be viewed as the current state of a program with pointers pointing uni-
formly to records whose fields are labelled {11, . .., [, }. For example, if L is {car, cdr}
then an L-model is a heap layout of a LISP-machine. We show in the next section how
various kinds of graphs can be represented as L-models.

A homomorphismo: U — U’ between L-models U and U’ is a functiono: U — U’
such that [(o(x)) = o(I(x)) holds for all I € L and 2 € U. A bijective homomorphism
is called an isomorphism.

3 Pure Pointer Programs

Pure pointer programs take L-models as input. Unlike general programs with pointers
they are not permitted to modify the input, but only to inspect it using a constant number
of variables holding elements of U. In addition, pure pointer programs have a finite
local state represented by a constant number of boolean variables. The pointer language
PURPLE is parameterised by a finite set of operation labels L = {l1,...,1,}.

Terms. There are two types of terms, one for boolean values and one for pointers into
the universe U. Fix countably infinite sets Vars and Varsp of pointer variables and
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boolean variables. We make the convention that x, y denote pointer variables and b, ¢
denote boolean variables. The terms are then generated by the grammars below.

tP = true | false | b | —tP | tP ALB [ tB v B |tV =Y
tVou= o |tV ||V,

The intention is that pointer terms denote elements of the universe U of an L-model
and that the term x.l denotes the result of applying the unary operation / in this model
to . The only direct observation about pointers is the equality test ¢ = ¢'.

Programs. The set of PURPLE programs is defined by the following grammar.

P:=skip| P;P |z :=tY | b:=tP | if t¥ then P else P
| while t¥ do P | forallx do P

We abbreviate (if b then P else skip) by (if b then P). The intended behaviour
of (forall = do P) is that the pointer variable z iterates over U in some unspecified
order, visiting each element exactly once, and P is executed after each setting of x.

On certain classes of L-models the power of PURPLE coincides with LOGSPACE.
This is in particular the case if one of the functions /; is the successor function induced
by a total ordering on U. In general, however, PURPLE fails to capture all of LOGSPACE,
as we show in Sect. [3l Since we are interested mainly in pointer programs on locally
ordered graphs, let us now discuss different possible choices of operation labels for
working with locally ordered graphs.

Graphs of constant degree. Pointer algorithms on locally ordered graphs of some
fixed out-degree d are most easily represented as an L-model with L being {succy, . . .,
suceq} and U being the set of nodes in G. We write A4(G) for this L-model.

Graphs of unbounded degree. For graphs of unbounded degree, it is more suitable
to use pointer programs with three labels succ, next and prec. Each locally ordered
graph G determines a model A(G) of these labels. The universe of A(G) is the set U =
{{(v,i) |v €V, 0 < i< deg(v)}, where V denotes the node set of G. A pair (v,i) € U
with ¢ > 0 represents an outgoing edge from v. Such pairs are often called darts,
especially in the case of undirected graphs, where each undirected edge is represented
by two darts, one for each direction in which the edge can be traversed. We include
objects of the form (v, 0) to model the nodes themselves; thus the universe consists of
the disjoint union of the nodes and the darts. The operation labels are interpreted by

) (sucei(v),0) ifi>1,
suce(v,i) = {(v 0) ifi—0

next(v,i) = (v, min(i + 1, deg(v))),
prec(v,i) = (v,max(i — 1,0)).

Using next and prec one can iterate over the darts on a node and using succ one can
follow the edge identified by a dart.

The presentation of graphs by darts and operations on them is commonly used in the
description of LOGSPACE-algorithms [TIT3IT0], but it is also prevalent in other contexts,
see [[7]] and the discussion there.
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We note that with the dart representation, the forall-loop iterates over all darts and
not the nodes of the graph. Iteration over all nodes can nevertheless be implemented
easily. Since a program can recognise if x is a dart of the form (v, 0) by testing whether
x = x.prec is true, one can implement a forall-loop that visits only darts of the
form (v, 0) and this amounts to iteration over all nodes.

While we have now introduced two representations for graphs of bounded degree, it is
not hard to see that it does not matter which representation we use, as each program with
labels succy, ..., succq can be translated into a program with labels succ, prec, next
that recognises the same graphs, and vice versa.

3.1 Examples

We give two examples to illustrate the use of PURPLE. The first simple example pro-
gram decides the property that all nodes have even in-degree. First we define a program
E(x,y,b) with variables z, y and b, such that after evaluation of E(z, y, b) the boolean
variable b is true if and only if there is an edge from the node given by « to that given
by y. Such a program may be defined as:

b:=false; 2’ :=x
while =(2' = 2’.next) do 2’ := 2’ .next;

while —(z' = 2’.prec) do (b:=bV (y = 2.succ); =’ :=a'.prec)

Herein, 2’ should be chosen afresh for each occurrence of F(z,y,b) within a larger
program. The following program then computes if the in-degree of all nodes is even.

even :=true;
forall xz do
c:=true;
forall y do (if y = y.prec then (E(y, z,b); if bthen ¢ :=—¢));

even := even /\ c

In the inner forall-loop we have a test for (y = y.prec), so that the body of this loop
is executed once for each graph node, rather than for each dart. In this way, the inner
forall-loop is used to iterate over all nodes that have an edge to z. In the body we
then make the assignment c := —c for all nodes y that have an edge to x.

For a second, more substantial, example we show that acyclicity of undirected graphs
can be decided in PURPLE, which is a well-known LOGSPACE-complete problem [1I].
We next describe the LOGSPACE-algorithm of Cook & McKenzie [[1] and then show that
it can be written directly in PURPLE. The fact that PURPLE can express a LOGSPACE-
complete problem does not conflict with PURPLE being strictly weaker than LOGSPACE,
since not all reductions can be expressed in PURPLE.

Let G be an undirected locally ordered graph with node set V' and let U be the
universe of A(G). Let o be the permutation on U such that o(v,0) = (v,0) holds
and such that o(v,i) = (w, j) implies both succ(v,i) = w and succ(w, j) = v. Note
that in an undirected graph each edge between v and w is given by two half-edges,
one from v to w and one from w to v. Thus, if the dart (v, i) represents one half of
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an edge in G, then o(v,4) represents the other half of the same edge. Let 7 be the
permutation on U satisfying (v, 0) = (v,0), w(v,4) = (v,i + 1) for 1 < i < deg(v)
and (v, deg(v)) = (v, min(1, deg(v)).

Consider now the composite permutation 7 o o on U. It implements a way of explor-
ing the graph G in depth-first-search order. That is, the walks in depth-first-search order
are the obtained as the sequences of darts xq, x1, ... defined by z;41 = (7 0 0)(x;).
Since these sequences are generated by the composite permutation 7 o ¢, it is easy to
see that they can be generated in logarithmic space.

Being able to construct walks in depth-first-search order, one can use the following
characterisation of acyclicity of undirected graphs to decide this property in LOGSPACE.
An undirected graph is acyclic, if it does not have self-loops and if, for any node v
and any integer ¢, the walk that starts by taking the ¢-th edge from v and proceeds in
depth-first-search order does not visit v again until it traverses the ¢-th edge from v in
the opposite direction. This is formulated precisely in the following lemma, a proof of
which can be found in [1].

Lemma 2. The undirected graph G is acyclic if and only if the following property holds
Sforall xg € {(v,3) | v € V, 1 < i < deg(v)}: If the walk xg, 1, ... is defined by
xiy1 = (moo)(x;) and k > 0 is the least number such that xo and x, are darts on the
same node, then both k > 1 and o(x—1) = o hold.

It now only remains to show that the property in this lemma can be decided in PURPLE.
A program Py, (x) implementing the permutation 7 o o can be written easily, since the
forall-loop allows one to iterate over all the neighbours of any given node. Moreover,
it is easy to write a program P—_(x, y, b) that sets the boolean variable b to true if x and y
are darts on the same node and to false otherwise. With these programs, the property of
the above lemma can be decided in PURPLE as follows:

acyclic :=true
forall z do
if —(z = x.prec) then
keqO :=true; kleql :=true; xo :=x; returned := false;
while —returned do
(kleql := keqO; keqO :=false; 2’ :=x; Proo(x); P=(x0,, returned));
Py (2"); acyclic := acyclic \ —kleql N\ (z' = z)

3.2 Operational Semantics

PURPLE is defined with the intention that an input must be accepted or rejected regard-
less of the order in which the forall-loops are run through. In this section we give the
operational semantics of PURPLE, thus making this intention precise.

The operational semantics of PURPLE with operation labels in L is parameterised
by an L-model A = (U,1) and is formulated in terms of a small-step transition rela-
tion — 4. To define this transition relation, we define a set of extended programs that
have annotations for keeping track of which variables have already been visited in the
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Assignment

(z:=t",q,p) — a (skip, q, plz— [t"]q.0])
(b= tByq7P> —a (skip,q[b— [[tB]]q,pL/ﬁ

Composition

<P7 q, p> —A <P/7 q/7 pl>

(skip; P, q, p) —a (P, g, p)
<P7Q7 q, ,0> —A <P/7Q7 qu p/>

Conditional

(if t then P else Q, q, p) — a4 (P, q, p) if [t]e,, = true
(if t then P else Q, q, p) —ua (Q, g, p) if [t]e,, = false

while-loop

(while tdo P, q, p) — .4 (skip, ¢, p) if [t]q,, = false
(whiletdo P, q, p) — .4 (P; whiletdo P, q, p) if [t]q,, = true

for-loop

<form € wdo P7 q, ,0> A <Sklp7 q, ,0>
(forz € Wdo P, q, p) — 4 (P; forxz € W\ {v} do P, ¢, p[r+—v]) foranyv € W

Fig. 1. Operational Semantics

computation of the forall-loops. The set of extended programs consists of PURPLE-
programs in which the forall-loops are not restricted to an iteration over the whole
universe U, but where (for x € W do P) is allowed for any subset W of U. We
identify (forall « do P) with (for x € U do P).

The transition relation — 4 is a binary relation on configurations. A configuration
is a triple (P, ¢, p), where P is an extended program, ¢q: Varsg — 2 is an assignment
of boolean variables and p: Vars — U is an assignment of pointer variables. The
inference rules defining — 4 appear in Fig.[Il In this figure, we denote by [t],,, the
evident interpretations of terms with respect to the variable assignments q and p. The
operational semantics is standard for all but the for-loop. We note, in particular, that
the rules for the for-loop make the transition system non-deterministic.

We say that a program P is strongly terminating if for all A the computation of P
on A always terminates, i.e. for all ¢ and p there is no infinite reduction sequence of — 4
starting from (P, ¢, p) and in particular there are p’ and ¢’ such that (P, ¢, p) —7
(skip,q’, p') holds.

To define what it means for an L-model to be recognised by a program, we choose a
distinguished boolean variable result that indicates the outcome of a computation.

Definition 3 (Recognition). A set X of L-models is recognised by a program P, if P
is strongly terminating and, for all L-models A and all p, p', q and ¢ satisfying
(P, q, p) —7 (skip,q’, p'), one has ¢ (result) = true if and only if A € X.
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Our notion of recognition should not be confused with the usual definition of accep-
tance for existentially (nondeterministic) or universally branching Turing machines; in
contrast to those concepts it is completely symmetrical in X vs. X. If the input is in X
then all runs must accept; if the input is not in X then all runs must reject. In particular,
not even for strongly terminating P can we in general define “the language of P”. A
program whose result depends on the traversal order does not recognise any set at all.

3.3 Basic Properties

In contrast to formalisms that depend on a global ordering, PURPLE is closed under
isomorphism. This is formulated by the following lemma, in which we write o P for
the program obtained from P by replacing each occurrence of (for x € W do P) by
(for x € oW do P). Note that if P is a PURPLE-program proper, i.e., not an extended
one, then o P = P holds. Its proof is a straightforward induction.

Lemmad. Let 0: U — V be an isomorphism of L-models. Then (P,q,p) —u
<Pl7q/’ pl> lmplles <UP7 q,0 © p) Vv <UP/7q/7U © pl>

The straightforward proof of the following lemma is based on the fact that the number
of global configurations is polynomial in the input size.

Lemma 5. For any program P with labels in L, there exists a while-free program P’
that recognises the same sets of finite L-models.

4 Related Models of Computation

Based on the intuition that computation with logarithmic space amounts to computation
with a constant number of pointers, a number of formalisms of pure pointer algorithms
have been proposed as approximations of LOGSPACE.

4.1 Jumping Automata on Graphs

Cook & Rackoff [2] introduce Jumping Automata on Graphs (JAGs) in order to study
space lower bounds for reachability problems on directed and undirected graphs. Jump-
ing automata on graphs are a model of pure pointer algorithms on locally ordered
graphs. Each JAG may be described as a forall-free PURPLE-program over the op-
eration labels succy, succa, ...and vice versa. Therefore, a JAG may move on the graph
only by traversing edges and by jumping one graph variable to the position of another
variable. As a result, JAGs can only compute local properties of the input graph. If, for
instance, all the graph variables are in some connected component of the input graph
then they will remain in it throughout the whole computation.

Cook & Rackoff show that it is possible to prove upper bounds on the expressivity of
JAGs [2]]. They show that both on directed and on undirected graphs reachability cannot
be solved by them. Together with the local character of JAG computations, this can be
used to show that many natural LOGSPACE-properties of graphs cannot be computed
by JAGs. For instance, JAGs cannot compute the parity function and they cannot decide
whether or not the input graph is acyclic.
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While PURPLE is more expressive than JAGs, we hope that nevertheless separation
results along the lines of the existing ones for JAGs, e.g. [2/4]], could be achievable for
PURPLE by further elaborating the pumping techniques used to establish those.

One criticism of Jumping Automata on Graphs as a computation model is that JAGs
are artificially weak on directed graphs. Since, with the operations succi, succa, ...,
edges can only be traversed in the forward direction, there is no way for a JAG to reach
a node that has only outgoing edges, for example. One solution to this problem is to
work with graphs having a local ordering both on the outgoing and on the incoming
edges of each node, so that edges can be traversed in both directions [5]]. The forall-
loop of PURPLE represents another possible solution, since we can use it to iterate over
all the nodes that have an edge to a given node, as we have shown in Sect. [3above.

4.2 Deterministic Transitive Closure Logic

In the context of descriptive complexity theory DTC-logic was introduced as a logi-
cal characterisation of LOGSPACE on ordered structures [9]. The formulae of this logic
are built from the connectives of first-order logic and a connective DTC for determin-
istic transitive closure. The formula DTC[p(x, y)](s,t) expresses that, for all vari-
able assignments v, the pair ([s],, [t],) is in the transitive closure of the relation
{(u,v) | A E, plu,v] AVz. plu, z] = z = v}, see e.g. [O].

While on structures with a totally ordered universe DTC-logic captures all of
LOGSPACE, it is strictly weaker on unordered structures. A typical example of a property
that cannot be expressed without an ordering is whether or not the universe has an even
number of elements. If graphs are represented without any ordering by an edge relation
E(—,—), then DTC logic on graphs is very weak indeed. Gridel & McColm [8] have
shown that there exist families of graphs on which DTC without any ordering is no more
expressive than first-order logic.

Unordered DTC logic is nevertheless interesting, since on locally ordered graphs it
captures an interesting class of pure pointer algorithms. Locally ordered graphs may be
used in the logic by allowing, in addition to the binary edge relation E(—, —), a ternary
relation F'(—, —, —), such that F'(v, —, —) is a total ordering on {w | E(v,w)} [3], for
any v. With such a graph representation, DTC can encode JAGs and it is strictly more
expressive, since it allows first-order quantification [5]]. With suitable restrictions on the
formulae, it is furthermore possible to characterise smaller classes of pointer algorithms
on locally ordered graphs, such as the class given by Tree Walking Automata [T

We next observe that PURPLE subsumes DTC logic on locally ordered graphs.

Proposition 6. For each closed DTC formula o for locally ordered graphs there exists
a program P, such that, for any finite locally ordered graph G, G = ¢ holds if and
only if P, recognises A(G).

First-order quantifiers can be evaluated directly using the forall-loop. To see that
DTC[e(x,y)](a, b) can be evaluated, note that using the forall-loop we can iterate
over all tuples y, so that we can compute the unique y such that ¢(x, y) holds, if such
a unique y exists, and we can recognise when such a unique y does not exist.

The converse of this proposition is not true, of course, since there is no DTC-formula
that expresses that the input graph has an even number of nodes [3].
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Although DTC-logic on locally ordered graphs is interesting, there are still many
open questions regarding its expressive power. As far as we know, it is not known if
DTC-logic on locally ordered graphs can express directed or undirected reachability.
The best result we know is that of Etessami & Immerman [3]], who show that undirected
reachability cannot be expressed by a formula of the form DT C[p(x, y)](s, t), where ¢
is a first-order formula (without a total ordering not every formula can be expressed in
this way).

One reason for the lack of results on the expressive power of DTC on locally ordered
graphs may be that at present there are no simple Ehrenfeucht-Fraissé games for it; and
such games are the main tool for proving inexpressivity results in finite model theory.
Most of the existing results have been proved either directly or by reduction to a proof
that uses automata-theoretic techniques. Etessami & Immerman, for example, obtain
their inexpressivity result for undirected reachability by reduction to the corresponding
result of Cook & Rackoff for JAGs. The relative success of automata-theoretic methods
is part of the motivation for studying the programming language PURPLE.

Furthermore, when viewed as a model of pointer algorithms, DTC logic is somewhat
unnaturally restricted. To implement universal quantification, say on a LOGSPACE Turing
Machine, one needs to have a form of iteration over all possible pointers. If it is possible
to iterate over all pointers, then it should also be possible to write a program for the
parity function, even without any knowledge about a total ordering of the pointers. But
this cannot be done in DTC. If we view the universal quantifier as a form of iteration that
works without a total ordering, then it is more restricted than it needs to be.

The problem that a logic cannot express counting properties such as parity is of-
ten addressed in the literature by extending the logic with a totally ordered universe of
numbers (of the same size as the first universe) and perhaps also counting quantifiers,
see e.g. [519]. Such an addition appears to be quite a jump in expressivity. For instance,
in view of Reingold’s algorithm for undirected reachability, it is likely that undirected
reachability becomes expressible in such a logic [Ganzow & Gridel, personal commu-
nication]. However, we believe that this problem is not expressible in PURPLE and in
view of the Prop.|6]also not in DTC.

Another option of increasing the expressive power of DTC to include functions such
as parity is to consider order-independent queries [9]. An order-independent query is a
DTC formula that has access to a total ordering on the universe, but whose value does
not depend on which particular ordering is chosen. Superficially, there appears to be
a similarity to the forall-loop in PURPLE. However, order-independent queries are
strictly stronger than PURPLE. They correspond to the version of PURPLE, in which
each program is guaranteed that all forall-loops iterate over the universe in the same
order, even though this order may be different from run to run. Of course, in either
system (PURPLE with fixed traversal order and order-independent queries) one can use
the order to capture all of LOGSPACE.

5 Counting

Our goal in this section is to show that the behaviour of an arbitrary program on the
discrete graph with n nodes can be described abstractly and independently of n. From
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this it will follow that PURPLE-programs are unable to detect whether n has certain
arithmetic properties such as being a power of two.

Write G, for the discrete graph with n nodes and write V,, = {1,...,n} for its set
of nodes. Since this graph has constant degree 0, the L-model with universe V,, induced
by it does not have any operations.

Fix a finite set M of graph variables. We show that no program with graph variables
in M can recognise the set of all graphs G,, where n is a power of two. Since M is
arbitrary, this will be enough to show the result for all PURPLE-programs.

The proof idea is to show that whether or not a (while-free) program P accepts G,
for sufficiently large n depends only on the initial value of boolean variables, the ini-
tial incidence relation of the pointer variables and the remainder modulo [ of the graph
size n for some [. In order to prove this by induction on programs we associate to
each program P an abstraction [P], which given the initial valuation of the boolean
variables qp, the initial incidence relation Ey and the size n modulo [ yields a triple
(¢, E, f) = [P](q0, Eo, n mod [) that characterises the final configuration of a compu-
tation as follows: ¢ is the final valuation of the boolean variables, F is the final incidence
relation of pointer variables, and f: M — M + {fresh} is a function that tells for each
variable  whether it moves to a “fresh” node, i.e. one that was not occupied at the start
of the computation, or assumes the position that some other variable f(xz) € M had
in the initial configuration. The exact position of the “fresh” variables will of course
depend on the order in which forall-loops are being worked off. In fact, we will show
that with an appropriate choice of ordering any position of the “fresh” variables can be
realised, so long as it respects FE.

For example, the abstraction of the program (z :=x; forall x do y:=x) would
map (qo, Fo, 1) to (qo, E, f), where E is the equivalence relation generated by (, ),
and f is given by f(x) = f(y) = fresh and f(z) = x. This means that for any n large
enough, the program has a run on G,, that ends in a state where z assumes the position
of z in the start configuration and where x and y lie on a node not occupied in the start
configuration. Moreover, E specifies that x and y must lie on the same node.

Notice that the abstraction characterises the result of some run of the program. In
the example, there also exists a run in which the last node offered by the forall-loop
happens to be the (old) value of x, in which case z, y, z are all equal. The purpose of
the abstraction is to show that certain sets cannot be recognised. Since for a set to be
recognised the result must be the same (and correct) for all runs it suffices to exhibit
(using the abstraction) a single run that yields a wrong result. This existential nature of
the abstraction is made more precise in Def.[I0]and Lemma[T1l

Definition 7. Ler X' denote the set of equivalence relations on M. For each environ-
ment p we write [p] € X for the equivalence relation given by x[ply <= p(z) = p(y).
Since the meaning of a boolean term t depends only on the induced equivalence rela-
tion, we define [tP], g as [tP],,, for any p with [p] = E € X.

Definition 8. The set I of moves is given by F := M — M + {fresh}.

The intention of a move f € F'is that if f(x) = y # fresh holds then variable x is set
to the (old value of) variable y and if f(x) = fresh holds then z is moved to a fresh
location. This is formalised by the next definition.



90 M. Hofmann and U. Schépp

Definition 9. Let p, p’: Vars — V,, for some n and let E' € X and f € F. We say
that p' is compatible with (E', p, f) if [p'] = E’ holds and for all x € M we have

- f(x) =y # fresh implies p'(x) = p(y); and
- f(x) = fresh implies p'(x) & im(p).

In the rest of this section, we write () for the set Varsp — 2 of boolean states.
Definition 10. Let P be a program, k,1 > 0 and
B:QxXYXZ/IZ—QxXxF

be a function. Say that (B, k, 1) represents the behaviour of P on discrete graphs if for
alln >k, q € Q and p: Vars — V,, there exists p’: Vars — V,, with

<P7 q, p> —)*Gn <Skip7 qlv p/>7
such that p' is compatible with (E', p, f) whenever B(q, [p],n mod 1) = (¢, F', f).

Notice that in contrast to the definition of recognition we only require that for some eval-
uation of (P, q, p) the predicted behaviour is matched. This is appropriate because the
intended use of this concept is negative: in order to show that no program can recognise
a certain class of discrete graphs we should exhibit for each program a run that defies
the purported behaviour. Of course, this also helps in the subsequent proofs since it is
then us who can control the order of iteration through forall-loops.

Lemma 11. Suppose (B, k, 1) represents the behaviour of P on discrete graphs. Then
whenever n > k and q € Q and p: Vars — V,, and B(q,[p],n mod 1) = (¢, E', f)
then (P, q, p) —¢, (skip, ', p1) holds for all py compatible with (E', p, f).

Proof. Choose p’ compatible with (£, p, f) that satisfies (P, ¢, p) — ¢, (skip,q’,p’).
Such p’ must exist by the definition of “represents.” We have p’(z) = p(f(x)) = p1(x)
whenever f(x) = y # fresh holds and p’(x), p1(z) & im(p) whenever f(x) = fresh
holds. Hence we can find an automorphism o : G,, — G, satisfying 0 o p = p and
oo p' = p1. The claim then follows from Lemma[dl |

Theorem 12. There exist numbers k,l (depending on the number of variables in M)
such that each while-free program P with graph variables in M is represented by
([P], k,1) for some function [P].

Proof. Put N = |Q| - |X|-2/MI'Ml and k = 3|M|+ N and I = N.
We prove the claim by induction on P. For basic programs the statement is obvious.

Case P= Py; P». Suppose we are given (q, E/, t) wheret € Z/1Z. Write [P1](q, E, t) =
(g1, F1, f1) as well as [P2](q1, F1,t) = (g2, Ea, f2). Define f € F by

f() = fi(f2(@)), if fa(z) € M;
f(x) = fresh, if fa(x) = fresh

Put [P](q, E,t) = (g2, E2, f). Fix some n with n mod [ = ¢ and p: Vars — V,, with
[p] = E and, using the induction hypothesis, choose p; compatible with (E1, p, f1)
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and py compatible with (Es, p1, f2). Invoking Lemma[ITl we may assume without loss
of generality that fo(z) = fresh implies pa(x) ¢ im(p). We now claim that ps is
compatible with (Es, p, f), which establishes the current case. To see this claim pick
x € M and suppose that fo(x) = y and fi(y) = z € M. Then f(xr) = z and
p2(x) = p1(y) = p(z) as required. If fo(x) = fresh then f(x) = fresh and pa(z) &
im(p) by assumption on ps. If, finally, fo(z) = y € M and fi(y) = fresh then
p2(x) = p1(y) & im(p) by compatibility of p;.

Case if s® then P, else P,. Define [P](q, E,t) = [P1](q, E,t) when [s],.r =
true and [P](q, E,t) = [P:](¢, E, t) when [s],,r = false.

Case forall x do P;. We note that & > 3|M| holds. Now, given (¢, E,t) choose

n minimal with n > k and n mod ! = ¢ and some p: Vars — V,, with [p] = E
and assume w.l.o.g. that im(p) C {1,...,|M|}. We then iterate through the graph
nodes {1, ..., n} in ascending order. Fresh nodes are chosen from {| M |+1, ..., 3|M|}.

Since there are only | M| variables we have enough space in this interval as to satisfy
any request for fresh nodes possibly arising during the evaluation of P;. Formally, we
choose sequences p; and ¢; in such a way that

L. po=p.q=0q
2. (Pr,qi, pile—it1]) —¢, (skip, git1, pit1)s
3. forally € M, pi+1(y) & im(p;[x — i+1]) implies p;+1 € {|M|+1,...,3|M|}.

That such sequences exist follows from the induction hypothesis and Lemma [Tl
For I € X define I'™ = I\ z U {(x, )}, where I \ x is I with all pairs involving =
removed.
Putting E; = [p;] we then get [p; [+ i+1]] = E; for all i > 3|M| and thus, again
fori > 3|M]|:
(¢i1, Bivr, fiv1) = [P (qi, B, 1)

for some sequence f;.

Thus, for ¢ > 3|M| the incidence relations E;1 no longer depend on p; itself but
only on the previous incidence relation F; (and the valuation of the boolean variables).

Choose now f such that p,, is compatible with (E,,, p, f) and define [P](q, E,t) =
(qn, En, f).

Now we have to show that indeed ([P], k,!) represents the behaviour of P on
discrete graphs. To this end fix m > n > k with m mod! = ¢ = n mod ! and
x € Vars — V,, with [x] = E.

In view of Lemmal] we may assume x(z) = p(x) forall z € M so that in particular
im(x) € {1,...,|M|}. We can now iterate through G,, in ascending order in exactly
the same fashion yielding sequences I;, x;, r; such that

L xo=x.70=¢

2. (Py,ri, Xilw e i41]) —G, (SKip, rig1, Xit1)s

3. xi(y) = pi(y) and ¢; = r; forally € M and i < n.

4. forally € M, xi41(y) € im(x;[z— i+1]) implies x;4+1 € {|M|+1,...,3|M]|}.

We put I; = [x;] and find (741, Iiy1,9i+1) = [P1](ri, I;7,t) for some function se-
quence g;. Now consider the restriction of x; to {1,...,|M]|}, i.e., formally define
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& ={(x,xi(x)) |z € M, xi(z) € {1,...,|M|}}. We note that &; ;1 does not depend
upon ; but only on the incidence relation /; (and ¢; and ¢, of course). Indeed,

$iv1 ={(v,v) | gir1(y) = 2, (2,v) €&}

In view of the choice of N there must exist indices 3|M| <t <t/ < 3|M|+ N =k
such that r, = ry and I, = I and & = &.. But then we also have r, 4 = ry 44 and
Iiyg=1Iyyrqand &g = &g forall d > 0 with ¢’ +d < m. Now, since t' — ¢ divides [
we find thatr; = rpand I; = Iy and §; = & assoonast/ < k <n <i<i <mand
i = 4/ modulo [. Hence in particular, r,,, = 1, = ¢, and I,,, = I,, = E,, and &, = &,.
Thus,

(P,x:q) —¢,, (skip, qn, Xm)

with ,,, compatible with (F,,, p, f,) as required. O

Corollary 13. Checking whether the input is a discrete graph with n nodes with n a
power of two is possible in deterministic logarithmic space but not in PURPLE.

Proof. To program this in LOGSPACE count the number of nodes on a work tape in
binary and see whether its final content has the form 10*. Suppose there was a PURPLE-
program P recognising this class of graphs in the sense of Def.3l By Lemma[3l we can
assume that P is while-free. Then Theorem [I2] furnishes ([P], k, ) representing P
on discrete graphs. Let result be the boolean variable in P containing the return value.
Let n be a power of two such that n > £ holds and n + [ is not a power of two. Let
p, q be arbitrary initial values. Now, since P purportedly recognises GG,, we must have
[P](q,[p],n mod ) = (¢, , ) with ¢’(result) = true. Now let x be a valuation of
the variables in G, 4 satisfying [p] = [x]. We then get (P, x, q) —>En+l (skip,q’, ),
which contradicts the assumption on P, since on all runs of P on G,,4; the value of the
boolean variable result would have to be false. Recall the explanation after Def. O

A reader of an earlier version of this paper suggested an alternative, purportedly simpler
route to this result. From Theorem[I2Jone can conclude that if X is a property of discrete
graphs then the set {a” | G,, € X} is a regular set over the unary alphabet {a}; in fact,
every regular set over this alphabet arises in this way. Given that all iterations through n
indistinguishable discrete nodes look essentially the same and that the internal control
of a PURPLE-program is a finite state machine it should not be able to do anything more
than a DFA when run on a unary word.

We cannot see, how to turn this admittedly convincing intuition into a rigorous proof
and would like to point out that a PURPLE-program can test for equality of nodes, thus
it can store certain nodes from an earlier iteration and then find out when they appear
in a subsequent one. Indeed, if the order of traversal were always the same then we
could use this feature to define a total ordering on the nodes and thus program all of
LOGSPACE including the question whether the cardinality of the universe is a power of
two. This would be true even if the traversal order was not fixed a priori but the same
for all iterations in a given run of a program. Thus, any proof of Theorem [[2] must
exploit the fact that an input is recognised or rejected only if this is the case for all
possible traversal sequences. Doing so rigorously is what takes up most of the work in
our proof.
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6 Conclusion

We believe that PURPLE captures a natural class of pure pointer programs within
LOGSPACE. By showing that PURPLE is unable to express arithmetic properties, we
have demonstrated that it is not merely a reformulation of LOGSPACE but defines a
standalone class whose properties are worth of study in view of its motivation from
practical programming with pointers.

On the one hand, PURPLE strictly subsumes JAGs and DTC logic and can therefore
express many pure pointer algorithms in LOGSPACE. On the other hand, Reingold’s
algorithm for st-reachability in undirected graphs uses counting registers of logarithmic
size. We believe that it is not possible to solve undirected reachability in PURPLE and
therefore not in DTC-logic. The details will appear elsewhere.

We also consider it an important contribution of our work to have formalised the
notion that the order of iteration through a data structure may not be relied upon. Such
provisos often appear in the documentation of library functions like Java’s iterators. Our
notion of recognition in Def. [3| captures this and, as argued at the end of Sec.[3] it mea-
surably affects the computing strength (otherwise all of LOGSPACE could be computed).

The appearance of “freshness” and the accompanying V3-coincidence expressed in
Lemma [1] suggest some rather unexpected connection to the semantic study of name
generation and a-conversion [6/12]. It remains to be seen whether this is merely coinci-
dence or whether techniques and results can be fruitfully transferred in either direction.
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Quantified Positive Temporal Constraints*
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Abstract. A positive temporal template (or a positive temporal constraint lan-
guage) is a relational structure whose relations can be defined over countable
dense linear order without endpoints using a relational symbol <, logical con-
junction and disjunction. This paper gives a complete complexity characterization
for quantified constraint satisfaction problems (QCSP) over positive temporal lan-
guages. Although the constraint satisfaction problem (CSP) for an arbitrary pos-
itive temporal language is trivial (all these templates are closed under constant
functions), the corresponding QCSP problems are decidable in LOGSPACE or
complete for one of the following classes: NLOGSPACE, P, NP or PSPACE.

1 Introduction

Constraint Satisfaction Problems provide a uniform approach to research on a wide
variety of combinatorial problems. Undisputedly, the most interesting problem in this
area is to verify Dichotomy Conjecture posed by Feder and Vardi [[]). It says that every
constraint satisfaction problem on a finite domain is either tractable or NP-complete and
was inspired by Schaefer’s Dichotomy Theorem for CSP on a two element set [2]]. When
algebraic approach came on the scene the works on dichotomy conjecture were sped
up [3]]. Although the main goal has not yet been attained, many interesting results were
published and many interesting techniques were developed [415]]. Besides earlier results
on constraints over infinite domains [6/7]], a new approach was quite recently proposed
and developed by Manuel Bodirsky [8] and co-authors. This framework concentrates
on relational structures that are w-categorical. Many results concerning both CSP and
QCSP [9]] over finite domains were generalized to infinite ones. Moreover, new results
were established. Among them there are full characterizations of complexity for both
CSP and QCSP of equality constraint languages [1O/TT]].

Our paper is the next step in this research area. In general, we consider quantified
constraint satisfaction problems for sets of relations definable over (Q, <). In particular,
we restrict ourselves to templates definable with A,V and <, i.e., we do not consider
negation. We name such relations and languages positive temporal. As in [12]], we refer
to an arbitrary relation defined over (Q, <) as a temporal relation.

Our main contribution is a complexity characterization of QCSP problems over pos-
itive temporal languages summarized in Theorem[Ilbelow. We follow the algebraic ap-
proach to constraint satisfaction problems: we first classify positive temporal languages
depending on their surjective polymorphisms and then give the complexity of QCSP for
each obtained class.

* Work partially supported by Polish Ministry of Science and Education grant 3 T11C 042 30.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 94-{108] 2008.
(© Springer-Verlag Berlin Heidelberg 2008
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Theorem 1 (The Main Theorem). Let I" be a language of positive temporal relations,
then one of the following holds.

1. Each relation in I is definable by a conjunction of equations (x1 = x2) and then
QCSP(I') is decidable in LOGSPACE.

2. Each relation in I’ is definable by a conjunction of weak inequalities (x1 < z2). If
there exists a relation in I that is not definable as a conjunction of equalities, then
QCSP(I') is NLOGSPACE-complete.

3. Each relation in I' is definable by a formula of the form N\]_ (x;, < 4, V
...V, < m;,) and then, provided I satisfies neither condition [0 nor B the
set QCSP(I") is P-complete.

4. Each relation in I' is definable by a formula of the form /\:-L:l(alci,2 <z, V
...V a;, < x;,) and then provided I satisfies neither condition[ll nor[2) the set
QCSP(I') is P-complete.

5. Each relation in I' is definable by a formula of the form \!_,(z;, = yi, V...V
T, = Vi, ) and then provided I" does not belong to any of the classes[IH4 the set
QCSP(I') is NP-complete.

6. The problem QCSP(I") is PSPACE-complete.

Related work. The complete characterization is quite complex and does not fit into one
paper. Therefore some parts of Theorem [I] are proved in a companion paper [13]]. In
particular, we prove there that each QCSP problem over positive temporal relations is
either in P or is NP-hard. Here we provide the complete characterization of the NP-hard
case, distinguishing between NP-complete and PSPACE-complete cases (items[3land[@]
of Theorem/[T)). We also give complexity proofs for items Bland@of Theorem[I] leaving
the algebraic characterization in [13]].

Quantified constraint satisfaction problems over temporal relations were investigated
in [T1IT4]. In particular, it is shown there that quantified problems from item [I] and
of Theorem [] belong to LOGSPACE and NLOGSPACE, respectively. Our result sub-
stantially improves these results in the sense that we consider a strictly more expressive
class of constraint languages. As in [[T1]] we use the surjective preservation theorem.

The area of CSP may be often seen as a good framework for many problems in
Al In context of our characterization the well-motivated AND/OR precedence con-
straints should be noted. They are closely related to languages from items[3]and 4l
It might be said that we consider quantified positive variations of AND/OR precedence
constraints.

In a very recent paper [12]] the authors give a classification of CSP over temporal
languages depending on their polymorphisms. Although it sounds similar, it is different
from our classification. We deal with positive temporal languages and surjective poly-
morphisms, which are used to classify QCSP problems (as opposed to CSP problems
considered in [[12]]). In the case of positive temporal languages, the classification based
on polymorphisms is trivial: all these languages fall into the same class because they are
all closed under constant functions — as a consequence all CSP problems for positive
temporal languages are trivial. To obtain our classification we use methods different
from those used in [[12]].
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Outline of the paper. In Section[2] we give some preliminaries. Among others, we recall a
definition of a surjective polymorphism and surjective preservation theorem, which is the
most important tool in algebraic approach to QCSP. In it is shown that the problem
QCSP(I") is NP-hard if and only if I" has essentially unary surjective polymorphisms
only. Sections 3] and [ are devoted to classify positive temporal languages preserved
by essentially unary surjections. In Section 3] we show that there are only five different
classes of positive temporal relations with different surjective unary polymorphisms. If a
positive temporal language I is closed under all unary surjective polymorphisms, then,
as it was shown in [T1]], each relation of I" may be defined as in item[3of Theorem[]and
QCSP(I") is NP-complete. If a positive temporal language is preserved by some non-
trivial subset of unary surjections, then QCSP(I") is PSPACE-complete. We prove it in
Section[dl The last section contains a complexity proof for cases[3 and 4l

2 Preliminaries

Relational structures. In most cases we follow the notation from [8I11]]. We consider
only relations defined over countable domains and hence whenever we write a domain
or D we mean a countable set. Let 7 be some relational (in this paper always finite) sig-
nature i.e., a set of relational symbols with assigned arity. Then I is a 7-structure over
domain D if for each relational symbol R; from 7, it contains a relation of according
arity defined on D. In the rest of the paper we usually say relational language (or pat-
tern) instead of relational structure. Moreover, we use the same notation for relational
symbols and relations.

Automorphisms of I” constitute a group with respect to composition. An orbit of a
k-tuple ¢ in I" is the set of all tuples of the form (I1(t1),...,II(t)) for all automor-
phisms /7. We say that a group of automorphisms of I" is oligomorphic if for each k it
has a finite number of orbits of k-tuples. Although there are many different ways of in-
troducing a concept of w-categorical structures we do it by the following theorem [16].

Theorem 2 (Engeler, Ryll-Nardzewski, Svenonius). Ler I be a relational structure.
Then I' is w-categorical if and only if the automorphism group of I' is oligomorphic.

Polymorphisms. Let R be a relation of arity n defined over D. We say that a function f :
D™ — D is a polymorphism of R if for all a',...,a™ € R (where a?, for 1 <i<m,
is a tuple (ai,...,al)), we have (f(al,...,a),..., f(al,...,a™)) € R. Then we
say that f preserves R or that R is closed under f. A polymorphism of I" is a function
that preserves all relations of I". By Pol(I") we denote the set of polymorphisms of I,
and by sPol(I") — the set of surjective polymorphisms.

An operation f of arity n is essentially unary if there exists a unary operation fy
such that f(z1,...,2,) = fo(z;) for some fixed i € {1,...,n}. An operation that is
not essentially unary is called essential.

Quantified constraint satisfaction problems. Let I' contain Ry, ..., Rj. Then a con-
junctive positive formula (cp-formula) over I is a formula of the following form:
lel-”ann(Rl(vl) /\.../\Rk(vk)), (1)

where Q; € {V, 3} and v; are vectors of variables 1, ..., zp.
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A QCSP(I") is a problem to decide whether a given cp-formula without free variables
over the structure I is true or not. Note that by downward Lowenheim-Skolem Theorem
we can focus on countable domains only.

If all quantifiers in (I) are existential then such a cp-formula is called positive primi-
tive (pp-formula). A problem to decide whether a given pp-formula over I is satisfiable
is well-known as a constraint satisfaction problem.

A relation R has a cp-definition in I if there exists a cp-formula ¢(x1, . .., x,) over
I" such that for all a4, . .., a, we have R(a1,...,ay,) iff ¢(a1,...,ay) is true. The set
of all relations cp-definable in I" is denoted by [I].

Lemma 1 ([I1)). Let I'1, I be relational languages. If every relation in I'y has a cp-
definition in Iy, then QCSP(I1) is log-space reducible to QCSP(I%).

The following results link [I'] with sPol(I"). The idea behind Theorem [3 is that the
more [ can express, in the sense of cp-definability, the less polymorphisms are con-
tained in sPol(I"). Moreover, the converse is also true. This theorem is called surjective
preservation theorem.

Theorem 3 ([11]]). Let I" be an w-categorical structure. Then a relation R has a cp-
definition in I' if and only if R is preserved by all surjective polymorphisms of I'.

As a direct consequence of Lemmal[ll and Theorem 3] we obtain the following.

Corollary 1 ([I10)). Letr Iy, I'> be w-categorical structures. If sPol(I3) C sPol(I7),
then QCSP(I) is log-space reducible to QCSP(I%).

Games and cp-definitions. Sometimes it is useful to see a cp-formula ) without free
variables as a two-player game. The game consists of alternating moves of existential
and universal player. All variables are evaluated in the order they occur in the quantifier
prefix, the existential player evaluates existentially quantified variables and the univer-
sal player evaluates universally quantified variables. At the end of the game, the players
establish a valuation ¢ from the variables of 1 into the set of rational numbers. We say
that one variable is earlier (later) than the another one if it occurs earlier (later) in the
quantifier prefix. If at the end of the game, the valuation ¢ satisfies ¢/, then the existen-
tial player wins; otherwise, the universal player is the winner. If the existential player
has a winning strategy, then 1) is true; otherwise, if there exists a winning strategy for
the universal player, then 1 is false.

Quantified Equality Constraints. Concerning patterns that allow equations and all log-
ical connectives the following classification is known [11].

1. Negative languages. Relations of such a language are definable as CNF-formulas
whose clauses are either equalities (x = y) or disjunctions of disequalities (z1 #
y1 V...V xp # yi). For each negative I" the problem QCSP(I") is contained in
LOGSPACE.

2. Positive languages. Relations may be defined as a conjunction of disjunctions of
equalities (1 = y1 V ...V x = yg). For each positive I" not being negative the
problem QCSP(I") is NP-complete.

3. In any other case the problem QCSP(I") is PSPACE-complete.
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Note that the class [[] from Theorem [l is a subset of Negative languages and the
class[(lis just the class of Positive languages.

To give our characterization we need the following result. It may be inferred from
lemmas given in Section 7 in [LT].

Lemma 2. Let I be an equational positive constraint language that is preserved by
an essential operation on D with infinite image. Then I’ is preserved by all operations,
and I' is negative.

Corollary 2. If an equational positive constraint language I’ is positive, but not nega-
tive, then sPol(I") contains only essentially unary polymorphisms.

Quantified Positive Temporal Constraints. Now, we focus on positive temporal rela-
tions announced in the introduction. All of them are defined over the set of rational num-
bers using a relational symbol < and connectives A, V. Therefore our results concerning
positive temporal relations generalize those for positive equality languages. Since the
only relational symbol we use is interpreted as a weak linear order over rational num-
bers, for each positive temporal structure I” the set sPol(I") contains all automorphisms
that preserve order, i.e., all increasing unary surjections f : Q — Q. Thus, using Theo-
rem[2] it is not hard to see that all positive temporal languages are w-categorical.

In we show that each temporal relation is closed not only under all increasing
functions but also under all weakly increasing surjections.

3 Surjective Unary Polymorphisms of Temporal Relations

This section examines positive temporal relations that are closed only under surjective
unary polymorphisms. We want to divide this subset of positive temporal languages into
classes each of which contains I'y and I if and only if sPol(I'y) = sPol(I) (or equiv-
alently [I'1] = [I%]). Such a classification facilitates providing complexity results —
see Theorem[3]

First we give some preliminary definitions. A permutation of a finite set is a bijection
from this set to itself. Let A = {ay, ..., a, } be a finite ordered set such thata; < ... <
a,. We say that a permutation 7 of A is a cycle of A if there exists i < n such that
m(a;) < m(aip1) < ... <mw(an) < 7(a1) < ... < mw(a;—1). Similarly, 7 is a reversed
cycle if there exists ¢ < n such that w(a;) > 7(a;y1) > ... > w(ay) > w(ay) > ... >
W(ai,l).

Definition 1. We say that a relation R is closed under all permutations (respectively,

under all cycles or reversed cycles) if for every tuple {(q1, . ..,q,) € R and every per-
mutation (respectively, every cycle or reversed cycle) m of the set {qi, . . ., ¢, } we have
<7T(q1)7 ceey ﬂ—(qn» €R

Note that in the definition above we permute the set {q1, ..., ¢} (and not the set of
indices {1, ..., n}), which may have less then n elements if ¢1, . . ., ¢,, are not pairwise
distinct.

The preceding definitions concern closure under various kinds of permutations. Al-
though they may look quite similar to closure under polymorphisms, they are different.
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Below we give some, important for us, examples of (unary) surjective polymorphisms
of positive temporal relations. They are all of the type: Q — Q.

Definition 2. We say that a surjection f : Q — Q is weakly half-increasing (respec-
tively weakly half-decreasing) if there exist two irrational real numbers x and y such
that

— [ restricted to the set {q € Q | ¢ < x} as well as f restricted to the set {q € Q |
q > x} is weakly increasing (respectively, weakly decreasing), and
— forall ¢ < x we have f(q) > y (respectively f(q) < y) and for all ¢ > x we have

f(q) < y (respectively f(q) > y).

A weakly half-increasing or weakly half-decreasing function is called weakly half-
monotone.

Example 1. Recall that all countable dense linear orders without endpoints are isomor-
phic. In particular, Q and Q\ {0} are isomorphic, so we may identify Q with Q\ {0} and
think of 0 as an irrational number in Q \ {0}. Then the function f : Q\ {0} — Q\ {0}
defined by f(q) = }1 is weakly half-decreasing and the function defined by f(q) = ’ql
is weakly half-increasing.

The unary operation — : Q — Q is defined as —(z) = —z in usual sense.
The rest of this section is devoted to prove the following result.

Theorem 4. Ler I" be a set of positive temporal relations such that sPol(I") contains
only essentially unary functions. Then exactly one of the following cases holds.

~

sPol(I') is the set of all unary surjections of Q.

2. sPol(I") is the set of all weakly increasing, weakly decreasing or weakly half-
monotone surjections of Q.

3. sPol(I") is the set of all weakly increasing or weakly decreasing surjections of Q.

4. sPol(I") is the set of all weakly increasing or weakly half-increasing surjections of

Q.

5. sPol(I') is the set of all weakly increasing surjections of Q.

A similar classification considering (not necessarily surjective) unary polymorphisms
was obtained in [12]. Weakly half-increasing polymorphisms correspond in some way to
the function cyc from that paper. In turn, positive temporal relations preserved by weakly
half-decreasing functions correspond to temporal relations closed under — and cyc.

As indicated in Theorem[d] there are only four interesting classes of unary polymor-
phisms of positive temporal relations: weakly increasing, weakly decreasing, weakly
half-increasing, and weakly half-decreasing. The following lemmas say that if some
positive temporal relation is closed under one polymorphism of a given class, then it is
closed under all polymorphisms of this class.

Lemma 3. IfsPol(R) contains a weakly decreasing unary surjection f, then it contains
all weakly decreasing unary surjections.



100 W. Charatonik and M. Wrona

Lemma 4. If sPol(R) contains a weakly half-increasing unary surjection f, then it
contains all weakly half-increasing unary surjections. If sPol(R) contains a weakly
half-decreasing unary surjection f, then it contains all weakly decreasing, all weakly
half-increasing and all weakly half-decreasing unary surjections.

Now, we relate various surjective polymorphisms to closures under various kinds of
permutations (see for example Definition[I]). In particular, Lemma[3] below implies that
the set of positive temporal relations closed under all permutations equals to the set of
positive languages from [11]].

Lemma 5. A positive temporal relation R is closed under all permutations iff sPol(R)
contains all unary surjections of Q.

Lemma 6. A positive temporal relation R is closed under all cycles iff sPol(R) con-
tains all weakly half-increasing surjections of Q.

Lemma 7. A positive temporal relation R is closed under all reversed cycles iff sPol(R)
contains all weakly half-decreasing surjections of Q.

Since we are interested in surjective functions, we can claim the following.
Lemma 8. Let f be a unary, surjective operation on @), then there exist:

— an infinite, strictly monotone sequence (ap,)nen of rational numbers such that
lim,, o0 f(an) = 400

— an infinite, strictly monotone sequence (by,)nen of rational numbers such that
lim,, o0 f(by) = —00

To prove Theorem [ we show that if sPol(I") contains any function that is neither
weakly monotone nor weakly half-monotone, then it contains all unary rational func-
tions or equivalently, by Lemma[3] is closed under all permutations.

