

Lecture Notes in Computer Science 5213
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michael Kaminski Simone Martini (Eds.)

Computer Science
Logic

22nd International Workshop, CSL 2008
17th Annual Conference of the EACSL
Bertinoro, Italy, September 16-19, 2008
Proceedings

13

Volume Editors

Michael Kaminski
Technion - Israel Institute of Technology
Department of Computer Science
Haifa 32000, Israel
E-mail: kaminski@cs.technion.ac.il

Simone Martini
Università di Bologna
Dip. di Scienze dell’Informazione
Mura Anteo Zamboni 7
40127 Bologna, Italy
E-mail: martini@cs.unibo.it

Library of Congress Control Number: 2008934680

CR Subject Classification (1998): F.4.1, F.4, I.2.3-4, F.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science
and General Issues

ISSN 0302-9743
ISBN-10 3-540-87530-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87530-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12514106 06/3180 5 4 3 2 1 0

Preface

The annual conference of the European Association for Computer Science Logic
(EACSL), CSL 2008, was held in Bertinoro, near Bologna (Italy), September
16–19, 2008. The conference series started as a program of International Work-
shops on Computer Science Logic, and then at its sixth meeting became the
Annual Conference of the EACSL. This conference was the 22nd meeting and
17th EACSL conference; it was organized by the Department of Computer Sci-
ence of Alma Mater Studiorum – Università di Bologna.

CSL 2008 was preceded on Monday, September 15th by the symposium Bridg-
ing Logic and Computer Science on the occasion of the 60th birthday of Johann
A. Makowsky.

In response to the call for papers, a total of 102 abstracts were submitted to
CSL 2008 of which 87 were followed by a full paper. The Program Committee
selected 31 papers for presentation at the conference and publication in these
proceedings, during a one-week electronic discussion on the EasyChair platform;
each paper was refereed by three to five reviewers.

The Program Committee invited lectures from Luca Cardelli, Pierre-Louis
Curien, Jean-Pierre Jouannaud, and Wolfgang Thomas. The papers provided by
the invited speakers appear at the beginning of this volume.

Created in 2005, the Ackermann Award is the EACSL Outstanding Disserta-
tion Award for Logic in Computer Science, sponsored for the years 2007-2009 by
Logitech S.A. The award recipient for 2008 was Krishnendu Chatterjee, who was
invited to present his work at the conference. Citation for the award, abstract
of the thesis, and a biographical sketch of the recipient may be found at the end
of the proceedings.

We sincerely thank the Program Committee and all of the referees for their
generous work in reviewing the papers, as well as Ugo Dal Lago, the main local
organizer. We also thank the Alma Mater Studiorum – Università di Bologna,
the Istituto Nazionale di Alta Matematica – GNSAGA, and the Associazione
Italiana di Logica e Applicazioni (AILA) for their financial support.

June 2008 Michael Kaminski
Simone Martini

Conference Organization

Program Committee

Zena Ariola, Eugene
Patrick Baillot, Paris
Patrick Cegielski, Paris
Gilles Dowek, Palaiseau
Amy Felty, Ottawa
Marcelo Fiore, Cambridge
Alan Jeffrey, Lisle
Michael Kaminski, Haifa, Co-chair
Leonid Libkin, Edinburgh
Zoran Majkic, Beograd
Simone Martini, Bologna, Co-chair

Dale Miller, Palaiseau
Luke Ong, Oxford
David Pym, Bristol and Bath
Alexander Rabinovich, Tel Aviv
Antonino Salibra, Venezia
Thomas Schwentick, Dortmund
Valentin Shehtman, London
Alex Simpson, Edinburgh
Gert Smolka, Saarbrücken
Kazushige Terui, Kyoto
Thomas Wilke, Kiel

Additional Referees

Andreas Abel
Shunichi Amano
Marcelo Arenas
Maria Artishchev-

Zapolotsky
Eugene Asarin
Jeremy Avigad
David Baelde
Pablo Barcelo
Stefano Berardi
Ulrich Berger
Stefan Berghofer
Leopoldo Bertossi
Dietmar Berwanger
Stefano Bistarelli
Henrik Björklund
Frédéric Blanqui
Alexander Bochman
Manuel Bodirsky
Bernard Boigelot
Paola Bonacina
Richard Bonichon
Pierre Boudes
Patricia Bouyer

Julian Bradfield
James Brotherston
Chad E. Brown
Antonio Bucciarelli
Thierry Cachat
Venanzio Capretta
Arnaud Carayol
Kaustuv Chaudhuri
Robin Cockett
Matthew Collinson
Stephen Cook
Charalampos Cornaros
Ugo Dal Lago
Vincent Danos
Stéphane Demri
Michel de Rougemont
Mariangiola Dezani
Paolo Di Giamberardino
Pietro Di Gianantonio
Alexander Dikovsky
Manfred Droste
Arnaud Durand
Thomas Ehrhrard
José Esṕırito Santo

Kousha Etessami
François Fages
John Fearnley
Alain Finkel
Christophe Fouqueré
Goran Frehse
Fabio Gadducci
Didier Galmiche
Philipp Gerhardy
Silvia Ghilezan
Hugo Gimbert
Healfdene Goguen
Alexey Gotsman
Martin Grohe
Stefano Guerrini
Matthew Hague
Masahiro Hamano
Masahito Hasegawa
Hugo Herbelin
Frédéric Herbreteau
Miki Hermann
Olivier Hermant
Robin Hirsch
Robin Houston

VIII Organization

Ullrich Hustadt
Paulin Jacobé de Naurois
Florent Jacquemard
Emil Jeřábek
Jean-Pierre Jouannaud
Marcin Jurdziński
Mark Kaminski
Daisuke Kimura
Daniel Kirsten
Jan Kraj́ıček
Pavel Krcal
Stephan Kreutzer
Andrei Krokhin
Antońın Kučera
Viktor Kuncak
Salvatore La Torre
Robby Lampert
Cosimo Laneve
Martin Lange
Stéphane Lengrand
Kamal Lodaya
Christof Löding
William Lovas
Yoad Lusting
Ian Mackie
Giulio Manzonetto
Marcel Marquardt
Olga Marroqúın Alonso
Andrea Masini
Ralph Matthes
Richard Mayr
Damiano Mazza
Antoine Meyer
Alexandre Miquel

Bernard Moeller
Brian Monahan
Angelo Montanari
Malika More
Larry Moss
Filip Murlak
Andrzej Murawski
Gopalan Nadathur
Frank Neven
Robert Nieuwenhuis
Aleksey Nogin
Karim Nour
Rotem Oshman
Luca Paolini
Michel Parigot
Grant Passmore
Mati Pentus
Benjamin Pierce
Lucia Pomello
Franck Pommereau
Ian Pratt-Hartmann
Silvio Ranise
Jason Reed
Laurent Regnier
Simona Ronchi

della Rocca
Luca Roversi
Paul Rozière
Michal Rutkowski
Jan Rutten
Andrey Rybalchenko
Sylvain Salvati
Alexis Saurin
Henning Schnoor

Jan Schwinghammer
Robert Seely
Damien Sereni
Olivier Serre
Marco Servetto
Anil Seth
Chung-chieh Shan
Ilya Shapirovsky
Cristina Sirangelo
Graham Steel
Christopher Stone
Lutz Strassburger
Aaron Stump
Guido Tack
Ryo Takemura
Tony Tan
Makoto Tatsuta
Simon J. Thompson
Michael Tiomkin
Lorenzo Tortora de Falco
Iddo Tzameret
Helmut Veith
Yde Venema
Nikolay Vereshchagin
Benjamin Werner
Anthony Widjaja To
Christopher Wilson
Greta Yorsh
Bruno Zanuttini
Noam Zeilberger
Elena Zucca
Uri Zwick

Local Organization

Ugo Dal Lago
Simone Martini

Table of Contents

Invited Talks

The Computability Path Ordering: The End of a Quest 1
Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio

The Joy of String Diagrams . 15
Pierre-Louis Curien

Model Transformations in Decidability Proofs for Monadic Theories 23
Wolfgang Thomas

Molecules as Automata . 32
Luca Cardelli

Contributed Papers

An Infinite Automaton Characterization of Double Exponential Time . . . 33
Salvatore La Torre, P. Madhusudan, and Gennaro Parlato

Recursion Schemata for NCk . 49
Guillaume Bonfante, Reinhard Kahle, Jean-Yves Marion, and
Isabel Oitavem

Extensional Uniformity for Boolean Circuits . 64
Pierre McKenzie, Michael Thomas, and Heribert Vollmer

Pure Pointer Programs with Iteration . 79
Martin Hofmann and Ulrich Schöpp

Quantified Positive Temporal Constraints . 94
Witold Charatonik and Micha�l Wrona

Non-uniform Boolean Constraint Satisfaction Problems with
Cardinality Constraint . 109

Nadia Creignou, Henning Schnoor, and Ilka Schnoor

Fractional Collections with Cardinality Bounds, and Mixed Linear
Arithmetic with Stars . 124

Ruzica Piskac and Viktor Kuncak

Continuous Fragment of the mu-Calculus . 139
Gaëlle Fontaine

On the Relations between the Syntactic Theories of λμ-Calculi 154
Alexis Saurin

X Table of Contents

A Constructive Semantic Approach to Cut Elimination in Type
Theories with Axioms . 169

Olivier Hermant and James Lipton

Proving Infinitude of Prime Numbers Using Binomial Coefficients 184
Phuong Nguyen

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic 199
Olaf Beyersdorff and Sebastian Müller

A Calculus of Realizers for EM1 Arithmetic . 215
Stefano Berardi and Ugo de’Liguoro

Quantitative Game Semantics for Linear Logic . 230
Ugo Dal Lago and Olivier Laurent

A Characterization of Hypercoherent Semantic Correctness in
Multiplicative Additive Linear Logic . 246

Paolo Tranquilli

An Indexed System for Multiplicative Additive Polarized Linear
Logic . 262

Masahiro Hamano and Ryo Takemura

A Characterisation of Lambda Definability with Sums Via ��-Closure
Operators . 278

Shin-ya Katsumata

Superposition for Fixed Domains . 293
Matthias Horbach and Christoph Weidenbach

Non-finite Axiomatizability and Undecidability of Interval Temporal
Logics with C, D, and T . 308

Ian Hodkinson, Angelo Montanari, and Guido Sciavicco

On the Almighty Wand . 323
Rémi Brochenin, Stéphane Demri, and Etienne Lozes

On Counting Generalized Colorings . 339
T. Kotek, J.A. Makowsky, and B. Zilber

The Descriptive Complexity of Parity Games . 354
Anuj Dawar and Erich Grädel

An Optimal Strategy Improvement Algorithm for Solving Parity and
Payoff Games . 369

Sven Schewe

Quantitative Languages . 385
Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger

Table of Contents XI

Characterization of Logics over Ranked Tree Languages 401
Thomas Place

The Nesting-Depth of Disjunctive μ-Calculus for Tree Languages and
the Limitedness Problem . 416

Thomas Colcombet and Christof Löding

Upper Bounds on the Automata Size for Integer and Mixed Real and
Integer Linear Arithmetic . 431

Jochen Eisinger

Syntactic Metatheory of Higher-Order Subtyping . 446
Andreas Abel and Dulma Rodriguez

On Isomorphisms of Intersection Types . 461
Mariangiola Dezani-Ciancaglini, Roberto Di Cosmo,
Elio Giovannetti, and Makoto Tatsuta

Undecidability of Type-Checking in Domain-Free Typed
Lambda-Calculi with Existence . 478

Koji Nakazawa, Makoto Tatsuta, Yukiyoshi Kameyama, and
Hiroshi Nakano

Type-Based Termination with Sized Products . 493
Gilles Barthe, Benjamin Grégoire, and Colin Riba

The Ackermann Session

The Ackermann Award 2008 . 508
J.A. Makowsky and D. Niwinski

Author Index . 513

The Computability Path Ordering:
The End of a Quest

Frédéric Blanqui1, Jean-Pierre Jouannaud2, and Albert Rubio3

1 INRIA, Campus Scientifique, BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France
2 LIX, Projet INRIA TypiCal, École Polytechnique and CNRS, 91400 Palaiseau, France

3 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

Abstract. In this paper, we first briefly survey automated termination proof meth-
ods for higher-order calculi. We then concentrate on the higher-order recursive
path ordering, for which we provide an improved definition, the Computability
Path Ordering. This new definition appears indeed to capture the essence of com-
putability arguments à la Tait and Girard, therefore explaining the name of the
improved ordering.

1 Introduction

This paper addresses the problem of automating termination proofs for typed higher-
order calculi.

The first attempt we know of goes back to Breazu-Tannen and Gallier [24] and Okada
[44]. Following up a pioneering work of BreazuTannen who considered the confluence
of such calculi [23], both groups of authors showed independently that proving strong
normalization of a polymorphic lambda-calculus with first-order constants defined by
first-order rewrite rules was reducible to the termination proof of the set of rewrite
rules: beta-reduction need not be considered. Both works used Girard’s method based
on reducibility candidates -also called sometimes computability predicates. They then
gave rise to a whole new area, by extending the type discipline, and by extending the
kind of rules that could be taken care of.

The type discipline was extended soon later independently by Barbanera and
Dougerthy in order to cover the whole calculus of constructions [3,28].

Higher-order rewrite rules satisfying the general schema, a generalization of Gödel’s
primitive recursion rules for higher types, were then introduced by Jouannaud and
Okada [34,35] in the case of a polymorphic type discipline. The latter work was then
extended first by Barbanera and Fernandez [4,5] and finally by Barbanera, Fernandez
and Geuvers to cover the whole calculus of constructions [6].

It turned out that recursors for simple inductive types could be taken care of by the
general schema, but arbitrary strict inductive types could not, prompting for an exten-
sion of the schema, which was reformulated for that purpose by Blanqui, Jouannaud
and Okada [16]. This new formulation was based on the notion of computability clo-
sure of a term f(s) headed by a higher-order constant f , defined as a set containing the
immediate subterms s of f(s) and closed under computability preserving operations in
the sense of Tait and Girard. Membership to the general schema was then defined for an

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 F. Blanqui, J.-P. Jouannaud, and A. Rubio

arbitrary rewrite rule as membership of its right-hand side to the computability closure
of its left-hand side.

Besides being elegant, this formulation was indeed much more flexible and powerful.
By allowing for more expressive rules at the object level of the calculus of constructions,
it could handle many more inductive types than originally. The general schema was
finally extended by Blanqui in a series of papers by allowing for recursive rules on
types, in order to cover the entire calculus of inductive constructions including strong
elimination rules [13,14].

The definition of the general schema used a precedence on higher-order constants,
as does Dershowitz recursive path ordering for first-order terms [26]. This suggested
generalizing this ordering to the higher-order case, a work done by Jouannaud and Ru-
bio in the case of a simple type discipline under the name of HORPO [37]. Comparing
two terms with HORPO starts by comparing their types under a given well-founded
quasi-ordering on types before to proceed recursively on the structure of the compared
terms, comparing first in the precedence the higher-order constants heading both terms.
Following the recursive path ordering tradition, a subterm of the left-hand side could
also be compared with the whole right-hand side, regardless of the precedence on their
heads.

HORPO was then extended to cover the case of the calculus of constructions by
Walukiewicz [51], and to use semantic interpretations of terms instead of a precedence
on function symbols by Borralleras and Rubio [21]. HORPO was also improved by the
two original authors in two different ways: by comparing in the so-called subterm case
an arbitrary term belonging to the computability closure of the left-hand side term with
the right-hand side term, therefore generalizing both HORPO and the general schema;
and by allowing for a restricted polymorphic discipline [40]. An axiomatic presentation
of the rules underlying HORPO can be found in [31]. A more recent work in the same
direction is [27].

The ordering and the computability closure definitions turn out to share many similar
constructs, raising expectations for a simpler and yet more expressive definition, instead
of a pair of mutually inductive definitions for the computability closure and the ordering
itself, as advocated in [17]. These expectations were partly met, on the one hand in [15]
with a single computability oriented definition, and on the other hand in [18] where a
new, syntax oriented recursive definition was given for HORPO. In contrast with the
previous definitions, bound variables were handled explicitly by the ordering, allowing
for arbitrary abstractions in the right-hand sides.

A third, different line of work was started by van de Pol and Schwichtenberg, who
aimed at (semi)-automating termination proofs of higher-order rewrite rules based on
higher-order pattern matching, a problem generally considered as harder as the previous
one [47,49,48]. Related attempts with more automation appear in [43,38], but were
rather unconclusive for practical applications. The general schema was then adapted by
Blanqui to cover the case of higher-order pattern matching [11]. Finally, Jouannaud and
Rubio showed how to turn any well-founded ordering on higher-order terms including
beta and eta, into a well-founded ordering for proving termination of such higher-order
rules, and introduced a very simple modification of HORPO as an application of this
result [36].

The Computability Path Ordering: The End of a Quest 3

A fourth line of work was started by Borralleras and Rubio. Among other material,
Borralleras thesis [20] contained a constraint-based approach to the semantic path or-
dering [41] which was shown to encompass the dependency pairs method of Arts and
Giesl [2,30] in all its various aspects. Besides the thesis itself, the principles underlying
this work are also described in [21] and [22]. An interesting aspect is that they lift to
the higher-order case. Extending the dependency pairs method to the higher-order case
was also considered independently by Sakai et al [46,45] and Blanqui [10].

Finally, a last line of work addresses the question of proving termination of higher-
order programs. This is of course a slightly different question, usually addressed by
using abstract interpretations. These interpretations may indeed use the general schema
or HORPO as a basic ingredient for comparing inputs of a recursive call to those of the
call they originate from. This line of work includes [32,25,8,52,1,7,12,29]. An impor-
tant related work, considering pure lambda terms, is [19].

We believe that our quest shall be shown useful for all these lines of work, either as
a building block, or as a guiding principle.

In this paper, we first slightly improve the definition of HORPO in the very basic
case of a simple type discipline, and rename it as the Computability Path Ordering. We
then address the treatment of inductive types which remained ad hoc so far, therefore
concluding our quest thanks to the use of accessibility, a relationship which was shown
to generalize the notion of inductive type by Blanqui [13,14]. We finally list which are
the most important question to be addressed for those who would like to start a new
quest.

2 Higher-Order Algebras

Polymorphic higher-order algebras are introduced in [40]. Their purpose is twofold: to
define a simple framework in which many-sorted algebra and typed lambda-calculus co-
exist; to allow for polymorphic types for both algebraic constants and lambda-calculus
expressions. For the sake of simplicity, we will restrict ourselves to monomorphic types
in this presentation, but allow us for polymorphic examples. Carrying out the polymor-
phic case is no more difficult, but surely more painful.

We give here the minimal set of notions to be reasonably self-contained.
Given a set S of sort symbols of a fixed arity, denoted by s : ∗n → ∗, the set of types

is generated by the constructor→ for functional types:

TS := s(T n
S) | (TS → TS)

for s : ∗n → ∗ ∈ S

Function symbols are meant to be algebraic operators equiped with a fixed number
n of arguments (called the arity) of respective types σ1, . . . , σn, and an output type σ.
Let F =

⊎
σ1,...,σn,σ

Fσ1×...×σn→σ . The membership of a given function symbol f to
Fσ1×...×σn→σ is called a type declaration and written f : σ1 × . . .× σn → σ.

The set T (F ,X) of raw algebraic λ-terms is generated from the signature F and a
denumerable set X of variables according to the grammar:

T := X | (λX : TS .T) | @(T , T) | F(T , . . . , T).

4 F. Blanqui, J.-P. Jouannaud, and A. Rubio

The raw term λx : σ.u is an abstraction and @(u, v) is an application. We may omit
σ in λx : σ.u and write @(u, v1, . . . , vn) or u(v1, . . . , vn), n > 0, omitting applica-
tions. Var(t) is the set of free variables of t. A raw term t is ground if Var(t) = ∅.
The notation s shall be ambiguously used for a list, a multiset, or a set of raw terms
s1, . . . , sn.

Raw terms are identified with finite labeled trees by considering λx : σ.u, for each
variable x and type σ, as a unary function symbol taking u as argument to construct the
raw term λx : σ.u. Positions are strings of positive integers. t|p denotes the subterm of
t at position p. We use t � t|p for the subterm relationship. The result of replacing t|p
at position p in t by u is written t[u]p.

Typable raw terms are called terms. The typing judgements are standard. We catego-
rize terms into three disjoint classes:

1. Abstractions headed by λ;
2. Prealgebraic terms headed by a function symbol, assuming (for the moment) that

the output type of f ∈ F is a base type;
3. Neutral terms are variables or headed by an application.

Substitutions, rewrite rules and higher-order reduction orderings are as expected,
see [40].

3 The Computability Path Ordering

CPO is generated from three basic ingredients: a type ordering; a precedence on func-
tions symbols; and a status for the function symbols. Accessibility is an additionnal
ingredient originating in inductive types, while the other three were already needed for
defining HORPO. We describe these ingredients before defining the computability path
ordering. We define the ordering in two steps, accessibility being used in the second
step only. The first ordering is therefore simpler, while the second is more expressive.

3.1 Basic Ingredients

– a precedence≥F on symbols in F ∪ {@}, with f >F @ for all f ∈ F .
– a status for symbols in F ∪ {@} with @ ∈Mul.
– and a quasi-ordering on types≥TS called the type ordering satisfying the following

properties, where =TS denotes its associated equivalence relation ≥TS ∩ ≤TS and
>TS its strict part ≥TS \ ≤TS :
1. Well-foundedness: >→TS = >TS ∪ �→ is well-founded,

where σ → τ �→ σ;
2. Right arrow subterm: σ → τ >TS τ ;
3. Arrow preservation: τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS τ and σ =TS σ′;
4. Arrow decreasingness: τ → σ >TS α implies σ ≥TS α or else α = τ ′ → σ′,

τ ′ =TS τ and σ >TS σ′;

Arrow preservation and decreasingness imply that the type ordering does not, in
general, have the left arrow subterm property:σ → τ �≥TS σ. A first axiomatic definition

The Computability Path Ordering: The End of a Quest 5

of the type ordering was given in [39], which did not need right arrow subterm. A new
one, expected to be easier to understand, was given in [40] based solely on ≥TS , which
uses another axiom, arrow monotonicity, to force the right arrow subterm property. As
pointed out to us recently, this set of axioms is unfortunately inconsistent [50]. However,
the restriction of the recursive path ordering proposed there for a type ordering does not
satisfy arrow monotonicity, but does satisfy instead the corrected set of axioms given
here.

We now give two important properties of the type ordering:

Lemma 1. [40] Assuming σ =TS τ , σ is a data type iff τ is a data type.

Lemma 2. If α→ σ ≥TS β → τ then σ ≥TS τ .

Proof. If α → σ =TS β → τ then, by arrow preservation, α =TS β and σ =TS τ . If
α → σ >TS β → τ , then, by arrow decreasingness, either α =TS β and σ >TS τ , or
else σ >TS β → τ . In the latter case, β → τ >TS τ by right arrow subterm and we
conclude by transitivity. �

3.2 Notations

Our ordering notations are as follows:

– s�X t for the main ordering, with a finite set of variables X ⊂ X and the conven-
tion that X is omitted when empty;

– s : σ�X
TS t : τ for s�X t and σ ≥TS τ ;

– l : σ�TS r : τ as initial call for each l→ r ∈ R;
– s � t is a shorthand for s � u for all u ∈ t;
– � is the reflexive closure of �.

We can now introduce the definition of CPO.

3.3 Ordering Definition

Definition 1. s : σ�X t : τ iff either:

1. s = f(s) with f ∈ F and either of
(a) t ∈ X
(b) t = g(t) with f =F g ∈ F , s�X t and s(�TS)statf

t

(c) t = g(t) with f >F g ∈ F ∪ {@} and s�X t
(d) t = λy : β.w and s�X∪{z}w{y �→ z} for z : β fresh
(e) u�TS t for some u ∈ s

2. s = @(u, v) and either of
(a) t ∈ X
(b) t = @(u′, v′) and {u, v}(�TS)mul{u′, v′}
(c) t = λy : β.w and s�X w{y �→ z} for z : β fresh
(d) u�X

TS t or v�X
TS t

(e) u = λx : α.w and w{x �→ v}�X t

6 F. Blanqui, J.-P. Jouannaud, and A. Rubio

3. s = λx : α.u and either of
(a) t ∈ X
(b) t = λy : β.w, α =TS β and u{x �→z}�X w{y �→z} for z :β fresh
(c) t = λy : β.w, α �=TS β and s�X w{y �→ z} for z : β fresh
(d) u{x �→ z}�X

TS t for z : α fresh
(e) u = @(v, x), x �∈ Var(v) and v�X t

Because function symbols, applications and abstractions do not behave exactly the
same, we chosed to organize the definition according to the left-hand side head symbol:
a function symbol, an application, or an abstraction successively. In all three cases, we
first take care of the case where the right-hand side is a bound variable -case named
variable-, then headed by a symbol which is the same as (or equivalent to) the left-hand
side head symbol -case status-, or headed by a symbol which is strictly smaller in the
precedence than the left-hand side head symbol -case precedence-, before to go with
the -case subterm. The precedence case breaks into two sub-cases when the left-hand
side is a function symbol, because abstractions, which can be seen as smaller than other
symbols, need renaming of their bound variable when pulled out, which makes their
treatment a little bit different formally from the standard precedence case. There are
two specific cases for application and abstraction: one for beta-reduction, and one for
eta-reduction, which are both built in the definition.

This new definition schema appeared first in [18] in a slightly different format. It
incorporates two major innovations with respect to the version of HORPO defined in
[40]. The first is that terms can be ordered without requiring that their types are ordered
accordingly. This will be the case whenever we can conclude that some recursive call is
terminating by using computability arguments rather than an induction on types. Doing
so, the ordering inherits directly much of the expressivity of the computability closure
schema used in [40]. The second is the annotation of the ordering by the set of variables
X that were originally bound in the right-hand side term, but have become free when
taking some subterm. This allows rules 1d, 2c and 3c to pull out abstractions from
the right-hand side regardless of the left-hand side term, meaning that abstractions are
smallest in the precedence. Among the innovations with respect to [18] are rules 3c,
which compares abstractions whose bound variables have non-equivalent types, and
rule 2d, whose formulation is now stronger.

This definition suffers some subtle limitations:

1. Case 1d uses recursively the comparison s�X∪{z}w{y �→ z} for z fresh, implying
that the occurrences of z in w can be later taken care of by Case 1a, 2a or 3a. This
is no limitation.

Cases 2c and 3c use instead the recursive comparison s�X w{y �→z}, with
z fresh, hence z /∈ X . As a consequence, these recursive calls cannot succeed if
z ∈ Var(w). We could have added this redundant condition for sake of clarity. We
prefered to privilege uniformity and locality of tests.

As a consequence, Cases 1d, 2c and 3c cannot be packed together as it was
unfortunately done in [18], where correct proofs were however given which did of
course not correspond to the given definition.

The Computability Path Ordering: The End of a Quest 7

2. The subterm case 1e uses recursively the comparison u�TS t instead of the ex-
pected comparison u�X

TS t.
On the other hand, the other subterm definitions, Cases 2d and 3d use the ex-

pected comparisons u�X
TS t or v�X

TS t in the first case, and u{x �→ z}�X
TS t in

the second. This implies again that the various subterm cases cannot be packed
together.

3. Case 1b uses recursively the comparison s(�TS)statf
t instead of the stronger com-

parison s(�X
TS)statf

t.

All our restrictions are justified by their use in the well-foundedness proof of �TS .
There is an even better argument: the ordering would not be well-founded otherwise, as
can be shown by means of counter-examples. We give two below.

We start with an example of non-termination obtained when replacing the recursive
call s(�TS)statf

t by s(�X
TS)statf

t in Case 1b.

Example 1. Let a be a type, and {f : a × a → a, g : (a → a) → a} be the signature.
Let us consider the following non-terminating rule (its right-hand side beta-reduces to
its left-hand side in one beta-step):

f(g(λx.f(x, x)), g(λx.f(x, x))) → @(λx.f(x, x), g(λx.f(x, x)))

Let us assume that f >F g and that f has a multiset status. We now show that the
ordering modified as suggested above succeeds with the goal

1. f(g(λx.f(x, x)), g(λx.f(x, x)))�TS @(λx.f(x, x), g(λx.f(x, x))).

Since type checks are trivial, we will omit them, although the reader will note that
there are very few of them indeed. Our goal yields two sub-goals by Case 1c:

2. f(g(λx.f(x, x)), g(λx.f(x, x)))� λx.f(x, x) and
3. f(g(λx.f(x, x)), g(λx.f(x, x)))� g(λx.f(x, x)).

Sub-goal 2 yields by Case 1d

4. f(g(λx.f(x, x)), g(λx.f(x, x)))�{z} f(z, z) which yields by Case 1b
5. f(g(λx.f(x, x)), g(λx.f(x, x)))�{z} z twice, solved by Case 1a and
6. {g(λx.f(x, x)), g(λx.f(x, x))}(�{z}TS){z, z} solved by Case 1a applied twice.

We are left with sub-goal 3 which yields by Case 1c

7. f(g(λx.f(x, x)), g(λx.f(x, x)))� λx.f(x, x), which happens to be the already
solved sub-goal 2, and we are done.

With the definition we gave, sub-goal 6 becomes:
{g(λx.f(x, x)), g(λx.f(x, x))}(�TS)mul{z, z} and does not succeed since the set of
previously bound variables has been made empty.

The reader can check that chosing the precedence g >F f yields exactly the same
result in both cases. �

8 F. Blanqui, J.-P. Jouannaud, and A. Rubio

Next is an example of non-termination due to Cynthia Kop and Femke van Raams-
dong [50], obtained when replacing the recursive call s�X w{y �→ z} by s�X∪{z}

w{y �→ z} in Case 2c.

Example 2. Let o be a type, and {f : o → o,A : o,B : o → o → o} be the signature.
Let us consider the following non-terminating set of rules:

@(@(B,A), A)→ @(λz : o.f(z), A) (1)
f(A)→ @(@(B,A), A) (2)

since

@(@(B,A), A)−→
1

@(λz : o.f(z), A)−→
β

f(A)−→
2

@(@(B,A), A)

Let us assume that A >F f >F B and consider the goals:

1. @(@(B,A), A) : o�TS @(λz : o.f(z), A) : o, and
2. f(A) : o�TS @(@(B,A), A) : o.

Goal 1 yields two sub-goals by Case 2b:

3. A : o�TS A : o, which succeeds trivially, and
4. @(B,A) : o→ o�TS λz : o.f(z) : o→ o which yields by modified Case 2c:

5. @(B,A)�{z} f(z), which yields in turn by Case 2d

6. A : o�{z}TS f(z) : o which yields by Case 1c

7. A : o�{z}TS z : o which succeeds by Case 1a.

Note that we have used B for its large type, and A for eliminating f(z), exploiting a
kind of divide and conquer ability of the ordering. We are left with goal 2 which yields
two subgoals by Case 1d

8. f(A)�A which succeeds by Case 1e, and
9. f(A)�@(B,A), which yields by Case 1c:

10. f(A)�A, which succeeds by Case 1e, and
11. f(A)�B, which succeeds by Case 1c, therefore ending the computation. �

More examples justifying our claim that the quest has come to en end are given in the
full version of this paper.

We give now an example of use of the computability path ordering with the inductive
type of Brouwer’s ordinals, whose constructor lim takes an infinite sequence of ordinals
to build a new, limit ordinal, hence admits a functional argument of type IN → O, in
which O occurs positively. As a consequence, the recursor admits a more complex
structure than that of natural numbers, with an explicit abstraction in the right-hand
side of the rule for lim. The strong normalization proof of such recursors is known to
be hard.

The Computability Path Ordering: The End of a Quest 9

Example 3. Brouwer’s ordinals.

0 : O S : O → O lim : (IN→ O)→ O
rec : O × α× (O → α→ α)× ((IN→ O)→ (IN→ α)→ α)→ α

The rules defining the recursor on Brouwer’s ordinals are:

rec(0, U,X,W)→ U
rec(S(n), U,X,W)→ @(X,n, rec(n,U,X,W))
rec(lim(F), U,X,W)→ @(W,F, λn.rec(@(F, n), U,X,W))

Let us try to prove that the third rule is in �TS .

1. s=rec(lim(F), U,X,W)�TS @(W,F, λn.rec(@(F, n), U,X,W)) yields 4 sub-
goals according to Case 1c:

2. α ≥TS α which is trivially satisfied, and
3. s�{W,F, λn.rec(@(F, n), U,X,W)} which simplifies to:
4. s�W which succeeds by Case 1e,
5. s� F , which generates by Case 1e the comparison lim(F)�TS F which fails since

lim(F) has a type which is strictly smaller than the type of F .
6. s� λn.rec(@(F, n), U,X,W) which yields by Case 1d
7. s�{n} rec(@(F, n), U,X,W) which yields by Case 1b
8. {lim(F), U,X,W}(�TS)mul{@(F, n), U,X,W}, which reduces to
9. lim(F)�TS @(F, n), whose type comparison succeeds, yielding by Case 1c

10. lim(F)� F which succeeds by Case 1e, and
11. lim(F)� n which fails because track of n has been lost!

Solving this example requires therefore: first, to access directly the subterm F of s in or-
der to avoid the type comparison for lim(F) and F when checking recursively whether
the comparison s� λn.rec(@(F, n), U,X,W) holds; and second, to keep track of n
when comparing lim(F) and n.

3.4 Accessibility

While keeping the same type structure, we make use here of a fourth ingredient, the
accessibility relationship for data types introduced in [11]. This will allow us to solve
Brouwer’s example, as well as other examples of non-simple inductive types.

We say that a data type is simple is it is a type constant. We restrict here our definition
of accessibility to simple data types. To this end, we assume that all type constructors
are constants, that is, have arity zero. We can actually do a little bit more, assuming that
simple data types are not greater or equal (in≥TS) to non-constant data types, allowing
the simple data types to live in a separate world.

The sets of positive and negative positions in a type σ are inductively defined as
follows:

– Pos+(σ) = {ε} if σ is a simple data type
– Pos−(σ) = ∅ if σ is a simple data type
– Posδ(σ → τ) = 1 · Pos−δ(σ) ∪ 2 · Posδ(τ)

where δ ∈ {+,−},−+ = − and −− = + (usual rules of signs)

10 F. Blanqui, J.-P. Jouannaud, and A. Rubio

Then we say that a simple data type σ occurs (only) positively in a type τ if it oc-
curs only at positive positions: Pos(σ, τ) ⊆ Pos+(τ), where Pos(σ, τ) is the set of
positions of the occurrences of σ in τ .

The set Acc(f) of accessible argument positions of a function symbol f : σ1 . . .
σn → σ, where σ is a simple data type, is the set of integers i ∈ {1, . . . , n} such that:

– no simple data type greater than σ occurs in σi,
– simple data types equivalent to σ occurs only positively in σi.

Then a term u is accessible in a term v, written v �accu, iff v is a pre-algebraic term
f(s) and there exists i ∈ Acc(f) such that either u = si or u is accessible in si (�acc is
transitive).

A term u is accessible in a sequence of terms v iff it is accessible in some v ∈ v,
in which case we write s �accu. Note that the terms accessible in a term v are strict
subterms of v.

We can now obtain a more elaborated ordering as follows:

Definition 2. s : σ�X t : τ iff either:

1. s = f(s) with f ∈ F and either of
(a) t ∈ X
(b) t = g(t) with f =F g ∈ F , s�X t and s(�TS ∪�

X,s
acc)statf

t

(c) t = g(t) with f >F g ∈ F ∪ {@} and s�X t
(d) t = λy : β.w and s�X∪{z}w{y �→ z} for z : β fresh
(e) u�TS t for some u ∈ s
(f) u�TS t for some u such that s �accu

2. s = @(u, v) and either of
(a) t ∈ X
(b) t = @(u′, v′) and {u, v}(�TS)mul{u′, v′}
(c) t = λy : β.w and s�X w{y �→ z} for z : β fresh
(d) u�X

TS t or v�X
TS t

(e) u = λx : α.w and w{x �→ v}�X t
3. s = λx : α.u and either of

(a) t ∈ X
(b) t = λy : β.w, α =TS β and u{x �→z}�X w{y �→z} for z :β fresh
(c) t = λy : β.w, α �=TS β and s�X w{y �→ z} for z : β fresh
(d) u{x �→ z}�X

TS t for z : α fresh
(e) u = @(v, x), x �∈ Var(v) and v�X t

where u : σ�X,s
acc t : τ iff σ ≥TS τ , t = @(v, w), u �accv and s�X w.

The only differences with the previous definition are in Case 1b of the main definition
which uses an additional ordering �X,s

acc based on the accessibility relationship �acc to
compare subterms headed by equivalent function symbols, and in Case 1f which uses
the same relationship �acc to reach deep subterms that could not be reached otherwise.
Following up a previous discussion, notice that we have kept the same formulation in
Cases 2c and 3c, rather than use the easier condition y �∈ Var(w).

The Computability Path Ordering: The End of a Quest 11

We could of course strengthen �X,s
acc by giving additional cases, for handling ab-

stractions and function symbols on the right [11,15]. We could also think of improving
Case 1e by replacing s �accu by the stronger condition s�X,s

acc u. We have not tried
these improvements yet.

We now revisit Brouwer’s example, whose strong normalization proof is checked
automatically by this new version of the ordering:

Example 4. Brouwer’s ordinals.
We skip goals 2,3,4 which do not differ from the previous attempt.

1. s=rec(lim(F), U,X,W)�TS @(W,F, λn.rec(@(F, n), U,X,W)) yields 4 sub-
goals according to Case 1c:

5. s� F , which succeeds now by Case 1f,
6. s� λn.rec(@(F, n), U,X,W) which yields by Case 1d
7. s�{n} rec(@(F, n), U,X,W) which yields goals 8 and 12 by Case 1b

8. {lim(F), U,X,W}(�TS ∪�
{n},s
acc)mul{@(F, n), U,X,W}, which reduces to

9. lim(F)�{n},sacc @(F, n) which succeeds since O =TS O, F is accessible in lim(F)
and s�{n} n by case Case 1a. Our remaining goal

10. s�{n}{@(F, n), U,X,W}
decomposes into three goals trivially solved by Case 1e, that is

11. s�{n}{U,X,W}, and one additional goal
12. s�{n}@(F, n) which yields two goals by Case 1c
13. s�{n} F , which succeeds by Case 1f, and
14. s�{n} n which succeeds by Case 1a, thus ending the computation.

4 Conclusion

The full version including all proofs as well as an implementation of CPO with exam-
ples is available from the web page of the authors.

We want to stress that the basic version of CPO has reached a point where we cannot
expect any major improvement, as indicated by the counter-examples found to our own
attempts to improve the ordering. Perhaps, one last question left open is the possibility
of ordering F ∪ {@} arbitrarily -this would be useful for some examples, e.g., some
versions of Jay’s pattern calculus [33].

On the other hand, there is room left for improvement of the accessibility relation-
ship, which is restricted so far to terms headed by function symbols having a basic
output type.

A more challenging problem to be investigated then is the generalization of this new
definition to the calculus of constructions along the lines of [51] and the suggestions
made in [40], where an RPO-like ordering on types was proposed which allowed to
give a single definition for terms and types. Starting this work with definition 1 is of
course desirable.

Finally, it appears that the recursive path ordering and the computability closure are
kind of dual of each other: the definitions are quite similar, the closure constructing a
set of terms while the ordering deconstructs terms to be compared, the basic case being

12 F. Blanqui, J.-P. Jouannaud, and A. Rubio

the same: bound variables and subterms. Besides, the properties to be satisfied by the
type ordering, infered from the proof of the computability predicates, almost character-
ize a recursive path ordering on the first-order type structure. An intriguing, challenging
question is therefore to understand the precise relationship between computability pred-
icates and path orderings.

Acknowledgements. The second author wishes to point out the crucial participation of
Mitsuhiro Okada to the very beginning of this quest, and to thank Makoto Tatsuta for
inviting him in december 2007 at the National Institute for Informatics in Tokyo, whose
support provided him with the ressources, peace and impetus to conclude this quest
with his coauthors. We are also in debt with Cynthia Kop and Femke van Raamsdonk
for pointing out to us a (hopefully minor) mistake in published versions of our work on
HORPO.

References

1. Abel, A.: Termination checking with types. Theoretical Informatics and Applications 38(4),
277–319 (2004)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Com-
puter Science 236, 133–178 (2000)

3. Barbanera, F.: Adding algebraic rewriting to the Calculus of Constructions: strong normal-
ization preserved. In: Okada, M., Kaplan, S. (eds.) CTRS 1990. LNCS, vol. 516. Springer,
Heidelberg (1991)

4. Barbanera, F., Fernández, M.: Combining first and higher order rewrite systems with type as-
signment systems. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664. Springer,
Heidelberg (1993)

5. Barbanera, F., Fernández, M.: Modularity of termination and confluence in combinations
of rewrite systems with λω. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993.
LNCS, vol. 700. Springer, Heidelberg (1993)

6. Barbanera, F., Fernández, M., Geuvers, H.: Modularity of strong normalization and con-
fluence in the algebraic-λ-cube. In: Proceedings of the 9th IEEE Symposium on Logic in
Computer Science (1994)

7. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termination of re-
cursive definitions. Mathematical Structures in Computer Science 14(1), 97–141 (2004)

8. Ben-Amram, A.M., Jones, N.D., Lee, C.S.: The size-change principle for program termina-
tion. In: Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(2001)

9. Blanqui, F.: Definitions by rewriting in the Calculus of Constructions (extended abstract). In:
Proceedings of the 16th IEEE Symposium on Logic in Computer Science (2001)

10. Blanqui, F.: Higher-order dependency pairs. In: Proceedings of the 8th International Work-
shop on Termination (2006)

11. Blanqui, F.: Termination and confluence of higher-order rewrite systems. In: Bachmair, L.
(ed.) RTA 2000. LNCS, vol. 1833. Springer, Heidelberg (2000)

12. Blanqui, F.: A type-based termination criterion for dependently-typed higher-order rewrite
systems. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 24–39. Springer, Hei-
delberg (2004)

13. Blanqui, F.: Definitions by rewriting in the Calculus of Constructions. Mathematical Struc-
tures in Computer Science 15(1), 37–92 (2005)

The Computability Path Ordering: The End of a Quest 13

14. Blanqui, F.: Inductive types in the Calculus of Algebraic Constructions. Fundamenta Infor-
maticae 65(1-2), 61–86 (2005)

15. Blanqui, F.: Computability closure: Ten years later. In: Comon-Lundh, H., Kirchner, C.,
Kirchner, H. (eds.) Jouannaud Festschrift. LNCS, vol. 4600, pp. 68–88. Springer, Heidel-
berg (2007)

16. Blanqui, F., Jouannaud, J.-P., Okada, M.: Inductive-data-type Systems. Theoretical Computer
Science 272, 41–68 (2002)

17. Blanqui, F., Jouannaud, J.-P., Rubio, A.: Higher-order termination: from Kruskal to com-
putability. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
1–14. Springer, Heidelberg (2006)

18. Blanqui, F., Jouannaud, J.-P., Rubio, A.: HORPO with computability closure: A reconstruc-
tion. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp.
138–150. Springer, Heidelberg (2007)

19. Bohr, N., Jones, N.: Termination Analysis of the untyped lambda-calculus. In: van Oostrom,
V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1–23. Springer, Heidelberg (2004)

20. Borralleras, C.: Ordering-based methods for proving termination automatically. PhD thesis,
Universitat Politècnica de Catalunya, Spain (2003)

21. Borralleras, C., Rubio, A.: A monotonic higher-order semantic path ordering. In: Nieuwen-
huis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250. Springer, Heidelberg
(2001)

22. Borralleras, C., Rubio, A.: Orderings and constraints: Theory and practice of proving termi-
nation. In: Comon-Lundh, H., Kirchner, C., Kirchner, H. (eds.) Jouannaud Festschrift. LNCS,
vol. 4600, pp. 28–43. Springer, Heidelberg (2007)

23. Breazu-Tannen, V.: Combining algebra and higher-order types. In: Proceedings of the 3rd
IEEE Symposium on Logic in Computer Science (1988)

24. Breazu-Tannen, V., Gallier, J.: Polymorphic rewriting conserves algebraic strong normaliza-
tion. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989.
LNCS, vol. 372. Springer, Heidelberg (1989)

25. Chin, W.N., Khoo, S.C.: Calculating sized types. Journal of Higher-Order and Symbolic
Computation 14(2-3), 261–300 (2001)

26. Dershowitz, N.: Orderings for term rewriting systems. Theoretical Computer Science 17,
279–301 (1982)

27. Dershowitz, N.: Personal Communication (2008)
28. Dougherty, D.: Adding algebraic rewriting to the untyped lambda calculus. Information and

Computation 101(2), 251–267 (1992)
29. Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated termination analysis

for haskell: From term rewriting to programming languages. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 297–312. Springer, Heidelberg (2006)

30. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining
techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004.
LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)

31. Goubault-Larrecq, J.: Well-founded recursive relations. In: Fribourg, L. (ed.) CSL 2001 and
EACSL 2001. LNCS, vol. 2142. Springer, Heidelberg (2001)

32. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using sized
types. In: Proceedings of the 23th ACM Symposium on Principles of Programming Lan-
guages (1996)

33. Jay, C.B.: The pattern calculus. ACM Transactions on Programming Languages and Sys-
tems 26(6), 911–937 (2004)

34. Jouannaud, J.-P., Okada, M.: A computation model for executable higher-order algebraic
specification languages. In: Proceedings of the 6th IEEE Symposium on Logic in Computer
Science (1991)

14 F. Blanqui, J.-P. Jouannaud, and A. Rubio

35. Jouannaud, J.-P., Okada, M.: Abstract Data Type Systems. Theoretical Computer Sci-
ence 173(2), 349–391 (1997)

36. Jouannaud, J.-P., Rubio, A.: Higher-order orderings for normal rewriting. In: Pfenning, F.
(ed.) RTA 2006. LNCS, vol. 4098, pp. 387–399. Springer, Heidelberg (2006)

37. Jouannaud, J.-P., Rubio, A.: The Higher-Order Recursive Path Ordering. In: Proceedings of
the 14th IEEE Symposium on Logic in Computer Science (1999)

38. Jouannaud, J.-P., Rubio, A.: Rewrite orderings for higher-order terms in eta-long beta-normal
form and the recursive path ordering. Theoretical Computer Science 208, 33–58 (1998)

39. Jouannaud, J.-P., Rubio, A.: Higher-order recursive path orderings “à la carte”, Draft (2001)
40. Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings. Journal of

the ACM 54(1), 1–48 (2007)
41. Kamin, S., Lévy, J.-J.: Two generalizations of the Recursive Path Ordering (unpublished,

1980)
42. Krishnamoorthy, M.S., Narendran, P.: On recursive path ordering. Theoretical Computer Sci-

ence 40(2-3), 323–328 (1985)
43. Loria-Saenz, C., Steinbach, J.: Termination of combined (rewrite and λ-calculus) systems.

In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656. Springer, Heidelberg
(1993)

44. Okada, M.: Strong normalizability for the combined system of the typed lambda calculus
and an arbitrary convergent term rewrite system. In: Proceedings of the 1989 International
Symposium on Symbolic and Algebraic Computation. ACM Press, New York (1989)

45. Sakai, M., Kusakari, K.: On dependency pair method for proving termination of higher-order
rewrite systems. IEICE Transactions on Information and Systems E88-D(3), 583–593 (2005)

46. Sakai, M., Watanabe, Y., Sakabe, T.: An extension of dependency pair method for proving
termination of higher-order rewrite systems. IEICE Transactions on Information and Sys-
tems E84-D(8), 1025–1032 (2001)

47. van de Pol, J.: Termination proofs for higher-order rewrite systems. In: Heering, J., Meinke,
K., Möller, B., Nipkow, T. (eds.) HOA 1993. LNCS, vol. 816. Springer, Heidelberg (1994)

48. van de Pol, J.: Termination of higher-order rewrite systems. PhD thesis, Utrecht Universiteit,
Nederlands (1996)

49. van de Pol, J., Schwichtenberg, H.: Strict functionals for termination proofs. In: Dezani-
Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902. Springer, Heidelberg (1995)

50. van Raamsdong, F., Kop, C.: Personal Communication (2008)
51. Walukiewicz-Chrzaszcz, D.: Termination of rewriting in the Calculus of Constructions. Jour-

nal of Functional Programming 13(2), 339–414 (2003)
52. Xi, H.: Dependent types for program termination verification. Journal of Higher-Order and

Symbolic Computation 15(1), 91–131 (2002)

The Joy of String Diagrams

Pierre-Louis Curien

Preuves, Programmes et Systèmes, CNRS and University Paris 7

Abstract. In the past recent years, I have been using string diagrams to
teach basic category theory (adjunctions, Kan extensions, but also lim-
its and Yoneda embedding). Using graphical notations is undoubtedly
joyful, and brings us close to other graphical syntaxes of circuits, inter-
action nets, etc... It saves us from laborious verifications of naturality,
which is built-in in string diagrams. On the other hand, the language
of string diagrams is more demanding in terms of typing: one may need
to introduce explicit coercions for equalities of functors, or for distin-
guishing a morphism from a point in the corresponding internal homset.
So that in some sense, string diagrams look more like a language ”à la
Church”, while the usual mathematics of, say, Mac Lane’s ”Categories
for the working mathematician” are more ”à la Curry”.

Natural transformations are traditionally represented as pasting diagrams, where
natural transformations μ : F → F ′ appear as surfaces between an upper border
F and a lower border F ′. But the dual notation of string diagrams turns out
to be more adapted to formal manipulations. In this notation, the Godement’s
rule, which says that the pasting diagram obtained by putting aside μ : F → F ′

and ν : G→ G′ makes sense, i.e., can be parsed indifferently as the vertical com-
position (νF ′)◦ (Gμ) or the vertical composition (G′μ)◦ (νF) – has a “physical”
translation in terms of “moving elevators” up and down. The respective parsings
are, indeed, represented as

F G

μ

ν

F ′ G′

and

F G

ν

μ

F ′ G′

Hence, the underlying naturality equations remain explicit, in the form of suit-
able deformations of diagrams.

In string diagrams, functors are 1-dimensional (like in the pasting diagrams),
natural transformations are 0-dimensional (think of the circle around μ, ν as just

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 15–22, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 P.-L. Curien

a node in a graph). As for the categories, if F : C → C′, G : C′ → C′′, and
H : C → C′′, then, seeing the edges of the graph as half-lines, the diagram
below representing a natural transformation μ : GF → H (we write freely GF
for G ◦ F) delineates three regions, corresponding to the three categories. In
other words, in this representation, categories are 2-dimensional.

F

C′
G

C μ C′′

H

The situation is thus Poincaré dual to that of pasting diagrams:

categories fonctors natural transformations
pasting diagrams 0 1 2
string diagrams 2 1 0

Another strong point of string diagrams is that they allow us to deal with
identity functors and natural transformations implicity. We represent, say, μ :
id → F (with F : C→ C), and id : G→ G (with G : C→ C′) as

μ

F

and G

respectively.
String diagrams are related to boolean circuits, interaction nets, etc... (see

e.g. http://iml.univ-mrs.fr/∼lafont). We use string diagrams (originally
designed and used in the setting of monoidal categories, Hopf algebras, quantum
groups, etc... , see e.g. [2]) not only for the 2-categorical machinery of adjunctions
and monads, but also for recasting other basic material of category theory [3].
In this extended abstract, we content ourselves with pointing out the underlying
coercions that we have to make explicit in order to treat this material graphically
(see [1] for more joy!).

1 Hom-Functors

We first notice that we can also use string diagrams to describe morphisms
f : A → B in a category C. It suffices to see A and B as functors from the
terminal category 1 to C, yielding

http://iml.univ-mrs.fr/~lafont

The Joy of String Diagrams 17

A

f

B

with the left and right half plane corresponding to 1 and C. For Ff , by def-
inition of the horizontal composition of natural transformations, we can write
indifferently (i.e., we can use the following as a valid transformation of string
diagrams):

A

f F

B

or

A F

Ff

B F

But we can also view a morphism f : A→ B as a morphism f : 1→ C[A,B] in
Set (the category of sets and functions). We use overlining to make the coercion
explicit between the two representations. Then it turns out that the action of
the hom functors can be described through the following equations:

EQUATION Homleft :

1

id

B

fop

A C[, B]

=

1

f

A C[, B]

18 P.-L. Curien

EQUATION Homright :

1

id

C[, A]

C[, f]

A C[, B]

=

1

f

A C[, B]

One can give graphical proofs of Yoneda lemma, and of the density of repre-
sentable presheaves: every functor F : Cop → Set is the colimit of functors of
the form C[, C].

2 Limits

Recall that, given a diagram D : I → C, a cone from an object C can be
described as a natural transformation from ΔC to D, where Δ : C→ CI is the
curried form of the first projection functor from C× I to C. This indicates that
we should draw D as a functor from 1 to CI. On the other hand, if we want to
talk e.g. of preservation of limits, we need to deal with FD, for some functor
F : C → C′, and then we will have to view D as a functor from I to C. Under
this guise, we denote it as D.

Note that in any cartesian closed category, there is a bijective correspondence
betwen themorphisms fromA toB and the points ofBA, i.e., themorphisms from1
toBA. We use here underlining as an explicit coercion from the latter to the former.

Graphically, we introduce boxes of the following kind:

D1

I C

1
D1

CI

μ

D2

I C

D2

The Joy of String Diagrams 19

where the contents of the box is a string diagram living in Cat[1,CI] (where
Cat is the category of categories) while the whole diagram, once coerced, lives
in Cat[I,C], and can be inserted in a larger diagram (e.g. by placing a wire
F : C→ C′ on the right).

We have the following law of commutation between coercion and composition:

D

D

μ

D′

μ′

D′′

D′′

=

D

D

μ

D′

D′

D′

μ′

D′′

D′′ (1)

20 P.-L. Curien

As an illustration, given a functor F : C → C′, we show how to describe the
action of the functor F I : CI → C′I on morphisms:

F ID

D

μ F I

D′

F ID′

=

F ID

=

D

D

μ F

D′

D′

=

F ID′ (2)

Notice the introduction of explicit equality nodes on the right hand side, which
in fact describe the action of F I on objects:

F ID

=

D F

and

D F

=

F ID

One can give graphical proofs of facts and results such as: if F � G (i.e.. F is
left adjoint to G), then F I � GI, or: right adjoints preserve limits.

The Joy of String Diagrams 21

3 Explicit Equalities

In the previous section, we have introduced explicit equality nodes, that allowed
us to give the same interface to both sides of the equation describing the behav-
iour of F I (respecting the interfaces is a key matter in 2-dimensional proofs).
In this (final) section, we state a “coherence” result for string diagrams written
only using equality nodes, which we call equality diagrams. We impose, besides
associativity, the following three axioms:

H

=

F G

=

H

= H

(3)

We do not require the converse, i.e.

(=: H → GF) ◦ (=: GF → H) = (id : G→ G) · (id : F → F)

for two reasons:

1. The most general type for the left hand side is (=: H → G1F1)◦(=: G2F2 →
H), with no other requirement than G1F1 = H = G2F2. This contrasts
with the situation above, where the plugging of (=: H → G1F1) above
(=: G2F2 → H) forces F1 = F2 and G1 = G2.

2. We can have the effect of this equation by inserting it in a context (plugging
(=: H → GF) above and (=: GF → H) below).

GF H

=

G

=

F HG

=

GF H

=

=

F HG (4)

22 P.-L. Curien

F HG

=

G

=

GF H

=

F HG

=

=

GF H (5)

These equations suffice to prove that all equality diagrams with the same inter-
face (given by the wires coming in and the wires coming out of the diagram) are
provably equal.

References

[1] Curien, P.-L.: Category theory: a programming language-oriented introduction
(forthcoming)

[2] Kassel, C.: Quantum groups. Springer, Heidelberg (1995)
[3] Mac Lane, S.: Categories for the working mathematician. Springer, Heidelberg

(1971)

Model Transformations in Decidability Proofs

for Monadic Theories

Wolfgang Thomas

RWTH Aachen University, Lehrstuhl Informatik 7, 52056 Aachen, Germany
thomas@informatik.rwth-aachen.de

Abstract. We survey two basic techniques for showing that the monadic
second-order theory of a structure is decidable. In the first approach,
one deals with finite fragments of the theory (given for example by the
restriction to formulas of a certain quantifier rank) and – depending on
the fragment – reduces the model under consideration to a simpler one.
In the second approach, one applies a global transformation of models
while preserving decidability of the theory. We suggest a combination of
these two methods.

1 Introduction

Half a century ago, the first papers appeared on decidability of monadic second-
order theories using concepts of automata theory. In 1958, Büchi, Elgot, and
independently Trakhtenbrot announced the first results on the “logic-automata
connection”, showing that the weak monadic second-order theory of the suc-
cessor structure (N,+1) of the natural numbers is decidable. Results on the
unrestricted monadic second-order theory (short: MSO-theory) were then estab-
lished by Büchi [4] (decidability of S1S, the monadic theory of N = (N,+1)) and
by Rabin [13] (decidability of S2S, the monadic theory of the infinite binary tree
T2 = ({0, 1}∗, Succ0, Succ1)). All these results were shown by the transformation
of formulas into finite automata (over infinite words, respectively over infinite
trees).

The present note deals with the ongoing research in establishing larger and
larger classes of infinite structures for which the MSO-theory is decidable (or in
other words: the model-checking problem with respect to MSO-logic is decid-
able). We recall two methods that have been introduced for this purpose. The
first is a transformation of the structure S under consideration into a simpler
structure using a pumping argument. This method involves a finite equivalence
that allows to compress certain parts of S to smaller ones. The finite equiva-
lence takes into account only a finite fragment of the MSO-theory of S; thus
the transformation has to be done separately for any such fragment. The second
method shows decidability of the entire MSO-theory of a structure S in one step,
in which S is obtained by a transformation of another structure whose MSO-
theory is known to be decidable. The purpose of this paper is to describe both
methods and to suggest that a combination of them may be useful.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 23–31, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

24 W. Thomas

As a prerequisite we discuss possibilities to define equivalences that determine
“finite fragments” of a theory. These equivalences come in two forms: referring to
automata with a certain number of states, and referring to formulas of a certain
quantifier rank. We recall these equivalences and their use in the next section.

The paper is a discussion of methods rather than an exposition of results,
and thus adheres to an informal style and assumes knowledge of the basics on
monadic theories (as found e.g. in [11]).

The MSO-theory of a structure S is denoted MTh(S). In this paper we focus
on the case of labelled transition systems, i.e. vertex- and edge-labelled graphs.
We use the format G = (V, (Ea)a∈A, (Pb)b∈B) with finite label alphabets A,B,
where Ea is the set of edges labelled a and Pb ⊆ V the set of vertices labelled b.

2 Equivalences

A natural approach for showing decidability of the (say monadic) theory of a
structure is to settle the problem for any given finite fragment of the theory, and
for this to apply a composition of submodels. A standard option is to restrict
to sentences up to some given quantifier rank. Another approach refers to au-
tomata with a given number of states (when formulas are known to be equivalent
to automata). An extreme case is that one only considers a single automaton
(corresponding to a single formula). In each of these cases one derives a cor-
responding equivalence between structures, and we call the equivalence classes
“types”. One now tries to compose a model from “simple” parts that has the
same type as the original model, and at the same time to compose its type from
the types of the components.

This approach has been most successful over (labelled) linear orderings, but it
can also be applied with more technical work over more complex structures like
trees and certain graphs. For the theory S1S the method involves a composition
of an ω-word α (identified here with a labelled ω-ordering) from finite segment
orderings (words). It turns out possible to represent α as an “infinite sum”
of summand models such that the types of all finite summands are the same
(except for the first summand). This allows to deduce the corresponding type of
α from the two constituent types (the initial, respectively the repeated type). A
composition of this simple form is guaranteed by Ramsey’s Infinity Lemma [14].
The types of the segments define a finite coloring of the set of pairs (i, j) (with
(i, j) we associate the type of the segment α[i, j)). By Ramsey’s Lemma there
is an infinite “homogeneous” set H = {h0 < h1 < . . .}: All segments α[hi, hj)
with i < j, and in particular all segments α[hi, hi+1) have the same type. In
addition to Ramsey’s Lemma one needs also a summation result for the types:
First, the type of a concatenation (sum) of two words is determined by (and
computable from) their types; so type equivalence is a congruence with respect
to concatenation. Second, the type of an infinite sum of words of the same type
is determined by (and computable from) this type.

This composition occurs in two versions in the literature. In the first version,
one refers to a given Büchi automaton A and defines theory-fragments via the

Model Transformations in Decidability Proofs for Monadic Theories 25

transition structure of A: One declares two segments (i.e., finite words) u, v
equivalent (written u ∼A v) if the following holds: A can proceed from state p
to state q via u iff this is possible via v, and this is possible with a visit to a
final state via u iff it is possible via v. It is easy to show that this equivalence
relation is a congruence of finite index and that the ∼A-type of a finite word w
determines whether A accepts the infinite word www

In the world of logic, one cannot achieve the congruence property on the
level of a single formula. One obtains it when passing to the level of formula
sets classified by the measure of quantifier rank: Call u, v n-equivalent (short
u ≡n v) if u and v satisfy the same sentences of quantifier rank ≤ n. Then again
we obtain an equivalence relation of finite index. The fact that ≡n is a congruence
is not as immediate as for ∼A but can be established by the standard method
of Ehrenfeucht-Fräıssé games. An analogous congruence can also be introduced
in the domain of automata: Define u ≈n v if u ∼A v holds for each automaton
with ≤ n states. It is then clear that the sequences ≡n and ≈n are compatible in
the sense that they mutually refine each other and hence that their intersections
coincide.

When monadic formulas can be transformed into automata, it is often conve-
nient to work with the relations ∼A or ≈n. This connection to automata exists
over words and trees. Over generalized domains, such as dense labelled order-
ings, it is hard and maybe unnatural to try to invent suitable “automata”; here
the logical equivalence has the advantage to be applicable directly. This is a key
aspect in the “composition method” as developed by Shelah [17].

3 Reduction to Periodic Structures

In a pioneering paper, Elgot and Rabin [10] studied structures (N, Succ, P) with
a designated set P ⊆ N and showed for certain P that MTh(N, Succ, P) is
decidable. Note that there are examples of recursive predicates P such that
MTh(N, Succ, P) is undecidable. (Consider a recursively enumerable nonrecur-
sive set S with enumeration s0, s1, . . ., and introduce P by its characteristic
sequence χP := 10s010s11 Then P is recursive, and we have n ∈ S iff there
is a number in P such that its (n+1)-st successor is the next P -number; thus S
is reducible to MTh(N, Succ, P).) There are also predicates P where the decid-
ability of MTh(N, Succ, P) is open. The most prominent example is the prime
number predicate P.

The examples P given in [10] such that MTh(N, Succ, P) is decidable are
the predicate of the factorial numbers, the predicate of powers of k (for fixed
k), and the predicate of k-th powers (for fixed k). Another predicate to which
the method can be applied is the set {2 ↑ n | n ≥ 0} of “hyperpowers of 2”,
inductively defined by 2 ↑ 0 = 1 and 2 ↑ (n + 1) = 22↑n. Further examples are
given in [6].

The starting point for the decidability proof is the transformation of an S1S-
formula ϕ(X) into a Büchi automaton Aϕ that accepts a 0-1-sequence iff it is

26 W. Thomas

the characteristic sequence χP of a predicate P satisfying ϕ(X). This allows to
restate the decision problem for MTh(N, Succ, P) as follows:

(∗) Decide for any Büchi automaton whether it accepts the fixed ω-word χP .

As an example consider the predicate P = Fac of factorial numbers. Given a
Büchi automaton A over the characteristic sequence χFac of the factorial predi-
cate, one can shorten (by a pumping argument) the segments of successive zeros
between any two letters 1 in χFac in such a way that (1) the distance between
two successive letters 1 in the new sequence χ′ is bounded, and (2) A accepts
χFac iff A accepts χ′. More precisely, one replaces each segment 10m1 by the
shortest segment 10m

′
1 such that 0m ∼A 0m

′
. It turns out that regardless of the

choice of A the resulting “compressed” sequence χ′ is ultimately periodic. Since
in this case the acceptance problem can be decided, the problem (∗) is decidable.

This compression is done for the equivalence ∼A associated with a given
automaton A; similarly, one can also use the relation ≡n or ≈n in place of ∼A
and thus capture all formulas of quantifier rank ≤ n, respectively all automata
with ≤ n states, in one step. In all three cases we deal with a “finite fragment”
of the theory. The essence thus is the transformation of the given structure to a
simpler one (namely, an ultimately periodic one) that is equivalent with respect
to a finite fragment of the MSO-theory.

It is important to note that the transformation into a periodic model is
computable in the parameter A, respectively n. Even without insisting on this
computability requirement, for each ω-word χ such a transformation into an
ultimately periodic structure exists (given A, respectively n) — again by apply-
ing Ramsey’s Lemma.

Recently, it was shown that the Elgot-Rabin method can be “uniformized”
in the following sense ([15]): One considers the logical equivalence ≡n (or its
automata theoretic analogue ≈n) and observes that ≡n+1 is a refinement of
≡n. An iterative application of Ramsey’s Lemma yields for any χP a “uniformly
homogeneous” set HP = {h0 < h1 < . . .} which supplies periodic decompositions
for all values of n simultaneously: For each n, all segments χP [hi, hi+1) with i ≥ n
are ≡n-equivalent. As a consequence, the truth of a sentence of quantifier-depth
n is determined by the ≡n-types of χP [0, hn) and χP [hn, hn+1); in fact we have
χP ≡n χP [0, hn) + (χP [hn, hn+1))ω .

Again, this decomposition is possible for each χP . One can show that a uni-
formly homogeneous set HP exists which is recursive in P ′′ (the second recur-
sion theoretic jump of P). A recursive uniformly homogeneous set HP exists iff
MTh(N, Succ, P) is decidable. As an illustration consider a predicate P where
the decidability of MTh(N, Succ, P) is unsettled, namely the prime number pred-
icate P. Let HP = {h0 < h1 < . . .} be a corresponding — currently unknown —
uniformly homogeneous set. We may be interested in the truth of the sentence
TPH (twin prime hypothesis) saying “there are infinitely many twin primes”, i.e.
pairs (m,m + 2) with m,m + 2 ∈ P. The truth of TPH is open. Since TPH can
be written as a monadic sentence of quantifier-depth 5, it suffices to inspect the
segment χP[h5, h6) of χP for an occurrence of twin primes, to check whether TPH

Model Transformations in Decidability Proofs for Monadic Theories 27

holds. If TPH fails then the last twin prime pair would appear up to number h5

and none in χP[h5, h6).
A similar theory of model transformation can be developed for expansions of

the binary tree by a unary predicate P , i.e. for models ({0, 1}∗, Succ0, Succ1, P).
The desired “compression” of the structure is then a regular tree. The situation
is much more complicated than it is over N . First, the composition technique is
technically more involved. Second, one does not know (as yet) a decomposition
that corresponds to Ramsey’s Lemma over ω-words. For recent work in this
direction see [12].

The case of labelled tree structures is also interesting for its connection with
Seese’s conjecture of decidability of monadic theories. The conjecture can be
stated as follows (see [2]): A structure has a decidable MSO-theory iff it can be
MSO-interpreted in an expansion T = ({0, 1}∗, Succ0, Succ1, P) of the binary
tree by a finite tuple P of unary predicates such that MTh(T) is decidable.

4 Transformations Preserving Decidability

In his celebrated paper [13], Rabin starts with many applications of his main
result, the decidability of MTh(T2), before entering the tedious proof. Starting
from MTh(T2), several other theories are shown to be decidable by the method
of interpretation. An MSO-interpretation of a relational structure S in T2 is an
MSO-description of the universe and the relations of a copy of S in T2. Given such
a description, the decidability of MTh(S) can be derived from the decidability
of MTh(T2).

Another very powerful transformation that preserves the decidability of the
MSO-theory is the “iteration” of a given structure in the form of a tree-like
model. We use here a simple form of iteration which is appropriate for transi-
tion graphs as considered in this paper: the unfolding U(G) of a graph G (from
a definable vertex v0). The structure U(G) is a tree whose vertices are the fi-
nite paths π = v0a1v1 . . . amvm in G where (vi, vi+1) ∈ Eai+1 , and the pair
(π, (πam+1vm+1)) belongs then to the edge relation Eam+1 of U(G). A funda-
mental result of Muchnik (announced in [16]) says that MTh(U(G)) is decidable
if MTh(G) is. Proofs are given in [7,9,18] and the expository paper [1].

Caucal observed in [5] that a large class of infinite graphs arises if MSO-
interpretation and unfolding are applied in alternation. The Caucal hierarchy is
a sequence C0, C1, . . . of classes of graphs where

– C0 consists of the finite graphs,
– Cn+1 consists of the graphs obtained from the graphs in Cn by an unfolding

and a subsequent MSO-interpretation.

The original definition referred to a different transformation (inverse rational
mappings rather than MSO-interpretations); for the equivalence between the
two see [8]. The hierarchy is strict; a method to separate the levels is presented
in [3].

Let C =
⋃

i Ci. Each structure in C has a decidable MSO-theory. The class C
contains an abundance of structures, and the extension of the higher levels is not

28 W. Thomas

well understood. Many interesting examples occur on the first three levels. C1
is the class of “prefix-recognizable graphs” (encompassing the transition graphs
of pushdown automata). Moreover, the expansions of N by the predicate of the
factorial numbers, by the powers of (some fixed) k, and by the k-th powers
(k fixed), respectively, are all in C3. This provides a more uniform proof of
decidability than by the Elgot-Rabin method: It is no more necessary to provide
a structure decomposition for each finite theory fragment; rather the membership
of the structure in C suffices as the decidability proof for the full MSO-theory.

Only very few structures are known that have a decidable MSO-theory but are
located outside C. An example noted in the literature (see [8,2]) is the structure
(N, Succ, P) where P is the set of 2-hyperpowers 2 ↑ n. We shall generate this
structure in an extension of the Caucal hierarchy.

5 Limit Models

By an iterated application of interpretations and unfoldings one can generate
finite trees ti (i = 0, 1, 2, . . .) where ti has height 2 ↑ i and 2 ↑ (i+ 1) leaves. For
i = 0 we take the binary tree consisting of the root and two sons. In order to
construct ti+1, consider ti with 2 ↑ i leaves. Along the frontier we introduce two
identical edge relations S1, S2 (and as universe we take their common domain):
For both S1 and S2 start from the rightmost leaf, proceed leaf by leaf towards
the left to the leftmost leaf (which yields 2 ↑ (i−1) edges), and continue with one
more step to the parent of the leftmost leaf. Clearly S1, S2 are MSO-definable in
ti. The unfolding of this successor structure from its root, which is the rightmost
leaf of ti, gives the desired tree ti+1 of height 2 ↑ (i + 1) with 2 ↑ (i + 2) leaves.

Let
∏

i ti be the “limit model” of the ti (i ≥ 0) where the rightmost leaf
of ti coincides with the root of ti+1. An interpretation in the limit model will
generate a structure (N, Succ, P) which does not belong to the Caucal hierarchy:
As copy of (N, Succ) one uses the infinite sequence of leaves, and one declares
as P -elements the “first leaves” of the ti. The difference between successive P -
elements is then (2 ↑ (i + 1)) − 1 (for i = 0, 1, . . .). By a refinement of the
construction one can also generate a copy of (N, Succ, H) where H is the set of
hyperpowers of 2. For this, we use a structure

∏
i t
′
i where each t′i contributes

only 2 ↑ (i + 1) − 2 ↑ i rather than 2 ↑ (i + 1) − 1 leaves. Technically we work
with the ti as above but expanded by a singleton predicate Q that marks the
((2 ↑ i)+1)-st of its 2 ↑ (i+1) leaves. To construct the t′i inductively, one starts
with t1 and fixes Qt1 as the set containing the second leaf. For the step from t′i
to t′i+1 we have to proceed (in the definition of Q) from a number of the form
2k − k to 22k − 2k; this is possible (using a little technical work) by observing
that 22k − 2k = 2k(22k−k − 1).

The model
∏

i ti (and similarly
∏

i t
′
i) is generated by an infinite sequence of

interpretations and unfoldings. However, each of the interpretations is based on
the same formulas defining the universe and the relations, and for each unfold-
ing one uses the same formula for defining the root vertex. So we speak of an
interpretation-unfolding scheme that generates

∏
i ti (

∏
i t
′
i, respectively). In our

Model Transformations in Decidability Proofs for Monadic Theories 29

example we referred to a single definable vertex for the “next unfolding”; in this
case we speak of a linear interpretation-unfolding scheme.

The limit models
∏

i ti and
∏

i t
′
i have decidable MSO-theories. To show this,

we have (presently) to resort to the “non-uniform” method of model reduction
(see Section 3). This requires to invoke the equivalences ≡n and the associated
n-types. We observe that the n-type of ti+1 is computable from the n-type of
ti (similarly for t′i and t′i+1). Then — by finiteness of the set of n-types — the
generated sequence of n-types is ultimately periodic, which allows to compute
the n-type of the limit model.

We do not know whether by a linear interpretation-unfolding scheme (and an
extra interpretation in the limit model) one can generate a structure (N, Succ, P)
whose monadic theory is undecidable. This is connected with the old problem
to find (in any way) a non-artificial — i.e. number theoretically meaningful —
recursive predicate P such that MTh(N, Succ, P) is undecidable.

It seems interesting to analyze also non-linear schemes. In this case, one would
allow to expand a given model at several vertices, which leads to a tree-like con-
struction. The formula that defines the set of vertices where the unfolding takes
place is then satisfied by several vertices. We show that such a scheme can lead to
a structure with an undecidable MSO-theory. Consider a Turing machine M (say
with set Q of states and tape alphabet Σ) that accepts a non-recursive language.
As initial model we use the tree S0 of all initial configurations q0a1 . . . an with
initial state q0 and input word a1 . . . an (coded by paths with successive edge
labels q0, a1, . . . , an, $ where $ is an endmarker). This is an infinite tree with a
decidable MSO-theory. By an interpretation-unfolding scheme we generate, level
by level, a tree model SM in which all M -computations can be traced as paths.
A word w will be accepted by M iff a sentence ϕw is true in SM that expresses
the following: From the vertex after the initial path q0w$ there is a path to a
configuration with an accepting state of M .

We describe the interpretation-unfolding scheme. Consider a tree Sk that is
generated at level k of the construction. We first treat the case k > 0 and later
k = 0. Let r be the root of Sk. The next unfolding will take place at any vertex
v which is the source of an $-labelled edge and such that between r and v there
is no other $-labelled edge. Vertex v is the end of a path from r labelled by an
M -configuration, say w1bqaw2. We define a structure Sv as follows: The universe
is given by the path from r to v, the sequence of edge labels along the path gives
the next M -configuration after w1bqaw2, and there is a new $-labelled edge from
v back to r. So we obtain Sv from Sk by adding the $-edge and by changing
the bqa-labelled path segment to a new one according to the table of M . (In
the case the length of the configuration increases by one, the original $-labelled
edge (v, v′) gets a letter from Σ, and the $-labelled back-edge to r starts at
v′.) It is clear that for each pair (q, a) ∈ Q × Σ (which fixes an M -transition)
the respective structure Sv can be defined; a disjunction over all (q, a) gives the
desired interpretation. The unfolding of Sv at v will produce an infinite sequence
of finite paths labelled with the new configuration. In the subsequent step, only
the first such path will stay (by the definition of the new v and the new Sv).

30 W. Thomas

In the initial step (where k = 0) the initial configuration is simply copied; this
ensures that the first copy stays unmodified by the construction.

Clearly one can express in the limit model SM by an MSO-sentence ϕw that
for input w there is an accepting computation of M . So MTh(SM) is undecidable.

Interpretation-unfolding schemes are thus a powerful tool to generate models
(and in general too powerful to obtain only structures with a decidable monadic
theory). By a linear interpretation scheme it was possible to synthesize a struc-
ture (N, Succ, P) (namely, where P is the set of hyperpowers of 2) which was
previously just given a priori. The decidability of its monadic theory was shown
using the “non-uniform” method of model reduction. An open issue is to find
easily verified conditions that ensure decidability of the MSO-theory of a limit
model. Also one can study schemes that involve transfinite stages of construction.

6 Conclusion

We surveyed two techniques for proving that the MSO-theory of an infinite
labelled graph is decidable: the “non-uniform” method of model reduction à
la Elgot and Rabin and two “uniform” types of model transformation, namely
MSO-interpretations and unfoldings. We proposed to study models that are gen-
erated by an infinite number of steps involving the latter two operations. It was
illustrated that in this context a combination of the uniform and the non-uniform
approach gives a further small step in building up more infinite graphs that have
a decidable MSO-theory.

We have not touched the rich landscape of recent studies on other types of
interpetations and of model composition. A good survey on the state-of-the-art
is given in [2]. On the side of logics, one should note that for applications in
infinite-state verification weaker logics than MSO-logic are of interest, for which
the class of structures with a decidable model-checking problem can then be
expanded.

Acknowledgment

I thank Christof Löding and Basile Morcrette for helpful discussions.

References

1. Berwanger, D., Blumensath, A.: The monadic theory of tree-like structures. In:
[11], pp. 285–302

2. Blumensath, A., Colcombet, T., Löding, C.: Logical theories and compatible op-
erations. In: Flum, J., et al. (eds.) Logic and Automata, pp. 73–106. Amsterdam
Univ. Press, Amsterdam (2007)

3. Blumensath, A.: On the structure of graphs in the Caucal hierarchy. Theor. Com-
put. Sci. 400, 19–45 (2008)

4. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Nagel,
E., et al. (eds.) Logic, Methodology, and Philosophy of Science: Proceedings of the
1960 International Congress, pp. 1–11. Stanford Univ. Press (1962)

Model Transformations in Decidability Proofs for Monadic Theories 31

5. Caucal, D.: On infinite graphs having a decidable monadic theory. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg
(2002)

6. Carton, O., Thomas, W.: The monadic theory of morphic infinite words and gen-
eralizations. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp.
275–284. Springer, Heidelberg (2000)

7. Courcelle, B.: The monadic second-order logic of graphs IX: machines and their
behaviours. Theor. Comput. Sci. 151, 125–162 (1995)

8. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.)
FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003)

9. Courcelle, B., Walukiewicz, I.: Monadic second-order logic, graph coverings and
unfoldings of transition systems. Ann. Pure Appl. Logic 92, 35–62 (1998)

10. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second
(first) order theory of (generalized) successor. J. Symb. Logic 31, 169–181 (1966)

11. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

12. Montanari, A., Puppis, G.: A contraction method to decide MSO theories of de-
terministic trees. In: Proc. 22nd IEEE Symposium on Logic in Computer Science
(LICS), pp. 141–150

13. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

14. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. s2-30, 264–
286 (1930)

15. Rabinovich, A., Thomas, W.: Decidable theories of the ordering of natural numbers
with unary predicates. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 562–574.
Springer, Heidelberg (2006)

16. Semenov, A.: Decidability of monadic theories. In: Chytil, M.P., Koubek, V. (eds.)
MFCS 1984. LNCS, vol. 176, pp. 162–175. Springer, Heidelberg (1984)

17. Shelah, S.: The monadic theory of order. Ann. Math. 102, 379–419 (1975)
18. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theor. Com-

put. Sci. 275, 311–346 (2002)

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, p. 32, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Molecules as Automata

Luca Cardelli

Microsoft Research

Molecular biology investigates the structure and function of biochemical systems
starting from their basic building blocks: macromolecules. A macromolecule is a
large, complex molecule (a protein or a nucleic acid) that usually has inner mutable
state and external activity. Informal explanations of biochemical events trace individ-
ual macromolecules through their state changes and their interaction histories: a mac-
romolecule is endowed with an identity that is retained through its transformations,
even through changes in molecular energy and mass. A macromolecule, therefore, is
qualitatively different from the small molecules of inorganic chemistry. Such mole-
cules are stateless: in the standard notation for chemical reactions they are seemingly
created and destroyed, and their atomic structure is used mainly for the bookkeeping
required by the conservation of mass.

Attributing identity and state transitions to molecules provides more than just a dif-
ferent way of looking at a chemical event: it solves a fundamental difficulty with
chemical-style descriptions. Each macromolecule can have a huge number of internal
states, exponentially with respect to its size, and can join with other macromolecules
to from even larger state configurations, corresponding to the product of their states.
If each molecular state is to be represented as a stateless chemical species, trans-
formed by chemical reactions, then we have a huge explosion in the number of
species and reactions with respect to the number of different macromolecules that
actually, physically, exist. Moreover, macromolecules can join to each other indefi-
nitely, resulting in situations corresponding to infinite sets of chemical reactions
among infinite sets of different chemical species. In contrast, the description of a
biochemical system at the level of macromolecular states and transitions remains
finite: the unbounded complexity of the system is implicit in the potential molecular
interactions, but does not have to be written down explicitly. Molecular biology text-
books widely adopt this finite description style, at least for the purpose of illustration.

At the core, we can therefore regard a macromolecule as some kind of automaton,
characterized by a set of internal states and a set of discrete transitions between states
driven by external interactions. We can thus try to handle molecular automata by
some branch of automata theory and its outgrowths: cellular automata, Petri nets, and
process algebra. The peculiarities of biochemistry, however, are such that until re-
cently one could not easily pick a suitable piece of automata theory off the shelf.
Many sophisticated approaches have now been developed, and we are particularly
fond of stochastic process algebra. In this talk, however, we do our outmost to remain
within the bounds of a much simpler theory. We go back, in a sense, to a time before
cellular automata, Petri nets and process algebra, which all arose from the basic intui-
tion that automata should interact with each other. Our main criterion is that, as in
finite-state automata, we should be able to easily and separately draw the individual
automata, both as a visual aid to design and analysis, and to emulate the illustration-
based approach found in molecular biology textbooks.

An Infinite Automaton Characterization of Double
Exponential Time�

Salvatore La Torre1, P. Madhusudan2, and Gennaro Parlato1,2

1 Università di Salerno, Italy
2 University of Illinois, Urbana-Champaign, USA

Abstract. Infinite-state automata are a new invention: they are automata that
have an infinite number of states represented by words, transitions defined us-
ing rewriting, and with sets of initial and final states. Infinite-state automata have
gained recent interest due to a remarkable result by Morvan and Stirling, which
shows that automata with transitions defined using rational rewriting precisely
capture context-sensitive (NLINSPACE) languages. In this paper, we show that
infinite automata defined using a form of multi-stack rewriting precisely defines
double exponential time (more precisely, 2ETIME, the class of problems solvable

in 22O(n)
time). The salient aspect of this characterization is that the automata

have no ostensible limits on time nor space, and neither direction of containment
with respect to 2ETIME is obvious. In this sense, the result captures the complex-
ity class qualitatively, by restricting the power of rewriting.

1 Introduction

The theory of infinite-state automata is a new area of research (see [21] for a recent
survey). Infinite-state automata (not to be confused with finite state automata on infinite
words) are automata with infinitely many states that can read finite words and accept or
reject them, in much the same way as finite-state automata would. In order to represent
infinite-state automata using finite means, the states, the transitions, and the initial and
final state sets are represented symbolically.

The infinite-state automata we study in this paper are defined by using words to
represent the states of the automaton. Let us fix a finite alphabet Σ as the input alphabet
for the infinite-state automata. The set of states of an infinite-state automaton over Σ are
words over a finite alphabet Π (which does not need to be related to Σ in any way). The
initial and final sets of states of this automaton are defined using word-languages over
Π accepted by finitely presented devices (e.g. finite-state automata over Π). Transitions
between states are defined using rewriting rules that rewrite words to other words: for
each a ∈ Σ, we have a rewrite rule that rewrites words over Π . A state u ∈ Π∗ leads
to state u′ ∈ Π∗ on a ∈ Σ iff the rewrite rule for a can rewrite u to u′. There is a
variety of choices for the power of rewriting, but in any case the rewriting rules are
presented finitely (e.g. using finite transducers). The language accepted by an infinite-
state automaton is defined in the natural way: a word w ∈ Σ∗ is accepted if there is a
path from some initial state to some final state tracing w in the automaton.
� The first and third authors were partially supported by the MIUR grants ex-60% 2006 and

2007 Università degli Studi di Salerno.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 33–48, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

34 S. La Torre, P. Madhusudan, and G. Parlato

Infinite-state automata are naturally motivated in formal verification, where, intu-
itively, a state of the model can be represented using a word, and the system’s evolution
can be described using rewriting rules. Classic examples include boolean abstraction
of recursive programs [2] (where a system is described using a state and a stack en-
coded into words, and the rewriting corresponds to prefix rewriting) and regular model-
checking, where parameterized finite-state systems are represented with finite words
and transitions defined using synchronous rational rewriting [3].

Infinite-state automata are radically different computation models than Turing ma-
chines especially when computational complexity issues are at hand. The notion that
rewriting words (or terms) can be a basis for defining computability goes back to the
works of Axel Thue [22] (Thue systems) and Emil Post [17] (Post’s tag systems). For-
mal languages defined using grammars (the Chomsky hierarchy) are also in the spirit of
rewriting, with semi-Thue systems corresponding to unrestricted grammars and hence
Turing machines. While Turing machines can be viewed as rewrite systems (rewriting
one configuration to another), the study of computational complexity is often based on
time and space constraints on the Turing machine model, and natural counterparts to
complexity classes in terms of rewrite systems don’t currently exist.

Given a word w ∈ Σ∗, note that infinite automata have possibly an infinite number
of paths on w. Hence, deciding whether w is accepted by the infinite-state automaton
is in no way trivial. However, if rewriting rules can be simulated by Turing machines
(which will usually be the case), the language accepted by the infinite-state automaton
is recursively enumerable.

Recently, Morvan and Stirling showed the following remarkable result: infinite state
automata where states are finite words, initial and final sets are defined using regular
languages, and transitions are defined using rational relations, accept precisely the class
of context-sensitive languages (nondeterministic linear-space languages) ([15]; see also
[5]). Rational relations are relations R ⊆ Π∗ ×Π∗ that can be effected by finite-state
automata: (u, u′) ∈ R iff the automaton can read u on an input tape and write u′ on
the output tape, where the two tape heads are only allowed to move right (but can move
independent of each other).

Note that the only constraint placed in the above result is the power of rewriting (ra-
tional relations) and there is no ostensible limit on space or time. In other words, the
constraint on rewriting is a qualitative constraint with no apparent restriction on com-
plexity. Indeed, even establishing the upper bound (the easier direction), namely that
these automata define languages that are accepted by linear-bounded Turing machines
is non-trivial. A naive simulation of the infinite-state automaton will not work as the
words that represent states on the run can be unboundedly large even for a fixed word
w. Notice that we do not allow ε-transitions in infinite automata, as allowing that would
make infinite automata with even regular rewriting accept the class of all recursively
enumerable languages.

Our main contribution here is an infinite automaton characterization for the class
2ETIME, the class of languages accepted by Turing machines in exp(exp(O(n)))1

time, using a qualitative constraint on rewriting, which is a restricted form of multi-
stack pushdown rewriting.

1 exp(x) denotes 2x.

An Infinite Automaton Characterization of Double Exponential Time 35

A simple generalization of regular rewriting is pushdown rewriting, where we allow
the rewriting automata the use of a work stack which can be used for intermediate stor-
age when rewriting a word to another. For example the relation {(w,wwr)|w ∈ Π∗}
(where wr denotes the reverse of w) is not regular but can be effected by a pushdown
rewrite system. However, defining infinite automata with the power of pushdown rewrit-
ing quickly leads to undecidability of the membership problem, and these automata can
accept non-recursive languages.

We hence place a restriction on pushdown rewriting. We demand that the rewriting
device takes its input in a read-only tape and writes it to a write-only tape, and has
access to some stacks, but it can switch only a bounded number of times the source
from which it is reading symbols (i.e., the input tape and the stacks). In other words,
the pushdown rewriting can be split into k phases, where in each phase, it either reads
from the input tape and does not pop any stack, or pops from just one stack but doesn’t
read from the input tape. This restriction puts the problem of checking membership just
within the boundary of decidability, and results in an automaton model that defines a
class of recursive languages.

We show that infinite automata restricted to bounded-phase pushdown rewriting pre-
cisely defines the class 2ETIME.

The upper bound, showing the membership problem for any such infinite automa-
ton is decidable in 2ETIME, is established by reducing it to the emptiness problem for
finite-phased multi-stack visibly pushdown automata, which we have shown recently
to be decidable [12]. Note that (non-deterministic) Turing machines that directly and
naively simulate the infinite automaton could take unbounded space and time. Visibly
pushdown automata [1] are pushdown automata where the input symbols determine
the operation on the stack, and multi-stack visibly pushdown automata generalize them
to multiple stacks [12]. Intuitively, the accepting runs that are followed by an n-stack
pushdown rewriting system when it transforms a word u to u′ can be seen as a multi-
stack ((n + 2)-stack) visibly pushdown automaton. Hence membership of w for an in-
finite automaton reduces to checking emptiness of the language of accepting runs over
w. Moreover, if each rewriting step in the infinite automaton is bounded phase, then
the number of phases in the multi-stack automata is O(|w|). In [12], we show that
the k-phase reachability for multi-stack automata is solvable in exp(exp(O(poly(k))))
time using (monadic second-order) logic interpretations on finite trees. We sharpen the
above result in this paper to obtain exp(exp(O(k))) time decision procedure for empti-
ness by implementing two crucial subprocedures that correspond to capturing the linear
ordering and the successor relation from the tree directly using nondeterministic tree
automata and two-way alternating tree automata, respectively.

Turning to the lower bound, we establish that all 2ETIME languages are accepted
by infinite automata defined using bounded-phase pushdown rewriting. We show that
for every alternating ESPACE Turing machine (i.e. working in space 2O(n), which is
equivalent to 2ETIME [9]), there is an infinite automaton with bounded-phase rewriting
accepting the same language.

Related Work: A recent result by Rispal [18] shows that infinite automata defined using
synchronous rational relations, which are strictly less powerful than rational relations,
also define exactly the class of context-sensitive languages (see also [5]). Meyer [14]

36 S. La Torre, P. Madhusudan, and G. Parlato

has characterized the class ETIME (the class of languages accepted by Turing machines
in time exp(O(n))) with infinite automata defined via automatic term transducers.

Bounded-phase visibly multi-stack pushdown automata have been introduced and
studied by us in [12]. These automata capture a robust class of context-sensitive lan-
guages that is closed under all the boolean operations and has decidable decision prob-
lems. Also, they turned out to be useful to show decidability results for concurrent
systems communicating via unbounded FIFO queues [13].

Capturing complexity classes using logics on graphs in descriptive complexity the-
ory [10], which was spurred by Fagin’s seminal result capturing NP using ∃SO, also has
the feature that the characterizations capture complexity classes without any apparent
restriction of time or space.

Finally, there’s a multitude of work on characterizing the infinite graphs that corre-
spond to restricted classes of machines (pushdown systems [16], prefix-recognizable
graphs [7], higher-order pushdown automata [4], linear-bounded automata [6], and the
entire Chomsky hierarchy [8]).

2 Multi-stack Pushdown Rewriting

A multi-stack pushdown transducer is a transducer from words to words that has access
to one or more pushdown stacks.

For any set X , let Xε denote X ∪ {ε}, and let X∗ denote the set of finite words over
X . Also, for any i, j ∈ N, let [i, j] denote the set {i, i + 1, . . . , j}.

Fix finite alphabets Π and Γ . An n-stack pushdown transducer over Π is a tuple
T = (Q, q0, δ, Γ, F) where Q is a finite set of states, q0 ∈ Q is the initial state, Γ is
the stack alphabet, and F ⊆ Q is the set of final states. The transition relation is δ ⊆
(Q×Q×Πε×Πε× [0, n]×Γε×Γε), with the restriction that if (q, q′, a, b, i, γ, γ′) ∈ δ,
then γ = γ′ = ε iff i = 0.

A transition of the form (q, q′, a, b, i, γ, γ′), with a, b ∈ Πε and γ, γ′ ∈ Γε, intuitively
means that the pushdown transducer, when in state q with γ on the top of its i’th stack
(provided i > 0) can read a from the input tape, write b onto the output tape, replace γ
with γ′ onto the i’th stack, and transition to state q′. When i = 0, γ = γ′ = ε and hence
no stack is touched when changing state though input symbols can be read.

Note that γ = ε and γ′ �= ε corresponds to a push transition, γ �= ε and γ = ε
corresponds to a pop transition. Without loss of generality, let us assume that in every
transition, γ = ε or γ′ = ε holds, and if a �= ε then γ = ε (i.e., when reading a symbol
from the input tape, none of the stacks can be popped).

A configuration of the pushdown transducer T is a tuple (w1qw2, {si}ni=1, w
′) where

w1, w2, w
′ ∈ Π∗, q ∈ Q and si ∈ Γ ∗ for each i ∈ [1, n]. Such a configuration means

that the input head is positioned just after w1 on the input tape that has w1w2 written on
it, q is the current state, si is the current content of the i’th stack, and w′ is the output
written thus far onto the output tape (with the head positioned at the end of w′).

Transitions between configurations are defined by moves in δ as follows:

(w1qaw2, {si}ni=1, w
′)

(q,q′,a,b,j,γ,γ′)−−−−−−−−−−→ (w1aq
′w2, {s′i}ni=1, w

′b),

An Infinite Automaton Characterization of Double Exponential Time 37

where (q, q′, a, b, j, γ, γ′) ∈ δ, if j �= 0 then sj = ŝγ and s′j = ŝγ′, and s′i = si for
each i �= j.

Let us define the configuration graph of the transducer T as the graph whose vertices
are the configurations and whose edges are the transitions between configurations as
defined above. A multi-stack pushdown transducer T rewrites w to w′, if there is a
path in the configuration graph from configuration (q0w, {ε}ni=1, ε) to configuration
(wqf , {si}ni=1, w

′), with qf ∈ F .
Pushdown rewriting is powerful, and the problem of deciding whether w can be

rewritten to w′ even in two steps by even a one-stack transducer is undecidable (see
Appendix for a proof):

Lemma 1. The problem of checking if a word w can be rewritten to a word w′ in two
steps by a 1-stack pushdown transducer is undecidable.

We want a tractable notion of transducers in order to define infinite automata that accept
recursive languages. We hence introduce a bounded version of pushdown transducers.

We say that a pushdown transducer is k-phase (k ∈ N), if, when transforming any
w1 to w2, it switches at most k times between reading the input and popping either
one of the stacks, and between popping different stacks. More formally, a transition of
the form (q, q′, a, b, i, γ, γ′) is a not-pop transition if it’s not a transition that pops any
stack, i.e. if γ′ �= ε or i = 0. Let NotPop denote the set of not-pop transitions. Let
Popi (i �= 0) denote the set of all transitions except those that read from the input tape
or pop from a stack j different from i, i.e. Popi is the set of transitions of the form
(q, q′, a, b, j, γ, γ′) where a = ε and if j �= i then γ = ε.

A k-phase transducer is one which on any run c0
m1−−→ c1

m2−−→ c2 . . .
mi−−→ ci the

sequence m1m2 . . .mi can be split as w1w2 . . . wk where for every h ∈ [1, k], wh ∈
NotPop∗ ∪

⋃n
i=1(Pop∗i).

A bounded-phase pushdown transducer is a pushdown transducer which is k-phase
for some k ∈ N.

Infinite Automata Defined by Multi-stack Pushdown Transducers

We define now infinite-state automata over an alphabet Σ. The states in this automaton
will correspond to words over an alphabet Π , the set of states one can transition to
from a state on a letter d in Σ will be defined using a multi-stack pushdown transducer
corresponding to d, and initial and final state sets will be identified using regular sets of
words over Π .

Fix a finite alphabet Σ. An infinite-state pushdown transducer automaton (PTA) over
Σ is a tupleA = (Π, {Td}d∈Σ, Init ,Final), where Π is a finite alphabet, for each d ∈
Σ, Td is a pushdown transducer over Π , and Init and Final are finite-state automata
(NFAs) over Π .

A PTA A = (Π, {Td}d∈Σ, Init ,Final) defines an infinite graph G = (V,E) where

the set of vertices V is set of words over Π and E is the set of all edges v
d−→ v′ such

that the pushdown transducer Td can rewrite v to v′.
A bounded-phase PTA (BPTA) is a PTA in which every transducer is of bounded-

phase.

38 S. La Torre, P. Madhusudan, and G. Parlato

A run of the PTA A on a word over d1 . . . dn ∈ Σ∗ is a sequence v0, v1, . . . vn,

where v0 is accepted by the automaton Init , and for each i ∈ [1, n], vi−1
di−→ vi is in

G. Such a run is accepting if the final vertex is accepted by Final , i.e. vn ∈ L(Final).
A word w is accepted by a PTA A if there is some accepting run of A on w. The

language accepted by A, denoted L(A) is the set of all words it accepts.
In the rest of the paper we often write exp(x) for 2x. Let 2ETIME(Σ) denote the

class of all languages over Σ that can be accepted by Turing machines working in time
exp(exp(O(n))).

We can now state our main theorem:

Theorem 1
A language L over Σ is accepted by a bounded-phase PTA iff L ∈2ETIME(Σ).

3 The Upper Bound

In this section, we show that bounded-phase pushdown transducer automata define a
class of languages contained in 2ETIME.

Let us fix a BPTAA = (Π, {Td}d∈Σ, Init ,Final). The proof that L(A) is contained
in 2ETIME is structured as follows:

(a) First, we show that the problem of checking if a word w is accepted by a BPTA
can be reduced to the emptiness problem for k-phase multi-stack visibly pushdown
automata (defined below) of state-space O(|w|) and such that k = O(|w|).

(b) In [12], we have shown that the emptiness problem for k-phase multi-stack push-
down automata with state-space Q can be decided in exp(|Q| · exp(O(poly(k))))
time. Applying this would give a 2EXPTIME procedure and not a 2ETIME proce-
dure for our problem (2EXPTIME is the class of problems that can be solved by
a Turing machine using exp(exp(O(poly(n)))) time). Consequently, we sharpen
the result above, and show that emptiness can be indeed decided in time exp(|Q| ·
exp(O(k))), which establishes our theorem.

Bounded Phase Multi-stack Pushdown Automata

Multi-stack visibly pushdown automata (MVPA) are automata with a finite number
of stacks, where the input letter determines which stack the automaton touches and
whether it pushes or pops from that stack. We refer to actions that push onto a stack as
calls and actions that pop a stack as returns.

An n-stack call-return alphabet is a tuple Σ̃n = 〈{(Σi
c, Σ

i
r)}i∈[1,n], Σint〉 of pair-

wise disjoint finite alphabets. For any i ∈ [1, n], Σi
c is a finite set of calls of the stack i,

Σi
r is a finite set of returns of stack i, and Σint is a finite set of internal actions. Let Σ̃

denote the union of all the alphabets in Σ̃n.
An n-stack visibly pushdown automaton M = (Q,QI , Γ, δ,QF) (where Q is a finite

set of states, QI ⊆ Q and QF ⊆ Q are initial and final sets of states, Γ is the stack
alphabet and δ is the transition relation) over such an alphabet can push on the i’th
stack exactly one symbol when it reads a call of the i’th call alphabet, and pop exactly

An Infinite Automaton Characterization of Double Exponential Time 39

one symbol from the i’th stack when it reads a return of the i’th return alphabet. Also,
it cannot touch any stack when reading an internal letter. The semantics of MVPAs is
defined in the obvious way, and we refer the reader to [12] for details.

A k-phase MVPA (k-MVPA) is intuitively an MVPA which works in (at most) k
phases, where in each phase it can push onto any stack, but pop at most from one stack.
Formally, given a word w ∈ Σ̃∗, we denote with Ret(w) the set of all returns in w. A
word w is a phase if Ret(w) ⊆ Σi

r, for some i ∈ [1, n], and we say that w is a phase
of stack i. A word w ∈ Σ̃+, is a k-phase word if k is the minimal number such that w
can be factorized as w = w1w2 . . . wk , where wh is a phase for each h ∈ [1, k]. Let
Phases(Σ̃n, k) denote the set of all k-phase words over Σ̃n.

For any k, a k-phase multi-stack visibly pushdown automaton (k-MVPA) A over
Σ̃n is an MVPA M parameterized with a number k; the language accepted by A is
L(A) = L(M) ∩ Phases(Σ̃n, k).

Reduction to k-MVPA Emptiness

Consider a BPTA A = (Π, {Td}d∈Σ, Init ,Final). Recall that given a word w =
d1 . . . dm ∈ Σ∗, the automatonA accepts w iff there is a sequence of words u0, . . . , um

such that u0 ∈ L(Init), um ∈ L(Final), and for each i ∈ [1,m], ui−1 can be rewritten
to ui by the transducer Tdi .

Suppose that the transducers of A have at most n stacks. We consider the (n + 2)-
stack call-return alphabet Σ̃n+2 = 〈{(Σi

c, Σ
i
r)}i∈[1,n+2], {int}〉where each Σi

c = {ci}
and Σi

r = {ri}. I.e., we have exactly one call and one return for each stack, and exactly
one internal letter.

Assume that an (n + 2)-stack MVPA starts with ur
i−1 on stack 1. Using stacks

2, . . . , n + 1 as the intermediate stacks, it can generate ui on stack n + 2 by simu-
lating the transducer Tdi (the word it reads is dictated by the actions performed on the
stack). Then, it can replace stack 1’s content with the reverse of stack (n + 2)’s content
to get ur

i on the stack 1, and empty stacks 2, . . . , n + 1 . Since the pushdown rewrite
system is bounded phase, it follows that the above rewriting takes only a bounded num-
ber of phases. Simulating the rewrites for the entire word w (i.e. u0 → u1 → . . . um),
and checking the initial words and final words belong to Init and Final , respectively,
takes at most O(m) phases. Moreover, we can build this MVPA to have O(m) states
(for a fixed BPTA A). We hence have:

Lemma 2. The problem of checking whether a word w is accepted by a fixed PTA is
polynomial-time reducible to the emptiness problem of an O(|w|)-phase MVPA with
O(|w|) states.

Solving k-MVPA Emptiness

In [12], the decidability of emptiness of k-MVPA proceeds by first defining a map from
words over Σ̃ to trees, called stack trees, by showing that the set of stack trees that
correspond to words forms a regular set of trees, and reducing k-MVPA emptiness to
emptiness of tree automata working on the corresponding stack trees.

40 S. La Torre, P. Madhusudan, and G. Parlato

The map from words to trees rearranges the positions of the word into a binary
tree by encoding a matching return of a call as its right child. This mapping hence
easily captures the matching relation between calls and returns, but loses sight of the
linear order in w. Recovering the linear order is technically hard, and is captured using
monadic second-order logic (MSO) on trees.

Fix a k-phase word w of length m. We say that a factorization w1, . . . , wk of w is
tight if: (1) the first symbol of wh is a return for every h ∈ [2, k], (2) if k > 1 then
Ret(w1) �= ∅, and (3) wh and wh+1 are phases of different stacks for every h ∈ [1, k−
1]. It is easy to see that, for every k-phase word w there is a unique tight factorization,
and thus we can uniquely assign a phase number to each letter occurrence within w
as follows: for w = w′dw′′, d ∈ Σ̃, the phase of d is h iff w1, . . . , wk is the tight
factorization of w and d is within wh.

A stack tree is defined as follows:

Definition 1. Let w be a k-phase word over Σ̃n with |w| = m, and w1, . . . , wk be the
tight factorization of w. The word-to-tree map of w, wt(w), which is a (Σ̃ × [1, k])-
labeled tree (V, λ), and the bijection pos : V → [1,m] are inductively defined (on |w|)
as follows:

– If m=1, then V ={root}, λ(root)=(w, 1), and pos(root)=1.
– Otherwise, let w = w′d, d ∈ Σ̃, and wt(w′) = (V ′, λ′). Then:
• V = V ′ ∪ {v} with v �∈ V ′.
• λ(v) = (d, k) and λ(v′) = λ′(v′), for every v′ ∈ V ′.
• If there is a j < m such that d is a return and the j’th letter of w is its matching

call (of the same stack), then v is the right-child of pos−1(j).
Otherwise v is the left-child of pos−1(m− 1).
• pos(v) = m.

The tree wt(w) is called the stack tree of w. A k-stack tree is the stack tree of a k-phase
word.

The proof that the set of stack trees that correspond to words accepted by a k-MVPA

forms a regular set of trees requires showing that: (a) the set of all stack trees is regular
and (b) given a stack tree, checking whether a k-MVPA has an accepting run over the
corresponding word can be done by a tree automaton.

Part (a) involves the definition of a linear order ≺ on tree nodes which corresponds
the linear order on the word from the stack tree, and [12] shows that given a tree au-
tomaton of size r accepting the ≺ relation (formally, accepting trees with two nodes
marked x and y such that x ≺ y), we can build an automaton of size exponential in r to
accept all stack trees. It is further shown in [12] that the≺ relation can be captured by an
automaton of size r = exp(poly(k)). In order to get a exp(exp(O(k))) automaton for
accepting stack trees, we show now that the ≺ relation can be defined using automata
of size r = exp(O(k)) (Lemma 4 below).

Part (b) requires traversing the stack tree according to the linear order on w using a
two-way alternating automaton. We show below that there is a two-way alternating tree
automaton of size 2O(k) that traverses the tree consecutively from one node to its suc-
cessor. More precisely, we show that given a tree where the first and last events of each

An Infinite Automaton Characterization of Double Exponential Time 41

phase are marked, there is a 2-way alternating automaton that, when placed at a node x
in the tree, will navigate to the successor of x (reaching a final state) (Lemma 5 below).
It follows from [12] that using this automaton, we can check whether the word corre-
sponding to the stack tree is accepted by a k-MVPA using a nondeterministic automaton
of size exp(exp(O(k))). This primarily involves an exponential conversion of alternat-
ing tree automata to nondeterministic automata [19,23], followed by other checks that
can be effected by nondeterministic automata of similar size.

We present the above two results in two technical lemmas below.

Tree Automata Accepting Stack Trees

Here we give a characterization of ≺ which leads to a direct construction of a tree
automaton of size exp(O(k)) that captures it.

For a (Σ̃ × [1, k])-labeled tree T = (V, λ), we define a map phaseT : V → [1, k] as
phaseT (x) = h iff λ(x) = (d, h) for some d ∈ Σ̃.

Stack trees must first satisfy some simple conditions. A tree is well-formed if (i) the
phase numbers are monotonically increasing along any path in the tree, (ii) every right
child is a return, with a call of the same stack as its parent, and (iii) the phase of the
root is 1.

Let T be a well-formed tree, x be a node of T , x′ be an ancestor of x, and x1 . . . x
 be
the path in T from x′ to x. Let I = {i1, i2, . . . , i
′−1} be the set of all indices i ∈ [1, �−
1] such that phaseT (xi) �= phaseT (xi+1). Assume that i1 < i2 < . . . < i
′−1. We
denote by PhasePathT (x′, x) the sequence p1, p2, . . . , p
′ such that pj = phaseT (xij)
for every j ∈ [1, �′ − 1], and p
′ = phaseT (x
).

In the following, <pre is the linear order of nodes according to a preorder visit of
the tree, and Tz denotes the largest subtree of T which contains z and whose nodes are
labeled with the same phase number as z.

Definition 2. Let T = (V, λ) be a well-formed tree. For every x, y ∈ V , x ≺∗ y if one
of the following holds:

parent(zx)

zx

xi1

xi2

xi
�′−1

x

parent(zy)

zy

yi1

yi2

yi
�′−1

y

1. phaseT (x) < phaseT (y);
2. Tx = Ty and x <pre y;
3. There exists an ancestor zx of x and

an ancestor zy of y such that

– zx �= zy ,
– phaseT (parent(zx)) < phaseT (zx),
– phaseT (parent(zy)) < phaseT (zy),
– PhasePathT (zx, x)

= PhasePathT (zy, y)
= p1, . . . , p
′

(see figure on the right, where similarly shaded regions belong to the same phase),
and one of the following holds
(a) �′ is odd and phaseT (parent(zy)) < phaseT (parent(zx)), or �′ is even and

phaseT (parent(zx)) < phaseT (parent(zy)).

42 S. La Torre, P. Madhusudan, and G. Parlato

(b) Tparent(zx) =Tparent(zy), and either �′ is odd and parent(zy) <pre parent(zx),
or �′ is even and parent(zx) <pre parent(zy) .

It is not hard to see that there is a non-deterministic automaton that guesses the
phase-path p1, . . . , p
′ (since this sequence is always ordered in increasing order, we
can represent it as the set {p1, . . . , p
′}, and hence the number of guesses is O(2k)) and
checks whether x ≺∗ y.

The following lemma states that ≺∗ and ≺ indeed coincide.

Lemma 3 (CHARACTERIZATION OF ≺). Let T = (V, λ) be a (Σ̃ × [k])-labeled tree
that is well-formed. Then, x ≺∗ y if and only if x ≺ y for every x, y ∈ V .

From the above argument and lemma, and the result shown in [12] we get:

Lemma 4. For any k, there is a nondeterministic tree automaton of size exp(O(k))
that accepts a well-formed tree with two nodes labeled x and y iff x ≺ y.

Thus, we have the following theorem.

Theorem 2. For any positive integer k, there is a nondeterministic tree automaton of
size exp(exp(O(k))) which accepts the set of all k-stack trees.

Tree Automata Traversing Stack Trees

Given a k-stack tree T and two nodes x, y of T , we say that y is the successor of x if x
corresponds to a position j of w and y to position j + 1 of w, where wt(w) = T .

In this section, we show that there is a two-way alternating tree automaton (see
[19,23] for a definition), with exp(O(k)) states, that when started at a node x on a k-
stack tree T , navigates to the successor of x. We will assume that we are given markers
that mark the first letter (marked with s) and last letter (marked with e) of each phase. In
fact, we can build conjunctively another automaton that checks using exp(exp(O(k)))
states that these markers are correct.

Formally, let T = (V, λ) be a (Σ̃ × [1, k]× {s , e,⊥})-labeled tree and T ′ = (V, λ′)
be the (Σ̃ × [1, k])-labeled tree where λ′(x) = (a, i) if λ(x) = (a, i, d). We say that T
is a k-stack tree with markers, if T ′ is a k-stack tree, and all the vertices corresponding
to positions of wt−1(T ′) where a phase starts (resp. ends) are labeled in T with s (resp.
e). For x, y ∈ V , we say that y is the successor of x if y is the successor of x in T ′.

Lemma 5. There exists a two-way alternating tree automaton, with exp(O(k)) states
that given a k-stack tree T , when started at a node x of T , will navigate precisely to the
successor of x (reaching a final state).

Proof. The 2-way alternating automaton is best described algorithmically. It will be
easy to see that this algorithm can be executed by a 2-way alternating automaton of
the required size. The algorithm is shown in Fig. 1. With EndPhase(x) we denote a
predicate that holds true whenever x is the last letter of a phase. With NextPhase(i),
i < k, we denote the first letter of phase i+1. With PrefixSucc(x), we denote the next
letter in the preorder visit of Tx. With ParentRoot(x), we denote the parent of the root
of Tx. BeginPhase(x), PrevPhase(i) and PrefixPred(x) are defined analogously.

An Infinite Automaton Characterization of Double Exponential Time 43

Procedure Successor(x)
if EndPhase(x) then

return (NextPhase(phaseT (x)));
elseif (y ← PrefixSucc(x) exists) then

return (y) ;
else {z ← ParentRoot(x);

z′ ← Predecessor(z);
while (phaseT (rightChild(z′))

�= phaseT (x)) do
z′ ← Predecessor(z′);

return (rightChild(z′)); }

Procedure Predecessor(x)
if BeginPhase(x) then

return (PrevPhase(phaseT (x)));
elseif (y ← PrefixPred(x) exists)

then return (y) ;
else {z ← ParentRoot(x);

z′ ← Successor(z);
while (phaseT (rightChild(z′))

�= phaseT (x)) do
z′ ← Successor(z′);

return (rightChild(z′)); }

Fig. 1. Successor and predecessor in stack trees

Intuitively, if x is the last letter of a phase, we navigate to the first letter of the
next phase (effected by the first clause). Otherwise, we check whether we can find the
successor locally, in the same subtree Tx; this corresponds to finding the next element
in the preorder visit of Tx and is delegated to the second clause. If x is the last letter of
Tx, then the successor is hard to find. Let z be the parent of the root of Tx and i be the
phase number of x. Intuitively, the successor of x is obtained by taking the last node
before z that has a matching return whose phase is i. We hence execute the function
Predecessor iteratively till we reach a node that has a right-child of phase i.

Implementing the above requires a 2-way alternating automaton to keep a list of
phase numbers. Such list can be maintained as a set (since the phase numbers on the list
are ordered), and we can engineer the automaton to have exp(O(k)) states. Alternation
is used to prove falsity of conditional clauses that are not pursued in the algorithm. ��

From the above lemmas and the result from [12], we get:

Theorem 3. The emptiness problem for k-MVPAs of state-space Q is decidable in time
exp(|Q| · exp(O(k))).

Combining Lemma 2 and the above theorem we get:

Theorem 4. The membership problem for BPTAs is decidable in 2ETIME.

4 The Lower Bound

In this section, we show that any language in 2ETIME is accepted by an infinite-state
bounded-phase pushdown transducer automata, thereby completing the proof that such
automata exactly characterize 2ETIME (Theorem 1).

We start giving a lemma which describes an interesting feature of the bounded-phase
multi-stack pushdown rewriting. It states that if we have an unbounded number of pairs
of bounded-length words, say bounded by N , then we can check whether every pair
(w,w′) is such that |w| = |w′| and for each i the i’th symbol of w and w′ belong to some
relation over symbols, using at most �logN�/c-steps of 2c-phase multi-stack pushdown

44 S. La Torre, P. Madhusudan, and G. Parlato

rewriting. Consider a finite relation R ⊆ Π × Π , and two words w = a1 . . . am and
w′ = a′1 . . . a′m′ over Π . We say that (w,w′) satisfies R if and only if m = m′ and
(ai, a′i) ∈ R for i = 1, . . . ,m.

Lemma 6. Let Π be a finite alphabet, # be a symbol which is not in Π , R ⊆ Π ×
Π , and w be any word of the form u1#v1#u2#v2# . . .#um#vm, with m > 0 and
ui, vi ∈ Π2cn

for i = 1, . . . ,m with c, n > 0.
There exists a 2c-phase 2-stack pushdown transducer T that rewrites within n steps

each such word w to a symbol $ if and only if (ui, vi) satisfies R for every i = 1, . . . ,m.

Proof sketch. The transducer T splits each pair (ui, vi) into 2c pairs of words, and writes
them onto the output tape. This transducer can be implemented using two stacks and
2c-phases. In n steps, the transducer hence reduces the problem of checking whether
every (ui, vi) satisfies R to that of checking whether a large number of pairs of letters
belongs to R, which can be effected by a regular automaton. ��
A transducer, as stated in the above lemma, can be used to check for a Turing machine
whether a configuration is a legal successor of another one. We apply this result as a
crucial step in proving the following theorem which states the claimed lower bound.

Theorem 5. For each language L in 2ETIME(Σ), there is a bounded-phase pushdown
transducer automatonA such that L = L(A).

Proof sketch. We reduce the membership problem for alternating Turing machines
working in 2O(n) space to the membership problem for BPTAs. The result then fol-
lows from [9].

We briefly sketch a BPTA A that accepts a words w if and only if w is accepted by a
2O(n) space Turing machineM. First A guesses a word w and a run t ofM encoding
them as a sequence of pairs of words (ui, vi) such that all the steps taken in t, and w
along with the initial configuration, are all represented by at least one such pair. Then,
it checks if the guessed sequence indeed encodes an accepting run ofM on w.

In the first task we make use of a slight variation of a standard encoding of trees by
words where each pair of consecutive configurations ofM are written consecutively in
the word. The second task is by Lemma 6. We observe that it suffices to have single
initial and final states forA. ��

5 Discussion

We have shown an infinite-automata characterization of the class 2ETIME. This result
was obtained independently of the work by Meyer showing that term-automatic infinite
automata capture the class ETIME [14]. These two results, along with the characteriza-
tion of NLINSPACE [15], are currently the only characterizations of complexity classes
using infinite automata.

The power of multi-stack rewriting. While infinite automata capture fairly complex
languages, there has been little study done on how simple infinite automata can be
designed to solve natural algorithmic problems. In this section, we investigate the power

An Infinite Automaton Characterization of Double Exponential Time 45

of our rewriting. We give infinite automata that solve SAT and QBF (crucially using
Lemma 6), and explore connections to infinite automata based on term rewriting. While
this of course follows from the lower bound shown in Section 4, the construction is
instructive.

We start observing some interesting features of bounded-phase multi-stack push-
down rewriting. We can generate words corresponding to tree encodings, or, in gen-
eral, belonging to a context free language. (Checking whether a word belongs to a
context free language while rewriting can be a problem though: for example, it is not
clear how to rewrite in 1-step a word w to a symbol 1 iff w ∈ {anbn | n ≥ 0}.)
Also, in each rewriting we can duplicate a bounded number of times any portion of
the read word. This can be useful to start many threads of computation on the same
string thus speeding-up the total computation. Finally, words can be (evenly) split into
a bounded number of sub-words. By iterating such splitting, we can check simple rela-
tions between an unbounded number of words, each of exponential length, as shown in
Lemma 6.

SAT and QBF. Let us encode Boolean formulas in the standard way, by representing
each quantifier, connective, constant and bracket with different symbols, and variables
with unbounded length binary strings.

On the first step, A prepares the computation by rewriting its initial state with a
triple (w1, w2, w3) where w1 is the encoding of a well-formed formula, w2 is a copy of
w1 along with a valuation for each variable occurrence, and w3 is the list of variable
occurrences coupled with their valuation as annotated in w2. The word w1 is guessed
nondeterministically using a stack to ensure it is well-formed, and is used byA to match
the input formula. The word w2 is obtained by copying w1 and nondeterministically
guessing on each variable occurrence a valuation (note that two occurrences of the
same variable may be assigned with different values along some runs). Word w2 is used
to evaluate the formula in the guessed valuation. Word w3 is extracted from w2 and is
later used to generate all pairs (xb, x′b′) where x, x′ are variable occurrences and b, b′

are respectively their assigned values. Such pairs are then checked to see if they define
a consistent valuation.

Observe now that evaluating the formula requires a number of steps of rewriting
bounded by its height. Also, the pairs of occurrences can be generated in n − 1 steps
of rewriting where n is the number of variable occurrences in the formula: a sequence
x1 . . . xn is rewritten according to the recurrence pairs(x1 . . . xn) is (x1, x2) along
with pairs(x1x3 . . . xn) and pairs(x2x3 . . . xn). Finally, from Lemma 6 checking for
pair consistency can be done in the length of the variable representation. Therefore, all
tasks are accomplished by the time A terminates its input and therefore it can correctly
accept or reject the input word.

This construction can be generalized to encode QBF. The main difference is that
variables are assigned one at each step: when the corresponding quantifier is eliminated.
The elimination of universal quantifiers requires duplication of the formula, which can
be effected using a work stack.

Term-automatic rewriting. Another way to define infinite automata is to represent
states using terms (or trees), and use term rewriting to define relations. In [14], term

46 S. La Torre, P. Madhusudan, and G. Parlato

automatic rewriting infinite automata are considered, and it is shown that they precisely
capture ETIME (the class of languages accepted by Turing machines in time 2O(n)).

A binary relation R over terms is automatic if it is definable via a tree automaton
which reads overlappings of the pair of terms, i.e., the terms are read synchronously on
the parts where the corresponding domains intersect (see [14]).

Intuitively, a stack allows us to faithfully represent terms using a well-bracketed
word. We now show how to directly translate a term-automatic infinite automatonA to
a multi-stack rewriting infinite automaton B accepting the same language. Automaton
B on the first step nondeterministically guesses the entire run of A, i.e., a sequence of
terms t1, . . . , tN where N − 1 is the length of the word which will be read. Then, it
checks if it is indeed an accepting run by generating all the pairs of consecutive terms
in the sequence, and then checking them as in Lemma 6. To ensure that terms match
when paired, we need to guess terms which all have the same shape (with dummy labels
used to mark unused parts of the tree). Also, in order to have all tasks processed on time
(i.e., before the input to the automaton is completely read), the guessed terms must be
of size at most exponential in N . It is not hard to show by standard techniques that if a
term-automatic infinite automaton has an accepting run over a word w, then it has also
an accepting run on it which visits terms of size at most exponential in the length of w.
Hence the infinite automaton B accepts the same language as A.

Conclusions and future directions. We have defined (B)PTA with possible infinite
initial and final states. Restricting the definition to single initial and final state does
not alter the class of recognized languages. In fact, for each (B)PTA A, we can easily
construct a language equivalent (B)PTAA′ which has only an initial and a final state.

We observe that, since the construction in Theorem 5 showing 2ETIME hardness
uses transducers with only two stacks, the full power of BPTA can be achieved with
just two stacks. If we allow transducers with only one stack we can show 22n

lower
bound but it is left open whether we can capture all 2ETIME (i.e. time 22O(n)

) using
just one-stack transducers.

There are several choices for rewriting that can be studied. For example, prefix
rewriting (where essentially the input word is treated as a stack, and an automaton
works on it to produce a new stack) precisely defines context-free languages [21]. Reg-
ular and synchronized regular rewriting leads to automata that accept context-sensitive
languages [15,18]. Reducing the power of rewriting to one that is weaker than synchro-
nous regular relations seems hard (for e.g., consider relations R ⊆ Σ∗ ×Σ∗ where the
language {w#w′ | (w,w′) ∈ R} is regular; this leads to infinite automata that only
capture regular languages).

We believe that our results may open a new technique to finding rewriting classes
that capture complexity classes. Intuitively, a rewriting mechanisms for which checking
whether any word in a regular language L can be rewritten in n steps to a word in
a regular language L′ can be solved in time (or space) C(n) may be a good way to
come up with conjectur rewriting schemes that define infinite automata for the class
C(n)-time (or space).

Along this vein, consider bounded context-switching rewriting where the input word
is rewritten to an output word using a finite number of stacks, but where there is only
a bounded number of switches between the stacks (including the input tape). This is

An Infinite Automaton Characterization of Double Exponential Time 47

weaker than the rewriting in this paper as the automaton is not allowed to push onto all
stacks in one phase. The membership problem for bounded-context-switching automata
can be seen to be NP-complete, and it will be interesting to see if this leads us to an
infinite automaton characterization of NP.

The most interesting question would be to investigate if any complexity-theoretic re-
sult can be proved in a radically different fashion using infinite automata. As mentioned
in [21], given that we have infinite automata for the class NL, showing that NL=CO-NL
using infinite automata seems an excellent idea to pursue.

References

1. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211 (2004)
2. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs. In:

Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 113–130.
Springer, Heidelberg (2000)

3. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)

4. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-
order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS,
vol. 2914, pp. 112–123. Springer, Heidelberg (2003)

5. Carayol, A., Meyer, A.: Context-sensitive languages, rational graphs and determinism. Log-
ical Methods in Computer Science 2(2) (2006)

6. Carayol, A., Meyer, A.: Linearly bounded infinite graphs. Acta Inf. 43(4), 265–292 (2006)
7. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf

der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer,
Heidelberg (1996)

8. Caucal, D., Knapik, T.: A Chomsky-like hierarchy of infinite graphs. In: Diks, K., Rytter, W.
(eds.) MFCS 2002. LNCS, vol. 2420, pp. 177–187. Springer, Heidelberg (2002)

9. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)
10. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)
11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-

tion. Addison-Wesley, Reading (1979)
12. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In:

LICS, pp. 161–170. IEEE Computer Society, Los Alamitos (2007)
13. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of queue systems. In:

Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–314. Springer,
Heidelberg (2008)

14. Meyer, A.: Traces of term-automatic graphs. In: Kučera, L., Kučera, A. (eds.) MFCS 2007.
LNCS, vol. 4708, pp. 489–500. Springer, Heidelberg (2007)

15. Morvan, C., Stirling, C.: Rational graphs trace context-sensitive languages. In: Sgall, J., Pultr,
A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 548–559. Springer, Heidelberg
(2001)

16. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic.
Theor. Comput. Sci. 37, 51–75 (1985)

17. Post, E.L.: Formal reductions of the general combinatorial decision problem. American Jour-
nal of Mathematics 65(2), 197–215 (1943)

18. Rispal, C.: The synchronized graphs trace the context-sensitive languages. Electr. Notes
Theor. Comput. Sci. 68(6) (2002)

48 S. La Torre, P. Madhusudan, and G. Parlato

19. Slutzki, G.: Alternating Tree Automata. Theor. Comput. Sci. 41, 305–318 (1985)
20. Thomas, W.: Languages, automata, and logic. Handbook of formal languages 3, 389–455

(1997)
21. Thomas, W.: A short introduction to infinite automata. In: Kuich, W., Rozenberg, G., Salo-

maa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 130–144. Springer, Heidelberg (2002)
22. Thue, A.: Probleme über veränderungen von zeichenreihen nach gegebener regeln. Kra. Vi-

densk. Selsk. Skrifter. 1. Mat. Nat. Kl. 10 (1914)
23. Vardi, M.: Reasoning about The Past with Two-Way Automata. In: Larsen, K.G., Skyum, S.,

Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)

Recursion Schemata for NCk�

Guillaume Bonfante1, Reinhard Kahle2, Jean-Yves Marion1,
and Isabel Oitavem3

1 Loria - INPL, 615, rue du Jardin Botanique, BP-101, 54602 Villers-lès-Nancy,
France

{Jean-Yves.Marion,Guillaume.Bonfante}@loria.fr
2 CENTRIA and DM, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

kahle@mat.uc.pt
3 UNL and CMAF, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003

Lisboa, Portugal
isarocha@ptmat.fc.ul.pt

Abstract. We give a recursion-theoretic characterization of the com-
plexity classes NCk for k ≥ 1. In the spirit of implicit computational
complexity, it uses no explicit bounds in the recursion and also no sepa-
ration of variables is needed. It is based on three recursion schemes, one
corresponds to time (time iteration), one to space allocation (explicit
structural recursion) and one to internal computations (mutual in place
recursion). This is, to our knowledge, the first exact characterization of
NCk by function algebra over infinite domains in implicit complexity.

1 Introduction

Since the seminal works of Simmons [19], of Leivant [11, 12], of Bellantoni and
Cook [3], and of Girard [8], implicit computational complexity has provided mod-
els over infinite domains of major complexity classes which are independent from
the notion of time or of space related to machines.

These studies have nowadays at least two twin directions. The first direction
concerns the characterization of complexity classes by means of logics or of recur-
sion schemes. A motivation is to have a mathematical model of resource-bounded
computations. The second direction is more practical and aims to analyze and
certify resources, which are necessary for a program execution. One of the major
challenges here is to capture a broad class of useful programs whose complexity
is bounded. There are several approaches [1, 6, 10, 16].

This paper falls in the first direction which can be seen as a guideline for the
second approach. We give a recursion-theoretic characterization of each class
NCk by means of a function algebra INCk based on tree recursion. We demon-
strate that INCk = NCk for k ≥ 1.
� Research supported by the project Teorias e linguagens de programação para

computações com recursos limitados within the Programa PESSOA 2005/2006 of
GRICES - EGIDE and partly by the FCT project POCI/MAT/61720/2004 and by
DM, FCT-UNL.

This work was complete while the first author visited CMAF, Universidade de
Lisboa, and the support of the visit is gratefully acknowledged.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 49–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

50 G. Bonfante et al.

The classes NCk were firstly described based on circuits. NCk is the class
of functions accepted by uniform boolean circuit families of depth O(logk n)
and polynomial size with bounded fan-in gates, where n is the length of the
input—see [2] or [9]. In [18], Ruzzo identifies NCk with the classes of languages
recognized by alternating Turing machines (in short ATMs) in time O(logk n)
and space O(log n).

In fact, the main difficulty in this characterization of NCk relies on the double
constraint about time and space. Other previous characterizations based on tree
recursion fail to exactly capture for this reason. In 1998, Leivant [13] characterized
NC using a hierarchy of classes RSR, such that RSRk ⊆ NCk ⊆ RSRk+2 for k ≥ 2.
In the sequence of [4] and [17], this result was refined in [5] by defining term systems
T k such that T k ⊆ NCk ⊆ T k+1 for k ≥ 2. Both approaches are defined in a sorted
context, either with safe/normal arguments or with tiered recursion.

We define INCk as classes of functions, over the tree algebra T, closed under
composition and three recursion schemes over T: time iteration, explicit struc-
tural recursion and mutual in place recursion. No explicit bounds are used in the
schemes and also no separation of variables is needed. The mutual in place re-
cursion scheme, one main point of our contribution, is related to previous work
of Leivant and Marion, see [14]. The absence of tiering mechanism is related
to [15], so that similar diagonalization argument should be possible.

2 Preliminaries

Let W be the set of words over {0, 1}. We denote by ε the empty word and by
Wi the subset of W of words of length exactly i. We consider the tree algebra
T, generated by three 0-ary constructors 0,1,⊥ and a binary constructor �, in
other words, binary trees with leaves are labeled by {0,1,⊥}. S(t) denotes the
size of a tree, H(t) corresponds to the usual notion of height. We say that a tree
t is perfectly balanced if it has 2H(t) leaves. All along, 0 serves as false, 1 as true
and ⊥ as the undefined.

Given a non-empty (enumerable) set of variables X , we denote by T(X) the
term-algebra of binary trees whose leaves are labeled by 0,1,⊥ or variables from
X . If t, u denote some terms and x is a variable, the term t[x← u] denotes the
substitution of x by u in t. Then, t[x ← u, y ← v] = t[x ← u][y ← v]. All
along, we take care to avoid clashes of variables. When we have a collection I
of variable substitutions, we use the notation t[(xw ← uw)w∈I]. Again, we will
avoid conflicts of variables.

We now introduce some convenient notations, used extensively all along the
paper. Given a set of variables X = (xw)w∈W, we define a family of perfectly
balanced trees that we call tree patterns (ti)i∈N in T(X) where each leaf is
labeled by a distinct variable:

t0 = xε

ti+1 = ti[(xw ← x0w)w∈Wi
] � ti[(xw ← x1w)w∈Wi

]

Recursion Schemata for NCk 51

Observe that the index in a variable of some tree pattern indicates the path
from the root to it. For example, t2 = (x00 � x01) � (x10 � x11). The use of
the t’s and substitutions makes notations very short. For instance, t2[(xw ←
fw(xw))w∈W2

] = (f00(x00) � f01(x01)) � (f10(x10) � f11(x11)). This notation is
particularly useful to define “big-step” recursion equations as in:

f((x00 � x01) � (x10 � x11)) = (f(x00) � f(x01)) � (f(x10) � f(x11))

which we shall note: f(t2) = t2[(xw ← f(xw))w∈W2
]

3 The Classes INCk

Definition 1. The set of basic functions is B = {0,1,⊥, �, (πj
i)i≤j , cond, d0, d1}

where 0,1,⊥ and � are the constructors of the algebra T, d0 and d1 are the
destructors of T, cond is a conditional and πj

i are the projections. Destructors
and conditional are defined as follows:

d0(c) = d1(c) = c, c ∈ {0,1,⊥}
d0(t0 � t1) = t0, d1(t0 � t1) = t1,

cond(0, x0, x1, x⊥, x�) = x0, cond(1, x0, x1, x⊥, x�) = x1,

cond(⊥, x0, x1, x⊥, x�) = x⊥, cond(t0 � t1, x0, x1, x⊥, x�) = x�.

The set of basic functions closed by composition is called the set of explicitly
defined functions. If the output of a function is 0,1 or ⊥, then we say that the
function is boolean. If the definition of a function does not use �, the function
is said to be �-free. As a shorthand notation, we use db1···bl

for the function
dbl
◦ · · · ◦ db1 .

Definition 2. INCk is the closure of the set B under composition, mutual in
place recursion (mip), explicit structural recursion (esr), and time iteration
(ti) for k.

The mentioned schemes are described below.
To relate functions over words to functions over trees, we encode words of

W by perfectly balanced trees of T. For this, we define tr(w) as the perfectly
balanced tree of height �log(|w|)� whose leaves read from left to right are the
letters of w padded by ⊥ on the right if necessary.

A function φ : Wn → W is represented by a function f ∈ Tn → T iff for
all words w1, . . . , wn, f(tr(w1), . . . , tr(wn)) = tr(φ(w1, . . . , wn)). Actually, the
representation of φ(w1, . . . , wn) does not need to be canonical, that is the height
of the output tree may be greater than �log(|φ(w1, . . . , wn)|)�.

Theorem 3. For k ≥ 1, the set of functions over words represented in INCk is
exactly the set of functions computed by circuits in NCk.

The proof of the theorem is a direct consequence of Proposition 13 and Propo-
sition 15 coming in Section 4 and 5.

52 G. Bonfante et al.

3.1 Mutual in Place Recursion

As a shorthand for finite sequences, we use ¯(·). The notation can be nested
such as in σ̄(ū) which denotes a sequence σ1(u1, . . . , uk1), . . . , σn(u1, . . . , ukn).

The first recursion scheme, mutual in place recursion, is the key element of
our characterization.

Definition 4. The functions (fi)i∈I (with the set I finite) are defined by mutual
in place recursion (mip) if they are defined by a set of equations, with i, j, l ∈ I
and c ∈ {0,1,⊥}, of the form

fi(t0 � t1, ū) = fj(t0, σ̄i,0(t0 � t1, ū)) � fl(t1, σ̄i,1(t0 � t1, ū)) (1)
fi(c, ū) = gi,c(ū) (2)

where σ̄i,0 and σ̄i,1 are sequences of �-free explicitely defined functions and the
functions gi,c are explicitely defined boolean functions.

Notice that the first argument is shared by the entire set of mutually defined
functions as recursion argument. While for the others, copies, switch and visit can
be performed freely. As a consequence, for any such function f , one may observe
that f(t, x̄) is a tree with the exact shape of t but, possibly, with different leaves.
This results from the constraints on σ̄i,0, σ̄i,1, and gi,c. Actually, informally, to
compute the value corresponding to each leaf, one first runs a transducer using
the path to that leaf as input. At the end, one computes the bit by a conditional
using the outputs of the transducer as pointers to some bits in the input tree.

Example 5. The following function turns the leaves of its argument to some fixed
constant c ∈ {0,1,⊥}:

constc(t0 � t1) = constc(t0) � constc(t1)
constc(c′) = c c′ ∈ {0,1,⊥}

Taking the convention that b ∨ ⊥ = ⊥ ∨ b = ⊥, one may compute (with
mip-recursion) the bitwise-or of two perfectly balanced trees of common size.

or(t0 � t1, u) = or(t0, d0(u)) � or(t1, d1(u))
or(0, u) = cond(u,0,1,⊥,⊥)
or(1, u) = cond(u,1,1,⊥,⊥)
or(⊥, u) = ⊥

Actually, all ”bitwise boolean formula” of several balanced trees of the same
size can be written in a similar manner.

We now give some closure properties of mip-definable functions, the first one
allows us to define a family of mip-definable functions in terms of the shorthand
notation introduced above.

Recursion Schemata for NCk 53

Lemma 6. We suppose given a (finite) family (ni)i∈I of integers, and a family
(fi)i∈I of functions satisfying equations of the form:

fi(tni , ū) = tni [(xw ← fp(i,w)(xw , σ̄i,w(ū)))w∈Wni
], (3)

fi(tm[(xw ← cw)w∈Wm
], ū) = tm[(xw ← gi,w,cw(ū))w∈Wm

], 0 ≤ m < ni, (4)

where p is a finite mapping from I ×W to I, cw ∈ {0,1,⊥}, σ̄i,w are vectors of
�-free explicitly defined functions, and (gi,w,cw)i∈I,w∈W,cw∈{0,1,⊥} are explicitely
defined boolean functions. Then, the functions (fi)i∈I are mip-definable.

One may note that the equations above specify the functions only for well bal-
anced trees. Since we use this Lemma only for such trees, we do not care with
the values for other inputs given by the proof below.

Proof. In an equation such as Equation (3), we call ni the level of the definition
of fi. The proof is by induction on the maximal level of the functions N =
maxi∈I ni. If N = 1, then the equations correspond to usual mip-equations.

Suppose now N > 1. For all the indices i such that fi has level N , we replace
its definitional equations by:

fi(t0 � t1, ū) = fi•0(t0, ū) � fi•1(t1, ū)
fi•w(t0 � t1, ū) = fi•w0(t0, ū) � fi•w1(t1, ū), (1 < |w| < N − 1)
fi•w(t0 � t1, ū) = fp(i,w0)(t0, σ̄i,w0(ū)) � fp(i,w1)(t1, σ̄i,w1(ū)), (|w| = N − 1)

fi•w(c, ū) = gi,w,c(ū), (1 ≤ |w| < N)
fi(c, ū) = gi,ε,c(ū)

where the indices i•w are fresh. One may observe that the level of each of these
functions is 1. We end by induction.

The following Lemma is easy to verify:

Lemma 7. Suppose that f ∈ (fi)i∈I is defined by mip-recursion. Then, any
function g(t, ū) = f(t, σ̄(t, ū)) where the σ̄ are �-free explicitly defined functions
can be defined by mip-recursion.

3.2 Explicit Structural Recursion

The recursion scheme defined here corresponds to the space aspect of functions
definable in INCk. It will be used to construct trees of height O(log n), see the
following Lemma.

Definition 8. Explicit structural recursion (esr) is the following scheme:

f(t0 � t1, ū) = h(f(t0, ū), f(t1, ū))
f(c, ū) = g(c, ū) c ∈ {0,1,⊥}

where h and g are explicitely defined.

54 G. Bonfante et al.

As usual, when characterizing implicitely small classes of complexity, one pre-
vents the step function, h, to be itself defined by recursion of its critical argu-
ments. This is often achieved by imposing some tiering discipline. Here, we just
ask that the functions involved in the recursion are not themselves defined by
any recursion scheme, i.e., that they are explicitely defined.

Lemma 9. Given two natural numbers α0 and α1, there is a function f defined
by esr such that for any tree t, H(f(t)) = α1H(t) + α0.

Proof. The proof is immediate, taking f defined by explicit structural recursion
with h = hα1 and g = hα0(1,1) where h1(w0, w1) = w0 � w1 and hi(w0, w1) =
hi−1(w0, w1) � hi−1(w0, w1) for i > 1.

3.3 Time Iteration

The following scheme allows us to iterate mip-definable functions. It serves to
capture the time aspect of functions definable in NCk. The scheme depends on
the parameter k used for the stratification.

Definition 10. Given k ≥ 1, a function f is defined by k-time iteration (k-ti)
from the function h which is mip-definable and the function g if:

f(t′1 � t′′1 , t2, . . . , tk, s, ū) = h(f(t′1, t2, . . . , tk, s, ū), ū)
f(c1, t′2 � t′′2 , t3, . . . , tk, s, ū) = f(s, t′2, t3 . . . , tk, s, ū)

...
f(c1, . . . , ci−1, t

′
i � t′′i , ti+1, . . . , tk, s, ū) = f(c1, . . . , ci−2, s, t

′
i, ti+1, . . . , tk, s, ū)

...
f(c1, . . . , ck, s, ū) = g(s, ū)

where c1, . . . , ck ∈ {0,1,⊥}.

Notice that if (k-ti) would allow the function h to be, for instance, � then, by the
following lemma, we would obviously violate the space constraint of the classes
NCk. Informally, (k-ti) enables us to iterate O(logk n) times functions which
do not increase the space needs; as remarked above, mip-definable functions are
such ones.

Lemma 11. Given a mip-definable function h, a function g and constants β1

and β0, there is a function f defined by k-ti such that for all perfectly balanced
trees t

f(t, ū) = h(. . . h︸ ︷︷ ︸
β1(H(t))k+β0 times

(g(t, ū), ū) . . .).

Proof. The proof follows the lines of Lemma 9.

Recursion Schemata for NCk 55

4 Simulation of Alternating Turing Machines

We introduce alternating random access Turing machines (ARMs) as described
in [14] by Leivant, see also [7, 18]. An ARM M = (Q, q0, δ) consists of a (finite) set
of states Q, one of these, q0, being the initial state and actions δ to be described
now. States are classified as disjunctive or conjunctive, those are called action
states, or as accepting, rejecting and reading states. The operational semantics
of an ARM, M , is a two stage process: firstly, generating a computation tree;
secondly, evaluating that computation tree for the given input. A configuration
K = (q, w1, w2) consists of a state q and two work-stacks wi ∈ W, i ∈ {1, 2}.
The initial configuration is given by the initial state q0 of the machine and two
empty stacks.

First, one builds a computation tree, a tree whose nodes are configurations.
The root of a computation tree is the initial configuration. Then, if the state
of a node is an action state, depending on the state and on the bits at the top
of the work-stacks, one spawns a pair of successor configurations obtained by
pushing/popping letters on the work-stacks. The t-time computation tree is the
tree obtained by this process until height t.

Wlog, we assume that for each action state q, one of the two successor config-
urations, let us say the first one, lets the stacks unchanged. And for the second
successor configuration, either the first stack or the second one is modified, but
not both simultaneously. We write accordingly the transition function δ for ac-
tion states: δ(q, a, b) = (q′, q′′, popi) with i ∈ {1, 2} means that being in state
q with top bits being a and b, the first successor configuration has state q′ and
stacks unchanged, and the second successor has state q′′ and pops one letter on
stack i. When we write δ(q, a, b) = (q′, q′′, pushi(c)), with i ∈ {1, 2} and c ∈W1,
it is like above but we push the letter c on the top of the stack i.

The evaluation of a finite computation tree T is done as follows. Beginning
from the leaves of T until its root, one labels each node (q, w1, w2) according to:

– if q is a rejecting (resp. accepting) state, then it is labeled by 0 (resp. 1);
– if q is a c, j-reading state (c = 0, 1, j = 1, 2), then it is labeled by 0 or 1

according to whether the n’th bit of the input is c, where n is the content
read on the j’th stack. If n is too large, the label is ⊥;

– if q is an action state,
• if it has zero or one child, it is labeled ⊥;
• if it has two children, take the labels of its two children and compute

the current label following the convention that c = (c ∨ ⊥) = (⊥ ∨ c) =
(c ∧ ⊥) = (⊥ ∧ c) with c ∈ {0, 1,⊥}.

The label of a computation tree is the label of the root of the computation
tree thus obtained.

We say that the machine works in time f(n) if, for all inputs, the f(n)-time
tree evaluates to 0 or 1 where n is the size of the input. It works in space s(n)
if the size of the stacks are bounded by s(n).

Actually, to relate our function algebra to the NCk, we say that a function is
in ATM(O(logk n,O(log n)), for k ≥ 1 if it is polynomially bounded and bitwise
computed by an ATM working in time O(logk n) and space O(log n).

56 G. Bonfante et al.

Theorem 12 (Ruzzo [18]). NCk is exactly the set of languages recognized by
ARM working in time O(log(n)k) and space O(log(n)).

From that, one inclusion (from the right to the left) of our main theorem is a
corollary of:

Proposition 13. Given k ≥ 1 and constants α1, α0, β1, β0, any ARM working
in space α1 log(n) + α0 and time β1 logk(n) + β0, where n is the length of the
input, can be simulated in INCk.

Proof (sketch). We consider such a machine M = (Q, q0, δ). Take d = �log(|Q|)�.
We attribute to each state in Q a word w ∈Wd taking the convention that the
initial state q0 has encoding 0 · · · 0. From now on, the distinction between the
state and its associated word is omitted.

Let us consider the encoding of two stacks s1 = a1a2 · · · ai ∈ W and s2 =
b1b2 · · · bj ∈W of length less or equal than α1 · log(n) + α0:

P(s1, s2) = l(a1)l(b1)l(a2) · · · l(ai)l(#)l(b2) · · · l(bj)l(#)l(#) · · · l(#)

where l(0) = 10, l(1) = 11 and l(#) = 00, in such a way that this word has length
exactly 2(α1 ·log(n)+α0+1). The “+1” origins from the extra character # which
separates the two (tails of the) stacks. For convenience we use a typewriter font
for the encoding l. Then, the encoding of stacks above is written

P(s1, s2) = a1 b1 a2 a3 · · · ai # b2 b3 · · · bj # # · · · #.

To perform the computations for some input of size n, we use a configuration
tree which is a perfectly balanced tree of height d + 2(α1 · log(n) + α0 + 1). It
is used as a map from all1 configurations to (some currently computed) values
{0,1,⊥}. Given a configuration K = (q, w1, w2), the leaf obtained following
the path qP(w1, w2) from the root of the configuration tree is the stored value
for that configuration. In other words, given a configuration tree t, the value
corresponding to the configuration (q, s1, s2) is dqP(s1,s2)(t).

We describe now the process of the computation. The initial valued config-
uration tree has all leaves labeled by ⊥ (this tree can be defined by explicit
structural recursion, cf. Lemma 9). The strategy will be to update the leaves of
the initial valued configuration tree, as many times as the running time of the
machine. We will show that updates can be performed by a mip-function. Then,
we use Lemma 11 to iterate this update function. After this process, the output
can be read on the left-most branch of the configuration tree, that is the path of
the initial configuration (q0, ε, ε). So, to finish the proof, we have to show that
such an update can be done by mip-recursion.

Lemma 14. There exists a mip-definable function next(x, y) which takes as in-
put the currently computed valued configuration tree and the input tree, and which
returns the configuration tree updated according to the explanations above.
1 Actually, all configurations with stacks smaller than O(log(n)).