Lemma 9. Let R be a positive temporal relation such that sPol( R) contains a function
f that is neither weakly increasing nor weakly decreasing nor weakly half-monotone.
Let (¢p)nen and (dy, )nen be two strictly monotone sequences satisfying the following:
lim,, o0 f(cn) = 400 and lim,,_.« f(d,) = —oco. Then R is closed under all permu-
tations.

Proof. (of Theorem M) Suppose that sPol(I") contains only essentially unary func-
tions. If sPol(I") contains a function f that is neither weakly monotone nor weakly
half-monotone, then by Lemma [§ we find two strictly monotone sequences (@, )nen
and (b, )nen such that lim,, ., f(a,) = +oo and lim, .~ f(b,) = —co. Then by
Lemma[levery relation in I is closed under all permutations, so by Lemma[3]sPol( R)
contains all essentially unary surjections. Hence sPol(I") is the set of all essentially
unary surjections of Q and we are in case[Il

Now assume that sPol(I") contains only weakly monotone or weakly half-monotone
surjections. There are four cases, depending on whether sPol(I") contains a weakly
decreasing surjection or a weakly half-increasing surjection.
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If sPol(I") contains a weakly decreasing surjection and a weakly half-increasing sur-
jection, then it contains a weakly half-decreasing surjection and by Lemmas[3land 4] it
contains all weakly decreasing and all weakly half-monotone surjections of Q, so we
are in case[2

If sPol(I") contains a weakly decreasing surjection and it does not contain any weakly
half-increasing surjection, then by lemmas[3land@lit contains all weakly decreasing and
it does not contain any weakly half-monotone surjections, so we are in case 3

If sPol(I") does not contain any weakly decreasing surjection and it contains a weakly
half-increasing surjection, then by Lemma @it contains all weakly half-increasing and
it does not contain weakly decreasing surjections, so we are in case [l

Finally, if sPol(I") does not contain any weakly decreasing surjection and it does not
contain any weakly half-increasing surjection, then by Lemma[dlit does not contain any
weakly decreasing nor weakly half-monotone surjection, so we are in case[3l O

Example 2. Recall from that (x1 = x2 V &1 = x3) is closed under all essentially
unary surjections of Q) — see also Section2l Now, for each of the classes 2H3] of The-
orem [ we give representatives, that is, relations R(5)—R(2) each of which belongs to
exactly one of these classes.

The relation R(s5) defined by R(5)(z1,22,23) := (11 < 22 V 22 < 3), as all
positive temporal relations, is closed under all weakly increasing functions. Observe
that (1,2,3) € R(s), but (—1,-2,-3) & R(5), so R(5) is not closed under weakly
decreasing functions (and by Lemma[lit is not closed under half-decreasing functions).
Similarly, (1, 3,2) € R, but (3,2,1) € R(5), so R(5) is not closed under cycles (and
thus it is not closed under weakly half-increasing functions). The relation R4 defined
by Ry (w1, 22,23) == (11 < 22 Vg < w3) A (22 < 23V < 21) A (13 <
w1 V x1 < x2) is a conjunction of the relations (z7(1) < T2y V Tir2) < Trp(s))
where IT ranges over all cycles of the set {1,2,3}, so it is closed under all cycles.
Since (1,2,3) € Ry and (3,2,1) ¢ R(y), it is not closed under weakly decreasing
or weakly half-decreasing functions. It is easy to observe that the relation 13 defined
by R(g)($1,$2,$3) = ($1 < 29 Vay < 1’3) A (1’3 < a9 Vay < 1’1) is closed
under weakly decreasing functions. Since (2,1,3) € R(3) and (3,2,1) ¢ Rys), this
relation is not closed under cycles and by Lemmas [6] and [4] it is not closed under any
weakly half-monotone surjection. Let a relation 2(5) be defined as a conjunction of the
clauses (z77(1) < Tr(2) V orr2) < T3y V T3y < Trrea)) where IT ranges over all
cycles and reversed cycles of the set {1, 2, 3,4}, so it obviously must be closed under
all cycles and reversed cycles. Note that cycles and reversed cycles are 8 out of total
24 permutations of the set {1,2,3,4} (this explains why we could not use a ternary
relation as an example here — all permutations of the set {1, 2,3} are either cycles
or reversed cycles). To see that R(2) is not closed under all permutations observe that
(4,3,2,1) & Ry, but (2,1,3,4) € Ra).

Finally, we show that all these relations (R(2)—FR(s5)) are closed under essentially
unary surjections only. Let R(x1,...,x;) where k = 3,4 be one of these relations.
Then arelation A\ ;g R(Tr(1)s-- - Tr(r)) where Sy is a set of all permutations on k
elements is equivalent to a relation R’ defined by \/,_; z; = ;. Because I’ is positive
and non-negative, by Corollary2land Theorem[3l we have that R is closed under unary
surjections only.



102 W. Charatonik and M. Wrona

4 PSPACE-Complete Positive Temporal Languages

Recall from Section [2] the complexity characterization of equational languages. By
corollaries Pl and 1} the problem QCSP(I") where I is closed under essentially unary
functions only is NP-hard. Likewise we know that QCSP for languages from item[I] of
Theorem @ is NP-complete. This section is devoted to show PSPACE-completeness for
QCSP of languages with surjective polymorphisms from items 2H3] of Theorem [l

Membership in PSPACE is the simpler part of the proof and is common for all, not
only positive, temporal relations.

Proposition 1. For every temporal language I, the problem QCSP(I") is decidable in
PSPACE.

In the rest of the section we prove hardness. Note that the set of surjective polymor-
phisms from item [2] contains sets of surjective polymorphisms from each of items 23l
Therefore, by Theorem 3 and Corollary[I] it is enough to show PSPACE-hardness of
QCSP for positive temporal languages closed under all weakly monotone and all weakly
half-monotone surjections only.

Theorem 5. Let I' be a set of positive languages closed only under essentially unary
Sunctions. If sPol(I") is the set of all weakly increasing, weakly decreasing and weakly
half-monotone surjections of Q, then QCSP(I") is PSPACE-hard.

Because of Theorem [3] and Corollary[d] it is enough to choose just one language with
appropriate set of surjective polymorphisms and show PSPACE hardness for this lan-
guage. Our choice is the language I ;e defined below. We show that it is closed only
under all weakly increasing, weakly decreasing and weakly half-monotone surjections
of Q. In fact, it is enough to show that I, is closed only under unary surjections of
Q and that is closed under all reversed cycles — see lemmas ] and [7} Finally, we show
that QCSP(I'cirele ) is PSPACE-hard and in consequence we prove Theorem 3l

Bo
B

By

o

i h

Fig. 1. The representation of the set Arenas
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Definition of I'circie. First we present some auxiliary relations that shorten the defi-
nition. Let v 4 be a vector (By, OF  1F, I, OF, B, OF IE, [T, OF, By) of variables
ranging over Q. The corresponding set of variables is denoted by Var 4. In the follow-
ing we call Var 4 the set of arena variables. We sometimes see a vector v 4 as a function
from {0,...,10} to Var 4.

Let Arenas be a set of vectors I1(v 4) for all cycles and reversed-cycles I1 of the
set {0, ...,10}. Note that the set Arenas may be represented in some way using Fig.
[Il To obtain one of linear orders that is represented by this circle, we have just to tear
it apart and orientate. If we orientate it clockwise, then we represent some I7¢(va)
where Ilc is a cycle. Otherwise, if we orientate it anticlockwise, then we represent
some I (va) where ITg e is a reversed cycle.

Now, for each v € Arenas we define a relation Prefiz,, := —(yo < ... < Y10)
where v = (yo, ..., y10). At this point we probably owe the reader one more explana-
tion. Sometimes, when we think it is intuitive, we use negation as well as implication
in the definition of relations. Nevertheless, they should be treated just as notational
shortcuts and all relations we claim to be positive temporal are indeed definable by con-
junction, disjunction, and <. In particular, Prefiz,, may be defined as \/?:0 Yi = Yit1-
Nevertheless, the situation where Prefiz,, is falsified is more important for us. Then the
arena variables are arranged in some linear order represented by a circle in Fig. [Tl

In general, our intention is to model (see Definition 3) a boolean relation. Arena
variables set in some order presented in Fig. [[] constitute some kind of arena. When
some other variable is set strictly between O} and O} then we see its value as a boolean
zero, and if some variable is set strictly between OF and OF then we see its value as a
boolean one. We need also I, I, and I, I*. Sometimes we want to say: *If a variable
x is equal to zero, then a variable y is also equal to zero’. Unfortunately, concerning
positive temporal relations we are unable to write something like (O} < z < Of) —
(OF < y < OF). Instead we write (O} < x < OF) — (I} <y < I{?) and assure
that I, 11t are always strictly between O}, Off. Similarly, we assure that ¥, [Tt are
always strictly between OF  OF. This is the general idea, but sometimes because of
technical reasons we also use OF*, OF? etc.

Concerning positive temporal relations closed under reversed cycles it is hard to say
that some variable must be set on the left (or on the right) of the another variable. Far
more natural is to say that some variable is inside the interval set by values of other
variables or outside such an interval. We define In,(z,y1,y2) equal to ((y1 < y2) —
(1 <z <y))A((y2 <y1) = (z <y2Va >uy1))if v =Ic(va) for some cycle
Hc;andequalto ((y1 <y2) = (z <y Ve >y2)) A((y2 <y1) — (g2 <2 < y1))
if v = IIgrc(va) for some reversed-cycle I gc. Similarly, we define Outy,(x, y1, y2)
equalto (1 < 92) > (@ <y Ve = y))A(y2 <y1) — (g2 <z < y))if
v = Il (v ) for some cycle I1o; and equal to ((1 < y2) — (11 <z < y2))A((y2 <
y1) — (x <yoVa>yp))if v =Irc(va) for some reversed-cycle ITic.

Example 3. For every v € Arenas the following formulas are always true:

1. (=Prefiz,) — In, (I, OF, OF)
2. (=Prefiz,) — Out,(OF, I, IL)



104 W. Charatonik and M. Wrona

The positive temporal language ['cjrcie consists of three relations: Ulmp, BImp, and
Final. Each relation R € I'gjce 1s of the form /\U € Arenas qﬁﬁ. By using this conjunc-
tion we assure that R is closed under all cycles and reversed cycles.

1. First of our relations is Ulmp(va, p, OF, OF, f, I 1) with
JImp .= Prefiz, V Outy(p, OF, Of) v In, (f, ", 1. ()

The name Ulmp stands for unary implication. It is justified by the context in which
we use it. If both Prefiz,, and Out, (p, O, OF) are falsified, then In,,(f, I, IF)
must be satisfied. We use this relation to express the implication: ’if v represents
different values in an appropriate order and p is a value in the interval from I* to
I then f also is a value in this interval’.

2. We have also binary implication BImp(v 4, p1, p2, O, OF, f, I*, I'%) with

pBImP .= Prefiz, V Outy(p1, 0%, OT) V Outy(pa, OF,OF) v Ing (f, IF, ITF).
(3)
If Prefiz, as well as Outy,(p1, OF, O%) and Out,(pa, OF, OF) are falsified, then
Iny, (f, I, I'?) must be satisfied.
3. Finally there is Final(va, fo, f1) with

Fmal _ Preﬁx \Vi OUtu(fm By, BQ) \Y Outv(fh BO, B2) “)

We want to see it in the following way. If Prefiz,, is falsified, then Out,, (fo, Bo, B2)
or Outy(f1, Bo, B2) must be satisfied.

Lemma 10. The positive temporal language I circie is closed under weakly increasing,
weakly decreasing, and weakly half monotone surjections only.

PSPACE-hardness of QCSP(I'circie). The hardness proof for QCSP(I cirele) is based
on the proof of PSPACE-hardness of QCSP(x1 # 2 V o1 = x3) from [11]. We define
analogous notions and follow analogous reasoning.

Definition 3. A relation R C {0, 1}" is force definable if there exists a prenex formula
PR fo.1, (va, OF ', OF, O Oy, ay) = Q0

over I'circle that satisfies all of the following.

1. Q is a quantifier prefix and ¢ is a quantifier-free part.
2. The quantifier prefix Q contains fy and f1 as its two last variables, and they are
both existentially quantified.
3. The set of free variables is equal to {va, OF*, OF* OFY OFY 2y, ... 2, ).
4. Lert € {0,1}™ and let v € Arenas. Let variables from Var 4 be set to satisfy
—(Preﬁxv) and let variables OF', OF O OFY be set to satisfy
- ]nv(OO ,Bo, OO )
In, (OF By),
Inv(Ol ,Bl, OL), and
In, (OF By).
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Further; let x), for k € {1,...,n} are set to satisfy In,(zy, [, IF) ifft). =i for
i = 0, 1. Then the sentence &' := Q(¢ N =(Iny(fo, IF, IE) A Iny(f1, IE, 1)) is
false iff t € R.

5. Ifvalues of arena variables satisfy Prefiz,, for all v € Arenas; oy, in case Prefiz,,
is falsified for some v € Arenas, free variables OF', Ot OF1 OFL are set to
satisfy

— Ing (OF* IE IE) A Ing, (OF, IE IE)V
= Ing (O, TE, IR) A Ing (OFY. TE, TR);
then @' is always true.

6. (monotonicity) For any setting to the free variables of D g, ,, if the formula &' is
true, then changing the value of any variable x; to satisfy (Outy,(z;, OF', Oft) v
Outy (25, OF, OFY)) preserves the truth of &'

As it was described in Section Pl we can see a sentence as a two-player game. The
intuition behind Definition[3is as follows. If free variables of @ g, 7, are set according
to conditions from item @] and ¢ € R, then the universal player has a strategy to force
the existential player to satisfy In,, (fo, I, If) and In, (f1, I¥, I®) where v € Arenas
and Prefiz,, is falsified. But if Prefiz,, is falsified for some v € Arenas and the condi-
tion from item[3lis fulfilled, then the existential player is able to falsify In,(fo, I, IE)
or Iny(f1, I¥, IT).

Note that variables OF1, OFt, OF1, OF! are different from OF, OF, OF, OF.

Lemma 11. There exists a polynomial-time algorithm that, given a boolean circuit C
as input, produces a force definition of the relation Rc containing, as tuples, exactly
the satisfying assignments of the circuit.

Similarly as in , we reduce from succinct graph unreachability. In this problem, the
input is a boolean circuit with 2¢ inputs that represent a graph G whose vertices are the
tuples in {0, 1}. There is a directed edge (X,Y) in the graph iff the circuit returns
true given the input (X, Y"). The question is to decide whether or not there is a directed
path from S to T". This problem is known to be PSPACE-complete.

Define R; C {0, 1}*¢ to be the relation containing exactly the tuples (X,Y’) such
that there exists a directed path in G’ from X to Y of length less than or equal to 2°.
Then there is a path in G from S to T'iff (S, T') € R,.

From Lemma [TT] it is not hard to infer that Ry is computable in polynomial time.
Now, by induction we show that R, is also computable by a polynomial algorithm.

Lemma 12. The force definition of the relation R, is computable in polynomial time.

Proof. (of Theorem[B) Let @, 4.4, (va, OF, OF, OF, OF x,y) = Q.4 be a force
definition of R.. We use it now to give an instance of QCSP(I"¢jrcie ) that is true if and
only if there is no path from S to T in the succinctly represented graph.

The instance created is

YoaQcpe N =8Ny =1tAFinal(va, go,q1)

where s; =t; = IFif S; =T; = kforall1 <i,j <candk =0,1.
The universal player starts the game. To have a chance to win (to falsify) the sentence
he must set arena variables to falsity Prefiz, for some v € Arenas. Otherwise each
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clause from ¢, is satisfied already at the beginning. If there is a path from s to ¢,
then the universal player can enforce the existential player to satisfy In,(go, I, IF)
and In, (g1, I¥, If). Tt is not hard to verify that it contradicts Final(va, go, g1) —
see @). If (s,t) ¢ R., then the existential player can satisfy Out,(go, Bo, B2) or
Outy (g1, Bo, B2); and in consequence satisfy Final(v a, go, g1). O

5 PTIME-Complete Positive Temporal Languages

This section is devoted to give the complexity proof for classes from items 3] and [] of
Theorem[Il We focus here of the former case, the latter one is dual and hence the whole
reasoning is similar in both cases.

Let R’zeﬂ beequalto (x1 < zo V...V z1 < 2), and I'rep be the set of relations
R}zeﬁ for each natural number £ > 2. In it is shown that QCSP(I 1.y) is log-space
equivalent to QCSP(I") where I’ is the language from case [ of Theorem [l Further-
more, we have that QCSP(z1 < a2V < x9) is log-space equivalent to QCSP(I e ).
Observe that the definition of each R’Zeﬂ have a simple tree-like structure where x; is
arootand xo, ..., x}; are sons of x1. Moreover, to denote a root of a clause C' we write
root(C') and to denote a set of sons — sons(C).

In this section whenever we write: a formula, we think of a cp-formula over I'zc.

Lemma 13. Let ¢ be a formula defining a positive temporal relation. Assume that ¢
contains clauses C1 := (y < x1 V... Vy < axp)and Cy := (x1 <21 V...Va1 < 2).
Then ¢ and ¢’ given by p NC'3, where C5 := (y < z1V...Vy < z1Vy < x2V...Vy <
xy), are equivalent, that is, they define the same relation.

In the following, we sometimes refer to a quantifier-free formula ¢ as to a set of clauses.
We say that a set of clauses ¢ is T'Closed if for all pairs of clauses of the form (y <
x1V...Vy <zg)and (1 < 21 V...V < z),theclause (y < 21 V...Vy <
2Vy < xoV...yV < xx) also belongs to ¢. By T'Closure(¢) we denote the least
TClosed superset of ¢.

By a simple induction, from Lemmal[I3] we can obtain the following.

Corollary 3. Formulas ¢ and TClosure(¢) are equivalent.

We show that the universal player has a winning strategy if and only if T'Closure(¢)
contains a clause of the form (y < x1 V...Vy < xj) such that for each disjunct y < x;
where 1 < ¢ < k we have that either y or x; is later and universal. We call such a clause
ultimate.

Lemma 14. Let ) be a sentence and let Q be its quantifier prefix and ¢ its quantifier-
free part. Then ) is false if and only if TClosure(¢) contains an ultimate clause.

To show the exact complexity of case[3lof Theorem[Ilwe use the emptiness problem for
context-free grammars. It is well known that this problem is P-complete. We assume
that the reader is familiar with the notion of the context-free grammar. By £(G) we
denote a language generated by a context free-grammar G = (N, Y| R, S).
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Theorem 6. Let I' be a positive temporal language such that each of its relation is
definable by a formula of the form /\Z;l(avl1 < iy, V... Vay, < ay,)anditis neither
definable as a conjunction of equalities nor as a conjunction of inequalities. Then the
problem QCSP(I") is P-complete

Proof. (About Membership) To obtain the result we give a logspace reduction from
the problem QCSP(xz1 < x2 V x1 < x3) to the emptiness problem for context-free
grammars. Let ¢ be an instance of QCSP(zqy < x2 V x1 < x3) with a quantifier
prefix @ and a quantifier free-part ¢. We construct a context-free grammar G, such
that £(Gy) # 0 if and only if 1 is false. By Lemma [I4] it is enough to show G
that generates a non-empty language if and only if T'Closure(¢) contains an ultimate
clause.

The reduction runs as follows. For each variable x of 1/, we show a grammar Gi that
generates an empty language if and only if there is no ultimate clause C'in T'Closure(¢)
with x being a root of C. Further, by G, we take a grammar such that £(Gy) =
Use var(yp) £(GY,) where Var(i)) is a set of all variables of t. Recall that the set of

context-free grammars is closed under union and note that |Gy || < ¢+ X var(y) HG; H

for some constant c.

We now turn to the definition of G, = (N, Y., R., A,). For each variable y of
1 we introduce a nonterminal A,. The set X, contains a terminal symbol a,, for each
variable y that is universal and later than z. If = is universal, then there is also a terminal
a, for each variable y that is earlier than x. Further, for each clause of the form (z; <
x2 Vo1 < x3) we have arule A,, — A,, A,,. For each terminal symbol a, in X,
there is also a rule A, — a,. It is clear, that such a reduction may be provided using
logarithmic space.

Now, if E(Gi) contains a word ay, ...a,,, then, by a simple induction, we can
show that a clause (x < 1 V...V x < xy) belongs to T'Closure(¢). Since each z; for
1 < ¢ < k is universal and later than = or provided x is universal, earlier than z; this
clause is ultimate. Similarly, if any ultimate clause (x < 21 V...V z < x1) belongs to
TClosure(¢), then we can construct a parse tree that witnesses ag, ... az, € L(GY))

(About Hardness) The hardness proof is quite similar. This time we give a logspace
reduction from the emptiness problem to the problem QCSP(x1 < x5 V 1 < x3). O

Acknowledgements. We thank Jerzy Marcinkowski for turning our attention to [11]].
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Abstract. We study the computational complexity of Boolean con-
straint satisfaction problems with cardinality constraint. A Galois con-
nection between clones and co-clones has received a lot of attention in the
context of complexity considerations for constraint satisfaction problems.
This connection fails when considering constraint satisfaction problems
that support in addition a cardinality constraint. We prove that a sim-
ilar Galois connection, involving a weaker closure operator and partial
polymorphisms, can be applied to such problems. Thus, we establish di-
chotomies for the decision as well as for the counting problems in Schae-
fer’s framework.

1 Introduction

The success of Boolean constraint satisfaction problems (CSPs) is due to two
features: they provide a framework in which various combinatorial problems
(including NP-complete ones) can be adequately expressed, and which is prac-
tically efficient since highly optimized solvers are available. Therefore, Boolean
constraint satisfaction problems are an important test-bed for questions about
computational complexity and algorithms. In particular the non-uniform version,
CsP(I") has been extensively studied from the computational complexity point
of view. In this context a finite set of Boolean relations I', called a constraint
language, is fixed. An input of such a problem is a ['-formula. Such a formula
is a conjunction of “clauses”, each of which consisting in an application of some
relation from I" to variables. This framework captures many well-known combi-
natorial problems, as for instance the famous NP-complete problem 3SAT. The
complexity study of these problems started in 1978 with the seminal paper of
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Schaefer [Sch78]. He proved a remarkable dichotomy theorem: Csp(I") is either
in P or NP-complete. Since then many other algorithmic problems related to I'-
formulas have been investigated: including counting [CH96], non-monotonic rea-
soning [KK03] [CZ06], equivalence and isomorphism [BHRV02, [BHO5],
optimization [Cre95, [KSTWOI, [RV03], parameterized complexity [Mar05], and
many others (see [CV0§| for a complete survey).

All the constraints that appear in non-uniform CSPs are local ones: each
applies to a fixed number of variables. However in practice one is often faced
with constraints of global nature, which involve all the variables occurring in the
input. Due to the wide embrace of global constraints in the constraint program-
ming community, we believe that the computational complexity of non-uniform
CSPs supporting additional global constraints is worth being investigated. To
this aim, we focus here on Boolean constraint satisfaction problems that support
in addition a constraint of global nature, namely a cardinality constraint. Given
a I'-formula, a feasible solution is a satisfying assignment that fulfills in addition
some cardinality constraint on the number of variables set to 1. More precisely we
are interested in two problems BAL-CSpP(I") and K-ONES(I”). For the balanced
constraint satisfaction problem BAL-Csp(I"), the global constraint is that the
assignment is balanced, i.e., it sets the same number of variables to 0 and 1. For
K-ONES(I), the requirement is that exactly k variables (where k is given in the
input) are set to 1. These two global constraints are well-known in constraint pro-
gramming and appear in the Global constraint catalog (see http://www.emn.fr/x-
info/sdemasse/gccat/index.html). The balanced constraint also arises naturally
in some optimization problems. For example MIN-BISECTION can be seen as
MIN-CuUT with the restriction that the two sets of vertices have the same car-
dinality. Other optimization problems can be expressed as a Boolean constraint
satisfaction problem where a feasible solution is a balanced assignment. Re-
cently, there was an increased interest in optimization problems supporting an
additional cardinality constraint, see e.g. [Svi0ll [BHMOS].

Satisfiability problems with an additional cardinality constraint first appeared

n [KSTWOI]. The authors studied the problem MAX-ONES(I"), in which a so-
lutlon is a satisfying assignment that sets at least k variables to 1' The problem
K-ONEsS(I") was already studied from the point of view of parameterized com-
plexity in [Mar05] (our results differ from his, since in our problems & is part of
the input instance). The study of the complexity of BAL-CsP(I") and K-ONES(I")
was initiated in [BK05]. The authors identified a polynomial time case, obtained
individual hardness results for specific constraint languages and conjectured a
dichotomy classification. In this paper we prove that the conjecture holds. We
prove a full complexity classification for the two problems BAL-Csp(I") and
K-ONES(I"). Moreover, we also tackle the corresponding counting problems and
prove a dichotomy classification FP/#P-complete.

For this we use new algebraic tools. In order to obtain a complexity classi-
fication for constraint satisfaction problems, the main idea is to compare the

! They studied this problem as an optimization problem, and were interested in ap-
proximability properties.



Non-uniform Boolean CSPs with Cardinality Constraint 111

so-called expressive power of constraint languages. Roughly speaking, given two
constraint languages Iy and I5, if I is more expressive than Iy, then any I7-
formula (i.e., a conjunction of I'j-clauses, each of which being an application of
some relation from I to variables) can be transformed into a I's-formula. In the
last decade, a Galois correspondence between the lattice of Boolean relations
and the lattice of Boolean functions, together with Post’s lattice has turned out
to be one of the most successful tools to derive complexity results for Boolean
constraint satisfaction problems. Indeed, this Galois correspondence relates the
expressive power of a constraint language to its set of polymorphisms, i.e., alge-
braic closure properties.The structure of the polymorphism sets, so called clones,
is well-known and is described by Post’s lattice [Pos4I]. This Galois connec-
tion gives a procedure transforming Ij-formulas into equivalent Is-formulas.
However, the newly constructed I%-formulas contain additional existentially
quantified variables and equality clauses can occur. Due to the additional global
constraint, these features make this Galois connection unhelpful to transfer di-
rectly results from Post’s classes to complexity when there is an additional
cardinality constraint.

We prove that we can use a restricted closure, based on partial polymorphisms
and studied in [Rom&1]. These partial polymorphisms form a structure which is
a refinement of the clone structure exhibited by Post. However, surprisingly, the
complexity classification, when achieved, obeys the borders of Post’s lattice.

In Section [2] we introduce the main concepts precisely, and state our results.
In Section Bl we present the algebraic method that will be used to obtain the
complexity classification. Due to space restrictions, this section focuses on the
results needed for this paper and does not give any examples for the involved
constructions. See [SSO§| for details on this technique. SectionHlis then dedicated
to the hardness proofs.

2 Main Result

A logical relation of arity k is a relation R C {0,1}*. A constraint (or constraint
application) is a formula R(x1,...,xy), where R is a logical relation of arity
k and z1,...,x, are (not necessarily distinct) variables. An assignment I of
truth values to the variables satisfies the constraint if (I(21),...,I(zx)) € R.
A constraint language I' is a finite set of logical relations. A I'-formula is a
conjunction of constraint applications using only logical relations from I". With
Var(y) we denote the set of variables appearing in ¢. A formula ¢ is satisfied by
an assignment [ if I satisfies all constraints in ¢. The satisfiability problem for
I'-formulas is denoted by Csp(I"). Assuming a canonical order on the variables,
we can regard assignments as tuples in the obvious way, and say that a formula
defines or expresses the relation of its solutions.

A balanced assignment for ¢ is a truth assignment I that assigns 0 to the
same number of variables as 1, that means it fulfills [{z € Var(y) | I(z) =0} =
{a € Var(g) | I(x) = 1}].
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We study here the two following problems.

Problem:  BAL-Csp(I")

Input: A I'-formula ¢

Question:  Is there a balanced assignment that satisfies ¢ 7
Problem:  K-ONES(I")

Input: A I-formula ¢ and a number £ € N

Question:  Is there a truth assignment setting exactly k variables to

true that satisfies ¢?

Additionally we look at the counting version associated with each of these
problems, i.e., the question of how many “acceptable” (balanced/ with k ones)
satisfying truth assignments a given I'-formula has. These counting problems
are denoted by #BAL-Csp(I") and #K-ONES(I).

Definition 2.1. A logical relation R is affine with width 2 if it is definable by a
conjunction of equations, each of which being either a unary clause or a 2XOR-
clause, that is of the form Iy ®lo, where l1, 1o are literals and & is the exclusive-or

operator. A constraint language I' is affine with width 2 if every relation in I is
affine with width 2.

The following is our main result:

Theorem 2.2. Let I' be a constraint language.

— If I is affine with width 2, then BAL-CsP(I") (respectively, K-ONES(I")) is
decidable in polynomial time. Otherwise it is NP-complete.

— If I' is affine with width 2, then #BAL-Csp(I") (respectively, #K-ONES(I"))
is computable in polynomial time. Otherwise it is #P-complete under count-
ing reductions.

Observe that there is an immediate parsimonious reduction from #BAL-Csp(I")
to #K-ONES(I"). It therefore suffices to prove polynomial-time results only for
the problems K-ONES and #K-ONES, and hardness results for the problems
BAL-Csp and #BAL-Csp. The polynomial side of this theorem is rather easy to
prove. As suggested in [BK05] deciding the existence of a satisfying assignment
of an affine with width 2 formula that sets exactly k variables to 1 can be reduced
to solving an instance of the UNARY-SUBSET-SUM problem. The input of this
last problem consists in a set A = {ay,...,ay} of positive integers and an integer
B; the question is whether there exists a subset A’ C A such that the sum of the
elements in A’ is exactly B. This problem can be solved by examining w(, L),
the number of subsets of {ai,...,a;} whose sum of elements is exactly L, for
i=1,...,nand L = 1,...B. Since w(i + 1,L) = w(i, L) + w(i, L — a;4+1),
the quantity we are interested in, w(n, B), can be computed dynamically, in
polynomial time when all the integers are encoded in unary. Therefore, if I
is affine with width 2, then #K-ONES(I") (and a fortiori #BAL-Csp(I)) is
computable in polynomial time (details are left out due to space restrictions). In
the following, in order to finish the proof of the theorem we focus on hardness
results for the problem BAL-Csp(I") (resp. #BAL-Csp(I)).
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3 The Weak Base Method

We now introduce the algebraic tools that our proof relies on. For more back-
ground on these notions, see [SSOS].

Definition 3.1. Let I" be a set of logical relations.

— (I') is the set of relations which can be expressed as a formula of the form
Jzy ... Jxpp, where ¢ is a (' U {=})-formula as defined above in which
(among others) the variables x4, ...,k appear.

— (I')4 is the set of relations which can be expressed as a I' U {=}-formula.

— (I")3,+ is the set of relations which can be expressed as a I'-formula.

Let It C (I%). Then a I'j-formula can be transformed into a satisfiability-
equivalent I'>-formula. Thus, it has been proved that Csp(I) can be reduced
in logarithmic space to CsP(I%) (see [Jead8, [ABIF05]). Hence the complexity of
Csp(I") depends only on (I'). The set (I') is a relational clone (or a co-clone)
Accordingly, in order to obtain a full complexity classification for the satisfia-
bility problem we only have to study the co-clones. Interestingly, there exists a
Galois correspondence between the lattice of Boolean relations (co-clones) and
the lattice of boolean functions (clones) (see [Gei68, [BKKRGY]). This one-to-one
correspondence is established through the operators Pol and Inv defined below.

Definition 3.2. Let f: {0,1}" — {0,1} and R C {0,1}". We say that f is a
polymorphism of R, if for all x1,..., 2, € R, where x; = (a;[1],2:[2], ..., z;[n]),
Wehave (f(lj[l], e axm[l])mf(xl[QL e axm[QD7 ey f(xl[n]? e ,xm[n])) € R

If f € Pol(R), we also say that R is closed under f, or f preserves R. For a set
of relations I" we write Pol(I") to denote the set of all polymorphisms of I', i.e.,
the set of all Boolean functions that preserve every relation in I". For every I,
Pol(I') is a clone, i.e., a set of Boolean functions that contains all projections and
is closed under composition. The smallest clone containing a set B of Boolean
functions will be denoted by [B] in the sequel (B is also called a basis for [B]).
For a set B of Boolean functions, let Inv(B) denote the set of all invariants of
B, i.e., the set of all Boolean relations that are preserved by every function in B.
It can be observed that each Inv(B) is a relational clone. Thus, we may compile
a full list of co-clones from the list of clones obtained by Emil Post in [Pos41].
The list of all Boolean clones with finite bases can be found e.g. in [BCRVO03].
A compilation of all co-clones with simple bases is given in [BRSV05]. In the
following, when discussing about bases for clones or co-clones we implicitly refer
to these two lists.

Unfortunately, this Galois connection cannot help a priori for the study of
CSPs with cardinality constraint. Indeed, existential variables and equality con-
straints that may occur when transforming a Ij-formula into a satisfiability-
equivalent I'>-formula are problematic, as they can change the set of solutions.
Therefore for these problems we have to consider the restricted closure (.)# ,
which allows to translate formulas into equivalent ones.
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Proposition 3.3. Let It and Iy be constraint languages with It C (I%)# 2.
Then

— BAL-Csp(I) <19 BAL-Csp(I}) and K-ONES(I7) <198 k-ONES(I%),
— #BAL-CspP(I1) <,°® #BAL-CsP(I%) and #K-ONEs (1) <|°® #K-ONES(I3),

. 1 . . .
where <18 denotes a logspace many-one reduction and <\ a parsimonious (i.e.,
preserving the number of witnesses) logspace many-one reduction.

The main strategy to prove that for some class of constraint languages, the
problems we consider are NP- or #P-hard is to prove that for every language
I' in this class, (I")#, contains a language I" for which the problem is hard.
Proposition B3 then implies the result for every language in the class. In [SS0S],
Schnoor and Schnoor established techniques that allow to prove results in this
direction. We briefly explain the main definitions and results.

The main tool is the notion of a weak base. Note that in that paper, a different
(but proven to be equivalent) definition was given.

Definition 3.4 ([SSO08]). Let C be a clone. A weak base for Inv(C) is a con-
straint language I' such that: (i) Pol(I") = C, (i) for any constraint language I
with Pol(I) = C, it follows that I' C (I'"}3.

Since for the balanced satisfiability problem, we need to consider the stricter
closure operator (.)# -, we need an additional technical notion. In the following,
we consider relations as matrices, where the rows of the matrix correspond to the
tuples of the relation (technically, for uniqueness, we need to fix an order on the
rows, for example lexicographical ordering). An n-ary relation R is irredundant
if R, considered as a matrix, does not contain two identical columns, and if
there is no i, 1 < i < n, such that the value of the i* variable is unconstrained.
A set of relations I is irredundant if every relation in I is irredundant. For
representing irredundant relations, equality clauses are not needed. As a corollary
the following proposition holds:

Proposition 3.5 ([SS08]). Let I' be an irredundant weak base for a co-clone
Inv(C). If I is a constraint language with Pol(I") = C, then I' C (I'")4 ».

We now explain how to construct weak bases. For a set of Boolean functions F,
the F-closure of a relation R, denoted by F(R), is the minimal superset of R
that is closed under every function from F. This relation can be obtained from
R by repeatedly applying all functions from F, and adding the result to R. We
say R is an F-core of F(R).

Definition 3.6 ([SS08]). Let C be a clone. Then Inv(C) has core-size s if there
is a relation R such that (R) = Inv(C) and R has a C-core with cardinality s.

The relation COLS; is defined to be the 2°-ary relation of cardinality s such that
the columns of COLS; contain every possible s-ary binary vector (the order is
irrelevant, we fix an arbitrary one in order for the notion to be well-defined). In
the following by COLS,(l,—) we denote the I-th row vector of COLS;, and by
COLS;(—, k) its k-th column vector.
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Theorem 3.7 ([SS08]). Let C be a clone. Suppose that Inv(C) has core-size s.
Then the relation C (COLS;) is a weak base of Inv(C).

With this theorem one can construct weak bases for all Boolean co-clones for
which we know finite bases (since finite bases give us core-sizes). This fits our
purpose. Indeed, there are only 8 clones that have no finite basis, namely Sg, So1,
So2, Soo and S1, S11, S12, S10- These clones C are exactly the ones for which there
exists no finite constraint language I" such that (I') = Inv(C) (see [BRSV03]),
and therefore will not be involved in our study. An explicit example for the
construction of Theorem [3.7is given in the proof of Theorem

4 Proofs of Hardness Results

4.1 Another Statement of the Main Result

As discussed above the Galois correspondence between relational co-clones and
Post’s classes cannot help a priori for our problems. However, it turns out
that the complexity classification, when achieved, obeys the border among co-
clones (see Figure [I), and so the Galois connection holds a posteriori. The
clones corresponding to our polynomial-time cases are highlighted in Figure [l

Corollary 4.1. Let I be a con-
straint language.

—If ' C Inv(Dq), then
BAL-CspP(I')  (respectively,
K-ONES(I')) is decidable in
polynomial time. Otherwise
it is NP-complete.

—If ' C Inv(Dq), then
#BAL-Csp(I) (respectively,
#K-ONES(I") ) is computable
in polynomial time. Other-
wise it is #P-complete un-
der counting reductions.

Our main theorem can be refor-
mulated as above since it is well
known that Inv(D;) is the set
of all affine with width two rela-
tions (see e.g., [CKZ08]). Thus,
Theorem will be proved by
an exhaustive examination of
the clones in Post’s lattice. As Fig. 1. Post’s lattice

mentioned before, it suffices to

prove hardness results for the balanced versions of our problems. These results
are organized as follows: In Section[£.2] we prove hardness for a set of individual
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relations. Section uses these results and our algebraic techniques to extend
these results to entire co-clones, without the need to construct a concrete weak
base for these. Section 4] then contains the results for the remaining co-clones,
where the proof requires to study individual weak bases.

4.2 Some Basic Hardness Results

First we will take advantage of the symmetry of Post’s lattice. The dual relation
of a relation R, is given by dual(R) = {(1 —a1,...,1—ay) : (a1,...,a,) € R}.
If I' is a set of relations, then dual(I") = {dual(R) : Re I'}.

Proposition 4.2. For any constraint language I', #BAL-Csp(dual(I")) S%Og

#BAL-Csp(I).

In the following we will use specific relations: Cy = {0}, C; = {1}, 1-in-3 =
{001,010,100}, ITmp = {00,01,11}, Or* = {01,10,11}, Odd®> = {01,10} and
0dd® = {001,010, 100, 111}. Now, we establish hardness results which will serve
as base problems for the following hardness proofs.

Lemma 4.3. BAL-Csp(Imp), BaL-Csp(Or?), and BAL-Csp(Odd®) are NP-
hard. Their corresponding counting problems are #P-hard under counting re-
ductions.

Proof. Hardness of BAL-CsP(Or?) and BAL-Csp(Odd®) was shown in [BK05).
In order to prove NP-hardness of BAL-CsP(Imp), we consider the following NP-
complete problem (see [GJ79)]).

Problem: K-CLOSURE

Input: a directed graph G = (V, FE) and k € N

Question:  Is there a V' C V such that |[V'| = k and for all (u,v) € F
it holds w € V' or v ¢ V'?

We show K-CLOSURE <!98 BAL-Csp(Imp). Let G = (V,E) be a directed
graph and k& € N. Let n = |V|. We construct an {Imp}-formula with variables
X =VU{t1,.. . ti, f1,-., fn—i}, where t1,... tk, f1,..., fn_i are all distinct
variables and not from V. We set

n—~k
(u,v)EE i=lxzeX i=1 xeX

Observe that a balanced solution for ¢ sets all ¢;’s to 1 and all f;’s to 0. Now
it is easy to check that ¢ has a balanced solution if and only if G has a k-closure
(the balanced assignment is obtained by assigning 0 to each v € V).

We now study the counting problems. For #P-hardness of #BAL-Csp(0dd?)
it suffices to show #Csp(1-in-3) §}°g #BAL-CsP(0dd?), because #Csp(1-in-3)
is hard for #P [CH90]. Note that, since Csp(1-in-3) is an NP-complete problem
[Sch78|, the following reduction is also an alternative proof for the NP-hardness
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of BAL-CsP(0dd?). Let ¢ = /\ 1-in-3(x4, ys, zi). We construct an Odd*-formula

i=1
using additionally to the variables appearing in ¢ the following new and distinct
variables: a;, b;, ¢, d; for every 1 < i < n; t, f? for every 1 < i < k where
k =2 |Var(p)| + 4n; and v’ for every v € p. We set:

= N {0dd®(x;, yi, z:) A Odd*(d;, d;, d;) A
i=1
0dd?(d;, zi, a;) A OAd® (d;, yi, bi) A Odd®(d;, i, ¢;) }

Odd® (¢, ) AOdd* (', f1, f) A\ 0dd®(f*,v,0).

vEVar(p)

H>?r

Observe that |Var(yp’)] = 3k. If T is a satisfying assignment for ¢, then
necessarily I(d;) = I(t') = 1 and I(a;) = I(x;), I(b;) = I(y:), I(c;) = I(2)
and I(f") = (f'). If in addition I is balanced, then I(f*) = 0, I(v') = 1 —
I(v) for all variable v in Var(y), and for no clause Odd®(z;,¥:,2;) one can
have I(x;) = I(y;) = I(z;) = 1 (otherwise I will set more than 2n vari-
ables to 1 among the a;,b;,c;,d;). As a consequence I satisfies the constraint
1-in-3(x;, yi, z;). From these observations, one can check that there is a one-to-
one correspondence between solutions of ¢ and balanced solutions of ¢’. So we
showed #CspP(1-in-3) <,°® #BAL-CsP(Odd?), which completes the proof.

One can show hardness of #BAL-Csp(Imp) and #BAL-Csp(Or?) by proving
#Csp(Imp) <}°®* #BAL-Csp(Imp) and #Csp(Or?) <|°8 #BAL-CsP(Or?). The
results then follow since #Csp(Imp) and #Csp(Or? ) were shown to be #P-

complete in [CHI0]. O

4.3 Hardness Results with Unified Proofs

Now we start to look at constraint languages. The first result covers all constraint
languages that generate Inv(M), Inv(V), Inv(E), or Inv(I). One can show that
for these I', Imp € (I")# . Hardness for decision and counting now follows from
Lemma and Proposition

Proposition 4.4. Let I' be a constraint language such that (I') C Inv(I) and
I') ¢ Inv(Ng). Then BAL-CsP(I') is NP-hard and #BAL-Csp(I") is #P-hard
under counting reductions.

In the rest of this section we work with weak bases, however we do not need
to compute any concrete weak base and we see that weak bases for the above
co-clones share some properties.

The next theorem deals with constraint languages that generate one of the
following co-clones: Inv(M; ), Inv(Vy), Inv(E1), Inv(Sg}).
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Theorem 4.5. Let I' be a constraint language such that Inv(My) C (I') C
Inv(Iy). Then BAL-Csp(I") is NP-hard and #BAL-Csp(I) is #P-hard under
counting reductions.

Proof. Let T-Imp be the relation C; x Imp. First, we prove BAL-CsP(Imp) g}‘)g

BAL-Csp(T-Imp). Let ¢ = /\Imp(azi,yi). Let t and f be new and distinct
i=1

variables. We set ¢’ = /\ T-Imp(¢, x;, y;) ANT-Imp(t, ¢, t) A /\ T-Imp(t, f, x).
i=1 z€Var(p)

If T is a satisfying assignment of ¢, then I(¢t) = 1. If in addition I is balanced,
then I(f) = 0. Hence, there is a one-to-one correspondence between balanced
solutions of ¢ and balanced solutions of ¢’. Second, we will show that T-Imp €
(I'")#.£. The proposition then follows from Lemma and Proposition [3.3

Let s be a core-size of (I') and let R = Pol(I")(COLS;). According to Theo-
rem 371t holds that {R} is a weak base of (I') which implies (R)# C (I")#. It is
enough to show that T-Imp € (R)3, then, since T-Imp is irredundant, it follows
T-Imp € (I')3,. We distinguish two cases: (I') C Inv(Vy) and (I') € Inv(Vy).
Let us first suppose that (I") C Inv(Vy). Let S be the Boolean relation defined by

S(t’x’y)ER($7y""’y’ 7"'7t)'
. - -

We show S = T-Imp. Since (I') C Inv(Iy), it holds that ¢; € Pol(I') and
therefore (1,...,1) € R and (1,1,1) € S. Because V € V; C Pol(I') it fol-
lows that the nested application of V to all tuples of COLS; is in R, i.e.,
(0,1,...,1) = COLS4(1,—) V --- VCOLS4(s, —) € R. This means (1,0,1) € S.
Since (0,...,0,1,...,1) = COLS4(1,—) € R, it holds that (1,0,0) € S, hence
N~ ~ < ~ 4
25—1 25—1
T-Imp C S.

Note that Pol(R) contains only functions which are both monotond? and 1-
reproducin£ because Pol(R) C My, and M; contains exactly the functions with
these two properties. Since COLS,(—,2°) = (1,...,1) and since all polymor-
phisms of I' are l-reproducing, it follows R(—,2%) = (1,...,1) and therefore it
holds for all a,b € {0,1} that (0,a,b) ¢ S.

Finally assume (1,1,0) € S. Then u = (1,0, .. .,(/),17 . ,i) € R. By construc-

~ o~ ~
2s—1_1 2s—1

tion of R it follows that there is an s-ary Boolean function g € Pol(I") such that
g(COLS4(1, —),...,COLSs(s,—)) = w. It holds that ¢ is not monotone because
9(0,...,0) = u[l] = 1 and ¢(0,...,0,1) = u[2] = 0. Since every function from
Pol(I") is monotone, this is a contradiction. Hence T-Imp = S and therefore
T-Imp € (R)# C (I')3.

? An n-ary Boolean function f is called monotone if for all o, 3 € {0,1}" holds: If

a < B then f(a) < f(B).
3 fis called 1-reproducing if f(1,...,1) =1.
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The case where (I') ¢ Inv(V1) can be handled in a similar way in considering
the Boolean relation defined by S(¢,z,y) = R(x,...,z,y,...,y,t). O
N o IN

2s—1 2s—1_1

We look at the co-clones Inv(Ms), Inv(Vs), Inv(Ez), and Inv(S{y) for m > 2
next.

Theorem 4.6. Let I' be a constraint language such that Inv(My) C (I') C
Inv(Vsy). Then BAL-Csp(I") is NP-hard and #BAL-Csp(I") is #P-hard under
counting reductions.

Proof. The proof is similar to the one above. Consider the relation TF-Imp =

Cy x Cy x Imp. Similarly as in Theorem [£5] we prove that #BAL-CspP(Imp) S%Og

#BAL-Csp(TF-Imp) and show that TF-Imp € (I')# . For this latter part,

suppose that s > 2 is a core-size of (I'). Let R = Pol(I")(COLS;), the arity of

R is n = 2°. One can check that the Boolean relation defined by S(¢, f,z,y) =

R(f,z,...,x,y,...,y,t,...,t) verifies S = TF-Imp. O
N IN IS

n n n
4 -1 4 2

The following theorem covers the cases Inv(S{*) and Inv(S{3) for all m > 2. The
proof follows the same lines as the proofs for Theorems [£3] and

Theorem 4.7. Let I' be a constraint language such that (I') = Inv(S{s) or
(I') = Inv(S") for some natural number m > 2. Then BAL-CsP(I") is NP-hard
and #BAL-Csp(I") is #P-hard under counting reductions.

4.4 Hardness Results with Non-unified Proofs
In this section we work with concrete irredundant weak bases in all proofs.

Theorem 4.8. Let I' be a constraint language such that (I') = Inv(Ds). Then
BAL-CspP(I") isNP-hard and #BAL-Csp(I") is #P-hard under counting reductions.

Proof. Let maj be the ternary majority function defined by maj(a,b,c) = 1 if
and only if a + b+ ¢ > 2. It holds that [{maj}] = D2 and that 3 is a core-size of
Inv(D2). It follows from Theorem B that R = maj(COLS3) is a weak base of
Inv(Ds). It can be verified that

00001111
00010111
00110011
01010101

Note that the second row is generated by the coordinatewise application of maj
to the other three rows, which form COLS3. Clearly, R is irredundant. According
to Proposition Bl it holds (R)#,2 C (I')#,.

We define Boolean relations S and T in the following way:

S(t7f7$7y) :R(fﬂfﬂ‘rﬂ‘rﬂyVy?tVt)7 T(t7f71)7w7x7y) :R(f7f7v7w7y7m7t7t)'
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It follows {S,T} C (R)#.+ C (I')#,. Therefore, according to Proposition [3.3] it
holds #BAL-CsP({S, T}) <, #BAL-Csp(I).
The following equivalences can be verified:

S(t, f,x,y) = C1(t) ACo(f) A Oddz(:uy)

T(t, f,v,w,x,y) = C1(t) A Co(f) Almp(v, w) A Odd? (v, z) A Odd?(w, )

We show that #BAL-Csp(Imp) <)% #BAL-Csp({S,T}). Let ¢ = /\ Imp(z;, ;)

i=1
be an Imp-formula. We construct an {S, T'}-formula: let ¢, f and 2/, z” for every
z € Var(yp) be new and distinct variables. We set ¢’ = NI T'(¢, f, @i, yi, @}, y}) A
S(tv fv ; ‘T/‘/) A S(ta f7 y;v ygl)a then

[ 7

¢ = A\ Imp(zi,y;) A [\ 0dd®(z,2') AOdd® (', 2") A Ci(t) A Co(f)

i=1 zEep

One can check that there is a one-to-one correspondence between balanced
solutions of ¢ and the balanced solutions of ¢’. Hence,

#BAL-Csp(Imp) <, #BAL-Csp({S, T'}) <, #BaL-Csp(I).
Due to Lemma 3] this completes the proof. O
We now cover the cases Inv(L), Inv(L;), Inv(Lg) and Inv(Ls).