Recursion Schemata for NCk 57

next(x, y) works by finite case distinction just calling auxiliary functions. By
Lemma 6 it is shown mip-definable2:

next(td+4, y) = td+4[(xqab←nextq,a,b(xqab, td+4, y))q∈Wd,a∈W2,b∈W2
]

where nextq,a,b are the auxiliary functions. The role of these functions is to
update the part of the configuration tree they correspond to. More precisely,
each path corresponding to a state q and bits a, b identifies a subtree containing
all configurations with state q and top bits a, b. nextq,a,b updates this subtree
using mip recursion.

The definition of these auxiliary functions depends on the kind of states (ac-
cepting, rejecting, etc) and, for action states, on the top bits of the stacks.
• Accepting and rejecting states. We define

nextq,a,b(x, t, y) = const1(x) if q is accepting
nextq,a,b(x, t, y) = const0(x) if q is rejecting

and use Lemma 7 to get mip-definability.
• Reading states. We only provide the definition corresponding to a 1, 1-

reading state. Other cases are similar, nextq,a,b(x, t, y) = read(x, da(y)) with:

read(t2, y) = (read′(x00, y) � read(x01, y)) � (read(x10, d10(y)) ∗ read(x11, d11(y)))

read′(x0 � x1, y) = read′(x0, y) � read(x1, y)

read(c, y) = ⊥
read′(c, y) = cond(y,0,1,⊥,⊥)

• Action states. These are the hard cases. To compute the value of such
configurations, we need the value of its two successor configurations. The key
point is that the transitions of a configuration (q, a1 · · · ai, b1 · · · bj) to its suc-
cessors are entirely determined by the state q and the two top bits a1 and b1 so
that nextq,a1,b1 ”knows” exactly which transition it must implement. We have
to distinguish the four cases where we push or pop an element on one of the
two stacks: 1. δ(q, a1, b1) = (q′, q′′, push1(a0)); 2. δ(q, a1, b1) = (q′, q′′, pop1); 3.
δ(q, a1, b1) = (q′, q′′, push2(b0)); 4. δ(q, a1, b1) = (q′, q′′, pop2).

Let us see first how these action modify the encoding of configurations. So,
we suppose the current configuration to be K = (q, a1 · · · ai, b1 · · · bj). By as-
sumption, the stacks of q′ are the same as for q, so that the encoding of the first
successor of K is

q′ a1 b1 a2 a3 · · · ai # b2 b3 · · · bj # # · · · #

For the second successor of K, the encoding depends on the four possible actions:

1. q′′ a0 b1 a1 a2 a3 · · · ai # b2 b3 · · · bj # · · · #
2. q′′ a2 b1 a3 · · · ai # b2 b3 · · · bj # # # · · · #
3. q′′ a1 b0 a2 a3 · · · ai # b1 b2 b3 · · · bj # · · · #
4. q′′ a1 b2 a2 a3 · · · ai # b3 · · · bj # # # · · · #

2 Since, wrt the simulation, Equations for m < d + 4 play no role, we do not write
them explicitly.

58 G. Bonfante et al.

As for accepting and rejecting states, we will use auxiliary functions next◦,1,
next◦,2,b1 , next◦,3,b1 , and next◦,4, which correspond to the four cases mentioned
above (and where ◦ is ∧ or ∨ according to the state q). Then we use Lemma 7
to show the functions nextq,a1,b1 defined by mip-recursion.

We come back now to the definition of the four auxiliary functions next◦,1,
next◦,2,b1 , next◦,3,b1 , and next◦,4. The principle of their definition is to follow in
parallel the paths of the two successor configurations. To do that, we essentially
use substitution of parameters, in the mutual in place recursion scheme.

1. For the case δ(q, a1, b1) = (q′, q′′, push1(a0)), we define nextq,a1,b1(x, t, y) =
next◦,1(x, dq′a1b1(t), dq′′a0b1a1(t)). With respect to the configuration tree encod-
ing and to the definition of next, observe that next◦,1(x, u, v) is fed with the
arguments (dqa1b1(t), dq′a1b1(t), dqa0b1a1(t)) where t is the configuration tree to
be updated. So that the height of the last argument is two less than the others
(one bit of the stack is encoded as two bits in the configuration tree). In this
case, we can go in parallel, with the only previso that the second stack is shorter.
Equations below cope with that technical point. Formally we define next◦,1 as:

next◦,1(t2, u, v) = t2[(xw ← next◦,1′(xw, dw(u), dw(v)))
w∈W2

]

next◦,1′(t4, u, v) = t4[(xw ← next◦,1′(xw, dw(u), dw(v)))
w∈W4

]

next◦,1′(t2[xw ← cw], u, v) = t2[(xw ← dw(u) ◦ v)
w∈W2

]

where the cw are to be taken in {0,1,⊥} and ◦ is the conditional corresponding
to the state.

2. If δ(q, a1, b1) = (q′, q′′, pop1), we define nextq,a1,b1(x, t, y) = next◦,2,b1(x,
dq′a1b1(t), dq”(t)). In that case, it is the last argument which is the bigger one.

next◦,2,b1(t2, u, v) = t2[(xw ← next′◦,2(xw, dw(u), dwb1(v)))
w∈W2

]

next′◦,2(t2, u, v) = t2[(xw ← next′◦,2(xw, dw(u), dw(v)))
w∈W2

]

next′◦,2(c, u, v) = u ◦ d00(v)

3. If δ(q, a1, b1) = (q′, q′′, push2(b0)), we define nextq,a1,b1 by the equation:

nextq,a1,b1(x, t, y) = next◦,3,b1(x, dq′a1b1(t), dq”a1b0(t))

next◦,3,b1(t2, u, v) = (next◦,1(x00, d00(u), d00b1 (v)) � next◦,1(x01, d01(u), d01b1 (v))) �

(next◦,3,b1(x10, d10(u), d10(v)) � next◦,3,b1(x11, d11(u), d11(v)))

next◦,3,b1(c, u, v) = ⊥

4. For the last case, that is δ(q, a1, b1) = (q′, q′′, pop2), we use four auxiliary
arguments to remind the first letter read on the stack of the second successor.

nextq,a1,b1(x, t, y) = next◦,4,ε(x,dq′a1b1(t), dq”00(t), dq”01(t),

dq”10(t), dq”11(t))

next◦,4,00(t2, u, v00, v01, v10, v11) = t2[(xw ← next′◦,2(xw, dw(u), vw))
w∈W2

]

next◦,4,v(t2, u, v00, v01, v10, v11) = t2[(xw ← next◦,4,w(xw, dw(u), dw(v00),

dw(v01), dw(v10), dw(v11))w∈W2
]

next◦,4,v′(c, u, v00, v01, v10, v11) = ⊥

with v ∈ {ε, 01, 10, 11} and v′ ∈W0 ∪W2.

Recursion Schemata for NCk 59

5 Compilation of Recursive Definitions to Circuit

This section is devoted to the proof of the Proposition:

Proposition 15. For k ≥ 1, any function in INCk is computable in NCk.

We begin with some observations. All along, n denotes the size of the input.
First, to simulate theoretic functions in INCk, we will forget the tree structure
and make the computations on the words made by the leaves. Actually, since
the trees are always full balanced binary trees, we could restrict our attention
to input of size 2k for some k.

Second, functions defined by explicit structural recursion can be computed
by NC1 circuits. This is a direct consequence of the fact that explicit struc-
tural recursion is a particular case of LRRS-recursion as defined in Leivant and
Marion [14].

Third, by induction on the definition of functions, one proves the key Lemma:

Lemma 16. Given a function f ∈ INCk, there are (finitely many) mip-functions
h1, . . . , hm and polynomials P1, . . . , Pm of degree smaller than k such that f(t̄, ū) =
h
P1(log(n))
1 (· · ·hPm(log(n))

m (g(ū)) . . .) where g is defined by structural recursion.

Now, the compilation of functions to circuits relies on three main ingredients.
First point, we show that each function hi as above can be computed by a circuit:

1. of fixed height with respect to the input (the height depends only on the
definition of the functions),

2. with a linear number of gates with respect to the size of the first input of
the circuit (corresponding to the recurrence argument),

3. with the number of output bits equal to the number of input bits of its first
argument.

According to 1), we note H the maximal height of the circuits corresponding to
the hi’s.

Second point, since there are
∑

i=1..m Pi(log(n)) applications of such hi, we
get a circuit of height bounded by H×

∑
i=1..m Pi(log(n)) = O(logk(n)). That is

a circuit of height compatible with NCk. Observe that we have to add as a first
layer a circuit that computes g. According to our second remark, this circuit has
a height bounded by O(log(n)), so that the height of the whole circuit is of the
order O(logk(n)).

Third point, the circuits corresponding to g, being in NC1, have a polynomial
number of gates with respect to n and a polynomial number of output bits with
respect to n. Observe that the output of g is exactly the recurrence argument
of some hi whose output is itself the first argument of the next hi, and so on.
So that according to item 3) of the first point, the size of the input argument of
each of the hi is exactly the size of the output of g. Consequently, according to
item 2) above, the number of circuit gates is polynomial.

Since all constructions are uniform, we get the expected result.

60 G. Bonfante et al.

5.1 NC0 Circuits for Mutual Recursion

In this section, we prove that functions defined by mutual in place recursion can
be computed by NC0 circuits with a linear number of gates wrt the size of the
first argument. Since mip-functions keep the shape of their first argument, we
essentially have to build a circuit for each bit of this argument.

Lemma 17. Explicitely defined boolean functions can be defined without use
of �.

Lemma 18. Explicitly defined boolean functions are in NC0.

Proof. Consider the following circuits. To stress the fact that circuits are uni-
form, we put the size of the arguments into the brackets. n corresponds to the
size of x, n0 to the size of x0 and so on. x(k) for k ∈ N corresponds to the k-th
bit of the input x. The ”long” wires correspond to the outputs. Shorter ones are
simply forgotten.

· · ·x
0

C0[n] : · · ·x
1

C1[n] :

x
Cd0

[1] = Cd1
[1] =

x(0) · · ·x(n/2) x(n/2 + 1) · · ·x(n)

Cd0
[2 + n] =

x(0) · · ·x(n/2) x(n/2 + 1) · · ·x(n)
Cd1

[2 + n] =

C
πj
i
[n1, · · · , nj] : · · ·x1

· · ·xi−1
· · · · · ·xi

· · ·xi+1
· · ·xj

· · ·

· · ·x0
· · ·x1

· · ·x�

∧ ∧

∨

∧ ∧

∨

b

· · ·Ccond[1, n0, n0, n�] =

Ccond[2 + nb, n0, n1, n�] = · · ·xb
· · ·x0

· · ·x1
· · ·x�

We see that composing the previous cells, with help of Lemma 17, we can
build a circuit of fixed height (wrt to the size of input) for any explicitly defined
boolean function. Observe that the constructions are clearly uniform.

5.2 Simulation of Time Recursion

Lemma 19. Any mip-function can be computed by a circuit of fixed height wrt
the size of the input.

Recursion Schemata for NCk 61

Proof. Let us consider a set (fi)i∈I of mip-functions. Write their equations as
follows:

fi(t0 � t1, ū) = fp(i,0)(t0, σ̄i,0(ū)) � fp(i,1)(t1, σ̄i,1(ū))
fi(c, ū) = gi(c, ū)

where p(i, b) ∈ I is an explicit (finite) mapping of the indices, σ̄i,0 and σ̄i,1

are vectors of �-free explicitely defined functions and the functions gi,c (and
consequently the gi) are explicitly defined boolean functions.

First, observe that any of these explicitly defined functions gi can be computed
by some circuit Bi of fixed height as seen in Lemma 18. Since I is finite, we call
M the maximal height of these circuits (Bi)i∈I .

Suppose we want to compute fi(t, x̄) for some t and x̄ which have both size
smaller than n. Remember that the shape of the output is exactly the shape
of the recurrence argument t. So, to any k-th bit of the recurrence argument
t, we will associate a circuit computing the corresponding output bit, call this
circuit Ck. Actually, we will take for each k, Ck ∈ {Bi : i ∈ I}. Putting all the
circuits (Ck)k in parallel, we get a circuit that computes all the output bits of
fi, and moreover, this circuit has a height bounded by M . So, the last point is
to show that for each k, we may compute uniformly the index i of the circuit Bi

corresponding to Ck and the inputs of the circuit Ck.
To denote the k-th bit of the input, consider its binary encoding where we

take the path in the full binary tree t ending at this k-th bit. Call this path w.
Notice first that w itself has logarithmic size wrt n, the size of t. Next, observe
that any sub-tree of the inputs can be represented in logarithmic size by means
of its path. Since all along the computations, the arguments ū are sub-trees of
the input, we can accordingly represent them within the space bound.

To represent the value of a subterm of some input, we use the following data
structure. Consider the record type st = {r; w; h}. The field r says to which input
the value corresponds to. r = 0 corresponds to t, r = 1 correspond to x1 and
so on. w gives the path to the value (in that input). For convenience, we keep
its height h. In summary {r=i;w=w’;h=m} corresponds to the subtree dw′(ui)
(where we take the convention that t = u0). We use the ’.’ notation to refer
to a field of a record. We consider then the data structure val = st + {0, 1}.
Variables u, v coming next will be of that ”type”.

To compute the function (σi,b)i∈I,b∈{0,1} appearing in the definition of the
(fi)i∈I , we compose the programs:

zero(u){ one(u){

return 0; return 1;

} }

pi_i_j(u_1,...u_j){

return u_i;

}

62 G. Bonfante et al.

d0(u){ if(u == 0 || u == 1 || u.h = 0) return u;

else return [r=u.r;w=u.w 0;h= u.h-1]; }

d1(u){ if(u == 0 || u == 1 || u.h == 0) return u;

else return [r=u.r;w=u.w 1;h= u.h-1]; }

cond(u_b,u_0,u_1,u_s){

if (u_b == 0 ||

(u_b.h == 0 && last-bit(u_b.w) == 0))

return u_0;

elseif (u_b == 1||

(u_b.h == 0 && last-bit(u_b.w) == 1))

return u_1;

else return u_s;

}

Then we compute the values of i and the ū in gi(c, ū) corresponding to the
computation of the k-th bits of the output. Take d + 1 the maximal arity of
functions in (fi)i∈I . To simplify the writing, we take it (wlog) as a common
arity for all functions.
G(i,w,u_0,...,u_d){

//u_0 corresponds to t,

if(w == epsilon) {

return(i,u_0,...,u_d);

}

else{

a := pop(w); //get the first letter of w

w := tail(w); //remove the first letter to w

switch(i,a){//i in I, a in {0,1}

case (i1,0):

v_0 = d_0(u_0);

foreach 1 <= k <= d:

v_k = sigma_i1_0_k(u_0,...,u_d);

//use the sigma defined above

next_i = p_i1_0;

//the map p is hard-encoded

break;

...

case (im,1):

v_0 = d_1(u_0);

foreach 1 <= k <= d:

v_k = sigma_im_1_k(u_0,...,u_d);

next_i = p_im_1;

break;

}

return G(next_i,w,d_a(u_0),v_1,...,v_d);

}

}

Observe that this program is a tail recursive program. As a consequence, to
compute it, one needs only to store the recurrence arguments, that is a finite

Recursion Schemata for NCk 63

number of variables. Since the value of these latter variables can be stored in
logarithmic space, the computation itself can be performed within the bound.
Finally, the program returns the name i of the circuit that must be build, a
pointer on each of the inputs of the circuit with their size. It is then routine to
build the corresponding circuit at the corresponding position w.

References

1. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program
logic for resources. Theor. Comput. Sci. 389(3), 411–445 (2007)

2. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural complexity II. EATCS Monographs
of Theoretical Computer Science, vol. 22. Springer, Heidelberg (1990)

3. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the poly-time
functions. Computational Complexity 2, 97–110 (1992)

4. Bellantoni, S., Oitavem, I.: Separating NC along the δ axis. Theoretical Computer
Science 318, 57–78 (2004)

5. Bonfante, G., Kahle, R., Marion, J.-Y., Oitavem, I.: Towards an implicit charac-
terization of NCk. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 212–224.
Springer, Heidelberg (2006)

6. Bonfante, G., Marion, J.-Y., Péchoux, R.: A characterization of alternating log
time by first order functional programs. In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 90–104. Springer, Heidelberg (2006)

7. Chandra, A.K., Kožen, D.J., Stockmeyer, L.J.: Alternation. Journal ACM 28, 114–
133 (1981)

8. Girard, J.-Y.: Light linear logic. Information and Computation 143(2), 175–204
(1998)

9. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1998)
10. Kristiansen, L., Jones, N.D.: The flow of data and the complexity of algorithms.

In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp.
263–274. Springer, Heidelberg (2005)

11. Leivant, D.: A foundational delineation of computational feasiblity. In: Proceedings
of the Sixth IEEE Symposium on Logic in Computer Science (LICS 1991) (1991)

12. Leivant, D.: Predicative recurrence and computational complexity I: Word recur-
rence and poly-time. In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp.
320–343. Birkhäuser, Basel (1994)

13. Leivant, D.: A characterization of NC by tree recurrence. In: Foundations of Com-
puter Science 1998, pp. 716–724. IEEE Computer Society, Los Alamitos (1998)

14. Leivant, D., Marion, J.-Y.: A characterization of alternating log time by ramified
recurrence. Theoretical Computer Science 236(1–2), 192–208 (2000)

15. Marion, J.-Y.: Predicative analysis of feasibility and diagonalization. In: Della
Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 290–304. Springer, Heidel-
berg (2007)

16. Niggl, K.-H., Wunderlich, H.: Certifying polynomial time and linear/polynomial
space for imperative programs. SIAM J. Comput. 35(5), 1122–1147 (2006)

17. Oitavem, I.: Characterizing NC with tier 0 pointers. Mathematical Logic Quar-
terly 50, 9–17 (2004)

18. Ruzzo, W.L.: On uniform circuit complexity. Journal of Computer and System
Sciences 22, 365–383 (1981)

19. Simmons, H.: The realm of primitive recursion. Archive for Mathematical Logic 27,
177–188 (1988)

Extensional Uniformity for Boolean Circuits∗

Pierre McKenzie1, Michael Thomas2, and Heribert Vollmer2

1 Dép. d’informatique et de recherche opérationnelle, Université de Montréal,
C.P. 6128, succ. Centre-Ville, Montréal (Québec), H3C 3J7 Canada

mckenzie@iro.umontreal.ca
2 Institut für Theoretische Informatik, Leibniz Universität Hannover, Appelstr. 4,

30167 Hannover, Germany
{thomas, vollmer}@thi.uni-hannover.de

Abstract. Imposing an extensional uniformity condition on a non-uni-
form circuit complexity class C means simply intersecting C with a uni-
form class L. By contrast, the usual intensional uniformity conditions
require that a resource-bounded machine be able to exhibit the circuits
in the circuit family defining C. We say that (C,L) has the Uniformity
Duality Property if the extensionally uniform class C∩L can be captured
intensionally by means of adding so-called L-numerical predicates to the
first-order descriptive complexity apparatus describing the connection
language of the circuit family defining C.

This paper exhibits positive instances and negative instances of the
Uniformity Duality Property.

Keywords: Boolean circuits, uniformity, descriptive complexity.

1 Introduction

A family {Cn}n≥1 of Boolean circuits is uniform if the way in which Cn+1

can differ from Cn is restricted. Generally, uniformity is imposed by requiring
that some form of a resource-bounded constructor on input n be able to fully
or partially describe Cn (see [1, 5, 8, 14, 19] or refer to [22] for an overview).
Circuit-based language classes can then be compared with classes that are based
on a finite computing mechanism such as a Turing machine.

Recall the gist of descriptive complexity. Consider the set of words w ∈ {a, b}�
having no b at an even position. This language is described by the FO[<,Even]
formula ¬∃i

(
Even(i)∧Pb(i)

)
. In such a first-order formula, the variables range

over positions in w, a predicate Pσ for σ ∈ {a, b} holds at i iff wi = σ, and a
numerical predicate, such as the obvious 1-ary Even predicate here, holds at its
arguments iff these arguments fulfill the specific relation.

The following viewpoint has emerged [3, 5, 6] over two decades: when a circuit-
based language class is characterized using first-order descriptive complexity, the
circuit uniformity conditions spring up in the logic in the form of restrictions on
the set of numerical predicates allowed.
∗ Supported in part by DFG VO 630/6-1, by the NSERC of Canada and by the

(Québec) FQRNT.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 64–78, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Extensional Uniformity for Boolean Circuits 65

As a well studied example [5, 12], FO[<,+,×] = DLOGTIME-uniform AC0 �
non-uniform AC0 = FO[arb], where the latter class is the class of languages
definable by first-order formulae entitled to arbitrary numerical predicates (we
use a logic and the set of languages it captures interchangeably when this brings
no confusion).

In a related vein but with a different emphasis, Straubing [21] presents a
beautiful account of the relationship between automata theory, formal logic and
(non-uniform) circuit complexity. Straubing concludes by expressing the proven
fact that AC0 � ACC0 and the celebrated conjectures that AC0[q] � ACC0 and
that ACC0 � NC1 as instances of the following conjecture concerning the class
REG of regular languages:

Q[arb] ∩ REG = Q[reg]. (1)

In Straubing’s instances, Q is an appropriate set of quantifiers chosen from
{∃} ∪ {∃(q,r) : 0 ≤ r < q} and reg is the set of regular numerical predicates,
that is, the set of those numerical predicates of arbitrary arity definable in a
formal sense by finite automata. We stress the point of view that intersecting
{∃}[arb] = FO[arb] with REG to form FO[arb]∩REG in conjecture (1) amounts
to imposing uniformity on the non-uniform class FO[arb]. And once again, im-
posing uniformity has the effect of restricting the numerical predicates: it is a
proven fact that FO[arb] ∩ REG = FO[reg], and conjecture (1) expresses the
hope that this phenomenon extends from {∃} to other Q, which would determine
much of the internal structure of NC1. We ask:

1. Does the duality between uniformity in a circuit-based class and numerical
predicates in its logical characterization extend beyond NC1?

2. What would play the role of the regular numerical predicates in such a
duality?

3. Could such a duality help understanding classes such as the context-free
languages in AC0?

To tackle the first question, we note that intersecting with REG is just one
out of many possible ways in which one can “impose uniformity”. Indeed, if L is
any uniform language class, one can replace Q[arb]∩REG by Q[arb]∩L to get
another uniform subclass of Q[arb]. For example, consider any “formal language
class” (in the loose terminology used by Lange when discussing language theory
versus complexity theory [14]), such as the class CFL of context-free languages.
Undoubtedly, CFL is a uniform class of languages. Therefore, the class Q[arb]∩
CFL is another uniform class well worth comparing with Q[<,+] or Q[<,+,×].
Of course, FO[arb]∩CFL is none other than the poorly understood class AC0∩
CFL, and when Q is a quantifier given by some word problem of a nonsolvable
group, (FO+{Q})[arb]∩CFL is the poorly understood class NC1∩CFL alluded
to 20 years ago [11].

The present paper thus considers classes Q[arb] ∩L for various Q and L. To
explain its title, we note that the constructor-based approach defines uniform
classes by specifying their properties: such definitions are intensional definitions.

66 P. McKenzie, M. Thomas, and H. Vollmer

By contrast, viewing Q[arb]∩REG as a uniform class amounts to an extensional
definition, namely one that selects the members of Q[arb] that will collectively
form the uniform class. In this paper we set up the extensional uniformity frame-
work and we study classes Q[arb] ∩ L for Q ⊇ {∃}.

Certainly, the uniform class L will determine the class of numerical predicates
we have to use when trying to capture Q[arb] ∩ L, as Straubing does for L =
REG, as an intensionally uniform class. A contribution of this paper is to provide
a meaningful definition for the set LN of L-numerical predicates. Informally, LN

is the set of relations over the natural numbers that are definable in the sense
of Straubing [21, Section III.2] by a language over a singleton alphabet drawn
from L. When L is REG, the L-numerical predicates are precisely Straubing’s
regular numerical predicates.

Fix a set Q of monoidal or groupoidal quantifiers in the sense of [5, 16, 22].
(As prototypical examples, the reader unfamiliar with such quantifiers may think
of the usual existential and universal quantifiers, of Straubing’s “there exist r
modulo q” quantifiers, or of threshold quantifiers such as “there exist a majority”
or “there exist at least t”). We propose the Uniformity Duality Property for
(Q,L) as a natural generalization of conjecture (1):

Uniformity Duality Property for (Q,L)

Q[arb] ∩ L = Q[<,LN] ∩ L.

Barrington, Immerman and Straubing [5] have shown that Q[arb] equals
AC0[Q], that is, non-uniform AC0 with Q gates. Behle and Lange [6] have shown
that Q[<,LN] equals FO[<,LN]-uniform AC0[Q], that is, uniform AC0[Q] where
the direct connection language of the circuit families can be described by means
of the logic FO[<,LN]. Hence the Uniformity Duality Property can be restated
in circuit complexity-theoretic terms as follows:

Uniformity Duality Property for (Q,L), 2nd form

AC0[Q] ∩ L = FO[<,LN]-uniform AC0[Q] ∩ L.

By definition, Q[arb]∩L ⊇ Q[<,LN]∩L. The critical question is whether the
reverse inclusion holds. Intuitively, the Uniformity Duality Property states that
the “extensional uniformity induced by intersecting Q[arb] with L” is a strong
enough restriction imposed on Q[arb] to permit expressing the uniform class
using the L-numerical predicates, or in other words: the extensional uniformity
given by intersecting the non-uniform class with L coincides with the intensional
uniformity condition given by first-order logic with L-numerical predicates. Fur-
ther motivation for this definition of Q[<,LN] ∩ L is as follows:

– when constructors serve to define uniform classes, they have access to input
lengths but not to the inputs themselves; a convenient logical analog to this
is to use the unary alphabet languages from L as a basis for defining the
extra numerical predicates

Extensional Uniformity for Boolean Circuits 67

– if the closure properties of L differ from the closure properties ofQ[arb], then
Q[arb]∩L = Q[<,LN] may fail trivially (this occurs for example when L =
CFL and Q = {∃} since the non-context-free language {anbncn : n ≥ 0} is
easily seen to belong to Q[<,LN] by closure under intersection of the latter);
hence intersecting Q[<,LN] with L before comparing it with Q[arb] ∩ L is
necessary to obtain a reasonable generalization of Straubing’s conjecture for
classes L that are not Boolean-closed.

We now state our results, classified, loosely, as foundational observations (F)
or technical statements (T). We let L be any class of languages.

(F) By design, the Uniformity Duality Property for (Q,REG) is precisely Strau-
bing’s conjecture (1), hence its conjectured validity holds the key to the
internal structure of NC1.

(F) The Uniformity Duality Property for ({∃},NEUTRAL) is precisely the Crane
Beach Conjecture [4]; here, NEUTRAL is the class of languages L that have
a neutral letter, i.e., a letter e that may be arbitrarily inserted into or deleted
from words without changing membership in L. The Crane Beach conjecture,
stating that any neutral letter language in AC0 = FO[arb] can be expressed
in FO[<], was motivated by attempts to develop a purely automata-theoretic
proof that Parity, a neutral letter language, is not in AC0. The Crane Beach
Conjecture was ultimately refuted [4], but several of its variants have been
studied. Thus [4]:
– the Uniformity Duality Property for ({∃},NEUTRAL) fails
– the Uniformity Duality Property for ({∃},NEUTRAL ∩REG) holds
– the Uniformity Duality Property for ({∃},NEUTRAL ∩ {two-letter lan-

guages}) holds.
(T) Our definition for the set LN of L-numerical predicates parallels Straubing’s

definition of regular numerical predicates. For kernel-closed language classes
L that are closed under homomorphisms, inverse homomorphisms and in-
tersection with a regular language, we furthermore characterize LN as the
set of predicates expressible as one generalized unary L-quantifier applied to
an FO[<]-formula. (Intuitively, L-numerical predicates are those predicates
definable in first-order logic with one “oracle call” to a language from L.)

(T) We characterize the numerical predicates that surround the context-free lan-
guages: first-order combinations of CFLN suffice to capture all semilinear
predicates over N; in particular, FO[<,+] = FO[DCFLN] = FO[BC(CFL)N],
where DCFL denotes the deterministic context-free languages and BC(CFL)
is the Boolean closure of CFL.

(T) We deduce that, despite the fact that FO[BC(CFL)N] contains all the semi-
linear relations, the Uniformity Duality Property fails for ({∃},L) in each of
the following cases:
–L = CFL
–L = VPL, the “visibly pushdown languages” recently introduced by [2]
–L = Boolean closure of the deterministic context-free languages

68 P. McKenzie, M. Thomas, and H. Vollmer

–L = Boolean closure of the linear context-free languages
–L = Boolean closure of the context-free languages.

The crux of the justifications of these negative results is a proof that the
complement of the “Immerman language”, used in disproving the Crane
Beach Conjecture, is context-free.

(T) At the opposite end of the spectrum, while it is clear that the Uniformity
Duality Property holds for the set of all languages and any Q, we show that
the Uniformity Duality Property already holds for (Q,L) whenever Q is a
set of groupoidal quantifiers and L = NTIME(n)L; thus it holds for, e. g.,
the rudimentary languages, DSPACE(n), CSL and PSPACE.

The rest of this paper is organized as follows. Section 2 contains preliminaries.
Section 3 defines the L-numerical predicates and introduces the Uniformity Du-
ality Property formally. The context-free numerical predicates are investigated
in Section 4, and the duality property for classes of context-free languages is
considered in Section 5. Section 6 shows that the duality property holds when
L is “large enough”. Section 7 concludes with a summary and a discussion. For
the sake of brevity, proofs are omitted and will be included in the full verion.

2 Preliminaries

2.1 Complexity Theory

We assume familiarity with standard notions in formal languages, automata and
complexity theory.

When dealing with circuit complexity classes, all references will be made
to the non-uniform versions unless otherwise stated. Thus AC0 refers of the
Boolean functions computed by constant-depth polynomial-size unbounded-fan-
in {∨,∧,¬}-circuits. And DLOGTIME-uniform AC0 refers to the set of those
functions in AC0 computable by a circuit family having a direct connection lan-
guage decidable in time O(log n) on a deterministic Turing machine (cf. [5, 22]).

2.2 First-Order Logic

Let N be the natural numbers {1, 2, 3, . . .} and let N0 = N ∪ {0}. A signature
σ is a finite set of relation symbols with fixed arity and constant symbols. A
σ-structure A = 〈UA, σA〉 consists of a set UA, called universe, and a set σA

that contains an interpretation RA ⊆ (UA)k for each k-ary relation symbol
R ∈ σ. We fix the interpretations of the “standard” numerical predicates <, +,
×, etc. to their natural interpretations. By Bit we will denote the binary relation
{(x, i) ∈ N2 : bit i in the binary representation of x is 1}. For logics over strings
with alphabet Σ, we will use signatures extending σΣ = {Pa : a ∈ Σ} and
identify w = w1 · · ·wn ∈ Σ� with Aw = 〈{1, . . . , n}, σAw}〉, where PAw

a = {i ∈
N : wi = a} for all a ∈ Σ. We will not distinguish between a relation symbol
and its interpretation, when the meaning is clear from the context.

Extensional Uniformity for Boolean Circuits 69

Let Q be a set of (first-order) quantifiers. We denote by Q[σ] the set of first-
order formulae over σ using quantifiers from Q only. The set of all Q[σ]-formulae
will be referred to as the logic Q[σ]. In case Q = {∃} (Q = {∃} ∪ Q′}), we will
also write FO[σ] (FO+Q′[σ], respectively). When discussing logics over strings,
we will omit the relation symbols from σΣ .

Say that a language L ⊆ Σ� is definable in a logic Q[σ] if there exists a Q[σ]-
formula ϕ such that Aw |= ϕ⇐⇒ w ∈ L for all w ∈ Σ�, and say that a relation
R ⊆ Nn is definable by a Q[σ]-formula if there exists a formula ϕ with free
variables x1, . . . , xn that defines R for all sufficiently large initial segment of N,
i. e., if 〈{1, . . . ,m}, σ〉 |= ϕ(c1, . . . , cn) ⇐⇒ (c1, . . . , cn) ∈ R for all m ≥ cmax,
where cmax = max{c1, . . . , cn} [20, Section 3.1]. By abuse of notation, we will
write L ∈ Q[σ] (or R ∈ Q[σ]) to express that a language L (a relation R, resp.) is
definable by a Q[σ]-formula and use a logic and the set of languages and relations
it defines interchangeably.

3 The Uniformity Duality Property

In order to generalize conjecture (1), we propose Definition 3.2 as a simple gen-
eralization of the regular numerical predicates defined using V-structures by
Straubing [21, Section III.2].

Definition 3.1. Let Vn = {x1, . . . , xn} be a nonempty set of variables and let
Σ be a finite alphabet. A Vn-structure is a sequence

w = (a1, V1) · · · (am, Vm) ∈ (Σ ×P(Vn))�

such that a1, . . . , am ∈ Σ and the nonempty sets among V1, . . . , Vm form a par-
tition of Vn (the underscore distinguishes Vn-structures from ordinary strings).
Define Γn = {0} × P(Vn). We say that a Vn-structure w is unary if w ∈ Γ �

n ,
i. e., if a1 · · ·an is defined over the singleton alphabet {0}; in that case, we de-
fine the kernel of w, kern(w), as the maximal prefix of w that does not end
with (0, ∅); to signify that xi ∈ Vci for all 1 ≤ i ≤ n, we also write kern(w) as
[x1 = c1, . . . , xn = cn] and we let wN stand for (c1, . . . , cn).

We define Strucn as the language of all such words in Γ �
n that are unary

Vn-structures and let Struc =
⋃

n>0 Strucn.

Any set L of unary Vn-structures naturally prescribes a relation over the nat-
ural numbers. Hence, a set of such L prescribes a set of relations, or numerical
predicates, over N.

Definition 3.2. Let L ⊆ Γ �
n be a unary Vn-language, that is, a set of unary

Vn-structures. Let LN = {wN : w ∈ L} denote the relation over Nn defined by L.
Then the L-numerical predicates are defined as

LN = {LN : L ∈ L and L ⊆ Struc}.

We say that a language L is kernel-closed if, for every w ∈ L, kern(w) ∈ L.
We further say that a language class L is kernel-closed if, for every L ∈ L there
exists an L′ ∈ L such that LN = L′N and L′ is kernel-closed.

70 P. McKenzie, M. Thomas, and H. Vollmer

We point out the following facts, where we write ≡q r for the unary predicate
{x : x ≡ r mod q}.

Proposition 3.3. Let APER and NEUTRAL denote the set of aperiodic lan-
guages and the set of languages having a neutral letter respectively. Then

1. APERN = FO[<],
2. REGN = (AC0 ∩ REG)N = FO[<, {≡q r : 0 ≤ r < q}] = reg, and
3. NEUTRALN ⊆ FO[<].

Having discussed the L-numerical predicates, we can state the property express-
ing the dual facets of uniformity, namely, intersecting with an a priori uniform
class on the one hand, and adding the corresponding numerical predicates to
first-order logics on the other.

Property 3.4 (Uniformity Duality for (Q,L)). Let Q be a set of quantifiers
and let L be a language class, then

Q[arb] ∩ L = Q[<,LN] ∩ L.

As Q[arb] = AC0[Q] [5] and Q[<,LN] = FO[<,LN]-uniform AC0[Q] [6], the
above property equivalently states that

AC0[Q] ∩ L = FO[<,LN]-uniform AC0[Q] ∩ L.

As a consequence of Proposition 3.3 (1–2), the Uniformity Duality Property
is equivalent to the instances of the Straubing conjectures obtained by setting
Q and L as we expect, for example Q ⊆ {∃}∪{∃(q,r) : 0 ≤ r < q} and L = REG
yield exactly (1). Similarly, as a consequence of Proposition 3.3 (3), the Unifor-
mity Duality Property is equivalent to the Crane Beach Conjecture if FO[<] ⊆ L.
Property 3.4 is thus false when Q = {∃} and L is the set NEUTRAL of all neu-
tral letter languages. For some other classes, the Crane Beach Conjecture and
thus Property 3.4 hold: consider for example the case L = REG ∩ NEUTRAL
[4], or the case Q = {∃} and L ⊆ NEUTRAL ∩ FO[+]. Accordingly the Unifor-
mity Duality Property both generalizes the conjectures of Straubing et al. and
captures the intuition underlying the Crane Beach Conjecture. Encouraged by
this unification, we will take a closer look at the Uniformity Duality in the case
of first-order logic and context-free languages in the next section.

In the rest of this section, we present an alternative characterization of LN

using FO[<]-transformations and unary Lindström quantifiers. This is further
justification for our definition of L-numerical predicates. The reader unfamiliar
with this topic may skip to the end of Section 3.

Digression: Numerical Predicates and Generalized Quantifiers

Generalized or Lindström quantifiers provide a very general yet coherent ap-
proach to extending the descriptive complexity of first-order logics [17]. Since
we only deal with unary Lindström quantifiers over strings, we will restrict our
definition to this case.

Extensional Uniformity for Boolean Circuits 71

Definition 3.5. Let Δ = {a1, . . . , at} be an alphabet, ϕ1, . . . , ϕt−1 be FO[<]-
formulae, each with k + 1 free variables x1, x2, . . . , xk, y, and let �x abbreviate
x1, x2, . . . , xk. Further, let Struct(σ) denote the set of finite structures A =
〈UA, σA〉 over σ. Then ϕ1, . . . , ϕt−1 define an FO[<]-transformation

[ϕ1(�x), . . . , ϕt−1(�x)] : struct({<, x1, . . . , xk})→ Δ�

as follows: Let A ∈ struct({<, x1, . . . , xk}), xA
i = ci ∈ UA, 1 ≤ i ≤ k, and

s = |UA|, then [ϕ1(�x), . . . , ϕt−1(�x)](A) = v1 · · · vs ∈ Δ�, where

vi =

⎧⎪⎨⎪⎩
a1, if A |= ϕ1(c1, . . . , ck, i),
aj, if A |= ϕj(c1, . . . , ck, i) ∧

∧j−1
l=1 ¬ϕl(c1, . . . , ck, i), 1 < j < t,

at, if A |=
∧t−1

l=1 ¬ϕl(c1, . . . , ck, i).

A language L ⊆ Δ� and an FO[<]-transformation [ϕ1(�x), . . . , ϕt−1(�x)] now nat-
urally define a (unary) Lindström quantifier Qun

L via

A |= Qun
L y[ϕ1(�x, y), . . . , ϕt−1(�x, y)] ⇐⇒ [ϕ1(�x), . . . , ϕt−1(�x)](A) ∈ L.

Finally, the set of relations definable by formulae Qun
L y[ϕ1(�x, y), . . . , ϕt−1(�x, y)],

where L ∈ L and ϕ1, . . . , ϕt−1 ∈ FO[<], will be denoted by Qun
L FO[<].

The notation [ϕ1(�x), . . . , ϕt−1(�x)] is chosen to distinguish the variables in �x
from y; the variables in �x are interpreted by A whereas y is utilized in the
transformation.

Theorem 3.6. Let L be a kernel-closed language class which is closed under ho-
momorphisms, inverse homomorphisms and intersection with regular languages,
then LN = Qun

L FO[<]; that is, the L-numerical predicates correspond to the
predicates definable using a unary Lindström quantifier over L and an FO[<]-
transformation.

We stress that the above result provides a logical characterization of the L-
numerical predicates for all kernel-closed classes L forming a cone, viz. a class
of languages L closed under homomorphisms, inverse homomorphisms and in-
tersection with regular languages [10]. As the closure under these operations is
equivalent to the closure under rational transductions (i. e., transductions per-
formed by finite automata [7]), we obtain:

Corollary 3.7. Let L be kernel-closed and closed under rational transductions,
then LN = Qun

L FO[<].

4 Characterizing the Context-Free Numerical Predicates

In order to examine whether the Uniformity Duality Property for first-order logics
holds in the case of context-free languages, we first need to consider the counter-
part of the regular numerical predicates, that is, CFLN. Our results in this section

72 P. McKenzie, M. Thomas, and H. Vollmer

will relate CFLN to addition w. r. t. to first-order combinations, and are based upon
a result by Ginsburg [9]. Ginsburg showed that the number of repetitions per frag-
ment in bounded context-free languages corresponds to a subset of the semilinear
sets. For a start, note that addition is definable in DCFLN.

Lemma 4.1. Addition is definable in DCFLN.

Next, we restate the result of Ginsburg in order to prepare ground for the exam-
ination of the context-free numerical predicates. In the following, let w� abbre-
viate {w}� and say that a language L ⊆ Σ� is bounded if there exists an n ∈ N
and w1, . . . , wn ∈ Σ+ such that L ⊆ w�

1 · · ·w�
n.

Definition 4.2. A set R ⊆ Nn
0 is stratified if

1. each element in R has at most two non-zero coordinates,
2. there are no integers i, j, k, l and x = (x1, . . . , xn), x′ = (x′1, . . . , x

′
n) in R

such that 1 ≤ i < j < k < l ≤ n and xix
′
jxkx

′
l �= 0.

Moreover, a set S ⊆ Nn is said to be stratified semilinear if it is expressible
as a finite union of linear sets, each with a stratified set of periods; that is,
S =

⋃m
i=1{�αi0 +

∑ni

j=1 k · �αij : k ∈ N0}, where �αi0 ∈ Nn, �αij ∈ Nn
0 , 1 ≤ j ≤ ni,

1 ≤ i ≤ m, and each Pi = {�αij : 1 ≤ j ≤ ni} is stratified.

Theorem 4.3 ([9, Theorem 5.4.2]). Let Σ be an alphabet and L ⊆ w�
1 · · ·w�

n

be bounded by w1, . . . , wn ∈ Σ+. Then L is context-free if and only if the set

E(L) =
{
(e1, . . . , en) ∈ Nn

0 : we1
1 . . . wen

n ∈ L
}

is a stratified semilinear set.

Theorem 4.3 relates the bounded context-free languages to a strict subset of the
semilinear sets. The semilinear sets are exactly those sets definable by FO[+]-
formulae. There are however sets in FO[+] that are undefinable in CFLN: e. g., if
R = {(x, 2x, 3x) : x ∈ N} was definable in CFLN then {anbncn : n ∈ N} ∈ CFL.
Hence, FO[+] can not be captured by CFLN alone. Yet, addition is definable in
CFLN, therefore we will in the following investigate the relationship between first-
order logic with addition, FO[+], and the Boolean closure of CFL, BC(CFL).

Theorem 4.4. BC(CFLN) ⊆ BC(CFL)N ⊆ FO[+].

That is, the relations definable in the Boolean closure of the context-free unary
Vn-languages are captured by FO[+]. Hence, FO[BC(CFL)N] ⊆ FO[+]. Now
Lemma 4.1 yields the following corollary.

Corollary 4.5. FO[DCFLN] = FO[CFLN] = FO[BC(CFL)N] = FO[+].

We note that in particular, for any k ∈ N, the inclusion (
⋂

k CFL)N � FO[+]
holds, where

⋂
k CFL denotes the languages definable as the intersection of ≤ k

context-free languages: this is deduced from embedding numerical predicates

Extensional Uniformity for Boolean Circuits 73

derived from the infinite hierarchy of context-free languages by Liu and Weiner
into CFLN [18]. Hence,

CFLN � · · · � (
⋂

k CFL)N � (
⋂

k+1 CFL)N � · · · � (
⋂

CFL)N ⊆ FO[+].

Unfortunately, we could neither prove nor refute FO[+] ⊆ BC(CFL)N. The dif-
ficulty in comparing FO[+] and BC(CFL)N comes to some extent from the restric-
tion on the syntactic representation of tuples in CFL; viz., context-free languages
mayonly comparedistances betweenvariables,whereas the tuples definedbyunary
Vn-languages count positions from the beginning of aword.This difference matters
only for language classes that are subject to similar restrictions as the context-free
languages (e. g., the regular languages are not capable of counting, the context-
sensitive languages have the ability to convert between these two representations).
To account for this special behavior, we will render precisely CFLN in Theorem 4.6.

But there is more to be taken into account. Consider, e. g., the relation R =
{(x, x, x) : x ∈ N}. R is clearly definable in CFLN, yet the set E(L) of the
defining language L, LN = R, is not stratified semilinear. Specifically, duplicate
variables and permutations of the variables do not increase the complexity of a
unary Vn-language L but affect LN.

Let t be an order type of �x = (x1, . . . , xn) and say that a relation R ⊆ Nn

has order type t if, for all �x ∈ R, �x has order type t. For �x of order type t,
let �x′ = (x′1, . . . , x

′
m), m ≤ n, denote the variables in �x with mutually distinct

values and let πt denote a permutation such that x′πt(i)
< x′πt(i+1), 1 ≤ i < m.

We define functions sort : P(Nn)→ P(Nm) and diff : P(Nn)→ P(Nn
0) as

sort(R) =
{
πt(�x′) : �x ∈ R has order type t

}
,

diff (R) =
{
(xi)1≤i≤n :

(i∑
j=1

xj

)
1≤i≤n

∈ R
}
.

The function sort rearranges the components of R in an ascending order and
eliminates duplicates, whereas diff transforms a tuple (x1, . . . , xn) with x1 <

x2 < · · · < xn into (x1, x2−x1, x3−x2−x1, . . . , xn−
∑n−1

i=1 xi), a representation
more “suitable” to CFL (cf. E(L) in Theorem 4.3).

Theorem 4.6. Let R ⊆ Nn. R ∈ CFLN if and only if there exists a partition
R = R1 ∪ · · · ∪ Rk such that each diff

(
sort(Ri)

)
, 1 ≤ i ≤ k, is a stratified

semilinear set.

5 The Uniformity Duality and Context-Free Languages

Due to the previous section, we may express the Uniformity Duality Property for
context-free languages using Corollary 4.5 in the following more intuitive way: let
Q = {∃} and L be such that FO[LN] = FO[<,+] (e. g., DCFL ⊆ L ⊆ BC(CFL)),
then the Uniformity Duality Property for ({∃},L) is equivalent to

FO[arb] ∩ L = FO[<,+] ∩ L. (2)

We will hence examine whether (2) holds, and see that this is not the case.

74 P. McKenzie, M. Thomas, and H. Vollmer

For a binary word u = un−1un−2 · · ·u0 ∈ {0, 1}�, we write û for the integer
un−12n−1 + · · · + 2u1 + u0. Recall the Immerman language LI ⊆ {0, 1, a}�,
that is, the language consisting of all words of the form x1ax2a · · · ax2n , where
xi ∈ {0, 1}n, x̂i + 1 = x̂i+1, 1 ≤ i < 2n, and x1 = 0n, x2n = 1n. For example,
00a01a10a11 ∈ LI and 000a001a010a011a100a101a110a111∈ LI . We prove that
despite its definition involving arithmetic, LI is simply the complement of a
context-free language.

Lemma 5.1. The complement LI of the Immerman language is context-free.

For a language L ⊆ Σ�, let Neutral(L) denote L supplemented with a neu-
tral letter e /∈ Σ, i.e., Neutral(L) consists of all words in L with possibly
arbitrary repeated insertions of the neutral letter. The above Lemma implies
that Neutral(LI) ∈ BC(CFL). From [4] we know that Neutral(LI) ∈ FO[arb] \
FO[<,+]. This finally leads to the following:

Theorem 5.2. FO[arb] ∩ BC(CFL) � FO[<,+] ∩ BC(CFL).

Theorem 5.2 implies that the Uniformity Duality Property fails for Q = {∃}
and L = BC(CFL), since FO[<,BC(CFL)N] = FO[<,+]. Yet, it even provides
a witness for the failure of the duality property in the case of L = CFL, as the
context-free language Neutral(LI) lies in FO[arb] \FO[<,+]. We will state this
result as a corollary further below. For now, consider the modified Immerman
language RI defined as LI except that the successive binary words are reversed
in alternance, i. e.,

RI = {. . . , 000a(001)Ra010a(011)Ra100a(101)Ra110a(111)R, . . .}.

RI is the intersection of two deterministic context-free languages. Even more, the
argument in Lemma 5.1 can actually be extended to prove that the complement
of RI is a linear CFL. Hence,

Theorem 5.3. 1. FO[arb] ∩ BC(DCFL) � FO[<,+] ∩BC(DCFL).
2. FO[arb] ∩ BC(LinCFL) � FO[<,+] ∩ BC(LinCFL).

The role of neutral letters in the above theorems suggests taking a closer look
at Neutral(CFL). As the Uniformity Duality Property for ({∃},Neutral(CFL))
would have it, all neutral-letter context-free languages in AC0 would be regular
and aperiodic. This is, however, not the case as witnessed by Neutral(LI). Hence,

Corollary 5.4. In the case of Q = {∃}, the Uniformity Duality Property fails
in all of the following cases.

1. L = CFL,
2. L = BC(CFL),
3. L = BC(DCFL),
4. L = BC(LinCFL),
5. L = Neutral(CFL).

Extensional Uniformity for Boolean Circuits 75

Remark 5.5. The class VPL of visibly pushdown languages [2] has gained promi-
nence recently because it shares with REG many useful properties. But despite
having access to a stack, the VPL-numerical predicates coincide with REGN, for
each word may only contain constantly many characters different from (0, ∅).
It follows that the Uniformity Duality Property fails for VPL and first-order
quantifiers: consider, e. g., L = {anbn : n > 0} ∈ FO[arb] ∩ (VPL \ REG) then
L ∈ FO[arb] ∩VPL but L /∈ FO[<,VPLN] ∩VPL.

6 The Duality in Higher Classes

We have seen that the context-free languages do not exhibit our conjectured
Uniformity Duality. In this section we will show that the Uniformity Duality
Property holds if the extensional uniformity condition imposed by intersecting
with L is quite loose, in other words, if the language class L is powerful.

Recall the notion of non-uniformity introduced by Karp and Lipton [13].

Definition 6.1. For a complexity class L, denote by L/poly the class L with
polynomial advice. That is, L/poly is the class of all languages L such that, for
each L, there is a function f : N→ {0, 1}� with

1. |f(x)| ≤ p(|x|), for all x, and
2. Lf = {〈x, f(|x|)〉 : x ∈ L} ∈ L,

where p is a polynomial depending on L. Without loss of generality, we will
assume |f(x)| = |x|k for some k ∈ N.

Note that, using the above notation, DLOGTIME-uniform AC0/poly = AC0.
As we further need to make the advice strings accessible in a logic, we define the
following predicates.

Following [5], we say that a Lindström quantifier QL is groupoidal, if L ∈ CFL.

Definition 6.2. Let Q be any set of groupoidal quantifiers. Further, let L ∈
DLOGTIME-uniform AC0[Q]/poly and let f be the function for which Lf ∈
DLOGTIME-uniform AC0[Q]. Let r = 2kl + 1, where k and l are chosen such
that the circuit family recognizing L in DLOGTIME-uniform AC0 has size nl

and |f(x)| = |x|k. We define Advice
f
L,Q ∈ FO+Q[arb] to be the ternary relation

Advice
f
L,Q = {(i, n, nr) : bit i of f(n) equals 1},

and denote the set of all relations Advice
f
L,Q, for L ∈ L, by AdviceL,Q.

The intention of Advice
f
L,Q is to encode the advice string as a numerical rela-

tion. A point in this definition that will become clear later is the third argument
of the Advice

f
L,Q-predicate; it will pad words in the corresponding unary Vn-

language to the length of the advice string. This padding will be required for
Theorem 6.4.

Theorem 6.3. Let L be a language class and Q be a set of groupoidal quanti-
fiers. Then the Uniformity Duality Property for ({∃} ∪ Q,L) holds if Bit ∈ LN

and AdviceL,Q ∈ LN.

76 P. McKenzie, M. Thomas, and H. Vollmer

We can now give a lower bound beyond which the Uniformity Duality Property
holds. Let NTIME(n)L denote the class of languages decidable in linear time by
nondeterministic Turing machines with oracles from L.

Theorem 6.4. Let Q be any set of groupoidal quantifiers and suppose L =
NTIME(n)L. Then the Uniformity Duality Property for ({∃} ∪ Q,L) holds.

Corollary 6.5. Let Q be any set of groupoidal quantifiers. The Uniformity Du-
ality Property holds for ({∃}∪Q,L) if L equals the deterministic context-sensitive
languages DSPACE(n), the context-sensitive languages CSL, the rudimentary
languages (i. e., the linear time hierarchy [24]), PH, PSPACE, or the recursively
enumerable languages.

7 Conclusion

For a set Q of quantifiers and a class L of languages, we have suggested that
Q[arb] ∩ L defines an (extensionally) uniform complexity class. After defining
the notion of L-numerical predicates, we have proposed comparing Q[arb] ∩ L
with its subclass Q[<,LN]∩L, a class equivalently defined as the (intensionally)
uniform circuit class FO[<,LN]-uniform AC0[Q] ∩ L.

We have noted that the duality property, defined to hold when both classes
above are equal, encompasses Straubing’s conjecture (1) as well as some positive
and some negative instances of the Crane Beach Conjecture.

We have then investigated the duality property in specific cases with Q =
{∃}. We have seen that the property fails for several classes L involving the
context-free languages. Exhibiting these failures has required new insights, such
as characterizations of the context-free numerical predicates and a proof that the
complement of the Immerman language is context-free, but these failures have
prevented successfully tackling complexity classes such as AC0∩CFL. Restricting
the class of allowed relations on the left hand side of the uniformity duality
property from arb to a subclass might lead to further insight and provide positive
examples of this modified duality property (and address, e.g., the class of context-
free languages in different uniform versions of AC0). Methods from embedded
finite model theory should find applications here.

More generally, the duality property widens our perspective on the relation-
ship between uniform circuits and descriptive complexity beyond the level of
NC1. We have noted for example that the property holds for any set of groupo-
idal quantifiers Q ⊇ {∃} and complexity classes L that are closed under nonde-
terministic linear-time Turing reductions.

A point often made is that a satisfactory uniformity definition should apply
comparable resource bounds to a circuit family and to its constructor. For in-
stance, although P-uniform NC1 has merit [1], the classes AC0-uniform NC1

and NC1-uniform NC1 [5] seem more fundamental, provided that one can make
sense of the apparent circularity. As a by-product of our work, we might suggest
FO[<,LN] ∩ L as the minimal “uniform subclass of L” and thus as a meaning-
ful (albeit restrictive) definition of L-uniform L. Our choice of FO[<] as the

Extensional Uniformity for Boolean Circuits 77

“bottom class of interest” is implicit in this definition and results in the contain-
ment of L-uniform L in (non-uniform) AC0 for any L. Progressively less uniform
subclasses of L would be the classes Q[<,LN] ∩ L for Q ⊇ {∃}.

Restating hard questions such as conjecture (1) in terms of a unifying property
does not make these questions go away. But the duality property raises further
questions. As an example, can the duality property for various (Q,L) be shown
to hold or to fail when Q includes the majority quantifier? This could help
develop incisive results concerning the class TC0. To be more precise, let us
consider Q = {∃,MAJ}. The majority quantifier is a particular groupoidal (or,
context-free) quantifier [16], hence it seems natural to consider the Uniformity
Duality Property for ({∃,MAJ},CFL):

FO+MAJ[arb] ∩ CFL = FO+MAJ[<,+] ∩CFL. (3)

It is not hard to see that the Immerman language in fact is in FO+MAJ[<,+],
hence our Theorem 5.2 that refutes (2), the Uniformity Duality Property for
(FO,BC(CFL)), does not speak to whether (3) holds. (Another prominent ex-
ample that refutes (2) is the “Wotschke language” W = {(anb)n : n ≥ 0}, again
a co-context-free language [23]. Similar to the case of the Immerman language
we observe that W ∈ FO+MAJ[<,+], hence W does not refute (3) either.)

Observe that FO+MAJ[arb] = TC0 [5] and that, on the other hand,
FO+MAJ[<,+] = MAJ[<] = FO[+]-uniform linear fan-in TC0 [6, 15]. Let us
call this latter class sTC0 (for small TC0 or strict TC0). It is known that
sTC0 � TC0 [16]. Hence we conclude that if (3) holds, then in fact TC0∩CFL =
sTC0 ∩ CFL. Thus, if we can show that some language in the Boolean closure
of the context-free languages is not in sTC0, we have a new TC0 lower bound.
Thus, to separate TC0 from a superclass it suffices to separate sTC0 from a
superclass, a possibly less demanding goal. This may be another reason to look
for appropriate uniform classes L such that

FO+MAJ[arb] ∩ L = FO+MAJ[<,+] ∩ L.

Acknowledgements

We would like to thank Klaus-Jörn Lange (personal communication) for suggest-
ing Lemma 5.1. We also acknowledge helpful discussions on various topics of this
paper with Christoph Behle, Andreas Krebs, Klaus-Jörn Lange and Thomas
Schwentick. We also acknowledge helpful comments from the anonymous referees.

References

1. Allender, E.: P-uniform circuit complexity. Journal of the Association for Com-
puting Machinery 36, 912–928 (1989)

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. of the 16th
Annual ACM Symposium on Theory of Computing, pp. 202–211 (2004)

78 P. McKenzie, M. Thomas, and H. Vollmer

3. Mix Barrington, D.A., Immerman, N.: Time, hardware, and uniformity. In: Pro-
ceedings 9th Structure in Complexity Theory, pp. 176–185. IEEE Computer Soci-
ety Press, Los Alamitos (1994)

4. Mix Barrington, D.A., Immerman, N., Lautemann, C., Schweikardt, N., Thérien,
D.: First-order expressibility of languages with neutral letters or: The Crane Beach
Conjecture. Journal of Computer and System Sciences 70, 101–127 (2005)

5. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1.
Journal of Computer and System Sciences 41(3), 274–306 (1990)

6. Behle, C., Lange, K.-J.: FO[<]-Uniformity. In: Proceedings of the 21st Annual
IEEE Conference on Computational Complexity (CCC 2006), pp. 183–189 (2006)

7. Berstel, J.: Transductions and Context-Free Languages. Leitfäden der ange-
wandten Mathematik und Mechanik LAMM, vol. 38. Teubner (1979)

8. Borodin, A.: On relating time and space to size and depth. SIAM Journal on
Computing 6, 733–744 (1977)

9. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill,
New York (1966)

10. Ginsburg, S., Greibach, S., Hopcroft, J.: Abstract families of languages. Memoirs
of the Amer. Math. Soc. 87 (1969)

11. Ibarra, O., Jiang, T., Ravikumar, B.: Some subclasses of context-free languages in
NC1. Information Processing Letters 29, 111–117 (1988)

12. Immerman, N.: Expressibility and parallel complexity. SIAM Journal on Comput-
ing 18, 625–638 (1989)

13. Karp, R., Lipton, R.: Turing machines that take advice. L’enseignement
mathématique 28, 191–209 (1982)

14. Lange, K.-J.: Complexity theory and formal languages. In: Dassow, J., Kelemen,
J. (eds.) IMYCS 1988. LNCS, vol. 381, pp. 19–36. Springer, Heidelberg (1989)

15. Lange, K.-J.: Some results on majority quantifiers over words. In: 19th IEEE Con-
ference on Computational Complexity, pp. 123–129 (2004)

16. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive com-
plexity approach to LOGCFL. Journal of Computer and Systems Sciences 62(4),
629–652 (2001)

17. Lindström, P.: First order predicate logic with generalized quantifiers. Theoria 32,
186–195 (1966)

18. Liu, L., Weiner, P.: An infinite hierarchy of intersections of context-free languages.
Mathematical Systems Theory 7, 185–192 (1973)

19. Ruzzo, W.L.: On uniform circuit complexity. Journal of Computer and Systems
Sciences 21, 365–383 (1981)

20. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM
Transactions on Computational Logic 6(3), 634–671 (2005)

21. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston (1994)

22. Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in
Theoretical Computer Science. Springer, Heidelberg (1999)

23. Wotschke, D.: The Boolean closure of the deterministic and nondeterministic
context-free languages. In: GI 1973. LNCS, vol. 1, pp. 113–121. Springer, Hei-
delberg (1973)

24. Wrathall, C.: Rudimentary predicates and relative computation. SIAM Journal on
Computing 7(2), 194–209 (1978)

Pure Pointer Programs with Iteration

Martin Hofmann and Ulrich Schöpp

Ludwig-Maximilians-Universität München
D-80538 Munich, Germany

Abstract. Many LOGSPACE algorithms are naturally described as programs that
operate on a structured input (e.g. a graph), that store in memory only a constant
number of pointers (e.g. to graph nodes) and that do not use pointer arithmetic.
Such “pure pointer algorithms” thus are a useful abstraction for studying the na-
ture of LOGSPACE-computation.

In this paper we introduce a formal class PURPLE of pure pointer programs
and study them on locally ordered graphs. Existing classes of pointer algorithms,
such as Jumping Automata on Graphs (JAGs) or Deterministic Transitive Closure
(DTC) logic, often exclude simple programs. PURPLE subsumes these classes and
allows for a natural representation of many graph algorithms that access the input
graph by a constant number of pure pointers. It does so by providing a primitive
for iterating an algorithm over all nodes of the input graph in an unspecified order.

Since pointers are given as an abstract data type rather than as binary digits
we expect that logarithmic-size worktapes cannot be encoded using pointers as is
done, e.g. in totally-ordered DTC logic. We show that this is indeed the case by
proving that the property “the number of nodes is a power of two,” which is in
LOGSPACE, is not representable in PURPLE.

1 Introduction

One of the central open questions in theoretical computer science is whether LOGSPACE

equals PTIME and more broadly an estimation of the power of LOGSPACE computation.
While these questions remain as yet inaccessible, one may hope to get some use-

ful insights by studying the expressive power of programming models or logics that
are motivated by LOGSPACE but are idealised and thus inherently weaker. Examples
of such formalisms that have been proposed in the literature are Jumping Automata on
Graphs (JAGs) [2] and Deterministic Transitive Closure (DTC) logic [3]. Both are based
on the popular intuition that a LOGSPACE computation on some structure, e.g. a graph,
is one that stores only a constant number of graph nodes. Many usual LOGSPACE algo-
rithms obey this intuition and are representable in those formalisms. Interestingly, there
are also natural LOGSPACE algorithms that do not fall into this category. Reingold’s
algorithm for st-connectivity in undirected graphs [13], for example, uses not only a
constant number of graph nodes, but also a logarithmic number of boolean variables,
which are used to exhaustively search the neighbourhood of nodes up to a logarithmic
depth.

Indeed, Cook & Rackoff [2] show that st-connectivity is not computable with JAGs.
On the other hand, JAGs cannot compute some other problems either, for which there

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 79–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 M. Hofmann and U. Schöpp

does exist an algorithm obeying the above intuition, such as a test for acyclicity in
graphs. Thus, important though this result is, we cannot see it evidence that “constant
number of graph nodes” is strictly weaker than LOGSPACE.

Likewise, DTC logic without a total order on the graph nodes is fairly weak and
brittle [8,5], being unable to express properties such as that the input graph has an even
number of nodes.

By assuming a total order on the input structure these deficiencies are removed, but
DTC logic becomes as strong as LOGSPACE, because the total order can be used to
simulate logarithmically sized work tapes [3].

We thus find that neither JAGs nor DTC logic adequately formalise the intuitive con-
cept of “using a constant number of graph variables only.” In this paper we introduce a
formalism that fills this gap. Our main technical result shows that full LOGSPACE does
not enter through the backdoor by some encoding, as is the case if one assumes a total
order on the input structure.

One reader remarked that it was known that LOGSPACE is more than “constant num-
ber of pointers”, but up until the present contribution there was no way of even rigorously
formulating such a claim because the existing formalisms are either artificially weak or
acquire an artificial strength by using the total order in a “cheating” kind of way.

To give some intuition for the formalism introduced in this paper, let us recall that
a JAG is a finite automaton accepting a locally ordered graph (the latter means that
the edges emanating from any node are uniquely identified by numbers from 1 to the
degree of that node). In addition to its finite state a JAG has a finite (and fixed) number of
pebbles that may be placed on graph nodes and may be moved along edges according
to the state of the automaton. The automaton can check whether two pebbles lie on
the same node and obtains its input in this way. Formally, one may say that the input
alphabet of a JAG is the set of equivalence relations on the set of pebbles.

JAGs cannot visit all nodes of the input graphs and therefore are incapable of evalu-
ating DTC formulas with quantifiers. To give a concrete example, the property whether
a graph contains a node with a self-loop is not computable with JAGs.

Rather than as an automaton, we may understand a JAG as a while-program whose
variables are partitioned into two types: boolean variables and graph variables. For
boolean variables the usual operations are available, whereas for graph variables one
only has equality test and, for each i, a successor operation to move a graph variable
along the i-th edge.

Our proposal, which we call PURPLE for “PURe Pointer LanguagE”, consists of
adding to this programming language theoretic version of JAGs a forall-loop construct
(forall x do P) whose meaning is to set the graph variable x successively to all graph
nodes in some arbitrary order and to evaluate the loop body P after each such setting.
The important point is that the order is arbitrary and will in general be different each
time a forall-loop is evaluated. A program computes a function or predicate only if it
gives the same (and correct) result for all such orderings.

The forall-loop in PURPLE can be used to evaluate first-order quantifiers and thus
to encode DTC logic on locally ordered graphs. Moreover, PURPLE is strictly more
expressive than that logic. The following PURPLE-program checks whether the input

Pure Pointer Programs with Iteration 81

graph has an even number of nodes: (b := true; forall x do b :=¬b). It is known
that this property is not expressible in locally-ordered DTC logic, which establishes
strictness of the inclusion.

Beside the introduction of PURPLE, the main technical contribution of this paper
is a proof that PURPLE is not as powerful as all of logarithmic space and that thus in
particular one cannot use the forall-loop to somehow simulate counting, as one can in
totally ordered DTC logic [3]. We do this by showing that the property “the number of
nodes is a power of two” is not computable in PURPLE. We believe that st-connectivity
in undirected graphs is not computable in PURPLE either.

In order to justify the naturality of PURPLE we can invoke, besides the fact that
formulas of locally-ordered DTC logic may be easily evaluated, the fact that iterations
over elements of a data structure in an unspecified order are a common programming
pattern, being made available e.g. in the Java library for the representation of sets as
trees or hash maps. The Java API for the iterator method in the interface Set or its
implementation HashSet says that “the elements are returned in no particular order”.

Efficient implementations of such data structures, e.g. as splay trees, will use a dif-
ferent order of iteration even if the contents of the data structure are the same. Thus, a
client program should not depend upon the order of iteration. A spin-off of PURPLE is
a rigorous formalisation of this independence.

This research was supported by the DFG project programming language aspects of
sublinear space complexity (ProPlatz).

2 Pointer Structures

We define the class of structures that serve as input to pure pointer programs.

Definition 1. Let L = {l1, . . . , ln} be a finite set of operation labels. A pointer structure
on L, an L-model for short, is a set U with n unary functions l1, . . . , ln : U → U .

An L-model can be viewed as the current state of a program with pointers pointing uni-
formly to records whose fields are labelled {l1, . . . , ln}. For example, if L is {car, cdr}
then an L-model is a heap layout of a LISP-machine. We show in the next section how
various kinds of graphs can be represented as L-models.

A homomorphismσ : U → U ′ between L-modelsU and U ′ is a functionσ : U → U ′

such that l(σ(x)) = σ(l(x)) holds for all l ∈ L and x ∈ U . A bijective homomorphism
is called an isomorphism.

3 Pure Pointer Programs

Pure pointer programs take L-models as input. Unlike general programs with pointers
they are not permitted to modify the input, but only to inspect it using a constant number
of variables holding elements of U . In addition, pure pointer programs have a finite
local state represented by a constant number of boolean variables. The pointer language
PURPLE is parameterised by a finite set of operation labels L = {l1, . . . , ln}.
Terms. There are two types of terms, one for boolean values and one for pointers into
the universe U . Fix countably infinite sets Vars and VarsB of pointer variables and

82 M. Hofmann and U. Schöpp

boolean variables. We make the convention that x, y denote pointer variables and b, c
denote boolean variables. The terms are then generated by the grammars below.

tB ::= true | false | b | ¬tB | tB ∧ tB | tB ∨ tB | tU = tU

tU ::= x | tU .l1 | · · · | tU .ln

The intention is that pointer terms denote elements of the universe U of an L-model
and that the term x.l denotes the result of applying the unary operation l in this model
to x. The only direct observation about pointers is the equality test t = t′.

Programs. The set of PURPLE programs is defined by the following grammar.

P ::= skip | P ;P | x := tU | b := tB | if tB then P else P
| while tB do P | forall x do P

We abbreviate (if b then P else skip) by (if b then P). The intended behaviour
of (forall x do P) is that the pointer variable x iterates over U in some unspecified
order, visiting each element exactly once, and P is executed after each setting of x.

On certain classes of L-models the power of PURPLE coincides with LOGSPACE.
This is in particular the case if one of the functions li is the successor function induced
by a total ordering on U . In general, however, PURPLE fails to capture all of LOGSPACE,
as we show in Sect. 5. Since we are interested mainly in pointer programs on locally
ordered graphs, let us now discuss different possible choices of operation labels for
working with locally ordered graphs.

Graphs of constant degree. Pointer algorithms on locally ordered graphs of some
fixed out-degree d are most easily represented as an L-model with L being {succ1, . . . ,
succd} and U being the set of nodes in G. We write Ad(G) for this L-model.

Graphs of unbounded degree. For graphs of unbounded degree, it is more suitable
to use pointer programs with three labels succ, next and prec. Each locally ordered
graph G determines a modelA(G) of these labels. The universe ofA(G) is the set U =
{〈v, i〉 | v ∈ V, 0 ≤ i ≤ deg(v)}, where V denotes the node set of G. A pair 〈v, i〉 ∈ U
with i > 0 represents an outgoing edge from v. Such pairs are often called darts,
especially in the case of undirected graphs, where each undirected edge is represented
by two darts, one for each direction in which the edge can be traversed. We include
objects of the form 〈v, 0〉 to model the nodes themselves; thus the universe consists of
the disjoint union of the nodes and the darts. The operation labels are interpreted by

succ(v, i) =

{
〈succi(v), 0〉 if i ≥ 1,
〈v, 0〉 if i = 0,

next(v, i) = 〈v,min(i + 1, deg(v))〉,
prec(v, i) = 〈v,max(i− 1, 0)〉.

Using next and prec one can iterate over the darts on a node and using succ one can
follow the edge identified by a dart.

The presentation of graphs by darts and operations on them is commonly used in the
description of LOGSPACE-algorithms [1,13,10], but it is also prevalent in other contexts,
see [7] and the discussion there.

Pure Pointer Programs with Iteration 83

We note that with the dart representation, the forall-loop iterates over all darts and
not the nodes of the graph. Iteration over all nodes can nevertheless be implemented
easily. Since a program can recognise if x is a dart of the form 〈v, 0〉 by testing whether
x = x.prec is true, one can implement a forall-loop that visits only darts of the
form 〈v, 0〉 and this amounts to iteration over all nodes.

While we have now introduced two representations for graphs of bounded degree, it is
not hard to see that it does not matter which representation we use, as each program with
labels succ1, . . . , succd can be translated into a program with labels succ, prec,next
that recognises the same graphs, and vice versa.

3.1 Examples

We give two examples to illustrate the use of PURPLE. The first simple example pro-
gram decides the property that all nodes have even in-degree. First we define a program
E(x, y, b) with variables x, y and b, such that after evaluation of E(x, y, b) the boolean
variable b is true if and only if there is an edge from the node given by x to that given
by y. Such a program may be defined as:

b := false; x′ :=x

while ¬(x′ = x′.next) do x′ :=x′.next ;
while ¬(x′ = x′.prec) do (b := b ∨ (y = x′.succ); x′ := x′.prec)

Herein, x′ should be chosen afresh for each occurrence of E(x, y, b) within a larger
program. The following program then computes if the in-degree of all nodes is even.

even := true;
forall x do

c := true;
forall y do (if y = y.prec then (E(y, x, b); if b then c :=¬c));
even := even ∧ c

In the inner forall-loop we have a test for (y = y.prec), so that the body of this loop
is executed once for each graph node, rather than for each dart. In this way, the inner
forall-loop is used to iterate over all nodes that have an edge to x. In the body we
then make the assignment c :=¬c for all nodes y that have an edge to x.

For a second, more substantial, example we show that acyclicity of undirected graphs
can be decided in PURPLE, which is a well-known LOGSPACE-complete problem [1].
We next describe the LOGSPACE-algorithm of Cook & McKenzie [1] and then show that
it can be written directly in PURPLE. The fact that PURPLE can express a LOGSPACE-
complete problem does not conflict with PURPLE being strictly weaker than LOGSPACE,
since not all reductions can be expressed in PURPLE.

Let G be an undirected locally ordered graph with node set V and let U be the
universe of A(G). Let σ be the permutation on U such that σ(v, 0) = 〈v, 0〉 holds
and such that σ(v, i) = 〈w, j〉 implies both succ(v, i) = w and succ(w, j) = v. Note
that in an undirected graph each edge between v and w is given by two half-edges,
one from v to w and one from w to v. Thus, if the dart 〈v, i〉 represents one half of

84 M. Hofmann and U. Schöpp

an edge in G, then σ(v, i) represents the other half of the same edge. Let π be the
permutation on U satisfying π(v, 0) = 〈v, 0〉, π(v, i) = 〈v, i + 1〉 for 1 ≤ i < deg(v)
and π(v, deg(v)) = 〈v,min(1, deg(v)〉.

Consider now the composite permutation π ◦σ on U . It implements a way of explor-
ing the graph G in depth-first-search order. That is, the walks in depth-first-search order
are the obtained as the sequences of darts x0, x1, . . . defined by xi+1 = (π ◦ σ)(xi).
Since these sequences are generated by the composite permutation π ◦ σ, it is easy to
see that they can be generated in logarithmic space.

Being able to construct walks in depth-first-search order, one can use the following
characterisation of acyclicity of undirected graphs to decide this property in LOGSPACE.
An undirected graph is acyclic, if it does not have self-loops and if, for any node v
and any integer i, the walk that starts by taking the i-th edge from v and proceeds in
depth-first-search order does not visit v again until it traverses the i-th edge from v in
the opposite direction. This is formulated precisely in the following lemma, a proof of
which can be found in [1].

Lemma 2. The undirected graph G is acyclic if and only if the following property holds
for all x0 ∈ {〈v, i〉 | v ∈ V, 1 ≤ i ≤ deg(v)}: If the walk x0, x1, . . . is defined by
xi+1 = (π ◦ σ)(xi) and k > 0 is the least number such that x0 and xk are darts on the
same node, then both k > 1 and σ(xk−1) = x0 hold.

It now only remains to show that the property in this lemma can be decided in PURPLE.
A program Pπ◦σ(x) implementing the permutation π ◦σ can be written easily, since the
forall-loop allows one to iterate over all the neighbours of any given node. Moreover,
it is easy to write a program P=(x, y, b) that sets the boolean variable b to true if x and y
are darts on the same node and to false otherwise. With these programs, the property of
the above lemma can be decided in PURPLE as follows:

acyclic := true
forall x do

if ¬(x = x.prec) then
keq0 := true; kleq1 := true; x0 :=x; returned := false;
while ¬returned do

(kleq1 := keq0; keq0 := false; x′ :=x; Pπ◦σ(x); P=(x0, x, returned));
Pσ(x′); acyclic := acyclic ∧ ¬kleq1 ∧ (x′ = x)

3.2 Operational Semantics

PURPLE is defined with the intention that an input must be accepted or rejected regard-
less of the order in which the forall-loops are run through. In this section we give the
operational semantics of PURPLE, thus making this intention precise.

The operational semantics of PURPLE with operation labels in L is parameterised
by an L-model A = (U, l) and is formulated in terms of a small-step transition rela-
tion −→A. To define this transition relation, we define a set of extended programs that
have annotations for keeping track of which variables have already been visited in the

Pure Pointer Programs with Iteration 85

Assignment

〈x := tU , q, ρ〉 −→A 〈skip, q, ρ[x �→ �tU�q,ρ]〉
〈b := tB, q, ρ〉 −→A 〈skip, q[b �→ �tB�q,ρ], ρ〉

Composition

〈skip; P, q, ρ〉 −→A 〈P, q, ρ〉 〈P, q, ρ〉 −→A 〈P ′, q′, ρ′〉
〈P ; Q, q, ρ〉 −→A 〈P ′; Q, q′, ρ′〉

Conditional

〈if t then P else Q, q, ρ〉 −→A 〈P, q, ρ〉 if �t�e,ρ = true

〈if t then P else Q, q, ρ〉 −→A 〈Q, q, ρ〉 if �t�e,ρ = false

while-loop

〈while t do P, q, ρ〉 −→A 〈skip, q, ρ〉 if �t�q,ρ = false

〈while t do P, q, ρ〉 −→A 〈P ; while t do P, q, ρ〉 if �t�q,ρ = true

for-loop

〈for x ∈ ∅ do P, q, ρ〉 −→A 〈skip, q, ρ〉
〈for x ∈ W do P, q, ρ〉 −→A 〈P ; for x ∈ W \ {v} do P, q, ρ[x �→ v]〉 for any v ∈ W

Fig. 1. Operational Semantics

computation of the forall-loops. The set of extended programs consists of PURPLE-
programs in which the forall-loops are not restricted to an iteration over the whole
universe U , but where (for x ∈ W do P) is allowed for any subset W of U . We
identify (forall x do P) with (for x ∈ U do P).

The transition relation −→A is a binary relation on configurations. A configuration
is a triple 〈P, q, ρ〉, where P is an extended program, q : VarsB → 2 is an assignment
of boolean variables and ρ : Vars → U is an assignment of pointer variables. The
inference rules defining −→A appear in Fig. 1. In this figure, we denote by �t�q,ρ the
evident interpretations of terms with respect to the variable assignments q and ρ. The
operational semantics is standard for all but the for-loop. We note, in particular, that
the rules for the for-loop make the transition system non-deterministic.

We say that a program P is strongly terminating if for all A the computation of P
onA always terminates, i.e. for all q and ρ there is no infinite reduction sequence of−→A
starting from 〈P, q, ρ〉 and in particular there are ρ′ and q′ such that 〈P, q, ρ〉 −→∗A
〈skip, q′, ρ′〉 holds.

To define what it means for an L-model to be recognised by a program, we choose a
distinguished boolean variable result that indicates the outcome of a computation.

Definition 3 (Recognition). A set X of L-models is recognised by a program P , if P
is strongly terminating and, for all L-models A and all ρ, ρ′, q and q′ satisfying
〈P, q, ρ〉 −→∗A 〈skip, q′, ρ′〉, one has q′(result) = true if and only if A ∈ X .

86 M. Hofmann and U. Schöpp

Our notion of recognition should not be confused with the usual definition of accep-
tance for existentially (nondeterministic) or universally branching Turing machines; in
contrast to those concepts it is completely symmetrical in X vs. X . If the input is in X
then all runs must accept; if the input is not in X then all runs must reject. In particular,
not even for strongly terminating P can we in general define “the language of P ”. A
program whose result depends on the traversal order does not recognise any set at all.

3.3 Basic Properties

In contrast to formalisms that depend on a global ordering, PURPLE is closed under
isomorphism. This is formulated by the following lemma, in which we write σP for
the program obtained from P by replacing each occurrence of (for x ∈ W do P) by
(for x ∈ σW do P). Note that if P is a PURPLE-program proper, i.e., not an extended
one, then σP = P holds. Its proof is a straightforward induction.

Lemma 4. Let σ : U → V be an isomorphism of L-models. Then 〈P, q, ρ〉 −→U

〈P ′, q′, ρ′〉 implies 〈σP, q, σ ◦ ρ〉 −→V 〈σP ′, q′, σ ◦ ρ′〉.
The straightforward proof of the following lemma is based on the fact that the number
of global configurations is polynomial in the input size.

Lemma 5. For any program P with labels in L, there exists a while-free program P ′

that recognises the same sets of finite L-models.

4 Related Models of Computation

Based on the intuition that computation with logarithmic space amounts to computation
with a constant number of pointers, a number of formalisms of pure pointer algorithms
have been proposed as approximations of LOGSPACE.

4.1 Jumping Automata on Graphs

Cook & Rackoff [2] introduce Jumping Automata on Graphs (JAGs) in order to study
space lower bounds for reachability problems on directed and undirected graphs. Jump-
ing automata on graphs are a model of pure pointer algorithms on locally ordered
graphs. Each JAG may be described as a forall-free PURPLE-program over the op-
eration labels succ1, succ2, . . . and vice versa. Therefore, a JAG may move on the graph
only by traversing edges and by jumping one graph variable to the position of another
variable. As a result, JAGs can only compute local properties of the input graph. If, for
instance, all the graph variables are in some connected component of the input graph
then they will remain in it throughout the whole computation.

Cook & Rackoff show that it is possible to prove upper bounds on the expressivity of
JAGs [2]. They show that both on directed and on undirected graphs reachability cannot
be solved by them. Together with the local character of JAG computations, this can be
used to show that many natural LOGSPACE-properties of graphs cannot be computed
by JAGs. For instance, JAGs cannot compute the parity function and they cannot decide
whether or not the input graph is acyclic.

Pure Pointer Programs with Iteration 87

While PURPLE is more expressive than JAGs, we hope that nevertheless separation
results along the lines of the existing ones for JAGs, e.g. [2,4], could be achievable for
PURPLE by further elaborating the pumping techniques used to establish those.

One criticism of Jumping Automata on Graphs as a computation model is that JAGs
are artificially weak on directed graphs. Since, with the operations succ1, succ2, . . . ,
edges can only be traversed in the forward direction, there is no way for a JAG to reach
a node that has only outgoing edges, for example. One solution to this problem is to
work with graphs having a local ordering both on the outgoing and on the incoming
edges of each node, so that edges can be traversed in both directions [5]. The forall-
loop of PURPLE represents another possible solution, since we can use it to iterate over
all the nodes that have an edge to a given node, as we have shown in Sect. 3 above.

4.2 Deterministic Transitive Closure Logic

In the context of descriptive complexity theory DTC-logic was introduced as a logi-
cal characterisation of LOGSPACE on ordered structures [9]. The formulae of this logic
are built from the connectives of first-order logic and a connective DTC for determin-
istic transitive closure. The formula DTC[ϕ(x,y)](s, t) expresses that, for all vari-
able assignments ν, the pair (�s�ν , �t�ν) is in the transitive closure of the relation
{(u,v) | A |=ν ϕ[u,v] ∧ ∀z. ϕ[u, z]⇒ z = v}, see e.g. [9].

While on structures with a totally ordered universe DTC-logic captures all of
LOGSPACE, it is strictly weaker on unordered structures. A typical example of a property
that cannot be expressed without an ordering is whether or not the universe has an even
number of elements. If graphs are represented without any ordering by an edge relation
E(−,−), then DTC logic on graphs is very weak indeed. Grädel & McColm [8] have
shown that there exist families of graphs on which DTC without any ordering is no more
expressive than first-order logic.

Unordered DTC logic is nevertheless interesting, since on locally ordered graphs it
captures an interesting class of pure pointer algorithms. Locally ordered graphs may be
used in the logic by allowing, in addition to the binary edge relation E(−,−), a ternary
relation F (−,−,−), such that F (v,−,−) is a total ordering on {w | E(v, w)} [5], for
any v. With such a graph representation, DTC can encode JAGs and it is strictly more
expressive, since it allows first-order quantification [5]. With suitable restrictions on the
formulae, it is furthermore possible to characterise smaller classes of pointer algorithms
on locally ordered graphs, such as the class given by Tree Walking Automata [11].

We next observe that PURPLE subsumes DTC logic on locally ordered graphs.

Proposition 6. For each closed DTC formula ϕ for locally ordered graphs there exists
a program Pϕ such that, for any finite locally ordered graph G, G |= ϕ holds if and
only if Pϕ recognisesA(G).

First-order quantifiers can be evaluated directly using the forall-loop. To see that
DTC[ϕ(x,y)](a, b) can be evaluated, note that using the forall-loop we can iterate
over all tuples y, so that we can compute the unique y such that ϕ(x,y) holds, if such
a unique y exists, and we can recognise when such a unique y does not exist.

The converse of this proposition is not true, of course, since there is no DTC-formula
that expresses that the input graph has an even number of nodes [5].

88 M. Hofmann and U. Schöpp

Although DTC-logic on locally ordered graphs is interesting, there are still many
open questions regarding its expressive power. As far as we know, it is not known if
DTC-logic on locally ordered graphs can express directed or undirected reachability.
The best result we know is that of Etessami & Immerman [5], who show that undirected
reachability cannot be expressed by a formula of the form DTC[ϕ(x,y)](s, t), where ϕ
is a first-order formula (without a total ordering not every formula can be expressed in
this way).

One reason for the lack of results on the expressive power of DTC on locally ordered
graphs may be that at present there are no simple Ehrenfeucht-Fraı̈ssé games for it; and
such games are the main tool for proving inexpressivity results in finite model theory.
Most of the existing results have been proved either directly or by reduction to a proof
that uses automata-theoretic techniques. Etessami & Immerman, for example, obtain
their inexpressivity result for undirected reachability by reduction to the corresponding
result of Cook & Rackoff for JAGs. The relative success of automata-theoretic methods
is part of the motivation for studying the programming language PURPLE.

Furthermore, when viewed as a model of pointer algorithms, DTC logic is somewhat
unnaturally restricted. To implement universal quantification, say on a LOGSPACE Turing
Machine, one needs to have a form of iteration over all possible pointers. If it is possible
to iterate over all pointers, then it should also be possible to write a program for the
parity function, even without any knowledge about a total ordering of the pointers. But
this cannot be done in DTC. If we view the universal quantifier as a form of iteration that
works without a total ordering, then it is more restricted than it needs to be.

The problem that a logic cannot express counting properties such as parity is of-
ten addressed in the literature by extending the logic with a totally ordered universe of
numbers (of the same size as the first universe) and perhaps also counting quantifiers,
see e.g. [5,9]. Such an addition appears to be quite a jump in expressivity. For instance,
in view of Reingold’s algorithm for undirected reachability, it is likely that undirected
reachability becomes expressible in such a logic [Ganzow & Grädel, personal commu-
nication]. However, we believe that this problem is not expressible in PURPLE and in
view of the Prop. 6 also not in DTC.

Another option of increasing the expressive power of DTC to include functions such
as parity is to consider order-independent queries [9]. An order-independent query is a
DTC formula that has access to a total ordering on the universe, but whose value does
not depend on which particular ordering is chosen. Superficially, there appears to be
a similarity to the forall-loop in PURPLE. However, order-independent queries are
strictly stronger than PURPLE. They correspond to the version of PURPLE, in which
each program is guaranteed that all forall-loops iterate over the universe in the same
order, even though this order may be different from run to run. Of course, in either
system (PURPLE with fixed traversal order and order-independent queries) one can use
the order to capture all of LOGSPACE.

5 Counting

Our goal in this section is to show that the behaviour of an arbitrary program on the
discrete graph with n nodes can be described abstractly and independently of n. From

Pure Pointer Programs with Iteration 89

this it will follow that PURPLE-programs are unable to detect whether n has certain
arithmetic properties such as being a power of two.

Write Gn for the discrete graph with n nodes and write Vn = {1, . . . , n} for its set
of nodes. Since this graph has constant degree 0, the L-model with universe Vn induced
by it does not have any operations.

Fix a finite set M of graph variables. We show that no program with graph variables
in M can recognise the set of all graphs Gn where n is a power of two. Since M is
arbitrary, this will be enough to show the result for all PURPLE-programs.

The proof idea is to show that whether or not a (while-free) program P accepts Gn

for sufficiently large n depends only on the initial value of boolean variables, the ini-
tial incidence relation of the pointer variables and the remainder modulo l of the graph
size n for some l. In order to prove this by induction on programs we associate to
each program P an abstraction �P �, which given the initial valuation of the boolean
variables q0, the initial incidence relation E0 and the size n modulo l yields a triple
(q, E, f) = �P �(q0, E0, n mod l) that characterises the final configuration of a compu-
tation as follows: q is the final valuation of the boolean variables, E is the final incidence
relation of pointer variables, and f : M →M + {fresh} is a function that tells for each
variable x whether it moves to a “fresh” node, i.e. one that was not occupied at the start
of the computation, or assumes the position that some other variable f(x) ∈ M had
in the initial configuration. The exact position of the “fresh” variables will of course
depend on the order in which forall-loops are being worked off. In fact, we will show
that with an appropriate choice of ordering any position of the “fresh” variables can be
realised, so long as it respects E.

For example, the abstraction of the program (z := x; forall x do y := x) would
map (q0, E0, l) to (q0, E, f), where E is the equivalence relation generated by (x, y),
and f is given by f(x) = f(y) = fresh and f(z) = x. This means that for any n large
enough, the program has a run on Gn that ends in a state where z assumes the position
of x in the start configuration and where x and y lie on a node not occupied in the start
configuration. Moreover, E specifies that x and y must lie on the same node.

Notice that the abstraction characterises the result of some run of the program. In
the example, there also exists a run in which the last node offered by the forall-loop
happens to be the (old) value of x, in which case x, y, z are all equal. The purpose of
the abstraction is to show that certain sets cannot be recognised. Since for a set to be
recognised the result must be the same (and correct) for all runs it suffices to exhibit
(using the abstraction) a single run that yields a wrong result. This existential nature of
the abstraction is made more precise in Def. 10 and Lemma 11.

Definition 7. Let Σ denote the set of equivalence relations on M . For each environ-
ment ρ we write [ρ] ∈ Σ for the equivalence relation given by x[ρ]y ⇐⇒ ρ(x) = ρ(y).
Since the meaning of a boolean term t depends only on the induced equivalence rela-
tion, we define �tB�q,E as �tB�q,ρ for any ρ with [ρ] = E ∈ Σ.

Definition 8. The set F of moves is given by F := M →M + {fresh}.

The intention of a move f ∈ F is that if f(x) = y �= fresh holds then variable x is set
to the (old value of) variable y and if f(x) = fresh holds then x is moved to a fresh
location. This is formalised by the next definition.

90 M. Hofmann and U. Schöpp

Definition 9. Let ρ, ρ′ : Vars → Vn for some n and let E′ ∈ Σ and f ∈ F . We say
that ρ′ is compatible with (E′, ρ, f) if [ρ′] = E′ holds and for all x ∈M we have

– f(x) = y �= fresh implies ρ′(x) = ρ(y); and
– f(x) = fresh implies ρ′(x) �∈ im(ρ).

In the rest of this section, we write Q for the set VarsB → 2 of boolean states.

Definition 10. Let P be a program, k, l > 0 and

B : Q×Σ × Z/lZ −→ Q×Σ × F

be a function. Say that (B, k, l) represents the behaviour of P on discrete graphs if for
all n > k, q ∈ Q and ρ : Vars → Vn there exists ρ′ : Vars → Vn with

〈P, q, ρ〉 −→∗Gn
〈skip, q′, ρ′〉,

such that ρ′ is compatible with (E′, ρ, f) whenever B(q, [ρ], n mod l) = (q′, E′, f).

Notice that in contrast to the definition of recognition we only require that for some eval-
uation of 〈P, q, ρ〉 the predicted behaviour is matched. This is appropriate because the
intended use of this concept is negative: in order to show that no program can recognise
a certain class of discrete graphs we should exhibit for each program a run that defies
the purported behaviour. Of course, this also helps in the subsequent proofs since it is
then us who can control the order of iteration through forall-loops.

Lemma 11. Suppose (B, k, l) represents the behaviour of P on discrete graphs. Then
whenever n ≥ k and q ∈ Q and ρ : Vars → Vn and B(q, [ρ], n mod l) = (q′, E′, f)
then 〈P, q, ρ〉 −→∗Gn

〈skip, q′, ρ1〉 holds for all ρ1 compatible with (E′, ρ, f).

Proof. Choose ρ′ compatible with (E′, ρ, f) that satisfies 〈P, q, ρ〉−→∗Gn
〈skip, q′, ρ′〉.

Such ρ′ must exist by the definition of “represents.” We have ρ′(x) = ρ(f(x)) = ρ1(x)
whenever f(x) = y �= fresh holds and ρ′(x), ρ1(x) �∈ im(ρ) whenever f(x) = fresh
holds. Hence we can find an automorphism σ : Gn → Gn satisfying σ ◦ ρ = ρ and
σ ◦ ρ′ = ρ1. The claim then follows from Lemma 4. ��

Theorem 12. There exist numbers k, l (depending on the number of variables in M)
such that each while-free program P with graph variables in M is represented by
(�P �, k, l) for some function �P �.

Proof. Put N = |Q| · |Σ| · 2|M|·|M| and k = 3|M |+ N and l = N !.
We prove the claim by induction on P . For basic programs the statement is obvious.

Case P =P1;P2. Suppose we are given (q, E, t) where t ∈ Z/lZ. Write �P1�(q, E, t)=
(q1, E1, f1) as well as �P2�(q1, E1, t) = (q2, E2, f2). Define f ∈ F by

f(x) = f1(f2(x)), if f2(x) ∈M ;
f(x) = fresh , if f2(x) = fresh

Put �P �(q, E, t) = (q2, E2, f). Fix some n with n mod l = t and ρ : Vars → Vn with
[ρ] = E and, using the induction hypothesis, choose ρ1 compatible with (E1, ρ, f1)

Pure Pointer Programs with Iteration 91

and ρ2 compatible with (E2, ρ1, f2). Invoking Lemma 11 we may assume without loss
of generality that f2(x) = fresh implies ρ2(x) �∈ im(ρ). We now claim that ρ2 is
compatible with (E2, ρ, f), which establishes the current case. To see this claim pick
x ∈ M and suppose that f2(x) = y and f1(y) = z ∈ M . Then f(x) = z and
ρ2(x) = ρ1(y) = ρ(z) as required. If f2(x) = fresh then f(x) = fresh and ρ2(x) �∈
im(ρ) by assumption on ρ2. If, finally, f2(x) = y ∈ M and f1(y) = fresh then
ρ2(x) = ρ1(y) �∈ im(ρ) by compatibility of ρ1.

Case if sB then P1 else P2. Define �P �(q, E, t) = �P1�(q, E, t) when �s�q,E =
true and �P �(q, E, t) = �P2�(q, E, t) when �s�q,E = false.

Case forall x do P1. We note that k ≥ 3|M | holds. Now, given (q, E, t) choose
n minimal with n ≥ k and n mod l = t and some ρ : Vars → Vn with [ρ] = E
and assume w.l.o.g. that im(ρ) ⊆ {1, . . . , |M |}. We then iterate through the graph
nodes {1, . . . , n} in ascending order. Fresh nodes are chosen from {|M |+1, . . . , 3|M |}.
Since there are only |M | variables we have enough space in this interval as to satisfy
any request for fresh nodes possibly arising during the evaluation of P1. Formally, we
choose sequences ρi and qi in such a way that

1. ρ0 = ρ, q0 = q;
2. 〈P1, qi, ρi[x �→ i+1]〉 −→∗Gn

〈skip, qi+1, ρi+1〉;
3. for all y ∈M , ρi+1(y) �∈ im(ρi[x �→ i+1]) implies ρi+1 ∈ {|M |+ 1, . . . , 3|M |}.

That such sequences exist follows from the induction hypothesis and Lemma 11.
For I ∈ Σ define I+ = I \ x ∪ {(x, x)}, where I \ x is I with all pairs involving x

removed.
Putting Ei = [ρi] we then get [ρi[x �→ i+1]] = E+

i for all i > 3|M | and thus, again
for i > 3|M |:

(qi+1, Ei+1, fi+1) = �P1�(qi, E+
i , t)

for some sequence fi.
Thus, for i > 3|M | the incidence relations Ei+1 no longer depend on ρi itself but

only on the previous incidence relation Ei (and the valuation of the boolean variables).
Choose now f such that ρn is compatible with (En, ρ, f) and define �P �(q, E, t) =

(qn, En, f).
Now we have to show that indeed (�P �, k, l) represents the behaviour of P on

discrete graphs. To this end fix m > n ≥ k with m mod l = t = n mod l and
χ ∈ Vars → Vm with [χ] = E.

In view of Lemma 4 we may assume χ(x) = ρ(x) for all x ∈M so that in particular
im(χ) ⊆ {1, . . . , |M |}. We can now iterate through Gm in ascending order in exactly
the same fashion yielding sequences Ii, χi, ri such that

1. χ0 = χ, r0 = q;
2. 〈P1, ri, χi[x �→ i+1]〉 −→∗Gm

〈skip, ri+1, χi+1〉;
3. χi(y) = ρi(y) and qi = ri for all y ∈M and i ≤ n.
4. for all y ∈M , χi+1(y) �∈ im(χi[x �→ i+1]) implies χi+1 ∈ {|M |+ 1, . . . , 3|M |}.

We put Ii = [χi] and find (ri+1, Ii+1, gi+1) = �P1�(ri, I+
i , t) for some function se-

quence gi. Now consider the restriction of χi to {1, . . . , |M |}, i.e., formally define

92 M. Hofmann and U. Schöpp

ξi = {(x, χi(x)) | x ∈M, χi(x) ∈ {1, . . . , |M |}}. We note that ξi+1 does not depend
upon χi but only on the incidence relation Ii (and qi and t, of course). Indeed,

ξi+1 = {(y, v) | gi+1(y) = z, (z, v) ∈ ξi}.

In view of the choice of N there must exist indices 3|M | < t < t′ ≤ 3|M | + N = k
such that rt = rt′ and It = It′ and ξt = ξt′ . But then we also have rt+d = rt′+d and
It+d = It′+d and ξt+d = ξt′+d for all d ≥ 0 with t′+d ≤ m. Now, since t′−t divides l
we find that ri = ri′ and Ii = Ii′ and ξi = ξi′ as soon as t′ ≤ k ≤ n ≤ i < i′ ≤ m and
i ∼= i′ modulo l. Hence in particular, rm = rn = qn and Im = In = En and ξm = ξn.
Thus,

〈P, χ, q〉 −→∗Gm
〈skip, qn, χm〉

with χm compatible with (En, ρ, fn) as required. ��

Corollary 13. Checking whether the input is a discrete graph with n nodes with n a
power of two is possible in deterministic logarithmic space but not in PURPLE.

Proof. To program this in LOGSPACE count the number of nodes on a work tape in
binary and see whether its final content has the form 10∗. Suppose there was a PURPLE-
program P recognising this class of graphs in the sense of Def. 3. By Lemma 5 we can
assume that P is while-free. Then Theorem 12 furnishes (�P �, k, l) representing P
on discrete graphs. Let result be the boolean variable in P containing the return value.
Let n be a power of two such that n > k holds and n + l is not a power of two. Let
ρ, q be arbitrary initial values. Now, since P purportedly recognises Gn we must have
�P �(q, [ρ], n mod l) = (q′, ,) with q′(result) = true. Now let χ be a valuation of
the variables in Gn+l satisfying [ρ] = [χ]. We then get 〈P, χ, q〉 −→∗Gn+l

〈skip, q′, 〉,
which contradicts the assumption on P , since on all runs of P on Gn+l the value of the
boolean variable result would have to be false. Recall the explanation after Def. 3. ��

A reader of an earlier version of this paper suggested an alternative, purportedly simpler
route to this result. From Theorem 12 one can conclude that if X is a property of discrete
graphs then the set {an | Gn ∈ X} is a regular set over the unary alphabet {a}; in fact,
every regular set over this alphabet arises in this way. Given that all iterations through n
indistinguishable discrete nodes look essentially the same and that the internal control
of a PURPLE-program is a finite state machine it should not be able to do anything more
than a DFA when run on a unary word.

We cannot see, how to turn this admittedly convincing intuition into a rigorous proof
and would like to point out that a PURPLE-program can test for equality of nodes, thus
it can store certain nodes from an earlier iteration and then find out when they appear
in a subsequent one. Indeed, if the order of traversal were always the same then we
could use this feature to define a total ordering on the nodes and thus program all of
LOGSPACE including the question whether the cardinality of the universe is a power of
two. This would be true even if the traversal order was not fixed a priori but the same
for all iterations in a given run of a program. Thus, any proof of Theorem 12 must
exploit the fact that an input is recognised or rejected only if this is the case for all
possible traversal sequences. Doing so rigorously is what takes up most of the work in
our proof.

Pure Pointer Programs with Iteration 93

6 Conclusion

We believe that PURPLE captures a natural class of pure pointer programs within
LOGSPACE. By showing that PURPLE is unable to express arithmetic properties, we
have demonstrated that it is not merely a reformulation of LOGSPACE but defines a
standalone class whose properties are worth of study in view of its motivation from
practical programming with pointers.

On the one hand, PURPLE strictly subsumes JAGs and DTC logic and can therefore
express many pure pointer algorithms in LOGSPACE. On the other hand, Reingold’s
algorithm for st-reachability in undirected graphs uses counting registers of logarithmic
size. We believe that it is not possible to solve undirected reachability in PURPLE and
therefore not in DTC-logic. The details will appear elsewhere.

We also consider it an important contribution of our work to have formalised the
notion that the order of iteration through a data structure may not be relied upon. Such
provisos often appear in the documentation of library functions like Java’s iterators. Our
notion of recognition in Def. 3 captures this and, as argued at the end of Sec. 5, it mea-
surably affects the computing strength (otherwise all of LOGSPACE could be computed).

The appearance of “freshness” and the accompanying ∀∃-coincidence expressed in
Lemma 11 suggest some rather unexpected connection to the semantic study of name
generation and α-conversion [6,12]. It remains to be seen whether this is merely coinci-
dence or whether techniques and results can be fruitfully transferred in either direction.

References

1. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. Journal
of Algorithms 8(3), 385–394 (1987)

2. Cook, S.A., Rackoff, C.: Space lower bounds for maze threadability on restricted machines.
SIAM Journal of Computing 9(3), 636–652 (1980)

3. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)
4. Edmonds, J., Poon, C.K., Achlioptas, D.: Tight lower bounds for st-connectivity on the NN-

JAG model. SIAM Journal of Computing 28(6), 2257–2284 (1999)
5. Etessami, K., Immerman, N.: Reachability and the power of local ordering. Theoretical Com-

puter Science 148(2), 261–279 (1995)
6. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal

Aspects of Computing 13, 341–363 (2002)
7. Gonthier, G.: A computer-checked proof of the four-colour theorem,

http://research.microsoft.com/∼gonthier
8. Grädel, E., McColm, G.L.: On the power of deterministic transitive closures. Information

and Computation 119(1), 129–135 (1995)
9. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)

10. Johannsen, J.: Satisfiability problems complete for deterministic logarithmic space. In: Diek-
ert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 317–325. Springer, Heidelberg
(2004)

11. Neven, F., Schwentick, T.: On the power of tree-walking automata. In: Welzl, E., Montanari,
U., Rolim, J. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 547–560. Springer, Heidelberg (2000)

12. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that dynamically
create local names, or: What’s new? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS
1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)

13. Reingold, O.: Undirected st-connectivity in log-space. In: STOC, pp. 376–385 (2005)

http://research.microsoft.com/~gonthier

Quantified Positive Temporal Constraints�

Witold Charatonik and Michał Wrona

Institute of Computer Science
University of Wrocław

Abstract. A positive temporal template (or a positive temporal constraint lan-
guage) is a relational structure whose relations can be defined over countable
dense linear order without endpoints using a relational symbol ≤, logical con-
junction and disjunction. This paper gives a complete complexity characterization
for quantified constraint satisfaction problems (QCSP) over positive temporal lan-
guages. Although the constraint satisfaction problem (CSP) for an arbitrary pos-
itive temporal language is trivial (all these templates are closed under constant
functions), the corresponding QCSP problems are decidable in LOGSPACE or
complete for one of the following classes: NLOGSPACE, P, NP or PSPACE.

1 Introduction

Constraint Satisfaction Problems provide a uniform approach to research on a wide
variety of combinatorial problems. Undisputedly, the most interesting problem in this
area is to verify Dichotomy Conjecture posed by Feder and Vardi [1]. It says that every
constraint satisfaction problem on a finite domain is either tractable or NP-complete and
was inspired by Schaefer’s Dichotomy Theorem for CSP on a two element set [2]. When
algebraic approach came on the scene the works on dichotomy conjecture were sped
up [3]. Although the main goal has not yet been attained, many interesting results were
published and many interesting techniques were developed [4,5]. Besides earlier results
on constraints over infinite domains [6,7], a new approach was quite recently proposed
and developed by Manuel Bodirsky [8] and co-authors. This framework concentrates
on relational structures that are ω-categorical. Many results concerning both CSP and
QCSP [9] over finite domains were generalized to infinite ones. Moreover, new results
were established. Among them there are full characterizations of complexity for both
CSP and QCSP of equality constraint languages [10,11].

Our paper is the next step in this research area. In general, we consider quantified
constraint satisfaction problems for sets of relations definable over 〈Q, <〉. In particular,
we restrict ourselves to templates definable with ∧,∨ and ≤, i.e., we do not consider
negation. We name such relations and languages positive temporal. As in [12], we refer
to an arbitrary relation defined over 〈Q, <〉 as a temporal relation.

Our main contribution is a complexity characterization of QCSP problems over pos-
itive temporal languages summarized in Theorem 1 below. We follow the algebraic ap-
proach to constraint satisfaction problems: we first classify positive temporal languages
depending on their surjective polymorphisms and then give the complexity of QCSP for
each obtained class.
� Work partially supported by Polish Ministry of Science and Education grant 3 T11C 042 30.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 94–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quantified Positive Temporal Constraints 95

Theorem 1 (The Main Theorem). Let Γ be a language of positive temporal relations,
then one of the following holds.

1. Each relation in Γ is definable by a conjunction of equations (x1 = x2) and then
QCSP(Γ) is decidable in LOGSPACE.

2. Each relation in Γ is definable by a conjunction of weak inequalities (x1 ≤ x2). If
there exists a relation in Γ that is not definable as a conjunction of equalities, then
QCSP(Γ) is NLOGSPACE-complete.

3. Each relation in Γ is definable by a formula of the form
∧n

i=1(xi1 ≤ xi2 ∨
. . . ∨ xi1 ≤ xik) and then, provided Γ satisfies neither condition 1 nor 2, the
set QCSP(Γ) is P-complete.

4. Each relation in Γ is definable by a formula of the form
∧n

i=1(xi2 ≤ xi1 ∨
. . . ∨ xik ≤ xi1) and then provided Γ satisfies neither condition 1 nor 2, the set
QCSP(Γ) is P-complete.

5. Each relation in Γ is definable by a formula of the form
∧n

i=1(xi1 = yi1 ∨ . . . ∨
xik = yik) and then provided Γ does not belong to any of the classes 1–4, the set
QCSP(Γ) is NP-complete.

6. The problem QCSP(Γ) is PSPACE-complete.

Related work. The complete characterization is quite complex and does not fit into one
paper. Therefore some parts of Theorem 1 are proved in a companion paper [13]. In
particular, we prove there that each QCSP problem over positive temporal relations is
either in P or is NP-hard. Here we provide the complete characterization of the NP-hard
case, distinguishing between NP-complete and PSPACE-complete cases (items 5 and 6
of Theorem 1). We also give complexity proofs for items 3 and 4 of Theorem 1, leaving
the algebraic characterization in [13].

Quantified constraint satisfaction problems over temporal relations were investigated
in [11,14]. In particular, it is shown there that quantified problems from item 1 and 2
of Theorem 1 belong to LOGSPACE and NLOGSPACE, respectively. Our result sub-
stantially improves these results in the sense that we consider a strictly more expressive
class of constraint languages. As in [11] we use the surjective preservation theorem.

The area of CSP may be often seen as a good framework for many problems in
AI. In context of our characterization the well-motivated AND/OR precedence con-
straints [15] should be noted. They are closely related to languages from items 3 and 4.
It might be said that we consider quantified positive variations of AND/OR precedence
constraints.

In a very recent paper [12] the authors give a classification of CSP over temporal
languages depending on their polymorphisms. Although it sounds similar, it is different
from our classification. We deal with positive temporal languages and surjective poly-
morphisms, which are used to classify QCSP problems (as opposed to CSP problems
considered in [12]). In the case of positive temporal languages, the classification based
on polymorphisms is trivial: all these languages fall into the same class because they are
all closed under constant functions — as a consequence all CSP problems for positive
temporal languages are trivial. To obtain our classification we use methods different
from those used in [12].

96 W. Charatonik and M. Wrona

Outline of the paper. In Section 2, we give some preliminaries. Among others, we recall a
definition of a surjective polymorphism and surjective preservation theorem, which is the
most important tool in algebraic approach to QCSP. In [13] it is shown that the problem
QCSP(Γ) is NP-hard if and only if Γ has essentially unary surjective polymorphisms
only. Sections 3 and 4 are devoted to classify positive temporal languages preserved
by essentially unary surjections. In Section 3 we show that there are only five different
classes of positive temporal relations with different surjective unary polymorphisms. If a
positive temporal language Γ is closed under all unary surjective polymorphisms, then,
as it was shown in [11], each relation of Γ may be defined as in item 5 of Theorem 1 and
QCSP(Γ) is NP-complete. If a positive temporal language is preserved by some non-
trivial subset of unary surjections, then QCSP(Γ) is PSPACE-complete. We prove it in
Section 4. The last section contains a complexity proof for cases 3 and 4.

2 Preliminaries

Relational structures. In most cases we follow the notation from [8,11]. We consider
only relations defined over countable domains and hence whenever we write a domain
or D we mean a countable set. Let τ be some relational (in this paper always finite) sig-
nature i.e., a set of relational symbols with assigned arity. Then Γ is a τ -structure over
domain D if for each relational symbol Ri from τ , it contains a relation of according
arity defined on D. In the rest of the paper we usually say relational language (or pat-
tern) instead of relational structure. Moreover, we use the same notation for relational
symbols and relations.

Automorphisms of Γ constitute a group with respect to composition. An orbit of a
k-tuple t in Γ is the set of all tuples of the form 〈Π(t1), . . . , Π(tk)〉 for all automor-
phisms Π . We say that a group of automorphisms of Γ is oligomorphic if for each k it
has a finite number of orbits of k-tuples. Although there are many different ways of in-
troducing a concept of ω-categorical structures we do it by the following theorem [16].

Theorem 2 (Engeler, Ryll-Nardzewski, Svenonius). Let Γ be a relational structure.
Then Γ is ω-categorical if and only if the automorphism group of Γ is oligomorphic.

Polymorphisms. Let R be a relation of arity n defined overD. We say that a function f :
Dm → D is a polymorphism of R if for all a1, . . . , am ∈ R (where ai, for 1 ≤ i ≤ m,
is a tuple 〈ai1, . . . , ain〉), we have 〈f(a1

1, . . . , a
m
1), . . . , f(a1

n, . . . , a
m
n)〉 ∈ R. Then we

say that f preserves R or that R is closed under f . A polymorphism of Γ is a function
that preserves all relations of Γ . By Pol(Γ) we denote the set of polymorphisms of Γ ,
and by sPol(Γ) — the set of surjective polymorphisms.

An operation f of arity n is essentially unary if there exists a unary operation f0

such that f(x1, . . . , xn) = f0(xi) for some fixed i ∈ {1, . . . , n}. An operation that is
not essentially unary is called essential.

Quantified constraint satisfaction problems. Let Γ contain R1, . . . , Rk. Then a con-
junctive positive formula (cp-formula) over Γ is a formula of the following form:

Q1x1 . . . Qnxn(R1(v1) ∧ . . . ∧Rk(vk)), (1)

where Qi ∈ {∀, ∃} and vj are vectors of variables x1, . . . , xn.

Quantified Positive Temporal Constraints 97

A QCSP(Γ) is a problem to decide whether a given cp-formula without free variables
over the structure Γ is true or not. Note that by downward Löwenheim-Skolem Theorem
we can focus on countable domains only.

If all quantifiers in (1) are existential then such a cp-formula is called positive primi-
tive (pp-formula). A problem to decide whether a given pp-formula over Γ is satisfiable
is well-known as a constraint satisfaction problem.

A relation R has a cp-definition in Γ if there exists a cp-formula φ(x1, . . . , xn) over
Γ such that for all a1, . . . , an we have R(a1, . . . , an) iff φ(a1, . . . , an) is true. The set
of all relations cp-definable in Γ is denoted by [Γ].

Lemma 1 ([11]). Let Γ1, Γ2 be relational languages. If every relation in Γ1 has a cp-
definition in Γ2, then QCSP(Γ1) is log-space reducible to QCSP(Γ2).

The following results link [Γ] with sPol(Γ). The idea behind Theorem 3 is that the
more Γ can express, in the sense of cp-definability, the less polymorphisms are con-
tained in sPol(Γ). Moreover, the converse is also true. This theorem is called surjective
preservation theorem.

Theorem 3 ([11]). Let Γ be an ω-categorical structure. Then a relation R has a cp-
definition in Γ if and only if R is preserved by all surjective polymorphisms of Γ .

As a direct consequence of Lemma 1 and Theorem 3 we obtain the following.

Corollary 1 ([11]). Let Γ1, Γ2 be ω-categorical structures. If sPol(Γ2) ⊆ sPol(Γ1),
then QCSP(Γ1) is log-space reducible to QCSP(Γ2).

Games and cp-definitions. Sometimes it is useful to see a cp-formula ψ without free
variables as a two-player game. The game consists of alternating moves of existential
and universal player. All variables are evaluated in the order they occur in the quantifier
prefix, the existential player evaluates existentially quantified variables and the univer-
sal player evaluates universally quantified variables. At the end of the game, the players
establish a valuation q from the variables of ψ into the set of rational numbers. We say
that one variable is earlier (later) than the another one if it occurs earlier (later) in the
quantifier prefix. If at the end of the game, the valuation q satisfies ψ, then the existen-
tial player wins; otherwise, the universal player is the winner. If the existential player
has a winning strategy, then ψ is true; otherwise, if there exists a winning strategy for
the universal player, then ψ is false.

Quantified Equality Constraints. Concerning patterns that allow equations and all log-
ical connectives the following classification is known [11].

1. Negative languages. Relations of such a language are definable as CNF-formulas
whose clauses are either equalities (x = y) or disjunctions of disequalities (x1 �=
y1 ∨ . . . ∨ xk �= yk). For each negative Γ the problem QCSP(Γ) is contained in
LOGSPACE.

2. Positive languages. Relations may be defined as a conjunction of disjunctions of
equalities (x1 = y1 ∨ . . . ∨ xk = yk). For each positive Γ not being negative the
problem QCSP(Γ) is NP-complete.

3. In any other case the problem QCSP(Γ) is PSPACE-complete.

98 W. Charatonik and M. Wrona

Note that the class 1 from Theorem 1 is a subset of Negative languages and the
class 5 is just the class of Positive languages.

To give our characterization we need the following result. It may be inferred from
lemmas given in Section 7 in [11].

Lemma 2. Let Γ be an equational positive constraint language that is preserved by
an essential operation on D with infinite image. Then Γ is preserved by all operations,
and Γ is negative.

Corollary 2. If an equational positive constraint language Γ is positive, but not nega-
tive, then sPol(Γ) contains only essentially unary polymorphisms.

Quantified Positive Temporal Constraints. Now, we focus on positive temporal rela-
tions announced in the introduction. All of them are defined over the set of rational num-
bers using a relational symbol≤ and connectives∧,∨. Therefore our results concerning
positive temporal relations generalize those for positive equality languages. Since the
only relational symbol we use is interpreted as a weak linear order over rational num-
bers, for each positive temporal structure Γ the set sPol(Γ) contains all automorphisms
that preserve order, i.e., all increasing unary surjections f : Q→ Q. Thus, using Theo-
rem 2, it is not hard to see that all positive temporal languages are ω-categorical.

In [13] we show that each temporal relation is closed not only under all increasing
functions but also under all weakly increasing surjections.

3 Surjective Unary Polymorphisms of Temporal Relations

This section examines positive temporal relations that are closed only under surjective
unary polymorphisms. We want to divide this subset of positive temporal languages into
classes each of which contains Γ1 and Γ2 if and only if sPol(Γ1) = sPol(Γ2) (or equiv-
alently [Γ1] = [Γ2]). Such a classification facilitates providing complexity results —
see Theorem 3.

First we give some preliminary definitions. A permutation of a finite set is a bijection
from this set to itself. Let A = {a1, . . . , an} be a finite ordered set such that a1 < . . . <
an. We say that a permutation π of A is a cycle of A if there exists i ≤ n such that
π(ai) < π(ai+1) < . . . < π(an) < π(a1) < . . . < π(ai−1). Similarly, π is a reversed
cycle if there exists i ≤ n such that π(ai) > π(ai+1) > . . . > π(an) > π(a1) > . . . >
π(ai−1).

Definition 1. We say that a relation R is closed under all permutations (respectively,
under all cycles or reversed cycles) if for every tuple 〈q1, . . . , qn〉 ∈ R and every per-
mutation (respectively, every cycle or reversed cycle) π of the set {q1, . . . , qn} we have
〈π(q1), . . . , π(qn)〉 ∈ R.

Note that in the definition above we permute the set {q1, . . . , qn} (and not the set of
indices {1, . . . , n}), which may have less then n elements if q1, . . . , qn are not pairwise
distinct.

The preceding definitions concern closure under various kinds of permutations. Al-
though they may look quite similar to closure under polymorphisms, they are different.

Quantified Positive Temporal Constraints 99

Below we give some, important for us, examples of (unary) surjective polymorphisms
of positive temporal relations. They are all of the type: Q→ Q.

Definition 2. We say that a surjection f : Q → Q is weakly half-increasing (respec-
tively weakly half-decreasing) if there exist two irrational real numbers x and y such
that

– f restricted to the set {q ∈ Q | q < x} as well as f restricted to the set {q ∈ Q |
q > x} is weakly increasing (respectively, weakly decreasing), and

– for all q < x we have f(q) > y (respectively f(q) < y) and for all q > x we have
f(q) < y (respectively f(q) > y).

A weakly half-increasing or weakly half-decreasing function is called weakly half-
monotone.

Example 1. Recall that all countable dense linear orders without endpoints are isomor-
phic. In particular, Q and Q\{0} are isomorphic, so we may identify Q with Q\{0} and
think of 0 as an irrational number in Q \ {0}. Then the function f : Q \ {0} → Q \ {0}
defined by f(q) = 1

q is weakly half-decreasing and the function defined by f(q) = −1
q

is weakly half-increasing.

The unary operation− : Q→ Q is defined as −(x) = −x in usual sense.
The rest of this section is devoted to prove the following result.

Theorem 4. Let Γ be a set of positive temporal relations such that sPol(Γ) contains
only essentially unary functions. Then exactly one of the following cases holds.

1. sPol(Γ) is the set of all unary surjections of Q.
2. sPol(Γ) is the set of all weakly increasing, weakly decreasing or weakly half-

monotone surjections of Q.
3. sPol(Γ) is the set of all weakly increasing or weakly decreasing surjections of Q.
4. sPol(Γ) is the set of all weakly increasing or weakly half-increasing surjections of

Q.
5. sPol(Γ) is the set of all weakly increasing surjections of Q.

A similar classification considering (not necessarily surjective) unary polymorphisms
was obtained in [12]. Weakly half-increasing polymorphisms correspond in some way to
the function cyc from that paper. In turn, positive temporal relations preserved by weakly
half-decreasing functions correspond to temporal relations closed under− and cyc.

As indicated in Theorem 4, there are only four interesting classes of unary polymor-
phisms of positive temporal relations: weakly increasing, weakly decreasing, weakly
half-increasing, and weakly half-decreasing. The following lemmas say that if some
positive temporal relation is closed under one polymorphism of a given class, then it is
closed under all polymorphisms of this class.

Lemma 3. If sPol(R) contains a weakly decreasing unary surjection f , then it contains
all weakly decreasing unary surjections.

100 W. Charatonik and M. Wrona

Lemma 4. If sPol(R) contains a weakly half-increasing unary surjection f , then it
contains all weakly half-increasing unary surjections. If sPol(R) contains a weakly
half-decreasing unary surjection f , then it contains all weakly decreasing, all weakly
half-increasing and all weakly half-decreasing unary surjections.

Now, we relate various surjective polymorphisms to closures under various kinds of
permutations (see for example Definition 1). In particular, Lemma 5 below implies that
the set of positive temporal relations closed under all permutations equals to the set of
positive languages from [11].

Lemma 5. A positive temporal relation R is closed under all permutations iff sPol(R)
contains all unary surjections of Q.

Lemma 6. A positive temporal relation R is closed under all cycles iff sPol(R) con-
tains all weakly half-increasing surjections of Q.

Lemma 7. A positive temporal relation R is closed under all reversed cycles iff sPol(R)
contains all weakly half-decreasing surjections of Q.

Since we are interested in surjective functions, we can claim the following.

Lemma 8. Let f be a unary, surjective operation on Q, then there exist:

– an infinite, strictly monotone sequence (an)n∈N of rational numbers such that
limn→∞ f(an) = +∞

– an infinite, strictly monotone sequence (bn)n∈N of rational numbers such that
limn→∞ f(bn) = −∞

To prove Theorem 4, we show that if sPol(Γ) contains any function that is neither
weakly monotone nor weakly half-monotone, then it contains all unary rational func-
tions or equivalently, by Lemma 5, is closed under all permutations.

Lemma 9. Let R be a positive temporal relation such that sPol(R) contains a function
f that is neither weakly increasing nor weakly decreasing nor weakly half-monotone.
Let (cn)n∈N and (dn)n∈N be two strictly monotone sequences satisfying the following:
limn→∞ f(cn) = +∞ and limn→∞ f(dn) = −∞. Then R is closed under all permu-
tations.

Proof. (of Theorem 4) Suppose that sPol(Γ) contains only essentially unary func-
tions. If sPol(Γ) contains a function f that is neither weakly monotone nor weakly
half-monotone, then by Lemma 8 we find two strictly monotone sequences (an)n∈N

and (bn)n∈N such that limn→∞ f(an) = +∞ and limn→∞ f(bn) = −∞. Then by
Lemma 9 every relation in Γ is closed under all permutations, so by Lemma 5 sPol(R)
contains all essentially unary surjections. Hence sPol(Γ) is the set of all essentially
unary surjections of Q and we are in case 1.

Now assume that sPol(Γ) contains only weakly monotone or weakly half-monotone
surjections. There are four cases, depending on whether sPol(Γ) contains a weakly
decreasing surjection or a weakly half-increasing surjection.

Quantified Positive Temporal Constraints 101

If sPol(Γ) contains a weakly decreasing surjection and a weakly half-increasing sur-
jection, then it contains a weakly half-decreasing surjection and by Lemmas 3 and 4, it
contains all weakly decreasing and all weakly half-monotone surjections of Q, so we
are in case 2.

If sPol(Γ) contains a weakly decreasing surjection and it does not contain any weakly
half-increasing surjection, then by lemmas 3 and 4 it contains all weakly decreasing and
it does not contain any weakly half-monotone surjections, so we are in case 3.

If sPol(Γ) does not contain any weakly decreasing surjection and it contains a weakly
half-increasing surjection, then by Lemma 4 it contains all weakly half-increasing and
it does not contain weakly decreasing surjections, so we are in case 4.

Finally, if sPol(Γ) does not contain any weakly decreasing surjection and it does not
contain any weakly half-increasing surjection, then by Lemma 4 it does not contain any
weakly decreasing nor weakly half-monotone surjection, so we are in case 5. �

Example 2. Recall from [11] that (x1 = x2 ∨ x1 = x3) is closed under all essentially
unary surjections of Q — see also Section 2. Now, for each of the classes 2–5 of The-
orem 4 we give representatives, that is, relations R(5)–R(2) each of which belongs to
exactly one of these classes.

The relation R(5) defined by R(5)(x1, x2, x3) := (x1 ≤ x2 ∨ x2 ≤ x3), as all
positive temporal relations, is closed under all weakly increasing functions. Observe
that 〈1, 2, 3〉 ∈ R(5), but 〈−1,−2,−3〉 �∈ R(5), so R(5) is not closed under weakly
decreasing functions (and by Lemma 4 it is not closed under half-decreasing functions).
Similarly, 〈1, 3, 2〉 ∈ R(5), but 〈3, 2, 1〉 �∈ R(5), so R(5) is not closed under cycles (and
thus it is not closed under weakly half-increasing functions). The relation R(4) defined
by R(4)(x1, x2, x3) := (x1 ≤ x2 ∨ x2 ≤ x3) ∧ (x2 ≤ x3 ∨ x3 ≤ x1) ∧ (x3 ≤
x1 ∨ x1 ≤ x2) is a conjunction of the relations (xΠ(1) ≤ xΠ(2) ∨ xΠ(2) ≤ xΠ(3))
where Π ranges over all cycles of the set {1, 2, 3}, so it is closed under all cycles.
Since 〈1, 2, 3〉 ∈ R(4) and 〈3, 2, 1〉 �∈ R(4), it is not closed under weakly decreasing
or weakly half-decreasing functions. It is easy to observe that the relation R(3) defined
by R(3)(x1, x2, x3) := (x1 ≤ x2 ∨ x2 ≤ x3) ∧ (x3 ≤ x2 ∨ x2 ≤ x1) is closed
under weakly decreasing functions. Since 〈2, 1, 3〉 ∈ R(3) and 〈3, 2, 1〉 �∈ R(3), this
relation is not closed under cycles and by Lemmas 6 and 4 it is not closed under any
weakly half-monotone surjection. Let a relation R(2) be defined as a conjunction of the
clauses (xΠ(1) ≤ xΠ(2) ∨ xΠ(2) ≤ xΠ(3) ∨ xΠ(3) ≤ xΠ(4)) where Π ranges over all
cycles and reversed cycles of the set {1, 2, 3, 4}, so it obviously must be closed under
all cycles and reversed cycles. Note that cycles and reversed cycles are 8 out of total
24 permutations of the set {1, 2, 3, 4} (this explains why we could not use a ternary
relation as an example here — all permutations of the set {1, 2, 3} are either cycles
or reversed cycles). To see that R(2) is not closed under all permutations observe that
〈4, 3, 2, 1〉 /∈ R(2), but 〈2, 1, 3, 4〉 ∈ R(2).

Finally, we show that all these relations (R(2)–R(5)) are closed under essentially
unary surjections only. Let R(x1, . . . , xk) where k = 3, 4 be one of these relations.
Then a relation

∧
Π∈Sk

R(xΠ(1), . . . , xΠ(k)) where Sk is a set of all permutations on k
elements is equivalent to a relation R′ defined by

∨
i�=j xi = xj . Because R′ is positive

and non-negative, by Corollary 2 and Theorem 3, we have that R is closed under unary
surjections only.

102 W. Charatonik and M. Wrona

4 PSPACE-Complete Positive Temporal Languages

Recall from Section 2 the complexity characterization of equational languages. By
corollaries 2 and 1, the problem QCSP(Γ) where Γ is closed under essentially unary
functions only is NP-hard. Likewise we know that QCSP for languages from item 1 of
Theorem 4 is NP-complete. This section is devoted to show PSPACE-completeness for
QCSP of languages with surjective polymorphisms from items 2–5 of Theorem 4.

Membership in PSPACE is the simpler part of the proof and is common for all, not
only positive, temporal relations.

Proposition 1. For every temporal language Γ , the problem QCSP(Γ) is decidable in
PSPACE.

In the rest of the section we prove hardness. Note that the set of surjective polymor-
phisms from item 2 contains sets of surjective polymorphisms from each of items 2–5.
Therefore, by Theorem 3 and Corollary 1, it is enough to show PSPACE-hardness of
QCSP for positive temporal languages closed under all weakly monotone and all weakly
half-monotone surjections only.

Theorem 5. Let Γ be a set of positive languages closed only under essentially unary
functions. If sPol(Γ) is the set of all weakly increasing, weakly decreasing and weakly
half-monotone surjections of Q, then QCSP(Γ) is PSPACE-hard.

Because of Theorem 3 and Corollary 1, it is enough to choose just one language with
appropriate set of surjective polymorphisms and show PSPACE hardness for this lan-
guage. Our choice is the language ΓCircle defined below. We show that it is closed only
under all weakly increasing, weakly decreasing and weakly half-monotone surjections
of Q. In fact, it is enough to show that Γcircle is closed only under unary surjections of
Q and that is closed under all reversed cycles – see lemmas 4 and 7. Finally, we show
that QCSP(ΓCircle) is PSPACE-hard and in consequence we prove Theorem 5.

B1

OR
0

IR
0

IL
0

OL
0

B0

B2

OR
1

IR
1

IL
1

OL
1

Fig. 1. The representation of the set Arenas

Quantified Positive Temporal Constraints 103

Definition of ΓCircle . First we present some auxiliary relations that shorten the defi-
nition. Let vA be a vector 〈B0, O

L
0 , IL0 , IR0 , OR

0 , B1, O
L
1 , IL1 , IR1 , OR

1 , B2〉 of variables
ranging over Q. The corresponding set of variables is denoted by VarA. In the follow-
ing we call VarA the set of arena variables. We sometimes see a vector vA as a function
from {0, . . . , 10} to VarA.

Let Arenas be a set of vectors Π(vA) for all cycles and reversed-cycles Π of the
set {0, . . . , 10}. Note that the set Arenas may be represented in some way using Fig.
1. To obtain one of linear orders that is represented by this circle, we have just to tear
it apart and orientate. If we orientate it clockwise, then we represent some ΠC(vA)
where ΠC is a cycle. Otherwise, if we orientate it anticlockwise, then we represent
some ΠRC (vA) where ΠRC is a reversed cycle.

Now, for each v ∈ Arenas we define a relation Prefixv := ¬(y0 < . . . < y10)
where v = 〈y0, . . . , y10〉. At this point we probably owe the reader one more explana-
tion. Sometimes, when we think it is intuitive, we use negation as well as implication
in the definition of relations. Nevertheless, they should be treated just as notational
shortcuts and all relations we claim to be positive temporal are indeed definable by con-
junction, disjunction, and ≤. In particular, Prefixv may be defined as

∨9
i=0 yi ≥ yi+1.

Nevertheless, the situation where Prefixv is falsified is more important for us. Then the
arena variables are arranged in some linear order represented by a circle in Fig. 1.

In general, our intention is to model (see Definition 3) a boolean relation. Arena
variables set in some order presented in Fig. 1 constitute some kind of arena. When
some other variable is set strictly between OL

0 and OR
0 then we see its value as a boolean

zero, and if some variable is set strictly between OL
1 and OR

1 then we see its value as a
boolean one. We need also IL0 , IR0 , and IL1 , IR1 . Sometimes we want to say: ’If a variable
x is equal to zero, then a variable y is also equal to zero’. Unfortunately, concerning
positive temporal relations we are unable to write something like (OL

0 < x < OR
0) →

(OL
0 < y < OR

0). Instead we write (OL
0 < x < OR

0) → (IL0 ≤ y ≤ IR0) and assure
that IL0 , IR0 are always strictly between OL

0 , OR
0 . Similarly, we assure that IL1 , IR1 are

always strictly between OL
1 , OR

1 . This is the general idea, but sometimes because of
technical reasons we also use OL1

0 , OL2
0 etc.

Concerning positive temporal relations closed under reversed cycles it is hard to say
that some variable must be set on the left (or on the right) of the another variable. Far
more natural is to say that some variable is inside the interval set by values of other
variables or outside such an interval. We define Inv(x, y1, y2) equal to ((y1 < y2) →
(y1 ≤ x ≤ y2)) ∧ ((y2 < y1) → (x ≤ y2 ∨ x ≥ y1)) if v = ΠC(vA) for some cycle
ΠC ; and equal to ((y1 < y2)→ (x ≤ y1 ∨ x ≥ y2)) ∧ ((y2 < y1)→ (y2 ≤ x ≤ y1))
if v = ΠRC(vA) for some reversed-cycle ΠRC . Similarly, we define Outv(x, y1, y2)
equal to ((y1 < y2) → (x ≤ y1 ∨ x ≥ y2)) ∧ ((y2 < y1) → (y2 ≤ x ≤ y1)) if
v = ΠC(vA) for some cycle ΠC ; and equal to ((y1 < y2)→ (y1 ≤ x ≤ y2))∧((y2 <
y1)→ (x ≤ y2 ∨ x ≥ y1)) if v = ΠRC(vA) for some reversed-cycle ΠRC .

Example 3. For every v ∈ Arenas the following formulas are always true:

1. (¬Prefixv)→ Inv(IR0 , OR
0 , OL

0)
2. (¬Prefixv)→ Outv(OR

0 , IR0 , IL0)

104 W. Charatonik and M. Wrona

The positive temporal language ΓCircle consists of three relations: UImp, BImp, and
Final. Each relation R ∈ ΓCircle is of the form

∧
v∈Arenas φ

R
v . By using this conjunc-

tion we assure that R is closed under all cycles and reversed cycles.

1. First of our relations is UImp(vA, p, OL, OR, f, IL, IR) with

φUImp
v := Prefixv ∨Outv(p,OL, OR) ∨ Inv(f, IL, IR). (2)

The name UImp stands for unary implication. It is justified by the context in which
we use it. If both Prefixv and Outv(p,OL, OR) are falsified, then Inv(f, IL, IR)
must be satisfied. We use this relation to express the implication: ’if v represents
different values in an appropriate order and p is a value in the interval from IL to
IR, then f also is a value in this interval’.

2. We have also binary implication BImp(vA, p1, p2, O
L, OR, f, IL, IR) with

φBImp
v := Prefixv ∨Outv(p1, O

L, OR) ∨Outv(p2, O
L, OR) ∨ Inv(f, IL, IR).

(3)
If Prefixv as well as Outv(p1, O

L, OR) and Outv(p2, O
L, OR) are falsified, then

Inv(f, IL, IR) must be satisfied.
3. Finally there is Final(vA, f0, f1) with

φFinal
v := Prefixv ∨Outv(f0, B0, B2) ∨Outv(f1, B0, B2). (4)

We want to see it in the following way. If Prefixv is falsified, then Outv(f0, B0, B2)
or Outv(f1, B0, B2) must be satisfied.

Lemma 10. The positive temporal language ΓCircle is closed under weakly increasing,
weakly decreasing, and weakly half monotone surjections only.

PSPACE-hardness of QCSP(ΓCircle). The hardness proof for QCSP(ΓCircle) is based
on the proof of PSPACE-hardness of QCSP(x1 �= x2 ∨ x1 = x3) from [11]. We define
analogous notions and follow analogous reasoning.

Definition 3. A relation R ⊆ {0, 1}n is force definable if there exists a prenex formula

ΦR,f0,f1(vA, OL1
0 , OR1

0 , OL1
1 , OR1

1 , x1, . . . , xn) = Qφ

over ΓCircle that satisfies all of the following.

1. Q is a quantifier prefix and φ is a quantifier-free part.
2. The quantifier prefix Q contains f0 and f1 as its two last variables, and they are

both existentially quantified.
3. The set of free variables is equal to {vA, OL1

0 , OR1
0 , OL1

1 , OR1
1 , x1, . . . , xn}.

4. Let t ∈ {0, 1}n and let v ∈ Arenas. Let variables from VarA be set to satisfy
¬(Prefixv) and let variables OL1

0 , OR1
0 , OL1

1 , OR1
1 be set to satisfy

– Inv(OL1
0 , B0, O

L
0),

– Inv(OR1
0 , OR

0 , B1),
– Inv(OL1

1 , B1, O
L
1), and

– Inv(OR1
1 , OR

1 , B2).

Quantified Positive Temporal Constraints 105

Further, let xk for k ∈ {1, . . . , n} are set to satisfy Inv(xk, I
L
i , IRi) iff tk = i for

i = 0, 1. Then the sentence Φ′ := Q(φ∧¬(Inv(f0, I
L
0 , IR0)∧ Inv(f1, I

L
1 , IR1))) is

false iff t ∈ R.
5. If values of arena variables satisfy Prefixv for all v ∈ Arenas; or, in case Prefixv

is falsified for some v ∈ Arenas , free variables OL1
0 , OR1

0 , OL1
1 , OR1

1 are set to
satisfy

– Inv(OL1
0 , IL0 , IR0) ∧ Inv(OR1

0 , IL0 , IR0)∨
– Inv(OL1

1 , IL1 , IR1) ∧ Inv(OR1
1 , IL1 , IR1);

then Φ′ is always true.
6. (monotonicity) For any setting to the free variables of ΦR,f0,f1 , if the formula Φ′ is

true, then changing the value of any variable xi to satisfy (Outv(xi, O
L1
0 , OR1

0) ∨
Outv(xi, O

L1
1 , OR1

1)) preserves the truth of Φ′.

As it was described in Section 2 we can see a sentence as a two-player game. The
intuition behind Definition 3 is as follows. If free variables of ΦR,f0,f1 are set according
to conditions from item 4 and t ∈ R, then the universal player has a strategy to force
the existential player to satisfy Inv(f0, I

L
0 , IR0) and Inv(f1, I

L
1 , IR1) where v ∈ Arenas

and Prefixv is falsified. But if Prefixv is falsified for some v ∈ Arenas and the condi-
tion from item 5 is fulfilled, then the existential player is able to falsify Inv(f0, I

L
0 , IR0)

or Inv(f1, I
L
1 , IR1).

Note that variables OL1
0 , OR1

0 , OL1
1 , OR1

1 are different from OL
0 , OR

0 , OL
1 , OR

1 .

Lemma 11. There exists a polynomial-time algorithm that, given a boolean circuit C
as input, produces a force definition of the relation RC containing, as tuples, exactly
the satisfying assignments of the circuit.

Similarly as in [11], we reduce from succinct graph unreachability. In this problem, the
input is a boolean circuit with 2c inputs that represent a graph G whose vertices are the
tuples in {0, 1}c. There is a directed edge (X ,Y) in the graph iff the circuit returns
true given the input (X ,Y). The question is to decide whether or not there is a directed
path from S to T . This problem is known to be PSPACE-complete.

Define Ri ⊆ {0, 1}2c to be the relation containing exactly the tuples (X,Y) such
that there exists a directed path in G from X to Y of length less than or equal to 2i.
Then there is a path in G from S to T iff (S,T) ∈ Rc.

From Lemma 11 it is not hard to infer that R0 is computable in polynomial time.
Now, by induction we show that Rc is also computable by a polynomial algorithm.

Lemma 12. The force definition of the relation Rc is computable in polynomial time.

Proof. (of Theorem 5) Let ΦRc,g0,g1(vA, OL
0 , OR

0 , OL
1 , OR

1 ,x,y) = Qcφc be a force
definition of Rc. We use it now to give an instance of QCSP(ΓCircle) that is true if and
only if there is no path from S to T in the succinctly represented graph.

The instance created is

∀vAQcφc ∧ x = s ∧ y = t ∧ Final(vA, g0, g1)

where si = tj = ILk if Si = T j = k for all 1 ≤ i, j ≤ c and k = 0, 1.
The universal player starts the game. To have a chance to win (to falsify) the sentence

he must set arena variables to falsify Prefixv for some v ∈ Arenas. Otherwise each

106 W. Charatonik and M. Wrona

clause from φc is satisfied already at the beginning. If there is a path from s to t,
then the universal player can enforce the existential player to satisfy Inv(g0, I

L
0 , IR0)

and Inv(g1, I
L
1 , IR1). It is not hard to verify that it contradicts Final(vA, g0, g1) —

see (4). If (s, t) /∈ Rc, then the existential player can satisfy Outv(g0, B0, B2) or
Outv(g1, B0, B2); and in consequence satisfy Final(vA, g0, g1). �

5 PTIME-Complete Positive Temporal Languages

This section is devoted to give the complexity proof for classes from items 3 and 4 of
Theorem 1. We focus here of the former case, the latter one is dual and hence the whole
reasoning is similar in both cases.

Let Rk
Left be equal to (x1 ≤ x2 ∨ . . . ∨ x1 ≤ xk), and ΓLeft be the set of relations

Rk
Left for each natural number k ≥ 2. In [13] it is shown that QCSP(ΓLeft) is log-space

equivalent to QCSP(Γ) where Γ is the language from case 3 of Theorem 1. Further-
more, we have that QCSP(x1 ≤ x2∨x1 ≤ x2) is log-space equivalent to QCSP(ΓLeft).
Observe that the definition of each Rk

Left have a simple tree-like structure where x1 is
a root and x2, . . . , xk are sons of x1. Moreover, to denote a root of a clause C we write
root(C) and to denote a set of sons – sons(C).

In this section whenever we write: a formula, we think of a cp-formula over ΓLeft .

Lemma 13. Let φ be a formula defining a positive temporal relation. Assume that φ
contains clauses C1 := (y ≤ x1 ∨ . . .∨ y ≤ xk) and C2 := (x1 ≤ z1 ∨ . . .∨x1 ≤ zl).
Then φ and φ′ given by φ∧C3, where C3 := (y ≤ z1∨ . . .∨y ≤ zl∨y ≤ x2∨ . . .∨y ≤
xk), are equivalent, that is, they define the same relation.

In the following, we sometimes refer to a quantifier-free formula φ as to a set of clauses.
We say that a set of clauses φ is TClosed if for all pairs of clauses of the form (y ≤
x1 ∨ . . . ∨ y ≤ xk) and (x1 ≤ z1 ∨ . . . ∨ x1 ≤ zl), the clause (y ≤ z1 ∨ . . . ∨ y ≤
zl ∨ y ≤ x2 ∨ . . . y∨ ≤ xk) also belongs to φ. By TClosure(φ) we denote the least
TClosed superset of φ.

By a simple induction, from Lemma 13 we can obtain the following.

Corollary 3. Formulas φ and TClosure(φ) are equivalent.

We show that the universal player has a winning strategy if and only if TClosure(φ)
contains a clause of the form (y ≤ x1∨ . . .∨y ≤ xk) such that for each disjunct y ≤ xi

where 1 ≤ i ≤ k we have that either y or xi is later and universal. We call such a clause
ultimate.

Lemma 14. Let ψ be a sentence and let Q be its quantifier prefix and φ its quantifier-
free part. Then ψ is false if and only if TClosure(φ) contains an ultimate clause.

To show the exact complexity of case 3 of Theorem 1 we use the emptiness problem for
context-free grammars. It is well known that this problem is P-complete. We assume
that the reader is familiar with the notion of the context-free grammar. By L(G) we
denote a language generated by a context free-grammar G = 〈N,Σ,R, S〉.

Quantified Positive Temporal Constraints 107

Theorem 6. Let Γ be a positive temporal language such that each of its relation is
definable by a formula of the form

∧n
i=1(xi1 ≤ xi2 ∨ . . . ∨ xi1 ≤ xik) and it is neither

definable as a conjunction of equalities nor as a conjunction of inequalities. Then the
problem QCSP(Γ) is P-complete

Proof. (About Membership) To obtain the result we give a logspace reduction from
the problem QCSP(x1 ≤ x2 ∨ x1 ≤ x3) to the emptiness problem for context-free
grammars. Let ψ be an instance of QCSP(x1 ≤ x2 ∨ x1 ≤ x3) with a quantifier
prefix Q and a quantifier free-part φ. We construct a context-free grammar Gψ such
that L(Gψ) �= ∅ if and only if ψ is false. By Lemma 14, it is enough to show Gψ

that generates a non-empty language if and only if TClosure(φ) contains an ultimate
clause.

The reduction runs as follows. For each variable x of ψ, we show a grammar Gx
ψ that

generates an empty language if and only if there is no ultimate clause C in TClosure(φ)
with x being a root of C. Further, by Gψ we take a grammar such that L(Gψ) =⋃

x∈Var(ψ) L(Gx
ψ) where Var(ψ) is a set of all variables of ψ. Recall that the set of

context-free grammars is closed under union and note that ‖Gψ‖ ≤ c∗Σx∈Var(ψ)

∥∥∥Gx
ψ

∥∥∥
for some constant c.

We now turn to the definition of Gx = 〈Nx, Σx, Rx, Ax〉. For each variable y of
ψ we introduce a nonterminal Ay . The set Σx contains a terminal symbol ay for each
variable y that is universal and later than x. If x is universal, then there is also a terminal
ay for each variable y that is earlier than x. Further, for each clause of the form (x1 ≤
x2 ∨ x1 ≤ x3) we have a rule Ax1 → Ax2Ax3 . For each terminal symbol ay in Σx

there is also a rule Ay → ay . It is clear, that such a reduction may be provided using
logarithmic space.

Now, if L(Gx
ψ) contains a word ax1 . . . axk

, then, by a simple induction, we can
show that a clause (x ≤ x1 ∨ . . .∨ x ≤ xk) belongs to TClosure(φ). Since each xi for
1 ≤ i ≤ k is universal and later than x or provided x is universal, earlier than x; this
clause is ultimate. Similarly, if any ultimate clause (x ≤ x1 ∨ . . . ∨ x ≤ xk) belongs to
TClosure(φ), then we can construct a parse tree that witnesses ax1 . . . axk

∈ L(Gx
ψ)

(About Hardness) The hardness proof is quite similar. This time we give a logspace
reduction from the emptiness problem to the problem QCSP(x1 ≤ x2 ∨ x1 ≤ x3). �

Acknowledgements. We thank Jerzy Marcinkowski for turning our attention to [11].