Theorem 4.9. Let I' be a constraint language such that (I') € {Inv(L), Inv(Lq),
Inv(L2), Inv(Ls)}. Then BAL-CsP(I") is NP-hard and #BAL-CsP(I") is #P-hard
under counting reductions.

Proof. We make a case distinction. The proofs in the different cases are very
similar. We give here as an example the proof in the case (I') = Inv(L). The
co-clone Inv(L) has 2 as a core-size, therefore R = L(COLS:) is weak base of

4
Inv(L). It can be verified that R = Even® = {(a1, as, a3, a4) : Zai =0(2)}.
i=1

Since Even? is obviously irredundant it follows from Proposition that
Even® € (I")3 . Hence #BAL-Csp(Even?) g}og #BAL-Csp(I") due to Proposi-
tion B3l Now we show there is a counting reduction from #BAL-Csp(0dd?) to
#BAL-Csp(Even?), thus completing the proof. Let ¢ = Ay 0dd? (x4, yi, z;) be
an Odd*-formula. Let k = [Var(p)| and let ¢,ty,...,tx, f, fi,-.., fr be new and

distinct variables. We set:

k
Even®(t, z;, yi, 2i) A /\Even4(t,t,t,ti) A Even*(f, f, f, fi).

1 i1

/

(p:

~.

7

It can be verified that ¢’ has exactly twice as many balanced solutions as ¢. [
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Finally, only four co-clones remain to be examined.

Theorem 4.10. Let I' be a constraint language with (I') € {Inv(Iz),Inv(Ip),
Inv(N), Inv(N3)}. Then BAL-CspP(I") is NP-complete and #BAL-Csp(I") is com-
plete for #P under counting reductions.

Proof. We make a case distinction. The proofs again are very similar, but not
obviously unifiable. As an example, let us deal with the case (I') = Inv(I).

The co-clone Inv(I3) has 3 as a core-size, therefore R = I3(COLS3) is a weak
base for Inv(Iy) according to Theorem B Because [{id}] = I, it holds that
R = COLS3. That means

00001111
R=({00110011
01010101

It can be verified that the following equivalence is true:

R(acl, T2, X3,X4,T5,T6, LT, -TS) = 1—in—3(m2, xrs3, $5) A Co(ml) AN C1($8)

/\Odd2 ($27 $7) AN Odd2(3:3, $6) A Odd2 (‘T47 $5)

Since R is irredundant, it follows R € (I')# » from Proposition B8 Therefore
we have #BAL-Csp(R) §}°g #BAL-CspP(I") due to Proposition B3]

It is known that CsP(1-in-3) is NP-hard [Sch78] and #CsP(1-in-3) is hard for
#P under parsimonious reductions [CH96]. Hence, showing #CspP(1-in-3) g}og
#BAL-CsP(R) completes the proof. Let ¢ = A, 1-in-3(x;, yi, 2;), and let f,
t and v’ for every v € Var(p) be new and distinct variables. We define the
R-formula o' = A", R(f,%i,Yi, 2., zi, Y}, ;. t). According to the above it holds
' = A Npevar(y) 0dd? (v, v") ACo(f) ACy (t). Obviously every balanced solution
of ¢ satisfies ¢ as well and every solution of ¢ can be extended uniquely to a
balanced solution for ¢’, thus completing the proof. O

5 Conclusion

We have obtained complete complexity classifications for constraint satisfaction
problems that mix local constraints with a global one. We have demonstrated
that the weak base method is indeed a useful tool in order to get complexity
results for these hybrid CSPs. Our contribution is twofold. On the one hand, our
results represent a first encouraging step in the study of global constraints in the
framework of non-uniform CSPs. A systematic treatment of global constraints
will require an appropriate framework and to develop adequate algebraic tools.

It is somewhat surprising that for the two global constraints considered in
this paper, namely balanced solutions and solutions with a variable number
of 1s, we achieve the same complexity classification. This is unexpected, since
being able to specify the number of ones required in the solution as part of the
input seems to be a much stronger requirement than only to demand that the
solutions are balanced. The complexity remains the same even if we consider
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the counting versions of these problems. This suggests that a comparison of the
expressive power and related complexity of different global constraints might be
very interesting.

On the other hand, our work shows an application of a new Galois connection
for studying the complexity of constraint satisfaction problems. This is interest-
ing on its own. This illuminates the potential of this new Galois connection and
hopefully will popularize it.

Finally, as we said in the introduction, balanced assignments arise naturally
in many optimization problems. For this reason, as discussed in [BK05], it is
natural to investigate the approximability of the balanced optimization problem,
BAL-MaX-Csp(I"). The classification of the approximability of this problem is
still an open question. We believe that if such a non-trivial complete classification
can be achieved, then it will not follow Post’s lattice (as it is already proved for
the MAX-CsP(I") problem with no balance requirement, see [Cre95] [CVO0S]).
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Abstract. We present decision procedures for logical constraints involv-
ing collections such as sets, multisets, and fuzzy sets. Element member-
ship in our collections is given by characteristic functions from a finite
universe (of unknown size) to a user-defined subset of rational numbers.
Our logic supports standard operators such as union, intersection, dif-
ference, or any operation defined pointwise using mixed linear integer-
rational arithmetic. Moreover, it supports the notion of cardinality of
the collection, defined as the sum of occurrences of all elements. Decid-
ing formulas in such logic has applications in software verification.

Our decision procedure reduces satisfiability of formulas with collec-
tions to satisfiability of formulas in an extension of mixed linear integer-
rational arithmetic with a “star” operator. The star operator computes
the integer cone (closure under vector addition) of the solution set of
a given formula. We give an algorithm for eliminating the star opera-
tor, which reduces the problem to mixed linear integer-rational arith-
metic. Star elimination combines naturally with quantifier elimination
for mixed integer-rational arithmetic. Our decidability result subsumes
previous special cases for sets and multisets. The extension with star is
interesting in its own right because it can encode reachability problems
for a simple class of transition systems.

Keywords: verification and program analysis, sets, multisets, fuzzy sets,
cardinality operator, mixed linear integer-rational arithmetic

1 Introduction

In this paper we show decidability of a logic for reasoning about collections of
elements such as sets, multisets (bags), and fuzzy sets. We present a unified
logic that can express all these kinds of collections and supports the cardinality
operator on collections.

Our approach represents a collection of elements using its characteristic func-
tion f: E — R. Inspired by applications in software verification [9], we assume
that the domain F is a finite but of unknown size. The range R depends on the
kind of the collection: for sets, R = {0, 1}; for multisets, R = {0,1,2,..., }; for
fuzzy sets, R is the interval [0, 1] of rational numbers, denoted Qg ). With this
representation, operations and relations on collections such as union, difference,
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© Springer-Verlag Berlin Heidelberg 2008
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and subset are all expressed using operations of linear arithmetic. For example,
the condition AU B = C becomes Ve€E. max(A(e), B(e)) = C(e), a definition
that applies whether A, B are sets, multisets, or fuzzy sets. A distinguishing
feature of our constraints, compared to many other approaches for reasoning
about functions £ — R, e.g. [2, Chapter 11], is the presence of the cardinality
operator, defined by [A| = > _, A(e). The resulting language freely combines
the uses linear arithmetic at two levels: the level of individual elements, as in
the subformula max(A(e), B(e)) = C(e), and the level of sizes of collections,
as in the formula |[A U B| + |A N B| = |A| 4+ |B|. The language subsumes con-
straints such as quantifier-free Boolean Algebra with Presburger Arithmetic [9]
and therefore contains both set algebra and integer linear arithmetic. It also
subsumes decidable constraints on multisets with cardinality bounds [121[13].

The contribution of this paper is the decidability of constraints on collections
where the range R is the set Q of all rational numbers. Our constraints can
express the condition (Ve.int(A(e)) A A(e) > 0) that the number of occurrences
A(e) for each element e is a non-negative integer number, so they subsume the
case R = {0,1,2,...} solved in [14,[13], which, in turn, subsumes the case of
sets [9]. Moreover, our constraints can express the condition Ve.(0 < A(e) < 1),
which makes them appropriate for modelling fuzzy sets.

Analogously to [12], our decision procedure is based on a translation of a
formula with collections and cardinality constraints into a conjunction of a mixed
linear integer-rational arithmetic (MLIRA) formula and a new form of condition,
denoted u € {v | F(v)}*. Here the star operator denotes the integer conic hull
of a set of rational vectors [5]. Therefore, {v | F(v)}* denotes the closure under
vector addition of the set of solution vectors v of the MLIRA formula F'. Formally,

K K
ue{v|Fv)}" « 3IK €{0,1,2,...}. Elvl,...,vK.u:Zvi/\/\F(vi)
i=1 i=1

The star operator is interesting beyond its use in decidability of constraints on
collections. For example, it can express the reachability condition for a transi-
tion system whose state is an integer or rational vector and whose transitions
increment the vector by a solution of a given formula [13].

In contrast to the previous work [12][13], the formula F' in this paper is not
restricted to integers, but can be arbitrary MLIRA formula. Consequently, we are
faced with the problem of solving an extension of satisfiability of MLIRA formulas
with the conditions u € {v | F(v)}* where F is an arbitrary MLIRA formula. To
solve this problem, we describe a finite and effectively computable representation
of the solution set S = {v | F(v)}. We use this representation to express the
condition w € S* as a new MLIRA formula. This gives a “star elimination”
algorithm. As one consequence, we obtain a unified decision procedure for sets,
multisets, and fuzzy sets in the presence of the cardinality operator. As another
consequence, we obtain the decidability of the extension of quantified mixed
linear constraints [I8] with stars.
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Examples of constraints on sets. For each set variable s we assume the
constraint Ve.(s(e) =0V s(e) = 1).

formula informal description
z ¢ content A size = card content — using invariant on size to
(size = 0 < content = () prove correctness of an
efficient emptiness check
z ¢ content A size = card content — maintaining correct size
size + 1 = card({z} U content) when inserting fresh element
into set
size = card content A maintaining size after
sizel = card({z} U content) — inserting an element into set
sizel < size + 1
content C alloc A allocating and inserting
1 ¢ alloc A three objects into a
z2 ¢ alloc U {z1} A container data structure

z3 ¢ allocU{x1} U{x2} —
card (content U {z1} U {z2} U{z3}) =
card content + 3
content C allocO A w1 ¢ allocO A allocating and inserting at
allocOU {z1} C allocl A z2 ¢ allocl A least three objects into a
allocl U {z2} C alloc2 A z3 ¢ alloc2 — container data structure
card (content U {z1} U {z2} U{z3}) =
card content + 3

€ CANCL=(C\{z}) A bound on the number of
card(allocl \ alloc0) <1 A allocated objects in a
card(alloc2 \ allocl) < cardC; — recursive function that

card (alloc2 \ alloc0) < card C' incorporates container C' into

another container

Examples of constraints on multisets. For each multiset variable m we as-
sume the constraint Ve.int(m(e)) A A(e) > 0.

size = card content A maintaining size after inserting an
sizel = card({z} W content) —  element into multiset
sizel = size 41

Examples of constraints on fuzzy sets. For each fuzzy set variable f we
assume the constraint Ve.0 < f(e) < 1.

2|A| #2|B| +1 example formula valid over
multisets but invalid over fuzzy sets

(Ve.U(e) =1)—|ANB|+ |[AUB| <|A|+|U| example formula valid over fuzzy
sets but invalid over multisets

(Ve.C(e)=AA(e) + (1 — M) B(e)) — basic property of convex

ANBCCCAUB combination of fuzzy sets [19], for
any fixed constant A € [0, 1]

Fig. 1. Example constraints in our class
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2 Examples

Figure [l shows small example formulas over sets, multisets, and fuzzy sets that
are expressible in our logic. The examples for sets and multisets are based on
verification conditions from software verification [9]. The remaining examples
illustrate basic differences in valid formulas over multisets and fuzzy sets.

We illustrate our technique on one of the examples shown in Figure [} we
show that formula Ve.U(e) =1 — |AN B| + |[AU B| < |A| + |U| is valid where
U, A, and B are fuzzy sets. To prove formula validity, we prove unsatisfiability
of its negation, conjoined with the constraints ensuring that the collections are
fuzzy sets:

VeU(e)=1 N |A|+|U| <|ANB|+|AUB| A
Ve.0 < A(e) <1 A VeO<B(e) <1 A Ve0<U(e) <1

We first reduce the formula to the normal form, as follows. We flatten the formula
by introducing fresh variables n; for each cardinality operator. The formula
reduces to:

ny+ng<ng+ng A ni=Al A ng=|U| A ng=|ANB| A ny =|AUB| A
VeU(e)=1 N Ve < A(e) <1 A Ve <B(e) <1 A Ve.0<Uf(e) <1

We next apply the definition of the cardinality operator, |C| =" .5 C(e):

nit+mng <nz+ng A np=3 . pAl) AN na=3 pU(e) A

n3 =3 .cp(ANDB)(e) N nyg=73 cp(AUB)(e) A
VeU(e)=1 N Ye0 < A(e) <1 A Ye.0<B(e) <1 A Ve.0<U(e) <1

Operators U and N are defined pointwise using ite operator:
(C1UCy)(e) = max{Ci(e),Ca(e)} = ite(Ci(e) < Ca(e), Ca(e), Ci(e))
(C1 N Co)(e) = min{Cy(e),Ca(e)} = ite(Cy(e) < Cae), Ci(e), Ca(e)),
where ite(4, B, C) is the standard if-then-else operator, denoting B when A is
true and C otherwise. Using these definitions, the example formula becomes:

ny+no <ng+ng A n1=ZA(e) A n2=ZU(e) A

ecE ecl
ng = Z ite(A(e) < Ble), A(e), B(e)) A ng = Z ite(A(e) < Ble), B(e), A(e)) A
ecE ecl

VeU(e)=1 A Ve < A(e) <1 A Ve <B(e) <1 A Ve.0<U(e) <1

Using vectors of integers, we then group all the sums into one, and also group
all universally quantified constraints:

ny +no < ng+ng A (n17n27n37n4) =

Z (A(e), Ule), ite(A(e) < B(e), A(e), B(e)), ite(A(e) < B(e), B(e), A(e)))
eck
AVe (Ue)=1A0<Ae)<1 AO0<B)<1 A0<U(e) <1)
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As we prove in Theorem [I] below, the last formula is equisatisfiable with
ny +ng < ng+ng A (ni,n2,n3,ng) €

{(a,u,ite(agb,a,b),ite(aSb,b,a)) [lu=1A0<a<1 AO0<bLI1}*

The subject of this paper are general techniques for solving such satisfiability
problems that contain a MLIRA formula and a star operator applied to another
MLIRA formula. We next illustrate some of the ideas of the general technique,
taking several shortcuts to keep the exposition brief.

Because the value of the variable u is determined (u = 1), we can simplify the
last formula to:

ny+ng <ng+ng A (n1,ne,ng,ng) €5*

where S = {(a,1,ite(a < b,a,b),ite(a < b,b,a)) | 0 <a <1A0<b< 1} By
case analysis on a < b, we conclude S =S, U Sy for

S1={(a,1,a,0) [0 <a<1A0<b<1Aa<b}
So={(a,1,b,a)[0<a<TA0<b<1AD<a}

This eliminates the ite expressions and we have:
ny+ne <nsg+ng A (nl, no, N3, n4) S (Sl U SQ)*
By definition of star operator, the last condition is equivalent to
1,1 .1 1 2.2 2 2
ni + ng < N3 + Ny A (77/17 nz,ns, n4) = (nlv Ng, N3, n4) + (nh Ny, N3, n4) A
1,11 .1 2.2 2 2
(ny,m3,n3,n3) € S7 A (ni,n3,n3,ny) € S5

Let us characterize the condition (ni, n2, ni,ni) € Si. Let K7 denote the number
of vectors in S; whose sum is (ni, n%, ni,ni). By definition of the star operator,

there are af,...,aj, and by,... by such that 0 < a} <b} <1 and
K
1,1 1 1 1
(n1,na,n3,ny) = Z(a l,a“bz)
i=1

We obtain that n} = n} = lell = Ay, ng = Kl, n4 = ZKI b} = Bj. The
other case for Sy is analogous and we derive (n?,n3,n3,n?) = (Az, Ko, B2, As).
This way we eliminate the star operator and the example formula becomes:

ni 4+ ng < ng + na A (n1,n2,ng,na) = (A1, K1, A1, B1) + (As, Ko, By, A9)

This formula further reduces to K1 + Ko < By + Ba. If we apply the definitions
of B; and properties of b} we obtain the following formula:

K; Ko K1 Ko
Ki+ Ky <> bi+> b A b <1A \bP<1
1=1 =1 1=1 i=1

In this case, it is easy to see that the resulting formula is contradictory. This
shows that the initial formula is valid over fuzzy sets. Our paper shows that, in
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general, such formulas are equivalent to existentially quantified MLIRA formulas,
despite the fact that their initial formulation involves sums with parameters such
as K1 and K. This is possible thanks to the special structure of the sets of
solutions of MLIRA formulas, which we describe building on results such as [7]
and the theory of linear programming.

Having seen the use of our method to prove formula validity, we illustrate its
use in producing counterexamples by showing that the original formula is invalid
over multisets. Restricting the range of each collection to integers and using the
same reduction, we derive formula

ny +ng < ng+ng N

(n1,n2,n3,n4) € {(a7 1,ite(a < b,a,b),ite(a < b, b, a)) | a,b e N}*
Applying again a similar case analysis, we deduce K; + Ky < Zf{:ll b} + 25{:21 b?
where all bf ’s are non-negative integers. This formula is satisfiable, for example,
with a satisfying variable assignment K; = 1,b1 = 2 and K3 = 0. The corre-
spondence of Theorem [I] then allows us to construct a multiset counterexample.
Because Ko = 0, no vector from Sy contributes to sum and we consider only
S1. Variable K7 denotes the number of elements of a domain set E, so we con-
sider the domain set E = {e;}. Multisets A, B and U are defined by A(e1) =1,
B(e1) =2, and U(ey) = 1. It can easily be verified that this is a counterexample
for validity of the formula over multisets.

3 From Collections to Stars

This section describes the translation from constraints on collections to con-
straints that use star operator. We first present the syntax of our constraints
and clarify the semantics of selected constructs (the semantics of the remaining
constructs can be derived from their translation into simpler ones).

We model each collection f as a function whose domain is a finite set F
of unknown size and whose range is the set of rational numbers. When the
constraints imply that the range of f is {0,1}, then f models sets, when the
range of f are non-negative integers, then f denotes standard multisets (bags),
in which an element can occur multiple times. We call the number of occurrences
of an element e, denoted f(e), the multiplicity of an element. When the range
of f is restricted to be in interval [0, 1], then f describes a fuzzy set [19).

In addition to standard operations on collections (such as plus, union, in-
tersection, difference) we also allow the cardinality operator, defined as |f| =
> ec f(e). This is the desired definition for sets and multisets and we believe
it is a natural notion for fuzzy sets over a finite universe E. Figure [2] shows a
context-free grammar of our formulas involving collections.

Semantics of some less commonly known operators is defined as follows:
ite(A, B, C) denotes the if-then-else expression, which evaluates to B when A is
true and evaluates to C' when A is false. The setof(C') operator takes as an argu-
ment collection C' and returns the set of all elements for which C/(e) is positive.
To constrain a variable s to denote a set, use formula Ve.s(e) = 0V s(e) = 1. To
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top-level formulas:
Fu:=A|FAF|-F
A= C=C|CCC|VYeF"|AM
outer linear arithmetic formulas:
Fout = Aout | Fout A Fout | _‘FOUt
Aout - tOUt S tout | tOUt:tOUt | (tout’ . 7tout): Z(tiny o ’tin)
Fin
tout = IC | |C| | K | tout +tout | K- tout | LtOUtJ | ite(FOUt,tOUt,tOUt)
inner linear arithmetic formulas:
Fin - Ain | Fin A Fin | _‘Fin
Ain - tin < tin | tin:tin
th o= fle) | K | t" 4" | K -t" | [t7] | ite(F™, £, t")
expressions about collections:
Cu=cld|CnC|CcuC|CyC|C\C|C\C |setof(C)
terminals:
¢ - collection variable; e - index variable (fixed)
k - rational variable; K - rational constant

Fig. 2. Quantifier-Free Formulas about Collection with Cardinality Operator

constraint a variable m to denote a multiset, use formula (Ve.int(m(e)) A m(e) >
0). Here int(x) is a shorthand for || = x where |z is the largest integer smaller
than or equal to x.

A decision procedure for checking satisfiability of the subclass of integer for-
mulas was described in [I2]. The novelty of constraints in Figure 2] compared
to the language in [12] is the presence of the floor operator |z| and not only
integer but also rational constants. All variables in our current language are in-
terpreted over rationals, but any of them can be restricted to be integer using
the constraint int(x).

To reduce reasoning about collections to reasoning in linear arithmetic with
stars, we follow the idea from [12] and convert a formula to the sum normal form.

Definition 1. A formula is in sum normal form iff it is of the form

P A (ur,.yun) =Y (t1,... tn) A Ve
eelR

where P is a quantifier-free linear arithmetic formula with no collection variables,
and where variables in ty,...,t, and F occur only as expressions of the form
c(e) for a collection variable ¢ and e the fized index variable.

Figure[Bsummarizes the process of transforming formula into sum normal form [
The previous example section illustrated this idea. As another example, consider
a negation of a formula that verifies the change in the size of a list after insertion
of an element: |z| = 1 A |LWz| # |L| + 1. The sum normal form of this formula

is: ky # ko +1 A (1, k1, k2) = > cp(x(e),yle), L(e)) A Vey(e) = L(e) + z(e).

! Note that the part Ve.F could be omitted from normal form definition and expressed
as an additional component of the sum. However, its use leads to somewhat simpler
constraints.
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INPUT: formula in the syntax of Figure
OUTPUT: formula in sum normal form (Definition [)

1. Flatten expressions that we wish to eliminate:
Clexp] ~ (z = exp A C[z])
where exp is one of the expressions 0, ¢1 Uca, ¢1 Nea, ¢1 Wea, ¢\ ¢z, setof(cr), |ea],
and where the occurrence of exp is not already in a top-level conjunct of the form
x = exp or exp = x for some variable x.
2. Reduce colection relations to pointwise linear arithmetic conditions:

Cleo = 0) ~ C[Ve. co(e) = 0]
Cleo =c1Nee] ~ ClVe.cole) =ite(ci(e) < ca(e), ci(e),ca(e))]
Cleo =c1Uc2] ~ ClVe.co(e) =ite(ci(e) < ca(e),c2(e),ci(e))]
Cleo =c1Wea] ~ ClVe.co(e) = ci(e) + ca(e)]
Cleo =c1\c2] ~ ClVe.co(e) =ite(ci(e) < ca(e),0,c1(e) — ca(e))]
Cleo = c1\\c2] ~ CVe.co(e) =ite(ca(e) =0, c1( ),0)]
Cleg = setof(c1)] ~ ClVe. co(e) = ite(0 < c1(e), 1,0)]
Cler € 2] ~ ClVe. (ci(e) < ea(e))]
Cler = 2] ~ C[ (ci(e) = ca(e))]

3. Express each cardinality operator using a sum:
QWMQZWH

ec
4. Express negatively occurring pointwise definitions using the sum:
C[Ve.F| ~ C[0= Y ite(F(e),0,1)]
eck
5. Flatten any sums that are not already top-level conjuncts:

C[(u1,...,un):;(th...,tn)] ~> (wl,...,wn):;(th..., n)AC| /\ Ui =w; |

=1

6. Eliminate conditions from sums:

CIY(t1, ... tn)] ~ C[ Y (ite(F,t1,0), ..., ite(F,t,,0))]
F eck
7. Group all sums into one:

q ) ) )
PAA (Ul eun,) = 20 (H 0 t,) ~
i=1

ecE

PA (u%,...,uil,...,u‘{,...,u%q) = > (t%,...,t,lll,...,t‘{,...,t%q)
ecE
8. Group all pointwise defined operations into one:

q q
PA A (Ve.F;) ~ PAVe. \ F;
i=1 =1
Fig. 3. Algorithm for reducing collections formulas to sum normal form

Formulas in sum normal form contain only one top-level sum which ranges
over elements of an existentially quantified set E. To study such constraints we
introduce the star operator.

Definition 2 (Star operator, integer conic hull [5]). Let C be a set of
rational vectors. Define C* = {v1+...+vg | K € {0,1,2,...},v1,...,vx € C}.

The fact that the bound variable K in Definition [2] ranges over non-negative
integers as opposed to rational or real numbers differentiates the integer conic
hull (star) from the notion of conic hull in linear programming [I7].
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Theorem 1. A formula(uy,...,un) =) cp(ti,...,tn) AVe.F is equisatisfiable
with the formula (ux, ..., u,) € {(t},..., ;) | zi € QA F'}* where t); and F' are
t; and F respectively in which each c;(e) is replaced by a fresh variable x; .

Proof. <): Assume (u1,...,u,) € {(t|,...,t,) | ©; € QA F'}* is satisfiable.
Then there exists an integer k£ > 0 such that (uq,...,u,) = Z?:I (t],...,t]). We
define set E to consist of k distinct elements, ' = {ey, ..., e, }. Every variable z;
occurring in #7,...,t), and F’ corresponds to the collection ¢;. Let 27} denote the
value of z; in jth summand (£, ...,#). Define each collection ¢; by ci(ej) = .
The finite set F and collections ¢; defined as above make formula (uq,...,u,) =
Yoecr(ti, . ty) A Ve.F satisfiable.

=): The other direction is analogous. Given E, for each e; € E we obtain a
set of values ¢;(e;) that give the values for z; in jth summand.

Applying Theorem [I] to our example of insertion into a list, we obtain that

B Ak 41 A Lk k) = 3 (2(e),y(e), L(€) A Vey(e) = Lie) + z(e)
eckE

is equisatisfiable with

k1 #ka+1 A (1,]411,]412) € {(.I‘,y,L) | y:L+$}*
Thanks to Theorem [I] in the rest of the paper we investigate the satisfiability
problem for such formulas, whose syntax is given in Figure @l These formulas
are sufficient to check satisfiability for formulas in Figure [2 In Section [ we
present a more general decidable language that allows nesting of terms, logical
operations, quantifiers, and stars.

top-level, outer linear arithmetic formulas:
Fout = Aout | Fout A Fout | ~,F°“t
Aout = tout S 1:out | tout:tout | (tout7 o ,tOUt)G{(tin, o 71:in) | Fin}*
tout = kout | K | tout + tout | K . tout | LtOUtJ | ite(FOUt,tOUt,tOUt)
inner linear arithmetic formulas:
Fin c— Ain | Fin A Fin | _‘Fin
Ain - tin S tin | tin:tin
tln = klrl | K | tlrl + tlrl | K . tln | I-tlnj | ite(Fln7tln7tln)
terminals:
k'™, k°'* - rational variable (two disjoint sets); K - rational constants

Fig. 4. Syntax of Mixed Integer-Rational Linear Arithmetic with Star

4 Separating Mixed Constraints

As justified in previous sections, we consider the satisfiability problem for
G(r,w) Nw € {x | F(x)}* where F and G are quantifier-free, mixed linear
integer-rational arithmetic (MLIRA) formulas.

Our goal is to give an algorithm for constructing another MLIRA formula F’
such that w € {x | F(x)}* is equivalent to Jw’'.F’'(w’, w). This will reduce the
satisfiability problem to the satisfiability of G(r,w) A F'(w’, w).
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As a first stage towards this goal, this section shows how to represent the
set { | F(x)} using solutions of pure integer constraints and solutions of pure
rational constraints. We proceed in several steps.

Step 1. Eliminate the floor functions from F' using integer and real variables,
applying from left to right the equivalence

C(lt]) < e € QIyz € L.t =yo Nyz <yo <yz + 1N C(yz)
The result is an equivalent formula without the floor operators, where some of

the variables are restricted to be integer.
Step 2. Transform F into linear programming problems, as follows. First, elim-
inate if-then-else expressions by introducing fresh variables and using disjunc-
tion (see e.g. [12]). Then transform formula to negation normal form. Eliminate
t1 =ty by transforming it into t; < to Aty < t1. Eliminate ¢; # to by transform-
ing it into t1 < tg V t2 < t1. Following [4, Section 3.3], replace each ¢; < to with
t1 + 6 <t where 6 is a special variable (the same for all strict inequalities), for
which we require 0 < § < 1. We obtain for some d matrices A; for 1 < < d
such that
d
F(z) « Jy? €2 3y? € Q@36 € Q- \/ 4i- (@.y? y?) < b

i=1
where A; - (z,y?,y?) denotes multiplication of matrix A; by the vector
(xz,y?,y?) obtained by stacking vectors x, y%, and y<.
Step 3. Represent the rational variables z, y? as a sum of its integer part and
its fractional part from Qg 1), obtaining

F(z) « (3=?,y%) € 2% 3@, y7) € Q.36 € Qo
d
z=z’ +a AV A (27 y? 2" y") < bl)
i=1

Note that w € {x | Jy.H(z,y)}* is equivalent to
Fw' (w,w') € {(z,y) | H(z,y)}"

In other words, we can push existential quantifiers to the top-level of the formula.
Therefore, the original problem (after renaming) becomes

G(r,w) A Jz. (u?,u%, A) €

d
{(=?,2",6) | V Ais (@7, 2f,8) < b;, 27 € 277, 2" € Qi) 6 € Qo 11}
1=
where the vector z contains a subset of variables u?, u®, A.

Step 4. Separate integer and rational parts, as follows. Consider one of the
disjuncts A - (zZ,y",8) < b. For A = [Az Ag ] this linear condition can be
written as Azx? + Az + ¢d < b, that is

Apzf +¢6 <b— Azz? (1)
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Because the right-hand side is integer, for a denoting [Agz + 6] (left-hand
side rounded up), the equation becomes Apx + ¢c6 < a < b — Azxz?. Because

xft Q?OQI], 6 € Q(p,1), vector a is bounded by the norm M; of the matrix [Ag c].
Formula () is therefore equivalent to the finite disjunction

\/  Azz?<b-anrApa+ci<a (2)
a€zd,||a|| <M

Note that each disjunct is a conjunction of a purely integer constraint and a
purely rational constraint.

Step 5. Propagate star through disjunction, using the property
wE{w\\/H )} Zwr,..w, w = Zwl/\/\wle{w\H( )
i=1 i=1

The final result is an equivalent conjunction of a MLIRA formula and an exis-
tentially quantified conjunction of formulas of the form

(uZ,uQ,A) € {((BZ7£BR7(5) | Azx? < by, Ap - (zf,6) < bg, (3)
x? € ZdZ,CER € Q([iolfl],(s € @(0’1]}*

5 Eliminating Star Operator from Formulas

The previous section sets the stage for the following star-elimination theorem,
which is the core result of this paper.

Theorem 2. Let F' be a quantifier-free MLIRA formula. Then there exist effec-
tively computable integer vectors a; and b;; and effectively computable rational
vectors ci, . . ., ¢, with coordinates in Qo 1) such that formula @) is equivalent
to a formula of the form

JK € N. E|/L1,...,/J,q7l/117...71/qqq e N. 3,81,...75716(@.

a gi q qi q
(UZ:Z(“iai+ZVijbij) /\/\(Mi =O—>Zyij =0) A (Zuz :K))
=t =1 =1 j=1 i=1
A ((K:OAA:OAuQ:O)v

(K>1AA>0A (u Z@clA/\ﬂZEOAZﬁZ (4)

Proof. For a set of vectors S and an integer variable K, we define KS = {v; +
4ok | vi,..., vk € S}. Formula (@) is satisfiable iff there exists non-negative
integer K € N such that both

u? € K{x? | Azz? < b} (5)
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and
(uQ7 A) € K{(:ERV(S) ‘ AR ! (:BR? 6) < bRu :ER € Qflol?l]v(s € Q(O,l]} (6)

hold. We show how to describe (@) and (@) as existentially quantified MLIRA
formulas that share the variable K.

To express formula ([Bl) as a MLIRA formula, we use the fact that solutions of
integer linear arithmetic formulas are semilinear sets (see [7], [II, Proposition
2]). Semilinear sets are finite unions of sets of a form {a}+ {b1,...,b,}*. A sum
of two sets is the Minkowski sum: A+ B ={a+b| a € A, b € B}. It was
shown in [I41[12] that if S is a semilinear set then w € S* can be expressed as
Presburger arithmetic formula. In particular, formula (B is equivalent to

Ity By ViLs s Vag, €Ne w? =300 (iai + 3200 vijbij) A
q , q
l\l(ﬂi =0— Z?;l vi; =0) A (;ui =K)

(7)
where vectors a;’s and b;; can be computed effectively from Az and bZ.

We next characterize condition ([@). Renaming variables and incorporating the
boundedness of x,§ into the linear inequations, we can write such condition in
the form

(u?, A) e K{(x,6)| A-(z,6) < b,6 > 0} (8)

Here A - (x,6) < b subsumes the conditions 0 < x < 1, 0 < § < 1. From the
theory of linear programming [I7] it follows that the set {(z,8) | A - (x,8) < b}
is a polyhedron, and because the solution set is bounded, it is in fact a polytope.
Therefore, there exist finitely many vertices ¢y, ..., ¢, € Q([io,l] for some d such

that A - (x,6) < b is equivalent to
iy A € Qo Z)\ =1 A (z,6) Z)\cl

Consequently, (8) is equivalent to

K
Juq, ..., uk. (uQ,A) :Zu]‘ A JN1, o Ak
K ’ (9)
/\(/\/\U>O/\Zz\w—l/\ u;, 8 Z/\UCZ/\(S >0)
j=1 i=1 i=1
It remains to show that the above condition is equivalent to
1,y B (K=0NA=0Au= 0)
(K>1AA>0A (u Zﬂlcz/\/\ﬂlzo/\Zﬂl_
(10)
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Case K = 0 is trivial, so assume K # 0. Consider a solution of ([@). Letting
Bi = Zszl Aij we obtain a solution of ([I0). Conversely, consider a solution
of (I0). Letting a;; = B;/K, u; = u/K, 6; = A/n we obtain a solution of ().
This shows the equivalence of (@) and (I0).

Conjoining formulas ([I0) and () we complete the proof of Theorem 21

Satisfiability checking for collection formulas. Because star elimination
(as well as the preparatory steps in Section H) introduce only existential quan-
tifiers, and the satisfiability of MLIRA formulas is decidable (see e.g. [A3]), we
obtain the decidability of the initial formula G(r,w) Aw € {x | F(x)}*. Thanks
to transformation to sum normal form and Theorem [l we obtain the decidability
of formulas involving sets, multisets and fuzzy sets.

6 Language with Nested Star Operators and Quantifiers

Theorem 2 can be combined with quantifier elimination for MLIRA formulas [18]
to decide a language that permits nested uses of quantifiers and stars. Fig-
ure [f] summarizes the syntax of one such language. Note that the expression
(r1,...,rn)€{(t1,...,tn)|F}* has the same meaning as before and its only free
variables are in rq,...,r, (the variables in {(¢,...,t,)|F} are all bound). To
decide constraints in this language, we eliminate stars and quantifiers starting
from the innermost ones. If the innermost operator is a quantifier, we eliminate
it as in [I8]. If the innermost operator is a star, we use results of Section @l
and Theorem [ while keeping all existential quantifiers explicitly to preserve
equivalence of the subformula. We obtain an existentially quantifier subformula
without stars. We eliminate the generated existential quantifiers by again apply-
ing quantifier elimination [I8]. Repeating this method we obtain a quantifier-free
formula without stars, whose satisfiability can be checked [413].

Fu2=A|FAF|-F|3z.F
A=t <t|t=t]|(t,...,)e{(t,...,t)|F}"
tu=k|K|t+t| K- -t||t]|ite(F,t,t)

Fig. 5. Syntax of Constraints with Nested Stars and Quantifiers

The language of Figure Bl can be further generalized to allow atomic formulas
of the form (¢,...,t) € S where the syntax of S is given by

Su={(t,....t)|F} | SUS|S\S|S+S|t-§]|S*

The basic idea is to flatten such set expressions, eliminate operators U, \, +
using their definition, and eliminate S* using the algorithms we just described.
The case of t - S is similar to S* but the value K from Theorem [2is fixed and
given by term ¢, as opposed to being existentially quantified.
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7 Related Work

Logical constraints on collections that do not support cardinality bounds have
been studied in the past. Zarba [20] considered decision procedures for quantifier-
free multisets but without the cardinality operator, showing that it reduces to
quantifier-free pointwise reasoning. The cardinality operator makes that reduc-
tion impossible. Notions of the cardinality operator naturally arising from the
Feferman-Vaught theorem [6] can express only a finite amount of information for
each element e € F, so they are appropriate only for cardinality sets or for the
cardinality of the support of the multisets or a fuzzy set. Recently, Lugiez [10]
shows the decidability of constraints with a weaker form of such a limited car-
dinality operator that counts only distinct elements in a multiset, and shows
decidability of certain quantifier-free expressible constraints with cardinality
operator.

Note that, because our Theorem [l is only equisatisfiability and not equiva-
lence, we do not obtain decidability of constraints with quantified collections.
In fact, although quantified sets with cardinality bounds are decidable [6][],
quantified multisets with cardinality bounds are undecidable [I2] Section 6].

The work in this paper is based on previous results for the special cases of
sets [9] and multisets [T413[12]. We rely on the fact that solutions of formulas
of Presburger arithmetic are semilinear sets [7]. Bounds on generators of such
sets are presented in [I5].

Techniques for deciding formulas of MLIRA formulas are part of implementa-
tions of modern satisfiability modulo theory theorem provers [4[3U[I] and typically
use SAT solving techniques along with techniques from mixed integer-linear pro-
gramming, or the Omega test [16].

8 Conclusions

We have shown decidability of a rich logic for reasoning about collections. The
logic is expressive enough for reasoning about sets, multisets, and fuzzy sets
as well as their cardinality bounds. Our results also show that star, much like
quantifiers, is a natural operator of MLIRA formulas and can also be eliminated.
A direct application of our star elimination technique creates an exponentially
larger MLIRA formula. We leave for future work the question whether it is possi-
ble to generate polynomially large equisatisfiable formulas as for multisets [13].

Acknowledgements. We thank Nikolaj Bjgrner for useful discussions.
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Abstract. In this paper we investigate the Scott continuous fragment of
the modal p-calculus. We discuss its relation with constructivity, where
we call a formula constructive if its least fixpoint is always reached in
at most w steps. Our main result is a syntactic characterization of this
continuous fragment. We also show that it is decidable whether a formula
is continuous.

Keywords: mu-calculus, automata, Scott continuity, constructive fix-
points, preservation results.

1 Introduction

This paper is a study into the fragment of the modal p-calculus that we call
continuous. Roughly, given a proposition letter p, a formula ¢ is said to be
continuous in p if it monotone in p and if in order to establish the truth of ¢ at
a point, we only need finitely many points at which p is true. The continuous
fragment of the p-calculus is defined as the fragment of the p-calculus in which
px.p is allowed only if ¢ is continuous in x.

We prove the following two results. First, Theorem 2] gives a natural syntactic
characterization of the continuous formulas. Informally, continuity corresponds
to the formulas built using the operators V, A, ¢ and p. Second, we show in
Theorem [3 that it is decidable whether a formula is continuous in p.

We believe that this continuous fragment is of interest for a number of reasons.
A first motivation concerns the relation between continuity and another prop-
erty, constructivity. The constructive formulas are the formulas whose fixpoint
is reached in at most w steps. Locally, this means that a state satisfies a least
fixpoint formula if it satisfies one of its finite approximations. It is folklore that if
a formula is continuous, then it is constructive. The other implication does not
strictly hold. However, interesting questions concerning the link between con-
structivity and continuity remain. In any case, given our Theorem [2 continuity
can be considered as the most natural candidate to approximate constructivity
syntactically.
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Next this fragment can be seen as a natural generalization of PDL in the fol-
lowing way. We define the completely additive formulas as the formulas built using
the operators V, ¢ and u. That is, the syntax is the same as for the continuous for-
mulas, except that the conjunction is not allowed. Then it was observed by Yde
Venema (personal communication) that PDL coincides with the fragment of the
p-calculus in which pz.¢ is allowed only if ¢ is completely additive. In this per-
spective, the continuous fragment appears as a natural extension of PDL.

Another reason for looking at this fragment (which also explains the name)
is the link with Scott continuity. A formula is continuous in p iff it is continuous
with respect to p in the Scott topology on the powerset algebra (with all other
variables fixed). Scott continuity is of key importance in many areas of theoretical
computer sciences where ordered structures play a role, such as domain theory
(see, e.g., [I]). For many purposes, it is sufficient to check that a construction is
Scott continuous in order to show that it is computationally feasible.

Finally our results fit in a model-theoretic tradition of so-called preserva-
tion results (see, e.g., [2]). Giovanna D’Agostino and Marco Hollenberg have
proved some results of this kind in the case of the u-calculus (see, e.g., [3] and
[4]). Their proofs basically consist in identifying automata corresponding to the
desired fragment and in showing that these automata give the announced char-
acterization. The proof of our main result is similar as we also first start by
translating our problem in terms of automata. We also mention that a version of
our syntactic characterization in the case of first order logic has been obtained
by Johan van Benthem in [5].

The paper is organized as follows. First we recall the syntax of the p-calculus
and some basic properties that will be used later on. Next we define the contin-
uous fragment and we show how it is linked to Scott continuity, constructivity
and PDL. Finally we prove our main result (Theorem [2)) which is a syntactic
characterization of the fragment and we show that it is decidable whether a for-
mula is continuous (Theorem Bl). We end the paper with questions for further
research.

2 Preliminaries

We introduce the language and the Kripke semantic for the p-calculus.

Definition 1. Let Prop be a finite set of proposition letters and let Var be a
countable set of variables. The formulas of the u-calculus are given by

o u=Tplz|leVel-p| 0| pre,

where p ranges over the set Prop and x ranges over the set Var. In uzr.p, we
require that every occurrence of x is under an even number of negations in .
The notion of closed p-formula or u-sentence is defined in the natural way.

As usual, we let o N, Op and va.p be abbreviations for =(—¢ V =), =0—p
and —pz.—p[-x/x]. For a set of formulas @, we denote by \/ @ the disjunction
of formulas in @. Similarly, \ ® denotes the conjunction of formulas in ®.
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Finally, we extend the syntazx of the u-calculus by allowing a new construct
of the form V&, where @ is a finite set of formulas. We will consider such a
formula to be an abbreviation of N{Op : ¢ € &} ANON . Remark that in [6],
David Janin and Igor Walukiewicz use the notation a — @ for V,&.

For reasons of a smooth presentation, we restrict to the unimodal fragment. All
the results can be easily extended to the setting where we have more than one
basic modality.

Definition 2. A Kripke frame is a pair (M, R), where M is a set and R a
binary relation on M. A Kripke model M is a triple (M, R, V) where (M, R) is
a Kripke frame and V : Prop — P(M) a valuation.

If sRt, we say that t is a successor of s and we write R(s) to denote the set
{t € M : sRt}. A path is a (finite or infinite) sequence sg, $1,... such that
siRsiy1 (for alli e N).

Definition 3. Given a p-formula ¢, a model M = (M, R,V) and an assign-
ment T : Var — P(M), we define a subset [p]am,» of M that is interpreted as
the set of points at which ¢ is true. This subset is defined by induction in the
usual way. We only recall that

luzelrmr = U €M : [l oty S U},

where Tz := U] is the assignment 7' such that 7/(x) = U and 7'(y) = 7(y) for
all y # x.

Observe that the set [px.o]m - is the least fizpoint of the map @y : P(M) —
P(M) defined by @, (U) := [@] pm,rw:=t, for all U € M. Similarly, for a propo-
sition letter p, we can define the map ¢, : P(M) — P(M) by ¢p,(U) :=
[e] mipi=v),7» where M[p := U] is the model (M,R,V") with V'(p) = U and
V'(p') =V(p'), for all p" # p.

If s € [e]m,r, we write M, s I+ ¢ and we say that ¢ true at s € M under
the assignment 7. If ¢ is a sentence, we simply write M, s I .

A formula @ is monotone in a proposition letter p if for all models M =
(M, R, V), all assignments T and all sets U, U’ C M satisfying U C U’, we have
©p(U) € ¢,(U"). The notion of monotonicity in a variable x is defined in an
analogous way.

Finally we use the notation ¢ |= v if for all models M and all points s € M,
we have M, s |k ¢ implies M, s IF 1.

When deciding whether a sentence is true at a point s, it only depends on
the points accessible (in possibly many steps) from s. These points together
with the relation and the valuation inherited from the original model form the
submodel generated by s. We will use this notion later on and we briefly recall
the definition.

Definition 4. Let M = (M, R, V) be a model. A subset N of M is downward
closed if for all s and t, sRt andt € N imply that s € N. N is upward closed if
for all s and t, sRt and s € N imply thatt € N.
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A model N = (N, S,U) is a generated submodel of M if N C M, N is upward
closed, S = RN (N x N) and U(p) = V(p) N N, for allp € Prop. If N' is a
subset of M, we say that N' = (N, S, U) is the submodel generated by N’ if N is a
generated submodel and if N is the smallest upward closed set containing N'.

In our proof, it will be often more convenient to work with a certain kind of
Kripke models. That is, we will suppose that the models we are dealing with are
trees such that each point (except the root) has infinitely many bisimilar siblings.
We make this definition precise and we give the results needed to justify this
assumption.

Definition 5. A point s is a root of a model M = (M, R,V) if for every t
distinct from s, there is a path from s to t. M is a tree if it has a root, every
point distinct from the root has a unique predecessor and R is acyclic (that is,
there is no non-empty path starting at a point t and ending in t).

A model M = (M, R,V) is w-expanded if it is a tree such that for all s € M
and all successors t of s, there are infinitely many distinct successors of s that
are bisimilar to t.

Proposition 1. Let M = (M, R,V) be a model and let s € M. There exists a
tree M' = (M', R, V") that is w-expanded such that s and the root s’ of M’ are
bisimilar. In particular, for all p-sentences o, M, s I+ o iff M, s IF .

Another way to look at formulas of the p-calculus is to consider automata. In [6],
David Janin and Igor Walukiewicz define a notion of automaton that operates
on Kripke models and that corresponds exactly to the p-calculus.

Definition 6. A p-automaton A over a finite alphabet X is a tuple (Q, qo, 9, £2)
such that Q is a finite set of states, qo € Q 1is the initial state, 6 : Qx X — PP(Q)
18 the transition map and 2 : Q — N is the parity function.

Given a frame M = (M, R, V') with a labeling L : M — X and a point s € M,
an A-game in M with starting position (s, qo) is played between two players, the
Duplicator and the Spoiler. The game is as follows: If we are in position (t,q)
(where t € M and q € @Q), the Duplicator has to make a move. The Duplicator
chooses a marking m : Q — P{u : tRu} and then a description D in 6(q, L(t)).
If u € m(q), we say that u is marked with q.

The marking and the description have to satisfy the two following properties.
First, if ¢ € D, there exists a successor u of t that is marked with ¢'. Second,
if u s a successor of t, there exists ¢ € D such that u is marked with q'. After
the Duplicator has chosen a marking m, the Spoiler plays a position (u,q’) such
that t € m(q’).

Either player wins the game if the other player cannot make a move. An
infinite match (s,qo), ($1,41), - .. is won by the Duplicator if the smallest element
of {02(q) : q appears infinitely often in qo,q1, ...} is even.

We say that (M, s) is accepted by A if the Duplicator has a winning strategy
in the A-game in M with starting position (s, qo).

Remark that a model (M, R, V) can be seen as a frame (M, R) with a labeling
L: M — P(Prop) defined by L(t) = {p € Prop:t € V(p)}, for all t € M.
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Theorem 1. [0] For every u-automaton A (over the alphabet P(Prop)), there
s a sentence @ such that for all models M and all points s € M, A accepts

(M, s) iff M, s Ik . Conversely, for every sentence o, there is a p-automaton A
such that for all models M and all points s € M, A accepts (M, s) iff M, s+ .

3 Continuity

We define the notion of continuity for a formula and we show the connection
with the Scott continuity. We also mention that these formulas are constructive
and that there is a natural connection with PDL.

Definition 7. Fix a proposition letter p. A sentence ¢ is continuous in p if for
all models M = (M, R, V) and all s € M, we have

M,slEoiff 3 F CV(p) s.t. F is finite and Mlp := F|,s Ik .
The notion of continuity in x (where z is a variable) is defined similarly.

That is, a formula ¢ is continuous in p iff it is monotone in p and whenever ¢ is
true at a point in a model, we only need finitely many points where p is true in
order to establish the truth of ¢.

Continuity and Scott Continuity

It does not seem very natural that a formula satisfying such a property should
be called continuous. In fact, it is equivalent to require that the formula is Scott
continuous with respect to p in the powerset algebra (with all other proposition
letters fixed). In the next paragraph, we recall the definition of the Scott topology
and we briefly show that the notion of Scott continuity and our last definition
coincide.

Definition 8. Let M = (M,R,V) be a model. A family F of subsets of M is
directed if for all Uy, Us € F, there exists U € F such that U O Uy U Us.

A Scott open set in the powerset algebra P(M) is a family O of subsets of
M that is closed under upset (that is, if U € O and U’ D U, then U' € O) and
such that for all directed family F satisfying |J F € O, the intersection FNO is
non-empty.

As usual, a map f: P(M) — P(M) is Scott continuous if for all Scott open
sets O, the set f~10] = {f~Y(U) : U € O} is Scott open.

Fix a proposition letter p. A sentence o is Scott continuous in p if for all
models M = (M, R,V), the map ¢, : P(M) — P(M) is Scott continuous.

Remark that the Scott topology can be defined in an arbitrary partial order
(see, e.g., [M]). It is a fairly standard result that a map f is Scott continuous iff
it preserves directed joins. That is, for all directed family F, we have f(|JF) =
U f[F] (where f[F] = {f(U) : U € F}). Now we check that our notion of
continuity defined in a Kripke semantic framework is equivalent to the standard
definition of Scott continuity.
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Proposition 2. A sentence is continuous in p iff it is Scott continuous in p.

Proof. For the direction from left to right, let ¢ be a continuous sentence in
p. Fix a model M = (M, R,V). We show that the map ¢, : P(M) — P(M)
preserves directed joins.

Let F be a directed family. It follows from the monotonicity of ¢ that the
set |Jp[F] is a subset of ¢,(|JF). Thus, it remains to show that ¢,(|JF) C
UeplF]. Take s in ¢,(|JF). That is, the formula ¢ is true at s in the model
M(p = F]. As p is continuous in p, there is a finite subset F of |J F such that
@ is true at s in M[p := F]. Now, since F is a finite subset of | JF and since
F is directed, there exists a set U in F such that F is a subset of U. Moreover,
as o is monotone, Mp := F|,s IF ¢ implies M[p := U], s IF ¢. Therefore, s
belongs to ¢,(U) and in particular, s belongs to |J ¢,[F]. This finishes to show
that o, (U F) € Uep[F]-

For the direction from right to left, let ¢ be a Scott continuous sentence in p.
First we show that ¢ is monotone in p. Let M = (M, R, V') be a model. We check
that ¢,(U) C ¢,(U’), in case U C U’. Suppose U C U’ and let F be the set
{U,U’}. The family F is clearly directed and satisfies | JF = U’. Using the fact
that ¢, preserves directed joins, we get that v,(U’) = ¢,(UF) = J¢p|F]. By
definition of F, we have | ¢p[F] = ¢p(U)Up,(U’). Putting everything together,
we obtain that ¢, (U’) = ¢, (U) U ¢, (U’). Thus, ¢©,(U) C ¢,(U").

To show that ¢ is continuous in p, it remains to show that if M, s IF ¢, then
there exists a finite subset F' of V(p) such that M[p := F],s |- ¢. Suppose
that the formula ¢ is true at s in M. That is, s belongs to ¢s(V(p)). Now
let F be the family {F C V(p) : F finite}. It is not hard to see that F is a
directed family satisfying |JF = V(p). Since ¢, preserves directed joins, we
obtain ¢, (V(p)) = ¢p(UF) = U ¢p[F]. From s € p,(V(p)), it then follows that
s € U pp[F]. Therefore, there exists F' € F such that s € ¢,(F). That is, F is a
finite subset of V(p) such that M[p := F],s Ik .

Continuity and Constructivity

A formula is constructive if its fixpoint is reached in at most w steps. Formally,
we have the following definition.

Definition 9. Fiz a proposition letter p. A sentence ¢ is constructive in p if
for all models M = (M, R, V), the least fixpoint of the map pp, : P(M) — P(M)
is equal to | J{¢,(0) : i € N} (where @, is defined by induction by ©9 = ¢, and

@il = @, 0 4.

Locally, this means that given a formula ¢ constructive in p and a point s
in a model at which up.p is true, there is some natural number n such that s
belongs to the finite approximation ¢7! (). We observe that a continuous formula
is constructive.

Proposition 3. A sentence ¢ continuous in p is constructive in p.
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Proof. Let ¢ be a sentence continuous in p and let M = (M, R, V) be a model.
We show that the least fixpoint of ¢, is {¢} () : i € N}.

Let F be the family {45 (0) : i € N}. It is enough to check that ¢, (lJF) =
U F. First remark that F is directed. Therefore, ¢,(IJF) = | ¢p[F]. It is also
easy to prove that |J¢,[F] = |J F. Putting everything together, we obtain that
op(UF) = UF and this finishes the proof.

Remark that a constructive sentence might not be continuous.

Example 1. Let ¢ be the formula Op A OO L. Basically, ¢ is true at a point s
in a model if the depth of s is less or equal to 2 (that is, there are no t and ¢’
satisfying sRtRt') and all successors of s satisfy p. It is not hard to see that ¢
is not continuous in p. However, we have that for all models M = (M, R, V),
©2(0) = ¢3(0). In particular, ¢ is constructive in p.

Example 2. Let 1) be the formula vz.p A Qz. The formula 1 is true at a point
s if there is a infinite path starting from s and at each point of this path, p is
true. This sentence is not continuous in p. However, it is constructive, since for
all models M = (M, R, V'), we have 1, (0) = 0.

Observe that in the previous examples we have up.p = pp.00OL and pp.yp =
wp. L. Thus, there is a continuous sentence (namely O 1) that is equivalent to
i, modulo the least fixpoint operation. Similarly, there is a continuous sentence
(the formula 1) that is equivalent to v, modulo the least fixpoint operation.
This suggests the following question.

Question 1 (Yde Venema). Given a constructive formula ¢, can we find a con-
tinuous formula v satisfying up. = up.?

The answer is still unknown and this could be a first step for further study of
the relation between continuity and constructivity.

Decidability of constructivity is also an interesting question. We would like
to mention that in [§], Martin Otto proved that it is decidable in EXPTIME
whether a basic modal formula ¢(p) is bounded. We recall that a basic modal
formula ¢(p) is bounded if there is a natural number n such that for all models
M, we have ©7(0) = @1 (0).

Continuity and PDL

We finish this section by few words about the connection between the continuous
fragment and PDL. We start by defining the completely additive formulas.

Definition 10. Let P be a subset of Prop and let X be a subset of Var. The
set of completely additive formulas with respect to PUX is defined by induction
in the following way:

o u=Tlpla|d|eVeldp|uy.x,

where p is in P, x is in X, ¢ is a formula of the p-calculus such that the
proposition letters of 1 and the variables of 1 do not belong to P U X and x is
completely additive with respect to P U X U {y}.
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We define the completely additive fragment as the fragment of the p-calculus
in which px.p is allowed only if ¢ is completely additive with respect to .
As mentioned in the introduction, it was observed by Yde Venema that this
fragment coincides with test-free PDL.

Similarly, we define the continuous fragment as the fragment of the p-calculus
in which px.p is allowed only if ¢ is continuous in x. It is routine to check that
any completely additive formula with respect to p is continuous in p (and the
proof is similar to the proof of Lemma [ below). In particular, the completely
additive fragment is included in the continuous fragment. That is, PDL is a
subset of the continuous fragment. We remark that this inclusion is strict. An
example is the formula ¢ = pz. (O(p A x) A O(g A x)). This formula belongs to
the continuous fragment but is not equivalent to a formula in PDL. Roughly,
the sentence ¢ is true at a point s if there is a finite binary tree-like submodel
starting from s, such that each non-terminal node of the tree has a child at which
p is true and a child at which ¢ is true. This example was given by Johan van
Benthem in [9].

4 Syntactic Characterization of the Continuous Fragment

In this section, we give a characterization of the continuous fragment of the u-
calculus. The main result states that the sentences which are continuous in p are
exactly the sentences such that p and the variables are only in the scope of the
operators V, A, ¢ and p. These formulas are formally defined as the set CF(p).

Definition 11. Let P be a subset of Prop and let X be a subset of Var. The
set of formulas CF(P U X) is defined by induction in the following way:

o u=Tplaz|dleVeleAp|Op| uy.x,

where p is in P, x is in X, ¥ is a formula of the p-calculus such that the
proposition letters of 1 and the variables of 1 do not belong to P U X and x
belongs to CF(PUX U{y}). We abbreviate CF({p}) to CF(p).

As a first property, we mention that the formulas in CF(PUX) are closed under
composition.

Proposition 4. If ¢ is in CF(PUXU{p}) and ¢ is in CF(PUX), then ©[¢/p]
belongs to CF(P U X).

Proof. By induction on .
Next we observe that the sentences in C'F(p) are continuous.
Lemma 1. A sentence ¢ in CF(p) is continuous in p.

Proof. We prove by induction on ¢ that for all sets P C Prop and X C Var,
¢ € CF(PUX) implies that ¢ is continuous in p and in z, for all p € P and all
x € X. We focus on the inductive step ¢ = uy.x, where x is in CF(PUX U{y}).
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We also restrict ourselves to show that ¢ is continuous in p, for a proposition
letter p in P.

Fix a proposition letter p € P. First we introduce the following notation.
For a model M = (M,R,V), an assignment 7 and a subset U of W, we let
XY : P(M) — P(M) be the map defined by x/ (W) = [x]mp=v],7y:=w], for
all W C M. We also denote by f(U) the least fixpoint of XyU.

Now we show that ¢ is monotone in p. That is, for all models M = (M, R, V),
all assignments 7 and all subsets U, U’ of M such that U C U’, we have M[p :=
Ul, s Ik, py.x implies M[p := U'], s Ik py.x. Fix a model M = (M, R, V), an
assignment 7 and sets U, U’ C M satisfying U C U’. Suppose M|[p := Up], s I,
wy.x. That is, s belongs to the least fixpoint f(U)of the map Xg. Since x is
monotone in p, we have that for all W C M, Xg(W) - Xgl(W). It follows that
the least fixpoint f(U) of the map XyU is a subset of the least fixpoint of the
map Xg/- Putting this together with s € f(U), we get that s belongs to the least
fixpoint of ny/. That is, M[p := U’], s IF, py.x and this finishes the proof that
( is monotone in p.

Next suppose that M, s Ik, py.x, for a point s in a model M = (M, R, V).
That is, s belongs to the least fixpoint L of the map x,. Now let F be the set of
finite subsets of V(p). We need to find a set F' € F satisfying M[p := F], s IF;
uy.x. Or equivalently, we have to show that there exists F' € F such that s
belongs to the least fixpoint f(F) of the map x}.

Let G be the set {f(F) : F € F}. It is routine to show that G is a directed
family. Since L is the least fixpoint of x,,, we have that for all U C M, x,(U) C U
implies L C U. So if we can prove that x,(|JG) C |JG, we will obtain L C |JG.
Putting this together with s € L, it will follow that s € J{f(F) : F € F}.
Therefore, in order to show that s € f(F) for some F € F, it is sufficient to
prove that x,(JG) C UG.

Assume t € x,(|JG). Since G is a directed family and x is Scott continuous
in y, we have x,(IUG) = Uxy(G). Thus, there exists Fy € F such that ¢t €
Xy(f(Fb)). Now since x is continuous in p, there exists a finite set F; C V(p)
such that ¢ € xJ"(f(Fp)). Let F be the set Fyy U Fy. Since y is monotone in p,
t € x5 (f(Fy)) implies t € xJ'(f(Fo)). It also follows from the monotonicity in p
that for all U € M, x}°(U) € x (U). Therefore, the least fixpoint f(Fp) of x}°
is a subset of the least fixpoint f(F) of ij . Using the fact that y is monotone
in y and the inclusion f(Fy) C f(F'), we obtain Xg(f(Fo)) - xg(f(F)) Putting
this together with ¢ € x'(f(Fo)), we get t € x (f(F)). Moreover, since f(F)
is a fixpoint of xJ, we have x}'(f(F)) = f(F). Hence, t belongs to f(F). In
particular, ¢ belongs to JG and this finishes the proof.

We also prove the converse: the sentences in CF(p) are enough to characterize
the continuous fragment of the p-calculus. The proof is inspired by the one given
by Marco Hollenberg in [4], where he shows that a sentence is distributive in p
over unions iff it is equivalent to (m)p, for some p-free p-program 7.
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Theorem 2. A sentence ¢ is continuous in p iff it is equivalent to a sentence
in CF(p).

Proof. By Lemma [II we only need to prove the implication from left to right.
Let ¢ be a sentence continuous in p. We need to find a formula x in C'F(p) that
is equivalent to ¢.

The proof consists in constructing a finite set IT C C'F(p) such that

p=\/{¢: ¢ €Il and ¥ | o}. (1)

Indeed, if there is such a set IT, we can define y as the formula \/{¢ : ¢ €
IT and 9 = ¢}. Clearly, x belongs to CF(p) and is equivalent to .

We define IT as the set of sentences in C'F(p), which correspond to p-automata
with at most k states, where k is a natural number that we will define later and
which depends on . In order to define k, we introduce the following notation.
First, let A = (@, qo,0,{2) be a p-automaton corresponding to ¢. For ¢ € @,
let ¢, denote the sentence corresponding to the automaton we get from A by
changing the initial state from ¢qo to q.

Next we denote by Sort0 be the set of sentences of the form

N\’ v € Prop\{p}.p’ € o} A \{=p' : 1/ € Prop\{p}.p' ¢ o},

where o is a subset of Prop\{p}. For a point s in a model, there is a unique
formula in Sort0 true at s. This formula gives us exactly the set of proposition
letters in Prop\{p} which are true at s. Sortl is the set of all sentences of the
form

NlealL/pl g€ S A N{~eqlL/pl:q ¢ S},

where S is a subset of ). Finally Sort2 contains all sentences of the form y AVW,
where y € Sort0 and ¥ is a subset of Sortl. As for the formulas in Sort0, it is
easy to see that given a model M and a point s in M, there is exactly one
sentence in Sortl and one sentence in Sort2 which are true at s. Remark finally
that Sort0, Sortl and Sort2 are sets of sentences which do not contain p.

Now we can define IT as the set of sentences in C'F(p), which correspond
to p-automata with at most [Sort2| - 2|91 states. Since there are only finitely
many such automata modulo equivalence, IT is finite (up to equivalence). It
is also immediate that IT is a subset of C'F(p). Thus it remains to show that
equivalence ([II) holds.

From right to left, equivalence () is obvious. For the direction from left to
right, suppose that M = (M, R,V) is a model such that M, s I- ¢, for some
point s. We need to find a sentence 1 € IT satisfying ¢ = ¢ and such that
M, s |- 1. Equivalently, we can construct an automaton A’ corresponding to a
formula ¢ € IT such that ¢ = ¢ and M, s Ik 1. That is, we can construct an
automaton A’ with at most [Sort2| - 2/91+1 states, corresponding to a sentence
in CF(p), such that A" accepts (M, s) and satisfying A’ IF A (that is, for all
models M’ and all s’ € M’, if A" accepts (M’,s), then A accepts (M’,s")).
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By Proposition [T, we may assume that M is a tree with root s and that M is
w-expanded. Since ¢ is continuous, there is a finite subset F' of V(p) such that
M|p := F],s Ik ¢. Let T be the minimal downward closed set that contains F'.
Using T, we define the automaton A’. Roughly, the idea is to define the set of
states of A’ as the set T together with an extra point at. However, we need to
make sure that the set of states of A’ contains at most [Sort2| - 2/9/*1 elements.
There is of course no guarantee that TU{a~} satisfies this condition. The solution
is the following. We define for every point in 7T its representation, which encodes
the information we might need about the point. Then we can identify the points
having the same representation in order to “reduce” the cardinality of 7.

Before defining the automaton A’ we introduce some notation. Given a point
t in M[p := F], there is a unique sentence in Sort2 that is true at t. We denote it
by s2(t). Next if ¢ belongs to F', we define the color col(t) of t as 1 and otherwise,
the color of ¢ is 0. We let Q(t) be the set {g € Q : M[p := F|,t I ¢,}. Finally,
we define the representation map r : M — (Sort2 x @ x {0,1})U{at} by

r(t) = {(SQ(t)7 Q(t),col(t)) ifteT,

aT otherwise.

The automaton A" = (@', ¢, ¢, 2") is a p-automaton over the alphabet

Sort2 x {0, 1}. Tts set of states Q' is given by
Q ={rt):teT}u{at},
and its initial state g} is r(s). Next for all (o,i) € Sort2 x {0,1}, the set
0'(¢', (0,1)) is defined by
{r[R(w)] : uw € T and r(u) =r(t)}
if ¢ =1, 0= s2(t) and i = col(t),

{{ar},0} if ¢ =ar,

0 otherwise.

(¢, (0,1) =

Intuitively, when the automaton is in the state ¢’ = r(t) and it reads the label
(s2(t), col(t)), the Duplicator has to pick a successor u of ¢ that is in 7" and
this induces a description in §(r(t), (s2(t),col(t))). As soon as the automaton
reaches the state aT, either the match is finite or the automaton stays in the
state a1. In all other cases, the Duplicator gets stuck.

Finally, the map §2’ is such that 2'(at) =0 and £2'(¢') =1, for all ¢’ # at. In
other words, the only way the Duplicator can win an infinite match is to reach
the state at and to stay there.

Remark that a model M" = (M', R’, V") can be seen as a frame (M’, R") with
a labeling L' : M’ — Sort2 x {0,1} defined by L'(t') = (s2(¢'),1) if p is true
at " and L'(t') = (s2(t'),0) otherwise. Thus, the automaton A’ can operate on
models.

In order to extract the formula ¢ from this automaton, it will be convenient
to think of the alphabet of A’ not being the set Sort2 x {0,1} but the set
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P(Sort2 U {p}). The idea is to see a pair (0,i) € Sort2 x {0,1} as the set {0}
if i = 0 or as the set {o,p} if i = 1. More precisely, if p C Sort2 U {p}, the
transition map would associate to the pair (¢', p) the set 6'(¢’, (0,0)) if p = {0}
for some o € Sort2, the set ¢'(¢’, (0, 1)) if p = {0, p} for some o € Sort2 and the
empty set otherwise.

Now if we think to the formulas of Sort2 as proposition letters, it follows from
Theorem [l that A’ is equivalent to a sentence 1) whose proposition letters belong
to Sort2 U {p}. Such a formula ¢ is also a sentence with proposition letters in
Prop, in an obvious way. To finish the proof, we need to show that 1 is equivalent
to a sentence which is in IT, % is true at s and ¢ |= .

Claim 1. 1) is equivalent to a sentence in I1.

Proof. The intuition is the following. In order to win an A’-match, the Duplicator
has to reach the state aT and then, the match is basically over. It seems natural
that such a property can be expressed using only least fixpoints (and no greatest
fixpoint).

Next we also need to make sure that in a formula corresponding to A’, neither
p nor any variable is in the scope of the operator [J. This is guaranteed by
the presence of the state a+ in any non-empty description that the Duplicator
might pick. Very informally, each description corresponds to a subformula (of
the sentence corresponding to the automaton) which starts with the operator V.
Using the fact that a1 belongs to any of these descriptions (except the empty
one) and corresponds to the sentence T, we can show that the V operator can
be replaced by the modal operator ¢.

Formally the proof is the following. First observe that A’ has at most |Sort2| -
2Q1*1 states. Thus in order to show that v is equivalent to a formula in I7, it is
sufficient to show that ¢ is equivalent to a sentence in C'F(p).

For ¢ € Q" and 8" C @', we define the translation tr(S’, ¢") of ¢ with respect
to S’. The translation ¢r(S’, ¢’) is a formula in the language whose set of propo-
sition letters is Prop and whose set of variables is Var U Q’. For those ¢ that
are equal to 7(t) = (s2(t), Q(t), col(t)) and S’ C @', we have

tr(S’,q') := s2(t) A col(t).p A
\/ { /\ {(}uq”.tr (S"\{q¢"},s") : ¢" € r[R(u)] and ¢" € S’}
A /\ {(}q” :¢" €r[R(u)] and ¢" ¢ S’} cu €T and 7(u) = q’}

where col(t).p is p if col(t) = 1 and T if col(t) = 0. By convention, A = T. For
all " C @', we define ¢tr(S’,;at) by T.

Tt is routine to show that tr(S’, ¢’) is a well-defined sentence with proposition
letters in Prop U (Q'\S’) and that it belongs to CF({p} U (Q"\S")). The proofs
are by induction on the cardinality of S’. In particular, ¢r(Q’, ) belongs to
CF(p). Therefore, in order to prove the claim, it is enough to show that v is
equivalent to ¢r(Q’, q}). The proof is in the appendix.
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Claim 2. M, s Ik 1.
Proof. The proof is rather straightforward. Details are given in the appendix.
Claim 3. ) = .

Proof. Suppose M’ = (M', R’,V') is a model such that M’ s" IF 1, for some
point s’. That is, the Duplicator has a winning strategy in the A’-game in M’
with starting position (s’,¢)). We have to show that M’ s’ IF . That is, we
need to find a winning strategy for the Duplicator in the A-game in M’ with
starting position (s, ¢;)).

We say that a point ¢ is marked with a state ¢’ if there is an A’-match during
which the Duplicator plays according to his winning strategy and the point ¢ is
marked with ¢’. Let 7" be the set of points marked with a state ¢’ # at. When
we define the strategy for the Duplicator in the A-game, the idea is roughly to
make sure that if ¢/ € T and ¢/(¢') = r(t), then positions of the form (¢, q) are
played only if ¢ € Q(t). Details are given in the appendix.

As a corollary of this last proof, we obtain that it is decidable whether a formula
is continuous in p.

Theorem 3. It is decidable whether a formula is continuous in p.

Proof. Fix a proposition letter p. Let IT be the set of sentences in C'F'(p) which
correspond to pi-automata with at most |Sort2|-2/91+1 states. Now there are only
finitely many such automata (modulo equivalence). There is also an effective
translation from p-automata to p-sentences. Finally it is easy to verify whether
a formula is in C'F'(p). Therefore, we can compute II.

It follows from the proof of Theorem 2] that a sentence ¢ is continuous in p
ifft o ={¢:4¢ €Il and ¥ = p}. That is, ¢ is continuous in p iff there exists a
subset ¥ of IT such that ¢ = \/ ¥. Therefore, in order to decide if ¢ is continuous
in p, we can compute all the subsets ¥ of IT and check whether ¢ is equivalent to
a disjunct \/¥. Since the p-calculus if finitely axiomatizable and has the finite
model property, it is decidable whether ¢ is equivalent to a disjunct \/ ¥ and
this completes the proof.

Looking at the decision procedure presented in the proof of Theorem[3] we can see
that the complexity is at most 4EXPTIME. That is, it involves four interlocked
checking procedures, each of them being of complexity at most EXPTIME. This
result is not very satisfying and we are looking for a better algorithm.

Finally, we mention that a similar syntactic characterization can be obtained
in the case of basic modal logic. More precisely, a basic modal formula is con-
tinuous in p iff it belongs to the modal fragment C'F,,(p) of CF(p). We give a
formal definition of C'F,,,(p) and a sketch of the proof in the appendix.

Definition 12. Let P be a subset of Prop. CF,,(P) is defined by induction in
the following way:

e u=TlplYleVelene]| O,

where p belongs to P and no proposition letters of ¥ is in P.
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Corollary 1. A basic modal formula is continuous in p iff it belongs to CF,,(p).

5 Conclusion and Further Work

We defined the continuous fragment of the p-calculus and showed how it relates
to Scott continuity. We also started to investigate the relation between continuity
and constructivity. Finally, we gave a syntactic characterization of the continuous
formulas and we proved that it decidable whether a formula is continuous.

This work can be continued in various directions. To start with, it would be
interesting to clarify the link between continuity and constructivity. In particular,
we could try to answer the following question: given a constructive formula ¢,
can we find a continuous formula v satisfying up.¢ = up.1?

Next we observe that in the proof of Theorem [2| the construction of the
automaton A’ depends on the model M and the point s at which ¢ is true. Is it
possible to construct an automaton A’ by directly transforming the automaton A
that is equivalent to ¢? Such a construction might help us to find a better lower
complexity bound for the decision procedure (for the membership of a formula
in the continuous fragment).

We believe that it might be interesting to generalize our approach. As men-
tioned earlier, similar results to our characterization have been obtained by Gio-
vanna D’Agostino and Marco Hollenberg in [3]. Is there any general pattern that
can be found in all these proofs?

We could also extend this syntactic characterization to other settings. For
example, we can try to get a similar result if we restrict our attention to the
class of finitely branching models.

Finally, we would like to mention that in [I0], Daisuke Tkegami and Johan
van Benthem proved that the p-calculus is closed under taking product update.
Using their method together with our syntactic characterization, it is possible to
show that the set of continuous formulas is closed under taking product update.
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Abstract. Since Parigot’s seminal article on “an algorithmic interpreta
tion of classical natural deduction” [I5], Ap calculus has been extensively
studied both as a typed and an untyped language Among the studies
about the call by name lambda mu calculus authors used different pre
sentations of the calculus that were usually considered as equivalent from
the computational point of view In particular, most of the papers use
one of three variants of the calculus initially introduced by Parigot: (7)
Parigot’s syntax, (i) an extended calculus that satisfies Bohm theorem
and (417) a second variant by de Groote he considered when designing an
abstract machine for Ay calculus that contains one more reduction rule

In a previous work [20] we showed that contrarily to Parigot’s calculus
that does not enjoy separation property as shown by David and Py [3],
de Groote’s initial calculus, that we refer to as Ap calculus, does enjoy
the separation property This evidence the fact that the calculi are really
different and suggest that the relationships between the Ay calculi should
be made clear This is the purpose of the present work

We first introduce four variants of call by name A\p calculus, establish
some results about reductions in Ay calculus and then investigate the
relationships between the Ay calculi We finally introduce a type system
for Ap calculus and prove subject reduction and strong normalization

Keywords: Classical A calculi, Ap calculi, Streams, Confluence, Type
Systems, Strong Normalization

1 Introduction

Curry-Howard in Classical Logic. Curry Howard correspondence was first
designed as a correspondence between intuitionistic natural deduction and sim
ply typed A calculus Extending the correspondence to classical logic resulted in
strong connections with control operators in functional programming languages
as first noticed by Griffin [§] In particular, Ay calculus [I5] was introduced by
Michel Parigot as an extension of A calculus isomorphic to an alternative presen
tation of classical natural deduction [I4] in which one can encode usual control
operators and in particular the call/cc operator

Variants of Ap-calculi. Several variants of Parigot’s Ap calculus are consid
ered in the literature Their relationship is usually not made clear: semantics of

M Kaminski and S Martini (Eds ): CSL 2008, LNCS 5213, pp 154 2008
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those languages can differ as well as their syntactical properties For instance,
Ap calculus satisfies Bohm theorem while Aun does not Moreover, it is some
times unclear what properties are true in which variant of Az One of the pur
poses of this paper is to study and compare different variants of call by name
Ap calculus in order to stress their differences as well as their relationships and to
understand how it may affect the expressiveness and semantics of those calculi

Ap-calculus and Separation. A\p calculus became one of the most standard
ways to study classical lambda calculi As a result, the calculus has been more
and more studied and more fundamental questions arose Among them, knowing
whether separation property (also called Bohm theorem [211]) holds for Au
calculus was one of the important questions in the study of Au calculus, since
separation is a fundamental property relating syntax and semantics in a very
delicate way In 2001, David & Py proved that separation fails in Ay calculus
(more precisely the calculus we shall call Aun) by exhibiting a counter example
to separation [3] In a previous work, we introduced an extension to Ay calculus,
Ap calculus, for which we proved that separation holds [20] We will further
develop the meta theory of Ap calculus in this paper by proving its confluence
and by characterizing more precisely the canonical normal forms of Ay calculus
which are the “values” that we shall separate Moreover, we introduce a type
system for Ap calculus which has the property of allowing more terms to be
typed while keeping subject reduction and strong normalization

We regard the type system introduced in this paper, Ag, as a first step towards
the study a typed separation theorem [22ITTI6J7] for Ap calculus that we leave
for future work

Structure of the Paper. First we present the four variants of CBN Ay calculus
that we shall study in this paper Secondly we prove confluence of Ap calculus
in Section Bl and compare the equational theories of the Ay calculi in Section @
Finally we study in Section Bl a new type system for Ay calculus, As

2 Four Au-Calculi

In this section, we present the four variants of call by name Ap calculus that we
shall study in this paper We shall use in this paper an alternative notation for
Ap terms that we introduced and justified in a previous work [20], writing (¢)«
instead of [t

2.1 Parigot’s Original Calculus: Ay

In 1992, Michel Parigot introduced Au, an extension of A calculus providing “an
algorithmic interpretation of classical natural deduction” [I5] by allowing for a
proof program correspondence d la Curry Howard [I0] between A\i calculus and
classical natural deduction
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Vars 't :BlA,a: A L

La:Thwue T4 Iy, pa ()8 A[(A,B:B)\a: A

Iax:Thyxt :T'NA Iyt 1T —=T'|A I'xpu :T|A
e A Abs " | o 43 App
I'bxp e’ it 2T —-T'A 'y, (Hu :T'|A

Fig. 1. Type system for Ay calculus (7, A, B are the usual simple types with —)

Definition 1 (X,). The terms of Parigot’s A calculus are defined by the fol
lowing syntax:
tuo= x| Azt | (Hu | pa.(t)8

with x €V and o, 3 € V., V and V. being two disjoint infinite sets of variables
The set of A terms is noted X, In po.(t)8, variable (3 is in the scope of po
Terms of the form (t)c are not elements of X'y, but what is usually called named
terms and they are generically written n

Definition 2 (Au-calculus reduction). A\u calculus reduction, written —»,,,
is induced by the following four reduction rules:

Mty —p  t{u/x}

(anyu  —  pon{(v)ua/(v)a)

(am)d  —, ni{B/a}

po(t)ae  —p if o € FV ()

n{(v)ua/(v)a} substitutes without capture the subterms (v)a in n by (v)ua

Aw calculus satisfies lots of good properties of A calculus: confluence of the un
typed calculus [I5T913], subject reduction [I5] and strong normalization [I7JI§]
of the typed calculus (see figure[I]) being the most central ones

2.2 Ap-Calculus with Extensionality: Py’s Aun

Whereas the critical pair between 3 and 7 does not prevent Church Rosser to
hold, the critical pair /1 does not converge:

pan ——p Az (pan)r —, Ax.pon{(v)za/(v)a}

This is probably why 7 is not considered in Parigot’s original presentation In his
PhD, Walter Py studied confluence properties of Au calculus and was interested
in Béhm theorem for Ay calculus In studying separation, it is needed to have
extensionality so that Py added n to Au calculus and restored separation with
an additional rule, v, that makes the above diagram to converge

Aun calculus is obtained by adding the following rules to Au calculus:

Ae.(t)r  —, ot if o ¢ FV(t)
pon — Az.pan{(v)za/(v)a} if o ¢ FV(n)
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David & Py proved that separation fails in Aun [19U3] by exhibiting a counter
example to separatiorﬂ: wo, w1 € Xy, that are solvable, not equivalent for the
equivalence relation induced by Aun reduction rules but that no context can
distinguish In a previous work [20], we defined Ap, an extension to Aun for
which we proved Bohm theorem

2.3 A Ap-Calculus Satisfying Béhm Theorem: Ap-Calculus
Definition 3 (X4,). Ap terms are defined by the following syntaz:
tu= x| et | (Du | pat | (Ha

where x ranges over a set Vi of term variables and o ranges over a set Vs of
stream variables V, and V4 are disjoint

It is clear, since o ¢ X4, that notation ()« is not ambiguous with notation
(t)u Notice that Xy, € X4, and that named terms of definition [I] are elements
of X4, Moreover, terms such as po.u3.t or Ax.(t)ay are in Xy,

Definition 4 (Ap-calculus reduction). Ap calculus reduction, which is writ
ten — Ay, 15 induced by the following five reduction ruledd:

(A\x.t)u — 8y t{u/x}
t

Ax.(t)x —r if v € FV(t)
(hat)d  —pe  t{B/a)

pe.(t)a — s t if a & FV(t)
pat —fst Az.pact {(v)za/(v)at if x & FV(t)

i reduction can be simulated by a fst reduction followed by a Pr reduction:
(nat)u —s gt (Az-puact {(v)a) ()atyu —g, poct {(v)ua/(v)a}
A separation result is stated with respect to a set of observables (the $n normal

forms in A calculus) Since fst is an expansion rule, there are very few normal
forms in Ay We thus consider a set of canonical normal forms [3J20]:

Definition 5. A Ap term t is in canonical normal form (CNF) if it is
BrnrBsns normal and it contains no subterm (A\x.u)a nor (po.u)v

Theorem 1 (B6hm theorem for Ap-calculus [20]). If t and ¢’ are two non
BrnrBsnsfst equivalent closed canonical normal forms, there exists a contezf]
C] such that C[t] _>;1u Az Ay.x and C[t'] _>;1u Az Ay

Remark 1 In [], de Groote introduced an extension to Au calculus, that we
shall refer to as A\ugg and that is close to Au calculus except it has neither np
nor fst In [I2], Ong considers a calculus built on X4, which is very close to
Ap but it is presented as an equational theory Apgg can be considered as a
subcalculus Ap, in the following, we will not consider much this calculus

Y wo,w; are obtained by substituting y by 0 = A\z,z".2" and 1 = Az, 2’.x respectively
in w= Az.po.((z)pB.(x)uoya)uoa with uo = pd.(Az1, z2.22)a

2 Br, nr, Bs, ns, fst correspond respectively to 3,7, p, 0 and v; see |20] for details

3 A context that may be “stream applicative™ [Jt] ... t,lilal th .tﬁk ak
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2.4 De Groote’s Extended Syntax with e-Reduction: Ape

Philippe de Groote introduced an abstract machine for Au calculus [5] In order
to do so, he considered another extension to Parigot’s Ay, also based on terms
of X4, the Ape calculus Ape has an additional rule, € reduction: po.uf.t —.
pe. [t| g where [t[; is the result of removing all the free occurrences of § in
t A constraint on reduction p is added in order not to lose confluence: p
reduction is now py.(uet)s —, py.t{8/a} Otherwise there is a critical pair
on (puy.uf.pa.t)6¢ depending on whether we apply € to pa or uf:

It {6/73{¢/BY e (uy.uB.pat)s¢ —c— [t {6/7} {¢/a}
Moerover 7 reduction cannot be added to Ape or confluence is lostfd:

HOAT By —p g AT (pB.y)x —y popfy —e oy

Definition 6 (Aue-calculus reduction). Aue calculus reduction, which is writ
ten — xpue, 15 induced by the following five reduction rules:

(Ax.t)u —g t{u/x}
(ot —, ot {(v)ua/(v)a}
py-(pet)f —p wy-t{B/o}
pa.(t)a —y t if « &€ FV(t)
o 3.t —e pa [t
In the rest of this paper, we shall prove some new results about Ap calculus and

prove some properties relating the four calculi introduced in this section We
already state the following;:

Lemma 1. Au calculus is stable by Ap reductions and \pe reductions:

ift € Xy, and t =5, u, then u € Xy, and t =3, u;

ift € Xy and t =3, u, then u € Xy, and t —3, u

3 Syntactical Results for Pure Au-Calculus

3.1 Ap-Calculus Reduction System

Definition 7 (3, 8", n, fst™). We consider the following subsystems of Au
reduction or Ap equivalence:

B is the subsystem made of reductions Br and Bs;

1 is the subsystem made of reductions nr and ng;

Bfst is the subsystem BrBsfst and Bnfst for the full Ap reduction system;
B for the subsystem of 3 that reduces a (3 redex only when the argument

is a variable: (\v.pot)yf —jguar t{y/x}{B/a};

4 Many details on problems of confluence in Aue with 7 can be found in Py’s thesis [T9]
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fst™ is the restriction of fst to redexes t = pa.t’ which are applied to a term
u or such that t' contains at least one subterm (Ax.u)a;

= Au— 8 T gnfst— s

~Ap and ~4,~ are the equivalences associated with — 4, and — 4~

Remark 2~ =~ 4,~ but we do not consider the reduction system Ay~ since it
is not confluent Indeed, there are different canonical normal forms that are ~ 4,
equivalent (and thus ~ 4, equivalent) but that are normal forms for — 4, (as

ensured by proposition [, page [I60)

3.2 Confluence of Au-Calculus
In this section, we prove confluence of Au calculus for p closed terms:

Theorem 2. Ap calculus is confluent on p closed terms: for any t,t',t" u closed
Ap terms, there exists u € Xy, such that if t —7 , ', " then t',1" —7 v
Remark 3 Notice that the hypothesis on p closed terms is a necessary restriction
considering that the term (uf.x)a may reduce to = or to (Ay.uy.x)a which
cannot reduce to the same term

In the following, the terms are always considered to be u closed

Proof Confluence of Ap calculus is proved thanks to some preliminary lemmas
Essentially, confluence of the calculus follows from the confluence of subsystem
Bfst (proposition [), confluence of subsystem 7 (proposition ) and the com
mutation of the two previous systems (proposition B)): thanks to Hindley Rosen
lemma, this ensures confluence of Ap calculus O

Lemmas 2] and [ are crucial steps Lemma 2l requires p closed terms while com
mutation 3" fst/Bfst is the difficult case because fst does not terminate:

Lemma 2. t oy
fst

BSV* ,H'U‘Wfstv*

" S
fst

Lemma 3. Brfst (resp 8" fst) and Bfst commute

Proposition 1. Bfst reduction is confluent

Proposition 2. n reduction is confluent

Proposition [ is consequence of 7 commuting with G, Bs and fst respectively:
Proposition 3. n commutes with Bfst

Thanks to lemma [I confluence of Aun calculus is an easy consequence of con
fluence of Ay calculus :
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Confluence Separation Type System  Subject Reduction SN

AL yes no CND yes yes
Aun yes (u closed) no CND + L yes yes
A€ yes ? CND + L yes yes

Ap yes (p closed) yes CND + L and 4s yes yes

Fig. 2. Properties of the four Au calculi

Corollary 1. \un calculus is confluent on p closed terms

Remark 4 A proof of confluence for Aun can be found in Py’s thesis [19] and is
outlined in [3] Our proof of confluence for Au calculus uses some of the ideas of
the proof by Py but is simpler, in particular we can avoid a lengthy development
where Py uses annotations on terms The simplification lies in particular in the
use of lemma[2l As a result, the proof we outlined here is, to our knowledge, the
shortest known proof of confluence for A\un

The following proposition is actually not a trivial consequence of confluence
since even though t,u are p closed, the sequence of terms justifying ¢ =, u
may involve non closed terms for which confluence does not hold in general:

Proposition 4. If t,u € X, are p closed and t =,, u then there exists a
v € Xy, such that t,u —>jm v

3.3 Characterizing Canonical Normal Forms in Ap

Proposition 5. p closed canonical normal forms are exactly the p closed Ap
terms in Bnfst. normal form

The following property corresponds to the property of uniqueness of the (7
normal form in A calculus

Proposition 6. p closed canonical normal forms are Ap equivalent if, and only
if, they are fst equivalent: if t,u € X a, are CNF, thent =4, u &t =45 u.

Proof Simple consequence of proposition [ O

4 Comparing the Four Ap-Calculi

The four calculi introduced in Section [2] share some properties but differ on
others In this Section, we review some of the known properties of the calculi
and we investigate their relationships

We summarize in figure [ the properties of the four Ap calculi considered
in this paper The four calculi satisfy confluence [I519] They all have a type
system which is in correspondence with classical natural deduction proofs, with
or without explicit | In the next part of the paper we shall introduce and study
As, a new type system for Ap calculus Strong normalization is known in the
simply typed case for Aun, Apue and Ap while Parigot provided [I8] a proof of
strong normalization for second order Ap
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4.1 Conservative Extensions

Proposition 7 (A is a conservative extension of \un). Ift,u € Xy, have
no free variable, then t =4, u <t =y u

Proof It is immediate that if ¢t,u € X, then ¢ =,,, w implies ¢t =4, v The
converse property requires confluence and proposition @ by confluence of A,
if ¢ =4, u there exists v € X4, such that ¢t —% v <7, u By lemmall if
moreover t,u € X, then there exists v € X, such that ¢ —>§M un U and
finally ¢ =x.n u O

*
U

Proposition 8 (Aue is a conservative extension of A\p). Ift,u € Xy, have
no free variable, then t =y, u &t =y, u

Proof Similar to the pervious proof O

Proposition 9 (=4, and =), are incomparable.). There existt,u,v € Xy,
such that t =, w and t #xue w and t =xue v and t #a, v

Proof Lett € Xy, be a term of the form pov.t’ in canonical normal form with
no two consecutive p abstractions Let u = Az.pa.t’ {(w)za/(w)a} and v =
popi3.8" Then one has t =g u and t =, v so that t =4, uw and t =), v

t is a Aue normal form and so is u (variable z cannot create a Ape redex
without contradicting that ¢ is a CNF): they are distinct normal forms of Aue
calculus and thus, by confluence of Aue, ¢ #xue v On the other hand, ¢ and v
are in CNF so that ¢t =4, v if and only if t =¢; v But ¢ and v contain a different
number of p abstraction although fst reduction preserves the number of 4 in a
term As a conclusion ¢ #f, v and finally ¢ #., v a

4.2 Separability Properties

We showed in a previous work [20] that Ay calculus satisfies the separation
property: two canonical normal forms are equivalent if and only if they cannot
be separated by any context On the other hand, it is known that Aun and a
fortiori A do not satisfy separability [T93]

What can we say about separability in Aue? Stating separation in Aue calculus
would require to consider the classes modulo Ape rules plus  However, this
makes the study very complex since Ape + 1 is not confluent and thus it is
difficult to say anything about two terms not being equated by the equational
theory We shall simply consider an example of two terms being observationally
equivalent whereas they are not equationally equivalent in Aue: pa.0 and po.l
are observationally equivalent Indeed, they cannot be separated by any context:

(pat)u —p pot if a« & FV(t).
wy-(pat)d —, -t which is « equivalent to pa.t.
.ot — wuB. |tl, = po.t which is « equivalent to pa.t.

Actually, any term of the form pa.t with ¢t a closed term is observationally
equivalent to po.0
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5 Simply-Typed Au-Calculus

In this section, we introduce a type system for Ap calculus and prove some
properties about it, namely that it can type strictly more terms than Parigot’s
type system, that it has subject reduction and strong normalization
One may of course think of typing Au using a type system for standard clas
sical A calculi, similar to the one shown in figure [l by adding rules:
't :1l|Aa:A i Abs 't i AlAa: A JApp

' pa?t @ AlA I'({)a : L|A,a: A

The system uses a typing discipline @ la Church by writing explicitly the
type on the abstracted (stream or term) variables Considering that we have an
expansion rule, we restrict the fst rule to apply only on terms of type A — B in
order the achieve subject reduction: pa=8.t — sy Az B8t {(u)zB/(u)a} .
Such a type system has good properties but it is unsatisfactory in the sense that
many Ap terms are ruled out of the typed calculus even though they have good
computational behaviours For instance, many terms essential for separation to
hold cannot be typed in this way such as pa.Ax.t

Making Streams First-class Citizens in the Typed Setting. We look for
a type system that would reflect in types the stream construction In particular,
since p is seen as a stream abstraction, one might think of a functional type for
streams: if the term ¢ is of type 7 when stream « is of stream type S, then pa.t
would be of the type of a stream functional from S to 7 (that we write S = 7))
We can thus think of the following typing rules for u abstracted terms:

't :T|Aa:S 't :S=T|Aa:S
Abss Apps
I'Fualt :S=T|A I'-@®t)a :TIA a: S

A Type Mismatch. fst reduction does complicate the definition of a type
system for Ay that would take streams into account: whereas ua®.t is of a
stream type, say S = 7, the term resulting from pa.t by applying the fst rule
once (namely Az .35 .t {(u)z3/(u)a}) should be of a standard function type
A — B (more precisely A — (S’ = T’)) Moreover, streams are streams of
terms and they should be related, not only by the fst rule, but also by allowing
to apply a term to a stream functional (for instance (ua.t)u) and conversely,
one might want to apply a stream to a A abstracted term (for instance (Az.t)«)
= types and — types should be related in some way fst gives the key to this
connection

A Relation over Stream Types. fst was synthesized in Ap calculus (and
previously in A calculus by Py HQI,B]E) as the result of an 1 expansion followed
by a p reduction In the typed case, the n expansion can occur only on — type
terms This restriction adapted to Ap calculus results in the condition that po.t

® It had actually been already briefly discussed in 1993 by Parigot [16]
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is of a stream type of the form (7 — §) = 7’ After an application of fst, we
have term Az.uf.t {(u)z3/(u)a} that should be of type T — (S = 7T7)
This corresponds to an associativity rule between constructors — and =

(T —8) =T =as0c=T = (S=T')

5.1 Simply Typed Streams: Ag
Pre-Types and Types. We now define the type system Ag for A calculus
Definition 8 (As pre-types). Pre types are given by the following grammar:

Term pre-types: T,A,B,... :=0; | A= B |S=T
Stream pre-types: S,P,Q,... :=0; | T =S| L

o; and o; are respectively term and stream type variables We keep a L constant
in the calculus, more for tradition than for real need: L type may be regarded
as a distinguished stream type variabldd We might want to withdraw this L in
future works, however it will be useful when studying the relationships between
Au typable and Ag typable terms

Definition 9 (=gfs). =t @5 a congruence relation over pre types which is the
symmetric, reflezive and transitive closure of relation sy defined by

(T—-8) =T T —(S=T)
Types of As are always considered up to this congruence relation:
Definition 10 (As types). A As type is an equivalence class for =g

Typed Ap calculus is considered a la Church, that is the syntax of typed Au
terms is as follows:

Definition 11 (Typed Ap-calculus). t == = | a7 .t | (H)u | pasS.t | (H)a

We show in figure [] the type system Ag for Ap calculus In this type system,
we deal with pre types and an explicit conversion rule between two equivalent

pre types

5.2 Typed Reduction Rules

The fst rule is an expansion rule and shall thus be treated with care if one wants
subject reduction to hold in As In the typed case, to allow an application of
the fst rule on ¢, we will require that the term has a type represented by a
pre type of shape (77 — S) = 72 This requirement is similar to the condition
on the n expansion application in simply typed A calculus and is necessary to
satisfy subject reduction in the presence of an expansion rule The 7 expansion
is usually restricted as t : A — B —— Az (Hz: A — B.

—
ex

We require the same sort of constraint on fst rule:

5 It may alternatively be seen as a variable that cannot be substituted by other types
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't :7T|A
Varr — : — /
. . =t  (provided T =5 T')
Nx:Tkaxz :T|A ret:7'A
Nz:Trt :T'|A 'ttt :T—-TA I'uw :T|A
Abst Appr
Iexe?t T —-T'NA 'k (@u :7T'A
't :T|Aa: S -t :S=7T|A,a:8
Abss Apps
T'Fpat :S=>T|A I't{)a :T|IA,a: S

Fig. 3. As: a type system for Ap calculus

Definition 12 (fst™ reduction). Reduction fst~ is defined as a restriction on
fst reduction on typed Ap terms as follows:

par =St s g N Bt {(w)z B/ (u)a}
One can notice that fst is an intermediate reduction between fst and fst :

Proposition 10. Let t,u be two typed Ap terms The following implications
hold:
t g U = t—ps—u = L u

The converse implications do not hold

5.3 Comments about the Type System Ag

Moving from = to ’@. Contrarily to what the notation = may suggest, no
duality is involved with this connective The rule Abss would rather suggest the
= connective to be related with the *® connective of linear logic This is precisely
what we evidence in a related work with Pagani [I3]: when translating As into
(a kind of) polarized proof nets, 7, — 75 becomes ? 7;- *® 75 as usual while
S = 7 is translated into S @ 7

=y is thus an associativity property of *® which is perfectly sound logically:

T+ 8S) 9T = 2T+ 92 (S92 7).