References

1. Feder, T., Vardi, M.: Monotone monadic SNP and constraint satisfaction. In: Proceedings of
25th ACM Symposium on the Theory of Computing (STOC), pp. 612–622 (1993)

2. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings 10th ACM Sympo-
sium on Theory of Computing, STOC 1978, pp. 216–226 (1978)

3. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the
ACM 44, 527–548 (1997)

4. Bulatov, A.: A dichotomy theorem for constraints on a three-element set. In: Proceedings
43rd IEEE Symposium on Foundations of Computer Science (FOCS 2002), Vancouver,
Canada, pp. 649–658 (2002)

108 W. Charatonik and M. Wrona

5. Cohen, D., Jeavons, P.: The complexity of constraints languages. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

6. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–
843 (1983)

7. Krokhin, A., Jeavons, P., Jonsson, P.: A complete classification of complexity in Allens al-
gebra in the presence of a non-trivial basic relation. In: Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 83–88. Morgan Kaufmann, San
Francisco (2001)

8. Bodirsky, M.: Constraint Satisfaction Problems with Infinite Domains. PhD thesis, Humboldt-
Universität zu Berlin (2004), http://www2.informatik.hu-berlin.de/˜
bodirsky/publications/diss.html

9. Boerner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: Algorithms and
complexity. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 58–70.
Springer, Heidelberg (2003)

10. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. In: Grigoriev, D.,
Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 114–126. Springer, Hei-
delberg (2006)

11. Bodirsky, M., Chen, H.: Quantified equality constraints. In: 22nd IEEE Symposium on Logic
in Computer Science (LICS 2007), Proceedings, Wroclaw, Poland, July 10-12, pp. 203–212.
IEEE Computer Society, Los Alamitos (2007)

12. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. In: Lad-
ner, R.E., Dwork, C. (eds.) Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, Victoria, British Columbia, Canada, May 17-20, pp. 29–38. ACM, New York
(2008)

13. Charatonik, W., Wrona, M.: Tractable positive quantified constraint satisfaction problems
(submitted, 2008),
http://www.ii.uni.wroc.pl/∼mwrona/publications/TQP.pdf

14. Bodirsky, M., Chen, H.: Qualitative temporal and spatial reasoning revisited. In: Duparc,
J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 194–207. Springer, Heidelberg
(2007)

15. Möhring, R.H., Skutella, M., Stork, F.: Scheduling with and/or precedence constraints. SIAM
J. Comput. 33(2), 393–415 (2004)

16. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)

http://www2.informatik.hu-berlin.de/~bodirsky/publications/diss.html
http://www2.informatik.hu-berlin.de/~bodirsky/publications/diss.html
http://www.ii.uni.wroc.pl/~mwrona/publications/TQP.pdf

Non-uniform Boolean Constraint Satisfaction

Problems with Cardinality Constraint�

Nadia Creignou1, Henning Schnoor2, and Ilka Schnoor3

1 LIF (CNRS UMR 6166), Université d’Aix-Marseille, 163 avenue de Luminy,
F-13288 Marseille, France
creignou@lif.univ-mrs.fr

2 Institut für Informatik, Christian-Albrechts-Universität Kiel,
Christian-Albrechts-Platz 4, D-24098 Kiel, Germany

schnoor@ti.informatik.uni-kiel.de
3 Institut für Theoretische Informatik, Universität Lübeck, Ratzeburger Allee 160,

D-23538 Lübeck, Germany
schnoor@tcs.uni-luebeck.de

Abstract. We study the computational complexity of Boolean con-
straint satisfaction problems with cardinality constraint. A Galois con-
nection between clones and co-clones has received a lot of attention in the
context of complexity considerations for constraint satisfaction problems.
This connection fails when considering constraint satisfaction problems
that support in addition a cardinality constraint. We prove that a sim-
ilar Galois connection, involving a weaker closure operator and partial
polymorphisms, can be applied to such problems. Thus, we establish di-
chotomies for the decision as well as for the counting problems in Schae-
fer’s framework.

1 Introduction

The success of Boolean constraint satisfaction problems (CSPs) is due to two
features: they provide a framework in which various combinatorial problems
(including NP-complete ones) can be adequately expressed, and which is prac-
tically efficient since highly optimized solvers are available. Therefore, Boolean
constraint satisfaction problems are an important test-bed for questions about
computational complexity and algorithms. In particular the non-uniform version,
Csp(Γ) has been extensively studied from the computational complexity point
of view. In this context a finite set of Boolean relations Γ , called a constraint
language, is fixed. An input of such a problem is a Γ -formula. Such a formula
is a conjunction of “clauses”, each of which consisting in an application of some
relation from Γ to variables. This framework captures many well-known combi-
natorial problems, as for instance the famous NP-complete problem 3Sat. The
complexity study of these problems started in 1978 with the seminal paper of

� Supported by the DAAD postdoc program. Work done in part while the second and
third authors worked at the University of Hannover.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 109–123, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

110 N. Creignou, H. Schnoor, and I. Schnoor

Schaefer [Sch78]. He proved a remarkable dichotomy theorem: Csp(Γ) is either
in P or NP-complete. Since then many other algorithmic problems related to Γ -
formulas have been investigated: including counting [CH96], non-monotonic rea-
soning [KK03, CZ06], equivalence and isomorphism [BHRV02, BHRV04, BH05],
optimization [Cre95, KSTW01, RV03], parameterized complexity [Mar05], and
many others (see [CV08] for a complete survey).

All the constraints that appear in non-uniform CSPs are local ones: each
applies to a fixed number of variables. However in practice one is often faced
with constraints of global nature, which involve all the variables occurring in the
input. Due to the wide embrace of global constraints in the constraint program-
ming community, we believe that the computational complexity of non-uniform
CSPs supporting additional global constraints is worth being investigated. To
this aim, we focus here on Boolean constraint satisfaction problems that support
in addition a constraint of global nature, namely a cardinality constraint. Given
a Γ -formula, a feasible solution is a satisfying assignment that fulfills in addition
some cardinality constraint on the number of variables set to 1. More precisely we
are interested in two problems Bal-Csp(Γ) and k-Ones(Γ). For the balanced
constraint satisfaction problem Bal-Csp(Γ), the global constraint is that the
assignment is balanced, i.e., it sets the same number of variables to 0 and 1. For
k-Ones(Γ), the requirement is that exactly k variables (where k is given in the
input) are set to 1. These two global constraints are well-known in constraint pro-
gramming and appear in the Global constraint catalog (see http://www.emn.fr/x-
info/sdemasse/gccat/index.html). The balanced constraint also arises naturally
in some optimization problems. For example Min-Bisection can be seen as
Min-Cut with the restriction that the two sets of vertices have the same car-
dinality. Other optimization problems can be expressed as a Boolean constraint
satisfaction problem where a feasible solution is a balanced assignment. Re-
cently, there was an increased interest in optimization problems supporting an
additional cardinality constraint, see e.g. [Svi01, BK05, BHM08].

Satisfiability problems with an additional cardinality constraint first appeared
in [KSTW01]. The authors studied the problem Max-Ones(Γ), in which a so-
lution is a satisfying assignment that sets at least k variables to 11. The problem
k-Ones(Γ) was already studied from the point of view of parameterized com-
plexity in [Mar05] (our results differ from his, since in our problems k is part of
the input instance). The study of the complexity of Bal-Csp(Γ) and k-Ones(Γ)
was initiated in [BK05]. The authors identified a polynomial time case, obtained
individual hardness results for specific constraint languages and conjectured a
dichotomy classification. In this paper we prove that the conjecture holds. We
prove a full complexity classification for the two problems Bal-Csp(Γ) and
k-Ones(Γ). Moreover, we also tackle the corresponding counting problems and
prove a dichotomy classification FP/#P-complete.

For this we use new algebraic tools. In order to obtain a complexity classi-
fication for constraint satisfaction problems, the main idea is to compare the

1 They studied this problem as an optimization problem, and were interested in ap-
proximability properties.

Non-uniform Boolean CSPs with Cardinality Constraint 111

so-called expressive power of constraint languages. Roughly speaking, given two
constraint languages Γ1 and Γ2, if Γ2 is more expressive than Γ1, then any Γ1-
formula (i.e., a conjunction of Γ1-clauses, each of which being an application of
some relation from Γ1 to variables) can be transformed into a Γ2-formula. In the
last decade, a Galois correspondence between the lattice of Boolean relations
and the lattice of Boolean functions, together with Post’s lattice has turned out
to be one of the most successful tools to derive complexity results for Boolean
constraint satisfaction problems. Indeed, this Galois correspondence relates the
expressive power of a constraint language to its set of polymorphisms, i.e., alge-
braic closure properties.The structure of the polymorphism sets, so called clones,
is well-known and is described by Post’s lattice [Pos41]. This Galois connec-
tion gives a procedure transforming Γ1-formulas into equivalent Γ2-formulas.
However, the newly constructed Γ2-formulas contain additional existentially
quantified variables and equality clauses can occur. Due to the additional global
constraint, these features make this Galois connection unhelpful to transfer di-
rectly results from Post’s classes to complexity when there is an additional
cardinality constraint.

We prove that we can use a restricted closure, based on partial polymorphisms
and studied in [Rom81]. These partial polymorphisms form a structure which is
a refinement of the clone structure exhibited by Post. However, surprisingly, the
complexity classification, when achieved, obeys the borders of Post’s lattice.

In Section 2 we introduce the main concepts precisely, and state our results.
In Section 3 we present the algebraic method that will be used to obtain the
complexity classification. Due to space restrictions, this section focuses on the
results needed for this paper and does not give any examples for the involved
constructions. See [SS08] for details on this technique. Section 4 is then dedicated
to the hardness proofs.

2 Main Result

A logical relation of arity k is a relation R ⊆ {0, 1}k. A constraint (or constraint
application) is a formula R(x1, . . . , xk), where R is a logical relation of arity
k and x1, . . . , xk are (not necessarily distinct) variables. An assignment I of
truth values to the variables satisfies the constraint if

(
I(x1), . . . , I(xk)

)
∈ R.

A constraint language Γ is a finite set of logical relations. A Γ -formula is a
conjunction of constraint applications using only logical relations from Γ . With
Var(ϕ) we denote the set of variables appearing in ϕ. A formula ϕ is satisfied by
an assignment I if I satisfies all constraints in ϕ. The satisfiability problem for
Γ -formulas is denoted by Csp(Γ). Assuming a canonical order on the variables,
we can regard assignments as tuples in the obvious way, and say that a formula
defines or expresses the relation of its solutions.

A balanced assignment for ϕ is a truth assignment I that assigns 0 to the
same number of variables as 1, that means it fulfills |{x ∈ Var(ϕ) | I(x) = 0} =
|{x ∈ Var(ϕ) | I(x) = 1}|.

112 N. Creignou, H. Schnoor, and I. Schnoor

We study here the two following problems.

Problem: Bal-Csp(Γ)
Input: A Γ -formula ϕ

Question: Is there a balanced assignment that satisfies ϕ ?

Problem: k-Ones(Γ)
Input: A Γ -formula ϕ and a number k ∈ N
Question: Is there a truth assignment setting exactly k variables to

true that satisfies ϕ?

Additionally we look at the counting version associated with each of these
problems, i.e., the question of how many “acceptable” (balanced/ with k ones)
satisfying truth assignments a given Γ -formula has. These counting problems
are denoted by #Bal-Csp(Γ) and #k-Ones(Γ).

Definition 2.1. A logical relation R is affine with width 2 if it is definable by a
conjunction of equations, each of which being either a unary clause or a 2XOR-
clause, that is of the form l1⊕l2, where l1, l2 are literals and ⊕ is the exclusive-or
operator. A constraint language Γ is affine with width 2 if every relation in Γ is
affine with width 2.

The following is our main result:

Theorem 2.2. Let Γ be a constraint language.

– If Γ is affine with width 2, then Bal-Csp(Γ) (respectively, k-Ones(Γ)) is
decidable in polynomial time. Otherwise it is NP-complete.

– If Γ is affine with width 2, then #Bal-Csp(Γ) (respectively, #k-Ones(Γ))
is computable in polynomial time. Otherwise it is #P-complete under count-
ing reductions.

Observe that there is an immediate parsimonious reduction from #Bal-Csp(Γ)
to #k-Ones(Γ). It therefore suffices to prove polynomial-time results only for
the problems k-Ones and #k-Ones, and hardness results for the problems
Bal-Csp and #Bal-Csp. The polynomial side of this theorem is rather easy to
prove. As suggested in [BK05] deciding the existence of a satisfying assignment
of an affine with width 2 formula that sets exactly k variables to 1 can be reduced
to solving an instance of the Unary-Subset-Sum problem. The input of this
last problem consists in a set A = {a1, . . . , an} of positive integers and an integer
B; the question is whether there exists a subset A′ ⊆ A such that the sum of the
elements in A′ is exactly B. This problem can be solved by examining w(i, L),
the number of subsets of {a1, . . . , ai} whose sum of elements is exactly L, for
i = 1, . . . , n and L = 1, . . . B. Since w(i + 1, L) = w(i, L) + w(i, L − ai+1),
the quantity we are interested in, w(n,B), can be computed dynamically, in
polynomial time when all the integers are encoded in unary. Therefore, if Γ
is affine with width 2, then #k-Ones(Γ) (and a fortiori #Bal-Csp(Γ)) is
computable in polynomial time (details are left out due to space restrictions). In
the following, in order to finish the proof of the theorem we focus on hardness
results for the problem Bal-Csp(Γ) (resp. #Bal-Csp(Γ)).

Non-uniform Boolean CSPs with Cardinality Constraint 113

3 The Weak Base Method

We now introduce the algebraic tools that our proof relies on. For more back-
ground on these notions, see [SS08].

Definition 3.1. Let Γ be a set of logical relations.

– 〈Γ 〉 is the set of relations which can be expressed as a formula of the form
∃x1 . . .∃xkϕ, where ϕ is a (Γ ∪ {=})-formula as defined above in which
(among others) the variables x1, . . . , xk appear.

– 〈Γ 〉� is the set of relations which can be expressed as a Γ ∪ {=}-formula.
– 〈Γ 〉�, �= is the set of relations which can be expressed as a Γ -formula.

Let Γ1 ⊆ 〈Γ2〉. Then a Γ1-formula can be transformed into a satisfiability-
equivalent Γ2-formula. Thus, it has been proved that Csp(Γ1) can be reduced
in logarithmic space to Csp(Γ2) (see [Jea98, ABI+05]). Hence the complexity of
Csp(Γ) depends only on 〈Γ 〉. The set 〈Γ 〉 is a relational clone (or a co-clone)
Accordingly, in order to obtain a full complexity classification for the satisfia-
bility problem we only have to study the co-clones. Interestingly, there exists a
Galois correspondence between the lattice of Boolean relations (co-clones) and
the lattice of boolean functions (clones) (see [Gei68, BKKR69]). This one-to-one
correspondence is established through the operators Pol and Inv defined below.

Definition 3.2. Let f : {0, 1}m → {0, 1} and R ⊆ {0, 1}n. We say that f is a
polymorphism of R, if for all x1, . . . , xm ∈ R, where xi = (xi[1], xi[2], . . . , xi[n]),
we have

(
f
(
x1[1], · · · , xm[1]

)
, f
(
x1[2], · · · , xm[2]

)
, . . . , f

(
x1[n], · · · , xm[n]

))
∈ R.

If f ∈ Pol(R), we also say that R is closed under f , or f preserves R. For a set
of relations Γ we write Pol(Γ) to denote the set of all polymorphisms of Γ , i.e.,
the set of all Boolean functions that preserve every relation in Γ . For every Γ ,
Pol(Γ) is a clone, i.e., a set of Boolean functions that contains all projections and
is closed under composition. The smallest clone containing a set B of Boolean
functions will be denoted by [B] in the sequel (B is also called a basis for [B]).
For a set B of Boolean functions, let Inv(B) denote the set of all invariants of
B, i.e., the set of all Boolean relations that are preserved by every function in B.
It can be observed that each Inv(B) is a relational clone. Thus, we may compile
a full list of co-clones from the list of clones obtained by Emil Post in [Pos41].
The list of all Boolean clones with finite bases can be found e.g. in [BCRV03].
A compilation of all co-clones with simple bases is given in [BRSV05]. In the
following, when discussing about bases for clones or co-clones we implicitly refer
to these two lists.

Unfortunately, this Galois connection cannot help a priori for the study of
CSPs with cardinality constraint. Indeed, existential variables and equality con-
straints that may occur when transforming a Γ1-formula into a satisfiability-
equivalent Γ2-formula are problematic, as they can change the set of solutions.
Therefore for these problems we have to consider the restricted closure 〈.〉�, �=,
which allows to translate formulas into equivalent ones.

114 N. Creignou, H. Schnoor, and I. Schnoor

Proposition 3.3. Let Γ1 and Γ2 be constraint languages with Γ1 ⊆ 〈Γ2〉�, �=.
Then

– Bal-Csp(Γ1) ≤log
m Bal-Csp(Γ2) and k-Ones(Γ1) ≤log

m k-Ones(Γ2),
– #Bal-Csp(Γ1) ≤log

! #Bal-Csp(Γ2) and #k-Ones(Γ1) ≤log
! #k-Ones(Γ2),

where ≤log
m denotes a logspace many-one reduction and ≤log

! a parsimonious (i.e.,
preserving the number of witnesses) logspace many-one reduction.

The main strategy to prove that for some class of constraint languages, the
problems we consider are NP- or #P-hard is to prove that for every language
Γ in this class, 〈Γ 〉�, �= contains a language Γ ′ for which the problem is hard.
Proposition 3.3 then implies the result for every language in the class. In [SS08],
Schnoor and Schnoor established techniques that allow to prove results in this
direction. We briefly explain the main definitions and results.

The main tool is the notion of a weak base. Note that in that paper, a different
(but proven to be equivalent) definition was given.

Definition 3.4 ([SS08]). Let C be a clone. A weak base for Inv(C) is a con-
straint language Γ such that: (i) Pol(Γ) = C, (ii) for any constraint language Γ ′

with Pol(Γ ′) = C, it follows that Γ ⊆ 〈Γ ′〉�.

Since for the balanced satisfiability problem, we need to consider the stricter
closure operator 〈.〉�, �=, we need an additional technical notion. In the following,
we consider relations as matrices, where the rows of the matrix correspond to the
tuples of the relation (technically, for uniqueness, we need to fix an order on the
rows, for example lexicographical ordering). An n-ary relation R is irredundant
if R, considered as a matrix, does not contain two identical columns, and if
there is no i, 1 ≤ i ≤ n, such that the value of the ith variable is unconstrained.
A set of relations Γ is irredundant if every relation in Γ is irredundant. For
representing irredundant relations, equality clauses are not needed. As a corollary
the following proposition holds:

Proposition 3.5 ([SS08]). Let Γ be an irredundant weak base for a co-clone
Inv(C). If Γ ′ is a constraint language with Pol(Γ ′) = C, then Γ ⊆ 〈Γ ′〉�, �=.

We now explain how to construct weak bases. For a set of Boolean functions F ,
the F-closure of a relation R, denoted by F(R), is the minimal superset of R
that is closed under every function from F . This relation can be obtained from
R by repeatedly applying all functions from F , and adding the result to R. We
say R is an F-core of F(R).

Definition 3.6 ([SS08]). Let C be a clone. Then Inv(C) has core-size s if there
is a relation R such that 〈R〉 = Inv(C) and R has a C-core with cardinality s.

The relation COLSs is defined to be the 2s-ary relation of cardinality s such that
the columns of COLSs contain every possible s-ary binary vector (the order is
irrelevant, we fix an arbitrary one in order for the notion to be well-defined). In
the following by COLSs(l,−) we denote the l-th row vector of COLSs, and by
COLSs(−, k) its k-th column vector.

Non-uniform Boolean CSPs with Cardinality Constraint 115

Theorem 3.7 ([SS08]). Let C be a clone. Suppose that Inv(C) has core-size s.
Then the relation C (COLSs) is a weak base of Inv(C).

With this theorem one can construct weak bases for all Boolean co-clones for
which we know finite bases (since finite bases give us core-sizes). This fits our
purpose. Indeed, there are only 8 clones that have no finite basis, namely S0, S01,
S02, S00 and S1, S11, S12, S10. These clones C are exactly the ones for which there
exists no finite constraint language Γ such that 〈Γ 〉 = Inv(C) (see [BRSV05]),
and therefore will not be involved in our study. An explicit example for the
construction of Theorem 3.7 is given in the proof of Theorem 4.8.

4 Proofs of Hardness Results

4.1 Another Statement of the Main Result

As discussed above the Galois correspondence between relational co-clones and
Post’s classes cannot help a priori for our problems. However, it turns out
that the complexity classification, when achieved, obeys the border among co-
clones (see Figure 1), and so the Galois connection holds a posteriori. The
clones corresponding to our polynomial-time cases are highlighted in Figure 1.

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

N2

N

I

I1 I0

I2

Fig. 1. Post’s lattice

Corollary 4.1. Let Γ be a con-
straint language.

– If Γ ⊆ Inv(D1), then
Bal-Csp(Γ) (respectively,
k-Ones(Γ)) is decidable in
polynomial time. Otherwise
it is NP-complete.

– If Γ ⊆ Inv(D1), then
#Bal-Csp(Γ)(respectively,
#k-Ones(Γ)) is computable
in polynomial time. Other-
wise it is #P-complete un-
der counting reductions.

Our main theorem can be refor-
mulated as above since it is well
known that Inv(D1) is the set
of all affine with width two rela-
tions (see e.g., [CKZ08]). Thus,
Theorem 2.2 will be proved by
an exhaustive examination of
the clones in Post’s lattice. As
mentioned before, it suffices to
prove hardness results for the balanced versions of our problems. These results
are organized as follows: In Section 4.2, we prove hardness for a set of individual

116 N. Creignou, H. Schnoor, and I. Schnoor

relations. Section 4.3 uses these results and our algebraic techniques to extend
these results to entire co-clones, without the need to construct a concrete weak
base for these. Section 4.4 then contains the results for the remaining co-clones,
where the proof requires to study individual weak bases.

4.2 Some Basic Hardness Results

First we will take advantage of the symmetry of Post’s lattice. The dual relation
of a relation R, is given by dual(R) = {(1− a1, . . . , 1− an) : (a1, . . . , an) ∈ R}.
If Γ is a set of relations, then dual(Γ) = {dual(R) : R ∈ Γ}.

Proposition 4.2. For any constraint language Γ , #Bal-Csp(dual(Γ)) ≤log
!

#Bal-Csp(Γ).

In the following we will use specific relations: C0 = {0}, C1 = {1}, 1-in-3 =
{001, 010, 100}, Imp = {00, 01, 11}, Or2 = {01, 10, 11}, Odd2 = {01, 10} and
Odd3 = {001, 010, 100, 111}. Now, we establish hardness results which will serve
as base problems for the following hardness proofs.

Lemma 4.3. Bal-Csp(Imp), Bal-Csp(Or2), and Bal-Csp(Odd3) are NP-
hard. Their corresponding counting problems are #P-hard under counting re-
ductions.

Proof. Hardness of Bal-Csp(Or2) and Bal-Csp(Odd3) was shown in [BK05].
In order to prove NP-hardness of Bal-Csp(Imp), we consider the following NP-
complete problem (see [GJ79]).

Problem: k-Closure

Input: a directed graph G = (V,E) and k ∈ N
Question: Is there a V ′ ⊆ V such that |V ′| = k and for all (u, v) ∈ E

it holds u ∈ V ′ or v /∈ V ′?

We show k-Closure ≤log
m Bal-Csp(Imp). Let G = (V,E) be a directed

graph and k ∈ N. Let n = |V |. We construct an {Imp}-formula with variables
X = V ∪ {t1, . . . , tk, f1, . . . , fn−k}, where t1, . . . , tk, f1, . . . , fn−k are all distinct
variables and not from V . We set

ϕ =
∧

(u,v)∈E
Imp(u, v) ∧

k∧
i=1

∧
x∈X

Imp(x, ti) ∧
n−k∧
i=1

∧
x∈X

Imp(fi, x).

Observe that a balanced solution for ϕ sets all ti’s to 1 and all fi’s to 0. Now
it is easy to check that ϕ has a balanced solution if and only if G has a k-closure
(the balanced assignment is obtained by assigning 0 to each v ∈ V ′).

We now study the counting problems. For #P-hardness of #Bal-Csp(Odd3)
it suffices to show #Csp(1-in-3) ≤log

! #Bal-Csp(Odd3), because #Csp(1-in-3)
is hard for #P [CH96]. Note that, since Csp(1-in-3) is an NP-complete problem
[Sch78], the following reduction is also an alternative proof for the NP-hardness

Non-uniform Boolean CSPs with Cardinality Constraint 117

of Bal-Csp(Odd3). Let ϕ =
n∧

i=1

1-in-3(xi, yi, zi). We construct an Odd3-formula

using additionally to the variables appearing in ϕ the following new and distinct
variables: ai, bi, ci, di for every 1 ≤ i ≤ n; ti, f i for every 1 ≤ i ≤ k where
k = 2 |Var(ϕ)| + 4n; and v′ for every v ∈ ϕ. We set:

ϕ′ =
n∧

i=1

{
Odd3(xi, yi, zi) ∧Odd3(di, di, di)∧

Odd3(di, xi, ai) ∧Odd3(di, yi, bi) ∧Odd3(di, zi, ci) }

∧
k∧

i=1

Odd3(ti, ti, ti) ∧Odd3(ti, f i, f1) ∧
∧

v∈Var(ϕ)

Odd3(f1, v, v′).

Observe that |Var(ϕ′)| = 3k. If I is a satisfying assignment for ϕ′, then
necessarily I(di) = I(ti) = 1 and I(ai) = I(xi), I(bi) = I(yi), I(ci) = I(zi)
and I(f i) = (f1). If in addition I is balanced, then I(f i) = 0, I(v′) = 1 −
I(v) for all variable v in Var(ϕ), and for no clause Odd3(xi, yi, zi) one can
have I(xi) = I(yi) = I(zi) = 1 (otherwise I will set more than 2n vari-
ables to 1 among the ai, bi, ci, di). As a consequence I satisfies the constraint
1-in-3(xi, yi, zi). From these observations, one can check that there is a one-to-
one correspondence between solutions of ϕ and balanced solutions of ϕ′. So we
showed #Csp(1-in-3) ≤log

! #Bal-Csp(Odd3), which completes the proof.
One can show hardness of #Bal-Csp(Imp) and #Bal-Csp(Or2) by proving

#Csp(Imp) ≤log
! #Bal-Csp(Imp) and #Csp(Or2) ≤log

! #Bal-Csp(Or2). The
results then follow since #Csp(Imp) and #Csp(Or2) were shown to be #P-
complete in [CH96]. �

4.3 Hardness Results with Unified Proofs

Now we start to look at constraint languages. The first result covers all constraint
languages that generate Inv(M), Inv(V), Inv(E), or Inv(I). One can show that
for these Γ , Imp ∈ 〈Γ 〉�, �=. Hardness for decision and counting now follows from
Lemma 4.3 and Proposition 3.3.

Proposition 4.4. Let Γ be a constraint language such that 〈Γ 〉 ⊆ Inv(I) and
〈Γ 〉 � Inv(N2). Then Bal-Csp(Γ) is NP-hard and #Bal-Csp(Γ) is #P-hard
under counting reductions.

In the rest of this section we work with weak bases, however we do not need
to compute any concrete weak base and we see that weak bases for the above
co-clones share some properties.

The next theorem deals with constraint languages that generate one of the
following co-clones: Inv(M1), Inv(V1), Inv(E1), Inv(Sm

01).

118 N. Creignou, H. Schnoor, and I. Schnoor

Theorem 4.5. Let Γ be a constraint language such that Inv(M1) ⊆ 〈Γ 〉 �
Inv(I1). Then Bal-Csp(Γ) is NP-hard and #Bal-Csp(Γ) is #P-hard under
counting reductions.

Proof. Let T-Imp be the relation C1× Imp. First, we prove Bal-Csp(Imp) ≤log
!

Bal-Csp(T-Imp). Let ϕ =
n∧

i=1

Imp(xi, yi). Let t and f be new and distinct

variables. We set ϕ′ =
n∧

i=1

T-Imp(t, xi, yi)∧T-Imp(t, t, t)∧
∧

x∈Var(ϕ)

T-Imp(t, f, x).

If I is a satisfying assignment of ϕ′, then I(t) = 1. If in addition I is balanced,
then I(f) = 0. Hence, there is a one-to-one correspondence between balanced
solutions of ϕ and balanced solutions of ϕ′. Second, we will show that T-Imp ∈
〈Γ 〉�, �=. The proposition then follows from Lemma 4.3 and Proposition 3.3.

Let s be a core-size of 〈Γ 〉 and let R = Pol(Γ)(COLSs). According to Theo-
rem 3.7 it holds that {R} is a weak base of 〈Γ 〉 which implies 〈R〉� ⊆ 〈Γ 〉�. It is
enough to show that T-Imp ∈ 〈R〉�, then, since T-Imp is irredundant, it follows
T-Imp ∈ 〈Γ 〉�, �=. We distinguish two cases: 〈Γ 〉 ⊆ Inv(V1) and 〈Γ 〉 � Inv(V1).
Let us first suppose that 〈Γ 〉 ⊆ Inv(V1). Let S be the Boolean relation defined by

S(t, x, y) ≡ R(x, y, . . . , y︸ ︷︷ ︸
2s−1−1

, t, . . . , t︸ ︷︷ ︸
2s−1

).

We show S = T-Imp. Since 〈Γ 〉 ⊆ Inv(I1), it holds that c1 ∈ Pol(Γ) and
therefore (1, . . . , 1) ∈ R and (1, 1, 1) ∈ S. Because ∨ ∈ V1 ⊆ Pol(Γ) it fol-
lows that the nested application of ∨ to all tuples of COLSs is in R, i.e.,
(0, 1, . . . , 1) = COLSs(1,−) ∨ · · · ∨ COLSs(s,−) ∈ R. This means (1, 0, 1) ∈ S.
Since (0, . . . , 0︸ ︷︷ ︸

2s−1

, 1, . . . , 1︸ ︷︷ ︸
2s−1

) = COLSs(1,−) ∈ R, it holds that (1, 0, 0) ∈ S, hence

T-Imp ⊆ S.
Note that Pol(R) contains only functions which are both monotone2 and 1-

reproducing3 because Pol(R) ⊆ M1, and M1 contains exactly the functions with
these two properties. Since COLSs(−, 2s) = (1, . . . , 1) and since all polymor-
phisms of Γ are 1-reproducing, it follows R(−, 2s) = (1, . . . , 1) and therefore it
holds for all a, b ∈ {0, 1} that (0, a, b) /∈ S.

Finally assume (1, 1, 0) ∈ S. Then u = (1, 0, . . . , 0︸ ︷︷ ︸
2s−1−1

, 1, . . . , 1︸ ︷︷ ︸
2s−1

) ∈ R. By construc-

tion of R it follows that there is an s-ary Boolean function g ∈ Pol(Γ) such that
g(COLSs(1,−), . . . ,COLSs(s,−)) = u. It holds that g is not monotone because
g(0, . . . , 0) = u[1] = 1 and g(0, . . . , 0, 1) = u[2] = 0. Since every function from
Pol(Γ) is monotone, this is a contradiction. Hence T-Imp = S and therefore
T-Imp ∈ 〈R〉� ⊆ 〈Γ 〉�.

2 An n-ary Boolean function f is called monotone if for all α, β ∈ {0, 1}n holds: If
α ≤ β then f(α) ≤ f(β).

3 f is called 1-reproducing if f(1, . . . , 1) = 1.

Non-uniform Boolean CSPs with Cardinality Constraint 119

The case where 〈Γ 〉 � Inv(V1) can be handled in a similar way in considering
the Boolean relation defined by S(t, x, y) ≡ R(x, . . . , x︸ ︷︷ ︸

2s−1

, y, . . . , y︸ ︷︷ ︸
2s−1−1

, t). �

We look at the co-clones Inv(M2), Inv(V2), Inv(E2), and Inv(Sm
00) for m ≥ 2

next.

Theorem 4.6. Let Γ be a constraint language such that Inv(M2) ⊆ 〈Γ 〉 ⊆
Inv(V2). Then Bal-Csp(Γ) is NP-hard and #Bal-Csp(Γ) is #P-hard under
counting reductions.

Proof. The proof is similar to the one above. Consider the relation TF-Imp =
C1×C0× Imp. Similarly as in Theorem 4.5 we prove that #Bal-Csp(Imp) ≤log

!

#Bal-Csp(TF-Imp) and show that TF-Imp ∈ 〈Γ 〉�, �=. For this latter part,
suppose that s ≥ 2 is a core-size of 〈Γ 〉. Let R = Pol(Γ)(COLSs), the arity of
R is n = 2s. One can check that the Boolean relation defined by S(t, f, x, y) =
R(f, x, . . . , x︸ ︷︷ ︸

n
4−1

, y, . . . , y︸ ︷︷ ︸
n
4

, t, . . . , t︸ ︷︷ ︸
n
2

) verifies S = TF-Imp. �

The following theorem covers the cases Inv(Sm
0) and Inv(Sm

02) for all m ≥ 2. The
proof follows the same lines as the proofs for Theorems 4.5 and 4.6.

Theorem 4.7. Let Γ be a constraint language such that 〈Γ 〉 = Inv(Sm
02) or

〈Γ 〉 = Inv(Sm
0) for some natural number m ≥ 2. Then Bal-Csp(Γ) is NP-hard

and #Bal-Csp(Γ) is #P-hard under counting reductions.

4.4 Hardness Results with Non-unified Proofs

In this section we work with concrete irredundant weak bases in all proofs.

Theorem 4.8. Let Γ be a constraint language such that 〈Γ 〉 = Inv(D2). Then
Bal-Csp(Γ) isNP-hardand#Bal-Csp(Γ) is#P-hardunder counting reductions.

Proof. Let maj be the ternary majority function defined by maj (a, b, c) = 1 if
and only if a + b + c ≥ 2. It holds that [{maj}] = D2 and that 3 is a core-size of
Inv(D2). It follows from Theorem 3.7 that R = maj (COLS3) is a weak base of
Inv(D2). It can be verified that

R =

⎛⎜⎜⎝
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞⎟⎟⎠
Note that the second row is generated by the coordinatewise application of maj
to the other three rows, which form COLS3. Clearly, R is irredundant. According
to Proposition 3.5 it holds 〈R〉�, �= ⊆ 〈Γ 〉�, �=.

We define Boolean relations S and T in the following way:

S(t, f, x, y) = R(f, f, x, x, y, y, t, t), T (t, f, v, w, x, y) = R(f, f, v, w, y, x, t, t).

120 N. Creignou, H. Schnoor, and I. Schnoor

It follows {S, T } ⊆ 〈R〉�, �= ⊆ 〈Γ 〉�, �=. Therefore, according to Proposition 3.3, it
holds #Bal-Csp({S, T }) ≤log

! #Bal-Csp(Γ).
The following equivalences can be verified:

S(t, f, x, y) ≡ C1(t) ∧ C0(f) ∧Odd2(x, y)

T (t, f, v, w, x, y) ≡ C1(t) ∧ C0(f) ∧ Imp(v, w) ∧Odd2(v, x) ∧Odd2(w, y)

We show that #Bal-Csp(Imp) ≤log
! #Bal-Csp({S, T }). Let ϕ =

n∧
i=1

Imp(xi, yi)

be an Imp-formula. We construct an {S, T }-formula: let t, f and z′, z′′ for every
z ∈ Var(ϕ) be new and distinct variables. We set ϕ′ =

∧n
i=1 T (t, f, xi, yi, x

′
i, y
′
i)∧

S(t, f, x′i, x
′′
i) ∧ S(t, f, y′i, y

′′
i), then

ϕ′ ≡ ϕ ∧
n∧

i=1

Imp(xi, yi) ∧
∧
z∈ϕ

Odd2(z, z′) ∧Odd2(z′, z′′) ∧ C1(t) ∧ C0(f)

One can check that there is a one-to-one correspondence between balanced
solutions of ϕ and the balanced solutions of ϕ′. Hence,

#Bal-Csp(Imp) ≤log
! #Bal-Csp({S, T }) ≤log

! #Bal-Csp(Γ).

Due to Lemma 4.3 this completes the proof. �

We now cover the cases Inv(L), Inv(L1), Inv(L2) and Inv(L3).

Theorem 4.9. Let Γ be a constraint language such that 〈Γ 〉 ∈ {Inv(L), Inv(L1),
Inv(L2), Inv(L3)}. Then Bal-Csp(Γ) is NP-hard and #Bal-Csp(Γ) is #P-hard
under counting reductions.

Proof. We make a case distinction. The proofs in the different cases are very
similar. We give here as an example the proof in the case 〈Γ 〉 = Inv(L). The
co-clone Inv(L) has 2 as a core-size, therefore R = L(COLS2) is weak base of

Inv(L). It can be verified that R = Even4 = {(a1, a2, a3, a4) :
4∑

i=1

ai ≡ 0(2)}.

Since Even4 is obviously irredundant it follows from Proposition 3.5 that
Even4 ∈ 〈Γ 〉�, �=. Hence #Bal-Csp(Even4) ≤log

! #Bal-Csp(Γ) due to Proposi-
tion 3.3. Now we show there is a counting reduction from #Bal-Csp(Odd3) to
#Bal-Csp(Even4), thus completing the proof. Let ϕ =

∧n
i=1 Odd3(xi, yi, zi) be

an Odd3-formula. Let k = |Var(ϕ)| and let t, t1, . . . , tk, f, f1, . . . , fk be new and
distinct variables. We set:

ϕ′ =
n∧

i=1

Even4(t, xi, yi, zi) ∧
k∧
i1

Even4(t, t, t, ti) ∧ Even4(f, f, f, fi).

It can be verified that ϕ′ has exactly twice as many balanced solutions as ϕ. �

Non-uniform Boolean CSPs with Cardinality Constraint 121

Finally, only four co-clones remain to be examined.

Theorem 4.10. Let Γ be a constraint language with 〈Γ 〉 ∈ {Inv(I2), Inv(I0),
Inv(N), Inv(N2)}. Then Bal-Csp(Γ) is NP-complete and #Bal-Csp(Γ) is com-
plete for #P under counting reductions.

Proof. We make a case distinction. The proofs again are very similar, but not
obviously unifiable. As an example, let us deal with the case 〈Γ 〉 = Inv(I2).

The co-clone Inv(I2) has 3 as a core-size, therefore R = I2(COLS3) is a weak
base for Inv(I2) according to Theorem 3.7. Because [{id}] = I2, it holds that
R = COLS3. That means

R =

⎛⎝0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞⎠ .

It can be verified that the following equivalence is true:
R(x1, x2, x3, x4, x5, x6, x7, x8) ≡ 1-in-3(x2, x3, x5) ∧ C0(x1) ∧ C1(x8)

∧Odd2(x2, x7) ∧Odd2(x3, x6) ∧Odd2(x4, x5)

Since R is irredundant, it follows R ∈ 〈Γ 〉�, �= from Proposition 3.5. Therefore
we have #Bal-Csp(R) ≤log

! #Bal-Csp(Γ) due to Proposition 3.3.
It is known that Csp(1-in-3) is NP-hard [Sch78] and #Csp(1-in-3) is hard for

#P under parsimonious reductions [CH96]. Hence, showing #Csp(1-in-3) ≤log
!

#Bal-Csp(R) completes the proof. Let ϕ =
∧n

i=1 1-in-3(xi, yi, zi), and let f ,
t and v′ for every v ∈ Var(ϕ) be new and distinct variables. We define the
R-formula ϕ′ =

∧n
i=1 R(f, xi, yi, z

′
i, zi, y

′
i, x
′
i, t). According to the above it holds

ϕ′ ≡ ϕ∧
∧

v∈Var(ϕ) Odd2(v, v′)∧C0(f)∧C1(t). Obviously every balanced solution
of ϕ′ satisfies ϕ as well and every solution of ϕ can be extended uniquely to a
balanced solution for ϕ′, thus completing the proof. �

5 Conclusion

We have obtained complete complexity classifications for constraint satisfaction
problems that mix local constraints with a global one. We have demonstrated
that the weak base method is indeed a useful tool in order to get complexity
results for these hybrid CSPs. Our contribution is twofold. On the one hand, our
results represent a first encouraging step in the study of global constraints in the
framework of non-uniform CSPs. A systematic treatment of global constraints
will require an appropriate framework and to develop adequate algebraic tools.

It is somewhat surprising that for the two global constraints considered in
this paper, namely balanced solutions and solutions with a variable number
of 1s, we achieve the same complexity classification. This is unexpected, since
being able to specify the number of ones required in the solution as part of the
input seems to be a much stronger requirement than only to demand that the
solutions are balanced. The complexity remains the same even if we consider

122 N. Creignou, H. Schnoor, and I. Schnoor

the counting versions of these problems. This suggests that a comparison of the
expressive power and related complexity of different global constraints might be
very interesting.

On the other hand, our work shows an application of a new Galois connection
for studying the complexity of constraint satisfaction problems. This is interest-
ing on its own. This illuminates the potential of this new Galois connection and
hopefully will popularize it.

Finally, as we said in the introduction, balanced assignments arise naturally
in many optimization problems. For this reason, as discussed in [BK05], it is
natural to investigate the approximability of the balanced optimization problem,
Bal-Max-Csp(Γ). The classification of the approximability of this problem is
still an open question. We believe that if such a non-trivial complete classification
can be achieved, then it will not follow Post’s lattice (as it is already proved for
the Max-Csp(Γ) problem with no balance requirement, see [Cre95, CV08]).

Acknowledgment

We thank the anonymous referees for helpful comments and corrections.

References

[ABI+05] Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The
complexity of satisfiability problems: Refining Schaefer’s theorem. In: Je-
drzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp.
71–82. Springer, Heidelberg (2005)

[BCRV03] Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean
blocks, part I: Post’s lattice with applications to complexity theory. ACM-
SIGACT Newsletter 34(4), 38–52 (2003)

[BH05] Bauland, M., Hemaspaandra, E.: Isomorphic implication. In: Jedrzejowicz,
J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 119–130.
Springer, Heidelberg (2005); Theory of Computing Systems (to appear)

[BHM08] Bläser, M., Heynen, T., Manthey, B.: Adding cardinality constraints to
integer programs with applications to maximum satisfiability. Information
Processing Letters 105, 194–198 (2008)

[BHRV02] Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: Equivalence and
isomorphism for Boolean constraint satisfaction. In: Bradfield, J.C. (ed.)
CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 412–426. Springer,
Heidelberg (2002)

[BHRV04] Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: The complexity of
Boolean constraint isomorphism. In: Diekert, V., Habib, M. (eds.) STACS
2004. LNCS, vol. 2996, pp. 164–175. Springer, Heidelberg (2004)

[BK05] Bazgan, C., Karpinski, M.: On the complexity of global constraint satis-
faction. In: Deng, X., Du, D. (eds.) ISAAC 2005. LNCS, vol. 3827, pp.
624–633. Springer, Heidelberg (2005)

[BKKR69] Bodnarchuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois
theory for Post algebras I, II. Cybernetics 5, 243–252, 531–539 (1969)

Non-uniform Boolean CSPs with Cardinality Constraint 123

[BRSV05] Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-
clones. Information Processing Letters 96, 59–66 (2005)

[CH96] Creignou, N., Hermann, M.: Complexity of generalized satisfiability count-
ing problems. Information and Computation 125, 1–12 (1996)

[CKZ08] Creignou, N., Kolaitis, P., Zanuttini, B.: Structure identification for
Boolean relations and plain bases for co-clones. Journal of Computer and
System Sciences (in press, 2008)

[Cre95] Creignou, N.: A dichotomy theorem for maximum generalized satisfiability
problems. Journal of Computer and System Sciences 51, 511–522 (1995)

[CV08] Creignou, N., Vollmer, H.: Boolean constraint satisfaction problems: when
does Post’s lattice help? In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.)
Complexity of Constraints. Springer, Heidelberg (to appear, 2008)

[CZ06] Creignou, N., Zanuttini, B.: A complete classification of the complexity
of propositional abduction. SIAM Journal on Computing 36(1), 207–229
(2006)

[Gei68] Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27(2),
228–250 (1968)

[GJ79] Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the
Theory of NP-Completeness. Freeman, New York (1979)

[Jea98] Jeavons, P.G.: On the algebraic structure of combinatorial problems. The-
oretical Computer Science 200, 185–204 (1998)

[KK03] Kirousis, L.M., Kolaitis, P.G.: The complexity of minimal satisfiability
problems. Information and Computation 187(1), 20–39 (2003)

[KSTW01] Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximabil-
ity of constraint satisfaction problems. SIAM Journal on Computing 30,
1863–1920 (2001)

[Mar05] Marx, D.: Parameterized complexity of constraint satisfaction problems.
Computational Complexity 14(2), 153–183 (2005)

[Pos41] Post, E.L.: The two-valued iterative systems of mathematical logic. Annals
of Mathematical Studies 5, 1–122 (1941)

[Rom81] Romov, B.A.: The algebras of partial functions and their invariants. Cy-
bernetics and Systems Analysis 17(2), 157–167 (1981)

[RV03] Reith, S., Vollmer, H.: Optimal satisfiability for propositional calculi and
constraint satisfaction problems. Information and Computation 186(1),
1–19 (2003)

[Sch78] Schaefer, T.J.: The complexity of satisfiability problems. In: Proccedings
10th Symposium on Theory of Computing, pp. 216–226. ACM Press, New
York (1978)

[SS08] Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfac-
tion problems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Com-
plexity of Constraints. Springer, Heidelberg (to appear, 2008)

[Svi01] Sviridenko, M.I.: Best possible approximation algorithm for MAX-SAT
with cardinality constraint. Algorithmica 30(3), 398–405 (2001)

Fractional Collections with Cardinality Bounds,

and Mixed Linear Arithmetic with Stars

Ruzica Piskac and Viktor Kuncak

LARA - I&C - EPFL
emails: firstname.lastname@epfl.ch

INR 318, Station 15, CH-1015 Lausanne, Switzerland

Abstract. We present decision procedures for logical constraints involv-
ing collections such as sets, multisets, and fuzzy sets. Element member-
ship in our collections is given by characteristic functions from a finite
universe (of unknown size) to a user-defined subset of rational numbers.
Our logic supports standard operators such as union, intersection, dif-
ference, or any operation defined pointwise using mixed linear integer-
rational arithmetic. Moreover, it supports the notion of cardinality of
the collection, defined as the sum of occurrences of all elements. Decid-
ing formulas in such logic has applications in software verification.

Our decision procedure reduces satisfiability of formulas with collec-
tions to satisfiability of formulas in an extension of mixed linear integer-
rational arithmetic with a “star” operator. The star operator computes
the integer cone (closure under vector addition) of the solution set of
a given formula. We give an algorithm for eliminating the star opera-
tor, which reduces the problem to mixed linear integer-rational arith-
metic. Star elimination combines naturally with quantifier elimination
for mixed integer-rational arithmetic. Our decidability result subsumes
previous special cases for sets and multisets. The extension with star is
interesting in its own right because it can encode reachability problems
for a simple class of transition systems.

Keywords: verification and program analysis, sets, multisets, fuzzy sets,
cardinality operator, mixed linear integer-rational arithmetic

1 Introduction

In this paper we show decidability of a logic for reasoning about collections of
elements such as sets, multisets (bags), and fuzzy sets. We present a unified
logic that can express all these kinds of collections and supports the cardinality
operator on collections.

Our approach represents a collection of elements using its characteristic func-
tion f : E → R. Inspired by applications in software verification [9], we assume
that the domain E is a finite but of unknown size. The range R depends on the
kind of the collection: for sets, R = {0, 1}; for multisets, R = {0, 1, 2, . . . , }; for
fuzzy sets, R is the interval [0, 1] of rational numbers, denoted Q[0,1]. With this
representation, operations and relations on collections such as union, difference,

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 124–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fractional Collections with Cardinality Bounds 125

and subset are all expressed using operations of linear arithmetic. For example,
the condition A ∪B = C becomes ∀e∈E. max(A(e), B(e)) = C(e), a definition
that applies whether A,B are sets, multisets, or fuzzy sets. A distinguishing
feature of our constraints, compared to many other approaches for reasoning
about functions E → R, e.g. [2, Chapter 11], is the presence of the cardinality
operator, defined by |A| =

∑
e∈E A(e). The resulting language freely combines

the uses linear arithmetic at two levels: the level of individual elements, as in
the subformula max(A(e), B(e)) = C(e), and the level of sizes of collections,
as in the formula |A ∪ B| + |A ∩ B| = |A| + |B|. The language subsumes con-
straints such as quantifier-free Boolean Algebra with Presburger Arithmetic [9]
and therefore contains both set algebra and integer linear arithmetic. It also
subsumes decidable constraints on multisets with cardinality bounds [12, 13].

The contribution of this paper is the decidability of constraints on collections
where the range R is the set Q of all rational numbers. Our constraints can
express the condition (∀e.int(A(e)) ∧A(e) ≥ 0) that the number of occurrences
A(e) for each element e is a non-negative integer number, so they subsume the
case R = {0, 1, 2, . . .} solved in [14, 13], which, in turn, subsumes the case of
sets [9]. Moreover, our constraints can express the condition ∀e.(0 ≤ A(e) ≤ 1),
which makes them appropriate for modelling fuzzy sets.

Analogously to [12], our decision procedure is based on a translation of a
formula with collections and cardinality constraints into a conjunction of a mixed
linear integer-rational arithmetic (MLIRA) formula and a new form of condition,
denoted u ∈ {v | F (v)}∗. Here the star operator denotes the integer conic hull
of a set of rational vectors [5]. Therefore, {v | F (v)}∗ denotes the closure under
vector addition of the set of solution vectors v of the MLIRA formula F . Formally,

u ∈ {v | F (v)}∗ ↔ ∃K ∈ {0, 1, 2, . . .}. ∃v1, . . . ,vK . u =
K∑
i=1

vi ∧
K∧
i=1

F (vi)

The star operator is interesting beyond its use in decidability of constraints on
collections. For example, it can express the reachability condition for a transi-
tion system whose state is an integer or rational vector and whose transitions
increment the vector by a solution of a given formula [13].

In contrast to the previous work [12, 13], the formula F in this paper is not
restricted to integers, but can be arbitrary MLIRA formula. Consequently, we are
faced with the problem of solving an extension of satisfiability of MLIRA formulas
with the conditions u ∈ {v | F (v)}∗ where F is an arbitrary MLIRA formula. To
solve this problem, we describe a finite and effectively computable representation
of the solution set S = {v | F (v)}. We use this representation to express the
condition u ∈ S∗ as a new MLIRA formula. This gives a “star elimination”
algorithm. As one consequence, we obtain a unified decision procedure for sets,
multisets, and fuzzy sets in the presence of the cardinality operator. As another
consequence, we obtain the decidability of the extension of quantified mixed
linear constraints [18] with stars.

126 R. Piskac and V. Kuncak

Examples of constraints on sets. For each set variable s we assume the
constraint ∀e.(s(e) = 0 ∨ s(e) = 1).

formula informal description

x /∈ content ∧ size = card content −→
(size = 0 ↔ content = ∅)

using invariant on size to
prove correctness of an
efficient emptiness check

x /∈ content ∧ size = card content −→
size + 1 = card({x} ∪ content)

maintaining correct size
when inserting fresh element
into set

size = card content ∧
size1 = card({x} ∪ content) −→

size1 ≤ size + 1

maintaining size after
inserting an element into set

content ⊆ alloc ∧
x1 /∈ alloc ∧
x2 /∈ alloc ∪ {x1} ∧
x3 /∈ alloc ∪ {x1} ∪ {x2} −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting
three objects into a
container data structure

content ⊆ alloc0 ∧ x1 /∈ alloc0 ∧
alloc0 ∪ {x1} ⊆ alloc1 ∧ x2 /∈ alloc1 ∧
alloc1 ∪ {x2} ⊆ alloc2 ∧ x3 /∈ alloc2 −→
card (content ∪ {x1} ∪ {x2} ∪ {x3}) =
card content + 3

allocating and inserting at
least three objects into a
container data structure

x ∈ C ∧ C1 = (C \ {x}) ∧
card(alloc1 \ alloc0) ≤ 1 ∧
card(alloc2 \ alloc1) ≤ cardC1 −→

card (alloc2 \ alloc0) ≤ cardC

bound on the number of
allocated objects in a
recursive function that
incorporates container C into
another container

Examples of constraints on multisets. For each multiset variable m we as-
sume the constraint ∀e.int(m(e))∧ A(e) ≥ 0.

size = card content ∧
size1 = card({x} � content) −→

size1 = size + 1

maintaining size after inserting an
element into multiset

Examples of constraints on fuzzy sets. For each fuzzy set variable f we
assume the constraint ∀e.0 ≤ f(e) ≤ 1.

2|A| �= 2|B| + 1 example formula valid over
multisets but invalid over fuzzy sets

(∀e.U(e) = 1)→|A ∩ B| + |A ∪ B| ≤ |A| + |U | example formula valid over fuzzy
sets but invalid over multisets

(∀e.C(e)=λA(e) + (1 − λ)B(e))→
A ∩ B ⊆ C ⊆ A ∪ B

basic property of convex
combination of fuzzy sets [19], for
any fixed constant λ ∈ [0, 1]

Fig. 1. Example constraints in our class

Fractional Collections with Cardinality Bounds 127

2 Examples

Figure 1 shows small example formulas over sets, multisets, and fuzzy sets that
are expressible in our logic. The examples for sets and multisets are based on
verification conditions from software verification [9]. The remaining examples
illustrate basic differences in valid formulas over multisets and fuzzy sets.

We illustrate our technique on one of the examples shown in Figure 1: we
show that formula ∀e.U(e) = 1 → |A ∩ B| + |A ∪ B| ≤ |A| + |U | is valid where
U,A, and B are fuzzy sets. To prove formula validity, we prove unsatisfiability
of its negation, conjoined with the constraints ensuring that the collections are
fuzzy sets:

∀e.U(e) = 1 ∧ |A|+ |U | < |A ∩B|+ |A ∪B| ∧
∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤ U(e) ≤ 1

We first reduce the formula to the normal form, as follows. We flatten the formula
by introducing fresh variables ni for each cardinality operator. The formula
reduces to:

n1 + n2 < n3 + n4 ∧ n1 = |A| ∧ n2 = |U | ∧ n3 = |A ∩B| ∧ n4 = |A ∪B| ∧
∀e.U(e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤ U(e) ≤ 1

We next apply the definition of the cardinality operator, |C| =
∑

e∈E C(e):

n1 + n2 < n3 + n4 ∧ n1 =
∑

e∈E A(e) ∧ n2 =
∑

e∈E U(e) ∧
n3 =

∑
e∈E(A ∩B)(e) ∧ n4 =

∑
e∈E(A ∪B)(e) ∧

∀e.U(e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤ U(e) ≤ 1

Operators ∪ and ∩ are defined pointwise using ite operator:
(C1 ∪ C2)(e) = max{C1(e), C2(e)} = ite(C1(e) ≤ C2(e), C2(e), C1(e))
(C1 ∩ C2)(e) = min{C1(e), C2(e)} = ite(C1(e) ≤ C2(e), C1(e), C2(e)),

where ite(A,B,C) is the standard if-then-else operator, denoting B when A is
true and C otherwise. Using these definitions, the example formula becomes:

n1 + n2 < n3 + n4 ∧ n1 =
∑
e∈E

A(e) ∧ n2 =
∑
e∈E

U(e) ∧

n3 =
∑
e∈E

ite(A(e) ≤ B(e), A(e), B(e)) ∧ n4 =
∑
e∈E

ite(A(e) ≤ B(e), B(e), A(e)) ∧

∀e.U(e) = 1 ∧ ∀e.0 ≤ A(e) ≤ 1 ∧ ∀e.0 ≤ B(e) ≤ 1 ∧ ∀e.0 ≤ U(e) ≤ 1

Using vectors of integers, we then group all the sums into one, and also group
all universally quantified constraints:

n1 + n2 < n3 + n4 ∧
(
n1, n2, n3, n4

)
=∑

e∈E

(
A(e), U(e), ite(A(e) ≤ B(e), A(e), B(e)), ite(A(e) ≤ B(e), B(e), A(e))

)
∧ ∀e.

(
U(e) = 1 ∧ 0 ≤ A(e) ≤ 1 ∧ 0 ≤ B(e) ≤ 1 ∧ 0 ≤ U(e) ≤ 1

)

128 R. Piskac and V. Kuncak

As we prove in Theorem 1 below, the last formula is equisatisfiable with

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) ∈
{
(
a, u, ite(a ≤ b, a, b), ite(a ≤ b, b, a)

)
| u = 1 ∧ 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1}∗

The subject of this paper are general techniques for solving such satisfiability
problems that contain a MLIRA formula and a star operator applied to another
MLIRA formula. We next illustrate some of the ideas of the general technique,
taking several shortcuts to keep the exposition brief.

Because the value of the variable u is determined (u = 1), we can simplify the
last formula to:

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) ∈ S∗

where S = {
(
a, 1, ite(a ≤ b, a, b), ite(a ≤ b, b, a)

)
| 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1}. By

case analysis on a ≤ b, we conclude S = S1 ∪ S2 for

S1 = {(a, 1, a, b) | 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ a ≤ b}
S2 = {(a, 1, b, a) | 0 ≤ a ≤ 1 ∧ 0 ≤ b ≤ 1 ∧ b < a}

This eliminates the ite expressions and we have:

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) ∈ (S1 ∪ S2)∗

By definition of star operator, the last condition is equivalent to

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) = (n1
1, n

1
2, n

1
3, n

1
4) + (n2

1, n
2
2, n

2
3, n

2
4) ∧

(n1
1, n

1
2, n

1
3, n

1
4) ∈ S∗1 ∧ (n2

1, n
2
2, n

2
3, n

2
4) ∈ S∗2

Let us characterize the condition (n1
1, n

1
2, n

1
3, n

1
4) ∈ S∗1 . LetK1 denote the number

of vectors in S1 whose sum is (n1
1, n

1
2, n

1
3, n

1
4). By definition of the star operator,

there are a1
1, . . . , a

1
K1

and b11, . . . , b
1
K1

such that 0 ≤ a1
i ≤ b1i ≤ 1 and

(n1
1, n

1
2, n

1
3, n

1
4) =

K1∑
i=1

(a1
i , 1, a

1
i , b

1
i)

We obtain that n1
1 = n1

3 =
∑K1

i=1 a
1
i = A1, n2 = K1, n4 =

∑K1
i=1 b

1
i = B1. The

other case for S2 is analogous and we derive (n2
1, n

2
2, n

2
3, n

2
4) = (A2,K2, B2, A2).

This way we eliminate the star operator and the example formula becomes:

n1 + n2 < n3 + n4 ∧ (n1, n2, n3, n4) = (A1,K1, A1, B1) + (A2,K2, B2, A2)

This formula further reduces to K1 +K2 < B1 +B2. If we apply the definitions
of Bi and properties of bji we obtain the following formula:

K1 +K2 <

K1∑
i=1

b1i +
K2∑
i=1

b2i ∧
K1∧
i=1

b1i ≤ 1 ∧
K2∧
i=1

b2i ≤ 1

In this case, it is easy to see that the resulting formula is contradictory. This
shows that the initial formula is valid over fuzzy sets. Our paper shows that, in

Fractional Collections with Cardinality Bounds 129

general, such formulas are equivalent to existentially quantified MLIRA formulas,
despite the fact that their initial formulation involves sums with parameters such
as K1 and K2. This is possible thanks to the special structure of the sets of
solutions of MLIRA formulas, which we describe building on results such as [7]
and the theory of linear programming.

Having seen the use of our method to prove formula validity, we illustrate its
use in producing counterexamples by showing that the original formula is invalid
over multisets. Restricting the range of each collection to integers and using the
same reduction, we derive formula

n1 + n2 < n3 + n4 ∧
(n1, n2, n3, n4) ∈ {

(
a, 1, ite(a ≤ b, a, b), ite(a ≤ b, b, a)

)
| a, b ∈ N}∗

Applying again a similar case analysis, we deduce K1 +K2 <
∑K1

i=1 b
1
i +
∑K2

i=1 b
2
i

where all bji ’s are non-negative integers. This formula is satisfiable, for example,
with a satisfying variable assignment K1 = 1, b11 = 2 and K2 = 0. The corre-
spondence of Theorem 1 then allows us to construct a multiset counterexample.
Because K2 = 0, no vector from S2 contributes to sum and we consider only
S1. Variable K1 denotes the number of elements of a domain set E, so we con-
sider the domain set E = {e1}. Multisets A,B and U are defined by A(e1) = 1,
B(e1) = 2, and U(e1) = 1. It can easily be verified that this is a counterexample
for validity of the formula over multisets.

3 From Collections to Stars

This section describes the translation from constraints on collections to con-
straints that use star operator. We first present the syntax of our constraints
and clarify the semantics of selected constructs (the semantics of the remaining
constructs can be derived from their translation into simpler ones).

We model each collection f as a function whose domain is a finite set E
of unknown size and whose range is the set of rational numbers. When the
constraints imply that the range of f is {0, 1}, then f models sets, when the
range of f are non-negative integers, then f denotes standard multisets (bags),
in which an element can occur multiple times. We call the number of occurrences
of an element e, denoted f(e), the multiplicity of an element. When the range
of f is restricted to be in interval [0, 1], then f describes a fuzzy set [19].

In addition to standard operations on collections (such as plus, union, in-
tersection, difference) we also allow the cardinality operator, defined as |f | =∑

e∈E f(e). This is the desired definition for sets and multisets and we believe
it is a natural notion for fuzzy sets over a finite universe E. Figure 2 shows a
context-free grammar of our formulas involving collections.

Semantics of some less commonly known operators is defined as follows:
ite(A,B,C) denotes the if-then-else expression, which evaluates to B when A is
true and evaluates to C when A is false. The setof(C) operator takes as an argu-
ment collection C and returns the set of all elements for which C(e) is positive.
To constrain a variable s to denote a set, use formula ∀e.s(e) = 0 ∨ s(e) = 1. To

130 R. Piskac and V. Kuncak

top-level formulas:
F ::= A | F ∧ F | ¬F
A ::= C=C | C ⊆ C | ∀e.Fin | Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
∑
Fin

(tin, . . . , tin)

tout ::= k | |C| | K | tout + tout | K · tout | �tout� | ite(Fout, tout, tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= f(e) | K | tin + tin | K · tin | �tin� | ite(Fin, tin, tin)
expressions about collections:

C ::= c | ∅ | C ∩ C | C ∪ C | C � C | C \ C | C \\C | setof(C)
terminals:

c - collection variable; e - index variable (fixed)
k - rational variable; K - rational constant

Fig. 2. Quantifier-Free Formulas about Collection with Cardinality Operator

constraint a variable m to denote a multiset, use formula (∀e.int(m(e)) ∧m(e) ≥
0). Here int(x) is a shorthand for +x, = x where +x, is the largest integer smaller
than or equal to x.

A decision procedure for checking satisfiability of the subclass of integer for-
mulas was described in [12]. The novelty of constraints in Figure 2 compared
to the language in [12] is the presence of the floor operator +x, and not only
integer but also rational constants. All variables in our current language are in-
terpreted over rationals, but any of them can be restricted to be integer using
the constraint int(x).

To reduce reasoning about collections to reasoning in linear arithmetic with
stars, we follow the idea from [12] and convert a formula to the sum normal form.

Definition 1. A formula is in sum normal form iff it is of the form

P ∧ (u1, . . . , un) =
∑
e∈E

(t1, . . . , tn) ∧ ∀e.F

where P is a quantifier-free linear arithmetic formula with no collection variables,
and where variables in t1, . . . , tn and F occur only as expressions of the form
c(e) for a collection variable c and e the fixed index variable.

Figure 3 summarizes the process of transforming formula into sum normal form.1

The previous example section illustrated this idea. As another example, consider
a negation of a formula that verifies the change in the size of a list after insertion
of an element: |x| = 1 ∧ |L - x| �= |L|+ 1. The sum normal form of this formula
is: k1 �= k2 + 1 ∧ (1, k1, k2) =

∑
e∈E(x(e), y(e), L(e)) ∧ ∀e.y(e) = L(e) + x(e).

1 Note that the part ∀e.F could be omitted from normal form definition and expressed
as an additional component of the sum. However, its use leads to somewhat simpler
constraints.

Fractional Collections with Cardinality Bounds 131

INPUT: formula in the syntax of Figure 2
OUTPUT: formula in sum normal form (Definition 1)

1. Flatten expressions that we wish to eliminate:
C[exp] � (x = exp ∧ C[x])

where exp is one of the expressions ∅, c1 ∪ c2, c1 ∩ c2, c1 � c2, c1 \ c2, setof(c1), |c1|,
and where the occurrence of exp is not already in a top-level conjunct of the form
x = exp or exp = x for some variable x.

2. Reduce colection relations to pointwise linear arithmetic conditions:
C[c0 = ∅] � C[∀e. c0(e) = 0]
C[c0 = c1 ∩ c2] � C[∀e. c0(e) = ite(c1(e) ≤ c2(e), c1(e), c2(e))]
C[c0 = c1 ∪ c2] � C[∀e. c0(e) = ite(c1(e) ≤ c2(e), c2(e), c1(e))]
C[c0 = c1 � c2] � C[∀e. c0(e) = c1(e) + c2(e)]
C[c0 = c1 \ c2] � C[∀e. c0(e) = ite(c1(e) ≤ c2(e), 0, c1(e) − c2(e))]
C[c0 = c1 \\ c2] � C[∀e. c0(e) = ite(c2(e) = 0, c1(e), 0)]
C[c0 = setof(c1)] � C[∀e. c0(e) = ite(0 < c1(e), 1, 0)]
C[c1 ⊆ c2] � C[∀e. (c1(e) ≤ c2(e))]
C[c1 = c2] � C[∀e. (c1(e) = c2(e))]

3. Express each cardinality operator using a sum:
C[|c|] � C[

∑
e∈E

c(e)]

4. Express negatively occurring pointwise definitions using the sum:
C[∀e.F] � C[0 =

∑
e∈E

ite(F (e), 0, 1)]

5. Flatten any sums that are not already top-level conjuncts:

C[(u1, . . . , un)=
∑
F

(t1, . . . , tn)] � (w1, . . . , wn)=
∑
F

(t1, . . . , tn)∧C[
n∧

i=1

ui=wi]

6. Eliminate conditions from sums:
C[
∑
F

(t1, . . . , tn)] � C[
∑

e∈E

(ite(F, t1, 0), . . . , ite(F, tn, 0))]

7. Group all sums into one:

P∧
q∧

i=1

(ui
1, . . . , u

i
ni

) =
∑

e∈E

(ti
1, . . . , t

i
ni

) �

P∧ (u1
1, . . . , u

1
n1 , . . . , uq

1, . . . , u
q
nq

) =
∑

e∈E

(t11, . . . , t
1
n1 , . . . , tq

1, . . . , t
q
nq

)

8. Group all pointwise defined operations into one:

P ∧
q∧

i=1

(∀e.Fi) � P ∧ ∀e.
q∧

i=1

Fi

Fig. 3. Algorithm for reducing collections formulas to sum normal form

Formulas in sum normal form contain only one top-level sum which ranges
over elements of an existentially quantified set E. To study such constraints we
introduce the star operator.

Definition 2 (Star operator, integer conic hull [5]). Let C be a set of
rational vectors. Define C∗ = {v1+. . .+vK | K ∈ {0, 1, 2, . . .},v1, . . . ,vK ∈ C}.

The fact that the bound variable K in Definition 2 ranges over non-negative
integers as opposed to rational or real numbers differentiates the integer conic
hull (star) from the notion of conic hull in linear programming [17].

132 R. Piskac and V. Kuncak

Theorem 1. A formula (u1, . . . , un) =
∑

e∈E(t1, . . . , tn)∧ ∀e.F is equisatisfiable
with the formula (u1, . . . , un) ∈ {(t′1, . . . , t′n) | xi ∈ Q ∧ F ′}∗ where t′j and F ′ are
tj and F respectively in which each ci(e) is replaced by a fresh variable xi.

Proof. ⇐): Assume (u1, . . . , un) ∈ {(t′1, . . . , t′n) | xi ∈ Q ∧ F ′}∗ is satisfiable.
Then there exists an integer k ≥ 0 such that (u1, . . . , un) =

∑k
j=1(t

j
1, . . . , t

j
n). We

define set E to consist of k distinct elements, E = {e1, . . . , ek}. Every variable xi
occurring in t′1, . . . , t

′
n and F ′ corresponds to the collection ci. Let xji denote the

value of xi in jth summand (tj1, . . . , t
j
n). Define each collection ci by ci(ej) = xji .

The finite set E and collections ci defined as above make formula (u1, . . . , un) =∑
e∈E(t1, . . . , tn) ∧ ∀e.F satisfiable.
⇒): The other direction is analogous. Given E, for each ej ∈ E we obtain a

set of values ci(ej) that give the values for xi in jth summand.

Applying Theorem 1 to our example of insertion into a list, we obtain that
k1 �= k2 + 1 ∧ (1, k1, k2) =

∑
e∈E

(x(e), y(e), L(e)) ∧ ∀e.y(e) = L(e) + x(e)

is equisatisfiable with
k1 �= k2 + 1 ∧ (1, k1, k2) ∈ {(x, y, L) | y = L+ x}∗

Thanks to Theorem 1, in the rest of the paper we investigate the satisfiability
problem for such formulas, whose syntax is given in Figure 4. These formulas
are sufficient to check satisfiability for formulas in Figure 2. In Section 6 we
present a more general decidable language that allows nesting of terms, logical
operations, quantifiers, and stars.

top-level, outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)∈{(tin, . . . , tin) | Fin}∗
tout ::= kout | K | tout + tout | K · tout | �tout� | ite(Fout, tout, tout)

inner linear arithmetic formulas:
Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= kin | K | tin + tin | K · tin | �tin� | ite(Fin, tin, tin)
terminals:

kin, kout - rational variable (two disjoint sets); K - rational constants

Fig. 4. Syntax of Mixed Integer-Rational Linear Arithmetic with Star

4 Separating Mixed Constraints

As justified in previous sections, we consider the satisfiability problem for
G(r,w) ∧ w ∈ {x | F (x)}∗ where F and G are quantifier-free, mixed linear
integer-rational arithmetic (MLIRA) formulas.

Our goal is to give an algorithm for constructing another MLIRA formula F ′

such that w ∈ {x | F (x)}∗ is equivalent to ∃w′.F ′(w′,w). This will reduce the
satisfiability problem to the satisfiability of G(r,w) ∧ F ′(w′,w).

Fractional Collections with Cardinality Bounds 133

As a first stage towards this goal, this section shows how to represent the
set {x | F (x)} using solutions of pure integer constraints and solutions of pure
rational constraints. We proceed in several steps.

Step 1. Eliminate the floor functions from F using integer and real variables,
applying from left to right the equivalence

C(+t,)↔ ∃yQ ∈ Q.∃yZ ∈ Z. t = yQ ∧ yZ ≤ yQ < yZ + 1 ∧C(yZ)

The result is an equivalent formula without the floor operators, where some of
the variables are restricted to be integer.
Step 2. Transform F into linear programming problems, as follows. First, elim-
inate if-then-else expressions by introducing fresh variables and using disjunc-
tion (see e.g. [12]). Then transform formula to negation normal form. Eliminate
t1 = t2 by transforming it into t1 ≤ t2 ∧ t2 ≤ t1. Eliminate t1 �= t2 by transform-
ing it into t1 < t2 ∨ t2 < t1. Following [4, Section 3.3], replace each t1 < t2 with
t1 + δ ≤ t2 where δ is a special variable (the same for all strict inequalities), for
which we require 0 < δ ≤ 1. We obtain for some d matrices Ai for 1 ≤ i ≤ d
such that

F (x) ↔ ∃yZ ∈ ZdZ .∃yQ ∈ QdQ .∃δ ∈ Q(0,1].

d∨
i=1

Ai · (x,yZ ,yQ) ≤ b

where Ai · (x,yZ ,yQ) denotes multiplication of matrix Ai by the vector
(x,yZ ,yQ) obtained by stacking vectors x, yZ , and yQ.
Step 3. Represent the rational variables x, yQ as a sum of its integer part and
its fractional part from Q[0,1], obtaining

F (x) ↔
(
∃(xZ ,yZ) ∈ Zd′

Z .∃(xR,yR) ∈ Q
d′

Q

[0,1].∃δ ∈ Q(0,1].

x = xZ + xR ∧
d∨

i=1

A′i · (xZ ,yZ ,xR,yR) ≤ b′
)

Note that w ∈ {x | ∃y.H(x,y)}∗ is equivalent to

∃w′.(w,w′) ∈ {(x,y) | H(x,y)}∗

In other words, we can push existential quantifiers to the top-level of the formula.
Therefore, the original problem (after renaming) becomes

G(r,w) ∧ ∃z. (uZ ,uQ, Δ) ∈

{(xZ ,xR, δ) |
d∨

i=1

Ai · (xZ ,xR, δ) ≤ bi, xZ ∈ ZdZ ,xR ∈ QdR

[0,1], δ ∈ Q(0,1]}∗

where the vector z contains a subset of variables uZ ,uQ, Δ.
Step 4. Separate integer and rational parts, as follows. Consider one of the
disjuncts A · (xZ ,yR, δ) ≤ b. For A = [AZ AR c] this linear condition can be
written as AZxZ +ARxR + cδ ≤ b, that is

ARxR + cδ ≤ b−AZxZ (1)

134 R. Piskac and V. Kuncak

Because the right-hand side is integer, for a denoting �ARxR + cδ� (left-hand
side rounded up), the equation becomes ARxR + cδ ≤ a ≤ b− AZxZ . Because
xR ∈ QdQ

[0,1], δ ∈ Q(0,1], vector a is bounded by the norm M1 of the matrix [AR c].
Formula (1) is therefore equivalent to the finite disjunction∨

a∈Zd,||a||≤M1

AZxZ ≤ b− a ∧ARxR + cδ ≤ a (2)

Note that each disjunct is a conjunction of a purely integer constraint and a
purely rational constraint.
Step 5. Propagate star through disjunction, using the property

w ∈ {x |
n∨

i=1

Hi(x)}∗ ↔ ∃w1, . . . ,wn. w =
n∑

i=1

wi ∧
n∧

i=1

wi ∈ {x | Hi(x)}∗

The final result is an equivalent conjunction of a MLIRA formula and an exis-
tentially quantified conjunction of formulas of the form

(uZ ,uQ, Δ) ∈ {(xZ ,xR, δ) | AZxZ ≤ bZ , AR · (xR, δ) ≤ bR,

xZ ∈ ZdZ ,xR ∈ QdR

[0,1], δ ∈ Q(0,1]}∗
(3)

5 Eliminating Star Operator from Formulas

The previous section sets the stage for the following star-elimination theorem,
which is the core result of this paper.

Theorem 2. Let F be a quantifier-free MLIRA formula. Then there exist effec-
tively computable integer vectors ai and bij and effectively computable rational
vectors c1, . . . , cn with coordinates in Q[0,1] such that formula (3) is equivalent
to a formula of the form

∃K ∈ N. ∃μ1, . . . , μq, ν11, . . . , νqqq ∈ N. ∃β1, . . . , βn ∈ Q.(
uZ =

q∑
i=1

(μiai +
qi∑
j=1

νijbij) ∧
q∧

i=1

(μi = 0 →
qi∑
j=1

νij = 0) ∧ (
q∑

i=1

μi = K)
)

∧
(
(K = 0 ∧Δ = 0 ∧ uQ = 0) ∨

(K ≥ 1 ∧Δ > 0 ∧ (uQ, Δ) =
n∑

i=1

βici ∧
n∧

i=1

βi ≥ 0 ∧
n∑

i=1

βi = K)
)

(4)

Proof. For a set of vectors S and an integer variable K, we define KS = {v1 +
. . .+ vK | v1, . . . , vK ∈ S}. Formula (3) is satisfiable iff there exists non-negative
integer K ∈ N such that both

uZ ∈ K{xZ | AZxZ ≤ bZ} (5)

Fractional Collections with Cardinality Bounds 135

and

(uQ, Δ) ∈ K{(xR, δ) | AR · (xR, δ) ≤ bR,xR ∈ QdR

[0,1], δ ∈ Q(0,1]} (6)

hold. We show how to describe (5) and (6) as existentially quantified MLIRA
formulas that share the variable K.

To express formula (5) as a MLIRA formula, we use the fact that solutions of
integer linear arithmetic formulas are semilinear sets (see [7], [11, Proposition
2]). Semilinear sets are finite unions of sets of a form {a}+{b1, . . . , bn}∗. A sum
of two sets is the Minkowski sum: A + B = {a + b | a ∈ A, b ∈ B}. It was
shown in [14, 12] that if S is a semilinear set then u ∈ S∗ can be expressed as
Presburger arithmetic formula. In particular, formula (5) is equivalent to

∃μ1, . . . , μq, ν11, . . . , νqqq ∈ N. uZ =
∑q

i=1(μiai +
∑qi

j=1 νijbij) ∧
q∧

i=1

(μi = 0 →
∑qi

j=1 νij = 0) ∧ (
q∑

i=1

μi = K)

(7)
where vectors ai’s and bij can be computed effectively from AZ and bZ .

We next characterize condition (6). Renaming variables and incorporating the
boundedness of x, δ into the linear inequations, we can write such condition in
the form

(uQ, Δ) ∈ K{(x, δ) | A · (x, δ) ≤ b, δ > 0} (8)

Here A · (x, δ) ≤ b subsumes the conditions 0 ≤ x ≤ 1, 0 ≤ δ ≤ 1. From the
theory of linear programming [17] it follows that the set {(x, δ) | A · (x, δ) ≤ b}
is a polyhedron, and because the solution set is bounded, it is in fact a polytope.
Therefore, there exist finitely many vertices c1, . . . , cn ∈ Qd

[0,1] for some d such
that A · (x, δ) ≤ b is equivalent to

∃λ1, . . . , λn ∈ Q[0,1].
n∑

i=1

λi = 1 ∧ (x, δ) =
n∑

i=1

λici

Consequently, (8) is equivalent to

∃u1, . . . ,uK . (uQ, Δ) =
K∑
j=1

uj ∧ ∃λ11, . . . , λKn.

K∧
j=1

(n∧
i=1

λij ≥ 0 ∧
n∑

i=1

λij = 1 ∧ (uj , δj) =
n∑

i=1

λijci ∧ δj > 0
) (9)

It remains to show that the above condition is equivalent to

∃β1, . . . , βn.
(
(K=0 ∧Δ=0 ∧ u=0) ∨

(K≥1 ∧Δ > 0 ∧ (uQ, Δ)=
n∑

i=1

βici ∧
n∧

i=1

βi ≥ 0 ∧
n∑

i=1

βi = K)
)

(10)

136 R. Piskac and V. Kuncak

Case K = 0 is trivial, so assume K �= 0. Consider a solution of (9). Letting
βi =

∑K
j=1 λij we obtain a solution of (10). Conversely, consider a solution

of (10). Letting αij = βi/K, uj = u/K, δj = Δ/n we obtain a solution of (9).
This shows the equivalence of (9) and (10).

Conjoining formulas (10) and (7) we complete the proof of Theorem 2.

Satisfiability checking for collection formulas. Because star elimination
(as well as the preparatory steps in Section 4) introduce only existential quan-
tifiers, and the satisfiability of MLIRA formulas is decidable (see e.g. [4, 3]), we
obtain the decidability of the initial formula G(r,w)∧w ∈ {x | F (x)}∗. Thanks
to transformation to sum normal form and Theorem 1, we obtain the decidability
of formulas involving sets, multisets and fuzzy sets.

6 Language with Nested Star Operators and Quantifiers

Theorem 2 can be combined with quantifier elimination for MLIRA formulas [18]
to decide a language that permits nested uses of quantifiers and stars. Fig-
ure 5 summarizes the syntax of one such language. Note that the expression
(r1, . . . , rn)∈{(t1, . . . , tn)|F}∗ has the same meaning as before and its only free
variables are in r1, . . . , rn (the variables in {(t1, . . . , tn)|F} are all bound). To
decide constraints in this language, we eliminate stars and quantifiers starting
from the innermost ones. If the innermost operator is a quantifier, we eliminate
it as in [18]. If the innermost operator is a star, we use results of Section 4
and Theorem 2 while keeping all existential quantifiers explicitly to preserve
equivalence of the subformula. We obtain an existentially quantifier subformula
without stars. We eliminate the generated existential quantifiers by again apply-
ing quantifier elimination [18]. Repeating this method we obtain a quantifier-free
formula without stars, whose satisfiability can be checked [4, 3].

F ::= A | F ∧ F | ¬F | ∃x.F
A ::= t ≤ t | t=t | (t, . . . , t)∈{(t, . . . , t)|F}∗
t ::= k | K | t + t | K · t | �t� | ite(F, t, t)

Fig. 5. Syntax of Constraints with Nested Stars and Quantifiers

The language of Figure 5 can be further generalized to allow atomic formulas
of the form (t, . . . , t) ∈ S where the syntax of S is given by

S ::= {(t, . . . , t)|F} | S ∪ S | S \ S | S + S | t · S | S∗

The basic idea is to flatten such set expressions, eliminate operators ∪, \, +
using their definition, and eliminate S∗ using the algorithms we just described.
The case of t · S is similar to S∗ but the value K from Theorem 2 is fixed and
given by term t, as opposed to being existentially quantified.

Fractional Collections with Cardinality Bounds 137

7 Related Work

Logical constraints on collections that do not support cardinality bounds have
been studied in the past. Zarba [20] considered decision procedures for quantifier-
free multisets but without the cardinality operator, showing that it reduces to
quantifier-free pointwise reasoning. The cardinality operator makes that reduc-
tion impossible. Notions of the cardinality operator naturally arising from the
Feferman-Vaught theorem [6] can express only a finite amount of information for
each element e ∈ E, so they are appropriate only for cardinality sets or for the
cardinality of the support of the multisets or a fuzzy set. Recently, Lugiez [10]
shows the decidability of constraints with a weaker form of such a limited car-
dinality operator that counts only distinct elements in a multiset, and shows
decidability of certain quantifier-free expressible constraints with cardinality
operator.

Note that, because our Theorem 1 is only equisatisfiability and not equiva-
lence, we do not obtain decidability of constraints with quantified collections.
In fact, although quantified sets with cardinality bounds are decidable [6, 8],
quantified multisets with cardinality bounds are undecidable [12, Section 6].

The work in this paper is based on previous results for the special cases of
sets [9] and multisets [14, 13, 12]. We rely on the fact that solutions of formulas
of Presburger arithmetic are semilinear sets [7]. Bounds on generators of such
sets are presented in [15].

Techniques for deciding formulas of MLIRA formulas are part of implementa-
tions of modern satisfiability modulo theory theorem provers [4,3,1] and typically
use SAT solving techniques along with techniques from mixed integer-linear pro-
gramming, or the Omega test [16].

8 Conclusions

We have shown decidability of a rich logic for reasoning about collections. The
logic is expressive enough for reasoning about sets, multisets, and fuzzy sets
as well as their cardinality bounds. Our results also show that star, much like
quantifiers, is a natural operator of MLIRA formulas and can also be eliminated.
A direct application of our star elimination technique creates an exponentially
larger MLIRA formula. We leave for future work the question whether it is possi-
ble to generate polynomially large equisatisfiable formulas as for multisets [13].

Acknowledgements. We thank Nikolaj Bjørner for useful discussions.

References

1. Berezin, S., Ganesh, V., Dill, D.L.: An online proof-producing decision procedure
for mixed-integer linear arithmetic. In: TACAS (2003)

2. Bradley, A.R., Manna, Z.: The Calculus of Computation. Springer, Heidelberg
(2007)

138 R. Piskac and V. Kuncak

3. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

4. Dutertre, B., de Moura, L.: Integrating Simplex with DPLL(T). Technical Report
SRI-CSL-06-01, SRI International (2006)

5. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Operations
Research Letters 34(5), 564–568 (2006),
http://dx.doi.org/10.1016/j.orl.2005.09.008

6. Feferman, S., Vaught, R.L.: The first order properties of products of algebraic
systems. Fundamenta Mathematicae 47, 57–103 (1959)

7. Ginsburg, S., Spanier, E.: Semigroups, Pressburger formulas and languages. Pacific
Journal of Mathematics 16(2), 285–296 (1966)

8. Kuncak, V., Nguyen, H.H., Rinard, M.: Deciding Boolean Algebra with Presburger
Arithmetic. J. of Automated Reasoning (2006),
http://dx.doi.org/10.1007/s10817-006-9042-1

9. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for Boolean Alge-
bra with Presburger Arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 215–230. Springer, Heidelberg (2007)

10. Lugiez, D.: Multitree automata that count. Theor. Comput. Sci. 333(1-2), 225–263
(2005)

11. Lugiez, D., Zilio, S.D.: Multitrees Automata, Presburger’s Constraints and Tree
Logics. Research report 08-2002, LIF, Marseille, France (June 2002),
http://www.lif-sud.univ-mrs.fr/Rapports/08-2002.html

12. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality con-
straints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS,
vol. 4905, pp. 218–232. Springer, Heidelberg (2008)

13. Piskac, R., Kuncak V.: Linear arithmetic with stars. In: Gupta A., Malik S. (Eds.):
CAV 2008. LNCS, vol. 5123, pp. 268-280. Springer, Heidelberg (2008)

14. Piskac, R., Kuncak, V.: On linear arithmetic with stars. Technical Report LARA-
REPORT-2008-005, EPFL (2008)

15. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algo-
rithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488. Springer, Heidelberg (1991)

16. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In: ACM/IEEE conf. Supercomputing (1991)

17. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester (1998)

18. Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: ISSAC, pp.
129–136 (1999)

19. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)
20. Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE

2002. LNCS (LNAI), vol. 2392. Springer, Heidelberg (2002)

http://dx.doi.org/10.1016/j.orl.2005.09.008
http://dx.doi.org/10.1007/s10817-006-9042-1
http://www.lif-sud.univ-mrs.fr/Rapports/08-2002.html

Continuous Fragment of the mu-Calculus

Gaëlle Fontaine�

Institute for Logic, Language and Computation,
Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

gfontain@science.uva.nl

http://staff.science.uva.nl/ gfontain

Abstract. In this paper we investigate the Scott continuous fragment of
the modal μ-calculus. We discuss its relation with constructivity, where
we call a formula constructive if its least fixpoint is always reached in
at most ω steps. Our main result is a syntactic characterization of this
continuous fragment. We also show that it is decidable whether a formula
is continuous.

Keywords: mu-calculus, automata, Scott continuity, constructive fix-
points, preservation results.

1 Introduction

This paper is a study into the fragment of the modal μ-calculus that we call
continuous. Roughly, given a proposition letter p, a formula ϕ is said to be
continuous in p if it monotone in p and if in order to establish the truth of ϕ at
a point, we only need finitely many points at which p is true. The continuous
fragment of the μ-calculus is defined as the fragment of the μ-calculus in which
μx.ϕ is allowed only if ϕ is continuous in x.

We prove the following two results. First, Theorem 2 gives a natural syntactic
characterization of the continuous formulas. Informally, continuity corresponds
to the formulas built using the operators ∨, ∧, ♦ and μ. Second, we show in
Theorem 3 that it is decidable whether a formula is continuous in p.

We believe that this continuous fragment is of interest for a number of reasons.
A first motivation concerns the relation between continuity and another prop-
erty, constructivity. The constructive formulas are the formulas whose fixpoint
is reached in at most ω steps. Locally, this means that a state satisfies a least
fixpoint formula if it satisfies one of its finite approximations. It is folklore that if
a formula is continuous, then it is constructive. The other implication does not
strictly hold. However, interesting questions concerning the link between con-
structivity and continuity remain. In any case, given our Theorem 2, continuity
can be considered as the most natural candidate to approximate constructivity
syntactically.

� The research of the author has been made possible by VICI grant 639.073.501 of the
Netherlands Organization for Scientific Research (NWO).

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 139–153, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 G. Fontaine

Next this fragment can be seen as a natural generalization of PDL in the fol-
lowing way. We define the completely additive formulas as the formulas built using
the operators ∨, ♦ and μ. That is, the syntax is the same as for the continuous for-
mulas, except that the conjunction is not allowed. Then it was observed by Yde
Venema (personal communication) that PDL coincides with the fragment of the
μ-calculus in which μx.ϕ is allowed only if ϕ is completely additive. In this per-
spective, the continuous fragment appears as a natural extension of PDL.

Another reason for looking at this fragment (which also explains the name)
is the link with Scott continuity. A formula is continuous in p iff it is continuous
with respect to p in the Scott topology on the powerset algebra (with all other
variables fixed). Scott continuity is of key importance in many areas of theoretical
computer sciences where ordered structures play a role, such as domain theory
(see, e.g., [1]). For many purposes, it is sufficient to check that a construction is
Scott continuous in order to show that it is computationally feasible.

Finally our results fit in a model-theoretic tradition of so-called preserva-
tion results (see, e.g., [2]). Giovanna D’Agostino and Marco Hollenberg have
proved some results of this kind in the case of the μ-calculus (see, e.g., [3] and
[4]). Their proofs basically consist in identifying automata corresponding to the
desired fragment and in showing that these automata give the announced char-
acterization. The proof of our main result is similar as we also first start by
translating our problem in terms of automata. We also mention that a version of
our syntactic characterization in the case of first order logic has been obtained
by Johan van Benthem in [5].

The paper is organized as follows. First we recall the syntax of the μ-calculus
and some basic properties that will be used later on. Next we define the contin-
uous fragment and we show how it is linked to Scott continuity, constructivity
and PDL. Finally we prove our main result (Theorem 2) which is a syntactic
characterization of the fragment and we show that it is decidable whether a for-
mula is continuous (Theorem 3). We end the paper with questions for further
research.

2 Preliminaries

We introduce the language and the Kripke semantic for the μ-calculus.

Definition 1. Let Prop be a finite set of proposition letters and let V ar be a
countable set of variables. The formulas of the μ-calculus are given by

ϕ ::= � | p | x | ϕ ∨ ϕ | ¬ϕ | ♦ϕ | μx.ϕ,

where p ranges over the set Prop and x ranges over the set V ar. In μx.ϕ, we
require that every occurrence of x is under an even number of negations in ϕ.
The notion of closed μ-formula or μ-sentence is defined in the natural way.

As usual, we let ϕ∧ψ, �ϕ and νx.ϕ be abbreviations for ¬(¬ϕ ∨¬ψ), ¬♦¬ϕ
and ¬μx.¬ϕ[¬x/x]. For a set of formulas Φ, we denote by

∨
Φ the disjunction

of formulas in Φ. Similarly,
∧

Φ denotes the conjunction of formulas in Φ.

Continuous Fragment of the mu-Calculus 141

Finally, we extend the syntax of the μ-calculus by allowing a new construct
of the form ∇Φ, where Φ is a finite set of formulas. We will consider such a
formula to be an abbreviation of

∧
{♦ϕ : ϕ ∈ Φ} ∧ �

∨
Φ. Remark that in [6],

David Janin and Igor Walukiewicz use the notation a→ Φ for ∇aΦ.

For reasons of a smooth presentation, we restrict to the unimodal fragment. All
the results can be easily extended to the setting where we have more than one
basic modality.

Definition 2. A Kripke frame is a pair (M,R), where M is a set and R a
binary relation on M . A Kripke modelM is a triple (M,R, V) where (M,R) is
a Kripke frame and V : Prop→ P(M) a valuation.

If sRt, we say that t is a successor of s and we write R(s) to denote the set
{t ∈ M : sRt}. A path is a (finite or infinite) sequence s0, s1, . . . such that
siRsi+1 (for all i ∈ N).

Definition 3. Given a μ-formula ϕ, a model M = (M,R, V) and an assign-
ment τ : V ar → P(M), we define a subset [[ϕ]]M,τ of M that is interpreted as
the set of points at which ϕ is true. This subset is defined by induction in the
usual way. We only recall that

[[μx.ϕ]]M,τ =
⋂
{U ⊆M : [[ϕ]]M,τ [x:=U] ⊆ U},

where τ [x := U] is the assignment τ ′ such that τ ′(x) = U and τ ′(y) = τ(y) for
all y �= x.

Observe that the set [[μx.ϕ]]M,τ is the least fixpoint of the map ϕx : P(M)→
P(M) defined by ϕx(U) := [[ϕ]]M,τ [x:=U], for all U ⊆M . Similarly, for a propo-
sition letter p, we can define the map ϕp : P(M) → P(M) by ϕp(U) :=
[[ϕ]]M[p:=U],τ , where M[p := U] is the model (M,R, V ′) with V ′(p) = U and
V ′(p′) = V (p′), for all p′ �= p.

If s ∈ [[ϕ]]M,τ , we write M, s �τ ϕ and we say that ϕ true at s ∈ M under
the assignment τ . If ϕ is a sentence, we simply write M, s � ϕ.

A formula ϕ is monotone in a proposition letter p if for all models M =
(M,R, V), all assignments τ and all sets U,U ′ ⊆M satisfying U ⊆ U ′, we have
ϕp(U) ⊆ ϕp(U ′). The notion of monotonicity in a variable x is defined in an
analogous way.

Finally we use the notation ϕ |= ψ if for all models M and all points s ∈ M,
we have M, s � ϕ implies M, s � ψ.

When deciding whether a sentence is true at a point s, it only depends on
the points accessible (in possibly many steps) from s. These points together
with the relation and the valuation inherited from the original model form the
submodel generated by s. We will use this notion later on and we briefly recall
the definition.

Definition 4. Let M = (M,R, V) be a model. A subset N of M is downward
closed if for all s and t, sRt and t ∈ N imply that s ∈ N . N is upward closed if
for all s and t, sRt and s ∈ N imply that t ∈ N .

142 G. Fontaine

A model N = (N,S, U) is a generated submodel ofM if N ⊆M , N is upward
closed, S = R ∩ (N × N) and U(p) = V (p) ∩ N , for all p ∈ Prop. If N ′ is a
subset of M , we say that N = (N,S, U) is the submodel generated by N ′ if N is a
generated submodel and if N is the smallest upward closed set containing N ′.

In our proof, it will be often more convenient to work with a certain kind of
Kripke models. That is, we will suppose that the models we are dealing with are
trees such that each point (except the root) has infinitely many bisimilar siblings.
We make this definition precise and we give the results needed to justify this
assumption.

Definition 5. A point s is a root of a model M = (M,R, V) if for every t
distinct from s, there is a path from s to t. M is a tree if it has a root, every
point distinct from the root has a unique predecessor and R is acyclic (that is,
there is no non-empty path starting at a point t and ending in t).

A model M = (M,R, V) is ω-expanded if it is a tree such that for all s ∈M
and all successors t of s, there are infinitely many distinct successors of s that
are bisimilar to t.

Proposition 1. Let M = (M,R, V) be a model and let s ∈ M . There exists a
treeM′ = (M ′, R′, V ′) that is ω-expanded such that s and the root s′ of M′ are
bisimilar. In particular, for all μ-sentences ϕ, M, s � ϕ iff M′, s′ � ϕ.

Another way to look at formulas of the μ-calculus is to consider automata. In [6],
David Janin and Igor Walukiewicz define a notion of automaton that operates
on Kripke models and that corresponds exactly to the μ-calculus.

Definition 6. A μ-automaton A over a finite alphabet Σ is a tuple (Q, q0, δ, Ω)
such that Q is a finite set of states, q0 ∈ Q is the initial state, δ : Q×Σ → PP(Q)
is the transition map and Ω : Q→ N is the parity function.

Given a frameM = (M,R, V) with a labeling L : M → Σ and a point s ∈M ,
an A-game in M with starting position (s, q0) is played between two players, the
Duplicator and the Spoiler. The game is as follows: If we are in position (t, q)
(where t ∈ M and q ∈ Q), the Duplicator has to make a move. The Duplicator
chooses a marking m : Q→ P{u : tRu} and then a description D in δ(q, L(t)).
If u ∈ m(q), we say that u is marked with q.

The marking and the description have to satisfy the two following properties.
First, if q′ ∈ D, there exists a successor u of t that is marked with q′. Second,
if u is a successor of t, there exists q′ ∈ D such that u is marked with q′. After
the Duplicator has chosen a marking m, the Spoiler plays a position (u, q′) such
that t ∈ m(q′).

Either player wins the game if the other player cannot make a move. An
infinite match (s, q0), (s1, q1), . . . is won by the Duplicator if the smallest element
of {Ω(q) : q appears infinitely often in q0, q1, . . . } is even.

We say that (M, s) is accepted by A if the Duplicator has a winning strategy
in the A-game in M with starting position (s, q0).

Remark that a model (M,R, V) can be seen as a frame (M,R) with a labeling
L : M → P(Prop) defined by L(t) = {p ∈ Prop : t ∈ V (p)}, for all t ∈M .

Continuous Fragment of the mu-Calculus 143

Theorem 1. [6] For every μ-automaton A (over the alphabet P(Prop)), there
is a sentence ϕ such that for all models M and all points s ∈ M, A accepts
(M, s) iffM, s � ϕ. Conversely, for every sentence ϕ, there is a μ-automaton A
such that for all modelsM and all points s ∈M, A accepts (M, s) iffM, s � ϕ.

3 Continuity

We define the notion of continuity for a formula and we show the connection
with the Scott continuity. We also mention that these formulas are constructive
and that there is a natural connection with PDL.

Definition 7. Fix a proposition letter p. A sentence ϕ is continuous in p if for
all models M = (M,R, V) and all s ∈M , we have

M, s � ϕ iff ∃ F ⊆ V (p) s.t. F is finite and M[p := F], s � ϕ.

The notion of continuity in x (where x is a variable) is defined similarly.

That is, a formula ϕ is continuous in p iff it is monotone in p and whenever ϕ is
true at a point in a model, we only need finitely many points where p is true in
order to establish the truth of ϕ.

Continuity and Scott Continuity

It does not seem very natural that a formula satisfying such a property should
be called continuous. In fact, it is equivalent to require that the formula is Scott
continuous with respect to p in the powerset algebra (with all other proposition
letters fixed). In the next paragraph, we recall the definition of the Scott topology
and we briefly show that the notion of Scott continuity and our last definition
coincide.

Definition 8. Let M = (M,R, V) be a model. A family F of subsets of M is
directed if for all U1, U2 ∈ F , there exists U ∈ F such that U ⊇ U1 ∪ U2.

A Scott open set in the powerset algebra P(M) is a family O of subsets of
M that is closed under upset (that is, if U ∈ O and U ′ ⊇ U , then U ′ ∈ O) and
such that for all directed family F satisfying

⋃
F ∈ O, the intersection F ∩O is

non-empty.
As usual, a map f : P(M)→ P(M) is Scott continuous if for all Scott open

sets O, the set f−1[O] = {f−1(U) : U ∈ O} is Scott open.
Fix a proposition letter p. A sentence ϕ is Scott continuous in p if for all

models M = (M,R, V), the map ϕp : P(M)→ P(M) is Scott continuous.

Remark that the Scott topology can be defined in an arbitrary partial order
(see, e.g., [7]). It is a fairly standard result that a map f is Scott continuous iff
it preserves directed joins. That is, for all directed family F , we have f(

⋃
F) =⋃

f [F] (where f [F] = {f(U) : U ∈ F}). Now we check that our notion of
continuity defined in a Kripke semantic framework is equivalent to the standard
definition of Scott continuity.

144 G. Fontaine

Proposition 2. A sentence is continuous in p iff it is Scott continuous in p.

Proof. For the direction from left to right, let ϕ be a continuous sentence in
p. Fix a model M = (M,R, V). We show that the map ϕp : P(M) → P(M)
preserves directed joins.

Let F be a directed family. It follows from the monotonicity of ϕ that the
set
⋃

ϕp[F] is a subset of ϕp(
⋃
F). Thus, it remains to show that ϕp(

⋃
F) ⊆⋃

ϕp[F]. Take s in ϕp(
⋃
F). That is, the formula ϕ is true at s in the model

M[p :=
⋃
F]. As ϕ is continuous in p, there is a finite subset F of

⋃
F such that

ϕ is true at s in M[p := F]. Now, since F is a finite subset of
⋃
F and since

F is directed, there exists a set U in F such that F is a subset of U . Moreover,
as ϕ is monotone, M[p := F], s � ϕ implies M[p := U], s � ϕ. Therefore, s
belongs to ϕp(U) and in particular, s belongs to

⋃
ϕp[F]. This finishes to show

that ϕp(
⋃
F) ⊆

⋃
ϕp[F].

For the direction from right to left, let ϕ be a Scott continuous sentence in p.
First we show that ϕ is monotone in p. LetM = (M,R, V) be a model. We check
that ϕp(U) ⊆ ϕp(U ′), in case U ⊆ U ′. Suppose U ⊆ U ′ and let F be the set
{U,U ′}. The family F is clearly directed and satisfies

⋃
F = U ′. Using the fact

that ϕp preserves directed joins, we get that ϕp(U ′) = ϕp(
⋃
F) =

⋃
ϕp[F]. By

definition of F , we have
⋃

ϕp[F] = ϕp(U)∪ϕp(U ′). Putting everything together,
we obtain that ϕp(U ′) = ϕp(U) ∪ ϕp(U ′). Thus, ϕp(U) ⊆ ϕp(U ′).

To show that ϕ is continuous in p, it remains to show that ifM, s � ϕ, then
there exists a finite subset F of V (p) such that M[p := F], s � ϕ. Suppose
that the formula ϕ is true at s in M. That is, s belongs to ϕs(V (p)). Now
let F be the family {F ⊆ V (p) : F finite}. It is not hard to see that F is a
directed family satisfying

⋃
F = V (p). Since ϕp preserves directed joins, we

obtain ϕp(V (p)) = ϕp(
⋃
F) =

⋃
ϕp[F]. From s ∈ ϕp(V (p)), it then follows that

s ∈
⋃

ϕp[F]. Therefore, there exists F ∈ F such that s ∈ ϕp(F). That is, F is a
finite subset of V (p) such that M[p := F], s � ϕ.

Continuity and Constructivity

A formula is constructive if its fixpoint is reached in at most ω steps. Formally,
we have the following definition.

Definition 9. Fix a proposition letter p. A sentence ϕ is constructive in p if
for all modelsM = (M,R, V), the least fixpoint of the map ϕp : P(M)→ P(M)
is equal to

⋃
{ϕi

p(∅) : i ∈ N} (where ϕi
p is defined by induction by ϕ0

p = ϕp and
ϕi+1
p = ϕp ◦ ϕi

p).

Locally, this means that given a formula ϕ constructive in p and a point s
in a model at which μp.ϕ is true, there is some natural number n such that s
belongs to the finite approximation ϕn

p (∅). We observe that a continuous formula
is constructive.

Proposition 3. A sentence ϕ continuous in p is constructive in p.

Continuous Fragment of the mu-Calculus 145

Proof. Let ϕ be a sentence continuous in p and letM = (M,R, V) be a model.
We show that the least fixpoint of ϕp is

⋃
{ϕi

p(∅) : i ∈ N}.
Let F be the family {ϕi

p(∅) : i ∈ N}. It is enough to check that ϕp(
⋃
F) =⋃

F . First remark that F is directed. Therefore, ϕp(
⋃
F) =

⋃
ϕp[F]. It is also

easy to prove that
⋃

ϕp[F] =
⋃
F . Putting everything together, we obtain that

ϕp(
⋃
F) =

⋃
F and this finishes the proof.

Remark that a constructive sentence might not be continuous.

Example 1. Let ϕ be the formula �p ∧ ��⊥. Basically, ϕ is true at a point s
in a model if the depth of s is less or equal to 2 (that is, there are no t and t′

satisfying sRtRt′) and all successors of s satisfy p. It is not hard to see that ϕ
is not continuous in p. However, we have that for all models M = (M,R, V),
ϕ2
p(∅) = ϕ3

p(∅). In particular, ϕ is constructive in p.

Example 2. Let ψ be the formula νx.p ∧ ♦x. The formula ψ is true at a point
s if there is a infinite path starting from s and at each point of this path, p is
true. This sentence is not continuous in p. However, it is constructive, since for
all models M = (M,R, V), we have ψp(∅) = ∅.
Observe that in the previous examples we have μp.ϕ ≡ μp.��⊥ and μp.ψ ≡
μp.⊥. Thus, there is a continuous sentence (namely ��⊥) that is equivalent to
ϕ, modulo the least fixpoint operation. Similarly, there is a continuous sentence
(the formula ⊥) that is equivalent to ψ, modulo the least fixpoint operation.
This suggests the following question.

Question 1 (Yde Venema). Given a constructive formula ϕ, can we find a con-
tinuous formula ψ satisfying μp.ϕ ≡ μp.ψ?

The answer is still unknown and this could be a first step for further study of
the relation between continuity and constructivity.

Decidability of constructivity is also an interesting question. We would like
to mention that in [8], Martin Otto proved that it is decidable in EXPTIME
whether a basic modal formula ϕ(p) is bounded. We recall that a basic modal
formula ϕ(p) is bounded if there is a natural number n such that for all models
M, we have ϕn

p (∅) = ϕn+1
p (∅).

Continuity and PDL

We finish this section by few words about the connection between the continuous
fragment and PDL. We start by defining the completely additive formulas.

Definition 10. Let P be a subset of Prop and let X be a subset of V ar. The
set of completely additive formulas with respect to P ∪X is defined by induction
in the following way:

ϕ ::= � | p | x | ψ | ϕ ∨ ϕ | ♦ϕ | μy.χ,

where p is in P , x is in X, ψ is a formula of the μ-calculus such that the
proposition letters of ψ and the variables of ψ do not belong to P ∪X and χ is
completely additive with respect to P ∪X ∪ {y}.

146 G. Fontaine

We define the completely additive fragment as the fragment of the μ-calculus
in which μx.ϕ is allowed only if ϕ is completely additive with respect to x.
As mentioned in the introduction, it was observed by Yde Venema that this
fragment coincides with test-free PDL.

Similarly, we define the continuous fragment as the fragment of the μ-calculus
in which μx.ϕ is allowed only if ϕ is continuous in x. It is routine to check that
any completely additive formula with respect to p is continuous in p (and the
proof is similar to the proof of Lemma 1 below). In particular, the completely
additive fragment is included in the continuous fragment. That is, PDL is a
subset of the continuous fragment. We remark that this inclusion is strict. An
example is the formula ϕ = μx. (♦(p ∧ x) ∧ ♦(q ∧ x)). This formula belongs to
the continuous fragment but is not equivalent to a formula in PDL. Roughly,
the sentence ϕ is true at a point s if there is a finite binary tree-like submodel
starting from s, such that each non-terminal node of the tree has a child at which
p is true and a child at which q is true. This example was given by Johan van
Benthem in [9].

4 Syntactic Characterization of the Continuous Fragment

In this section, we give a characterization of the continuous fragment of the μ-
calculus. The main result states that the sentences which are continuous in p are
exactly the sentences such that p and the variables are only in the scope of the
operators ∨, ∧, ♦ and μ. These formulas are formally defined as the set CF (p).

Definition 11. Let P be a subset of Prop and let X be a subset of V ar. The
set of formulas CF (P ∪X) is defined by induction in the following way:

ϕ ::= � | p | x | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ | μy.χ,

where p is in P , x is in X, ψ is a formula of the μ-calculus such that the
proposition letters of ψ and the variables of ψ do not belong to P ∪ X and χ
belongs to CF (P ∪X ∪ {y}). We abbreviate CF ({p}) to CF (p).

As a first property, we mention that the formulas in CF (P ∪X) are closed under
composition.

Proposition 4. If ϕ is in CF (P ∪X∪{p}) and ψ is in CF (P ∪X), then ϕ[ψ/p]
belongs to CF (P ∪X).

Proof. By induction on ϕ.

Next we observe that the sentences in CF (p) are continuous.

Lemma 1. A sentence ϕ in CF (p) is continuous in p.

Proof. We prove by induction on ϕ that for all sets P ⊆ Prop and X ⊆ V ar,
ϕ ∈ CF (P ∪X) implies that ϕ is continuous in p and in x, for all p ∈ P and all
x ∈ X . We focus on the inductive step ϕ = μy.χ, where χ is in CF (P ∪X∪{y}).

Continuous Fragment of the mu-Calculus 147

We also restrict ourselves to show that ϕ is continuous in p, for a proposition
letter p in P .

Fix a proposition letter p ∈ P . First we introduce the following notation.
For a model M = (M,R, V), an assignment τ and a subset U of W , we let
χU
y : P(M) → P(M) be the map defined by χU

y (W) = [[χ]]M[p:=U],τ [y:=W], for
all W ⊆M . We also denote by f(U) the least fixpoint of χU

y .
Now we show that ϕ is monotone in p. That is, for all modelsM = (M,R, V),

all assignments τ and all subsets U,U ′ of M such that U ⊆ U ′, we haveM[p :=
U], s �τ μy.χ implies M[p := U ′], s �τ μy.χ. Fix a model M = (M,R, V), an
assignment τ and sets U,U ′ ⊆ M satisfying U ⊆ U ′. Suppose M[p := U0], s �τ

μy.χ. That is, s belongs to the least fixpoint f(U)of the map χU
y . Since χ is

monotone in p, we have that for all W ⊆ M , χU
y (W) ⊆ χU ′

y (W). It follows that
the least fixpoint f(U) of the map χU

y is a subset of the least fixpoint of the
map χU ′

y . Putting this together with s ∈ f(U), we get that s belongs to the least
fixpoint of χU ′

y . That is, M[p := U ′], s �τ μy.χ and this finishes the proof that
ϕ is monotone in p.

Next suppose that M, s �τ μy.χ, for a point s in a model M = (M,R, V).
That is, s belongs to the least fixpoint L of the map χy. Now let F be the set of
finite subsets of V (p). We need to find a set F ∈ F satisfying M[p := F], s �τ

μy.χ. Or equivalently, we have to show that there exists F ∈ F such that s
belongs to the least fixpoint f(F) of the map χF

y .
Let G be the set {f(F) : F ∈ F}. It is routine to show that G is a directed

family. Since L is the least fixpoint of χy, we have that for all U ⊆M , χy(U) ⊆ U
implies L ⊆ U . So if we can prove that χy(

⋃
G) ⊆

⋃
G, we will obtain L ⊆

⋃
G.

Putting this together with s ∈ L, it will follow that s ∈
⋃
{f(F) : F ∈ F}.

Therefore, in order to show that s ∈ f(F) for some F ∈ F , it is sufficient to
prove that χy(

⋃
G) ⊆

⋃
G.

Assume t ∈ χy(
⋃
G). Since G is a directed family and χ is Scott continuous

in y, we have χy(
⋃
G) =

⋃
χy(G). Thus, there exists F0 ∈ F such that t ∈

χy(f(F0)). Now since χ is continuous in p, there exists a finite set F1 ⊆ V (p)
such that t ∈ χF1

y (f(F0)). Let F be the set F0 ∪ F1. Since χ is monotone in p,
t ∈ χF1

y (f(F0)) implies t ∈ χF
y (f(F0)). It also follows from the monotonicity in p

that for all U ⊆M , χF0
y (U) ⊆ χF

y (U). Therefore, the least fixpoint f(F0) of χF0
y

is a subset of the least fixpoint f(F) of χF
y . Using the fact that χ is monotone

in y and the inclusion f(F0) ⊆ f(F), we obtain χF
y (f(F0)) ⊆ χF

y (f(F)). Putting
this together with t ∈ χF

y (f(F0)), we get t ∈ χF
y (f(F)). Moreover, since f(F)

is a fixpoint of χF
y , we have χF

y (f(F)) = f(F). Hence, t belongs to f(F). In
particular, t belongs to

⋃
G and this finishes the proof.

We also prove the converse: the sentences in CF (p) are enough to characterize
the continuous fragment of the μ-calculus. The proof is inspired by the one given
by Marco Hollenberg in [4], where he shows that a sentence is distributive in p
over unions iff it is equivalent to 〈π〉p, for some p-free μ-program π.

148 G. Fontaine

Theorem 2. A sentence ϕ is continuous in p iff it is equivalent to a sentence
in CF (p).

Proof. By Lemma 1, we only need to prove the implication from left to right.
Let ϕ be a sentence continuous in p. We need to find a formula χ in CF (p) that
is equivalent to ϕ.

The proof consists in constructing a finite set Π ⊆ CF (p) such that

ϕ ≡
∨
{ψ : ψ ∈ Π and ψ |= ϕ}. (1)

Indeed, if there is such a set Π , we can define χ as the formula
∨
{ψ : ψ ∈

Π and ψ |= ϕ}. Clearly, χ belongs to CF (p) and is equivalent to ψ.
We define Π as the set of sentences in CF (p), which correspond to μ-automata

with at most k states, where k is a natural number that we will define later and
which depends on ϕ. In order to define k, we introduce the following notation.
First, let A = (Q, q0, δ, Ω) be a μ-automaton corresponding to ϕ. For q ∈ Q,
let ϕq denote the sentence corresponding to the automaton we get from A by
changing the initial state from q0 to q.

Next we denote by Sort0 be the set of sentences of the form∧
{p′ : p′ ∈ Prop\{p}, p′ ∈ σ} ∧

∧
{¬p′ : p′ ∈ Prop\{p}, p′ /∈ σ},

where σ is a subset of Prop\{p}. For a point s in a model, there is a unique
formula in Sort0 true at s. This formula gives us exactly the set of proposition
letters in Prop\{p} which are true at s. Sort1 is the set of all sentences of the
form ∧

{ϕq[⊥/p] : q ∈ S} ∧
∧
{¬ϕq[⊥/p] : q /∈ S},

where S is a subset of Q. Finally Sort2 contains all sentences of the form χ∧∇Ψ ,
where χ ∈ Sort0 and Ψ is a subset of Sort1. As for the formulas in Sort0, it is
easy to see that given a model M and a point s in M, there is exactly one
sentence in Sort1 and one sentence in Sort2 which are true at s. Remark finally
that Sort0, Sort1 and Sort2 are sets of sentences which do not contain p.

Now we can define Π as the set of sentences in CF (p), which correspond
to μ-automata with at most |Sort2| · 2|Q|+1 states. Since there are only finitely
many such automata modulo equivalence, Π is finite (up to equivalence). It
is also immediate that Π is a subset of CF (p). Thus it remains to show that
equivalence (1) holds.

From right to left, equivalence (1) is obvious. For the direction from left to
right, suppose that M = (M,R, V) is a model such that M, s � ϕ, for some
point s. We need to find a sentence ψ ∈ Π satisfying ψ |= ϕ and such that
M, s � ψ. Equivalently, we can construct an automaton A′ corresponding to a
formula ψ ∈ Π such that ψ |= ϕ and M, s � ψ. That is, we can construct an
automaton A′ with at most |Sort2| · 2|Q|+1 states, corresponding to a sentence
in CF (p), such that A′ accepts (M, s) and satisfying A′ � A (that is, for all
modelsM′ and all s′ ∈M′, if A′ accepts (M′, s′), then A accepts (M′, s′)).

Continuous Fragment of the mu-Calculus 149

By Proposition 1, we may assume thatM is a tree with root s and thatM is
ω-expanded. Since ϕ is continuous, there is a finite subset F of V (p) such that
M[p := F], s � ϕ. Let T be the minimal downward closed set that contains F .
Using T , we define the automaton A′. Roughly, the idea is to define the set of
states of A′ as the set T together with an extra point a�. However, we need to
make sure that the set of states of A′ contains at most |Sort2| · 2|Q|+1 elements.
There is of course no guarantee that T∪{a�} satisfies this condition. The solution
is the following. We define for every point in T its representation, which encodes
the information we might need about the point. Then we can identify the points
having the same representation in order to “reduce” the cardinality of T .

Before defining the automaton A′, we introduce some notation. Given a point
t inM[p := F], there is a unique sentence in Sort2 that is true at t. We denote it
by s2(t). Next if t belongs to F , we define the color col(t) of t as 1 and otherwise,
the color of t is 0. We let Q(t) be the set {q ∈ Q :M[p := F], t � ϕq}. Finally,
we define the representation map r : M → (Sort2×Q× {0, 1})∪ {a�} by

r(t) =

{
(s2(t), Q(t), col(t)) if t ∈ T ,

a� otherwise.

The automaton A′ = (Q′, q′0, δ′, Ω′) is a μ-automaton over the alphabet
Sort2× {0, 1}. Its set of states Q′ is given by

Q′ = {r(t) : t ∈ T } ∪ {a�},

and its initial state q′0 is r(s). Next for all (σ, i) ∈ Sort2 × {0, 1}, the set
δ′(q′, (σ, i)) is defined by

δ′(q′, (σ, i)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
r[R(u)] : u ∈ T and r(u) = r(t)

}
if q′ = rt, σ = s2(t) and i = col(t),

{{a�}, ∅} if q′ = a�,

∅ otherwise.

Intuitively, when the automaton is in the state q′ = r(t) and it reads the label
(s2(t), col(t)), the Duplicator has to pick a successor u of t that is in T and
this induces a description in δ′(r(t), (s2(t), col(t))). As soon as the automaton
reaches the state a�, either the match is finite or the automaton stays in the
state a�. In all other cases, the Duplicator gets stuck.

Finally, the map Ω′ is such that Ω′(a�) = 0 and Ω′(q′) = 1, for all q′ �= a�. In
other words, the only way the Duplicator can win an infinite match is to reach
the state a� and to stay there.

Remark that a modelM′ = (M ′, R′, V ′) can be seen as a frame (M ′, R′) with
a labeling L′ : M ′ → Sort2 × {0, 1} defined by L′(t′) = (s2(t′), 1) if p is true
at t′ and L′(t′) = (s2(t′), 0) otherwise. Thus, the automaton A′ can operate on
models.

In order to extract the formula ψ from this automaton, it will be convenient
to think of the alphabet of A′ not being the set Sort2 × {0, 1} but the set

150 G. Fontaine

P(Sort2 ∪ {p}). The idea is to see a pair (σ, i) ∈ Sort2 × {0, 1} as the set {σ}
if i = 0 or as the set {σ, p} if i = 1. More precisely, if ρ ⊆ Sort2 ∪ {p}, the
transition map would associate to the pair (q′, ρ) the set δ′(q′, (σ, 0)) if ρ = {σ}
for some σ ∈ Sort2, the set δ′(q′, (σ, 1)) if ρ = {σ, p} for some σ ∈ Sort2 and the
empty set otherwise.

Now if we think to the formulas of Sort2 as proposition letters, it follows from
Theorem 1 that A′ is equivalent to a sentence ψ whose proposition letters belong
to Sort2 ∪ {p}. Such a formula ψ is also a sentence with proposition letters in
Prop, in an obvious way. To finish the proof, we need to show that ψ is equivalent
to a sentence which is in Π , ψ is true at s and ψ |= ϕ.

Claim 1. ψ is equivalent to a sentence in Π .

Proof. The intuition is the following. In order to win an A′-match, the Duplicator
has to reach the state a� and then, the match is basically over. It seems natural
that such a property can be expressed using only least fixpoints (and no greatest
fixpoint).

Next we also need to make sure that in a formula corresponding to A′, neither
p nor any variable is in the scope of the operator �. This is guaranteed by
the presence of the state a� in any non-empty description that the Duplicator
might pick. Very informally, each description corresponds to a subformula (of
the sentence corresponding to the automaton) which starts with the operator ∇.
Using the fact that a� belongs to any of these descriptions (except the empty
one) and corresponds to the sentence �, we can show that the ∇ operator can
be replaced by the modal operator ♦.

Formally the proof is the following. First observe that A′ has at most |Sort2| ·
2|Q|+1 states. Thus in order to show that ψ is equivalent to a formula in Π , it is
sufficient to show that ψ is equivalent to a sentence in CF (p).

For q′ ∈ Q′ and S′ ⊆ Q′, we define the translation tr(S′, q′) of q′ with respect
to S′. The translation tr(S′, q′) is a formula in the language whose set of propo-
sition letters is Prop and whose set of variables is V ar ∪ Q′. For those q′ that
are equal to r(t) = (s2(t), Q(t), col(t)) and S′ ⊆ Q′, we have

tr(S′, q′) := s2(t) ∧ col(t).p∧∨{∧{
♦μq′′.tr (S′\{q′′}, s′) : q′′ ∈ r[R(u)] and q′′ ∈ S′

}
∧
∧{

♦q′′ : q′′ ∈ r[R(u)] and q′′ /∈ S′
}

: u ∈ T and r(u) = q′
}

where col(t).p is p if col(t) = 1 and � if col(t) = 0. By convention,
∧
∅ = �. For

all S′ ⊆ Q′, we define tr(S′, a�) by �.
It is routine to show that tr(S′, q′) is a well-defined sentence with proposition

letters in Prop ∪ (Q′\S′) and that it belongs to CF ({p} ∪ (Q′\S′)). The proofs
are by induction on the cardinality of S′. In particular, tr(Q′, q′0) belongs to
CF (p). Therefore, in order to prove the claim, it is enough to show that ψ is
equivalent to tr(Q′, q′0). The proof is in the appendix.

Continuous Fragment of the mu-Calculus 151

Claim 2. M, s � ψ.

Proof. The proof is rather straightforward. Details are given in the appendix.

Claim 3. ψ |= ϕ.

Proof. Suppose M′ = (M ′, R′, V ′) is a model such that M′, s′ � ψ, for some
point s′. That is, the Duplicator has a winning strategy in the A′-game in M′
with starting position (s′, q′0). We have to show that M′, s′ � ϕ. That is, we
need to find a winning strategy for the Duplicator in the A-game in M′ with
starting position (s′, q′0).

We say that a point t′ is marked with a state q′ if there is an A′-match during
which the Duplicator plays according to his winning strategy and the point t′ is
marked with q′. Let T ′ be the set of points marked with a state q′ �= a�. When
we define the strategy for the Duplicator in the A-game, the idea is roughly to
make sure that if t′ ∈ T ′ and q′(t′) = r(t), then positions of the form (t′, q) are
played only if q ∈ Q(t). Details are given in the appendix.

As a corollary of this last proof, we obtain that it is decidable whether a formula
is continuous in p.

Theorem 3. It is decidable whether a formula is continuous in p.

Proof. Fix a proposition letter p. Let Π be the set of sentences in CF (p) which
correspond to μ-automata with at most |Sort2|·2|Q|+1 states. Now there are only
finitely many such automata (modulo equivalence). There is also an effective
translation from μ-automata to μ-sentences. Finally it is easy to verify whether
a formula is in CF (p). Therefore, we can compute Π .

It follows from the proof of Theorem 2 that a sentence ϕ is continuous in p
iff ϕ ≡ {ψ : ψ ∈ Π and ψ |= ϕ}. That is, ϕ is continuous in p iff there exists a
subset Ψ of Π such that ϕ ≡

∨
Ψ . Therefore, in order to decide if ϕ is continuous

in p, we can compute all the subsets Ψ of Π and check whether ϕ is equivalent to
a disjunct

∨
Ψ . Since the μ-calculus if finitely axiomatizable and has the finite

model property, it is decidable whether ϕ is equivalent to a disjunct
∨

Ψ and
this completes the proof.

Looking at the decision procedure presented in the proof of Theorem 3, we can see
that the complexity is at most 4EXPTIME. That is, it involves four interlocked
checking procedures, each of them being of complexity at most EXPTIME. This
result is not very satisfying and we are looking for a better algorithm.

Finally, we mention that a similar syntactic characterization can be obtained
in the case of basic modal logic. More precisely, a basic modal formula is con-
tinuous in p iff it belongs to the modal fragment CFm(p) of CF (p). We give a
formal definition of CFm(p) and a sketch of the proof in the appendix.

Definition 12. Let P be a subset of Prop. CFm(P) is defined by induction in
the following way:

ϕ ::= � | p | ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | ♦ϕ,

where p belongs to P and no proposition letters of ψ is in P .

152 G. Fontaine

Corollary 1. A basic modal formula is continuous in p iff it belongs to CFm(p).

5 Conclusion and Further Work

We defined the continuous fragment of the μ-calculus and showed how it relates
to Scott continuity. We also started to investigate the relation between continuity
and constructivity. Finally, we gave a syntactic characterization of the continuous
formulas and we proved that it decidable whether a formula is continuous.

This work can be continued in various directions. To start with, it would be
interesting to clarify the link between continuity and constructivity. In particular,
we could try to answer the following question: given a constructive formula ϕ,
can we find a continuous formula ψ satisfying μp.ϕ ≡ μp.ψ?

Next we observe that in the proof of Theorem 2, the construction of the
automaton A′ depends on the modelM and the point s at which ϕ is true. Is it
possible to construct an automaton A′ by directly transforming the automaton A
that is equivalent to ϕ? Such a construction might help us to find a better lower
complexity bound for the decision procedure (for the membership of a formula
in the continuous fragment).

We believe that it might be interesting to generalize our approach. As men-
tioned earlier, similar results to our characterization have been obtained by Gio-
vanna D’Agostino and Marco Hollenberg in [3]. Is there any general pattern that
can be found in all these proofs?

We could also extend this syntactic characterization to other settings. For
example, we can try to get a similar result if we restrict our attention to the
class of finitely branching models.

Finally, we would like to mention that in [10], Daisuke Ikegami and Johan
van Benthem proved that the μ-calculus is closed under taking product update.
Using their method together with our syntactic characterization, it is possible to
show that the set of continuous formulas is closed under taking product update.

Acknowledgments. I am grateful to Johan van Benthem for proposing this
work, interesting comments and suggestions for the introduction. Many thanks
also to my supervisor Yde Venema for his valuable help and support. Finally
special thanks to Balder ten Cate for comments and inspiring emails.

References

1. Abramsky, S., Jung, A.: Domain Theory. In: Abramsky, S., Gabbay Dov, M.,
Maibaum, T.S.M. (eds.) Handbook for Logic in Computer Science. Clarendon
Press, Oxford (1994)

2. Chang, C., Keisler, H.: Model Theory. North Holland, Amsterdam (1973)

3. D’Agostino, G., Hollenberg, M.: Logical Questions Concerning The mu-Calculus:
Interpolation, Lyndon and Los-Tarski. Journal of Symbolic Logic, 310–332 (2000)

4. Hollenberg, M.: Logic and Bisimulation. PhD thesis, Utrecht University, Zeno In-
stitute of Philosophy (1998)

Continuous Fragment of the mu-Calculus 153

5. van Benthem, J.: Exploring Logical Dynamics. CSLI Publications/Cambridge Uni-
versity Press (1996)

6. Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results.
In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995)

7. Gierz, G., Hofman, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.: A Com-
pendium of Continuous Lattices. Springer, Heidelberg (1980)

8. Otto, M.: Eliminating Recursion in the mu-Calculus. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563. Springer, Heidelberg (1999)

9. van Benthem, J.: Modal Frame Correspondences and Fixed-Points. Studia Logica,
133–155 (2006)

10. Ikegami, D., van Benthem, J.: Modal Fixed-Point Logic and Changing Models.
ILLC Preprint PP-2008-19 (2008)

�� ��� �����	
�� ���
��� ���

�������	� ���
�	��
� λμ�������	

������ ��	
��

����������	
 � �
��� ������
������ �����
���������	
���
���������
��

��������� ���
� ��	�����

� ���� �	��
�� �� !�� ����	��� �
 ����	�	����
���� �"
��

�
�� ����	�� #�#�
����$ %&'() λμ�
��
���
 ��
 *��� �+���
�,���

��#��# *��� �
 � ����# ��# �� ������# ��������- � ��� ���
��#��

�*��� ���
����*���� � �� *#�� ��
��
���
 �����	
 �
�# #�.�	��� �	��

��������
 �" ���
��
���
 ���� /�	� �
�����
��
�#�	�# �
 ����,����� "	�
���
� ���������� ����� �" ,��/- �� ��	��
���) �
� �" ��� ����	
 �
�
��� �" ��	�� ,�	����
 �" ���
��
���
 ��������� ���	�#�
�# *� ��	����0 ���
��	�����

����+) ���� �� �+���#�#
��
���
 ����
���
1�
 23� ����	�
��# ����� �
�
��# ,�	���� *� #� 4	���� ��
��
�#�	�# /��� #�
������ ��
�*
�	�
� �
���� "�	 λμ�
��
���
 ����
������
 ��� �	� 	�#�
���� 	���-
�� � �	�,���
 /�	5 %67(/�
��/�# ����
���	�	��� �� ��	�����

��
���

���� #��
 ��� ��8��
���	����� �	���	�� �

��/� *� 9�,�# ��# �� %:()
#� 4	�����
 �������
��
���
) ���� /� 	�"�	 �� �
 Λμ�
��
���
) #��
 ��8��
���
���	����� �	���	��- ;��
 �,�#��
� ��� "�
� ���� ���
��
��� �	� 	�����
#�.�	��� ��#
����
� ���� ��� 	�������
���
 *��/��� ��� λμ�
��
���
����#
*� �#�
���	- ;��
 �
 ��� ��	��
� �" ��� �	�
��� /�	5-
<� 1	
� ���	�#�
� "��	 ,�	����
 �"
����*���� � λμ�
��
���
) �
��*��
�

� � 	�
���
 �*��� 	�#�
����
 �� Λμ�
��
���
 ��# ���� ��,�
������ ���
	�������
���
 *��/��� ��� λμ�
��
���- <� 1����� ���	�#�
� � ����
�
��
"�	 Λμ�
��
���
 ��# �	�,�
�*8�
� 	�#�
���� ��#
�	��� ��	 ���=�����-

	
��
���� >��

�
�� λ�
��
���) λμ�
��
���) ��	��
) >��?���
�) ;���
��
��
) ��	��� ��	 ���=�����-

� �������	�
��

���������	�
 �� �
	����	
 ������ �	

�����
� ��

���������� ��� �
��
�������� �� � ��

���������� ������� ���	���������� ���	
�� ���	����� ��� ����
��
 �
��� λ�����	�	�� ��������� ��� ��

���������� �� ��������� �����
��	���� ��
��
��� ����������� ���� ����
�� ���
���
� �� �	�������� �
��
������ ����	����
�� �
�� ������� �
 �
��� !"� #� ��
���	��
$ λμ�����	�	� %&" ��� ���
��	��� �

'����� (�
���� �� �� ��������� �� λ�����	�	� �����
���� �� �� ����
����)� �
�����
������ �� ��������� ���	
�� ���	����� %*" �� ����� ��� ��� ������ 	�	�� ����
��
���
���
� ��� �� ��
���	��
 ��� ������� ���
���
�

�	��	��� �� λμ��	
��
�� ��)�
��)�
����� �� (�
����+� λμ�����	�	� �
� �������
�
�� �� ��� ����
��	
�� ,���

����������� �� 	�	���
 ��� ���� ����
- ��������� ��

�� ������	� ��
 �� ���
��� ��
���� ��� ����� ���� ����� ��� �������� �����
 © �����!"�#$"�%�! &"�%�� '"�
"%("�! ����

@� ��� ��������
 *��/��� ��� �����
��
 ;���	��
 �" λμ�>��
��� &''

����� ����	���� ��� ��.�
 �� ���� �� ����
 �
��������� �
���
����� /�
 ��������$
Λμ�����	�	� �������� 01�� ����
�� ����� λμη ���� ���� '�
��)�
$ �� �� �����
����� 	�����
 ���� �
���
���� �
� �
	� �� �����)�
���� �� λμ� 2�� �� ��� �	
�
����� �� ���� ����
 �� �� ��	�
 ��� �����
� ��.�
���)�
����� �� ������
�����
λμ�����	�	� �� �
��
 �� ��
��� ����
 ��.�
����� �� ���� �� ����

������������ ��� ��
	���
����� ��� �� ��
 �.��� ��� ���
����)����� ��� ��������� �� ����� ����	���

λμ��	
��
�� 	�
 ���	�	����� λμ�����	�	� ������ ��� �� ��� ���� ������
�
��
� �� ��	�
 ��������� �����������	��� �� �
��	��$ ��� ����	�	� ��� ���� ��
�
��� ��
� ��	���� ��� ��
� �	��������� 3	������� �
���� ����� ����$ 4������
������
 ����
����� �
���
�
 5���� ������ 01�� ����
�� 6$%%"7 ����� ��
 λμ�
����	�	� ��� ��� �� ��� ����
���� 3	������� �� ��� ��	�
 �� λμ�����	�	�$ �����
����
����� �� � �	��������� �
���
�

������� �
���� ��� ��������� �� �)�

�������� ��
� #� 688%$ 9�)�� : (
 �
�)�� ���� ����
����� ����� �� λμ�����	�	�
5��
� �
������
 ��� ����	�	� �� ����� ���� λμη7 �
 ���������� � ��	���
��������
�� ����
����� ;"� #� � �
�)��	� ��
4$ �� ���
��	��� �� ��������� �� λμ�����	�	�$
Λμ�����	�	�$ ��
 ����� �� �
�)�� ���� ����
����� ����� 68"� <� ���� �	
���

��)���� ��� ���������

 �� Λμ�����	�	� �� ���� ����
 �
 �
�)��� ��� ���=	����
��� �
 ���
����
�>��� ��
� �
������
 ��� ��������� ��
��� ��
�� �� Λμ�����	�	�
����� �
� ��� ?)��	��@ ���� �� ����� ����
���� '�
��)�
$ �� ���
��	�� � �
��
�
���� ��
 Λμ�����	�	� ����� ��� ��� �
���
�
 �� �������� ��
� ��
�� �� ��
�
��� ����� 4������ �	�A���
��	����� ��� ��
��� ��
����>������

<�
���
� ��� �
�� �
���� ���
��	��� �� ���� ����
$ ΛS $ �� � �
�� ���� ����
��
��� ��	�
 � �
��� ����
����� ����
�� 66$%%$B$C" ��
 Λμ�����	�	� ���� �� ���)�
��
 �	�	
� ��
4�

��������� �� ��� �	���� /�
�� �� �
����� ��� ��	
)�
����� �� �0D λμ�����	�	�
���� �� ����� ��	�
 �� ���� ����
� �������
 �� �
�)� ���=	���� �� Λμ�����	�	�
�� ������� ; ��� �����
� ��� �3	������� ����
��� �� ��� λμ�����	�� �� ������� *�
/�����
 �� ��	�
 �� ������� & � ��� �
�� �
���� ��
 Λμ�����	�	�$ ΛS �

� ���� λμ
���	��

#� ���� �������$ �� �
����� ��� ��	
)�
����� �� ������
����� λμ�����	�	� ���� ��
����� ��	�
 �� ���� ����
� <� ����� 	�� �� ���� ����
 �� ����
����)� �������� ��

λμ���
�� ���� �� ���
��	��� ��� A	������ �� � �
�)��	� ��
4 68"$ �
����� (t)α
������� �� [α]t�

��� �	������� ������	
 �	
��
��� λμ

#� %EE6$ '����� (�
���� ���
��	��� λμ$ �� ��������� �� λ�����	�	� �
�)����� ?��
����
������ ����
�
������� �� ��������� ���	
�� ���	�����@ %&" �
 �������� ��
 �
�
�����
��
�� ��

���������� � �� �	

�����
� %8" ������� λμ�����	�	� ���
��������� ���	
�� ���	������

&'A �- ���	��

V arT
Γ, x : T �λμ x : T |Δ

Γ �λμ t : B|Δ, α : A
μ

Γ �λμ μαA.(t)β : A|(Δ, β : B) \ α : A

Γ, x : T �λμ t : T ′|Δ
λ��*

Γ �λμ λxT .t : T → T ′|Δ
Γ �λμ t : T → T ′|Δ Γ �λμ u : T |Δ

λ����
Γ �λμ (t)u : T ′|Δ

���� �� ;���
�
�� "�	 λμ�
��
���
 �T , A, B �	� ��� �
���
� ��� ����
 /��� →�

 �!������ � "Σλμ#� ��� ���	
 ��
�������
 λμ��������
 ��� ������ �� ��� ����
������
������

t ::= x | λx.t | (t)u | μα.(t)β
���� x ∈ V ��� α, β ∈ Vc� V ��� Vc ����� ��� ��
����� �������
��
 �� ��������
�
���
�� �� λμ����	
 �
 ����� Σλμ� � μα.(t)β� �������� β �
 �� ���
��!� �� μα�
���	
 �� ��� ���	 (t)α ��� ��� ���	���
 �� Σλμ� ��� ���� �
 �
����� ������ ��	��
���	
 ��� ���� ��� ����������� ������� n�

 �!������ � "λμ��	
��
�� ��
������#� λμ��������
 ���������� ������� −→λμ�
�
 ������� �� ��� ��������� ���� ��������� ����
�

(λx.t)u −→β t {u/x}
(μα.n)u −→μ μα.n {(v)uα/(v)α}
(μα.n)β −→ρ n {β/α}
μα.(t)α −→θ t �� α �∈ FV (t)

n {(v)uα/(v)α}
��
������
 ������� ��!���� ���
�����	
 (v)α �� n �� (v)uα�

λμ�����	�	� �������� ���� �� ���� �
���
���� �� λ�����	�	�- ���=	���� �� ��� 	��
�
��� ����	�	� %&$%E$;"$ �	�A���
��	����� %&" ��� ��
��� ��
����>����� %C$%!"
�� ��� �
��� ����	�	� 5��� ��	
� %7 ����� ��� ���� ����
�� �����

��� λμ��	
��
�� ���� $%�������	
���� ���� λμη

<��
��� ��� �
������ ���
 ������� β ��� η ���� ��� �
�)��� ��	
���F����
 ��
����$ ��� �
������ ���
 μ/η ���� ��� ���)�
��-

μα.n←−η λx.(μα.n)x −→μ λx.μα.n {(v)xα/(v)α}

,��� �� �
�����
 ��
 η �� ��� �������
�� �� (�
����+� �
������ �
����������� #� ���
(�9$ <����
 (
 ��	���� ���=	���� �
���
���� �� λμ�����	�	� ��� ��� ����
�����
�� 01�� ����
�� ��
 λμ�����	�	�� #� ��	�
��� ����
�����$ �� �� ������ �� ��)�
�������������
 �� ���� (
 ����� η �� λμ�����	�	� ���
����
�� ����
����� ����
�� ����������
	��$ ν$ ���� ��4�� ��� ���)� ����
�� �� ���)�
���

λμη�����	�	� �� �������� �
 ������ ��� ���������
	��� �� λμ�����	�	�-

λx.(t)x −→η t �� x �∈ FV (t)
μα.n −→ν λx.μα.n {(v)xα/(v)α} �� x �∈ FV (n)

@� ��� ��������
 *��/��� ��� �����
��
 ;���	��
 �" λμ�>��
��� &'B

9�)�� : (
 �
�)�� ���� ����
����� ����� �� λμη %E$;" �
 ���������� � ��	���
�
������� �� ����
������- w0, w1 ∈ Σλμ ���� �
� ���)����$ ��� �3	�)����� ��
 ���
�3	�)������
������� ���	��� �
 λμη�
��	�����
	��� �	� ���� �� ������� ���
�������	���� #� � �
�)��	� ��
4 68"$ �� ������ Λμ$ �� ��������� �� λμη ��

����� �� �
�)�� 01�� ����
���

��& ' λμ��	
��
�� �	�������� ()�* +�����*� Λμ��	
��
��

 �!������ & "ΣΛμ#� Λμ����	
 ��� ������ �� ��� ���������
������

t ::= x | λx.t | (t)u | μα.t | (t)α

����� x �����
 ���� �
�� Vt �� ���	 ��������
 ��� α �����
 ���� �
�� Vs ��

����	 ��������
� Vt ��� Vs ��� ��
������

#� �� ����
$ ����� α �∈ ΣΛμ ���� �������� (t)α �� ��� �����	�	� ���� ��������
(t)u� D����� ���� Σλμ � ΣΛμ ��� ���� ����� ��
�� �� ��������� % �
� ��������
�� ΣΛμ� '�
��)�
$ ��
�� �	�� �� μα.μβ.t �
 λx.(t)αy �
� �� ΣΛμ�

 �!������ , "Λμ��	
��
�� ��
������#� Λμ��������
 ���������� ����� �
 �����
��� −→Λμ� �
 ������� �� ��� ��������� ��� ��������� ����
��

(λx.t)u −→βT t {u/x}
λx.(t)x −→ηT t �� x �∈ FV (t)
(μα.t)β −→βS t {β/α}
μα.(t)α −→ηS t �� α �∈ FV (t)
μα.t −→��� λx.μα.t {(v)xα/(v)α} �� x �∈ FV (t)

μ���������� ��� ��
�	������ �� � �
����������� �������� �� � βT �����������
(μα.t)u −→��� (λx.μα.t {(v)xα/(v)α})u −→βT μα.t {(v)uα/(v)α}�
� ����
�����
��	�� �� ������ ����
������ �� � ��� �� ����
)����� 5��� βη���
���
��
�� �� λ�����	�	�7� ����� �
� �� �� ���������
	��$ ���
� �
�)�

 ��� ��
���
��
�� �� Λμ� <� ��	� �������
 � ��� �� ��������� ��
��� ��
�� ;$68"-

 �!������ -� " Λμ����	 t �
 �� �	�����	
 ���*	
 ���* "�./# �� �� �

βT ηTβSηS����	�� ��� �� �������
 ��
�����	 (λx.u)α ��� (μα.u)v�

+�����* � "()�* ������* ��� Λμ��	
��
�� 0�12#� � t ��� t′ ��� ��� ���
βT ηTβSηS�
���#�������� ���
�� ��������� ���	�� ���	
� ����� ���
�
 � ��������

C[]
��� ���� C[t] −→�

Λμ λx.λy.x ��� C[t′] −→�

Λμ λx.λy.y�

$�	��% &� #� *"$ �� �
���� ���
��	��� �� ��������� �� λμ�����	�	�$ ���� ��
�����
���
 �� �� λμdG ��� ���� �� ����� �� Λμ�����	�	� ������ �� ��� ������
 ηT
��
 �
�� #� %6"$ 2�� �������
� � ����	�	� �	��� �� ΣΛμ ����� ��)�

 ����� ��
Λμ �	� �� �� �
������� �� �� �3	������� ����

� λμdG ��� �� �������
�� �� �
�	�����	�	� Λμ$ �� ��� ���������$ �� ���� ��� �������
 �	�� ���� ����	�	��

� w0, w1 �	� �*�����# *�
�*
�������� y *� 0 = λx, x′.x′ ��# 1 = λx, x′.x 	�
��
��,���
�� w = λx.μα.((x)μβ.(x)u0yα)u0α /��� u0 = μδ.(λz1, z2.z2)α-

� βT) ηT) βS) ηS) ���
�		�
���# 	�
��
��,��� �� β, η, ρ, θ ��# νC
�� %67("�	 #�����
-
� �
����+� ���� �� *� !
�	�� �����
���,�$0 []t11 . . . t1n1α1 . . . tk

1 . . . tk
nk

αk-

&'D �- ���	��

��, � 3������� $%���
�
 ����	% ���� ε�4�
������� λμε

(������� �� �
���� ���
��	��� �� ����
��� ������� ��
 λμ�����	�	� &"� #� �
��

�� �� ��$ �� �������
�� ������
 ��������� �� (�
����+� λμ$ ���� ����� �� ��
��
�� ΣΛμ- ��� λμε�����	�	�� λμε ��� �� ����������
	��$ ε�
��	�����- μα.μβ.t →ε

μα. |t|β ���
� |t|β �� ���
��	�� ��
���)��� ��� ��� �
�� ���	

����� �� β ��
t� � �����
���� ��
��	����� ρ �� ����� �� �
��
 ��� �� ���� ���=	����- ρ�

��	����� �� ��� μγ.(μα.t)β −→ρ μγ.t {β/α}� 2���
���� ���
� �� � �
������ ���

�� (μγ.μβ.μα.t)δζ ��������� �� ������
 �� ����
 ε �� μα �
 μβ-

|t|α {δ/γ} {ζ/β} ←2
ρ←ε (μγ.μβ.μα.t)δζ →ε→2

ρ |t|β {δ/γ} {ζ/α}

'��
�)�
 η�
��	����� ������ �� ����� �� λμε �
 ���=	���� �� �����-

μα.λx.μβ.y ←μ μα.λx.(μβ.y)x →η μα.μβ.y →ε μα.y

 �!������ 5 "λμε��	
��
�� ��
������#� λμε��������
 ���������� ����� �
 �����
��� −→λμε� �
 ������� �� ��� ��������� ��� ��������� ����
�

(λx.t)u −→β t {u/x}
(μα.t)u −→μ μα.t {(v)uα/(v)α}
μγ.(μα.t)β −→ρ μγ.t {β/α}
μα.(t)α −→θ t �� α �∈ FV (t)
μα.μβ.t −→ε μα. |t|β

#� ���
��� �� ���� ����
$ �� ����� �
�)� ���� ���
��	��� ���	� Λμ�����	�	� ���
�
�)� ���� �
���
����
������� ��� ��	
 ����	�� ���
��	��� �� ���� �������� <�
��
���
 ����� ��� ���������-

��**	 �� λμ��������
 �

����� �� Λμ����������
 ��� λμε����������
�

6 �� t ∈ Σλμ ��� t→�
Λμ u� ���� u ∈ Σλμ ��� t→�

λμη u'
6 �� t ∈ Σλμ ��� t→�

λμε u� ���� u ∈ Σλμ ��� t→�
λμ u�

� �����	�
	�� ������� ��� ���� Λμ
���	����

&�� Λμ��	
��
�� 4�
������ �����*

 �!������ 7 "β8 βvar8 η8 ���−#� (� ���
���� ��� ���������
��
�
��	
 �� Λμ�
��������� �� Λμ��#����������

6 β �
 ���
��
�
��	 	��� �� ���������
 βT ��� βS'
6 η �
 ���
��
�
��	 	��� �� ���������
 ηT ��� ηS'
6 β�
� �
 ���
��
�
��	 βTβS�
� ��� βη�
� ��� ��� ���� Λμ����������
�
��	'
6 βvar ��� ���
��
�
��	 �� β ���� ������
 � β������ ���� ���� ��� ����	���

�
 � ��������� (λx.μα.t)yβ −→�
βvar t {y/x} {β/α}'

� E��� #�����
 �� �	�*��
 �"
��?���
� �� λμε /��� η
�� *� "���# �� ���
 ���
�
 %&F(-

@� ��� ��������
 *��/��� ��� �����
��
 ;���	��
 �" λμ�>��
��� &'F

6 �
�− �
 ��� ��
�������� �� �
� �� ������
 t = μα.t′ ����� ��� �!!���� �� � ���	
u ��
��� ���� t′ �������
 �� ���
� ���
�����	 (λx.u)α'

6 −→Λμ− �
 −→βη���− '
6 ∼Λμ ��� ∼Λμ− ��� ��� �#���������
 �

������� ���� −→Λμ ��� −→Λμ− �

$�	��%)� ∼Λμ=∼Λμ− �	� �� �� ��� �������
 ���
��	����� �
���� Λμ− ����� ��
�� ��� ���=	���� #�����$ ���
� �
� ��.�
��� ��������� ��
��� ��
�� ���� �
� ∼Λμ�
�3	�)����� 5��� ��	� ∼Λμ− ��3	�)�����7 �	� ���� �
� ��
��� ��
�� ��
 −→Λμ− 5��
���	
�� �
 �
��������� &$ ���� %B87�

&�� ���9����� �� Λμ��	
��
��

#� ���� �������$ �� �
�)� ���=	���� �� Λμ�����	�	� ��
 μ������� ��
��-

+�����* �� Λμ��������
 �
 ���*���� �� μ����
�� ���	
� ��� ��� t, t′, t′′ μ����
��
Λμ����	
� ����� ���
�
 u ∈ ΣΛμ
��� ���� �� t −→�

Λμ t′, t′′ ���� t′, t′′ −→�
Λμ u�

$�	��% +� D����� ���� ��� �
�������� �� μ������� ��
�� �� � �������

���
������
�������
��� ���� ��� ��
� (μβ.x)α ��

��	�� �� x �
 �� (λy.μγ.x)α �����
������
��	�� �� ��� ���� ��
��

#� ��� ���������$ ��� ��
�� �
� ����
� �������
�� �� �� μ��������

����� ���=	���� �� Λμ�����	�	� �� �
�)�� ����4� �� ���� �
�������

 �������
����������
$ ���=	���� �� ��� ����	�	� ������� �
�� ��� ���=	���� �� �	��
����
β�
� 5�
��������� %7$ ���=	���� �� �	��
���� η 5�
��������� 67 ��� ��� ����
�	������ �� ��� ��� �
�)��	� �
����� 5�
��������� ;7- ����4� �� ������
�F����
�����$ ���� ���	
�� ���=	���� �� Λμ�����	�	�� ��

G����� 6 ��� ; �
� �
	���� ������ G���� 6
�3	�
�� μ������� ��
�� ����� ����
�	������ βvar�
�/β�
� �� ��� ����	�� ���� ����	�� �
� ���� ��� ��
������-

��**	 �� t

βS ���

���

� �� t′

βvar��� ���
t′′

���

� �� u

��**	 &� βT �
� ,��
!� βvar�
�- ��� β�
� ��		����

����������� �� β�
����������� �
 ���*�����

����������� �� η���������� �
 ���*�����

(
��������� ; �� �����3	���� �� η ����	���� ���� βT $ βS ��� �
�
�������)��
-

����������� &� η ��		���
 ���� β�
��

,���4� �� ����� %$ ���=	���� �� λμη�����	�	� �� �� ���
 �����3	���� �� ����
=	���� �� Λμ�����	�	� -

&A7 �- ���	��

>��?���
� ����	����� ;��� ��
�� ��*8�
� ��#�
���� ��
λμ ��
 �� >�9 ��
 ��

λμη ��
 �μ�
��
�#� �� >�9 G ⊥ ��
 ��

λμε ��
 H >�9 G ⊥ ��
 ��

Λμ ��
 �μ�
��
�#� ��
 >�9 G ⊥ ��# ΛS ��
 ��

���� �� �	���	���
 �" ��� "��	 λμ�
��
���

����

	�� �� λμη��������
 �
 ���*���� �� μ����
�� ���	
�

$�	��% .� � �
��� �� ���=	���� ��
 λμη ��� �� ��	�� �� (
+� ������ %E" ��� ��
�	������ �� ;"� 2	
 �
��� �� ���=	���� ��
 Λμ�����	�	� 	��� ���� �� ��� ����� ��
��� �
��� �
 (
 �	� �� ������
$ �� ��
���	��
 �� ��� �)��� � ������
 ��)��������
���
� (
 	��� ����������� �� ��
��� ,�� ������������� ���� �� ��
���	��
 �� ���
	�� �� ����� 6� �� �
��	��$ ��� �
��� �� �	������ ��
� ��$ �� �	
 4��������$ ���
���
���� 4���� �
��� �� ���=	���� ��
 λμη�

,�� ��������� �
��������� �� ���	���
 ��� � �
�)��� �����3	���� �� ���=	����
����� �)�� ���	�� t, u �
� μ�������$ ��� ��3	���� �� ��
�� A	����
��� t =Λμ u
��
 ��)��)� ���������� ��
�� ��
 ����� ���=	���� ���� ��� ���� �� ����
��-

����������� ,� � t, u ∈ ΣΛμ ��� μ����
�� ��� t =Λμ u ���� ����� ���
�
 �
v ∈ ΣΛμ
��� ���� t, u −→�

Λμ v�

&�& ��	�	�����:��� �	�����	
 .��*	
 /��*� �� Λμ

����������� -� μ����
�� ��������� ���	�� ���	
 ��� ������� ��� μ����
�� Λμ�
���	
 �� βη�
�−����	�� ���	�

,�� ��������� �
���
�
 ��

������� �� ��� �
���
�
 �� 	��3	����� �� ��� βη�
��
��� ��
� �� λ�����	�	��

����������� 5� μ����
�� ��������� ���	�� ���	
 ��� Λμ��#�������� ��� ��� ����
��� ���� ��� �
���#��������� �� t, u ∈ ΣΛμ ��� /01� ���� t =Λμ u⇔ t =��� u.

����� ������ �����3	���� �� �
��������� *� ��

� ������
�� ��� ���� λμ
���	��

,�� ��	
 ����	�� ���
��	��� �� ������� 6 ���
� ���� �
���
���� �	� ��.�
 ��
����
�� #� ���� �������$ ��
�)��� ���� �� ��� 4���� �
���
���� �� ��� ����	��
��� �� ��)�������� ����

�������������

<� �	���
�>� �� ��	
� 6 ��� �
���
���� �� ��� ��	
 λμ�����	�� �������
��
�� ���� ����
� ,�� ��	
 ����	�� ������
 ���=	���� %&$%E"� ,��
 ��� ��)� � �
��
�
���� ����� �� �� ��

���������� ���� ��������� ���	
�� ���	����� �
����$ ����
�
 �����	� �������� ⊥� #� ��� ���� ��
� �� ��� ����
 �� ����� ���
��	�� ��� ��	�

ΛS $ � ��� �
�� �
���� ��
 Λμ�����	�	�� ��
��� ��
����>����� �� 4���� �� ���
�����
 �
��� ���� ��
 λμη$ λμε ��� Λμ ����� (�
���� �
�)���� %!" � �
��� ��
��
��� ��
����>����� ��
 ��������
��
 λμ�

@� ��� ��������
 *��/��� ��� �����
��
 ;���	��
 �" λμ�>��
��� &A&

,�� ������;	��;� $%��������

����������� 7 "Λμ �� 	 ������;	��;� �%������� �� λμη#� � t, u ∈ Σλμ ����
�� ���� ��������� ���� t =Λμ u⇔ t =λμη u�

����� #� �� ��������� ���� �� t, u ∈ Σλμ ���� t =λμη u ������� t =Λμ u� ,��
���)�
�� �
���
�

�3	�
�� ���=	���� ��� �
��������� *- �
 ���=	���� �� Λμ$
�� t =Λμ u ���
� ������ v ∈ ΣΛμ �	�� ���� t →�

Λμ v ←�
Λμ u� 0
 ����� %$ ��

��
��)�
 t, u ∈ Σλμ ���� ���
� ������ v ∈ Σλμ �	�� ���� t →�
λμη v ←�

λμη u ���
�����
 t =λμη u� ��

����������� < "λμε �� 	 ������;	��;� �%������� �� λμ#� � t, u ∈ Σλμ ����
�� ���� ��������� ���� t =λμε u⇔ t =λμ u�

����� ������
 �� ��� ��
)��	� �
���� ��

����������� = "=Λμ 	�
 =λμε 	�� ����*�	�	>
��#� ����� ���
� t, u, v ∈ ΣΛμ

��� ���� t =Λμ u ��� t �=λμε u ��� t =λμε v ��� t �=Λμ v�

����� G�� t ∈ ΣΛμ �� � ��
� �� ��� ��
� μα.t′ �� ��������� ��
��� ��
� ����
�� ��� ������	��)� μ�����
�������� G�� u = λx.μα.t′ {(w)xα/(w)α} ��� v =
μα.μβ.t′� ,��� ��� ��� t =��� u ��� t =ε v �� ���� t =Λμ u ��� t =λμε v�

t �� � λμε���
��� ��
� ��� �� �� u 5)�
����� x ������ �
���� � λμε�
����
�����	� ����
�������� ���� t �� � �D/7- ���
 �
� �������� ��
��� ��
�� �� λμε�
����	�	� ��� ��	�$ �
 ���=	���� �� λμε$ t �=λμε u� 2� ��� ����
 ����$ t ��� v
�
� �� �D/ �� ���� t =Λμ v �� ��� ���
 �� t =��� v� 0	� t ��� v ������� � ��.�
���
�	���
 �� μ�����
������ �����	�� �
��
��	����� �
���
)�� ��� �	���
 �� μ �� �
��
�� �� � �����	���� t �=��� v ��� �����
 t �=Λμ v� ��

,�� ���	�	>�
��� ����������

<� ������ �� � �
�)��	� ��
4 68" ���� Λμ�����	�	� �������� ��� ����
�����
�
���
�
- ��� ��������� ��
��� ��
�� �
� �3	�)����� �� ��� ���
 �� ���
 ������
�� ����
���� �
 ��
 �������� 2� ��� ����
 ����$ �� �� 4���� ���� λμη ��� �
��
���
� λμ �� ��� ������
 ����
������
 %E$;"�

<��� ��� �� ��
 ���	� ����
������
 �� λμεH ������� ����
����� �� λμε�����	�	�
��	��
�3	�
� �� �������
 ��� ������� ���	�� λμε�
	��� ��	� η� ����)�
$ ����
��4�� ��� ��	�
)�

 ������� ����� λμε + η �� ��� ���=	��� ��� ��	� �� ��
����	�� �� ��
 ��
����� ���	� ��� ��
�� ��� ����� �3	���� �
 ��� �3	�������
����

� <� ����� �����
 �������
 �� ������� �� ��� ��
�� ����� ����
)��������

�3	�)����� ���
��� ���
 �
� ��� �3	��������
 �3	�)����� �� λμε- μα.0 ��� μα.1
�
� ����
)��������
 �3	�)������ #�����$ ���
 ������ �� ����
���� �
 ��
 �������-

(μα.t)u −→μ μα.t �� α �∈ FV (t).
μγ.(μα.t)β −→ρ μγ.t ����� �� α��3	�)����� �� μα.t.
μβ.μα.t −→ε μβ. |t|α = μβ.t ����� �� α��3	�)����� �� μα.t.

���	���
$ ��
 ��
� �� ��� ��
� μα.t ���� t � ������ ��
� �� ����
)��������

�3	�)����� �� μα.0�

&A6 �- ���	��

� �
����
����� Λμ
���	����

#� ���� �������$ �� ���
��	�� � �
�� �
���� ��
 Λμ�����	�	� ��� �
�)� ����
�
���
���� ���	� ��$ �����
 ���� �� ��� �
�� ��
����
 ��
� ��
�� ���� (�
����+�
�
�� �
����$ ���� �� ��� �	�A���
��	����� ��� ��
��� ��
����>������

2�� ��
 �� ��	
�� ����4 �� �
���� Λμ 	���� � �
�� �
���� ��
 ������
� �����
����� λ�����	��$ ������
 �� ��� ��� ����� �� ��	
� %$ �
 ������
	���-

Γ 0 t : ⊥|Δ,α : A
μAbs

Γ 0 μαA.t : A|Δ
Γ 0 t : A|Δ,α : A

μApp
Γ 0 (t)α : ⊥|Δ,α : A

,�� �
���� 	��� � �
���� ���������� � �� ��	
�� �
 �
����� ���������
 ���
�
�� �� ��� ����
����� 5��
��� �
 ��
�7)�
������� �������
��� ���� �� ��)� ��
���������
	��$ ��
���
��� ��� �
�
	�� �� ����
 ���
 �� ��
�� �� �
�� A→ B ��
�
��
 ��� �����)� �	�A���
��	�����- μαA→B .t −→��� λxA.μβB .t {(u)xβ/(u)α} .
�	�� � �
�� �
���� ��� ���� �
���
���� �	� �� �� 	�����������

 �� ��� ����� ����
���
 Λμ���
�� �
�
	��� �	� �� ��� �
��� ����	�	� �)�� ���	�� ���
 ��)� ����
����	�������� ����)��	
�� /�
 ��������$ ���
 ��
�� ��������� ��
 ����
����� ��
���� ������ �� �
��� �� ���� ��
 �	�� �� μα.λx.t�

?	@��� ����	*� /������
	�� ����:��� �� ��� +���
 �������� <� ���4 ��

� �
�� �
���� ���� ��	��
�=��� �� �
��� ��� ��
��� �����
	������ #� ��
���	��
$
����� μ �� ���� �� � ��
��� ����
������$ ��� ����� ����4 �� � �	�������� �
�� ��

��
����- �� ��� ��
� t �� �� �
�� T ���� ��
��� α �� �� ��
��� �
�� S$ ���� μα.t
��	�� �� �� ��� �
�� �� � ��
��� �	�������� �
�� S �� T 5���� �� �
��� S ⇒ T 7�
<� ��� ��	� ����4 �� ��� ��������� �
����
	��� ��
 μ�����
����� ��
��-

Γ 0 t : T |Δ,α : S
AbsS

Γ 0 μαS .t : S ⇒ T |Δ
Γ 0 t : S ⇒ T |Δ,α : S

AppS
Γ 0 (t)α : T |Δ,α : S

' +��� ?��*	���� �
�
��	����� ���� ���������� ��� ��������� �� � �
��
�
���� ��
 Λμ ���� ��	�� ��4� ��
���� ���� ����	��- ���
��� μαS .t �� �� �
��
��� �
��$ ��
 S ⇒ T $ ��� ��
�
��	����� �
�� μα.t �
 ����
��� ��� �
�
	��
���� 5�����
 λxA.μβS

′
.t {(u)xβ/(u)α}7 ���	�� �� �� � ������
� �	������ �
��

A → B 5��
� �
������
 A → (S′ ⇒ T ′)7� '�
��)�
$ ��
���� �
� ��
���� ��
��
�� ��� ���
 ���	�� ��
������$ ��� ���
 �
 ��� �
�
	��$ �	� ���� �
 ��������
�� ����
 � ��
� �� � ��
��� �	�������� 5��
 �������� (μα.t)u7 ��� ���)�
���
$
��� ����� ���� �� ����
 � ��
��� �� � λ�����
����� ��
� 5��
 �������� (λx.t)α7�
⇒��
��� ��� →��
��� ���	�� ��
������ �� ���� ��
� �
� ��)�� ��� 4�
 �� ����
�����������

' 4�
	���� �;�� ����	* +����� �
� ��� �
������>�� �� Λμ�����	�	� 5���
�
�)��	��
 �� λμ�����	�	� �
 (
 %E$;"�7 �� ���
��	�� �� �� η���������� ��������
�
 � μ�
��	������ #� ��� �
��� ����$ ��� η���������� ��� ���	
 ���
 �� →��
��
��
��� ,���
���
������ ������� �� Λμ�����	�	�
��	��� �� ��� ��������� ���� μα.t

� �� ��# �
������ *��� ��	��#� *	��?� #�

�

�# �� &FF: *� ��	���� %&A(-

@� ��� ��������
 *��/��� ��� �����
��
 ;���	��
 �" λμ�>��
��� &A:

�� �� � ��
��� �
�� �� ��� ��
� (T → S) ⇒ T ′� ����
 �� ����������� �� �
�$ ��
��)� ��
� λx.μβ.t {(u)xβ/(u)α} ���� ���	�� �� �� �
�� T → (S ⇒ T ′)�

,��� ��

������� �� �� ���������)��

	�� ������� �����
	���
� → ��� ⇒-

(T → S)⇒ T ′ =���) ⇒→ T → (S ⇒ T ′)

-�� ��*�
� +���
 ����	*�� ΛS

����+���� 	�
 +����� <� ��� ����� ��� �
�� �
���� ΛS ��
 Λμ�����	�	��

 �!������ < "ΛS ���������#�
�����!�
 ��� ����� �� ��� ��������� ���		���

+��* ���������� T , A,B, . . . ::= oi | A→ B | S ⇒ T
����	* ���������� S, P,Q, . . . ::= σi | T → S | ⊥

oi ��� σi �
�
�������)��
 ��
� ��� ��
��� �
��)�
������� <� 4��� � ⊥ ��������
�� ��� ����	�	�$ ��
� ��
 �
������� ���� ��

��� ����- ⊥ �
�� ��
 ��
���
���
�� � �������	����� ��
��� �
��)�
������� <� ����� ���� �� �����
�� ���� ⊥ ��
�	�	
� ��
4�$ ����)�
 �� ���� �� 	���	� ���� ��	�
��� ���
������������ �������
λμ��
����� ��� ΛS��
����� ��
���

 �!������ = "≡���#� ≡��� �
 � ���������� �������� ���� !�����!�
 ����� �
 ���

�		������ ��*����� ��� ����
����� ���
��� �� �������� �fst ������ ��

(T → S)⇒ T ′ �fst T → (S ⇒ T ′)

,
��� �� ΛS �
� ����
� �������
�� 	� �� ���� ����
	����
�������-

 �!������ �1 "ΛS �����#� " ΛS ��!� �
 �� �#��������� ���

 ��� ≡����

,
��� Λμ�����	�	� �� �������
�� � �� /�����$ ���� �� ��� �
���� �� �
��� Λμ�
��
�� �� �� �������-

 �!������ �� "+���
 Λμ��	
��
��#� t ::= x | λxT .t | (t)u | μαS .t | (t)α�

<� ���� �� ��	
� ; ��� �
�� �
���� ΛS ��
 Λμ�����	�	�� #� ���� �
�� �
����$
�� ���� ���� �
���
��� ��� �� �������� ���)�
����
	�� ������� ��� �3	�)�����
�
���
����

-�� +���
 4�
������ 4�
��

,�� �
�
	�� �� �� ���������
	�� ��� ����� ��	� �� �
����� ���� ��
� �� ��� �����
�	�A���
��	����� �� ���� �� ΛS � #� ��� �
��� ����$ �� ����� �� ����������� ��
��� �
�
	�� �� t$ �� ����
�3	�
� ���� ��� ��
� ��� � �
��
��
������� �
 �
�
���
�� �� ����� (T1 → S) ⇒ T2� ,���
�3	�
����� �� ������
 �� ��� ���������
�� ��� η���������� ����������� �� �����
 �
��� λ�����	�	� ��� �� �������

 ��
������
 �	�A���
��	����� �� ��� �
������ �� �� ���������
	��� ,�� η����������
�� 	�	���

���
����� �� t : A→ B −→η→

exp
λxA.(t)x : A→ B.

<�
�3	�
� ��� ���� ��
� �� �����
���� �� �
��
	��-

� �� �� ����	����,��� *�
��� �
 � ,�	��*�� ����
����� *�
�*
������# *� ����	 ����
-

&AI �- ���	��

V arT
Γ, x : T � x : T |Δ

Γ � t : T |Δ
≡��� ��	�,�#�# T ≡��� T ′�

Γ � t : T ′|Δ

Γ, x : T � t : T ′|Δ
AbsT

Γ � λxT .t : T → T ′|Δ
Γ � t : T → T ′|Δ Γ � u : T |Δ

AppT
Γ � (t)u : T ′|Δ

Γ � t : T |Δ, α : S
AbsS

Γ � μαS .t : S ⇒ T |Δ
Γ � t : S ⇒ T |Δ, α : S

AppS
Γ � (t)α : T |Δ, α : S

���� �� ΛS 0 � ����
�
�� "�	 Λμ�
��
���

 �!������ �� "���→ ��
������#� $�������� �
�→ �
 ������ �
 � ��
�������� ��
�
����������� �� ��!�� Λμ����	
 �
 ������
�

μαA→S .t −→���→ λxAμβS .t {(u)xβ/(u)α}

2�� ��� ������ ���� �
�→ �� �� ����
�������
��	����� ������� �
� ��� �
�−-

����������� �1� 2�� t, u �� ��� ��!�� Λμ����	
� ��� ��������� �	!��������

�����

t −→���− u ⇒ t −→���→ u ⇒ t −→��� u

��� ������
� �	!��������
 �� ��� �����

-�& ��**���� 	>��� ��� +��� �����* ΛS

?�;��� ���* ⇒ �� �� ����
�
��
 �� ���� ��� �������� ⇒ ��
 �	�����$ ��
�	����
 �� ��)��)�� ���� ���� ��������)�� ,��
	�� AbsS ��	��
����
 �	����� ���
⇒ ��������)� �� ��
������ ���� ��� � ��������)� �� �����
 ������ ,��� �� �
������

���� �� �)������ �� �
������ ��
4 ���� (����� %;"- ���� �
��������� ΛS ����
5� 4��� ��7 ����
�>�� �
��� ����$ T1 → T2 ������� ? T ⊥1 � T2 �� 	�	�� �����
S ⇒ T �� �
�������� ���� S � T �
≡fst �� ��	� �� ���������)��
 �
���
�
 �� � ����� �� ��
�����
 ��	�� ��������
-

(? T ⊥ � S) � T ≡fst ? T ⊥ � (S � T).

4�
	���� ���� λμ�̂� +��� �����*� ��
����� �� �� %$E" ���
��	���
������
 �
����	�	� λμ�̂� ����� �� � λμ�����	�	� ���� ��� �
��������
 ��	��)�
������ ,���
������ ���� �� ����� ������
�)��	� ��� ������
����� ��������� ������	�������
,��
 ������� ���� ������
����� λμ�̂� ��)�

 ����� �� Λμ�����	�	� ��� ���
 ���
��
�	��� ������������
 � �
�� �
���� ��
 ���� ����	�	� ����� ��)�

 ������
 �� ΛS �
,��
 ��)� ����)�
 � ��.�
��� ��
	��	
� ��
 �
���� A	��������- Γ 0Σ M : A;Δ
5Σ$ ���������� ��� 0 �� � ���� �� �
���7�

#� � �	

��� ��
4 ���� ��
����� ��� �����>��$ �� �
� ��)���������� �	
���

��� ���������

 λμ�̂� ��� ����
�������
 λμε �����
� ���� �� �� ��������� �� λμ�̂�
���� ���� �
������ ���
 ���	
���
 �
����� ���� ��� �
�����)�
����� �̂� �� �
������
�� ��� �������� ��
������-

[
�̂�
]
μα.c −→ c

{
�̂�/α

}
�

@� ��� ��������
 *��/��� ��� �����
��
 ;���	��
 �" λμ�>��
��� &A'

-�, ���������� �� ΛS

ΛS +���� ������
� ?��� +��*� +�	� �	������� λμ� <� ���� ���� �)�

�
����� ��
� �� (�
����+� λμ�����	�	� ��� �� �
��� �� ΛS �

+�����* &� 2�� t � λμ����	 ��
�������

������ � ����� ���
�
 Γ,Δ ��� A
���
���� Γ 0λμ t : A|Δ� ���� ����� ���
�
 Γ ′, Δ′ ��� A′
��� ���� Γ ′ 0ΛS t : A′|Δ′�

 �!������ �&� (� ���
���� o⊥ �
!����� ���	 ��!� �������� ��� �� ����� ���
��������� ����
���	�����
 �� ��� ��!�
 ��
�������
 λμ��������
 �� ΛS !�����!�
�
���	 !�����!�
� (i) (o)T = (o→ ⊥)⇒ o⊥ (ii) (A→ B)T = AT → BT

3����	 !�����!�
� (i) (o)S = o→ ⊥ (ii) (A→ B)S = AT → BS

����������� ��� 4���� �
�	!�� ��!� A� ���� AT ≡��� A
S ⇒ o⊥�

$�	��% 5� ,�� �
�)��	� ����
�� ����� �� 	���
����� ��
� �
������
 ���� �� ���
���������� �� (�
����+� λμ�����	�	� ����
������ �� ��� =��������
 �� Λμ�����	�	�-
������ �� λμ���
�� ���� ��)�
 �� �������� � �
�� �� ����� S1 ⇒ (S2 ⇒ A)�

+��� ������;	����� ,
��� Λμ�����	�	� �������� �	�A���
��	�����-

+�����* , "��>A��� 4�
������#� $�������� �� ��!�� Λμ����	
 !��
����

��!�� ��� t, u ∈ Λμ� � Γ 0 t : A|Δ ��� t −→Λμ→ u ���� Γ 0 u : A|Δ�

������ .��*	
�:	����� /�����
$ �� �
�)� ��
��� ��
����>�����-

+�����* - "+���
 Λμ��	
��
�� �� ������
� ���*	
�:���#� 2�� t �� � �����
��!�� ���	 �� ΛS � ����� �
 �� ������� ��������� ���	 t �� Λμ→�

,�� ����
�� �� �
�)�� ����4� �� � ������ �����
�� �
 ��� �� ��� �
���� ��)��
�
 (�
���� �� %!" ��
 �
�)��� ��
��� ��
����>����� �� �����
 �
��� λμ�����	�	��
#� �������� �� �
�)����� � �
��������� �� �
��� Λμ���
�� ���� �����
 �
��� λ�
����	�	� ��� ���	���� ��
��� ��
����>����� �� �
��� Λμ�����	�	� ����
 ��
���
��
����>����� �� �����
 �
��� λ�����	�	��

<� �
�� ��)� � �
��������� �� ΛS �
��� ���� ������ �
���-

 �!������ �,� �� ���� !�����!� �� ΛS� �� �

������ �
�	!�� ��!� �
 ������
�
(� ��
� ������ ���
�� �� ��!� ��������
 �� ���
�	!�� ��!�� λ��������
� �� ����

����	���!� �������� σ� ��� ���
����
 � ���
�	!�� ��!� �������� ������� σ �

����� 6�������� �� ��� � ��� �������� σ⊥�

6 |oi| = oi �� oi �
 � ���	���!� ���������
6 |T1 → T2| = |T1| → |T2|
6 |(T1 → S)⇒ T2| = |T1| → |S ⇒ T2|
6 |σi ⇒ T | = σi → |T |
6 |⊥ ⇒ T | = σ⊥ → |T |

,��� �
��������� ������ ���	���
 � �
��������� �� ΛS �
��� ���� ������ �
��� �����
��� ��� �
���
��� �� ��� ���� �
�� �
� ���� �� ��� ���� ������ �
�� �� �� �����

����4��� <� ��� �
������� �
��� Λμ���
�� ���� λ���
��-

&AA �- ���	��

 �!������ �-� 1�� ����
����	 �������� α� ��� ���
����
 ��� ��������
 �� λ�
�������
� α0, α1, . . . , αn, . . . ��� ����
������ �
 ���� ������ �
 ������
�

�x�ΛS = x

�λxA.t�ΛS = λx|A|.�t�
ΛS

�(t)u�ΛS = (�t�ΛS)�u�ΛS

�μαA1→...An→σ.t�ΛS = λα1
|A1|. . . . λαn

|An|.λαn+1
|σ|.�t�ΛS

�(t)α�ΛS = (�t�ΛS)α1 . . . αn+1 �� α �
 �� ��!� A1 → . . . An → σ

����� σ �
 ������ �
����	���!� �������� �� ⊥�

����������� ��� � t �
 � ��!�� Λμ����	� ���� �t�ΛS �
 �
�	!�� ��!�� λ����	�

����������� �& "��*�
	����#� 4���� ��� ��!�� Λμ����	
 t ��� u� ��� �������
��� ����
 �����

6 � t −→���→ u ���� �t�ΛS = �u�ΛS

6 � t −→βη u ���� �t�ΛS −→+
βη �u�ΛS

����������� �, "���→ ���*��	���#� 2�� t �� � ��!�� Λμ����	� ����� �
 ��
��������� ���� �
�→����������� ���	 t�

����������� �- "�B�ΛS �� ��
�������
����� �����	����#� � t −→�

Λμ→ u

���� m βη����������
��!
� ���� ����� ���
�
 � βη���������� ���	 �t�ΛS �� �u�ΛS

�� �� ���
� m ���������
��!
�

<� ��� �����
 �
�)� ��
��� ��
����>����� �� �
��� Λμ�����	�	�-

����� G�� 	� �	����� ���� ���
� ������ �� ��������
 ���� �
���
��	����� ���
3	���� ���
���� �� � �
��� Λμ���
� t- (ti)i≥0 ���� t = t0 ��� ti −→Λμ→ ti+1�

,���
��	����� ��3	���� �������� ���
 � ����� �	���
 �� βη�
��	����� �����
�
 �
��������� %&- ����
���� �� ��	�� ������ �� ������� βη�
��	����� ��3	����
�
�� �t�ΛS �� �����
 �
��� λ�����	�	�� ,�	� ���
� �� � ������
 n0 �	�� ���� ��

��� n ≥ n0$ tn −→���→ tn+1$ ��� ��	� �� ��	�� ��)� �� ��������
 ���� �
�→

��	����� ��3	���� ����� ����
������ ��
�������� �� �
�→� ��

 ���	���
��

,�� ��� �� ���� ����
 ��� ��������- �� ��)���� ��� ���������

 �� Λμ�����	�	�$ ��
��������� �� (�
����+� λμ�����	�	� ���� ��� � 01�� ����
�� 68" ��� ��
�)���
��� �����
� ��.�
���)�
����� �� ������
����� λμ�����	�	� ���� �
� ��	�� ��
��� ����
��	
�� #�����$ ���
������������ ������� ����� ����	�� ��
� ������ ����
����
�

@� ��� ��������
 *��/��� ��� �����
��
 ;���	��
 �" λμ�>��
��� &AB

������>������ �� ��� �	���� ,�� ����
��	����� �� ��� ����
 �
� �� �������-

6 <� �
�)�� ���=	���� �� Λμ�����	�	� ��� �������� � �
��� �� ��� ���=	����
��
 λμη ����� �� ������
 ���� ��� �
��� �
�)��	��
 4���� �
�� %E"�

6 <� ���
��	��� � �
�� �
����$ ΛS $ ��
 Λμ�����	�	� ���� ��� �	�A���
��	�����
��� ��
��� ��
����>������ ΛS ������ ��
� ��
�� �� �� �
��� ��� �� ��
���	��

��
�� ���� ��
� ������ �� ������ 01�� ����
�� �� 68" ���
��� ���
 ��
�
��� �
����� �� ��� 	�	�� �
�� �
���� ��
 λμ�����	���

6 <� ��)��������� ����
������������ ������� ������
����� λμ�����	��� #� ��
�
���	��
$ �� �
�)�� ���� Λμ�����	�	� �� � �����
)���)� ��������� �� λμη ���
���� λμε�����	�	� �� � �����
)���)� ��������� �� λμ�

6 2� ��� ����
 ����$ ��� �3	������� ����

 �� Λμ ��� λμε ������ �� �����
��-
��
 ��
 t ∈ ΣΛμ$ ���
� ����� u, v ∈ ΣΛμ �	�� ���� t =Λμ u ��� t �=λμε u ���
t =λμε v ��� t �=Λμ v�

6 ,�� ��.�
���� ������� Λμ ��� λμε �� ���� �������>�� �
 ��� ���� ���� Λμ
��� 01�� ����
�� ����� �� λμε �� �� ��� �������� �� ����
��� μα.0 ��� μα.1�

/����� C��@�� <� ���� �� ��)���� ���� ��
4 �� ��)�
�� ��
�������-

6 ,�� �����
���� ������� Λμ ��� λμε ��	�� �
�����
 �� ���� ��
� �
��
���� ����4� �� λμ�̂� ���� �� �
� �	

����
 ��)���������� ���� ��
����� ���
�����>��� ,��� ���	�� �� ��
���	��
 ����� �� 	���
����� ��
� �
������
 ���
�
�
� ��� ��.�
��� ������ �� ��� ���
����)����� �� ���)�
����� �� λμ�����	�	��

6 ,�� ������� ������� �� ΛS �� ����� �� �� ���� ����
�
- ����
��	��� ��)� ����
�������� �� � A����� ��
4 ���� '������ (����� �
 ���������� Λμ �� � ��
�
�� ����
�>�� �
�������� ����4� �� ΛS �

6 ,�� ����
�
������� �� Λμ�����	�	� �� � ��
��� ����	�	� ��� ��������� �� ���
������� ΛS � <� ���� �� ��)���� ���� ������ �
 ��	�
��� ���
������������
������� Λμ ��� �������

 λ�����	���

6 <� ���� �� ������ ΛS �� ��
���	��
 �� ��� ��
������ �� ���
��
������
6 /�����
$ �� ����
���� ����)����� ��
 �
�)����� Λμ ���� � �
�� �
���� ����

��
��� �
�� ��� �
������ (�
���� �
�� �
����$ ��� �� ��)�������� �
��� �����

������ #�����$ ���
� �� �� ���� �� ������ � �
��� ����
�����
��	�� ���� �
��������� �
���� �� Λμ �� ���� ������
 �
�� �
����$ �������� ��
� ��
�� ��
�� �
���$ ��� �������

'�@���
�
�*����� ,�� �	���
 ������ �� ����4 '������ (�����$ �	�� ��
�
����� ��� ���)�� �����>�� ��
 �����	� ����	������ ��� �
	���	� �������� �� �
�
�)��	�)�
���� �� � ��
� �� ���� ��
4 6%"�

�������	��

&- �	����) J-E-) K�	*����) K-) ��*	�) �-0 � ���������	���
 "���#����� �" #��� ���#

�����������
- K����	��	#�	
� *���

� �������� �677B�

6- 23�) >-0 ��
��� �	��	���L #���� "�	 � βη���	 ��� ��� λK�
��
���- ��*��
�=����
#�����
������ ��	 �� �����
�=���� #�� >��
���) AFA �&FAD�

&AD �- ���	��

:- 9�,�#) �-) ��) <-0 λμ�
��
���
 ��# 23� �
 ����	� - M��	��� �" �� *���
 ����

�677&�

I- #� 4	����) �-0 @� ��� 	������� *��/��� ��� λμ�
��
���
 ��# ���
����
��
 ����	�
�"
���������
���	��- ��0 �"������) �- ��#-� ���� &FFI- ��>� ������) ,��- D66-
��	����) K��#��*�	� �&FFI�

'- #� 4	����) �-0 �� ��,�	�� ��� �
���� "�	 ��� λμ�
��
���
- E�>� D �&FFD�
A- 9�
��) N-) ���	�
) J-0 ;�� �+� ����� �" ��� ����# �� *#�
���
��
 ��# �"
�	��
���

��
�#
�����	��
- ��*��
����� #� ����
����� E���O ������ AD�D6�) &P&F �6777�

B- 9�
��) N-) ���	�
) J-0 ;�� ����# 23� ����	� - Q�;>� '7�6� �677&�C �� 0 �	��

��#���
 �" 2@;K 677&

D- 4	�R�) ;-0 � "�	 ������
�����
 ������ �"
���	��- ��0 �@�� &FF7 �&FF7�
F- K�	*����) K-) 4����=��) �-0 �� ���	��
� ��
����*���� � #��� ���#
�����������
-
��0 �@�� �M����	� 677D�

&7- K�/�	#) <-�-0 ;�� "�	 ������
����� ������ �"
��
�	�
����) &FAF- ��0 ���#��) M-�-)
K��#���) �- ��#
-� ;� K- 2- >�		�0 Q

��
 �� >� *�����	� ����
) �� *#� >��
���
)
��# ��	 ���
) ��- IBFPIF7- �
�#� �
 �	�

) ��/ S�	5 �&FD7�

&&- M���) ;-0 >�#���
)
O��	�*����O �� 	��	O
�������� #� "��
����
 �� λ�
��
��
� ����
 ��� ���O �� #��
 #����	�

�
�O �
 #� ����
- ��9 ���
�
) T��,�	
��O ��	�
 U��
�6777�

&6- @��) �-0 �
� ����
 ,��/ �"
��

�
�� �	��"
- ��0 ��>� &FFA �&FFA�
&:- ������) E-) ���	��) �-0 ��	�� �

�
����,� ���
 ��# �� *#�� ��
��
���
- ;�
��

��
�� ����	� ���AI:&) ����� �M����	� 677D�
&I- ��	����) E-0 �	�� #�#�
����0 �� �����
�
 �" V
� ��������
V ��
��

�
�� ����
- ��0

U�	��5�,) �- ��#-� �>�� &FF7 ��# �>�� &FF&- ��>�) ,��- 'F6) ��- :A&P:D7-
��	����) K��#��*�	� �&FF&�

&'- ��	����) E-0 λμ�
��
���
0 �� ����	��� �
 ����	�	������� �"
��

�
�� ����	�� #�#�
�
����- ��0 U�	��5�,) �- ��#-� ���� &FF6- ��>�) ,��- A6I- ��	����) K��#��*�	�
�&FF6�

&A- ��	����) E-0 >��

�
�� �	��"
 �
 �	��	�
- ��0 E��#�
�) 9-) 4�����*) 4-) ����

�)
�- ��#
-� N4> &FF:- ��>�) ,��- B&:) ��- 6A:P6BA- ��	����) K��#��*�	� �&FF:�

&B- ��	����) E-0 ��	��� ��	 ���=����� "�	
�
��# �	#�	
��

�
�� ����	�� #�#�
����- ��0
U�	#�) E- ��#-� Q����� ������ �� ��
�� �� ����
 �� >� ����	 �
���
�) ��-
:FPIA- �QQQ) ��
 ��� ���
 �M��� &FF:�

&D- ��	����) E-0 �	��"
 �"
�	��� ��	 ���
����� "�	
�
��# �	#�	
��

�
�� ����	�� #��
#�
����- M��	��� �" �� *���
 ����
 A6�I�) &IA&P&IBF �&FFB�

&F- ��) <-0 >��?���
� �� λμ�
��
��- ��9 ���
�
) T��,�	
��O #� ��,��� �&FFD�
67- ���	��) �-0 ����	����� /���
�	��
 �� ��� Λμ�
��
���
- ��0 ;/������� ������ �� �

��
�� �� ����
 �� >� ����	 �
���
�- �QQQ) ��
 ��� ���
 �677'�
6&- ���	��) �-0 ;�����
�	��
 �� ��� Λμ�
��
���
- ��0 ���� 677B �677B�
66- ���� ��) �-0 λ�#�1��*�� "��
������
 ��# βη
��,�	
���- �	
��, "W	 E���� ���

��

����5 ��# 4	��#�����"�	

���� 66) &PA �&FD:�

A Constructive Semantic Approach to Cut

Elimination in Type Theories with Axioms

Olivier Hermant1,� and James Lipton2

1 Univ. Complutense de Madrid, Spain
ohermant@fdi.ucm.es

2 Wesleyan University, USA
and visiting Researcher,

Univ. Politécnica de Madrid, Spain
jlipton@wesleyan.edu

Abstract. We give a fully constructive semantic proof of cut elimina-
tion for intuitionistic type theory with axioms. The problem here, as with
the original Takeuti conjecture, is that the impredicativity of the formal
system involved makes it impossible to define a semantics along conven-
tional lines, in the absence, a priori, of cut, or to prove completeness by
induction on subformula structure. In addition, unlike semantic proofs
by Tait, Takahashi, and Andrews of variants of the Takeuti conjecture,
our arguments are constructive.

Our techniques offer also an easier approach than Girard’s strong
normalization techniques to the problem of extending the cut-elimination
result in the presence of axioms. We need only to relativize the Heyting
algebras involved in a straightforward way.

1 Introduction

We give a new constructive semantic proof of cut elimination for an intuitionistic
formulation of Church’s Theory of Types (ICTT) with axioms. The argument
extends and modifies techniques of Prawitz, Takahashi, Andrews and [4] which
are non-constructive. A discussion of the constructive character of the proof, and
the reasons why some older semantic proofs are not constructive can be found in
Section 7. We also make use of a simple new technique to handle sets of axioms:
relativization of infinite-context Heyting Algebras, as discussed below.

We recall that the central problem in extending the conventional syntactic
proof of cut-elimination to certain impredicative higher-order logics is that one
cannot induct on the natural subformula ordering that places instances M [t/x]
below quantified formulae such as ∃x.M , because it is not a well-ordering. This
can be seen by taking M to be the variable x of type o and taking t = ∃x.M ∧A
for any A, for example.

The problem of extending cut-elimination to higher-order logic (known as
Takeuti’s conjecture when it was still open) was solved by e.g. Takahashi[21],
� This work has been partially supported by the Spanish projects Merit-Forms-UCM

(TIN2005-09207-C03-03) and Promesas-CAM (S-0505/TIC/0407).

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 169–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

170 O. Hermant and J. Lipton

Prawitz[18] and Andrews [1] by extending work by Tait [20] and following the
blueprint given by Schütte in [19] where he observed that cut admissibility can
be proved semantically by showing completeness of the cut-free fragment with
respect to a weaker semantics he called semivaluations, and then showing every
semivaluation gives rise to a total valuation extending it.

We generalize this approach by replacing Schütte’s semivaluations by a pair of
semantic mappings into a Heyting Algebra which give an upper and lower bound
for the desired model, and show that such a pair can be defined syntactically
(and constructively) using sets of contexts of cut-free proofs. The resulting model
is easily relativized to extend to non-logical axioms by using a new parameter:
an arbitrary set of axioms.

Cut-elimination for many impredicative formal systems (but not the ones
considered here) has also been proved constructively using strong normalization
techniques following Girard[8,9]. We have chosen, rather, to take the alternative
approach, namely that of the Takahashi-Schütte-Andrews tradition because it
seems to lend itself more readily to the addition of axioms, a central concern
of this paper. Also one of the main interests of the authors in this work is to
apply these techniques to formal systems in which rewriting rules are combined
with sequent calculus, such as Deduction Modulo, invented by Dowek, Hardin,
Kirchner and Werner [5,6]. Cut elimination for various fragments and variants of
this system, studied elsewhere by Hermant and Dowek, does not , in general, sat-
isfy strong normalization, and it is therefore not obviously amenable to Girard’s
techniques.

2 The Formal System: A Sketch

For definitions of types, terms and reduction in the intuitionistic formulation
of Church’s Theory of types, due originally to Miller et al. [13], we refer the
reader to [2,1,4], and limit ourselves to recapitulating the rules of inference, in
Fig. 1, where λ stands for βη conversion, and where structural rules, such as
contraction and weakening, are implicitly assumed. Types are omitted where
clear from context, and we use Church’s notation (βα) for the arrow type α→ β
with association to the left. Fig. 1 does not include the cut rule:

Γ � B Γ, B � A

Γ � A
Cut

When we mean a proof within the rules of Fig. 1, we use the symbol 0∗, and the
unadorned 0 when we allow the cut rule. Γ 0 A will also abbreviate “the sequent
Γ 0 A has a proof”. In the rest of the paper, we consider a fixed language S for
ictt, i.e. for each type, a set of constants.

3 Global Models

We will make use of the notion of applicative structures, a well-known semantic
framework for the simply-typed lambda calculus [7,17,14].

A Constructive Semantic Approach to Cut Elimination 171

Γ � � Γ, U � U Γ,⊥ � ⊥
Γ, B, C � A

Γ, B ∧ C � A
∧L

Γ � B Γ � C
Γ � B ∧ C

∧R

Γ, B � A Γ, C � A

Γ, B ∨ C � A
∨L

Γ � Bi

Γ � B1 ∨ B2
∨R

Γ � B Γ, C � A

Γ, B ⊃ C � A
⊃L

Γ, B � C

Γ � B ⊃ C
⊃R

Γ, P [t/x] � A

Γ,∀x.P � A
∀L

Γ � P
Γ � ∀x.P

∀R ∗

Γ, P � A

Γ,∃x.P � A
∃L ∗

Γ � P [t/x]

Γ � ∃x.P
∃R

Γ ′ � A′

Γ � A
λ

Γ � ⊥
Γ � B

⊥R

Fig. 1. Higher-order Sequent Rules

Definition 1. A typed applicative structure 〈D,App,Const〉 consists of an in-
dexed family D = {Dα} of sets Dα for each type α, an indexed family App of
functions Appα,β : Dβα × Dα → Dβ for each pair (α, β) of types, and an (in-
dexed) interpretation function Const = {Constα} taking constants of each type α
to elements of Dα.

We will abbreviate the mapping App to the infix operator · when types are clear
from context.

So far we have only supplied a structure to interpret the underlying typed
λ-calculus. Now we interpret the logic as well, by adjoining a Heyting algebra
and some additional structure to handle the logical constants and predicates.

Definition 2. A Heyting applicative structure, or HAS 〈D,App,Const, ω,Ω〉 for
ictt is a typed applicative structure with an associated Heyting algebra Ω and
function ω from Do to Ω such that for each f in Doα, Ω contains the parametrized
meets and joins

�
{ω(App(f, d)) : d ∈ Dα} and

�
{ω(App(f, d)) : d ∈ Dα},

and the following conditions are satisfied:

ω(Const(�o)) = �Ω

ω(Const(⊥o)) = ⊥Ω

ω(App(App(Const(∧ooo), d1), d2)) = ω(d1) ∧ ω(d2)

ω(App(App(Const(∨ooo), d1), d2)) = ω(d1) ∨ ω(d2)

ω(App(App(Const(⊃ooo), d1), d2)) = ω(d1) → ω(d2)

ω(App(Const(Σo(oα)), f)) =
�

{ω(App(f, d)) : d ∈ Dα}

ω(App(Const(Πo(oα)), f)) =
�

{ω(App(f, d)) : d ∈ Dα}

172 O. Hermant and J. Lipton

By supplying an object Ω of truth values we are able to distinguish between
denotations of formulae (elements d ∈ Do) and their truth-values ω(d) ∈ Ω.1

An assignment ϕ is a function from the free variables of the language into D
which respects types, and which allows us to give meaning to open terms.

Definition 3. A global model for ictt is a total assignment-indexed function
D = {D()ϕ : ϕ an assignment} into an HAS (Heyting applicative structure)
〈D,App,Const, ω,Ω〉 which takes (possibly open) terms of type α into Dα and
satisfies the following environmental model conditions and η-conversion:

D(c)ϕ = Const(c) for constants c

D(x)ϕ = ϕ(x) for variables x

D((MN))ϕ = App(D(M)ϕ, D(N)ϕ)

D(λxα.Mβ)ϕ is the unique member of Dβα s.t.

for every d ∈ Dα App(D(λxα.Mβ)ϕ, d) = D(M)ϕ[d/x]

D(M)ϕ = D(N)ϕ M η-equivalent to N

Given a model D and an assignment ϕ, we say that ϕ satisfies B in D if
ω(D(Bo)ϕ) = �Ω; this is abbreviated to D |=ϕ Bo. We say Bo is valid in D
(equivalently, D |= Bo) if D |=ϕ Bo for every assignment ϕ. We abbreviate the
truth-value ω(D(Bo)ϕ) to (Bo)∗ϕ. We also omit the subscript ϕ and parenthesis
when our intentions are clear. We often use the word model just to refer to the
mapping ()∗ from logical formulae to truth values in Ω.

3.1 Soundness of ICTT for Global Models

In the following we extend interpretations to sequents in a natural way.

Definition 4. We define the meaning of a sequent in a model to be the truth-
value in Ω given by:

(Γ 0 A)∗ := (
∧

Γ ⊃ A)∗

where
∧

Γ signifies the conjunction of the elements of Γ .

Note that (
∧

Γ ⊃ A)∗ = � if and only if � ≤ (
∧

Γ ⊃ A)∗, which is equivalent
to (
∧

Γ)∗ ≤ (A)∗. We will abbreviate (
∧

Γ)∗ to (Γ)∗, and express the validity
of the indicated sequent by (Γ)∗ ≤ (A)∗ or, when referring to the environment,
by (Γ)∗ϕ ≤ (A)∗ϕ henceforth.

Theorem 1 (Soundness). If Γ 0 A is provable in ictt then (Γ)∗ ≤ (A)∗ in
every global model E of ictt.

A proof can be found in [4].

1 This allows us to assign different truth values to poo(Ao) and poo(Bo) even when A
and B are provably equivalent and hence have the same truth value. The equivalence
of the higher order formulae poo(Ao) and poo(Bo) holds neither in ictt as presented
here nor in the λProlog programming language, based on a sub-system of ictt.

A Constructive Semantic Approach to Cut Elimination 173

A straightforward proof of completeness of ICTT for global models can be
given under the assumption that cut is admissible for ICTT along the lines of
[22,4], i.e. by choosing Ω to be the Lindenbaum algebra of equivalence classes of
formulae and then interpreting each formula as its own equivalence class. Just
to show Ω is partially ordered, we need cut.

Since we are not assuming cut holds in ICTT we must proceed differently.
We will choose the complete Heyting algebra Ωcfk generated by “relativized
cut-free contexts”, that is to say, contexts from which formulae can be proved
without using cut. A partial valuation will be defined for this cHa, yielding an
interpretation that establishes completeness and the admissibility of cut.

4 From Semivaluations to Valuations

In order to apply Schütte’s plan [19], we need to extend the definition of a
semivaluation in our intuitionistic (and higher-order) setting and lift the notion
to Heyting Algebras. We also generalize Schütte’s definition in one critical way:
the partial information is given in terms of lower and an upper bounds for a
model, which gives us an additional degree of freedom in how we approximate
the truth value of a formula.

Definition 5. Let Ω be a Heyting algebra. A global Ω semivaluation V =
〈D,App,Const, π, ν,Ω〉 consists of a typed applicative structure 〈D,App,Const〉
together with a pair of maps π : Do −→ Ω and ν : Do −→ Ω, called the lower
and upper constraints of V, satisfying π(d) ≤ ν(d) for any d ∈ Do, as well as the
following:

π(�o) = �Ω π(⊥o) = ⊥Ω

π(Const(∗) · A · B) ≤ π(A) ∗Ω π(B) for ∗ ∈ {∧,∨,⊃}
π(Const(Σo(oα)) · f) ≤

�
{π(f · d) : d ∈ Dα}

π(Const(Πo(oα)) · f(oα)) ≤
�

{π(f · d) : d ∈ Dα}

and

ν(�o) = �Ω ν(⊥o) = ⊥Ω

ν(Const(∗) · A · B) ≥ ν(A) ∗Ω ν(B) for ∗ ∈ {∧,∨,⊃}
ν(Const(Σo(oα)) · f) ≥

�
{ν(f · d) : d ∈ Dα}

ν(Const(Πo(oα)) · f(oα)) ≥
�

{ν(f · d) : d ∈ Dα}

and the consistency or separation conditions

π(Const(⊃) · B · C) ∧ ν(B) ≤ π(C) (1)

π(B) →Ω ν(C) ≤ ν(Const(⊃) · B · C). (2)

Remark 1. The reader should note that some of these requirements are superflu-
ous. For example, the separation conditions and the first condition imply the ⊃
requirements for both π and ν. If we think of [π(A), ν(A)] as a – by definition

174 O. Hermant and J. Lipton

nonempty – interval, one sees that it contains all the potential truth values of
A, indeed the semantic “truth value candidates”, instead of Girard’s reducibility
candidates. The circularity mentioned in the introduction will then be avoided
by quantifying over all those candidates rather than subformulae.

The definition of environment, and global structure remain the same for semi-
valuations. As with Heyting applicative structures, in the presence of an envi-
ronment ϕ, a semivaluation V induces an interpretation Vϕ from open terms A
to the carriers D as follows:

V(c)ϕ = Const(c) for constants c
V(x)ϕ = ϕ(x) for variables x
V(M)ϕ = V(N)ϕ M eta-equivalent to N
V((MN))ϕ = App(V(M)ϕ, V(N)ϕ)
App(V(λxα.Mβ)ϕ, d) = V(M)ϕ[x:=d] with V(λxα.Mβ)ϕ the unique such value.

This assignment induces a pair of partial, or semi-truth-value assignments [[]]πϕ
and [[]]νϕ to terms Ao of type o given by

V [[A]]πϕ = π(V(A)ϕ) V [[A]]νϕ = ν(V(A)ϕ)

Theorem 2. Given an Ω-semivaluation V = 〈D, ·,Const, π, ν,Ω〉, there is a
model D = 〈D̂,2, Ĉ, ω,Ω〉 extending V in the following sense: for all closed
terms Ao

V [[A]]π ≤ ω(D(A)) ≤ V [[A]]ν .

Furthermore, there is a surjective indexed map δ : D̂ −→ D such that for any
d̂ ∈ D̂o

π(δ(d̂)) ≤ ω(d̂) ≤ ν(δ(d̂))

Proof. We refer the reader to [4] for the proof.

5 Cut Elimination by Completeness

From Thm. 2, deriving a (cut-free) completeness theorem for ictt requires a
complete Heyting algebra Ω and an Ω-semivaluation. We first give the definition
of Ωcfk, the Heyting algebra of cut-free contexts, critically different from the one
given in [4], where a tableaux-style construction is used, and extend the usual
notion of context-based semantics [16,15] to the notion of infinite contexts, taken
themselves as a new free parameter.

5.1 The Cut-Free Contexts Heyting Algebra

We first define what is a cut-free context, generalizing Okada [16,15].

Definition 6 (outer value). Assume given a set of formulae Ξ, possibly infi-
nite, but containing only a finite number of variables. Let A be a closed formula.
We let the outer value of A be:

�A� = {Γ | Ξ,Γ 0∗ A}

A Constructive Semantic Approach to Cut Elimination 175

The contexts Γ considered are always finite. The provability relation Ξ,Γ 0∗ A
is with respect to some finite subset of Ξ,Γ .

So, an outer value �A� is the set of contexts proving A without cut (cut-free
contexts). With this, we build Ωcfk. When it is relevant, we stress the dependence
on the considered set of axioms Ξ by Ωcfk(Ξ).

Definition 7 (Ωcfk). Let Ξ be a fixed set of formulae. Let |Ω| be the least set
of sets of contexts generated by �A� for any formula A, closed under arbitrary
(denumerable) intersection, and ordered by inclusion. Then define meets and
joins on |Ω| as follows

–
∧

= arbitrary intersection, just set-theoretic intersections.
–
∨

= arbitrary pseudo-union, that is to say∨
S =

⋂
{c ∈ |Ω| : c ≥ S}

where c ≥ S means ∀s ∈ S c ≥ s

Remark 2. From the definition, it follows that:

– �Ω is the set of all contexts and as well ��o�.
– ⊥Ω is the intersection of all �A� and as well �⊥o�. In particular, ⊥Ω �= ∅.
– the suprema can be slightly simplified: a∨Ω b =

⋂
{�A� | a∪ b ⊆ �A�}, since

any c ∈ Ω is of the form
⋂

i∈Λ �Ai�. As well,
∨

S =
⋂
{�A� | �A� ≥ S}.

Taking a→b =
∨
{x : x∧a ≤ b}, the resulting structure Ω = 〈|Ω|,

∨
,
∧
,→〉 (also

written Ωcfk, when ambiguity may arise) is a complete Heyting algebra. We now
check that the ∧

∨
distributivity law [22] holds.

We first show one direction: for each member a =
⋂

i �Ai� of Ω, we must have
a∩
∨

S ≤
∨

a∩ S, where a∩S means {a∩ s : s ∈ S}. Unfolding definitions, the
inclusion to prove becomes:

a ∩
⋂
{�B� : �B� ≥ S} ⊆

⋂
{�D� : �D� ≥ a ∩ S} (3)

Let Γ be a context member of the left hand side, i.e. such that Ξ,Γ 0∗ Ai for
any Ai and Ξ,Γ 0∗ B for every B such that �B� ≥ S. Let D be a formula such
that �D� ≥ a ∩ S. We must show Ξ,Γ 0∗ D to prove that 3 holds.

Let Δ be a context such that Δ ∈ s for some s ∈ S. Since provability in
Def. 6 deals with subcontexts, we directly have Ξ,Δ, Γ 0∗ Ai and by a similar
reasoning Δ,Γ ∈ s. By definition of D, we get Ξ,Δ, Γ 0∗ D. Hence Δ 0∗ Γ ⊃ D,
where Γ ⊃ D is a shorthand for B1 ⊃ · · ·Bn ⊃ C, and Δ ∈ �Γ ⊃ D�. Since this
is valid for any s, we have shown �Γ ⊃ D� ≥ S.

But then, Ξ,Γ 0∗ Γ ⊃ D by assumption on Γ . By Kleene’s Lem. 1 below
and contraction on the formulae of Γ we have Ξ,Γ 0∗ D, which shows that Γ
is a member of the right-hand-side of 3, which proves the claim.

The other direction follows, by elementary lattice theory: for any s ∈ S it is
the case that a ∩

∨
S ≥ a ∩ s. Now take the supremum of a ∩ s over all s ∈ S.

To complete the proof, we need Kleene’s lemma, for the ⊃R rule.

176 O. Hermant and J. Lipton

Lemma 1 (Kleene). Let C ≡λ A ⊃ B be formulae and Γ be a context. If
Γ 0 C then Γ,A 0 B, and if Γ 0∗ C then Γ,A 0∗ B.

Proof. Standard (see [10]) by induction on the structure of the proof.

5.2 A Semivaluation π and ν

Now, we need to exhibit a Ω-semivaluation to be able to apply Thm. 2. For this,
we need the following definition:

Definition 8 (closure). Let S be a set of contexts, we define its closure by:

cl(S) =
⋂
{�A� | S ⊆ �A�}

It is the least element of Ω containing S. We also write, for a single context Γ ,
cl(Γ) to mean cl({Γ}).

Remark 3. cl(A) ⊆ d is equivalent to A ∈ d for any d ∈ Ω. Indeed, A ∈ cl(A)
and cl(A) is the l.u.b. of A. cl(S) can also be seen as the set of contexts admitting
cut with all the elements of S as shown in the following lemma.

Lemma 2. Let A be a formula. The following formulations are equivalent:

(i) cl(A) =
⋂
{�B� | A ∈ �B�}

(ii) cl(A) = {Γ | Ξ,Γ 0∗ B whenever Ξ,A 0∗ B}. Equivalently, Γ ∈ cl(A) iff
given any proof Ξ,A 0∗ B, a proof of Ξ,Γ 0∗ B is derivable.

(iii) cl(A) = {Γ | Ξ,Γ 0∗ B whenever Ξ,Γ,A 0∗ B}. Equivalently, Γ ∈ cl(A)
iff given any proof Ξ,Γ,A 0∗ B a proof of Ξ,Γ 0∗ B is derivable.

(iv) cl(A) = {Γ | Ξ,Δ, Γ 0∗ B whenever Ξ,Δ,A 0∗ B}. Equivalently, Γ ∈
cl(A) iff given any proof Ξ,Δ,A 0∗ B a proof of Ξ,Δ, Γ 0∗ B is derivable.

Cases (ii) – (iv) can be summarized as follows: Γ admits (Ξ-) cuts with A, hence
the terminology “Γ is A-cuttable”.

Proof. (ii) unfolds the definition of �B� in (i). (iii) and (iv) reformulate (ii)
with equivalent – thanks to Lem. 1, ⊃R and contraction rules – notions of cuts.

We shall use any of the formulations given above, depending on our need.
Now we are ready to give the semivaluation we work with.

Definition 9 (the cut-free context semivaluation). Let the typed applica-
tive structure 〈D,App,Const〉 be the open term model: carriers Dα are open terms
of type α in normal form, application A · B is [AB], the normal form of AB,
and we interpret constants as themselves. For any formula A, define:

π(A) = cl(A) and ν(A) = �A�

The definition just given of a pair of semantic mappings based on cut-free proofs
and their contexts, and shown below to give rise to a semivaluation in the sense
of Def. 5, is essential to the constructive character of our proof of cut-elimination,
avoiding as it does the use of tableau style (Hintikka-set) construction of partial
models, as in [1,4], and the infinite tree arguments required.

A Constructive Semantic Approach to Cut Elimination 177

Lemma 3. 〈D,App,Const, π, ν,Ωcfk〉 is a semivaluation in the sense of Def. 5.

Proof. We check the conditions of Def. 5, with respect to the open term model.
Each case follows the same pattern: it uses the corresponding rule of inference.

– cl(A) ⊆ �A�. Immediate since {A} ⊆ �A� and from Rem. 3.
– cl(�o) = �Ω. �Ω is the greatest element so we focus on the reverse inclusion.

Consider a proof of Ξ,�o 0∗ A. The only rule we can use on �o besides
structural ones and conversion is the axiom. We can replace it:

�R�∗ �o

Hence, Ξ 0∗ A and, by weakening, Ξ,Γ 0∗ A for any Γ , and �Ω ⊆ cl(�o).
– cl(⊥o) = ⊥Ω. ⊥Ω is the least element and, by other cases cl(⊥) ⊆ �⊥� = ⊥Ω.
– cl(A∧B) ≤ cl(A)∩cl(B). This amounts to showing A∧B ∈ cl(A)∩cl(B). We

prove that A∧B is A-cuttable. Consider a proof of Ξ,A 0∗ C. We construct
the following proof:

Ξ, A �∗ C
weak

Ξ, A, B �∗ C ∧L
Ξ,A ∧ B �∗ C

Hence, A ∧B ∈ cl(A). On the same way, A ∧B ∈ cl(B).
– cl(A ∨B) ⊆ cl(A) ∨Ω cl(B). It suffices to show A ∨B ∈ cl(A) ∨Ω cl(B). Let

C be such that cl(A) ∪ cl(B) ⊆ �C�. A ∈ �C�, B ∈ �C�, and the proof:

Ξ,A �∗ C Ξ,B �∗ C ∨L
Ξ, A ∨ B �∗ C

shows that A ∨ B ∈ �C�. This holds for any such C, hence for their meet,
and A ∨B ∈ cl(A) ∨Ω cl(B).

– cl(A ⊃ B) ⊆ cl(A) → cl(B) is a consequence of cl(A ⊃ B) ∧ �A� ⊆ cl(B)
(proved below) as mentioned in Rem. 1.

– cl(Σ.f) ⊆
∨
{cl(ft) | t ∈ Tα} (where α is the suitable type). Equivalently,

Σ.f ∈
∨
{cl((ft)) | t ∈ Tα}. Let t be a variable y of type α that is fresh

for f and Ξ. We prove that Σ.f is fy-cuttable. Assume we have a proof
Ξ, fy 0∗ C. The proof:

Ξ, fy �∗ C
∃L

Ξ,Σ.f �∗ C

justifies the fy-cuttability. Hence Σ.f ∈ cl(fy), and it is in the supremum.
– cl(Π.f) ∈

∧
{cl(ft) | t ∈ Tα}. Let t be a term of type α. The proof:

Ξ, ft �∗ C
∀L

Ξ, Π.f �∗ C

shows that Π.f is ft-cuttable for any t.
– ��o� = �Ω and �⊥o� = ⊥Ω hold both by definition, from Rem. 2.
– �A ∧B� ⊇ �A�∧Ω �B�. Let Γ such that Ξ,Γ 0∗ A and Ξ,Γ 0∗ B. The claim

is established by the proof:

178 O. Hermant and J. Lipton

Ξ, Γ �∗ A Ξ,Γ �∗ B ∧R
Ξ,Γ �∗ A ∧ B

– �A ∨B� ⊇ �A� ∨Ω �B�. We show �A ∨B� ⊇ �A�. Let Γ ∈ �A�. The proof:

Ξ, Γ �∗ A ∨R
Ξ,Γ �∗ A ∨ B

shows that Γ ∈ �A ∨B�. Hence �A ∨B� is an upper bound for �A� and �B�.
– �A ⊃ B� ⊇ �A�→Ω �B� is a consequence of cl(A)→ �B� ⊆ �A ⊃ B�.
– �Σ.f� ⊇

∨
{�ft� | t ∈ Tα}. Let t be a term, and Γ ∈ �ft�. The proof:

Ξ,Γ �∗ ft
∃R

Ξ, Γ �∗ Σ.f

shows that �Σ.f� is an upper bound for any �ft�, hence for their supremum.
– �Π.f� ⊇

∧
{�ft� | t ∈ Tα}. Let Γ ∈

∧
{�ft� | t ∈ Tα}. Let y be a fresh

variable with respect to Γ , Ξ and f . In particular, Γ ∈ �fy�. The proof:

Ξ, Γ �∗ fy
∀R

Ξ, Γ �∗ Π.f

shows that Γ ∈ �Π.f�.
– cl(B ⊃ C) ∧Ω �B� ⊆ cl(C). Let Γ ∈ cl(B ⊃ C) ∩ �B�. We must show the

C-cuttability of Γ . Consider a proof of Ξ,C 0∗ D. Since Γ 0∗ B:

Ξ, Γ �∗ B Ξ, Γ, C �∗ D ⊃L
Ξ, Γ, B ⊃ C �∗ D

By B ⊃ C-cuttability of Γ we get Ξ,Γ 0∗ D.
– cl(B)→Ω �C� ⊆ �B ⊃ C�. Let Γ ∈ cl(B)→ �C� and show Ξ,Γ 0∗ B ⊃ C.

Since Γ ∈ cl(B)→ �C�, we have cl(Γ)∩cl(B) ⊆ �C�. Furthermore, Γ ∈ cl(Γ)
and B ∈ cl(B), therefore Γ,B belongs to both. So Γ,B ∈ �C�, and we derive
the desired proof:

Ξ, Γ, B �∗ C ⊃R
Ξ,Γ �∗ B ⊃ C

5.3 Completeness and Cut Elimination of ictt

We now have all the results needed to establish completeness.

Theorem 3 (cut-free completeness of ictt). Let Γ be a context and A be
a formula such that for any global model Γ ∗ ≤ A∗. Then Γ 0 A has a cut-free
proof.

Proof. Calling ε the empty context, we apply Thm. 2 with the Heyting algebra
Ωcfk(ε) given in Def. 7 and the semivaluation π, ν of Def. 9. We get, from Rem.
3, by Thm. 2 and by hypothesis that:

Γ ∈ cl(Γ) ⊆ Γ ∗ ⊆ A∗ ⊆ �A�

Hence, Γ 0∗ A. An alternative proof involves Ωcfk(Γ): any context is trivially
Γ -cuttable, so ε ∈ cl(Γ) = �. With the same inclusions as above (but the first)
we get that Γ, ε 0∗ A. The interested reader may in fact prove Thm. 3 as many
different ways than elements in P(Γ), the powerset of Γ .

A Constructive Semantic Approach to Cut Elimination 179

As an immediate corollary, we have:

Corollary 1 (constructive cut elimination for ictt). Let Γ be a context
and A be a formula. If Γ 0 A in ictt, then it has a proof without cut.

Proof. By soundness and cut-free completeness, both of which were proved con-
structively.

6 Adding Non-logical Axioms

Now, we allow a more liberal notion of proof, with non-logical axioms.

Definition 10. A non-logical axiom is a closed sequent A 0 B. Assuming such
and axiom A 0 B, an axiomatic cut is the following implicit cut rule

Γ 0 A Γ,B 0 C

Γ 0 C

A proof with non-logical axioms is a proof whose leaves are either a proper
axiom rule, or a non-logical axiom and allowing the use of axiomatic cuts.

In the sequel, we fix a set (potentially infinite) of axioms, and consider proof
system is ictt with those non-logical axioms.

The constraint for A 0 B to be closed is not a theoretical limitation: it suffices
to quantify over the free variables. In particular, we capture axiom schemes.

The two new rules overlap, since an axiomatic cut is simulated with a non-
logical axiom and two (usual) cuts. Conversely, we can simulate the non logical
axiom rules, even in a cut-free setting, so we often consider only axiomatic cuts:

Γ, A � A Γ, B � B
axiomatic cut

Γ, A � B

We show in this section that we still have, by the same means, cut elimination
in ictt with non-logical axioms, but that we can not, in the general setting,
eliminate axiomatic cuts. First, we need another, unsurprising, notion of model:

Definition 11 (model for axioms). A global model for ictt (Def. 3) is a
model of the non-logical axioms Ai 0 Bi, i ∈ Λ if and only if for any i, A∗i ≤ B∗i .

In the sequel, we will only be interested in such models.

Theorem 4 (Soundness of ictt with non-logical axioms). If Γ 0 A in
ictt with non-logical axioms, then Γ ∗ ≤ A∗ in any global model of the non-
logical axioms.

Proof. We replace axiomatic cuts by axioms and cuts. Then the proof is done
by the very same induction as the one of Thm. 1. The only additional case is a
non-logical axiom A 0 B, trivial from the assumption on the model.

Now we work towards a proof of a cut-free completeness theorem for ictt with
non-logical axioms. Cut-free means free of cuts, but not of axiomatic cuts, which
we will not be able to remove.

180 O. Hermant and J. Lipton

6.1 Completeness and Cut Elimination in Presence of Axioms

Given the non logical axioms Ai 0 Bi, let Ξ be the set of all the Ai ⊃ Bi. We
show that the valuation in Ωcfk(Ξ) given by the Ω-semivaluation of Def. 9 is a
model of the non-logical axioms. So in Lem. 4, provability refers to pure ictt.

Lemma 4. The valuation given by Theorem 2 with cl(), � � as an Ωcfk(Ξ)-
semivaluation is a model of the non-logical axioms.

Proof. Let A 0 B be an axiom. A∗ ⊆ �A� and cl(B) ⊆ B∗ by Thm. 2, so we
show �A� ⊆ cl(B). This is implied by the fact that Γ is B-cuttable whenever
Ξ,Γ 0∗ A. Given a proof Ξ,Γ,B 0∗ C, the following proof shows this claim:

Ξ,Γ, B �∗ C Ξ, Γ �∗ A ⊃L
Ξ, Γ, A ⊃ B �∗ C

contraction
Ξ, Γ �∗ C

Before we prove the completeness theorem, we have to switch from proofs of
Ξ,Γ 0∗ A in ictt to proofs of Γ 0∗ A in ictt with axiomatic cuts.

Lemma 5. Assume we have a proof π of the sequent Γ,A ⊃ B 0 C in ictt,
possibly using axiomatic cuts. We can transform it into a proof of the sequent
Γ 0 C in ictt with additional cuts on the non logical axiom A 0 B. If the initial
proof is free of cuts, then so is the resulting proof (save axiomatic cuts).

Proof. We can omit (by simulating) non logical axiom rules. We track the de-
composition of A ⊃ B, and replace it by an axiomatic cut rule, that is the
exact premises of the ⊃L rule. We assume to have a proof of the sequent
Γ,D1, . . . , Dn 0 C, where Di ≡λ A ⊃ B and prove the result by induction
over the structure of π. All cases are a trivial use of induction hypothesis, save:

– an axiom rule with D1 the active formula. We build the following proof:

axiom
Γ, A � A

axiom
Γ, B � B

axiomatic cut
Γ, A � B ⊃R

Γ � A ⊃ B
λ

Γ � D1

– a ⊃-l rule on Di = A′ ⊃ B′. We have the proof:

π1

Γ, D2, . . . , Dn � A′
π2

Γ, B′, D2, . . . , Dn � C ⊃R
Γ, D1, D2, . . . , Dn � C

Applying induction hypothesis to get π′1 and π′2, we form the proof:

π′
1

Γ � A′
λ

Γ � A

π′
2

Γ, B′ � C
λ

Γ, B � C
axiomatic cut

Γ � C

Observe that we do not introduce any cut save axiomatic ones.

A Constructive Semantic Approach to Cut Elimination 181

Theorem 5 (cut-free completeness of ictt with non-logical axioms).
Let Γ be a context and A be a formula such that Γ ∗ ≤ A∗ for any global model
of the non logical axioms. Then Γ 0 A has a cut-free proof.

Proof. Considering Ωcfk(Ξ) in Thm. 3, we get Ξ,Γ 0∗ A in ictt. Applying Lem.
5 a finite number of times (provability is always with respect to a finite subset,
from Def. 6), we get a cut-free proof of Γ 0∗ A.

As an immediate corollary, we have:

Corollary 2 (constructive cut elimination for ictt). Let Γ be a context
and A be a formula. If Γ 0 A has a proof in ictt with non logical axioms, then
it has a proof without cut.

Proof. By soundness and cut-free completeness, both of which were proved con-
structively.

7 On the Constructivity of the Proof of Cut Admissibility

Our proof, unlike [21,1] for the classical case or [4] for the intuitionistic case,
makes no appeal to the excluded middle. The works cited (and our work as well)
start directly, or indirectly from Schütte’s observation [19] that cut admissibility
can be proved semantically by showing completeness of the cut-free fragment
with respect to semivaluations, and then showing every semivaluation gives rise
to a total valuation extending it.

There are a number of pitfalls to avoid in finding a constructively valid proof
based on this kind of argument, both in the way a semivaluation is produced
and how one passes to a valuation.

Andrews shows [1] that any abstract consistency property gives rise to a semi-
valuation, but then builds one in a way that requires deciding whether or not
a refutation exists of a given finite set of sentences. In particular, he needs to
show (Thm. 3.5 in [1]) that any finite set S satisfying an Abstract Consistency
Property is consistent. The proof actually establishes ¬¬[Th. 3.5]. Furthermore,
when showing that his cut-free proof system defines an Abstract Consistency
Property (Sec. 4.10.2) he ends up proving the contrapositives of the defining
properties of an ACP.

One can also exhibit a semivaluation by developing a tableau refutation of a
formula (a Hintikka set) as is done in [4] but some care must be taken in the
way the steps are formalized so as not to appeal to the fan theorem to produce
an open path. No discussion of how this might be done appears in [4].

The proof given in this paper appeals to the strengthened version of Schütte’s
lemma in [4] which uses the more liberal definition of semivaluation pairs , (rather
than semivaluations) which provide an upper and lower bound for the truth val-
ues of the valuation eventually produced by Takahashi’s V-complex construction.

As we have shown, it is possible to give an instance of such a pair (namely
cl() and � �) without using tableaux and prove they satisfy the semivaluation
axioms without appeal to the excluded middle.

182 O. Hermant and J. Lipton

Constructive Completeness. Producing a constructive proof of completeness is
itself problematic, as pointed out by Gödel and discussed in [12,23] if a sufficiently
restrictive definition of validity is assumed, e.g. conventional Kripke models.
However, there are a number of ways to liberalize the definition of validity to
“save” constructive completeness [24,3,22,11], in particular by allowing truth-
values in a sufficiently broad class of structures. In our case these structures
include complete Heyting Algebras in which we cannot decide whether or not
any given element is distinct from � or even, for that matter, if the structure
itself collapses to a one-element set. This appears to be a natural Heyting-valued
counterpart to Veldman’s exploding nodes [24].

In [22] completeness for an intuitionistic system with cut is shown construc-
tively by mapping each formula to its own equivalence class in the Lindenbaum
cHa. We cannot use this semantics here since cut is required to show that the
target structure is partially ordered.

The semantics used in this paper can be seen as a cut-free variant of the
Lindenbaum algebra, in which formulas are mapped to the sets of contexts that
prove them without cut. Here too, one is not required to decide the provability
of formulae in order to show model existence, in contrast with the �,⊥-valued
semantics of [1,21].

References

1. Andrews, P.: Resolution in type theory. Journal of Symbolic Logic 36(3) (1971)
2. Church, A.: A formulation of the simple theory of types. Journal of Symbolic

Logic 5, 56–68 (1940)
3. de Swart, H.C.M̃.: Another intuitionistic completeness proof. Journal of Symbolic

Logic 41, 644–662 (1976)
4. DeMarco, M., Lipton, J.: Completeness and cut elimination in the intuitionistic

theory of types. Journal of Logic and Computation, 821–854 (November 2005)
5. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-

mated Reasoning 31, 33–72 (2003)
6. Dowek, G., Werner, B.: Proof normalization modulo. The Journal of Symbolic

Logic 68(4), 1289–1316 (2003)
7. Friedman, H.: Equality between functionals. In: Parikh, R. (ed.) Logic Colloquium.

Lecture Notes in Mathematics, vol. 453, pp. 22–37. Springer, Heidelberg (1975)
8. Girard, J.Y.: Une extension de l’interprétation de Gödel à l’analyse et son applica-

tion à l’élimination de coupures dans l’analyse et la théorie des types. In: Fenstad,
J.E. (ed.) Proceedings of the second Scandinavian proof theory symposium. North-
Holland, Amsterdam (1971)

9. Girard, J.Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press,
Cambridge (1998)

10. Kleene, S.C.: Permutability of inferences in Gentzen’s calculi LK and LJ. Memoirs
of the American Mathematical Society 10, 1–26, 27–68 (1952)

11. Kreisel, G.: A remark on free choice sequences and the topological completeness
proofs. Journal of Symbolic Logic 23, 369–388 (1958)

12. Kreisel, G.: On weak completeness of intuitionistic predicate logic. Journal of Sym-
bolic Logic 27, 139–158 (1962)

A Constructive Semantic Approach to Cut Elimination 183

13. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Annals of Pure and Applied Logic 51(1-2), 125–157 (1991)

14. Mitchell, J.: Foundations for Programming Languages. MIT Press, Cambridge
(1996)

15. Okada, M.: Phase semantic cut-elimination and normalization proofs of first- and
higher-order linear logic. Theoretical Computer Science 227, 333–396 (1999)

16. Okada, M.: A uniform semantic proof for cut-elimination and completeness of vari-
ous first and higher order logics. Theoretical Computer Science 281, 471–498 (2002)

17. Plotkin, G.: Lambda definability in the full type hierarchy. In: Seldin, J.P., Hindley,
J.R. (eds.) To H.B. Curry: Essays in Combinatory Logic, Lambda Calculus and
Formalism. Academic Press, New York (1980)

18. Prawitz, D.: Hauptsatz for higher order logic. The Journal of Symbolic Logic 33(3),
452–457 (1968)

19. Schütte, K.: Syntactical and semantical properties of simple type theory. Journal
of Symbolic Logic 25, 305–326 (1960)

20. Tait, W.: A non-constructive proof of Gentzen’s Hauptsatz for second-order pred-
icate logic. Bulletin of the American Mathematical Society 72, 980–983 (1966)

21. Takahashi, M.-o.: A proof of cut-elimination in simple type theory. J. Math. Soc.
Japan 19(4) (1967)

22. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction,
vol. 2. Elsevier Science Publishers, Amsterdam (1988)

23. van Dalen, D.: Lectures on Intuitionism. Lecture Notes in Mathematics, vol. 337,
pp. 1–94. Springer, Heidelberg (1973)

24. Veldman, W.: An intuitionistic completeness theorem for intuitionistic predicate
logic. Journal of Symbolic Logic 41, 159–166 (1976)

Proving Infinitude of Prime Numbers Using

Binomial Coefficients

Phuong Nguyen

University of Toronto

Abstract. We study the problem of proving in weak theories of Bounded
Arithmetic the theorem that there are arbitrarily large prime numbers. We
show that the theorem can be proved by some “minimal” reasoning (i.e.,
in the theory IΔ0) using concepts such as (the logarithm) of a binomial
coefficient. In fact we prove Bertrand’s Postulate (that there is at least a
prime number between n and 2n, for all n > 1) and the fact that the num-
ber of prime numbers between n and 2n is of order Θ(n/ ln(n)). The proofs
that we formalize are much simpler than several existing formalizations,
and our theory turns out to be a sub-theory of a recent theory proposed
by Woods and Cornaros that extends IΔ0 by a special counting function.

1 Introduction

A long standing problem in proof complexity theory is whether the fact that
there are infinitely many prime numbers is provable in the theory IΔ0, the
theory over the vocabulary 0, 1,+, ·, < that is axiomatized by basic properties
of this vocabulary and induction axioms for all bounded formulas. The problem
remains open even when we replace IΔ0 by IΔ0(π), a theory that extends IΔ0

by adding the function π(n) which is the number of prime numbers less than or
equal to n [Woo81]. (IΔ0(π) is also called IΔ0(π) + def (π) in the literature.)
The motivation for the latter is: suppose that we are able to count the number of
primes, then is it possible to prove the infinitude of primes using some “minimal”
reasoning?

These problems belong to the area recently named Bounded Reverse Math-
ematics [Coo07] whose purpose is to formalize and prove (the discrete versions
of) mathematical theorems in weak theories of Bounded Arithmetic. A related
problem [PWW88] is whether a weak form of the Pigeonhole Principle is prov-
able in IΔ0, or equivalently, whether it has polynomial-size constant-depth Frege
proofs.

Recently some progress has been made in [WC07] where it is shown that
IΔ0(ξ) (called IΔ0(ξ)+def (ξ) in [WC07]) proves the infinitude of primes. Here
IΔ0(ξ) extends IΔ0 by the function ξ that counts some definable sets of prime
numbers. The function π can be defined using ξ, so IΔ0(ξ) is an extension of
IΔ0(π). It is unlikely that ξ can be defined in IΔ0(π).

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 184–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proving Infinitude of Prime Numbers Using Binomial Coefficients 185

In an earlier paper [Cor95] it is shown that the infinitude of primes is also
provable in IΔ0(π,K), the theory that extends IΔ0(π) by a defining axiom for
the function

K(n) =
n∑

i=1

ln(i)

It is not clear whether IΔ0(ξ) extends IΔ0(π,K), or vice versa.
In this paper we show that the infinitude of prime numbers is provable in

IΔ0(π, lbc), the theory obtained from IΔ0(π) by adding a defining axiom for
the function

lbc(n) = ln(
(2n)!
n!n!

)

(lbc stands for logarithm of binomial coefficient). We also show that the function
lbc is definable in IΔ0(ξ). Together with the fact proved in [WC07] that π is
definable in IΔ0(ξ), this implies that IΔ0(π, lbc) is a sub-theory of IΔ0(ξ). So
our results strengthen the results from [WC07]. On the other hand, we do not
know whether our theory extends that of [Cor95], or vice versa.

Note that the function ξ [WC07] is a counting function that is more general
than π, while both K [Cor95] and our function lbc are not. Also, if we add to
IΔ0 a counting function and its defining axiom for every Δ0-definable set, then
the resulting theory, here we called IΔ0(count), extends all IΔ0(ξ), IΔ0(π,K)
and IΔ0(π, lbc). It has been shown [CD94] that IΔ0(count) proves the Prime
Number Theorem (that there areΘ(n/ ln(n)) primes less than n). It is easy to see
that IΔ0(count) is equivalent to the number part of the theory VTC0 [NC05,
CN06], a two-sorted theory that is associated with the two-sorted complexity
class TC0.

1.1 Existing Formalizations

Our formalization is based on [Ngu08a, Chapter 8]. At high level, the proof that
we choose to formalize is essentially the same as that of [WC07]. However, we
explicitly use the binomial coefficients mentioned above, so our formalization
is simpler. In fact, the axiom that we need to define lbc is provable (in IΔ0)
from the defining axiom for the function ξ introduced in [WC07]. Moreover, the
function ξ seems to be indispensable for the formalization in [WC07], because it
is needed in proving (the approximate version of) the asymptotic identity

(ψ(x) − ψ(
x

2
) + ψ(

x

3
)− ψ(

x

4
) + . . .) = x ln(2)

where
ψ(x) =

∑
i≤x

Λ(i)

and Λ(x) is the von Mangoldt function,

Λ(x) =

{
ln(p) if x = pj for some prime p and some j ≥ 1
0 otherwise

186 P. Nguyen

1.2 Our Formalizations

The proofs that we formalized are simple proofs which rely on different (approx-
imate) representations of

ln(
(2n)!
n!n!

) (1)

One way of computing (1) is to use the fact that

n∑
i=1

ln(i) = n ln(n)− n+O(ln(n)) (2)

This produces

ln(
(2n)!
n!n!

) =
2n∑
i=1

ln(i)− 2
n∑

i=1

ln(i) = 2n ln(2) +O(ln(n)) (3)

Another expression for (1) is

∑
p≤2n

⎛⎝ln(p)
∑

1≤j∧pj≤2n

(+2n/pj, − 2+n/pj,)

⎞⎠ (4)

This expression reveals useful information about the prime numbers that are
≤ 2n. For example, it gives us

ln(
(2n)!
n!n!

) ≤ π(2n) ln(2n)

and so a lower bound for π(2n) follows using (3). Moser’s simple proof of
Bertrand’s Postulate that we formalize also stems from (4) (see Lemma 18).

In our formalizations, the function lbc is defined based on the expression (4).
The obstacle that prevents us from resolving Woods’ conjecture is the inability
to compute in IΔ0(π) this summation.

Of course we cannot compute the function ln(x) precisely, so as in [Woo81] we
use an approximation to it. Our approximation and much of the formalizations
are from [Ngu08a, Chapter 8]. The approximation to ln(x), denoted by ln(x,m)
for a parameterm, is essentially the same as the approximation given in [Woo81].
Here we give a more detailed and direct proof of our version of (2).

1.3 Organization

The paper is organized as follows. In Section 2 we recall IΔ0 and some important
properties. In Section 2.2 we define in IΔ0 an approximation to ln(x). The
function lbc is defined in Section 2.6, and in Section 2.7 we show that it is
definable in IΔ0(ξ). The IΔ0(π, lbc)-proof of a lower bound for π(n) is given
in Section 3. The lower bound for π(2n) − π(n) and Bertrand’s Postulate are
proved in Section 4.

Proving Infinitude of Prime Numbers Using Binomial Coefficients 187

2 The Theories IΔ0, IΔ0(π), and IΔ0(π, lbc)

The language of IΔ0 is
{0, 1,+, ·, <,=}

The theory IΔ0 is axiomatized by some basic defining axioms for the symbols
in the language (see [HP93, Kra95, CN06]) and induction axiom scheme for
bounded formulas. IΔ0 denotes the universal conservative extension of IΔ0

obtained by adding Skolem functions that eliminate quantifiers in the axioms of
IΔ0. (We do not need the fact that IΔ0 is a universal theory here.)

(Instead of IΔ0 and its extensions, we can use the two-sorted theory V0

[CN06] and its corresponding extensions, because V0 is conservative over IΔ0

and the same can be shown for their respective extensions. Care should be taken,
however, when we look at the associated complexity classes: V0 is associated
with the two-sorted class AC0 where sets are presented by binary strings and
numbers by unary strings; on the other hand, IΔ0 is associated with the Linear
Time Hierarchy, because here numbers are written in binary.)

The following theorem is from [Ben62, HP93, Bus98, CN06]:

Theorem 1. The relation (on numbers) y = zx can be represented by a Δ0

formula.

Corollary 2. The function |x| (or also log(x)), where |0| = 0 and |x| = +log2(x),
if x ≥ 1, is definable in IΔ0.

The following theorem is from [Woo81]:

Theorem 3. For a bounded Δ0-sequence x1, x2, . . . , x� where
 ≤ (log(a))d for
some a and some constant d ∈ N, the function∑

1≤i≤�
xi

is definable in IΔ0 and it is provable in IΔ0 that∑
1≤i≤�+1

xi =
∑

1≤i≤�
xi + x�+1

2.1 Rational Numbers in IΔ0

We will approximate the natural logarithm function by rational numbers. Here
we only need nonnegative numbers which can be defined in IΔ0 by pairs 〈x, y〉,
where

〈x, y〉 =def (x+ y)(x + y + 1) + 2y

For readability we will write x
y for 〈x, y〉. Equality, inequality, addition and mul-

tiplication for rational numbers are defined in the standard way, and these are
preserved under the embedding x �→ x

1 . For example, =Q and ≤Q are defined as:

x

y
=Q

x′

y′
≡ xy′ = x′y, and

x

y
≤Q

x′

y′
≡ xy′ ≤ x′y

188 P. Nguyen

Then it can be shown that

IΔ0 0 +x/y, ≤Q
x

y
<Q +x/y,+ 1

(here +x/y, = max{z : zy ≤ x}, and r <Q s ≡ (r ≤Q s ∧ r �=Q s)). In the
following discussion, we will simply omit the subscript Q from =Q, ≤Q, etc.; the
exact meaning will be clear from the context.

For a rational number r
s ≥ 1, define

|r
s
| = max{i : s2i ≤ r}

2.2 Approximating ln(x) in IΔ0

We will now define in IΔ0 a function ln(x,m) which approximates ln(x) up to
O(|x|/m), for x ∈ N, where m is a polynomial in |a|. Following [Woo81] we will
first define ln(x,m) that approximates ln(x) upto 1/m for 1 ≤ x ≤ 2. Then for
x > 2 define

ln(x,m) = |x| ln(2,m) + ln(
x

2|x|
) (5)

It is easy to see that for any x > 1, ln(x,m) approximates ln(x) upto O(|x|/m).

1
m+1

m
m+2

m
. . . x

1

1/m

y = 1/x

Fig. 1. Defining ln(x, m) for 1 ≤ x ≤ 2: the shaded area is (6)

Our definition of ln(x,m) for 1 ≤ x ≤ 2 is essentially the same as the definition
of log+ of [Woo81]. Note that

ln(x) =
∫ x

1

1
y
dy

Our approximation will be roughly (the shaded area in Figure 1):∑
m≤k<�mx�

1
m

1
k/m

=
∑

m≤k<�mx�

1
k

(6)

Proving Infinitude of Prime Numbers Using Binomial Coefficients 189

We will not compute this summation precisely (since we want to avoid comput-
ing the common denominator). Instead we approximate 1

k by �b/k�b for some b
determined below. Thus

ln(x,m) =

∑
m≤k<�mx�+b/k,

b
(7)

The summation in (7) can be carried out in IΔ0 by Theorem 3.
Notice that (6) is an upper bound for ln(x) with an error (the total area of

the shaded region above the line xy = 1) at most 1/m, and (7) is a lower bound
for (6) with an error at most mx/b. So to get an 1/m-approximation to ln(x) it
suffices to take b = m3.

Notation. Throughout this paper, fix some a sufficiently large and m a power
of 2, m = polylog(a) = 2h. (In particular, m > |a|2.) We use ‖·‖ for absolute
value, e.g., ‖t1 − t2‖ ≤ s is an abbreviation for t1 ≤ t2 + s ∧ t2 ≤ t1 + s.

Definition 4 (ln(x,m) or just ln(x)). Let a,m be as in the above Notation.
For 1 ≤ x ≤ 2, ln(x,m) is defined as in (7) with b = m3. For x > 2, ln(x,m) is
defined as in (5).

Lemma 5 (Provable in IΔ0). a) x ≤ y ⊃ ln(x,m) ≤ ln(y,m).
b) ‖ln(xy,m)− (ln(x,m) + ln(y,m))‖ = O(|x|+|y|m)

For a proof see [Ngu08b, Lemma 2.5]

2.3 Defining
∑

ln(i) in IΔ0

The fact that
∑

1≤i≤n ln(i) is definable in IΔ0 is from [Woo81]. We reprove it
here (for our definition of ln(x)) in order to roughly estimate the sum.

Theorem 6. a) The following function is definable in IΔ0:
n∑

i=1

ln(i) (8)

b) Let

S =
m∑
i=1

ln(i), T =
m∑
t=1

ln(
m+ t

m
), Tn =

n∑
i=2|n−1|+1

ln(
i

2|n−1|) (9)

Then S, T, Tn are definable in IΔ0, and it is provable in IΔ0 that (let
 = |n−1|)
n∑

i=1

ln(i) = S + (n
− 2�+1 − (h− 2)2h) ln(2) + (2�−h − 1)T + Tn (10)

c) It is provable in IΔ0 that
n+1∑
i=1

ln(i) =
n∑

i=1

ln(i) + ln(n+ 1) (11)

For a proof see [Ngu08b, Theorem 2.6]

190 P. Nguyen

2.4 IΔ0(π) and Defining
∑

ln(p) in IΔ0(π)

Notation. Throughout this paper, the index p is used for prime numbers. P
denotes the set of prime numbers. Note that the relation x ∈ P is represented
by a Δ0 formula.

Let
π(n) = #{p ≤ n : p ∈ P}

IΔ0(π) extends IΔ0 by π and the following defining axioms for it:

π(0) = 0

π(n+ 1) =

{
π(n) if n+ 1 �∈ P
π(n) + 1 otherwise

Chebyshev’s function
ϑ(x) =

∑
p≤x

ln(p) (12)

plays an important role. Here we use

ϑ(x,m) =
∑
p≤x

ln(p,m) (13)

and will simply write ϑ(x) for ϑ(x,m). We use the following defining axioms
for ϑ:

ϑ(1) = 0, ϑ(n+ 1) =

{
ϑ(n) + ln(n+ 1) if n+ 1 ∈ P
ϑ(n) otherwise

(14)

Theorem 7. The function ϑ(x) with defining axioms (14) is definable in IΔ0(π).

For a proof see [Ngu08b, Theorem 2.7]

2.5 Unique Prime Factorization

The Fundamental Theorem of Arithmetic (or Unique Prime Factorization The-
orem) states that any natural number n > 1 can be written uniquely as

n = pe11 · pe22 · . . . · pek

k

where p1 < p2 < . . . < pk are prime numbers, and ei ≥ 1.
In IΔ0 we can prove the existence and uniqueness of the sequence

(p1, e1), (p2, e2), . . . , (pk, ek)

that contains all prime divisors of n, and ei ≥ 1, pei

i | n, p
ei+1
i � n. Note that the

sequence can be encoded by a binary string of length O(|n|). Also, the product

k∏
i=1

pei

i

for such sequence can be defined and proved to be n in IΔ0.

Proving Infinitude of Prime Numbers Using Binomial Coefficients 191

Here we use the following function which is provably total in IΔ0 (ex stands
for exponent):

ex(p, n) = max{j : pj |n} (15)

Our version of the Fundamental Theorem of Arithmetic is as follows:

Lemma 8. The sum ∑
p|n

ex(p, n) ln(p,m)

is definable in IΔ0, and it is provable in IΔ0 that

‖ln(n,m)−
∑
p|n

ex(p, n) ln(p,m)‖ = O(
|n|
m

)

For a proof see [Ngu08b, Lemma 2.9]

2.6 The Function lbc

Note that
n! =

∏
p≤n

pep where ep =
∑

1≤j∧pj≤n
+n/pj, (16)

We use the function exfac for ep above.

Corollary 9. The following function is provably total in IΔ0:

exfac(p, n) =
∑

1≤j∧pj≤n
+n/pj,

Also, IΔ0 proves that

exfac(p, 1) = 0, and exfac(p, n) = ex(p, n) + exfac(p, n− 1) (17)

Proof. The fact that exfac(p, n) is provably total in IΔ0 follows from Theorem
3 and the fact that the sum in the definition of exfac(p, n) has length ≤ |n|.
The second property in (17) is proved by induction on n. �

Lemma 10 (Provable in IΔ0)

0 ≤ exfac(p, 2n)− 2exfac(p, n) ≤ ln(2n)
ln(p)

+O(
|n|
m

)

For a proof see [Ngu08b, Lemma 2.11].
Note that from (16) we have

(2n)!
n!n!

=
∏
p≤2n

pe
′
p where e′p =

∑
1≤j∧pj≤2n

(+2n/pj, − 2+n/pj,) (18)

192 P. Nguyen

Now we introduce the following functions (lbc stands for logarithm of binomial
coefficient):

lbc(n) = ln(
(2n)!
n!n!

) =
∑
p≤2n

e′p ln(p) =
∑
p≤2n

(exfac(p, 2n)− 2exfac(p, n)) ln(p)

Recall that P denotes the set of prime numbers. The function lbc is formally
defined as follows.

Definition 11. Let lbc′ be the function with the following defining axioms

lbc′(n, 1) = 0

lbc′(n, k + 1)=

{
lbc′(n, k) if k + 1 �∈ P
lbc′(n, k)+(exfac(p, 2n)−2exfac(p, n)) ln(p) if k + 1=p∈P

Let lbc(n) = lbc′(n, 2n).

Theorem 12. It is provable in IΔ0(lbc) that

lbc(n) =
2n∑
i=1

ln(i)− 2
n∑

i=1

ln(i) +O(
n|n|
m

)

For a proof see [Ngu08b, Theorem 2.13]

2.7 Defining lbc in IΔ0(ξ)

The theory IΔ0(ξ) + def (ξ) [WC07] is obtained from IΔ0 by augmenting the
function ξ and its defining axioms. The function ξ(x) = ξ(x, y, e) [WC07] is

ξ(x) = #{p : p ∈ P , p ≤ x, and +y/pe, is odd}

and has defining axioms (suppressing y, e):

ξ(0) = 0

ξ(x+ 1) =

{
ξ(x) + 1 if x+ 1 ∈ P and +y/(x+ 1)e, is odd
ξ(x) otherwise

Here we show that our function lbc is definable in IΔ0(ξ)+def (ξ). As a result,
the lower bounds for π(n) and π(2n)−π(n) that we prove in the following sections
are also theorems of IΔ0(ξ) + def (ξ). Thus we obtain alternative proofs for the
results from [WC07].

Theorem 13. The function lbc with defining axioms given in Definition 11 is
definable in IΔ0(ξ) + def (ξ).

Proving Infinitude of Prime Numbers Using Binomial Coefficients 193

Proof. We show how to compute lbc′(n, k) in IΔ0(ξ). Note that

lbc′(n, k) =
∑
p≤k

(exfac(p, 2n)− 2exfac(p, n)) ln(p)

and by Lemma 10,

0 ≤ exfac(p, 2n)− 2exfac(p, n) ≤ ln(2n)
ln(p)

+O(
|n|
m

)

By definition,

exfac(p, 2n)− 2exfac(p, n) =
∑

pj≤2n

+2n/pj, − 2
∑

pj≤2n

+n/pj,

So, since the summations have length ≤ |n|, it is provable in IΔ0 that

exfac(p, 2n)− 2exfac(p, n) =
∑

pj≤2n

(+2n/pj, − 2+n/pj,)

In other words,

exfac(p, 2n)− 2exfac(p, n) = #{j ≤ ln(2n)
ln(p)

: +2n/pj, is odd}

As a result,

lbc′(n, k) =
∑

j≤ln(2n)

⎛⎝ ∑
p≤k∧�2n/pj� is odd

ln(p)

⎞⎠
The summation in brackets can be computed in IΔ0(ξ) using the counting func-
tion ξ just as described in Theorems 2.6 and 2.7 of [Ngu08b]. �

3 A Lower Bound for π(n) in IΔ0(π, lbc′)

Note that π(2n− 1) = π(2n) for n ≥ 2. So it suffices to give a lower bound for
π(2n). We choose a simple proof for the Ω(n/ ln(n)) lower bound for π(2n) and
point out that this proof can be formalized using the function lbc introduced
above. From this lower bound for π(n) we can derive in IΔ0(π, lbc ′) the fact
that there are infinitely many prime numbers.

The idea is to compute an upper bound and a lower bound for (2n)!
n!n! ; by com-

paring these bounds we can derive a lower bound for π(2n). In our formalization,
we will use lbc(n) instead of (2n)!

n!n! .

Lemma 14 (Provable in IΔ0(π, lbc ′))

lbc(n) ≤ π(2n)(ln(2n) +O(
|n|
m

))

194 P. Nguyen

Proof. We prove by induction on k ≤ 2n that lbc′(n, k) ≤ π(k) ln(2n) using the
defining axioms for lbc′ (Definition 11) and Lemma 10. �

Lemma 15 (Provable in IΔ0(π, lbc ′)). For n > m:

lbc(n) = 2n ln(2) + c(m) +O(
n|n|
m

) (19)

for some constant c(m) depends only on m.

Proof. By (10) in Theorem 6 we have

2n∑
i=1

ln(i)−
n∑

i=1

ln(i) = (2n+ (h− 2)2h+1) ln(2) + T − S

where T, S depend only on m (recall also that m = 2h). Now the lemma follows
from Theorem 12. �

Corollary 16 (Provable in IΔ0(π, lbc ′))

π(n) = Ω(n/ ln(n)) (20)

It follows that the existence of arbitrarily large prime numbers is provable in
IΔ0(π, lbc).

4 Bertrand’s Postulate and a Lower Bound for
π(2n) − π(n)

We will prove Bertrand’s Postulate (that π(2n)−π(n) ≥ 1 for all n) and a lower
bound for the number of prime numbers between n and 2n: π(2n) − π(n) =
Ω(n/ ln(n)). For the latter, we follow the proof from [Mos49]. First we outline
the proof of the lower bound for π(2n) − π(n); the formalizations are given in
Section 4.1.

Recall Chebyshev’s function ϑ(x) from (12).

Theorem 17. For n ≥ 1, ϑ(n) < 2n ln(2).

Proof. First, because
(2k + 1)!
k!(k + 1)!

appears twice in the binomial expansion of 22k+1, we have

(2k + 1)!
k!(k + 1)!

≤ 1
2
22k+1 = 22k (21)

Also, all primes p where k + 1 < p ≤ 2k + 1 divide (2k+1)!
k!(k+1)! . Hence

∏
k+1<p≤2k+1

p ≤ (2k + 1)!
k!(k + 1)!

(22)

Proving Infinitude of Prime Numbers Using Binomial Coefficients 195

Consequently,

ϑ(2k + 1)− ϑ(k + 1) =
∑

k+1<p≤2k+1

ln(p) ≤ ln
(2k + 1)!
k!(k + 1)!

≤ ln(22k) = 2k ln(2)

(23)
Now we prove the theorem by induction on n. The base cases (n = 1 and

n = 2) are trivial. For the induction step, the case where n is even is also obvious,
since then ϑ(n) = ϑ(n − 1). So suppose that n = 2k + 1. Using (23) and the
induction hypothesis (for n = k+1) we have ϑ(2k+1) < 2k ln(2)+2(k+1) ln(2) =
2(2k + 1) ln(2). �

Note that this theorem gives a O(n/ ln(n)) upper bound for π(n), but we do not
need this fact here.

Lemma 18

(2n)!
n!n!

≤ (2n)
√

2n

⎛⎝ ∏
√

2n<p≤2n/3

p

⎞⎠(∏
n<p<2n

p

)
(24)

Proof. From (18), by noting that

e′p

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 1 if n < p < 2n
= 0 if 2n/3 < p ≤ n

≤ 1 if �
√

2n� ≤ p ≤ +2n/3,
≤ ln(2n)

ln(p) if p <
√

2n

�

Corollary 19. π(2n)− π(n) = Ω(n/ ln(n)).

Proof. Note that
(2n)!
n!n!

≥ 22n

2n+ 1

(because (2n)!
n!n! is the largest coefficient in (1 + 1)2n). Therefore

ln(
(2n)!
n!n!

) ≥ 2n ln(2)− ln(2n+ 1)

Also,

ln

⎛⎝ ∏
√

2n<p≤2n/3

p

⎞⎠ ≤ ln

⎛⎝ ∏
p≤2n/3

p

⎞⎠ = ϑ(2n/3)

so by Theorem 17,

ln

⎛⎝ ∏
√

2n<p≤2n/3

p

⎞⎠ < 4n ln(2)/3

196 P. Nguyen

In addition,

ln

(∏
n<p<2n

p

)
< (π(2n)− π(n)) ln(2n)

As a result, by taking logarithm of both sides of (24) we have

2n ln(2)− ln(2n+ 1) <
√

2n ln(2n) + 4n ln(2)/3 + (π(2n)− π(n)) ln(2n)

From this the conclusion follows easily. �

4.1 Formalization in IΔ0(π, lbc′)

Recall (Section 2.4) that our version of Chebyshev’s function, ϑ(x,m), or simply
ϑ(x), is definable in IΔ0(π). Following Theorem 17 we prove:

Theorem 20 (Provable in IΔ0(π, lbc ′)). For some constant c′(m),

ϑ(n,m) ≤ 2n ln(2) + |n|c′(m) +O(
n|n|
m

)

Proof. Note that

ln(
(2k + 1)!
k!(k + 1)!

) = lbc(k + 1)− ln(2)

Using Lemma 8 and from the definition of lbc (Definition 11), we can prove in
IΔ0(π, lbc) that

ln(2) +
∑

k+1<p≤2k+1

ln(p) ≤ lbc(k + 1)

(By proving by induction on j ≤ 2k that

ln(2) +
∑

k+1<p≤j
ln(p) ≤ lbc′(k + 1, j)

We will have to consider two cases: either k + 1 is a power of 2, or not.)
As a result, by Lemma 15 we have∑
k+1<p≤2k+1

ln(p) ≤ lbc(k + 1)− ln(2) = 2k ln(2) + (c(m) + ln(2)) +O(
k|k|
m

)

That is, for c′(m) = c(m) + ln(2),

ϑ(2k + 1)− ϑ(k + 1) ≤ 2k ln(2) + c′(m) +O(
k|k|
m

)

Now we can prove by strong induction on k that

ϑ(k) ≤ 2k ln(2) + |k|c′(m) +O(
k|k|
m

)

(using the fact that |2k + 1| = |k|+ 1). �

Proving Infinitude of Prime Numbers Using Binomial Coefficients 197

Following Lemma 18 we have:

Lemma 21 (Provable in IΔ0(π, lbc,))

lbc(n) ≤ +
√

2n, ln(2n) + ϑ(
2n
3

) +
∑

n<p<2n

ln(p)

Proof. The proof is similar to the proof of Lemma 14. �

Corollary 22 (Provable in IΔ0(π, lbc ′))

π(2n)− π(n) = Ω(
n

ln(n)
)

Proof. By Lemma 15, Theorem 20 and the above lemma we have

2n ln(2) + c(m) +O(
n|n|
m

) ≤ +
√

2n, ln(2n)+(
4n ln(2)

3
+ |2n

3
|c′(m) +O(

n|n|
m

)
)

+
∑

n<p<2n

ln(p)

It follows that for n > m2,m > |n|2:∑
n<p<2n

ln(p) ≥ 2 ln(2)
3

n−O(
n|n|
m

)

The conclusion follows from the fact provable in IΔ0(π) that the LHS is at most
(π(2n)− π(n)) ln(2n). �

Corollary 23 (Provable in IΔ0(π, lbc ′)). For all n, π(2n)− π(n) ≥ 1.

Proof. The previous corollary shows that for some standard threshold n0 ∈ N,
π(2n) − π(n) > 0 for all n ≥ n0. The fact that π(2n) − π(n) ≥ 1 for n < n0 is
true in N, and hence is provable in IΔ0. �

5 Conclusion

Sylvester’s Theorem asserts that for 1 ≤ x ≤ y, some number among

y + 1, y + 2, . . . , y + x

has a prime divisor p > x. In [Woo81] it is shown that Sylvester’s Theorem can
be proved in IΔ0+PHP(Δ0). (PHP(Δ0) is the axiom scheme which asserts that
the Pigeonhole Principle, where the mappings between “pigeons” and “holes”
are described by Δ0 formula, is true.) Here, as well as in [Cor95, WC07], we
have a Ω(n/ ln(n)) lower bound for π(2n)− π(n), the number of prime numbers
between n and 2n. Such lower bound does not seem to follow from the proof in

198 P. Nguyen

[Woo81]. However, it is not clear whether PHP(Δ0) is provable in IΔ0(π, lbc,)
or even IΔ0(ξ) + def (ξ).

Also, as far as we know, the axiom for lbc considered here (or even the axiom
for ξ considered in [WC07]) and the axiom for K [Cor95] are incomparable over
IΔ0(π). It is an interesting problem to see whether one follows from the other
in IΔ0.

Acknowledgments. I would like to thank Steve Cook and the referees for their
helpful comments.

References

[Ben62] Bennett, J.: On Spectra. PhD thesis, Princeton University, Department of
Mathematics (1962)

[Bus98] Buss, S.: First–Order Proof Theory of Arithmetic. In: Buss, S. (ed.) Hand-
book of Proof Theory, pp. 79–147. Elsevier, Amsterdam (1998)

[CD94] Cornaros, C., Dimitracopoulos, C.: The Prime Number Theorem and Frag-
ments of PA. Archive for Mathematical Logic 33, 265–281 (1994)

[CN06] Cook, S., Nguyen, P.: Foundations of Proof Complexity: Bounded Arith-
metic and Propositional Translations (Book in progress, 2006)

[Coo07] Cook, S.: Bounded Reverse Mathematics. In: Plenary Lecture for CiE 2007
(2007)

[Cor95] Cornaros, C.: On Grzegorczyk Induction. Annals of Pure and Applied
Logic 74, 1–21 (1995)

[HP93] Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic.
Springer, Heidelberg (1993)

[Kra95] Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity
Theory. Cambridge University Press, Cambridge (1995)

[Mos49] Moser, L.: A theorem on the distribution of primes. American Mathemat-
ical Monthly 56(9), 624–625 (1949)

[NC05] Nguyen, P., Cook, S.: Theory for TC0and Other Small Complexity Classes.
Logical Methods in Computer Science 2 (2005)

[Ngu08a] Nguyen, P.: Bounded Reverse Mathematics. PhD thesis, University of
Toronto (2008), http://www.cs.toronto.edu/∼pnguyen/

[Ngu08b] Nguyen, P.: Proving Infinitude of Prime Numbers Using Binomial Coeffi-
cients (submitted, 2008), http://www.cs.toronto.edu/∼pnguyen/

[PWW88] Paris, J.B., Wilkie, A.J., Woods, A.R.: Provability of the pigeonhole prin-
ciple and the existence of infinitely many primes. Journal of Symbolic
Logic 53(4), 1235–1244 (1988)

[WC07] Woods, A., Cornaros, C.: On bounded arithmetic augmented by the ability
to count certain sets of primes (unpublished, 2007)

[Woo81] Woods, A.: Some Problems in Logic and Number Theory and Their Con-
nections. PhD thesis, University of Manchester (1981)

http://www.cs.toronto.edu/~pnguyen/
http://www.cs.toronto.edu/~pnguyen/

A Tight Karp-Lipton Collapse Result

in Bounded Arithmetic

Olaf Beyersdorff1 and Sebastian Müller2,�

1 Institut für Theoretische Informatik, Leibniz Universität Hannover, Germany
beyersdorff@thi.uni-hannover.de

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
smueller@informatik.hu-berlin.de

Abstract. Cook and Kraj́ıček [9] have obtained the following Karp-
Lipton result in bounded arithmetic: if the theory PV proves NP ⊆
P/poly , then PH collapses to BH, and this collapse is provable in PV .
Here we show the converse implication, thus answering an open ques-
tion from [9]. We obtain this result by formalizing in PV a hard/easy
argument of Buhrman, Chang, and Fortnow [3].

In addition, we continue the investigation of propositional proof sys-
tems using advice, initiated by Cook and Kraj́ıček [9]. In particular, we
obtain several optimal and even p-optimal proof systems using advice.
We further show that these p-optimal systems are equivalent to natural
extensions of Frege systems.

Keywords: Karp-Lipton Theorem, Advice, Optimal Propositional Proof
Systems, Bounded Arithmetic, Extended Frege.

1 Introduction

The classical Karp-Lipton Theorem states that NP ⊆ P/poly implies a collapse of
the polynomial hierarchy PH to its second level [15]. Subsequently, these collapse
consequences have been improved by Köbler and Watanabe [16] to ZPPNP and
by Sengupta and Cai to Sp

2 (cf. [4]). This currently forms the strongest known
collapse result of this kind.

Recently, Cook and Kraj́ıček [9] have considered the question which collapse
consequences can be obtained if the assumption NP ⊆ P/poly is provable in
some weak arithmetic theory. This assumption seems to be stronger than in the
classical Karp-Lipton results, because in addition to the inclusion NP ⊆ P/poly
we require an easy proof for it. In particular, Cook and Kraj́ıček showed that
if NP ⊆ P/poly is provable in PV , then PH collapses to the Boolean hierarchy
BH, and this collapse is provable in PV . For stronger theories, the collapse
consequences become weaker. Namely, if PV is replaced by S1

2 , then PH ⊆
PNP[O(logn)], and for S2

2 one gets PH ⊆ PNP [9]. Still all these consequences are
presumably stronger than in Sengupta’s result above, because PNP ⊆ Sp

2.

� Supported by DFG grants KO 1053/5-1 and KO 1053/5-2.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 199–214, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

200 O. Beyersdorff and S. Müller

In [9] Cook and Kraj́ıček ask whether under the above assumptions, their
collapse consequences for PH are optimal in the sense that also the converse
implications hold. In this paper we give an affirmative answer to this question for
the theory PV . Thus PV proves NP ⊆ P/poly if and only if PV proves PH ⊆ BH.
To show this result we use the assertion coNP ⊆ NP/O(1) as an intermediate
assumption. Surprisingly, Cook and Kraj́ıček [9] have shown that provability
of this assumption in PV is equivalent to the provability of NP ⊆ P/poly in
PV . While such a trade-off between nondeterminism and advice seems rather
unlikely to hold unconditionally, Buhrman, Chang, and Fortnow [3] proved that
coNP ⊆ NP/O(1) holds if and only if PH collapses to BH. Their proof in [3]
refines the hard/easy argument of Kadin [14]. We formalize this technique in
PV and thus obtain that coNP ⊆ NP/O(1) is provable in PV if and only if PV
proves PH ⊆ BH. Combined with the mentioned results from [9], this implies
that PV 0 PH ⊆ BH is equivalent to PV 0 NP ⊆ P/poly .

Assumptions of the form coNP ⊆ NP/O(1) play a dominant role in the above
Karp-Lipton results. These hypotheses essentially ask whether advice is helpful
to decide propositional tautologies. Motivated by this observation, Cook and
Kraj́ıček [9] started to investigate propositional proof systems taking advice.
In the second part of this paper we continue this line of research. We give a
quite general definition of functional propositional proof systems with advice.
Of particular interest are those systems where the advice depends on the proof
(input advice) or on the proven formula (output advice).

In our investigation we focus on the question whether there exist optimal proof
systems for different advice measures. While the existence of optimal proposi-
tional proof systems without advice is a long-standing open question, posed by
Kraj́ıček and Pudlák [18], we obtain optimal proof systems with input advice for
each advice class. Such a result was already obtained by Cook and Kraj́ıček [9],
who prove that there is a system with one bit of input advice which is optimal for
all systems using up to logarithmically many advice bits. We extend the proof
method from [9] to obtain even p-optimal systems with input advice within each
class of systems with super-logarithmic advice function.

These optimality results only leave open the question whether the classes of
proof systems with constant advice contain p-optimal systems. We prove that
for each constant k, there is a proof system which p-simulates all systems with
k advice bits, but itself uses k + 1 bits of advice. We also use a technique of
Sadowski [20] to show that the existence of p-optimal proof systems for SAT2

implies the existence of p-optimal propositional proof systems using k advice
bits for each constant k.

In contrast to these optimality results for input advice, we show that we cannot
expect similar results for proof systems with output advice, unless PH ⊆ BH
already implies PH ⊆ DP.

Finally, we consider classical proof systems like Frege systems using advice. We
show that our optimal and p-optimal proof systems with advice are p-equivalent
to extensions of Frege systems, thus demonstrating that these p-optimal proof
systems admit a robust and meaningful definition.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic 201

Due to space constraints, a number of proofs is omitted or only briefly sketched
in this extended abstract.

2 Preliminaries

Let Σ = {0, 1}. Σn denotes the set of strings of length n, and (Σn)k the set of
k-tuples of Σn. Let πi : (Σ∗)k → Σ∗ be the projection to the ith string, and let
π∗i : Σ∗ → {0, 1} be the projection to the ith bit of a string. Let π∗−i and π−i
be projections deleting the ith string from a tuple or the ith bit from a string,
respectively. Although we enumerate the bits of a string starting with 0, we
will speak of the first bit, the second bit, etc. of a string, and thus for example
π∗1(a0a1a2) = a0 and π∗−1(a0a1a2) = a1a2.

Let 〈·〉 be a polynomial-time computable function, mapping tuples of strings
to strings. Its inverse will be denoted by enc.

Complexity Classes. We assume familiarity with standard complexity classes
(cf. [1]). In particular, we will need the Boolean hierarchy BH which is the closure
of NP under the Boolean operations ∪, ∩, and .̄ The levels of BH are denoted
BHk and are inductively defined by BH1 = NP and BHk+1 = {L1 \ L2 | L1 ∈
NP and L2 ∈ BHk}. The second level BH2 is also denoted by Dp. The Boolean
hierarchy coincides with PNP[O(1)], consisting of all languages which can be solved
in polynomial time with constantly many queries to an NP-oracle. For each
level BHk it is known that k non-adaptive queries to an NP-oracle suffice, i.e.,
BHk ⊆ P

NP[k]
tt (cf. [2]).

Complete problems BLk for BHk are inductively given by BL1 = SAT and

BL2k = {〈x1, . . . , x2k〉 | 〈x1, . . . , x2k−1〉 ∈ BL2k−1 and x2k ∈ SAT}
BL2k+1 = {〈x1, . . . , x2k+1〉 | 〈x1, . . . , x2k〉 ∈ BL2k or x2k+1 ∈ SAT} .

Observe that 〈x1, . . . , xk〉 ∈ BLk if and only if there exists an i ≤ k, such that
xi is satisfiable and the largest such i is odd.

Complexity classes with advice were first considered by Karp and Lipton [15].
For each function k : N→ Σ∗ and each language L we let L/k = {x | 〈x, k(|x|)〉 ∈
L}. If C is a complexity class and F is a class of functions, then C/F = {L/k |
L ∈ C, k ∈ F}.

Propositional Proof Systems. Propositional proof systems were defined in a
general way by Cook and Reckhow [11] as polynomial-time computable functions
P which have as their range the set of all tautologies. A string π with P (π) = ϕ
is called a P -proof of the tautology ϕ. Equivalently, propositional proof systems
can be defined as polynomial-time computable relations P (π, ϕ) such that ϕ is
a tautology if and only if (∃π)P (π, ϕ) holds. A propositional proof system P is
polynomially bounded if all tautologies have polynomial size P -proofs.

Proof systems are compared according to their strength by simulations intro-
duced in [11] and [18]. A proof system S simulates a proof system P (denoted
by P ≤ S) if there exists a polynomial p such that for all tautologies ϕ and

202 O. Beyersdorff and S. Müller

P -proofs π of ϕ there is an S-proof π′ of ϕ with |π′| ≤ p (|π|). If such a proof π′

can even be computed from π in polynomial time we say that S p-simulates P
and denote this by P ≤p S. If the systems P and S mutually (p-)simulate each
other, they are called (p-)equivalent. A proof system is called (p-)optimal if it
(p-)simulates all proof systems.

A prominent class of propositional proof systems is formed by extended Frege
systems EF which are usual textbook proof systems based on axioms and rules,
augmented by the possibility to abbreviate complex formulas by propositional
variables to reduce the proof size (cf. [11,17]).

3 Representing Complexity Classes by Bounded Formulas

The relations between computational complexity and bounded arithmetic are
rich and varied, and we refer to [17,10] for background information. Here we
will use the two-sorted formulation of arithmetic theories [8,10]. In this setting
we have two sorts: numbers and finite sets of numbers, which are interpreted
as strings. Number variables will be denoted by lower case letter x, y, n, . . .
and string variables by upper case letters X,Y, . . . The two-sorted vocabulary
includes the symbols +, ·,≤, 0, 1, and the function |X | for the length of strings.

Our central arithmetic theory will be the theory VPV , which is the two-sorted
analogue of Cook’s PV [7]. In addition to the above symbols, the language of
VPV contains names for all polynomial-time computable functions (where the
running time is measured in terms of the length of the inputs with numbers
coded in unary). The theory VPV is axiomatized by definitions for all these
functions as well as by the number induction scheme for open formulas.

Bounded quantifiers for strings are of the form (∀X ≤ t)ϕ and (∃X ≤ t)ϕ,
abbreviating (∀X)(|X | ≤ t → ϕ) and (∃X)(|X | ≤ t ∧ ϕ), respectively (where t
is a number term not containing X). We use similar abbreviations for = in-
stead of ≤. By counting alternations of quantifiers, a hierarchy ΣB

i , ΠB
i of

bounded formulas is defined. The first level ΣB
1 contains formulas of the type

(∃X1 ≤ t1) . . . (∃Xk ≤ tk)ϕ with only bounded number quantifiers occurring in
ϕ. Similarly, ΠB

1 -formulas are of the form (∀X1 ≤ t1) . . . (∀Xk ≤ tk)ϕ.
As we want to investigate the provability of various complexity-theoretic as-

sumptions in arithmetic theories, we need to formalize complexity classes within
bounded arithmetic. To this end we associate with each complexity class C a
class of arithmetic formulas FC. The formulas FC describe C, in the sense that
for each A ⊆ Σ∗ we have A ∈ C if and only if A is definable by an FC-formula
ϕ(X) with a free string variable X .

It is well known that ΣB
1 -formulas describe NP-sets in this sense, and this

connection extends to the formula classes ΣB
i and ΠB

i and the respective levels
Σp

i and Πp
i of the polynomial hierarchy. Given this connection, we can model the

levels BHk of the Boolean hierarchy by formulas of the type

ϕ1(X) ∧ ¬(ϕ2(X) ∧ . . .¬(ϕk−1(X) ∧ ¬ϕk(X)) . . .) (1)

with ΣB
1 -formulas ϕ1, . . . , ϕk.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic 203

Another way to speak about complexity classes in arithmetic theories is to con-
sider complete problems for the respective classes. For the satisfiability problem
SAT we can build an open formula Sat(T,X), stating that T codes a satisfying
assignment for the propositional formula coded by X . In VPV we can prove
that (∃T ≤ |X |)Sat(T,X) is NP-complete, in the sense, that every ΣB

1 -formula
ϕ is provably equivalent to (∃T ≤ |X |)Sat(T, Fϕ(X)) for some polynomial-time
computable function Fϕ.

Using this fact, we can express the classes BHk in VPV equivalently as:

Lemma 1. For every formula ϕ describing a language from BHk as in (1) there
is a polynomial-time computable function F : Σ∗ → (Σ∗)k such that VPV proves
the equivalence of ϕ and

(∃T1, T3, . . . , T2·�k/2�+1 ≤ t)(∀T2, T4, . . . , T2·�k/2� ≤ t)
(. . . ((Sat(T1, π1(F (X))) ∧ ¬Sat(T2, π2(F (X))))

∨Sat(T3, π3(F (X)))) ∧ · · · ∧k ¬k+1Sat(Tk, πk(F (X))))

(2)

where ∧k = ∧ if k is even and ∨ otherwise, ¬k = ¬ . . .¬ (k-times), and t is a
number term bounding |F (X)|. We will abbreviate (2) by BLk(F (X)).

Similarly, we can define the class P
NP[k]
tt by all formulas of the type

(∃T1 . . . Tk ≤ t)(Sat(T1, F1(X)) ∧ · · · ∧ Sat(Tk, Fk(X)) ∧ ϕ1(X)) ∨ · · · ∨
(∀T1 . . . Tk ≤ t)(¬Sat(T1, F1(X)) ∧ · · · ∧ ¬Sat(Tk, Fk(X)) ∧ ϕ2k(X))

(3)

where ϕ1, . . . , ϕ2k are open formulas, F1, . . . , Fk are polynomial-time computable
functions, and t is a term bounding |Fi(X)| for i = 1, . . . , k. In (3), every com-
bination of negated and unnegated Sat-formulas appears in the disjunction.

With these arithmetic representations we can prove inclusions between com-
plexity classes in arithmetic theories. Let A and B are complexity classes repre-
sented by the formula classes A and B, respectively. Then we use VPV 0 A ⊆ B
to abbreviate that for every formula ϕA ∈ A there exists a formula ϕB ∈ B, such
that VPV 0 ϕA(X) ↔ ϕB(X).

In the following, we will use the same notation for complexity classes and their
respective representations. Hence we can write statements like VPV 0 PH ⊆ BH,
with the precise meaning explained above. For example, using Lemma 1 it is
straightforward to verify:

Lemma 2. For every number k we have VPV 0 BHk ⊆ P
NP[k]
tt .

Finally, we will consider complexity classes that take advice. Let A be a class of
formulas. Then VPV 0 A ⊆ NP/k abbreviates that, for every ϕ ∈ A there exist
ΣB

1 -formulas ϕ1, . . . , ϕ2k , such that

VPV 0 (∀n)
∨

1≤i≤2k

(∀X) (|X | = n→ (ϕ(X) ↔ ϕi(X))) . (4)

Similarly, using the self-reducibility of SAT, we can formalize the assertion
VPV 0 NP ⊆ P/poly as

VPV 0 (∀n)(∃C ≤ t(n))(∀X ≤ n)(∀T ≤ n)(Sat(T,X)→ Sat(C(X), X))

204 O. Beyersdorff and S. Müller

where t is a number term and C(X) is a term expressing the output of the circuit
C on input X (cf.[9]).

4 The Karp-Lipton Collapse Result in VPV

In this section we will prove that the Karp-Lipton collapse PH ⊆ BH from [9]
is optimal in VPV , in the sense that VPV 0 NP ⊆ P/poly is equivalent to
VPV 0 PH ⊆ BH. For this we will use the following complexity-theoretic result.

Theorem 3 (Buhrman, Chang, Fortnow [3]). For every constant k we have
coNP ⊆ NP/k if and only if PH ⊆ BH2k .

While the forward implication of Theorem 3 is comparatively easy, and was
shown to hold relative to VPV by Cook and Kraj́ıček [9], the backward im-
plication was proven in [3] by a sophisticated hard/easy argument. In the se-
quel, we will formalize this argument in VPV , thereby answering a question of
Cook and Kraj́ıček [9], who asked whether VPV 0 PH ⊆ BH already implies
VPV 0 coNP ⊆ NP/O(1).

Assuming VPV 0 PH ⊆ BH, we claim that there is some constant k such that
VPV 0 PH ⊆ BHk. This follows, because PH ⊆ BH implies PH = BH = Σp

2.
Therefore every problem in PH can be reduced to a fixed Σp

2-complete problem.
Since this problem is contained in some level BHk of BH, it can be reduced to
an appropriate BHk-complete problem as well. Thus PH ⊆ BHk.

Therefore, BHk is provably closed under complement in VPV , i.e., there exists
a polynomial-time computable function h such that

VPV 0 BLk(X1, . . . , Xk) ↔ ¬BLk(h(X1, . . . , Xk)) . (5)

Given h, we define the notion of a hard sequence. This concept was defined in
[6] as a generalization of the notion of hard strings from [14]. Hard strings were
first used to show that BH ⊆ Dp implies a collapse of PH [14].

Definition 4. Let h be a function as in (5). A sequence x̄ = (x1, . . . , xr) of
strings is a hard sequence of order r for length n, if for all i ≤ r, xi is an
unsatisfiable formula of length n, and for all (k − r)-tuples ū of formulas of
length n, the formula πk−r+i(h(ū, x̄)) is unsatisfiable.

A hard sequence x̄ of order r for length n is not extendable if, for every
unsatisfiable formula x of length n the sequence x�x̄ is not hard. Finally, a
maximal hard sequence is a hard sequence of maximal order. Maximal hard
sequences are obviously not extendable. Note that the empty sequence is a hard
sequence for every length.

To use this definition in VPV , we we note that the notion of a maximal hard
sequence can be formalized by a bounded predicate MaxHS . Maximal hard se-
quences allow us to define the unsatisfiability of propositional formulas by a
ΣB

1 -formula, as stated in the following lemma.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic 205

Lemma 5. Assume that h is a polynomial-time computable function which for
some constant k satisfies (5). Then VPV proves the formula

(∀n)(∀X = n)(∀r ≤ k)(∀H ∈ (Σn)k−r−1) (MaxHS (H)→
[(∀T ≤ n)¬Sat(T,X) ↔ (∃T ≤ n)(∃Ū ∈ (Σn)r)Sat(T, πr+1(h(Ū ,X,H)))]) .

By the preceding lemma, given maximal hard sequences, we can describe ΠB
1 -

formulas by ΣB
1 -formulas. Most part of the proof of the next theorem will go

into the construction of such sequences. It will turn out, that, assuming VPV 0
PH ⊆ BH2k , we can construct 2k ΣB

1 -formulas, whose disjunction decides the
elements of a maximal hard sequence as in (4).

Theorem 6. If VPV 0 PH ⊆ BH2k , then VPV 0 coNP ⊆ NP/k.

Proof. Assuming VPV 0 PH ⊆ BH2k , there exists a polynomial-time com-
putable function h, such that for tuples X̄ = (X1, . . . , X2k) we have VPV 0
BL2k(X̄) ↔ ¬BL2k(h(X̄)). Thus, by Lemma 5, given a maximal hard sequence
for length n, we can define (∀T ≤ n)¬Sat(T,X) by a ΣB

1 -formula. Therefore,
our aim is to construct such a sequence using k bits of advice.

To this end, for i > 0 let HardSeqBits(1n, i) hold, if and only if the ith bit of
the encoding of the lexically shortest maximal hard sequence for length n is 1.
HardSeqBits can be defined by a bounded predicate.

By the assumption VPV 0 PH ⊆ BH2k and Lemma 2, there is a formula ψ
as in (3), with appropriate polynomial-time computable functions F1, . . . , F2k

and open formulas ϕ1, . . . , ϕ22k , such that the predicate HardSeqBits(X) is
VPV -provably equivalent to ψ. Without loss of generality, we may assume, that
|Fi(1n, a)| = |Fj(1n, b)| for all i, j and a, b.

Using ψ we can prove VPV 0 HardSeqBits ∈ NP/k (we omit the details due
to space constraints). This means that we can construct ΣB

1 -formulas ψz
HSB (X)

of the form (∃Y ≤ t)ϕz
HSB (X,Y) with open formulas ϕz

HSB for z = 0, . . . , 2k − 1
such that

VPV 0 (∀n)
∨

0≤z<2k

(∀X = n) (HardSeqBits(X) ↔ (∃Y ≤ t)ϕz
HSB (X,Y)) .

In this formula, z is the order of a maximal hard sequence for length n. Observe
that z, acting as the advice, can be non-uniformly obtained from n.

Provided the right z, there is a ΣB
1 -formula EasyUnSatz(X) that, for ev-

ery X of length n, is VPV -equivalent to (∀T ≤ n)¬Sat(T,X). This formula
EasyUnSatz(X) is defined as

(∃C ≤ t′) (∀i ≤ |C|)(∃Y ≤ t)[(π∗i+1(C) = 1 ↔ ϕz
HSB (1|X|, i, Y))

∧ (∃T ≤ |X |)(∃Ū ∈ (Σn)2
k−1−|enc(C)|)

Sat(T, π2k−|enc(C)|(h(Ū ,X, enc(C))))]

206 O. Beyersdorff and S. Müller

for an appropriate number term t′. Now, by line 1 of this formula, C is the
encoding of some maximal hard sequence. As in Lemma 5, C is used to define
¬Sat by a ΣB

1 -formula (lines 2 and 3). Thus, we have

VPV 0 (∀n)
∨

0≤z<2k

(∀X = n)[(∀T ≤ n)¬Sat(T,X) ↔ EasyUnSatz(X)] .

This concludes the proof. ��

With this result we can now prove the optimality of the following Karp-Lipton
collapse result of Cook and Kraj́ıček [9]:

Theorem 7 (Cook and Kraj́ıček [9]). If VPV proves NP ⊆ P/poly, then
PH ⊆ BH, and this collapse is provable in VPV .

To show the converse implication, we use the following surprising trade-off be-
tween advice and nondeterminism in VPV :

Theorem 8 (Cook and Kraj́ıček [9]). VPV 0 NP ⊆ P/poly if and only if
VPV 0 coNP ⊆ NP/O(1).

We remark that the proof of Theorem 8 uses strong witnessing arguments in
form of the Herbrand Theorem and the KPT witnessing theorem [19]. Thus
it seems unlikely, that a similar result holds without assuming provability of
NP ⊆ P/poly and coNP ⊆ NP/O(1) in some weak arithmetic theory. Theorem 7
can be obtained as a consequence of Theorem 8 and a complexity-theoretic proof
of coNP ⊆ NP/O(1)⇒ PH ⊆ BH (cf. [3,9]).

Combining Theorems 6, 7, and 8 we can now state the optimality of the
Karp-Lipton collapse PH ⊆ BH in VPV .

Corollary 9. The theory VPV proves NP ⊆ P/poly if and only if VPV proves
that the polynomial hierarchy collapses to the Boolean hierarchy.

The backward direction of this result can also be obtained in a less direct way
using a recent result of Jeřábek [13]. The argument goes as follows:1 by results
of Zambella [21], PV 0 PH = BH implies PV = S2. The latter, however, implies
PV 0 NP ⊆ P/poly by a result of Jeřábek [13].

5 Propositional Proof Systems with Advice

Cook and Kraj́ıček [9] defined propositional proof systems with advice, both in
the functional and in the relational setting for proof systems. For both models,
different concepts of proof systems with advice arise that not only differ in the
amount of advice, but also in the way the advice is used by the proof system.

Our general model of computation for functional proof systems with advice
is a Turing transducer with several tapes: an input tape containing the proof,
possibly several work tapes for the computation of the machine, an output tape
1 We are grateful to an anonymous referee for supplying this alternative argument.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic 207

where we output the proven formula, and an advice tape containing the advice.
We start with a quite general definition for functional proof systems with advice
which subsumes the definitions given in [9].

Definition 10. Let k : N → N be a function on natural numbers. A general
functional propositional proof system with k bits of advice, abbreviated general
fpps/k, consists of two functions f and � such that

1. � : Σ∗ → {1n | n ≥ 0} is computable in polynomial time.
2. f : Σ∗ → TAUT is a surjective polynomial-time computable function which

on input π uses k(|�(π)|) bits of advice depending only on |�(π)|.

Let us give some explanation for this definition. For each length n there is a
unique advice string of length k(n). Which of these strings is used at a particular
computation of f is determined by the function � which computes from the input
π the relevant advice length. In the functional definition of propositional proof
systems, there are two natural options for this function �: the advice may depend
on the length of the input (i.e. the proof) or the length of the output (i.e. the
proven formula).

Definition 11. Let (f, �) be a general fpps/k using advice function k(n).

1. We say that f has input advice if for all inputs π we have �(π) = 1|π|, i.e.,
the proof system f uses k(|π|) bits of advice.

2. f has output advice if for all inputs π, the length of the output f(π) does
not depend on the advice (i.e., the content of the advice tape) and we have
�(π) = 1|f(π)|, i.e., the proof system f uses k(|f(π)|) bits of advice.

We remark that Cook and Kraj́ıček [9] defined a more restrictive concept of
proof systems with output advice, which they called length-determined func-
tional proof systems.

The notions of (p-)simulations and (p-)optimality are easily generalized to
proof systems with advice. For p-simulations we will use polynomial-time com-
putable functions without advice (unless stated otherwise). We say that a proof
system f is (p-)optimal for some class F of advice systems if f (p-)simulates
every system in F and f ∈ F .

In the next proposition we observe that fpps/k with input advice are already
as strong as any general fpps/k (Definition 10).

Proposition 12. Let k : N → N be a monotone function and let (f, �) be a
general fpps/k with advice function k. Then there exists a functional proof system
f ′ with k bits of input advice such that f and f ′ are p-equivalent.

In the relational setting for propositional proof systems, advice can be easily
implemented as follows:

Definition 13 (Cook, Kraj́ıček [9]). A propositional proof system with k(n)
bits of advice, abbreviated pps/k, is a relation P such that for all x ∈ Σ∗ we have
x ∈ TAUT if and only if (∃y)P (y, x), and P is can be decided by a polynomial-
time (in |x|+ |y|) algorithm which uses k(|x|) bits of advice.

208 O. Beyersdorff and S. Müller

It is easy to see that, as in the classical case without advice, relational proof
systems with advice and functional proof systems with output advice are two
formulations of the same concept:

Proposition 14. Let k : N → N be a function. Then every fpps/k with output
advice is p-equivalent to some pps/k. Conversely, every pps/k is p-equivalent to
an fpps/k with output advice.

As in the classical theorem of Cook and Reckhow [11], we get the following
equivalence:

Theorem 15. Let k be any function. Then there exists a polynomially bounded
fpps/k with output advice if and only if coNP ⊆ NP/k.

6 Optimal Proof Systems with Advice

In this section we will investigate the question whether there exist optimal or
p-optimal propositional proof systems with advice. A strong positive result was
shown by Cook and Kraj́ıček [9].

Theorem 16 (Cook, Kraj́ıček [9]). There exists a functional propositional
proof system P with one bit of input advice which p-simulates all functional
propositional proof systems with k(n) bits of input advice for k(n) = O(log n).
The p-simulation is computed by a polynomial-time algorithm using k(n) bits of
advice.

In terms of simulations rather than p-simulations this result yields:

Corollary 17. The class of all general fpps/O(log n) contains an optimal func-
tional proof system with one bit of input advice.

In the next definition we single out a large class of natural advice functions with
at least logarithmic growth rate.

Definition 18. A function k is polynomially monotone if k is computable in
polynomial time and there exists a polynomial p, such that for each x, y ∈ Σ∗,
|y| ≥ p(|x|) implies |k(y)| > |k(x)|.

Polylogarithmic functions and polynomials are examples for polynomially mono-
tone functions. If we consider proof systems with polynomially monotone advice
functions, then we obtain p-optimal proof systems within each such class. This
is the content of the next theorem which we prove by the same technique as was
used for Theorem 16.

Theorem 19. Let k(n) be a polynomially monotone function. Then the class of
all general fpps/k contains a p-optimal proof system.

Proof. Let k be a function as above. Since k is polynomially monotone we can
find a polynomial-time computable function � : Σ∗ → 1∗ such that for each x ∈
Σ∗ we have k(|�(x)|) ≥ k(|x|)+1. Let ‖·‖ be an encoding of deterministic Turing

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic 209

transducers by natural numbers. Without loss of generality we may assume that
every machine M has running time |x|‖M‖. Further, we need a polynomial-time
computable function 〈·, ·, ·〉 mapping triples of N bijectively to N.

We will define a functional proof system (P, �) using advice function k, which
is p-optimal for the class of all general fpps/k. Let Q be a system from the class
of all general fpps/k. By Proposition 12 we may assume that Q has input advice.
First we will define a polynomial-time computable function fQ translating Q-
proofs into P -proofs and then we will describe how P works. We set fQ(π) = π1m

where m is determined from the equation m + |π| = 〈|π| , ‖Q‖ , |π|‖Q‖〉.
Now we define the system P : upon input x we first compute the unique num-

bers m1, m2, m3 such that |x| = 〈m1,m2,m3〉. Let π = x1 . . . xm1 be the first m1

bits of x. Then we determine the machine Q from the encoding m2 = ‖Q‖. By
the construction of �, the system P receives at least one more bit of advice than
Q. We can therefore use the first advice bit of P to certify that Q is indeed a
correct propositional proof system when it is supplied with the last k(|π|) advice
bits of P . Therefore, if the first advice bit of P is 1, P simulates Q on input π for
m3 steps, where it passes the last k(|π|) advice bits of P to Q. Otherwise, if the
first advice bit of P is 0, P outputs �. Apparently, P is correct and p-simulates
every fpps/k Q with input advice via the polynomial-time computable function
fQ. Thus, by Proposition 12, P also p-simulates every general fpps/k. ��

In a similar way we get:

Proposition 20. For each constant k ≥ 0 there exists an fpps with k + 1 bits
of input advice that p-simulates every fpps with k bits of input advice.

Proof. (Sketch) The proof uses the same construction as in the proof of The-
orem 19 with the following difference in the usage of advice: the last k advice
bits of the new fpps/(k + 1) P are the advice bits for the machine Q which we
simulate, if the first of the k + 1 advice bits certifies that Q is correct, i.e., it
only produces tautologies. ��

Regarding the two previous results there remains the question whether we also
have a p-optimal system within the class of all general fpps/k for constant k.
Going back to the proof of Proposition 20, we observe that the proof system with
k + 1 advice bits, which simulates each with k bits, does not really need the full
power of these k + 1 bits, but in fact only needs 2k + 1 different advice strings.
Assuming the existence of a p-optimal proof system for SAT2 (the canonical
complete problem for Σp

2), we can manage to reduce the amount of the necessary
advice to exactly k bits, thus obtaining a p-optimal system within the class of
all general fpps/k.

Theorem 21. Assume that there exists a p-optimal proof system for SAT2.
Then for each constant k ≥ 1 the class of all general fpps/k contains a p-optimal
proof system.

Proof. Similarly as in Sadowski’s characterization of the existence of p-optimal
propositional proof systems [20], we can prove:

210 O. Beyersdorff and S. Müller

There exists a p-optimal proof system for SAT2 if and only if there exists
a recursive enumeration Mi, i ∈ N, of deterministic polynomial-time
Turing machines such that

1. for every i ∈ N we have L(Mi) ⊆ SAT2 and
2. for every polynomial-time decidable subset L ⊆ SAT2 there exists an

index i such that L ⊆ L(Mi).

Assume now that Mi is an enumeration of the easy subsets of SAT2 as above.
For every proof system Q with k bits of input advice we construct a sequence of
propositional formulas

Prf Qm,n,k(π, ϕ, a) ,

asserting that the computation of Q at input π of length m leads to the output ϕ
of length n under the k advice bits of a. We also choose a propositional formula
Tautn(ϕ) stating that the formula encoded by ϕ is a propositional tautology. As
Q is an fpps/k, the formulas

CorrectQm,n,k = (∃a)(∀π, ϕ)
(
Prf Qm,n,k(π, ϕ, a)→ Tautn(ϕ)

)
are quantified Boolean formulas from SAT2 for every n,m ≥ 0. Because these
formulas can be constructed in polynomial time from Q, there exists an index
i ∈ N such that Mi accepts the set {CorrectQm,n,k | m,n ≥ 0}.

Now we construct a p-optimal system P with k bits of input advice as fol-
lows: at input x we compute the unique numbers m1, . . . ,m4 such that |x| =
〈m1, . . . ,m4〉. As in the proof of Theorem 19, we set π = x1 . . . xm1 and ‖Q‖ =
m2. The system P then simulates Q(π) with its own k advice bits for m3 steps.
If the simulation does not terminate, then P outputs �. Otherwise, let ϕ be the
output of this simulation. But before also P can output ϕ, we have to check
the correctness of Q for the respective input and output length. To do this, P
simulates the machine Mm4 on input CorrectQm1,|ϕ|,k. If Mm4 accepts, then we
output ϕ, and � otherwise.

The advice which P receives is the correct advice for Q, in case that Mm4

certifies that such advice indeed exists. Therefore P is a correct fpps/k. To show
the p-optimality of P , let Q be an fpps/k with input advice and let Mi be the
machine accepting {CorrectQm,n,k | m,n ≥ 0}. Then the system Q is p-simulated
by P via the mapping π �→ π1m where m = 〈|π|, ‖Q‖, |π|‖Q‖, i〉 − |π|. ��

All the optimal and p-optimal proof systems that we have so far constructed
were using input advice. It is a natural question whether we can improve these
constructions to obtain proof systems with output advice that still have the
same optimality conditions. Our next result shows that this is rather unlikely,
as otherwise collapse assumptions of presumably different strength would be
equivalent. This result indicates that input advice for propositional proof systems
is indeed a more powerful concept than output advice.

Theorem 22. Let k ≥ 1 be a constant and assume that there exists an fpps/k
with output advice that simulates every fpps/1. Then the following conditions
are equivalent:

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic 211

1. The polynomial hierarchy collapses to BH2k .
2. The polynomial hierarchy collapses to BH.
3. coNP ⊆ NP/O(logn).
4. coNP ⊆ NP/k.

Proof. The equivalence of 1 and 4 was shown by Buhrman, Chang, and Fortnow
(Theorem 3), and clearly, item 1 implies item 2. It therefore remains to prove
the implications 2 ⇒ 3 and 3 ⇒ 4.

For the implication 2 ⇒ 3, let us assume PH ⊆ BH. We choose a Σp
2-complete

problem L, which by assumption is contained in BHk′ for some number k′. By
Theorem 3 this implies coNP ⊆ NP/k′ and hence coNP ⊆ NP/O(log n).

For the final implication 3 ⇒ 4, we assume coNP ⊆ NP/O(log n). By Theo-
rem 15 this guarantees the existence of a polynomially bounded system P with
O(log n) bits of output advice. By Theorem 16, P is simulated by a proof system
P ′ with only one bit of input advice. Hence also P ′ is polynomially bounded.
Now we use the hypothesis of the existence of a functional proof system Q with
k bits of output advice which simulates all fpps/1. In particular, P ′ ≤ Q and
therefore Q is a polynomially bounded fpps/k with output advice. Using again
Theorem 15 we obtain coNP ⊆ NP/k. ��

With respect to the optimal proof system from Corollary 17 we obtain:

Corollary 23. The optimal fpps/1 from Corollary 17 is not equivalent to an
fpps/1 with output advice, unless PH ⊆ BH implies PH ⊆ Dp.

7 Classical Proof Systems with Advice

Let us now outline how one can define classical proof systems that use advice.
A priori it is not clear how systems like resolution or Frege can sensibly use
advice, but a canonical way to implement advice into them is to enhance these
systems by further axioms which can be decided in polynomial time with advice.
Cook and Kraj́ıček [9] have defined the notion of extended Frege systems using
advice. We give a more general definition.

Definition 24. Let Φ be a set of tautologies that can be decided in polynomial
time with k(n) bits of advice. We define the system EF + Φ/k as follows. An
EF +Φ/k-proof of a formula ϕ is an EF-proof of an implication ψ → ϕ, where ψ
is a simple substitution instance of a formula from Φ (where simple substitutions
only replace some of the variables by constants).

If π is an EF +Φ/k-proof of a formula ϕ, then the advice used for the verification
of π neither depends on |π| nor on |ϕ|, but on the length of the substitution
instance ψ from Φ, which is used in π. As |ψ| can be easily determined from π,
EF + Φ/k are systems of the type fpps/k (in fact, this was the motivation for
our general Definition 10).

If we require that the length of ψ in the implication ψ → ϕ is determined by
the length of the proven formula ϕ, then the advice only depends on the output

212 O. Beyersdorff and S. Müller

and hence we get an fpps/k with output advice. This is the case for a collection
of extensions of EF defined by Cook and Kraj́ıček [9], which are motivated
by the proof of Theorem 8. Cook and Kraj́ıček proved that these systems are
polynomially bounded if VPV proves coNP ⊆ NP/O(1).