Relation with Autp Type System. Herbelin et al [19] introduced recently a
calculus Autp which is a Ay calculus with one dynamically bound variable This
allows them to model call by value and call by name delimited continuations
They noticed that call by name Autp is very close to Ay calculus and they intro
duced independently a type system for this calculus which is very similar to Ag
They have however a different structure for typing judgements: I' bx M : A; A
(X, annotating the F is a list of types)

In a current work with Herbelin and Ghilezan, we are investigating further
the meta theory A\utp and interestingly Aue appears also to be connected to Autp
when some critical pair naturally arising with the dynamic variable tp is oriented
in the opposite direction: [tAp] po.c — ¢ {tAp/a}
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5.4 Properties of Ag

Ags Types Strictly More Terms Than Parigot’s Au. We show that every
typable term of Parigot’s A\u calculus can be typed in Ag

Theorem 3. Lett a Au term in Parigot’s syntax If there exists I', A and A such
that I' Fx, t 2 A|A, then there exists I, A" and A’ such that I'" a5t @ A'| A

Definition 13. We consider o, a special term type variable and we define the
following transformations on the types of Parigot’s A\p calculus to As pre types
Term pre types: (i) (0)7 = (0o — 1) =0, (ii) (A— B)T = AT - B7
Stream pre types: (i) (0)° =0 — L (ii) (A — B)S = A7 — B®

Proposition 11. Given a simple type A, then A7 =t A% =0,

Remark 5 The previous theorem helps to understand more precisely what is the
limitation of Parigot’s Ap calculus with respect to the flexibility of Ap calculus:
images of A\u terms need never be assigned a type of shape §; = (S2 = A)

Type Preservation. Typed Ap calculus satisfies subject reduction:

Theorem 4 (Subject Reduction). Reduction of typed Ap terms preserves
type: let t,bu € Ap If 't : A|A and t — 4~ u then I'Fu : A|A

Strong Normalization. Finally, we prove strong normalization:

Theorem 5 (Typed Ap-calculus is strongly normalizing). Let ¢t be a well
typed term in As There is no infinite reduction from t in A=

The theorem is proved thanks to a method inspired by one of the proofs given
by Parigot in [I8] for proving strong normalization of simply typed Ap calculus
It consists in providing a translation of typed Ap terms into simply typed A
calculus and deducing strong normalization of typed Ap calculus after strong
normalization of simply typed A calculus

We first give a translation of As types into simple types:

Definition 14. To each pre type of As, we associate a simple type as follows:
We first enrich the set of type variables of the simply typed )\ calculus To each
stream type variable o, one considers a new simple type variable written o as
well Moreover, we add a new variable o

loi| = o; if 0; is a term type variable
Ty — Da| = |Ih| — |

(Ti — 8) = Tl = [Ti| » IS = Tl

loi = T|=0; — |T]

|L=T|=0, — |T]

This translation defines actually a translation of As types into simple types since
all the pre types of the same type are sent to the same simple type as is easily
checked We now translate typed Ap terms into A terms:
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Definition 15. For each stream variable o, one considers new variables of A
calculus: cg, a1, ..., ap, ... The translation is then defined as follows:

[2]4s =2
D 4145 = AglAH S
[(tyu]?s = ([(17%) [u] s
[ An=o ) 4s — a4l )\anm"'.)\anH"".fﬂ As
()]s = ([t]12%)aq ... apyr if o is of type AL — ... A, — 0

where o is either a stream type variable or L
Proposition 12. If t is a typed Ap term, then [t]S is a simply typed X term

Proposition 13 (Simulation). Given two typed Ap termst and u, the follow
ing facts hold:

If t — o~ u then [t]4s = [u]/s
Ift —s gy u then [t]4s —>§n [u]As

Proposition 14 (fst~ terminates). Let t be a typed Ap term there is no
infinitely long fst— derivation from t

Proposition 15 ([ ]4s is reduction-length increasing). If t —>;mﬂ u
with m Bn reduction steps, then there exists a 3n reduction from [t]4s to [u]As
in at least m reduction steps

We can finally prove strong normalization of typed Ap calculus:

Proof Let us suppose that there exists an infinitely long typed reduction se
quence starting at a typed Ap term t: (¢;);>0 with ¢ = to and ¢; — .~ tit1
This reduction sequence contains only a finite number of Bn reduction steps
by proposition otherwise we would obtain an infinite S reduction sequence
from [t]”s in simply typed A calculus Thus there is a integer ng such that for
all n > ng, t,, — s~ tny1, and thus we would have an infinitely long fs¢™
reduction sequence which contradicts termination of fst— O

6 Conclusion

The aim of this paper was two fold: to develop the meta theory of Au calculus, an
extension of Parigot’s Ay calculus that has a Bohm theorem [20] and to review
and compare different versions of call by name Ap calculus that are found in
the literature Indeed, the relationships between those calculi were seldom made
clear



On the Relations between the Syntactic Theories of Ay Calculi 167

Contributions of the Paper. The contributions of the paper are as follows:

We proved confluence of Ay calculus and obtained a proof of the confluence
for Apn which is simpler than the proof previously known from [19]

We introduced a type system, Ag, for Au calculus that has subject reduction
and strong normalization Ag allows more terms to be typed and in particular
terms that were needed to obtain Bhm theorem in [20] whereas they were
not typable in the usual type system for Ay calculi

We investigated some relationships between call by name Ay calculi In par
ticular, we proved that Ap calculus is a conservative extension of A\un and
that Ape calculus is a conservative extension of A\u

On the other hand, the equational theory of Ay and Ape cannot be compared:
for any t € X, there exist u,v € X,,, such that t =4, v and ¢ #x,e v and
t=xpcvandt#a,v

The difference between Ap and Ape is also emphasized by the fact that Ap
has Béhm theorem while in Ape it is not possible to separate pa.0 and pa.l

Future Works. We plan to develop this work in several directions:

The comparison between Ap and Ape could probably be made more pre
cise thanks to A\utp that we are currently investigating with Herbelin and
Ghilezan This should in particular allow to understand more precisely where
are the different limits to the expressiveness of the variants of Ay calculus
The logical content of Ag is still to be made clearer: some results have been
obtained in a joined work with Michele Pagani by connecting Au to a sort
of polarized proof nets thanks to Ag

The interpretation of Apu calculus as a stream calculus was essential in de
signing As We wish to develop this aspect by studying the relationships
between Ap and infinitary A calculi

We wish to extend Ags in particular in the direction of polymorphism
Finally, an important motivation for providing Ap with a type system dif
ferent from the original Parigot type system, was to investigate typed sepa
ration Indeed, there is no hope to obtain a typed separation result with a
classical typing of Ay so that another type system, allowing more terms to
be typed, was needed

Acknowledgments. The author wishes to thank Michele Pagani, Hugo Her
belin and Silvia Ghilezan for helpful discussions and fruitful comments on a
previous version of a part of this work [2T]
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Abstract. We give a fully constructive semantic proof of cut elimina-
tion for intuitionistic type theory with axioms. The problem here, as with
the original Takeuti conjecture, is that the impredicativity of the formal
system involved makes it impossible to define a semantics along conven-
tional lines, in the absence, a priori, of cut, or to prove completeness by
induction on subformula structure. In addition, unlike semantic proofs
by Tait, Takahashi, and Andrews of variants of the Takeuti conjecture,
our arguments are constructive.

Our techniques offer also an easier approach than Girard’s strong
normalization techniques to the problem of extending the cut-elimination
result in the presence of axioms. We need only to relativize the Heyting
algebras involved in a straightforward way.

1 Introduction

We give a new constructive semantic proof of cut elimination for an intuitionistic
formulation of Church’s Theory of Types (ICTT) with axioms. The argument
extends and modifies techniques of Prawitz, Takahashi, Andrews and [4] which
are non-constructive. A discussion of the constructive character of the proof, and
the reasons why some older semantic proofs are not constructive can be found in
Section [ We also make use of a simple new technique to handle sets of axioms:
relativization of infinite-context Heyting Algebras, as discussed below.

We recall that the central problem in extending the conventional syntactic
proof of cut-elimination to certain impredicative higher-order logics is that one
cannot induct on the natural subformula ordering that places instances M|t/x]
below quantified formulae such as Jz.M, because it is not a well-ordering. This
can be seen by taking M to be the variable x of type o and taking t = Jz.M N A
for any A, for example.

The problem of extending cut-elimination to higher-order logic (known as
Takeuti’s conjecture when it was still open) was solved by e.g. Takahashi|2T],
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Prawitz[I8] and Andrews [I] by extending work by Tait [20] and following the
blueprint given by Schiitte in [I9] where he observed that cut admissibility can
be proved semantically by showing completeness of the cut-free fragment with
respect to a weaker semantics he called semivaluations, and then showing every
semivaluation gives rise to a total valuation extending it.

We generalize this approach by replacing Schiitte’s semivaluations by a pair of
semantic mappings into a Heyting Algebra which give an upper and lower bound
for the desired model, and show that such a pair can be defined syntactically
(and constructively) using sets of contexts of cut-free proofs. The resulting model
is easily relativized to extend to non-logical axioms by using a new parameter:
an arbitrary set of axioms.

Cut-elimination for many impredicative formal systems (but not the ones
considered here) has also been proved constructively using strong normalization
techniques following Girard[8[9]. We have chosen, rather, to take the alternative
approach, namely that of the Takahashi-Schiitte-Andrews tradition because it
seems to lend itself more readily to the addition of axioms, a central concern
of this paper. Also one of the main interests of the authors in this work is to
apply these techniques to formal systems in which rewriting rules are combined
with sequent calculus, such as Deduction Modulo, invented by Dowek, Hardin,
Kirchner and Werner [56]. Cut elimination for various fragments and variants of
this system, studied elsewhere by Hermant and Dowek, does not, in general, sat-
isfy strong normalization, and it is therefore not obviously amenable to Girard’s
techniques.

2 The Formal System: A Sketch

For definitions of types, terms and reduction in the intuitionistic formulation
of Church’s Theory of types, due originally to Miller et al. [I3], we refer the
reader to [2[14], and limit ourselves to recapitulating the rules of inference, in
Fig. [l where A stands for 7 conversion, and where structural rules, such as
contraction and weakening, are implicitly assumed. Types are omitted where
clear from context, and we use Church’s notation (S«) for the arrow type o — 8
with association to the left. Fig. [[l does not include the cut rule:

I'-B I'BF A

e A ut

When we mean a proof within the rules of Fig.[Il we use the symbol F*, and the
unadorned F when we allow the cut rule. I' = A will also abbreviate “the sequent
I' F A has a proof”. In the rest of the paper, we consider a fixed language S for
ICTT, i.e. for each type, a set of constants.

3 Global Models

We will make use of the notion of applicative structures, a well-known semantic
framework for the simply-typed lambda calculus [7T71T4].
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T LUwrU rlr 1

F,B,CFAAL reB rec .
ILBAC - A I'FBAC
I'BrA ICHA I'b B
ILBVCF A L rrBvB R
I'EB LOFA B+ C
I'B>CFA ~—F I'B>C
I Plt/z] = A I'+P
I'VaPF A 'L revep "R
P+ A I+ Plt/x]
r3zpr A L* e 3z.p 8
I+ A Ik L
rea? rep*r

Fig. 1. Higher-order Sequent Rules

Definition 1. A typed applicative structure (D, App, Const) consists of an in-
dezxed family D = {Dy} of sets Dy for each type «, an indezed family App of
functions App,, 5 : Dga X Do — Dg for each pair (o, ) of types, and an (in-
dezxed) interpretation function Const = {Const, } taking constants of each type o
to elements of D,,.

We will abbreviate the mapping App to the infix operator - when types are clear
from context.

So far we have only supplied a structure to interpret the underlying typed
A-calculus. Now we interpret the logic as well, by adjoining a Heyting algebra
and some additional structure to handle the logical constants and predicates.

Definition 2. A Heyting applicative structure, or HAS (D, App, Const,w, {2) for
ICTT is a typed applicative structure with an associated Heyting algebra {2 and
Sfunction w from D, to 2 such that for each f in Doy, {2 contains the parametrized
meets and joins

/\{w(App(f,d)) : d € Da} and \/{w(App(f,d)): d € Du},
and the following conditions are satisfied:
To
1o
w(di) Aw(dz)
w(d1) V w(dz)
w(di) — w(d2)
\/{w(App(f,d)) : d € Do}
\{w(App(f,d)) : d € Do}

w(Const(T,))

w(Const(L,))
w(App(App(Const(Aooo), d1), d2))
w(App(App(Const(Vooo), d1), d2))
( d2))

f)

f)

w(App(App(Const(Dooo), d1), do

w App(conSt( o(oa) s

(
w(App(Const( o(oa) s
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By supplying an object 2 of truth values we are able to dlbtlnglﬂbh between
denotations of formulae (elements d € D,) and their truth-values w(d) € ll

An assignment ¢ is a function from the free variables of the language into D
which respects types, and which allows us to give meaning to open terms.

Definition 3. A global model for 1ICTT is a total assignment-indexed function
D = {D( ), : ¢ an assignment} into an HAS (Heyting applicative structure)
(D, App, Const, w, 2) which takes (possibly open) terms of type « into D, and
satisfies the following environmental model conditions and n-conversion:

@(c)q; = Const(c) for constants ¢

D(x)e
D((MN)), = APP( (M)p,D(N)y)
D(Azo.Mp)y  is the unique member of Dgq s.t.
for every d € Do App(D(Axa.-Mp),,d) = D (M) sa/a]
D(M), =9(N), M n-equivalent to N

() for variables x

Given a model ® and an assignment ¢, we say that ¢ satisfies B in ® if
w(D(By)y) = Tg; this is abbreviated to ©® =, B,. We say B, is valid in ®
(equivalently, © = B,) if ® =, B, for every assignment . We abbreviate the
truth-value w(D(B,),) to (B,)}. We also omit the subscript ¢ and parenthesis
when our intentions are clear. We often use the word model just to refer to the
mapping ( )* from logical formulae to truth values in (2.

3.1 Soundness of ICTT for Global Models
In the following we extend interpretations to sequents in a natural way.

Definition 4. We define the meaning of a sequent in a model to be the truth-
value in {2 given by:

(I'+ Ay = (\T > A
where \ I’ signifies the conjunction of the elements of T .

Note that (A" D A)* = T if and only if T < (A" D A)*, which is equivalent
to (ANI)* < (A)*. We will abbreviate (A I')* to (I')*, and express the validity
of the indicated sequent by (I")* < (A)* or, when referring to the environment,
by (I')7, < (A), henceforth.

Theorem 1 (Soundness). If I' b A is provable in 1CTT then (I")* < (A)* in
every global model € of ICTT.

A proof can be found in [4].

! This allows us to assign different truth values to Doo(Ao) and poo(B,) even when A
and B are provably equivalent and hence have the same truth value. The equivalence
of the higher order formulae poo(Ao) and poo(B,) holds neither in ICTT as presented
here nor in the AProlog programming language, based on a sub-system of ICTT.
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A straightforward proof of completeness of ICTT for global models can be
given under the assumption that cut is admissible for ICTT along the lines of
[2214], i.e. by choosing {2 to be the Lindenbaum algebra of equivalence classes of
formulae and then interpreting each formula as its own equivalence class. Just
to show (2 is partially ordered, we need cut.

Since we are not assuming cut holds in ICTT we must proceed differently.
We will choose the complete Heyting algebra (2. generated by “relativized
cut-free contexts”, that is to say, contexts from which formulae can be proved
without using cut. A partial valuation will be defined for this cHa, yielding an
interpretation that establishes completeness and the admissibility of cut.

4 From Semivaluations to Valuations

In order to apply Schiitte’s plan [19], we need to extend the definition of a
semivaluation in our intuitionistic (and higher-order) setting and lift the notion
to Heyting Algebras. We also generalize Schiitte’s definition in one critical way:
the partial information is given in terms of lower and an upper bounds for a
model, which gives us an additional degree of freedom in how we approximate
the truth value of a formula.

Definition 5. Let 2 be a Heyting algebra. A global {2 semivaluation V =
(D, App, Const, 7, v, 2) consists of a typed applicative structure (D, App, Const)
together with a pair of maps m: D, — 2 and v : D, — 2, called the lower
and upper constraints of V, satisfying w(d) < v(d) for any d € D,, as well as the
following:

(To)=Ta m(Le) = Lo
m(Const(x) - A - B) TF(A) *0 Tr(B) forx € {A,Vv,D}
m(Const( Ty (om) - f) < \/{( :d € Do}
(Const(y (o) - from) < [\ {r( :d €Da}
and
v(To) =Ta v(Lo) = Lo

v(Const(*) - A - B) v(A) xq v(B) for = € {A,Vv,D}
v(Const(Zo(oay) - f) = \/{v(f -d) : d € Da}
v(Const(ITo(oa)) - fom) = N\{v(f-d): d € Da}
and the consistency or separation conditions
m(Const(D) - B-C) Av(B) < w(C) (1)
m(B) —¢ v(C) < v(Const(D) - B-C). (2)

Remark 1. The reader should note that some of these requirements are superflu-
ous. For example, the separation conditions and the first condition imply the D
requirements for both 7 and v. If we think of [7(A4),v(A)] as a — by definition



174 O. Hermant and J. Lipton

nonempty — interval, one sees that it contains all the potential truth values of
A, indeed the semantic “truth value candidates”, instead of Girard’s reducibility
candidates. The circularity mentioned in the introduction will then be avoided
by quantifying over all those candidates rather than subformulae.

The definition of environment, and global structure remain the same for semi-
valuations. As with Heyting applicative structures, in the presence of an envi-
ronment ¢, a semivaluation V induces an interpretation U, from open terms A
to the carriers D as follows:

T(c), = Const(c) for constants ¢

B(z), = () for variables x
B(M), =U(N), M eta-equivalent to N
B((MN))e = App(V(M)y,, B(N),)

App(B(Aza-Mp),,d) = B(M)p[p:=q) with U(Aza.Mp), the unique such value.

This assignment induces a pair of partial, or semi-truth-value assignments | ]]g
and [ ]¥ to terms A, of type o given by

VIA]G = 7(T(A)y) VIALG = v(T(4),)
Theorem 2. Given an 2-semivaluation V = (D, -, Const,m, v, 2), there is a

model ® = <|57®7(A:7w7()> extending V in the following sense: for all closed
terms A,

VIA]™ < w(®(A4)) < V[A]".

Furthermore, there is a surjective indexed map 0 : D — D such that for any
deD,

m(6(d)) < w(d) < v(6(d))
Proof. We refer the reader to [] for the proof.

5 Cut Elimination by Completeness

From Thm. [ deriving a (cut-free) completeness theorem for ICTT requires a
complete Heyting algebra {2 and an (2-semivaluation. We first give the definition
of {2, the Heyting algebra of cut-free contexts, critically different from the one
given in [4], where a tableaux-style construction is used, and extend the usual
notion of context-based semantics [T6J/I5] to the notion of infinite contexts, taken
themselves as a new free parameter.

5.1 The Cut-Free Contexts Heyting Algebra
We first define what is a cut-free context, generalizing Okada [16/15].

Definition 6 (outer value). Assume given a set of formulae =, possibly infi-
nite, but containing only a finite number of variables. Let A be a closed formula.
We let the outer value of A be:

[A] =4 | &, "'+ A}
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The contexts I' considered are always finite. The provability relation =, 1" * A
is with respect to some finite subset of =, 1.

So, an outer value [A] is the set of contexts proving A without cut (cut-free
contexts). With this, we build (2. When it is relevant, we stress the dependence
on the considered set of axioms = by 2 (Z).

Definition 7 (2«). Let = be a fized set of formulae. Let |2| be the least set
of sets of contexts generated by [A] for any formula A, closed under arbitrary
(denumerable) intersection, and ordered by inclusion. Then define meets and
joins on |2| as follows

— A\ = arbitrary intersection, just set-theoretic intersections.
— \/ = arbitrary pseudo-union, that is to say

\/S:ﬂ{c€|(2|:025}

where ¢ > S means Vs € Sc> s
Remark 2. From the definition, it follows that:

— Tp, is the set of all contexts and as well [T,].

— L is the intersection of all [A] and as well [L,]. In particular, Lo # 0.

— the suprema can be slightly simplified: a Vo b= (N{[A] | e Ub C [A]}, since
any c € §2 is of the form ;. 4 [A:]. As well, \/ S = N{[A] | [A] > S}.

Taking a—b = \/{z : x Aa < b}, the resulting structure £2 = (|£2|, \/, A,—) (also
written 2.5, when ambiguity may arise) is a complete Heyting algebra. We now
check that the A'\/ distributivity law [22] holds.

We first show one direction: for each member a = (), [A4;] of 2, we must have
anl/ S <Vans, where aNS means {aNs: s € S}. Unfolding definitions, the
inclusion to prove becomes:

an(W{IB]:[B] = 5} € (W{ID]: [D] = an S} 3)

Let I' be a context member of the left hand side, i.e. such that =, " +* A; for
any A; and =, I' H* B for every B such that [B] > S. Let D be a formula such
that [D] > anS. We must show =, I" * D to prove that [ holds.

Let A be a context such that A € s for some s € S. Since provability in
Def. 6] deals with subcontexts, we directly have =, A, I' F* A; and by a similar
reasoning A, I' € s. By definition of D, we get =, A, I' =* D. Hence A+* " D D,
where I' O D is a shorthand for By D --- B, D C, and A € [I" D D]. Since this
is valid for any s, we have shown [I" D D] > S.

But then, =, I" F* I' © D by assumption on I'. By Kleene’s Lem. [I] below
and contraction on the formulae of I" we have =, ' F* D, which shows that I
is a member of the right-hand-side of 3] which proves the claim.

The other direction follows, by elementary lattice theory: for any s € S it is
the case that aN'\/ S > aNs. Now take the supremum of a N s over all s € S.

To complete the proof, we need Kleene’s lemma, for the Dp rule.
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Lemma 1 (Kleene). Let C =5 A D B be formulae and I' be a context. If
I'EC then I’AE B, and if I'=* C then I AF* B.

Proof. Standard (see [10]) by induction on the structure of the proof.

5.2 A Semivaluation © and v

Now, we need to exhibit a {2-semivaluation to be able to apply Thm.[2l For this,
we need the following definition:

Definition 8 (closure). Let S be a set of contexts, we define its closure by:

cl(5) = ({IAl | 5 € [A]}

It is the least element of (2 containing S. We also write, for a single context I,
c(I) to mean cl({I'}).

Remark 3. cl(A) C d is equivalent to A € d for any d € §2. Indeed, A € cl(A)
and cl(A) is the Lu.b. of A. ¢l(S) can also be seen as the set of contexts admitting
cut with all the elements of S as shown in the following lemma.

Lemma 2. Let A be a formula. The following formulations are equivalent:

(i) cl(4) = N{IB] | A € [B]}

(it) cl(A) =4I | 2, +* B whenever =, A +* B}. Equivalently, I' € cl(A) iff
gwen any proof =, AF* B, a proof of =, =* B is derivable.

(iii) cl(A) ={I" | 2, +* B whenever =,I',A +* B}. Equivalently, I" € cl(A)
iff given any proof =, A+* B a proof of =, 1" * B is derivable.

() cl(A) = {I' | 2,A, " v* B whenever =, A, A F* B}. Equivalently, I €
cl(A) iff given any proof =, A, A+* B a proof of 2, A, I' * B is derivable.

Cases (ii) — (iv) can be summarized as follows: I' admits (Z-) cuts with A, hence
the terminology “I" is A-cuttable”.

Proof. (ii) unfolds the definition of [B] in (¢). (i7i) and (iv) reformulate (i¢)
with equivalent — thanks to Lem. [l Dg and contraction rules — notions of cuts.

We shall use any of the formulations given above, depending on our need.
Now we are ready to give the semivaluation we work with.

Definition 9 (the cut-free context semivaluation). Let the typed applica-
tive structure (D, App, Const) be the open term model: carriers D, are open terms
of type a in normal form, application A - B is [AB], the normal form of AB,
and we interpret constants as themselves. For any formula A, define:

m(A) = cl(A) and v(A) = [A]

The definition just given of a pair of semantic mappings based on cut-free proofs
and their contexts, and shown below to give rise to a semivaluation in the sense
of Def. [0 is essential to the constructive character of our proof of cut-elimination,
avoiding as it does the use of tableau style (Hintikka-set) construction of partial
models, as in [TI4], and the infinite tree arguments required.
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Lemma 3. (D, App, Const, 7, v, ) is a semivaluation in the sense of Def. [

Proof. We check the conditions of Def. B with respect to the open term model.
Each case follows the same pattern: it uses the corresponding rule of inference.

cl(A) C [A]. Immediate since {A} C [A] and from Rem.
cl(T,) = Tg. Tgois the greatest element so we focus on the reverse inclusion.
Consider a proof of =, T, F* A. The only rule we can use on T, besides
structural ones and conversion is the axiom. We can replace it:

e, 1R
Hence, = H* A and, by weakening, =, ' +* A for any I', and T C cl(T,).
cl(L,) = L. Lg is the least element and, by other cases cl(L) C [L] = Lp.
cl(ANB) < cl(A)Ncl(B). This amounts to showing AAB € cl(A)Ncl(B). We
prove that AA B is A-cuttable. Consider a proof of =, A F* C'. We construct
the following proof:

S AR C .
=,ABFC
ZArBrC ' F

Hence, A A B € cl(A). On the same way, A\ B € cl(B).
cl(AV B) C cl(A) Vg cl(B). Tt suffices to show AV B € cl(A) Vg, cl(B). Let
C be such that cl(A) Ucl(B) C [C]. A € [C], B € [C], and the proof:

ZE,AFC ZE,BrrC
EAVBHFHC

L

shows that AV B € [C]. This holds for any such C, hence for their meet,
and AV B € cl(A) Vg cl(B).

cl(A D B) C cl(A) — c(B) is a consequence of cl(A D B) A [A] C cl(B)
(proved below) as mentioned in Rem. [

c(X.f) C V{c(ft) | t € T,} (where a is the suitable type). Equivalently,
X.f e V{cd((ft)) | t € 7.}. Let t be a variable y of type « that is fresh
for f and =. We prove that X.f is fy-cuttable. Assume we have a proof
=, fy F* C. The proof:

E, fyk C
EXfFC

justifies the fy-cuttability. Hence X.f € ¢l(fy), and it is in the supremum.
cd(II.f) € N{cl(ft) | t € To}. Let t be a term of type a. The proof:

S, ftH C
= C
shows that I1.f is ft-cuttable for any ¢.
[To]l = T and [L,] = Ly hold both by definition, from Rem.

[AA B] 2 [A]JAn[B]. Let I' such that =, I' H* A and =, I' H* B. The claim
is established by the proof:

L
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=V A  ET+B
S AAB "
— [Av B] 2 [A] Vg [B]. We show [AV B] D [A]. Let I € [A]. The proof:
S A
R
=, '+ AVB

shows that I" € [A V B]. Hence [A V B] is an upper bound for [A] and [B].

— [A D B] 2 [A] —g« [B] is a consequence of cl(A) — [B] C [4 D B].

— 2.1 2 VAlft] | t € To}. Let t be a term, and I" € [ft]. The proof:

S, 0F ft
dr
=0 S.f
shows that [X.f] is an upper bound for any [ft], hence for their supremum.

— [L.f] 2 N{[ft] | t € Ta}. Let I' € A{[ft] | t € T.}. Let y be a fresh

variable with respect to I, = and f. In particular, I" € [fy]. The proof:
ETIE" fy
=L ILf

shows that I" € [II.f].

— (B D C)Ng[B] Cd(C). Let I' € cl(B D C) N [B]. We must show the

C-cuttability of I'. Consider a proof of =, C' F* D. Since I' * B:
= I'+*B  EICHF D
Z,,B>CH D
By B D C-cuttability of I" we get =, " +* D.

— c(B) = [C] C[B>C]. Let I' € el(B) — [C] and show =,I"'+* B D C.
Since I' € cl(B) — [C], we have cl(I")Ncl(B) C [C]. Furthermore, I" € ¢l(I")
and B € cl(B), therefore I', B belongs to both. So I', B € [C], and we derive
the desired proof:

L

=, I,B+ C
=, ' B>C

DR

5.3 Completeness and Cut Elimination of 1cTT

We now have all the results needed to establish completeness.

Theorem 3 (cut-free completeness of 10TT). Let I" be a context and A be
a formula such that for any global model I'* < A*. Then I' = A has a cut-free
proof.

Proof. Calling ¢ the empty context, we apply Thm. 2] with the Heyting algebra

Q4 (e) given in Def. [[ and the semivaluation 7, v of Def. @l We get, from Rem.
Bl by Thm. 2 and by hypothesis that:

Fed(I)CI*CA*C[A]

Hence, I' H* A. An alternative proof involves 2 (I"): any context is trivially
I'-cuttable, so € € cl(I") = T. With the same inclusions as above (but the first)
we get that I, e F* A. The interested reader may in fact prove Thm. [3 as many
different ways than elements in J3(I"), the powerset of I".
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As an immediate corollary, we have:

Corollary 1 (constructive cut elimination for 1CTT). Let I' be a context
and A be a formula. If ' = A in 1CTT, then it has a proof without cut.

Proof. By soundness and cut-free completeness, both of which were proved con-
structively.

6 Adding Non-logical Axioms

Now, we allow a more liberal notion of proof, with non-logical axioms.

Definition 10. A non-logical axiom is a closed sequent A+ B. Assuming such
and axiom At B, an axiomatic cut is the following implicit cut rule

I'A T,BrC
r'+cC

A proof with non-logical axioms is a proof whose leaves are either a proper
axiom rule, or a non-logical axiom and allowing the use of axiomatic cuts.

In the sequel, we fix a set (potentially infinite) of axioms, and consider proof
system is ICTT with those non-logical axioms.

The constraint for A F B to be closed is not a theoretical limitation: it suffices
to quantify over the free variables. In particular, we capture axiom schemes.
The two new rules overlap, since an axiomatic cut is simulated with a non-
logical axiom and two (usual) cuts. Conversely, we can simulate the non logical
axiom rules, even in a cut-free setting, so we often consider only axiomatic cuts:

IN'AF A "B+ B . .
I'A-B axiomatic cut

We show in this section that we still have, by the same means, cut elimination
in 1CcTT with non-logical axioms, but that we can not, in the general setting,
eliminate axiomatic cuts. First, we need another, unsurprising, notion of model:

Definition 11 (model for axioms). A global model for 1IcTT (Def. [d) is a
model of the non-logical axioms A; = B;,i € A if and only if for any i, A < Bf.

In the sequel, we will only be interested in such models.

Theorem 4 (Soundness of 1CTT with non-logical axioms). If I' - A in
ICTT with non-logical axioms, then I'* < A* in any global model of the non-
logical axioms.

Proof. We replace axiomatic cuts by axioms and cuts. Then the proof is done
by the very same induction as the one of Thm. [l The only additional case is a
non-logical axiom A F B, trivial from the assumption on the model.

Now we work towards a proof of a cut-free completeness theorem for ICTT with
non-logical axioms. Cut-free means free of cuts, but not of axiomatic cuts, which
we will not be able to remove.
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6.1 Completeness and Cut Elimination in Presence of Axioms

Given the non logical axioms A; - B;, let = be the set of all the A; D B;. We
show that the valuation in Q2 (Z) given by the (2-semivaluation of Def. [l is a
model of the non-logical axioms. So in Lem. @] provability refers to pure ICTT.

Lemma 4. The valuation given by Theorem [A with cl( ),[ ] as an Q2 (Z)-
semivaluation is a model of the non-logical axioms.

Proof. Let A F B be an axiom. A* C [A] and ¢l(B) C B* by Thm. 2] so we
show [A] C ¢l(B). This is implied by the fact that I" is B-cuttable whenever
=, '+ A. Given a proof =, I', B +* C, the following proof shows this claim:

=, I,B+ C E T A
EIADBHC
Z, I+ cC

oL

contraction

Before we prove the completeness theorem, we have to switch from proofs of
Z,'H* Ain 1CTT to proofs of I' F* A in 1CTT with axiomatic cuts.

Lemma 5. Assume we have a proof © of the sequent I'’A D B + C in 1CTT,
possibly using axiomatic cuts. We can transform it into a proof of the sequent
't C in 1CTT with additional cuts on the non logical aziom A &+ B. If the initial
proof is free of cuts, then so is the resulting proof (save aziomatic cuts).

Proof. We can omit (by simulating) non logical axiom rules. We track the de-
composition of A D B, and replace it by an axiomatic cut rule, that is the
exact premises of the Dy rule. We assume to have a proof of the sequent
IDy,....,D, - C, where D; =5 A D B and prove the result by induction
over the structure of 7. All cases are a trivial use of induction hypothesis, save:

— an axiom rule with D the active formula. We build the following proof:

FAFA axiom I'BFB ax?om '
IAFB axiomatic cut
ORr
I'ADB A\
I'+ D,

— a D-lrule on D; = A’ D B’. We have the proof:

T ™2
[Day...,Dub A" LB\ Day. Db C
Dy, Ds,.... Do FC f

Applying induction hypothesis to get 7; and 75, we form the proof:

1 e
' A I'B'FC
I'EA I'BrC . .
r'ec axiomatic cut

Observe that we do not introduce any cut save axiomatic ones.
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Theorem 5 (cut-free completeness of ICTT with non-logical axioms).
Let I' be a context and A be a formula such that I'™* < A* for any global model
of the non logical axioms. Then I' = A has a cut-free proof.

Proof. Considering Qi (=) in Thm. B we get =, ' * A in 1CTT. Applying Lem.
a finite number of times (provability is always with respect to a finite subset,
from Def. [l), we get a cut-free proof of I" H* A.

As an immediate corollary, we have:

Corollary 2 (constructive cut elimination for 1CTT). Let I' be a context
and A be a formula. If I' = A has a proof in ICTT with non logical axioms, then
it has a proof without cut.

Proof. By soundness and cut-free completeness, both of which were proved con-
structively.

7 On the Constructivity of the Proof of Cut Admissibility

Our proof, unlike [21IT] for the classical case or [] for the intuitionistic case,
makes no appeal to the excluded middle. The works cited (and our work as well)
start directly, or indirectly from Schiitte’s observation [I9] that cut admissibility
can be proved semantically by showing completeness of the cut-free fragment
with respect to semivaluations, and then showing every semivaluation gives rise
to a total valuation extending it.

There are a number of pitfalls to avoid in finding a constructively valid proof
based on this kind of argument, both in the way a semivaluation is produced
and how one passes to a valuation.

Andrews shows [I] that any abstract consistency property gives rise to a semi-
valuation, but then builds one in a way that requires deciding whether or not
a refutation exists of a given finite set of sentences. In particular, he needs to
show (Thm. 3.5 in [I]) that any finite set S satisfying an Abstract Consistency
Property is consistent. The proof actually establishes =—[Th. 3.5]. Furthermore,
when showing that his cut-free proof system defines an Abstract Consistency
Property (Sec. 4.10.2) he ends up proving the contrapositives of the defining
properties of an ACP.

One can also exhibit a semivaluation by developing a tableau refutation of a
formula (a Hintikka set) as is done in [4] but some care must be taken in the
way the steps are formalized so as not to appeal to the fan theorem to produce
an open path. No discussion of how this might be done appears in [4].

The proof given in this paper appeals to the strengthened version of Schiitte’s
lemma in [4] which uses the more liberal definition of semivaluation pairs, (rather
than semivaluations) which provide an upper and lower bound for the truth val-
ues of the valuation eventually produced by Takahashi’s V-complex construction.

As we have shown, it is possible to give an instance of such a pair (namely
cl( ) and [ ]) without using tableaux and prove they satisfy the semivaluation
axioms without appeal to the excluded middle.
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Constructive Completeness. Producing a constructive proof of completeness is
itself problematic, as pointed out by Godel and discussed in [I223] if a sufficiently
restrictive definition of validity is assumed, e.g. conventional Kripke models.
However, there are a number of ways to liberalize the definition of validity to
“save” constructive completeness [243I22TT], in particular by allowing truth-
values in a sufficiently broad class of structures. In our case these structures
include complete Heyting Algebras in which we cannot decide whether or not
any giwen element is distinct from T or even, for that matter, if the structure
itself collapses to a one-element set. This appears to be a natural Heyting-valued
counterpart to Veldman’s exploding nodes [24].

In [22] completeness for an intuitionistic system with cut is shown construc-
tively by mapping each formula to its own equivalence class in the Lindenbaum
cHa. We cannot use this semantics here since cut is required to show that the
target structure is partially ordered.

The semantics used in this paper can be seen as a cut-free variant of the
Lindenbaum algebra, in which formulas are mapped to the sets of contexts that
prove them without cut. Here too, one is not required to decide the provability
of formulae in order to show model existence, in contrast with the T, L-valued
semantics of [II21].
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Proving Infinitude of Prime Numbers Using
Binomial Coefficients

Phuong Nguyen

University of Toronto

Abstract. We study the problem of proving in weak theories of Bounded
Arithmetic the theorem that there are arbitrarily large prime numbers. We
show that the theorem can be proved by some “minimal” reasoning (i.e.,
in the theory IA() using concepts such as (the logarithm) of a binomial
coefficient. In fact we prove Bertrand’s Postulate (that there is at least a
prime number between n and 2n, for all n > 1) and the fact that the num-
ber of prime numbers between n and 2n is of order ©(n/ In(n)). The proofs
that we formalize are much simpler than several existing formalizations,
and our theory turns out to be a sub-theory of a recent theory proposed
by Woods and Cornaros that extends IA( by a special counting function.

1 Introduction

A long standing problem in proof complexity theory is whether the fact that
there are infinitely many prime numbers is provable in the theory IA, the
theory over the vocabulary 0,1, +, -, < that is axiomatized by basic properties
of this vocabulary and induction axioms for all bounded formulas. The problem
remains open even when we replace IAg by IAq(7), a theory that extends IA(
by adding the function m(n) which is the number of prime numbers less than or
equal to n [Woo81]. (IAq(m) is also called IAq(7) + def (7) in the literature.)
The motivation for the latter is: suppose that we are able to count the number of
primes, then is it possible to prove the infinitude of primes using some “minimal”
reasoning?

These problems belong to the area recently named Bounded Reverse Math-
ematics [Coo07] whose purpose is to formalize and prove (the discrete versions
of) mathematical theorems in weak theories of Bounded Arithmetic. A related
problem [PWWSS] is whether a weak form of the Pigeonhole Principle is prov-
able in IA, or equivalently, whether it has polynomial-size constant-depth Frege
proofs.

Recently some progress has been made in [WCOT] where it is shown that
IA( (&) (called IA((E) + def () in [WCOT]) proves the infinitude of primes. Here
IA((§) extends IA( by the function ¢ that counts some definable sets of prime
numbers. The function 7 can be defined using &, so IA((§) is an extension of
IA( (7). It is unlikely that £ can be defined in IAg(7).

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 184-{I38] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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In an earlier paper [Cor95| it is shown that the infinitude of primes is also
provable in IAg(m, K), the theory that extends IAq(7) by a defining axiom for
the function

K(n) =" In(i)
i=1

Tt is not clear whether IA((€) extends IA((m, K), or vice versa.

In this paper we show that the infinitude of prime numbers is provable in

IA((7, lbc), the theory obtained from IAg(7) by adding a defining axiom for
the function
(2n)!
nin! )
(Ibe stands for logarithm of binomial coefficient). We also show that the function
Ibc is definable in IA((€). Together with the fact proved in [WCO07| that 7 is
definable in IA((§), this implies that IAq(m, lbc) is a sub-theory of IA((£). So
our results strengthen the results from [WCQOT7]. On the other hand, we do not
know whether our theory extends that of [Cor95], or vice versa.

Note that the function ¢ [WCQT] is a counting function that is more general
than 7, while both K [Cor95] and our function lbec are not. Also, if we add to
IA( a counting function and its defining axiom for every Ag-definable set, then
the resulting theory, here we called IA((count), extends all IAq(E), IAq (7, K)
and IAq(m, lbc). It has been shown [CD94] that IAg(count) proves the Prime
Number Theorem (that there are ©(n/In(n)) primes less than n). It is easy to see
that TAg(count) is equivalent to the number part of the theory VTC? [NCO5,
[CNOG], aotwo—sorted theory that is associated with the two-sorted complexity
class TC".

lbe(n) = In(

1.1 Existing Formalizations

Our formalization is based on Chapter 8]. At high level, the proof that
we choose to formalize is essentially the same as that of [WCOT]. However, we
explicitly use the binomial coefficients mentioned above, so our formalization
is simpler. In fact, the axiom that we need to define lbc is provable (in IAy)
from the defining axiom for the function ¢ introduced in [WCQT]. Moreover, the
function £ seems to be indispensable for the formalization in [WC07], because it
is needed in proving (the approximate version of) the asymptotic identity

(@) = () + () = v

x

4)+...) = x1n(2)

where

Bla) = 3 AG)

i<z

and A(x) is the von Mangoldt function,

M) = In(p) if z = p’ for some prime p and some j > 1
0 otherwise
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1.2 Owur Formalizations

The proofs that we formalized are simple proofs which rely on different (approx-
imate) representations of

(2n)!
nin!

In( ) (1)

One way of computing () is to use the fact that

Z In(i) = nln(n) — n + O(In(n)) (2)

This produces

n'n' Zln -2 Zln =2n1n(2) + O(In(n)) (3)

Another expression for () is

S me) > (20/p] - 2(n/p) @)

p<2n 1<jApi <2n

This expression reveals useful information about the prime numbers that are
< 2n. For example, it gives us

2n)!
In( (n!n)! ) < 7(2n)In(2n)
and so a lower bound for m(2n) follows using (3). Moser’s simple proof of
Bertrand’s Postulate that we formalize also stems from (@) (see Lemma [Ig]).

In our formalizations, the function lbe is defined based on the expression ().
The obstacle that prevents us from resolving Woods’ conjecture is the inability
to compute in IAg(7) this summation.

Of course we cannot compute the function In(z) precisely, so as in [Woo81] we
use an approximation to it. Our approximation and much of the formalizations
are from Chapter 8]. The approximation to In(z), denoted by In(x, m)
for a parameter m, is essentially the same as the approximation given in .

Here we give a more detailed and direct proof of our version of ().

1.3 Organization

The paper is organized as follows. In Sectionlwe recall IA and some important
properties. In Section we define in IA( an approximation to In(z). The
function lbc is defined in Section 26l and in Section [Z7] we show that it is
definable in IA((&). The IAg(m, lbc)-proof of a lower bound for m(n) is given
in Section Bl The lower bound for m(2n) — w(n) and Bertrand’s Postulate are
proved in Section [El
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2 The Theories IAg, IA((7), and IAq(7, lbc)

The language of IAy is
{07 ]-7 +7 5 <, :}

The theory IA( is axiomatized by some basic defining axioms for the symbols
in the language (see [HP93, [Kra95, [CN06]) and induction axiom scheme for
bounded formulas. IAy denotes the universal conservative extension of IAj
obtained by adding Skolem functions that eliminate quantifiers in the axioms of
IAg. (We do not need the fact that IA is a universal theory here.)

(Instead of IA( and its extensions, we can use the two-sorted theory V°
[CNO6] and its corresponding extensions, because VU is conservative over IA,
and the same can be shown for their respective extensions. Care should be taken,
however, when we look at the associated complexity classes: V? is associated
with the two-sorted class AC® where sets are presented by binary strings and
numbers by unary strings; on the other hand, IA is associated with the Linear
Time Hierarchy, because here numbers are written in binary.)

The following theorem is from [Ben62l [HP93] [Bus98| [CN0E):

x

Theorem 1. The relation (on numbers) y = z* can be represented by a Ag

formula.

Corollary 2. The function |z| (or alsolog(x)), where |0] = 0 and |z| = |logy(x) ]
if v > 1, is definable in TA,.

The following theorem is from [WooST]:

Theorem 3. For a bounded Ag-sequence x1,Ta, . .., x¢ where £ < (log(a))? for
some a and some constant d € N, the function

D @i

1<i<e

18 definable in 1A and it is provable in 1A¢ that

Z T, = Z T+ Tpyp1

1<i<t+1 1<i<t

2.1 Rational Numbers in 1A

We will approximate the natural logarithm function by rational numbers. Here
we only need nonnegative numbers which can be defined in IA( by pairs (z, y),
where

(z,y) =det (x+y)(x+y+1)+2y

For readability we will write * for (z,y). Equality, inequality, addition and mul-
tiplication for rational numbers are defined in the standard way, and these are
preserved under the embedding z +— 7. For example, =g and <q are defined as:

/ /

x T x T
=q , =xy =1y, and <qg ,=axy <’y

) Y Y Y
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Then it can be shown that

1A+ |2/y) <g ;” <g lz/yl +1

(here |z/y| = maz{z : zy <z}, and r <g s = (r <g s AT #g s)). In the
following discussion, we will simply omit the subscript Q from =g, <g, etc.; the
exact meaning will be clear from the context.

For a rational number ; > 1, define

|T\ =maz{i : s2" <r}
s

2.2 Approximating In(x) in IAg

We will now define in IA( a function In(x, m) which approximates In(z) up to
O(|z|/m), for x € N, where m is a polynomial in |a|. Following [Woo81] we will
first define In(x, m) that approximates In(z) upto 1/m for 1 <z < 2. Then for
x > 2 define .

) 5)

It is easy to see that for any x > 1, In(x, m) approximates In(z) upto O(|z|/m).

In(z,m) = |z|In(2, m) + In(

y=1/z

1/m

m—+1 m+2
Fig. 1. Defining In(xz, m) for 1 <z < 2: the shaded area is (@)

Our definition of In(x, m) for 1 < x < 2 is essentially the same as the definition
of log™* of [Woo81]. Note that

Our approximation will be roughly (the shaded area in Figure [II):

1 1 1
Z mk/m - Z k (©)

m<k<[mz] m<k<[mz]
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We will not compute this summation precisely (since we want to avoid comput-

ing the common denominator). Instead we approximate ,16 by Lbékj for some b
determined below. Thus

ln(x, m) _ Zm§k< [I;n:ﬂ I_b/k'J (7)

The summation in (@) can be carried out in IA by Theorem [3

Notice that (@) is an upper bound for In(z) with an error (the total area of
the shaded region above the line xy = 1) at most 1/m, and () is a lower bound
for ([B) with an error at most mxz/b. So to get an 1/m-approximation to In(x) it
suffices to take b = m?3.

Notation. Throughout this paper, fix some a sufficiently large and m a power
of 2, m = polylog(a) = 2". (In particular, m > |a|>.) We use ||-|| for absolute
value, e.g., ||[t1 — t2]| < s is an abbreviation for t1 < to + s Ata <1 + s.

Definition 4 (In(z,m) or just In(x)). Let a,m be as in the above Notation.
For 1 <z <2, In(z,m) is defined as in (@) with b =m3. For x > 2, In(x,m) is
defined as in (0.

Lemma 5 (Provable in IA). a) x <y D In(z,m) < In(y,m).
b) [[In(zy, m) — (In(z,m) + In(y,m))| = O F1)
For a proof see [Ngu0O8b, Lemma 2.5]

2.3 Defining > In(z) in IAg

The fact that Y, .,.,, In(¢) is definable in IA( is from [Woo81]. We reprove it
here (for our definition of In(z)) in order to roughly estimate the sum.

Theorem 6. a) The following function is definable in IAq:

> In(i) (8)
=1

n

S:Zln(zy T:Zln(mn:t), T,= Y. ln(2,ni,1,) (9)

i=2ln—1l41

Then S,T,T,, are definable in 1A, and it is provable in 1A that (let { = |n—1])
Zln =S+t -2 — (h—2)2")In(2) + 2" - 1)T + T, (10)

c) It is provable in IAq that

n+1

> In(i) Zln +In(n 4 1) (11)
i=1

For a proof see [Ngu0O8b, Theorem 2.6]
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2.4 IAo(7) and Defining > In(p) in IAq()

Notation. Throughout this paper, the index p is used for prime numbers. P
denotes the set of prime numbers. Note that the relation x € P is represented
by a Ag formula.

Let

m(n)=#{p<n : peP}
IA((7) extends IA( by 7 and the following defining axioms for it:

©(0) =0
7r(n+1):{7r(n) ifn+1¢gP

m(n)+ 1 otherwise

Chebyshev’s function

I(x) = Z In(p) (12)

p<z
plays an important role. Here we use
I(z,m) = In(p,m) (13)
p<w

and will simply write ¥(z) for d(x, m). We use the following defining axioms
for 9:
d(n)+In(n+1) ifnt+leP

: (14)
9 (n) otherwise

J¥(1) =0, d(n+1)= {

Theorem 7. The function¥(x) with defining axioms ([4) is definable in I1Aq(r).
For a proof see [NguO8b, Theorem 2.7]

2.5 Unique Prime Factorization

The Fundamental Theorem of Arithmetic (or Unique Prime Factorization The-
orem) states that any natural number n > 1 can be written uniquely as

€ € €
n=py'py° ... D

where p; < py < ... < pj are prime numbers, and e; > 1.
In IAy we can prove the existence and uniqueness of the sequence

(plu 61)7 (p27 62)7 BRRE) (pk:; ek)

= mpf”""l f n. Note that the
sequence can be encoded by a binary string of length O(|n|). Also, the product

k
e

1]#

i=1

for such sequence can be defined and proved to be n in IA,.

that contains all prime divisors of n, and e; > 1, p*
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Here we use the following function which is provably total in IA, (ex stands

for exponent): 4
ex(p,n) = maz{j : p’|n}

Our version of the Fundamental Theorem of Arithmetic is as follows:

Lemma 8. The sum

Zex p,n)In(p,m)

pln

1s definable in IAg, and it is provable in 1Aq that

[in(n, m) — 3" ex(p,n) In(p.m) | = O™

pln

)

m

For a proof see [Ngu0O8b| Lemma 2.9]

2.6 The Function lbe

= H p°r where e, = Z [/ ij

p<n 1<jApi<n

Note that

We use the function exfac for e, above.

Corollary 9. The following function is provably total in IA:

exfac(p,n) = Z [n/p’]

1<jnpi<n

Also, 1A proves that

exfac(p,1) =0, and  exfac(p,n) = ex(p,n) + exfac(p,n — 1)

(15)

(17)

Proof. The fact that exfac(p,n) is provably total in IA follows from Theorem
and the fact that the sum in the definition of exfac(p,n) has length < |n|.

The second property in (7)) is proved by induction on n.
Lemma 10 (Provable in IA)

In(2n)
In(p)

0 < exfac(p,2n) — 2exfac(p,n) <

For a proof see Lemma 2.11].
Note that from (I€) we have

n'n'
p<2n 1<jApI <2n

= [Ir>  where e, = > (120/p'] —2[n/p'))

O

(18)
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Now we introduce the following functions (lbc stands for logarithm of binomial
coefficient):

lbe(n) = Z e, In(p Z (exfac(p,2n) — 2exfac(p,n)) In(p)

n'n'
p<2n p<2n

Recall that P denotes the set of prime numbers. The function lbc is formally

defined as follows.

Definition 11. Let Ibc’ be the function with the following defining axioms
Ibc'(n,1) =0

Ibc' (n, k) ifk+1¢P

Ibe (n, k4 1) =
cln ) {lbc'(n, k)+ (exfac(p, 2n)—2exfac(p,n))In(p) if k+1=peP

Let Ibc(n) = Ibc' (n,2n).

Theorem 12. It is provable in IAy(lbc) that

lbe(n Zln —22111 ”'”‘)
For a proof see Theorem 2.13]

2.7 Defining lbc in IA((&)

The theory IAg(&) + def (§) [WCQT] is obtained from IA( by augmenting the
function ¢ and its defining axioms. The function &(x) = £(x,y, e) [WCO7] is

§(x) =#{p : pe P,p<wx,and |y/p°| is odd}

and has defining axioms (suppressing y, e):
£&0)=0
tt 1) =@ 1 ifrtlePand ly/(@+1))is odd

£(z) otherwise

Here we show that our function lbc is definable in IA (&) + def (€). As a result,
the lower bounds for w(n) and 7(2n)—n(n) that we prove in the following sections
are also theorems of IA((§) + def (). Thus we obtain alternative proofs for the

results from [WCO7].