Our next result shows that the optimal proof systems constructed in Sect. 6
are equivalent to natural extensions of extended Frege systems with advice.

Theorem 25. 1. Let k(n) be a polynomially monotone function. Then there
exists a set Φ ∈ P/k(n) such that EF + Φ/k is p-optimal for the class of all
general fpps/k(n).

2. For every constant k ≥ 1 there exists a set Φ ∈ P/k such that EF + Φ/k
p-simulates every general fpps/k − 1.

3. In contrast, none of the extensions of EF as defined in [9] simulates every
general fpps/1, unless items 1 to 4 from Theorem 22 are equivalent.

Comparing the definition of EF with advice from [9] with our Definition 24, we
remark that both definitions are parametrized by a set of tautologies Φ, and
hence they both lead to a whole class of proof systems rather than the extended
Frege system with advice. The drawback of our Definition 24 is, that even in the
base case, where no advice is used, we do not get EF , but again all extensions
EF + Φ with polynomial-time computable Φ ⊆ TAUT. It is known that each
advice-free propositional proof system is p-simulated by such an extension of EF
[17]. In contrast, Cook and Kraj́ıček’s extended Frege systems with advice lead
exactly to EF , if no advice is used. On the other hand, these systems appear to
be strictly weaker than the systems from Definition 24, as indicated by item 3
of Theorem 25.

8 Discussion and Open Problems

In this paper we have shown that PH ⊆ BH is the optimal Karp-Lipton col-
lapse within the theory PV . It remains as an open problem whether also PH ⊆
PNP[O(logn)] and PH ⊆ PNP are optimal within S1

2 and S2
2 , respectively (cf. [9]).

For S1
2 this corresponds to the problem whether coNP ⊆ NP/O(logn) is equiva-

lent to PH ⊆ PNP[O(logn)]. Buhrman, Chang, and Fortnow [3] conjecture coNP ⊆
NP/O(logn) ⇐⇒ PH ⊆ PNP (cf. also [12]). This seems unlikely, as Cook and
Kraj́ıček [9] noted that coNP ⊆ NP/O(logn) implies PH ⊆ PNP[O(logn)]. How-
ever, it does not seem possible to extend the technique from [3] to prove the
converse implication. Is even coNP ⊆ NP/poly ⇐⇒ PH ⊆ PNP true, possibly
with the stronger hypothesis that both inclusions are provable in S2

2? Currently,
coNP ⊆ NP/poly is only known to imply PH ⊆ SNP

2 [5].
With respect to the proof systems with advice we remark that all advice

information we have used for our optimal systems in Sects. 6 and 7 can be
decided in coNP. It would be interesting to know whether we can obtain stronger
proof systems by using more complicated advice.

A Tight Karp-Lipton Collapse Result in Bounded Arithmetic 213

Acknowledgements

We are grateful to Jan Kraj́ıček and the anonymous referees for helpful comments
and detailed suggestions on how to improve this paper.

References

1. Balcázar, J.L., Dı́az, J., Gabarró, J.: Structural Complexity I. Springer, Heidelberg
(1988)

2. Beigel, R.: Bounded queries to SAT and the Boolean hierarchy. Theoretical Com-
puter Science 84, 199–223 (1991)

3. Buhrman, H., Chang, R., Fortnow, L.: One bit of advice. In: Proc. 20th Symposium
on Theoretical Aspects of Computer Science, pp. 547–558 (2003)

4. Cai, J.-Y.: Sp
2 ⊆ ZPP NP . Journal of Computer and System Sciences 73(1), 25–35

(2007)
5. Cai, J.-Y., Chakaravarthy, V.T., Hemaspaandra, L.A., Ogihara, M.: Competing

provers yield improved Karp-Lipton collapse results. Information and Computa-
tion 198(1), 1–23 (2005)

6. Chang, R., Kadin, J.: The Boolean hierarchy and the polynomial hierarchy: A
closer connection. SIAM Journal on Computing 25(2), 340–354 (1996)

7. Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Proc.
7th Annual ACM Symposium on Theory of Computing, pp. 83–97 (1975)

8. Cook, S.A.: Theories for complexity classes and their propositional translations. In:
Kraj́ıček, J. (ed.) Complexity of Computations and Proofs, pp. 175–227. Quaderni
di Matematica(2005)

9. Cook, S.A., Kraj́ıček, J.: Consequences of the provability of NP ⊆ P/poly. The
Journal of Symbolic Logic 72(4), 1353–1371 (2007)

10. Cook, S.A., Nguyen, P.: Foundations of proof complexity: Bounded arithmetic and
propositional translations (Book in progress),
http://www.cs.toronto.edu/∼sacook

11. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44, 36–50 (1979)

12. Fortnow, L., Klivans, A.R.: NP with small advice. In: Proc. 20th Annual IEEE
Conference on Computational Complexity, pp. 228–234 (2005)

13. Jeřábek, E.: Approximate counting by hashing in bounded arithmetic (preprint,
2007)

14. Kadin, J.: The polynomial time hierarchy collapses if the Boolean hierarchy col-
lapses. SIAM Journal on Computing 17(6), 1263–1282 (1988)

15. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform com-
plexity classes. In: Proc. 12th ACM Symposium on Theory of Computing, pp.
302–309. ACM Press, New York (1980)

16. Köbler, J., Watanabe, O.: New collapse consequences of NP having small circuits.
SIAM Journal on Computing 28(1), 311–324 (1998)

17. Kraj́ıček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory.
Encyclopedia of Mathematics and Its Applications, vol. 60. Cambridge University
Press, Cambridge (1995)

18. Kraj́ıček, J., Pudlák, P.: Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic 54,
1063–1079 (1989)

http://www.cs.toronto.edu/~sacook

214 O. Beyersdorff and S. Müller

19. Kraj́ıček, J., Pudlák, P., Takeuti, G.: Bounded arithmetic and the polynomial hi-
erarchy. Annals of Pure and Applied Logic 52, 143–153 (1991)

20. Sadowski, Z.: On an optimal propositional proof system and the structure of easy
subsets of TAUT. Theoretical Computer Science 288(1), 181–193 (2002)

21. Zambella, D.: Notes on polynomially bounded arithmetic. The Journal of Symbolic
Logic 61(3), 942–966 (1996)

A Calculus of Realizers for EM1 Arithmetic

(Extended Abstract)

Stefano Berardi and Ugo de’Liguoro

Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino,
Italy

stefano@di.unito.it, deliguoro@di.unito.it

Abstract. We propose a realizability interpretation of a system for
quantifier free arithmetic which is equivalent to the fragment of classi-
cal arithmetic without nested quantifiers, which we call EM1-arithmetic.
We interpret classical proofs as interactive learning strategies, namely
as processes going through several stages of knowledge and learning by
interacting with the “environment” and with each other. With respect
to known constructive interpretations of classical arithmetic, the present
one differs under many respects: for instance, the interpretation is compo-
sitional in a strict sense; in particular the interpretation of (the analogous
of) the cut rule is the plain composition of functionals. As an additional
remark, any two quantifier-free formulas provably equivalent in classical
arithmetic have the same realizer.

1 Introduction

We propose a new notion of realizability (see e.g. [16] vol. I p. 195 for an introduc-
tion), in which the classical principle EM1 (which is Excluded Middle restricted
to Σ0

1 formulas, see [1]) is treated by means of realizers that depend on certain
growing pieces of knowledge, obtained by trial and error. In our approach the
witness hidden in a proof of a Σ0

1 statement (with parameters) can be computed
in the limit (see [6,4,8]), and in this sense it is “learnt”. The essential difference
with Gold’s idea is that the realizer embodies a learning strategy which is the
actual content of the proof, and which is often an ingenuous method.

The first step of the construction is the introduction of an oracle χP (a pred-
icate symbol) and of a Skolem function ϕP relative to each primitive recursive
predicate P, in such a way that ∃y.P(x, y)⇔ χP(x)⇔ P(x, ϕP(x)). The existence
of these oracles intuitionistically implies EM1, and also that atomic formulas of
our system represent 1-quantifier formulas of arithmetic. Then we introduce a
set S of the states of knowledge, which are finite sequences recording finitely
many values of χP and ϕP, and ordered by prefix (by “increasing knowledge”).
A formula containing such χP and ϕP is not decidable in general, however it can
be evaluated w.r.t. a finite state s of knowledge, by assigning dummy values to
all values of χP and ϕP which are unknown. A formula is valid if for any state
s of knowledge we can effectively find some s′ ≥ s in which the formula is true.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 215–229, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

216 S. Berardi and U. de’Liguoro

The soundness property we expect from the semantic interpretation states that
all derivable formulas are valid.

More precisely, since the meaning of a predicate or a term might depend on
a state of knowledge s ∈ S, numbers and truth values are lifted to numbers
and truth values indexed over S. We see ordinary numbers and truth values
as limits, and we ask that an indexed object is convergent in every sequence
s0 ≤ s1 ≤ s2 ≤ . . . sn ≤ . . . weakly increasing w.r.t. prefix. Using the state we
provide an effective semantics for all terms of a simply typed λ-calculus closed
under primitive recursion, and extended by the non-effective maps χP and ϕP.
This λ-calculus represents the terms and the atomic formulas of our fragment of
arithmetic.

A tentative definition for a realizer of an atomic formula is that of a mapping
sending any state s into some extension s′ ≥ s in which the predicate takes the
meaning “true” for all s′′ ≥ s′. The key problem here is that the realizer has to
be effective, while there are no uniform and effective means to decide when the
value of a term or the truth value of a formula has became stable.

The next idea is that the correct state can be learned. The outcome of the
realizer is not a state, rather a process such that, as soon as the realizer becomes
aware that something has gone wrong, so that the predicate is not true any more,
it is able to extend the present state of knowledge looking for a larger one, where
the predicate becomes true anew. Since we classically know that the truth value
of the predicate eventually stabilizes, it will be eventually true forever, even if
we shall never be able to say when and where.

There is still something missing here: we want a compositional interpretation
of proofs, validating logical laws like the modus ponens and the cut rule. This
rises the issue of the interaction of different parts of a proof, namely of how to
compose two or more realizers. To solve this problem realizers use continuations:
the process extending the states of knowledge in order to make some predicate
true is passed along in the composition of realizers, and used by them as the
last step in the computation of the new state. In this way, at the price of having
realizers of type two, the combination of the realizers of several premises of an
inference rule is (pointwise) composition, which is unsensible to the order: this
does not mean, of course, that say F◦G and G◦F compute the same value,
rather that any choice will be a realizer of the conclusion.

The paper is organized as follows. In §2 we introduce a version of EM1-
Arithmetic without nested quantifiers. Terms are expressed in a simply typed λ-
calculus with primitive recursion of level 1. All formulas are quantifier-free, while
formulas with non-nested quantifiers are represented through oracles χP(x). EM1

(Excluded Middle for Σ0
1 -formulas) is the following axiom schema:

(EM1) ∀x(∃y P (x, y) ∨ ∀y¬P (x, y))

where P (x, y) is a primitive recursive predicate. It is represented in our formalism
without quantifiers through the oracle constants χP. In section §3 we lift the
standard interpretation of numbers, boolean and functions to indexed numbers,
booleans and functions introducing the notion of synchronous and convergent

A Calculus of Realizers for EM1 Arithmetic 217

functional. §4 is the core of the paper: we introduce a new notion of realizers for
classical proofs, representing the construction hidden in the classical principle
EM1. All other constructions are represented by terms of the system. In the full
version of the paper [2] we test our notion of realizer against the example of the
Minimum Principle.

Related Works. A primary source of the present research is Coquand’s seman-
tics of evidence for classical arithmetic [3], where the role of realizers is taken by
the strategies, the state of knowledge is the state of a play, and computation is
the interaction of strategies through a dialogue.

The idea of lifting to truth values and numbers depending from a state and
converging (in the sense of stabilization) w.r.t. this state comes from Gold’s
recursiveness in the limit [6] and Hayashi’s Limit Computable Mathematics [8].
Our main contribution is to frame these ideas in the longstanding tradition of
realizability interpretation of constructive logic.

The investigation of the computational content of classical proofs via contin-
uations is well known and widely documented in the literature. It is impossible
to provide a reasonably complete list of the numerous contributions to this topic;
see e.g. [5,10] for some basic ideas behind the use of continuations in the interpre-
tation of classical principles; continuations and CPS translation have been used
to extend the formula as types paradigm to classical logic in [7,13]; these ideas are
found also in the μ-calculus of [14] and in related systems. Our improvement is the
compositional property of our approach in the strict sense of functional composi-
tion of the realizers, which allows for a clean reading of the use of continuations as
mappings that “force” the stabilization of predicates and terms.

As pointed out to us by an anonymous referee, our work reminds Hilbert’s
ε-calculus (see [9,11,12]). Indeed our ϕP is just εy(P) with the proviso that P
is quantifier free (and primitive recursive). The essential difference lays in the
way we produce the “solving substitution” [11], again similar to our states of
knowledge: while in Hilbert’s approach one interprets formulas and looks for the
substitution of a numeral by blind search (exactly as with Gold’s limits and with
iterated limits in [15,4]), we interpret proofs into realizers, embodying (possibly
cleaver) search strategies.

2 EM1 Arithmetic of Primitive Recursive Functions

Let Type be the set of simple types with atoms Nat and Bool and the arrow as
type constructor. As usual external parentheses will be omitted and the arrow
associates to the right: T0 ⇒ T1 ⇒ T2 reads as T0 ⇒ (T1 ⇒ T2); we also write
T k ⇒ T ′ for T ⇒ · · · ⇒ T ⇒ T ′ with k occurrences of T to the left of T ′. The
symbol ≡ is used for syntactical identity.

Definition 1 (Term Languages L0 and L1). Let L0 be the language of simply
typed λ-calculus with types in Type, whose constants are:

– zero, successor: 0 : Nat, succ : Nat ⇒ Nat, equality: eq : Nat2 ⇒ Bool,
booleans: true, false : Bool

218 S. Berardi and U. de’Liguoro

– if-then-else: ifT : Bool⇒ T ⇒ T ⇒ T , where either T ≡ Nat or T ≡ Bool
– primitive recursion: PR : Nat⇒ (Nat2 ⇒ Nat)⇒ Nat⇒ Nat.

The language L1 is obtained by adding to L0 a pair of constants ϕP : Natk ⇒
Nat and χP : Natk ⇒ Bool for each closed term P : Natk+1 ⇒ Bool of L0, and
then closing under term formation rules.

Term application associates to the left: M N P reads as (M N)P ; the abstrac-
tion λxT .M will be written λx.M when T is clear from the context. We ab-
breviate n ≡ succn 0 (n-times applications of succ to 0), which is the numeral
for n ∈ N. We write M [x1, . . . , xn] to mean that FV (M) ⊆ {x1, . . . , xn}, and
M [N1, . . . , Nn] for M [N1/x1 . . . , Nn/xn], that is the result of the simultaneous
substitution of xi by Ni for all i (which are supposed to be of the same type),
avoiding variable clashes.

Definition 2 (Equational Theory for L0). The theory T0 is the equational
theory of terms in L0 whose formulas are typed equations M = N : T with both
M and N of type T . Axioms and inference rules of T0 are the axioms of equality,
β and η from the λ-calculus, plus:

– eq 0 0 = true, eq (succx) 0 = false, eq 0 (succx) = false, eq (succx)(succ y) =
eqx y : Bool,

– ifT trueM N = M : T , ifT falseM N = N : T
– PRM N 0 = M : Nat, PRM N (succx) = N x(PRM N x) : Nat.

By T0 0M = N : T we mean that the equation M = N : T is derivable in T0.

We explicitly exclude the function symbols ϕP, χP from T0: they will denote non-
computable maps. The primitive recursor to define k + 1-ary functions: PRk :
(Natk ⇒ Nat) ⇒ (Natk+2 ⇒ Nat) ⇒ Natk+1 ⇒ Nat is definable from the unary
PR by: PRk ≡ λg h x1 . . . xk.PR(g x1 . . . xk)(hx1 . . . xk).

Although T0 is an equational theory, it is the theory of the convertibility
relation associated to a notion of reduction which is confluent and strongly nor-
malizing. In particular it is decidable whether T0 0 M = N : T . Indeed T0 is
a fragment of Gödel system T, where the essential limitation consists in the
restriction of the recursor PR whose functional arguments are of type one. By
this the presence of abstraction of variables at any type has no effect w.r.t. func-
tion definability. A k-ary function over natural numbers f is definable in T0 if
there exists a closed term (a combinator) f : Natk ⇒ Nat ∈ L0 such that for all
n1, . . . , nk,m ∈ N, T0 0 f n1 · · · nk = m : Nat if and only if f(n1, . . . , nk) = m.

Proposition 1. The number theoretic functions definable in T0 are exactly the
primitive recursive functions (in particular, are computable).

We find useful having in T0 an operator for (weighted) total recursion. Let ifz be
the primitive recursive function such that ifz(0, n) = n and ifz(m+1, n) = 0. For
any w : N → N, let us abbreviate by x ≺w y the (primitive recursive) function
giving 0 if w(x) < w(y), 1 otherwise. We say that the function f : N → N is

A Calculus of Realizers for EM1 Arithmetic 219

defined by weighted well-founded recursion in terms of the functions w : N→ N
(weight), g : N2 → N, h1 : N→ N if:

f(n) = g(n, ifz(h1(n) ≺w n, f(h1(n))))

This definition schema generalizes to any list of maps h1, . . . , hk : N → N, and
to any list m = mi, . . . ,mh of parameters. Weighted total recursion can be
expressed in T0 by a combinator WR (see [2]).

We will now define a formal theory PRA-∃ of arithmetic in the formalism of
L1. We rephrase some basic notions of logic. Terms, ranged over by t, r, . . . (pos-
sibly with primes and indexes) are terms of type Nat in L1 with free variables
of type Nat, and formulas, ranged over by P, Q,R, . . . (possibly with primes and
indexes) are terms in L1 of type Bool, with free variables of type Nat. The atomic
formulas of the shape eq t r and lt t r are written t = r and t < r respectively.
Connectives are definable in L1, and we write them in the usual way; in partic-
ular we use the ordinary infix notation for binary connectives. A propositional
formula is a term E[z1, . . . , zn] of type Bool built out of variables z of type Bool
and connectives (hence it is in L0); a propositional formula E is tautological
consequence of E1, . . . , Ek if any instantiation of the boolean variables by true
or false in the implication (E1 ∧ · · · ∧Ek) =⇒ E is provably equal to true in T0.

The theory PRA-∃ defined below is formally quantifier free: as a matter of
fact the meaning of χP and ϕP induced by the axioms (χ) and (ϕ) is that of
the oracle and of a Skolem function for the predicate ∃y. P[x, y] where P is in
L0 (hence primitive recursive). We stress that we cannot have Skolem functions
in P: this limitation accounts for the fact that PRA-∃ is 1-quantifier arithmetic,
and not the entire arithmetic.

Definition 3. PRA-∃ is the theory whose theorems are the formulas derivable
by the following axioms and rules:

– Post rules:
P1 · · · Pk

Post
Q

consisting of the axioms of equality; an axiom for each equation t = r :
Nat derivable in T0; all rules with E[z1, . . . , zn] tautological consequence of
E1[z1, . . . , zn], . . . , Ek[z1, . . . , zn]:

T0
t = r

E1[P1, . . . ,Pn] Ek[P1, . . . ,Pn]
Taut

E[P1, . . . ,Pn]

– Skolem Axioms: for each formula P[x, y] in L0, the axioms:

χ
P[x, y] =⇒ χP x

ϕ
χP x =⇒ P[x, ϕPx]

– Well Founded Induction:

ifz(t1 x ≺w x)P[z, t1 x] ∧ · · · ∧ ifz(tk x ≺w x)P[z, tk x] =⇒ P[z, x]
WF Ind

P[z, r]

220 S. Berardi and U. de’Liguoro

where x is not free in the conclusion, and w, t1, . . . , tk : Nat ⇒ Nat, r : Nat
and t1 x ≺w x ≡ w(t1 x) < w x.

The theory PRA-∃, when restricted to the language L0 is a variant of system
PRA in [16] for primitive recursive arithmetic.

3 States of Knowledge, Synchronous and Convergent
Functionals

In this section we introduce the notion of state of knowledge, then we define
hereditary synchronous functionals, whose computation all takes place in the
same state of knowledge, then hereditary convergent functionals. These latter
will be used to interpret terms of L1.

Let ⊥ denote a divergent computation, and define A⊥ = A ∪ {⊥} for any
set of values A. An element a ∈ A⊥ is total if a �= ⊥; a map τ : A⊥ → B⊥ is
total if τ sends total elements into total ones. If f : An → B, we extend f to
f⊥ : An

⊥ → B⊥ by f⊥(a) = ⊥ if ai = ⊥ for some i, and f⊥(a) = f(a) otherwise.

Definition 4 (States of Knowledge). A state of knowledge, shortly a state,
is a finite list of triples 〈P,n,m〉 (with possibly different P, n and m) such that
P : Natk+1 → Bool is a predicate of L0 and n = n1, . . . , nk ∈ N, m ∈ N, and
T0 0 P[n,m] = true. We call the empty list 〈〉 the initial state. Let S denote the
set of states, partially ordered by the prefix ordering ≤.

A triple 〈P,n,m〉 stays for the equations χP(n) = true and ϕP(n) = m. A state
represents a finite set of such equations, the initial state is the empty set. We
now define synchronous maps F as mapping of indexed objects such that both
the argument and the value of F are evaluated at the same state s. Let us write
λ .a for the function constantly equal to a.

Definition 5 (Synchronous Functions). Let A and B be any sets:

1. F : (S⊥ → A)→ (S⊥ → B) is synchronous if F (τ, s) = F (λ .τ(s), s) for all
τ and s;

2. given f : A → B the synchronous extension f † : (S⊥ → A) → (S⊥ → B) of
f is defined by f †(τ, s) = f(τ(s)).

For any τ and s we have f †(τ, s) = f(τ(s)) = f †(λ .τ(s), s), hence f † is syn-
chronous. We will now interpret terms and formulas of L0 as synchronous and
convergent functions. To this aim, we have to extend the notion of synchronicity
to higher types.

We recall that an embedding-projection pair (ε, π) : X < Y (e-p pair for short)
of X into Y is a pair of mappings ε : X → Y and π : Y → X s.t. π◦ ε = IdX ,
where composition will be also written as πε. The composition, επ : Y → Y ,
called retraction, is idempotent so that ε(X) (the image of X under ε) is the set
of fixed points of επ, and π : ε(X)→ X is bijective.

A Calculus of Realizers for EM1 Arithmetic 221

Definition 6 (Synchronous Retraction). For any sets A and B we define
the mappings:

εA,B : (S⊥ → (A→ B))→ ((S⊥ → A)→ (S⊥ → B))
πA,B : ((S⊥ → A)→ (S⊥ → B))→ (S⊥ → (A→ B))

by
εA,B(α, τ, s) = α(s, τ(s)) and πA,B(F, s, a) = F (λ .a, s)

where α : S⊥ → (A→ B), τ : S⊥ → A, s ∈ S⊥, F : (S⊥ → A)→ (S⊥ → B) and
a ∈ A.

The name of synchronous retraction is justified by the fact that the fixed points
of the retraction are maps : (S⊥ → A)→ (S⊥ → B) bijective to the elements of
S⊥ → (A → B), therefore are maps depending on a single state. They coincide
with the synchronous maps:

Lemma 1. If εA,B and πA,B are as in Definition 6 then:

1. (εA,B, πA,B) is an e-p pair;
2. F : (S⊥ → A) → (S⊥ → B) is synchronous if and only if F ∈ εA,B(S⊥ →

(A→ B)).
3. If f : A → B, the synchronous extension f † : (S⊥ → A) → (S⊥ → B) of f

is equal to εA,B(λ .f).

The next step is to state some well known properties of embedding-projection
pairs, and can be rephrased by stating that they are closed under composition
and indeed they do form a category; moreover since the category of sets is carte-
sian closed, then the category of embedding-projection pairs over sets is such.
Observe that retractions are covariant w.r.t. the arrow, which is also known as
their characteristic property.

Lemma 2

1. If (ε, π) : A < B and (ε′, π′) : B < C are e-p pairs, then: (ε′ε, ππ′) : A < C
is such;

2. if (ε1, π1) : A1 < B1 and (ε2, π2) : A2 < B2 are e-p pairs, then (ε1, π1) →
(ε2, π2) : A1 → A2 < B1 → B2 is such where (ε1, π1) → (ε2, π2) is the pair
(λf. ε2◦ f◦π1, λg. π2◦ g ◦ ε1).

Let St be a new ground type; then we define the interpretation [[T]] of the sim-
ple type T (of the extended type language) set theoretically by: [[Nat]] = N⊥,
[[Bool]] = B⊥, [[St]] = S⊥, and [[T ⇒ T ′]] = [[T]] → [[T ′]], namely the full function
space. By T St we denote the result of replacing in T each occurrence of Nat by
St⇒ Nat and of Bool by St⇒ Bool respectively.

Lemma 3. For each type T there is an e-p pair (εT , πT) : S⊥ → [[T]] < [[T St]].

We are now in place to characterize those functionals of [[T St]] depending on a
single state, i.e. in the image of S⊥ → [[T]], as fixed points of the retraction
(εT , πT) : S⊥ → [[T]] < [[T St]]. The elements a ∈ [[T]] can be raised to elements of
[[T St]] by applying εT to λ .a.

222 S. Berardi and U. de’Liguoro

Definition 7 (Hereditarily Synchronous Functionals). Let T be any type:

1. f ∈ [[T St]] is hereditarily synchronous, or h. sync. for short, if f ∈ εT (S⊥ →
[[T]]);

2. the canonical injection o : [[T]] → [[T St]] is defined: fo = εT (λ .f). We also
set [[T]]o = {fo | f ∈ [[T]]}.

H. sync. functionals are closed under application. Indeed, if f : S⊥ → [[T1 ⇒
T2]] then εT1⇒T2(f) = εT2◦ ε[[T1]],[[T2]](f)◦ πT1 , hence for any a ∈ [[T St

1]] we have
εT1⇒T2(f)(a) = b for some b ∈ εT2(S⊥ → [[T2]]) ⊆ [[T St

2]]. It follows that, if
g ∈ [[(T1 ⇒ T2)St]] is hereditarily synchronous, then g(a) is such for any a ∈ [[T St

1]].
If f ∈ [[T]] then fo ∈ [[T St]] is a map ignoring its input state s, but forcing its

argument to use s as the only state. Indeed, by unraveling definitions we obtain:

fo(τ1, . . . , τn, s) = f(πT1(τ1)(s), . . . , πTn(τn)(s)).

We can now describe h.sync. functionals by an equation. Let T = T1, . . . , Tn ⇒
o for either o = Nat or o = Bool, and consider F ∈ [[T St]] and τi ∈ [[T St

i]] for
i = 1, . . . , n. By unraveling definitions, F is hereditarily synchronous if and only
if for all s ∈ S⊥

F (τ1, . . . , τn, s) = F ((πT1(τ1)(s))
o, . . . , (πTn(τn)(s))o, s).

The operator o applied to the arguments of F forces them to reject their input
state, and to use only the same input state s of F . This implies that the behavior
of any functional over [[T St]] is fully determined by its behavior over [[T]]o.

Proposition 2. Let F,G ∈ [[(T1, . . . , Tn ⇒ U)St]], then F = G if and only if
F (ao1, . . . , a

o
n) = G(ao1, . . . , a

o
n) for all a1 ∈ [[T1]], . . . , an ∈ [[Tn]].

In the sequel we denote by {si}≤i<ω a weakly increasing chain of states s0 ≤ s1 ≤
s2 ≤ · · · .

Definition 8 (Convergence). Let A be either B or N. A function τ : S⊥ → A⊥
converges, written τ ⇓, if

∀{si}≤i<ω ∃j ∀k ≥ j. τ(sj) = τ(sk) �= ⊥.

The concept in Definition 8 is a classical one; we can weaken this concept to
an intuitionistic notion of convergence: τ ⇓ iff for every recursive {si}≤i<ω there
exists i < ω such that τ(si) = τ(si+1) and are both total objects of A. For the
sake of simplicity we use a classical meta-theory. Note also that two limits taken
along different sequences s0 ≤ s1 ≤ s2 ≤ . . . can be different: this expresses the
fact that our interpretation is non-deterministic.

Lemma 4. Let A be either B or N:

1. let a, b : S⊥ → A⊥, and define 〈a, b〉 ∈ S⊥ → A⊥ × A⊥ by 〈a, b〉(s) =
(a(s), b(s)): if both a⇓ and b⇓ then 〈a, b〉⇓;

A Calculus of Realizers for EM1 Arithmetic 223

2. if f : (S⊥ → A⊥)→ (S⊥ → A⊥) is h. sync. such that f(a)⇓ for all constant
a, then f(b)⇓ for all convergent b;

3. if f : (S⊥ → A⊥)k → (S⊥ → A⊥) is h. sync. that yields f(τ)⇓ for any k-
tuple of constant τ ∈ (S⊥ → A⊥)k, then f(σ)⇓ for any k-tuple of convergent
σ ∈ (S⊥ → A⊥)k.

We hereditarily extend the notion of total element to all finite types. By this we
define for each type T a PER ∼T such that two functionals are related if and
only if they are h. sync. and hereditarily convergent, sending related arguments
into related values.

Definition 9 (Hereditary Convergence and Equivalence). For any type
T we define simultaneously a predicate ⇓T⊆ [[T St]] of hereditarily convergent
objects of type T , and a partial equivalence relation ∼T over [[T St]] as follows:

– if either T ≡ Bool or T ≡ Nat then τ ⇓T iff τ ⇓; τ ∼T τ ′ if and for any
{si}≤i<ω they are definitely equal over it, that is: ∃i ∀j ≥ i. τ(sj) = τ ′(sj) �=
⊥.

– If T ≡ T1 ⇒ T2 then f ⇓T iff f is h. sync and f(a)⇓T2 for all a such that
a⇓T1 ; f ∼T g iff f ⇓T , g⇓T and f(a) ∼T2 g(b) if a ∼T1 b.

Lemma 5. The mapping o is functorial w.r.t. the quotient of [[T St]] under ∼T :
IdoT ∼ IdT St ; moreover f(a1, . . . , an)o = fo(ao1, . . . , a

o
1), and (f◦ g)o = fo◦ go.

We can now interpret each term M : T of L1 into our non standard model by an
element of [[T St]]. If f : Nk → N then f⊥ denotes the strict extension of f to N⊥,
and similarly for boolean functions. The values of [[χP]]ρ(τ , s) and [[χP]]ρ(τ , s)
are determined by the information stored in the state s, if any is available, and
are a dummy value otherwise.

Definition 10 (Term Interpretation for L1)
An environment is a map ρ sending any variable x : T into an element ρ(x) ∈
[[T St]]. The term interpretation map [[M]]ρ for M ∈ L1 is defined:

– [[x]]ρ=ρ(x); [[c]]ρ =co⊥where c is any constant among 0, succ, eq, true, false, if,PR
and c is its standard interpretation in [[T]]; [[MN]]ρ = [[M]]ρ[[N]]ρ; [[λxT .M]]ρ =
λa ∈ [[T St]].[[M]]ρ′ , where ρ′(x) = a, ρ′(y) = ρ(y) if y �≡ x;

– [[χP]]ρ : (S⊥ → N⊥)k → (S⊥ → B⊥), where P : Natk+1 ⇒ Bool, is such that
for all τ ∈ (S⊥ → N⊥)k and s ∈ S⊥, [[χP]]ρ(τ , s) = ⊥ if either τi(s) = ⊥
for some τi ∈ τ or s = ⊥; else [[χP]]ρ(τ , s) = tt if there exists m such that
〈P, τ (s),m〉 ∈ s; [[χP]]ρ(τ , s) = ff otherwise;

– [[ϕP]]ρ : (S⊥ → N⊥)k → (S⊥ → N⊥), where P : Natk+1 ⇒ Bool, is such that
for all τ ∈ (S⊥ → N⊥)k and s ∈ S⊥, [[ϕP]]ρ(τ , s) = ⊥ if either τi(s) = ⊥ for
some τi ∈ τ or s = ⊥; else [[ϕP]]ρ(τ , s) = m where 〈P, τ (s),m〉 ∈ s is the
first triple in s whose first entries are P and τ (s), if any; m = 0 else.

224 S. Berardi and U. de’Liguoro

The definition above has, as a consequence, the following interpretation for the
derived combinator WR. If f = [[WR]]ρ(g, w, h) : (S⊥ → N⊥)→ (S⊥ → N⊥), then
f(τ) is (using some terms of L0 in place of their interpretations for brevity):

g(τ, [[ifz]]([[lt]] (w(h(τ)), w(τ)), f(h(τ))))

An environment ρ is convergent, written ρ⇓, if ρ(x)⇓T for all x : T . We then
summarize the main properties of the construction developed so far.

Theorem 1 (Soundness of the Interpretation). Let M,N : T be any terms
of L1:

1. [[M]]ρ ∈ [[T St]] for any ρ, and if ρ⇓ then [[M]]ρ⇓T ;
2. if M ∈ L0 then [[M]]ρ ∈ [[T]]o for any ρ such that ρ(x) ∈ [[T ′]]o for all x : T ′;

furthermore [[M]]ρ is computable;
3. [[M]]ρ is hereditarily convergent if all ρ(x) are such;
4. if T0 0M = N (hence both M,N ∈ L0), then [[M]]ρ ∼ [[N]]ρ;
5. if 0 P is derivable in the theory PRA-∃ then [[P]]ρ ∼Bool tto for any convergent ρ.

4 The Realizability Interpretation

If P[t] ∈ L1 is a closed predicate, then [[P[t]]] is a boolean depending on a state,
i.e., a map : S⊥ → B⊥. If P[x] ∈ L0 (i.e., if P[x] is a primitive recursive predicate)
then [[P[t]]](s) is equal to the truth value of P[x] on [[t]](s) ∈ N. Our goal is to
extract from a proof Π1 of a primitive recursive property P[t] ∈ L0 for a term
t ∈ L1, some state s ∈ S⊥ such that n = [[t]](s) ∈ N satisfies P[x]: in other
words, we want to extract from the proof of P[t] some witness n for P[x]. This
is by no means immediate: even in the case in which P[t] is provable, we cannot
guarantee that for all s ∈ S⊥ we have [[P[t]]](s) = tt. We will show that we can
turn any proof Π1 of P[t] into a realizer picking, given any s ∈ S⊥, some s′ ≥ s
(some extension of the state s in the prefix ordering) such that [[P[t]]](s′) = tt
(i.e., such that P[n′] for n′ = [[t]](s′)). The realizer is the part of the constructive
content of the classical proof Π1 which is not included in the term t.

As a first approximation, the realizer of P[t] associated to Π1 could be some
map κ1 : S⊥ → S⊥ such that for all s ∈ S⊥, if s′ = κ1(s) then s′ ≥ s and
[[P[t]]](s′) = tt. κ1, however, is not enough when Π1 is included in some proof-
context Π2[Π1] and when Π2[.] corresponds to some other construction κ2 :
S⊥ → S⊥. In this case the construction associated to the whole proof Π2[Π1]
would be s′′ = κ2(κ1(s)) ≥ s, and since s′′ is not a value of κ1 we cannot
guarantee that [[P[t]]](s′′) = tt. We overcome this problem by requiring that the
realizer associated to Π1 is some F taking a state s and a map κ2 associated
to some proof context Π2[.] including Π1. We ask that F extends s to some
F (κ2, s) ≥ s in which the conclusions of both Π1 and Π2[.] are true. The map
κ2 is used by F as a continuation, that is, as a function representing the part
of the program to be executed after F . Two further constraints on realizers (see
the definition below) are: κ2 is applied as the last step of the computation of

A Calculus of Realizers for EM1 Arithmetic 225

F (i.e., F (κ2, s) = κ2(s′′′) for some s′′′ ≥ s), and κ2 is applied by F only to
extensions of the original state s.

We interpret a realizer F : (S⊥ → S⊥) → (S⊥ → S⊥) as a “process”. We
think of any κ : S⊥ → S⊥ such that κ(s) ≥ s as the combined action of all
processes outside F . Remark that the type of a set of processes is a subtype
of the type of processes: in this way we can represent, within the simply typed
lambda calculus, the fact that a process can interact with a set of processes.
id = idS⊥ represents the empty action made by the empty set of processes.
F (id, 〈〉) is the canonical evaluation of a process, w.r.t. an empty set of other
processes and the initial state. If κ represents a set {F1, . . . , Fn} of processes, and
F is a process, then F (κ) represents the set of processes {F, F1, . . . , Fn}. The
compound process whose components are {F1, . . . , Fn} is F1◦ . . . ◦Fn. We think
of the composition of realizers as an arbitrary sequentialization of the parallel
composition of “processes”.

Definition 11 (Realizer sets and Realizers). Let us abbreviate St = (S⊥ →
S⊥)→ (S⊥ → S⊥).

1. A realizer set is a total function κ : S⊥ → S⊥ such that for all s ∈ S,
s ≤ κ(s);

2. a realizer is any F ∈ St such that
(a) F (κ) = κ◦F ′(κ) for some F ′ ∈ St sending realizer sets into realizer sets

and
(b) if s �= ⊥ and κ1(s′) = κ2(s′) for all s′ ≥ s, then F (κ1, s) = F (κ2, s);

3. a realizing map is a function Φ ∈ (S⊥ → N⊥)k → St mapping indexed
numbers realizers.

4. The k-ary pointwise identity is the realizer map Ik : (S⊥ → N⊥)k → St
defined by Ik(τ) = id : St, for all τ ∈ (S⊥ → N⊥)k.

We call Id = idS⊥→S⊥ the trivial realizer and Ik the trivial realizer map.

We list below a few basic properties of realizers. For instance (Lemma 6.4) the
composition of n realizers F1, . . . , Fn is a realizer whose range is included in the
range of all F1, . . . , Fn. This is not true for generic functionals, but it depends on
the fact that the realizer set received as input is used as a continuation, and it
will be crucial in order to prove the correctness of the realization interpretation.

Lemma 6. 1. id is a realizer set. If κ1, κ2 are realizer sets, then κ1◦κ2 is a
realizer set.

2. If κ is a realizer set and F a realizer, then F (κ) is a realizer set.
3. Id is a realizer. Ik is a realizer map. If F,G are realizers, then F◦G is such.
4. If F1, . . . , Fn are realizers, then for all realizer set κ and all state s if s′ =

(F1◦ . . . ◦Fn)(κ, s) then for some realizer sets κ1, . . . , κn and states s1, . . . , sn
we have s′ = F1(κ1, s1) = · · · = Fn(κn, sn).

The central notion of this paper is that of a realization relation F |= τ , where F
is a realizer and τ : S⊥ → B⊥ is an indexed truth value. The intended meaning
is that F realizes τ if for any realizer set κ, F (κ) sends any state s to some
extension s′ = F (κ, s) ≥ s in which τ is true (i.e. τ(s′) = tt).

226 S. Berardi and U. de’Liguoro

Definition 12. Let F : St be a realizer and τ : S⊥ → B⊥ a convergent map.

1. F |= τ if for all realizer sets κ and all s ∈ S if s′ = F (κ, s) then τ(s′) = tt.
2. If P is a closed predicate of L1 and F a realizer, we say that F |= P if

F |= [[P]].
3. If P is a predicate of L1 with free variables x1, . . . , xk all of type Nat, and

Φ : (S⊥ → N⊥)k → St a realizer map, then Φ |= P if for all vectors τ :
(S⊥ → N⊥)k of convergent maps Φ(τ) |= [[P]][τ/x].

We will now prove that each rule of our system can be interpreted by an operation
sending realizers of the assumptions into realizers of the conclusion. Eventually
we will define, by induction over the proofs, a map R(.) sending a proof Π of
P into a realizer R(Π) of P. The realizer will express a part of the construction
hidden in Π , the part which is not expressed by the subterms of P.

Let Φ, Ψ : (S⊥ → N⊥)k → St, then the pointwise composition Φ • Ψ : (S⊥ →
N⊥)k → St is defined as (Φ • Ψ)(τ) = Φ(τ)◦ Ψ(τ). We will now check that the
pointwise composition of the realizers of the assumptions of a Post rule is the
realizer of the conclusion of the same rule. The proof relies on the fact that the
realizer of the first assumption of the rule uses as continuation the set of all
realizers of the remaining assumptions of the rule.

Lemma 7. Let P1, . . . ,Pk and Q be the premises and the conclusion of an in-
stance of the Post scheme: for any s ∈ S⊥, if [[P1]]ρ(s) = · · · = [[Pk]]ρ(s) = tt,
then [[Q]]ρ(s) = tt, for any ρ.

Proposition 3. Suppose that in system PRA-∃ there is a derivation ending by
an instance of the Post rule schema:

P1 · · · Pk
Post

Q

and let Φ1 |= P1, . . . , Φk |= Pk: then Φ1 • . . . • Φk |= Q.

Proof. It suffices to prove the statement when Φ1 = F1, . . . , Φn = Fk are just
realizers (so that in particular F1 • . . . • Fk = F1◦ . . . ◦Fk). By Lemma 6.4, for
all realizer set κ and state s if s′ = (F1◦ . . . ◦Fk)(κ, s) then for some realizer sets
κ1, . . . , κk and some states s1, . . . , sk we have s′ = F (κ1, s1) = · · · = F (κk, sk).
By assumption [[P1]](F1(κ1, s1)) = . . . = [[Pk]](Fk(κk, sk)) = tt for all realizer sets
κ1, . . . , κk and states s1, . . . , sk. We deduce that [[P1]](s′) = . . . = [[Pk]](s′) = tt,
and by Lemma 7 that [[Q]](s′) = tt. By definition of realization we conclude
F1◦ . . . ◦Fk |= Q.

Note that we can replace, in the proof above, the composition F1◦ . . . ◦Fk by
any permutation of it, and we would obtain some (in general, different) realizer
of the same conclusion Q (see the end of [2]). Our interpretation of this fact
is that composition is an arbitrary sequentialization of a parallel composition
between “processes” F1◦ . . . ◦Fk. Note also that if the Post Rule is unary, then
any realizer of the only assumption is a realizer of the conclusion.

A Calculus of Realizers for EM1 Arithmetic 227

For each instance of the ϕ-axiom and of the χ-axiom we can define two re-
alizer maps. The k-ary pointwise identity (i.e., the trivial realizer) realizes the
ϕ-axiom with k free variables. In fact, the ϕ-axiom hides no construction on
states, because it is true in all states by the very interpretation of χ and ϕ.

Proposition 4. Fix any instance Q ≡ χP(x) =⇒ P[x, ϕP(x)] of the ϕ-axiom,
with x = x1, . . . , xn : Nat. Then Ik |= Q.

The crucial step is defining some realizer rP,k+1 of the χ-axiom for the k+1-ary
primitive recursive predicate P[x, y] ∈ L0 instantiated in some n,m : N. The
interpretation of such an instance might be false in some state s. Indeed, we
might have [[χ]](no,mo)(s) = ff while [[P]][no/x,mo/y] = tt. In this case we extend
s to some state s′ > s in which the given instance of the χ-axiom is true. The
realizer rP,k+1 defines s′ by first adding the triple 〈P,n,m〉 to s, then by applying
the realizer set variable κ and obtaining some s′′ = κ(s′) ≥ s′. By definition we
have [[χ]](no,mo)(s′′) = tt, therefore the χ-axiom for P and n,m : N is true in s′.
We interpret this step as an atomic “learning” step: the realizer learns one point
in the graph of the map χ (and of the map ϕ, since they are closely related).

Sometimes one step of learning is not enough to validate the χ-axiom. We
therefore define an operator Ω, raising rP,k+1 to some realizer RP,k+1 of the
χ-axiom instantiated over τ , τ : [[Nat]]k+1, a vector of indexed integers. Ω re-
peatedly applies rP,k+1(τ (s), τ(s)) in order to validate the given instance of the
χ-axiom, because the values τ (s), τ(s) might change with the state (see the ex-
ample at the end of §5). In the rest of the paper, when we write let (x = u) in (t)
we mean (λx.t)(u).

Definition 13 (Realizer of the χ-axiom). Assume n : Nk,m : N and κ :
S⊥ → S⊥ and s : S⊥. Let P ∈ L0 be a primitive recursive predicate interpreting
it. Then we define rP,k+1 : N⊥k+1 → St and RP,k+1 : (S⊥ → N⊥)k+1 → St by:

1. rP,k+1(n,m, κ, s)≡ if(¬[[χ]](n, s)∧[[P]][no,mo/x,y](s), κ(s@〈P,n,m〉), κ(s)) : S.
2. AssumeΦ : N⊥k → St is a family of realizers indexed over N⊥k, and τ : (S⊥ →

N⊥)k and κ : (S⊥ → S⊥), s : S⊥. Then the realizer mapΩ(Φ) : (S⊥ → N⊥)k →
St is defined by Ω(Φ, τ)(κ, s) = let (s′ = Φ(τ (s))(κ, s)) in (if τ (s) =
τ (s′) then s′ else Ω(Φ, τ)(κ, s′)) : S⊥.

3. RP,k+1 ≡ Ω(rP,k+1) : St.

The computation of Ω(Φ, τ)(κ, s) produces a weakly increasing sequence of states
s = s0 ≤ s1 ≤ s2 ≤ · · · such that sn+1 = Φ(τ (sn))(κ, sn) for all n. If τ is
convergent, then τ (sn+1) = τ (sn) for some n, and the computation terminates
with output sn+1. Ω defines in this way a realizer map for the χ-axiom.

Proposition 5 (Realizer of the χ-axiom). Fix any instance Q ≡ (P[x, x] =⇒
χP(x)) of the χ-axiom, for the k+1-ary primitive recursive predicate P[x, y] ∈ L0.
Let R[y] ∈ L1.

1. rP,k+1(n, n) |= [[Q]][no,no/x,x], for all n ∈ Nk and n ∈ N.
2. If Φ(m) |= [[R]][mo] for all m ∈ Nh, then Ω(Φ) |= R.
3. RP,k+1 |= Q.

228 S. Berardi and U. de’Liguoro

We can also define a realizer WF mapping a realizer map Φ for the assumption of
an induction rule with parameters t, t into a realizer map WF(Φ, [[t]], [[t]]) for the
conclusion of the induction rule. Apart from a single detail we will precise in a
moment, WF is the usual realizer of the rule of well-founded induction.

Definition 14. Let C : S⊥ → B⊥. For any realizer F we define a condi-
tional realizer, which is F when C holds, and Id otherwise: if(C,F)(κ, s) =
if(C(s), F (κ, s), κ(s)).

Definition 15. Assume w, f1, . . . , fk : [[(Nat ⇒ Nat)St]]. Let Ci : S⊥ → B⊥
denote the condition w(fi(τ)) < w(τ), for i = 1, . . . , k. If C : S⊥ → B⊥, then
C ∧o Ci is by definition λs.C(s) ∧ Ci(s). Let Φ : (S⊥ → N⊥)→ St. Then

1. WFC is recursively defined as follows: abbreviate WFC(Φ)(τ)≡WFC(Φ,w,f)(τ),
we set

WFC(Φ)(τ) = if(C,Φ(τ) ◦ WFC∧oC1(Φ)(f1(τ)) . . . ◦ WFC∧oCk
(Φ)(fk(τ)))

2. Assume Φ : (S⊥ → N⊥)k+1 → St and w, f1, . . . , fk : [[Natk+1 → Nat]]. Then
we define WF(Φ,w,f)(τ) = WFT (Φ(τ), w(τ),f(τ)), where the index T is the
always true condition.

Note the “guard” if(C, . . .) in front of the definition WFC = By definition
unfolding, this means that whenever C(s) is false in a state s, the realizer WFC
together with all its recursive calls trivialize to the identity. The reason for having
these “guards” is that the clauses Ci = w(fi(τ)) < w(τ) on which the recursive
calls depend may change their truth value from true to false, and whenever this
happens the recursive call must disappear.

We can now state that WF produces a realizer map for the conclusion of the
induction rule.

Lemma 8. Assume P ∈ L1 is a predicate and t, t1 . . . , tk : Nat → Nat ∈
L1 a, with x = x1, . . . , xn and FV(P) = x, x and FV(t, t) = x. Assume Φ :
(S⊥ → N⊥)k+1 → St be a realizer map. Abbreviate [[t]] = λτ .[[t]][τ/x] and
[[t]] = λτ .[[t]][τ/x]. If Φ realizes the assumption of the induction rule for P:

Φ |= ifz(t1(x) ≺t x)P[t1(x)/x] ∧ · · · ∧ ifz(tk(x) ≺t x)P[tk(x)/x] =⇒ P

then WF(Φ, [[t]], [[t]]) |= P.

By putting all together, we define by induction on Π a map R(Π) from proofs
to realizer maps: for all details we refer to [2], §5, Def. 16.

Theorem 2 (Realizability). Let Π : x1, . . . , xk 0 P be a proof in system
PRA-∃, then R(Π) |= P , that is for all convergent τ ∈ [[NatSt]], realizer set κ
and state s ∈ S⊥,

[[P]][τ/x](R(Π)(τ , κ, s)) = tt.

A Calculus of Realizers for EM1 Arithmetic 229

The realizer we compute by Theorem 2 is the pointwise identity (i.e. it is trivial)
whenever the proof Π uses no χ-axiom. Indeed, a realizer returns a state with
enough information about χ, φ in order to make the conclusion of Π true, and
all rules but the χ-rule require no information whatever about χ, φ in order to
be true.

Acknowledgments. The paper has profited of the remarks of the anonymous
referees.

References

1. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An arithmetical hierarchy
of the law of excluded middle and related principles. In: Proc. of LICS 2004, pp.
192–201 (2004)

2. Berardi, S., de’ Liguoro, U.: A Calculus of Realizers for EM1 Arithmetic (Full
Version). Technical report, Università di Torino (2008),
http://www.di.unito.it/∼stefano/RealWFA.pdf

3. Coquand, T.: A semantics of evidence for classical arithmetic. J. Symb. Log. 60,
325–337 (1995)

4. Criscuolo, G., Minicozzi, E., Trautteur, G.: Limiting recursion and the arithmetic
hierarchy. ITA 9(1), 5–12 (1975)

5. Friedman, H.: Classically and intuitionistically provably recursive functions. In:
Scott, D.S., Muller, G.H. (eds.) Higher Set Theory. LNM, vol. 699, pp. 21–28.
Springer, Heidelberg (1978)

6. Gold, E.M.: Limiting recursion. J. Symb. Log. 30, 28–48 (1965)
7. Griffin, T.G.: The formulae-as-types notion of control. In: Conf. Record 17th An-

nual ACM Symp. on Principles of Programming Languages, POPL 1990, San Fran-
cisco, CA, USA, January 17–19, pp. 47–57. ACM Press, New York (1990)

8. Hayashi, S.: Mathematics based on incremental learning, excluded middle and in-
ductive inference. Theor. Comp. Sci. 350, 125–139 (2006)

9. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. II. Springer, Heidelberg
(1970)

10. Krivine, J.-L.: Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci. 308,
259–276 (2003)

11. Mints, G.: Strong termination for the epsilong substitution method. J. Symb.
Log. 61(4), 1193–1205 (1996)

12. Moser, G., Zach, R.: The epsilon calculus and herbrand complexity. Studia Log-
ica 82(1), 133–155 (2006)

13. Murthy, C.R.: An evaluation semantics for classical proofs. In: Proc. of LICS 1991,
pp. 96–107 (1991)

14. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical natu-
ral deduction. In: LPAR, pp. 190–201 (1992)

15. Schubert, L.K.: Iterated limiting recursion and the program minimalization prob-
lem. J. of Ass. Comp. Mach. 21(3), 436–445 (1974)

16. van Dalen, D., Troelstra, A.: Constructivism in Mathematics, vol. I. North-Holland,
Amsterdam (1988)

http://www.di.unito.it/~stefano/RealWFA.pdf

Quantitative Game Semantics for Linear Logic

Ugo Dal Lago1,� and Olivier Laurent2,��

1 Dipartimento di Scienze dell’Informazione
Università di Bologna
dallago@cs.unibo.it

2 Preuves Programmes Systèmes
CNRS – Université Paris 7

Olivier.Laurent@pps.jussieu.fr

Abstract. We present a game-based semantic framework in which the
time complexity of any IMELL proof can be read out of its interpretation.
This gives a compositional view of the geometry of interaction framework
introduced by the first author. In our model the time measure is given
by means of slots, as introduced by Ghica in a recent paper. The cost
associated to a strategy is polynomially related to the normalization
time of the interpreted proof, in the style of a complexity-theoretical full
abstraction result.

1 Introduction

Implicit computational complexity (ICC) is a very active research area lying
at the intersection between mathematical logic, computational complexity and
programming language theory. In the last years, a myriad of systems derived
from mathematical logic (often through the Curry-Howard correspondence) and
characterizing complexity classes (e.g. polynomial time, polynomial space or log-
arithmic space) has been proposed.

The techniques used to analyze ICC systems are usually ad-hoc and cannot be
easily generalized to other (even similar) systems. Moreover, checking whether
extending an existing ICC system with new constructs or new rules would break
the correspondence with a given complexity class is usually not easy: soundness
must be (re)proved from scratch. Take, for example, the case of subsystems of
Girard’s linear logic capturing complexity classes: there are at least three distinct
subsystems of linear logic corresponding to polynomial time, namely bounded
linear logic, light linear logic and soft linear logic. All of them can be obtained by
properly restricting the rules governing the exponential connectives. Even if they
have not been introduced independently, correspondence with polynomial time
had to be reproved thrice. We need to understand why certain restrictions on the
usual comonoidal exponential discipline in linear logic lead to characterizations
of certain complexity classes.
� Partially supported by the Marie Curie EIF grant “ASFIX” and by FIRB grant

RBIN04M8S8, “Intern. Inst. for Applicable Math.”.
�� Partially supported by the French ANR “NO-CoST” project (JC05 43380).

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 230–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Quantitative Game Semantics for Linear Logic 231

This is the typical situation where semantics can be useful. And, indeed, some
proposals for semantic frameworks into which some existing ICC systems can be
interpreted have already appeared in the literature. Moreover, there are some
proposals for semantic models in which the interpretation “reveals” quantitative,
intensional, properties of proofs and programs. One of them [5] is due to the first
author and is based on context semantics. There, the complexity of a proof is
obtained by a global analysis of its interpretation as a set of paths.

In this paper, we show that the above mentioned context semantics can be
put into a more interactive form by defining a game model for multiplicative and
exponential linear logic and showing a quantitative correspondence between the
interpretation of any proof and the time needed to normalize the proof itself. This
correspondence can be thought of as a complexity-theoretic full-abstraction re-
sult, where proofs with the same complexity (rather than observationally equiv-
alent proofs) are equated in the semantics.

Context semantics is a model of Girard’s geometry of interaction. As a conse-
quence, turning it into an AJM game model should not be difficult (at least in
principle), due to the well-known strong correspondence between the two frame-
works (see [3], for example). But there are at least two problems: first of all,
the context semantics framework described in [5] is slightly different from the
original one and, as such, it is not a model of the geometry of interaction. This
is why we introduce a lifting construction in our game model.

Moreover, the global analysis needed in [5] to extract the complexity of a proof
from its interpretation cannot be easily turned into a more interactive analysis,
in the spirit of game semantics. The extraction of time bounds from proof inter-
pretations is somehow internalized here through the notion of time analyzer (see
Section 2). One of the key technical lemmas towards the quantitative correspon-
dence cited above is proved through a game-theoretical reducibility argument (see
Section 4).

Another semantic framework which has been designed with similar goals is
Ghica’s slot games [8]. There, however, the idea is playing slots in correspondence
with any potential redex in a program, while here we focus on exponentials. On
the other hand, the idea of using slots to capture intensional properties of proofs
(or programs) in an interactive way is one of the key ingredients of this paper. In
Section 5 the reader can find a more detailed comparison with Ghica’s work. To
keep the presentation simple, we preferred to adopt Ghica’s way of introducing
cost into games, rather than Leperchey’s time monad.

In Baillot and Pedicini’s geometry of interaction model [4], the “cost” of a
proof is strongly related to the length of regular paths in its interpretation. But
this way, one can easily define a family of terms which normalize in linear time
but have exponential cost.

2 Syntax

We here introduce multiplicative exponential linear logic as a sequent calculus.
It would be more natural to deal with proof-nets instead of the sequent calculus,

232 U. Dal Lago and O. Laurent

A � A
A

Γ � A Δ,A � B

ς(Γ,Δ) � B
U

Γ � B

ς(Γ, !A) � B
W

Γ, !A, !A � B

ς(Γ, !A) � B
C

Γ,A � B

ς(Γ) � A� B
R�

Γ � A Δ,B � C

ς(Γ,Δ,A� B) � C
L�

Γ � A Δ � B

ς(Γ,Δ) � A⊗ B
R⊗

Γ,A,B � C

ς(Γ,A⊗ B) � C
L⊗

A1, . . . , An � B

ς(!A1, . . . , !An) � !B
P!

Γ,A � B

ς(Γ, !A) � B
D!

Γ, !!A � B

ς(Γ, !A) � B
N!

Fig. 1. A sequent calculus for IMELL

but our semantic constructions will rely on a precise sequentiality in proof con-
structions that we would have to rebuild in a proof-net setting.

The language of formulas is defined by the following productions:

A ::= α | A � A | A⊗A | !A

where α ranges over a countable set of atoms. A context is a sequence Γ =
A1, . . . , An of formulas. If Γ = A1, . . . , An is a context and ς : {1, . . . , n} →
{1, . . . , n} is a permutation, then ς(Γ) stands for the context Aς(1), . . . , Aς(n).

The rules in Figure 1 define a sequent calculus for (intuitionistic) multiplica-
tive and exponential linear logic, IMELL, with an exchange rule integrated in the
other ones. Our presentation uses an explicit digging rule N! as often done in
the geometry of interaction setting (see [9] for some comments).

Given any proof π : Γ 0 A, we can build another (cut-free) proof [π] : Φ, Γ 0
A, where Φ is a sequence in the form !k1(A1 � A1), . . . , !kn(An � An). We
say that “cuts are exposed” in [π]. It is defined as follows, by induction on the
structure of π:

• If the last rule in π is not U and the immediate subproofs of π are ρ1, . . . , ρn,
then [π] is obtained from [ρ1], . . . , [ρn] in the natural way. For a promotion
rule, as an example, π and [π] are given by:

ρ : A1, . . . , An 0 B

ς(!A1, . . . , !An) 0 !B
P!

[ρ] : Φ,A1, . . . , An 0 B

!Φ, ς(!A1, . . . , !An) 0 !B
P!

• For a cut rule, π and [π] are given by:

ρ : Γ 0 B σ : Δ,B 0 A

ς(Γ,Δ) 0 A
U

[ρ] : Φ, Γ 0 B [σ] : Ψ,Δ,B 0 A

Φ,B � B,Ψ, ς(Γ,Δ) 0 A
L�

The cut-elimination steps π � ρ are an easy adaptation of the usual ones. We
just have to take care of the exchange parts, but they can be handled without
any particular problem. To avoid stupid loops, we allow a cut rule c to commute
upwards with another cut rule d during reduction only if d introduces the left
premise of c (and not if d introduces the right premise of c).

For our complexity analysis to make sense, we will restrict the cut elimination
procedure to a particular strategy of reduction called surface reduction. From

Quantitative Game Semantics for Linear Logic 233

a proof-net point of view it corresponds to reducing cuts at depth 0 only. In a
sequent calculus setting, we only apply a reduction step to a cut rule if it is not
above a promotion rule P!. There are several reasons why surface reduction has
been considered here:

• It corresponds to various reduction strategies for the lambda calculus. In
particular, if lambda terms are encoded into IMELL via the cbn encoding
A→ B ≡ !A � B, then surface reduction simulates head reduction. On the
other hand, the cbv encoding A → B ≡ !(A � B) induces a simulation of
(weak) call-by-value reduction by surface reduction.
• An upper bound to the time complexity of cut-elimination can be obtained

by considering the so-called level-by-level strategy [5]. But the level-by-level
strategy is nothing more than an iteration of surface reduction. As a con-
sequence, our semantic interpretation could be applied itself iteratively to
obtain bounds on the time complexity of ordinary cut-elimination.
• Any proof whose conclusion does not contain the modal operator ! in positive

position can be normalized using surface reduction. In the cbn encoding,
formulas for infinite datatypes do contain ! in positive position, but those
positive occurrences can be “linearized” with appropriate coercion maps. As
an example, natural numbers are encoded as N = !(!A � A) � !A � A,
but there is an easy coercion N � Nlin , where Nlin = !(A � A) � !A � A.

For practical reasons, we introduce a particular atomic formula U and we extend
the IMELL system with the following “pseudo”-rules (which are not valid from
a logical point of view):

0 X
a Γ 0 A

ς(X,Γ) 0 A
w

where X is any atomic formula: α or U.
This allows us to define a proof TAA of A 0 U and a proof TA0

A of 0 A. TAA

is called the time analyzer of A. They are defined by mutual induction on A:

� U
a

TAα : α � U
w TA0

α : � α
a � U

a

TA!A : !A � U
W

TA0
A : � A

TA0
!A : � !A

P!

TAA : A � U

TAB : B � U

U, B � U
w

A,B � U
U

TAA⊗B : A⊗ B � U
L⊗

TA0
A : � A TA0

B : � B

TA0
A⊗B : � A⊗ B

R⊗

TA0
A : � A TAB : B � U

TAA�B : A� B � U
L�

TAA : A � U

TA0
B : � B

U � B
w

A � B
U

TA0
A�B : � A� B

R�

3 Game Semantics

The game model we use is based on the constructions presented in [1]. We extend
it with the simplest exponential construction (by enriching moves with copy

234 U. Dal Lago and O. Laurent

indexes [10,2], except that we use a presentation with exponential signatures in
the spirit of the geometry of interaction [6]) together with a lifting operation
(adding two fresh moves at the beginning of a game).

3.1 Games

A game A consists in:

• A set of moves MA.
• A function λA : MA → {P,O}. λA denotes the function from MA to {P,O}

defined by λA(m) �= λA(m). M�A denotes the subset of M∗A containing
alternating, opponent-initiated sequences only, i.e., λA(m) = O whenever
ms ∈ M�A and, moreover, λA(m) �= λA(n) whenever smnr ∈ M�A . MP

A and
MO

A are subsets of MA defined in the natural way.
• A set PA of valid plays such that PA ⊆M�A and PA is closed under prefixes.

The language E of exponential signatures is defined by induction from the fol-
lowing set of productions: t, s, u ::= e | l(t) | r(t) | p(t) | n(t, t).

3.2 Constructions on Games

To each connective corresponds a game construction. In the particular case of
the exponential connective !, we decompose its interpretation in our model into a
“sequentiality construction” given by lifting and a “copying construction” given
by a traditional exponential construction with copy indexes given by exponential
signatures.

• Atomic game α:
• Mα = {αP, αO}.
• λα(αP) = P and λα(αO) = O.
• Pα is {ε, αO, αO · αP}.

One particular atomic game is called U with moves denoted by a (instead of
αP) and q (instead of αO).
• Tensor game A⊗B:
• MA⊗B = MA + MB. If s ∈M∗A⊗B, then sA denotes the subsequence of s

consisting of moves in MA. Similarly for sB.
• λA⊗B = λA + λB .
• The elements of PA⊗B are sequences s ∈ M�A⊗B such that sA ∈ PA,

sB ∈ PB .
• Arrow game A � B:
• MA�B = MA + MB.
• λA�B = λA + λB .
• The elements of PA�B are sequences s ∈ M�A�B such that sA ∈ PA,

sB ∈ PB .
• Lifting game ↓A:
• M↓A = MA + {open, close}.
• λ↓A(m) = λA(m) whenever m ∈MA, λ↓A(open) = O, λ↓A(close) = P.

Quantitative Game Semantics for Linear Logic 235

• P↓A is {ε, open} ∪ {open · close · s | s ∈ PA}.
• Exponential game #A:
• M#A = E × MA. Given any sequence s in M∗#A and any exponential

signature t, st denotes the subsequence of s consisting in moves in the
form (t,m). Given any sequence s in M∗A and any exponential signature
t, t× s denotes the sequence in M∗#A obtained by pairing each move in s
with t.
• λ#A(t,m) = λA(m).
• The elements of P#A are sequences s ∈ M�#A such that for every t ∈ E ,

st = t× r with r ∈ PA.

We will often use the notation !A for #↓A.

3.3 Strategies

Proofs are interpreted as particular strategies over games. However since we
are not looking for full completeness results (but for complexity full abstraction
instead), we are not particularly restrictive on the kind of strategies we deal
with. There is no particular notion of uniformity on strategies such as history-
freeness, innocence, etc. Important properties of strategies coming from proofs
will be recovered through realizability (see Section 4).

A strategy σ over a game A is a non-empty set of even-length plays in PA

satisfying the following conditions:

• σ is even-prefix-closed ;
• σ is deterministic: if smn ∈ σ, sml ∈ σ, then n = l.

A strategy σ over A is total if s ∈ σ and sm ∈ PA implies smn ∈ σ for some
n ∈MA.

Composition of strategies can be defined in the usual way. Given a strategy
σ over A � B and τ over B � C, we can first define σ ‖ τ as follows:

σ ‖ τ = {s ∈ (MA + MB + MC)∗ | sA,B ∈ σ ∧ sB,C ∈ τ}.

where sA,B denotes the subsequence of s consisting of moves in MA + MB and
similarly for sB,C and for sA,C .

The composition of σ and τ , denoted σ; τ is simply σ; τ = {sA,C | s ∈ σ ‖ τ}.

Proposition 1. If σ is a strategy over A � B and τ is a strategy over B � C,
then σ; τ is a strategy over A � C.

A useful restriction on strategies is given by history-free strategies σ satisfying: if
sm·nextσ(m) ∈ PA then sm·nextσ(m) ∈ σ if and only if s ∈ σ where nextσ is the
generating partial function from MO

A to MP
A. The composition of two history-free

strategies is an history-free strategy generated by the composition of generating
functions. Some of the strategies we use happen to be history-free, but not all
of them are.

236 U. Dal Lago and O. Laurent

The history-free identity strategy idA over A � A is given by the generating
function (assume A � A is A1 � A2):

∀m ∈MO
A .next idA

(mA2) = mA1

∀m ∈MP
A.next idA

(mA1) = mA2

According to [1], games and strategies define a symmetric monoidal closed
category (SMCC).

3.4 Constructions on Strategies

We describe elementary constructions on strategies which, once plugged together,
will allow us to interpret proofs in the game model.

• Left-lifting Strategy: Given a strategy σ over the game A ⊗ B � C, the
subset ll(σ) of P↓A⊗B�C is defined as follows:

ll(σ) = {ε} ∪ {m · open↓A | ∃ms ∈ σ} ∪ {m · open↓A · close↓A · s | ms ∈ σ}

In the same spirit, we can define llB(σ) over A⊗ ↓B � C (so that llA(σ) =
ll(σ)).
• Right-lifting Strategy: Given a strategy σ over the game A, the subset

rl(σ) of P↓A is defined as follows:

rl(σ) = {ε} ∪ {open↓A · close↓A · s | s ∈ σ}

Using the immediate bijection between M↓(A�B) and MA�↓B, if σ is a strat-
egy over A � B, we will often use rl(σ) as a strategy over A � ↓B.
• Lifting Strategy: Given a strategy σ over the game A1 ⊗ · · · ⊗ An � B,

the subset l(σ) of P↓A1⊗···⊗↓An�↓B is defined by l(σ) = llA1(. . . llAn(rl(σ))).
• Dereliction Strategy: The subset dA of P#A�A is the one induced by the

following (assume #A � A is #A1 � A2):

∀m ∈MO
A .nextdA(mA2) = (e,m)#A1

∀m ∈MP
A.nextdA((e,m)#A1) = mA2

• Digging Strategy: The subset nA of P#↓A�↓#↓#↓A is the one induced by
the following (assume #↓A � ↓#↓#↓A is #↓A1 � ↓#↓#↓A2):

nextnA(open↓#↓#↓A2
) = (e, open)#↓A1

nextnA((e, close)#↓A1) = close↓#↓#↓A2

nextnA((t, open)↓#↓#↓A2) = (p(t), open)#↓A1

nextnA((p(t), close)#↓A1) = (t, close)↓#↓#↓A2

∀m ∈MO
A .nextnA((t, (s,m))↓#↓#↓A2) = (n(t, s),m)#↓A1

∀m ∈MP
A.nextnA((n(t, s),m)#↓A1) = (t, (s,m))↓#↓#↓A2

Quantitative Game Semantics for Linear Logic 237

• Contraction Strategy: The subset cA of P#↓A�↓#↓A⊗#↓A is the one in-
duced by the following (assume #↓A � ↓#↓A⊗#↓A is #↓A1 � ↓#↓A2 ⊗
#↓A3):

nextcA(open↓#↓A2
) = (e, open)#↓A1

nextcA((e, close)#↓A1) = close↓#↓A2

∀m ∈MO
A .nextcA((t,m)↓#↓A2) = (l(t),m)#↓A1

∀m ∈MP
A.nextcA((l(t),m)#↓A1) = (t,m)↓#↓A2

∀m ∈MO
A .nextcA((t,m)#↓A3) = (r(t),m)#↓A1

∀m ∈MP
A.nextcA((r(t),m)#↓A1) = (t,m)#↓A3

• Promotion Strategy: Given a strategy σ over the game A1⊗· · ·⊗An � B,
the subset p(σ) of P#A1⊗···⊗#An�#B is defined as follows:

p(σ) = {s ∈ P#A1⊗···⊗#An�#B | ∀t.∃r ∈ σ.st = t× r}

We use the notation pl(σ) for p(l(σ)).

Proposition 2. For any game A, dA, nA and cA are strategies. Let σ be a
strategy over A1 ⊗ · · · ⊗ An � B. Then rl(σ) and p(σ) are strategies and, if
n ≥ 1, ll(σ) is a strategy.

3.5 Interpretation of Proofs

We define the strategy �π� interpreting a proof π.
The multiplicative rules are interpreted according to the symmetric monoidal

closed structure of the category of games and strategies. The interpretation of
the exponential rules is based on the constructions described above.

• Weakening: if σ is a strategy over Γ � B, it is also a strategy over A⊗Γ �
B and we can build (d↓A ⊗ idΓ); ll(σ) as a strategy over !A⊗ Γ � B.
• Contraction: if σ is a strategy over !A⊗ !A⊗ Γ � B, we can build (cA ⊗

idΓ); ll(σ) as a strategy over !A⊗ Γ � B.
• Promotion: if σ is a strategy over A1 ⊗ · · · ⊗An � B, we can build pl(σ)

as a strategy over !A1 ⊗ · · · ⊗ !An � !B.
• Dereliction: if σ is a strategy over A ⊗ Γ � B, we can build (d↓A ⊗

idΓ); ll(σ) as a strategy over !A⊗ Γ � B.
• Digging: if σ is a strategy over !!A⊗Γ � B, we can build (nA⊗ idΓ); ll(σ)

as a strategy over !A⊗ Γ � B.

The main difference between weakening and dereliction comes from the original
strategy: over Γ � B for weakening and considered over A ⊗ Γ � B, while
“really” over A⊗ Γ � B for dereliction.

Theorem 1 (Soundness). If π � ρ then �π� = �ρ�.

Proof. The multiplicative steps are given by the SMCC structure. The permu-
tations of formulas are handled by the symmetry of the SMCC structure. The
key properties required for the other cases are:

238 U. Dal Lago and O. Laurent

• If σ : A0 � A and τ : A⊗B � C then (σ⊗ id↓B); llB(τ) = llB((σ⊗ idB); τ).
• If σ : A1 ⊗ · · · ⊗ An � A and τ : A ⊗ An+1 ⊗ · · · ⊗ Am � B then (p(σ) ⊗

id#An+1 ⊗ · · · ⊗ id#Am);p(τ) = p((σ ⊗ idAn+1 ⊗ · · · ⊗ idAm); τ).
• If σ : A1 ⊗ · · · ⊗An � B then p(σ);dB = (dA1 ⊗ · · · ⊗ dAn);σ.
• If σ : A1⊗ · · ·⊗An � B then pl(σ); cB = (cA1 ⊗ · · ·⊗ cAn); l(pl(σ))⊗pl(σ)

(up to some permutation in the second composition turning ↓!A1 ⊗ !A1 ⊗
· · · ⊗ ↓!An ⊗ !An into ↓!A1 ⊗ · · · ⊗ ↓!An ⊗ !A1 ⊗ · · · ⊗ !An).
• If σ : A1⊗· · ·⊗An � B then pl(σ);nB = (nA1⊗· · ·⊗nAn); l(pl(pl(σ))). ��

We extend the interpretation to the formula U and to pseudo-rules. The pseudo-
rule a is interpreted by the strategy {ε,XO · XP}. If σ is the interpretation of
the premise of an application of the pseudo-rule w, its conclusion is interpreted
by {ε} ∪ {m · XO | ∃ms ∈ σ} ∪ {m · XO · XP · s | ms ∈ σ}. XO denotes αO if
X = α and q if X = U. XP denotes αP if X = α and a if X = U.

If σ is the interpretation of a (pseudo)-proof, then σ is total.

4 Realizability

In order to prove properties of the strategies interpreting proofs, we are going
to define a notion of realizability between strategies and formulas.

The relations “σ P-realizes A”, σ �P A, (with σ strategy over A) and “τ
O-realizes A”, τ �O A, (with τ strategy over A � U) are defined in a mutually
recursive way by induction on A:

• σ �P α if σ = {ε, αO · αP}
• τ �O α if τ = {ε, q · αO, q · αO · αP · a}
• σ �P U if σ = {ε, q · a}
• τ �O U if τ = idU

• σ �P A ⊗ B if σA �P A and σB �P B with σA = {sA | s ∈ σ}. (We ask in
particular that σA and σB are strategies over A and B, respectively.)
• τ �O A ⊗ B if for any σ �P A, σ; τ �O B and for any σ �P B, σ; τ �O A.

(Using that, up to the curryfication isomorphisms, τ can also be seen as a
strategy over A � (B � U) or over B � (A � U).)
• σ �P A � B if for any δ �P A, δ;σ �P B and for any τ �O B, σ; τ �O A
• τ �O A � B if τA �P A and τB�U �O B
• σ �P !A if for any exponential signature t, σ�t �P A with σ�t = {s�t | s ∈ σ}

and s�t is obtained from st by replacing any move (t,m) by m and by then
erasing the initial open and close moves if they appear (we ask in particular
that σ�t is a strategy over A for any t).
• τ �O !A if τ contains the play q · (e, open).

An adequacy property relates proofs, strategies and realizability:

Proposition 3. For every proof π, the strategy �π� P-realizes the conclusion of π.

Proof. A first remark is that if σ �P A then σ contains a non-empty play and if
τ �O A then τ contains a play with a move in A (by induction on A). We now
do the proof by induction on π. We only give a few typical cases.

Quantitative Game Semantics for Linear Logic 239

• Right tensor: if σ1 �P Γ � A and σ2 �P Δ � B, and if δ �P Γ ⊗Δ then
δΓ �P Γ and δΔ �P Δ so that δΓ ;σ1 �P A and δΔ;σ2 �P B, and finally
δ; (σ1 ⊗ σ2) �P A ⊗ B. If τ �O A ⊗ B, δ1 �P Γ and δ2 �P Δ, we have:
(δ1 ⊗ idΔ); (σ1 ⊗ σ2); τ = (δ1;σ1) ⊗ σ2; τ = σ2; ((δ1;σ1); τ), but δ1;σ1 �P A
thus (δ1;σ1); τ �O B and (δ1 ⊗ idΔ); (σ1 ⊗ σ2); τ �O Δ. In a similar way
(idΓ ⊗ δ2); (σ1 ⊗ σ2); τ �O Γ .
• Promotion: if σ �P A1 ⊗ · · · ⊗ An � B (with σ′ obtained from σ by in-

terpreting the promotion rule) and if δi �P !Ai (1 ≤ i ≤ n), for any
exponential signature t we have δi�t �P Ai thus ((δ1 ⊗ · · · ⊗ δn);σ′)�t =
(δ1�t ⊗ · · · ⊗ δn�t);σ �P B. If τ �O !B and δi �P !Ai (1 ≤ i ≤ n), for any
1 ≤ i ≤ n, (δ1⊗· · ·⊗δi−1⊗ id!Ai⊗δi+1⊗· · ·⊗δn);σ′; τ plays (e, open) as first
move in !Ai since τ plays (e, open) as first move in !B and each δi contains
the play (e, open) · (e, close). ��

As a consequence, �TAA� �P A � U thus �TAA� �O A (since idU �O U).
A complete set of moves for any game A is a subset of MA defined by induction

on the structure of A:

• If A = α, the only complete set of moves for A is {αP, αO}.
• If A = B ⊗ C or A = B � C, CB is a complete set of moves for B and CC

is a complete set of moves for C, then CA = CB + CC is a complete set of
moves for A.
• If A = !B, then any subset of MA containing the move (e, close) is a complete

set of moves for A.

Proposition 4. If σ P-realizes A, τ O-realizes A and σ; τ is total, then the
maximal sequence in σ ‖ τ (seen as a set of moves of A) is complete.

5 Complexity

In this Section, we show how to instrument games with slots, in the same vein
as in Ghica’s framework [8]. The idea is simple: slots are used by the player
to communicate some quantitative properties of the underlying proof to the
opponent. But while in Ghica’s work slots are produced in correspondence with
any potential redex, here the player raises a slot in correspondence with boxes,
i.e. instances of the promotion rule. In Ghica’s slot games, the complexity of a
program can be read out of any complete play in its interpretation, while here
the process of measuring the complexity of proofs is internalized through the
notion of time analyzer (see Section 2): the complexity of π (with conclusion
A) is simply the number of slots produced in the interaction between �π� and
�TAA�. Notice that the definition of TAA only depends on the formula A.

The symbol • is a special symbol called a slot. In the new setting, the set of
moves for A, will be the usual MA, while the notion of a play should be slightly
changed. Given a game A and a sequence s in (MA + {•})∗, we denote by s◦

the sequence in M∗A obtained by deleting any occurrence of • in s. Analogously,
given any subset σ of (MA + {•})∗, σ◦ will denote {s◦ | s ∈ σ} ⊆M∗A.

240 U. Dal Lago and O. Laurent

A play-with-costs for A is a sequence s in (MA + {•})∗ such that s◦ ∈ PA,
whenever s = r •mq it holds that λA(m) = P and the last symbol in s (if any) is
a move in MA. A strategy-with-costs for the game A is a set σ of plays-with-costs
for A such that σ◦ is a strategy (in the usual sense) for A and, moreover, σ is
slot-deterministic: if sm •k n ∈ σ and sm •h n ∈ σ, then k = h.

Composition of strategies-with-costs needs to be defined in a slightly different
way than the one of usual strategies. In particular, we need two different notions
of projections: first of all, if s ∈ (MA+MB +{•})∗, we can construct sAX (where
X ⊆ {P,O}) by extracting from s any move m ∈ MA together with the slots
immediately before any such m provided λA(m) ∈ X . But we can even construct
sA• , by only considering the slots which precede moves in MA but not the moves
themselves. Given strategies-with-costs σ over A � B and τ over B � C, we
can first define σ ‖ τ as follows:

σ ‖ τ = {s ∈ (MA + MB + MC + {•})∗ | sAP,O,BP ∈ σ ∧ sBO,CP,O ∈ τ}.

The composition of σ and τ , denoted σ; τ is now simply

σ; τ = {sAP,O,B•,CP,O | s ∈ σ ‖ τ}.

In other words, we forget the moves in MB, but we keep all the slots produced
by them.

Proposition 5. If σ is a strategy-with-costs over A � B and τ is a strategy-
with-costs over B � C, then σ; τ is a strategy-with-costs over A � C.

The strategy constructions we have seen so far can be turned into strategy-with-
costs constructions. In the basic strategies, slots come into play only in rl(σ):
in particular, rli(σ) = {ε} ∪ {open↓A · •i · close↓A · s | s ∈ σ}. This way, the
interpretation �π�i of any proof π is parametrized on a natural number i.

In the particular case of a cut-free proof π with axiom rules only introducing
!-free formulas, �π�i can be easily deduced from �π� by adding •i before each
P-move of the shape (t, close) in each play of �π�.

We are in a position to define the complexity C(π) of any proof π. First, con-
sider the shape of any non-trivial play-with-costs s in a strategy-with-costs σ
for U: it must have the following shape q •i a. But observe that this play is the
only non-trivial play-with-costs in σ, due to (slot) determinacy. The integer i
is called the complexity of σ, denoted C(σ). This way we can define the com-
plexity C(π) of any proof π with conclusion A as simply the complexity of π
when composed with the time analyzer: C(�π�1; �TAA�0). The complexity of π is
defined for every π because �π�; �TAA� P -realizes U (by Proposition 3) and, as
a consequence, contains a non-empty play. Given any play-with-costs s, C(s) is
simply the number of occurrences of • in s.

5.1 Dynamics under Exposed Cuts

In this Section, we will prove some lemmas about the preservation of seman-
tics when cuts are exposed as in the [·] construction (see Section 2). With

Quantitative Game Semantics for Linear Logic 241

�π�eca we denote the (unique) maximal (wrt the prefix order) sequence in ι ‖
(�π�1ec ; �TAB�0), where [π] :!k1(A1 � A1), . . . , !kn(An � An), Γ 0 C, �π�iec =
�[π]�i, ι = �!k1 idA1 ⊗ · · ·⊗!kn idAn�0 and B =

⊗
Γ � C. !kidA is the proof for

!k(A � A) obtained by applying k times the promotion rule (with an empty
context) to the trivial proof idA of A � A. We are interested in studying how
�π�eca evolves during cut elimination for any proof π : Γ 0 C. This will lead us
to full abstraction. Indeed:

Remark 1. Please notice that the strategy from which we obtain the complexity
of π is:

τ = �π�1; �TAB�0 = (ι; �π�1ec); �TAB�0 = ι; (�π�1ec ; �TAB�0).

This implies that �π�eca contains exactly C(π) slots and, moreover, it contains
a complete set of moves for D = !k1(A1 � A1) ⊗ · · ·⊗!kn(An � An). This, in
particular, is a consequence of Proposition 4, since ι �P D, (�π�1ec ; �TAB�0) �O D
and their composition is total.

The cut-elimination relation � can be thought of as the union of nine reduc-
tion relations x� where x ranges over the set R = {T ,X ,⊗,�, C,D,N ,W , !−!}.
They correspond to commuting, axiom, tensor, linear arrow, contraction, dere-
liction, digging, weakening and promotion-promotion cut-elimination steps. If
X ⊆ R or x ∈ R, then X� and x� have the obvious meaning. We can consider a
reduction relation that postpones !−!-cuts to the very end of the computation.

The resulting reduction relation is denoted with ↪→. Again,
X
↪→ and

x
↪→ (where

x ∈ R and X ⊆ R) have their natural meaning.
We need to analyze how �ρ�eca differs from �π�eca if π

x� ρ. Clearly, this
crucially depends on x ∈ R, since cuts are exposed in [π] and [ρ]. Due to lack
of space, we report just one particular case here, namely x = D:

Lemma 1 (Dereliction). If π
D� ρ, then C(�π�eca) = C(�ρ�eca) + 1.

Proof. We only consider the case where the cut reduced in π is the last rule of
π. The other cases can be reduced to this one by an easy induction. With this
hypothesis, [π] is

[σ] : A1, . . . , An, D1, . . . , Dm � B

!A1, . . . , !An, ς(!D1, . . . , !Dm) � !B
P!

[θ] : Φ,Γ, B � C

Φ, ϑ(Γ), !B � C
D!

!A1, . . . , !An, !B�!B, Φ,�(!D1, . . . , !Dm, Γ) � C
L�

and [ρ] is
[σ] : A1, . . . , An, D1, . . . , Dm � B [θ] : Φ, Γ,B � C

A1, . . . , An, B� B,Φ, Γ,D1, . . . , Dm � C
L�

A1, . . . , An, B� B,Φ, !Dm, Γ,D1, . . . , Dm−1 � C
D!

.

.

.

D!

A1, . . . , An, B� B,Φ, !D2, . . . , !Dm, Γ, D1 � C
D!

A1, . . . , An, B� B, Φ,�(!D1, . . . , !Dm, Γ) � C
D!

Observe that: [π] :!A1, . . . , !An, !B1 �!B2, Φ1, Γ1 0 C and [ρ] : A1, . . . , An, B1 �
B2, Φ1, Γ1 0 C. Now, consider ι ‖ (�ρ�1ec ; �TAE�) and ι′ ‖ (�π�1ec ; �TAE�), where

242 U. Dal Lago and O. Laurent

E is the conclusion of ρ and π. It is easy to realize that �ρ�eca can be simulated
by the �π�eca , in such a way that

�ρ�eca = �π�eca{mBi/(e,mBi), ·/ •a (e, μ)!Bi ,mAi/(e,mAi), ·/ •b (e, μ)!Ai}

where μ is a metavariable for either open or close. Observe that a = 1 when
μ = close and i = 1 (a promotion in π raises a slot), a = 0 otherwise and b = 0 (ι
does not raise any slot). But there is exactly one (e, close)!B1 in �π�eca : at most
one (the same move is not played twice); at least one from Proposition 4 (since
strategies interpreting (pseudo)proofs are total). The thesis easily follows. ��

5.2 Full Abstraction

We now have all the required material to give our key result: full abstraction of
the game model with respect to the reduction length (Theorems 2 and 3).

Given a proof π and any reduction relation →, [π]→ and ||π||→ denote the
maximum length of a reduction sequence starting in π (under →) and the max-
imum size of any reduct of π (under →), respectively. We note |π| the size of a
proof π.

Lemma 2. For every proof π, [π]� = [π]↪→ and ||π||� = ||π||↪→.

Proof. Whenever π
!−!� ρ

x� σ and x �= !−!, there are θ1, . . . , θn (where n ≥ 1)
such that π

x1� θ1
x2� · · · xn� θn

xn+1� σ, and xi+1 = !−! whenever xi = !−!. For
example, if π !−!� ρ

W� σ and the box erased in the second step is exactly the one
created by the first step, then clearly π

W� θ
W� σ. As a consequence, for any

sequence π1 � · · · � πn there is another sequence ρ1 ↪→ · · · ↪→ ρm such that
π1 = ρ1, πn = ρm and m ≥ n. This proves the first claim. Now, observe that for
any 1 ≤ i ≤ n there is j such that |ρj | ≥ |πi|: a simple case analysis suffices. ��

Proposition 6. If π
{C,D,N ,W,!−!}

↪→ ρ then C(π) = C(ρ) + 1.

Proof. From Remark 1, we know that C(π) = C(�π�eca). We apply Lemma 1
(and similar statements for contraction, digging and weakening). ��

Proposition 7. If π
{T ,X ,⊗,�}

↪→ ρ then C(π) = C(ρ).

The mismatch between the statements of Proposition 6 and Proposition 7 can
be informally explained as follows. After any “exponential” reduction step (see
Proposition 6) one slot is missing, namely the one raised by the promotion rule
involved in the reduction step when faced with the (e, open) move raised by the
left rule interacting with the promotion rule itself. Clearly, this does not happen
when performing “linear” reduction steps (see Proposition 7).

Lemma 3. If π is cut-free, then C(π) ≤ |π|.

Proposition 8. If π rewrites to ρ in n steps by the T rule, then |π| = |ρ| and
n ≤ 2|π|2.

Quantitative Game Semantics for Linear Logic 243

Proof. The equality |π| = |ρ| can be trivially verified whenever π
T
↪→ ρ. Now,

for any proof π, define |π|comm as the sum, over all instances of the U rule
inside π, of |σ|cut + |σ| + |θ|, where σ (respectively, θ) is the left (respectively,
right) premise of the cut and |σ|cut is simply the number of instances of the cut

rule in σ. For obvious reasons, 0 ≤ |π|comm ≤ 2|π|2. Moreover, if π
T
↪→ ρ, then

|π|comm > |ρ|comm . For example, consider the following commutative reduction
step:

π : Γ � A ρ : Δ,A � B

ς(Γ,Δ) � B
U

σ : Ω,B � C

θ : ϑ(Γ,Δ,Ω) � C
U �

π : Γ � A

ρ : Δ,A � B σ : Ω,B � C

�(Δ,Ω), A � C
U

ξ : ϑ(Γ,Δ,Ω) � C
U

Clearly, |θ| = |ξ| but |θ|comm > |ξ|comm . Other cases are similar. ��

Theorem 2. For every proof π, C(π) ≤ [π]� + ||π||�

Theorem 3. There is a polynomial p : N×N→ N such that for every proof π,
[π]� ≤ p(C(π), |π|) and ||π||� ≤ p(C(π), |π|).

Proof. By Lemma 2, the thesis easily follows from [π]↪→, ||π||↪→ ≤ p(C(π), |π|).
Our first task will be to analyze the shape of any box you can find during the
normalization of π by ↪→ up to the point where you begin to fire !−! cuts. But it
is easy to prove that any such box is just a subproof of π, possibly endowed with
n promotions rules (where n is less than the total number of N! cuts fired during
normalization). As a consequence, any such box has at most size |π| + C(π).
Now, we can easily bound ||π||↪→: at any C or N normalization step, the size
of the underlying proof increases by at most |π| + C(π) (but the complexity
strictly decreases), while in any other case the size decreases. As a consequence,
||π||↪→ ≤ C(π)(|π| + C(π)). Now, the total number of non-commuting reduction
steps is at most C(π)+C(π)(|π|+C(π)). Between any of them, there are at most
2||π||2↪→ commuting steps. As a consequence:

[π]↪→ ≤ C(π) + C(π)(|π| + C(π)) + (C(π) + C(π)(|π| + C(π))) 2||π||2↪→
≤ (C(π) + C(π)(|π|+ C(π))) (1 + 2(C(π)(|π| + C(π)))2). ��

6 Further Work

The main defect of our approach is the strong use of sequentiality informa-
tion from sequent calculus proofs in the game interpretation. The two main
approaches to get rid of this sequentiality are the use of non-deterministic strate-
gies or of clusters of moves (when interpreting the promotion rule). This way
we would be able to directly interpret proof-nets. In a similar spirit, we have
used an exponential construction for games based on a grammar of exponen-
tial signatures, as usually done with context semantics. This is known to lead
to not-very-satisfactory properties for !: for example, weakening is not neutral
with respect to contraction, contraction is not commutative, etc. However, an
answer to this problem should easily come from the solution proposed in the

244 U. Dal Lago and O. Laurent

AJM setting with the notion of equivalence of strategies [2]. All these ingredi-
ents would probably allow us to turn our game model into a true categorical
model of intuitionistic linear logic.

Another weakness is the restriction to surface reduction. We think adaptations
to head reduction or to reduction strategies leading to normal forms should
be possible by modifying the time analyzer in order to interactively access to
“deeper” parts of proofs.

The notion of realizability we have introduced is tuned to reach the result we
need, namely Proposition 4. However, it seems possible to modify it in various
ways and to use it for very different applications in the more general context of
game semantics.

Very recently, another proposal leading to similar observations but being based
on relational semantics has appeared [7]. The authors give an exact measure of
the number of steps required for surface reduction (and then level-by-level reduc-
tion). This should be also possible in our setting by adding lifting constructions
to all the connectives (not only to the exponential ones). However an important
difference comes from the notion of cut elimination under consideration: while
they use β-reduction style exponential steps (coming from contractions of un-
bounded arity in particular), we consider standard exponential steps (based on
binary contractions), and this may lead to an exponential blowup. Possible cor-
respondences between our game-theoretical analysis and the analysis done in [7]
could come from works about projecting strategies into relations.

Acknowledgements

The authors would like to thank the anonymous referees for their useful comments.

References

1. Abramsky, S.: Semantics of interaction. In: Dybjer, P., Pitts, A. (eds.) Seman-
tics and Logics of Computation. Publications of the Newton Institute, pp. 1–32.
Cambridge University Press, Cambridge (1997)

2. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163(2), 409–470 (2000)

3. Baillot, P.: Approches dynamiques en sémantique de la logique linéaire : jeux et
géométrie de l’interaction. Thèse de doctorat, Université Aix-Marseille II (1999)

4. Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fun-
damenta Informaticae 45(1-2), 1–31 (2001)

5. Lago, U.D.: Context semantics, linear logic and computational complexity. In:
Proc. 21st Symposium on Logic in Computer Science, pp. 169–178. IEEE, Los
Alamitos (2006)

6. Danos, V., Herbelin, H., Regnier, L.: Games semantics and abstract machines. In:
Proc. 11th Symposium on Logic In Computer Science, pp. 394–405. IEEE, Los
Alamitos (1996)

7. de Carvalho, D., Pagani, M., de Falco, L.T.: A semantic measure of the execution
time in linear logic. Technical Report 6441, INRIA (2007)

Quantitative Game Semantics for Linear Logic 245

8. Ghica, D.: Slot games: A quantitative model of computation. In: Proc. 32nd ACM
Symposium on Principles of Programming Languages, pp. 85–97 (2005)

9. Girard, J.-Y.: Geometry of interaction III: accommodating the additives. In: Gi-
rard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Math-
ematical Society Lecture Note Series, vol. 222, pp. 329–389. Cambridge University
Press, Cambridge (1995)

10. Hyland, M.: Game semantics. In: Dybjer, P., Pitts, A. (eds.) Semantics and Logics
of Computation. Publications of the Newton Institute, pp. 131–184. Cambridge
University Press, Cambridge (1997)

A Characterization of

Hypercoherent Semantic Correctness
in Multiplicative Additive Linear Logic

Paolo Tranquilli�

Dipartimento di Matematica – Università Roma Tre
Largo S. Leonardo Murialdo, 1 – 00146 Roma – Italy
Laboratoire PPS – Université Paris Diderot - Paris 7

Case 7014 – 75205 Paris – France
tranquil@mat.uniroma3.it

Abstract. We give a graph theoretical criterion on multiplicative
additive linear logic (MALL) cut-free proof structures that exactly char-
acterizes those whose interpretation is a hyperclique in Ehrhard’s hyper-
coherent spaces. This criterion is strictly weaker than the one given by
Hughes and van Glabbeek characterizing proof nets (i.e. desequentialized
sequent calculus proofs). We thus also give the first proof of semantical
soundness of hypercoherent spaces with respect to proof nets entirely based
on graph theoretical trips, in the style of Girard’s proof of semantical
soundness of coherent spaces for proof nets of the multiplicative fragment
of linear logic.

1 Introduction

Proof nets (PN) are the syntax of choice for unit-free multiplicative linear logic
(MLL, [6]). The robustness of such a syntax consists in its ability to quotient
proofs of MLL modulo inessential rule commutation in a canonical way. Each
proof net represents in fact an equivalence class of sequential proofs, and such
equivalence is validated by numerous semantic models. This is obtained by build-
ing proofs in a more general syntax, proof structures (PS), among which one
may characterize the ones that come from sequent calculus proofs via a host of
well established correctness criterions, where correctness here means sequential-
izability. The most famous ones are the long trip one due to Girard [6], and the
Danos-Regnier one [4] of switching acyclicity and connectedness.

Since the beginning there was a tight pairing between linear logic and the
semantic model that brought the intuitions necessary for its discovery: coherent
spaces. The link is the interpretation of PNs in coherent spaces via the notion
of experiment. As PNs live inside a more general world, also the interpretation
is in fact defined on PSs in general, yielding simply sets1.
� This work was partly supported by Università Italo-Francese (Programma Vinci

2007).
1 In fact one may regard this interpretation as living in the category Rel of sets and

relations, though this becomes less clear in the presence of the exponential modality !.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 246–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Characterization of Hypercoherent Semantic Correctness in MALL 247

Clearly the first thing to check is the semantic soundness of such an inter-
pretation: are PNs interpreted as objects of coherent spaces, i.e. cliques? If � �
stands for such an interpretation, chosen by assigning a coherent space to each
type literal, the following theorem addresses such a question.

Theorem 1 (Girard, [6]). For π an MLL-PS on a sequent Γ , if π is switching
acyclic then for any interpretation � � we have that �π� is a clique in �Γ �.

As the sole role of switching connectedness is to invalidate the mix rule, which
is accepted by coherent spaces, one drops it from the requirements.

There is now another question one can ask. As it makes sense to interpret
a PS, it also makes sense to ask when such an interpretation is a clique. Such
semantic correctness, in the case of MLL, turns out to be equivalent to the
sequentializability one, as one has the following, reverse theorem.

Theorem 2 (Retoré, [16]). For π an MLL-PS on Γ , if �π� is a clique in �Γ �
for any interpretation � �, then π is switching acyclic.

This strong pairing begins to break when one extends the system with units, or
exponentials, or additives, which are the main concern of this work. On one side,
the problem of providing unit-free multiplicative additive linear logic (MALL)
a canonical syntax extending the good properties of the MLL one proved to
be a longstanding question. A partial answer was given by Girard in [7] and
a more satisfactory one was developed by Hughes and van Glabbeek in [8], a
work which is one of our starting points. PSs are in this framework represented
as sets of purely multiplicative structures, usually referred to as slices (see for
example [9]), identified by linkings (i.e. sets of axioms, see Section 2 for more
details). Again [8] provides a geometrical criterion, which we call the HvG one
(page 259) characterizing sequentializable structures, which we call HvG-correct.

On the other hand, one would also like to extend the good semantic pairing
of MLL to MALL. Coherent spaces are known to not provide the same results
for MALL PSs as for MLL. In fact there is a PS, the Gustave one, which is the
proof theoretical counterpart of the Gustave function G in the stable model of
PCF. In the same way as G is an unsequentializable stable function, the Gustave
PS which we will show in Figure 1 at page 252 is an incorrect structure which
is interpreted by a clique, so that no analog of Theorem 2 is possible for MALL
and coherent spaces.

The Gustave function G is however rejected by Bucciarelli and Ehrhard’s
strongly stable model [3], and starting from it Ehrhard developed in [5] a new
model of LL extending the coherent one: the hypercoherent spaces (Section 2.2).
One may then turn to such a model hoping for a better account of MALL.
Semantic soundness clearly holds if one passes through the sequentialization
theorem of [8], though a more direct proof might be desirable (we will in fact
give it, by combining Proposition 17 and Theorem 11). As for the analog of
Theorem 2, the Gustave PS is indeed rejected, but one stumbles anyway upon
another counterexample [12], which we show in Figure 2 on page 252. It has
been conjectured [12, Conjecture 70] that such fracture between MALL syntax

248 P. Tranquilli

and hypercoherent semantics is due to the intrinsic unconnectedness of the coun-
terexample.

Conjecture 3 (Pagani). If θ is a proof structure, and ∀λ ∈ θ : λ is switching
acyclic and connected, and �θ� is a hyperclique for any interpretation � �, then θ
is HvG-correct.

We decided to “factorize” the conjecture by first finding the criterion for semantic
correctness, which we call hypercorrectness (Definition 5). This criterion exactly
characterizes the cut-free structures which have a hyperclique as interpretation.
This approach has much similarity to the work of Pagani in the framework of
exponential LL, where a criterion (visible acyclicity) is shown to characterize
nets interpreted by non-uniform cliques [11] or finitary relations [13], along with
interesting computational properties. More from a distance, a similarity can be
established with what happened in the study of models of PCF: once it was clear
that Scott-continuous functions, or even stable ones, were not fully abstract for
PCF, two directions were taken. One was to refine the models (from continuity
to stability and from stability to strong stability), while the other, similar to
what we do here, was to find which languages were fully abstract for these
same models (parallel PCF for the continuous one [15] and stable PCF for the
stable one [14]). One difference is that in our work and that of [11,13] one really
finds a discerning geometrical criterion (something that has sense because of
the presence of generally “incorrect” objects, PSs) corresponding to an algebraic
one, apparently distant (hypercliques here, finitary relations in [13]). In MALL
the approach of semantic refinement is the direction taken in [2], where a proof
of full completeness is given by applying an operation of double glueing on
hypercoherent spaces.

Returning to the conjecture, we set out to prove

1. for θ cut-free proof structure, θ is hypercorrect iff �θ� is a hyperclique for
any interpretation;

2. for θ proof structure with ∀λ ∈ θ : λ switching connected, θ is hypercorrect
iff θ is HvG-correct.

We address here point 1, proving both sides of the equivalence in Theorems 11
and 15, and leave point 2 as a further conjecture. The computational content of
the criterion, along with its extension to PS with cuts, is left for future work.

Hypercorrectness uses a notion of &-oriented cycles : contrary to what hap-
pens in sequentalizability criterions the orientation of paths counts. There are
already many hints of such behaviour relating to semantics. The visible acyclic
paths employed in [11] have such feature. The works in [2] and [1] show full
completeness results by employing cycles where the orientation is decided by
jumps, though the framework of the two is Girard’s non canonical proof nets.
More recently, investigation on games semantics in [10] has as well brought to
the fore an oriented interpretation of the acyclicity criterion in MLL PNs.

Outline. In Section 2 we define the standard notions appearing in this work.
Next, in Section 3, we define hypercorrectness and prove the characterization.
Finally in Section 4 we present some contour information and results.

A Characterization of Hypercoherent Semantic Correctness in MALL 249

2 The Framework

We will here introduce the main actors involved in this work:
MALL proof structures, hypercoherent spaces and experiments.

Given a denumerable set of type variables V, unit-free MALL formulas are
generated by the grammar

F ::= V | V⊥ | F ⊗ F | F ` F | F ⊕ F | F & F,

with linear negation ()⊥ defined by De Morgan dualities (A⊗B)⊥ := A⊥�B⊥
and (A⊕B)⊥ := A⊥&B⊥ as usual2. Variables and their negations are atomic,
connectives ⊗/� are called multiplicative, while ⊕/& are additive. A sequent
Γ is a multiset of formulas A1, . . . , An.

We will identify a formula with its graph-theoretical representation as a syn-
tactical tree, which has a distinguished root node (the conclusion of the for-
mula), logical connectives as intermediate nodes (called links), and atomic for-
mulas as leaves. The term “node” will therefore indicate any of these parts, while
among edges we will call the one above the root terminal and the ones above
a given link premises to that link. Every edge has a subformula corresponding
to it, and it is called its type. Different occurrences of nodes or edges will be
noted by lowercase Latin letters. Two leaves are dual if their atomic formulas
are dual. Sequents are likewise identified with their representation as syntactical
forests. The tree structure naturally induces an (arborescent) order on links and
edges, which we will denote by 7, with conclusions being minimal. For nodes
a, b connected by an edge e in Γ we will write a →e b (resp. a ←e b) if e is a
premise of b (resp. a). We will omit any of a, b, e if it is of no importance, so that
for example →e b means “e is a premise of b”.

2.1 MALL Proof Structures

We will now define cut-free MALL PSs, mostly following [8], though some notions
are here equivalently reformulated.

In the following let us fix a sequent Γ . An axiom is an unordered pair of dual
leaves of Γ . Any set of axioms λ naturally defines a subforest of Γ which we
denote by Γ�λ, by taking

(⋃
λ
)
↓, the set of leaves in axioms of λ down-closed

with respect to 7, i.e. the subforest of Γ obtained by taking edges and links
which have an axiom in λ above them. In Γ�λ connectives are either binary or
unary. We call λ a linking (on Γ) if axioms in λ are pairwise disjoint and Γ�λ
contains all conclusions of Γ , no unary multiplicative connectives ⊗/� and no
binary additive connectives ⊕/&3. The slice Gλ associated to a linking λ is the
graph obtained from Γ�λ by adding a new node for every axiom {a, b} of λ with
edges to the leaves a and b. By extending the notation, also these new nodes in
Gλ are called axioms, and the new edges are premises to the leaves. The order
2 Here and in the rest of the paper, := means “is defined as”.
3 In [8] linkings are defined as a partition over the leaves of an additive resolution, a

notion not appearing here. The definition is clearly equivalent.

250 P. Tranquilli

7 is extended to Gλ by setting the axiom nodes and edges as greater than the
leaves they connect (axioms are maximal, and the order is no longer aborescent).

Given Λ a set of linkings, we define Γ�Λ :=
⋃

λ∈Λ Γ�λ, where superposition is
trivially defined as all lives inside Γ . We define the set &2(Λ) as the set of binary
& connectives in Γ �Λ. For two linkings λ, μ ∈ Λ we use the notation λ

w
� – μ (λ

and μ toggle w uniquely) if &2({λ, μ}) = {w} (which implies λ �= μ), and
the notation λ

w
– μ if λ

w
� – μ or λ = μ4.

A &-resolution G of Γ is a subforest of Γ obtained by erasing from it one
whole branching (whether left or right) from each & in Γ , i.e. choosing one
of its premises e and erasing all edges and nodes x � e. A linking λ is on a
&-resolution G if Γ�λ ⊆ G, i.e. all axioms in λ are on leaves of G.

Definition 4 (Proof structures). A (cut-free) PS on a sequent Γ is a set θ
of linkings such that for every &-resolution G of Γ there exist a unique λ ∈ θ on
G (resolution condition).

2.2 Hypercoherent Spaces

The first denotational semantics of linear logic were coherent spaces [6], which in
fact were the mathematical notion that gave the first intuitions for linear logic.
Much later, Ehrhard introduces in [5] a refinement, the hypercoherent spaces,
which we briefly present here.

A hypercoherent space X is given by a pair (|X| ,�X) where

– |X| is a set called the web of X.
– �X, called the hypercoherence of X, is a predicate �X ⊆ P∗<ω (|X|), the

finite non-empty subsets of the web of X, which is reflexive in the sense that
it contains the set of singletons P=1 (|X|).

The hypercoherent space as subscript of the relation is omitted if no confusion
is possible. Apart from �, one defines the following relations, from which � can
be in turn recovered: strict hypercoherence � := � \P=1 (|X|), hyperincoher-
ence � := P∗<ω (|X|) \ � and strict hyperincoherence � := P∗<ω (|X|) \ �. The
hypercliques of X are

H(X) := { h ⊆ |X| | ∀s ⊆∗<ω h : � s },
where s ⊆∗<ω h means that s is a finite non-empty subset of h.

All connectives of linear logic have a corresponding operation on hypercoher-
ent spaces. We define here all of them but the exponential one which is of no
interest here.

Dual:
∣∣X⊥∣∣ := |X|, and �X⊥ := �X.

Multiplicatives: |X⊗ Y|= |X� Y| := |X|× |Y|, and given s ⊆∗<ω |X|× |Y|we set

�X⊗Y s ⇐⇒ �X π0(s) and �Y π1(s),
�X�Y s ⇐⇒ �X π0(s) or �Y π1(s),

with π0 and π1 the usual left and right projections.
4 λ

w
– μ is denoted λ

w
= μ in [8].

A Characterization of Hypercoherent Semantic Correctness in MALL 251

Additives: |X0 ⊕ X1| = |X0 & X1| := |X0| + |X1|, the disjoint sum. We denote
an element of such a disjoint sum as x.i, with i = 0 or i = 1 and x ∈ |Xi|.
Given s ⊆∗<ω |X0|+ |X1|, let si := { x ∈ |Xi| | x.i ∈ s }. Then we set

�X0⊕X1 s ⇐⇒ si = ∅ and �X1−i s1−i for i = 0 or 1,

�X0&X1 s ⇐⇒ either s0 �= ∅ and s1 �= ∅, or si = ∅ and �X1−i s1−ifor i = 0 or 1.

Note therefore that if s0 and s1 are both non-empty, one automatically has
�X0&X1

s and �X0⊕X1
s regardless of the elements of s, as it cannot be a

singleton.

The operations defined above respect De Morgan’s duality.

2.3 Experiments

The notion of experiments was developed by Girard in [6] to give a way to
directly interpret multiplicative proof nets in coherent semantics, without pass-
ing through sequent calculus. The remainder of this section will be devoted to
defining experiments on (cut-free) linkings and PSs.

Suppose given an interpretation � � on type variables, i.e. a mapping from
type variables to hypercoherent spaces. It can be easily extended to all formulas
A by induction, chasing down all connectives and applying the corresponding
operation on hypercoherent spaces. Then the interpretation of a sequent Γ =
A1, . . . An is �Γ � :=

�n
i=1 �Ai� . We disregard any problem of bracketing, and

consider the web of �Γ � as made up of n-uples.
Given a (cut-free) linking λ on Γ , an experiment e on λ (notation e : λ) is a

function assigning to each axiom
 ∈ λ of type α/α⊥ a point e(
) ∈
∣∣�α�

∣∣. This
function is then extended by induction to every edge f of type A in Gλ, so that
e(f) ∈

∣∣�A�
∣∣:

– if A is atomic, f has an axiom
 ∈ λ above it, and one sets e(f) := e(
);
– if A is multiplicative, f is under a ⊗/� link with both of its premises f0 and
f1, and one sets e(f) :=

(
e(f0), e(f1)

)
;

– if A is additive, f is under a ⊕/& with only one of its premises fi (i = 0 for
left, 1 for right), and one sets e(f) := e(fi).i.

If f1, . . . , fn are the terminal edges of Γ , then the result of the experiment e on
λ is defined as e(λ) :=

(
e(f1), . . . , e(fn)

)
∈
∣∣�Γ �

∣∣. An experiment e on a PS θ is
an experiment on any of its linkings λ, with e(θ) := e(λ). The interpretation of
a PS is then given as

�θ� := { e(θ) | e experiment on θ } ⊆
∣∣�Γ �

∣∣.
Given experiments e1, . . . , ek on θ, if an edge d is in all Gλi where ei : λi, then
it makes sense to ask whether �{ei(d)} holds, obviously by taking as space the
interpretation of the type of d.

252 P. Tranquilli

α β P :=

α β α⊥ ⊗ β⊥
⊗

(a) (α& α) ⊕ α,
⊕

&

(β& β) ⊕ β,
⊕

&

(P & P) ⊕ P

⊕
&

(b)

Fig. 1. The Gustave PS γ is shown in (b). P is short for α⊥⊗β⊥, and the three-
leaves axioms shown are a short graphical representation for the trivial linking
on α, β, α⊥ ⊗ β⊥, as shown in (a).

2.4 Examples

The Gustave PS γ is presented in Figure 1(b), its five linkings shown one above
the other. This example is described in [8, Section 4.6.1] in the framework of
Hughes and van Glabbeek PSs. It is an unsequentializable structure, as all ter-
minal ⊕s are binary, so no final ⊕ rule may be applied in sequent calculus. In fact
the HvG criterion (page 259) rejects such structure. While the interpretation of
γ in coherent spaces is a clique, as coherence is checked on at most two slices at
a time, �γ� in hypercoherent spaces is not a hyperclique.

Figure 2 shows the counterexample to hypercoherent semantic correctness
being equivalent to sequentializability [12, Proposition 69]. The PS δ, whose
linkings are shown in Figure 2(a), is not sequentializable as the final rule must
be ⊗, however it cannot split the ε⊕ ε, ε⊥ part of the context as it depends on
both &s. Such a dependency is registered by jumps, which give an illegal cycle

α⊥, (α& α) ⊗ (β& β),

⊗
& &

β⊥, ε ⊕ ε,

⊕

ε⊥

(a) The linkings of δ

⊗
& & ⊕

(b) An illegal cycle in the cor-
rectness graph GHvG

δ (defined on
page 259)

Fig. 2. The proof structure δ: an unsequentializable structure such that �δ� is a
hyperclique

A Characterization of Hypercoherent Semantic Correctness in MALL 253

in such a structure, as shown in Figure 2(b). Notice that the cycle traverses the
&s in opposite directions. The interpretation �δ� is a hyperclique because of the
way binary &s entail strict coherence whatever comes above them. The slices,
though switching acyclic, are not switching connected – this should always be
the case for unsequentializable semantically correct structures, if the conjecture
stated in point 2 of Section 1 is indeed true.

3 The Criterion

In this section we will define the criterion and then show the main results.

3.1 Hypercorrectness

We will define correctness graphs in the style of [8], with a substantial difference
though. While jumps in [8] are drawn from the axioms, here we will draw them
from the places where slices begin to differ from bottom to top. Section 4 will
give equivalent forms of this criterion and a more precise comparison with the
HvG criterion.

Given a set of linkings Λ, the pre-correctness graph G′Λ, is obtained by
superposing all slices of Λ, i.e. G′Λ :=

⋃
λ∈Λ Gλ. The Γ � λ part of each slice is

inside Γ�Λ, so in fact G′Λ is obtained by adding axioms to it. Superposition (i.e.
identification) of axiom nodes and edges happens if and only the related axiom
connects the same leaves. An edge or a node in G′Λ is said to be total (for Λ) if
it is in all slices, i.e. in

⋂
λ∈Λ Gλ, partial otherwise. An additive contraction,

or simply contraction, is a total non-& node with partial premises, and their set
is noted as contr(Λ). Contractions are in fact binary ⊕s and total leaves under
partial axioms.

The correctness graph GΛ is obtained from G′Λ by adding new edges, called
jumps, from a node c ∈ contr(Λ) to w ∈ &2(Λ) whenever

∃λ1, λ2 ∈ Λ | λ1
w
� – λ2 and c ∈ contr({λ1, λ2}).

A jump j from c to w is denoted c �j w. Jumps are considered partial, and
premises to the & they jump to. Let tot(Λ) (resp. part(Λ)) denote the set of
total (resp. partial) edges in GΛ.

A path φ in GΛ is a finite non-repeating sequence ei of edges such that ei and
ei+1 are adjacent, i.e. share a node, and such that also every shared node is not
repeated. As sequences, paths are oriented, so we can define the source (resp.
target) of φ as the unshared node of the first (resp. last) edge in φ. A cycle is
a non-empty path whose source and target coincide. We identify φ with the set
of its edges and the nodes it traverses, so that we may write w ∈ φ for a node
w. Paths may also be denoted with the concatenated notations for premises and
jumps, as for example in →e→ x ←�j w. Note how some node or edge names
may be omitted, and recall that jumps are considered also as premises, so that in
the example e may be a jump. Also arrowheads will be omitted (as in x —e y) if

254 P. Tranquilli

we do not want to specify whether the path is going upwards or downwards. For
e ∈ φ, write ↓ e ∈ φ (resp. ↑ e ∈ φ) if e is traversed going down (resp. up), i.e. if
d is traversed towards (resp. from) the node it is premise of. A path bounces on
a node x if it contains a segment of shape → x ← or ← x →. Cycles are to be
considered bouncing on their source/target if their first and last edges are both
immediately above or below it. A path or cycle is switching if it never bounces
on a � or &.

Finally, a switching path φ is said to be &-oriented if it changes from being
partial to total on &s only and does viceversa on contractions only, i.e. for every
—e x —f in φ, if e ∈ part(Λ) and f ∈ tot(Λ) (resp. viceversa) then x ∈ &2(Λ)
(resp. x ∈ contr(Λ)). Furtherly, two paths φ and ψ are said to be bounce-
compatible if whenever φ and ψ both bounce on the same total tensor or
axiom x, traversing its adjacent edges a, b, then a, b appear in the same order
in φ and ψ. A union of paths is said to be bounce-compatible if its paths are
pairwise bounce-compatible.

Definition 5 (Hypercorrectness). A proof structure θ is hypercorrect if for
every Λ ⊆ θ and every bounce-compatible non-empty union S of &-oriented
cycles in GΛ, there is w ∈ &2(Λ) such that w �∈ S.

Note that for any λ, as the whole G{λ} = Gλ is total and lacks binary &s, this
criterion entails the absence of switching cycles, i.e. multiplicative correctness
(without connectedness) of every linking. Notice also that dropping bounce-
compatibility and &-orientedness of S amounts to reverting to the HvG criterion
(see page 259). Revisiting the examples shown in Figures 1 and 2, we show in
Figures 3(a) and 3(b) respectively one of their correctness graphs.

⊕
&

⊕
&

⊕
&

(a) The correctness graph of three link-
ings of the Gustave PS. Only three out
of six jumps are shown, and axiom nodes
are omitted. The cycle shown is strictly
&-oriented (page 255).

⊗
& & ⊕

(b) The correctness graph Gδ. The only
way to form a cycle would be to bounce
on the tensor, but that would not be a
&-oriented one.

Fig. 3. Two examples of correctness graphs. The first one shows the rejection of the
Gustave PS by the criterion, while the second structure is hypercorrect. Leaf nodes
and axiom nodes are marked by •s.

3.2 Hypercorrectness Implies Hypercoherence

We will devote this section to the proof of Theorem 11, the analog of Theorem 1.

A Characterization of Hypercoherent Semantic Correctness in MALL 255

Let us fix in the following θ a cut-free PS on a sequent Γ . A set of linkings
Λ ⊆ θ is said to be saturated if for every λ ∈ θ \ Λ, Λ ∪ {λ} has more binary
&s than Λ. A &-oriented path or cycle φ is strictly &-oriented if it always
descends on partial edges, i.e. if e ∈ φ, e ∈ part(Λ), then ↓ e ∈ φ. Note that
this implies not passing any partial axioms. The following are two basic lemmas
needed for our proofs later.

Lemma 6. For Λ saturated, every c ∈ contr(Λ) has a jump c � in GΛ.

Lemma 7. If θ is hypercorrect and Λ ⊆ θ is saturated, then every non-empty
bounce-compatible union S of strictly &-oriented cycles has a jump out of it, i.e.
∃w ∈ &2(Λ) \ S and c ∈ contr(Λ) ∩ S such that c � w ∈ GΛ.

The following is the main lemma opening us the way for Theorem 11.

Lemma 8. Let θ be a hypercorrect PS on a sequent Γ , e1, . . . , en experiments
on θ, such that �{ei(f)} on a terminal edge f . Then there exist Λ ⊆ θ and a
strictly &-oriented path φ in GΛ starting with f and ending with a terminal wire
f ′ such that �{ei(f ′)}.
Proof. Consider Λ the minimal saturated set of linkings containing those on
which experiments ei are taken. By minimality binary &s are the same. We will
give a precise algorithm which will build the path φ. The base step of such an
algorithm is the non-deterministic function next, taking as inputs a direction ε
which can be ↑, ↓ and an edge d ∈ GΛ such that

1. if d ∈ part(Λ) then ε = ↓;
2. if d ∈ tot(Λ) and ε = ↑, then �{ei(d)};
3. if d ∈ tot(Λ) and ε = ↓, then �{ei(d)}.

The output will be a direction ε′ and an edge d′ with the same properties and
such that dd′ is a path with εd, ε′d′ ∈ dd′. Let us define next by the three cases
described above.

1. Let →d x. If x ∈ part(Λ), then x →d′ with d′ ∈ part(Λ), and let
next(↓ d) := ↓ d′. If x ∈ tot(Λ), then either x ∈ &2(Λ), in which case
x →d′ and next(↓ d) := ↓ d′ (note �{ei(d′)} as &s binary in Λ are also
binary in the linkings on which the experiments are taken), or x ∈ contr(Λ).
By Lemma 6, there is x �d′ , and we set next(↓ d) := ↓ d′.

2. Let ←d x. If x ∈ contr(Λ), then proceed as the above case, setting
next(↑ d) := ↓ d′ with x �d′ . Otherwise let us define next by cases on
the nature of x:
axiom: x is total, and ←d x →d′ . Set next(↑ d) := ↓ d′. The property is

preserved as the value of the experiments on the two edges is the same
and their types are dual;

leaf or unary additive: there is a unique x ←d′ , d′ ∈ tot(Λ) with the
same incoherence of d, so we set next(↑ d) := ↑ d′;

binary with: this case is impossible, because ←d x, as noted above, implies
�{ei(d)};

256 P. Tranquilli

par: we have →d0 x ←d1 the two premises of x, and as � {ei(d)}
and {ei(dj)} = πj{ei(d)}, we have �{ei(dj)} on both, and may set
next(↑ d) := ↑ dj for any of the two js;

tensor: we have →d0 x ←d1 , and as �{ei(d)}, one of the two projections
{ei(dj)} must be strictly hyperincoherent, and we may set next(↑ d) :=
↑ dj with such a j.

3. Let →d x. We have that x and all its adjacent edges are total, so x cannot
be an axiom, a contraction or a binary &. Again, let us proceed by cases.
leaf or unary additive: x →d′ , and trivially we can set next(↓ d) := ↓ d′;
par: →d x →d′ , and as �{ei(d)}, then �{ei(d′)}, and we set next(↓ d) =
↓ d′;

tensor: let →d x ←d′ , d′ the other premise of x, and x →d′′ ; if �{ei(d′′)},
then set next(↓ d) := ↓ d′′; otherwise, necessarily �{ei(d′)}, and we may
set next(↓ d) := ↑ d′.

We say that a path f0f1 · · · fk is admissible if it is built by an iteration of
next, i.e. fj+1 = next(fj), with its first edge f0 either a terminal one or also
an output of next, i.e. such that ∃f−1 | f0 = next(f−1).

Fact 9

– The composition φ :: ψ of two admissible paths φ and ψ is admissible;
– all admissible paths are strictly &-oriented and bounce-compatible between

them;
– in particular, an admissible path ending on one of its own nodes forms a

strictly &-oriented cycle.

Another non-deterministic function we will use is jump, which takes as input a
non-empty union S of admissible cycles (therefore a bounce-compatible union
of &-oriented cycles) and gives ↓ j, where j is a jump out of S as described by
Lemma 7. Notice that all jumps can always be outputted by next: they are
therefore admissible, and may be appended to an admissible path preserving
such property.

Finally, let W and S be variables for sequences of binary &s and unions of
admissible cycles. Wj (resp. Sj) will denote the j-th element of W (resp. S),
with W starting from 1 and S from 0, and both ending in k (we will always
use k for the size of W). The algorithm will build an admissible φ so that at
all times W are the &s in φ which are not in any cycle of S. In a way Wi will
be “in between” Si−1 and Si (Wi will be generated by jump(Si−1)). Also, the
algorithm will make it so that all &s touched at some time by φ are partitioned
by W and &s in

⋃
Sj .

The following is a schematic example of how the algorithm works. The aim is
that starting from the terminal edge f given by hypothesis the path φ eventually
ends on another one, the f ′ of the thesis. Suppose that following next we end
up in a cycle χ1. Applying jump to it, we can backtrack and jump to a & w1

outside it and keep going (at this point, we set W = 〈w1〉 and S = 〈χ1, ∅〉).
Now suppose the path cycles again, intersecting itself after w1, forming χ2. If

A Characterization of Hypercoherent Semantic Correctness in MALL 257

we applied jump to χ1 ∪χ2, it could answer the same jump to w1 it told before,
and it would be useless. In such a case we obtain w2 = jump(χ2), and if w2 is
“fresh” we set W = 〈w1, w2〉 and S =〉χ1, χ2, ∅〉. If then at a certain point we
end up again on φ before w1 (and w2) forming χ3 then we may safely collapse
the three cycles and apply jump to χ1∪χ2∪χ3 without risking a useless answer.
W becomes 〈w3〉, S = 〈χ1 ∪ χ2 ∪ χ3, ∅〉 (note w1, w2 are in it, so that we may
say that they are somehow “burnt” in this process).

Going back to the preliminary description of the algorithm, every time φ
arrives to a node x �∈ φ, we store in x the path φ as it is at that moment, calling
it the history of x. We are now ready to present the whole algorithm. Recall
that by hypotheses there is a terminal edge f such that �{ei(f)}, so we can
apply next to ↑ f . The target of φ is denoted by t(φ).

1. Start by setting φ := f , εd := ↑ f , W := 〈〉, S := 〈∅〉 (k := 0).
2. Repeat. . .

(a) If t(φ) ∈
⋃
Sj then t(φ) ∈ χ with χ a cycle. Let ψ be the smallest portion

of χ that starting from x crosses φ again. ψ = 〈〉 if t(φ) ∈ φ, and ψ = χ if
χ does not intersect φ elsewhere. Set φ := φ :: ψ (note that the following
condition will be automatically satisfied).

(b) If t(φ) ∈ φ then let χ be the cycle thus formed, and do the following
steps. . .
i. Let i be such that Wi is the last Wj strictly before t(φ) in φ if one

exists, i := 0 otherwise (note χ contains all Wj with j > i).
ii. Si :=

⋃k
j=i Sj ∪ χ, and erase from W and S all following elements

(in fact, set k := i).
iii. εd := jump(Si) = jump(Sk), and let c �d w (note that w �∈ Sk). Set

φ to the history of c, and then append d to it.
(c) . . . else, do the following.

i. If t(φ) ∈ &2(Λ), then set W := W :: t(φ) and S := S :: ∅ (and in
fact k := k + 1).

ii. εd := next(εd) and φ := φ :: d.
3. . . . until t(φ) is a conclusion.

Fact 10. The algorithm shown above always terminates.

Proof (sketch). One shows that the following measure strictly decreases for lex-
icographic ordering:

μ := (# &2(Λ)−# &2(
⋃
Sj)− k,# &2(Λ)−# &2(Sk ∪ {t(φ)}), |GΛ| − |φ|)

where &2(T) := &2(Λ)∩T and the size | | counts the edges. The component μ1

decreases strictly in step 2(c)i, else μ2 does it in step 2(b)iii, else μ3 does it in
step 2(c)ii.

Therefore the lemma is proved: if f ′ is the terminal edge with which φ ends,
then ↓ f ′ ∈ φ, and by the properties of next we have �{ei(f ′)}. ��

Theorem 11. If θ is a hypercorrect PS on a sequent Γ , then �θ� is a hyperclique
in �Γ � for every interpretation � �.

258 P. Tranquilli

Proof. Let � � be any interpretation, and let c ⊆∗<ω �θ�. By definition c =
{ e1(θ), . . . , en(θ) }. Suppose �= c, i.e. c is not a singleton. Then there is a conclu-
sion c of Γ such that �={ei(c)}. Either �{ei(c)} which implies �{ei(θ)}, or else
�{ei(θ)}, which by above Lemma 8 entails the existence of another conclusion c′

with �{ei(c′)} which also implies �{ei(θ)}. In any case, coherence of c is proved,
and therefore �θ� is a hyperclique. ��

3.3 Hyperincorrectness Implies Hyperincoherence

This section will prove Theorem 15, the analog of Retoré’s theorem. This will
be done using the following lemma, a sort of dual to Lemma 8.

Lemma 12. Let θ be a set of linkings over Γ , f1 and f2 two terminal edges,
and φ1, . . . , φk pairwise bounce-compatible and &-oriented paths in Gθ such that
every φi is either a cycle or a path starting with f1 and ending with f2. Suppose
at least one of the φjs is of the second kind, and &2(θ) ⊆

⋃
j φj. Then there

exist an interpretation � � and experiments e1, . . . , en such that �{ei(f1)}, and
�{ei(c)} for every terminal edge f �= f1, f2.

Proof. The interpretation we define is � �X, which maps all literals to a space X.
We give a sketch on how to define such a space and the experiments ei.

Fact 13. There is a hypercoherent space X and experiments e1, . . . , en relative
to � �X with n = max(#Λ, 2) such that

(E1) for each total axiom
 such that there is φj traversing it, let a be the axiom
edge under
 with ↑ a ∈ φj5: then �{ei(a)};

(E2) for each other total axiom we have ={ei(
)};
(E3) for each contraction leaf x, if f is the edge under it then �{ei(f)}.

Proof (sketch). The aim is to define an experiment ei on each λi (one sets λ1 = λ2

in the degenerate case #Λ = 1). E1 can be easily achieved if X contains at least
a strict coherent pair and a strict incoherent one, by making the experiments
give one or the other depending on the direction of the paths traversing such
an
 wrt duality. The problems come from E3, as there may be partial axioms
linking two contractions. These are solved by building an ad-hoc space X having
as web such partial axioms plus three distinguished points c, i, n (for coherent,
incoherent and neutral).

Fact 14. From properties E1–3 listed in Fact 13 we can deduce the following
ones:

(P1) for every d ∈ tot(Λ), if ∃d′ � d and j such that d′ ∈ φj, then �= {ei(d)},
i.e. it is not a singleton;

(P2) for every d ∈ tot(Λ), if ∀j : ↓ d �∈ φj , i.e. d is not traversed downward by
any φj , then �{ei(d)}.

5 Notice that this identifies a regardless of φj : if two of the paths traverse the axiom
�, they cannot do it in opposite direction because of bounce-compatibility.

A Characterization of Hypercoherent Semantic Correctness in MALL 259

Proof (sketch). The proof of P2 is done by an easy induction on the type of the
edge, by regarding what happens above it. In the tensor case bounce compati-
bility plays a central role in order to apply i.h. Binary additive cases are trivial:
for & the hypothesis never applies, for ⊕ the thesis always applies.

These two properties immediately entail the result, as by hypotheses ∀j : ↓ f1 �∈
φj and ∃j | f1 ∈ φj , so by P1 and P2 combined we have �{ei(f1)}. Again by
hypotheses for every f �= f1, f2 we have ↓ f �∈ φj for any j, so that P2 gives the
rest of the result. ��

With the above lemma at hand, we can easily prove the second main theorem
of this work. Note how we weaken the hypothesis without asking the resolution
condition (Definition 4).

Theorem 15. If θ is a set of linkings, and for every � � we have that �θ� is a
hyperclique, then θ is hypercorrect.

Proof (sketch). One shows that if θ is invalidated by a union S of cycles in
GΛ then one can build hyperincoherent experiments on Λ, by an induction on
the number of links in GΛ. One disassembles GΛ one terminal link at a time,
until one arrives to break S by taking out a ⊗. This makes the structure fall
into the hypotheses of Lemma 12, and the result easily follows by the law of
hypercoherence on ⊗.

4 Compendium

Equivalent criterions. We define the partial contractions as the set
pcontr(Λ) :=

⋃
λ,μ∈Λ contr({λ, μ}), and the graph G

p
Λ with jumps from pcontr(Λ)

with the same rule. In fact contr(Λ) ⊆ pcontr(Λ) and G
p
Λ =

⋃
λ,μ∈Λ G{λ,μ}, with

jumps identified iff they have same target and same source.

Proposition 16. Hypercorrectness (Definition 5) is equivalent to having any
number of its parts substituted in the following ways.

1. bounce-compatibility can be strengthened with plain compatibility, i.e. φ and
ψ are compatible iff whenever e ∈ φ∩ψ then φ and ψ traverse e in the same
direction;

2. &-orientedness can be strengthened with strict &-orientedness (defined on
page 255);

3. the condition asking the presence of w ∈ &2(Λ) outside S can be strengthened
to be the presence of w ∈ &2(Λ) ∩ tot(Λ) outside S,

4. the graph G
p
Λ can replace GΛ.

Comparison with sequentializability. For Λ ⊆ θ, let GHvG
Λ be the correctness graph

of Λ as defined in [8]. The only difference is where jumps are drawn from. In GHvG
Λ

one adds to G′Λ a jump a � w for every a leaf such that there are λ
w
� – μ with an

axiom
 ∈ λ \ μ above a. Then the MIX-sequentializability criterion [8] is

∀Λ ⊆ θ : ∃w ∈ &2(Λ) | w is in no switching cycle of GHvG
Λ . (HvG)

260 P. Tranquilli

This form is clearly equivalent to asking that each union of switching cycles has
a & outside it. We can directly infer hypercorrectness from the HvG criterion.

Proposition 17. Every sequentializable PS is hypercorrect.

Proof (sketch). A direct proof can be given by translating each strictly &-
oriented cycle in GΛ into one in GHvG

Λ containing the same &s. Each jump in
GΛ can be substituted with at least a path not intersecting the cycle and going
from the contraction to a leaf jumping to the same & in GHvG

Λ .

There is also a restating of the HvG criterion using jumps of G
p
Λ, though the

not so trivial proof of equivalence is beyond our scope here, and will be detailed
in future work. This may lead to employ “cleaner” correctness graphs, having
in general fewer jumps, and could possibly open the way for a richer syntax
(non-η-expanded proof nets, second order and/or exponential boxes).

Cut reduction. The study of the computational significance of hypercorrectness
is left for future work. The main point is to give a good definition of jumps
in the presence of cuts and prove stability under cut reduction. Already in the
context of the HvG criterion, the latter is very delicate. One will probably have to
tweak the criterion via its equivalent versions. Clearly this issue is now the most
important one for this criterion. One expects, as it happens for visible acyclicity
in [13] or for the PCF variants of [15,14], that such a semantic correctness is not
just a static characterization but also has a dynamic content, possibly shedding
light on new computational aspects of both syntax and semantics.

Acknowledgements. The author would like to especially thank Michele Pagani
for the exhausting but exhaustive conversations on the topic. Thanks also to
Paul-André Melliès for insightful conversations, and to Lorenzo Tortora de Falco
and Antonio Bucciarelli for their helpful hints.

References

1. Abramsky, S., Melliès, P.-A.: Concurrent games and full completeness. In: LICS,
pp. 431–442. IEEE Computer Society Press, Los Alamitos (1999)

2. Blute, R., Hamano, M., Scott, P.J.: Softness of hypercoherences and MALL full
completeness. Ann. Pure Appl. Logic 131(1-3), 1–63 (2005)

3. Bucciarelli, A., Ehrhard, T.: Sequentiality and strong stability. In: LICS, pp. 138–
145. IEEE Computer Society Press, Los Alamitos (July 1991)

4. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28, 181–203 (1989)

5. Ehrhard, T.: Hypercoherence: A strongly stable model of linear logic. In: Advances
in Linear Logic, pp. 83–108. Cambridge University Press, Cambridge (1995)

6. Girard, J.-Y.: Linear logic. Th. Comp. Sc. 50, 1–102 (1987)
7. Girard, J.-Y.: Proof-nets: the parallel syntax for proof-theory. In: Logic and Alge-

bra. Lecture Notes in Pure and Appl. Math, vol. 180, pp. 97–124 (1996)
8. Hughes, D., van Glabbeek, R.: Proof nets for unit-free multiplicative-additive linear

logic. In: LICS, pp. 1–10. IEEE Computer Society Press, Los Alamitos (2003)

A Characterization of Hypercoherent Semantic Correctness in MALL 261

9. Laurent, O., de Falco, L.T.: Slicing polarized additive normalization. In: Linear
Logic in Computer Science, pp. 247–282 (2004)

10. Melliès, P.-A., Mimram, S.: Asynchronous games without alternation (submitted,
2008)

11. Pagani, M.: Acyclicity and coherence in multiplicative and exponential linear logic.
In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 531–545. Springer, Heidelberg
(2006)

12. Pagani, M.: Proof nets and cliques: towards the understanding of analytical proofs.
PhD thesis, Università Roma Tre / Université Aix-Marseille II (April 2006)

13. Pagani, M.: Visible acyclic nets: between interaction and semantics (in preparation,
2008)

14. Paolini, L.: A stable programming language. Inf. Comput. 204(3), 339–375 (2006)
15. Plotkin, G.D.: Lcf considered as a programming language. Theor. Comput.

Sci. 5(3), 225–255 (1977)
16. Retoré, C.: A semantic characterisation of the correctness of a proof net. Mathe-

matical Structures in Computer Science 7(5), 445–452 (1997)

An Indexed System for

Multiplicative Additive Polarized Linear Logic

Masahiro Hamano1,� and Ryo Takemura2

1 National Institute of Informatics, Tokyo 101-8430, Japan
and SFC Research Institute, Fujisawa 252-8520, Japan

hamano@jaist.ac.jp
2 Department of Philosophy, Keio University, Tokyo 108-8345, Japan

takemura@abelard.flet.keio.ac.jp

Abstract. We present an indexed logical system MALLP(I) for Lau-
rent’s multiplicative additive polarized linear logic (MALLP) [14]. The
system is a polarized variant of Bucciarelli-Ehrhard’s indexed system
for multiplicative additive linear logic [4]. Our system is derived from
a web-based instance of Hamano-Scott’s denotational semantics [12] for
MALLP. The instance is given by an adjoint pair of right and left multi-
pointed relations. In the polarized indexed system, subsets of indexes
for I work as syntactical counterparts of families of points in webs. The
rules of MALLP(I) describe (in a proof-theoretical manner) the denota-
tional construction of the corresponding rules of MALLP. We show that
MALLP(I) faithfully describes a denotational model of MALLP by es-
tablishing a correspondence between the provability of indexed formulas
and relations that can be extended to (non-indexed) proof-denotations.

1 Introduction

In their study of logical relations and the denotational completeness of linear
logic (LL), Bucciarelli and Ehrhard [4] introduced an indexed system MALL(I)
for multiplicative additive linear logic (MALL). In their sequel [5], this system was
extended into full fragment LL(I). The status of this indexed syntactical system is
noteworthy as it stems from relational semantics Rel, which is one of the simplest
denotational semantics for LL. Bucciarelli-Ehrhard’s indexed system is designed
so that each formula corresponds to a relation and each logical rule corresponds
to a denotational interpretation of the corresponding rule in LL. The crucial
ingredient for this correspondence is the domains of formulas: Each formula A
of the indexed system is equipped with a domain d(A) which enumerates the
locations of points in the corresponding relation on |A|. Their indexed system
enjoys basic property, which establishes a relationship between the provability of
indexed formulas and the sub-definability of the corresponding relations in the
denotational semantics of LL. Later A. Bruasse-Bac [3] extended the indexed

� The first author is supported by Grant-in-Aid for Scientific Reserach (C) (19540145)
of JSPS.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 262–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Indexed System for Multiplicative Additive Polarized Linear Logic 263

system to the second order by adapting relational semantics to Girard’s objects
of variable type.

Another logical framework in which locations play a key role is that of Girard’s
ludics [11]. In ludics one abstracts locations, where syntactical formulas give its
occurrences through construction of proofs. Several similarities (though not rig-
orous) have been noticed with the indexed system discussed above. Among them,
one observes a common idea in the underlying hypersequentialized calculus [10] on
which ludics is founded. In the hypersequenatialized calculus, which is a variant
of MALL, each formula is equipped with a coherent space (rather than the more
primitive notion of relation), and each inference rule is defined in terms of the con-
struction of cliques for the equipped spaces. While sharing such similar syntacti-
cal construction with reflecting semantics, the key ingredient, peculiar to ludics, is
polarity (see [11]). Polarity was introduced by Girard [8]. Through Laurent’s for-
malization of polarized linear logic LLP [14], polarity turns out to be an important
parameter controlling linear proof-theory. Most fundamentally, polarity enables
categorization of Andreoli’s [1] dual properties of focalization and reversibility of
connectives for proof-search in LL. In polarized linear logic, reversible and focus-
ing connectives are characterized simply as negative and positive. As is the case
with ludics, polarity is also a crucial tool for handling locations game-theoretically.
Laurent [15] establishes how polarity dominates game-theoretical computational
models arising from LL. Polarity and locations are becoming a crucial tandem for
understanding the computational meaning of LL.

Given the above, a natural question arises: Is there any polarized variant of
Bucciarelli-Ehrhard’s indexed system that naturally accommodates polarity in
its indexes? The existence of such a system would guarantee that polarity is a
stable core controlling both syntax and semantics uniformly, whose combination
is at the heart of indexed systems. In this paper, we answer this question af-
firmatively by presenting an indexed system MALLP(I) for the multiplicative
additive fragment MALLP [14] of Laurent’s LLP. Our indexed system is de-
signed by means of multi-pointed relational semantics, a web-based instance of
Hamano-Scott’s denotational semantics [12] for MALLP. The cornerstone of our
multi-pointed relational semantics is a pair of contravariant categories PRell
and PRelr. Left (resp. right) multi-pointed relational semantics PRell (resp.
PRelr) consist of multi-pointed sets (i.e., sets with distinguished multi-points)
and of relations preserving the distinguished elements from left (resp. from right).
Polarity shifting operators are then interpreted as a pair of adjoint functors be-
tween the contravariant pair. In addition to the adjunction, the usual relations
provide bimodule R̂el so that it is closed under left (resp. right) compositions
from PRelr (resp. PRell). Being a polarized variant of Rel, our framework
(〈 PRell, PRelr〉, R̂el) provides one of the simplest denotational semantics for
MALLP.

Our MALLP(I), designed from multi-pointed relational semantics, is a polar-
ized variant of Bucciarelli-Ehrhard’s MALL(I): the usual multiplicative additive
rules for the former coincide with those for the latter under the polarity con-
straint. It is remarkable that in our MALLP(I) there arise, corresponding to ↓,

264 M. Hamano and R. Takemura

parameterized ↓K-rules with subsets K’s of I. Each ↓K-rule comes equipped
with a side condition on domains by reflecting the corresponding categorical
adjunction. In MALLP(I) polarity behaves compatibly with indexes since focus-
ing/reversible properties are captured by indexed positive/negative connectives.
MALLP(I) formulas correspond bijectively to relations arising in our relational
denotational semantics. The main goal of this paper is to establish a basic prop-
erty (Theorem 1), that is a polarized version of Bucciarelli-Ehrhard’s property
established in [4]. This basic property states that a family of points is contained
in a (denotation of) MALLP proof if and only if the corresponding MALLP(I)
formula is provable in the indexed system.

2 Multi-pointed Relational Semantics for MALLP

In this section, we introduce multi-pointed relational semantics, which is a variant
of relational semantics. Multi-pointed relations are shown to provide a simple de-
notational semantics for polarized multiplicative additive linear logic (MALLP).
(See [14] for the syntax of MALLP.) This is a polarized analogy of the category
Rel of relations, which, as is well-known, provides one of the simplest denota-
tional semantics for usual multiplicative additive linear logic (MALL) (see [5,2]
for Rel). Let us begin by defining a pair of categories PRelr and PRell of
right and left multi-pointed relations. The right/left pair corresponds to nega-
tive/positive polarity of MALLP.
Notation: When X and Y are sets, we denote by X × Y the cartesian product
of them; and by X + Y the disjoint union of them, i.e., {1} ×X ∪ {2} × Y .

Definition 1 (PRelr and PRell). The categories PRelr of right-multi-
pointed relations and PRell of left-multi-pointed relations are defined as follows:

An object A is a pair (|A|,mp(A)), where |A| is a set called the web of A, and
mp(A) is a finite subset of |A|. Moreover if |A| �= ∅, then mp(A) �= ∅. Each
element of mp(A) is called a distinguished element of A.
A morphism from A to B is a relation R ⊆ |A| × |B| which satisfies

mp(A) = R[mp(B)] for PRelr
[mp(A)]R = mp(B) for PRell

where, for sets X ⊆ |A| and Y ⊆ |B|, and for a relation R ⊆ |A| × |B|,

R[Y] = {a | ∃b ∈ Y, (a, b) ∈ R} and [X]R = {b | ∃a ∈ X, (a, b) ∈ R}.

Compositions for each category are relational so that given R : A → B and
S : B → C, S ◦ R = {(a, c) | ∃b ∈ B, (a, b) ∈ R and (b, c) ∈ S} : A → C. This
composes in each categories because it holds that R[S[mp(C)]] = (S ◦R)[mp(C)]
and [[mp(A)]R]S = [mp(A)](S ◦R).

There are obviously forgetful functors | | both from PRelr and PRell to
the category Rel of relations.

An Indexed System for Multiplicative Additive Polarized Linear Logic 265

The two categories PRell and PRelr are contravariantly equivalent. This is
given by ()⊥, which leaves the objects invariant but reverses the relations and
compositions:

()⊥ : (PRelr)op 8 PRell

Starting from the contravariantly equivalent pair, we give a denotational seman-
tics for polarized MALL by the following Definition 2. See Section 3 and Definition
A.1 in Hamano-Scott [12] for the definition of categorical semantics for MALLP.
Note that, in the following, their general framework based on Definition A.1 is
adapted so that bimodules play a role between the two categorical pair. See also
Cockett-Seely [6] for bimodules in polarized category. Our bimodule may be seen
as a concrete instance of Example 3.0.2 of [6].

Definition 2 (Polarity-changing functors and bimodule)

− The functors ↑ and ↓ are defined as follows:

↓ : PRell −→ PRelr (1)
↑ : PRelr −→ PRell (2)

(On objects) |↓A| = |↑A| = {∗}+ |A| with mp(↓A) = mp(↑A) = {∗},
(On morphisms) Given a morphism R ⊆ |A| × |B|,

↓R := ↑R := R+ {(∗, ∗)},

which are morphisms of ↓A → ↓B and of ↑A → ↑B.
The unique element of mp(↓A) (resp. mp(↑A)) is often denoted by ∗↓ (resp. by
∗↑) to stress that the distinguished point arises to interpret the ↓ (resp. the ↑).
The above definition yields the strict form (↓N)⊥ = ↑N⊥ and (↑P)⊥ = ↓P⊥ of
De Morgan duality between ↓ and ↑.

Note that the functors (1) and (2) factor through | | to Rel by inducing the
functors from Rel respectively to PRelr and to PRell. By abuse of notation,
the induced functors are also denoted by ↓ and ↑, respectively. See the diagram
depicting Lemma 1 below, where the clockwise and the anticlockwise triangles
show the factorizations.
− A bimodule R̂el(P,N) consists of maps of the form P → N for object P ∈
PRelr and N ∈ PRell so that they are closed under left (respectively, right)

composition of morphisms from PRell (respectively from PRelr). A bimodule
is thus characterized by a profunctor:

R̂el(−,−) : (PRelr)op × PRell → Set

so that each instantiation determines a set of these maps. We define

R̂el(P,N) = Rel(|P |, |N |) (3)

That is, the maps P → N consist of usual relations of P → N (i.e., of morphism
of Rel).

266 M. Hamano and R. Takemura

Then the bimodule obviously satisfies:

R̂el(1, P⊥ ×N) ∼= R̂el(P,N)

where 1 is an object of PRelr such that |1| = {∗} and × is the cartesian
product of Rel for objects of PRell.

Finally, the following series of adjunctions are crucial in order to obtain a
polarized category:

Lemma 1 (Adjunctions). The following adjunctions hold:

PRell �
↑
�

�↓
PRelr

�
�

���| |
�

�
�

���
↑

Rel
�

�
���

↓
�

�
�

��	
| |

That is, for every object P ∈ PRelr and N ∈ PRell, there are natural iso-
morphisms

PRell(↑P,N) ∼= R̂el(P,N) ∼= PRelr(P, ↓N) (4)

Proof. We show the right-isomorphism (dually for the left). Let R ∈PRelr(P, ↓N).
Since R is right-multi-pointed, we have mp(P) = R[mp(↓N)], which implies that
if (a, ∗↓) ∈ R then a ∈ mp(P) and that ∀p ∈ mp(P), (p, ∗↓) ∈ R. Hence, R

is written as {(p, ∗↓) | p ∈ mp(P)} ∪ R′ for a unique R′ ∈ R̂el(P,N). The
correspondence from R to R′ is bijective and gives the natural isomorphism.

Proposition 1 (Multi-pointed relational model for MALLP). The pair
〈 PRell, PRelr〉 together with the module R̂el forms a polarized category, and
hence a denotational semantics for MALLP. This polarized category is denoted
by (〈 PRell, PRelr〉, R̂el).

The categorical framework presented so far yields the following interpretation of
formulas and of proofs of MALLP.

Definition 3 (Interpretation of MALLP formulas). Positive (resp. negative)
formulas A of MALLP are interpreted by objects (|A|,mp(A)) in PRelr (resp.
in PRell):

− |1| = {∗}, |⊥| = {∗} and mp(1) = mp(⊥) = {∗}.
− |�| = |0| = ∅ and mp(�) = mp(0) = ∅.
− |P ⊗Q| = |P | × |Q|, |M ..

............
................................. N | = |M | × |N | and mp(X ⊗ Y) = mp(X ..

............
................................. Y) =

mp(X)×mp(Y).
− |P ⊕Q| = |P |+ |Q|, |M &N | = |M |+ |N | and mp(X ⊕ Y) = mp(X & Y) =

mp(X) + mp(Y).
− |↑P | = {∗}+ |P |, |↓N | = {∗}+ |N | and mp(↓N) = mp(↑P) = {∗}.

An Indexed System for Multiplicative Additive Polarized Linear Logic 267

Definition 4 (Interpretation of proofs). Every MALLP-proof π is inter-
preted in (〈PRell,PRelr〉, R̂el) by π∗, which is a map either in PRelr or in
R̂el depending on whether the end sequent contains a positive formula or not,
respectively.

Rules for the usual linear logic are the same as [4]. In the following, for a sequence
M of negative formulas N1, . . . , Nn, the sequence M (resp. M⊥) is identified
with the object N1

..
............
................................. · · · ... Nn of PRell (resp. N⊥1 ⊗ · · · ⊗N⊥n of PRelr).

− When π is 0 P⊥, P , we define π∗ = {(a, a) | a ∈ |P |} ∈ PRelr(P, P)

− When π is
π1

0 Δ,N
π2

0 Λ,N⊥
0 Δ,Λ cut

, we define

π∗ = {(δ, λ) | ∃a, (δ, a) ∈ π∗1 and (λ, a) ∈ π∗2}

Since π∗2 is always a map in PRelr, π∗ is a map either in PRelr or in R̂el,
depending on whether Δ contains a positive formula or not, respectively.

− When π is
π1

0 M, N

0M, ↓N
↓ , we define

π∗ = π∗1 ∪ {(p, ∗↓) | p ∈ mp(M)} ∈ PRelr(M⊥, ↓N)

π∗ is obtained from π∗1 ∈ R̂el(M⊥, N) by the right adjunction of (4).

− When π is
π1

0 M, P

0M, ↑P
↑ , we define π∗ = π∗1 ∈ R̂el(M⊥, ↑P).

π∗ is obtained from π∗1 ∈ PRelr(M⊥, P) by composing η : P → ↑P , which
is the unit of the left adjunction of (4); i.e., η = {(p, p) | p ∈ |P |}. Note that
the composition of η acts identically on morphisms.

Our simple interpretation above provides a nice framework for discriminating
the two proofs of Example 1 below.

Example 1 (Denotations of proofs in (〈 PRell, PRelr〉, R̂el)). Let us consider
a MALLP-sequent 0 ↑↓↑1, ↑↓⊥ and two different proofs π1 and π2 for this:

π1 =

� 1,⊥
� ↑1,⊥

↑

� ↓↑1,⊥
↓

� ↑↓↑1,⊥
↑

� ↑↓↑1, ↓⊥
↓

� ↑↓↑1, ↑↓⊥
↑

{(1, B)}
{(1, B)}

{(↓a, B), (1, B)}
{(↓a, B), (1, B)}

{(↑a, ↓c), (↓a, B), (1, B)}
{(↑a, ↓c), (↓a, B), (1, B)}

π2 =

� 1,⊥
� ↑1,⊥

↑

� ↑1, ↓⊥
↓

� ↑1, ↑↓⊥
↑

� ↓↑1, ↑↓⊥
↓

� ↑↓↑1, ↑↓⊥
↑

{(1, B)}
{(1, B)}

{(↑b, ↓c), (1, B)}
{(↑b, ↓c), (1, B)}

{(↓a, ↑c), (↑b, ↓c), (1, B)}
{(↓a, ↑c), (↑b, ↓c), (1, B)}

The right-hand side of each subproof designates its interpretation, where we
take |↑↓↑1| = {↑a, ↓a, ↑b, 1} and |↑↓⊥| = {↑c, ↓c, B} so that ↓a = ↑c, ↑b = ↓c and
1 = B. As is seen above, the two proofs π1 and π2 are interpreted by different
relations.

268 M. Hamano and R. Takemura

3 Indexed Multiplicative Additive Polarized Linear Logic
MALLP(I)

In this section, we present an indexed logical system MALLP(I), which is a con-
servative extension of MALLP. The syntactical system MALLP(I) arises from our
multi-pointed relational semantics for MALLP, presented in Section 2. Each rule
of MALLP(I) is designed so that it describes the denotational construction of the
corresponding rule of MALLP in (〈 PRell, PRelr〉, R̂el). Our design is inspired
by Bucciarelli-Ehrhard’s system [4] of MALL(I), just as their system stems from
the denotational semantics Rel for MALL. By reflecting the adjunctions of the
polarized category of Section 2, our polarity shifting rule ↓K for each K ⊆ I is
accompanied by a certain side condition. Let us begin by defining formulas of
MALLP(I).

Let I be an index set which is fixed, once and for all. Each formula A of
MALLP(I) is associated with a set d(A) ⊆ I, called the domain of A.

Definition 5 (Formulas and domains). Positive and negative formulas of do-
main J (denoted simply as PJ and NJ , respectively) are defined by the following
grammar: For any sets J,K,L ⊆ I such that K ∩ L = ∅,

PJ ::= 1J | 0∅ | PJ ⊗ PJ | PK ⊕ PL | ↓KNL (positive formula)
NJ ::= ⊥J | �∅ | NJ

..
............
................................. NJ | NK &NL | ↑KPL (negative formula)

Note that, in contrast to the MALL connectives ⊗, ... ,⊕,&, the polarity shifting
connectives ↓K and ↑K are provided for each K to have their own domains. To
be precise, ↓KN and ↑KP are defined as follows (the other connectives are the
same as those in [4]):

- For each K ⊆ I, we introduce two new connectives ↓K and ↑K , both of which
have K as their domains, i.e., d(↓K) = d(↑K) = K.
- For L ⊆ I disjoint with K, if N is a negative formula with d(N) = L, then
↓KN is a positive formula with d(↓KN) = K + L.
- For L ⊆ I disjoint with K, if P is a positive formula with d(P) = L, then ↑KP
is a negative formula with d(↑KP) = K + L.

For any MALLP(I)-formula A with d(A) = J , we define its negation A⊥ with
d(A⊥) = J in the usual way, using the De Morgan duality for MALLP-formulas.
A J-sequent is an expression of the shape 0J Δ where Δ is a (possibly empty)
sequence of MALLP(I)-formulas of domains J (denoted as d(Δ) = J).

Definition 6 (Restriction). For a MALLP(I)-formula A with d(A) = J , and
for K ⊆ I, we define the restriction of A by K, denoted by A�K , which is a
MALLP(I)-formula of domain J ∩K as follows:

- �∅�K= �∅ and 0∅�K= 0∅;
- ⊥J�K= ⊥J∩K and 1J�K= 1J∩K ;
- (P ⊗Q)�K= P�K ⊗Q�K, (N ...

............
.................................. M)�K= N�K

...
............
.................................. M�K , (P ⊕Q)�K= P�K ⊕Q�K ,

(N &M)�K= N�K &M�K , (↑JP)�K= ↑J∩KP�K , and (↓JN)�K= ↓J∩KN�K .

An Indexed System for Multiplicative Additive Polarized Linear Logic 269

Trivially A⊥�K= (A�K)⊥. If Δ is a sequence of MALLP(I)-formulas A1, . . . , An

of domains J , we define Δ�K= A1�K , . . . , An�K so that d(Δ�K) = d(Δ) ∩K.
In order to introduce polarity shifting rule ↓K for MALLP(I), we give the

following definition:

Definition 7 (d(∂M)). For a sequence M of negative formulas, the domain
d(∂M), which is a subset of d(M), is defined as follows:
First let †1, . . . , †n denote all the outermost ↑’s ofM and all the ⊥’s outside any
scope of polarity shifting operators. Then M is written as M[†1P1, . . . , †nPn],
where Pm is a positive formula (empty if †m is ⊥) and M[∗1, . . . , ∗n] is an
expression made from ∗1, . . . , ∗n by applying only negative connectives ...

............
.................................. and

&. Note that each comma ofM is identified with ...
............
.................................. . We define

d(∂M) := |M|[d(†1), . . . , d(†n)],

where |M| is the (set-theoretical) expression resulting from the expression
M[∗1, . . . , ∗n] by replacing ..

............
................................. and & respectively with ∩ and ∪. Obviously

d(∂M) ⊆ d(M) since d(M) = |M|[d(†1P1), . . . , d(†nPn)].

Remark 1 (d(∂M) for distributed M). By distributing ...
............
.................................. over &, every M is

rewritten as M1 & · · · & Mn so that each Mi is ..
............
................................. (†ijPij). Then we can more

directly define d(∂M) =
⋂

j d(†1j) + · · ·+
⋂

j d(†nj).

We introduce the inference rules of MALLP(I), which consist of the polarity shift-
ing rules on top of Bucciarelli-Ehrhard’s rules [4] of MALL(I) with the polarity
constraint.

Definition 8 (Inference rules of MALLP(I)). Inference rules of MALLP(I)
are defined as follows (the exchange rule is left implicit):

Axioms1 and cut:

0J 1J 0∅ Δ,�∅
0J Δ,N 0J Λ,N⊥

0J Δ,Λ
cut

For �-axiom 0∅ Δ,�∅, its context Δ contains at most one positive formula.
Multiplicative rules:

0J Δ
0J Δ,⊥J

⊥J
0J Δ,P 0J Λ,Q
0J Δ,Λ, P ⊗Q

⊗
0J Δ,N,M
0J Δ,N

..
...........
.................................. M

...
............
..................................

Additive rules:
0J Δ,P

0J Δ,P ⊕Q
⊕1

0J Δ,P
0J Δ,Q⊕ P

⊕2
0J Δ�J , N 0K Δ�K ,M
0J+K Δ,N &M

&

For ⊕1-,⊕2-rules, observe that Q has to have the empty domain.
For &-rule, it is assumed that d(N) = J and d(M) = K with J ∩K = ∅, and
that d(Δ) = J +K.
1 MALLP(I) has no propositional variables, and every formula consists of constants.

Hence, the usual identity axiom is derivable in Lemma 2.

270 M. Hamano and R. Takemura

Polarity shifting rules:

(↑-rule)
0J Δ,P
0J Δ, ↑∅P

↑

(↓K-rule) For every K ⊆ I such that J ∩K = ∅,

0J M�J , N
0K+J M, ↓KN

↓K with K ⊆ d(∂M) (5)

↓K-rule is applicable only when the side condition is satisfied. This condition is
a syntactical description of the adjunctions (4) of Section 2. (See Proposition 2
bellow.)

Remark 2 (MALLP ≺ MALLP(I)). For each inference rule of MALLP(I), if the
conclusion sequent is of the domain ∅, then so is the premise sequent(s). Thus,
the rules for sequents of the empty domain are identified with the standard rules
of MALLP. Moreover, every MALLP(I)-proof σ for 0∅ Δ contains only sequents
of the empty domain. Hence σ is considered as a MALLP-proof for 0 Δ. Thus
MALLP(I) is a conservative extension of MALLP.

The following lemmas hold in the same way as in [4].

Lemma 2 (Identity). 0J A,A⊥ is provable for any MALLP(I)-formula A of
domain J .

Lemma 3 (Restriction). If 0J Δ is provable, then so is 0J∩K Δ�K for any
K ⊆ I.

In Laurent’s original polarized linear logic MALLP [14], positive/negative po-
larities classify the dual proof-theoretical properties for connectives: reversible
connectives ...

............
.................................. ,&, ↓ for negative formulas and focusing connectives ⊗,⊕, ↑ for

positive formulas. Our MALLP(I) retains the dual properties, as expected.

Lemma 4 (Focalized sequent property). If 0J Δ is provable in MALLP(I),
then Δ contains at most one positive formula.

Lemma 5 (Reversibility). {... ,&, ↓K}-rule is reversible. That is, if the con-
clusion sequent of {... ,&, ↓K}-rule is provable, then so is the premise sequent.

Proof. We prove ↓K-rule. (The other rules are immediate.) Suppose �K+J M, ↓KN

is provable. Then Lemma 3, by restricting the domain of the sequent to (K+J)∩J ,
implies that 0J M�J , ↓∅N is provable. On the other hand, 0J N⊥, N is provable
by Lemma 2. Thus we have the following proof of 0J M�J , N :

0J M�J , ↓∅N
0J N⊥, N
0J ↑∅N⊥, N

↑

0J M�J , N
cut

An Indexed System for Multiplicative Additive Polarized Linear Logic 271

Let us see, by the following example, how the side condition of ↓K-rule is applied.
For its denotational characterization, see Proposition 2.

Example 2 (↓K-rule and the side condition). Let us consider the following prov-
able sequent of domain {1, 2, 3, 4}:

0 ↑{1}1{2} & ↑{3}1{4} , ↓{1,3}⊥{2,4}

Let us search for a proof of the sequent. It is possible to apply ↓{1,3}-rule because
the side condition is satisfied: d(↓{1,3}) ⊆ d(∂(↑{1}1{2}& ↑{3}1{4})) = {1}∪{3}.
Then we obtain 0 (↑{1}1{2} & ↑{3}1{4})�{2,4} , ⊥{2,4}, which coincides with
0 ↑∅1{2}&↑∅1{4} , ⊥{2,4}. Then by applying a &-rule and then ↑-rules, we have
the following proof σ (the braces {, } of domains are omitted for simplicity):

σ =

� 12 , ⊥2

� ↑∅12 , ⊥2
↑

� 14 , ⊥4

� ↑∅14 , ⊥4
↑

� ↑∅12 & ↑∅14 , ⊥2,4
&

� ↑112 & ↑314 , ↓1,3⊥2,4

↓1,3

Let us consider another example by modifying the domains of the above exam-
ple: 0 ↑{1}1∅&↑∅1{2} , ↓{1,2}⊥∅. This sequent is shown to be unprovable by the
cut-elimination (Corollary 1): first, ↓{1,2}-rule is not applicable since the sequent
fails to satisfy the side condition: d(↓{1,2}) �⊆ d(∂(↑{1}1∅ & ↑∅1{2})) = {1} ∪ ∅.
Therefore, the last rule must be:

� ↑11∅ , ↓1⊥∅ � ↑∅12 , ↓2⊥∅

� ↑11∅ & ↑∅12 , ↓1,2⊥∅
&

Although the left premise sequent is provable, the right premise sequent is not:
By Lemma 4 the last rule must be ↓{2}-rule, which is not applicable because of
the violation of the side condition: d(↓{2}) �⊆ d(∂(↑∅1{2})) = ∅.

The formulas of indexed system MALLP(I) are designed so that the domain of
each formula indicates (syntactically) a family of points, thus a relation, in the
multi-pointed relational semantics of Section 2. Hence, there is a bijective corre-
spondence between MALLP(I)-formulas and families of points in the webs for the
corresponding MALLP-formulas. Let us describe this correspondence precisely.
Notation: For a ∈ XJ and j ∈ J , aj denotes the j-th element of a. For a ∈ XJ

and b ∈ Y J , we denote by a×b the element of (X×Y)J given by (a×b)j = (aj , bj)
for each j ∈ J . If K,L ⊆ I are disjoint and if a ∈ XK and b ∈ Y L, we denote by
a+ b the element of (X + Y)K+L defined by case; (a + b)k = ak if k ∈ K; and
(a+ b)l = bl if l ∈ L. For J ⊆ I, we denote by (c)J the J-indexed family of the
constant c, i.e., the unique element of {c}J .

Definition 9 (Translation of MALLP-formulas). To any MALLP-formula A,
and any family a ∈ |A|J , we associate a MALLP(I)-formula A〈a〉 of domain J
inductively as follows:

We here treat only ↓N and ↑P . (The other connectives are the same as in [4].)

272 M. Hamano and R. Takemura

− If A ≡ ↓N , then a = (∗↓)K + b with the family (∗↓)K ∈ {∗↓}K and b ∈ |N |L
such that K+L = J . Then we set A〈a〉 = ↓KN〈b〉, which is a MALLP(I)-formula
of domain J .
− If A ≡ ↑P , then a = (∗↑)K + b with the family (∗↑)K ∈ {∗↑}K and b ∈ |P |L
such that K+L = J . Then we set A〈a〉 = ↑KP 〈b〉, which is a MALLP(I)-formula
of domain J .

If Δ = A1, . . . , An is a sequence of MALLP-formulas, we define |Δ| = |A1| ×
· · ·×|An|. If γ ∈ |Δ|J , then, using our usual notational conventions, we can write
γ = γ1 × · · · × γn with γm ∈ |Am|J , and we set Δ〈γ〉 = A1〈γ1〉, . . . , An〈γn〉.

We have the following lemma, which will be used to prove Proposition 3.

Lemma 6. Let 0 Δ be a sequent in MALLP and let γ ∈ |Δ|J . Let K ⊂ I. Let
γ�J∩K be the restriction of γ to J ∩K. Then Δ〈γ�J∩K〉 = Δ〈γ〉�K .

The following Lemma 7 ensures that the correspondence given in Definition 9 is
bijective to the MALLP(I)-formulas:

Lemma 7. If A is a MALLP(I)-formula of domain J and A�∅ is the correspond-
ing MALLP-formula, there is a unique family a ∈ |A�∅ |J such that A = A�∅ 〈a〉.

For a typographical convenience, a MALLP-formula A�∅ and a sequent M�∅ are
sometimes denoted by A and M, respectively.

We see the above bijective correspondence by the following example.

Example 3 (MALLP(I)-formula as a relation). Let us consider the MALLP(I)-
sequent 0 ↑{1}1{2}&↑{3}1{4} , ↓{1,3}⊥{2,4} of Example 2. We determine the cor-
responding family γ ∈ |↑1& ↑1, ↓⊥|{1,2,3,4} as follows: Let us represent the webs
|↑1 & ↑1| = {↑a, 1a, ↑b, 1b} and |↓⊥| = {↓c, Bc}. The representation designates
the correspondence between components of formulas and points. We determine
γ1 as follows: Since it is the domains of ↑{1} and ↓{1,3} that contain the index 1,
γ1 is a pair (↑a, ↓c) of the corresponding points to ↑{1} and ↓{1,3}. Similar calcula-
tions for γ2, γ3, γ4 yield γ1 = (↑a, ↓c), γ2 = (1a, Bc), γ3 = (↑b, ↓c), γ4 = (1b, Bc).
In fact, γ happens to be the denotation of the MALLP-proof, which is obtained
from MALLP(I)-proof σ of Example 2 by forgetting all the domain symbols.

By means of the above bijective correspondence, the side condition of ↓K-rule
turns out to be a syntactic counterpart of multi-pointedness of relations:

Proposition 2 (Semantical characterization of the side condition of
↓K-rule). Let J and K be disjoint subsets of I. LetM be a sequence of negative
formulas of domain K + J , and N be a formula of domain J in MALLP(I). Let
γ × a ∈ |(M, ↓N)|K+J be the family of points associated with (M, ↓KN). Then
the following two conditions are equivalent:

1. K ⊆ d(∂M)
2. γ × a is right-multi-pointed, that is, for any index i ∈ K, γi ∈ mp(M).

Proof. By induction on the number of & in M[∗1, . . . , ∗n].

An Indexed System for Multiplicative Additive Polarized Linear Logic 273

Example 4 (A non-↑-soft sequent of MALLP(I)). Let us consider the sequent
0 ↑{1}1{2} , ↑{1}↓∅⊥{2}, which is not provable in MALLP(I). By the cut- elimi-
nation theorem of MALLP(I) (Corollary 1 below), the last rule should be a ↑-rule.
However, it is impossible to apply the rule because both the outermost ↑’s have
the non-empty domain {1}. The unprovability corresponds, by virtue of Theo-
rem 1 bellow, to the non-↑-softness of the corresponding relation γ ⊆ |↑1, ↑↓⊥|
such that γ1 = (∗↑, ∗↑). Note that if a relation is not ↑-soft (i.e., does not factor
through any outermost ↑), it cannot be contained in any denotations of MALLP-
proofs since MALLP syntax is ↑-soft. See Section 7.1.1 of [12] for the ↑-softness.

4 A Correspondence between MALLP(I)-Provability and
Denotations of MALLP-Proofs

This section is devoted to proving the basic property of MALLP(I), which is the
main theorem of this paper. The property, named after Bucciarelli-Ehrhard [4],
characterizes a relationship between provability of formulas of MALLP(I) and
denotations of proofs of MALLP. The characterization is a polarized version of
Bucciarelli-Ehrhard’s Proposition 20 of [4]. As a corollary of the basic property,
the cut-elimination theorem of MALLP(I) is obtained.

Theorem 1 (Basic property of MALLP(I)). Let Δ be a sequence of formulas
of MALLP, and let γ ∈ |Δ|J . The following two statements are equivalent.

i) There exists a proof π of Δ in MALLP such that γ ∈ (π∗)J .
ii) The sequent 0J Δ〈γ〉 is provable in MALLP(I).

The theorem is proved by the following Proposition 3 and Proposition 4, which
are converse to each other: Proposition 3 shows an implication from (i) to (ii)
and conversely for Proposition 4. In the following proofs, we sometimes denote
by AJ a MALLP(I)-formula A with domain J . We first show the following:

Proposition 3. Let Δ be a sequent in MALLP and let π be a proof (resp. cut-
free proof) of 0 Δ in MALLP. Let γ ∈ (π∗)J (for some J ⊆ I). Then the sequent
0J Δ〈γ〉 has a proof (resp. cut-free proof) σ in MALLP(I) such that σ�∅= π.

Proof. By induction on the MALLP-proof π. We consider only the polarity shift-
ing rules (the other rules are the same as Lemma 18 of Bucciarelli-Ehrhard [4]).

− When π is
π1

0 M, P

0 M, ↑P
↑

since γ ∈ (π∗)J = (π∗1)J ⊆ |M, P |J by the interpretation of ↑-rule, γ is of the
form δ × a with δ ∈ |M|J and a ∈ |P |J . Thus by the induction hypothesis,
the MALLP(I)-sequent 0J M〈δ〉, P 〈a〉 has a proof σ1 such that σ1�∅= π1. By
applying ↑-rule to σ1, we obtain the following proof σ of 0J (M, ↑P)〈γ〉 so that
σ�∅= π:

σ1

0J M〈δ〉, P 〈a〉
0J M〈δ〉, ↑∅P 〈a〉

↑

274 M. Hamano and R. Takemura

− When π is
π1

0 N ,M
0 N , ↓M ↓

since γ ∈ (π∗)J =
(
{(p, ∗↓) | p ∈ mp(N)} ∪ π∗1

)J ⊆ |N , ↓M |J by the interpre-
tation of ↓-rule, γ is of the form δ × a with δ ∈ |N |J and a ∈ |↓M |J . Since
|↓M |J = ({∗↓} + |M |)J , there are two uniquely defined disjoint sets K and L

such that K + L = J , and a is of the form (∗↓)K + b with (∗↓)K ∈ {∗↓}K and
b ∈ |M |L. According to this decomposition of J , δ is also written as δ�K +δ�L
with δ�K∈ |N |K and δ�L∈ |N |L. Note that we have δ�K∈ mp(N) by the inter-
pretation of ↓-rule in the multi-pointed relational semantics. Thus γ is written
as the disjoint union γ = (δ�K ×(∗↓)K) + (δ�L ×b), where δ�K ×(∗↓)K ∈
{(p, ∗↓) | p ∈ mp(N)}K and δ�L ×b ∈ (π∗1)L. By the induction hypothesis for
π1, the MALLP(I)-sequent 0L N〈δ�L〉,M〈b〉 has a proof σ1 such that σ1�∅= π1.
Since N〈δ�L〉 = N〈δ〉�L by Lemma 6, we apply ↓K-rule to σ1 in order to obtain
the following proof σ of 0J (N , ↓M)〈γ〉 such that σ�∅= π:

σ1

0L N〈δ〉�L , M〈b〉
0K+L N〈δ〉 , (↓M)〈(∗↓)K + b〉

↓K

The side condition for ↓K-rule is satisfied since γ is of the form (δ�K ×(∗↓)K) +
(δ�L ×b) with δ�K∈ mp(N)K (see Proposition 2).

Next, we show the converse of Proposition 3:

Proposition 4. Let Δ be a sequent in MALLP. Let γ ∈ |Δ|J (for some J ⊆ I),
and let σ be a proof of 0J Δ〈γ〉 in MALLP(I). Then γ ∈ (σ�∅ ∗)J .

Proof. By induction on the MALLP(I)-proof σ. We consider the polarity shifting
rules since the other rules are the same as those in Lemma 19 of [4]. In the
following proof, a MALLP-formula A�∅ and a sequent Δ�∅ are denoted by A and
Δ, respectively.

− When σ is
σ1

0J Δ,P
0J Δ, ↑∅P

↑

there is, by Lemma 7, γ = δ × a ∈ |Δ, ↑P|J such that ΔJ , ↑∅PJ = (Δ, ↑P)〈γ〉.
Note first that a ∈ |P|J holds since the domain of the outermost ↑ of ↑∅PJ =
(↑P)〈a〉 is empty. Thus 0J Δ,P coincides with 0J Δ〈δ〉,P〈a〉, and hence we
have δ × a ∈ (σ1�∅ ∗)J by the induction hypothesis. Then, by the denotational
interpretation of ↑-rule of MALLP, we conclude:

γ = δ × a ∈ (σ1�∅ ∗)J = (σ�∅ ∗)J .

− When σ is
σ1

0LM�L, N
0K+LM, ↓KN

↓K with K ⊆ d(∂M), there is, by Lemma 7,

γ ∈ |M, ↓N|K+L such that MK+L, ↓KNL = (M, ↓N)〈γ〉. Because K and L are
disjoint, γ is written as the following disjoint union:

γ = (δ�K ×(∗↓)K) + (δ�L ×b) ∈ |M, ↓N|K+L,

An Indexed System for Multiplicative Additive Polarized Linear Logic 275

where δ �K ×(∗↓)K ∈ |M|K × {∗↓}K and δ �L ×b ∈ |M|L × |N|L. Since 0L
M�L, N coincides with 0L M〈δ�L〉,N〈b〉, we have δ�L ×b ∈ (σ1�∅ ∗)L by the
induction hypothesis. Since the side condition of ↓K-rule implies δ�K∈ mp(M)K

(see Proposition 2), we obtain:

(δ�K ×(∗↓)K) + (δ�L ×b) ∈
(
{(p, ∗↓) | p ∈ mp(M)} ∪ σ1�∅ ∗

)K+L
.

Thus, by the interpretation of ↓-rule of MALLP, we conclude γ ∈ (σ�∅ ∗)K+L.

As a corollary, we have the following semantical cut-elimination à la Bucciarelli-
Ehrhard [5].

Corollary 1 (Cut-elimination of MALLP(I)). The sequent calculus system
MALLP(I) enjoys cut-elimination. That is, if a sequent is provable, then it is
provable without using cut-rule.

Proof. Assume 0J Δ is provable with a MALLP(I)-proof σ. By Lemma 7, Δ is
of the form Δ〈γ〉 for a sequence Δ of MALLP-formulas and γ ∈ |Δ|J . Then by
Proposition 4, γ ∈ (σ�∅ ∗)J . Since σ�∅ is a MALLP-proof of 0 Δ, there exists a
cut-free MALLP-proof π for the sequent by the cut-elimination of MALLP. Since
σ�∅ ∗ = π∗ by Proposition 1, we have γ ∈ (π∗)J . Then, by Proposition 3, there
exists a cut-free MALLP(I)-proof ρ of 0J Δ〈γ〉, which sequent is 0J Δ.

5 Discussions and Future Work

Let us discuss several comparisons of our polarity shifting operators with Buc-
ciarelli and Ehrhard’s exponentials of [5]. First, our multi-pointed relational
interpretation of ↓A and ↑A is seen as a restriction of their interpretation of
!A and ?A (pg.212 of [5]) to the multisets of cardinality at most one (i.e.,
|↑A| = |↓A| = {[a] | a ∈ |A|} ∪ {[]}). Note that the empty multiset [] cor-
responds to our distinguished element ∗. Due to this restriction, the contraction
rule is absent in our interpretation. On the other hand, the interpretation of
the promotion rule of LL (pg.240 of [5]) simulates ours of the ↓-rule for MLLP
(without additives) by restricting the cardinality n for the index of the family to
either 0 or 1. Second, our indexed ↓KN and ↑KP of Definition 5 coincide with
Bucciarelli-Ehrhard’s !uN and ?uP when u is the injection from L to L + K.
Then our translation of Definition 9 corresponds to theirs (pg.213 of [5]).

As another comparison, it is straightforward to generalize our construction of
this paper into a polarized variant of LL(I) of [5] with exponentials. By weakening
the bijective correspondence of Lemma 7 into surjective one, the construction
yields an indexed system for Laurent’s LLpol augmented with polarity shifting
operators ↑ and ↓.

Regarding future works, a phase semantics for MALLP(I) should be exam-
ined. Phase semantics is a standard truth-value semantics for linear logic. Such
a semantics for MALLP(I) is obtained by a generalization of our polarized phase
semantics [13] for MALLP. In [13] a topological structure was given to a phase

276 M. Hamano and R. Takemura

space by interpreting ↓ and ↑ as interior and closure operators, respectively.
For the generalization, an I-product phase spaces become crucial analogously
to Bucciarelli-Ehrhard [4,5] and Ehrhard [7]. In our polarized setting the prod-
uct topology on this phase space is important to understand parameterized ↓K
connectives for MALLP(I). A phase semantics for MALLP(I) yields, by virtue of
Theorem 1, a new denotational semantics for MALLP. Moreover a truth valued
completeness of such a phase semantics leads naturally to a weak denotational
completeness in the sense of Girard [9] and Bucciarelli-Ehrhard. In particular,
such a denotational completeness explicates an I-indexed topological logical re-
lations for polarized linear logic.

Acknowledgements

The authors would like to express their sincere thanks especially to one of the
anonymous referees for careful reading and for valuable comments and
suggestions.

References

1. Andreoli, J.-M.: Logic Programming with Focusing Proofs in Linear Logic. Journal
of Logic and Computation 2(3), 297–347 (1992)

2. Blute, R., Scott, P.J.: Category theory for linear logicians. In: Ruet, P., Ehrhard,
T., Girard, J.-Y., Scott, P. (eds.) Proceedings Linear Logic Summer School, pp.
1–52. Cambridge University Press, Cambridge (2004)

3. Bruasse-Bac, A.: Logique linéaire indexée du second ordre, Thèse de doctorat,
Institut de Mathématiques de Luminy, Université Aix-Marseille II (2001)

4. Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational semantics in
multiplicative-additive linear logic. Annals of Pure and Applied Logic 102(3), 247–
282 (2000)

5. Bucciarelli, A., Ehrhard, T.: On phase semantics and denotational semantics: the
exponentials. Annals of Pure and Applied Logic 109(3), 205–241 (2001)

6. Cockett, R., Seely, R.: Polarized category theory, modules, and game semantics.
Theory and Applications of Categories 18(2), 4–101 (2007)

7. Ehrhard, T.: A completeness theorem for symmetric product phase spaces. Journal
of Symbolic Logic 69(2), 340–370 (2004)

8. Girard, J.-Y.: A New Constructive Logic: Classical Logic. Mathematical Structures
in Computer Science 1(3), 255–296 (1991)

9. Girard, J.-Y.: On denotational completeness. Theoretical Computer Science 227(1),
249–273 (1999) (special issue)

10. Girard, J.-Y.: On the meaning of logical rules II: multiplicative/additive case. In:
Foundation of Secure Computation. NATO Series F, vol. 175, pp. 183–212. IOS
Press, Amsterdam (2000)

11. Girard, J.-Y.: Locus Solumn from the rules of logic to the logic of rules. Mathe-
matical Structures in Computer Science 11(3), 301–506 (2001)

12. Hamano, M., Scott, P.: A Categorical Semantics for Polarized MALL. Annals of
Pure and Applied logic 145, 276–313 (2007)

An Indexed System for Multiplicative Additive Polarized Linear Logic 277

13. Hamano, M., Takemura, R.: A Phase Semantics for Polarized Linear Logic and
Second Order Conservativity (submitted, 2007)

14. Laurent, O.: Étude de la polarisation en logique, Thèse de Doctorat, Institut de
Mathématiques de Luminy, Université Aix-Marseille II (2002)

15. Laurent, O.: Polarized games. Annals of Pure and Applied Logic 130(1-3), 79–123
(2004)

A Characterisation of Lambda Definability with Sums
Via ��-Closure Operators

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University
Kyoto, 606-8502, Japan

sinya@kurims.kyoto-u.ac.jp

Abstract. We give a new characterisation of morphisms that are definable by the
interpretation of the simply typed lambda calculus with sums in any bi-Cartesian
closed category. The ��-closure operator will be used to construct the category
in which the collection of definable morphisms at sum types can be characterised
as the coproducts of such collections at lower types.

1 Introduction

The λ-definability problem is to characterise the semantic elements that are definable by
denotational / categorical semantics of the simply typed λ-calculus. A characterisation
of the λ-definable elements in full type hierarchies was first given by Plotkin using
Kripke logical relations. This result was later generalized by Jung and Tiuryn to any
Henkin model using Kripke logical predicates with varying arity [15]; its categorical
formulation was also given by Alimohamed [1].

These precursors considered the definability problem in the simply typed lambda cal-
culus with only arrow types (and possibly product types). The problem becomes more
subtle when sum types are added. There is a natural definition of coproducts for Kripke
predicates with varying arity, but these coproducts are not sufficient to characterise the
definable elements at sum types. In [11] Fiore and Simpson overcome this difficulty by in-
troducing a new concept called Grothendieck logical predicates. They used Grothendieck
topology to improve the definition of coproducts of Kripke predicates. By constructing
a suitable category of worlds and topology on it, Fiore and Simpson succeeded in giving
a characterisation of definable morphisms in any bi-CCC with stable coproducts.

In this paper we approach the definability problem in the simply typed lambda cal-
culus with sums using a different technique called ��-closure operator. The main con-
tribution of this paper is the following:

1. We characterise the definability predicate (=the collection of definable morphisms)
at sum types by means of the standard coproducts for Kripke predicates and the
semantic ��-closure operator:

Def 0 = 0̇��, Def(τ + τ′) = (Def τ +̇ Def τ′)��.

This characterisation holds with respect to the interpretation of the lambda calculus
with sums in any bi-CCC. We also give a characterisation of morphisms definable by
the simply typed lambda calculus with sums by means of weak logical predicates.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 278–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Characterisation of Lambda Definability with Sums Via ��-Closure Operators 279

2. We analyse the underlying categorical essence of the above arguments, and present
it as the restriction theorem. The statement of the theorem is the following: let P be
a logical predicate in a sufficiently rich fibration p : P → C. If P respects product
and arrow types, then we can restrict P to a full reflective subcategory P�� of P so
that P respects sum types as well.

The characterisation stated in item 1 implies that in the category K�� of ��-closed
objects the definability predicates at sum types are given by the coproducts of the defin-
ability predicates at lower types. By employingK�� as a gluing category, we also show
that the inclusion from the free distributive category L0(B) over the set B of base types
to the free bi-CCC L1(B) over B is full. We note that this result is proved in [10], but
there a different gluing category is employed.

Preliminary. We define categories and functors by the following table:

A category / functor is ... when it has / preserves ...

Cartesian finite products
co-Cartesian finite coproducts
bi-Cartesian finite products and finite coproducts

Cartesian closed (CC) finite products and exponentials
bi-Cartesian closed (bi-CC) finite products, finite coproducts and exponentials

2 Definability of Calculi with Sums

We deal with the definability problem in the context of functorial semantics, where
syntatic theories are treated as freely generated categories, and interpretations are rep-
resented by structure-preserving functors. We fix a small Cartesian category L that plays
the role of a syntactic theory, a bi-CCC C that plays the role of a semantic domain, and
a strict Cartesian functor F:

L
F �� C

that gives an interpretation of the syntactic theory. We first review some basic properties
of the definability predicate for F in this setting, then extend L and F with additional
structures (coproducts / exponentials) toward the main theorems of this paper. At this
moment we do not require that L is a freely generated category, as the freeness does not
play any role in the following discussion.

2.1 Kripke Predicates with Varying Arity

We first introduce the poset CtxL that plays the role of Kripke structure for Kripke
predicates with varying arity. The carrier of the poset is (Obj(L))∗, the set of finite
sequences of L-objects, and these sequences are ordered by the prefix ordering (that is,
τ ≤ σ if τ is a prefix of σ). Below we treat CtxL as a category.

When L is identified as a syntactic (type) theory, the poset CtxL expresses inclusions
of typing contexts. We associate these inclusions with projections in L by the following
functor | − | : CtxL → Lop:

|τ1 · · · τn| = (· · · ((1 × τ1) × τ2) · · ·) × τn, |τ1 · · · τn ≤ τ1 · · · τn+m | = id
m

︷�������︸︸�������︷◦π ◦ · · · ◦ π,
where π is the first projection for appropriate objects.

280 S. Katsumata

We next define the category KF of Kripke predicates with varying arity.

– An object of KF is a pair (C, X) where C is a C-object and X is a subpresheaf of the
contravariant presehaf C(F | − |,C) on CtxL.

– A morphism from (C, X) to (D, Y) is a C-morphism f : C → D such that for any
CtxL-object Γ and C-morphism g ∈ XΓ, we have f ◦ g ∈ YΓ.

KF
r ��

q
��

Sub([CtxL, Set])
p

��
C

HF

�� [CtxL, Set]

Fig. 1. Derivation of q

The category KF is constructed as follows. Let
HF : C → [CtxL, Set] be a functor defined by
HF(C) = C(F | − |,C). Then KF is the vertex of
the change-of-base (pullback) of the subobject fi-
bration p : Sub([CtxL, Set]) → [CtxL, Set] along
HF (Figure 1). This construction is an instance of
subscone [22] or categorical gluing [1].

Proposition 1. The leg q : KF → C of the change-of-base (Figure 1) is a strict bi-CC
functor and a partial order fibration with fibred small products.

Proof. Since p is a partial order fibration with fibred small products, q inherits these
structures via the change-of-base along the Cartesian functor HF . The bi-CC structure
of KF , which is strictly preserved by q, is given as follows (see also Section 1.5, [1]):

1̇ = (1, {!F|Γ|}Γ)

(C, X) ×̇ (D, Y) = (C × D, {h | π1 ◦ h ∈ XΓ, π2 ◦ h ∈ YΓ}Γ)

0̇ = (0, ∅)
(C, X) +̇ (D, Y) = (C + D, ({inl ◦ f | f ∈ XΓ} ∪ {inr ◦ f | f ∈ YΓ})Γ)

(C, X) ⇒̇ (D, Y) = (C ⇒ D, { f | ∀Γ′ ≥ Γ . ∀x ∈ XΓ′ . ev ◦ 〈 f ◦ F |Γ ≤ Γ′|, x〉 ∈ YΓ′}Γ).

(here {· · · }Γ denotes a presheaf described by an auxiliary parameter Γ ∈ CtxL).

We define the target of our study, the definability functor Def : L→ KF , by

Def τ = (τ, {Fg ∈ C(F |Γ|, Fτ) | g ∈ L(|Γ|, τ)}Γ)
Def f = F f .

We call Def τ the definability predicate (of F) at τ. We refer to the presheaf part of
Def τ by Dτ; in other words, D = r ◦ Def (r is the other leg of the change-of-base).

Proposition 2. Def : L→ KF is a full strict Cartesian functor, and q ◦ Def = F.

Figure 2 summarises categories and functors we have introduced so far.
One important property of the functor Def, which is implicit in the characterisation

of λ-definability by Jung and Tiuryn [15], is the following:

Lemma 1. For any L-objects τ, τ′ and CtxL-object Γ, we have

f ∈ r(Def τ ⇒̇Def τ′)(Γ) ⇐⇒ λ−1(f) ∈ Dτ′(Γτ),

(here λ−1 denotes the uncurrying operator).

A Characterisation of Lambda Definability with Sums Via ��-Closure Operators 281

L

F ������������
Def �� KF

q
��

(Figure 1)

· · ·

C · · ·

KF bi-CCC (1̇, ×̇, 0̇, +̇, ⇒̇)
C bi-CCC (1,×, 0,+,⇒)
q strict bi-CC functor and partial order

fibration with fibered small products
L small Cartesian category
F strict Cartesian functor
Def full strict Cartesian functor

Fig. 2. Categories and Functors for the Argument of Definability

2.2 A Characterisation of Definability with Sums

We next assume that the category L in Figure 2 is a distributive category (in the sense of
Walters [26,7]) and F is a strict bi-Cartesian functor. Recall that a distributive category
C is a bi-Cartesian category such that the canonical morphism

[A × inl, A × inr] : (A × B) + (A ×C)→ A × (B + C)

has the inverse (called distributive law) 1 :

mCA,B,C : A × (B + C)→ (A × B) + (A ×C).

We note that F strictly preserves distributive laws, that is, F(mL
τ,τ′,ρ) = mCFτ,Fτ′ ,Fρ.

The functor Def in Figure 2 is still full strict Cartesian from Proposition 2, but not
co-Cartesian. We merely have the following inequations:

Def 0 ≥ 0̇, Def(τ + τ′) ≥ Def τ +̇ Def τ′. (1)

Interestingly, these inequations are equated when applied to the contravariant functor
(− ⇒̇Def ρ).

Lemma 2. For any L-objects τ, τ′, ρ, we have

Def 0 ⇒̇ Def ρ = 0̇ ⇒̇ Def ρ

Def(τ + τ′) ⇒̇ Def ρ = (Def τ +̇ Def τ′) ⇒̇Def ρ.

Proof. We leave the proof of the first equation to the reader. We show the second equa-
tion. Let τ, τ′, ρ be L-objects. The inequation (1) implies half of the equation to be
proved. We therefore show the other half displayed below:

Def(τ + τ′) ⇒̇Def ρ ≥ (Def τ +̇ Def τ′) ⇒̇ Def ρ.

Let Γ be a CtxL-object and f ∈ r((Def τ +̇ Def τ′) ⇒̇Def ρ)(Γ). The isomorphism

(Def τ +̇ Def τ′) ⇒̇Def ρ � (Def τ ⇒̇Def ρ) ×̇ (Def τ′ ⇒̇ Def ρ)

implies that λ(ev ◦ (f × inl)) ∈ r(Def τ ⇒̇ Def ρ)(Γ) and λ(ev ◦ f × inr) ∈ r(Def τ′ ⇒̇
Def ρ)(Γ). From Lemma 1, we obtain

(g1 =) ev ◦ (f × inl) ∈ Dρ(Γτ), (g2 =) ev ◦ (f × inr) ∈ Dρ(Γτ′).
1 The distributive law implies that the unique map 0 → A × 0 is the isomorphism; see [7].

282 S. Katsumata

We thus take L-morphisms h1 : |Γτ| → ρ and h2 : |Γτ′| → ρ such that g1 = Fh1 and
g2 = Fh2. Since F is a strict bi-Cartesian functor, we have

[g1, g2] ◦ mCF|Γ|,Fτ,Fτ′ = F([h1, h2] ◦ mL
|Γ|,τ,τ′).

The left hand side is equal to ev ◦ (f × (Fτ + Fτ′)):

[g1, g2] ◦ m = ev ◦ (f × (Fτ + Fτ′)) ◦ [F |Γ| × inl, F |Γ| × inr] ◦ m

= ev ◦ (f × (Fτ + Fτ′)).

Hence ev ◦ (f × (Fτ+ Fτ′)) ∈ Dρ(Γ(τ+ τ′)). From Lemma 1, we obtain f ∈ r(Def(τ+
τ′) ⇒̇Def ρ)(Γ).

K
��
F� �

ι
��

L

F ������������� Def ��

Def′
��

KF

q
��

(Figure 1)

· · ·

C · · ·

Fig. 3. Restriction of Definability Functor

We combine this lemma and the semantic ��-
closure operator [16] to extract KF ’s full re-
flective sub bi-CCC whose coproducts can
characterise the definability predicates at sum
types. The semantic ��-closure operator (we
may drop the word “semantic” thereafter) is a
semantic analogue of Pitt’s ��-closure tech-
nique in [25], and is an instance of the author’s
semantic ��-lifting [16]. The ��-closure op-
erator in this section is specialised to the argu-
ment of definability. In Section 3 it will be re-introduced in more general form, together
with the proofs of propositions and theorems in this section.

The ��-closure operator is defined as follows. Let X be a KF-object above a C-
object I. For each L-object ρ, we define X��(ρ) to be the vertex of the following inverse
image in the fibration q : KF → C:

X��(ρ) �� (X ⇒̇ Def ρ) ⇒̇ Def ρ KF

q
��

I
η

Fρ
I =λ(ev◦〈π′ ,π〉)

�� (I ⇒ Fρ)⇒ Fρ C

where ηFρ
I is the unit of the continuation monad. We then define X��, the ��-closure

of X by
X�� =

∧

ρ∈Obj(L)

X��(ρ).

Proposition 3. The assignment X �→ X�� extends to a monad over KF whose unit and
multiplication are vertical (c.f. Proposition 7).

Below we call the assignment (semantic)��-closure operator. It indeed gives an idem-
potent closure operator at every fibre, as unit and multiplication are vertical.

Corollary 1. We have X ≤ X�� and (X��)�� = X��, and the monad is idempotent (c.f.
Corollary 2).

A Characterisation of Lambda Definability with Sums Via ��-Closure Operators 283

We then consider KF ’s full reflective subcategoryK��F consisting of ��-closed objects
(that is, objects X such that X�� = X); see Figure 3. Some calculation shows that ��-
closed objects form an exponential ideal. Therefore we obtain the following:

Proposition 4. The category K��F is a bi-CCC and q ◦ ι is a strict bi-CC functor (c.f.
Theorem 4).

The CC structure in K��F is inherited from KF , while the co-Cartesian structure is given
by 0̇�� and (X +̇ Y)��. That the ��-closure operator is defined in terms of the defin-
ability predicates themselves implies the following important property:

Proposition 5. For every L-object ρ, Def ρ is ��-closed (c.f. Proposition 8).

Thus functor Def can be restricted to the full Cartesian functor (Def′ in Figure 3) to
K
��
F . Furthermore, from Lemma 2 we obtain a characterisation of the definability pred-

icates at sum types (c.f. Theorem 5-2):

Def 0 = (Def 0)�� = 0̇�� (2)

Def(τ + τ′) = (Def(τ + τ′))�� = (Def τ +̇ Def τ′)��. (3)

This is equivalent to saying that Def′ is a strict co-Cartesian functor. To summarise:

Theorem 1 (Restriction Theorem for Definability Functor). In Figure 3, assume
that L is a small distributive category and F is a strict bi-Cartesian functor. Then Def′

is a full strict bi-Cartesian functor.

We next let L be a small bi-CCC and F : L → C be a strict bi-CC functor. Under this
situation, the restriction of the definability functor to K��F becomes a bi-CC functor.
Since any bi-CCC is a distributive category, Def′ in Figure 3 is full bi-Cartesian from
the restriction theorem. Moreover, as shown in [1] (c.f. [15]), the functor Def (and Def′)
strictly preserves exponentials. Therefore we obtain the following theorem:

Theorem 2. In figure 3, assume that L is a small bi-CCC and F is a strict bi-CC functor.
Then Def′ in Figure 3 is a full strict bi-CC functor.

2.3 Fullness of Free Distributive Categories in Free Bi-CCCs

As an application of the restriction theorem, we show that the canonical inclusion from
the free distribute category to the free bi-CCC is full. We note that this result (and
faithfulness) is proved in [10] using a different gluing category.

We fix the set B of base types and regard it as a discrete category. In this paper, by
the free distributive category (L0(B), η0 : B → L0(B)) over B, we mean the distributive
category with the following universal property: for any distributive category C and a
functor F : B → C, there exists a unique strict bi-Cartesian functor F : L0(B) → C
such that F ◦ η0 = F. We also define the free bi-CCC (L1(B), η1 : B → L1(B)) over
B as the one having the similar universal property. Such free categories arise as term
categories of the simply typed (lambda) calculus with sums. We omit the detail of the
construction of free categories due to lack of space; see e.g. [18].

284 S. Katsumata

We instantiate Figure 3 with the following data:

1. L = L0(B), the free distributive category over B.
2. C = L1(B), the free bi-CCC over B.
3. F = η1 : L0(B)→ L1(B), the strict bi-Cartesian functor derived from the universal

property of L0(B).

Lafont applied categorical gluing to show that any small Cartesian category C can be
fully embedded into the CCC that is relatively free with respect to C [17]. We apply
his proof technique to the show that η1 is full. Here we use K��F as a substitute for the
gluing category.

Theorem 3. The strict bi-Cartesian functor η1 : L0(B)→ L1(B) is full.

Proof. Below we write F for η1. From Theorem 1 we obtain a full strict bi-Cartesian
functor Def′ : L0(B)→ K��F . From Proposition 4, K��F is a bi-CCC; hence we obtain a

strict bi-CC functor J = Def′ ◦η0 : L1(B) → K��F . Furthermore, q ◦ ι is a strict bi-CC
functor, so q◦ι◦J = Id by the universal property of L1(B). This implies that J is faithful.

L1(B)

J
��

L0(B)

F
�����������

Def′ ��

F ����������� K
��
F

q◦ι
��

L1(B)

In the above diagram, the upper half of the triangle commutes from the universal prop-
erty of L0(B). The lower half of the triangle also commutes from Figure 3. We now show
that F is full. Let f : Fτ → Fσ be a L1(B)-morphism. We seek for a L0(B)-morphism
g such that f = Fg. We first have J f : Def′ τ → Def′ σ. Since Def′ is full, there exists
a L0(B)-morphism g : τ → σ such that J f = Def′ g = J(Fg). Since J is faithful, we
obtain f = Fg.

3 ��-Closure Operators and the Restriction Theorem

In this section we focus on the general scheme that underlies in the derivation of the
restriction theorem (Theorem 1), and re-establish it in more general form.

We first identify the class of fibrations in which we can consider ��-closure opera-
tors. If a functor U : P→ C satisfies the following conditions:

P

U
��
C

P bi-CCC (1̇, ×̇, 0̇, +̇, ⇒̇, !̇, π̇, π̇′, λ̇, ėv, · · ·)
C bi-CCC (1,×, 0,+,⇒, !, π, π′, λ, ev, · · ·)
U strict bi-CC functor and partial order

fibration with fibered small products

we say that U admits ��-closure operators. Below we give a sufficient condition for
ensuring that a fibration admits ��-closure operators.

Proposition 6. Let p : E → B be a partial order bifibration such that B is a bi-CCC,
p has fibred small products, fibred finite coproducts, fibred exponentials and simple
products (see e.g. Jacobs [14]). Then p admits ��-closure operators.

A Characterisation of Lambda Definability with Sums Via ��-Closure Operators 285

3.1 ��-Closure Operators

We fix a fibration U : P → C which admits ��-closure operators. Each ��-closure
operator takes a P-object as a parameter called closure parameter. Let S be a closure
parameter. For a P-object X, we define X��(S) to be the vertex of the following inverse
image:

X��(S) �� (X ⇒̇ S) ⇒̇ S P

U
��

UX
ηUS

UX=λ(ev◦〈π′ ,π〉)
�� (UX ⇒ US)⇒ US C

We note that the C-morphism ηUS
UX is the unit of the continuation monad (− ⇒ US) ⇒

US . This construction exactly coincides with the semantic ��-lifting [16] of the iden-
tity monad.

Proposition 7. [16] Let S be a closure parameter. The assignment X �→ X��(S) ex-
tends to an endofunctor (−)��(S) : P → P such that U ◦ (−)��(S) = U. Furthermore,
there exists vertical natural transformations η��(S) and μ��(S) that make the triple
((−)��(S), η��(S), μ��(S)) a monad.

Corollary 2. Let S be a closure parameter. For any P-object X, we have

X ≤ X��(S), (X��(S))��(S) = X��(S), S = S ��(S).

Proof. In this proof we simply write �� for ��(S). The first two (in)equations are
immediate consequences of the previous lemma. To show S �� = S , it is sufficient to
show S �� ≤ S . We consider the following diagram:

S �� �� (S ⇒̇ S) ⇒̇ S
ėv◦〈id,λ̇(π̇′)◦!̇〉

�� S P

U
��

US
ηUS

US

�� (US ⇒ US)⇒ US
ev◦〈id,λ(π′)◦!〉

�� US C

The composite of morphisms in C is the identity. Hence S �� ≤ S holds.

We next generalise ��-closure operators to take multiple closure parameters. Let S =
{S i}i∈I be a set-indexed family of closure parameters. We define (−)��(S) by

X��(S) =
∧

i∈I
X��(S i)

where
∧

denotes the fibred product. Below we only consider set-indexed family of
closure parameters.

Proposition 8. Let S = {S i}i∈I be a family of closure parameters. The mapping X �→
X��(S) extends to a monad over P whose unit and multiplication are vertical. Further-
more, for any P-object X, we have

X ≤ X��(S), (X��(S))��(S) = X��(S), S i = S ��(S)
i (i ∈ I).

286 S. Katsumata

3.2 Full Reflective Subcategory of ��-Closed Objects

We investigate the structure of the full reflective subcategory of ��-closed objects. Let
S be a family of closure parameters. We write P��(S) for P’s full reflective subcategory
consisting of ��(S)-closed objects (that is, objects X such that X��(S) = X). We write ι
for the inclusion functor from P��(S) to P.

Since P is bi-Cartesian, P��(S) is also bi-Cartesian (see e.g. Proposition 3.5.3 and
3.5.4, [6]). The Cartesian structure is inherited from P, while the co-Cartesian structure
is given by the following diagram:

X
˙inl �� X +̇ Y

≤ �� (X +̇ Y)��(S) X +̇ Y
≥�� Y

˙inr�� (4)

We next show that ��(S)-closed objects form an exponential ideal.

Lemma 3. Let S = {S i}i∈I be a family of closure parameters. Then for any P-object X
and Y above I and J respectively, Y��(S) = Y implies (X ⇒̇ Y)��(S) = X ⇒̇ Y.

Proof. Below we only show (X ⇒̇ Y)��(S) ≤ X ⇒̇ Y; the other direction is clear as
(−)��(S) is a closure operator. Let i ∈ I. We define ẇ : (X ⇒̇ Y)��(S) → (((X ⇒̇ Y) ⇒̇
S i) ⇒̇ S i) to be the composite of P-morphisms in the following diagram:

(X ⇒̇ Y)��(S)

≤
��

(X ⇒̇ Y)��(S i) �� ((X ⇒̇ Y) ⇒̇ S i) ⇒̇ S i P

U
��

I ⇒ J
η

US i
I⇒J

�� ((I ⇒ J)⇒ US i)⇒ US i C

From the diagram, ẇ is above ηUS i
I⇒J . We also define a P-morphism ċ : X ×̇ (Y ⇒̇ S i) →

(X ⇒̇ Y) ⇒̇ S i by
ċ = λ̇(ėv ◦ (id ×̇ ėv) ◦ 〈π̇′ ◦ π̇, 〈π̇′, π̇ ◦ π̇〉〉),

which is above the following C-morphism c : I × (J ⇒ US i)→ (I ⇒ J)⇒ US i:

c = λ(ev ◦ (id × ev) ◦ 〈π′ ◦ π, 〈π′, π ◦ π〉〉).
By combining these, we obtain a P-morphism

λ̇(ėv ◦ (ẇ ×̇ ċ) ◦ ȧ) : (X ⇒̇ Y)��(S) ×̇ X → (Y ⇒̇ S i) ⇒̇ S i

above

ηUS i
J ◦ evI,J = λ(ev ◦ (ηUS i

I⇒J × c) ◦ a) : (I ⇒ J) × I → (J ⇒ US i)⇒ US i

(where a and ȧ are associativity morphisms in C and P respectively). This implies that
the following inequation holds for every i ∈ I in the fibre over (I ⇒ J) × I:

(X ⇒̇ Y)��(S) ×̇ X � ev∗I,J(Y��(S i)).

A Characterisation of Lambda Definability with Sums Via ��-Closure Operators 287

P
��(P)� �

ι
��

L

P′
��

P
��

F ������������� P

U
��
C

P bi-CCC (1̇, ×̇, 0̇, +̇, ⇒̇)
C bi-CCC (1,×, 0,+,⇒)
U strict bi-CC functor and partial order

fibration with fibred small products
L small category
P, F functors
P
��(P) bi-CCC of ��(P)-closed objects
ι strict CC inclusion functor

Fig. 4. Restriction of P to ��(P)-Closed Objects

Therefore we have

(X ⇒̇ Y)��(S) ×̇ X �
∧

i∈I
ev∗I,J(Y��(S i)) = ev∗I,J(Y��(S)).

Now the composite, say v̇, of P-morphisms in the following diagram is above evI,J:

(X ⇒̇ Y)��(S) ×̇ X

≤
��

ev∗I,J(Y��(S)) �� Y��(S) P

U
��

(I ⇒ J) × I evI,J

�� J C

so λ̇(v̇) : (X ⇒̇ Y)��(S) → X ⇒̇ Y��(S) is above λ(evI,J) = id. Hence (X ⇒̇ Y)��(S) ≤
X ⇒̇ Y��(S) = X ⇒̇ Y.

Theorem 4. For any family S of closure parameters, ��(S)-closed objects form a full
reflective sub bi-CCC P��(S) of P, and U ◦ ι : P��(S) → C is a faithful strict bi-CC
functor.

Proof. That P��(S) is a bi-CCC follows from Lemma 3 and Day’s reflection theorem [8].
The CC structure on P��(S) is inherited from P; so ι is a strict CC functor. In general, ι
is not a co-Cartesian functor, but the coproduct diagram in (4) is strictly mapped to the
coproduct diagram in C by U ◦ ι. Hence U ◦ ι is a strict bi-CC functor. The faithfulness
is obvious.

3.3 Restriction Theorem

We next consider a small category L and functors F : L → C and P : L → P such that
U ◦ P = F (see the lower half of the commutative diagram in Figure 4). The functor P
specifies a family of closure parameters P = {Pτ}τ∈Obj(L).

Proposition 9. The functor P : L→ P restricts to P��(P) (see P′ in Figure 4).

Proof. From Proposition 8, (Pτ)��(P) = Pτ holds for any L-object τ, that is, Pτ is an
object in the full subcategory P��(P) of P. Hence P restricts to P��(P).

288 S. Katsumata

Theorem 5 (Restriction Theorem). In the commutative diagram in Figure 4,

1. If L is a Cartesian (closed) category and F and P are strict Cartesian (closed)
functors, then P′ is also a strict Cartesian (closed) functor.

2. If F is a strict co-Cartesian functor and P satisfies

P0 ⇒̇ Pρ = 0̇ ⇒̇ Pρ, P(τ + τ′) ⇒̇ Pρ = (Pτ +̇ Pτ′) ⇒̇ Pρ

then P′ is a strict co-Cartesian functor.
3. If L is a bi-CCC, F is a strict bi-CC functor and P is a strict CC functor, then P

satisfies the above equations (hence P′ is a strict bi-CC functor).

Proof. 1. The Cartesian (closed) structure in P��(P) is the restriction of that in P to
P
��(P). Since P strictly preserves Cartesian (closed) structure, so does P′.

2. Suppose P(τ+ τ′) ⇒̇Pρ = (Pτ +̇Pτ′) ⇒̇Pρ. From the definition of ��(P), we have

P(τ + τ′) = P(τ + τ′)��(P)

=
∧

ρ∈Obj(L)

(ηFρ
Fτ+Fτ′)

∗((P(τ + τ′) ⇒̇ Pρ) ⇒̇ Pρ)

=
∧

ρ∈Obj(L)

(ηFρ
Fτ+Fτ′)

∗(((Pτ +̇ Pτ′) ⇒̇ Pρ) ⇒̇ Pρ)

= (Pτ +̇ Pτ′)��(P).

One can similarly show P0 = (P0)��(P).
3. We show that the equations in 2 holds for each strict CC functor P such that U ◦P =

F. In any bi-CCC D there is an isomorphism

(A + B)⇒ C
αA,B,C
D �� (A⇒ C) × (B⇒ C)
βA,B,C
D

��

which is preserved by strict bi-CC functors. Consider the following diagram:

P(τ + τ′) ⇒̇ Pρ

P((τ + τ′)⇒ ρ) P(ατ,τ
′ ,ρ

L) �� P((τ⇒ ρ) × (τ′ ⇒ ρ)) P

U

��

(Pτ +̇ Pτ′) ⇒̇ Pρ (Pτ ⇒̇ Pρ) ×̇ (Pτ′ ⇒̇ Pρ)
β

Pτ,Pτ′ ,Pρ
P

��

(Fτ + Fτ′)⇒ Fρ
α

Fτ,Fτ′ ,Fρ
C �� (Fτ⇒ Fρ) × (Fτ′ ⇒ Fρ)
β

Fτ,Fτ′ ,Fρ
C

�� C

From U ◦ P = F, the morphism P(ατ,τ
′,ρ

L) is above αFτ,Fτ′ ,Fρ
C

. Therefore the com-

position of morphisms in P is above βFτ,Fτ′ ,Fρ
C

◦ αFτ,Fτ′ ,Fρ
C

= id. Thus we obtain
P(τ + τ′) ⇒̇ Pρ ≤ (Pτ +̇ Pτ′) ⇒̇ Pρ. The other direction, P(τ + τ′) ⇒̇ Pρ ≥
(Pτ +̇ Pτ′) ⇒̇ Pρ, follows from a similar argument.
We leave the proof of P0 ⇒̇ Pρ = 0̇ ⇒̇ Pρ to the reader.

A Characterisation of Lambda Definability with Sums Via ��-Closure Operators 289

Theorem 1 is an instance of this general restriction theorem. In Figure 4 we instantiate
U with q : KF → C, L with a small distributive category, F with a bi-Cartesian functor
and P with the definability functor of F. From Proposition 2, Lemma 2 and Theorem
5-2, we obtain Theorem 1.

3.4 A Characterisation of Definable Morphisms by Weak Logical Predicates

We finally give a characterisation of morphisms definable by the simply typed lambda
calculus with sums by means of weak logical predicates. Let B be the set of base types,
F : L1(B) → C be a bi-CC functor and U : P → C be a fibration admitting ��-
closure operators. An Obj(L1(B))-indexed family P of P-objects is called weak logical
predicate (with respect to F and U) if the following holds for any L1(B)-objects τ, τ′, ρ:

– Pτ is above Fτ,
– P(τ × τ′) = Pτ ×̇ Pτ′, P1 = 1̇, P(τ⇒ τ′) = Pτ ⇒̇ Pτ′, and
– (Pτ +̇ Pτ) ⇒̇ Pρ = P((τ + τ′)⇒ ρ), 0̇ ⇒̇ Pρ = P(0⇒ ρ); (c.f. Theorem 5-2).

We say that a C-morphism f : Fτ → Fτ′ is invariant under P if there exists a (neces-
sarily unique) P-morphism g : Pτ→ Pτ′ above f .

Lemma 4 (Basic Lemma for Weak Logical Predicates). Let P be a weak logical
predicate with respect to a bi-CC functor F : L1(B) → C and a fibration U : P → C
admitting ��-closure operators. Then for any L1(B)-morphism f : τ → σ, F f is
invariant under P.

Theorem 6. Let C be a bi-CCC and F : L1(B) → C be a bi-CC functor. Then a C-
morphism f is definable by F (i.e. f is in the image of F) if and only if f is invariant
under any weak logical predicate with respect to any fibration U : P → C admitting
��-closure operators.

Proof. If f is invariant under any weak logical predicate, then it should be so under Def
with respect to F and q in Section 2. Since Def is full, f is definable by F. The converse
is immediate from Lemma 4.

4 Related Work

4.1 Grothendieck Logical Predicates

We briefly review Fiore and Simpson’s Grothendieck logical predicates [11]. They are
a further refinement of Jung and Tiuryn’s Kripke predicates with varying arity using
Grothendieck topology. Let C be a small category, K be a Grothendieck topology on C
and a : C → C be a functor called arity functor. The topology K induces an idempo-
tent monad K over the category Sub([Cop, Set]) of subpresheaves [4], and one obtains
the full reflective subcategory ClSubK ([C, Set]) → Sub([C, Set]) of K-closed subob-
jects. One can verify that ClSubK ([C, Set]) is a bi-CCC, and the composite of functors
ClSubK ([C, Set]) → Sub([C, Set]) → [C, Set] strictly preserves the bi-CC structure.
We then take the pullback of the composite along Ha : C → [Cop, Set] defined by

290 S. Katsumata

G(C,K, a) ��
� �

��

ClSubK ([C,Set])� �

��
L1(B)

DefF
		����������

F

������������ Ka

��

�� Sub([C,Set])

��
C

Ha

�� [C,Set]

Fig. 5. Construction of the Category of Grothendieck Predicates

Ha(C) = C(a−,C). This yields the category G(C,K, a) of Grothendieck predicates,
which is also a bi-CCC (see Figure 5). Every Grothendieck logical predicate is then
formulated as a bi-CC functor from L1(B) (the free bi-CCC over the set B of base
types) to G(C,K, a).

Let C be a bi-CCC whose coproducts are stable and F : L → C be a strict bi-CC
functor. For the characterisation of the morphisms definable by F, Fiore and Simpson
instantiated C with a syntactically constructed category of constrained contexts, K with
a suitable topology on C and a with the interpretation of contexts by F. They showed
that the functor Def : L1(B) → G(C,K, a) that captures the morphisms definable by F
is a bi-CC functor, that is, a Grothendieck logical predicate.

We give an informal comparison of their approach and our approach.

1. In our approach the parameter category for Kripke predicates is the partial order
CtxL of context inclusions, while in [11] a non-partial order category of constrained
contexts and renamings is used (although it can be switched to the partial order
called Diaconescu cover without affecting the result; see Section 5, [11]).

2. The closure operator K can be restricted to the one K|Ka over Ka, and G(C,K, a)
can be seen as the full reflective subcategory of the K|Ka -closed subobjects. In
our approach we derived the (��-)closure operator over KF from the definability
predicates itself, and considered the full reflective subcategory K��F of ��-closed
subobjects. Both approaches perform a similar categorical construction to obtain
the category for characterising the definability predicates, but with different closure
operators.

3. One drawback of our characterisation is that the definability predicates at sum types
are not inductively characterised, although they are coproducts of the definability
predicates at lower types. This is because the��-closure operator used in equations
(2) and (3) refers to the definability predicates at every type. On the other hand, in
Fiore and Simpson’s work the definability predicates at sum types are completely
determined by those at lower types.

4. One advantage of our characterisation is that it holds for any interpretation of the
simply typed lambda calculus with sums in any bi-CCC.

4.2 Other Related Work

Pitts introduced ��-closure operator for capturing the concept of admissible relations
in the syntactic study of a polymorphic functional language [24]. Operators that are

A Characterisation of Lambda Definability with Sums Via ��-Closure Operators 291

similar to the ��-closure had already appeared in various forms: the duality operator
in the phase-space semantics of linear logic [13] and Parigot’s technique of the strong
normalisation of the second order classical natural deduction [23] are such instances.
The notion of ��-closure operators also appears in other studies [21,5].

Hinted from Pitts’��-closure operator, Lindley and Stark introduced a new technique
called��-lifting for extending the strong normalisation proof using computability pred-
icate technique to Moggi’s computational metalanguage [20,19]. Their ��-lifting was
later categorically formulated as a method to lift strong monads on the base category of a
fibration to the one on its total category [16] by the author. There,��-closure operators
are formulated as the ��-lifting of the identity monad.

It is widely recognised that re-establishing properties that hold in the lambda calcu-
lus with only arrow types is difficult under the presence of sum types. For instance, the
design of a confluent and strongly normalising rewriting system (with β-reduction and
η-expansion) for the simply typed lambda calculus with sums [12] and the proof of the
completeness of the equational theory of the lambda calculus with sums in Set [9] ex-
hibits the intrinsic difficulty in handling sums. In this stream of research Grothendieck
logical predicates are shown to be an effective tool in reasoning about the lambda cal-
culus with sums. They are applied to the correctness of the normalisation-by-evaluation
algorithm [2] and the proof of the extensional normalisation [3] for the lambda calculus
with sums.

Acknowledgement

The author is grateful to anonymous reviewers for their constructive comments. The
author thank Masahito Hasegawa, Kazushige Terui, Susumu Nishimura, Jacques Gar-
rigue, Ichiro Hasuo and the members of RIMS computer science group for valuable
discussions.

References

1. Alimohamed, M.: A characterization of lambda definability in categorical models of implicit
polymorphism. Theor. Comput. Sci. 146(1&2), 5–23 (1995)

2. Altenkirch, T., Dybjer, P., Hofmann, M., Scott, P.: Normalization by evaluation for typed
lambda calculus with coproducts. In: LICS, pp. 303–310 (2001)

3. Balat, V., Di Cosmo, R., Fiore, M.: Extensional normalisation and type-directed partial eval-
uation for typed lambda calculus with sums. In: Jones, N., Leroy, X. (eds.) POPL, pp. 64–76.
ACM, New York (2004)

4. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1998)
5. Benton, N.: A typed, compositional logic for a stack-based abstract machine. In: Yi, K. (ed.)

APLAS 2005. LNCS, vol. 3780, pp. 364–380. Springer, Heidelberg (2005)
6. Borceux, F.: Handbook of Categorical Algebra 1. Encyclopedia of Mathematics and Its Ap-

plications, vol. 50. Cambridge University Press, Cambridge (1994)
7. Cockett, J.: Introduction to distributive categories. Mathematical Structures in Computer Sci-

ence 3(3), 277–307 (1993)
8. Day, B.: A reflection theorem for closed categories. Journal of pure and applied algebra 2(1),

1–11 (1972)

292 S. Katsumata

9. Dougherty, D., Subrahmanyam, R.: Equality between functionals in the presence of coprod-
ucts. In: LICS, pp. 282–291. IEEE Computer Society, Los Alamitos (1995)

10. Fiore, M., Di Cosmo, R., Balat, V.: Remarks on isomorphisms in typed lambda calculi with
empty and sum types. In: LICS, pp. 147–157. IEEE Computer Society, Los Alamitos (2002)

11. Fiore, M., Simpson, A.: Lambda definability with sums via grothendieck logical relations. In:
Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 147–161. Springer, Heidelberg (1999)

12. Ghani, N.: βη-equality for coproducts. In: Dezani-Ciancaglini, M., Plotkin, G.D. (eds.)
TLCA 1995. LNCS, vol. 902, pp. 171–185. Springer, Heidelberg (1995)

13. Girard, J.-Y.: Linear logic. Theor. Comp. Sci. 50, 1–102 (1987)
14. Jacobs, B.: Categorical Logic and Type Theory. Elsevier, Amsterdam (1999)
15. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Bezem, M., Groote,

J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 245–257. Springer, Heidelberg (1993)
16. Katsumata, S.: A semantic formulation of ��-lifting and logical predicates for computa-

tional metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 87–102. Springer,
Heidelberg (2005)

17. Lafont, Y.: Logiques, Categóries et Machines. PhD thesis, Universit‘’e Paris VII (1988)
18. Lambek, J., Scott, P.J.: Introduction to Higher Order Categorical Logic. In: Cambridge stud-

ies in advanced mathematics. CUP (1986)
19. Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional Program-

ming Languages. PhD thesis, University of Edinburgh (2004)
20. Lindley, S., Stark, I.: Reducibility and ��-lifting for computation types. In: Urzyczyn, P.

(ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg (2005)
21. Melliès, P.-A., Vouillon, J.: Recursive polymorphic types and parametricity in an operational

framework. In: Proc. LICS 2005, pp. 82–91. IEEE Computer Society, Los Alamitos (2005)
22. Mitchell, J.: Representation independence and data abstraction. In: Proc. POPL 1986, pp.

263–276 (1986)
23. Parigot, M.: Proofs of strong normalisation for second order classical natural deduction. Jour-

nal of Symbolic Logic 62(4), 1461–1479 (1997)
24. Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical Structures in

Computer Science 10(3), 321–359 (2000)
25. Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Gordon, A.D.,

Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics. Publications of the
Newton Institute, pp. 227–273. Cambridge University Press, Cambridge (1998)

26. Walters, R.F.C.: Categories and Computer Science. Cambridge Computer Science Texts.
Cambridge University Press, Cambridge (1992)

Superposition for Fixed Domains

Matthias Horbach and Christoph Weidenbach

Max-Planck-Institut für Informatik
Saarbrücken, Germany

{horbach,weidenb}@mpii.de

Abstract. Superposition is an established decision procedure for a va-
riety of first-order logic theories represented by sets of clauses. A sat-
isfiable theory, saturated by superposition, implicitly defines a perfect
term-generated model for the theory. Proving universal properties with
respect to a saturated theory directly leads to a modification of the per-
fect model’s term-generated domain, as new Skolem functions are intro-
duced. For many applications, this is not desired. Therefore, we propose
the first superposition calculus that can explicitly represent existentially
quantified variables and can thus compute with respect to a given do-
main. This calculus is sound and complete for a first-order fixed domain
semantics. For some classes of formulas and theories, we can even employ
the calculus to prove properties of the perfect model itself, going beyond
the scope of known superposition based approaches.

1 Introduction

One of the most powerful calculi for first-order logic with equality is superpo-
sition [1,13,16]. This is in particular demonstrated by superposition instances
effectively deciding almost any known decidable classical subclass of first-order
logic, e.g. the monadic class with equality [2] or the guarded fragment with equal-
ity [7], as well as a number of decidable first-order classes that have been proven
decidable for the first time by means of the superposition calculus [12,9,15,10].
The key to this success is an inherent redundancy notion based on the term-
generated minimal model IN of a clause set N . If all inferences from a clause
set N are redundant (then N is called saturated) and N does not contain the
empty clause, then IN is a minimal model of N .

A formula Φ is entailed by a clause set N with respect to the standard first-
order semantics, written N |= Φ, if Φ holds in all models of N over all possible
domains. For a number of applications, this is not the desired semantics. Instead,
only Herbrand models of N over the signature F should be considered, written
N |=F Φ. Even stronger, the validity of Φ is considered with respect to the model
IN , written IN |= Φ or alternatively N |=Ind Φ. It holds that IN ∈ {M | M |=F
N} ⊆ {M | M |= N} and the opposite inclusions hold for the sets of valid
formulas: {Φ | N |=Ind Φ} ⊇ {Φ | N |=F Φ} ⊇ {Φ | N |= Φ}.

Consider the following small example, demonstrating the differences of the
three semantics. The clause set N = {→ G(s(0), 0), G(x, y) → G(s(x), s(y)) }

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 293–307, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

294 M. Horbach and C. Weidenbach

is finitely saturated by superposition, where the domain of IN is isomorphic to
the naturals and GIN is a subset of the greater relation. Now for the different
entailment relations the following holds:

N |= G(s(s(0)), s(0)) N |=F G(s(s(0)), s(0)) N |=Ind G(s(s(0)), s(0))
N �|= ∀x.G(s(x), x) N |=F ∀x.G(s(x), x) N |=Ind ∀x.G(s(x), x)
N �|= ∀x.¬G(x, x) N �|=F ∀x.¬G(x, x) N |=Ind ∀x.¬G(x, x)

Superposition is a sound and complete calculus for the standard semantics
|=. In this paper, we develop a sound and complete calculus for |=F . Given a
clause set N and a purely existentially quantified conjecture, standard superpo-
sition is also complete for |=F . The problem arises with universally quantified
conjectures that become existentially quantified after negation. Then, as soon
as these existentially quantified variables are Skolemized, the standard superpo-
sition calculus applied afterwards no longer computes modulo |=F , but modulo
|=F∪{f1,...,fn} where f1, . . . , fn are the introduced Skolem functions. The idea
behind our new calculus is not to Skolemize existentially quantified variables,
but to treat them explicitly by the calculus. This is represented by an extended
clause notion, containing a constraint for the existentially quantified variables.
For example, the above conjecture ∀x.G(s(x), x) results after negation in the
clause u ≈ x ‖G(s(x), x) → with existential variable u. In addition to standard
first-order equational reasoning, the inference and reduction rules of the new
calculus take also care of the constraint (see section 3).

In general, a |=F unsatisfiability proof of a constrained clause set requires
the computation of infinitely many empty clauses. This does not come as a
surprise because we have to show that an existentially quantified clause cannot
be satisfied by a term-generated infinite domain. In order to represent this infinite
set of empty clauses finitely, a further induction rule, based on the minimal model
semantics |=Ind, can be employed. We prove the new rule sound in section 4 and
show its potential. In general, our calculus can cope with (conjecture) formulas of
the form ∀∗∃∗Φ and does not impose special conditions on N (except saturation
for |=Ind), which is beyond any known result on superposition based calculi
proving properties of |=F or |=Ind [11,4,8,3,6,14]. This, together with potential
extensions and directions of research, is discussed in the final section 5.

2 Preliminaries

We build on the notions of [1,16] and shortly recall here the most important
concepts as well as the specific extensions needed for the new superposition
calculus. Let F be a signature, i.e. a set of function symbols of fixed arity, and
X an infinite set of variables. We denote by T (F , X) the set of all terms over
F and X and by T (F) the set of ground terms over F . A (standard universal)
clause is a pair of multisets of equations, written Γ → Δ, interpreted as the
conjunction of all atoms in Γ implying the disjunction of all atoms in Δ. The
empty clause is denoted by �. Any (reduction) ordering ≺ on terms can be lifted
to clauses in the usual way as its twofold multiset extension over equations and

Superposition for Fixed Domains 295

clauses (cf. [1]). Predicates can be encoded in this setting as equations with a
special “true” constant on the right hand side as usual. Please note that in this
case we consider a many-sorted framework where the predicative sort is separated
from the sort of all other terms. As there are no variables of the predicative sort,
we never explicitly express the sorting.

By t|p we denote the subterm of t at position p. The term that arises from t
by replacing the subterm at position p by the term r is t[r]p . A substitution σ is
a map from a set X ′ ⊆ X of variables to T (F , X), where the domain dom(σ) =
{x ∈ X ′ | xσ �= x} is finite. The most general unifier of two terms s, t ∈ T (F , X)
is denoted by mgu(s, t). Remark that, even if we consider predicates, there are
no variables of the predicative sort and hence substitutions do not introduce
symbols of this sort.

A Herbrand interpretation over the signature F is a congruence on the ground
terms T (F). We recall the construction of the special Herbrand interpretation
IN derived from a clause set N in [1]. If N is consistent and saturated with
respect to a certain inference system, then IN |= N and IN is called a minimal
model of N . Let ≺ be a well-founded reduction ordering that is total on ground
terms. We use induction on the clause ordering ≺ to define sets of equations EC ,
RC and IC for all ground clauses over T (F) by RC =

⋃
C�C′ EC′ , and IC = R∗C ,

i.e. the reflexive, transitive closure of RC . Moreover EC = {s≈t} (and we say
that C produces s≈t), if C = Γ → Δ, s≈t is a ground instance of a clause from
N such that (i) s � t and s≈t is a strictly maximal occurrence of an equation
in C, (ii) s is irreducible by RC , (iii) Γ ⊆ IC , and (iv) Δ ∩ IC = ∅. Otherwise
EC = ∅. Finally, we define the confluent and terminating ground rewrite system
R =

⋃
C EC as the set of all produced equations and set IN = R∗ over the

domain T (F).
We distinguish a finite set V ⊂ X of existential variables. Elements of V

are denoted as u, v and elements of X \ V as x, y, z. A constrained clause
v1≈t1, . . . , vn≈tn ‖C consists of a sequence of equations v1≈t1, . . . , vn≈tn called
the constraint and a clause C, such that V = {v1, . . . , vn}, vi �= vj for i �= j, and
neither C nor t1, . . . , tn contain an existential variable. In particular, constraints
always constitute a solved unification problem. The constrained clause is called
ground if C and t1, . . . , tn are ground. A constraint α induces a substitution
V → T (F , X), which we will denote by σα.

Constrained clauses are considered equal up to renaming of non-existential
variables. For example, the clauses u≈x, v≈y ‖P (x) and u≈y, v≈x ‖P (y) are
considered equal, but they are both different from v≈x, u≈y ‖P (x). If the uni-
versal variable x does not appear in C, we abbreviate v1≈t1, . . . , vn≈tn, v≈x ‖C
as v1≈t1, . . . , vn≈tn ‖C. A clause ‖C is unconstrained. If V = {v1, . . . , vn}, and
x1, . . . , xm are the non-existential variables in a clause set N , the semantics of N
is ∃v.∀x.

∧
(α ‖C)∈N α → C, i.e. an interpretationM is said to model N , written

M |= N iff the formula ∃v.∀x.
∧

(α ‖C)∈N α → C is valid inM.
We extend ≺ to constraints by v1≈s1, . . . , vn≈sn ≺ v1≈t1, . . . , vn≈tn iff s1 7

t1 ∧ . . . ∧ sn 7 tn and s1 �= t1 ∨ . . . ∨ sn �= tn. Constrained clauses are ordered
lexicographically with priority on the constraint, i.e. α ‖C ≺ β ‖D iff α ≺ β,

296 M. Horbach and C. Weidenbach

or α = β and C ≺ D. This ordering is not total on ground clauses, but strong
enough to support our completeness result and the usual notion of redundancy.

We use the symbols ∀ and ∃ both in first-order formulas and on the meta
level, where they are also used for higher-order quantification.

3 First-Order Reasoning in Fixed Domains

In this section, we will give a saturation procedure for sets of constrained clauses
over a domain T (F) and show how it is possible to decide whether a saturated
clause set possesses a Herbrand model over F .

We consider the following inference rules, which are defined with respect to a
reduction ordering ≺ on T (F , X) that is total on ground terms. Most of the rules
are quite similar to the usual superposition rules, just generalized to constrained
clauses. However, they also require additional treatments of the constraints. To
simplify the presentation below we do not enrich the calculus by the use of
a negative literal selection function, although this is also possible. As usual,
we consider the universal variables in different appearing clauses to be renamed
apart. If α1 = v1≈s1, . . . , vn≈sn and α2 = v1≈t1, . . . , vn≈tn are two constraints,
then we write α1≈α2 for the equations s1≈t1, . . . , sn≈tn, which do not contain
any existential variables, and we write mgu(α1, α2) for the most general common
unifier of (s1, t1), . . . , (sn, tn).

– Equality Resolution:
α ‖Γ, s≈t → Δ

(α ‖Γ → Δ)σ

where (i) σ = mgu(s, t) and (ii) (s≈t)σ is maximal in (Γ, s≈t → Δ)σ.
– Equality Factoring:

α ‖Γ → Δ, s≈t, s′≈t′

(α ‖Γ, t≈t′ → Δ, s′≈t′)σ
where (i) σ = mgu(s, s′), (ii) (s≈t)σ is maximal in (Γ → Δ, s≈t, s′≈t′)σ,
and (iii) tσ �� sσ

– Superposition, Right:

α1 ‖Γ1 → Δ1, l≈r α2 ‖Γ2 → Δ2, s[l′]p≈t
(α1 ‖Γ1, Γ2 → Δ1, Δ2, s[r]p≈t)σ1σ2

where (i) σ1 = mgu(l, l′), σ2 = mgu(α1σ1, α2σ1), (ii) (l≈r)σ1σ2 is strictly
maximal in (Γ1 → Δ1, l≈r)σ1σ2 and (s≈t)σ1σ2 is strictly maximal in (Γ2 →
Δ2, s≈t)σ1σ2, (iii) rσ1σ2 �� lσ1σ2 and tσ1σ2 �� sσ1σ2, and (iv) l′ is not a
variable.

– Superposition, Left:

α1 ‖Γ1 → Δ1, l≈r α2 ‖Γ2, s[l′]p≈t → Δ2

(α1 ‖Γ1, Γ2, s[r]p≈t → Δ1, Δ2)σ1σ2

Superposition for Fixed Domains 297

where (i) σ1 = mgu(l, l′), σ2 = mgu(α1σ1, α2σ1), (ii) (l≈r)σ1σ2 is strictly
maximal in (Γ1 →Δ1, l≈r)σ1σ2, (s≈t)σ1σ2 is maximal in (Γ2 →Δ2, s≈t)σ1σ2,
(iii) rσ1σ2 �� lσ1σ2 and tσ1σ2 �� sσ1σ2, and (iv) l′ is not a variable.

– Constraint Superposition:

α1 ‖Γ1 → Δ1, l≈r v≈t[l′]p, α2 ‖Γ2 → Δ2

(v≈t[r]p, α2 ‖α1≈(v≈t[r]p, α2), Γ1, Γ2 → Δ1, Δ2)σ

where (i) σ = mgu(l, l′), (ii) (l≈r)σ is strictly maximal in (Γ1 → Δ1, l≈r)σ,
(iii) rσ �� lσ, and (iv) l′ is not a variable.

– Equality Elimination:

α1 ‖Γ → Δ, l≈r v≈t[r′]p, α2 ‖�
(α1 ‖Γ → Δ)σ1σ2

where (i) σ1 = mgu(r, r′), σ2 = mgu(α1σ1, (v≈t[l]p, α2)σ1), (ii) (l≈r)σ1σ2 is
strictly maximal in (Γ → Δ, l≈r)σ1σ2, (iii) rσ1σ2 �� lσ1σ2, and (iv) r′ is not
a variable.

While the other rules keep clauses with different constraints strictly separate,
constraint superposition and equality elimination transfer information across
these bounds, allowing to derive, e.g., u≈b ‖� from u≈b ‖→ a≈b and u≈a ‖�
where a � b.

This inference system contains the standard universal superposition calculus
as the special case when there are no existential variables at all present, i.e. V = ∅
and all constraints are empty: The rules equality resolution, equality factoring,
and superposition right and left reduce to their non-constrained counterparts and
the constraint superposition and equality elimination rules become obsolete.

A ground constrained clause α ‖C is called redundant with respect to a set N
of constrained clauses if there are ground instances α ‖C1, . . . , α ‖Ck of clauses
in N , such that C1, . . . , Ck |= C and Ci ≺ C for all i. As an alternative, we
could choose |=F for defining redundancy. A non-ground constrained clause is
redundant if all its ground instances are redundant. A ground inference with
conclusion β ‖B is called redundant with respect to N if either some premise is
redundant or if there are ground instances β ‖C1, . . . , β ‖Ck of clauses in N , such
that C1, . . . , Ck |= B and C1, . . . , Cn are smaller than the maximal premise of the
ground inference. A non-ground inference is redundant if all its ground instances
are redundant. A clause set N is saturated if each inference with premises in N
is redundant with respect to N .

As constrained clauses are just special classes of clauses, the construction of a
Herbrand model of N is almost identical to the one for universal clause sets [1].
The main difference is that we now have to account for existential variables
before starting the construction. To define a Herbrand interpretation IN of a set
N of constrained clauses, we proceed in two steps:

1. Let AN = {α | (α ‖�) ∈ N}. Let αN be a minimal ground constraint with
respect to ≺ such that αN is not an instance of any α ∈ AN if such a
constraint exists. Otherwise we say that AN is covering. In this case let αN

be an arbitrary ground constraint.

298 M. Horbach and C. Weidenbach

2. The Herbrand interpretation IN is defined as the (classical) minimal model
of the unconstrained clause set {Cσ | (α ‖C) ∈ N ∧ ασ = αN}.

Note that even if AN is not covering, αN is usually not uniquely defined, e.g.
αN = {u≈0, v≈s(0)} or αN = {u≈s(0), v≈0} for F = {0, s} and the clause set
N = {u≈0, v≈0 ‖�}, which results in AN = {(u≈0, v≈0)}.

While it is well known how the second step works, it is not that obvious that
one can decide whether AN is covering and, if it is not, effectively compute αN .
This is, however, possible for finite N : Let {x1, . . . , xm} ⊆ X \ V be the set
of non-existential variables appearing in AN . AN is covering if and only if the
formula ∀x1, . . . , xm.

∧
α∈AN

¬α is satisfiable in T (F). Such so-called disunifi-
cation problems have been studied among others by Comon and Lescanne [5],
who gave a terminating algorithm that eliminates the universal quantifiers from
this formula and transforms the initial problem into an equivalent formula from
which the set of solutions can easily be read off.

We will now show that a saturated constrained clause set N has a Herbrand
model over F (namely IN) if and only if AN is not covering, and call IN a
minimal model of N in this case. Since IN is defined via a set of unconstrained
clauses, it inherits all properties of models of purely universal clause sets. Above
all, we will use the property that the rewrite system R constructed in parallel
with this interpretation is confluent and terminating. We write s →R t if there
is a rule l≈r ∈ R, also written l→r ∈ R, and a position p of s such that s = s[l]p
and t = s[r]p. In this case, s is called reducible by R. The notions of positions,
→R and reducibility lift naturally to constraints.

Lemma 1. Let N be saturated. If AN is not covering then αN is irreducible by R.

Proof. Assume that there is a position p and a rule lσ → rσ ∈ R produced by
a ground instance (β ‖Λ → Π, l≈r)σ of a clause β ‖Λ → Π, l≈r ∈ N , such that
lσ = αN |p.

Because of the minimality of αN , there must be a clause γ ‖� ∈ N with
γσ′≈αN [rσ]p. Since by definition αN is not an instance of γ, the position p is a
non-variable position of γ. Since furthermore βσ = αN = γσ′[lσ]p, there is an
equality elimination inference

β ‖Λ → Π, l≈r γ ‖�
(β ‖Λ → Π)σ1σ2

σ1 = mgu(γ|p, r), σ2 = mgu(βσ1, γ[l]pσ1)

with dom(σ2) ∩ V = ∅. The instance (β ‖Λ → Π)σ of the result clause prevents
the production of lσ≈rσ by the above clause, which is a contradiction.

Lemma 2. Let N be saturated, AN not covering and IN �|= N . If (α ‖C)σ is
a minimal ground instance of a clause in N such that IN �|= (α ‖C)σ, then
ασ = αN .

Proof. Let C = Γ → Δ. By definition of entailment, IN |= αN≈ασ, which
is equivalent to αN ↔∗R ασ. We have already seen in lemma 1 that αN is irre-
ducible. Because of the confluence of R, either αN = ασ or ασ must be reducible.

Superposition for Fixed Domains 299

Assume the latter, i.e. that ασ|p = lσ′ for a position p and a rule lσ′ → rσ′ ∈ R
that is produced by a clause β ‖Λ → Π, l≈r ∈ N . If p is not a non-variable
position in α, then the rule actually reduces σ, which contradicts the minimality
of (α ‖C)σ. Otherwise there is a constraint superposition inference

β ‖Λ → Π, l≈r α ‖Γ → Δ

(α[r]p ‖ β≈α[r]p, Λ, Γ → Π,Δ)τ
τ = mgu(α|p, l) .

The ground instance δ ‖D := (α[r]p ‖ β≈α[r]p, Λ, Γ → Π,Δ)σσ′ of the conclu-
sion is not true in IN . On the other hand, as the inference is redundant, so is
the clause δ ‖D, i.e. it follows from ground instances of clauses of N all of which
are smaller than δ ‖D. Since moreover δ ‖D ≺ (α ‖C)σ (remember that the
ordering prioritizes constraints), all these ground instances hold in IN , hence
IN |= δ ‖D by minimality of (α ‖C)σ. This is a contradiction to IN �|= δ ‖D.

Proposition 1. Let N be a saturated set of constrained clauses such that AN

is not covering. Then IN |= N .

Proof. Assume, contrary to the proposition, that N is not modeled by IN . Then
there is a minimal ground instance (α ‖C)σ of a clause α ‖C ∈ N that is not
modeled by IN . We will refute this minimality. We proceed by a case analysis
of the position of the maximal literal in Cσ.

– Cσ does not contain any maximal literal at all, i.e. C = �. Since ασ = αN

by lemma 2, but IN �|= ασ≈αN by definition of αN , this cannot happen.
– C = Γ → Δ, s≈t and sσ≈tσ is maximal in Cσ with sσ = tσ. This cannot

happen because then Cσ would be a tautology.
– C = Γ, s≈t → Δ and sσ≈tσ is maximal in Cσ with sσ � tσ. Since IN �|= Cσ,

we know that sσ≈tσ ∈ IN , and because R only rewrites larger to smaller
terms sσ must be reducible by a rule lσ′→rσ′ ∈ R produced by a clause
β ‖Λ → Π, l≈r ∈ N . So sσ|p = lσ′ for some position p in sσ.

Case 1: p is a non-variable position in s. Since βσ′ = αN = ασ and
sσ|p = lσ′, there is an inference by superposition (left) as follows:

β ‖Λ → Π, l≈r α ‖Γ, s≈t → Δ

(α ‖Λ, Γ, s[r]p≈t → Π,Δ)σ1σ2
σ1 := mgu(s|p, l), σ2 = mgu(βσ1, ασ1)

The ground instance δ ‖D := (α ‖Λ, Γ, s[r]p≈t → Π,Δ)σ of the result clause
is not modeled by IN .

On the other hand, as the inference is redundant, so is the clause δ ‖D,
i.e. it follows from ground instances of clauses of N all of which are smaller
than δ ‖D. Since moreover δ ‖D ≺ (α ‖C)σ, all these ground instances hold
in IN , whence IN |= δ ‖D. A contradiction.

Case 2: p = p′p′′, where s|p′ = x is a variable. Then (xσ)|p′′ = lσ. If τ
is the substitution that coincides with σ except that xτ = xσ[rσ]p′′ , then
IN �|= Cτ and Cτ contradicts the minimality of Cσ.

– The other cases are handled analogously.

300 M. Horbach and C. Weidenbach

For the construction of IN , we chose αN to be minimal. For non-minimal αN ,
the proposition does not hold: If, e.g., N = {u≈a ‖→ a≈b, u≈b ‖ a≈b →} and
a � b, then N is saturated, but N implies u≈a ‖�. So the model constructed
with α′N = {u≈a} is not a model of N . On the other hand, AN is not covering
whenever N has any Herbrand model over F :

Proposition 2. Let N be a set of clauses such that AN is covering. Then N
does not have any Herbrand model over F .

Proof. Let M be a Herbrand model of N over F . Then

M |= {(α ‖�) | (α ‖�) ∈ N}
⇐⇒ ∃σ.∀(α ‖�) ∈ N.∀τ.(M |= αστ =⇒ M |= �)
⇐⇒ ∃σ.∀(α ‖�) ∈ N.M |= ¬ασ
=⇒ ∃σ.∀(α ‖�) ∈ N.T (F) |= ¬ασ ,

where σ: V → T (F) and τ : X \ V → T (F). But then the constraint
∧

v∈V v≈vσ
is not an instance of the constraint of any clause of the form α ‖�, so AN is not
covering.

A saturated clause set N for which AN is covering may nevertheless have both
non-Herbrand models and Herbrand models over an extended signature: If F =
{a} and N = {u≈a ‖�}, then AN is covering, but any standard first-order
interpretation with a universe of at least two elements is a model of N .

Propositions 1 and 2 constitute the following theorem:

Theorem 1. Let N be a saturated set of constrained clauses. Then N has a
Herbrand model over F iff AN is not covering.

Moreover, the classical notions of theorem proving derivations and fairness from
[1] carry over to our setting. A (finite or countably infinite) theorem proving
derivation is a sequence N0, N1, . . . of constrained clause sets, written N0 0
N1 0 . . ., such that either

– (Deduction) Ni+1 = Ni ∪ {C} and Ni |=F Ni+1, or
– (Deletion) Ni+1 = Ni \ {C} and C is redundant with respect to Ni.

We may use our existential superposition calculus for deductions in a theorem
proving derivation:

Proposition 3. Let α ‖C be the conclusion of an inference with premises in N .
Then N |=F N ∪ {α ‖C}. More precisely: if τ : V → T (F) is a substitution then
Nτ |= Nτ ∪ {ατ → Cτ}.

Proof. Let α ‖C be the conclusion of an inference from α1 ‖C1, α2 ‖C2 ∈ N .
Then ατ → Cτ is (modulo (unconstrained) equality resolution) an instance of
the conclusion of a standard paramodulation inference from α1τ → C1τ and
α2τ → C2τ . Because of the soundness of the paramodulation rules, we have
Nτ |= Nτ ∪ {ατ → Cτ}.

Superposition for Fixed Domains 301

A derivation using our calculus is fair if every inference with premises in
⋃

j

⋂
k≥j

Nk is redundant with respect to
⋃

j Nj. As usual, fairness can be ensured by sys-
tematically adding conclusions of non-redundant inferences, making this inference
redundant.

As it relies on redundancy and fairness rather than a concrete inference sys-
tem, the proof of the next theorem is exactly as in the unconstrained case:

Theorem 2. Let N0, N1, . . . be a fair theorem proving derivation.
⋃

j

⋂
k≥j Nk

is saturated, and this set has a Herbrand model over F if and only if N0 does.

4 Finite Domain and Minimal Model Validity of
Constrained Clauses

Given a clause set N , we are often not only interested in the (un)satisfiability of
N (with or without respect to a fixed domain), but also in properties of Herbrand
models of a satisfiable clause set N over F , especially of the model IN .

These are not always disjoint problems: For some N , whole classes of first-
order properties and properties of IN coincide, so that we can explore the latter
with first-order techniques:

Proposition 4. If N is a saturated set of unconstrained Horn clauses and Γ is
a conjunction of positive literals with existential closure ∃x.Γ , then

N |=Ind ∃x.Γ ⇐⇒ N |= ∃x.Γ

Proof. N |= ∃x.Γ holds iff the set N ∪ {∀x.¬Γ} is unsatisfiable. N is Horn, so
during saturation of N ∪ {¬Γ} using a set-of-support strategy (which is com-
plete as N is saturated), only purely negative, hence non-productive, clauses
can appear. So N ∪ {∀x.¬Γ} is unsatisfiable iff N �|=Ind ∀x.¬Γ , which is in turn
equivalent to N |=Ind ∃x.Γ .

IfN and Γ additionally belong to the Horn fragment of a first-order logic (clause)
class decidable by (unconstrained) superposition, such as the monadic class with
equality [2] or the guarded fragment with equality [7], it is thus decidable whether
N |=Ind ∃x.Γ .

Our goal in this section is to extend these results further. We will first show
how to use our superposition calculus to prove or refute the validity of a set H of
constrained clauses with respect to a Herbrand modelM over F of a saturated
clause set N , i.e. to decide whether or not M |= H (Theorem 3). Moreover, we
will demonstrate classes of clause sets N and properties H for which N |=F H
and N |=Ind H coincide (Proposition 5). Finally, we will look at ways to improve
the termination of our approach for properties of IN (Theorem 4).

Since existential variables of N and H can be renamed apart and then do not
interact in our inference system, we can and will assume that N consists only of
unconstrained clauses.

As in the unconstrained context, a set-of-support strategy is complete for our
calculus if the support set is saturated. We write H 0∗N H ′ if N ∪H 0∗ N ∪H ′
using N as set of support.

302 M. Horbach and C. Weidenbach

Theorem 3. Let N be saturated and let H 0∗N H ′ such that N∪H ′ is saturated.
Then AH′ is covering iff M �|= H for each Herbrand model M of N over F .

Proof. This is a direct consequence of theorem 2 in the context of a set-of-support
strategy for N .

Example 1. We consider the partial definition of the usual ordering on the nat-
urals given by N = {→ G(s(0), 0), G(x, y) → G(s(x), s(y))}, as shown in the
introduction. We want to check whether or not N |=F ∀x.G(s(x), x). The first
steps of a possible derivation are as follows:

clauses in N : 1 : ‖ → G(s(0), 0)
2 : ‖ G(x, y) → G(s(x), s(y))

negated conjecture: 3 : u≈x ‖ G(s(x), x) →
superposition(1,3) = 4 : u≈0 ‖ �
superposition(2,3) = 5 : u≈s(y) ‖ G(s(y), y) →
superposition(1,5) = 6 : u≈s(0) ‖ �
superposition(2,5) = 7 : u≈s(s(z)) ‖ G(s(z), z) →

If the sequel, we repeatedly superpose clauses 1 and 2 into (descendents of)
clause 5 and successively derive all clauses of the forms u≈sn(0) ‖� and
u≈sn(x) ‖G(s(x), x) →, where, e.g., sn(0) denotes the n-fold application s(. . .
s(s(0)) . . .) of s to 0. Since the constraints of the derived � clauses are covering,
we know that N |=F ∀x.G(s(x), x).

Given our superposition calculus for fixed domains, we can show that a result
similar to proposition 4 holds for positive universal clauses.

Proposition 5. If N is a saturated set of (unconstrained) Horn clauses and Γ
is a conjunction of positive literals with universal closure ∀v.Γ , then

N |=Ind ∀v.Γ ⇐⇒ N |=F ∀v.Γ

Proof. N |=F ∀v.Γ holds iff N ∪{∃v.¬Γ} does not have a Herbrand model over
F . If N ∪ {∃v.¬Γ} does not have a Herbrand model over F , then obviously
N �|=Ind ∃v.¬Γ . Otherwise, the minimal models of N and N ∪ {∃v.¬Γ} are
identical, since during the saturation of N ∪{ ‖Γ →} with our algorithm using a
set-of-support strategy (which again is complete as N is saturated), only purely
negative, hence non-productive, clauses can appear. This in turn just means that
N |=Ind ∃v.¬Γ .

Using proposition 5, we can decide properties of minimal models for which
neither the approach of Ganzinger and Stuber [8] nor the one of Comon and
Nieuwenhuis [6] works.

Example 2. Consider yet another partial definition of the usual ordering on the
naturals given by the saturated set N = {→ G(s(x), 0), G(x, s(y)) → G(x, 0)}
over the signature F = {0, s}. We want to prove both N �|=F ∀x, y.G(x, y) and

Superposition for Fixed Domains 303

N �|=Ind ∀x, y.G(x, y). We start with the clause u≈x, v≈y ‖G(x, y) → and do the
following one step derivation:

clauses in N : 1 : ‖ → G(s(x), 0)
2 : ‖ G(x, s(y)) → G(x, 0)

negated conjecture: 3 : u≈x, v≈y ‖ G(x, y) →
superposition(1,3) = 4 : u≈s(x), v≈0 ‖ �

All further inferences are redundant, thus the counter examples to the query are
exactly those for which no � clause was derived, i.e. instantiations of u and v
which are not an instance of {u �→ s(x), v �→ 0}. Hence these counter examples
take on exactly the form {u �→ 0, v �→ t2} or {u �→ t1, v �→ s(t2)} for any
t1, t2 ∈ T (F). Thus we know that N �|=F ∀x, y.G(x, y), but since the query is
positive, we also know that N �|=Ind ∀x, y.G(x, y).

In comparison, the base approach by Ganzinger and Stuber starts a derivation
with the clause → G(x, y), derives in one step the potentially productive clause
→ G(x, 0) and finishes with the answer “don’t know”. The extended approach
that uses the predicate gnd defined by {→ gnd(0), gnd(x) → gnd(s(x))} starts
the derivation with the clause gnd(x), gnd(y) → G(x, y), where at least one of
gnd(x) and gnd(y) is selected, and diverges.

The approach by Comon and Nieuwenhuis fails as well. Before starting the
actual derivation, a so-called I-axiomatization of the negation of G has to be
computed. This involves a quantifier elimination procedure as in [5], that fails
since G is not universally reductive (because, e.g., the head of one clause does
not contain all variables of the clause): G is defined in the minimal model IN
by G(x, y) ⇐⇒ (y = 0∧ ∃u.x = s(u)) ∨ (y = 0 ∧ ∃v.G(x, s(v))), so its negation
is defined by ¬G(x, y) ⇐⇒ (y �= 0 ∨ ∀u.x �= s(u)) ∧ (y �= 0 ∨ ∀v.¬G(x, s(v))).
Quantifier elimination simplifies this to ¬G(x, y) ⇐⇒ (y �= 0 ∨ x = 0) ∧ (y �=
0 ∨ ∀v.¬G(x, s(v))) but cannot get rid of the remaining universal quantor.

As we have seen in example 1, a proof of |=F validity often requires the compu-
tation of infinitely many empty clauses. This is not surprising, because we have
to show that an existentially quantified clause cannot be satisfied by a term-
generated infinite domain. In the context of a concrete model M of N , we can
make use of additional structure provided by this model. To do so, we introduce
a further inference rule that often drastically decreases the number of possi-
bly non-implied query instances to be considered and allows more derivations
to terminate. This rule is not sound for |=F but always glued to the currently
considered modelM. While the results in this section hold for all (sets of) Her-
brand models of N , they are most likely to be used for the minimal model IN
of a saturated clause set and hence presented in the context of |=Ind only.

Over any domain where the induction theorem holds, i.e. a domain on which
a well-founded ordering can be defined, we can exploit this structure to concen-
trate on finding minimal solutions. We do this by adding a form of induction
hypothesis to the clause set. If e.g. P is a unary predicate over the natural num-
bers and n is the minimal number such that P (n) holds, then we know that at

304 M. Horbach and C. Weidenbach

the same time P (n − 1), P (n − 2), . . . do not hold. This idea will now be cast
into an inference rule that can be used during a theorem proving derivation.

Let < ⊆ (T (F)/ ∗↔R
)2 be a well-founded partial ordering on the elements of

IN . If s, t are non-ground terms with equivalence classes [s] and [t], then we
define [s] < [t] iff [sσ] < [tσ] for all grounding substitutions σ : X → T (F). The
definition lifts pointwise to substitutions [σ], [ρ]: X ′ → T (F)/ ∗↔R

, where we say
that [ρ] < [σ] iff [xρ] < [xσ] for all x ∈ X ′.

Lemma 3. Let α = v1≈x1, . . . , vk≈xk be a constraint containing only variables,
Xα = {x1, . . . , xk}, and let H = {α ‖C1, . . . , α ‖Cn} be a set of clauses where
only variables of V ∪Xα occur. Furthermore, let σ, ρ: Xα → T (F , X) be substitu-
tions with [ρ] < [σ]. If N |=Ind H, then also N |=Ind ασ → (¬C1ρ ∨ . . . ∨ ¬Cnρ).

Proof. Let [σ0]: V → T (F)/ ∗↔R
be minimal with respect to < such that N |=Ind

{(α ‖C1)σ0, . . . , (α ‖Cn)σ0}. Furthermore, let Xασ be the set of non-existential
variables in ασ and τ : Xασ → T (F) such that N |=Ind ασσ0τ . We have to show
that N |=Ind ¬C1ρτ ∨ . . . ∨ ¬Cnρτ .

The restriction of a substitution to the set V of existential variables is denoted
by (·)|V . In the fifth line below, we use that α is a conjunction of equations v≈vσα
and that τ ′ and σαρτ |V affect different sides of each such equation.

[ρ] < [σ] Xα⊆X⇐⇒ [σαρ] < [σασ]
def. <=⇒ [(σαρτ)|V] < [(σαστ)|V] = [σ0]

[σ0] minimal
=⇒ N �|=Ind {(α ‖C1)(σαρτ)|V , . . . , (α ‖Cn)(σαρτ)|V }

def. |=
=⇒ ∃τ ′. N |=Ind α(σαρτ)|V τ ′ and N �|=Ind C1τ

′ ∧ . . . ∧Cnτ
′

=⇒ ∃τ ′. ∀v ∈ V.N |=Ind vσαρτ≈vσατ ′ and N �|=Ind C1τ
′ ∧ . . . ∧ Cnτ

′

=⇒ ∃τ ′. ∀x ∈ Xα. N |=Ind xρτ≈xτ ′ and N �|=Ind C1τ
′ ∧ . . . ∧Cnτ

′

Ciτ
′ ground
=⇒ ∃τ ′. ∀x ∈ Xα. N |=Ind xρτ≈xτ ′ and N |=Ind ¬C1τ

′ ∨ . . . ∨ ¬Cnτ
′

var(Ci)⊆Xα=⇒ N |=Ind ¬C1ρτ ∨ . . . ∨ ¬Cnρτ

for τ ′: X \ V → T (F).

Since the preserved solution [σ0] is independent of the choices of σ and ρ, any
clauses derived by this lemma will have a common solution with α ‖C.

Example 3. Let F = {0, s}, N = {P (s(s(x)))} and H = {u≈x ‖P (x)}. The for-
mulas derivable by the lemma are of one of the forms u≈sn(0) → ¬P (sn+m(0)),
u≈sn(0) → ¬P (sn+m(x)) or u≈sn(x) → ¬P (sn+m(x)) for natural numbers
n,m with m > 0. All these formulas and the initial clause u≈x ‖P (x) have the
common solution {u �→ s(s(0))} in IN .

The formula ασ → (¬C1ρ ∨ . . . ∨ ¬Cnρ) can usually not be written as a single
equivalent constrained clause if some Ci contains more than one literal. However,

Superposition for Fixed Domains 305

if D1 ∧ . . .∧Dm is a conjunctive normal form of ¬C1 ∨ . . .∨ ¬Cn, then each Dj

is a disjunction of literals and so ασ ‖Djρ is a constrained clause.
We can thus, to decide the validity of {α ‖C1, . . . , α ‖Cn} in IN , use infor-

mation taken from the lemma in the theorem proving derivation:

Theorem 4. Let N be a saturated set of clauses, let α = v1≈x1, . . . , vk≈xk
be a constraint containing only variables, Xα = {x1, . . . , xk}, and let H =
{α ‖C1, . . . , α ‖Cn} be a set of clauses where only variables of V ∪ Xα occur.
Moreover, let D1 ∧ . . . ∧Dm be a conjunctive normal form of ¬C1 ∨ . . . ∨ ¬Cn.
Consider the inference rule

ασ ‖Djρ
if σ, ρ: Xα → T (F , X) and [ρ] < [σ] and 1 ≤ j ≤ m

which is specialized for the one fixed clause set H, and the theorem proving
system combining this rule and 0N . If H ′ is derived from H using this combined
inference system, then N |=Ind H ⇐⇒ N |=Ind H

′.

Proof. This follows directly from proposition 3 and lemma 3.

Example 4. Consider the following theory of the addition on the naturals: N =
{→ 0 + y≈y, → s(x) + y≈s(x+ y)}. The proof of N |=Ind ∀x.x+ 0≈x with the
induction inference rule terminates quickly:

clauses in N : 1 : ‖ → 0 + y≈y
2 : ‖ → s(x) + y≈s(x+ y)

negated conjecture: 3 : u≈x ‖ x+ 0≈x →
superposition(1,3) = 4 : u≈0 ‖ 0≈0 →

equality res.(4) = 5 : u≈0 ‖ �
superposition(2,3) = 6 : u≈s(y) ‖ s(y + 0)≈s(y) →
induction rule(3) = 7 : u≈s(z) ‖ → z + 0≈z

superposition(7,6) = 8 : u≈s(z) ‖ s(z)≈s(z) →
equality res.(8) = 9 : u≈s(z) ‖ �

At this point, the clauses u≈0 ‖� and u≈s(z) ‖� have been derived. Their
constraints cover all of T (F), which means that N �|=Ind u≈x ‖ x+ 0≈x →, i.e.
N |=Ind ∀x.x+ 0≈x.
Example 5. Given the theory N = {→ E(0), E(x) → E(s(s(x)))} of the nat-
ural numbers together with a predicate describing the even numbers, we check
whether N |=Ind ∀x.E(x). A possible derivation runs as follows:

clauses in N : 1 : ‖ → E(0)
2 : ‖ E(x) → E(s(s(x)))

negated conjecture: 3 : u≈x ‖ E(x) →
superposition(1,3) = 4 : u≈0 ‖ �
superposition(2,3) = 5 : u≈s(s(y)) ‖ E(y) →
induction rule(3) = 6 : u≈s(s(z)) ‖ → E(z)

superposition(6,5) = 7 : u≈s(s(z)) ‖ �
This set is saturated. The derived contradictions are u≈0 ‖� and u≈s(s(z)) ‖�.
Their constraints are not covering, and in fact N |=Ind E(s(0)) →.

306 M. Horbach and C. Weidenbach

5 Conclusion

We have presented a sound and complete superposition calculus for a fixed do-
main semantics. Compared to other approaches in model building over fixed
domains, our approach is applicable to a larger class of clause sets. While most
works in the tradition of Caferra and Zabel [4] consider only very restricted forms
of equality literals and even more recent publications by Peltier [14] pose strong
restrictions on the clause sets (e.g. that they have a unique Herbrand model),
we do not have such restrictions.

Moreover, we presented a way to prove the validity of minimal model proper-
ties by using a specific induction rule. We even showed that standard first-order
and fixed domain superposition based reasoning, respectively, delivers minimal
model results for some cases. The most general methods based on saturation
so far are those by Ganzinger and Stuber [8] and Comon and Nieuwenhuis [6].
Both approaches work only on sets of purely universal and universally reductive
(Horn) clauses. We gave an example of a purely universal problem that our al-
gorithm can solve while neither of the above approaches works. Additionally, we
showed how we can also prove the validity of ∀∗∃∗-quantified formulas.

Another intensely studied approach is via test sets [11,3]. Test sets rely on
the existence of a set of constructor symbols that are either free or specified
by unconditional equations only. Again, such properties are not needed for the
applicability of our calculus. Example 1 is not solvable via test sets, whereas
Example 2 is.

In analogy to the work of Bachmair and Ganzinger [1], it is also possible
to extend the new superposition calculus by negative literal selection, with the
restriction that no constraint literals may be selected. still hold in this setting.
Theorem 1 still holds in this setting. For universally reductive clause sets N , it is
also possible to make the inductive theorem proving algorithm (with selection)
refutationally complete, following the approach of Ganzinger and Stuber [8].

In summary, our approach does not need many of the prerequisites required by
previous approaches, like solely universally reductive clauses in N , solely Horn
clauses, solely purely universal clauses, solely non-equational clauses, the exis-
tence of an “A” set fixing the standard first-order interpretation to the minimal
model, or the existence of explicit constructor symbols. Its success is build on a
superposition based saturation concept.

Our hope is that the success of the superposition based saturation approach
on identifying decidable classes with respect to the classical first-order semantics
can be extended to some new classes for the fixed domain or minimal model
semantics. In case we can finitely saturate a clause set, the ordering < on IN
elements may become effective and hence the induction rule of theorem 4 can
then be effectively used to finitely saturate clause sets that otherwise have an
infinite saturation. Decidability results for the fixed domain semantics are hard to
obtain for infinite Herbrand domains but the problem can now be attacked using
the sound and complete calculus presented in this paper. They will require in
addition the extension of the redundancy notion suggested in section 3 possibly

Superposition for Fixed Domains 307

using more expressive languages of existential constraints. Here, concepts and
results from tree automata could play a role.

Acknowledgements. We thank our reviewers for their detailed and valuable
comments. Matthias Horbach and Christoph Weidenbach are supported by the
German Transregional Collaborative Research Center SFB/TR 14 AVACS.

References

1. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

2. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as
a decision procedure for the monadic class with equality. In: Mundici, D., Gottlob,
G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg
(1993)

3. Bouhoula, A.: Automated theorem proving by test set induction. J. Symb.
Comp. 23(1), 47–77 (1997)

4. Caferra, R., Zabel, N.: A method for simultanous search for refutations and models
by equational constraint solving. J. Symb. Comp. 13(6), 613–642 (1992)

5. Comon, H., Lescanne, P.: Equational problems and disunification. Journal of Sym-
bolic Computation 7(3-4), 371–425 (1989)

6. Comon, H., Nieuwenhuis, R.: Induction = I-axiomatization + first-order consis-
tency. Information and Computation 159(1/2), 151–186 (2000)

7. Ganzinger, H., Nivelle, H.D.: A superposition decision procedure for the guarded
fragment with equality. In: Proc. of LICS 1999, pp. 295–305. IEEE, Los Alamitos
(1999)

8. Ganzinger, H., Stuber, J.: Inductive theorem proving by consistency for first-order
clauses. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp.
226–241. Springer, Heidelberg (1993)

9. Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in extensions of shallow
equational theories. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 76–90.
Springer, Heidelberg (1998)

10. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with equality con-
straints modulo equational theories. In: Furbach, U., Shankar, N. (eds.) IJCAR
2006. LNCS (LNAI), vol. 4130, pp. 557–571. Springer, Heidelberg (2006)

11. Kapur, D., Narendran, P., Zhang, H.: Automating inductionless induction using
test sets. Journal of Symbolic Computation 11(1/2), 81–111 (1991)

12. Nieuwenhuis, R.: Basic paramodulation and decidable theories (extended abstract).
In: Proc. of LICS 1996, pp. 473–482. IEEE Computer Society Press, Los Alamitos
(1996)

13. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook
of Automated Reasoning, ch. 7, vol. I, pp. 371–443. Elsevier, Amsterdam (2001)

14. Peltier, N.: Model building with ordered resolution: extracting models from satu-
rated clause sets. Journal of Symbolic Computation 36(1-2), 5–48 (2003)

15. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328.
Springer, Heidelberg (1999)

16. Weidenbach, C.: Combining superposition, sorts and splitting. In: Handbook of
Automated Reasoning, ch. 27, vol. 2, pp. 1965–2012. Elsevier, Amsterdam (2001)

Non-finite Axiomatizability and Undecidability

of Interval Temporal Logics with C, D, and T

Ian Hodkinson1, Angelo Montanari2, and Guido Sciavicco3

1 Department of Computing, Imperial College London,
South Kensington Campus London SW7 2AZ (UK)

imh@doc.ic.ac.uk
2 Department of Mathematics and Computer Science,

University of Udine (Italy)
angelo.montanari@dimi.uniud.it

3 Department of Information Engineering and Communications,
University of Murcia, Murcia (Spain)

guido@um.es

Abstract. Interval logics are an important area of computer science.
Although attention has been mainly focused on unary operators, an
early work by Venema (1991) introduced an expressively complete in-
terval logic language called CDT, based on binary operators, which has
many potential applications and a strong theoretical interest. Many very
natural questions about CDT and its fragments, such as (non-)finite ax-
iomatizability and (un-)decidability, are still open (as a matter of fact,
only a few undecidability results, including the undecidability of CDT,
are known). In this paper, we answer most of these questions, showing
that almost all fragments of CDT, containing at least one binary opera-
tor, are neither finitely axiomatizable with standard rules nor decidable.
A few cases remain open.

1 Introduction

Interval-based temporal logic represents an important area of computer science.
The main species of propositional interval temporal logics studied so far include
Mozskowski’s Propositional Interval Logic (PITL) [22], Halpern and Shoham’s
Modal Logic of Allen’s Relations (HS) [16], and Venema’s CDT logic [25] (ex-
tended to branching-time frames with linear intervals in [14]). Important frag-
ments of HS studied in more detail include, among others, the logic of begins/ends
Allen’s relations (BE) [19], the logics of temporal neighborhood [8,9,12] and the
logics of subinterval structures [4,5].

(Un-)decidability. The logic PITL, which features the binary modality C
(chop) and the modal constant π for point-intervals, has been shown to be un-
decidable in [22] when interpreted in the class of all finite linearly ordered sets
and in classes based on N or Z; in [19] the result has been extended to the dense
case (as pointed out in [13], this implies undecidability in the class of all linearly
ordered sets). Satisfiability for HS is also undecidable in many cases, as it has

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 308–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Non-finite Axiomatizability and Undecidability 309

been shown in [16]. HS can be thought of as a modal logic with a unary modal
operator for any of Allen’s relations between two intervals. Undecidability has
been shown for various interesting classes of linearly ordered sets, and the proof
hinges on a non-trivial reduction from the halting problem for a Turing ma-
chine. In some cases, such as Dedekind-complete linearly ordered sets with an
infinite unbounded ascending sequence, validity is non recursively enumerable,
which implies non-finite axiomatizability (no matters what kind of deduction
rules are used). Undecidability of CDT, over the same classes of structures, im-
mediately follows from that of HS. In [19], the fragment of HS with only two
modalities, corresponding to Allen’s relations begins/ends (BE), has been shown
undecidable when interpreted over dense linear orderings. On the positive side,
decidability of the fragments of HS with modalities corresponding to Allen’s
relations begins/begun-by and ends/ended-by has been obtained by means of a
translation to Linear Temporal Logic [13]. Moreover, decidability of the satis-
fiability problem for the class of HS fragments featuring only two modalities,
corresponding to Allen’s relations meets/met-by (AA, or PNL), has been shown
in [6] (as a matter of fact, a number of natural extensions of it turn out to be un-
decidable ([7])). Finally, decidability of the logics of subinterval structures over
dense ordering has been proved in [4,5].

(Non-)finite axiomatizability. Sound and complete axiomatic systems in in-
terval temporal logics are scarce. PITL has been axiomatized both at the first-
order and the propositional level in [3] for discrete/finite linearly ordered sets,
but under the hypothesis of locality, that is, with the semantical assumption that
each propositional letter is true over an interval if and only if it is true at the first
point of the interval. The logics HS and CDT have been finitely axiomatized,
respectively in [24] and [25], for various classes of linearly ordered sets, but using
a Burgess/Gabbay-style non-orthodox ‘irreflexivity’ rule [11]. Finally, logics of
neighborhood modalities have complete axiomatic systems with standard rules
in various cases; some of them are infinite, as in the case in which point-intervals
are allowed, but no modal constant for them is included in the language [12].

In this paper we focus on the logic CDT. Its language includes three binary
operators C, D, and T , which correspond to the ternary interval relations occur-
ring when an extra point is added in one of the three possible distinct positions
with respect to the two endpoints of the current interval (between, before, and
after), plus a modal constant π which holds at a given interval if and only if it is
a point-interval. We prove the following results. First, we show that the undecid-
ability of CDT can be extended to some sub-languages. For the language with C
and π, undecidability was known (as recalled above). Here we show that D alone
and T alone are undecidable as well, when interpreted in interval structures over
any class of linearly ordered sets containing at least one linearly ordered set with
an infinite sequence — ascending for T , descending for D — and that D+π and
T + π are undecidable when interpreted in interval structures over finite strict
linear orders. Second, the logic CDT is not finitely axiomatizable with standard
rules over interval structures based on any class of linearly ordered sets con-
taining (Q, <). The same holds for any sub-language containing at least one of

310 I. Hodkinson, A. Montanari, and G. Sciavicco

the modalities C,D, T . This result holds even if we drop the modal constant π.
Notice that the undecidability and non-finite axiomatizability results are inde-
pendent from each other. The question of whether there exists a finite axiomatic
system for CDT with standard rules only was open since [24,25]. The results in
the present paper correct a previous claim in [23]. Because of space restrictions,
many proofs are only sketched in bare outline or omitted.

2 Basic Notions

Venema’s interval-based temporal logic CDT [25] features a denumerable set AP
of propositional letters, the classical operators ∧ and ¬ (the remaining ones can
be considered as abbreviations), the modal constant π, and three binary modal
operators, namely, C, T , and D.1 Well-formed formulas, denoted by φ, ψ, . . .,
can be obtained by the following grammar:

φ := p | ¬φ | φ ∧ ψ | π | φ � ψ (� ∈ Mod),

where Mod = {C,D, T} and p ∈ AP . We will denote the sublanguage of CDT
featuring only the non-empty set S ⊆ Mod of the operators by Lπ

S , and by LS

when π is not allowed (so CDT becomes Lπ
CDT in our notation). In the next

section, we will show that, for every S, LS is not expressive enough to define π.

Definition 1 (abstract semantics). Let S ⊆ Mod. An S-frame is a structure
of the form F = (I,Π,R� : � ∈ S), where I is a non-empty set, Π ⊆ I, and
R� ⊆ I3 for each � ∈ S. An S-model is a structure of the form M = (F , h),
where F = (I,Π,R� : � ∈ S) is an S-frame and h : AP → P(I). The frame of
M is F . We evaluate an Lπ

S-formula φ in M at i ∈ I as follows:

– M, i |= p iff i ∈ h(p), for p ∈ AP;
– M, i |= ¬φ iff it is not the case that M, i |= φ;
– M, i |= φ ∧ ψ iff M, i |= φ and M, i |= ψ;
– M, i |= π iff i ∈ Π;
– M, i |= φ � ψ iff there exist j, k ∈ I with R�(i, j, k),M, j |= φ, andM, k |= ψ.

Throughout, we often identify (notationally) a model or frame with its domain:
so, for example, we write i ∈ F or i ∈ M to mean i ∈ I as above. Let S ⊆ Mod,
M be an S-model, and K be a class of S-frames. An Lπ

S-formula φ is said to
be satisfiable in M if there is some i ∈ M such that M, i |= φ, and satisfiable
over K if it is satisfiable in a model whose frame is in K. Similarly, an Lπ

S-
formula φ is valid in M (resp., valid over K) if for every i ∈ M, it is the case
that M, i |= φ (resp., if φ is valid in every model whose frame is in K). These
definitions naturally generalize to the case of sets of formulas.

Notice that LS-formulas are Lπ
S-formulas, so we can evaluate them in S-models.

We do not need to include Π in our frames in this case, but it can always be
1 C stands for ‘chop’. One may think of D as standing for ‘Done’ and T for ‘To come’.

Non-finite Axiomatizability and Undecidability 311

v
t

x y

z
w

RC

RD

x y
z t

v w

x y
z t

v w

RT

Fig. 1. The relations RC , RD, RT ; the thick line represents the current interval [x, y]

added without affecting LS-semantics. So rather than to complicate our notation
by introducing frames without Π , we give LS-formulas semantics in Lπ

S-models,
which include Π .

While the above semantics can be considered abstract, we can formalize a
concrete one based on pairs of points (intervals) over linear orders.

Definition 2 (concrete semantics). Let (T,<) be a strict linear order. We
write Int(T,<) for the set {[t, u] : t, u ∈ T, t ≤ u}. As usual, [t, u] = {v ∈ T :
t ≤ v ≤ u}, and t ≤ u abbreviates t < u ∨ t = u. Let Π = {[t, t] : t ∈ T }. For
any [x, y], [z, t], [v, w] ∈ Int(T,<), we define

– RC([x, y], [z, t], [v, w]) iff x = z, t = v, and y = w;
– RD([x, y], [z, t], [v, w]) iff x = t, z = v, and y = w;
– RT ([x, y], [z, t], [v, w]) iff x = v, y = z, and t = w.

For S ⊆ Mod, we write IntS(T,<) for the S-frame (Int(T,<), Π,R� : � ∈ S).

A graphical account of the three relations is given in Fig. 1. Intuitively, for an
interval [x, y], we have M, [x, y] |= φCψ iff there is z ∈ [x, y] with M, [x, z] |=
φ and M, [z, y] |= ψ, and similarly for the other two modalities. We will use
alternatively the abstract or the concrete semantics.

Definition 3. Let S ⊆ Mod and let K be a class of strict linear orders. We
write S(K) (resp., Sπ(K)) for the set of all LS-formulas (resp., Lπ

S-formulas)
valid over {IntS(T,<) : (T,<) ∈ K}. Thus, S(K) and Sπ(K) are the logics of
(intervals over) K in their respective languages.

Beside the usual N,Z,Q, we introduce notation for some common classes:

– Lin = the class of all strict linear orders
– Fin = the class of all finite strict linear orders
– Dense = the class of all strict dense linear orders
– Dis = the class of all strict discrete linear orders
– Asc = the class of all strict linear orders that contain an infinite ascending

sequence (i.e., they have (N, <) as a suborder)

312 I. Hodkinson, A. Montanari, and G. Sciavicco

– Des = the class of all strict linear orders that contain an infinite descending
sequence

We usually write S ⊆ Mod as a sequence consisting of its members: thus, we
have the logics CDT (Lin), Cπ(Dense), etc. When K = {(T,<)}, we write S(K)
as S(T,<) and Sπ(K) as Sπ(T,<).

3 Expressive Power of LCDT and Lπ
CDT

While in this paper we are mainly interested in binary modalities, unary modal-
ities are most studied in interval logics. In general, one can introduce a unary
interval modality for each of Allen’s relations between two intervals. In [16] it was
shown that only four of them are sufficient to express any of Allen’s relations
between two intervals, namely, 〈B〉 (begins), 〈E〉 (ends) and their inverses. In
the language Lπ

CDT these operators can be easily expressed, e.g.: 〈B〉φ = φC¬π,
or 〈E〉φ = ¬πDφ. In [24] the undecidability of CDT (Asc) (and, by symmetry,
of CDT (Des)) has been proved by exploiting the undecidability of HS over the
same classes. Notice that the modal constant π plays an important role here.
So, the question is whether π is definable in the language LCDT or not. Here we
show that it is not the case, proving that LCDT is strictly less expressive than
Lπ
CDT , by applying a simple bisimulation argument to exhibit two models that

can be distinguished by an Lπ
CDT -formula, but not by any LCDT -formula.

Theorem 1. The modal constant π cannot be defined in LCDT .

Proof. Consider the pair of models (M0,M1), based, respectively, on Int(T0, <)
and Int(T1, <), where T0 = {x0, z0, y0} with x0 < z0 < y0, and T1 = {x1, y1}
with x1 < y1. Clearly, Int(T0, <) = {[x0, x0], [y0, y0], [z0, z0], [x0, y0], [x0, z0],
[z0, y0]}, and Int(T1, <) = {[x1, x1], [y1, y1], [x1, y1]}. The valuation functions
h0 and h1 are void. It is easily seen that the intervals [x0, z0] and [x1, x1] are
bisimilar. By the bisimulation-invariance of modal formulas (see, e.g., [1, Theo-
rem 2.20]), they satisfy the same LCDT -formulas in their respective models. But
M0, [x0, z0] |= ¬π andM1, [x1, x1] |= π. ��

Because π is equivalent to [B]⊥ (and to [E]⊥), this means that LCDT cannot
define all of the modalities corresponding to Allen’s relations, and the original
argument for the undecidability cannot be applied anymore. As for fragments of
Lπ
CDT , the logic Cπ has been shown to be undecidable for discrete linear orders

in [22]; later, in [19], the undecidability was shown also for dense orders, and
thus, since density and the universal operator can be defined in the language
(see [13]), for all linear orders. The other fragments, with or without π, have
received no attention so far.

4 Undecidability

In this section, we establish undecidability of any logic D(K) where K ⊆ Lin and
K∩Des �= ∅, and T (K), whereK ⊆ Lin andK∩Asc �= ∅. Recall that Asc (resp., Des)

Non-finite Axiomatizability and Undecidability 313

is the class of all linearly ordered sets with an infinite ascending (resp., descending)
sequence. We consider the case of T , the other one is symmetric. We show how
to encode in LT a variant of the N × N-tiling problem called the Octant Tiling
Problem. Given a set of tiles T = {t1, . . . , tk}, the octant tiling problem consists
in establishing whether T can tile one octant of the Cartesian plane over N; in
our case, it will be the second octant O = {(p, q) | p, q ∈ N, p ≤ q}. Each tile ti
has four colors, namely, right(ti), left(ti), up(ti), and down(ti), and neighboring
tiles must have matching colors. Formally, we say that a set T can tile O if there
exists a function f : O �→ T such that right(f(p, q)) = left(f(p + 1, q)) and
up(f(p, q)) = down(f(p, q + 1)), where f(p, q) represents the tile to be placed in
the position (p, q), whenever all relevant coordinates ((p, q), (p + 1, q) etc.) lie in
O. The undecidability of the N×N-tiling problem is well-known (e.g., see [2]); one
can easily prove that the octant tiling problem is undecidable as well.

4.1 Language, Shortcuts, and u-Intervals

Let T = {t1, . . . , tk} be an instance of the octant tiling problem. We will assume
that AP contains at least the propositional letters u, t1,. . . , and tk.

As a preliminary step, we introduce a sort of universal operator (denoted by
G) that looks only at the future of the current interval, and, then, we set our
framework by forcing the existence of unit-intervals (or u-intervals) working like
atomic elements. Such intervals will be denoted by the propositional letter u.
We will impose that u-intervals are disposed in an unbounded unique (uninter-
rupted) sequence:

Gφ ::= ¬(�T (¬φT�)), (1)
uT�∧G(u → uT¬u). (2)

It is not difficult to see thatM, [x, y] |= Gφ iff ∀z, t(y ≤ z ≤ t →M, [z, t] |= φ).

Lemma 1. Suppose that M is a model with frame IntT (T,<) for any strict
linear order (T,<), that [x, y] ∈ M, and that M, [x, y] |= (2). Then, there exists
an infinite sequence of points y0 < y1 < · · · such that

1. y = y0;
2. For every l ∈ N, M, [yl, yl+1] |= u.

4.2 The Encoding of the Tiling Problem and Undecidability

Since the set of tiles T is finite, the set of colors is finite as well. Let us define
an arbitrary order over it and denote the i-th color by col(i). The propositional
letters t1, . . . , tk are used to encode the colors of each side of the corresponding
tiles t1, . . . , tk, that is, to state that right(ti) = color(kr), left(ti) = color(kl),
up(ti) = color(ku), and down(ti) = color(kd), for suitable kr, kl, ku, and kd.

The next formulas state that all u-intervals are tiles and that, whenever a tile
is placed, it is unique. Moreover, they guarantee that tiles are placed in such a
way that they respect conditions on colors.

314 I. Hodkinson, A. Montanari, and G. Sciavicco

�
�

�
�

�
�

�
�

�

N

N

◦T1

◦T2 ◦T3

�

	

T1
u

T2

u
T3

�

Fig. 2. A pictorial representation of the encoding

G(u →
|T |∨
i=1

ti), (3)

G
∧
i�=j

¬(ti ∧ tj), (4)

G

|T |∧
i=1

(ti → ¬(uT¬
|T |∨

j=1,up(ti)=down(tj)

tj)), (5)

G
(
u →

|T |∧
i=1,j=1, right(tj) �=left(ti)

¬(tiT tj)
)
. (6)

Now we define
φT = (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6). (7)

Lemma 2 (soundness). Let T = {t1, . . . , tk} be a set of tiles. If φT is satis-
fiable, then T tiles the second octant O.

Proof. Let M, [x, y] |= φT . We show that there exists a tiling function f : O �→
T . By Lemma 1, we know that there exists a unbounded sequence of points
y0 < y1 < . . . such that y = y0, and, for every l ∈ N,M, [yl, yl+1] |= u. Now, for
each l,m ∈ N, l ≤ m, we put:

f(l,m) = t, whereM, [yl, ym+1] |= t.

First, we have to show that f is well-defined, that is, that each f(l,m) is a tile. We
proceed by induction on (m− l). If (m− l) = 0, then we are on a u-interval, and,
by (3), it must be a tile. If more than one tile is placed over, it suffices to choose
one of them randomly, and thus (4), f is a function. Suppose now that f(l,m) is
a tile whenever m− l ≤ p, and consider m− l = p+1. Since ((m−1)− l) ≤ p, by
inductive hypothesis f(l,m−1) is a tile, say ti. This means thatM, [yl, ym] |= ti,
and, by (5), M, [yl, ym] |= ¬(uT¬

∨
up(ti)=down(tj)

tj). So, for every y ≥ ym,
if M, [ym, y] |= u, it must be the case that M, [yl, y] |=

∨
up(ti)=down(tj)

tj .

Non-finite Axiomatizability and Undecidability 315

This applies to the particular case y = ym+1, since M, [ym, ym+1] |= u. Hence,
we have that M, [yl, ym+1] |= tj , that is, f(l,m) = tj , for some j such that
down(tj) = up(ti). This guarantees us that f respects the ‘vertical’ condition of a
tiling function. To conclude the proof, we need to show that that the ‘horizontal’
condition is respected as well. To this end, consider f(l,m) and f(l + 1,m).
By definition, the corresponding tiles are [yl, ym+1] and [yl+1, ym+1]. Since, by
definition, the interval [yl, yl+1] is a u-interval, by (6) it cannot be the case
that left(f(l + 1,m)) �= right(f(l,m)),which implies that left(f(l + 1,m)) =
right(f(l,m)). ��
Lemma 3 (completeness). Let T = {t1, . . . , tk} be a set of tiles and f : O �→
T be a tiling function. Then φT is satisfiable over (the intervals of) any linearly
ordered set with an infinite ascending sequence.

Proof. Assuming for simplicity that the order is (N, <), one can make φT true
at [0, 0] by letting u be true at all intervals of length 1, and each ti be true at
all intervals of the form [x, y + 1], where f(x, y) = ti. ��
We can prove similar results for S ⊆ {C,D, T} containing C, without using the
modal constant π, over any K ⊆ Lin containing some (T,<) that has an infinite
interval [x, y]. The construction is analogous to the previous one. Assuming that
[x, y] contains an infinite increasing sequence, we substitute T by C in (1), and
modify (2), (5), and (6), as follows:

uC� ∧G(u → �C¬u) ∧ ¬(�C(uC¬(uC�))), (8)

G

|T |∧
i=1

(
tiCu →

|T |∨
j=1,up(ti)=down(tj)

tj

)
, (9)

G

|T |∧
i=1

(
uCti →

|T |∨
j=1, right(tj)=left(ti)

tj

)
. (10)

If the resulting conjunction φT is satisfiable over Lin, then T tiles the second
octant; this implies that φT is satisfiable on [x, y]. A mirror image formula works
when [x, y] contains an infinite descending sequence.

Theorem 2. For any S ⊆ {C,D, T} containing T , the logics S(K) and Sπ(K)
are not decidable for any K ⊆ Lin with K∩Asc �= ∅, in particular when K is any
of the following: Lin, Dense, Dis, Asc, the class of all infinite linearly ordered sets,
any of the usual linear orders based on N, Q, R, etc. The same applies for any
S ⊆ {C,D, T} containing D, substituting Asc with Des, and N with Z or Z≤0.
Finally, for any S ⊆ {C,D, T} containing C, S(K) and Sπ(K) are undecidable
whenever K ⊆ Lin contains some (T,<) such that some interval in Int(T,<) is
infinite — e.g., when K is Lin, Asc, Des, Dense, Dis, {(Q, <)}, or {(R, <)}.
Proof. If K is any class with K ⊆ Lin and K∩Asc �= ∅, then φT is satisfiable over
K (and hence ¬φT /∈ T (K), T π(K)) iff T tiles O. Since φT can be constructed
from T by an algorithm, the result for T follows from the undecidability of the
octant tiling problem. The other cases are similar. ��

316 I. Hodkinson, A. Montanari, and G. Sciavicco

4.3 Undecidability over Finite Models

The above argument cannot be applied when we interpret the language over
finite models. On the other hand, in [22] the language Lπ

C has been shown to be
undecidable when interpreted in the class of all finite linearly ordered sets, or,
equivalently (since this logic can only ‘look’ inside the initial interval), over N or
Z. Here we show how to adapt the same argument to show that the logicsDπ(Fin)
and T π(Fin) are undecidable too; again, we focus on the latter only. We closely
follow [22]. In more detail, let G be a context-free grammar in Greibach normal
form with terminals 0, 1, say, and set of non-terminals N (G) = {A0, . . . , AN},
say, where A0 is initial. We assume that the language generated by G does not
contain the empty string ε, and hence that G has no productions of the form
Ai −→ ε. So all productions are of the form Ai −→ V1V2 . . . Vm, where m ≥ 1,
V1 is a terminal, and V2, . . . , Vm are terminals or non-terminals.

Whenever a word w0w1 . . . wn−1 is generated by G, there is a finite derivation
tree D for it (and conversely). Each node d of D has a label λ(d): it is 0 or 1
if d is a leaf, and some non-terminal Ai otherwise, in which case the children
of d taken in left-right order are labeled V1, V2, . . . , Vm, respectively, for some
production rule Ai −→ V1V2 . . . Vm of G (V1 is always a terminal and so the
leftmost child of any node is a leaf). The root of D is labeled A0, and the leaves
taken in left-right order are labeled w0, w1, . . . , wn−1, respectively.

We regard each non-terminal as a propositional letter, and we also use two
more propositional letters, p and u. Thus, our set of propositional letters is
L(G) := N (G) ∪ {p, u}. We let φG be the conjunction of the following Lπ

T -
formulas, where Gφ is defined as in (1), and A0 is the starting symbol for G:

G(u → ¬π) ∧G¬(¬π ∧ (¬πTu)), (11)(
A0 ∧ ¬(¬πT�)

)
T�, (12)

G¬(Ai ∧ (¬πTAi)), ∀ i = 0, . . . , N, (13)

G
(
π ∧AiT�→

n(i)∨
j=1

V̂ j
1 T (V̂ j

2 T (· · ·T (V̂ j
m(i,j)TAi)) · · ·)

)
, ∀ i = 0, . . . , N, (14)

where

Ai −→ V 1
1 V

1
2 . . . V

1
m(i,1) | V 2

1 V
2
2 . . . V

2
m(i,2) | · · · | V

n(i)
1 V

n(i)
2 · · ·V n(i)

m(i,n(i))

is the ‘consolidated’ production rule of G for Ai, and for any terminal or non-
terminal V :

V̂ =

⎧⎪⎨⎪⎩
u ∧ p, if V = 1,
u ∧ ¬p, if V = 0,
V, otherwise.

(15)

Lemma 4 (soundness). Let G1,G2 be grammars as above, with (wlog.) N (G1)∩
N (G2) = ∅. Note that L(G1) ∩ L(G2) = {p, u}. If the Lπ

T -formula ψ = φG1 ∧
φG2 is satisfiable in a model with frame of the form IntT (T,<) for some finite
strict linear order (T,<), then the languages generated by G1,G2 have a word in
common.

Non-finite Axiomatizability and Undecidability 317

Proof. Suppose that ψ is satisfiable in a modelM with frame IntT (T,<), where
(T,<) ∈ Fin. We can suppose wlog. that M, [0, 0] |= ψ for some point 0 ∈ T ,
where {x ∈ T : x ≥ 0} = {0, 1, . . . , n} for some natural number n ≥ 0, and < is
the usual ordering on this set. We will see below that n > 0. For x < n put

wx =

{
1, ifM, [x, x+ 1] |= p,

0, otherwise.
(16)

We show that the word w = w0 . . . wn−1 is generable by G1 by constructing a
derivation tree D for it. Each node d of D will be associated with an interval
[xd, yd] of (T,<), where 0 ≤ xd ≤ yd. We will add nodes d to D step by step, in
such a way that

M, [xd, yd] |= λ̂(d). (17)

Given this, if d ∈ D is labeled by a terminal λ(d) = α ∈ {0, 1}, thenM, [xd, yd] |=
α̂; by (15), α̂ 0 u, soM, [xd, yd] |= u. AsM, [0, 0] |= (11), we have yd = xd + 1.

First we add the root r to D, and put [xr, yr] = [0, n] and λ(r) = A0. As
M, [0, 0] |= (12), we have M, [0, n] |= A0, so (17) holds. Then we repeat the
following while D has leaves labeled by non-terminals. Pick such a leaf d, where
λ(d) is a non-terminal Ai, say. By (17), M, [xd, yd] |= Ai, so M, [xd, xd] |=
π∧AiT�. SinceM, [0, 0] |= (14), there exist a production rule Ai −→ V1V2 . . . Vm
of G1 and points xd = x0 ≤ x1 ≤ . . . ≤ xm ≤ n with M, [xj−1, xj] |= V̂j for
each j = 1, . . . ,m, andM, [xd, xm] |= Ai. But M, [0, 0] |= (13), so xm = yd. We
now add new nodes d1, . . . , dm to D as the left-to-right children of d, and we
put [xdj , ydj] = [xj−1, xj] and λ(dj) = Vj for each j = 1, . . . ,m. By choice of
the xj , (17) is preserved. Note that since V1 is a terminal, xd1 < yd1 . It follows
that xd < yd for each d ∈ D; n > 0; and the lengths of intervals associated with
non-terminals strictly decrease as we move from the root. So as T is finite, the
process terminates. Let l0, . . . , lm−1 be the leaves of the final D in left-to-right
order. Each li is labeled by a terminal, and so is associated with a two-point
interval. Now the construction preserves the property that for any x < n, there
is always a leaf of D whose associated interval contains [x, x + 1]. So at the
end, this is still true, and it follows that [x, x + 1] is associated with some li.
Therefore, m = n and l0, . . . , ln−1 are associated with [0, 1], [1, 2], . . . , [n− 1, n],
respectively. For each x < n we have wx = 1 iff M, [x, x + 1] |= p (by (16)), iff
λ(lx) = 1 (by (15) and (17)). So λ(lx) = wx. Hence, D is a derivation tree for w
in G1. Since we can prove by the same argument that w is generable also by G2,
the languages generated by G1, and G2 both contain w, and thus the thesis. ��

Lemma 5 (completeness). Let G1,G2 be as in the previous lemma. If the
languages generated by G1,G2 have a word in common, then the Lπ

T -formula
ψ = φG1 ∧ φG2 is satisfiable in a model with frame of the form IntT (T,<) for
some finite strict linear order (T,<).