Theorem 13. The function lbc with defining axioms given in Definition [I1] is
definable in IA(E) + def (£).
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Proof. We show how to compute lbc’(n, k) in IAq(€). Note that

Ibc' (n, k) = Z(exfac(p, 2n) — 2exfac(p,n)) In(p)

p<k
and by Lemma [I0]

In(2n)

0 < exfac(p,2n) — 2exfac(p,n) < In(p) m

By definition,

exfac(p, 2n) — 2exfac(p,n) = Z |2n/p7 | — 2 Z |n/p’ ]

pI <2n pI <2n

So, since the summations have length < |n/|, it is provable in 1A that

exfac(p, 2n) — 2exfac(p,n) = Z (12n/p"] —2|n/p’])

p?<2n
In other words,

n(2n)

1
exfac(p,2n) — 2exfac(p,n) = ) <
(p,2n) (p,n) = #{J In(p)

. |2n/p’| is odd}
As a result,

bd' (n, k) =y > In(p)

J<In(2n) \p<ka|2n/pi] is odd

The summation in brackets can be computed in IA((£) using the counting func-
tion & just as described in Theorems 2.6 and 2.7 of [NguO8b]. O

3 A Lower Bound for 7(n) in IAq(m, lbc)

Note that w(2n — 1) = w(2n) for n > 2. So it suffices to give a lower bound for
m(2n). We choose a simple proof for the 2(n/In(n)) lower bound for 7(2n) and
point out that this proof can be formalized using the function lbc introduced
above. From this lower bound for 7m(n) we can derive in IAq(r, Ibc’) the fact
that there are infinitely many prime numbers.

The idea is to compute an upper bound and a lower bound for (3,"73,!; by com-

paring these bounds we can derive a lower bound for 7(2n). In our formalization,
£ (2n)!

we will use lbc(n) instead of 7.

Lemma 14 (Provable in IA(r, Ibc'))
|

lbe(n) < 7(2n)(In(2n) + O( 'ZL )
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Proof. We prove by induction on k < 2n that lbc’(n, k) < 7(k)In(2n) using the
defining axioms for lbc’ (Definition [I]) and Lemma O
Lemma 15 (Provable in 1A (7, lbc')). For n > m:

nin|

lbe(n) = 2n1n(2) + ¢(m) + O( m ) (19)

for some constant ¢(m) depends only on m.

Proof. By ([{0) in Theorem [6] we have
2n n
> (i) = i) = @2n+ (h—2)2"")In@2)+ T - S
i=1 i=1

where T, S depend only on m (recall also that m = 2"). Now the lemma follows

from Theorem [T21 O
Corollary 16 (Provable in IAq(, lbc’))
7(n) = 2(n/ In(n)) (20)

It follows that the existence of arbitrarily large prime numbers is provable in
IA((7, lbe).

4 Bertrand’s Postulate and a Lower Bound for
7(2n) — w(n)

We will prove Bertrand’s Postulate (that w(2n) —7(n) > 1 for all n) and a lower
bound for the number of prime numbers between n and 2n: m(2n) — w(n) =
Q2(n/1In(n)). For the latter, we follow the proof from [Mos49]. First we outline
the proof of the lower bound for 7(2n) — 7(n); the formalizations are given in
Section E1

Recall Chebyshev’s function ¥(z) from (I2).

Theorem 17. Forn > 1, ¥(n) < 2nln(2).

Proof. First, because
(2k +1)!
Elk 4+ 1)!

appears twice in the binomial expansion of 221 we have

(2k +1)! 1 okt1 o2k
M) =22 T2 (21)

(2k+1)!
E!(k+1)!

2 1)!
R )
k+1<p<2k+1 ’ ’

Also, all primes p where k+ 1 < p < 2k + 1 divide . Hence
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Consequently,

@+ 92 Z 2k In(2)

I2k+1) - dk+1)= Y () <n 1)

k+1<p<2k+1

(23)

Now we prove the theorem by induction on n. The base cases (n = 1 and

n = 2) are trivial. For the induction step, the case where n is even is also obvious,
since then ¥(n) = ¥(n — 1). So suppose that n = 2k + 1. Using (23] and the
induction hypothesis (for n = k41) we have 9(2k+1) < 2k1n(2)+2(k+1) In(2) =
2(2k + 1) In(2). O

Note that this theorem gives a O(n/In(n)) upper bound for m(n), but we do not
need this fact here.

Lemma 18
(2n)! N
nin! < (2 I » IT » (24)
V2n<p<2n/3 n<p<22n

Proof. From (I§)), by noting that

1 ifn<p<2n
=0 if2n/3<p<n
<1 if [v2n] <p < [2n/3]
< In(2n) if p<v2n

Corollary 19. 7(2n) — w(n) = 2(n/In(n)).

Proof. Note that

(2n)! 22n
>
nin!l — 2n+1
(because (j,"n),! is the largest coefficient in (1 + 1)?"). Therefore
2n)!
(P S 20 1n2) - @2 + 1)
n!n!

Also,

In H p| <ln H p | =9(2n/3)

V2n<p<2n/3 p<2n/3
so by Theorem [T

In H p| <4nln(2)/3
V2n<p<2n/3
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In addition,

In ( H p> < (m(2n) — 7(n))In(2n)

n<p<2n
As a result, by taking logarithm of both sides of ([24]) we have
2n1n(2) — In(2n + 1) < V2n1n(2n) + 4nn(2)/3 + (7(2n) — 7(n)) In(2n)

From this the conclusion follows easily. O

4.1 Formalization in IAq(m, lbc’)

Recall (Section [24) that our version of Chebyshev’s function, ¥(x, m), or simply
(), is definable in IAq (7). Following Theorem [[7 we prove:

Theorem 20 (Provable in 1A (7, lbc")). For some constant ¢/ (m),

nn

d(n,m) < 2nIn(2) + |n|d'(m) + O( m )

Proof. Note that

(2k+1)!
Kk + 1)1
Using Lemma Bl and from the definition of lbe (Definition [[1l), we can prove in
IA (7, lbe) that

In( ) = lbc(k+1) —In(2)

m2)+ Y In(p) < lbe(k+1)
k+1<p<2k+1

(By proving by induction on j < 2k that

m2)+ > In(p) < b (k+1,5)
k+1<p<j

We will have to consider two cases: either k + 1 is a power of 2, or not.)
As a result, by Lemma [[5] we have

kK|

> In(p) < lbe(k+1) = In(2) = 2kIn(2) + (c(m) + In(2)) + O( )

k+1<p<2k+1
That is, for ¢/(m) = ¢(m) + In(2),

k|k|

P2k +1) —9(k+1) < 2kIn(2) + ¢'(m) + O( " )

Now we can prove by strong induction on k that

k|k|
o)

(using the fact that |2k + 1| = |k| + 1). O

I(k) < 2kIn(2) + |kl (m) + O(
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Following Lemma [I§ we have:
Lemma 21 (Provable in IAq(w, lbc,))
2
lhe(n) < |v2n] In(2n) + 9 ;) + 3 )
n<p<2n
Proof. The proof is similar to the proof of Lemma T4l (I

Corollary 22 (Provable in IA(, lbc'))
m(2n) —w(n) = O

Proof. By Lemma [T8] Theorem 20 and the above lemma we have

nn|

2n1n(2) + c(m) + O( m ) < |V2n]In(2n)+

It follows that for n > m?,m > |n|*:

Z In(p) > 21n(2)n_0(n\n|)

3 m
n<p<2n

The conclusion follows from the fact provable in IA((7) that the LHS is at most
(r(2n) — m(n)) In(2n). O

Corollary 23 (Provable in 1A (7, lbc’)). For all n, ©(2n) — m(n) > 1.

Proof. The previous corollary shows that for some standard threshold ng € N,
w(2n) — w(n) > 0 for all n > ngy. The fact that 7(2n) — 7(n) > 1 for n < ng is
true in N, and hence is provable in IAg. O

5 Conclusion

Sylvester’s Theorem asserts that for 1 <z <y, some number among
y+1lLy+2,...,y+=x

has a prime divisor p > x. In [Woo81] it is shown that Sylvester’s Theorem can
be proved in IAg+ PHP(Ag). (PHP(Ay) is the axiom scheme which asserts that
the Pigeonhole Principle, where the mappings between “pigeons” and “holes”
are described by Ag formula, is true.) Here, as well as in [Cor95, [WCOT7], we
have a 2(n/In(n)) lower bound for 7(2n) — m(n), the number of prime numbers
between n and 2n. Such lower bound does not seem to follow from the proof in
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. However, it is not clear whether PHP(Ay) is provable in IAq(m, lbc, )

or even IA( (&) + def (€).
Also, as far as we know, the axiom for lbc considered here (or even the axiom
for ¢ considered in [WCOT]) and the axiom for K [Cor95] are incomparable over
IA( (7). It is an interesting problem to see whether one follows from the other

in IAO

Acknowledgments. I would like to thank Steve Cook and the referees for their
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Abstract. Cook and Krajicek [9] have obtained the following Karp-
Lipton result in bounded arithmetic: if the theory PV proves NP C
P/poly, then PH collapses to BH, and this collapse is provable in PV.
Here we show the converse implication, thus answering an open ques-
tion from [9]. We obtain this result by formalizing in PV a hard/easy
argument of Buhrman, Chang, and Fortnow [3].

In addition, we continue the investigation of propositional proof sys-
tems using advice, initiated by Cook and Krajicek [9]. In particular, we
obtain several optimal and even p-optimal proof systems using advice.
We further show that these p-optimal systems are equivalent to natural
extensions of Frege systems.

Keywords: Karp-Lipton Theorem, Advice, Optimal Propositional Proof
Systems, Bounded Arithmetic, Extended Frege.

1 Introduction

The classical Karp-Lipton Theorem states that NP C P/poly implies a collapse of
the polynomial hierarchy PH to its second level [I5]. Subsequently, these collapse
consequences have been improved by Kobler and Watanabe [16] to ZPP"P and
by Sengupta and Cai to S5 (cf. [4]). This currently forms the strongest known
collapse result of this kind.

Recently, Cook and Krajicek [9] have considered the question which collapse
consequences can be obtained if the assumption NP C P/poly is provable in
some weak arithmetic theory. This assumption seems to be stronger than in the
classical Karp-Lipton results, because in addition to the inclusion NP C P/poly
we require an easy proof for it. In particular, Cook and Krajicek showed that
if NP C P/poly is provable in PV, then PH collapses to the Boolean hierarchy
BH, and this collapse is provable in PV. For stronger theories, the collapse
consequences become weaker. Namely, if PV is replaced by Si, then PH C
PNPIOQogn)] " and for S3 one gets PH C PNP [0]. Still all these consequences are
presumably stronger than in Sengupta’s result above, because PNP C SB.

* Supported by DFG grants KO 1053/5-1 and KO 1053/5-2.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 199214 2008.
© Springer-Verlag Berlin Heidelberg 2008
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In [9] Cook and Krajicek ask whether under the above assumptions, their
collapse consequences for PH are optimal in the sense that also the converse
implications hold. In this paper we give an affirmative answer to this question for
the theory PV. Thus PV proves NP C P/poly if and only if PV proves PH C BH.
To show this result we use the assertion coNP C NP/O(1) as an intermediate
assumption. Surprisingly, Cook and Krajicek [9] have shown that provability
of this assumption in PV is equivalent to the provability of NP C P/poly in
PV. While such a trade-off between nondeterminism and advice seems rather
unlikely to hold unconditionally, Buhrman, Chang, and Fortnow [3] proved that
coNP C NP/O(1) holds if and only if PH collapses to BH. Their proof in [3]
refines the hard/easy argument of Kadin [T4]. We formalize this technique in
PV and thus obtain that coNP € NP/O(1) is provable in PV if and only if PV
proves PH C BH. Combined with the mentioned results from [9], this implies
that PV = PH C BH is equivalent to PV = NP C P/poly.

Assumptions of the form coNP C NP/O(1) play a dominant role in the above
Karp-Lipton results. These hypotheses essentially ask whether advice is helpful
to decide propositional tautologies. Motivated by this observation, Cook and
Krajicek [9] started to investigate propositional proof systems taking advice.
In the second part of this paper we continue this line of research. We give a
quite general definition of functional propositional proof systems with advice.
Of particular interest are those systems where the advice depends on the proof
(input advice) or on the proven formula (output advice).

In our investigation we focus on the question whether there exist optimal proof
systems for different advice measures. While the existence of optimal proposi-
tional proof systems without advice is a long-standing open question, posed by
Krajitek and Pudlék [I8], we obtain optimal proof systems with input advice for
each advice class. Such a result was already obtained by Cook and Krajicek [9],
who prove that there is a system with one bit of input advice which is optimal for
all systems using up to logarithmically many advice bits. We extend the proof
method from [9] to obtain even p-optimal systems with input advice within each
class of systems with super-logarithmic advice function.

These optimality results only leave open the question whether the classes of
proof systems with constant advice contain p-optimal systems. We prove that
for each constant k, there is a proof system which p-simulates all systems with
k advice bits, but itself uses k + 1 bits of advice. We also use a technique of
Sadowski [20] to show that the existence of p-optimal proof systems for SAT,
implies the existence of p-optimal propositional proof systems using k advice
bits for each constant k.

In contrast to these optimality results for input advice, we show that we cannot
expect similar results for proof systems with output advice, unless PH C BH
already implies PH C DP.

Finally, we consider classical proof systems like Frege systems using advice. We
show that our optimal and p-optimal proof systems with advice are p-equivalent
to extensions of Frege systems, thus demonstrating that these p-optimal proof
systems admit a robust and meaningful definition.
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Due to space constraints, a number of proofs is omitted or only briefly sketched
in this extended abstract.

2 Preliminaries

Let ¥ = {0,1}. ™ denotes the set of strings of length n, and (X™)* the set of
k-tuples of X™. Let m; : (X¥*)* — X* be the projection to the i*" string, and let
7f + X* — {0,1} be the projection to the i*" bit of a string. Let 7*, and 7_;
be projections deleting the i*" string from a tuple or the i*" bit from a string,
respectively. Although we enumerate the bits of a string starting with 0, we
will speak of the first bit, the second bit, etc. of a string, and thus for example
7} (aparaz) = ag and 7 4 (apaiaz) = ajaz.

Let (-) be a polynomial-time computable function, mapping tuples of strings
to strings. Its inverse will be denoted by enc.

Complexity Classes. We assume familiarity with standard complexity classes
(cf. [). In particular, we will need the Boolean hierarchy BH which is the closure
of NP under the Boolean operations U, N, and ~. The levels of BH are denoted
BH;, and are inductively defined by BH; = NP and BHy 1 = {L1 \ L2 | L1 €
NP and Ly € BHg}. The second level BH; is also denoted by DP. The Boolean
hierarchy coincides with PNPIOMI | consisting of all languages which can be solved
in polynomial time with constantly many queries to an NP-oracle. For each
level BHy, it is known that k non-adaptive queries to an NP-oracle suffice, i.e.,
BH, € PN (et ).
Complete problems BLj, for BHj, are inductively given by BL; = SAT and

Bl = {<$1, .. -,332k> | <$1, - ,ng_1> € Blog_1 and a9y, € SAT}
BL2k+1 = {<.T17 ey $2k+1> | <.T17 . 7$2k> € BLog or Tok+1 € SAT} .

Observe that (z1,...,x) € BLy if and only if there exists an ¢ < k, such that
x; is satisfiable and the largest such i is odd.

Complexity classes with advice were first considered by Karp and Lipton [15].
For each function k : N — X* and each language L we let L/k = {x | (x, k(]z])) €
L}. If C is a complexity class and F is a class of functions, then C/F = {L/k |
LeCkePF}.

Propositional Proof Systems. Propositional proof systems were defined in a
general way by Cook and Reckhow [I1] as polynomial-time computable functions
P which have as their range the set of all tautologies. A string = with P(w) = ¢
is called a P-proof of the tautology . Equivalently, propositional proof systems
can be defined as polynomial-time computable relations P(m, ) such that ¢ is
a tautology if and only if (37)P (7, ¢) holds. A propositional proof system P is
polynomially bounded if all tautologies have polynomial size P-proofs.

Proof systems are compared according to their strength by simulations intro-
duced in [I1] and [I8]. A proof system S simulates a proof system P (denoted
by P < 9) if there exists a polynomial p such that for all tautologies ¢ and
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P-proofs 7 of ¢ there is an S-proof 7’ of ¢ with |7’| < p (|x]). If such a proof 7’
can even be computed from 7 in polynomial time we say that S p-simulates P
and denote this by P <, S. If the systems P and S mutually (p-)simulate each
other, they are called (p-)equivalent. A proof system is called (p-)optimal if it
(p-)simulates all proof systems.

A prominent class of propositional proof systems is formed by extended Frege
systems EF which are usual textbook proof systems based on axioms and rules,
augmented by the possibility to abbreviate complex formulas by propositional
variables to reduce the proof size (cf. [TTI7]).

3 Representing Complexity Classes by Bounded Formulas

The relations between computational complexity and bounded arithmetic are
rich and varied, and we refer to [I7[10] for background information. Here we
will use the two-sorted formulation of arithmetic theories [SI0]. In this setting
we have two sorts: numbers and finite sets of numbers, which are interpreted
as strings. Number variables will be denoted by lower case letter x,y,n,...
and string variables by upper case letters X,Y,... The two-sorted vocabulary
includes the symbols +, -, <, 0,1, and the function |X| for the length of strings.

Our central arithmetic theory will be the theory VPV, which is the two-sorted
analogue of Cook’s PV [1]. In addition to the above symbols, the language of
VPV contains names for all polynomial-time computable functions (where the
running time is measured in terms of the length of the inputs with numbers
coded in unary). The theory VPV is axiomatized by definitions for all these
functions as well as by the number induction scheme for open formulas.

Bounded quantifiers for strings are of the form (VX < ¢)p and (X < t)y,
abbreviating (VX)(|X| <t — ¢) and (3X)(|X| < t A ¢), respectively (where ¢
is a number term not containing X). We use similar abbreviations for = in-
stead of <. By counting alternations of quantifiers, a hierarchy X2, IIP of
bounded formulas is defined. The first level X contains formulas of the type
(3X1 < t1)...(3Xk < ty)e with only bounded number quantifiers occurring in
. Similarly, ITf-formulas are of the form (VX7 < t1)...(VXk < t1)ep.

As we want to investigate the provability of various complexity-theoretic as-
sumptions in arithmetic theories, we need to formalize complexity classes within
bounded arithmetic. To this end we associate with each complexity class C a
class of arithmetic formulas Fc. The formulas F¢ describe C, in the sense that
for each A C X* we have A € C if and only if A is definable by an Fc-formula
©(X) with a free string variable X.

It is well known that XP-formulas describe NP-sets in this sense, and this
connection extends to the formula classes X and ITP and the respective levels
¥ and MNP of the polynomial hierarchy. Given this connection, we can model the
levels BHy, of the Boolean hierarchy by formulas of the type

P1X) A (P2 X) A = (pr-1 (X) A —pr(X)) ) (1)

with XE-formulas ¢, ..., ¢r.
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Another way to speak about complexity classes in arithmetic theories is to con-
sider complete problems for the respective classes. For the satisfiability problem
SAT we can build an open formula Sat(T, X), stating that T' codes a satisfying
assignment for the propositional formula coded by X. In VPV we can prove
that (3T < |X|)Sat(T, X) is NP-complete, in the sense, that every YF-formula
¢ is provably equivalent to (31" < |X|)Sat(T, F,,(X)) for some polynomial-time
computable function F,.

Using this fact, we can express the classes BHy in VPV equivalently as:

Lemma 1. For every formula ¢ describing a language from BHy, as in () there
is a polynomial-time computable function F : * — (X*)* such that VPV proves
the equivalence of ¢ and

(311, Ts, . To ko)1 S )(VT2, Tay oo To gy < 1)
(.- ((Sat(T1, m (F(X))) A ~Sat(Tz, m2(F(X)))) (2)
VSat(Ts, w5 (F (X)) A - A =* L Sat (T, i (F (X))

where N\, = A if k is even and V otherwise, =F = —=... = (k-times), and t is a
number term bounding |F(X)|. We will abbreviate [2)) by BLy(F(X)).

Similarly, we can define the class Pi\'tp[k] by all formulas of the type

(311 ... T, < )(Sat(T1, FL(X)) A~ A Sat(Th, Fy (X)) A gr(X)) V-V

(VT ... Ty < t)(=Sat(T1, FL (X)) A - - A =Sat(T, Fy (X)) A @gr (X)) ®)

where @1, ..., por are open formulas, Fi, ..., Fj are polynomial-time computable
functions, and t is a term bounding |F;(X)| for i = 1,...,k. In (@), every com-
bination of negated and unnegated Sat-formulas appears in the disjunction.

With these arithmetic representations we can prove inclusions between com-
plexity classes in arithmetic theories. Let A and B are complexity classes repre-
sented by the formula classes A and B, respectively. Then we use VPV - AC B
to abbreviate that for every formula ¢ 4 € A there exists a formula pp € B, such
that VPV F oa(X) < ¢p(X).

In the following, we will use the same notation for complexity classes and their
respective representations. Hence we can write statements like VPV + PH C BH,
with the precise meaning explained above. For example, using Lemma [I] it is
straightforward to verify:

Lemma 2. For every number k we have VPV = BHy C PtNtP[k].

Finally, we will consider complexity classes that take advice. Let A be a class of
formulas. Then VPV F A C NP/k abbreviates that, for every ¢ € A there exist
YB_formulas @1, ..., @k, such that
VPV E (vn) \/ (¥X)(IX|=n — (p(X) < ¢i(X))) - (4)
1<i<2k

Similarly, using the self-reducibility of SAT, we can formalize the assertion
VPV NP C P/poly as

VPV F (Yn)(3C < t(n))(VX < n)(YT < n)(Sat(T, X) — Sat(C(X), X))
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where ¢ is a number term and C'(X) is a term expressing the output of the circuit
C on input X (cf.[9]).

4 The Karp-Lipton Collapse Result in VPV

In this section we will prove that the Karp-Lipton collapse PH C BH from [9]
is optimal in VPV, in the sense that VPV + NP C P/poly is equivalent to
VPV F PH C BH. For this we will use the following complexity-theoretic result.

Theorem 3 (Buhrman, Chang, Fortnow [3]). For every constant k we have
coNP C NP/E if and only if PH C BHyx.

While the forward implication of Theorem [ is comparatively easy, and was
shown to hold relative to VPV by Cook and Krajicek [9], the backward im-
plication was proven in [3] by a sophisticated hard/easy argument. In the se-
quel, we will formalize this argument in VPV, thereby answering a question of
Cook and Krajicek [9], who asked whether VPV + PH C BH already implies
VPV E coNP C NP/O(1).

Assuming VPV = PH C BH, we claim that there is some constant & such that
VPV F PH C BHy. This follows, because PH C BH implies PH = BH = Zg.
Therefore every problem in PH can be reduced to a fixed X5-complete problem.
Since this problem is contained in some level BHy of BH, it can be reduced to
an appropriate BHy-complete problem as well. Thus PH C BHy,.

Therefore, BHy, is provably closed under complement in VPV, i.e., there exists
a polynomial-time computable function A such that

VPV & BLi(X1,...,Xy) & -BLp(h(X1,...,X3)) . (5)

Given h, we define the notion of a hard sequence. This concept was defined in
[6] as a generalization of the notion of hard strings from [I4]. Hard strings were
first used to show that BH C DP implies a collapse of PH [14].

Definition 4. Let h be a function as in ([Bl). A sequence T = (x1,...,x,) of
strings is a hard sequence of order r for length n, if for all i < r, x; is an
unsatisfiable formula of length n, and for all (k — r)-tuples @ of formulas of
length n, the formula mi_,4;(h(u,Z)) is unsatisfiable.

A hard sequence T of order r for length n is not extendable if, for every
unsatisfiable formula x of length n the sequence x T is not hard. Finally, a
maximal hard sequence is a hard sequence of maximal order. Mazimal hard
sequences are obviously not extendable. Note that the empty sequence is a hard
sequence for every length.

To use this definition in VPV, we we note that the notion of a maximal hard
sequence can be formalized by a bounded predicate MazHS. Maximal hard se-
quences allow us to define the unsatisfiability of propositional formulas by a
YB _formula, as stated in the following lemma.
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Lemma 5. Assume that h is a polynomial-time computable function which for
some constant k satisfies (Bl). Then VPV proves the formula

(V) (VX = n)(Vr < k)(VH € (Z™) ") (MazHS(H) —
(VT < n)=8at(T, X) < (3T < n)(3T € (Z™)")Sat(T, 71 (h(T, X, H))))) -

By the preceding lemma, given maximal hard sequences, we can describe IT5-
formulas by YB-formulas. Most part of the proof of the next theorem will go
into the construction of such sequences. It will turn out, that, assuming VPV
PH C BHax, we can construct 2F XF-formulas, whose disjunction decides the
elements of a maximal hard sequence as in ().

Theorem 6. If VPV = PH C BHyx, then VPV I coNP C NP/k.

Proof. Assuming VPV + PH C BHyk, there exists a polynomial-time com-
putable function h, such that for tuples X = (X7i,...,Xor) we have VPV
BLyk(X) < =BLgk (h(X)). Thus, by Lemma[f given a maximal hard sequence
for length n, we can define (VI' < n)-Sat(T, X) by a XP-formula. Therefore,
our aim is to construct such a sequence using k bits of advice.

To this end, for i > 0 let HardSeqBits(1™,4) hold, if and only if the i*" bit of
the encoding of the lexically shortest maximal hard sequence for length n is 1.
HardSeqBits can be defined by a bounded predicate.

By the assumption VPV + PH C BHyx and Lemma [2 there is a formula
as in (@), with appropriate polynomial-time computable functions Fi,..., For
and open formulas ¢i,..., ..k, such that the predicate HardSeqBits(X) is
VPV -provably equivalent to v. Without loss of generality, we may assume, that
|F3(1",a)| = |F;(1™,b)| for all 4, j and a,b.

Using ¥ we can prove VPV + HardSeqBits € NP/k (we omit the details due
to space constraints). This means that we can construct X8-formulas ¢%¢p(X)
of the form (Y < t)¢%g(X,Y) with open formulas p%gp for z=0,...,2F -1
such that

VPV = (vn) \/ (VX =n)(HardSeqBits(X) < (3Y < t)¢pjsp(X,Y)) .
0<z<2k
In this formula, z is the order of a maximal hard sequence for length n. Observe
that z, acting as the advice, can be non-uniformly obtained from n.
Provided the right z, there is a XB-formula EasyUnSat,(X) that, for ev-
ery X of length n, is VPV-equivalent to (VI' < n)—Sat(T,X). This formula
EasyUnSat,(X) is defined as

(3C <t) (Vi < [CDEY < )[(744(C) =1 = e (1¥],,Y))
A 3T < [X])(30 € ()2 -1-lenc(©ly
Sat(Tv 7T2k—|enc(C)|(h(Uﬂ X, enc(C’))))]
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for an appropriate number term . Now, by line 1 of this formula, C is the
encoding of some maximal hard sequence. As in Lemma B C is used to define
—Sat by a Y¥P-formula (lines 2 and 3). Thus, we have

VPV = (vn) \/ (VX =n)[(VT < n)=Sat(T, X) < EasyUnSat.(X)] .
0<z<2k

This concludes the proof. a

With this result we can now prove the optimality of the following Karp-Lipton
collapse result of Cook and Krajicek [9]:

Theorem 7 (Cook and Krajicek [9]). If VPV proves NP C P/poly, then
PH C BH, and this collapse is provable in VPV .

To show the converse implication, we use the following surprising trade-off be-
tween advice and nondeterminism in VPV

Theorem 8 (Cook and Krajicek [9]). VPV + NP C P/poly if and only if
VPV E coNP C NP/O(1).

We remark that the proof of Theorem [8] uses strong witnessing arguments in
form of the Herbrand Theorem and the KPT witnessing theorem [19]. Thus
it seems unlikely, that a similar result holds without assuming provability of
NP C P/poly and coNP C NP/O(1) in some weak arithmetic theory. Theorem [7]
can be obtained as a consequence of Theorem[§ and a complexity-theoretic proof
of coNP C NP/O(1) = PH C BH (cf. [319]).

Combining Theorems [G [[] and B we can now state the optimality of the
Karp-Lipton collapse PH C BH in VPV.

Corollary 9. The theory VPV proves NP C P/poly if and only if VPV proves
that the polynomial hierarchy collapses to the Boolean hierarchy.

The backward direction of this result can also be obtained in a less direct way
using a recent result of Jerabek [I3]. The argument goes as follows{l by results
of Zambella [21], PV F PH = BH implies PV = S5. The latter, however, implies
PV NP C P/poly by a result of Jerdbek [13].

5 Propositional Proof Systems with Advice

Cook and Krajicek [9] defined propositional proof systems with advice, both in
the functional and in the relational setting for proof systems. For both models,
different concepts of proof systems with advice arise that not only differ in the
amount of advice, but also in the way the advice is used by the proof system.
Our general model of computation for functional proof systems with advice
is a Turing transducer with several tapes: an input tape containing the proof,
possibly several work tapes for the computation of the machine, an output tape

1 'We are grateful to an anonymous referee for supplying this alternative argument.
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where we output the proven formula, and an advice tape containing the advice.
We start with a quite general definition for functional proof systems with advice
which subsumes the definitions given in [J].

Definition 10. Let k : N — N be a function on natural numbers. A general
functional propositional proof system with k bits of advice, abbreviated general
fops/k, consists of two functions f and ¢ such that

1. £: X% = {1™ | n > 0} is computable in polynomial time.
2. f:X* — TAUT is a surjective polynomial-time computable function which
on input m uses k(|[¢(m)|) bits of advice depending only on |¢()].

Let us give some explanation for this definition. For each length n there is a
unique advice string of length k(n). Which of these strings is used at a particular
computation of f is determined by the function ¢ which computes from the input
7 the relevant advice length. In the functional definition of propositional proof
systems, there are two natural options for this function ¢: the advice may depend
on the length of the input (i.e. the proof) or the length of the output (i.e. the
proven formula).

Definition 11. Let (f,¢) be a general fpps/k using advice function k(n).

1. We say that f has input advice if for all inputs © we have £(7) = 1171, i.e.,
the proof system f uses k(|m|) bits of advice.

2. f has output advice if for all inputs 7, the length of the output f(w) does
not depend on the advice (i.e., the content of the advice tape) and we have
() = 1V e, the proof system f uses k(|f(m)|) bits of advice.

We remark that Cook and Krajicek [9] defined a more restrictive concept of
proof systems with output advice, which they called length-determined func-
tional proof systems.

The notions of (p-)simulations and (p-)optimality are easily generalized to
proof systems with advice. For p-simulations we will use polynomial-time com-
putable functions without advice (unless stated otherwise). We say that a proof
system f is (p-)optimal for some class F of advice systems if f (p-)simulates
every system in F and f € F.

In the next proposition we observe that fpps/k with input advice are already
as strong as any general fpps/k (Definition [IT]).

Proposition 12. Let k : N — N be a monotone function and let (f,£) be a
general fpps [k with advice function k. Then there exists a functional proof system
f" with k bits of input advice such that f and f’ are p-equivalent.

In the relational setting for propositional proof systems, advice can be easily
implemented as follows:

Definition 13 (Cook, Krajicek [9]). A propositional proof system with k(n)
bits of advice, abbreviated pps/k, is a relation P such that for all x € X* we have
x € TAUT if and only if (3y)P(y,x), and P is can be decided by a polynomial-
time (in |x| + |y|) algorithm which uses k(|z|) bits of advice.
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It is easy to see that, as in the classical case without advice, relational proof
systems with advice and functional proof systems with output advice are two
formulations of the same concept:

Proposition 14. Let k : N — N be a function. Then every fpps/k with output
advice is p-equivalent to some pps/k. Conversely, every pps/k is p-equivalent to
an fpps/k with output advice.

As in the classical theorem of Cook and Reckhow [II], we get the following
equivalence:

Theorem 15. Let k be any function. Then there exists a polynomially bounded
fops [k with output advice if and only if coNP C NP/k.

6 Optimal Proof Systems with Advice

In this section we will investigate the question whether there exist optimal or
p-optimal propositional proof systems with advice. A strong positive result was
shown by Cook and Krajicek [9].

Theorem 16 (Cook, Krajicek [9]). There exists a functional propositional
proof system P with one bit of input advice which p-simulates all functional
propositional proof systems with k(n) bits of input advice for k(n) = O(logn).
The p-simulation is computed by a polynomial-time algorithm using k(n) bits of
advice.

In terms of simulations rather than p-simulations this result yields:

Corollary 17. The class of all general fpps/O(logn) contains an optimal func-
tional proof system with one bit of input advice.

In the next definition we single out a large class of natural advice functions with
at least logarithmic growth rate.

Definition 18. A function k is polynomially monotone if k is computable in
polynomial time and there exists a polynomial p, such that for each z,y € X*,
ly| = p(lz]) implies |k(y)| > [k(z)].

Polylogarithmic functions and polynomials are examples for polynomially mono-
tone functions. If we consider proof systems with polynomially monotone advice
functions, then we obtain p-optimal proof systems within each such class. This
is the content of the next theorem which we prove by the same technique as was
used for Theorem [T6l

Theorem 19. Let k(n) be a polynomially monotone function. Then the class of
all general fpps/k contains a p-optimal proof system.

Proof. Let k be a function as above. Since k is polynomially monotone we can
find a polynomial-time computable function ¢ : X* — 1* such that for each x €
X* we have k(|¢(x)]) > k(Jz|)+ 1. Let ||-|| be an encoding of deterministic Turing
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transducers by natural numbers. Without loss of generality we may assume that
every machine M has running time |z I Further, we need a polynomial-time
computable function (-, -,-) mapping triples of N bijectively to N.

We will define a functional proof system (P, ¢) using advice function k, which
is p-optimal for the class of all general fpps/k. Let @ be a system from the class
of all general fpps/k. By Proposition[[2] we may assume that @ has input advice.
First we will define a polynomial-time computable function fg translating Q-
proofs into P-proofs and then we will describe how P works. We set fo(m) = 71™
where m is determined from the equation m + || = {|7|,||Q||, |7T|HQH>.

Now we define the system P: upon input z we first compute the unique num-
bers my, ma, ms such that |z| = (m1, ma, ms). Let m = x1 ... 2y, be the first m,
bits of z. Then we determine the machine @ from the encoding ms = ||Q|. By
the construction of ¢, the system P receives at least one more bit of advice than
Q. We can therefore use the first advice bit of P to certify that @ is indeed a
correct propositional proof system when it is supplied with the last k(|7|) advice
bits of P. Therefore, if the first advice bit of P is 1, P simulates @ on input 7 for
ms steps, where it passes the last k(|7|) advice bits of P to @. Otherwise, if the
first advice bit of P is 0, P outputs T. Apparently, P is correct and p-simulates
every fpps/k @ with input advice via the polynomial-time computable function
fq- Thus, by Proposition[I2] P also p-simulates every general fpps/k. a

In a similar way we get:

Proposition 20. For each constant k > 0 there exists an fpps with k + 1 bits
of input advice that p-simulates every fpps with k bits of input advice.

Proof. (Sketch) The proof uses the same construction as in the proof of The-
orem [I9 with the following difference in the usage of advice: the last k advice
bits of the new fpps/(k + 1) P are the advice bits for the machine ¢ which we
simulate, if the first of the £ + 1 advice bits certifies that @ is correct, i.e., it
only produces tautologies. O

Regarding the two previous results there remains the question whether we also
have a p-optimal system within the class of all general fpps/k for constant k.
Going back to the proof of Proposition[20] we observe that the proof system with
k + 1 advice bits, which simulates each with k bits, does not really need the full
power of these k + 1 bits, but in fact only needs 2¥ + 1 different advice strings.
Assuming the existence of a p-optimal proof system for SATs (the canonical
complete problem for ¥5), we can manage to reduce the amount of the necessary
advice to exactly k bits, thus obtaining a p-optimal system within the class of
all general fpps/k.

Theorem 21. Assume that there exists a p-optimal proof system for SATs.
Then for each constant k > 1 the class of all general fpps/k contains a p-optimal
proof system.

Proof. Similarly as in Sadowski’s characterization of the existence of p-optimal
propositional proof systems [20], we can prove:
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There exists a p-optimal proof system for SATs if and only if there exists
a recursive enumeration M;, i € N, of deterministic polynomial-time
Turing machines such that

1. for every i € N we have L(M;) C SATy and
2. for every polynomial-time decidable subset L. C SATy there exists an
index i such that L C L(M;).

Assume now that M; is an enumeration of the easy subsets of SAT5 as above.
For every proof system Q with k bits of input advice we construct a sequence of
propositional formulas

Prfﬁ’n)k(ﬂ-7 410’ Cl) 9
asserting that the computation of @ at input 7 of length m leads to the output ¢
of length n under the k advice bits of a. We also choose a propositional formula
Taut,, (p) stating that the formula encoded by ¢ is a propositional tautology. As
Q is an fpps/k, the formulas

Correctgvnyk = (Ja)(Vm, p) (Prf%nvk(map, a) — Tautn(go))

are quantified Boolean formulas from SATy for every n,m > 0. Because these
formulas can be constructed in polynomial time from @, there exists an index
i € N such that M; accepts the set {Correctg%n’k | m,n > 0}.

Now we construct a p-optimal system P with k& bits of input advice as fol-
lows: at input  we compute the unique numbers my,...,my such that |z| =
(mq,...,my4). As in the proof of Theorem [[ we set 7 = 21 ...z, and [|Q] =
ma. The system P then simulates Q(7) with its own k advice bits for ms steps.
If the simulation does not terminate, then P outputs T. Otherwise, let ¢ be the
output of this simulation. But before also P can output ¢, we have to check
the correctness of () for the respective input and output length. To do this, P
simulates the machine M,,, on input COW@Ct?n,ka' If M,,, accepts, then we
output ¢, and T otherwise.

The advice which P receives is the correct advice for @, in case that M,,,
certifies that such advice indeed exists. Therefore P is a correct fpps/k. To show
the p-optimality of P, let @ be an fpps/k with input advice and let M; be the
machine accepting {Correct%nvk | m,n > 0}. Then the system @ is p-simulated

by P via the mapping 7 — 71™ where m = (|z|,||Q||, |=|1¢!l, i) — |x|. |

All the optimal and p-optimal proof systems that we have so far constructed
were using input advice. It is a natural question whether we can improve these
constructions to obtain proof systems with output advice that still have the
same optimality conditions. Our next result shows that this is rather unlikely,
as otherwise collapse assumptions of presumably different strength would be
equivalent. This result indicates that input advice for propositional proof systems
is indeed a more powerful concept than output advice.

Theorem 22. Let k > 1 be a constant and assume that there exists an fpps/k
with output advice that simulates every fpps/1. Then the following conditions
are equivalent:
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The polynomial hierarchy collapses to BHqx .
The polynomial hierarchy collapses to BH.
coNP € NP/O(logn).

coNP C NP/E.

T oo~

Proof. The equivalence of [[land ] was shown by Buhrman, Chang, and Fortnow
(Theorem (), and clearly, item [ implies item [2 Tt therefore remains to prove
the implications 2l = Bl and Bl = @

For the implication 21=-[3] let us assume PH C BH. We choose a ¥5-complete
problem L, which by assumption is contained in BHy/ for some number k’. By
Theorem [3 this implies coNP C NP /&’ and hence coNP C NP/O(logn).

For the final implication Bl = @ we assume coNP C NP/O(logn). By Theo-
rem [[7] this guarantees the existence of a polynomially bounded system P with
O(logn) bits of output advice. By Theorem [I@] P is simulated by a proof system
P’ with only one bit of input advice. Hence also P’ is polynomially bounded.
Now we use the hypothesis of the existence of a functional proof system @ with
Ek bits of output advice which simulates all fpps/1. In particular, P’ < @ and
therefore @ is a polynomially bounded fpps/k with output advice. Using again
Theorem [I5] we obtain coNP C NP/k. O

With respect to the optimal proof system from Corollary [I] we obtain:

Corollary 23. The optimal fpps/1 from Corollary [I7 is not equivalent to an
fops /1 with output advice, unless PH C BH implies PH C DP.

7 Classical Proof Systems with Advice

Let us now outline how one can define classical proof systems that use advice.
A priori it is not clear how systems like resolution or Frege can sensibly use
advice, but a canonical way to implement advice into them is to enhance these
systems by further axioms which can be decided in polynomial time with advice.
Cook and Krajicek [9] have defined the notion of extended Frege systems using
advice. We give a more general definition.

Definition 24. Let @ be a set of tautologies that can be decided in polynomial
time with k(n) bits of advice. We define the system EF + ®/k as follows. An
EF +®/k-proof of a formula ¢ is an EF -proof of an implication 1) — ¢, where 1
is a simple substitution instance of a formula from @ (where simple substitutions
only replace some of the variables by constants).

If wis an EF +®/k-proof of a formula ¢, then the advice used for the verification
of 7 neither depends on |r| nor on |¢|, but on the length of the substitution
instance v from @, which is used in 7. As |¢)| can be easily determined from T,
EF + ®@/k are systems of the type fpps/k (in fact, this was the motivation for
our general Definition [I0).

If we require that the length of ¢ in the implication ¢ — ¢ is determined by
the length of the proven formula ¢, then the advice only depends on the output
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and hence we get an fpps/k with output advice. This is the case for a collection
of extensions of EF defined by Cook and Krajicek [9], which are motivated
by the proof of Theorem [§l Cook and Krajicek proved that these systems are
polynomially bounded if VPV proves coNP C NP/O(1).

Our next result shows that the optimal proof systems constructed in Sect.
are equivalent to natural extensions of extended Frege systems with advice.

Theorem 25. 1. Let k(n) be a polynomially monotone function. Then there
exists a set ¢ € P/k(n) such that EF + ®/k is p-optimal for the class of all
general fpps/k(n).

2. For every constant k > 1 there exists a set & € P/k such that EF + ®/k
p-simulates every general fpps/k — 1.

3. In contrast, none of the extensions of EF as defined in [J] simulates every
general fpps/1, unless items[d to[4) from Theorem [22 are equivalent.

Comparing the definition of FF with advice from [9] with our Definition 24 we
remark that both definitions are parametrized by a set of tautologies @, and
hence they both lead to a whole class of proof systems rather than the extended
Frege system with advice. The drawback of our Definition 24]is, that even in the
base case, where no advice is used, we do not get EF, but again all extensions
EF + @ with polynomial-time computable & C TAUT. It is known that each
advice-free propositional proof system is p-simulated by such an extension of EF
[17]. In contrast, Cook and Krajicek’s extended Frege systems with advice lead
exactly to EF, if no advice is used. On the other hand, these systems appear to
be strictly weaker than the systems from Definition 24] as indicated by item
of Theorem 25

8 Discussion and Open Problems

In this paper we have shown that PH C BH is the optimal Karp-Lipton col-
lapse within the theory PV. It remains as an open problem whether also PH C
PNPIOQog )] and PH C PNP are optimal within S and SZ, respectively (cf. []).
For S3 this corresponds to the problem whether coNP C NP/O(logn) is equiva-
lent to PH C PNPIOUegn)] Buhrman, Chang, and Fortnow [3] conjecture coNP C
NP/O(logn) <= PH C PNP (cf. also [T2]). This seems unlikely, as Cook and
Krajicek [9] noted that coNP C NP/O(logn) implies PH C PNPIOUog )] How-
ever, it does not seem possible to extend the technique from [3] to prove the
converse implication. Is even coNP C NP/poly <= PH C PNP true, possibly
with the stronger hypothesis that both inclusions are provable in S3? Currently,
coNP C NP/poly is only known to imply PH C SYP [A].

With respect to the proof systems with advice we remark that all advice
information we have used for our optimal systems in Sects. [l and [ can be
decided in coNP. It would be interesting to know whether we can obtain stronger
proof systems by using more complicated advice.
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Abstract. We propose a realizability interpretation of a system for
quantifier free arithmetic which is equivalent to the fragment of classi-
cal arithmetic without nested quantifiers, which we call EM;-arithmetic.
We interpret classical proofs as interactive learning strategies, namely
as processes going through several stages of knowledge and learning by
interacting with the “environment” and with each other. With respect
to known constructive interpretations of classical arithmetic, the present
one differs under many respects: for instance, the interpretation is compo-
sitional in a strict sense; in particular the interpretation of (the analogous
of) the cut rule is the plain composition of functionals. As an additional
remark, any two quantifier-free formulas provably equivalent in classical
arithmetic have the same realizer.

1 Introduction

We propose a new notion of realizability (see e.g. [16] vol. I p. 195 for an introduc-
tion), in which the classical principle EM; (which is Excluded Middle restricted
to X9 formulas, see [I]) is treated by means of realizers that depend on certain
growing pieces of knowledge, obtained by trial and error. In our approach the
witness hidden in a proof of a XY statement (with parameters) can be computed
in the limit (see [6/4I8]), and in this sense it is “learnt”. The essential difference
with Gold’s idea is that the realizer embodies a learning strategy which is the
actual content of the proof, and which is often an ingenuous method.

The first step of the construction is the introduction of an oracle xp (a pred-
icate symbol) and of a Skolem function @p relative to each primitive recursive
predicate P, in such a way that Jy. P(x, y) < xp(z) < P(x, ¢p(z)). The existence
of these oracles intuitionistically implies EM7, and also that atomic formulas of
our system represent 1-quantifier formulas of arithmetic. Then we introduce a
set S of the states of knowledge, which are finite sequences recording finitely
many values of xp and ¢p, and ordered by prefix (by “increasing knowledge”).
A formula containing such xp and ¢p is not decidable in general, however it can
be evaluated w.r.t. a finite state s of knowledge, by assigning dummy values to
all values of xp and p which are unknown. A formula is valid if for any state
s of knowledge we can effectively find some s’ > s in which the formula is true.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 215-229] 2008.
© Springer-Verlag Berlin Heidelberg 2008
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The soundness property we expect from the semantic interpretation states that
all derivable formulas are valid.

More precisely, since the meaning of a predicate or a term might depend on
a state of knowledge s € S, numbers and truth values are lifted to numbers
and truth values indexed over S. We see ordinary numbers and truth values
as limits, and we ask that an indexed object is convergent in every sequence
so < 51 < 89 < ...8, < ... weakly increasing w.r.t. prefix. Using the state we
provide an effective semantics for all terms of a simply typed A-calculus closed
under primitive recursion, and extended by the non-effective maps yp and p.
This A-calculus represents the terms and the atomic formulas of our fragment of
arithmetic.

A tentative definition for a realizer of an atomic formula is that of a mapping
sending any state s into some extension s’ > s in which the predicate takes the
meaning “true” for all s” > s’. The key problem here is that the realizer has to
be effective, while there are no uniform and effective means to decide when the
value of a term or the truth value of a formula has became stable.

The next idea is that the correct state can be learned. The outcome of the
realizer is not a state, rather a process such that, as soon as the realizer becomes
aware that something has gone wrong, so that the predicate is not true any more,
it is able to extend the present state of knowledge looking for a larger one, where
the predicate becomes true anew. Since we classically know that the truth value
of the predicate eventually stabilizes, it will be eventually true forever, even if
we shall never be able to say when and where.

There is still something missing here: we want a compositional interpretation
of proofs, validating logical laws like the modus ponens and the cut rule. This
rises the issue of the interaction of different parts of a proof, namely of how to
compose two or more realizers. To solve this problem realizers use continuations:
the process extending the states of knowledge in order to make some predicate
true is passed along in the composition of realizers, and used by them as the
last step in the computation of the new state. In this way, at the price of having
realizers of type two, the combination of the realizers of several premises of an
inference rule is (pointwise) composition, which is unsensible to the order: this
does not mean, of course, that say FoG and Go F' compute the same value,
rather that any choice will be a realizer of the conclusion.

The paper is organized as follows. In §2] we introduce a version of EM;-
Arithmetic without nested quantifiers. Terms are expressed in a simply typed \-
calculus with primitive recursion of level 1. All formulas are quantifier-free, while
formulas with non-nested quantifiers are represented through oracles xp(x). EM;
(Excluded Middle for X9-formulas) is the following axiom schema:

(EMy) Va(Jy P(x,y) vV Vy ~P(z,y))

where P(x, y) is a primitive recursive predicate. It is represented in our formalism
without quantifiers through the oracle constants xp. In section 3 we lift the
standard interpretation of numbers, boolean and functions to indexed numbers,
booleans and functions introducing the notion of synchronous and convergent
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functional. §4lis the core of the paper: we introduce a new notion of realizers for
classical proofs, representing the construction hidden in the classical principle
EM;. All other constructions are represented by terms of the system. In the full
version of the paper [2] we test our notion of realizer against the example of the
Minimum Principle.

Related Works. A primary source of the present research is Coquand’s seman-
tics of evidence for classical arithmetic [3], where the role of realizers is taken by
the strategies, the state of knowledge is the state of a play, and computation is
the interaction of strategies through a dialogue.

The idea of lifting to truth values and numbers depending from a state and
converging (in the sense of stabilization) w.r.t. this state comes from Gold’s
recursiveness in the limit [6] and Hayashi’s Limit Computable Mathematics [§].
Our main contribution is to frame these ideas in the longstanding tradition of
realizability interpretation of constructive logic.

The investigation of the computational content of classical proofs via contin-
uations is well known and widely documented in the literature. It is impossible
to provide a reasonably complete list of the numerous contributions to this topic;
see e.g. [BII0] for some basic ideas behind the use of continuations in the interpre-
tation of classical principles; continuations and CPS translation have been used
to extend the formula as types paradigm to classical logic in [7IT3]; these ideas are
found also in the p-calculus of [T4] and in related systems. Our improvement is the
compositional property of our approach in the strict sense of functional composi-
tion of the realizers, which allows for a clean reading of the use of continuations as
mappings that “force” the stabilization of predicates and terms.

As pointed out to us by an anonymous referee, our work reminds Hilbert’s
e-calculus (see [QITITZ]). Indeed our ¢p is just ,(P) with the proviso that P
is quantifier free (and primitive recursive). The essential difference lays in the
way we produce the “solving substitution” [I1], again similar to our states of
knowledge: while in Hilbert’s approach one interprets formulas and looks for the
substitution of a numeral by blind search (exactly as with Gold’s limits and with
iterated limits in [T54]), we interpret proofs into realizers, embodying (possibly
cleaver) search strategies.

2 EM,; Arithmetic of Primitive Recursive Functions

Let Type be the set of simple types with atoms Nat and Bool and the arrow as
type constructor. As usual external parentheses will be omitted and the arrow
associates to the right: Ty = T1 = T reads as Ty = (11 = T»); we also write
TF = T for T = --- = T = T’ with k occurrences of T' to the left of 7”. The
symbol = is used for syntactical identity.

Definition 1 (Term Languages Lo and L1). Let Ly be the language of simply
typed A-calculus with types in Type, whose constants are:

- zero, successor: 0 : Nat, succ : Nat = Nat, equality: eq : Nat®> = Bool,
booleans: true, false : Bool
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— if-then-else: ifp : Bool = T = T = T, where either T'= Nat or T = Bool
~ primitive recursion: PR : Nat = (Nat® = Nat) = Nat = Nat.

The language L1 is obtained by adding to Ly a pair of constants pp : Nat" =
Nat and xp : Nat® = Bool for each closed term P : Nat“*! = Bool of Loy, and
then closing under term formation rules.

Term application associates to the left: M N P reads as (M N)P; the abstrac-
tion Az”. M will be written Az. M when T is clear from the context. We ab-
breviate n = succ™ 0 (n-times applications of succ to 0), which is the numeral
for n € N. We write M|z1,...,x,] to mean that FV(M) C {z1,...,2,}, and
M]|Ny,...,N,] for M[Ny/xy ..., Np/x,], that is the result of the simultaneous
substitution of x; by N; for all ¢ (which are supposed to be of the same type),
avoiding variable clashes.

Definition 2 (Equational Theory for Lg). The theory Ty is the equational
theory of terms in Ly whose formulas are typed equations M = N : T with both
M and N of type T'. Azioms and inference rules of 1y are the axioms of equality,
6 and n from the \-calculus, plus:

~ eq00 = true, eq (succz)0 = false, eq0 (succz) = false, eq (succx)(succy) =
eqxy : Bool,

—ifptrue M N =M : T, ifpfalse MN=N:T

-~ PRMNO=M :Nat, PRM N (succz) = N 2(PRM N z) : Nat.

By 7o+ M = N : T we mean that the equation M = N : T is derivable in 7.

We explicitly exclude the function symbols ¢p, xp from 7y: they will denote non-
computable maps. The primitive recursor to define k + 1-ary functions: PRy :
(Nat® = Nat) = (Nat*™ = Nat) = Nat**' = Nat is definable from the unary
PR by: PRe = Aghxy .. .. PR(gzy ... x)(hay ... 2k).

Although 7; is an equational theory, it is the theory of the convertibility
relation associated to a notion of reduction which is confluent and strongly nor-
malizing. In particular it is decidable whether 7o - M = N : T. Indeed 7 is
a fragment of Gddel system T, where the essential limitation consists in the
restriction of the recursor PR whose functional arguments are of type one. By
this the presence of abstraction of variables at any type has no effect w.r.t. func-
tion definability. A k-ary function over natural numbers f is definable in 7y if
there exists a closed term (a combinator) f : Nat” = Nat € £y such that for all
N1, ...,ng,m €N, TgFfny---np =m: Natif and only if f(ni,...,n5) = m.

Proposition 1. The number theoretic functions definable in Ty are exactly the
primitive recursive functions (in particular, are computable).

We find useful having in 7y an operator for (weighted) total recursion. Let ifz be
the primitive recursive function such that ifz(0,n) = n and ifz(m+1,n) = 0. For
any w : N — N, let us abbreviate by  <,, y the (primitive recursive) function
giving 0 if w(z) < w(y), 1 otherwise. We say that the function f : N — N is
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defined by weighted well-founded recursion in terms of the functions w: N — N
(weight), g : N2 = N, hy : N — N if:

f(n) = g(n, ife(h1(n) <w n, f(ha(n))))

This definition schema generalizes to any list of maps hy,...,hr : N — N, and
to any list m = my,...,my, of parameters. Weighted total recursion can be
expressed in 7y by a combinator WR (see [2]).

We will now define a formal theory PRA-3 of arithmetic in the formalism of
L. We rephrase some basic notions of logic. Terms, ranged over by t,r, ... (pos-
sibly with primes and indexes) are terms of type Nat in £; with free variables
of type Nat, and formulas, ranged over by P, Q,R, ... (possibly with primes and
indexes) are terms in £; of type Bool, with free variables of type Nat. The atomic
formulas of the shape eqtr and Ittr are written t = r and t < r respectively.
Connectives are definable in £, and we write them in the usual way; in partic-
ular we use the ordinary infix notation for binary connectives. A propositional
formula is a term FElz1, ..., z,] of type Bool built out of variables z of type Bool
and connectives (hence it is in Ly); a propositional formula E is tautological
consequence of Eq,..., Ey if any instantiation of the boolean variables by true
or false in the implication (Ej A -+ A Ej) = E is provably equal to true in 7.

The theory PRA-3 defined below is formally quantifier free: as a matter of
fact the meaning of xp and @p induced by the axioms (x) and (¢) is that of
the oracle and of a Skolem function for the predicate Jy. P[x, y] where P is in
Lo (hence primitive recursive). We stress that we cannot have Skolem functions
in P: this limitation accounts for the fact that PRA-3 is 1-quantifier arithmetic,
and not the entire arithmetic.

Definition 3. PRA-3 is the theory whose theorems are the formulas derivable
by the following axioms and rules:

— Post rules:
P, - Py
Post

consisting of the axioms of equality; an axiom for each equation t = r :
Nat derivable in Ty; all rules with E[z1,...,z,] tautological consequence of
Eilz1, .oy 2zn)y oo Brlz1, ooy 20):

T Eq1[Py,...,Py]  Eg[P1,...,P,] Taut
t=r E[Py,...,Py]

- Skolem Axioms: for each formula Plx,y| in Lo, the azioms:

X
Plz,y] = xpx xpx = Pz, ppx]
— Well Founded Induction:

ifz(ty @ <w )Pz, t1 2] A -+ Aifz(ty © <w 2)P[2z, t 2] = P[z, ]
WF Ind
Plz,r]
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where x is not free in the conclusion, and w,ty,...,tx : Nat = Nat, r : Nat
and t1x <y x = w(t ) < wz.

The theory PRA-3, when restricted to the language L, is a variant of system
PRA in [I6] for primitive recursive arithmetic.

3 States of Knowledge, Synchronous and Convergent
Functionals

In this section we introduce the notion of state of knowledge, then we define
hereditary synchronous functionals, whose computation all takes place in the
same state of knowledge, then hereditary convergent functionals. These latter
will be used to interpret terms of L.

Let L denote a divergent computation, and define A, = AU {L} for any
set of values A. An element a € A, is totalif a # L;amap 7: A — B is
total if T sends total elements into total ones. If f : A" — B, we extend f to
fiL: AT — By by fi(a) =L ifa; = L for some i, and f, (a) = f(a) otherwise.

Definition 4 (States of Knowledge). A state of knowledge, shortly a state,
is a finite list of triples (P, n,m) (with possibly different P, n and m) such that
P : Nat**' — Bool is a predicate of Lo and n = ny,...,ny € N, m € N, and
7o b P[n,m] = true. We call the empty list ) the initial state. Let S denote the
set of states, partially ordered by the prefix ordering <.

A triple (P, n,m) stays for the equations yp(n) = true and pp(n) = m. A state
represents a finite set of such equations, the initial state is the empty set. We
now define synchronous maps F' as mapping of indexed objects such that both
the argument and the value of F' are evaluated at the same state s. Let us write
A .a for the function constantly equal to a.

Definition 5 (Synchronous Functions). Let A and B be any sets:

1. F: (S, — A) — (S, — B) is synchronous if F(1,s) = F(XA .7(s),s) for all
T and s;

2. given f : A — B the synchronous extension f1: (S, — A) — (S, — B) of
f is defined by f1(1,s) = f(7(s)).

For any 7 and s we have fT(7,s) = f(7(s)) = fT(A .7(s),s), hence fT is syn-
chronous. We will now interpret terms and formulas of £y as synchronous and
convergent functions. To this aim, we have to extend the notion of synchronicity
to higher types.

We recall that an embedding-projection pair (¢, 7) : X <Y (e-p pair for short)
of X into Y is a pair of mappings e : X — Y and 7 : Y — X s.t. moe = Idx,
where composition will be also written as we. The composition, er : ¥ — Y,
called retraction, is idempotent so that e(X) (the image of X under €) is the set
of fixed points of em, and 7 : ¢(X) — X is bijective.
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Definition 6 (Synchronous Retraction). For any sets A and B we define
the mappings:

€ap:(SL—(A—B)) = (SL.—A4) —(SL— B))
map: (St —A)— (SL— B)) = (SL. = (A— B))

by

eaplo,T,s) =a(s,7(s)) and wa p(F,s,a)=F(\ .a,s)
where «:S; - (A—B), 7:S] - A,s€S,,F:(S. - A) — (S, — B) and
acA.

The name of synchronous retraction is justified by the fact that the fixed points
of the retraction are maps : (S; — A) — (S, — B) bijective to the elements of
S, — (A — B), therefore are maps depending on a single state. They coincide
with the synchronous maps:

Lemma 1. Ifea p and ma g are as in Definition[d then:

1. (ea,B,ma,B) 1S an e-p pair;

2. F: (S, — A) — (S. — B) is synchronous if and only if F € €4, (S, —
(A — B)).

8. If f + A — B, the synchronous extension fT: (S, — A) — (S, — B) of f
is equal to €ea (A .f).

The next step is to state some well known properties of embedding-projection
pairs, and can be rephrased by stating that they are closed under composition
and indeed they do form a category; moreover since the category of sets is carte-
sian closed, then the category of embedding-projection pairs over sets is such.
Observe that retractions are covariant w.r.t. the arrow, which is also known as
their characteristic property.

Lemma 2

1. If (e,m): A< B and (¢',7") : B < C are e-p pairs, then: (€e,nn’) : A< C
s such;

2. if (e1,m) : Ay < By and (e2,m2) : As < Bo are e-p pairs, then (e1,m) —
(e2,m2) : A1 — Ay < By — Ba is such where (e1,m1) — (€2,m2) is the pair
(Af. €20 fom, Ag. maogoer).

Let St be a new ground type; then we define the interpretation [T'] of the sim-
ple type T (of the extended type language) set theoretically by: [Nat] = N,
[Bool] =B, [St] =S., and [T = T'] = [T] — [T’], namely the full function
space. By TSt we denote the result of replacing in T each occurrence of Nat by
St = Nat and of Bool by St = Bool respectively.

Lemma 3. For each type T there is an e-p pair (ep,7r): S, — [T] < [T].

We are now in place to characterize those functionals of [T°] depending on a
single state, i.e. in the image of S| — [T, as fixed points of the retraction
(er,m7) : S1 — [T] < [T%]. The elements a € [T] can be raised to elements of
[TSY] by applying ez to A .a.
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Definition 7 (Hereditarily Synchronous Functionals). Let T be any type:

1. f € [T is hereditarily synchronous, or h. sync. for short, if f € er(S; —
[71);

2. the canonical injection ©: [T] — [T5] is defined: f° = er(\ .f). We also
set [T]° = {f°| f € [T]}.

H. sync. functionals are closed under application. Indeed, if f : S, — [T} =
T»] then er,—1,(f) = €n,0€pr),im)(f)o 7y, hence for any a € [T7'] we have
er,—1,(f)(a) = b for some b € er, (S, — [Tn]) C [T5']. It follows that, if
g € [(Ty = T»)%] is hereditarily synchronous, then g(a) is such for any a € [T7].

If f € [T] then f° € [T is a map ignoring its input state s, but forcing its
argument to use s as the only state. Indeed, by unraveling definitions we obtain:

for, .o smn, 8) = flrr (1) (8), ...y, (T0)(8))-

We can now describe h.sync. functionals by an equation. Let T' = T1,...,T,, =
o for either o0 = Nat or o = Bool, and consider F' € [T5] and 7; € [T] for
i =1,...,n. By unraveling definitions, F' is hereditarily synchronous if and only
if forall s €S

F(r1,. oy, 8) = F((mr, (11)(8)°, ..., (71, (70)(5))?, 8).

The operator © applied to the arguments of F' forces them to reject their input
state, and to use only the same input state s of F'. This implies that the behavior
of any functional over [T5] is fully determined by its behavior over [T7°.

Proposition 2. Let F,G € [(T\,...,T, = U)%], then F = G if and only if
F(ag,...,a8) = G(a,...,a%) for all ay € [T1],...,an € [T4].

<

In the sequel we denote by {s;};>,, a weakly increasing chain of states so < 51 <

SQS""

Definition 8 (Convergence). Let A be either B or N. A functiont :S; — A
converges, written 7}, if

V{si}r, 37 Yk > 4. 7(s;) = 7(s1,) # L.

The concept in Definition [ is a classical one; we can weaken this concept to
an intuitionistic notion of convergence: 7} iff for every recursive {Si}i§<w there
exists ¢ < w such that 7(s;) = 7(s;+1) and are both total objects of A. For the
sake of simplicity we use a classical meta-theory. Note also that two limits taken
along different sequences sp < s1 < s3 < ... can be different: this expresses the

fact that our interpretation is non-deterministic.
Lemma 4. Let A be either B or N:

1. let a,b : Si — A, and define {a,b) € S| — AL x A by {(a,b)(s) =
(a(s),b(s)): if both all and bl then {a,b)|;
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2. 4f f:(S. — A))— (SL — AL) is h. sync. such that f(a)l} for all constant
a, then f(b){ for all convergent b;

S if f:(SL — AP — (SL — AL) is h. sync. that yields f(7)1} for any k-
tuple of constant T € (S — A1)*, then f(o)l for any k-tuple of convergent
o c (SL — Al)k.

We hereditarily extend the notion of total element to all finite types. By this we
define for each type T' a PER ~7p such that two functionals are related if and
only if they are h. sync. and hereditarily convergent, sending related arguments
into related values.

Definition 9 (Hereditary Convergence and Equivalence). For any type
T we define simultaneously a predicate |7 C [T'] of hereditarily convergent
objects of type T, and a partial equivalence relation ~r over [T°] as follows:

— if either T = Bool or T = Nat then 747 iff T {; 7 ~r 7' if and for any
{si}iw they are definitely equal over it, that is: 3iVj > i. 7(s;) = 7'(s;) #
1.

~If T =Ty = Ty then f U7 iff f is h. sync and f(a) ™2 for all a such that
aUTl; f ~T g ’Lﬁ fUT; gUT and f(a’) ~Ty g(b) Zfa ~Ty b.

Lemma 5. The mapping ° is functorial w.r.t. the quotient of [T>] under ~r:

Id5. ~ Idpsi; moreover f(as,...,a,)° = f°(af,...,as), and (fog)? = f°og°.

We can now interpret each term M : T of £; into our non standard model by an
element of [TY]. If f : N* — N then f; denotes the strict extension of f to N,
and similarly for boolean functions. The values of [xp],(7,s) and [xp],(T,s)
are determined by the information stored in the state s, if any is available, and
are a dummy value otherwise.

Definition 10 (Term Interpretation for £,)
An environment is a map p sending any variable x : T into an element p(x) €
[TSY]. The term interpretation map [M], for M € Ly is defined:

~ [z],=p(z);[c], =5 wherec is any constant among0, succ, eq, true, false, if, PR
and c is its standard interpretation in [T]; [MN], = [M],[N],; [\zT.M], =
Xa € [T%).[M],, where ' (z) = a, p'(y) = p(y) ify # ;

~ [xpl, : (SL — Np)¥ — (Sp — By), where P : Nat*™! = Bool, is such that
for all T € (S. — Ny)k and s € S1, [xpl,(7,s) = L if either 7;(s) = L
for some 7, € T or s = L; else [xp],(T,s) = tt if there exists m such that
(P,7(s),m) € s; [xpl,(T,s) = [f otherwise;

~ [epl, : (SL — NL)* — (S. — NL), where P : Nat**! = Bool, is such that
forall ™€ (S. — N)¥ and s €Sy, [pp],(T,8) = L if either 7;(s) = L for
some 7, € T or s = L; else [¢p],(T,s) = m where (P,7(s),m) € s is the
first triple in s whose first entries are P and 7(s), if any; m =0 else.
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The definition above has, as a consequence, the following interpretation for the
derived combinator WR. If f = [WR],(g,w,h): (S. = N,) — (Si — N), then
f(7) is (using some terms of Ly in place of their interpretations for brevity):

g(7, [ifZ] ([It] (w(h(7)), w(T)), f(A(7))))

An environment p is convergent, written p|l, if p(z) |} for all 2 : T. We then
summarize the main properties of the construction developed so far.

Theorem 1 (Soundness of the Interpretation). Let M, N : T be any terms
Of [.:1 N

1. [M], € [T for any p, and if p| then [M],|T;

2. if M € Ly then [M], € [T]° for any p such that p(x) € [T']° for all x : T';
furthermore [M], is computable;

3. [M], is hereditarily convergent if all p(x) are such;

4. if o= M =N (hence both M,N € Ly), then [M], ~ [N],;

5. ift P is derivable in the theory PRA-3 then [P], ~gool t1° for any convergent p.

4 The Realizability Interpretation

If P[t] € £; is a closed predicate, then [P[t]] is a boolean depending on a state,
ie,amap:S; — B, .IfPlx] € Ly (i.e., if P[z] is a primitive recursive predicate)
then [P[t]](s) is equal to the truth value of P[z] on [t](s) € N. Our goal is to
extract from a proof IT; of a primitive recursive property P[t] € Lo for a term
t € L4, some state s € S, such that n = [t](s) € N satisfies P[z]: in other
words, we want to extract from the proof of P[t] some witness n for P[z]. This
is by no means immediate: even in the case in which P[t] is provable, we cannot
guarantee that for all s € S; we have [P[t]](s) = ¢&. We will show that we can
turn any proof IT; of P[t] into a realizer picking, given any s € S, some s’ > s
(some extension of the state s in the prefix ordering) such that [P[t]](s") = t¢
(i-e., such that P[n'] for n’ = [t](s’)). The realizer is the part of the constructive
content of the classical proof IT; which is not included in the term t.

As a first approximation, the realizer of P[t] associated to IT; could be some
map k1 : S; — S, such that for all s € S, if s = k1(s) then s’ > s and
[Pt]](s") = tt. k1, however, is not enough when IT; is included in some proof-
context IT3[IT;] and when II5[.] corresponds to some other construction ko :
Si — S.. In this case the construction associated to the whole proof IT,[IT;]
would be s’ = ka(k1(s)) > s, and since s” is not a value of k1 we cannot
guarantee that [P[t]](s”) = tt. We overcome this problem by requiring that the
realizer associated to Il is some F' taking a state s and a map ko associated
to some proof context ITo[.] including IT;. We ask that F extends s to some
F(k2,s) > s in which the conclusions of both IT; and II[.] are true. The map
ko is used by F' as a continuation, that is, as a function representing the part
of the program to be executed after F'. Two further constraints on realizers (see
the definition below) are: ko is applied as the last step of the computation of
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F (ie., F(k2,8) = ka(s") for some s > s), and ko is applied by F only to
extensions of the original state s.

We interpret a realizer F': (S, — S;) — (S. — S,) as a “process”. We
think of any x : S; — S, such that x(s) > s as the combined action of all
processes outside F. Remark that the type of a set of processes is a subtype
of the type of processes: in this way we can represent, within the simply typed
lambda calculus, the fact that a process can interact with a set of processes.
id = idg, represents the empty action made by the empty set of processes.
F(id,()) is the canonical evaluation of a process, w.r.t. an empty set of other
processes and the initial state. If k represents a set { F1, ..., F,,} of processes, and
F is a process, then F(k) represents the set of processes {F, F,...,F,}. The
compound process whose components are {F,..., F,} is Fjo ...o F,. We think
of the composition of realizers as an arbitrary sequentialization of the parallel
composition of “processes”.

Definition 11 (Realizer sets and Realizers). Let us abbreviate St = (S} —
SL) - (Sl —>Sl).

1. A realizer set is a total function k : S; — Sy such that for all s € S,
s < k(s);

2. arealizer s any F' € St such that
(a) F(k) = ko F'(k) for some F' € St sending realizer sets into realizer sets

and

(b) if s # L and k1(s') = ka(s') for all s > s, then F(k1,s) = F(ka,s);

3. a realizing map is a function & € (S — N )*¥ — St mapping indeved
numbers realizers.

4. The k-ary pointwise identity is the realizer map I, : (S, — NL)}“ — St
defined by I.(T) = id : St, for all T € (S — N )k,

We call Id = idg, _,s, the trivial realizer and Ij the trivial realizer map.

We list below a few basic properties of realizers. For instance (Lemma [GH]) the
composition of n realizers F1, ..., F, is a realizer whose range is included in the
range of all F, ..., F},. This is not true for generic functionals, but it depends on
the fact that the realizer set received as input is used as a continuation, and it
will be crucial in order to prove the correctness of the realization interpretation.

Lemma 6. 1. id is a realizer set. If k1, ke are realizer sets, then K10 ko is a
realizer set.
2. If k is a realizer set and F a realizer, then F(k) is a realizer set.
3. 1d is a realizer. Iy is a realizer map. If F, G are realizers, then Fo G is such.
4

. If F1,..., F, are realizers, then for all realizer set k and all state s if s' =
(Fyo ...0F,)(k,s) then for some realizer sets ki, . . ., Kk, and states s1, ..., Sy
we have ' = Fy(k1,81) =+ = F(kn, $n)-

The central notion of this paper is that of a realization relation F' = 7, where F'
is a realizer and 7 : S; — B is an indexed truth value. The intended meaning
is that F' realizes 7 if for any realizer set x, F'(k) sends any state s to some
extension s’ = F(k,s) > s in which 7 is true (i.e. 7(s') = tt).
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Definition 12. Let F : St be a realizer and 7 : S| — B, a convergent map.

1. F |= 7 if for all realizer sets k and all s € S if s’ = F(k,s) then 7(s") = tt.

2. If P is a closed predicate of L1 and F a realizer, we say that F = P if

3. If P is a predicate of L1 with free variables x1, ...,z all of type Nat, and
@ : (SL — N)* — St a realizer map, then ® = P if for all vectors T :
(S. — N1)* of convergent maps &(7) = [Plir/a)-

We will now prove that each rule of our system can be interpreted by an operation
sending realizers of the assumptions into realizers of the conclusion. Eventually
we will define, by induction over the proofs, a map R(.) sending a proof IT of
P into a realizer R(II) of P. The realizer will express a part of the construction
hidden in II, the part which is not expressed by the subterms of P.

Let &, : (S; — N, )¥ — St, then the pointwise composition ¢ e W : (S| —
N, )* — St is defined as (¢ @ ¥)(7) = &(7)o ¥(7). We will now check that the
pointwise composition of the realizers of the assumptions of a Post rule is the
realizer of the conclusion of the same rule. The proof relies on the fact that the
realizer of the first assumption of the rule uses as continuation the set of all
realizers of the remaining assumptions of the rule.

Lemma 7. Let Py,...,Pr and Q be the premises and the conclusion of an in-
stance of the Post scheme: for any s € S, if [P1],(s) = -+ = [Px],(s) = tt,
then [Q],(s) = tt, for any p.

Proposition 3. Suppose that in system PRA-3 there is a derivation ending by
an instance of the Post rule schema:

P Py
! Post

cmdlet@l):Pl,...,@k#Pk: then@lo...o@kle.

Proof. 1t suffices to prove the statement when &1 = Fy,...,®, = Fj are just
realizers (so that in particular Fj e ... e F, = Fjo ...oF}). By Lemma [Bl4, for
all realizer set k and state s if 8’ = (Fyo ...o Fy)(k, s) then for some realizer sets

K1,..., Kk and some states s1,..., s, we have s’ = F(k1,81) = -+ = F(kg, Sk)-
By assumption [P1](Fi(k1,81)) = ... = [Pr](Fk(kg, sg)) = tt for all realizer sets
K1,...,kE and states s1,...,sg. We deduce that [P1](s") = ... = [Px](s') = t,

and by Lemma [1 that [Q](s’) = tt. By definition of realization we conclude
Fio...0F, EQ.

Note that we can replace, in the proof above, the composition Fjo ...o Fy by
any permutation of it, and we would obtain some (in general, different) realizer
of the same conclusion Q (see the end of [2]). Our interpretation of this fact
is that composition is an arbitrary sequentialization of a parallel composition
between “processes” Fjo ...o Fj. Note also that if the Post Rule is unary, then
any realizer of the only assumption is a realizer of the conclusion.
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For each instance of the ¢-axiom and of the y-axiom we can define two re-
alizer maps. The k-ary pointwise identity (i.e., the trivial realizer) realizes the
p-axiom with k free variables. In fact, the ¢-axiom hides no construction on
states, because it is true in all states by the very interpretation of x and .

Proposition 4. Fiz any instance Q = xp(x) = Plx, pp(x)] of the p-axiom,
with = x1,...,2, : Nat. Then I}, = Q.

The crucial step is defining some realizer rp ;4 of the y-axiom for the £+ 1-ary
primitive recursive predicate P[x,y] € Ly instantiated in some n,m : N. The
interpretation of such an instance might be false in some state s. Indeed, we
might have [x](n°?,m®)(s) = ff while [P](ne/a,me/y] = tt. In this case we extend
s to some state s’ > s in which the given instance of the y-axiom is true. The
realizer rp ;41 defines s’ by first adding the triple (P, n, m) to s, then by applying
the realizer set variable x and obtaining some s” = k(s’) > s’. By definition we
have [x](n°,m°)(s") = tt, therefore the x-axiom for P and n,m : N is true in s’.
We interpret this step as an atomic “learning” step: the realizer learns one point
in the graph of the map x (and of the map ¢, since they are closely related).

Sometimes one step of learning is not enough to validate the y-axiom. We
therefore define an operator (2, raising rp 41 to some realizer Rp ;i of the
x-axiom instantiated over 7,7 : [Nat]**1, a vector of indexed integers. (2 re-
peatedly applies rp x41(7(s), 7(s)) in order to validate the given instance of the
Xx-axiom, because the values 7(s), 7(s) might change with the state (see the ex-
ample at the end of §5). In the rest of the paper, when we write let (z = u) in (¢)
we mean (Az.t)(u).

Definition 13 (Realizer of the y-axiom). Assume n : N* m : N and & :
S1 — S, and s:S1. Let P € Ly be a primitive recursive predicate interpreting
it. Then we define Tp 11 : N, — st and Rpit1: (S — N ) — st by:

1. rp py1(n,m,k, s)=if(=[x] (7, s)A[P] o me /2,y (5), £(sQ(P,m,m)), k(s)) : S.

2. Assume® : le — St is a family of realizers indexed overNLk, andT : (S1
N, ) andk : (S. —S1),s:Sy1. Then the realizer map 2(®P) : (S, — N )*
St is defined by 2(P,7)(k,s) = let (s = &(7(s))(k,s)) in (if 7(s) =
7(s') then s’ else (P, 7)(k,5')) : S,.

3. Rpgpt1 = Q(rp)k+1) 1 St.

—
—

The computation of (P, 7)(k, s) produces a weakly increasing sequence of states
s =89 < 51 < sy < --- such that s,4+1 = P(7(sn))(k, sn) for all n. If 7 is
convergent, then 7(s,+1) = 7(s,) for some n, and the computation terminates
with output s,41. 2 defines in this way a realizer map for the y-axiom.

Proposition 5 (Realizer of the y-axiom). Fiz any instanceQ = (Plz,z] =
xp(x)) of the x-aziom, for the k+ 1-ary primitive recursive predicate P[x,y] € Ly.
Let R[y] € L;.

1. rppy1(n,n) E Qe ne /@, for alln N* and n € N.
2. If ®(m) = [Rlme) for all m € N", then () = R.
3. Ret1 = Q.
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We can also define a realizer WF mapping a realizer map @ for the assumption of
an induction rule with parameters t, ¢ into a realizer map WF(®, [t], [t]) for the
conclusion of the induction rule. Apart from a single detail we will precise in a
moment, WF is the usual realizer of the rule of well-founded induction.

Definition 14. Let C : S; — B, . For any realizer F' we define a condi-
tional realizer, which is F when C holds, and Id otherwise: if(C,F)(k,s) =
IF(C(s), (s, 5),(5)).

Definition 15. Assume w, f1,..., fr : [(Nat = Nat)>]. Let C; : S, — B,
denote the condition w(fi(1)) < w(r), fori=1,....k. If C : S, — By, then
C A° C; is by definition X\s.C(s) A Cyi(s). Let @ : (S — N ) — St. Then

1. WF¢ is recursively defined as follows: abbreviate WF o (P)(T) =WF o (P, w, f)(1),
we set

WEG(@)(7) = if(C, (1) o WEopoc, (P)(f1(T)) .- © WEoroo, (P)(fk(7)))

2. Assume @ : (S; — N )1 — st and w, f1,..., fr : [Nat"™' — Nat]. Then
we define WF(®,w, f)(7) = WEp(P(7),w(T), (7)), where the index T is the
always true condition.

Note the “guard” if(C,...) in front of the definition WFc = .... By definition
unfolding, this means that whenever C(s) is false in a state s, the realizer WF¢
together with all its recursive calls trivialize to the identity. The reason for having
these “guards” is that the clauses C; = w(f;(7)) < w(7) on which the recursive
calls depend may change their truth value from true to false, and whenever this
happens the recursive call must disappear.

We can now state that WF produces a realizer map for the conclusion of the
induction rule.

Lemma 8. Assume P € Ly is a predicate and t,t;...,tx : Nat — Nat €
Ly a, with x = x1,...,2, and FV(P) = x,x and FV(t,t) = x. Assume & :
(SL — NL)*! — St be a realizer map. Abbreviate [t] = M.[t](r/a) and
[t] = AT.[t](7/a)- If P realizes the assumption of the induction rule for P:

S = ifz(ty(z) <t z)Pte(z)/a] A -+ ANifz(tr(x) <t 2)Plte(z) /2] = P
then WF(P, [t], [t]) E P.

By putting all together, we define by induction on IT a map R(II) from proofs
to realizer maps: for all details we refer to [2], §5, Def. 16.

Theorem 2 (Realizability). Let II : x1,...,z, = P be a proof in system
PRA-3, then R(II) = P, that is for all convergent T € [Nat™], realizer set
and state s € S,

[[PH[T/E](R(H)(TM{,S)) = it.
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The realizer we compute by Theorem Plis the pointwise identity (i.e. it is trivial)
whenever the proof IT uses no y-axiom. Indeed, a realizer returns a state with
enough information about y, ¢ in order to make the conclusion of IT true, and
all rules but the x-rule require no information whatever about x, ¢ in order to
be true.

Acknowledgments. The paper has profited of the remarks of the anonymous
referees.
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Abstract. We present a game-based semantic framework in which the
time complexity of any IMELL proof can be read out of its interpretation.
This gives a compositional view of the geometry of interaction framework
introduced by the first author. In our model the time measure is given
by means of slots, as introduced by Ghica in a recent paper. The cost
associated to a strategy is polynomially related to the normalization
time of the interpreted proof, in the style of a complexity-theoretical full
abstraction result.

1 Introduction

Implicit computational complexity (ICC) is a very active research area lying
at the intersection between mathematical logic, computational complexity and
programming language theory. In the last years, a myriad of systems derived
from mathematical logic (often through the Curry-Howard correspondence) and
characterizing complexity classes (e.g. polynomial time, polynomial space or log-
arithmic space) has been proposed.

The techniques used to analyze ICC systems are usually ad-hoc and cannot be
easily generalized to other (even similar) systems. Moreover, checking whether
extending an existing ICC system with new constructs or new rules would break
the correspondence with a given complexity class is usually not easy: soundness
must be (re)proved from scratch. Take, for example, the case of subsystems of
Girard’s linear logic capturing complexity classes: there are at least three distinct
subsystems of linear logic corresponding to polynomial time, namely bounded
linear logic, light linear logic and soft linear logic. All of them can be obtained by
properly restricting the rules governing the exponential connectives. Even if they
have not been introduced independently, correspondence with polynomial time
had to be reproved thrice. We need to understand why certain restrictions on the
usual comonoidal exponential discipline in linear logic lead to characterizations
of certain complexity classes.
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This is the typical situation where semantics can be useful. And, indeed, some
proposals for semantic frameworks into which some existing ICC systems can be
interpreted have already appeared in the literature. Moreover, there are some
proposals for semantic models in which the interpretation “reveals” quantitative,
intensional, properties of proofs and programs. One of them [B] is due to the first
author and is based on context semantics. There, the complexity of a proof is
obtained by a global analysis of its interpretation as a set of paths.

In this paper, we show that the above mentioned context semantics can be
put into a more interactive form by defining a game model for multiplicative and
exponential linear logic and showing a quantitative correspondence between the
interpretation of any proof and the time needed to normalize the proof itself. This
correspondence can be thought of as a complexity-theoretic full-abstraction re-
sult, where proofs with the same complexity (rather than observationally equiv-
alent proofs) are equated in the semantics.

Context semantics is a model of Girard’s geometry of interaction. As a conse-
quence, turning it into an AJM game model should not be difficult (at least in
principle), due to the well-known strong correspondence between the two frame-
works (see [3], for example). But there are at least two problems: first of all,
the context semantics framework described in [B] is slightly different from the
original one and, as such, it is not a model of the geometry of interaction. This
is why we introduce a lifting construction in our game model.

Moreover, the global analysis needed in [B] to extract the complexity of a proof
from its interpretation cannot be easily turned into a more interactive analysis,
in the spirit of game semantics. The extraction of time bounds from proof inter-
pretations is somehow internalized here through the notion of time analyzer (see
Section [2). One of the key technical lemmas towards the quantitative correspon-
dence cited above is proved through a game-theoretical reducibility argument (see
Section Hl).

Another semantic framework which has been designed with similar goals is
Ghica’s slot games [§]. There, however, the idea is playing slots in correspondence
with any potential redex in a program, while here we focus on exponentials. On
the other hand, the idea of using slots to capture intensional properties of proofs
(or programs) in an interactive way is one of the key ingredients of this paper. In
Section [l the reader can find a more detailed comparison with Ghica’s work. To
keep the presentation simple, we preferred to adopt Ghica’s way of introducing
cost into games, rather than Leperchey’s time monad.

In Baillot and Pedicini’s geometry of interaction model [4], the “cost” of a
proof is strongly related to the length of regular paths in its interpretation. But
this way, one can easily define a family of terms which normalize in linear time
but have exponential cost.

2 Syntax

We here introduce multiplicative exponential linear logic as a sequent calculus.
It would be more natural to deal with proof-nets instead of the sequent calculus,
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I'+rA A A-B I'B I'AJ'A+- B
Ara? qnarB ([ IA) - B S([IA) - B
A+ B rrA A,BEC I'FA AFB I'A,B-C
s FA—B " qINAJA—B)FC 7 (ILAFA®B ® ¢INA®B)FC Le
Ay, .. A, B IAF B I NAF B
(An, A Ty P oamaye s Y

Fig. 1. A sequent calculus for IMELL

but our semantic constructions will rely on a precise sequentiality in proof con-
structions that we would have to rebuild in a proof-net setting.
The language of formulas is defined by the following productions:

Av=a|A—oA|ARA|IA

where «a ranges over a countable set of atoms. A context is a sequence I' =
Ay, ..., A, of formulas. If I' = Ay,..., A, is a context and ¢ : {1,...,n} —
{1,...,n} is a permutation, then ¢(I") stands for the context Ay, .., Agn).

The rules in Figure [l define a sequent calculus for (intuitionistic) multiplica-
tive and exponential linear logic, IMELL, with an exchange rule integrated in the
other ones. Our presentation uses an explicit digging rule N, as often done in
the geometry of interaction setting (see [9] for some comments).

Given any proof 7 : I' - A, we can build another (cut-free) proof [r] : @, I" -
A, where @ is a sequence in the form !¥1(A; — Ay),..., !k (4, — A,). We
say that “cuts are exposed” in [r]. It is defined as follows, by induction on the
structure of :

e If the last rule in 7 is not U and the immediate subproofs of 7 are p1, ..., pn,
then [r] is obtained from [p1],...,[ps] in the natural way. For a promotion
rule, as an example, 7 and [x] are given by:

p:A,... A+ B [p] : ®,Ay,..., A, b B P
G(1Ay, ... A !B I®,¢(1Ay,...,1A,) F B

e For a cut rule, 7 and [r] are given by:

p:I'-B U:A,Bl—AU [pl: &, T+ B [a]:!Z/,A,BI—AL
(I, A) F A &, B— BW,([LA)FA

The cut-elimination steps m ~» p are an easy adaptation of the usual ones. We
just have to take care of the exchange parts, but they can be handled without
any particular problem. To avoid stupid loops, we allow a cut rule ¢ to commute
upwards with another cut rule d during reduction only if d introduces the left
premise of ¢ (and not if d introduces the right premise of c).

For our complexity analysis to make sense, we will restrict the cut elimination
procedure to a particular strategy of reduction called surface reduction. From
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a proof-net point of view it corresponds to reducing cuts at depth 0 only. In a
sequent calculus setting, we only apply a reduction step to a cut rule if it is not
above a promotion rule P. There are several reasons why surface reduction has
been considered here:

e [t corresponds to various reduction strategies for the lambda calculus. In
particular, if lambda terms are encoded into IMELL via the cbn encoding
A — B =!A — B, then surface reduction simulates head reduction. On the
other hand, the cbv encoding A — B = (A — B) induces a simulation of
(weak) call-by-value reduction by surface reduction.

e An upper bound to the time complexity of cut-elimination can be obtained
by considering the so-called level-by-level strategy [5]. But the level-by-level
strategy is nothing more than an iteration of surface reduction. As a con-
sequence, our semantic interpretation could be applied itself iteratively to
obtain bounds on the time complexity of ordinary cut-elimination.

e Any proof whose conclusion does not contain the modal operator ! in positive
position can be normalized using surface reduction. In the cbn encoding,
formulas for infinite datatypes do contain ! in positive position, but those
positive occurrences can be “linearized” with appropriate coercion maps. As
an example, natural numbers are encoded as N = (1A — A) — 14 — A,
but there is an easy coercion N — Ny;,, where Ny, = (A — A) —0 1A — A.

For practical reasons, we introduce a particular atomic formula U and we extend
the IMELL system with the following “pseudo”-rules (which are not valid from
a logical point of view):

" I'tA
X (X, IFA

where X is any atomic formula: a or U.

This allows us to define a proof TA4 of A+ U and a proof TA% of H A. TAx
is called the time analyzer of A. They are defined by mutual induction on A:

a a 0 .
U w TAO . b a LU W TA, : FA P
TAq ik U ol T @ TA4 AU TAY, : 1A
TAp:BFU
TAA: AR U U,BHUU TAY : A TAY: B
®
A,B+U Lo TAYe9p: FA®B
TAags : AR BFU
TAY : - B
TAY : F A TAB:BHUL TAA:AFU  UFB
TAa—op:A—BFU - AF B

—o

TAY . ;:+FA—-B

3 Game Semantics

The game model we use is based on the constructions presented in [I]. We extend
it with the simplest exponential construction (by enriching moves with copy
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indexes [I0/2], except that we use a presentation with exponential signatures in
the spirit of the geometry of interaction [0]) together with a lifting operation
(adding two fresh moves at the beginning of a game).

3.1 Games

A game A consists in:

o A set of moves M 4.

e A function g : Ma — {P,0}. A4 denotes the function from M4 to {P, 0O}
defined by Aa(m) # Aa(m). M$ denotes the subset of M} containing
alternating, opponent-initiated sequences only, i.e., Aa(m) = O whenever
ms € M$ and, moreover, Aa(m) # Aa(n) whenever smnr € M$. MY and
Mg are subsets of M4 defined in the natural way.

e A set P4 of valid plays such that Py C MSB and Py is closed under prefixes.

The language & of exponential signatures is defined by induction from the fol-
lowing set of productions: ¢, s,u ::=e | I(t) | r(t) | p(t) | n(t,1).

3.2 Constructions on Games

To each connective corresponds a game construction. In the particular case of
the exponential connective !, we decompose its interpretation in our model into a
“sequentiality construction” given by lifting and a “copying construction” given
by a traditional exponential construction with copy indexes given by exponential
signatures.

e Atomic game a:
e M, ={a" a%}.
e )\, (aP) =P and \,(a®) = 0.
e P, is {g,0°,a° - af}.
One particular atomic game is called U with moves denoted by a (instead of
o) and q (instead of a©).
e Tensor game A ® B:
® Magp = Ma+ Mp. If s € M}y p, then s, denotes the subsequence of s
consisting of moves in M 4. Similarly for sp.
® MegB =+ Ap.
e The elements of Pagp are sequences s € Mff® 5 such that sy4 € Pa,
sp € Pp.
e Arrow game A — B:
o Ma_p=Mas+ Mp.
e \ioB = A4 + AB.
e The elements of P4_,p are sequences s € Mf{)_o 5 such that s4 € Py,
sp € Pp.
e Lifting game | A:
e Mo = My + {open,close}.
o A\ a(m) = Aa(m) whenever m € Ma, A a(open) = O, A\j4(close) = P.
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o P 4 is {e,0open} U {open-close-s|s € Py}
e Exponential game #A:

® Mya = & x My. Given any sequence s in M} 4 and any exponential
signature ¢, s; denotes the subsequence of s consisting in moves in the
form (¢,m). Given any sequence s in M} and any exponential signature
t, t X s denotes the sequence in M}, 4 obtained by pairing each move in s
with ¢.

° )\#A(t,m) = )\A(m)

e The elements of Py 4 are sequences s € Mﬁ 4 such that for every t € &,
sy =t X r with r € Py.

We will often use the notation !A for #| A.

3.3 Strategies

Proofs are interpreted as particular strategies over games. However since we
are not looking for full completeness results (but for complexity full abstraction
instead), we are not particularly restrictive on the kind of strategies we deal
with. There is no particular notion of uniformity on strategies such as history-
freeness, innocence, etc. Important properties of strategies coming from proofs
will be recovered through realizability (see Section HJ).

A strategy o over a game A is a non-empty set of even-length plays in Pga
satisfying the following conditions:

e o is even-prefiz-closed;
e o is deterministic: if smn € o, sml € o, then n = [.

A strategy o over A is total if s € 0 and sm € P4 implies smn € o for some
n e May.

Composition of strategies can be defined in the usual way. Given a strategy
o over A — B and 7 over B — C, we can first define o || 7 as follows:

ol|lt={se€(Ma+Mp+Mc) |sap€oNspc €T}

where 54, p denotes the subsequence of s consisting of moves in M4 + Mp and
similarly for sp ¢ and for s4 ¢.
The composition of o and 7, denoted o; 7 is simply o;7 = {sa,c | s € o || 7}.

Proposition 1. If o is a strategy over A — B and T is a strateqy over B —o C,
then o; 7 is a strategy over A —o C.

A useful restriction on strategies is given by history-free strategies o satisfying: if
sm-next,(m) € Pa then sm-next,(m) € o if and only if s € o where next, is the
generating partial function from M to M%. The composition of two history-free
strategies is an history-free strategy generated by the composition of generating
functions. Some of the strategies we use happen to be history-free, but not all
of them are.
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The history-free identity strategy ids over A — A is given by the generating
function (assume A — A is A1 —o As):

Vm € M$.nextia, (ma,) = ma,
Vm € MY .nextia, (ma,) = ma,

According to [I], games and strategies define a symmetric monoidal closed
category (SMCC).

3.4 Constructions on Strategies

We describe elementary constructions on strategies which, once plugged together,
will allow us to interpret proofs in the game model.

e Left-lifting Strategy: Given a strategy o over the game A ® B — (|, the
subset (o) of Pjagp—oc is defined as follows:

(o) = {e}U{m-open 4 | Ims € o} U{m open ,-close s s|mse o}

In the same spirit, we can define llg(0) over A® |B — C (so that ll4(0) =

11(0)).
e Right-lifting Strategy: Given a strategy o over the game A, the subset
rl(o) of P, 4 is defined as follows:

rl(o) = {e} U {open 4 -close| 4 -s|s € o}

Using the immediate bijection between M| (4 _.p) and M .| p, if o is a strat-
egy over A —o B, we will often use rl(o) as a strategy over A — | B.
e Lifting Strategy: Given a strategy o over the game A; ® --- ® A,, — B,
the subset 1(0) of Pja,@..9 A, —| B is defined by 1(o) =114, (... 114, (rl(0))).
e Dereliction Strategy: The subset d4 of Py, 4 is the one induced by the
following (assume #A —o A is #A; — As):

VYm € Mg.nextdA (ma,) = (e,m)sa,
Vm € MY .nexta, ((e,m)pa,) = ma,

e Digging Strategy: The subset ng of Py o444 is the one induced by
the following (assume #|A —o |#|#|Ais #]| A1 —o |#]# | As):

nextn , (open 4 4,) = (&,0pen)y|a,
nextn, ((e,close)su|a,) = close|x 44,
nextn , (6, 0pen) 4 4 4,) = (P(t),0pen)x 4,
nextn , ((p(t), close)ya,) = (¢, close) 4 4 4,
Vm € M3 .nextn, ((t, (5,m)) 1414#14,) = (n(t,8),m)4 4,
Vm € Mj.newtn, ((n(t,s),m)41,) = (t, (5,m)) 1%, 4,
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e Contraction Strategy: The subset c4 of Py o|#|ag#|a is the one in-
duced by the following (assume #|A — |#|A@ #|Ais #]| A1 —o |#] A2 ®
#1As):

nertc, (open | 4,) = (€,0pen)x a,
nexte, ((e, close)ua,) = close| 44,

Vm € M3.nexte, ((t,m) g14,) = (1(8),m) 414,
vm € M.nexte, (1(t),m)ga,) = (,m) 1414,

vm € MR .newte, ((t,m)p145) = (r(t),m) 4 4,
vm € Mj.newte, ((r(t),m)g1a,) = (t,m) 414

e Promotion Strategy: Given a strategy o over the game A1 ®---®A,, — B,
the subset p(0) of Pua,o...0#4,—oxp is defined as follows:

p(o) ={s € Pya,p..o#A,—ogp | Vt.Ir € 0.5, =t X 1}
We use the notation pl(o) for p(1(o)).

Proposition 2. For any game A, da, ng and ca are strategies. Let o be a
strategy over Ay ® --- ® A,, —o B. Then rl(o) and p(c) are strategies and, if
n > 1, (o) is a strategy.

3.5 Interpretation of Proofs

We define the strategy [r] interpreting a proof .

The multiplicative rules are interpreted according to the symmetric monoidal
closed structure of the category of games and strategies. The interpretation of
the exponential rules is based on the constructions described above.

e Weakening: if o is a strategy over I’ —o B, it is also a strategy over AQ " —o
B and we can build (d; 4 ® idr);11(o) as a strategy over l[A®@ I' — B.

e Contraction: if ¢ is a strategy over !A @A ® I' — B, we can build (c4 ®
idy);1l(o) as a strategy over lA® I' — B.

e Promotion: if o is a strategy over 41 ® --- ® A,, — B, we can build pl(o)
as a strategy over !4; ® --- ®14,, — |B.

e Dereliction: if ¢ is a strategy over A ® I' — B, we can build (dj4 ®
idy);1l(o) as a strategy over l1A® I' — B.

e Digging: if o is a strategy over !A® I" —o B, we can build (ny ® idp);11(o)
as a strategy over !A® I' — B.

The main difference between weakening and dereliction comes from the original

strategy: over I' —o B for weakening and considered over A ® I' — B, while
“really” over A ® I' —o B for dereliction.

Theorem 1 (Soundness). If 7 ~» p then [r] = [p].

Proof. The multiplicative steps are given by the SMCC structure. The permu-
tations of formulas are handled by the symmetry of the SMCC structure. The
key properties required for the other cases are:
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o Ifo: Ay —oAand7: A®B —o C then (c®id| g);llp(7) = llp((c®idg); 7).

elfo:A® - ®A, oAandT: AR A1 @ - ® A, — B then (p(o) ®
idya,, @ @idga,)ip(r) = p((0 @idu,,, @ @ ida, )i7).

elfo: A ® --®A, — Bthen p(o);dpg = (da, ® ---®da,);0.

e Ifoc:4,® --®A, — Bthenpl(o);cg = (ca, ®---®cy, );(pl(o)) @ pl(o)
(up to some permutation in the second composition turning [!4; ® !4; ®
@ 1A, @A, into [1A4; @@ |14, @14, ®--- @ A,).

e Ifo:A;® - -®A, — Bthenpl(o);ng = (ng, @ --®nyu,); 1(pl(pl(s))). O

We extend the interpretation to the formula U and to pseudo-rules. The pseudo-
rule a is interpreted by the strategy {e, X© - XP}. If ¢ is the interpretation of
the premise of an application of the pseudo-rule w, its conclusion is interpreted
by {eJU{m - X° | Ims c o} U{m-X° - XP.s|ms € o} XO denotes aO if
X = and q if X = U. XP denotes of if X =« and a if X = U.