Proof. Run Lemma 4’s proof backwards: use derivation trees in G1,G2 for the
common word to read off models of φG1 , φG2 on the same base, on any (T,<) ∈
Fin with long enough intervals. ��

318 I. Hodkinson, A. Montanari, and G. Sciavicco

Theorem 3. The logics T π(Fin) and Dπ(Fin) are undecidable.

Proof. By [18, theorem 8.10], it is undecidable whether the languages generated
by two context-free grammars have a common word. It is not hard to see that this
is also true for context-free grammars in the form we have used. By Lemma 4
and 5, this problem reduces to satisfiability of Lπ

T -formulas over the intervals
of finite linear orders, which is therefore also undecidable. The argument for
Dπ(Fin) is symmetrical. ��

The same argument shows that Dπ(N, <) and T π(N, >) are undecidable.

5 Non-finite Axiomatizability

In this section we will show that the logics S(K) and Sπ(K) are not finitely ax-
iomatizable using orthodox inference rules, for any non-empty S ⊆ {C,D, T} and
any class K with (Q, <) ∈ K ⊆ Lin. For example, CDT π(Lin) and CDT π(Dense)
are not finitely axiomatizable. The argument is based on the so-called ‘Monk
algebras’ from the theory of relation algebra (see, e.g., [21,20,17]), but we do not
assume any knowledge of that topic here.

5.1 Basic Definitions

Let η, κ > 0 be cardinals, and define an equivalence relation ∼ on η×κ = {(i, j) :
i < η, j < κ} by (i, j) ∼ (i′, j′) if and only if j = j′. We think of j as the color
of (i, j), so ∼ is the ‘same color’ relation. Then, we form a relational structure
α(η, κ) as follows.

Definition 4. We define α(η, κ) as a tuple of the type (I,Π, ρ), where:

– I = (η × κ) ∪ {1,}, where 1,, called identity, is assumed not to be in η × κ;
– Π = {1,};
– ρ is the set of all triples (a, b, c) ∈ I3 such that 1) one of a, b, c is 1, and the

other two are equal, or 2) 1, /∈ {a, b, c} and a, b, c are not all ∼-equivalent.

The relations RC , RD, RT ⊆ I3 (for I as above) are defined as follows:

– RC = ρ \ {(1,, a, a) : a ∈ I, a �= 1,},
– RT = ρ \ {(a, 1,, a) : a ∈ I, a �= 1,},
– RD = ρ \ {(a, a, 1,) : a ∈ I, a �= 1,}.

We define the S-frame FS(η, κ) = (I,Π,R� : � ∈ S), for each S ⊆ {C,D, T}.

The FS(η, κ) are ‘non-standard’ frames. They are not based on intervals, and
indeed, this is detectable in LS : if η, κ are finite and η 9 κ then FS(η, κ) does
not even validate the logic S(Lin). But FS(ω, ω) is a bounded morphic image of
Int(Q, <) (cf., e.g., [1, def. 2.10]), and so does validate Sπ(K). Since we can ob-
tain FS(ω, ω) as a ‘limit’ (via ultraproducts or compactness) of the finite frames
FS(η, κ), this will show that S(K) and Sπ(K) are not finitely axiomatizable.

Non-finite Axiomatizability and Undecidability 319

5.2 Frames FS(η, κ) Not Validating S(Lin)

Define f : ω → ω by f(0) = 1, and f(k+ 1) = 1 + (k+ 1) · f(k) for every k < ω.
For any set X , and 1 ≤ k < ω, a k-coloring of X is a coloring of the edges of
the complete undirected loop-free graph whose set of nodes is X , using at most
k colors, such that no ‘monochromatic triangle’ appears — that is, there is no
3-element subset of X such that all three edges lying within it are given the
same color. The following Ramsey-type theorem can be found in [15].

Proposition 1. Let k ≥ 1. If a set X has more than f(k) elements then X has
no k-coloring.

Theorem 4. Suppose that S ⊆ {C,D, T} is non-empty, η > 0, κ > 1, and
f(κ) < |FS(η, κ)| < ω. Then FS(η, κ) does not validate S(Lin).

Proof. One can write down a ‘Jankov–Fine’ formula φ (see, e.g., [1, §3.4]) describ-
ing FS(η, κ) and satisfiable only in bounded morphic pre-images of FS(η, κ). If
FS(η, κ) validated S(Lin), φ would be consistent with S(Lin), and so there would
be a bounded morphism h from some concrete interval frame IntS(T,<) onto
FS(η, κ). This would induce a partial κ-coloring of T : the color of the edge xy
for x < y would be the color of h([x, y]) when h([x, y]) �= 1,. As FS(η, κ) is large,
Lemma 1 shows that (assuming C ∈ S) some interval of T would chop into two
subintervals, all three having the same color. This contradicts the definition of
RC . The cases D ∈ S, T ∈ S are similar. ��

5.3 Frames FS(η, κ) That Do Validate Sπ(Q, <)

We show here that FS(ω, ω) does validate Sπ(Q, <), for any S ⊆ {C,D, T}. To
do this, we will construct a bounded morphism from IntS(Q, <) onto FS(ω, ω)
step by step, using the concepts of ‘networks’ and ‘representations’.

Definition 5. A network is a map N : B × B → α(ω, ω), for some B ⊆ Q,
such that for all x, y, z ∈ B we have:

1. N(x, y) = 1, ⇐⇒ x = y,
2. N(x, y) = N(y, x),
3.
(
N(x, z), N(x, y), N(y, z)

)
∈ ρ.

We write B(N) (the ‘base’ of N) for the set B = {x ∈ Q : (x, x) ∈ dom(N)}.
A network can be thought of as a complete directed graph with edges labeled
by elements of α(ω, ω), satisfying the conditions above. As networks N,M are
functions, it follows from the definitions that N ⊆ M iff B(N) ⊆ B(M) and
N = M � (B(N)×B(N)).

Definition 6. A network N is said to be a representation2 of α(ω, ω) if B(N) =
Q and the following hold for all x, y ∈ Q, where the quantifiers range over Q:
2 The term ‘complete representation’ would be more in accordance with usual algebraic

terminology.

320 I. Hodkinson, A. Montanari, and G. Sciavicco

1. ∃z(z ≤ x ∧N(x, z) = a) and ∃z(z ≥ x ∧N(x, z) = a) for every a ∈ α(ω, ω),
2. x < y → ∃z(x ≤ z ≤ y∧N(x, z) = a∧N(z, y) = b) whenever (N(x, y), a, b) ∈

ρ,
3. x < y → ∃z(z ≥ y ∧N(x, z) = a ∧N(z, y) = b) whenever (N(x, y), a, b) ∈ ρ

and a �= 1,,
4. x < y → ∃z(z ≤ x ∧N(x, z) = a ∧N(z, y) = b) whenever (N(x, y), a, b) ∈ ρ

and b �= 1,.

Our aim is to show that α(ω, ω) has a representation. We can derive validity of
Sπ(Q, <) in FS(ω, ω) from this quite easily.

Lemma 6. α(ω, ω) has a representation.

Proof. We can build a representation by a ‘step by step’ game played on finite
networks. In each round, one player challenges some failure of a property of
Definition 6 for the current network. The other player replaces the network
by an extension lacking this defect. This is always possible since we are using
α(η, κ) with infinite κ, so that brand new colors can be used to label network
edges whenever necessary. This avoids monochromatic triangles of the kind we
met in Theorem 4. At the end of the game, a representation results. ��

Theorem 5. FS(ω, ω) validates Sπ(Q, <) for any S ⊆ {C,D, T}.

Proof. A representation N of α(ω, ω) induces a bounded morphism h from
IntS(Q, <) onto FS(ω, ω), via h([x, y]) = N(x, y). Bounded morphisms preserve
validity of formulas. ��

5.4 Non Finite Axiomatizability

Theorem 6. For any non-empty S ⊆ {C,D, T} and any class K ⊆ Lin that
contains (Q, <), the logics S(K) and Sπ(K) are not finitely axiomatizable using
standard inference rules (modus ponens, universal generalization, substitution).

Proof. Let Λ be either one of S(K), Sπ(K). Note that

S(Lin) ⊆ Λ ⊆ Sπ(Q, <). (18)

Assume for contradiction that Φ is a finite set of axioms for Λ in its own signa-
ture (LS or Lπ

S). Then (
∧
Φ) = φ(p1, . . . , pk), say, axiomatises Λ alone. For each

finite n > 1, choose finite ηn so large that |α(ηn, n)| > f(n). By Theorem 4,
FS(ηn, n) does not validate even S(Lin), so by (18), it certainly does not vali-
date Λ. Because the standard inference rules preserve validity over any frame,
there is a model Mn = (FS(ηn, n), hn) in which φ is not valid. We regard Mn

as a first-order structure in an appropriate signature. LetM be a countable el-
ementary substructure of a non-principal ultraproduct of the Mn (cf. [10]). By
�Loś’s Theorem, it follows that the frame of M is isomorphic to FS(ω, ω), and
that φ is not valid in M. This contradicts Theorem 5 that FS(ω, ω) validates
Sπ(Q, <), and so (by (18)) certainly validates Λ. ��

Non-finite Axiomatizability and Undecidability 321

Table 1. A resume of the results of this paper

K C(K) Cπ(K) D(K) Dπ(K) T (K) T π(K)

Lin Und., NFA Und.[13],NFA Und., NFA Und., NFA Und., NFA Und., NFA
Asc Und., NFA Und., NFA NFA NFA Und., NFA Und., NFA
Des Und., NFA Und., NFA Und.,NFA Und., NFA NFA NFA
Fin ? Und.[22] ? Und. ? Und.
Dense Und., NFA Und.[19],NFA Und., NFA Und., NFA Und., NFA Und., NFA
Dis Und. Und. Und. Und. Und. Und.
N ? Und.[22], ? Und. Und. Und.
Z ? Und.[22], Und. Und. Und. Und.
Q Und., NFA Und.[19],NFA Und., NFA Und, NFA Und., NFA Und., NFA

The logics CDT π(Lin), CDT π(Dis), CDT π(Dense), CDT π(Q) were finitely
axiomatized by Venema [25], using an unorthodox Burgess/Gabbay-style infer-
ence rule. There is no conflict between this result and Theorem 6. A formula
derived from a formula valid in FS(η, κ) using Venema’s rule need not be valid
in FS(η, κ). So the argument of Theorem 6 fails when this rule is added.

6 Conclusions

In this paper we have considered the temporal logic for intervals CDT intro-
duced by Venema in [25]. Finite axiomatizability with standard rules and decid-
ability/undecidability of CDT itself and of its possible single-modality fragment
is a natural question that was open since the introduction of the logic, and to
which we have answered here. Results are summarized in Table 1, where ‘Und.’
means undecidable and ‘NFA’ indicates non-finite axiomatizability.

Acknowledgments. Angelo Montanari was co-financed by the Italian national
project on “Constraint and preferences as unifying formalism for system analysis
and solutions of real problems”, and Guido Sciavicco was co-financed by the
Spanish MEC - FEDER project “IDEATIO”, Ref. No: TIN2006-15460-C04-01.

References

1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2002)

2. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
of Mathematical Logic. Springer, Heidelberg (1997)

3. Bowman, H., Thompson, S.: A decision procedure and complete axiomatization
of finite interval temporal logic with projection. Journal of Logic and Computa-
tion 13(2), 195–239 (2003)

4. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based Decision Pro-
cedure for the Logic of Proper Subinterval Structures over Dense Orderings. In:
Areces, C., Demri, S. (eds.) Proceedings of M4M-5: 5th International Workshop
on Methods for Modalities, pp. 335–351 (2007)

322 I. Hodkinson, A. Montanari, and G. Sciavicco

5. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau Systems for Logics of
Subinterval Structures over Dense Orderings. In: Olivetti, N. (ed.) TABLEAUX
2007. LNCS (LNAI), vol. 4548, pp. 73–89. Springer, Heidelberg (2007)

6. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: On Decidability and Expres-
siveness of Propositional Interval Neighborhood Logics. In: Artemov, S.N., Nerode,
A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 84–99. Springer, Heidelberg (2007)

7. Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional inter-
val neighborhood logics: Expressiveness, decidability, and undecidable extensions.
Technical Report 05, Department of Mathematics and Computer Science, Univer-
sity of Udine, Italy (2008)

8. Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm
for Propositional Neighborhood Logic. In: Thomas, W., Weil, P. (eds.) STACS
2007. LNCS, vol. 4393, pp. 549–560. Springer, Heidelberg (2007)

9. Bresolin, D., Montanari, A., Sciavicco, G.: An optimal decision procedure for Right
Propositional Neighborhood Logic. Journal of Automated Reasoning 38(1-3), 173–
199 (2007)

10. Chang, C.C., Keisler, H.J.: Model theory. North-Holland, Amsterdam (1990)
11. Gabbay, D.M.: An irreflexivity lemma with applications to axiomatizations of con-

ditions on tense frames. In: Monnich, U. (ed.) Aspects of Philosophical Logic, pp.
67–89. Reidel, Dordrecht (1981)

12. Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood
temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)

13. Goranko, V., Montanari, A., Sciavicco, G.: A road map of interval temporal logics
and duration calculi. J. of Applied Non-Classical Logics 14(1–2), 9–54 (2004)

14. Goranko, V., Montanari, A., Sciavicco, G., Sala, P.: A general tableau method
for propositional interval temporal logics: Theory and implementation. Journal of
Applied Logic 4(3), 305–330 (2006)

15. Greenwood, R.E., Gleason, A.M.: Combinatorial relations and chromatic graphs.
Canadian Journal of Mathematics 7, 1–7 (1955)

16. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of
the ACM 38(4), 935–962 (1991)

17. Hirsch, R., Hodkinson, I.: Relation algebras by games. Studies in Logic and the
Foundations of Mathematics, vol. 147. North-Holland, Amsterdam (2002)

18. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and
computation. Addison-Wesley, Reading (1979)

19. Lodaya, K.: Sharpening the undecidability of interval temporal logic. In: He, J.,
Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 290–298. Springer, Heidelberg
(2000)

20. Maddux, R.: Relation algebras. Studies in Logic and the Foundations of Mathe-
matics, vol. 150. Elsevier, Amsterdam (2006)

21. Monk, J.D.: Nonfinitizability of classes of representable cylindric algebras. Journal
of Symbolic Logic 34, 331–343 (1969)

22. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA (1983)

23. Roy, S., Sciavicco, G.: Completeness of chop. In: Guesguen, H.W., Ligozat, G.,
Rodriguez, R.V. (eds.) Proc. of the IJCAI 2007 Workshop on Spatial and Temporal
Reasoning, pp. 90–95 (2007)

24. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre
Dame Journal of Formal Logic 31(4), 529–547 (1990)

25. Venema, Y.: A modal logic for chopping intervals. Journal of Logic and Computa-
tion 1(4), 453–476 (1991)

On the Almighty Wand�

Rémi Brochenin, Stéphane Demri, and Etienne Lozes

LSV, ENS Cachan, CNRS, INRIA Saclay, France

Abstract. We investigate decidability, complexity and expressive power issues
for (first-order) separation logic with one record field (herein called SL) and its
fragments. SL can specify properties about the memory heap of programs with
singly-linked lists. Separation logic with two record fields is known to be unde-
cidable by reduction of finite satisfiability for classical predicate logic with one
binary relation. Surprisingly, we show that second-order logic is as expressive
as SL and as a by-product we get undecidability of SL. This is refined by show-
ing that SL without the separating conjunction is as expressive as SL, whence
undecidable too. As a consequence of this deep result, in SL the magic wand
can simulate the separating conjunction. By contrast, we establish that SL with-
out the magic wand is decidable with non-elementary complexity by reduction
from satisfiability for the first-order theory over finite words. Equivalence be-
tween second-order logic and separation logic extends to the case with more than
one selector.

1 Introduction

Separation logic. Programming languages with pointer variables have seldom mecha-
nisms to detect errors. An inappropriate management of memory is the source of nu-
merous security holes. Prominent logics for analysing such pointer programs include
separation logic [Rey02], pointer assertion logic PAL [JJKS97], TVLA [LAS00], alias
logic [BIL04], BI (Bunched Implication) [IO01] and LRP (logic of reachable pat-
terns) [YRS+05] to quote a few examples. Separation logic is an assertion language
used in Hoare-like proof systems [Rey02] that are dedicated to verify programs manip-
ulating heaps. Any procedure mechanizing the proof search requires subroutines that
check satisfiability of formulae from the assertion language. The main concern of the
paper is to analyze the expressive power of the assertion language and its decidability
status. Recall that separation logic contains a structural separation connective and its
adjoint (the separating implication −−∗, also known as the magic wand). Concise and
modular proofs can be derived using these connectives, since they can express prop-
erties such as non-aliasing and disjoint concurrency. In this perspective, the models
of separation logic are pairs made of a store (variable valuation) and a memory heap
(partial function with finite domain) that are understood as memory states.

The decidability of the satisfiability problem for separation logic has been intensively
studied so far: first-order separation logic with at least two selectors (record fields) is
known to be undecidable [CYO01b] by reduction of finite satisfiability for classical

� Supported by RNTL project AVERILES – R. Brochenin is supported by a DGA/CNRS fel-
lowship.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 323–338, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 R. Brochenin, S. Demri, and E. Lozes

predicate logic with one binary relation [Tra50] (even with no separating connectives).
Decidable fragments have been introduced and investigated, see e.g. [BCO04]; such
fragments involve some specialized predicates for lists or trees, and some restrictions
on first-order quantification. The complexity of various quantifier-free fragments has
also been characterized in the past, see e.g. [CYO01b, CYO01a, Rey02, BDL07]. As
far as the expressive power is concerned, propositional separation logic can be naturally
reduced to propositional calculus or to a fragment to Presburger arithmetic, see [Loz04,
CGH05]. On several spatial logics, the adjunct elimination property holds in the absence
of first-order quantification, but does not extend to the first-order case, see e.g. [DGG04,
Loz05]. To summarize, all the proof techniques used in these works do not adapt to first-
order separation logic over the class of models with only one selector, for which both
decidability status and the characterization of expressiveness are open.

Our motivations. A long-standing question about separation logic is how it compares
with second-order logic. This is a very natural question since separating conjunction and
its adjoint are essentially second-order connectives (see also a similar concern on graphs
with spatial logics [DGG07]). Moreover, many properties on heaps require second-
order logic, for instance to express recursive predicates, or lists and trees properties. In
a sense, being able to distinguish the expressive power of these two logical formalisms
would justify the use of separation logic. An attempt to make such a comparison can be
found in [KR04] but the models are quite different from those considered herein (rela-
tional structures with no constraint on the finiteness of the domain of relations). In this
paper, our aim is to investigate decidability, complexity and expressive power issues for
first-order separation logic with one selector (record field) and its fragments when the
models are the standard memory states.

Our contributions. We show that first-order separation logic with one selector (called
herein SL) is as expressive as second-order logic over the class of memory states. As
a by product, we get that even in presence of a unique selector, 1) first-order separa-
tion logic is undecidable (solving an open problem stated in [GM08]), 2) it may ex-
press heap properties involving several selectors (passing via second-order logic). This
is refined by showing that SL without the separating conjunction is as expressive as
SL, whence undecidable too. Our proof also shows that the two formalisms have the
same conciseness modulo logspace translations. As a consequence of this deep result,
in SL the magic wand can simulate the separating conjunction. So, the magic wand
is very powerful, which is interesting because very often this connective, that is not
very natural we admit, is excluded from studied fragments of separation logic. Equiv-
alence between second-order logic and separation logic extends to the case with more
than one selector by simple adaptation of the one selector case. By contrast, in [KR04],
the separating conjunction is sufficient to capture second-order logic but on a different
class of models. We also establish that SL without the magic wand is decidable with
non-elementary complexity by reduction from satisfiability for the first-order theory
over finite words [Sto74] (this result holds already with three variables). Decidability is
shown by reduction into weak monadic second-order theory of one unary function that
is shown decidable in [Rab69]. It is worth noting that even though the first-order theory
of one unary function is known to be not elementary recursive [BGG97], we cannot

On the Almighty Wand 325

take advantage of this result since in our models the domain of the unary function is
necessarily finite and finiteness cannot be expressed in most first-order dialects. As a
by-product, we obtain that the entailment problem considered in [BCO04] for a frag-
ment of separation logic with one selector is decidable.

Related work. As seen previously, heap properties are formalized in various logical
languages [JJKS97, LAS00, Rey02, BIL04, YRS+05] and separation logic is just one
prominent of these logics. Verification methods and logics for verifying programs with
singly-linked lists can be found for instance in [BCO04, BHMV05, RZ06]. From an-
other perspective, the relationships between logics on graphs with separating features
and second-order logic can be found in [DGG07]. Finally, we would like to mention
that sabotage modal logics (SML), see e.g. in [LR03], have also the ability to modify
the model under evaluation. So far, we are not aware of any work relating separation
logic and SML.

Omitted proofs can be found in [BDL08].

2 Preliminaries

In this section, we recall the definition of first-order separation logic with one selector
(called herein SL) and second-order logic (SO) over the same class of structures. We
introduce a formal notion of expressiveness, provide examples of properties that can be
expressed in SL and present a straightforward encoding of SL into a fragment of SO.

2.1 Separation Logic and Second-Order Logic

Memory states. Memory states are models for all the logical formalisms we consider
herein. They represent the states of the memory for programs manipulating lists. Let
Loc be a countably infinite set of locations ranged over with l, l′, . . . that represents
the set of addresses. A memory state is composed of a pair made of a store and a heap.
Let Var be a countably infinite set of (first-order) variables x, y, z, A memory state
(also called a model in the rest of the document) is a pair (s, h) such that

– s is a variable valuation of the form s : Var→Loc (store),
– h is a partial function h : Loc ⇀ Loc with finite domain (heap). We write dom(h)

to denote its domain and ran(h) to denote its range.

Given a finite set X of variables (for instance occurring in a given formula), we can as-
sume that a model is finite by restricting the domain of the store to X . The variables in
Var can be viewed as programming variables, the domain of h as the set of addresses of
allocated cells, and h(l) as the value held by the cell at the address l. Two heaps h1, h2

are said to be disjoint, noted h1⊥h2, if their domains are disjoint; when this holds, we
write h1 ∗ h2 to denote the disjoint union h1 - h2. Given a memory state (s, h) and a
location l we write �̃l to denote the cardinal of the set {l′ ∈ Loc : h(l′) = l} (number
of predecessors of the location l in (s, h)). A location l′ is a descendant of l if there is
n ≥ 0 such that hn(l) = l′ (hn(l) is not always defined).

Formulae in SL and SO. Formulae of first-order separation logic with one selector SL
are defined by the grammar φ := ¬φ | φ ∧ φ | ∃x.φ | x ↪→ y | x = y |φ ∗ φ |φ −−∗ φ.

326 R. Brochenin, S. Demri, and E. Lozes

The connective ∗ is called separating conjunction whereas the adjoint operator −−∗ is
usually called the magic wand. We will make use of standard notations for the de-
rived connectives ∀,∨,⇒,⇔... We also introduce a slight variant of the dual connec-
tive for the magic wand, also called the septraction: φ −−∗¬ ψ is defined as the formula
¬((φ) −−∗ (¬(ψ))). We write FV(φ) to denote the set of free variables occurring in φ
and SL(∗) [resp. SL(−−∗)] to denote the restriction of SL without the magic wand [resp.
the separating conjunction].

In order to define formulae in SO, we consider a family VAR = (VARi)i≥0 of second-
order variables, denoted by P, Q, R, . . . that will be interpreted as finite relations over
Loc (= Val = N). Each variable in VARi is interpreted as an i-ary relation. An environ-
ment E is an interpretation of the second-order variables such that for every P ∈ VARi,
E(P) is a finite subset of Loci. Since we require finiteness of models, the version of
second-order logics we shall consider is usually called weak.

Formulae of (weak) second-order logic SO are defined by the grammar φ := ¬φ | φ∧
φ | ∃x.φ | x ↪→ y | x = y | ∃P.φ | Q(x1, . . . , xn), where P, Q are second-order variables
and Q ∈ VARn. We write MSO [resp. DSO] to denote the restriction of SO to second-order
variables in VAR1 [resp. VAR2]. As usual, a sentence is defined as a formula with no free
occurrence of second-order variables.
Satisfaction relations for SL and SO. The logics SL and SO share the same class of
models, namely the set of memory states. The satisfaction relation for SO is defined
below with argument an environment E (below P ∈ VARn).

(s, h), E |= ∃P. φ iff there is a finite subsetR of Locn,
such that (s, h), E [P �→ R] |= φ

(s, h), E |= P(x1, · · · , xn)
iff (s(x1), . . . , s(xn)) ∈ E(P)

(s, h), E |= ¬φ iff not (s, h), E |= φ
(s, h), E |= φ ∧ ψ iff (s, h), E |= φ and (s, h), E |= ψ
(s, h), E |= ∃x. φ iff there is l ∈ Loc such that (s[x �→ l], h), E |= φ
(s, h), E |= x ↪→ y iff h(s(x)) = s(y)
(s, h), E |= x = y iff s(x) = s(y)

As usual, when φ is a sentence, we write (s, h) |= φ to denote (s, h), E |= φ for
any environment E since E has no influence on the satisfaction of φ. The satisfaction
relation for SL is defined without any environment (or equivalently with no influence of
the environment) whereas the clauses that are specific to SL are the following ones:

(s, h) |= φ1 ∗ φ2 iff there are two heaps h1, h2

such that h = h1 ∗ h2 and (s, hi) |= φi (i = 1, 2)
(s, h) |= φ1 −−∗ φ2 iff for all heaps h′⊥h,

if (s, h′) |= φ1 then (s, h′ ∗ h) |= φ2.

So, (s, h) |= φ1 −−∗¬ φ2 iff there is h′ ⊥ h such that (s, h′) |= φ1 and (s, h ∗ h′) |= φ2.
Validity and satisfiability problems are defined in the usual way. The connective −−∗ is
the adjunct of ∗, meaning that (φ ∗ ψ) ⇒ ϕ is valid iff φ ⇒ (ψ −−∗ ϕ) is valid. Observe
that ∗ and−−∗ are not interdefinable since typically the formula ((φ ∗ψ) ⇒ ϕ) ⇔ (φ ⇒
(ψ −−∗ ϕ)) is not valid. This shall be strengthened in the sequel by establishing that
SL(∗) is decidable whereas SL(−−∗) is not.

On the Almighty Wand 327

Let F and F′ be two fragments of SL or SO. We say that F′ is at least as expressive
as F (written F : F′) whenever for every sentence φ ∈ F, there is φ′ ∈ F′ such that
for every model (s, h), we have (s, h) |= φ iff (s, h) |= φ′. We write F ≡ F′ if F : F′

and F′ : F. A translation from F to F′ is a computable function t : F → F′ such that
for every sentence φ ∈ F, for every model (s, h), we have (s, h) |= φ iff (s, h) |= t(φ).
Arithmetical constraints. Observe that SL does not contain explicitly arithmetical con-
straints as in [KR03, MBCC07, BIP08]. However, in Section 4 we show how to compare
number of predecessors. Similar developments can be performed to compare lengths of
lists but this will come as a corollary of the equivalence between SL and SO.

Another model with data. A more realistic approach to model lists consists in consid-
ering two selectors. However, SL behaves as separation logic with two selectors for
which one selector is never used. Indeed, we already know that an unrestricted use
of the two selectors leads to undecidability. In the paper, we show that even SL sat-
isfiability/validity is already undecidable. It is open how to refer to data values while
preserving the decidable results for SL fragments. Possible directions consist either in
imposing syntactic restrictions (like the guarded fragment for classical predicate logic)
or in forbidding a direct access to data values but allowing predicates of the form “there
is a list from x to y with increasing data values” for instance.

More than one selector. It is easy to extend the above definitions to the case with k ≥ 1
selectors that is also used in the literature. A heap h becomes then a partial function
h : Loc ⇀ Lock with finite domain and atomic formulae of the form x ↪→ y are re-
placed by x ↪→ y1, . . . , yk. We write kSL [resp. kSO] to denote the variant of SL [resp.
SO] with k selectors. Obviously 1SL [resp. 1SO] corresponds to SL [resp. SO]. We write
kSOk

′
to denote the restriction of kSO to second-order variables in VARk

′
.

2.2 A Selection of Properties

We present below a series of properties that can be expressed in SL(∗).
– The value of x is in the domain of the heap: alloc (x) � ∃y.x ↪→ y.
– The domain of the heap is restricted to the value of x, and maps it to that of y:
x �→ y � x ↪→ y ∧ ¬∃y.y �= x ∧ alloc (y).

– The domain of the heap is empty: emp � ¬∃x.alloc (x).

Predecessors and special nodes. A predecessor of the variable x in the model (s, h) is
a location l such that h(l) = s(x). There are formulae in SL(∗), namely �x ≥ n and
�x = n, such that �x ≥ n [resp. �x = n] holds true exactly in models such that x
has more than n predecessors [resp. exactly n predecessors]. For instance, �x ≥ n can
defined in the following ways:

n times︷ ︸︸ ︷
(∃y. y ↪→ x) ∗ · · · ∗ (∃y. y ↪→ x) ∗� or ∃x1, . . . , xn.

∧
i�=j

xi �= xj ∧
n∧

i=1

xi ↪→ x

We define an extremity as a location l in a model such that l has at least one predecessor
and no predecessor of l has a precedessor. The following formula states that s(x) is an
extremity: extr(x) � (¬∃y. y ↪→ x ∧ ∃z.z ↪→ y) ∧ ∃y. y ↪→ x.

328 R. Brochenin, S. Demri, and E. Lozes

Reachability and list predicates. Reachability in a graph is a standard property that can
be expressed in monadic second-order logic. In separation logic, very often a built-in
predicate for lists is added, sometimes noted ls(x, y). Adapting some technique used in
the graph logics [DGG07], we show below how this very predicate can be expressed in
SL(∗) as well as the reachability predicate x→∗y.

A cyclic list in a model (s, h) is a non-empty finite sequence l1, . . . , ln (n ≥ 1)
of locations such that h(ln) = l1 and for every i ∈ {1, . . . , n − 1}, h(li) = li+1. A
model (s, h) is a list segment between x and y if there are locations l1, . . . , ln (n ≥ 2)
such that s(x) = l1, s(y) = ln, l1 �= ln, dom(h) = {l1, . . . , ln−1}, and for every
i ∈ {1, . . . , n− 1}, h(li) = li+1. Consider the formula below

x
�−→

+
y � �x = 0 ∧ alloc (x) ∧ �y = 1 ∧ ¬alloc (y)

∧∀z. z �= y ⇒ (�z = 1 ⇒ alloc (z)) ∧ ∀z. �z ≤ 1

Lemma 1. Let (s, h) be a model. (s, h) |= x
�−→

+
y iff h is undefined for s(y) and

there are unique heaps h1, h2 such that h1 ∗ h2 = h, (s, h1) is a list segment between
x and y and (s, h2) can be decomposed uniquely as a set of cyclic lists.

We introduce additional formulae: ls(x, y) � x
�−→

+
y ∧ ¬(x �−→

+
y ∗ ¬emp),

x →+ y � � ∗ ls(x, y) and x→∗y � x = y ∨ x →+ y. They express the properties
below.

Lemma 2. Let (s, h) be a model. (I) (s, h) |= ls(x, y) iff (s, h) is a list segment between
x and y. (II) (s, h) |= x→∗y [resp. (s, h) |= x→+y] iff y is a descendant [resp. strict
descendant] of x.

2.3 Preliminary Translations

Before showing advanced results in the forthcoming sections, we show below how SL
can be encoded into SO by simply mimicking the original semantics and how SO can be
encoded in its fragment DSO by representing multiedges by finite sets of edges.

Proposition 3. SL : SO ≡ DSO via logspace translations.

Sections 4 and 5 are devoted to prove that DSO : SL(−−∗). We will obtain that SL(−−∗),
SL, DSO and SO have the same expressive power (via logspace translations). Conse-
quently, this implies undecidability of the validity problem for any of these logics by
the undecidability of classical predicate logic with one binary relation [Tra50]. By con-
trast, we prove below that SL(∗) is decidable.

3 On the Complexity of SL(∗)

In this section, we show that SL(∗) satisfiability is decidable but with non-elementary
recursive complexity (by reduction from first-order theory over finite words).

Lemma 4. MSO satisfiability is decidable.

On the Almighty Wand 329

The proof is based on [Rab69, BGG97]. Using a technique similar to the proof of
Lemma 4, we can translate SL(∗) into MSO.

Proposition 5. SL(∗) : MSO via a logspace translation.

We conjecture that MSO is strictly more expressive than SL(∗), see the related pa-
per [Mar06].

Corollary 6. SL(∗) satisfiability is decidable.

In order to show that satisfiability in SL(∗) is not elementary recursive, we explain
below how to encode finite words as memory states. Let Σ = {a1, . . . , an} be a finite
alphabet. A finite word w = ai1 · ai2 · · · aim is usually represented as the first-order
structure ({1, . . . ,m}, <, (Pa)a∈Σ) where Pa is the set of positions labelled by the letter
a. Similarly, the word w can be represented as a memory state (sw, hw) in which

– xbeg→+xend for which xbeg and xend are distinguished variables marking respec-
tively, the beginning and the end of the encoding of w,

– the list segment induced from the satisfaction of xbeg→+xend has exactlym+2 lo-
cations, and any location l of position j ∈ {2, . . . ,m+1} in the list segment (hence
excluding sw(xbeg) and sw(xend)) has exactly ij predecessors. Since sw(xbeg) and
sw(xend) do not encode any position in w, there is no constraint on them.

Similarly, any memory state (s, h) containing a list segment between xbeg and xend and
such that any location on the list segment that is different from s(xbeg) and s(xend) has
at most |Σ | predecessors corresponds to a unique finite word with the above encoding.
In this direction, the memory state may contain other dummy locations but they are
irrelevant for the representation of the finite word. Moreover, a memory state can encode
only one word since xbeg and xend are end-markers.

Proposition 7. SL(∗) is not elementary recursive (even its restriction with 5 variables).

The proof uses the predicate x→+y from Section 2.2. As a corollary, we obtain an al-
ternative decidability proof of the entailment problem for the fragment of SL considered
in [BCO04]. We have established decidability for a fragment of SL larger than the one
considered in [BCO04] (for which the entailment problem is shown in coNP) but of
higher complexity.

It is probable that the number of variables can be reduced further while preserving
non-elementarity, but it is not very essential at this point, for instance by identifying the
limits of the words by patterns (see e.g. Section 4) instead of distinguished variables.

4 Advanced Arithmetic Constraints

In this section, we show how SL(−−∗) can express properties of the form �̃x � �̃y + c

for any c ∈ N and for any relation �∈ {=,≥,≤} where �̃x denotes the number of
predecessors of s(x) in a model. Note that �̃x � c can be easily expressed in SL(−−∗),
even without magic wand. By contrast, expressing a constraint �̃x � �̃y+ c is natural in

330 R. Brochenin, S. Demri, and E. Lozes

x y
...

...

c times
(a) (b) (c) (d) (e)

Fig. 1. Some examples of markers, marked locations, and possible aliasing

second-order logic. We show below that this can be done also in SL(−−∗). In the sequel,
we assume that the current model is denoted by (s, h).

A marker in a model (s, h) is a specific pattern in the memory heap that we will inten-
sively use. Formally, a [resp. strict] marker in (s, h) is a sequence of distinct locations
l, l0, . . . , ln for some n ≥ 0 such that (a) h(l0) = l [resp. and dom(h) = {l0, . . . , ln}],
(b) for i ∈ {1, . . . , n}, h(li) = l0 and �̃li = 0 and (c) �̃l0 = n. We say that this marker
is of degree n with endpoint l. Markers should be thought graphically. Figure 1(a) rep-
resents a marker of degree 2 with endpoint s(y).

A model (s, h) is said to be k-marked whenever there is no location in dom(h)
that does not belong to a marker of degree k. Moreover it is strictly k-marked when
no distinct markers share the same endpoint. A model (s, h) is segmented whenever
dom(h) ∩ ran(h) = ∅ and no location has strictly more than one predecessor. Finally,
(s, h) is drown when no location has one or two predecessors. The lemma below states
that many properties involving these notions can be expressed in SL(−−∗).

Lemma 8. There are formulae drown, seg, preM2(x) and (one | two[c]) (c ≥ 0) in SL
with no separating connectives such that for every model (s, h)

(I) (s, h) |= drown iff (s, h) is drown, (II) (s, h) |= seg iff (s, h) is segmented,
(III) (s, h) |= preM2(x) iff the predecessors of s(x) are endpoints of markers of degree

2,
(IV) (s, h) |= (one | two[c]) iff there are h1, h2 such that h = h1 ∗ h2, (s, h1) is 1-

marked and (s, h2) is strictly 2-marked with exactly c distinct 2-markers.

Figure 1(e) contains a model satisfying (one | two[c]) whereas Figure 1(d) presents a
location s(x) satisfying preM2(x). The above formulae allow to insert in a drown model
markers of degree strictly less than 3 and still to safely identify them as markers in the
new model. Actually, any location with less than 2 predecessors will necessarily be part
of a newly introduced marker. We will assume for now that we are working with a drown
model, and later reduce the general case to this one. Observe also if h1 is segmented
and h2 contains 1-markers, we can obtain 2-markers in h1 ∗ h2.

We say that two heaps h1, h2 are completely disjoint if (dom(h1) ∪ ran(h1)) ∩
(dom(h2) ∪ ran(h2)) = ∅. Now assume that h1 is segmented with | dom(h1) | = n,
h2 is drown and, h1 and h2 are completely disjoint. Then, there is a 1-marked heap h′1
such that all the predecessors of s(x) are endpoints of 2-markers iff �̃x ≤ n (in h2).
If we have the possibility to add to h′1 a strict 2-marked heap with exactly c distinct
2-markers then all the predecessors of s(x) are endpoints of 2-markers iff �̃x ≤ c + n.
This is formalized below.

On the Almighty Wand 331

Lemma 9. Let s be a store and h1, h2 be two completely disjoint heaps such that
(s, h1)
 drown ∧ �x = i and (s, h2)
 seg ∧ �x = 0. Then, (i) (s, h1 ∗ h2) |=
(one | two[c]) −−∗¬ preM2(x) iff (ii) |dom(h2) | ≥ (i− c).

So we may test that the number of extra arrows that satisfy seg is less than �̃x. Call n
the number of these extra arrows, then this scenario says �̃x − c ≤ n. Now, in order
to express properties of the form �̃x � �̃y + c, it is sufficient to express properties of
the form �̃x + c ≤ �̃y + c′ (c, c′ ∈ N) thanks to Boolean connectives. Note moreover
that this constraint is equivalent to: for all n ∈ N, �̃y − c ≤ n implies �̃x − c′ ≤ n.
This suggests a contest between two players: Spoiler that aims at disproving that the
constraint holds, and Duplicator tries to prove it. The contest is the following:

1. Spoiler reduces to the case of a drown model - this will be formalized later.
2. Spoiler picks a segmented heap h′ with |dom(h′) | = n.
3. He proves that �̃y − c ≤ n using the previous scenario.
4. Then Duplicator must prove �̃x− c′ ≤ n playing with the same scenario.

Figure 2 summarizes a contest with a successful outcome for Duplicator.

x y x y

x y

x y
x y

1 2

3 4

Fig. 2. A contest won by Duplicator. n = 3, c = c′ = 0

Let ϕTD be the formula that specifies that if a model is not drown then it is only due
to the fact that it contains a segmented subheap that is not drown:

(∀x, y. (x ↪→ y ∧ �y = 1) ⇒ (�x = 0 ∧ ¬alloc (y))) ∧ (¬(∃x. �x = 2))

The formula contest(x, y, c, c′) defines a contest (essential to establish Theorem 10).

drown∧((seg∧�x = 0∧�y = 0) −−∗ ϕT D ⇒ (((one | two[c]) −−∗¬ preM
2(y))⇒ ((one | two[c]) −−∗¬ preM

2(x))).

332 R. Brochenin, S. Demri, and E. Lozes

Theorem 10. For c, c′ ≥ 0, there is a formula φ in SL(−−∗) of quadratic size in c + c′

such that for every model (s, h), we have (s, h) |= φ iff �̃x + c ≤ �̃y + c′.

The proof contains a simple case analysis depending whether the model can be trans-
formed into a drown one (in order to use contest(x, y, c, c′)) without altering the num-
ber of precedessors for s(x) and s(y). In Section 5, constraints �̃x + c ≤ �̃y + c′ with
c, c′ ≤ 3 shall be used.

5 SL(−−∗) Is Equivalent to SO

By Proposition 3, we know that SL : DSO and there is a logspace translation from SL
into DSO (logspace reductions are closed under compositions). Now, we show the con-
verse. In the sequel, without any loss of generality we require that the sentences in DSO
satisfy the Barendregt convention as far as the second-order variables are concerned.
Assuming that a sentence contains the second-order variables P1, . . . , Pn, quantifica-
tions over Pi can only occur in the scope of quantifications over P1, . . . , Pi−1 (we call
this restriction the extended Barendregt convention). Typically, we exclude sentences of
the form ∃P2 ∃P1 φ. Observe that any sentence in DSO can be transformed in logspace
into an equivalent sentence verifying this convention. The quantifier depth of the occur-
rence of a subformula ψ in φ is therefore the maximal i such that this occurrence is in
the scope of ∃Pi (by convention it is zero if it is not in the scope of any quantification).

Before defining the translation of a DSO sentence φ (with second-order variables
P1, . . . , Pn), let us explain how environments can be encoded in SL which is the key
point to simulate second-order quantification. An environment is encoded as part of the
memory heap with a specific shape. The interpretation of each variable Pi is performed
as follows. A pair (l, l′) is in the interpretation of Pi iff there are markers with respec-
tive endpoint l and l′ whose degrees are consecutive values strictly between some fixed

values �̃zmi and �̃zMi . Here, the distinguished variables zmi and zMi are interpreted as
locations that are not in the domain of the original memory heap. In order to avoid con-
fusions between the original memory heap and the part that is dedicated to the encoding
of the environment, �̃zmi is strictly greater than the degree of any location in the original
memory heap. In other words, instead of making the original model drown and using
small markers, the model is unchanged and large markers are used.

The translation of the formula φ, written T (φ), is defined with the help of the trans-
lation tj where j records the quantifier depth.

T (φ) � ∃zm
0 z

M
0 . isol(zM

0) ∧ isol(zm
0)∧

[((∀x. alloc (x)⇒ (x ↪→ z
M
0 ∨ x ↪→ z

m
0 ∨ x = z

M
0 ∨ x = z

m
0)) ∧ alloc (zM

0) ∧ alloc (zm
0)) −−∗¬

(∀x.x �= z
M
0 ∧ x �= z

m
0 ⇒ (�z

m
0 > 2 + �x)) ∧ (�z

M
0 = 2 + �z

m
0) ∧ extr(z

m
0) ∧ extr(z

M
0) ∧ t0(φ))]

The formula isol(x) is an abbreviation for ¬∃y. (x ↪→ y) ∨ (y ↪→ x). Any loca-

tion with number of predecessors greater than �̃zM0 is useful to encode a pair of loca-
tions for the interpretation of some second-order variable (except the interpretation of

On the Almighty Wand 333

distinguished variables of the form either zmi or zMi). The translation of the atomic
formula Pj(x, y) in the scope of the quantifications over P1, . . . , Pi (j ≤ i) is defined
below:

ti(Pj(x, y)) � ∃z, z′ (z ↪→ x)∧ (z′ ↪→ y)∧ (�z > �zm
j)∧ (�z < �zM

j)∧ (�z′ = 1+�z)∧ extr(z)∧ extr(z′)

So (s(x), s(y)) belongs to the interpretation of Pj when s(x) and s(y) are endpoints of

markers with consecutive degrees between �̃zmj and �̃zMj . However, in order to avoid
interferences between the encoding of the environment and the original memory heap,
we require that the new memory heap satisfies structural properties described below.

Proposition 11. There is a formula envir(z, z′) such that (s, h) |= envir iff �̃z < �̃z′,
�̃z ≡ �̃z′ + 2 [3] and for all i in [�̃z, . . . , �̃z′],

– if i ≡ �̃z + 1 [3] then there is no extremity l in (s, h) such that �̃l = i,
– if i �≡ �̃z + 1 [3] then there is exactly one location l such that l is an extremity and
�̃l = i. This unique location l belongs to dom(h).

An i-well-formed model, defined below, can be divided into two disjoint parts such that
one part encodes the interpretation of the second-order variables P1, . . . , Pi.

Definition 12. A memory state (s, h) is i-well-formed for some i ≥ 0 iff there are
heaps h1, h2 with h = h1 ∗ h2 satisfying the properties below:

(I) for every variable x in {zm1 , . . . , zmi } ∪ {zM0 , . . . , zMi−1}, s(x) is an extremity in

(s, h) and �̃zm0 < �̃x < �̃zMi ,

(II) when i ≥ j > 0, �̃zMj−1 + 1 = �̃zmj ,

(III) there is no location l such that �̃l in (s, h1) is strictly greater than �̃zm0 − 2 in
(s, h),

(IV) if l ∈ dom(h2) then there is l′ ∈ {l, h2(l)} such that l′ is an extremity in h2,
(V) any extremity l in the model (s, h2) satisfies (1) l �∈ ran(h1), (2) l is an extremity

in (s, h), (3) �̃zm0 ≤ �̃l ≤ �̃zMi and (4) h(l) /∈ dom(h2).
(VI) (s, h2) |= envir(zm0 , z

M
i).

(s, h1) is called the base part and (s, h2) the environment part.

Note that in any such decomposition, we have dom(h2) ∩ ran(h1) = ∅. Moreover, any
extremity in h with more than �̃zm0 predecessors has all predecessors in dom(h2). The
above decomposition is indeed unique.

Lemma 13. Whenever (s, h) is i-well-formed with base part h1 and environment part
h2, there is no (h′1, h

′
2) �= (h1, h2) such that (s, h) is i-well-formed with base part h′1

and environment part h′2.

The spectrum of an i-well-formed memory state is defined as the set of numbers of
predecessors in the environment part that are greater than 3. Hence such a spectrum has
the following shape • ◦ • • ◦ • • · · · ◦ • • ◦ • • ◦ • • · · · ◦ • • ◦• corresponding

334 R. Brochenin, S. Demri, and E. Lozes

to a finite sequence of successive integers where • indicates the presence of the integer

and ◦ its absence. The smallest value is �̃zm0 and the greatest value is �̃zMi . Two consec-
utive values in the sequence encode one pair from the interpretation of a second-order
variable. Observe that the concatenation of two spectra is still a spectrum. The formula
relationi,X defined below states that part of the memory is 0-well-formed and can
serve to encode the interpretation of the variable Pi.

Proposition 14. Given i ≥ 0 and X a finite set of variables disjoint from the set of
auxiliary variables {zm0 , zM0 , . . . , zmi , z

M
i }, there is a formula relationi,X such that

for every model (s, h), we have (s, h) |= relationi,X iff (s[zm0 �→ s(zmi), zM0 �→
s(zMi)], h) is 0-well-formed, its base part is empty and for every x ∈ X , s(x) �∈ dom(h).

In order to translate the subformula ∃Pi. ψ, we introduce two locations whose numbers
of predecessors determine the bounds for the degrees for any marker used to encode a
pair for the interpretation of Pi. There is a way to add markers (expressed thanks to the
connective−−∗¬) that guarantees that the new part of the heap encodes the interpretation
of the variable Pi by using the above formula relationi,X . The translation of ∃Pi. ψ at
the (i−1) quantification depth, noted ti−1(∃Pi, ψ), is defined by ∃zmi , zMi . isol(zmi)∧
isol(zMi) ∧ (relationi,FV(ψ) −−∗¬ (envir(zm0 , z

M
i) ∧ �zMi−1 + 1 = �zmi ∧ ti(ψ))).

Definition 15. Let (s, h) be an i-well-formed model with environment part (s, h2). An
environment E extracted from (s, h) satisfies for j ∈ {1, . . . , i}, E(Pj) = Rj with

Rj = {(h2(l), h2(l′)) : �̃zmj < �̃l, �̃l + 1 = �̃l′, �̃l′ < �̃zMj in h2}.

The map ti is homomorphic for Boolean connectives, and is the identity for atomic for-
mulae of the form either x = y or x ↪→ y. It remains to treat the case for first-order
quantification. The main difficulty is to guarantee that first-order variables are not in-
terpreted as locations used in markers encoding second-order quantification. Typically,

the number of predecessors of s(x) and h(s(x)) (if its exists) should be less than �̃zM0
and none of these locations is an extremity. The formula notonenv is introduced for
this purpose: notonenv(x) � ¬(∃y. (y = x ∨ x ↪→ y) ∧ (�y ≥ �zm0) ∧ extr(y)). The
main reason for introducing notonenv(x) is to be able to identify locations from the
environment part of i-well-formed models, as stated below.

Lemma 16. Let (s, h) be an i-well-formed with environment part h2. Then (s, h) |=
notonenv(x) iff s(x) �∈ dom(h2).

The translation ti(∃x. ψ) is defined as ∃x. notonenv(x)∧ti(ψ). Observe that T (φ) and
φ have the same first-order free variables. Correctness of T (·) is based on
Proposition 17.

Proposition 17. Let φ be a DSO formula with second-order variables {P1, . . . , Pn} us-
ing the extended Barendregt convention. Let ψ be a subformula of φ which occurs un-
der the scope of P1, . . . , Pj (0 ≤ j ≤ n) with quantified second-order variables in
{Pj+1, . . . , Pn}. Let (s, h) be a j-well-formed model with base part h1 and environ-
ment part h2 such that for each x ∈ FV(ψ), s(x) �∈ dom(h2). Let Ej be an environ-
ment extracted from (s, h) ({P1 �→ R1, . . . , Pj �→ Rj}). Then, (s, h) |= tj(ψ) iff
(s, h1), Ej |= ψ.

On the Almighty Wand 335

Full proof of Proposition 17 can be found in [BDL08]. We present below simple cases
in the analysis. This will entail our main result (Theorem 18).

Proof (sketch with simple cases). Let us start by a preliminary definition. We say that
a location l occurs in a binary relation R when there is a location l′ such that either
(l, l′) ∈ R or (l′, l) ∈ R. Let φ be a DSO sentence satisfying the extended Barendregt
convention. We want to show by induction on ψ that given:

– ψ is a subformula of φ which occurs under the scope of P1, . . . , Pj , and with
second-order quantifications over elements from {Pj+1, . . . , Pn},

– (s, h) is j-well-formed with base part h1 and environment part h2 such that for
every variable x ∈ FV(ψ), we have s(x) /∈ dom(h2),

– Ej is the environment {P1 �→ R1, . . . , Pj �→ Rj} extracted from h2,
– no location occurring inR1 ∪ · · · ∪ Rj belongs to dom(h2),

we have (s, h) |= tj(ψ) iff (s, h1), Ej |= ψ.

Base case 1: ψ = Pk(x, y) with k ≤ j.
(→) Suppose that (s, h) |= tj(Pk(x, y)). Then, s(x) and s(y) have predecessors in
h that are extremities, let us call them respectively lx and ly. In the heap h, we have

�̃zmk < �̃lx = �̃ly − 1 < �̃zMk − 1. By Definition 12, both lx and ly have predecessors in
dom(h2) and all of their predecessors are also in dom(h2). Since zmk and zMk have also all

of their predecessors in dom(h2), we have �̃zmk < �̃lx, �̃lx+1 = �̃ly and �̃ly < �̃zMk in h2.
By Definition 15, we get (h(lx), h(ly)) ∈ Rk, that is (s(x), s(y)) ∈ Rk. Consequently,
(s, h1), Ej |= Pk(x, y).

(←) Suppose that (s, h1), Ej |= Pk(x, y). By definition of |= and Ej , (s(x), s(y)) ∈
Rk. So s(x) and s(y) have respectively predecessors lx and ly in dom(h2). In the heap

h2, lx and ly are extremities and �̃zmk < �̃lx = �̃ly − 1 < �̃zMk − 1. By Definition 12,
the predecessors of any locations among s(zmk), lx, ly and s(zMk) belong to dom(h2).
So the above inequalities and equality are also true in h. By Definition 12, the locations
s(zmk), lx, ly and s(zMk) are extremities in h. So (s, h) |= tj(Pk(x, y)).
The other base cases are by an easy verification.

Induction step – Case 1: ψ = ∃x. ψ′. The statements below are equivalent:

(0) (s, h) |= tj(∃x ψ′),
(1) there is l ∈ Loc such that (s′, h) |= tj(ψ′) and (s′, h) |= notonenv(x) with

s′ = s[x �→ l] (by definition of tj),
(2) there is l ∈ Loc such that (s′, h) |= tj(ψ′) and l �∈ dom(h2) with s′ = s[x �→ l] (by

Lemma 16),
(3) there is l ∈ Loc such that (s′, h1), Ej |= ψ′ and l �∈ dom(h2) with s′ = s[x �→ l]

(by induction hypothesis since FV(ψ′) ⊆ FV(∃x. ψ′) ∪ {x}),
(4) there is l ∈ Loc such that (s′, h1), Ej |= ψ′ with s′ = s[x �→ l],
(5) (s, h1), Ej |= ψ (by definition of |=).

Let us justify below why (4) implies (3). Suppose (4) and l ∈ dom(h2). Since (s, h) is
i-well-formed, l /∈ (dom(h1)∪ ran(h1)). Since Loc is an infinite set, there is a location
l′ ∈ (Loc\(dom(h1)∪ran(h1)∪dom(h2)) such that l′ does not occur in (R1∪· · ·∪Rj).
By equivariance shown in [BDL08], we get (s[x �→ l′], h1), Ej [l ← l′] |= ψ′. Suppose

336 R. Brochenin, S. Demri, and E. Lozes

ad absurdum that l occurs in Rk for some 1 ≤ k ≤ j. So, l has a predecessor that
is an extremity in dom(h2) and by Definition 12(V(4)), l �∈ dom(h2), which leads to a
contradiction. Hence, Ej [l ← l′] = Ej . We have established that (s[x �→ l′], h1), Ej |=
ψ′ and l′ �∈ dom(h2). �

Theorem 18. SL(−−∗) ≡ SL ≡ SO ≡ DSO.

DSO : SL stems from Proposition 17. Observe that all the equivalences are obtained
with logspace translations. Consequently,

Corollary 19. SL(−−∗) validity problem is undecidable.

Undecidability of SL(−−∗) can be obtained more easily by encoding the halting problem
for Minsky machines by using the fact that �x = �y and �x = �y + 1 can be expressed
in SL(−−∗) (Section 4).

6 Concluding Remarks

We have shown that first-order separation logic with one selector is as expressive as
second-order logic over the class of memory states, whence undecidable too. More-
over, the restriction to the magic wand preserves the expressive power. This solves
two central open problems: the decidability status of SL and the characterization of its
expressive power. Additionnally, we have proved that SL without the magic wand is
decidable with non-elementary complexity whereas SL restricted to the magic wand is
also undecidable. By adapting the above developments, a generalization in presence of
k > 1 selectors (see Section 2.1) is possible.

Theorem 20. For every k ≥ 1, kSL ≡ kSL(−−∗) ≡ kSO.

The case k = 1 requires a lot of care but a simpler direct proof is possible for k �= 1.
Indeed, for k = 1 the identification of auxiliary memory cells is performed thanks
to structural properties whereas for k �= 1, this can be done by simply checking the
presence of distinguished values.

References

[BCO04] Berdine, J., Calcagno, C., O’Hearn, P.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004)

[BDL07] Brochenin, R., Demri, S., Lozes, E.: Reasoning about sequences of memory states.
In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 100–114.
Springer, Heidelberg (2007)

[BDL08] Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Technical report, LSV,
ENS de Cachan (2008)

[BGG97] Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, Heidelberg (1997)

[BHMV05] Bouajjani, A., Habermehl, P., Moro, P., Vojnar, T.: Verifying programs with dy-
namic 1-selector-linked structured in regular model-checking. In: Halbwachs, N.,
Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 13–29. Springer, Heidelberg
(2005)

On the Almighty Wand 337

[BIL04] Bozga, M., Iosif, R., Lakhnech, Y.: On logics of aliasing. In: Giacobazzi, R. (ed.)
SAS 2004. LNCS, vol. 3148, pp. 344–360. Springer, Heidelberg (2004)

[BIP08] Bozga, M., Iosif, R., Perarnau, S.: Quantitative separation logic and programs with
lists. In: IJCAR 2008 (to appear, 2008)

[CGH05] Calcagno, C., Gardner, P., Hague, M.: From separation logic to first-order logic.
In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 395–409. Springer,
Heidelberg (2005)

[CYO01a] Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for a
spatial assertion language. In: APLAS 2001, pp. 289–300 (2001)

[CYO01b] Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for
a spatial assertion language for data structures. In: Hariharan, R., Mukund, M.,
Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidel-
berg (2001)

[DGG04] Dawar, A., Gardner, P., Ghelli, G.: Adjunct elimination through games in static am-
bient logic. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328,
pp. 211–223. Springer, Heidelberg (2004)

[DGG07] Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and complexity of graph logic.
I & C 205(3), 263–310 (2007)

[GM08] Galmiche, D., Méry, D.: Tableaux and resource graphs for separation logic (sub-
mitted, 2008)

[IO01] Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: POPL 2001, pp. 14–26 (2001)

[JJKS97] Jensen, J., Jorgensen, M., Klarlund, N., Schwartzbach, M.: Automatic verification
of pointer programs using monadic second-order logic. In: PLDI 1997, pp. 226–
236. ACM, New York (1997)

[KR03] Klaedtke, F., Rueb, H.: Monadic second-order logics with cardinalities. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 681–696. Springer, Heidelberg (2003)

[KR04] Kuncak, V., Rinard, M.: On spatial conjunction as second-order logic. Technical
report, MIT CSAIL (October 2004)

[LAS00] Lev-Ami, T., Sagiv, M.: TVLA: A system for implementing static analyses. In:
Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–302. Springer, Heidelberg
(2000)

[Loz04] Lozes, E.: Separation logic preserves the expressive power of classical logic. In:
2nd Workshop on Semantics, Program Analysis, and Computing Environments for
Memory Management (SPACE 2004) (2004)

[Loz05] Lozes, E.: Elimination of spatial connectives in static spatial logics. TCS 330(3),
475–499 (2005)

[LR03] Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic.
In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp.
302–313. Springer, Heidelberg (2003)

[Mar06] Marcinkowski, J.: On the expressive power of graph logic. In: Ésik, Z. (ed.) CSL
2006. LNCS, vol. 4207, pp. 486–500. Springer, Heidelberg (2006)

[MBCC07] Magill, S., Berdine, J., Clarke, E., Cook, B.: Arithmetic strengthening for shape
analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 419–
436. Springer, Heidelberg (2007)

[Rab69] Rabin, M.: Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society 41, 1–35 (1969)

[Rey02] Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS 2002, pp. 55–74. IEEE, Los Alamitos (2002)

338 R. Brochenin, S. Demri, and E. Lozes

[RZ06] Ranise, S., Zarba, C.: A theory of singly-linked lists and its extensible decision
procedure. In: SEFM 2006, pp. 206–215. IEEE, Los Alamitos (2006)

[Sto74] Stockmeyer, L.: The complexity of decision problems in automata theory and logic.
PhD thesis, Department of Electrical Engineering. MIT (1974)

[Tra50] Trakhtenbrot, B.A.: The impossibility of an algorithm for the decision problem for
finite models. Dokl. Akad. Nauk SSSR 70, 566–572 (1950); English translation in:
AMS Transl. Ser. 2, 23(1063), 1–6

[YRS+05] Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reach-
able patterns in linked data structures. In: Sassone, V. (ed.) FOSSACS 2005. LNCS,
vol. 3441, pp. 94–110. Springer, Heidelberg (2005)

On Counting Generalized Colorings

T. Kotek1, J.A. Makowsky1,�, and B. Zilber2,��

1 Department of Computer Science
Technion–Israel Institute of Technology, Haifa, Israel

{tkotek,janos}@cs.technion.ac.il
2 Mathematical Institute,

University of Oxford
zilber@maths.ox.ac.uk

Abstract. It is well known that the number of proper k-colorings of a
graph is a polynomial in k. We investigate in this talk under what condi-
tions a numeric graph invariant which is parametrized with parameters
k1, . . . , km is a polynomial in these parameters. We give a sufficient con-
ditions for this to happen which is general enough to encompass all the
graph polynomials which are definable in Second Order Logic. This not
only covers the various generalizations of the Tutte polynomials, Inter-
lace polynomials, Matching polynomials, but allows us to identify new
graph polynomials related to combinatorial problems discussed in the
literature.

1 Introduction

Graph invariants and graph polynomials. A graph invariant is a function
from the class of (finite) graphs G into some domain D such that isomorphic
graphs have the same picture. Usually such invariants are meant to be uniformly
defined in some formalism. If D is the two-element boolean algebra we speak of
graph properties. Examples are the properties of being connected, planar, Eule-
rian, Hamiltonian, etc. If D consists of the natural numbers, we speak of numeric
graph invariants. Examples are the number of connected components, the size of
the largest clique or independent set, the diameter, the chromatic number, etc.
But D could also be a polynomial ring Z[X̄] over Z with a set of indeterminates
X̄. Here examples are the characteristic polynomial, the chromatic polynomial,
the Tutte polynomial, etc.

There are many graph invariants discussed in the literature, which are poly-
nomials in Z[X̄], but there are hardly any papers discussing classes of graph
polynomials as an object of study in its generality. An outline of such a study
was presented in [Mak06]. In [Mak04] the second author has introduced the
MSOL-definable and the SOL-definable graph polynomials, the class of graph
� Partially supported by the Israel Science Foundation for the project “Model Theo-

retic Interpretations of Counting Functions” (2007-2010).
�� Partially supported by MODNET: Marie Curie Research Training Network MRTN-

CT-2004-512234.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 339–353, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

340 T. Kotek, J.A. Makowsky, and B. Zilber

polynomials where the range of summation is definable in (monadic) second or-
der logic. He has verified that all the examples of graph polynomials discussed in
the literature, with the exception of the weighted graph polynomial of [NW99],
are actually SOL-polynomials over some expansions (by adding order relations)
of the graph, cf. also [Mak06]. In some cases this is straight forward, but in some
cases it follows from intricate theorems.

A proper k-vertex-colorings of a graph G = (V,E) with colors from a set
{0, . . . , k − 1} = [k] is a function from f : V → [k] such that no two distinct
vertices connected by an edge have the same value. A simple case of general-
ized colorings are the φ-colorings, k-vertex-colorings definable by a first order
formula φ(F) over graphs with an additional function symbol F , and we allow
all functions f which are interpretations of F satisfying φ(F). It will become
clearer later that to define a φ-coloring, the formula has to be subject to cer-
tain semantic restrictions such as invariance under permutation of the colors,
the existence of a bound on the colors used, and independence of the colors not
used. The general case arises by expanding the graph, allowing several color sets,
and replacing functions by relations. The associated counting function χφ(G, k)
counts the number of generalized colorings satisfying φ as a function of k.

Our first result is

Proposition A. Let k̄ = (k1, . . . kα) be the cardinalities of the various color
sets. For φ subject to the conditions above, the counting function χφ(G, k̄) is a
polynomial in k̄.

The purpose of this paper is to present a framework, which we call counting
functions of generalized colorings, for defining graph invariants.

In particular we shall compare the counting functions of generalized color-
ings with the SOL-definable polynomials. A special case of these, the MSOL-
definable polynomials were first introduced in [Mak04]. SOL-definable polyno-
mials define invariants of finite first order τ -structures for arbitrary vocabularies
(similarity types). In contrast to counting functions of generalized colorings,
they are polynomials by their very definition. The definability condition refers
to summation over definable sets of relations and products over definable sets of
elements of the underlying structure.

In order to relate the counting functions of generalized colorings to the SOL-
definable polynomials, we allow additional combinatorial functions as monomi-
als. We call the corresponding polynomials extended SOL-polynomials.

Main result. Our main results here are:

Theorem B. Every extended SOL-definable polynomial is a counting function
of a generalized coloring of graphs definable in SOL.

Theorem C. Every counting function of a generalized coloring of ordered graphs
definable in SOL is an extended SOL-definable polynomial.

Outline of the paper. We assume the reader is familiar with the basics of
graph theory as, say, presented in [Die96, Bol99]. We also assume the reader is

On Counting Generalized Colorings 341

familiar the basics of finite model theory as, say, presented in [EFT94, EF95,
Lib04]

Section 2 is a prelude to our general discussion, in which we discuss the chro-
matic polynomial and explain how it fits into the various frameworks. In Section
3 we introduce our notion of counting functions of generalized colorings definable
in SOL. We prove they are polynomials in the number of colors and show exam-
ples of graph polynomials from the literature which fall under this class of graph
polynomials. In Section 4 we give precise definition of extended SOL-definable
polynomials.

An earlier version of some of the material of this paper was posted as [MZ06].

2 Prelude: The Chromatic Polynomial

Before we introduce our general definitions, we discuss the oldest graph polyno-
mial studied in the literature, the classical chromatic polynomial χG(k). It has
a very rich literature. For an excellent and exhaustive monograph, cf. [DKT05].

We denote by G the set of graphs of the form G = ([n], E). A k-vertex-coloring
of G is a function f : [n] → [k] such that whenever (u, v) ∈ E then f(u) �= f(v).
χG(k) denotes the number of k-vertex-colorings of G. χG(k) defines, for each
graph, a function χG(λ) : G → N which turns out to be a polynomial in λ.

We note that χG(λ) really denotes a family of polynomials indexed by graphs
from G. This family is furthermore uniformly defined based on some of the
properties of the graph G. We are interested in various formalisms in which such
uniform definitions can be given. We isolate the following themes:

(i) A recursive definition of χG(k) (using an order on the vertices or edges).
(ii) A uniform explicit definition of χG(k) over the graph using a second order

logic formalism. In [Cou] it is called a static definition of the polynomial.
(iii) We associate with each k ∈ N a two-sorted structure Gk = 〈G, [k]〉 and

interpret χG(k) as counting the number of expansions 〈Gk, F 〉 satisfying
some first order formula φ(F).

In [CGM07] the relationship between recursive and explicit definitions is stud-
ied. There, a framework is provided which allows to show that every recursive
definition of a graph polynomial also allows an explicit definition. The converse
is open but seems not to be true. Here we are interested in the relationship
between explicit definition, and counting expansions.

Recursive definition. The first proof that χG(λ) is a polynomial used the
observation that χG(λ) has a recursive definition using the order of the edges,
which can be taken as the order induced by the lexical ordering on [n]2. However,
the object defined does not depend on the particular order of the edges. For
details, cf. [Big93, Bol99]. The essence of the proof is as follows:

For e = (v1, v2), we put G−e = (V,E′) with E′ = E−{e}, andG/e = (V ∗, E∗)
V ∗ = V − {v2} and E∗ = (E ∩ (V ∗)2) ∪ {(v1, v); (v2, v) ∈ E}. The operation
passing from G to G− e is called edge removal, and the operation passing from
G to G/e is called edge contraction.

342 T. Kotek, J.A. Makowsky, and B. Zilber

Lemma 1. Let e, f be two edges of G. Then we have (G− e)− f = (G− f)− e,
(G/e)− f = (G− f)/e, (G− e)/f = (G/f)− e and (G/e)/f = (G/f)/e.

Let En = ([n], ∅). We have χEn(λ) = λn. Furthermore, for any edge e ∈ E we
have χG(λ) = χG−e(λ)− χG/e(λ).

Explicit descriptions. There are other proofs that χG(λ) is a polynomial.

Proof. We first observe that any coloring uses at most n of the λ colors. For
any m ≤ n, let c(m) be the number of colorings, with a fixed set of m colors,
which are vertex colorings and use all m of the colors. Then, given λ colors, the
number of vertex colorings that use exactly m of the λ colors is the product of
c(m) and the binomial coefficient

(
λ
m

)
. So

χG(λ) =
∑
m≤n

(
λ

m

)
c(m)

The right side here is a polynomial in λ, because each of the binomial coefficients
is. We also use that for λ ≤ m we have

(
λ
m

)
= 0.

If both the set of colors and the set of vertices are initial segments of the
natural numbers with their order, we can also rewrite this in the following way:

χG(λ) =
∑

A:init(A,V)

∑
f :ontocol(f,A)

(
λ

card(A)

)
(chrom-1)

where init(A, V) says that A is an initial segment of V , and ontocol(f,A) says
that f is a vertex coloring using all the colors of A.

Equation chrom-1 is an example of a explicit definition of the chromatic poly-
nomial.

In [DKT05, Theorem 1.4.1] another explicit description of χG(λ) is given: Let
a(G,m) be the number of partitions of V into m independent sets, and let

(λ)m = λ · (λ− 1) · . . . · (λ−m+ 1)

be the falling factorial. Then χG(λ) =
∑

m a(G,m) · (λ)m. This again be written

χG(λ) =
∑

P :indpart(P,AP ,V)

(λcard(AP)) (chrom-2)

where indpart(P,AP , V) says that P is an equivalence relation on V and AP

consists of the first elements (with respect to the order on V = [n]) of each
equivalence class.

A third explicit description for χG(λ) is given in [DKT05, Theorem 2.2.1]. It
can be obtained from a two-variable polynomial ZG(λ, V) defined by

ZG(λ, V) =
∑

S:S⊆E

⎛⎝ ∏
v:fcomp(v,S)

λ ·
∏

e:e∈S
V

⎞⎠ =
∑

S:S⊆E

(
λk(S) ·

∏
e:e∈S

V

)

On Counting Generalized Colorings 343

where fcomp(v, S) is the property ”v is the first vertex in the order of V of some
connected component of the spanning subgraph < S : V > on V induced by S”,
and k(S) is the number of connected components of < S : V >. Now we have

χG(λ) = ZG(λ,−1) (chrom-3)

The three explicit descriptions of the chromatic polynomial chrom-1, chrom-2,
chrom-3 have several properties in common:

(i) They satisfy the same recursive definition, because they define the same
polynomial.

(ii) They are of the form
∑

k Ak(G)Pk(λ) where Pk(λ) is a polynomial in λ
with integer coefficients of degree k.

(iii) The coefficients Ak(G) are positive and have a combinatorial interpretation.
(iv) The coefficients can be alternatively obtained by collecting the terms Pk(λ)

of a summation over certain relations definable in second order logic over
the graph with an order on the vertices and interpreting k as the cardinality
of such a relation.

(v) Although the order on the vertices is used in the explicit description of the
polynomial, the polynomial is invariant under permutations of the ordering.

There are also significant differences.

(i) In chrom-1 it is important that the set of colors and the set of vertices
are initial segments of the natural numbers with their natural order. The
summation involves one unary relation and one unary function.

(ii) In chrom-2 the summation involves a binary relation on the vertices which is
not a subset of the edge relation, but of its complement. The order relation
is only needed to identify equivalence classes.

(iii) In chrom-3 we actually use a two-variable polynomial and then substitute
for one variable −1. The summation involves a binary relation on vertices
which is a subset of the edge relation. It can be also viewed as a unary
relation on the set of edges. The order relation is only needed to identify
connected components.

Counting expansions. Let F be a unary function symbol and let φ(F,E)
be the formula which says that F is a proper k-vertex coloring for the edge
relation E. Then χG(k) = χφ(G, k) is the number of interpretations F of F in
〈[n], [k], E, F 〉 which satisfy φ(F,E). We note that

(i) a coloring is invariant under permutations of the colors,
(ii) the number of colors is bounded by the size of V , and
(iii) the property of being a coloring is independent of the colors not used.

This is readily generalized to other formulas ψ(F,E) satisfying similar properties,
and will be the starting point for our notion of generalized coloring.

344 T. Kotek, J.A. Makowsky, and B. Zilber

3 Generalized Chromatic Polynomials

Generalized colorings. Let M be a τ -structure with universe M . We say a
two-sorted structure 〈M, [k], R〉 for the vocabulary τR is a generalized coloring of
M with k colors. The set [k] will be referred to as the color set. We denote rela-
tion symbols by bold-face letters, and their interpretation by the corresponding
roman-face letter.

Definition 1 (Coloring Property). A class P of generalized colorings

P = {〈M, [k], R〉 | R ⊆Mm × [k]}

of τR structures is a coloring property if it satisfies the following conditions:

Isomorphism property. P is closed under τR-isomorphisms.
In particular, P is closed under permutations of the color set [k].

Extension property. For everyM, k, k′ and R, if k′ ≥ k and 〈M, [k], R〉 ∈ P
then 〈M, [k′], R〉 ∈ P.
Namely, the extension property requires that increasing the number of colors
of a generalized coloring does not affect whether it belongs to the property.

We refer to the relation symbol R and its interpretations R as coloring predi-
cates. For fixed k, a specific interpretation is called a k-P-coloring.

Definition 2 (Bounded coloring properties)

(i) A coloring property P is bounded, if for every 〈M, [k], R〉 ∈ P there is a
number NM such that the set of colors {x ∈ [k] : ∃ȳ ∈ MmR(ȳ, x)} has size
at most NM , and NM does not depend on k.

(ii) A coloring property P is range bounded, if its range is bounded in the fol-
lowing sense: There is a number d ∈ N such that for every 〈M, [k], R〉 ∈ P
and ȳ ∈Mm the set {x ∈ [k] : R(ȳ, x)} has at most d elements.

Clearly, if a coloring property is range bounded, it is also bounded.

Proposition 1 (Special case of Proposition A). Let P be a bounded coloring
property. For every M the number χP(M, k) is a polynomial in k of the form

NM∑
j=0

cP(M, j)
(
k

j

)
where cP(M, j) is the number of generalized k-P-colorings R with a fixed set of
j colors. If P is range-bounded then NM ≤ d · |M |m.

Proof. We first observe that any generalized coloring R uses at most NM of
the k colors, if it is bounded. If R is range-bounded then NM ≤ d · |M |m. For
any j ≤ NM , let cP(M, j) be the number of colorings, with a fixed set of j
colors, which are generalized vertex colorings and use all j of the colors. So any
permutation of the set of colors used is also a coloring. Therefore, given k colors,

On Counting Generalized Colorings 345

the number of vertex colorings that use exactly j of the k colors is the product
of cP(M, j) and the binomial coefficient

(
k
j

)
. So

χP(M, k) =
∑

j≤NM

cP(M, j)
(
k

j

)
The right side here is a polynomial in k, because each of the binomial coefficients
is. We also use that for k < j we have

(
k
j

)
= 0.

We note bounded properties which are not range-bounded lack in uniformity. So
for range-bounded P we call χP(M, k) a generalized chromatic polynomial.

Remark 1. The restriction to coloring properties in Proposition 1 is essential.
Let χonto(G, k) be the number of functions f : V (G) → [k] which are onto.
Clearly, this is not a polynomial in k as for k >| V (G) | it always vanishes, so it
should be constantly 0.

Definability of generalized chromatic polynomials. We assume the reader
is familiar with First and Second Order Logic, denoted by FOL and SOL, as
defined in, for example, [EF95]. The formulas of SOL(τ) are defined like the
ones of FOL, with the addition that we allow countably many variables for n-
ary relation symbols Un,α for α ∈ N, for each n ∈ N, and quantification over
these. Monadic second order logic MSOL(τ) is the restriction of SOL(τ) to
unary relation variables and quantification over these.

Definition 3. A generalized chromatic polynomial for τ-structures with coloring
predicate R is definable in SOL(τR), respectively in MSOL(τR), if it is of the
form χφ(M, λ̄), where φ ∈ SOL(τR), respectively in MSOL(τR), and defines a
range-bounded coloring property.

Definition 4 (Coloring formula). A first order (or second order) formula
φ(R) is a coloring formula, if the class of its models, which are of the form
〈M, [k], R〉, is a coloring property. If a coloring property P is definable by a
coloring formula φ then we denote the number of generalized k-P-colorings on
R by χφ(R)(M, k).

The coloring property of proper vertex colorings from the next example is de-
finable by a FOL formula.

Examples and applications of Proposition 1. Let F be a unary function symbol
which serves as the coloring predicate. A (not necessarily proper) vertex coloring
of a graph G = (V,E) is a map F : V → [k] for some k.

(i) A vertex coloring F is proper, if it satisfies ∀u, v(E(u, v) → F(u) �= F(v)).
Clearly, this does define a coloring property.

(ii) If we require that a vertex coloring F uses all the colors, then this is not a
coloring property. It violates the extension property in Definition 1.

(iii) A vertex coloring is pseudo-complete, if it satisfies

∀x, y∃u, v(E(u, v) ∧ F(u) = x ∧ F(v) = y).

For the same reason as above this is not a coloring property.

346 T. Kotek, J.A. Makowsky, and B. Zilber

Connected colorings. A vertex coloring is connected if each monochromatic
set induces a connected subgraph. We denote by χcc(G, k) the number of con-
nected colorings of G with k colors. Clearly, coloring all connected components
with the same color gives a connected coloring. However, it is not clear how
difficult it is to count such colorings.

Conjecture 1. For all k ∈ N with k ≥ 2, computing χcc(G, k) is �P hard.

Harmonious colorings. Harmonious colorings are counterparts to complete
colorings. A vertex coloring is a harmonious coloring if it is a proper coloring
and every pair of colors appears at most once on an edge. In this case, the
extension property holds and the number of harmonious colorings χharm(G, k)
is a polynomial in k. Harmonious colorings are treated in [HK83], as well as
[Edw97] and [EM95].

mcc(t)-colorings. We say a vertex coloring f : V → [k] has small monochro-
matic connected components if f−1(a) induces a graph with each of its connected
components of size at most t. For a fixed t, this is a coloring property. Related
graph invariants were introduced in [LMST07] and in [ADOV03].

Proposition 2. χcc(G, k), χharm(G, k) and χmcc(t)(G, k) are generalized chro-
matic polynomials.

Complete colorings. A vertex coloring is complete, if it is both proper and
pseudo-complete. Complete colorings are studied in the context of the achromatic
number of a graph G which is the largest number k such that G has a complete
coloring with k colors. The achromatic number of G and the number of complete
colorings is a function of G but not of k. In other words, to be a complete coloring
is not a coloring property in our sense. Let χcomplete(G, k) denote the number of
complete colorings of G with k colors. Using the same argument as in Remark 1
we see that χcomplete(G, k) ultimately vanishes for large enough k, and therefore
is not a polynomial in k.

The achromatic number was introduced in [HHR67]. For a survey of recent
work, cf. [HM97].

Generalized multi-colorings. To construct also graph polynomials in several vari-
ables, we extend the definition to deal with several color-sets, and also call them
generalized chromatic polynomials.

LetM be a τ -structure with universe M . We say an (α+ 1)-sorted structure
〈M, [k1], . . . , [kα], R〉 for the vocabulary τα,R withR ⊂Mm×[k1]m1×. . .×[kα]mα

is a generalized coloring ofM for colors k̄α = (k1, . . . , kα). By abuse of notation,
mi = 0 is taken to mean the color-set ki is not used in R.

Definition 5 (Multi-color Coloring Property). A class of generalized multi-
colorings P is a coloring property if it satisfies the following conditions:

Isomorphism property: P is closed under τα,R-isomorphisms.

On Counting Generalized Colorings 347

Extension property: For every M, k1 ≤ k′1, . . . , kα ≤ k′α, and R,
if 〈M, [k1], . . . , [kα], R〉 ∈ P then 〈M, [k′1], . . . , [k

′
α], R〉 ∈ P.

Non-occurrence property: Assume R ⊂ Mm × [k1]m1 × . . . × [kα]mα with
mi = 0, and 〈M, [k1], . . . , [kα], R〉 ∈ P, then for every k′i ∈ N,
〈M, [k1], . . . , [k′i], . . . , [kα], R〉 ∈ P.

The extension property and the non-occurrence property require that increasing
the number of colors respectively adding unused color-sets does not affect whether
the generalized coloring belongs to P.

We denote by χP(M, k1, . . . , kα) the number of generalized k̄α − P-multi-
colorings R onM. If P is definable by a formula φ(R) we also write χφ(R)(M, k̄α).

Definition 6 (Bounded multi-coloring properties)

(i) A coloring property P is bounded, if for every 〈M, [k1], . . . , [kα], R〉 ∈ P
there is a number NM such that the set of colors {x̄ ∈ k̄α : ∃ȳ ∈MmR(ȳ, x̄)}
has size at most NM , and NM does not depend on k̄α.

(ii) A coloring property P is range bounded, if its range is bounded in the fol-
lowing sense: There is d ∈ N such that for every 〈M, [k1], . . . , [kα], R〉 ∈ P
and ȳ ∈Mm the set {x̄ ∈ k̄α : R(ȳ, x̄)} has at most d elements.

Proposition 3 (Special case of Proposition A). Let P be a bounded multi-
coloring property with coloring forumula φ and bound NM . In the case of range
bounded multi-colorings NM ≤ d· | MM |m. For every M, χP(M, k1, . . . , kα) is
a polynomial in k1, . . . , kα of the form∑

j̄α≤[NM]α

cφ(R)(M, j̄α)
∏

1≤β≤α

(
kβ
jβ

)
where cφ(R)(M, j̄α) is the number of generalized k̄α − φ-colorings R with fixed
sets of jβ colors respectively.

Proof. Similar to the one variable case.

Example 1. Recall earlier in this section we denoted by χmcc(t)(G, k) the number
of vertex colorings for which no color induces a graph with a connected compo-
nent larger than t. Let χmcc(G, k, t) = χmcc(t)(G, k) be the counting function of
generalized multi-colorings satisfying the above condition, where t is considered
a color-set. We note for every t ≥ |V |, every vertex coloring has only connected
components of size no more then t. So, if χmcc(G, k, t) were a polynomial in t
then by interpolation χmcc(G, k, t) would be the number of vertex colorings, so
the function χmcc(G, k, t) is must not be a polynomial in t. The set of such vertex
colorings does not satisfy the non-occurrence condition. This example shows the
motivation for requiring this condition of coloring properties.

The most general case. We shall also allow several simultaneous coloring
predicates R1, . . . , Rs. The notion of coloring properties for this situation ex-
tends naturally. We shall call multi-coloring properties and multi-coloring simply
also coloring properties and colorings, if the situation is clear from the context.
The notion of definability of multi-colorings with several coloring predicates is
analogous to the simple case.

348 T. Kotek, J.A. Makowsky, and B. Zilber

Closure properties

Proposition 4 (Sums and products). The sum and product of two general-
ized chromatic polynomials χφ(R)(G, λ) and χψ(R)(G, λ) is again a generalized
chromatic polynomial.

Proof. For the sum we take χθ1(G, λ) with

θ1(R,R′, U) = ((U = ∅) ∧ φ(R) ∧ (R′ = ∅)) ∨ ((U = M) ∧ (R = ∅) ∧ ψ(R′)) .

For the product we take χθ2(G, λ) with θ2(R,R′) = (φ(R) ∧ ψ(R′)).

More examples of generalized chromatic polynomials. We now show how
many graph polynomials can be viewed as generalized chromatic polynomials.

Combinatorial polynomials. The following combinatorial polynomials can
be thought of as generalized chromatic polynomials:

(i) For the polynomial λn we take all maps [n] → [k] for λ = k. So λn = χtrue(f)

where true(f) is ∀v(f(v) = f(v)). It is a FOL definable range-bounded
coloring property.

(ii) Similarly, for λ(n) = λ · (λ− 1) · . . . · (λ− n+ 1) we take all injective maps,
which is easily expressed by a FOL formula which defines a range-bounded
coloring property.

(iii) Finally, for
(
λ
n

)
we take the ranges of injective maps. This is a range-

bounded coloring property of a second order formula φ(P) which says that
P ⊆ [k] is the range of an injective map f : [n] → [k].

Connected components. We denote by k(G) the number of connected com-
ponents of G. The polynomial λk(G) can be written as χφconnected

(G, λ) with
φconnected(f) the formula ((u, v) ∈ E → f(u) = f(v)).

Matching polynomial. Let G = (V,E) be a graph. A subset M ⊆ E is a
matching if no two edges in E have a common vertex. The matching polynomial
of G is given by

g(G, λ) =
∑
j

μ(G, j)λj

where μ(G, j) is the number of of matchings of size j.
We look at the structure Gk and at pairs (M,F) with M ⊂ E and F : E → [k]

such that M is a matching and the domain of F is M , which can be expressed
by a formula match(M,F). We have

χmatch(M,F)(G, k) =
∑
j

μ(G, j)kj = g(G, k)

which shows that it is a generalized chromatic polynomial.
There are two close relatives to the matching polynomial, cf. [God93].

On Counting Generalized Colorings 349

(i) The acyclic polynomial

m(G, k) =
∑
j

(−1)jμ(G, j)kn−2j = kng(G,−k−2)

(ii) The rook polynomial, which is defined for bipartite graphs only:

r(G, k) =
∑
j

μ(G, j)kn−j = kng(G,−x−1).

The rook polynomial does not look like a generalized chromatic polynomial, but
it is a substitution instance of g(G, k). Similarly, the acyclic polynomial is a
product of kn with a substitution instance of g(G, k).

Tutte polynomial. We use the Tutte polynomial in the following form:

Z(G, q, v) =
∑
A⊆E

qk(A)v|A|

where conn(A) is the number of connected components of the spanning subgraph
(V,A). This form of the Tutte polynomial is discussed in [Sok05]. For this purpose
we look at the three-sorted structure Gk,l = 〈V, [k], [l], E〉 and at the triples
(A,F1, F2) with A ⊆ E, F1 : V → [k] whose interpretation depends on A, and
F2 : A → [l] such that, simultaneously, for (u, v) ∈ A → F1(u) = F1(v). This is
expressed in the formula Tutte(A,F1, F2). Now we have

χTutte(A,F1,F2)(G, k, l) =
∑
A⊆E

kconn(A)l|A|

which is the evaluation of Z(G, q, v) for q = k, v = l.

4 SOL-Definable Graph Polynomials

SOL(τ)-polynomials. We are now ready to introduce the SOL-definable poly-
nomials. Let R be a commutative semi-ring, which contains the semi-ring of the
integers N. For our discussion R = N or R = Z suffices, but the definitions
generalize. Our polynomials have a fixed finite set of variables (indeterminates,
if we distinguish them from the variables of SOL), X.

Definition 7 (SOL-monomials). Let M be a τ-structure. We first define the
SOL-definable M-monomials. inductively.

(i) Elements of N are SOL-definable M-monomials.
(ii) Elements of X are SOL-definable M-monomials.
(iii) Finite products of monomials are SOL-definable M-monomials.

350 T. Kotek, J.A. Makowsky, and B. Zilber

(iv) Let φ(ā) be a τ ∪ {ā}-formula in SOL, where ā = (a1, . . . , am) is a fi-
nite sequence of constant symbols not in τ . Let t be a M-monomial. Then∏

ā:〈M,ā〉|=φ(ā) t is a SOL-definable M-monomial.

The monomial t may depend on relation or function symbols occurring in φ.

Note the degree of a monomial is polynomially bounded by the cardinality ofM.

Definition 8 (SOL-polynomials). TheM-polynomials definable in SOL are
defined inductively:

(i) M-monomials are SOL-definable M-polynomials.
(ii) Let φ(ā) be a τ ∪ {ā}-formula in SOL where ā = (a1, . . . , am) is a finite

sequence of constant symbols not in τ . Let t be a M-polynomial. Then∑
ā:〈M,ā〉|=φ(ā) t is a SOL-definable M-polynomial.

(iii) Let φ(R̄) be a τ ∪ {R̄}-formula in SOL where R̄ = (R1, . . . , Rm) is a finite
sequence of relation symbols not in τ . Let t be aM-polynomial definable in
SOL. Then

∑
R̄:〈M,R̄〉|=φ(R̄) t is a SOL-definable M-polynomial.

The polynomial t may depend on relation or function symbols occurring in φ.

An M-polynomial pM(X) is an expression with parameter M. The family of
polynomials, which we obtain from this expression by letting M vary over all
τ -structures, is called, by abuse of terminology, a SOL(τ)-polynomial.

Among the SOL-definable polynomials we find most of the known graph
polynomials from the literature.

Properties of SOL-definable polynomials

Proposition 5. (i) If we write an SOL-definable polynomial as a sum of
monomials, then the coefficients of the monomials are in N.

(ii) Let Ψ(M) be an SOL-monomial viewed as a polynomial. Then Ψ(M) is
a product of a finite number s of terms of the form

∏
ā:〈M,ā〉|=φi

ti, where
i ∈ [s], ti ∈ N ∪X and φi ∈ SOL.

(iii) The product of two SOL(τ)-polynomials is again a SOL(τ)-polynomial.
(iv) The sum of two SOL(τ)-polynomials is again a SOL(τ)-polynomial.
(v) LetΦ(A, X̄) be a SOL-definable monomial and P : Str(τ) → N[X̄] be of form

P (M, X̄) =
∑

R̄:〈M,R̄〉|=χR

∏
b̄:〈M,R̄,b̄〉|=ψ

∑
ā:〈M,R̄,ā,b̄〉|=φ

Φ(〈M, R, ā, b̄〉, X̄).

Then P (M, X̄) is a SOL-definable polynomial.

Combinatorial polynomials. As for the generalized chromatic polynomials, it
is note-worthy to see which combinatorial polynomials are SOL-definable poly-
nomials. The following are all SOL-definable generalized chromatic polynomials.
We denote by cardM,v̄(ϕ(v̄)) the number of v̄’s that satisfy ϕ.

On Counting Generalized Colorings 351

Cardinality, I: The cardinality of a definable set cardM,v̄(ϕ(v̄)) =
∑

v∈ϕ(v) 1
is an evaluation of a SOL-definable polynomial.

Cardinality, II: The cardinality as the exponent in a monomial
XcardM,v̄(ϕ(v̄)) =

∏
v:ϕ(v)X is an SOL-definable polynomial.

Cardinality, III: Exponentiation of cardinalities
cardM,v̄(ϕ(v̄))cardM,v̄(ψ(v̄)) =

∏
v:ψ(v)

∑
u:ϕ(u) 1 is equivalent to an evalua-

tion of a SOL-definable polynomial.
Factorials: The factorial of the cardinality of a definable set

cardM,v̄(ϕ(v̄))! =
∑

π:ϕ(v)→ϕ(v) 1 is an instance of a SOL-definable polyno-
mial.

Binomial coefficients: The binomial coefficient
(

X
cardM,v̄(ϕ(v̄))

)
= (X)|ϕ|

|ϕ|! is not
an evaluation of a SOL-definable polynomial. It contains terms involving
division, which contradicts Proposition 5

Falling factorial: The falling factorial (X)cardM,v̄(ϕ(v̄)) =
(
X
|ϕ|
)
· |ϕ|! is not a

SOL-definable polynomial, because it contains negative terms, which con-
tradicts Proposition 5 However, if the underlying structure has a linear order,
then it is an evaluation of an SOL-definable polynomial.

In the next sub-section we will show how the SOL-definable polynomials are
related to the SOL-definable generalized chromatic polynomials via the addi-
tion of

(
X

cardM,v̄(ϕ(v̄))

)
. This example shows the motivation for this addition, as

currently the SOL-definable polynomials are not expressible enough to include
basic combinatorial functions.

Extended SOL(τ)-polynomials. Motivated by the discussion about combi-
natorial polynomials above we define now the extended SOL-polynomials.

Definition 9 (Extended SOL-polynomials)

(i) For every φ(v̄) ∈ SOL(τ) we define the cardinality of the set defined by φ:

cardM,v̄(φ(v̄)) =| {ā ∈Mm : 〈M, ā〉 |= φ(ā)} | .

(ii) The extended SOL(τ)-monomials are defined inductively as:
(ii.a) SOL(τ)-monomials are extended SOL(τ)-monomials.
(ii.b) For every φ(v̄) ∈ SOL(τ) and for every X ∈ X,

(
X

cardM,v̄(φ(v̄)

)
is an

extended SOL(τ)-monomial.
(ii.c) Finite product of extended SOL(τ)-monomials are extended SOL(τ)-

monomial.
Note that

(
X

cardM,v̄

)
may not occur within the scope of

∏
.

(iii) The extended SOL(τ)-polynomials are defined as in definition 8 with respect
to extended SOL(τ)-monomials.

(iv) Similarly, we define also extended MSOL-polynomials.

We note that the combinatorial polynomials mentioned earlier in this section are
all expressible by extended SOL-definable polynomials.

352 T. Kotek, J.A. Makowsky, and B. Zilber

Proof of Theorems B and C

Theorem B. Every extended SOL(τ)-polynomial over some τ-structure A is
a counting function of a generalized coloring definable in SOL(τ) in a suitable
expansion of A.

Theorem C. Every generalized chromatic polynomial definable in SOL on or-
dered τ-structures M is an extended SOL-definable polynomial.

To prove Theorem B we proceed by induction, proving it first for SOL-monomials,
and then we use the normal form for SOL-polynomials (Proposition 5). To prove
Theorem C we code the color sets inside the graph. Using that the coloring is
bounded, we can code the color sets in a fixed Cartesian product Md·m of the do-
main of the structureM.

5 Conclusions

Starting with the classical chromatic polynomial we have introduced generalized
multi-colorings. We have shown that the corresponding counting functions are
always polynomials, which we called generalized chromatic polynomials. We have
then shown that the class of generalized chromatic polynomials is very rich and
covers virtually all examples of graph polynomials which have been studied in
the literature.

We presented the class of SOL-definable graph polynomials which were intro-
duced in [Mak04], and extended them by allowing generalized binomial coefficients
as monomials. We have then shown that the class of extendedSOL-definable graph
polynomials coincides with the class ofSOL-definable generalized chromatic poly-
nomials. This, along with the extensive scope of the class, suggests that the frame-
works presented in this paper are natural to the study of graph polynomials.

Theorems B and C can also be used to analyze the complexity of evaluations of
SOL-definable polynomials at integer points. They fit nicely into the framework
developed by S. Toda in his unpublished thesis and in [TW92].

Acknowledgments. The second author would like to thank I. Averbouch, A.
Blass, B. Courcelle, B. Godlin, E. Hrushovski, S. Shelah and M. Ziegler for valu-
able discussions and suggestions. We would like to thank A. Blass for allowing
us to incorporate the simple proof of Proposition 1, which he suggested.

References

[ADOV03] Alon, N., Ding, G., Oporowski, B., Vertigan, D.: Partitioning into graphs
with only small components. Journal of Combinatorial Theory, Series B 87,
231–243 (2003)

[Big93] Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press,
Cambridge (1993)

[Bol99] Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1999)

On Counting Generalized Colorings 353

[CGM07] Courcelle, B., Godlin, B., Makowsky, J.A.: Towards a theory of graph poly-
nomials, I: Second order definable polynomials (in preparation, 2007)

[Cou] Courcelle, B.: A multivariate interlace polynomial (December 2006)
(preprint)

[Die96] Diestel, R.: Graph Theory. Graduate Texts in Mathematics. Springer, Hei-
delberg (1996)

[DKT05] Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic Polynomials and Chromatic-
ity of Graphs. World Scientific, Singapore (2005)

[Edw97] Edwards, K.: The harmonious chromatic number and the achromatic num-
ber. In: Bailey, R.A. (ed.) Survey in Combinatorics. London Math. Soc.
Lecture Note Ser, vol. 241, pp. 13–47. Cambridge Univ. Press, Cambridge
(1997)

[EF95] Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathe-
matical Logic. Springer, Heidelberg (1995)

[EFT94] Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn.
Undergraduate Texts in Mathematics. Springer, Heidelberg (1994)

[EM95] Edwards, K., McDiarmid, C.: The complexity of harmonious colouring for
trees. Discrete Appl. Math. 57(2-3), 133–144 (1995)

[God93] Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, Boca Raton
(1993)

[HHR67] Harary, F., Hedetniemi, S., Rins, G.: An interpolation theorem for graph-
ical homomorphisms. Portugal. Math. 26, 453–462 (1967)

[HK83] Hopcroft, J.E., Krishnamoorthy, M.S.: On the harmonious coloring of
graphs. SIAM J. Algebraic Discrete Methods 4, 306–311 (1983)

[HM97] Hughes, F., MacGillivray, G.: The achromatic number of graphs: a survey
and some new results. Bull. Inst. Combin. Appl. 19, 27–56 (1997)

[Lib04] Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
[LMST07] Linial, N., Matoušek, J., Sheffet, O., Tardos, G.: Graph coloring with no

large monochromatic components (2007) arXiv:math/0703362v1
[Mak04] Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals

of Pure and Applied Logic 126(1-3), 159–213 (2004)
[Mak06] Makowsky, J.A.: From a zoo to a zoology: Descriptive complexity for graph

polynomials. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.)
CiE 2006. LNCS, vol. 3988, pp. 330–341. Springer, Heidelberg (2006)

[MZ06] Makowsky, J.A., Zilber, B.: Polynomial invariants of graphs and totally
categorical theories. MODNET Preprint No. 21 (2006), http://
www.logique.jussieu.fr/modnet/Publications/Preprint%20server

[NW99] Noble, S.D., Welsh, D.J.A.: A weighted graph polynomial from chromatic
invariants of knots. Ann. Inst. Fourier, Grenoble 49, 1057–1087 (1999)

[Sok05] Sokal, A.: The multivariate Tutte polynomial (alias Potts model) for graphs
and matroids. In: Survey in Combinatorics, 2005. London Mathematical
Society Lecture Notes, vol. 327, pp. 173–226 (2005)

[TW92] Toda, S., Watanabe, O.: Polynomial time 1-Turing reductions from #PH
to #P. Theor. Comp. Sc. 100, 205–221 (1992)

http://www.logique.jussieu.fr/modnet/Publications/Preprint%20server
http://www.logique.jussieu.fr/modnet/Publications/Preprint%20server

The Descriptive Complexity of Parity Games

Anuj Dawar1 and Erich Grädel2

1 University of Cambridge Computer Laboratory, Cambridge, CB3 0FD, UK
anuj.dawar@cl.cam.ac.uk

2 Mathematische Grundlagen der Informatik, RWTH Aachen University, Germany
graedel@logic.rwth-aachen.de

Abstract. We study the logical definablity of the winning regions of
parity games. For games with a bounded number of priorities, it is well-
known that the winning regions are definable in the modal μ-calculus.
Here we investigate the case of an unbounded number of priorities, both
for finite game graphs and for arbitrary ones. In the general case, winning
regions are definable in guarded second-order logic (GSO), but not in
least-fixed point logic (LFP). On finite game graphs, winning regions are
LFP-definable if, and only if, they are computable in polynomial time,
and this result extends to any class of finite games that is closed under
taking bisimulation quotients.

1 Introduction

The question whether the winning regions (i.e. the set of positions from which
a particular player has a winning strategy) in parity games can be computed
efficiently is one of the most important open problems in the field of infinite
games. It is equivalent to the model checking problem for the modal μ-calculus.
It is known that the problem is in NP ∩ Co-NP, which is a simple consequence of
the fact that parity games admit memoryless winning strategies. Much effort has
also been put into identifying and classifying special cases of parity games which
admit tractable solutions. For instance, there are deterministic polynomial-time
algorithms for any class of parity games with a bounded number of priorities,
and for parity games with certain restrictions on the underlying game graph,
such as bounded tree width, bounded DAG-width, and others.

In this paper we investigate the descriptive complexity of parity games, i.e. we
ask by what logical means the winning regions of parity games are definable. The
descriptive complexity of a problem provides an insight into the structure of the
problem, and the sources of algorithmic difficulty, as the logical resources needed
to specify the problem are closely tied to its structure. In the case of parity games,
the questions that naturally arise are whether the problem is definable in least
fixed-point logic (LFP) and in monadic second-order logic (MSO), as these are
logics with which it is closely associated. Again, the problem can be considered
as solved when we just consider games with a bounded number of priorities.
In that case, the winning regions are definable in the modal μ-calculus, and
therefore also in monadic second-order logic MSO and in least fixed-point logic

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 354–368, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Descriptive Complexity of Parity Games 355

LFP. However, the descriptive complexity of parity games with an unbounded
number of priorities has not been settled in a satisfactory way. While it can be
shown that in this case winning regions are no longer definable in the μ-calculus,
the question arises whether they are definable in LFP and/or MSO.

It turns out that the descriptive complexity of parity games on finite game
graphs is different from that on arbitrary ones. By making use of the strictness
of the alternation hierarchy of LFP on arithmetic, together with an interpreta-
tion argument for model checking games, we are able to show that in general,
winning regions of parity games are not LFP-definable. On finite game graphs,
however, this may well be different. Indeed we prove that the winning regions
are LFP-definable if, and only if, they are computable in polynomial-time (de-
spite the fact that, on unordered finite structures, LFP is weaker than Ptime).
Our arguments are based on bisimulation quotients of the relational structures
that represent parity games and on Otto’s result that the bisimulation-invariant
fragment of Ptime can be captured by a multi-dimensional variant of the μ-
calculus. Our analysis in fact shows that winning regions are LFP-definable on
any class of finite parity games for which we have polynomial-time algorithms
on their bisimulation quotients. As a consequence, we obtain LFP-definitions for
the winning regions of parity games with bounded entanglement. We also show
that winning regions are definable, on the class of finite game graphs in stronger
fixed-point logics such as NFP and PFP.

A significant open question that remains unanswered is whether winning re-
gions of parity games are MSO-definable. We have not been able to settle this
question either on finite game graphs or on arbitrary ones. However, it is not
difficult to prove definability in guarded second-order logic (GSO, which allows
quantification over sets of edges in addition to sets of vertices) and in Δ1

2 (and
even Δ1

1 on finite graphs).
We assume that the reader is familiar with the most important logics used

in descriptive complexity theory and verification, such as monadic second-order
logic MSO, the modal μ-calculus Lμ and the least fixed-point logic LFP. However,
we will survey in Section 2 the facts about the logics that we will use.

2 Background from Logic

We assume that the reader is familiar with first-order logic (FO), second-order
logic (SO) and monadic second-order logic (MSO), the extension of first-order
logic by second-order quantification ∃X and ∀X over sets of elements of the
structure, on which the formula is evaluated. In contrast to SO where quan-
tification over arbitrary relations (or functions) is admitted, MSO is a much
more manageable formalism; in particular it is decidable on many interesting
classes of structures (on trees, in particular) and amenable to automata-based
methods. We also refer below to fragments of SO defined by bounded quantifer-
alternation. In particular, Σ1

i consists of those formulae of SO in prenex-normal
form with i alternations of second-order quantifiers, so that the first quantifier
is existential. Π1

i is defined analogously, for formulae starting with a universal

356 A. Dawar and E. Grädel

quantifier. Finally, Δ1
i (which is not defined syntactically) is the class of those

properties that are definabable by both a Σ1
i and a Π1

i formula.

Guarded second-order logic. An interesting extension of MSO is guarded
second-order logic (GSO), which admits second-order quantification on relations
of any arity, provided that they are guarded. Informally, a relation is guarded on
a structure A if it only consists of tuples whose elements co-exist in some atomic
fact of A. On graphs (V,E), possibly with colourings of nodes and edges, the
guarded relations are precisely the relations R ⊆ V k that only contain tuples
(a1, . . . , ak), for which either a1 = a2 = · · · = ak, or {a1, . . . , ak} = {u, v} for
some edge (u, v) ∈ E. It is not difficult to see that GSO on (coloured) graphs is
equivalent to the variant of monadic second-order logic that admits second-order
quantification not only over sets of nodes, but also over sets of edges. Further,
guarded second-order logic, on any class of structures, is equivalent to monadic
second-order logic on the associated incidence graphs [13].

An example showing that GSO is indeed more expressive than MSO, is Hamil-
tonicity. It is well-known (see e.g. [10]) that Hamiltonicity is not MSO-definable,
but it is GSO-definable by the formula

(∃H ⊆ E)
(
∀x (∃=1y Hxy ∧ ∃=1y Hyx)∧
∀X
[(
∃xXx ∧ ∀x∀y(Hxy ∧Xx → Xy)

)
→ ∀xXx

])
which, evaluated on a graph G = (V,E) says that there exists an H ⊆ E with
unique successors and predecessors such that (V,H) is connected. This means
that G has a Hamilton cycle.

Least fixed point logic. Least fixed-point logic, denoted LFP, extends first
order logic by least and greatest fixed points of definable relational operators. We
will briefly recall some basic definitions here. For a more extensive introduction
to LFP, we refer to [12].

Every formula ψ(R, x), where R is a relation symbol of arity k and x is a
tuple of k variables, defines, for any structure A of appropriate vocabulary, an
update operator F : P(Ak) → P(Ak) on the class of k-ary relations over the
universe A of A, namely F : R �→ {a : (A, R) |= ψ(R, a)}. If ψ is positive in R,
that is, if every occurrence of R falls under an even number of negations, this
operator is monotone in the sense that R ⊆ R′ implies F (R) ⊆ F (R′). It is well
known that every monotone operator has a least fixed point and a greatest fixed
point, which can be defined as the intersection and union, respectively, of all
fixed points, but which can also be constructed by transfinite induction.

LFP is defined by adding to the syntax of first order logic the following fixed
point formation rule: If ψ(R, x) is a formula with a relational variableR occurring
only positively and a tuple of first-order variables x, and if t is a tuple of terms
(such that the lengths of x and t match the arity of R), then [lfpRx .ψ](t) and
[gfpRx .ψ](t) are also formulae, binding the occurrences of the variables R and
x in ψ.

The semantics of least fixed-point formulae in a structure A, providing inter-
pretations for all free variables in the formula, is the following: A |= [lfpRx .ψ](t)

The Descriptive Complexity of Parity Games 357

if tA belongs to the least fixed point of the update operator defined by ψ on A.
Similarly for greatest fixed points.

Note that in formulae [lfpRx .ψ](t) one may allow ψ to have other free vari-
ables besides x.

The duality between least and greatest fixed point implies that for any ψ,

[gfpRx .ψ](t) ≡ ¬[lfpRx .¬ψ[R/¬R]](t).

Using this duality together with de Morgan’s laws, every LFP-formula can be
brought into negation normal form, where negation applies to atoms only.

Other fixed-point logics. We briefly consider two other fixed-point logics
that have been studied in the context of finite model theory: PFP, the logic of
partial fixed points and NFP, the logic of nondeterministic fixed points. We omit
a detailed account of their syntax and semantics here and refer the interested
reader to [9]. Here we just note the following facts that will be useful. In terms
of expressive power on finite structures, PFP subsumes NFP, which in turn
subsumes LFP. On finite ordered structures, PFP captures exactly the properties
decidable in Pspace and NFP captures the polynomial hierarchy, just as LFP
captures Ptime. In the absence of order, it is known that the logics are strictly
weaker than the corresponding complexity classes. However, it is also known
that the question of the separation of the expressive power of these logics is still
equivalent to the separation of the corresponding complexity classes (see [2,1]).

3 Parity Games

Basic definitions. A parity game is specified by a directed graph G = (V,E),
with a partition V = V0∪V1 of the nodes into positions of Player 0 and positions
of Player 1, and a priority function Ω : V → ω. In case (v, w) ∈ E we call w
a successor of v and we denote the set of all successors of v by vE. A play in
G is an infinite path v0v1 . . . formed by the two players starting from a given
initial position v0. Whenever the current position vi belongs to V0, then Player 0
chooses a successor vi+1 ∈ viE, if vi ∈ V1, then vi+1 ∈ viE is selected by Player 1.
An infinite play π = v0v1 . . . is won by Player 0 if the least priority appearing
infinitely often in π is even or no priority appears infinitely often (which may
only happen if the range of Ω is infinite). A finite play π = v0v1 . . . vn is won by
Player 0 iff vn ∈ V1.

A (deterministic) strategy for Player σ is a partial function f : V ∗Vσ → V
that assigns to finite paths through G ending in a position v ∈ Vσ a successor
w ∈ vE. A play v0v1 · · · ∈ V ω is consistent with f if, for each initial segment
v0 . . . vi with vi ∈ Vσ, we have that vi+1 = f(v0 . . . vi). We say that such a
strategy f is winning from position v0 if every play that starts at v0 and that is
consistent with f is won by Player σ. The winning region of Player σ, denoted
Wσ, is the set of positions from which Player σ has a winning strategy. A game
G is determined if W0∪W1 = V , i.e., if from each position one of the two players
has a winning strategy.

358 A. Dawar and E. Grädel

Positional determinacy and complexity. Winning strategies can be rather
complicated. However, for certain games, including parity games, it suffices to
consider positional strategies, which are strategies that depend only on the cur-
rent position, not on the history of the play. A game is positionally determined,
if it is determined, and each player has a positional winning strategy on his
winning region.

It has been proved independently in [11] and [19] that parity games with a
finite game graph are positionally determined. The result is extended to infinite
game graphs with finitely many priorities in [25]. This has been further extended
in [14] to parity games with rng(Ω) = ω.

Theorem 1. Every parity game is positionally determined.

In a parity game G = (V, V0, V1, E,Ω), a positional strategy for Player σ, defined
on W ⊆ V , can be represented by a subgraph H = (W,S) ⊆ (V,E) such that
there is precisely one outgoing S-edge from each node v ∈ Vσ ∩W and vS = vE
for each node v ∈ V1−σ ∩W . On a finite game graph, such a strategy is winning
on W if, and only if, the least priority on every cycle in (W,S) has the same
parity as σ.

Hence, given a finite parity game G and a positional strategy (W,S) it can be
decided in polynomial time, whether the strategy is winning on W . To decide
winning regions we can therefore just guess winning strategies, and verify them
in polynomial time.

Corollary 2. Winning regions of parity games (on finite game graphs) can be
decided in NP ∩ Co-NP.

In fact, Jurdziński [16] proved that the problem is in UP ∩ Co-UP, where UP
denotes the class of NP-problems with unique witnesses. The best known deter-
ministic algorithm has complexity nO(

√
n)) [18]. For parity games with a number

d of priorities Jurdziński’s progress measure lifting algorithm [17] computes win-
ning regions in time O(dm · (2n/d)d/2), where m is the number of edges, giving
a polynomial-time algorithm when d is bounded.

Parity games as relational structures. To represent parity games as rela-
tional structures, so as to make them amenable to a study of logical definability,
we consider two different conventions.

For fixed d, we consider the class of parity games with rng(Ω) ⊆ {0, . . . , d−1},
to be given as structures

(V, V0, V1, E, P0, . . . , Pd−1)

where E is a binary relation and V0, V1, P0, . . . , Pd−1 are all unary, with V =
V0 ∪ V1 =

⋃
i Pi, V0 disjoint from V1 and the Pi pairwise disjoint. Note that this

class of structures (denoted PGd) is axiomatisable in first-order logic.
On the other hand, to consider the class of parity games with an unbounded

number of priorities, we consider them as structures

(V, V0, V1, E,≺,Odd)

The Descriptive Complexity of Parity Games 359

where E, V0 and V1 are as before, where u ≺ v means that u has a smaller
priority than v, and Odd is the set of nodes with an odd priority. We denote this
class of structures by PG.

Lemma 3. The class PG is axiomatisable in LFP, but not in first-order logic.

Proof. To verify that a structure G = (V, V0, V1, E,≺,Odd) is a parity game, we
have to check that

(1) V is the disjoint union of V0 and V1,
(2) ≺ is a pre-order on V ,
(3) Odd is a union of equivalence classes with respect to the equivalence

relation ≈ associated with ≺ (with u ≈ v if u �≺ v and v �≺ u),
(4) the linear order induced by ≺ on the equivalence classes has some order

type α ≤ ω.

Clearly, (1) – (3) are first-order properties, and it is well-known that order
types α ≤ ω can be distinguished from other order types in LFP, but not in
first-order logic. ��

In each case, when we say that winning regions are definable in a logic L, we
mean that there is a formula ϕ of L such that for any structure G ∈ PG (resp.
PGd), ϕ is true in exactly those nodes in G from which Player 0 has a winning
strategy.

Parity Games and LFP. Consider a structure A and an LFP-sentence ψ
which we may assume to be in negation normal form, without parameters, and
well-named, in the sense that every fixed-point variable is bound only once. The
model checking game G(A, ψ) is a parity game whose positions are formulae
ϕ(a) such that ϕ(x) is a subformula of ψ, and a is a tuple of elements of A,
interpreting the free variables of ϕ. The initial position is ψ.

Player 0 (Verifier) moves at positions associated to disjunctions and to for-
mulae starting with an existential quantifier. From a position ϕ ∨ ϑ she moves
to either ϕ or ϑ and from a position ∃y ϕ(a, y) she can move to any position
ϕ(a, b) for b ∈ A. In addition, Verifier is supposed to move at atomic false po-
sitions, i.e., at positions ϕ of form a = a′, a �= a′, Ra, or ¬Ra (where R is not
a fixed-point variable) such that A |= ¬ϕ. However, positions associated with
these atoms do not have successors, so Verifier loses at atomic false positions.
Dually, Player 1 (Falsifier) moves at conjunctions and universal quantifications,
and loses at atomic true positions. In addition, there are positions associated
with fixed-point formulae [fpTx . ϕ(T, x)](a) and with fixed-points atoms Tx,
for fixed-point variables T . At these positions there is a unique move (by Falsi-
fier, say) to the formula defining the fixed point. For a more formal definition,
recall that as ψ is well-named, for any fixed-point variable T in ψ there is a unique
subformula [fpTx . ϕ(T, x)](a). From position [fpTx . ϕ(T, x)](a) Falsifier moves
to ϕ(T, a), and from Tb he moves to ϕ(T, b).

The priority labelling assigns even priorities to gfp-atoms and odd priorities
to lfp-atoms. Further, if T, T ′ are fixed-point variables of different kind with

360 A. Dawar and E. Grädel

T ′ depending on T (which means that T occurs free in the formula defining
T ′), then T -atoms get lower priority than T ′-atoms. All remaining positions, not
associated with fixed-point variables, receive the least important priority (i.e. the
one with the highest value) As a result, the number of priorities in the model
checking games equals the alternation depth of the fixed-point formula plus one.
For more details and explanations, and for the proof that the construction is
correct, see e.g. [12,24].

Theorem 4. Let ψ be an LFP-sentence and A a relational structure. Then,
A |= ψ if, and only if, Player 0 has a winning strategy for the parity game
G(A, ψ).

Moreover, for every structure A with at least two elements, and every formula
ϕ(x) ∈ LFP the model checking game G(A, ϕ) is first-order interpretable in A.

Parity games and the modal μ-calculus. It is well-known that there is a
very close relationship between parity games and the modal μ-calculus Lμ. First
of all, parity games are the model checking games for Lμ. This means that given
any formula ψ ∈ Lμ and a transition system K, one can build a parity game
G(K, ψ) which is essentially the product of K and ψ, such that ψ is true in K at
node v if, and only if, Player 0 has a winning strategy for G(K, ψ) starting from
the position (v, ψ).

In the other direction, for any fixed d, the winning regions of parity games in
PGd are definable by a μ-calculus formula

Wind = νX0μX1νX2 . . . λXd−1

d−1∨
j=0

(
(V0 ∧ Pj ∧�Xj) ∨ (V1 ∧ Pj ∧ �Xj)

)
.

In this formula, the fixed-point operators alternate between ν and μ, and hence
λ = ν if d is odd, and λ = μ if d is even.

As a consequence, an efficient algorithm for solving parity games would also
solve the model-checking problem for Lμ.

Theorem 5. For every d ∈ N, the formula Wind defines the winning region of
Player 0 in parity games with priorities 0, . . . , d− 1.

In general, formulae of Lμ are hard to read, especially if they have many alterna-
tions between least and greatest fixed points, but here we have an elegant argu-
ment based on model checking games. Indeed, given any parity game G ∈ PGd,
with initial position v, let G∗ be the model-checking game for the formula Wind

on G so that Player 0 has a winning strategy for G∗ if, and only if, G, v |= Wind.
It turns out that the game G∗ is essentially the same as the original game G.
More precisely, G∗ reduces to G if we eliminate, for each player, certain moves
that would give the opponent the opportunity to win immediately, and if we
contract successive moves of the same player into a single move. In particular,
Player 0 wins G if and only if she wins G∗, which is the case if, and only if, the
formula Wind is true at G, v. We refer to [12, Section 3.3.6] for details.

The Descriptive Complexity of Parity Games 361

The formulae Wind also play an important role in the study of the alternation
hierarchy of the modal μ-calculus. Clearly, Wind has alternation depth d and it
has been shown that this can not be avoided. As a consequence the alternation
hierarchy of the μ-calculus is strict [7,3]. We will need a slightly stronger formu-
lation of this result, for parity games on finite and strongly connected graphs.
This easily follows from the general result by the finite model property of the
μ-calculus and by a straightforward reduction to strongly connected games.

Theorem 6. Winning regions in parity games in PGd are not definable by
formula in the μ-calculus with alternation depth < d, even under the assumption
that the game graphs are finite and strongly connected.

4 Definability of Parity Games on Arbitrary Game
Graphs

4.1 Definability in Fragments of Second-Order Logic

Which fragments of second-order logic winning are powerful enough to define the
winning regions of parity games? In particular, are winning regions definable in
monadic second-order logic? While we cannot answer this question in general,
we show that it is a direct consequence of positional determinacy that winning
regions are GSO-definable. By means of results due to Courcelle, this implies
MSO-definability on a number of interesting classes of parity games.

Theorem 7. Winning regions in PG are definable in GSO, and also in Δ1
2

Proof. The same formula can be used to demonstrate both results. Let z ≡ p
stand for ¬(z ≺ p) ∧ ¬(p ≺ z) which says that z and p have the same priority
Given a binary relation S, we let

ϕ(S,w, p) := gfpXx . lfpY y . gfpZz .

⎡⎣ (z ≺ p ∧ ∀u(Szu → Xu))∨
(z ≡ p ∧ ∀u(Szu → Y u))∨
(p ≺ z ∧ ∀u(Szu → Zu))

⎤⎦ (w)(x)(y)

We claim that this formula defines the set of pairs (w, p) such that every infinite
S-path from w either contains infinitely many nodes z with z ≺ p, or only finitely
many nodes with z ≡ p.

To see this, consider the model checking game for this formula, played on a
graph (V, S,≺) with fixed nodes w and p. Let α(z) be the subformula inside the
fixed point definitions. At position α(z) in the model checking game, Player 0
chooses the right disjunct, according to the priority of z, and then Player 1
takes the game from z to an S-successor u of z; via Xu, Y u or Zu the play then
proceeds to position α(u).

Thus a play in the model checking game essentially amounts to the choice of
an S-path from w by Player 1. Such a play is won by Player 0 if the outermost
fixed point variable seen infinitely often is either X or Z. But this is the case if

362 A. Dawar and E. Grädel

either a priority y ≺ p is seen infinitely often or, if this is not the case, priority
p occurs only finitely often on the path.

Thus, the formula

ψ(S,w) := ∀p(Odd(p) → ϕ(S,w, p))

defines those elements w such that on every infinite S-path from w the lowest
priority occurring infinitely often is even. We are now ready to write a formula
that defines winning regions of Player 0 for games in PG:

(∃S ⊆ E)[∀u(V0u → ∃vSuv) ∧ ∀u∀v(V1u ∧ Euv → Suv) ∧ ψ(S,w)]

This asserts the existence of a set S of edges which includes at least one outgoing
edge for every vertex in V0 and all the outgoing edges for every vertex in V1 and
such that for this set S, w satisfies ψ. In other words, this formula is true at a
vertex w just in case Player 0 has a positional winning strategy from w. Since
we know that Player 0 has a positional winning strategy whenever she has any
strategy, this is sufficient.

It is easily seen that this formula is in GSO as the binary second-order quanti-
fier on the outside is explicitly guarded and the three occurrences of a fixed-point
operator are all monadic and could be therefore replaced by monadic quantifiers.

To see that this also yields a Δ1
2 definition, we note that any formula of LFP

(and hence, in particular, ψ) can be written both as a Σ1
2 and a Π1

2 formula
(see [9] for a proof). Thus, replacing ψ with its Σ1

2 equivalent we obtain a Σ1
2

definition of the winning regions for Player 0. By symmetry, we can also define
the winning regions for Player 1 in Σ1

2 and thereby obtain a Π1
2 definition for

the winning regions for Player 0. ��

Although GSO is more expressive than MSO in general, there are a number of
classes of graphs where the two logics are equivalent. This collapse occurs in
particular over graphs of bounded degree, graphs of bounded tree-width, pla-
nar graphs and graphs with an excluded minor. A general result covering and
generalising all these graph classes has been proved in [8].

Theorem 8 (Courcelle). GSO collapses to MSO on every class C of graphs
that is closed under taking subgraphs and contains only k-sparse graphs, for some
k ∈ N, (i.e. |E| ≤ k|V | for every graph G = (V,E) ∈ C).

The GSO formula we construct in the proof of Theorem 7 contains monadic
quantifiers and one second-order quantifier that is guarded by the relation E. In
particular, the order ≺ does not appear as a guard. From the proof of Courcelle’s
theorem above, it then follows that this formula is equivalent to an MSO formula
on any class of parity games satisfying the sparsity condition above with respect
to the number of edges of the game. On each such class, winning regions of parity
games are therefore MSO-definable. However, in general, there seems to be no
way to eliminate the quantification over a set of edges and we conjecture that
this winning regions are not MSO definable. It may be noted that it is possible
to reduce parity games on general graphs to games on graphs with outdegree 2

The Descriptive Complexity of Parity Games 363

(see, for instance, [17]). While this reduction can be carried out in polynomial
time, it involves a quadratic blow-up in the number of vertices and it seems
unlikely that it preserves MSO definability.

4.2 Non-definability in Least Fixed-Point Logic

We now show that winning regions of parity games are not definable in LFP
when the game graph may be infinite.

Theorem 9. Winning regions in PG are not definable in LFP, even under the
assumptions that the game graph is countable and the number of priorities is
finite.

Proof. Suppose that Win(x) ∈ LFP defines the winning region of Player 0 on
PG. We use this formula to solve the model checking problem for LFP on N =
(ω,+, ·). Recall that, for any ϕ(x) ∈ LFP, we have a parity game G(N, ϕ) such
that, for all n

N |= ϕ(n) ⇐⇒ G(N, ϕ) |= Win(vn)

(where vn is the initial position associated with ϕ(n))
Further, the model checking game G(N, ϕ) is first-order interpretable in N.

Hence the formula Win(x) is mapped, via a first-order translation Iϕ, into an-
other LFP-formula Winϕ(x) such that

G(N, ϕ) |= Win(vn) ⇐⇒ N |= Winϕ(n).

Note that the first-order translation Win(x) �→ Winϕ(x) depends on ϕ, but
does not increase the alternation depth. Hence, on arithmetic, every formula
ϕ(x) would be equivalent to one of fixed alternation depth:

N |= ϕ(n) ⇐⇒ N |= Winϕ(n).

However, it is known that the alternation hierarchy of LFP on arithmetic is
strict. ��

5 Definability of Parity Games on Finite Graphs

On finite game graphs, the definability issues are different and closely related to
complexity. First of all, we observe that winning positions in PG are definable in
Δ1

1 rather than just Δ1
2. This is a simple consequence of the fact that the problem

of solving parity games is in NP ∩ Co-NP, combined with Fagin’s characterisation
of NP as the properties that are Σ1

1 definable.
One of the most interesting questions is whether the winning regions are

definable in fixed point logics such as LFP or the μ-calculus. We first observe
that the μ-calculus is not sufficient.

364 A. Dawar and E. Grädel

5.1 Non-definability in the μ-Calculus

There is a little subtlety involved in considering a μ-calculus on PG, since the
priority function is encoded via the pre-order ≺. In modal logics, binary relations
are handled via modal operators, hence a μ-calculus on PG would have, for
instance, formulae of form 〈≺〉ϕ that hold at a node x just in case ϕ is true at
some node y with lower priority than x (we view ≺-edges as going downwards).
Further it would be natural to admit also the reverse modality for � and possibly
others such as 7,∼,� or the associated successor relations. In any case, the
precise definition does not really matter, since no formula in any such μ-calculus
can define the winning regions of parity games in PG.

Indeed assume that such a formula ψ exists, and let m be its alternation
level. For any fixed number d, we can translate ψ into a formula ψd of the usual
μ-calculus on structures PGd which is equivalent to ψ on (strongly connected)
parity games with at most d priorities. To define ψd we just replace every sub-
formula of form 〈7〉ϕ by ∨

0≤i<j<d

Pj ∧ μX.((Pi ∧ ϕ) ∨�X)

which says, for games in PGd, that from the current node, there is a reachable
node of lower priority at which ϕ is true. Similar constructions work for other
modal operators. Note that this translation increases the alternation level of ψ
at most by one.

Now take any strongly connected parity game G ∈ PG with priorities < d
and let G′ be its presentation as a structure in PGd. Obviously G, v |= ψ if, and
only if G′, v |= ψd. But this means that, for any d, the winning regions of parity
games with d priorities, on strongly connected finite graphs, can be expressed by
a μ-calculus formula with alternation level m+ 1. This contradicts Theorem 6.

Theorem 10. Winning regions of parity games in PG (on finite graphs) are
not definable in the modal μ-calculus.

5.2 Definability in Fixed-Point Logics

We now turn to the least fixed point logic LFP. Clearly, a proof that winning
regions of parity games in PG are LFP-definable would imply that parity games
are solvable in polynomial time. We show that also the converse direction holds,
despite the fact that LFP is weaker than Ptime. To do so, we will use a result due
to Martin Otto [23] that the multi-dimensional μ-calculus, which is a fragment
of LFP, captures precisely the bisimulation-invariant part of Ptime. See also
[12, Section 3.5.3] for an exposition of this result.

Winning positions in parity games are of course invariant under the usual
notion of bisimulation (e.g. as structures in PGd). However, to apply Otto’s
Theorem for parity games with an unbounded number of priorities, we have to
consider bisimulation on structures of the form G = (V, V0, V1, E,≺,Odd). Let
τ = {V0, V1, E,≺,Odd, v} be the vocabulary of parity games with a starting

The Descriptive Complexity of Parity Games 365

node, and let Str(τ) denote the class of all structures of this vocabulary. If we
have two such structures that are indeed parity games, then bisimilarity as τ -
structures coincides with the usual notion of bisimilarity in PGd, for appropriate
d. However, not all structures in Str(τ) are parity games, and the class of par-
ity games is not closed under bisimulation. An efficient procedure for deciding
whether a structure is bisimilar to a parity game is to compute its quotient under
bisimulation and check whether it is a parity game.

For a structure (G, v) ∈ Str(τ) consider the bisimulation relation a ∼ b on
elements of G defined with respect to the binary relations E, ≺ and ≺−1. That
is to say ∼ is the largest relation satisfying:

– if a ∼ b then a and b agree on the unary relations V0, V1 and Odd;
– for every x ∈ aE there is a y ∈ bE such that x ∼ y, and conversely;
– for every x with a ≺ x there is a y with b ≺ y and x ∼ y and conversely; and

finally
– for every x ≺ a there is a y ≺ b such that x ∼ y, and conversely.

We write (G, v)∼ for the bisimulation quotient of (G, v), i.e. the structure whose
elements are the equivalence classes in G with respect to ∼ with the relations
V0, V1, E,≺,Odd defined in the natural way and [v] as the starting vertex.

Lemma 11. A structure (G, v) ∈ Str(τ) is bisimilar to a parity game if, and
only if, its bisimulation quotient is a parity game, i.e. (G, v)∼ ∈ PG.

Proof. The direction from right to left is obvious. For the other direction, it
suffices to establish that the bisimulation quotient of a parity game is itself a
parity game, since the quotient of a structure bisimilar to (G, v) is isomorphic to
the quotient of (G, v). But, it is easily verified that each of the four conditions
given in the proof of Lemma 3 is preserved under taking quotients. ��

Theorem 12. Let C be any class of parity games on finite game graphs, such
that winning positions on its bisimulation quotients are decidable in polynomial
time. Then, on C, winning positions are LFP-definable.

Proof. Let WinC be the class of parity games (G, v), such that (G, v) ∈ C, and
Player 0 wins from initial position v. It suffices to construct a bisimulation-
invariant class X of structures (H, u) such that

(1) X is decidable in polynomial time.
(2) X ∩ C = WinC.

Indeed, by Otto’s Theorem X is then definable by an LFP-formula ψ(x), such
that, given any parity game (G, v) ∈ C we have

G, v ∈WinC ⇐⇒ G, v ∈ X ⇐⇒ G |= ψ(v).

By assumption, there exists a polynomial time algorithm A which, given a par-
ity game (G, v) ∈ C∼, decides whether Player 0 wins G from v. It is not important
what the algorithm returns for quotients outside C∼, as long as it is isomorphism-
invariant and halts in polynomial time. Finally, letB be the algorithm which, given

366 A. Dawar and E. Grädel

any finite structure in Str(τ), first computes its bisimulation quotient, and then
applies algorithm A.

Clearly B is a polynomial time algorithm, since bisimulation quotients are
efficiently computable. Further the class X of structures accepted by B is in-
variant under bisimulation. Indeed, let H and H′ be two bisimilar structures.
Then their bisimulation quotients are isomorphic and are therefore either both
accepted or both rejected by A. Finally, X ∩ C = WinC. Indeed, given a parity
game G, v ∈ C, then it has the same winner as its bisimulation quotient which is
therefore correctly decided by the algorithm B. ��

Corollary 13. On the class PG of all finite parity games, winning regions are
LFP-definable if, and only if, they are computable in polynomial time.

We can deduce more from this construction. The proof of Otto’s theorem relies on
an LFP-definable interpretation of an ordered bisimulation quotient G∼ within
G. Now, on ordered structures, every problem decidable in Pspace is definable
in PFP and every problem in NP is definable in NFP. Since winning regions on
the class PG are computable in these complexity classes, we can compose the
formulas of PFP and NFP with the LFP interpretation to obtain formulas which
do not require an order. Thus we have the following theorem.

Theorem 14. On the class PG of all finite parity games, winning regions are
definable in the logics PFP and NFP.

5.3 Restricted Classes

While the question of whether or not winning regions in finite parity games can
be computed in polynomial-time remains open, many restricted classes of games
have been investigated on which polynomial-time algorithms for computing win-
ning regions (and winning strategies) are known. These include parity games
with a bounded number of priorities [17], games where even and odd cycles do
not intersect, solitaire games and nested solitaire games [5], and parity games of
bounded tree width [20], bounded entanglement [6], bounded DAG-width [4,21],
bounded Kelly-width [15], or bounded clique width [22].

In view of Theorem 12 the question arises which of these classes are closed
under taking bisimulation quotients. This is not the case for games of bounded
tree width or of bounded clique width, since one can easily construct trees whose
bisimulation quotients contain arbitrarily large grids.

However, it is the case for games of bounded entanglement, and possibly also
for other classes defined by specific measures for directed graphs.

Entanglement is a parameter for the complexity of finite directed graphs which
measures to what extent the cycles of the graph are intertwined. It is defined
by means of a game played by a thief against k detectives according to the
following rules. Initially the thief selects an arbitrary position v0 of the given
graph G = (V,E) and the detectives are outside of G. In any move the detectives
may either stay where they are, or place one of them on the current position v of
the thief. The thief tries to escape by moving to a successor w ∈ vE that is not

The Descriptive Complexity of Parity Games 367

occupied by a detective. If no such position exists, the thief is caught and the
detectives have won. Note that the thief sees the move of the detectives before
he decides on his own move, and that he has to leave his current position no
matter whether the detectives stay where they are or not. The entanglement
of G, denoted ent(G), is the minimal number k ∈ N such that k detectives have
a strategy to catch the thief on G.

It has been proved in [5] that, for any fixed k, winning positions in parity
games with entanglement at most k are computable in polynomial time. Our
results complement this by showing that on such classes, winning positions are
LFP-definable. By Theorem 12 it suffices to show that the entanglement cannot
increase when we move from a directed graph G to its bisimulation quotient G∼.

Lemma 15. For any directed graph G, ent(G∼) ≤ ent(G).

Proof. We show that whenever the thief has a strategy to escape against k
detectives on G∼, he also has a similar strategy on G, by which he stays clear
of not only the nodes occupied by the detectives, but also all nodes bisimilar to
these. Suppose that the detectives occupy nodes w1, . . . , wk of G and the thief
has to move from his current position u, For the corresponding situation on G∼

the thief can move according to his escaping strategy from the bisimulation class
[u] to a successor [v] ∈ [u]E∼ that is not occupied by any of the detectives, i.e.
[v] �= [wi] for all i. Since there is an edge from [u] to [v] in G∼ there exists a node
v′ ∼ v with (u, v′) ∈ E. In G, the thief moves to any such node v′ ∈ [v] ∩ uE.
Since [v′] = [v] �= [wi] for all i, the thief maintains the property that he avoids
in G all positions bisimilar to those occupied by a detective. ��

Corollary 16. In any class of parity games of bounded entanglement, the win-
ning positions are definable in LFP.

6 Conclusions

While the exact computational complexity of computing winning regions in fi-
nite parity games remains a much studied open question, we have addressed a
related question that has not received much attention—that of the descriptive
complexity of parity games, both on finite and arbitrary structures. While we are
able to settle the definability questions in many interesting cases, a significant
open question that remains is whether winning regions are definable in MSO.
Interestingly, the question of whether winning regions are definable in LFP on
finite game graphs turns out to be equivalent to the long-standing open question
of whether they are computable in Ptime.

References

1. Abiteboul, S., Vardi, M.Y., Vianu, V.: Fixpoint logics, relational machines, and
computational complexity. J. ACM 44(1), 30–46 (1997)

2. Abiteboul, S., Vianu, V.: Computing with first-order logic. Journal of Computer
and System Sciences 50(2), 309–335 (1995)

368 A. Dawar and E. Grädel

3. Arnold, A.: The mu-calculus alternation-depth is strict on binary trees. RAIRO
Informatique Théorique et Applications 33, 329–339 (1999)

4. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

5. Berwanger, D., Grädel, E.: Fixed-point logics and solitaire games. Theory of Com-
puting Systems 37, 675–694 (2004)

6. Berwanger, D., Grädel, E.: Entanglement - A measure for the complexity of directed
graphs with applications to logic and games. In: Baader, F., Voronkov, A. (eds.)
LPAR 2004. LNCS (LNAI), vol. 3452, pp. 209–223. Springer, Heidelberg (2005)

7. Bradfield, J.: The modal μ-calculus alternation hierarchy is strict. Theoretical Com-
puter Science 195, 133–153 (1998)

8. Courcelle, B.: The monadic second-order logic of graphs XIV: Uniformly sparse
graphs and edge set quantifications. Theoretical Computer Science 299, 1–36 (2003)

9. Dawar, A., Gurevich, Y.: Fixed point logics. Bulletin of Symbolic Logic 8, 65–88
(2002)

10. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg
(1999)

11. Emerson, A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proc.
32nd IEEE Symp. on Foundations of Computer Science, pp. 368–377 (1991)

12. Grädel, E., et al.: Finite Model Theory and Its Applications. Springer, Heidelberg
(2007)

13. Grädel, E., Hirsch, C., Otto, M.: Back and forth between guarded and modal logics.
ACM Transactions on Computational Logic 3, 418–463 (2002)

14. Grädel, E., Walukiewicz, I.: Positional determinacy of games with infinitely many
priorities. Logical Methods in Computer Science (2006)

15. Hunter, P.: Complexity and Infinite Games on Finite Graphs. PhD thesis, Univer-
sity of Cambridge (2007)

16. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ Co-UP. Information
Processing Letters 68, 119–124 (1998)

17. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

18. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: Proceedings of ACM-SIAM Proceedings on Discrete
Algorithms, SODA 2006, pp. 117–123 (2006)

19. Mostowski, A.: Games with forbidden positions. Technical Report Tech. Report
78, University of Gdansk (1991)

20. Obdrzálek, J.: Fast mu-calculus model checking when tree-width is bounded. In:
Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer,
Heidelberg (2003)

21. Obdrzálek, J.: DAG-width - connectivity measure for directed graphs. In: Proceed-
ings of ACM-SIAM Proceedings on Discrete Algorithms, SODA 2006, pp. 814–821
(2006)

22. Obdrzálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A.
(eds.) CSL 2007. LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)

23. Otto, M.: Bisimulation-invariant Ptime and higher-dimensional mu-calculus. The-
oretical Computer Science 224, 237–265 (1999)

24. Stirling, C.: Bisimulation, model checking and other games. Notes for the Mathfit
instructional meeting on games and computation. Edinburgh (1997)

25. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)

An Optimal Strategy Improvement Algorithm

for Solving Parity and Payoff Games�

Sven Schewe

Universität des Saarlandes and University of Liverpool

Abstract. This paper presents a novel strategy improvement algorithm
for parity and payoff games, which is guaranteed to select, in each im-
provement step, an optimal combination of local strategy modifications.
Current strategy improvement methods stepwise improve the strategy of
one player with respect to some ranking function, using an algorithm with
two distinct phases: They first choose a modification to the strategy of
one player from a list of locally profitable changes, and subsequently eval-
uate the modified strategy. This separation is unfortunate, because cur-
rent strategy improvement algorithms have no effective means to predict
the global effect of the individual local modifications beyond classifying
them as profitable, adversarial, or stale. Furthermore, they are completely
blind towards the cross effect of different modifications: Applying one prof-
itable modification may render all other profitable modifications adversar-
ial. Our new construction overcomes the traditional separation between
choosing and evaluating the modification to the strategy. It thus improves
over current strategy improvement algorithms by providing the optimal
improvement in every step, selecting the best combination of local updates
from a superset of all profitable and stale changes.

1 Introduction

Solving parity games is the central and most expensive step in many model check-
ing [1, 2, 3, 4, 5], satisfiability checking [1, 3, 6, 7], and synthesis [8, 9] algorithms.
More efficient algorithms for solving parity games will therefore foster the devel-
opment of performant model checkers and contribute to bringing synthesis tech-
niques to practice. The quest for performant algorithms [1, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25] for solving them has therefore been an active
field of research during the last decades.

Traditional forward techniques (≈ O(n
1
2 c) [16] for parity games with n posi-

tions and c colors), backward techniques (≈O(nc) [10, 12, 15]), and their combi-
nation (≈O(n

1
3 c) [25]) provide good complexity bounds. However, these bounds

are sharp, and techniques with good complexity bounds [16, 25] frequently dis-
play their worst case complexity on practical examples.

� This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS).

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 369–384, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

370 S. Schewe

(a)

5 1

4

2 3

(b)

0 9 7 5 3 1

Fig. 1. The examples show situations where ignoring global effects (a) and cross effects
between different updates (b) perturb the pivot rule of current strategy improvement
algorithms. States of Player 0 and 1 are depicted as boxes and circles, respectively. The
current strategy of Player 0 (and all options of Player 1) are depicted as full arrows,
the improvement edges of Player 0 are represented by dashed arrows.

Strategy improvement algorithms [17, 18, 19, 20], on the other hand, are fast
simplex style algorithms that perform well in practice. While their complexity
is wide open, they are often considered the best choice for solving large scale
games.

State of the Art. Strategy improvement algorithms are closely related to the
simplex algorithm for solving linear programming problems. Strategy improve-
ment algorithms assign a value to each infinite play of a parity or payoff game,
and the objective of the two participating players (Player 0 and 1) is to minimize
and maximize this value, respectively.

In strategy improvement algorithms for parity and payoff games [17, 18, 19,
20], the memoryless strategies of Player 0 define the corners of a simplex. For
each memoryless strategy of Player 0, her opponent has an optimal counter
strategy. This pair of strategies defines a pointwise ranking function that assigns
to each game position p the value (or rank) v(p) of the play that starts in p.

The two distinguishing differences between strategy improvement techniques
compared to the simplex algorithm are a weak pivot rule and the option to apply
multiple modifications in every strategy improvement step.

Weak Pivot Rule. Different to simplex techniques for linear programming prob-
lems, current strategy improvement algorithms do not take the global effect of a
step to an adjacent corner of the simplex into account. When estimating the im-
provement attached to modifying the strategy locally, they presume that chang-
ing the strategy for one game position has no influence on the rank of any other
game position. In the situation depicted in Figure 1a, Player 0 can choose be-
tween two improvements of her strategy from her position colored by 1; she can
either move to the position with color 2, or to the position with color 4. While
the latter choice is obviously better (because Player 0 asserts the parity con-
dition), the local analysis considers only the value of the positions for the old
strategy [17, 18, 19, 20]. A valuation function based on the old strategy, however,
will favor the change to the position with color 2, because the dominating color in
the infinity set for this position is 3 (for the old strategy), while the dominating
color in the infinity set of the position colored by 4 is 5. In the whole, the local
analysis alone does not provide much more information than a classification into
locally profitable, adversarial, and stale modifications.

An Optimal Strategy Improvement Algorithm 371

Current Strategy Improvement Algs Game-Based Strategy Improvement Algorithm

1. pick initial strategy 1. pick and evaluate initial strategy
2. evaluate current strategy 2. adjust evaluation, increasing #profitable/stale mods
3. chose from profitable modifications 3. find and evaluate optimal combination of p/s mods
4. goto 2 4. goto 2

Fig. 2. Comparison between traditional strategy improvement algorithms and the pro-
posed optimal improvement algorithm. While current techniques first choose a par-
ticular update from profitable modifications and subsequently evaluate it, our novel
technique concurrently considers all combinations of profitable and stale modifications.

Multiple Modifications. An advantage of strategy improvement techniques over
the simplex algorithm for linear programming problems is the option to consider
several locally profitable modifications at the same time [18, 19]. This advantage,
however, must be considered with care, because current strategy improvement
algorithms are blind towards the cross effect between different local updates.

While any combination of profitable changes remains profitable, it frequently
happens that applying one modification turns all remaining modifications ad-
versarial. In the small singleton parity game depicted in Figure 1b, Player 0 is
only one step away from her optimal strategy. (It suffices to update the strategy
in the position with color 9.) All local changes lead to an improvement, but after
updating the strategy at the position with color 9, all remaining changes become
harmful. Given this shortcoming, it is unclear whether or not simultaneous up-
dates are a step forward for current strategy improvement algorithms.

Contribution. We introduce a strategy improvement algorithm that is based
on a reduction to simple update games, which can be solved in a single sweep. It
provides substantial advantages over current strategy improvement algorithms:

1. The reduction is more natural. It reduces solving parity (or mean payoff)
games to solving a series of simplified games, where the options of Player 0
are restricted, but not to the extreme of a singleton game. It thus preserves
and exploits the game character of the problem to improve a strategy.

2. The improvements are greater. The game-based approach allows us to take
the global and cross effects of different local modifications to the strategy into
account. We thus overcome the blind spot of current strategy improvement
algorithms and can make full use of simultaneous modifications.

3. The game-based analysis is cheaper. Reductions to graph-based algorithms
need to exclude stale cycles. Both, for parity and payoff games, the codomain
of the pointwise ranking function needs to be increased by a factor linear
in the size n of the game, which raises the estimation for the amount of
iterations by a factor of n and slows down the arithmetic operations.

From Graph-Based to Game-Based Updates. The suggested optimal strategy
improvement algorithm reduces solving parity games to solving a series of sim-
pler two player games. Turning to a game-based (rather than to a graph-based)
approach allows for considering all combinations of profitable and stale modifi-
cations in every update step, taking all global and cross effects into account.

372 S. Schewe

This advancement is achieved by a novel technique that resolves the separation
between choosing and evaluating the modifications to a strategy. Where current
strategy improvement algorithms first update the strategy and then evaluate the
resulting singleton game, our game-based approach exploits a natural preorder
for the evaluation of game positions that allows for simultaneously constructing
optimal strategies for both players, such that every game position is considered
only once. Following this preorder, the evaluation of each individual position can
be reduced to a cheap local analysis.

The intuition for the preorder is that, in most cases, the game-based approach
allows for fixing an optimal decision for a game position after all of its successors
have been reevaluated. If all positions do have unevaluated successors, we can
immediately determine the optimal choice for some position of Player 1.

The Ranking Function. We change the rules of parity games by allowing one
player, say Player 0, to terminate the game in her positions. This is related to
the finite unraveling of mean payoff games [13] and the controlled single source
shortest path problem from the reduction of Björklund and Vorobyov [20].

The objective of Player 0 remains to assert an infinite path with even maximal
priority in the infinity set. However, we add the natural secondary objective for
the case that she has not yet found (or there is no) such strategy. If Player 0
cannot assert such a path, she eventually stops the unraveling of the game,
optimizing the finite occurrences of the different priorities, but disregarding the
number of positions with priority 0. (Disregarding this number leads to a coarser
ranking function, and thus to an improved estimation of the number of improve-
ment steps. It also leads to greater improvements by increasing the number of
profitable or stale modifications.) Second, if the highest occurring priority is odd,
there is no need to keep track of the number of occurrences of this priority. It
suffices to store the information that this maximal number occurs on a finite
path, resulting again in a coarser ranking function.

For parity games with n positions, m edges, and c colors, the coarser ranking
function leads to an improved estimation of the number of updates from the
currently best bound O

(
n (n+c

c)c+1
)

[20] for the number of arithmetic operations
needed by strategy improvement algorithms to O

(
n (n+c

c)c−1
)

for parity games
with an even number of colors, and to O

(
n (n+c

c)c
)

if the numbers of colors is
odd, reducing the bound by a factor quadratic and linear in the number of states,
respectively. The bound is reduced further by decreasing the discounted cost of
arithmetic operations from O(c) to O(1) when the number of iterations is high.

2 Parity Games

A game is composed of a finite arena and an evaluation function. We will first
discuss arenas, and then turn to the evaluation functions for parity games.

Arena. A finite arena is a triple A = (V0, V1, E), where V0 and V1 are disjoint
finite sets of positions, called the positions of Player 0 and 1, and E ⊆ V0 × V1 ∪
V1 × V0 is a set of edges; that is, (V0 + V1, E) is a bipartite directed graph. For

An Optimal Strategy Improvement Algorithm 373

infinite games, the arena is also requirednot to contain sinks; that is, every position
p ∈ V = V0 ∪ V1 has at least one outgoing edge (p, p′) ∈ E.