If o is the interpretation of a (pseudo)-proof, then o is total.

4 Realizability

In order to prove properties of the strategies interpreting proofs, we are going
to define a notion of realizability between strategies and formulas.

The relations “o P-realizes A7, o IF¥ A, (with o strategy over A) and “r
O-realizes A”, 7 IFO A, (with 7 strategy over A —o U) are defined in a mutually
recursive way by induction on A:

olFP aif o = {g,a° P}

TIFC aif 7 ={e,9-a%,q-a® - af -a}

oclFP Uifo={e,q-a}

T IFO U if 7 = idy

olFP A® Bif oa IFY A and op IFF B with 04 = {s4 | s € 0}. (We ask in
particular that 04 and op are strategies over A and B, respectively.)

7IF9 A® B if for any o IFF A, ;7 IF° B and for any o IF° B, o;7 IF9 A.
(Using that, up to the curryfication isomorphisms, 7 can also be seen as a
strategy over A —o (B —o U) or over B — (A — U).)

oI’ A —o B if for any § IFT A, ;0 IFF B and for any 7 IF° B, o;71F° A
7IF0 A —- Bif 14 IF” A and 75y IF° B

o IFP 1A if for any exponential signature t, of, ¥ A with o], = {s], | s € o}
and s, is obtained from s; by replacing any move (¢, m) by m and by then
erasing the initial open and close moves if they appear (we ask in particular
that of, is a strategy over A for any t).

e 7IF9 1A if 7 contains the play q - (e, open).

An adequacy property relates proofs, strategies and realizability:

Proposition 3. For every proof w, the strategy [n] P-realizes the conclusion of 7.

Proof. A first remark is that if o IFY A then o contains a non-empty play and if
7 IF9 A then 7 contains a play with a move in A (by induction on A). We now
do the proof by induction on . We only give a few typical cases.
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e Right tensor: if o IFP I' —o A and o3 IF” A — B, and if § IF¥ I' ® A then
Sp IFP I'and 64 IFP A so that 6r;01 IFP A and 64; 09 IF” B, and finally
Si(or®@09) FP A B.If 7 IFC A® B, §; IFP I' and 6, IF A, we have:
(01 ®idA); (01 ® 02); T = (81;01) ® 02; 7 = 02; ((61;01);7), but 61501 IFF A
thus (61;01);7 IFC B and (6; ® ida); (01 ® 09);7 IF9 A. In a similar way
(idr ® 82); (01 @ 09); 7 IFO T

e Promotion: if o IF” A} ® --- ® A, — B (with ¢’ obtained from o by in-
terpreting the promotion rule) and if §; IFX 14; (1 < i < n), for any
exponential signature ¢t we have §;, IF A; thus (61 ® -+ ® 0,);0")], =
(011, ® -+ @6, 0);0 IFP B.If 7 IFO 1B and §; IFF 14; (1 < i < n), for any
1<i<n, (51® -®§_-1Qid14, ®;11®---®0d,);0’; 7 plays (e, open) as first
move in !A; since 7 plays (e, open) as first move in !B and each §; contains
the play (e, open) - (e, close). O

As a consequence, [TA4] IFY A — U thus [TA4] IFC A (since idy IF° U).
A complete set of moves for any game A is a subset of M 4 defined by induction
on the structure of A:

e If A = a, the only complete set of moves for A is {aF, a®}.

e If A=B®C or A=B — C, Cp is a complete set of moves for B and C¢
is a complete set of moves for C', then C4 = Cp + C¢ is a complete set of
moves for A.

e If A =B, then any subset of M4 containing the move (e, close) is a complete
set of moves for A.

Proposition 4. If 0 P-realizes A, T O-realizes A and o;T is total, then the
maximal sequence in o || T (seen as a set of moves of A) is complete.

5 Complexity

In this Section, we show how to instrument games with slots, in the same vein
as in Ghica’s framework [8]. The idea is simple: slots are used by the player
to communicate some quantitative properties of the underlying proof to the
opponent. But while in Ghica’s work slots are produced in correspondence with
any potential redex, here the player raises a slot in correspondence with boxes,
i.e. instances of the promotion rule. In Ghica’s slot games, the complexity of a
program can be read out of any complete play in its interpretation, while here
the process of measuring the complexity of proofs is internalized through the
notion of time analyzer (see Section B)): the complexity of 7 (with conclusion
A) is simply the number of slots produced in the interaction between [7] and
[TA4]. Notice that the definition of TA4 only depends on the formula A.

The symbol e is a special symbol called a slot. In the new setting, the set of
moves for A, will be the usual M 4, while the notion of a play should be slightly
changed. Given a game A and a sequence s in (M4 + {o})*, we denote by s°
the sequence in M’ obtained by deleting any occurrence of e in s. Analogously,
given any subset o of (M4 + {e})*, 0° will denote {s° | s € 0} C M}.
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A play-with-costs for A is a sequence s in (M4 + {e})* such that s° € Py,
whenever s = remgq it holds that A4 (m) = P and the last symbol in s (if any) is
amove in M 4. A strategy-with-costs for the game A is a set o of plays-with-costs
for A such that ¢° is a strategy (in the usual sense) for A and, moreover, o is
slot-deterministic: if sm eF n € o and sm " n € o, then k = h.

Composition of strategies-with-costs needs to be defined in a slightly different
way than the one of usual strategies. In particular, we need two different notions
of projections: first of all, if s € (M4 + Mp+{e})*, we can construct s ,x (where
X C {P,0}) by extracting from s any move m € M, together with the slots
immediately before any such m provided Aa(m) € X. But we can even construct
sae, by only considering the slots which precede moves in M4 but not the moves
themselves. Given strategies-with-costs o over A —o B and 7 over B — C, we
can first define o || 7 as follows:

ol|lT= {S €(Ma+ Mp+ Mc + {0})* ‘ Sar0 g € 0 N\ Spo cpro € T}.
The composition of o and 7, denoted o; 7 is now simply
;7 = {s4r0 gecro |s€ 0| T}

In other words, we forget the moves in Mg, but we keep all the slots produced
by them.

Proposition 5. If o is a strategy-with-costs over A — B and T is a strategy-
with-costs over B —o C, then o; T is a strategy-with-costs over A —o C..

The strategy constructions we have seen so far can be turned into strategy-with-
costs constructions. In the basic strategies, slots come into play only in rl(o):
in particular, rl’(c) = {e} U {open| , - @' - close| 4 - 5 | s € o}. This way, the
interpretation [r]]? of any proof 7 is parametrized on a natural number 4.

In the particular case of a cut-free proof m with axiom rules only introducing
I-free formulas, [7]° can be easily deduced from [r] by adding e’ before each
P-move of the shape (¢,close) in each play of [x].

We are in a position to define the complexity C(m) of any proof «. First, con-
sider the shape of any non-trivial play-with-costs s in a strategy-with-costs o
for U: it must have the following shape q e’ a. But observe that this play is the
only non-trivial play-with-costs in o, due to (slot) determinacy. The integer i
is called the complexity of o, denoted C(c). This way we can define the com-
plexity C(m) of any proof © with conclusion A as simply the complexity of 7
when composed with the time analyzer: C([r]*; [TA4]°). The complexity of 7 is
defined for every 7 because [r]; [TA4] P-realizes U (by Proposition ) and, as
a consequence, contains a non-empty play. Given any play-with-costs s, C(s) is
simply the number of occurrences of e in s.

5.1 Dynamics under Exposed Cuts

In this Section, we will prove some lemmas about the preservation of seman-
tics when cuts are exposed as in the [-] construction (see Section B)). With
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[7]eca We denote the (unique) maximal (wrt the prefix order) sequence in ¢ ||
([7]%.; [TAB]Y), where [r] :1F1(A; — Ay),... 1P (A, — A,), T F C, [7]l. =
[[7]])%, ¢ = [*rida, @ -+ - @%nida,]° and B = @ I’ —o C. ¥id 4 is the proof for
K(A — A) obtained by applying k times the promotion rule (with an empty
context) to the trivial proof id4 of A — A. We are interested in studying how
[7] eca evolves during cut elimination for any proof = : I' = C. This will lead us

to full abstraction. Indeed:

Remark 1. Please notice that the strategy from which we obtain the complexity
of 7 is:

7= [7]" [TAB]° = (5 [7]ee); [TAB] = & ([n]ce; [TABI").

This implies that [7]cc, contains exactly C(m) slots and, moreover, it contains
a complete set of moves for D = "1(A; — A}) ® ---®@!F7 (A, — A,). This, in
particular, is a consequence of Proposition[ since ¢ IF* D, ([x]L.; [TAB]?) IF° D
and their composition is total.

The cut-elimination relation ~» can be thought of as the union of nine reduc-
tion relations ~» where 2 ranges over the set R = {7, X, ®, —,C,D, N, W, -}
They correspond to commuting, axiom, tensor, linear arrow, contraction, dere-
liction, digging, weakening and promotion-promotion cut-elimination steps. If

X CRorxeR, then X and % have the obvious meaning. We can consider a
reduction relation that postpones !—!-cuts to the very end of the computation.

The resulting reduction relation is denoted with —. Again, & and < (where
x € R and X C R) have their natural meaning.

We need to analyze how [p]ecq differs from []eeq if @ < p. Clearly, this
crucially depends on x € R, since cuts are exposed in [7] and [p]. Due to lack
of space, we report just one particular case here, namely = = D:

Lemma 1 (Dereliction). If = 2 p, then C([7]eca) = C([P]eca) + 1.

Proof. We only consider the case where the cut reduced in 7 is the last rule of
7. The other cases can be reduced to this one by an easy induction. With this
hypothesis, [r] is

[U]:Alw";An’Dlw'anzFB P [0]:¢)F)BFCD
1AL, ... 'An, (D1, ...,\Dp) F1B ' &,9(I),\BFC '
1A1,...,1A,,!B —!B,®,w(!D1,...,!Dy, ") F C -

and [p] is
[0]: A1,..., Ap,D1,...., Dy =B [0]: ®,,BF+C
At,...,An,B — B, &, D1,...,Dp + C
At,...,An, B —o B,&,\Dyy, [, D1, ..., Dy b C

!
!

X D,
A1,y Ap, B — B,®,!Da,...,!Dy,, I, D1 = C
Al)'~~7An)BAOB)QJW(IDI)"';!DHL’F)FC

Observe that: [r] :14;,...,14,,!By —o!Bs, $1, [+ Cand [p] : Ay,..., A, By —
Ba,®1,I1 I C. Now, consider ¢ || ([p]L.; [TA]) and ¢ || ([7]L.; [TAE]), where

!
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E is the conclusion of p and 7. It is easy to realize that [p]ecq can be simulated
by the [7]ecq, in such a way that

[[p]] eca — [[ﬂ']]eca{mBi/(e’ mBi)’ / o (e’ /’L)!Bi7mAi/(e’ mAi)’ / o (e’ :U’)!Ai}

where 4 is a metavariable for either open or close. Observe that ¢ = 1 when
u = close and ¢ = 1 (a promotion in 7 raises a slot), a = 0 otherwise and b =0 (v
does not raise any slot). But there is exactly one (e, close)ip, in []ecq: at most
one (the same move is not played twice); at least one from Proposition H] (since
strategies interpreting (pseudo)proofs are total). The thesis easily follows. a

5.2 Full Abstraction

We now have all the required material to give our key result: full abstraction of
the game model with respect to the reduction length (Theorems 2l and B]).

Given a proof 7 and any reduction relation —, [r]_, and ||7||— denote the
maximum length of a reduction sequence starting in 7 (under —) and the max-
imum size of any reduct of m (under —), respectively. We note |r| the size of a
proof 7.

Lemma 2. For every proof w, [|.. = [r]— and ||7||- = ||7]|—.
Proof. Whenever m = p ~ o and x # |-, there are 0y,...,60, (where n > 1)
such that 7 ~4 6; %3 ... 23 9, EAS o, and ;41 = !—! whenever x; = !-!. For

example, if 7 = p ¥, & and the box erased in the second step is exactly the one
created by the first step, then clearly = Yoo Asa consequence, for any
sequence 7 ~» --- ~» m, there is another sequence p; — --- < p,, such that
m = p1, Tp = pm and m > n. This proves the first claim. Now, observe that for
any 1 < i <n there is j such that |p;| > |r;|: a simple case analysis suffices. O

{C, DN W, I}
(_)

Proposition 6. If 7 p then C(m) = C(p) + 1.

Proof. From Remark [Il we know that C(7) = C([7]leca). We apply Lemma [l
(and similar statements for contraction, digging and weakening). a
. {T,%,®,—}

Proposition 7. If w — p then C(m) = C(p).

The mismatch between the statements of Proposition [l and Proposition [ can
be informally explained as follows. After any “exponential” reduction step (see
Proposition [G) one slot is missing, namely the one raised by the promotion rule
involved in the reduction step when faced with the (e, open) move raised by the
left rule interacting with the promotion rule itself. Clearly, this does not happen
when performing “linear” reduction steps (see Proposition [).

Lemma 3. If 7 is cut-free, then C(m) < |x|.

Proposition 8. If m rewrites to p in n steps by the T rule, then |7| = |p| and
n < 2|r|%.
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Proof. The equality |r| = |p| can be trivially verified whenever 7 Z p. Now,
for any proof 7, define |7|comm as the sum, over all instances of the U rule
inside 7, of |0|cut + || + 0], where o (respectively, 6) is the left (respectively,
right) premise of the cut and |o|.y+ is simply the number of instances of the cut

. . . T
rule in o. For obvious reasons, 0 < |7|comm < 2|7|?. Moreover, if m < p, then
|7 | comm > |p|comm- For example, consider the following commutative reduction
step:

m:I'FA p:A,A)—BU p:AJAFB o:02,BFC
s(IA)F B c:02,B-C U T: I+ A w(A,2),A+C
0:9(IA, Q) FC ~ £ A Q) FC
Clearly, |0] = |&| but |0]comm > |€]comm. Other cases are similar. 0

Theorem 2. For every proof w, C(m) < []ws + ||7]|os

Theorem 3. There is a polynomial p : N x N — N such that for every proof w,
[T]r < p(C(m), |7]) and ||z < p(C(m),|x]).

Proof. By Lemma [2] the thesis easily follows from [7],, ||7||— < p(C(n),|n]|).
Our first task will be to analyze the shape of any box you can find during the
normalization of w by < up to the point where you begin to fire !—! cuts. But it
is easy to prove that any such box is just a subproof of 7, possibly endowed with
n promotions rules (where n is less than the total number of N, cuts fired during
normalization). As a consequence, any such box has at most size || + C(7).
Now, we can easily bound ||r||—: at any C' or N normalization step, the size
of the underlying proof increases by at most |r| + C(mw) (but the complexity
strictly decreases), while in any other case the size decreases. As a consequence,
[|7]|— < C(m)(|7| + C(w)). Now, the total number of non-commuting reduction
steps is at most C () + C(w)(|w|+C(7)). Between any of them, there are at most
2||7||2, commuting steps. As a consequence:

[l < C(m) + C(x)(Im] + C(m)) + (C(m) + C(m)(Im] +C(m))) 2|2,
< (C(@) + C(x) (] + C(m))) (L + 2C) (7] + C(m)))?)- |

6 Further Work

The main defect of our approach is the strong use of sequentiality informa-
tion from sequent calculus proofs in the game interpretation. The two main
approaches to get rid of this sequentiality are the use of non-deterministic strate-
gies or of clusters of moves (when interpreting the promotion rule). This way
we would be able to directly interpret proof-nets. In a similar spirit, we have
used an exponential construction for games based on a grammar of exponen-
tial signatures, as usually done with context semantics. This is known to lead
to not-very-satisfactory properties for !: for example, weakening is not neutral
with respect to contraction, contraction is not commutative, etc. However, an
answer to this problem should easily come from the solution proposed in the
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AJM setting with the notion of equivalence of strategies [2]. All these ingredi-
ents would probably allow us to turn our game model into a true categorical
model of intuitionistic linear logic.

Another weakness is the restriction to surface reduction. We think adaptations
to head reduction or to reduction strategies leading to normal forms should
be possible by modifying the time analyzer in order to interactively access to
“deeper” parts of proofs.

The notion of realizability we have introduced is tuned to reach the result we
need, namely Proposition @l However, it seems possible to modify it in various
ways and to use it for very different applications in the more general context of
game semantics.

Very recently, another proposal leading to similar observations but being based
on relational semantics has appeared [7]. The authors give an exact measure of
the number of steps required for surface reduction (and then level-by-level reduc-
tion). This should be also possible in our setting by adding lifting constructions
to all the connectives (not only to the exponential ones). However an important
difference comes from the notion of cut elimination under consideration: while
they use B-reduction style exponential steps (coming from contractions of un-
bounded arity in particular), we consider standard exponential steps (based on
binary contractions), and this may lead to an exponential blowup. Possible cor-
respondences between our game-theoretical analysis and the analysis done in [7]
could come from works about projecting strategies into relations.
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Abstract. We give a graph theoretical criterion on multiplicative
additive linear logic (MALL) cut-free proof structures that exactly char-
acterizes those whose interpretation is a hyperclique in Ehrhard’s hyper-
coherent spaces. This criterion is strictly weaker than the one given by
Hughes and van Glabbeek characterizing proof nets (i.e. desequentialized
sequent calculus proofs). We thus also give the first proof of semantical
soundness of hypercoherent spaces with respect to proof nets entirely based
on graph theoretical trips, in the style of Girard’s proof of semantical
soundness of coherent spaces for proof nets of the multiplicative fragment
of linear logic.

1 Introduction

Proof nets (PN) are the syntax of choice for unit-free multiplicative linear logic
(MLL, [6]). The robustness of such a syntax consists in its ability to quotient
proofs of MLL modulo inessential rule commutation in a canonical way. Each
proof net represents in fact an equivalence class of sequential proofs, and such
equivalence is validated by numerous semantic models. This is obtained by build-
ing proofs in a more general syntax, proof structures (PS), among which one
may characterize the ones that come from sequent calculus proofs via a host of
well established correctness criterions, where correctness here means sequential-
izability. The most famous ones are the long trip one due to Girard [6], and the
Danos-Regnier one [] of switching acyclicity and connectedness.

Since the beginning there was a tight pairing between linear logic and the
semantic model that brought the intuitions necessary for its discovery: coherent
spaces. The link is the interpretation of PNs in coherent spaces via the notion
of experiment. As PNs live inside a more general world, also the interpretation
is in fact defined on PSs in general, yielding simply setdl.

* This work was partly supported by Universita Italo-Francese (Programma Vinci
2007).

! In fact one may regard this interpretation as living in the category Rel of sets and
relations, though this becomes less clear in the presence of the exponential modality !.
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Clearly the first thing to check is the semantic soundness of such an inter-
pretation: are PNs interpreted as objects of coherent spaces, i.e. cliques? If [ ]
stands for such an interpretation, chosen by assigning a coherent space to each
type literal, the following theorem addresses such a question.

Theorem 1 (Girard, [6]). For m an MLL-PS on a sequent I', if 7 is switching
acyclic then for any interpretation [ ] we have that [r]] is a clique in [I'].

As the sole role of switching connectedness is to invalidate the mix rule, which
is accepted by coherent spaces, one drops it from the requirements.

There is now another question one can ask. As it makes sense to interpret
a PS, it also makes sense to ask when such an interpretation is a clique. Such
semantic correctness, in the case of MLL, turns out to be equivalent to the
sequentializability one, as one has the following, reverse theorem.

Theorem 2 (Retoré, [16]). For m an MLL-PS on I, if 7] is a clique in [I']
for any interpretation [ ], then m is switching acyclic.

This strong pairing begins to break when one extends the system with units, or
exponentials, or additives, which are the main concern of this work. On one side,
the problem of providing unit-free multiplicative additive linear logic (MALL)
a canonical syntax extending the good properties of the MLL one proved to
be a longstanding question. A partial answer was given by Girard in [7] and
a more satisfactory one was developed by Hughes and van Glabbeek in [§], a
work which is one of our starting points. PSs are in this framework represented
as sets of purely multiplicative structures, usually referred to as slices (see for
example [9]), identified by linkings (i.e. sets of axioms, see Section 2] for more
details). Again [8] provides a geometrical criterion, which we call the [HvG] one
(page259) characterizing sequentializable structures, which we call [HvGlcorrect.

On the other hand, one would also like to extend the good semantic pairing
of MLL to MALL. Coherent spaces are known to not provide the same results
for MALL PSs as for MLL. In fact there is a PS, the Gustave one, which is the
proof theoretical counterpart of the Gustave function G in the stable model of
PCF. In the same way as GG is an unsequentializable stable function, the Gustave
PS which we will show in Figure [l at page is an incorrect structure which
is interpreted by a clique, so that no analog of Theorem [lis possible for MALL
and coherent spaces.

The Gustave function G is however rejected by Bucciarelli and Ehrhard’s
strongly stable model [3], and starting from it Ehrhard developed in [5] a new
model of LL extending the coherent one: the hypercoherent spaces (Section [Z2).
One may then turn to such a model hoping for a better account of MALL.
Semantic soundness clearly holds if one passes through the sequentialization
theorem of [§], though a more direct proof might be desirable (we will in fact
give it, by combining Proposition [[7] and Theorem [[II). As for the analog of
Theorem [2] the Gustave PS is indeed rejected, but one stumbles anyway upon
another counterexample [12], which we show in Figure 2] on page It has
been conjectured [12, Conjecture 70] that such fracture between MALL syntax
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and hypercoherent semantics is due to the intrinsic unconnectedness of the coun-
terexample.

Conjecture 8 (Pagani). If 0 is a proof structure, and VA € 60: A is switching
acyclic and connected, and [0] is a hyperclique for any interpretation [ ], then 6

is [HvGlcorrect.

We decided to “factorize” the conjecture by first finding the criterion for semantic
correctness, which we call hypercorrectness (Definition Bl). This criterion exactly
characterizes the cut-free structures which have a hyperclique as interpretation.
This approach has much similarity to the work of Pagani in the framework of
exponential LL, where a criterion (visible acyclicity) is shown to characterize
nets interpreted by non-uniform cliques [11] or finitary relations [I3], along with
interesting computational properties. More from a distance, a similarity can be
established with what happened in the study of models of PCF: once it was clear
that Scott-continuous functions, or even stable ones, were not fully abstract for
PCF, two directions were taken. One was to refine the models (from continuity
to stability and from stability to strong stability), while the other, similar to
what we do here, was to find which languages were fully abstract for these
same models (parallel PCF for the continuous one [I5] and stable PCF for the
stable one [I4]). One difference is that in our work and that of [III13] one really
finds a discerning geometrical criterion (something that has sense because of
the presence of generally “incorrect” objects, PSs) corresponding to an algebraic
one, apparently distant (hypercliques here, finitary relations in [I3]). In MALL
the approach of semantic refinement is the direction taken in [2], where a proof
of full completeness is given by applying an operation of double glueing on
hypercoherent spaces.
Returning to the conjecture, we set out to prove

1. for @ cut-free proof structure, 6 is hypercorrect iff [f] is a hyperclique for
any interpretation;

2. for 0 proof structure with VA € 0: X switching connected, 6 is hypercorrect
iff 6 is [H¥xGlcorrect.

We address here point [I, proving both sides of the equivalence in Theorems [I]
and [[H and leave point [ as a further conjecture. The computational content of
the criterion, along with its extension to PS with cuts, is left for future work.

Hypercorrectness uses a notion of &-oriented cycles: contrary to what hap-
pens in sequentalizability criterions the orientation of paths counts. There are
already many hints of such behaviour relating to semantics. The visible acyclic
paths employed in [II] have such feature. The works in [2] and [I] show full
completeness results by employing cycles where the orientation is decided by
Jgumps, though the framework of the two is Girard’s non canonical proof nets.
More recently, investigation on games semantics in [I0] has as well brought to
the fore an oriented interpretation of the acyclicity criterion in MLL PNs.

Outline. In Section 2] we define the standard notions appearing in this work.
Next, in Section [3 we define hypercorrectness and prove the characterization.
Finally in Section ] we present some contour information and results.
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2 The Framework

We will here introduce the main actors involved in this work:
IMALL proof structures, |hypercoherent spaces and [experimentd

Given a denumerable set of type variables V., unit-free MALL formulas are
generated by the grammar

Fu=V|VFRF|FRF|FaTF|F&T,

with linear negation ()" defined by De Morgan dualities (A ® B)™ := AL 2 B+
and (A® B)l := AL & B as usual. Variables and their negations are atomic,
connectives ® /% are called multiplicative, while ®/& are additive. A sequent
I' is a multiset of formulas Ay, ..., A,.

We will identify a formula with its graph-theoretical representation as a syn-
tactical tree, which has a distinguished root node (the conclusion of the for-
mula), logical connectives as intermediate nodes (called links), and atomic for-
mulas as leaves. The term “node” will therefore indicate any of these parts, while
among edges we will call the one above the root terminal and the ones above
a given link premises to that link. Every edge has a subformula corresponding
to it, and it is called its type. Different occurrences of nodes or edges will be
noted by lowercase Latin letters. Two leaves are dual if their atomic formulas
are dual. Sequents are likewise identified with their representation as syntactical
forests. The tree structure naturally induces an (arborescent) order on links and
edges, which we will denote by =<, with conclusions being minimal. For nodes
a,b connected by an edge e in I' we will write a —, b (resp. a <. b) if e is a
premise of b (resp. a). We will omit any of a, b, e if it is of no importance, so that
for example —. b means “e is a premise of b”.

2.1 MALL Proof Structures

We will now define cut-free MALL PSs, mostly following [8], though some notions
are here equivalently reformulated.

In the following let us fix a sequent I'. An axiom is an unordered pair of dual
leaves of I'. Any set of axioms A naturally defines a subforest of I" which we
denote by I'l' \, by taking (lJA) |, the set of leaves in axioms of A down-closed
with respect to =, i.e. the subforest of I" obtained by taking edges and links
which have an axiom in A above them. In I'[ A connectives are either binary or
unary. We call A a linking (on I') if axioms in \ are pairwise disjoint and I'[ A
contains all conclusions of I'; no unary multiplicative connectives ®/% and no
binary additive connectives @/ &E The slice G, associated to a linking A is the
graph obtained from I'T A by adding a new node for every axiom {a, b} of A with
edges to the leaves a and b. By extending the notation, also these new nodes in
G, are called axioms, and the new edges are premises to the leaves. The order

2 Here and in the rest of the paper, := means “is defined as”.
3 1In [8] linkings are defined as a partition over the leaves of an additive resolution, a
notion not appearing here. The definition is clearly equivalent.
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=< is extended to G, by setting the axiom nodes and edges as greater than the
leaves they connect (axioms are maximal, and the order is no longer aborescent).

Given A a set of linkings, we define I'[ A := |, .4 I'I A, where superposition is
trivially defined as all lives inside I". We define the set &2(A) as the set of binary
& connectives in I' A. For two linkings A, u € A we use the notation A % u (A
and p toggle w uniquely) if &2({\, u}) = {w} (which implies A # ), and
the notation A p if A% por A = ﬂ

A &-resolution G of I' is a subforest of I" obtained by erasing from it one
whole branching (whether left or right) from each & in I', i.e. choosing one
of its premises e and erasing all edges and nodes x = e. A linking A is on a
&-resolution G if I'T A C G, i.e. all axioms in A are on leaves of G.

Definition 4 (Proof structures). A (cut-free) PS on a sequent I' is a set 0
of linkings such that for every &-resolution G of I' there exist a unique \ € 6 on
G (resolution condition).

2.2 Hypercoherent Spaces

The first denotational semantics of linear logic were coherent spaces [6], which in
fact were the mathematical notion that gave the first intuitions for linear logic.
Much later, Ehrhard introduces in [5] a refinement, the hypercoherent spaces,
which we briefly present here.

A hypercoherent space X is given by a pair (|X|,<x) where

— |X| is a set called the web of X.

— <y, called the hypercoherence of X, is a predicate cx C P%,, (|X]), the
finite non-empty subsets of the web of X, which is reflexive in the sense that
it contains the set of singletons P_; (|X]).

The hypercoherent space as subscript of the relation is omitted if no confusion
is possible. Apart from <, one defines the following relations, from which < can
be in turn recovered: strict hypercoherence ~ := <\P_; (|X|), hyperincoher-
ence < := PL_(|X]) \ ~ and strict hyperincoherence « := P%  (|X|) \ <. The
hypercliques of X are

H(X):={hC|X||VsCL, h: Cs},

where s CZ , h means that s is a finite non-empty subset of h.

All connectives of linear logic have a corresponding operation on hypercoher-
ent spaces. We define here all of them but the exponential one which is of no
interest here.

Dual: |[X*|:=|X]|, and Syu = <.
Multiplicatives: | X ® Y|=|X & Y| := |X| x [Y], and given s %, |X]| x [Y| we set
Sxgy s <= <xmo(s) and <y mi(s),
~xmy 8 = ~yxTo(s) or ~ymi(s),
with 9 and 71 the usual left and right projections.

Y XY 4 is denoted A £ 1 in [§].
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Additives: |Xo @ X1| = |Xo & X1| := |Xo| + |X1|, the disjoint sum. We denote
an element of such a disjoint sum as x.i, with ¢ = 0 or i = 1 and x € |X,].
Given s CL | [Xo| + |X4], let s; ;= {x € |X;| | z.i € s }. Then we set

Sxgex, § <= si=0and ox,_; s1-i fori=0or 1,

Sygkx, S <= either so # 0 and s1 # 0, or s; =0 and <y, , s1—sfor i =0 or 1.

Note therefore that if sy and s; are both non-empty, one automatically has
Ao, S and o oo s regardless of the elements of s, as it cannot be a
singleton.

The operations defined above respect De Morgan’s duality.

2.3 Experiments

The notion of experiments was developed by Girard in [6] to give a way to
directly interpret multiplicative proof nets in coherent semantics, without pass-
ing through sequent calculus. The remainder of this section will be devoted to
defining experiments on (cut-free) linkings and PSs.

Suppose given an interpretation [ ] on type variables, i.e. a mapping from
type variables to hypercoherent spaces. It can be easily extended to all formulas
A by induction, chasing down all connectives and applying the corresponding
operation on hypercoherent spaces. Then the interpretation of a sequent I' =
Ay, . Ay s [IT] = 297 [A;] . We disregard any problem of bracketing, and
consider the web of [I'] as made up of n-uples.

Given a (cut-free) linking A on I', an experiment e on A (notation e : ) is a
function assigning to each axiom £ € A of type a/at a point e(¢) € H[a]” This
function is then extended by induction to every edge f of type A in Gy, so that

e(f) € |[A}:

— if A is atomic, f has an axiom ¢ € A above it, and one sets e(f) := e(¢);

— if A is multiplicative, f is under a ® /% link with both of its premises fp and
f1, and one sets e(f) := (e(fo),e(f1));

— if A is additive, f is under a @®/& with only one of its premises f; (i = 0 for
left, 1 for right), and one sets e(f) := e(f;).i.

If f1,..., fn are the terminal edges of I', then the result of the experiment e on
X is defined as e(A) == (e(f1),...,e(fn)) € [[I']|- An experiment e on a PS 6 is
an experiment on any of its linkings A, with e(#) := e(\). The interpretation of
a PS is then given as

[0] := {e(0) | e experiment on 6} C [[I']].

Given experiments eq,...,ex on 0, if an edge d is in all Gy, where e; : A;, then
it makes sense to ask whether <{e;(d)} holds, obviously by taking as space the
interpretation of the type of d.
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a B P= ®)
e WJ WJ WJ

(a) (@&a)@a,(B&pP)®P, (P&P)®P
(b)

Fig. 1. The Gustave PS 7 is shown in (b). P is short for o ® 8+, and the three-
leaves axioms shown are a short graphical representation for the trivial linking
on a, 3, at ® B+, as shown in (a).

2.4 Examples

The Gustave PS ~ is presented in Figure its five linkings shown one above
the other. This example is described in [8] Section 4.6.1] in the framework of
Hughes and van Glabbeek PSs. It is an unsequentializable structure, as all ter-
minal @s are binary, so no final @ rule may be applied in sequent calculus. In fact
the [HvQl criterion (page B59) rejects such structure. While the interpretation of
~ in coherent spaces is a clique, as coherence is checked on at most two slices at
a time, [y] in hypercoherent spaces is not a hyperclique.

Figure [2] shows the counterexample to hypercoherent semantic correctness
being equivalent to sequentializability [I2, Proposition 69]. The PS §, whose
linkings are shown in Figure is not sequentializable as the final rule must
be ®, however it cannot split the € @ €, e part of the context as it depends on
both &s. Such a dependency is registered by jumps, which give an illegal cycle

L L
at, (a&a)@(‘B&.‘B),vﬁ + €®e, € (b) An illegal cycle in the cor-
(a) The linkings of rectness graph G5v¢ (defined on

page 259)

Fig. 2. The proof structure é: an unsequentializable structure such that [4] is a
hyperclique
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in such a structure, as shown in Figure Notice that the cycle traverses the
&s in opposite directions. The interpretation [6] is a hyperclique because of the
way binary &s entail strict coherence whatever comes above them. The slices,
though switching acyclic, are not switching connected — this should always be
the case for unsequentializable semantically correct structures, if the conjecture
stated in point 2 of Section [l is indeed true.

3 The Criterion

In this section we will define the criterion and then show the main results.

3.1 Hypercorrectness

We will define correctness graphs in the style of [§], with a substantial difference
though. While jumps in [§] are drawn from the axioms, here we will draw them
from the places where slices begin to differ from bottom to top. Section [ will
give equivalent forms of this criterion and a more precise comparison with the
[Hxdl criterion.

Given a set of linkings A, the pre-correctness graph G/, is obtained by
superposing all slices of A, i.e. §4 := (Jyc4 Gx- The I'l A part of each slice is
inside I'[ A, so in fact §/; is obtained by adding axioms to it. Superposition (i.e.
identification) of axiom nodes and edges happens if and only the related axiom
connects the same leaves. An edge or a node in §; is said to be total (for A) if
it is in all slices, i.e. in [, 4 9x, partial otherwise. An additive contraction,
or simply contraction, is a total non-& node with partial premises, and their set
is noted as contr(A). Contractions are in fact binary @s and total leaves under
partial axioms.

The correctness graph G, is obtained from §/; by adding new edges, called
jumps, from a node ¢ € contr(A) to w € &2(A) whenever

A, A2 € A A 7 Ao and ¢ € contr({A1, A2}).

A jump j from c to w is denoted ¢ ~»; w. Jumps are considered partial, and
premises to the & they jump to. Let tot(A) (resp. part(A4)) denote the set of
total (resp. partial) edges in G4.

A path ¢ in G, is a finite non-repeating sequence e; of edges such that e; and
ei+1 are adjacent, i.e. share a node, and such that also every shared node is not
repeated. As sequences, paths are oriented, so we can define the source (resp.
target) of ¢ as the unshared node of the first (resp. last) edge in ¢. A cycle is
a non-empty path whose source and target coincide. We identify ¢ with the set
of its edges and the nodes it traverses, so that we may write w € ¢ for a node
w. Paths may also be denoted with the concatenated notations for premises and
jumps, as for example in —.— x «~+; w. Note how some node or edge names
may be omitted, and recall that jumps are considered also as premises, so that in
the example e may be a jump. Also arrowheads will be omitted (as in z —, y) if
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we do not want to specify whether the path is going upwards or downwards. For
e € ¢, write | e € ¢ (resp. | e € @) if e is traversed going down (resp. up), i.e. if
d is traversed towards (resp. from) the node it is premise of. A path bounces on
a node z if it contains a segment of shape — x « or « x —. Cycles are to be
considered bouncing on their source/target if their first and last edges are both
immediately above or below it. A path or cycle is switching if it never bounces
on a % or &.

Finally, a switching path ¢ is said to be &-oriented if it changes from being
partial to total on &s only and does viceversa on contractions only, i.e. for every
— ¢ —¢ in ¢, if e € part(A) and f € tot(A) (resp. viceversa) then x € &2(A)
(resp. € contr(A)). Furtherly, two paths ¢ and ¢ are said to be bounce-
compatible if whenever ¢ and v both bounce on the same total tensor or
axiom x, traversing its adjacent edges a,b, then a,b appear in the same order
in ¢ and . A union of paths is said to be bounce-compatible if its paths are
pairwise bounce-compatible.

Definition 5 (Hypercorrectness). A proof structure 6 is hypercorrect if for
every A C 0 and every bounce-compatible non-empty union S of &-oriented
cycles in Ga, there is w € &2(A) such that w & S.

Note that for any A, as the whole Gy = G is total and lacks binary &s, this
criterion entails the absence of switching cycles, i.e. multiplicative correctness
(without connectedness) of every linking. Notice also that dropping bounce-
compatibility and &-orientedness of S amounts to reverting to the [IvGl criterion
(see page 259). Revisiting the examples shown in Figures [[l and ] we show in
Figures and respectively one of their correctness graphs.

Te===~sy
e

(a) The correctness graph of three link- (b) The correctness graph Gs. The only
ings of the Gustave PS. Only three out way to form a cycle would be to bounce
of six jumps are shown, and axiom nodes on the tensor, but that would not be a
are omitted. The cycle shown is strictly &-oriented one.

&-oriented (page [259]).

Fig. 3. Two examples of correctness graphs. The first one shows the rejection of the
Gustave PS by the criterion, while the second structure is hypercorrect. Leaf nodes
and axiom nodes are marked by es.

3.2 Hypercorrectness Implies Hypercoherence

We will devote this section to the proof of Theorem [Tl the analog of Theorem [
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Let us fix in the following 6 a cut-free PS on a sequent I'. A set of linkings
A C 0 is said to be saturated if for every A € 6\ A, AU {\} has more binary
&s than A. A &-oriented path or cycle ¢ is strictly &-oriented if it always
descends on partial edges, i.e. if e € ¢, e € part(A), then | e € ¢. Note that
this implies not passing any partial axioms. The following are two basic lemmas
needed for our proofs later.

Lemma 6. For A saturated, every ¢ € contr(A) has a jump ¢ ~ in G4.

Lemma 7. If 6 is hypercorrect and A C 0 is saturated, then every non-empty
bounce-compatible union S of strictly &-oriented cycles has a jump out of it, i.e.
Jw € &2(A)\ S and ¢ € contr(A) NS such that ¢ ~ w € G,.

The following is the main lemma opening us the way for Theorem [Tl

Lemma 8. Let 6 be a hypercorrect PS on a sequent I'; ey, ..., e, experiments
on 0, such that ~{e;(f)} on a terminal edge f. Then there exist A C 0 and a
strictly &-oriented path ¢ in G4 starting with f and ending with a terminal wire
I’ such that ~{e;(f")}.

Proof. Consider A the minimal saturated set of linkings containing those on
which experiments e; are taken. By minimality binary &s are the same. We will
give a precise algorithm which will build the path ¢. The base step of such an
algorithm is the non-deterministic function NEXT, taking as inputs a direction e
which can be T, | and an edge d € G4 such that

1. if d € part(A) then e = |;
2. if d € tot(A) and € = 1, then —{e;(d)};
3. if d € tot(A) and € = |, then ~{e;(d)}.

The output will be a direction ¢ and an edge d’ with the same properties and
such that dd’ is a path with ed, ¢'d’ € dd’. Let us define NEXT by the three cases
described above.

1. Let —4 x. If x € part(A), then * —g with d € part(4), and let
NEXT(] d) := | d. If z € tot(A), then either z € &2(A), in which case
x —¢ and NEXT(] d) := | d (note —{e;(d')} as &s binary in A are also
binary in the linkings on which the experiments are taken), or & € contr(A).
By Lemma [6] there is x ~4, and we set NEXT(| d) := | d'.
2. Let «4 x. If x € contr(A), then proceed as the above case, setting
NEXT(Td) := | d with  ~»4. Otherwise let us define NEXT by cases on
the nature of x:
axiom: z is total, and <4 = —4. Set NEXT(]d) := | d’. The property is
preserved as the value of the experiments on the two edges is the same
and their types are dual;

leaf or unary additive: there is a unique = «4, d’ € tot(A) with the
same incoherence of d, so we set NEXT(]d) := T d';

binary with: this case is impossible, because <4 z, as noted above, implies

~ei(d)};
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par: we have —g4, x <4, the two premises of z, and as -« {e;(d)}
and {e;(d;)} = mj{ei(d)}, we have —{e;(d;)} on both, and may set
NEXT(Td) := 1d; for any of the two js;

tensor: we have — g, © «—g4,, and as ~{e;(d)}, one of the two projections
{ei(d;)} must be strictly hyperincoherent, and we may set NEXT(7 d) :=
Td; with such a j.

3. Let —4 x. We have that x and all its adjacent edges are total, so x cannot
be an axiom, a contraction or a binary &. Again, let us proceed by cases.
leaf or unary additive: x — 4, and trivially we can set NEXT(] d) := | d’;
par: —4 x —g, and as ~{e;(d)}, then ~{e;(d')}, and we set NEXT(| d) =

ld;

tensor: let —g x <4, d’ the other premise of x, and x —4; if ~{e;(d")},
then set NEXT(] d) := | d"; otherwise, necessarily —{e;(d')}, and we may
set NEXT(| d) := Td'.

We say that a path fofi--- fx is admissible if it is built by an iteration of
NEXT, i.e. fj11 = NEXT(f;), with its first edge fo either a terminal one or also
an output of NEXT, i.e. such that 3f_; | fo = NEXT(f_1).

Fact 9

— The composition ¢ :: 1 of two admissible paths ¢ and 1) is admissible;

— all admissible paths are strictly &-oriented and bounce-compatible between
them;

— in particular, an admissible path ending on one of its own nodes forms a
strictly &-oriented cycle.

Another non-deterministic function we will use is JUMP, which takes as input a
non-empty union S of admissible cycles (therefore a bounce-compatible union
of &-oriented cycles) and gives | j, where j is a jump out of S as described by
Lemma [7 Notice that all jumps can always be outputted by NEXT: they are
therefore admissible, and may be appended to an admissible path preserving
such property.

Finally, let W and S be variables for sequences of binary &s and unions of
admissible cycles. W; (resp. S;) will denote the j-th element of W (resp. S),
with W starting from 1 and S from 0, and both ending in k& (we will always
use k for the size of W). The algorithm will build an admissible ¢ so that at
all times W are the &s in ¢ which are not in any cycle of S. In a way W; will
be “in between” S;_; and S; (W; will be generated by JUMP(S;_1)). Also, the
algorithm will make it so that all &s touched at some time by ¢ are partitioned
by W and &s in [JS;.

The following is a schematic example of how the algorithm works. The aim is
that starting from the terminal edge f given by hypothesis the path ¢ eventually
ends on another one, the f’ of the thesis. Suppose that following NEXT we end
up in a cycle x1. Applying JUMP to it, we can backtrack and jump to a & w;
outside it and keep going (at this point, we set W = (wq) and S = (x1,0)).
Now suppose the path cycles again, intersecting itself after wi, forming ys. If
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we applied JUMP to x1 Uxa, it could answer the same jump to w; it told before,
and it would be useless. In such a case we obtain wy = JUMP(x2), and if wo is
“fresh” we set W = (w1, ws) and S =)x1, x2,?). If then at a certain point we
end up again on ¢ before wy (and ws) forming ys then we may safely collapse
the three cycles and apply JUMP to x1 U x2 U xs without risking a useless answer.
W becomes (ws), S = (x1 U x2 U x3,0) (note wy,wy are in it, so that we may
say that they are somehow “burnt” in this process).

Going back to the preliminary description of the algorithm, every time ¢
arrives to a node x € ¢, we store in = the path ¢ as it is at that moment, calling
it the history of . We are now ready to present the whole algorithm. Recall
that by hypotheses there is a terminal edge f such that —{e;(f)}, so we can
apply NEXT to T f. The target of ¢ is denoted by t(¢).

1. Start by setting ¢ := f, ed:=1f, W := (), S:= (D) (k:=0).
2. Repeat. ..
(a) Ift(¢) € |JS; then t(¢) € x with x a cycle. Let ¢ be the smallest portion
of x that starting from x crosses ¢ again. ¢ = () if t(¢) € ¢, and ¢ = y if
X does not intersect ¢ elsewhere. Set ¢ := ¢ :: ¢ (note that the following
condition will be automatically satisfied).
(b) If t(¢) € ¢ then let x be the cycle thus formed, and do the following
steps. ..
i. Let i be such that W; is the last W; strictly before t(¢) in ¢ if one
exists, 7 := 0 otherwise (note x contains all W; with j > 7).
il. §; = Uf:i S; Uy, and erase from W and S all following elements
(in fact, set k :=1).
ili. ed := JuMP(S;) = JUMP(S})), and let ¢ ~»4 w (note that w ¢ S). Set
¢ to the history of ¢, and then append d to it.
(¢c) ...else, do the following.
i If t(¢) € &2(A), then set W := W 2 t(¢) and S := S :: 0 (and in
fact k:=k+1).
ii. ed:= NEXT(ed) and ¢ := ¢ :: d.
3. ... until ¢(¢) is a conclusion.

Fact 10. The algorithm shown above always terminates.

Proof (sketch). One shows that the following measure strictly decreases for lex-
icographic ordering:

o= (# &2(A) = # &2(U ) — k. # &2(A) — # &2(Sk U{t()}), [Sal — |9])
where &2(T') := &2(A)NT and the size | | counts the edges. The component i

decreases strictly in step else po does it in step else 3 does it in
step

Therefore the lemma is proved: if f’ is the terminal edge with which ¢ ends,
then | f € ¢, and by the properties of NEXT we have —«{e;(f’)}. O

Theorem 11. If6 is a hypercorrect PS on a sequent I, then [0] is a hyperclique
in [I'] for every interpretation [ ].
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Proof. Let [] be any interpretation, and let ¢ C%L  [6]. By definition ¢ =
{e1(0),...,en(0) }. Suppose # ¢, i.e. ¢ is not a singleton. Then there is a conclu-
sion ¢ of I" such that #{e;(c)}. Either ~{e;(c)} which implies ~{e;(0)}, or else
—{e;(0)}, which by above Lemma [ entails the existence of another conclusion ¢’
with ~{e;(¢’)} which also implies ~{e;(#)}. In any case, coherence of ¢ is proved,
and therefore [0] is a hyperclique. O

3.3 Hyperincorrectness Implies Hyperincoherence

This section will prove Theorem [I5] the analog of Retoré’s theorem. This will
be done using the following lemma, a sort of dual to Lemma [8]

Lemma 12. Let 0 be a set of linkings over I', f1 and fo two terminal edges,
and ¢1, ..., ¢ pairwise bounce-compatible and &-oriented paths in Gy such that
every ¢; is either a cycle or a path starting with fi and ending with fo. Suppose
at least one of the ¢;s is of the second kind, and &2(0) C U; ¢;. Then there
exist an interpretation [ | and experiments e, ..., e, such that —~{e;(f1)}, and
={e;(c)} for every terminal edge [ # f1, fa.

Proof. The interpretation we define is [ ], which maps all literals to a space X.
We give a sketch on how to define such a space and the experiments e;.

Fact 13. There is a hypercoherent space X and experiments ey, ..., e, relative
to [ ]y with n = max(# A, 2) such that

(E1) for each total axiom £ such that there is ¢; traversing it, let a be the axiom
edge under ¢ with Ta € d)jﬁ: then —{e;(a)};

(E2) for each other total aziom we have ={e;({)};

(E3) for each contraction leaf x, if f is the edge under it then —{e;(f)}.

Proof (sketch). The aim is to define an experiment e; on each \; (one sets Ay = Ay
in the degenerate case # A = 1).[E]l can be easily achieved if X contains at least
a strict coherent pair and a strict incoherent one, by making the experiments
give one or the other depending on the direction of the paths traversing such
an ¢ wrt duality. The problems come from [E3] as there may be partial axioms
linking two contractions. These are solved by building an ad-hoc space X having
as web such partial axioms plus three distinguished points c,i,n (for coherent,
incoherent and neutral).

Fact 14. From properties E1-3 listed in Fact [I3 we can deduce the following
ones:

(P1) for every d € tot(A), if 3d' = d and j such that d' € ¢;, then # {e;(d)},
i.e. it is not a singleton;

(P2) for every d € tot(A), if Vj: | d & ¢;, i.e. d is not traversed downward by
any ¢;, then <{e;(d)}.

® Notice that this identifies a regardless of ¢;: if two of the paths traverse the axiom
£, they cannot do it in opposite direction because of bounce-compatibility.
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Proof (sketch). The proof of [P2lis done by an easy induction on the type of the
edge, by regarding what happens above it. In the tensor case bounce compati-
bility plays a central role in order to apply i.h. Binary additive cases are trivial:
for & the hypothesis never applies, for @ the thesis always applies.

These two properties immediately entail the result, as by hypotheses Vj: | f1 &
¢; and 3j | f1 € ¢;, so by [PI] and combined we have —{e;(f1)}. Again by
hypotheses for every f # f1, fo we have | f € ¢; for any j, so that gives the
rest of the result. O

With the above lemma at hand, we can easily prove the second main theorem
of this work. Note how we weaken the hypothesis without asking the resolution
condition (Definition H).

Theorem 15. If 