Plays. Intuitively, a game is played by placing a pebble on the arena. If the
pebble is on a position p0 ∈ V0, Player 0 chooses an edge e = (p0, p1) ∈ E from p0

to a position p1 ∈ V1 and moves the pebble to p1. Symmetrically, Player 1 chooses
a successor if the pebble is on a position p1 ∈ V1. This way, they successively
construct an infinite play π = p0p1p2p3 . . . ∈ V ω.

Strategies. For a finite arena A = (V0, V1, E), a (memoryless) strategy for
Player 0 is a function f : V0 → V1 that maps every position p0 ∈ V0 of Player 0
to a position v1 ∈ V1 such that there is an edge (p0, p1) ∈ E from p0 to p1. A
play is called f -conform if every decision of Player 0 in the play is in accordance
with f . For a strategy f of Player 0, we denote with Af = (V0, V1, Ef) the arena
obtained from A by deleting the transitions from positions of Player 0 that are
not in accordance with f . The analogous definitions are made for Player 1.

Parity Games. A parity game is a game P = (V0, V1, E, α) with arena A =
(V0, V1, E) and a surjective coloring function α : G∪R → C ⊂ N that maps each
position of P to a natural number. C denotes the finite set of colors. For technical
reasons we assume that the minimal color of a parity game is 0 = min{C}.

Each play is evaluated by the highest color that occurs infinitely often. Player
0 wins a play π = p0p1p2p3 . . . if the highest color occurring infinitely often in
the sequence α(π) = α(p0)α(p1)α(p2)α(p3) . . . is even, while Player 1 wins if the
highest color occurring infinitely often in α(π) is odd.

A strategy f of Player 0 or 1 is called p-winning if all f -conform plays starting
in p are winning for Player 0 or 1, respectively. A position of P is p-winning for
Player 0 or 1 if Player 0 or 1, respectively, has a p-winning strategy. We call
the p-winning positions for Player 0 or 1 the winning region of Player 0 or 1,
respectively. Parity games are memoryless determined:

Theorem 1. [11] For every parity game P, the game positions are partitioned
into a winning region W0 of Player 0 and a winning region W1 of Player 1.
Moreover, Player 0 and 1 have memoryless strategies that are p-winning for
every position p in their respective winning region. ��

3 Escape Games

Escape games are total reward games that are tailored for the game-based
improvement method. They generalize parity games by allowing Player 0 to
terminate every play immediately on each of her positions. Technically this is
done by extending the arena with a fresh escape position ⊥, which forms a sink
of the extended arena, and can be reached from every position of Player 0. Every

374 S. Schewe

play of an escape game either eventually reaches the escape position and then
terminates, or it is an infinite play in the non-extended arena.

Extended Arena. In an escape game, the finite arena A = (V0, V1, E) is ex-
tended to the directed graph A′ = (V0, V

′
1 , E

′), which extends the arena A by
a fresh position ⊥ of Player 1 (V ′1 = V1 - {⊥}) that is reachable from every
position of Player 0 (E′ = E ∪ V0 × {⊥}). The escape position is a sink in A′.

Finite Plays. Since the escape position ⊥ is a sink, every play terminates
when reaching ⊥. The set of plays is therefore extended by the finite plays
π = p0p1p2p3 . . . pn⊥ ∈ V ∗ · {⊥}.

Escape Games. An escape game is a game E = (V0, V1, E, α), where A =
(V0, V1, E) is a finite arena, and α : V → C ⊂ N is a coloring function. An escape
game is played on the extended arena A′ = (V0, V

′
1 , E

′).
An infinite play π = p0p1p2 . . . ∈ V ω of an escape game is evaluated to ∞

if the highest color occurring infinitely often is even, and to −∞ otherwise. A
finite play π = p0p1p2 . . . pn⊥ is evaluated by a function ρ(π) : C0 → Z (where
C0 = C � {0} is the codomain of the coloring function without 0) that maps an
element c′ of C0 to the number of positions pi in π with i > 0 that are colored by
c′ = α(pi). (Disregarding the color of the first position is technically convenient.)

The potential values of a path are ordered by the obvious alphabetic order >
that sets ρ > ρ′ if (1) the highest color c′ with ρ(c′) �= ρ′(c′) is even and ρ(c′) >
ρ′(c′), or (2) if the highest color c′ with ρ(c′) �= ρ′(c′) is odd and ρ′(c′) > ρ(c′).
Additionally, we define ∞ > ρ > −∞. The objective of Player 0 is to maximize
this value, while it is the objective of Player 1 to minimize it.

We introduce an operator ⊕ for the evaluation of finite paths. For R = (C0 →
Z) ∪ {∞}, ⊕ : R × C → R maps a function ρ and a color c′ to the function ρ′

that deviates from ρ only by assigning the respective successor ρ′(c′) = ρ(c′)+1
to c′ (and leaves ρ′(d) = ρ(d) for d �= c′). We fix ∞⊕ c′ =∞ and ρ⊕ 0 = ρ.

Estimations. We introduce estimations v : V ′ → R for an escape game
E = (V0, V

′
1 , E, α) as witnesses for the existence of a memoryless strategy f

of Player 0, which guarantees that every f -conform play π starting in some po-
sition p is evaluated to ρ(π) ≥ v(p). Formally, an estimation v has to satisfy the
following side conditions:

– v(⊥) = 0 (0 denotes the constant function that maps all colors in C0 to 0),
– for every p1 ∈ V1 and every edge e = (p1, p0) ∈ E, v(p1) ≤ v(p0) ⊕ α(p0)

holds true,
– for every position p0 ∈ V0 there is an edge e = (p0, p1) ∈ E′ such that

v(p0) ≤ v(p1)⊕ α(p1) holds true, and
– Player 0 has a strategy f∞ that maps every position p0 ∈ V0 with v(p0) =∞

to a position v1 = f∞(p0) with v(p1) =∞, and which guarantees that every
f∞-conform play π starting in g is evaluated to ρ(π) =∞.

An Optimal Strategy Improvement Algorithm 375

A trivial estimation is simple to construct: we denote with v0 the estimation
that maps the escape position to v0(⊥) = 0, every position p0 ∈ V0 to v0(p0) = 0,
and every position p1 ∈ V1 of Player 1 to v0(p1) = min{0⊕α(p0) | (p1, p0) ∈ E}1.

Lemma 1. For every estimation v of an escape game E = (V0, V1, E, α) there is
a memoryless strategy f for Player 0 such that every f -conform play π starting
in any position p satisfies ρ(π) ≥ v(p).

Proof. We fix an arbitrary strategy f for Player 0 that agrees with f∞ on every
position p ∈ V0 with infinite estimation (v(p) = ∞ ⇒ f(p) = f∞(p)), and
chooses some successor that satisfies v(p) ≤ v

(
f(p)

)
⊕α
(
f(p)

)
otherwise. Every

cycle reachable in an f -conform play has nonnegative weight (that is, weight
0 ⊕ α(p0) ⊕ . . . ⊕ α(pn) of every cycle p0 . . . pnp0 is ≥ 0) by construction of f ;
every infinite f -conform play π is therefore evaluated to ρ(π) =∞ ≥ v(p).

By induction over the length of finite f -conform plays π that start in some
position p, we can show that ρ(π) ≥ v(p). ��

We call an estimation v′ an improvement of an estimation v if v′(p) ≥ v(p) holds
for all positions p ∈ V , and we call an improvement strict if v′ �= v.

For every estimation v, we define the improvement arena Av = (V0, V
′
1 , Ev)

that contains an edge e = (p, p′) if it satisfies v(p) ≤ v(p′) ⊕ α(p′) (i.e.,
Ev = {(p, p′) ∈ E′ | v(p) ≤ v(p′)⊕ α(p′)}), and the 0-arena A0

v = (V0, V
′
1 , E

0
v)

which contains an edge e = (p, p′) ∈ Ev of the improvement arena if it satisfies
(1) v(p) = v(p′)⊕α(p′), and, if e originates from a position p ∈ V0 of Player 0, if
additionally (2) no edge e′ = (p, p′) with v(p) < v(p′) ⊕ α(p′) originates from p
(E0

v = {(p, p′) ∈ Ev | v(p) = v(p′) ⊕ α(p′) and p ∈ V0 ⇒ ∀(p, p′) ∈ Ev. v(p) =
v(p′)⊕ α(p′)}).

Attractors. The 0-attractor A ⊆ V of a set F ⊆ V of game positions is the set
of those game positions from which Player 0 has a strategy to force the pebble
into a position in F . The 0-attractor A of a set F can be defined as the least
fixed point of sets that contain F , and that contain a position p ∈ V0 of Player
0 if they contain some successor of p, and a position p ∈ V1 of Player 1 if p
has some successor, and all successors of p are contained in A. The 1-attractor
is defined accordingly. Constructing this least fixed point is obviously linear in
the number of positions and edges in the arena, and we can fix a memoryless
strategy (the attractor strategy) for the respective player to reach F in finitely
many steps during this construction.

Lemma 2. For a given arena A = (V0, V1, E) with n positions and m edges
that may contain sinks, and for a set F ⊆ V of game positions, we can compute
the respective attractor A of F and a memoryless strategy for Player 0 or 1,
respectively, on A � F to reach F in finitely many steps in time O(m + n). ��
1 Having a simple-to-construct initial estimation is the reason for the restriction to

bipartite games. Constructing an initial estimation for general games is not hard, and
the improvement algorithm proposed in Section 4 extends to non-bipartite games.

376 S. Schewe

We call an estimation improvable if the 1-attractor of the escape position in the
0-arena A0

v does not cover all positions that are not estimated to ∞.

Theorem 2. For every non-improvable estimation v of an escape game E =
(V0, V1, E, α) Player 1 has a memoryless strategy f ′ such that every f ′-conform
play π starting in any position p satisfies ρ(π) ≤ v(p).

Proof. We fix a strategy f ′ for Player 1 that agrees on all positions V1 �v−1(∞)
with some 1-attractor strategy of the escape position ⊥ in the 0-arena A0

v.
For plays starting in some position p that is evaluated to∞, ρ(π) ≤ v(p) =∞

holds trivially. For plays starting in some position p that is not evaluated to ∞,
we can show by induction over the length of f ′-conform plays starting in p that
no f ′-conform play can reach a position p′ that is evaluated to v(p′) = ∞. By
construction of f ′, every reachable cycle in an f ′-conform play that does not
reach a position in v−1(∞) has negative weight (that is, a weight < 0), and
every infinite f ′-conform play which starts in a position p that is not evaluated
to ∞ thus satisfies −∞ = ρ(π) < v(p).

For every finite f ′-conform play π starting in some position p, we can show
by induction over the length of π that ρ(π) ≤ v(p) holds true. ��

The non-improvable estimation of an escape game can be used to derive the
winning regions (v−1(∞) for Player 0) and the winning strategy for Player 1
on his winning region in the underlaying parity game. f∞ defines the winning
strategy of Player 0 on her winning region.

4 Solving Escape Games

In this section we introduce a game-based strategy improvement algorithm for
the fast improvement of estimations of escape games. Every estimation (for ex-
ample, the trivial estimation v0) can be used as a starting point for the algorithm.

Optimal Improvement. The estimations we construct intuitively refer to
strategies of Player 0 for the extended arena. (Although estimations are a more
general concept; not all estimations refer to a strategy.) The edges of the im-
provement arena Av = (V0, V1, Ev) of an escape game E = (V0, V1, E, α) and an
estimation v refer to all promising strategy updates, that is, all strategy modi-
fications that locally lead to a—not necessarily strict—improvement (profitable
and stale modifications). We call an improvement v′ of v optimal if it is the
non-improvable estimation for the restricted escape game Ev = (V0, V1, Ev, α).
v′ is optimal in the sense that it dominates all other estimations v̂ that refer to
strategies of Player 0 for Ev, that is, to strategies that contain only improvement
edges. Finding this optimal improvement v′ thus relates to solving an update
game Ev, which deviates from the full escape game E only by restricting the
choices of Player 0 to her improvement edges.

An Optimal Strategy Improvement Algorithm 377

Basic Update Step. Instead of computing the optimal improvement v′ of an
estimation v directly, we compute the optimal update u = v′− v. (The operator
+ : R×R → R maps a pair ρ, ρ′ of functions to the function ρ′′ that satisfies
ρ′′(c′) = ρ(c′) + ρ′(c′) for all c′ ∈ C0. − : R×R→ R is defined accordingly.)

For a given escape game E = (V0, V1, E, α) with estimation v, we define the
improvement potential of an edge e = (p, p′) ∈ Ev in the improvement arena
Av as the value P (e) = v(p′)⊕ α(p′)− v(p) ≥ 0 by which the estimation would
locally be improved when the respective player chose to turn to p′ (disregarding
the positive global effect that this improvement may have). To determine the
optimal update, we construct the improvement arena, and evaluate the optimal
update of the escape position to u(⊥) = 0. We then evaluate the improvement of
the remaining positions successively by applying the following evaluation rule:

1. if there is a position p ∈ V1 of Player 1 that has only evaluated successors, we
evaluate the improvement of p to u(p) = min{u(p′)+P

(
(p, p′)

)
| (p, p′) ∈ E},

2. else if there is a position p ∈ V1 of Player 1 that has an evaluated successor p′

with u(p′) = P
(
(p, p′)

)
= 0, we evaluate the improvement of p to u(p) = 0,

3. else if there is a position p ∈ V0 of Player 0 that has only evaluated successors,
we evaluate its improvement to u(p)=max{u(p′)+P

(
(p, p′)

)
| (p, p′)∈Ev}2,

4. else we choose a position p ∈ V1 of Player 1 with minimal intermediate
improvement u′(p) = min{u(p′)+P

(
(p, p′)

)
| p′ is evaluated and (p, p′)∈E}

and evaluate the improvement of p to u(p) = u′(p). (Note that min{∅} =∞.)

Correctness. The basic intuition for the optimal improvement algorithm is
to re-estimate the value of a position only after all its successors have been
re-estimated. In this situation, it is easy to determine the optimal decision for
the respective player. In a situation where all unevaluated positions do have a
successor, we exploit that every cycle in Av has non-negative weight (weight
≥ 0), and every infinite play in Av is evaluated to ∞. An optimal strategy of
Player 1 will thus turn, for some position of Player 1, to an evaluated successor.
It is safe to chose a transition such that the minimality criterion on the potential
improvement u′ is satisfied, because, independent of the choice of Player 1, no
better potential improvement can arise at any later time during this update step.
Following these evaluation rules therefore provides an optimal improvement.

Theorem 3. For every estimation v of an escape game E = (V0, V1, E, α), the
algorithm computes the optimal improvement v′ = v+u. If v is improvable, then
the optimal improvement v′ �= v is strictly better than v.

Proof. During the reevaluation, we can fix optimal strategies f and f ′ for Player
0 and 1, respectively, by fixing f(p) or f ′(p), respectively, to be some successor of
p that satisfies the respective maximality or minimality requirement. (In Rule 2,
we implicitly apply the same minimality requirement as in Rule 4.)

Every infinite f -conform play is evaluated to∞, and for every finite f -conform
play π that starts in some position p, we can show by induction over the length
of π that ρ(π) ≥ v′(p) holds true.
2 We could also choose u(p) = max{u(p′)+P

�
(p, p′)

�
| p′ is evaluated and (p, p′)∈E}.

378 S. Schewe

No f ′-conform play π = p0p1p2 . . . in Av (that is, under the restriction that
Player 0 can chose only transitions in Ev), which does not start in a position
p0 that is evaluated to ∞, can contain a cycle, because pi+1 has been evaluated
prior to pi by construction. Thus, every such f ′-conform play in Av is finite. For
every finite f ′-conform play π in Av that starts in some position p, we can show
by induction over the length of π that ρ(π) ≤ v′(p) holds true.

It remains to show that the algorithm guarantees progress for improvable
estimations. If at least one improvement edge e that originates from a position of
Player 0 has a positive improvement potential P (e) > 0, the claim holds trivially.
Let us consider the case that the improvement potential is P (e) = 0 for every
improvement edge e that originates from a position of Player 0. According to
the update rules, the algorithm will successively assign u′(p) = 0 to all positions
in the 1-attractor of ⊥ in the 0-arena A0

v. If the attractor covers all positions of
E , v is non-improvable by Theorem 2. Otherwise, u′(p) > 0 holds by definition
for every remaining position p ∈ V1 of Player 1 that is not in the 1-attractor of
the escape position ⊥. This implies u > 0 and thus v′ = v + u > v. ��

Complexity. In spite of the wide variety of strategies that are considered
simultaneously, the update complexity is surprisingly low. The optimal improve-
ment algorithm generalizes Dijkstra’s single source shortest path algorithm to
two player games. The critical part of the algorithm is to keep track of the
intermediate update u′, and the complexity of the algorithm depends on the
used data structure. The default choice is to use binary trees, resulting in an
update complexity of O(m logn). However, using advanced data structures like
2-3 heaps (cf. [26]) reduces this complexity slightly to O(m + n logn).

Theorem 4. For an escape game with n positions and m edges, the optimal
improvement can be computed using O(m+ δ log δ) arithmetic operations, where
δ ≤ n is the number of positions of Player 1 for which the improvement is strict.

Proof. Let us consider a run of our algorithm that, when applying rule 3, gives
preference to updates of positions with improvement 0. Keeping track of these
updates is cheap, and giving them preference guarantees that all positions with
0-update are removed before the remainder of the graph is treated.

Let us partition the operations occurring after these 0-updates into

1. operations needed for keeping track of the number of unevaluated succes-
sors for positions of Player 1 and for finding the direction with maximal
improvement for positions of Player 0, and

2. all remaining operations.

Obviously, (1) contains only O(m) operations, while the restriction to (2) co-
incides with a run of Dijkstra’s algorithm on a subgraph of the improvement
arena. (On the subgraph defined by the strategy f of Player 0 referred to in
Theorem 3.) Dijkstra’s algorithm can be implemented to run in O(m + δ log δ)
arithmetic operations [26]. ��

An Optimal Strategy Improvement Algorithm 379

Theorem 5. The algorithm can be implemented to solve a parity game with n

positions, m edges, and c colors in time O
(
m
(
n+c
c

)c′), where c′ = c − 1 if c is
even, and c′ = c if c is odd.

Proof. If both players follow the strategies f and f ′ from the proof of Theorem 3
starting in a position p0 that is not evaluated to ∞ �= v′(p0), they reach the
escape position ⊥ on a finite acyclic path p0p1 . . . pi⊥. By induction over the
length of this path we can show that v(p0) = 0⊕α(pi)⊕ . . .⊕α(p0). Note that,
for odd highest color c−1 (and thus for even c), only pi may be colored by c−1.

Thus, the number of updates is, for each position, in O
((

n+c
c

)c′−1)
.

Let us, for the estimation of the running time, assume that only one small
update occurs in every step. ‘Only one’ leads to a small δ (removing the δ log δ
part from the estimation), while ‘small update’ can be used to reduce the dis-
counted cost for the arithmetic operations on R to O(1): Before computing the
improvement potential P , the update u, and the intermediate update u′, we first
compute an abstraction a : R → Z of these values that maps a function ρ ∈ R
to 0 if ρ = 0, and to ± the highest integer h with ρ(h) �= 0 otherwise (+ if and
only if r > 0). Computing the concrete value is then linear in the absolute value
of the abstraction (rather than in c). For every edge e = (p, p′), updating the im-
provement potential a◦P (e) to its new value requires O(max{a◦u(p), a◦u(p′)})
steps (using the old u). All other operations on abstract values are in O(1).

To compute u′, we proceed in two steps. In a first step, we maintain a 2-3
heap that stores only the abstraction of u′, and that contains all positions where
u′ is above a threshold t that is initialized to t = 0. For positions with abstract
value t, we keep a 2-3 heap with concrete values for u′. Every time we use rule
4 and find an empty concrete 2-3 heap, we increase t to the minimal value of
the abstract 2-3 heap, remove all positions with this abstract value from the
abstract heap, and add them (with concrete value) to the concrete heap. The
required concrete arithmetic operations are linear in the value of the abstraction
a ◦ u(r) of the concrete update (rather than in c). In the worst case scenario,
‘small updates’ implies that the discounted cost of the operations is in O(1). ��

Extended Update Step. The basic update step can be improved to an
extended update step by three simple and cheap additional computation steps:

1. Recursively remove all positions from E that have no predecessors, and push
them on a solve-me-later stack.

2. Adapt the valuation function v to v′ such that the values of positions of
Player 1 are left unchanged (v′(p) = v(p) ∀p ∈ V1), and the values of all
positions of Player 0 are maximally decreased (v′(p) = max{v′(p′) ; α(p) |
(p′, p) ∈ E} ∀p ∈ V0). (This step again exploits that the game is bipartite.)

3. Apply a basic update step.
4. Remove the 0-attractor of all positions that are evaluated to ∞ from E .

Step 1 simplifies the game—positions without predecessors have no impact on
the value of other game positions, and their evaluation can safely be postponed

380 S. Schewe

until after the remainder of the game has been evaluated—and strengthens the
second step. In Step 2, we exploit the fact that the basic update step benefits from
a high number of improvement edges that originate from positions of Player 0.
This number is increased by changing the estimation v such that the estimations
of positions of Player 1 remain unchanged, while the estimation of positions of
Player 0 is decreased. The last step is again used to simplify the game.

An interesting side effect of Step 4 is that our game-based improvement al-
gorithm behaves like standard fixed point algorithms [10, 12, 15] on Büchi and
CoBüchi games (parity games with only two colors, w.l.o.g. 0 and 1). Like in
these standard algorithms, we iteratively compute the set of states from which
Player 0 can stay forever in positions with color 0, and then remove their 0-
attractor from the game. The game-based approach described in this section
can therefore also be viewed as an alternative generalization of the well accepted
algorithms for Büchi and CoBüchi games to general parity games, which pre-
serves different properties than McNaughton’s generalization [10, 12, 15].

5 Benchmarks and Results

To evaluate the applicability of the game-based strategy improvement algorithm,
a prototype of the algorithm was implemented and evaluated on different bench-
marks, including random games with and without structure as well as other
benchmarks for parity games. This section provides an overview on the results.

A first estimation of the performance of our algorithm on random games
showed that the expected number of update games depends mainly on the num-
ber of colors and the outdegree, but it seems to be constant in the number of
positions. This low expected number of updates has been confirmed by the fol-
lowing benchmarks. This restricts the potential competitors: The randomized
subexponential algorithms of Ludwig [17], and Björklund and Vorobyov [20]
change the strategy in exactly one position in every update step. It is therefore
almost sure that the required number of update steps is at least linear in the
size of the game. Ludwig’s algorithm also has a much higher update complexity.

For the first benchmark, we therefore focused on the algorithm of Vöge and
Jurdziński [19], and a (not subexponential) variant of Björklund and Vorobyov’s
algorithm [20] that chooses, in every step, a locally profitable modification uni-
formly at random for every position, for which a profitable modification exists.

The following table compares the expected number of iterations of our algo-
rithm (game) with the variant of Björklund and Vorobyov (rand) and Vöge and
Jurdziński’s algorithm (VJ) for random games with 3 colors and outdegree 6.

positions 30 100 300 1000 3000 10000 30000 100000 300000
game 1.1 1.4 1.7 1.7 1.9 2.0 2.0 2.0 2.0
rand 2.5 2.9 3.1 3.0 3.0 3.1 3.2 3.7 4.0

VJ 5.3 12.2 26.1 66.1 182.0 573.1 1665.33 —– —–

3 For 30000 positions, each sample took approximately four days on a 2.6 GHz Dual
Core AMD Opteron machine (compared to 1.5 seconds for the game-based strategy
improvement algorithm); the experiment was therefore terminated after ten samples.

An Optimal Strategy Improvement Algorithm 381

The algorithm of Vöge and Jurdziński was not considered in the following
benchmarks, because it took several days even for small random game with only
30000 positions and outdegree 6. This is partly due to the fact that the observed
number of iterations grows linearly in the size of the game, and partly due to
the much higher update complexity of O(mn).

Different to the algorithm of Vöge and Jurdziński, the performance of the
variant of Björklund and Vorobyov’s algorithm (rand) is, on random games,
close to the performance of our game-based strategy improvement algorithm.
The cost of the individual updates for rand is slightly higher, because 0 cycles
need to be excluded in their approach, which results in higher numbers (by
a factor linear in the size of the game). Together with the smaller number of
iterations, the running time of our algorithm improves over theirs by a factor of
approximately 2 on the considered random games.

The difference between the two algorithms becomes apparent once structure
is added to the game. Figure 5 compares the behavior of game and rand on
different benchmarks. Benchmark 1 adds very little structure (favoring edges to

rand6
game6
rand3
game3
rand2
game2
rand1
game1

10.10.010.0010.0001

60

50

40

30

20

10

0

rand5
game5
rand4
game4
rand2
game2

10.80.60.40.20

10000

8000

6000

4000

2000

0

Fig. 3. The tables compare the performance of the variant of game (solid lines) and
rand (dashed lines) on various benchmarks, measured in the number of iterations. The
maximal size of all benchmarks is normalized to 1 (x-axis) for better readability.

For all benchmarks, the number of iterations (y-axis) needed by game is significant
below the number needed by rand. The difference is particularly apparent in examples
with much structure (Benchmarks 2 through 5).

382 S. Schewe

‘close’ vertices in the randomized construction of the samples), while Benchmark
2 adds much structure (random chains of sparsely linked subgames). Benchmark
3 is a bipartite version of the games used in [16] to estimate the worst case
complexity of Jurdziński’s algorithm. Benchmark 4 refers to medium hard Büchi
games, and Benchmark 5 is a test for the sensitivity of strategy improvement
algorithms to ‘traps’ that lure them to a wrong direction (as in the example of
Figure 1b). Finally, Benchmark 6 refers to the analysis of mean payoff games
with small payoffs4. The results indicate that the more structure is added to
the game, the greater becomes the advantage of game over rand. The detailed
results are omitted due to space restrictions; they can be found in [27].

6 Discussion

The applicability of strategy improvement algorithms crucially depends on the
quality of the individual improvement step, or, likewise, on the expected amount
of improvement steps. Current strategy improvement techniques suffer from de-
ficiencies in estimating the effect of strategy modifications: They cannot pre-
dict their global effect, let alone the cross effect between different modifications.
The introduced game-based strategy improvement algorithm overcomes this de-
ficiency by selecting an optimal combination of these modifications in every
update step. While still greedy in nature, it allows us to make full use of the
advantages attached to concurrent strategy modifications for the first time.

From a practical point of view, the amount of improvement steps used by
simplex style algorithms tends to be linear in the amount of constraints that
define the simplex [28]. For strategy improvement algorithms, these constraints
are defined by the edges that originate from positions of Player 0. In the bench-
marks, approximately 30% (at the end) to 50% (at the beginning) of these edges
are improvement edges, which leads to an exponential number of concurrently
considered improved strategies in every update game, and to a linear number of
applied updates.

While the update complexity of the algorithms is low (O(m + n logn) arith-
metic operations), finding a non-trivial bound on the number of updates remains
an intriguing future challenge. The algorithm inherits the Ω(n) bound on the
required number of updates from Büchi games, while the size of the codomain
implies an O((1 + n

c)c) upper bound, and either of these bounds may be sharp.
Understanding the complexity of the game-based strategy improvement algo-

rithm would either lead to a proof that parity and/or mean payoff games can
be solved in polynomial time, or would greatly help to understand the hardness
of the problems. Hardness proofs for game-base strategy improvement, however,
will not be simple. It took a quarter of a century to find a family of examples, for
which the improvement complexity of the simplex algorithm is exponential [29].
These classical examples from linear programming, however, do not extend to
game-based improvement methods. The Klee Minty polytope [29], for example,
4 To extend our game-based approach to finding the 0-mean partition of mean payoff

games, it suffices to replace the codomain R of the ranking function by Z ∪ {∞}.

An Optimal Strategy Improvement Algorithm 383

requires only a single update step from the origin (and at most linearly many
steps from any arbitrary corner of the polytope) if we can consider all combina-
tions of profitable and stale base changes in every improvement step.

References

1. Kozen, D.: Results on the propositional μ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

2. Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of μ-
calculus. In: Proc. CAV, pp. 385–396 (1993)

3. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2) (2001)

4. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control: Dy-
namic programs for omega-regular objectives. In: Proc. LICS, pp. 279–290. IEEE
Computer Society Press, Los Alamitos (2001)

5. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Jour-
nal of the ACM 49(5), 672–713 (2002)

6. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen,
K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641.
Springer, Heidelberg (1998)

7. Schewe, S., Finkbeiner, B.: The alternating-time μ-calculus and automata over con-
current game structures. In: Proc. CSL, pp. 591–605. Springer, Heidelberg (2006)

8. Piterman, N.: From nondeterministic Büchi and Streett automata to determinis-
tic parity automata. In: Proc. LICS, pp. 255–264. IEEE Computer Society, Los
Alamitos (2006)

9. Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Puebla, G. (ed.)
LOPSTR 2006. LNCS, vol. 4407, pp. 127–142. Springer, Heidelberg (2007)

10. Emerson, E.A., Lei, C.: Efcient model checking in fragments of the propositional μ-
calculus. In: Proc. LICS, pp. 267–278. IEEE Computer Society Press, Los Alamitos
(1986)

11. Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In: Proc.
FOCS, pp. 368–377. IEEE Computer Society Press, Los Alamitos (1991)

12. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl.
Logic 65(2), 149–184 (1993)

13. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. The-
oretical Computer Science 158(1–2), 343–359 (1996)

14. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.: An improved al-
gorithm for the evaluation of fixpoint expressions. Theoretical Computer Sci-
ence 178(1–2), 237–255 (1997)

15. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

16. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

17. Ludwig, W.: A subexponential randomized algorithm for the simple stochastic
game problem. Inf. Comput. 117(1), 151–155 (1995)

18. Puri, A.: Theory of hybrid systems and discrete event systems. PhD thesis, Com-
puter Science Department, University of California, Berkeley (1995)

384 S. Schewe

19. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Proc. CAV, pp. 202–215. Springer, Heidelberg (2000)

20. Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy
improvement algorithm for mean payoff games. Discrete Appl. Math. 155(2), 210–
229 (2007)

21. Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded.
In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92.
Springer, Heidelberg (2003)

22. Lange, M.: Solving parity games by a reduction to SAT. In: Proc. Int. Workshop
on Games in Design and Verification (2005)

23. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: Dag-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

24. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: Proc. SODA, pp. 117–123. ACM/SIAM (2006)

25. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

26. Takaoka, T.: Theory of 2-3 heaps. In: Asano, T., Imai, H., Lee, D.T., Nakano,
S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 41–50. Springer,
Heidelberg (1999)

27. Schewe, S.: Synthesis of Distributed Systems. PhD thesis, Saarland University,
Saarbrücken, Germany (2008)

28. Smale, S.: On the average number of steps of the simplex method of linear pro-
gramming. Mathematical Programming 27(3), 241–262 (1983)

29. Klee, F., Minty, G.J.: How good is the simplex algorithm? Inequalities III, pp.
159–175 (1972)

Quantitative Languages�

Krishnendu Chatterjee1, Laurent Doyen2, and Thomas A. Henzinger2

1 University of California, Santa Cruz
2 EPFL, Lausanne, Switzerland

Abstract. Quantitative generalizations of classical languages, which assign to
each word a real number instead of a boolean value, have applications in mod-
eling resource-constrained computation. We use weighted automata (finite au-
tomata with transition weights) to define several natural classes of quantitative
languages over finite and infinite words; in particular, the real value of an infinite
run is computed as the maximum, limsup, liminf, limit average, or discounted
sum of the transition weights. We define the classical decision problems of au-
tomata theory (emptiness, universality, language inclusion, and language equiv-
alence) in the quantitative setting and study their computational complexity. As
the decidability of language inclusion remains open for some classes of weighted
automata, we introduce a notion of quantitative simulation that is decidable and
implies language inclusion. We also give a complete characterization of the ex-
pressive power of the various classes of weighted automata. In particular, we
show that most classes of weighted automata cannot be determinized.

1 Introduction

The automata-theoretic approach to verification is boolean. To check that a system sat-
isfies a specification, we construct a finite automatonA to model the system and a finite
(usually nondeterministic) automaton B for the specification. The language L(A) of A
contains all behaviors of the system, and L(B) contains all behaviors allowed by the
specification. The language of an automaton A can be seen as a boolean function LA

that assigns 1 (or true) to words in L(A), and 0 (or false) to words not in L(A). The ver-
ification problem “does the system satisfy the specification?” is then formalized as the
language-inclusion problem “is L(A) ⊆ L(B)?”, or equivalently, “is LA(w) ≤ LB(w)
for all words w?”. We present a natural generalization of this framework: a quantita-
tive language L is a function that assigns a real-numbered value L(w) to each (finite
or infinite) word w. With quantitative languages, systems and specifications can be for-
malized more accurately. For example, a system may use a varying amount of some
resource (e.g., memory consumption, or power consumption) depending on its behav-
ior, and a specification may assign a maximal amount of available resource to each
behavior, or fix the long-run average available use of the resource. The quantitative
language-inclusion problem “is LA(w) ≤ LB(w) for all words w?” can then be used
to check, say, if for each behavior, the peak power used by the system lies below the

� Research supported in part by the NSF grants CCR-0132780, CNS-0720884, and CCR-
0225610, by the Swiss National Science Foundation, and by the European COMBEST project.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 385–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 K. Chatterjee, L. Doyen, and T.A. Henzinger

bound given by the specification; or if for each behavior, the long-run average response
time of the system lies below the specified average response requirement.

In the boolean automaton setting, the value of a word w in L(A) is the maximal
value of a run of A over w (if A is nondeterministic, then there may be many runs of
A over w), and the value of a run is a function that depends on the class of automata:
for automata over finite words, the value of a run is true if the last state of the run is
accepting; for Büchi automata, the value is true if an accepting state is visited infinitely
often; etc. To define quantitative languages, we use automata with weights on transi-
tions. We again set the value of a word w as the maximal value of all runs over w,
and the value of a run r is a function of the (finite or infinite) sequence of weights that
appear along r. We consider several functions, such as Max and Sum of weights for
finite runs, and Sup, LimSup, LimInf, limit average, and discounted sum of weights
for infinite runs. For example, peak power consumption can be modeled as the maxi-
mum of a sequence of weights representing power usage; energy use can be modeled as
the sum; average response time as the limit average [2,3]. Quantitative languages have
also been used to specify and verify reliability requirements: if a special symbol ⊥ is
used to denote failure and has weight 1, while the other symbols have weight 0, one
can use a limit-average automaton to specify a bound on the rate of failure in the long
run [6]. Alternatively, the discounted sum can be used to specify that failures happening
later are less important than those happening soon [8]. It should be noted that LimSup
and LimInf automata generalize Büchi and coBüchi automata, respectively. Functions
such as limit average (or mean payoff) and discounted sum are classical in game the-
ory [26]; they have been studied extensively in the branching-time context of games
played on graphs [12,7,3,14], and it is therefore natural to consider the same functions
in the linear-time context of automata and languages.

We attempt a systematic study of quantitative languages defined by weighted au-
tomata. The main novelties concern quantitative languages of infinite words, and
especially those that have no boolean counterparts (i.e., limit-average and discounted-
sum languages). In the first part, we consider generalizations of the boolean decision
problems of emptiness, universality, language inclusion, and language equivalence. The
quantitative emptiness problem asks, given a weighted automatonA and a rational num-
ber ν, whether there exists a wordw such thatLA(w) ≥ ν. This problem can be reduced
to a one-player game with a quantitative objective and is therefore solvable in polyno-
mial time. The quantitative universality problem asks whetherLA(w) ≥ ν for all words
w. This problem can be formulated as a two-player game (one player choosing input
letters and the other player choosing successor states) with imperfect information (the
first player, whose goal is to construct a word w such that LA(w) < ν, is not allowed
to see the state chosen by the second player). The problem is PSPACE-complete for
simple functions like Sup, LimSup, and LimInf, but we do not know if it is decidable
for limit-average or discounted-sum automata (the corresponding games of imperfect
information are not known to be decidable either). The same situation holds for the
quantitative language-inclusion and language-equivalence problems, which ask, given
two weighted automata A and B, if LA(w) ≤ LB(w) (resp. LA(w) = LB(w)) for all
words w. Therefore we introduce a notion of quantitative simulation between weighted
automata, which generalizes boolean simulation relations, is decidable, and implies

Quantitative Languages 387

language inclusion. Simulation can be seen as a weaker version of the above game,
where the first player has perfect information about the state of the game. In particular,
we show that quantitative simulation can be decided in NP ∩ coNP for limit-average
and discounted-sum automata.

In the second part of this paper, we present a complete characterization of the ex-
pressive power of the various classes of weighted automata, by comparing the classes
of quantitative languages they can define. The complete picture relating the expressive
powers of weighted automata is shown in Fig. 4. For instance, the results for LimSup
and LimInf are analogous to the special boolean cases of Büchi and coBüchi (nondeter-
minism is strictly more expressive for LimSup, but not for LimInf). In the limit-average
and discounted-sum cases, nondeterministic automata are strictly more expressive than
their deterministic counterparts. Also, one of our results shows that nondeterministic
limit-average automata are not as expressive as deterministic Büchi automata (and vice
versa). It may be noted that deterministic Büchi languages are complete for the second
level of the Borel hierarchy [28], and deterministic limit-average languages are com-
plete for the third level [4]; so there is a Wadge reduction [29] from deterministic Büchi
languages to deterministic limit-average languages. Our result shows that Wadge re-
ductions are not captured by automata, and in particular, that the Wadge reduction from
Büchi to limit-average languages is not regular. We sketch some details of the most
interesting proofs; complete proofs are available in [5].

Other researchers have considered generalizations of languages, but as far as we
know, nobody has addressed the quantitative language setting presented here. The lat-
tice automata of [21] map finite words to values from a finite lattice. Roughly speaking,
the value of a run is the meet (greatest lower bound) of its transition weights, and the
value of a word w is the join (least upper bound) of the values of all runs over w. This
corresponds to Min and Inf automata in our setting, and for infinite words, the Büchi
lattice automata of [21] are analogous to our LimSup automata. However, the other
classes of weighted automata (Sum, limit-average, discounted-sum) cannot be defined
using operations on finite lattices. The complexity of the emptiness and universality
problems for lattice automata is given in [21] (and implies our results for LimSup au-
tomata), while their generalization of language inclusion differs from ours. They define
the implication value v(A,B) of two lattice automata A and B as the meet over all
words w of the join of ¬LA(w) and LB(w), while we use + instead of join and define
v(A,B) as minw(LB(w)− LA(w)).

In classical weighted automata [25,23] and semiring automata [20], the value of a fi-
nite word is defined using the two algebraic operations + and · of a semiring as the sum
of the product of the transition weights of the runs over the word. In that case, quantita-
tive languages are called formal power series. Over infinite words, weighted automata
with discounted sum were first investigated in [11]. Researchers have also considered
other quantitative generalizations of languages over finite words [9], over trees [10], and
using finite lattices [15]. However, these works do not address the quantitative decision
problems, nor do they compare the relative expressive powers of weighted automata
over infinite words, as we do here. In [2], a quantitative generalization of languages is
defined by discrete functions (the value of a word is an integer) and the decision prob-
lems only involve the extremal value of a language, which corresponds to emptiness.

388 K. Chatterjee, L. Doyen, and T.A. Henzinger

In models that use transition weights as probabilities, such as probabilistic Rabin
automata [24], one does not consider values of individual infinite runs (which would
usually have a value, or measure, of 0), but only measurable sets of infinite runs (where
basic open sets are defined as extensions of finite runs). Our quantitative setting is or-
thogonal to the probabilistic framework: we assign quantitative values (e.g., peak power
consumption, average response time, failure rate) to individual infinite behaviors, not
probabilities to finite behaviors.

2 Boolean and Quantitative Languages

We recall the classical automata-theoretic description of boolean languages, and intro-
duce an automata-theoretic description of several classes of quantitative languages.

2.1 Boolean Languages

A boolean language over a finite alphabet Σ is either a set L ⊆ Σ∗ of finite words or
a set L ⊆ Σω of infinite words. Alternatively, we can view these sets as functions in
[Σ∗ → {0, 1}] and [Σω → {0, 1}], respectively.

Boolean automata. A (finite) automaton is a tuple A = 〈Q, qI , Σ, δ〉 where:

– Q is a finite set of states, and qI ∈ Q is the initial state;
– Σ is a finite alphabet;
– δ ⊆ Q×Σ ×Q is a finite set of labeled transitions.

The automaton A is total if for all q ∈ Q and σ ∈ Σ, there exists (q, σ, q′) ∈ δ
for at least one q′ ∈ Q. The automaton A is deterministic if for all q ∈ Q and σ ∈
Σ, there exists (q, σ, q′) ∈ δ for exactly one q′ ∈ Q. We sometimes call automata
nondeterministic to emphasize that they are not necessarily deterministic.

A run of A over a finite (resp. infinite) word w = σ1σ2 . . . is a finite (resp. infi-
nite) sequence r = q0σ1q1σ2 . . . of states and letters such that (i) q0 = qI , and (ii)
(qi, σi+1, qi+1) ∈ δ for all 0 ≤ i < |w|. When the run r is finite, we denote by Last(r)
the last state in r. When r is infinite, we denote by Inf(r) the set of states that occur
infinitely many times in r. The prefix of length i of an infinite run r is the prefix of r
that contains the first i states.

Given a set F ⊆ Q of final (or accepting) states, the finite-word language defined
by the pair 〈A,F 〉 is Lf

A = {w ∈ Σ∗ | there exists a run r of A over w such that
Last(r) ∈ F}. The infinite-word languages defined by 〈A,F 〉 are as follows: if 〈A,F 〉
is interpreted as a Büchi automaton, then Lb

A = {w ∈ Σω | there exists a run r of A
overw such that Inf(r)∩F �= ∅}, and if 〈A,F 〉 is interpreted as a coBüchi automaton,
then Lc

A = {w ∈ Σω | there exists a run r of A over w such that Inf(r) ⊆ F}.

Boolean decision problems. We recall the classical decision problems for automata,
namely, emptiness, universality, language inclusion and language equivalence. Given a
finite automatonA, the boolean emptiness problem asks whether Lf

A = ∅ (or Lb
A = ∅,

Quantitative Languages 389

or Lc
A = ∅), and the boolean universality problem asks whether Lf

A = Σ∗ (or Lb
A =

Σω, orLc
A = Σω). Given two finite automataA andB, the boolean language-inclusion

problem asks whether LA ⊆ LB , and the boolean language-equivalence problem asks
whether LA = LB. It is well-known that for both finite- and infinite-word languages,
the emptiness problem is solvable in polynomial time, while the universality, inclusion,
and equivalence problems are PSPACE-complete [22,27].

2.2 Quantitative Languages

A quantitative language L over a finite alphabetΣ is either a mapping L : Σ+ → R or
a mapping L : Σω → R, where R is the set of real numbers.

Weighted automata. A weighted automaton is a tuple A = 〈Q, qI , Σ, δ, γ〉 where:

– 〈Q, qI , Σ, δ〉 is a total finite automaton, and
– γ : δ → Q is a weight function, where Q is the set of rational numbers.

Given a finite (resp. infinite) run r = q0σ1q1σ2 . . . of A over a finite (resp. infinite)
word w = σ1σ2 . . . , let γ(r) = v0v1 . . . be the sequence of weights that occur in r,
where vi = γ(qi, σi+1, qi+1) for all 0 ≤ i < |w|.

Given a value function Val : Q+ → R (resp. Val : Qω → R), the Val-automaton A
defines the quantitative language LA such that for all words w ∈ Σ+ (resp. w ∈ Σω),
we have LA(w) = sup{Val(γ(r)) | r is a run of A over w}.

In sequel we denote by n the number of states and by m the number of transitions
of a given automaton. We assume that rational numbers that are given as pairs of in-
tegers, encoded in binary. All time bounds we give in this paper assume that the size
of the largest integer in the input is a constant p. Without this assumption, most com-
plexity results would involve a factor p2, as we use only addition, multiplication, and
comparison of rational numbers, which are quadratic operations.

Quantitative decision problems. We now present quantitative generalizations of the
classical decision problems for automata. Given two quantitative languages L1 and L2

over Σ, we write L1 : L2 if L1(w) ≤ L2(w) for all words w ∈ Σ+ (resp. w ∈ Σω).
Given a weighted automatonA and a rational number ν ∈ Q, the quantitative emptiness
problem asks whether there exists a word w ∈ Σ+ (resp. w ∈ Σω) such that LA(w) ≥
ν, and the quantitative universality problem asks whether LA(w) ≥ ν for all words
w ∈ Σ+ (resp. w ∈ Σω). Given two weighted automata A and B, the quantitative
language-inclusion problem asks whether LA : LB , and the quantitative language-
equivalence problem asks whether LA = LB , that is, whether LA(w) = LB(w) for
all w ∈ Σ+ (resp. w ∈ Σω). All results that we present in this paper also hold for the
decision problems defined above with inequalities replaced by strict inequalities.

Our purpose is the study of the quantitative decision problems for infinite-word
languages and the expressive power of weighted automata that define infinite-word lan-
guages. We start with a brief overview of the corresponding results for finite-word lan-
guages, most of which follow from classical results in automata theory.

390 K. Chatterjee, L. Doyen, and T.A. Henzinger

Finite words. For finite words, we consider the value functions Last, Max, and Sum
such that for all finite sequences v = v1 . . . vn of rational numbers,

Last(v) = vn, Max(v) = max{vi | 1 ≤ i ≤ n}, Sum(v) =
n∑

i=1

vi.

Note that Last generalizes the classical boolean acceptance condition for finite words.
One could also consider the value function Min = min{vi | 1 ≤ i ≤ n}, which roughly
corresponds to lattice automata [21].

Theorem 1. The quantitative emptiness problem can be solved in linear time for
Last and Max-automata, and in quadratic time for Sum-automata. The quantitative
language-inclusion problem is PSPACE-complete for Last- and Max-automata.

The complexity of the quantitative emptiness problem for Last and Max-automata is
obtained by reduction to reachability in graphs, and for Sum-automata, by reduction to
reachability of a cycle with positive value. The quantitative language-inclusion problem
is undecidable for Sum-automata [19]. However, the quantitative language-inclusion
problem for deterministic Sum-automata can be solved in polynomial time using a
product construction. This naturally raises the question of the power of nondetermin-
ism, which we address through translations between weighted automata.

Expressiveness. A class C of weighted automata can be reduced to a class C′ of
weighted automata if for every A ∈ C there exists A′ ∈ C′ such that LA = LA′ . In
particular, a class of weighted automata can be determinized if it can be reduced to its
deterministic counterpart. All reductions that we present in this paper are constructive:
when C can be reduced to C′, we always construct the automaton A′ ∈ C′ that defines
the same quantitative language as the given automaton A ∈ C. We say that the cost of
a reduction is O(f(n,m)) if for all automata A ∈ C with n states and m transitions,
the constructed automaton A′ ∈ C′ has at most O(f(n,m)) many states. For all reduc-
tions we present, the size of the largest transition weight in A′ is linear in the size p
of the largest weight in A (however, the time needed to compute these weights may be
quadratic in p).

It is easy to show that Last- and Max-automata can be determinized using a subset
construction, while Sum-automata cannot be determinized. Results about determiniz-
able sub-classes of Sum-automata can be found in [23,18].

Theorem 2 (see also [23]). Last- and Max-automata can be determinized in O(2n)
time; Sum-automata cannot be determinized. Deterministic Max-automata can be re-
duced to deterministic Last-automata in O(n · m) time; deterministic Last-automata
can be reduced to deterministic Sum-automata in O(n ·m) time. Deterministic Sum-
automata cannot be reduced to Last-automata; deterministic Last-automata cannot be
reduced to Max-automata.

Infinite words. For infinite words, we consider the following classical value functions
from Qω to R. Given an infinite sequence v = v0v1 . . . of rational numbers, define

• Sup(v) = sup{vn | n ≥ 0};
• LimSup(v) = lim sup

n→∞
vn = lim

n→∞
sup{vi | i ≥ n};

Quantitative Languages 391

• LimInf(v) = lim inf
n→∞

vn = lim
n→∞

inf{vi | i ≥ n};

• LimAvg(v) = lim inf
n→∞

1
n
·
n−1∑
i=0

vi;

• given a discount factor 0 < λ < 1, Discλ(v) =
∞∑
i=0

λi · vi.

For decision problems, we always assume that the discount factor λ is a rational number.
Note that LimAvg(v) is defined using lim inf and is therefore well-defined; all results

of this paper hold also if the limit average of v is defined instead as lim sup
n→∞

1
n
·
n−1∑
i=0

vi.

One could also consider the value function Inf = inf{vn | n ≥ 0} and obtain results
analogous to the Sup value function.

Notation. Classes of automata are sometimes denoted by acronyms of the form xyW
where x is either N(ondeterministic) or D(eterministic), and y is one of the following:
B(üchi), C(oBüchi), SUP, LS (LimSup), LI (LimInf), LA (LimAvg), or DI (Disc).

3 The Complexity of Quantitative Decision Problems

We study the complexity of the quantitative decision problems for weighted automata
over infinite words.

Emptiness. The quantitative emptiness problem can be solved by reduction to the prob-
lem of finding the maximal value of an infinite path in a graph. This is decidable because
pure memoryless strategies for resolving nondeterminism exist for all quantitative ob-
jectives that we consider [13,17,1].

Theorem 3. The quantitative emptiness problem is solvable inO(m+n) time for Sup-,
LimSup-, and LimInf-automata; in O(n ·m) time for LimAvg-automata; and in O(n2 ·
m) time for Disc-automata.

Language inclusion. The following theorem relies on the analogous result for finite
automata.

Theorem 4. The quantitative language-inclusion problem is PSPACE-complete for
Sup-, LimSup-, and LimInf-automata.

We do not know if the quantitative language-inclusion problem is decidable for
LimAvg- or Disc-automata. The special cases of deterministic automata are easy, us-
ing a product construction.

Theorem 5. The quantitative language-inclusion problemsLA : LB for LimAvg- and
Disc-automata are decidable in polynomial time when B is deterministic.

When B is not deterministic, we make the following observation. There exist two
LimAvg-automata A and B such that (i) LA �: LB and (ii) there exist no finite words

392 K. Chatterjee, L. Doyen, and T.A. Henzinger

A
q1

B

q′1 q′2q′3
a, b

0
a, b

0
a, b
1

a, 2
b, 0

a, 0
b, 2

Fig. 1. Two limit-average automata A and B (nondeterministic) such that LA �# LB , but there is
no word of the form w = w1 · wω

2 with LA(w) > LB(w).

w1 and w2 such that LA(w) > LB(w) for w = w1 · wω
2 (the word w is called a

lasso-word). Consider the two LimAvg-automata A and B shown in Fig. 1, where B
is nondeterministic. For all words w ∈ Σω, we have LA(w) = 1. For a lasso-word
of the form w = w1 · wω

2 , if in w2 there are more b’s than a’s, then B chooses q′3
from q′1, and else chooses q′2 from q′1. Hence for all lasso-words w = w1 · wω

2 , we
have LB(w) ≥ 1. However LA �: LB . Consider the word w generated inductively
such that w0 is the empty word, and wi+1 is generated from wi as follows: (i) first
generate a long enough sequence w′i+1 of a’s after wi such that the average number
of b’s in wi · w′i+1 falls below 1

3 ; (ii) then generate a long enough sequence w′′i+1 of
b’s such that the average number of a’s in wi · w′i+1 · w′′i+1 falls below 1

3 ; and (iii) let
wi+1 = wi · w′i+1 · w′′i+1. The infinite word w is the limit of this sequence. For the
word w, we have LB(w) = 2 · 1

3 = 2
3 < 1, and thus LA �: LB . This observation is in

contrast to the case of boolean language inclusion for, e.g., parity automata, where non-
inclusion is always witnessed by a lasso-word. For the quantitative language-inclusion
problem for discounted sum automata we have the following theorem.

Theorem 6. The quantitative language-inclusion problem for Disc-automata is co-r.e.

Universality and language equivalence. All of the above results about language in-
clusion hold for quantitative universality and language equivalence also.

4 Quantitative Simulation

As the decidability of the quantitative language-inclusion problems for limit-average
and discounted-sum automata remain open, we introduce a notion of quantitative simu-
lation as a decidable approximation of language inclusion for weighted automata. The
quantitative language-inclusion problem can be viewed as a game of imperfect infor-
mation, and we view the quantitative simulation problem as exactly the same game, but
with perfect information. For quantitative objectives, perfect-information games can be
solved much more efficiently than imperfect-information games, and in some cases the
solution of imperfect-information games with quantitative objectives is not known. For
example, perfect-information games with limit-average and discounted-sum objectives
can be decided in NP ∩ coNP, whereas the solution for such imperfect-information
games is not known. Second, quantitative simulation implies quantitative language in-
clusion, because it is easier to win a game when information is not hidden. Hence, as
in the case of finite automata, simulation can be used as a conservative and efficient
approximation for language inclusion.

Quantitative Languages 393

Language-inclusion game. Let A and B be two weighted automata with weight func-
tion γ1 and γ2, respectively, for which we want to check if LA : LB. The language-
inclusion game is played by a challenger and a simulator, for infinitely many rounds.
The goal of the simulator is to prove that LA : LB , while the challenger has the op-
posite objective. The position of the game in the initial round is 〈q1I , q2I 〉 where q1I and
q2I are the initial states of A and B, respectively. In each round, if the current posi-
tion is 〈q1, q2〉, first the challenger chooses a letter σ ∈ Σ and a state q′1 such that
(q1, σ, q′1) ∈ δ1, and then the simulator chooses a state q′2 such that (q2, σ, q′2) ∈ δ2.
The position of the game in the next round is 〈q′1, q′2〉. The outcome of the game is a
pair (r1, r2) of runs of A and B, respectively, over the same infinite word. The simula-
tor wins the game if Val(γ2(r2)) ≥ Val(γ1(r1)). To make this game equivalent to the
language-inclusion problem, we require that the challenger cannot observe the state of
B in the position of the game.

Simulation game. The simulation game is the language-inclusion game without the
restriction on the vision of the challenger, that is, the challenger is allowed to observe
the full position of the game. Formally, given A = 〈Q1, q

1
I , Σ, δ1, γ1〉 and B =

〈Q2, q
2
I , Σ, δ2, γ2〉, a strategy τ for the challenger is a function from (Q1 × Q2)+ to

Σ×Q1 such that for all π ∈ (Q1×Q2)+, if τ(π) = (σ, q), then (Last(π|Q1), σ, q) ∈ δ1,
where π|Q1 is the projection of π on Q+

1 . A strategy τ for the challenger is blind if
τ(π) = τ(π′) for all sequences π, π′ ∈ (Q1 × Q2)∗ such that π|Q1 = π′|Q1

. The set
of outcomes of a challenger strategy τ is the set of pairs (r1, r2) of runs such that if
r1 = q0σ1q1σ2 . . . and r2 = q′0σ1q

′
1σ2 . . . , then q0 = q1I , q′0 = q2I , and for all i ≥ 0, we

have (σi+1, qi+1) = τ((q0, q′0) . . . (qi, q′i)) and (q′i, σi+1, q
′
i+1) ∈ δ2. A strategy τ for

the challenger is winning if Val(γ1(r1)) > Val(γ2(r2)) for all outcomes (r1, r2) of τ .

Theorem 7. For all value functions and weighted automata A and B, we have LA :
LB iff there is no blind winning strategy for the challenger in the language-inclusion
game for A and B.

Given two weighted automata A and B, there is a quantitative simulation of A by
B if there exists no (not necessarily blind) winning strategy for the challenger in the
simulation game for A and B. We note that for the special cases of Büchi and coBüchi
automata, quantitative simulation coincides with fair simulation [16].

Corollary 1. For all value functions and weighted automata A and B, if there is a
quantitative simulation of A by B, then LA : LB.

Given two weighted automata A and B, the quantitative simulation problem asks if
there is a quantitative simulation of A by B.

Theorem 8. The quantitative simulation problem is in NP ∩ coNP for LimSup-,
LimInf-, LimAvg-, and Disc-automata.

The proof of Theorem 8 is obtained as follows. The quantitative simulation problems
for LimSup- and LimInf-automata is reduced to perfect-information parity games; the

394 K. Chatterjee, L. Doyen, and T.A. Henzinger

quantitative simulation problem for LimAvg-automata is reduced to perfect-information
limit-average games; and the quantitative simulation problem for Disc-automata is re-
duced to perfect-information discounted-sum games. All reductions are polynomial
time, and the resulting games can all be solved in NP ∩ coNP.

5 The Expressive Power of Weighted Automata

We study the expressiveness of different classes weighted automata over infinite words
by comparing the quantitative languages they can define. For this purpose, we show
the existence and non-existence of translations between classes of finite and weighted
automata. We will use the following definition. A class C of finite automata can be
weakly reduced to a class C′ of weighted automata if for every A ∈ C there exists an
A′ ∈ C′ such that infw∈LA LA′(w) > supw �∈LA

LA′(w).

5.1 Positive Reducibility Results

We start with the positive results about the existence of reductions between various
classes of weighted automata, most of which can be obtained by generalizing corre-
sponding results for finite automata. Our results also hold if we allow transition weights
to be irrational numbers.

First, it is clear that Büchi and coBüchi automata can be reduced to LimSup- and
LimInf-automata, respectively. In addition, we have the following results.

Theorem 9. Sup-automata can be determinized in O(2n) time; LimInf-automata can
be determinized in O(m · 2n) time. Deterministic Sup-automata can be reduced to de-
terministic LimInf-, to deterministic LimSup-, and to deterministic LimAvg-automata,
all in O(n · m) time. LimInf-automata can be reduced to LimSup- and to LimAvg-
automata, both in O(n ·m) time.

The reduction from LimInf- to LimSup-automata (resp. to LimAvg-automata) essen-
tially consists of guessing a position i and a transition weight v such that only weights
greater than v are seen after position i. Once the guess is made, all transitions have
weight v.

All reducibility relationships are summarized in Fig. 4, where the notation D
NyW is

used to denote the classes of automata that are determinizable.

5.2 Negative Reducibility Results

We show that all other reducibility relationships do not hold. The most important re-
sults in this section show that (i) deterministic coBüchi automata cannot be reduced
to deterministic LimAvg-automata, deterministic Büchi automata cannot be reduced to
LimAvg-automata, and (ii) neither LimAvg- nor Disc-automata can be determinized.
Over the alphabet Σ̂ = {a, b}, we use in the sequel the boolean languages LF , which
contains all infinite words with finitely many a’s, and LI , which contains all infinite
words with infinitely many a’s.

The classical proof that deterministic coBüchi automata cannot reduced to determin-
istic Büchi automata can be adapted to show the following theorem.

Quantitative Languages 395

q0 q1 sink

a, b, 0
a, b, 0

b, 1
a, 0

a, b, 0

Fig. 2. A nondeterministic limit-average automaton

Theorem 10. Deterministic coBüchi automata cannot be reduced to deterministic
LimSup-automata.

Since deterministic LimAvg- and deterministic Disc-automata can define quantitative
languages whose range is infinite, while LimSup-automata cannot, we obtain the fol-
lowing result.

Theorem 11. Deterministic LimAvg-automata and deterministic Disc-automata can-
not be reduced to LimSup-automata.

The next theorem shows that nondeterministic LimAvg-automata are strictly more ex-
pressive than their deterministic counterpart. Theorem 13 will show that the expressive
powers of LimAvg- and LimSup-automata are incomparable.

Theorem 12. Deterministic coBüchi automata cannot be weakly reduced to determin-
istic LimAvg-automata, and therefore they cannot be reduced to deterministic LimAvg-
automata. LimAvg-automata cannot be determinized.

Proof. Consider the language LF of finitely many a’s, which is obviously accepted by
a DCW. It is also easy to see that the NLAW shown in Fig. 2 defines LF . We show
that LF cannot be defined by any DLAW to prove the desired claims. By contradiction,
assume that A is a DLAW with set of states Q and the initial state qI that defines LF .
We assume without loss of generality that every state q ∈ Q is reachable from qI by a
finite word wq .

Let α = infw∈LF LA(w). We claim that all b-cycles (a b-cycle is a cycle in A that
can be executed with only b’s) must be such that the average of the weights on the cycle
is at least α. Indeed, if there is a b-cycle C in A with average weights less than α,
then consider a state q ∈ C and the word w = wq · bω. We have LA(w) < α. Since
w = wq · bω ∈ LF , this contradicts that α = infw∈LF LA(w).

We now show that for all ε > 0, there exists w′ �∈ LF such that LA(w′) ≥ α − ε.
Fix ε > 0. Let β = maxq,q′∈Q,σ∈{a,b}|γ(q, σ, q′)|. Let j = � 6·|Q|·βε �, and consider the
word wε = (bj · a)ω. A lower bound on the average of the weights in the unique run of
A over (bj · a) is as follows: it can have a prefix of length at most |Q| whose sum of
weights is at least−|Q| ·β, then it goes through b-cycles for at least j−2 · |Q| steps with
sum of weights at least (j − 2 · |Q|) ·α (since all b-cycles have average weights at least
α), then again a prefix of length at most |Q| without completing the cycle (with sum of
weights at least −|Q| · β), and then weight for a is at least −β. Hence the average is at
least

(j − 2 · |Q|) · α− 2 · |Q| · β − β
j + 1

≥ α− 6 · |Q| · β
j

≥ α− ε;

396 K. Chatterjee, L. Doyen, and T.A. Henzinger

we used above that |α| ≤ β, and by choice of j we have 6·|Q|·β
j ≤ ε. Hence we have

LA(wε) ≥ α − ε. Since ε > 0 is arbitrary, and wε �∈ LF , we have supw �∈LF
LA(w) ≥

α = infw∈LF LA(w). This establishes a contradiction, and thus A cannot exist. The
desired result follows. �

Theorem 13. Deterministic Büchi automata cannot be weakly reduced to LimAvg-
automata, and therefore they cannot be reduced to LimAvg-automata.

Proof. We consider the languageLI of infinitely many a’s, which is obviously accepted
by a DBW.

By contradiction, assume that A is a NLAW with set of states Q and initial state qI
that definesLI . We assume without loss of generality that every state q ∈ Q is reachable
from qI by a finite word wq .

Let α = supw �∈LI
LA(w), and β = maxq,q′∈Q,σ∈{a,b}|γ(q, σ, q′)|. We claim that

all b-cycles C in A must have average weights at most α; otherwise, consider a state
q ∈ C and the word w = wq · bω, we have LA(w) > α which contradicts that α =
supw �∈LI

LA(w).
We now show that for all ε > 0, there exists w ∈ LI such that LA(w′) ≤ α + ε.

Fix ε > 0. Let j = � 3·|Q|·βε �, and consider the word wε = (bj · a)ω. An upper bound
on the average of the weights in any run of A over (bj · a) is as follows: it can have
a prefix of length at most |Q| with the sum of weights at most |Q| · β, then it follows
(possibly nested) b-cycles1 for at most j steps with sum of weights at most j · α (since
all b-cycles have average weights at most α), then again a prefix of length at most |Q|
without completing a cycle (with sum of weights at most |Q| · β), and then weight for
a is at most β. So, for any run of A over wε = (bj · a)ω, the average weight is at most

j · α+ 2 · |Q| · β + β

j + 1
≤ α+

3 · |Q| · β
j

≤ α+ ε

Hence we have LA(wε) ≤ α + ε. Since ε > 0 is arbitrary, and wε ∈ LI , we have
infw∈LI LA(w) ≤ α = supw �∈LI

LA(w). The desired result follows. �

None of the weighted automata we consider can be reduced to Disc-automata (Theo-
rem 14), and Disc-automata cannot be reduced to any of the other classes of weighted
automata (Theorem 15, and also Theorem 11).

Theorem 14. Deterministic coBüchi automata and deterministic Büchi automata can-
not be weakly reduced to Disc-automata, and therefore they cannot be reduced to Disc-
automata. Also deterministic Sup-automata cannot be reduced to Disc-automata.

The proofs of Theorem 14 and 15 are based on the property that the value assigned by
a Disc-automaton to an infinite word depends essentially on a finite prefix, in the sense
that the values of two words become arbitrarily close when they have sufficiently long
common prefixes. In other words, the quantitative language defined by a discounted-
sum automaton is a continuous function in the Cantor topology. In contrast, for the

1 Since A is nondeterministic, a run over bj may have nested cycles. We can decompose the run
by repeatedly eliminating the innermost cycles.

Quantitative Languages 397

s0sa sb
a, 1
b, 0

a, 0
b, 1

a, 1
b, 0

a, 0
b, 1

Fig. 3. The nondeterministic discounted-sum automaton N

other classes of weighted automata, the value of an infinite word depends essentially on
its tail.

Theorem 15. Deterministic Disc-automata cannot be reduced to LimAvg-automata.

The next result shows that discounted-sum automata cannot be determinized. Consider
the nondeterministic discounted-sum automatonN over the alphabet Σ̂ = {a, b} shown
in Fig. 3. The automaton N computes the maximum of the discounted sum of a’s and
b’s. Formally, given a (finite or infinite) word w = w0w1 . . . ∈ Σ̂∗ ∪ Σ̂ω, let

va(w) =
|w|∑

i|wi=a

λi and vb(w) =
|w|∑

i|wi=b

λi

be the λ-discounted sum of all a’s (resp. b’s) inw. ThenLN (w) = max{va(w), vb(w)}
for all infinite words w ∈ Σ̂ω. We show that N cannot be determinized for some
discount factors λ. The proof uses a sequence of intermediate lemmas.

For σ ∈ Σ̂, let σ = a if σ = b, and σ = b if σ = a. We say that an infinite word
w ∈ Σ̂ω prefers σ ∈ Σ̂ if vσ(w) > vσ(w).

Lemma 1. For all 0 < λ < 1, all w ∈ Σ̂∗, and all σ ∈ Σ̂, there exists w′ ∈ Σ̂ω such
that w · w′ prefers σ iff vσ(w · σω) > vσ(w · σω).

We say that a finite word w ∈ Σ̂∗ is ambiguous if there exist two infinite words
w′a, w

′
b ∈ Σ̂ω such that w · w′a prefers a and w · w′b prefers b.

Lemma 2. For all 0 < λ < 1 and w ∈ Σ̂∗, the word w is ambiguous iff |va(w) −
vb(w)| < λ|w|

1−λ .

Intuitively, ambiguous words are problematic for a deterministic automaton because it
cannot decide which one of the two functions va and vb to choose.

Lemma 3. For all 1
2 < λ < 1, there exists an infinite word ŵ ∈ Σ̂ω such that every

finite prefix of ŵ is ambiguous.

Proof. We construct ŵ = w1w2 . . . inductively as follows. First, let w1 = a which is
an ambiguous word for all λ > 1

2 (Lemma 2). Assume that w1 . . . wi is ambiguous for

all 1 ≤ i ≤ k, that is |xi| < λi

1−λ where xi = va(w1 . . . wi)−vb(w1 . . . wi) (Lemma 2).

We takewk+1 = a if xk < 0, andwk+1 = b otherwise. Let us show that |xk+1| < λk+1

1−λ .

We have |xk+1| =
∣∣|xk| − λk∣∣, and thus we need to show that |xk| − λk < λk+1

1−λ and

−|xk|+ λk < λk+1

1−λ knowing that |xk| < λk

1−λ . It suffices to show that

398 K. Chatterjee, L. Doyen, and T.A. Henzinger

λk

1−λ ≤ λk + λk+1

1−λ and λk − λk+1

1−λ < 0.

In other words, it suffices that 1 ≤ 1 − λ + λ and 1 − λ − λ < 0, which is true for all
λ > 1

2 . �

The word ŵ constructed in Lemma 3 could be harmless for a deterministic automaton
if some kind of periodicity is encountered in ŵ. We make this notion formal by defining
diff (w) = va(w)−vb(w)

λ|w| for all finite words w ∈ Σ̂∗. It can be shown that if the set
Rλ = {diff (w) | w ∈ Σ∗} ∩ (−1

1−λ ,
1

1−λ) is finite, then the automaton N can be
determinized [5], where (a, b) denotes the open interval between two reals a and b with
a < b. Lemma 4 shows that this is also a necessary condition.

Lemma 4. For all 0 < λ < 1, if the set Rλ is infinite, then there exists no deterministic
Disc-automaton D such that LD = LN .

Proof. By contradiction, assume that Rλ is infinite and there exists a DDIW D such
that LD = LN . For all w ∈ Σ̂∗, let Post(w) be the (unique) state reached in D after
readingw. We show that for all wordsw1, w2 ∈ Σ̂∗ such that diff (w1), diff (w2) ∈ Rλ,
if diff (w1) �= diff (w2), then Post(w1) �= Post(w2). Therefore D cannot have finitely
many states.

We show this by contradiction. Assume that Post(w1) = Post(w2). Thenw1 and w2

are ambiguous by Lemma 2 since diff (w1), diff (w2) ∈ Rλ. For i = 1, 2, we thus have
by Lemma 1

LN (wi · aω) = va(wi) +
λ|wi|

1− λ and LN (wi · bω) = vb(wi) +
λ|wi|

1− λ.

On the other hand, since Post(w1) = Post(w2), there exist v1, v2,Ka,Kb ∈ R such
that for i = 1, 2,

LD(wi · aω) = vi + λ|wi| ·Ka and LD(wi · bω) = vi + λ|wi| ·Kb.

SinceLD = LN , this entails thatLD(wi·aω)−LD(wi·bω) = LN (wi·aω)−LN (wi·bω),
and therefore

va(w1)− vb(w1)
λ|w1|

= Ka −Kb =
va(w2)− vb(w2)

λ|w2|

which yields a contradiction. �

We are now ready to prove the following theorem.

Theorem 16. Disc-automata cannot be determinized.

Proof. Let λ∗ be a non-algebraic number in the open interval (1
2 , 1). Then, we show

that the set Rλ∗ is infinite, which establishes the theorem by Lemma 4.
By Lemma 2 and Lemma 3, there exist infinitely many finite words w ∈ Σ̂∗ such

that diff (w) ∈ Rλ∗ . Since λ∗ is not algebraic, the polynomial equation diff (w1) =
diff (w2) cannot hold for w1 �= w2. Therefore, Rλ∗ is infinite. �

By a careful analysis of the shape of the family of polynomial equations in the above
proof, we can show that the automatonN cannot be determinized for any rational value
of λ greater than 1

2 [5].

Quantitative Languages 399

NDIW NLAW NLSW

DDIW DLAW D
N LIW DLSW NBW

DBWD
N SUPW

D
N CW

quantitative

boolean

Fig. 4. Reducibility relations: a class C of automata can be reduced to C′ iff C →∗ C′

References

1. Andersson, D.: An improved algorithm for discounted payoff games. In: ESSLLI Student
Session, pp. 91–98 (2006)

2. Chakrabarti, A., Chatterjee, K., Henzinger, T.A., Kupferman, O., Majumdar, R.: Verifying
quantitative properties using bound functions. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 50–64. Springer, Heidelberg (2005)

3. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur,
R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

4. Chatterjee, K.: Concurrent games with tail objectives. Theoretical Computer Science 388,
181–198 (2007)

5. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. Technical Report MTC-
REPORT-2008-003, EPFL (2008),
http://infoscience.epfl.ch/record/115228

6. Chatterjee, K., Ghosal, A., Henzinger, T.A., Iercan, D., Kirsch, C., Pinello, C., Sangiovanni-
Vincentelli, A.: Logical reliability of interacting real-time tasks. In: DATE. ACM, New York
(2008)

7. Condon, A.: The complexity of stochastic games. Information and Computation 96, 203–224
(1992)

8. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory.
In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)

9. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Computer Sci-
ence 380, 69–86 (2007)

10. Droste, M., Kuich, W., Rahonis, G.: Multi-valued MSO logics over words and trees. Funda-
menta Informaticae 84, 305–327 (2008)

11. Droste, M., Kuske, D.: Skew and infinitary formal power series. In: Baeten, J.C.M., Lenstra,
J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 426–438.
Springer, Heidelberg (2003)

12. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. International
Journal of Game Theory 8, 109–113 (1979)

13. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)
14. Gimbert, H.: Jeux positionnels. PhD thesis, Université Paris 7 (2006)
15. Gurfinkel, A., Chechik, M.: Multi-valued model checking via classical model checking. In:

Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 263–277. Springer,
Heidelberg (2003)

http://infoscience.epfl.ch/record/115228

400 K. Chatterjee, L. Doyen, and T.A. Henzinger

16. Henzinger, T.A., Kupferman, O., Rajamani, S.K.: Fair simulation. In: Mazurkiewicz, A.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 273–287. Springer, Heidelberg
(1997)

17. Karp, R.M.: A characterization of the minimum cycle mean in a digraph. Discrete Mathe-
matics 23(3), 309–311 (1978)

18. Kirsten, D., Mäurer, I.: On the determinization of weighted automata. Journal of Automata,
Languages and Combinatorics 10, 287–312 (2005)

19. Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 101–112. Springer,
Heidelberg (1992)

20. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theoretical Com-
puter Science. An EATCS Series, vol. 5. Springer, Heidelberg (1986)

21. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

22. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squar-
ing requires exponential space. In: FOCS, pp. 125–129. IEEE, Los Alamitos (1972)

23. Mohri, M.: Finite-state transducers in language and speech processing. Comp. Linguis-
tics 23(2), 269–311 (1997)

24. Paz, A.: Introduction to probabilistic automata. Computer Science and Applied Mathematics.
Academic Press, New York (1971)

25. Schützenberger, M.P.: On the definition of a family of automata. Information and control 4,
245–270 (1961)

26. Shapley, L.S.: Stochastic games. In: Proc. of the National Acadamy of Science USA, vol. 39,
pp. 1095–1100 (1953)

27. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi automata with
applications to temporal logic. Theoretical Computer Science 49, 217–237 (1987)

28. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, ch. 7.
Beyond Words, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

29. Wadge, W.W.: Reducibility and Determinateness of Baire Spaces. PhD thesis, UC Berkeley
(1984)

Characterization of Logics over Ranked Tree

Languages

Thomas Place

LSV, ENS-Cachan, CNRS, INRIA
61, av. Pdt. Wilson, F-94230 Cachan, France

place@lsv.ens-cachan.fr

Abstract. We study the expressive power of the logics EF + F−1, Δ2

and boolean combinations of Σ1 over ranked trees. In particular, we
provide effective characterizations of those three logics using algebraic
identities. Characterizations had already been obtained for those logics
over unranked trees, but both the algebra and the proofs were dependant
on the properties of the unranked structure and the problem remained
open for ranked trees.

1 Introduction

Understanding the expressive power of logics over labeled trees is an important
problem that can be found in many areas of Computer Science. In particular,
a logic is said to have a decidable characterization if there exists a decision
procedure for the following problem: given a regular language defined by its
finite automaton, decide if it can be defined by a formula of the logic.

This type of problem is well known and has been extensively studied for word
languages. Many word logics have been proven to have decidable characteriza-
tions using algebraic tools. Perhaps the most famous result is the characterization
of FO[<], the first-order logic with the order relation, which says that given a
regular language L the three following properties are equivalent, L is definable
by a first-order formula, L is star-free [8], the syntactic monoid of L is aperiodic
[9]. Since the syntactic monoid of a regular language is a computable notion
and aperiodicity a decidable property of monoids, the last property is actually
a decidable characterization. This result demonstrates the importance and the
relevance of the algebraic approach to obtain decidable characterizations. Using
this approach, most common word logics have been proven to have decidable
characterizations.

Much less results are known for tree languages, while it has been known for
a long time that regular tree languages are the languages definable in monadic
second order logic with the ancestor relation, until recently very few results of
this type were known. For example, giving a decidable characterization for the
first-order logic with the ancestor relation remains an open problem. Decidable
characterizations have been issued by Walukiewicz and Bojańczyk on ranked and
unranked trees for some temporal logics in [4,5], on ranked and unranked trees

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 401–415, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

402 T. Place

by Benedikt and Segoufin for the first order logic with the successor relation in
[1] and on ranked trees by Wilke for frontier testable languages in [11].

Recently, an algebraic formalism called Forest Algebras [5] was proposed for
unranked trees. Using this formalism, decidable characterizations for several
logics have been obtained. In [2], Bojańczyk, presents a characterization for
EF + F−1, the temporal logic with the ancestor and descendant modalities, in
[7], Bojańczyk, Segoufin and Straubing present a characterization for boolean
combinations of Σ1, the logic of boolean combinations of purely existential first-
order formulas, and in [3], Bojańczyk and Segoufin present a characterization
for Δ2, the languages definable by boolean combination of first order formulas
with only one quantifier alternation.

Our aim in this paper is to present decidable characterizations for EF +F−1,
Δ2 and Σ1 over ranked trees using an algebraic formalism that is close to both
Forest Algebras and the formalism used by Wilke in [11]. Both the statements
and the proofs of the characterizations for unranked trees rely on the specific
structure of unranked trees and have no obvious extension on ranked trees. For
example, languages definable in EF + F−1 are closed under bisimulation, the
characterization of [2] reflects this property with an identity stating that those
languages are closed under the action of duplicating a subtree within a tree,
this property obviously does not make sense for ranked trees since each node
has a fixed arity. Another simple example is the proof of the characterization of
Σ1, which uses the fact that there is a natural way to supress a node from an
unranked tree to form a new unranked tree, once again the fixed arity of nodes
on ranked trees makes this operation more delicate and technical. Therefore,
since the arity of nodes cannot be expressed in those logics, giving a decidable
characterization for ranked tree languages definable in them remained an open
problem.

Because of space limitation, some proofs are missing and will appear in the
journal version of the paper.

2 Notations

In this paper, we work with binary trees. Classic binary trees only have nodes
of arity two or zero, meaning that every node has either zero or two sons, in
the model we use, we also allow nodes of arity one (nodes that have exactly one
son). Our motivation is that structures of arity one play a central role in our
characterizations. However, this assumption is by no means restrictive since we
can always suppose that the set of labels of arity one is empty.

Trees are defined over a finite alphabet (A,B,C), where A is a set of leaves
symbols, B a set of unary symbols and C a set of binary symbols. The notion
of tree is defined inductively as follows: Any a ∈ A is a tree, if t is a tree bt is
tree for b ∈ B and if t and t′ are trees, c(t, t′) is a tree for c ∈ C. The notion of
nodes of a tree is defined in the usual way. A tree t′ is a subtree of a tree t if
there is a node x of t such that t′ is the tree we get by keeping only the nodes
of t that are below x.

Characterization of Logics over Ranked Tree Languages 403

A set of trees L over an alphabet (A,B,C) is called a tree language. As usual
a regular language is a language recognized by a finite bottom-up automata. All
the languages we consider in this paper are regular.

A context over an alphabet (A,B,C) is a tree that has exactly one leaf labeled
by a special symbol ∗, that we call the hole. Notice that there exists a natural
composition operation on contexts, if we take two contexts p and q, we get a
new context pq by replacing ∗ in p by q. Another natural operation is to attach
a tree t to replace ∗, forming a new tree pt.

We also consider objects that we call bi-contexts. They are trees with a special
subtree c(∗, ∗) with c ∈ C. Notice that we also have natural operations with this
type of object: we can attach a bi-context below a context to get a new bi-
context, or attach a tree to replace the left or right ∗ in a bi-context to get a
context.

We are interested in three tree logics: EF + F−1, Δ2 and Σ1. We see a tree
as a logical structure, we take the set of its nodes as domain and consider unary
predicates Pd for d ∈ A,B,C, which hold true in x if x is labeled by d, and a
binary predicate for the ancestor relation <.

A formula ϕ of EF+F−1 over an alphabet (A,B,C) is defined by the following
grammar:

ϕ = Pd d ∈ A,B,C | EFϕ | F−1ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

Given a tree t and a node x of t, we say that t, x |= ϕ if and only if:

– ϕ = Pd and x is labeled by d
– ϕ = EFϕ′ and x has a proper descendant x′ such that t, x′ |= ϕ′

– ϕ = F−1ϕ′ and x has a proper ancestor x′ such that t, x′ |= ϕ′

– The semantics of the boolean operators are defined in the usual way

We say that t |= ϕ if t, x |= ϕ with x the root of t. A formula ϕ defines a tree
language over (A,B,C) which is the set of trees t such that t |= ϕ.
Δ2 is a restriction of the first-order logic on trees. A Σ2 formula is of the form:

∃x1...∃xn∀y1...∀ymϕ(x1, ..., xn, y1, ..., ym) with ϕ quantifier free. A Π2 formula
is the negation of a Σ2 formula. We say a language is Δ2 if it is definable by
both a Σ2 and a Π2 formula.
Σ1 is another restriction of the first-order logic on trees. We consider formulas

that are boolean combinations of formulas of the form ∃x1...∃xnϕ(x1, ..., xn) with
ϕ quantifier free. A language is in Σ1 if it is definable by such a formula.

Our main goal is to give decidable characterizations for those three logics on
binary trees. More formaly, given L a tree logic, we want to be able to decide
the following problem:

INPUT: A regular tree language L
PROBLEM: Can we define L with a formula of L

Notice that the two logics EF + F−1 and Δ2 are related. On words, they
have the same expressive power [10,6]. This result no longer holds on trees, for

404 T. Place

example if we fix a a ∈ A and consider L the language of trees with two different
leaves labeled by a, L is definable in Δ2 but not in EF +F−1. However, we will
see they remain closely related.

For both words and unranked trees the characterizations of those logics are
stated and proven using an algebraic formalism called Forest Algebras. We also
define our own algebraic formalism. Our definition is intended to be close to
the definition of Forest Algebras in order to be able to follow and compare the
ranked and unranked cases.

3 Binary Algebras

We defined three types of objects, trees, contexts and bi-contexts, our algebra
reflects that by being constitued of three sets. The set corresponding to trees is
actually very close to the set of states of an automaton and the set correspond-
ing to bi-context very close to a transition function. However, we see them as
algerbaic objets in order to stay close to the notions introduced for the charac-
terizations over unranked trees.

We first give the formal definition of Binary Algebras, then move on with
the definitions of morphisms of Binary Algebras, recognition of a language by a
Binary Algebra and syntactic Binary Algebra of a language.

A Binary Algebra is a tuple (H,V,W) where H and W are sets and V is
a monoid, we note · its operation. The idea is that each set represents one of
the three objects we defined, H represents trees, V contexts and W bi-contexts.
Several operations are defined on this tuple, each one reflecting an operation
we described on trees, contexts and bi-contexts. The operations of contexts over
trees and bi-contexts are reflected by actions of V on H and W . An action of a
monoid V on H is function f : V ×H → H such that f(v ·v′, h) = f(v, f(v′, h)).
We abusively write both actions · (f(v, h) = v ·h), we also want those actions to
be faithful, meaning that for each v the function h → f(v, h) must be different.
Finally, we reflect the bi-context tree operations by having two operations <l and
<r, from W ×H onto V , such that (w <l h) ·h′ = (w <r h′) ·h (the order in which
we attach trees under bi-contexts is not important). Given this property we will
sometimes write w(h, h′) instead of (w <l h) · h′.

We use the usual notion of morphism: A morphism of binary algebras α :
(H1, V1,W1) → (H2, V2,W2) is actually composed of three applications β : H1 →
H2, γ : V1 → V2 and δ : W1 → W2, such that γ is a morphism and γ(v)β(h) =
β(vh), γ(v)δ(h) = δ(vh), δ(w) <l β(h) = γ(v <l h) and δ(w) <r β(h) = γ(v <r h).

Given an alphabet (A,B,C), the Free Binary Algebra (A,B,C)Δ is the binary
algebra (HΔ, VΔ,WΔ) such that HΔ is the set of trees that can be built using
(A,B,C), VΔ is the set of contexts that can be built using (A,B,C) and WΔ is
the set of bi-contexts that can be built using (A,B,C). The operation · is the
natural context operation. w <l h (w <r h) is the context obtained by filling the
left (right) hole of w with h.

We say a tree language L is recognized by a Binary Algebra (H,V,W) if and
only if there is a morphism α : (A,B,C)Δ → (H,V,W) and a subset G of H

Characterization of Logics over Ranked Tree Languages 405

such that L = α−1(G). It is simple to show that a tree language is regular if and
only if it is recognized by a finite binary algebra.

Given a tree language we define an equivalence relation on HΔ as follows
t ∼L t′ if and only if for all context p ∈ VΔ, pt is in L if and only if pt′ is in L.
We extend this equivalence on VΔ as follows p ∼L p′ if and only if for all trees
t ∈ HΔ, pt is in L if and only if p′t is in L. Finally we extend it on WΔ as follows
q ∼L q

′ if and only if for all pairs of trees t, t′ ∈ HΔ, q(t, t′) is in L if and only if
q′(t, t′) is in L. Those relations define a congruence over (A,B,C)Δ and we call
the quotient, the syntactic binary algebra of L. The syntactic binary algebra of
a regular language is a finite object that we can compute from the automata of
the language.

In this paper we only consider finite binary algebras. Given any finite monoid
V there is a computable number ω(V) such that for every element v of V , vω

is an idempotent (vω = vωvω). We write this number ω when V is understood
from the context.

4 Links between Δ2 and EF + F −1

Recall that we said that over words the logics F + F−1 and Δ2 have the same
expressive power and that while this property is no longer true on trees, both
the statements and proofs of the characterizations remained closely related. In
this section we describe a subclass of regular languages that contains both the
languages definable in EF +F−1 and Δ2, and verifies those common properties.

Definition 1. We say a Binary Algebra (H,V,W) belongs to TDA if it verifies
the following identities:

∀u, v ∈ V (uv)ω = (uv)ωu(uv)ω (1)

∀h ∈ H ∀w ∈ W w <l h = w <r h (2)

∀w,w′ ∈W ∀h, h′ ∈ H and for e = ((w <l h)(w′ <l h′))ω
e = e(w <l h′)(w′ <l h)e (3)

Notice that over words, the languages definable in F +F−1 are exactly the lan-
guages whose syntactic monoid verifies Equation (1) (called the DA equation),
therefore, this definition is indeed an extension of the word case. Also notice
that (1) and (2) have clear equivalents stated in the charcaterization of Δ2 and
EF +F−1 over unranked trees on Forest Algebras. However, this is not the case
for (3), which is a new equation. Over unranked trees, the properties of Forest
Algebras would allow us to derive a similar result from (1), in our case, its state-
ment is needed in order to prove properties that are not consequences of (1).
Finally (2) means that <r = <l, therefore, from now on, we only write <.

We prove our characterizations by induction on orders over binary algebras.
Those orders are significant because of the properties of TDA, we define them
here and state those properties. We define two orders, one on H and one on V ,
we begin with the order on H .

406 T. Place

Given a binary algebra (H,V,W) and h, h′ ∈ H , we say that h : h′ if and
only if there exists v ∈ V such that h = vh′. We write h ∼ h′ if and only if
h : h′ and h′ : h. We show that the ∼-classes of a binary algebra of TDA
verify useful properties.

Definition 2. Given h ∈ H we call stab(h) a tuple of three sets:

stabH(h) = {g ∈ H | ∃w ∈ W w(h, g) ∼ h} stabV (h) = {v ∈ V | vh ∼ h}
stabW (h) = {w ∈ W | ∃g ∈ H w(h, g) ∼ h}

The following proposition shows that in Binary Algebras of TDA, stab(h) de-
pends only on the ∼-class of h. Therefore, we will sometimes write stab(G) if G
is a ∼-class. This result makes : a relevant order to use for the inductions in
our proofs.

Proposition 1. If (H,V,W) verifies the TDA identities, the following proper-
ties hold:

– h ∼ h′ ⇒ stab(h) = stab(h′).
– stabV (h) is a submonoid of V .
– stabW (h) < stabH(h) ⊆ stabV (h)
– stabV (h)stabW (h) ⊆ stabW (h)

This proposition is proven using classical algebraic techniques. Notice that Equa-
tion (3) is used in order to prove the third item.

The order : has a second property that we will use in our proofs, there is a
single minimal class of ∼ relatively to :. We call it Hmin.

Lemma 1. Given (H,V,W) a Binary Algebra, there is a minimal ∼-class in H
relatively to : and if (H,V,W) ∈ TDA, for all minimal h, there exists uh ∈ V
such that ∀h′ ∈ H uhh

′ = h.

Proof. Let g ∈ Hmin. We write H = {h1, ..., hn}. We take w ∈ W . Consider:

hmin = ((w < h1)...(w < hn)ωg

hmin ∈ Hmin, hence, we have g = vhmin. We take:

ug = v((w < h1)...(w < hn)ωw(∗, ((w < h1)...(w < hn))ωg)

Thanks to equation (1) we have ∀h ugh = g. ��

Over V we use the classic Green relation R on monoids, v ≤R v′ if and only if
∃u ∈ V | v = v′u. R-classes verify properties that are very similar to the ones
verified by ∼-classes, if (H,V,W) belongs to TDA.

Definition 3. Given v ∈ V we call stab(v) a tuple of three sets:

stabH(v) = {g ∈ H | ∃w ∈ W v(w < g) R v} stabV (v) = {u ∈ V | vu R v}
stabW (v) = {w ∈ W | ∃g ∈ H v(w < g) R v}

Characterization of Logics over Ranked Tree Languages 407

Again, we show in the following proposition that in Binary Algebras of TDA,
stab(v) depends only on the R-class of v. Therefore, we will sometimes write
stab(U) if U is a R-class. The order ≤R is also relevant to be used for the
inductions in our proofs.

Proposition 2. If (H,V,W) verifies the TDA identities, the following proper-
ties hold:

– v R v′ ⇒ stab(v) = stab(v′).
– stabV (v) is a submonoid of V .
– stabW (v) < stabH(v) ⊆ stabV (v)
– stabV (v)stabW (v) ⊆ stabW (v)

5 Characterization of EF + F −1

In this section we give a decidable characterization for EF + F−1. One of the
identities we state in our characterization uses a relation over V . This relation
can be seen as a more powerful binary variant of a relation used in [2] over Forest
Algebras. In [2], the relation compared two contexts, from a context a smaller
context can be built by suppressing subtrees that are off the path from the root
to the hole. This notion does not have any obvious extension to binary trees
since we cannot supress subtrees in a binary tree without changing the arity of a
node. We use an alternate relation, instead of suppressing subtrees, we ask that
all the subtrees that are off the path from the root to the hole in the smaller
context can be found in the same path in the bigger context.

Definition 4. Given u, v ∈ V , we say that u � v if and only if we can write:

– u = (u0 < h0)...(un < hn)
– v = (u0 < g0)...(un < gn)
– {h0, ..., hn} ⊆ {g0, ..., gn}

With u0, ..., un ∈W and g0, ..., gn ∈ H.

Theorem 1. Let L be a regular tree language on an alphabet (A,B,C), L is
definable in EF +F−1 if and only if its syntactic binary algebra belongs to TDA
and verifies the two following identities:

∀w ∈W ∀h, g ∈ H
(w < h)ωg = (w < h)ωw((w < h)ωg, (w < h)ωg) (4)

∀u1, u2, v1, v2 ∈ V such that u1 � u2 and v1 � v2
(u1v1)ω(u2v2)ω = (u1v1)ωv2(u2v2)ω

(5)

Notice that identities (2), (3), (4) and (5) are sufficient, and that identity (1) is
redundant since it a consequence of (5) when u1 = u2 and v1 = v2.

The characterization proposed in [2] for unranked tree languages shares some
similarities with our definition. This characterization can be seen as divided in

408 T. Place

two parts, an horizontal one and a vertical one. Horizontally, it states closure
under bisimulation, while we still state commutativity with (2), as we said closure
under duplication of subtrees has no sense on binary trees, we replace it with
(4). We will use (4) to solve in an alternate way the cases where closure under
duplication of subtrees is used on unranked trees.

Vertically, the characterization of [2] used two identities, the classic DA equa-
tion (1), and another equation similar to our equation (5). Since (1) is a conse-
quence of (5), (5) replaces those two equations and plays a similar role in the
proof. Recall however, that we had to redifine the relation �, which will lead
to differents uses of this equation. Finally, we need to state a last equation (3)
which is used for proving the propreties of the stab sets in the TDA section. This
equation is needed in order to solve problems related to the lack of malleability
of the binary tree structure.

Before we prove this proposition, we prove that it fulfills our decidability goal,
given a regular language we compute its syntactic binary algebra and then, since
the � relation is computable via a fix point algorithm, we can decide whether it
satisifes the identities or not, which decides our problem.

We proceed with the proof, we prove both directions using an Ehrenfeucht
Fräıssé approach. A k rounds Ehrenfeucht Fräıssé game for EF + F−1 on two
trees t and t′ is played as follows. There are two players called Spoiler and
Duplicator with two pebbles each, when the game begins, each player has a
pebble on the root of t or t′. A round is played as follows, with a pebble at
position x1 on t and at position x2 on t′:

– Spoiler chooses one of the two trees, say t, and he chooses a node y1 which
is either a proper descendant or a proper ancestor of x1 and puts his pebble
on it.

– Duplicator chooses y2 in t′ with the same label as y1 and which is a proper
descendant of x2 if y1 was a proper descendant of x1 and a proper ancestor
of x2 if y1 was a proper ancestor of x1. If she can’t play Spoiler wins.

– Both players take back their pebble in x1, x2 and they move on to the next
round with y1, y2 playing the role of x1, x2.

If Duplicator can survive k rounds she is declared the winner and we write
t ∼=k t′. We state a Lemma that links the notion of definability in EF + F−1

with the notion of game we just defined, this Lemma is proven using classical
Ehrenfeucht Fräıssé techniques. The rank of a formula is its nesting depth of
modalities.

Lemma 2. We have t ∼=k t
′ if and only if t and t′ satisfy the same EF + F−1

formulas of rank k.

The easier direction of Theorem 1 is proven using classic Ehrenfeucht Fräıssé
techniques, if a language L is definable in EF+F−1, the syntactic binary algebra
of L must verify the identities of Theorem 1.

We prove the hardest direction of Theorem 1, if L is a language whose syn-
tactic algebra verifies (2), (3), (4) and (5), it is definable in EF + F−1. Let

Characterization of Logics over Ranked Tree Languages 409

(H,V,W) be the syntactic binary algebra of L and α the corresponding mor-
phism. We suppose that ∀h ∈ H ∃a ∈ A such that α(a) = h (notice that this
assumption is not restrictive as we will not consider the size of A in the proof).
Given a subset X of H we say that a tree t is X-trimmed if and only if the only
subtrees of t that have their image under α in X are leaves. Instead of directly
proving the proposition we prove a slightly more general Proposition.

Proposition 3. Let X be a union of ∼-classes of H and v ∈ V . There exists
k ∈ N such that for all X-trimmed trees t and t′, we have:

t ∼=k t
′ ⇒ vα(t) = vα(t′)

This proposition is very similar to the one proved in [2], the main difference
in the statement being our usage of Ehrenfeucht Fräıssé games. We also use a
similar proof structure to prove it, the inner proofs however, are different because
of our new equations and of the constraints related to the ranked tree structure.

We first show that Theorem 1 is a consequence of this Proposition 3. Take
X = ∅ and v = 1V (the neutral element of V) we get:

∃k such that ∀t, t′ t ∼=k t
′ ⇒ α(t) = α(t′)

It means that for some k, L is the union of classes of the Ehrenfeucht Fräıssé
game. Since the classes of the Ehrenfeucht Fräıssé game are definable in EF +
F−1 (see Lemma 2), it follows that L is definable in EF +F−1. The rest of this
section is devoted to the proof of Proposition 3. We show that it holds for:

k ≥ (22(|B|+|C|)(22dp(v))(4× 22|H−X|)((22|V |)|H|+1)(3 × 22|H|)

We proceed by induction on the four following parameters:

1. |H |
2. The number of ∼-classes left in H −X
3. |B|+ |C|
4. The number of R-classes left below v

We consider three cases. First, we suppose that there are at least two ∼-classes in
H −X , we will decrease the first and second induction parameters to conclude
by induction. In the second case, we suppose that there are still labels in t
and t′ that decrease the R-class of v and we will decrease the third and fourth
parameters to conclude by induction. The third case is the complement of the
two first cases, we will show that if neither of the assumptions we state in those
cases hold, we are able to conclude the proof using our identities.

5.1 First Case

In this case we suppose that there is more than one ∼-class left in H −X , we
will conclude by induction, adding one ∼-class to X . We take G = {g1, ..., gn},
a maximal ∼-class in H −X relatively to :, let a1, ..., an be leaf representatives
for the g1, ..., gn (α(ai) = gi). We say a tree is a twig if its only node which is
not a leaf is its root.

410 T. Place

Definition 5. From t and t′, we construct new trees:

1. s and s′ by replacing all twigs of type gi by ai, for all i.
2. r and r′ by replacing all maximal subtrees of s and s′ with type gi ∈ G

(maximal in the sense that they are not subtrees of bigger subtrees of type in
G) with the leaf ai. Notice that r and r′ are X ∪G trimmed.

Notice that by construction, we have vα(t) = vα(s) = vα(r) and vα(t′) =
vα(s′) = vα(r′). The following Lemma, which is the central point of this case, is
a consequence of the assumption we made about H −X containing more than
one ∼-class and about G being a maximal one.

Lemma 3. r ∼= k
2−4 r

′

Before we prove it, we show how it can be used to conclude this case. We have:

1. r ∼=k
2−4 r

′

2. r and r′ are X ∪G trimmed
3. k

2 − 4 ≥ (4 × 22|H−X∪G|)K, since k ≥ (4 × 22|H−X|)K

Therefore using the induction hypothesis vα(r) = vα(r′) and by construction, it
follows that vα(t) = vα(t′).

We prove Lemma 3 in two steps, the first one is that we can detect subtrees
of type in G under α in the game. The second one is that we can then detect
precisely their type in G. The first step is mainly a consequence of the properties
of stab described in Section 4. This step uses bisimulation in the unranked case,
since we do not have bisimulation we use Equation (4) instead. Notice that this
first step, because it relies on the results of Section 4, is also using Equations (1)
and (3).

Claim. Let f be a subtree of s and f ′ a subtree of s′ such that α(f) ∈ G and
α(f ′) /∈ G. Spoiler wins the two rounds game on f and f ′.

Proof. We claim that an X-Trimmed tree t has type outside G if and only if one
the following conditions holds:

1. t is a leaf and it has type outside G
2. t has a twig subtree with type outside G
3. t has non-twig unary node with label b such that α(b) /∈ stabV (G)
4. t has non-twig binary node with label c such that α(c) /∈ stabW (G)
5. t has an inner node with a leaf of label a as brother such that α(a) /∈

stabH(G)

Since G is a maximal ∼-class in H − X , it follows from the properties of stab
that the conditions are sufficient. We prove that they are necessary.

In the unranked case, closure under bisimulation entails that G ⊆ stabH(G),
this is no longer true in our case. However, (4) entails a weaker result that is
sufficient in order to prove that the conditions are necessary.

Characterization of Logics over Ranked Tree Languages 411

Claim. If stabH(G) �= ∅, G ⊆ stabH(G)

Proof. Because there exists an h ∈ stabH(G), ∃w such that w < h ∈ stabV (G).
We have (w < h)ω ∈ stabV (G) (recall that stabV (G) is a submonoid), therefore:

(w < h)ωg = g′ ∈ G
Using Equation (4) we get:

(w < h)ωw(g′, g′) = g′

Therefore g′ ∈ stabH(G), hence w(g, g′) ∼ g, which also means that g ∈
stabH(G). ��

We say that (t1, t2) is a good pair if it belongs to stabH(G)×G or G×stabH(G)
(notice that if stabH(G) = ∅, there is no good pair). Let t be a tree of type
outside G, if t is a leaf (1) holds, otherwise let t′ be a minimal subtree of t of
type outside G if it is a twig (2) holds, otherwise we are in one of the three
following cases:

– t′ = b(t1), t1 has type in G so α(b) /∈ stabV (G), (3) holds
– t′ = c(t1, t2) and (t1, t2) is a good pair. Then, we have α(t1) ∈ stabH(G) and
α(t2) ∈ G. Then, since t′ has type outside G, α(c)<α(t1) /∈ stabV (G), which
implies that α(c) /∈ stabW (G) (recall that stabW (G)<stabH(G) ⊆ stabV (G)),
(4) holds.

– t′ = c(t1, t2) and (t1, t2) is not a good pair, we consdier two cases. If
stabH(G) = ∅, we have by definition stabW (G) = ∅, therefore (4) holds.
Otherwise, we have G ⊆ stabH(G), since (t1, t2) is not a good pair, t1 or t2
is outside stabH(G) and it is necessarly a leaf since it cannot have type in
G, (5) holds.

So f verifies none of the conditions and f ′ verifies at least one. It is clear that
the four first conditions are detectable in two rounds, the fifth is because f is a
subtree of s of type in G so by construction of s it has no leaf with type outside
stabH(G) in twigs. ��

The second step is proven using the induction hypothesis. We prove that if
Duplicator can win the game on two X-trimmed trees of type in G, they have
the same type. This is done by building a smaller algebra than (H,V,W) from
stab which coincides with (H,V,W) on X-trimmed trees of type in G and using
the induction hypothesis on that smaller algebra. Aside from technical details,
this proof is similar to the one used in the unranked case. Using these two steps,
we are able to derive a winning strategy for Duplicator on r and r′ from her
winning strategy on t and t′, proving Lemma 3.

5.2 Second Case

In this case we suppose that there is a b in B such that α(b) /∈ stabV (v) or a
c ∈ C such that α(c) /∈ stabW (v). Let B↓ = {b1, ..., bn} be the set of all such

412 T. Place

b ∈ B and C↓ = {c1, ..., cm} be the set of all such c ∈ C. We reduce the size of
the alphabet by suppressing all such b and c. For two trees s, s′, we write:

s ≡ s′ when ∀u <R v uα(s) = uα(s′)

Notice that ≡ is an equivalence relation of finite index. Let L1, ..., Lι be the
classes of this equivalence relation and a1, ..., aι be leaf representatives of those
classes. We write ai,l the leaves that have the same type as the trees bl(ai) and
ai,j,l leaves that have the same type as the trees cl(ai, aj). We modify t and t′

in two steps:

1. First we consider each minimal subtree of t which has its root labeled by a
bl ∈ B↓ (minimal in the sense that it is not subtree of a tree of root in B↓ or
C↓). We look at the subtree rooted in bl, we compute its class Li of ≡, and
we replace it by ai. We do the same with the minimal subtrees that have
their root labeled by cl ∈ C↓. We look at the two subtrees that are rooted to
the node and we compute their class Li and Lj of ≡, and we replace them
by ai and aj. We obtain a new tree s. We modify t′ the same way and we
obtain s′.

2. Finally we replace the subtrees bl(ai) by ai,l and cl(ai, aj) by ai,j,l. We have
now a pair of trees that we call r and r′.

We state two lemmas that are central to this case. The first one is a conse-
quence of the definition of the relation ≡ and of the sets B↓ and C↓.

Lemma 4. vα(t) = vα(s) = vα(r) and vα(t′) = vα(s′) = vα(r′)

Lemma 5. r̄ ∼= k
2−1 r̄

′

Before proving those results, we use them to conclude this case. We have:

1. No node of label in B↓ or C↓ is present in r and r′ so the size of the node
alphabets have decreased in r and r′.

2. k
2 − 1 ≥ 22(|B|+|C|−1)K because k ≥ 22(|B|+|C|)K.

Therefore using Lemma 5 by induction we get vα(r) = vα(r′), using Lemma 4
we conclude vα(t) = vα(t′).

Lemma 5 is proven in two steps. The first step is that Spoiler can detect in t
and t′ the subtrees that are to be deleted in order to build r and r′. The second
step is that he is able to detect for each of those subtrees the label of the leaf
that will be used in order to replace it in r and r′. The first step is a consequence
of the fact that those subtrees are rooted with nodes whose label do not appear
above. The second step is a consequence of the fact that if Duplicator wins the
EF game on two trees it means that they have the same type under all contexts
that are strictly smaller than v relatively to ≤R (induction hypothesis), which
means that by definition they are equivalent under ≡. Given these two steps,
we are able to derive a winning strategy for Duplicator on r and r′ from her
strategy on t and t′. While technically more difficult those proofs are similar in
spirit to the unranked case.

Characterization of Logics over Ranked Tree Languages 413

5.3 Third Case

We suppose that we are not in one of the two previous cases, meaning that for
all b ∈ B, α(b) ∈ stabV (v), for all c ∈ C, α(c) ∈ stabW (v) and H −X = Hmin.
If t is a leaf, so is t′ and vice versa. Therefore we can suppose that t and t′ are
not leaves. In this case, t and t′ have their types in Hmin (they are X-trimmed).
We prove that for all h, g ∈ Hmin vg = vh, in particular vα(t) = vα(t′) which
concludes this case.

Let uh and ug be as defined in the Lemma 1. We assume that:
uh = α(c1 < a1)...(cn < an)
ug = α(cn+1 < an+1)...(cm < am)

We supposed that there were no unary symbols in order to simplify the ex-
pressions, this does not affect the proof. We also supposed that all subtrees off
the main path were leaves, this is not restrictive since we supposed that all types
were reachable with a leaf. By hypothesis, ∀i ci ∈ stabW (v), so we have an a′i
such that α(ci < a′i) ∈ stabV (v). We write:

wh = α(c1 < a′1)...(cn < a′n)
wg = α(cn+1 < a′n+1)...(cm < a′m)

By construction of wg and wh:

vwhwhwgwg R v
vwhwhwgwgv

′ = v for some v’
v(whwhwgwgv

′)ω = v

Hence by definition of uh:

v(whwhwgwgv
′)ω(uhwhugwgv

′)ωg = vh

Notice that we have wgwg � ugwg and whwh � uhwh, which allows us to use
Equation (5):

vh = v(whwhwgwgv
′)ωugwgv

′(uhwhugwgv
′)ωg

vh = v(whwhwgwgv
′)ωg (by definition ∀g′ ugg′ = g)

vh = vg

This completes the proof.

6 Characterization of Δ2

In this section we give a decidable characterization of Δ2. Like the character-
ization for unranked trees in [3], our characterization use the piece relation.
However, our definition of piece is more restrictive than the one used in [3], a
piece of a tree is obtained by suppressing some nodes and attaching the remain-
ing nodes such that the ancestor relation is preserved. With this definition, every
piece of an unranked tree is an unranked tree, but a piece of a binary tree need
not be a binary tree. Therefore, our piece relation only considers binary pieces.

414 T. Place

Definition 6. Over an alphabet (A,B,C), we say that a tree t is a piece of a
tree s if and only if there is an injective morphism of the nodes of t to the nodes
of s that preserves labels and the ancestor relation, we write s 7 t. This relation
is naturaly extended on contexts (recall that a context is a tree with a special
node ∗).

Given u, v ∈ V we say that u is a piece of v and write u 7 v if and only if
there is some morphism α : (A,B,C)Δ → (H,V,W) with α(p) = u and α(q) = v
such that p 7 q.

Theorem 2. A binary tree language L is definable in Δ2 if and only if it belongs
to TDA and verifies the following identity:

uω = uωvuω ∀u, v ∈ V such that v 7 u (6)

Notice that it is sufficient to consider only identities (2) and (6), since identities
(1) and (3) of TDA are direct consequences of (6).

Those identities are almost identical to the ones stated in the unranked char-
acterization given in [3], the only difference being the restriction we made by
considering only binary pieces in our piece relation 7. The impact of this restric-
tion on the proof remains minimal in this case. However, technical differences
related to the ranked tree structure do appear in the proof. Of the three logics
we consider in this paper, Δ2 is the one whose characterization has the closest
proof to its unranked variant. The main differences reside in the common part
with the EF+F−1 logic in which we defined the stab sets and proved their prop-
erties. The ranked tree structure actually makes the rest of the proof technically
simpler in this case.

Since the identities are almost identical to the ones of the unranked case, the
proof of the easy direction of the Theorem is exactly the same as in the unranked
case.

7 Characterization of Boolean Combinations of Σ1

In this section we give a decidable characterization of boolean combinations of
Σ1. We use the notion of piece we defined when we stated the characterization
of Δ2.

Theorem 3. A binary tree language L is definable in Σ1 if and only if its syn-
tactic binary algebra verifies the following properties:

uωv = uω = vuω v 7 u (7)

for all u, v ∈ V .

Notice that once again the identity is very close to the one used in the character-
ization over unranked trees. Like the characterization of Δ2, the only difference
in the statement, is the restriction to binary pieces. However, while this restric-
tion was anecdotic in Δ2, it leads to many problems for this logic. An example

Characterization of Logics over Ranked Tree Languages 415

is that for unranked trees, if you take a piece of a tree and split the tree into a
context and another tree, the piece is also naturaly splited into a piece of the
context and a piece of the new tree. This property which is extensively used in
the proof of the unranked characterization is not true on ranked trees, which
forces us to be careful when we split trees.

Since, the identity is similar to the one stated in [7] for unranked trees, the
easy direction of Theorem 3 is identical, if a language is definable by a boolean
combination of Σ1 formulas, its syntactic algebra verifies (7).

8 Discussion

We gave characterizations for EF + F−1, Δ2 and Boolean Combinations of Σ1

for binary trees. However, these results could easily be extended to trees of rank
k for a fixed k by extending the algebraic framework. For example, trees of rank
three would be characterized by adding an other set representing tri-contexts,
(contexts with three holes which are all siblings).

A relevant question would be to consider extensions of these logics. The only
relation we considered is the order <, but what about other relations? We could
add an order between siblings or a vertical successor relation.

References

1. Benedikt, M., Segoufin, L.: Regular tree languages definable in FO. In: Diekert, V.,
Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 327–339. Springer, Heidelberg
(2005)

2. Bojańczyk, M.: Two-way unary temporal logic over trees. In: 22nd IEEE Sympo-
sium on Logic in Computer Science, pp. 121–130 (2007)

3. Bojańczyk, M., Segoufin, L.: Tree languages defined in first-order logic with one
quantifier alternation (2008)

4. Bojańczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics. Theoritical
Compututer Science 358(2-3), 255–272 (2006)

5. Bojańczyk, M., Walukiewicz, I.: Forest algebras. In: Automata and Logic: History
and Perspectives, pp. 107–132. Amsterdam University Press, Amsterdam (2007)

6. Vardi, M.Y., Etessami, K., Wilke, T.: First-order logic with two variables and
unary temporal logic. In: 12th IEEE Symposium on Logic in Computer Science,
pp. 228–235 (1997)

7. Segoufin, L., Bojańczyk, M., Straubing, H.: Piecewise testable tree languages (2008)
8. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge

(1971)
9. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Information

and Control 8, 190–194 (1965)
10. Thérien, D., Wilke, T.: Over words, two variables are as powerful as one quanti-

fier alternation. In: 30th ACM Symposium on Theory of Computing, pp. 234–240
(1998)

11. Wilke, T.: An algebraic characterization of frontier testable tree languages. Theo-
retical Computer Science 154(1), 85–106 (1996)

The Nesting-Depth of Disjunctive μ-Calculus for

Tree Languages and the Limitedness Problem

Thomas Colcombet1 and Christof Löding2

1
Liafa, Cnrs and Université Paris Diderot, Case 7014, 75205 Paris Cedex 13, France

thomas.colcombet@liafa.jussieu.fr
2 RWTH Aachen, Informatik 7, 52056 Aachen, Germany

loeding@cs.rwth-aachen.de

Abstract. In this paper we lift the result of Hashiguchi of decidability
of the restricted star-height problem for words to the level of finite trees.
Formally, we show that it is decidable, given a regular tree language L
and a natural number k whether L can be described by a disjunctive
μ-calculus formula with at most k nesting of fixpoints. We show the
same result for disjunctive μ-formulas allowing substitution. The latter
result is equivalent to deciding if the language is definable by a regular
expression with nesting depth at most k of Kleene-stars.

The proof, following the approach of Kirsten in the word case, goes
by reduction to the decidability of the limitedness problem for non-
deterministic nested distance desert automata over trees. We solve this
problem in the more general framework of alternating tree automata.

1 Introduction

For regular languages of finite words, the star-height problem is to determine
for a given language the minimal number of nestings of Kleene-stars required
in a regular expression describing this language. The star-height can be seen as
a measure for the complexity of a regular language. This problem was raised
by Eggan in [6] who showed that the star-height of languages induces a strict
hierarchy.

The problem was solved 25 years later by Hashiguchi [7] with a very complex
proof. Recently, Kirsten has given a new proof [8] using the notion of nested
distance desert automata. These automata compute a value (a natural num-
ber) for each accepted input. Kirsten showed that the star-height problem can
be reduced to the limitedness problem for nested distance desert automata. A
nested distance desert automaton is called limited if the mapping it computes is
bounded. This problem is solved in [8] using an algebraic approach.

In this paper we lift Kirsten’s result from words to trees. The theory of regular
languages of finite trees has been initiated in [9,5] and since then it has turned
out that a lot of concepts can be generalized from words to the more general
setting of trees (see [4] for an overview). Similar to the case of words, regular
languages of finite trees can be described by several formalisms, including finite
automata and regular expressions. The definition of regular expressions for trees

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 416–430, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Nesting-Depth of Disjunctive μ-Calculus 417

is very similar to the one for words using the operations of union, concatenation,
and iteration (Kleene-star). So the star-height problem for regular tree languages
is posed in the same way as for words. However it is more convenient to refer
to the nesting-depth problem for disjunctive μ-calculus. Disjunctive μ-calculus
is another way of defining regular languages of trees. This formalism uses a fix
point operator μ in place of the Kleene-star, and comes in two variants: with
substitution and without substitution. In both cases, the number of nestings of μ-
fix-points induces a strict hierarchy of languages. In the case with substitution,
this hierarchy coincides with the star-height hierarchy.

As mentioned above, the proof of Kirsten consists of two main steps: a reduc-
tion of the star-height problem to the limitedness problem for nested distance
desert automata, and the decidability proof for the limitedness problem. Our
proof is along the same lines. The first step is very similar to the one presented
in [8]. We define a natural extension of distance desert automata from words to
trees (but we prefer to call them cost automata) and reduce the nesting-depth
problem (both with and without substitution) for tree languages to the limit-
edness problem for cost automata. One should note here that in [8] a specific
construction is used to obtain an automaton for the given language that has
some good properties making the reduction work. We introduce here the notion
of subset automata as an abstract notion for capturing the properties of an au-
tomaton required for the reduction. Then we show that every regular language
of trees can be accepted by such a subset automaton.

The main obstacle for the second step of the proof is that the algebraic ob-
jects required for dealing with languages of trees are more complex than the
ones that can be used when dealing with words. To describe the behavior of a
tree automaton one has to capture the fact that it runs in parallel over many
branches of the tree. We solve this problem by reducing the limitedness problem
for cost automata to the same problem for the much simpler class of purely
non-deterministic automata. These automata, started at the root of the tree,
only move to one of the successors of the current node. In this way each of their
computations corresponds to a single path through the tree. This reduction uses
game-theoretic arguments and even works if we start from an alternating cost
automaton instead of a non-deterministic one. Then, proving the decidability
of the limitedness problem for purely non-deterministic automata is a technical
work that relies on algebraic arguments similar to the proof of Kirsten. New
ideas inspired from [2] are required for making the proof compatible with the
branching nature of trees.

To sum up, the contributions of this paper are the following:

1. We show the reduction of the nesting-depth problem for tree languages to
the limitedness problem for cost automata (Lemma 5). This reduction is
done twice, in the case of disjunctive μ-calculus with substitution, as well as
without substitution. The new notion of subset automata – that we believe
to be of independent interest – is used.

2. We prove the decidability of the limitedness problem in the more general
framework of alternating cost automata (Theorem 2). This requires new

418 T. Colcombet and C. Löding

game-theoretic arguments for a first reduction to the case of purely non-
deterministic automata, as well as an involved variant of the proof of Kirsten.

Combining these results we obtain our main theorem:

Theorem 1. Given a regular language L of trees the following values and cor-
responding formulas or expressions can be computed.

1. The minimal nesting-depth of a disjunctive μ-calculus formula for L.
2. The minimal nesting-depth of a disjunctive μ-calculus formula with substi-

tution for L.
3. The minimal star-height of a regular expression for L.

The paper is organized as follows. In Section 2 we give the main definitions
concerning tree automata, disjunctive μ-calculus, and cost automata. Section 3
presents the reduction of the nesting-depth problem to the limitedness problem
for cost automata on trees. In Section 4 we show that the limitedness problem
for alternating cost automata on trees is decidable.

2 Definitions

In this section we introduce the basics on trees, tree automata, μ-calculus, and
regular expressions. The reader not familiar with the subject of regular tree
languages is referred to [4] for an introduction.

2.1 Trees and Patterns

We fix from now a ranked alphabet A, i.e., a finite set of symbols, together
with an arity |a| for every a ∈ A. The set of (finite) trees T is the least set
such that for all a ∈ A and all t1, . . . , t|a| ∈ T , a(t1, . . . , t|a|) ∈ T . In case
of |a| = 0 we simply write a instead of a(). If we want to make the alphabet
of labels explicit we also refer to a tree as an A-tree. Given a finite set X of
variables disjoint from A, the set ofX-patterns T [X] is the least set containingX
and such that for all a ∈ A and all t1, . . . , t|a| ∈ T [X], a(t1, . . . , t|a|) ∈ T [X].
Hence trees are just ∅-patterns. Sets of trees and sets of patterns are called
languages. For languages L1, . . . , L|a| we denote by a(L1, . . . , La) the language
{a(t1, . . . , t|a|) : t1 ∈ L1, . . . , t|a| ∈ L|a|}.

As usual, the domain dom(t) ⊆ N∗ of a tree or pattern t = a(t1, . . . , t|a|)
is defined inductively as dom(t) = {ε} ∪

⋃|a|
i=1 i · dom(ti), and we view t as a

mapping from its domain to the alphabet A (and X in the case of patterns).
The elements of the domain are called nodes. We refer to nodes that are labeled
by some x ∈ X as variables nodes. Nodes that are labeled with symbols of arity
0 or variables are called leaves. The other ones are called inner nodes.

Given two sets X,Y disjoint from A, a mapping v from X to languages of
Y -patterns, and an X-pattern t, we denote by t[v] the language of Y -patterns
obtained by replacing every x ∈ X appearing in t by some t′ ∈ v(x). We lift
this notation to languages of X-patterns, K[v] =

⋃
t∈K t[v]. By K[x := K ′] we

denote the set of patterns that is obtained by taking a pattern from K and
replacing each x with some pattern from K ′.

The Nesting-Depth of Disjunctive μ-Calculus 419

2.2 Automata

A non-deterministic tree automaton is of the form A = (Q,A, In, Δ), where Q
is a finite set of states disjoint from A, A is the ranked alphabet, In ⊆ Q is the
set of initial states, Δ ⊆ ∪a∈AQ × {a} × Q|a| ∪ Q × {ε} × Q is the transition
relation. Transitions of the form (q, ε, r) are called ε-transitions, and transitions
for symbols of arity 0 are written as (q, a). Given a state q of A we denote by
Aq the automaton A with q as only initial state.

To define acceptance of an automaton we use the notion of run. If the automa-
ton does not have ε-transitions, then a run ρ on a tree t is a Q-tree (in which
states can have any arity) with the same domain as t that starts in an initial
state and respects the transitions. But as we are working with automata with
ε-transitions, the domain of a run can be different from the domain of the input
tree. Therefore we adopt an inductive definition of runs. Let t be an A-tree.

– If t = a and (q, a) ∈ Δ, then q is a run of A on t.
– If t = a(t1, . . . , t|a|) and (q, a, q1, . . . , q|a|) ∈ Δ, then q(ρ1, . . . , ρ|a|) is a run

of A on t, where each ρi is a run of A on ti with state qi at the root.
– If (p, ε, q) ∈ Δ and ρ′ is a run of A on t with state q at the root, then p(ρ′)

is also a run of A on t.

A tree t is accepted by A if there is a run of A on t that starts in an initial state.
The language L(A) is the set of all trees that are accepted by A. A regular
language is a language that is accepted by some automaton.

If we want an automaton A to read X-patterns instead of solely trees, then
we explicitly specify the transitions that the automaton can use at leaves labeled
with a variable. This is done by giving a relation between states and variables.
If R is such a relation, then A[R] denotes the automaton A with the additional
transitions (q, x) for (q, x) ∈ R.

2.3 Disjunctive μ-Calculus

In this section, we introduce two other formalisms for describing regular lan-
guages of trees, namely the disjunctive μ-calculus and regular expressions.

A disjunctive μ-calculus formula with substitution (simply μ-formula with sub-
stitution from now) has the following syntax:

φ ::= ⊥ | a(φ, . . . , φ︸ ︷︷ ︸
|a|

) | φ+ φ | x | μx.φ | φ[x := φ] ,

in which a ∈ A, and x is a variable. If |a| = 0 we just write a instead of a(). If a
μ-formula with substitution does not use the rule φ[x := φ], it is simply called a
μ-formula. One defines the free variables of a μ-formula as usual. A μ-formula
with no free variables is closed.

The semantics [[φ]] of a μ-formula is the language of patterns defined by:

– [[⊥]] = ∅, [[x]] = {x},
– [[a(ψ1, . . . , ψ|a|)]] = a([[ψ1]], . . . , [[ψ|a|]]), [[ψ + ψ′]] = [[ψ]] ∪ [[ψ′]],

420 T. Colcombet and C. Löding

– [[φ[x := ψ]]] = [[φ]][x := [[ψ]]],
– [[μx.ψ]] =

⋃
n∈N Ln, in which L0 = ∅ and Ln+1 = Ln ∪ [[ψ]][x := Ln].

A closed μ-formula with substitution defines a regular language of trees. Re-
ciprocally, every regular language of trees is the semantics of a μ-formula.

The nesting-depth of a μ-formula φ (with or without substitution) is the max-
imal number of nestings of fixpoint operators:

– nd(⊥) = nd(x) = 0,
– nd(φ+ φ′) = nd(φ[x := φ′]) = max(nd(φ), nd(φ′)),
– nd(a(φ1, . . . , φ|a|)) = max(nd(φ1), . . . , nd(φ|a|)),
– nd(μx.φ) = 1 + nd(φ).

Remark 1. Regular expressions over words have be extended to trees, see e.g.,
[4], Chapter 2. Star-height can be defined in this framework as for word lan-
guages. This parameter is linked to the nesting-depth as follows: Each regular
tree language can be defined by a μ-formula with substitution of nesting-depth
k iff it can be defined by a regular expression of star-height k. Hence solving the
nesting-depth problem also solves the star-height problem.

2.4 Cost Automata

We now extend the model of tree automata such that trees are not just accepted or
rejected but furthermore a cost is computed. For this purpose, we add a function
that assigns to each state a priority from a set D. This set D is totally ordered
and partitioned into increments and resets. We can view such an automaton as
having as many counters as there are increments. Whenever a state is visited that
is assigned an increment, then the corresponding counter is incremented, and all
counters for smaller increments (recall thatD is ordered) are reset. If the automa-
ton visits a state that is assigned a reset, then all counters for increments that are
smaller than this reset are set to 0. If we consider a run of such an automaton, then
the cost along a path through the run corresponds to the maximal value of one of
the counters. The cost of a run is the maximal cost of all the paths. The cost of a
tree is the minimal cost over all runs for this tree.

Formally, a cost tree automaton is of the form A = (Q,A, In, Δ, pri), where
the first four components are as before, and pri : Q → D is a priority function.
The set D of priorities is totally ordered, and the elements of D are referred to as
increments and resets. Usually, it is of the form D = {I1, R1, . . . , Ik, Rk} where
the Ii are increments, theRi are resets, and the order is I1 < R1 < · · · < Ik < Rk.
The same notation is used in [1] for hierarchical B-automata, which work in
the same way as our cost automata but on words and not on trees. In [8] the
increments are called ∠i (péage) and the resets �i (source).

A run ρ on a tree t is defined as for standard tree automata. The languageL(A)
is also defined as if no counters where involved. The difference is that a cost is
associated to each run, each tree, and each language by the automaton. We
start by defining the cost of a sequence of states. Let σ = p0p1 · · · pn ∈ Q∗. If all

The Nesting-Depth of Disjunctive μ-Calculus 421

priorities in σ are at most Ii, then we write |σ|Ii for the number of states with
priority Ii in σ:

|σ|Ii =

{
0 if pri(pj) > Ii for some j,
|{j : pri(pj) = Ii}| otherwise.

Intuitively, this corresponds to the number of increments to the counter for Ii.
The condition that no priority higher that Ii occurs means that the counter is
not reset. The cost of σ is defined as

val (σ) = max{|σ′|Ii : i ∈ [k] and σ′ is a factor of σ},

where σ′ is a factor of σ if σ = σ1σ
′σ2 for some σ1, σ2. The cost val (ρ) of a run

ρ is defined as the maximal cost of all the state sequences along paths through
ρ. The cost assigned to a tree t by the automaton A is:

A(t) = min{val(ρ) : ρ is a run of A on t} (and ω if t �∈ L(A)).

Given a language of trees K, we define its cost for the automaton A as:

A(K) = sup{A(t) : t ∈ K} (and 0 if K = ∅).

This value A(K) can be ω, and this for two reasons: either if K �⊆ L(A), or K ⊆
L(A) but K contains trees of arbitrary high costs.

A cost automaton A is limited if A(L(A)) < ω. It is uniformly universal
if A(T) < ω. Those two notions are tightly related as follows:

Remark 2. A cost automaton is uniformly universal iff it is both universal (as
a standard tree automaton) and limited. Conversely, given a tree automaton C
accepting the language complement of L(A), one can see it as a cost tree au-
tomaton of single priority R1. Then A is limited iff A+C is uniformly universal,
in which A+ C is the disjoint union of the automata A and C (as the standard
construction for the union of languages).

When we reduce the problems of determining the star-height or the nesting-depth
of a language to the uniform universality problem for cost automata, then we use
automata with ε-transitions. The solution of the uniform universality problem is
presented for automata without ε-transitions. To justify this we now present a
result that allows to remove ε-transitions while preserving uniform universality.
The proof uses a construction that replaces sequences of ε-transitions by a single
state whose priority is the maximal priority occurring in this sequence.

Lemma 1. For each cost automaton A there exists a cost automaton B without
ε-transitions such that for each language K of trees we have A(K) < ω iff
B(K) < ω.

422 T. Colcombet and C. Löding

3 From Nesting-Depth to Limitedness

In this section we describe how it is possible to reduce the nesting-depth problem
for regular tree languages to the the limitedness problem for non-deterministic
cost automata. We present this reduction for the case of μ-formulas with substi-
tution. The case without substitution follows the same lines.

The reduction consists of two parts. In the first one we present subset au-
tomata, which are non-deterministic tree automata that have special properties
with respect to the subset ordering of languages. In the second part we construct
a cost tree automaton and present our main Lemma 6 relating the nesting-depth
to the limitedness problem for this automaton.

3.1 Subset Automata

We define in this section the notion of a subset-automaton. Though we do not
develop this aspect in the present abstract, we point out that this notion is
purely driven by algebraic considerations.

Given a tree automaton A = (QA, A, InA, ΔA), the transitions in ΔA are
partitioned into ε-transitions Δε

A and non-ε-transitions Δ¬εA . The automaton is
a subset-automaton if it satisfies the following items:

1. A¬ε = (QA, A, InA, Δ¬εA) is (bottom-up) deterministic and complete, i.e., for
all a ∈ A and p1, . . . , p|a| ∈ QA, the set {p : (p, a, p1, . . . , p|a|) ∈ Δ¬εA } is a
singleton; we denote by aA(p1, . . . , p|A|) its sole element.

2. The relation p ≤ q if (q, ε, p) ∈ Δε
A equips QA with a complete sup-semi-

lattice structure, i.e, ≤ is an order, and every subset P of QA has a least
upper bound ∨P for the order ≤ (in particular, there exists a minimum
element ⊥A = ∨∅ and a maximal element �A = ∨QA).

3. For all a ∈ A, the mapping aA is continuous with respect to the sup-semi-
lattice (QA,≤), i.e., for every P1, . . . , P|a| ⊆ QA,

aA(∨P1, . . . ,∨P|a|) = ∨{aA(p1, . . . , p|a|) : p1 ∈ P1, . . . , p|a| ∈ P|a|} .

4. InA = {q ∈ QA : q ≤ q0} for some q0 in QA.

Since A¬ε is deterministic and complete, given a tree t, there exists a unique
state f(t) such that A¬εf(t) has a run over t. Remark that in an algebraic frame-
work, Item 1 means that the mappings aA equip QA with a tree algebra struc-
ture. The mapping f is nothing but the unique tree algebra morphism from the
free algebra of trees to this algebra. As f depends on the automaton A, it should
rather be called fA. However, we drop the subscript to simplify the notation.

Consider now a tree language K, define:

f(K) =
∨
t∈K

f(t) , and F (K) = L(Af(K)) .

The Nesting-Depth of Disjunctive μ-Calculus 423

This extended mapping f is nothing but the extension of the previous morphism
to the setting of tree algebras equipped with a complete sup-semi-lattice struc-
ture. The corresponding free algebra is the set of tree languages equipped with
the inclusion ordering. With this equivalence in mind the following lemmas are
natural. Our first lemma makes the morphism properties of f explicit.

Lemma 2. For all sets of tree languages Z ⊆ 2T , f
(⋃

Y ∈Z Y
)

=
∨

Y ∈Z f(Y) .
For all a ∈ A and tree languages K1, . . . ,K|a|,

f(a(K1, . . . ,K|a|)) = aA(f(K1), . . . , f(K|a|)) .

The second lemma shows how f is related to the semantics of the automaton A.

Lemma 3. For all states q ∈ QA, all trees t, and all tree language K:

– t ∈ L(Aq) iff f(t) ≤ q,
– K ⊆ L(Aq) iff F (K) ⊆ L(Aq) iff f(K) ≤ q.

The first item of the lemma characterizes the language accepted from state q.
The second statement shows that this equivalence can be raised to the level of
languages. More precisely, there is a very simple way to check if a language K
is included in some L(Aq) (this is not symmetric and does not work for the
superset relation), hence the name of a subset-automaton.

Finally, we need the following:

Lemma 4. Every regular language is accepted by a subset-automaton.

There are several ways for proving this lemma, each one of different interest.
Here we sketch two possibilities. Let L the tree language for which we want to
find a subset automaton.

An adapted version of the construction used by Kirsten [8] starts from an
automaton C (with state set QC) accepting the complement language of L. Then
one constructs a non-deterministic automatonA with state set 2QC in such a way
that for all P ⊆ QC and for all trees t: t ∈ L(AP) iff ∀q ∈ P, t �∈ L(Cq) . Such
an automaton accepts L with initial states {P ⊆ QC : InC ⊆ P} (in which InC is
the set of initial states of C). The states are equipped with a complete sup-semi-
lattice structure by P ≤ R iff R ⊆ P . The automaton obtained by adding the
corresponding transitions (R, ε, P) to A yields a subset automaton accepting L.
This construction yields an exponential upper bound in the size of an automaton
that accepts the complement of the language.

Second, the language theoretic construction consists in considering the set of
residuals of L (a language is a residual if it is of the form {t : s[x := t] ∈ L}
in which s is an {x}-pattern with a single unique occurrence of x). It is classical
that every regular tree language L has finitely many residuals. One constructs an
automaton that has intersections of residuals as states. Those intersections induce
a complete sup-semi-lattice structure for the inclusion. The property of residuals
makes the remaining of the construction unique from this point. Once more this
construction yields a subset automaton; more precisely, the minimal one.

424 T. Colcombet and C. Löding

3.2 Reduction of the Nesting-Depth Problem to Limitedness

The reduction is stated in the following lemma.

Lemma 5. Given a regular tree language L and a natural number k, there exists
effectively a cost tree automaton that is limited iff L can be defined by a μ-
formula of nesting-depth at most k. The same statement holds for μ-formulas
with substitution.

We sketch the proof here for the case with substitution. Consider a regular
tree language L, a subset automaton A for the language L, and the corre-
sponding mapping f . We construct for every k ∈ N a cost automaton Bk =
(Qk, A, Ink, Δk, prik) and a mapping π from Qk to QA as follows:

– Qk is the set of nonempty words over QA of length up to k+ 1, we set π(u)
to be the last letter of u.

– Ink is InA, i.e., words consisting of a single initial state of A.
– Δk contains all transitions of the form:

1. (up, a, up1, . . . , up|a|) whenever (p, a, p1, . . . , p|a|) ∈ ΔA,
(up, ε, ur) whenever (p, ε, r) ∈ ΔA,

2. (up, ε, upp),
3. (uqp, ε, up).

– prik(u) =

{
Rk+2−|u| if u = vpp for some p ∈ QA
Ik+2−|u| else.

It should be rather clear that L(Bk) = L(A) = L. Indeed, every run of A can
be seen as a run of Bk, and conversely every run of Bk is mapped by π to a run
of A with the same initial state. The key lemma is the following:

Lemma 6. The cost automaton Bk is limited iff L is the evaluation of a μ-
formula with substitution of nesting-depth at most k. In this case, the μ-formula
with substitution can be effectively given.

Let us give some ideas about the proof. From left to right: this part does not
require A to be a subset automaton. Assuming that Bk is limited, one obtains a
valueN = Bk(L) < ω. The principle is to construct a μ-formula with substitution
that is able to ‘simulate’ the behavior of the automaton Bk up to the value N
of counters.

From right to left. The idea is to prove that for all μ-formulas with substitu-
tion φ of nesting-depth at most k, every tree in [[φ]] is accepted by a run of Bk
of cost at most |φ| (i.e., the size of φ) from state f([[φ]]). In practice, this is done
via an induction on the structure of φ. This means that one has to deal with
non-closed formulas and free variables. Hence, our induction hypothesis is more
technical: given a μ-formula with substitution φ of nesting-depth at most k and
free variables X , given a mapping v from X to tree languages,

Bkf([[φ]][v])[{(x, f(v(x))) : x ∈ X}]([[φ]]) ≤ |φ|.

There is no special difficulty in the proof itself. It of course relies heavily on
the properties of A and f that we have presented above.

The Nesting-Depth of Disjunctive μ-Calculus 425

If φ has no free variables and evaluates to L, we get that Bkf(L)(L) ≤ |φ| < ω.
Recall that Bk accepts the language L. Since all trees in L are accepted by Bk,
this means by Lemma 3 that f(L) ∈ Ink. Hence Bk(L(Bk)) < ω: the cost
automaton Bk is limited.

4 Decidability of the Limitedness Problem

The aim of this section is to show the following theorem.

Theorem 2. The limitedness for alternating cost tree automata is decidable.

In our proof we work with the uniform universality problem according to Re-
mark 2. The proof goes in two steps: first we show how to reduce the uni-
form universality problem of alternating cost tree automata to the one of purely
non-deterministic automata, a very weak form of non-deterministic automata
(Lemma 10). We then show the decidability of the latter problem (Lemma 11).
Among those two parts, we emphasize on the first one which is completely new,
while the first one, though more involved, roughly follows the algebraic argu-
ments of [8] in combination with ideas from [2] for handling trees.

The rest of this section is divided as follows. We first introduce in Section 4.1
cost games (a game theoretic counterpart to cost automata) and establish a
result on positional strategies for them (Lemma 7). We then use in Section 4.2
cost games in a proof for Lemma 10. In Section 4.3 we present Lemma 11, the
decidability of uniform universality for purely non-deterministic automata.

4.1 Cost Games

The semantics of alternating cost automata, which we introduce below, is defined
by means of a game. For this reason we first introduce the general terminology
for games that we need later.

A cost game is of the form G = (VE , VA, v0, E, pri , F) with the following
components:

– V := VE ∪ VA is the finite set of vertices, where VE are the vertices of Eva
and VA are the vertices of Adam (the sets VE and VA are disjoint).

– v0 is the initial vertex.
– E ⊆ V × V is the set of edges. We require that the graph (V,E) is acyclic.
– pri : V → D is a priority function where D is as for cost tree automata.
– F is a subset of states that Eva should avoid.

A play σ is a finite sequence of vertices such that successive vertices in the
sequence are connected by an edge (note that we consider finite and acyclic
games and therefore only finite plays are possible). The cost val(σ) of a play σ
is defined as for automata with the only difference that the cost is ω if the play
contains a vertex from F :

val(σ) =

{
ω if σ contains a vertex from F ,
max{|σ′|Ii : i ∈ [k] and σ′ is a factor of σ} otherwise.

426 T. Colcombet and C. Löding

The notion of strategy for Eva or Adam is defined as usual, it is a function
that takes a play ending in a node of the respective player and maps it to one
of the possible moves (if such a move exists, otherwise it is undefined). Given
two strategies fE for Eva and fA for Adam, they define a unique play σ(fE , fA)
from the initial vertex v0.

The goal of Eva is to minimize the cost of the play while Adam tries to
maximize it. If we fix a threshold for the cost, then we can talk about winning
strategies: We call a strategy fE for Eva a winning strategy in (G, val , N) if
maxfA val(σ(fE , fA)) ≤ N (where fA ranges over strategies for Adam). Sim-
ilarly, a strategy fA for Adam is called a winning strategy in (G, val , N) if
minfE val(σ(fE , fA)) > N . As the plays of G are of finite duration, for each N
the game (G, val , N) is determined.

Proposition 1. For each N , either Adam or Eva has a winning strategy in
(G, val , N).

From this proposition one can easily deduce that the following equality holds:

min
fE

max
fA

val (σ(fE , fA)) = max
fA

min
fE

val(σ(fE , fA))

where fE and fA range over strategies for Eva and Adam. We call the corre-
sponding value the value of the game.

In the reduction from the uniform universality problem for alternating au-
tomata to the one for purely non-deterministic ones we want to annotate input
trees with strategies of Adam. For this purpose we need positional strategies,
i.e., strategies that make their choice only depending on the current vertex and
not on the whole history of the play.

Unfortunately, positional strategies are not sufficient for Adam. But for our
reduction it is enough if we can guarantee a positional winning strategy for a
smaller value. In the following we show that this is indeed possible.

Formally, a positional strategy for Adam is a function fA : VA → V such that
(v, fA(v)) ∈ E for all v ∈ VA that have an E-successor, and fA(v) is undefined
otherwise.

Lemma 7. Let G be a cost game with k increments, and let N ≥ 1. If Adam
has a winning strategy in (G, val , Nk − 1), then Adam has a positional winning
strategy in (G, val , N − 1).

To prove the lemma we want to compute optimal values for Adam at each vertex
of the game, and at the same time construct positional strategies in a bottom-
up fashion, starting at the nodes without successor. The problem is that the
way the value of a play is defined, the optimal choice for Adam at a position
might depend on how the play arrived at this position. To avoid this problem
we first define a new valuation pval (“p” for positional), show that val and pval
are related as indicated in Lemma 7, and prove that this new valuation allows
optimal positional strategies for Adam.

The formal definition of pval is parameterized by N , i.e., the function should
be called pvalN to be more precise. To avoid the subscript we fix some value N
for the remainder of this section.

The Nesting-Depth of Disjunctive μ-Calculus 427

The idea for pval is the following. To allow a backward construction (starting
from the leaves of the game) we evaluate the plays by reading them right to left.
As before, when reading an increment Ii, the corresponding counter is increased
and all the smaller ones are reset. But now we view the sequence of the counters
as the digits of a single number encoded in base N . In particular, if a counter
reaches value N , then it is set back to 0 and the next higher digit (counter) is
increased by 1. The goal of Adam is to reach the value Nk, i.e., to exceed the
highest value that can be represented with k digits in base N .

Formally, pval is a function pval : V ∗ → {0, . . . , N − 1}k ∪ {ω}. The set
{0, . . . , N − 1}k ∪ {ω} is denoted as Nk

ω . We define pval by induction on the
length of a play using the operator ⊕ : D ×Nk

ω → Nk
ω defined as follows (using

infix notation) according to the informal description above:

c⊕ (nk, . . . , n1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(nk, . . . , ni+1, 0, . . . , 0) if c = Ri,
ω if c = Ii and nj = N − 1 for all j ≥ i,
(nk, . . . , nj+1, nj + 1, 0, . . . , 0) for c = Ii and the

smallest j ≥ i with nj < N − 1.

and c⊕ ω = ω. Now we can define pval inductively by pval (ε) = (0, . . . , 0) and

pval (vσ) =

{
ω if v ∈ F ,
pri(v)⊕ pval (σ) otherwise.

Our first lemma relates the values computed by val and pval . The proof is based
on a simple analysis of the definitions of the the two measures.

Lemma 8. Let σ be a play.

(a) If val(σ) ≥ Nk, then pval (σ) = ω.
(b) If pval(σ) = ω, then val(σ) ≥ N .

Having established this relation we now look at strategies for Adam when he
tries to reach the pval -value of ω. We say that a strategy fA for Adam in G is a
winning strategy in (G, pval) if minfE pval (σ(fE , fA)) = ω. Note that according
to Lemma 8 such a winning strategy is also a winning strategy in (G, val , N−1).

For (G, pval) a positional strategy can be constructed inductively starting at
the leaves by always picking the optimal successor.

Lemma 9. If Adam has a winning strategy in (G, pval), then Adam has a po-
sitional winning strategy for (G, pval).

Lemma 7 is then a direct consequence of Lemmas 8 and 9.

4.2 Alternating and Purely Non-deterministic Automata

An alternating automaton in general does not send exactly one state to each
successor of a node in a tree but it can send several states into the same direc-
tion and also no state at all in certain directions. For the formal definition we let

428 T. Colcombet and C. Löding

Γ = {1, . . . , r}, where r is the maximal rank of a letter in the alphabet A. An
alternating cost automaton is of the form A = (Q,A, In, δ, pri), where

– Q is a finite set of states,
– A is the alphabet,
– In ⊆ Q is the set of initial states,
– δ : Q × A → B+(Γ × Q) is the transition function, mapping Q × A to

positive boolean combinations over Γ × Q, such that δ(q, a) is an element
of B+({1, . . . , |a|} × Q). If |a| = 0, then this set contains only the formulas
true and false.

– pri : Q → D is a priority function.

A cost automaton is called purely non-deterministic if the formulas in the tran-
sition function only use disjunctions for symbols of arity at least 1.

Often it is convenient to view the transition function of an alternating au-
tomaton as a mapping δ : Q × A → 22Γ×Q

, where δ(q, a) = {P1, . . . , Pn} cor-
responds to the following formula in DNF:

∨n
i=1

∧
(h,p)∈Pi

(h, p) . Whenever we
write P ∈ δ(q, a), then we refer to this representation of automata.

The semantics of a cost automaton is defined by means of a cost game GA,t
that we describe in the following.

– The vertices or positions of the game are V = VE ∪ VA with

VE = (Q× dom(t)) ∪ {v0} and
VA = {(u, P) : u is an inner node of t and P ∈ δ(q, t(u)) for some q ∈ Q}.

– The initial position is v0.
– The edges are defined as follows:
• From v0 there are edges to (q, ε) for all q ∈ In.
• From a position (q, u) where u is not a leaf, Eva can move to all positions

(u, P) with P ∈ δ(q, t(u)), i.e., she chooses one of the sets specified by
the transition function for state q at node u. (At positions (q, u) where
u is a leaf the game stops.)
• From position (u, P) Adam can move to all positions (p, uh) with (h, p) ∈
P , i.e., Adam chooses one pair of direction and state from P and then
moves correspondingly in the tree.

– The priority function is defined by extending pri of A to the vertices of the
game by setting pri(q, u) = pri(q) and pri(u, P) to be some reset smaller
than all other elements of D (the vertices of the form (u, P) do not have any
influence on the cost of the play).

– The set F contains all vertices (q, u) such that u is a leaf and δ(q, t(u)) =
false.

The cost of t is defined as the value of the game:

A(t) = min
fE

max
fA

val(σ(fE , fA))
[
= max

fA

min
fE

val(σ(fE , fA))
]

The Nesting-Depth of Disjunctive μ-Calculus 429

where fE and fA range over strategies for Eva and Adam. One can note that for
the case of non-deterministic automata this value is the same as the one defined
using runs. Strategies of Eva correspond to runs and strategies of Adam select a
path through the run. As before we extend the definition to languages of trees:
A(K) = sup{A(t) : t ∈ K}.

We now come to the reduction from alternating to purely non-deterministic
automata, which is based on the following idea: An alternating automaton A is
uniformly universal if there exists an N such that for each t Eva has a winning
strategy in (GA,t, val , N). If the game is won by Eva this means that Adam does
not have a winning strategy. The purely non-deterministic automaton B that
we construct works over trees that are annotated with strategies for Adam. The
aim is to check that the strategy of Adam fails, which can be done in a purely
non-deterministic way. If A is uniformly universal, then all strategies of Adam
fail and hence B is also uniformly universal.

Lemma 10. For each alternating cost automaton A one can construct a purely
non-deterministic cost automaton B such that A is uniformly universal iff B is
uniformly universal.

4.3 Uniform Universality of Purely Non-deterministic Tree
Automata

What remains to be shown is the following lemma:

Lemma 11. It is possible, given a purely non-deterministic cost tree automaton,
to decide whether it is uniformly universal or not.

The reduction done so far, to purely non-deterministic automata, has led us to
an almost word-theoretic problem. The proof of Lemma 11 relies on word-related
considerations. In particular the proof heavily relies on the theory of semigroups,
in a way similar to the proof of Kirsten [8]. The principal difficulty is to make
the proof of Kirsten compatible with the tree nature of the problem. This is done
using ideas originating from [2]. The proof itself is long and technical.

5 Conclusion

We have shown that the problems of nesting-depth of the disjunctive μ-calculus
(with and without substitution) for regular tree languages are decidable. The
proof uses cost tree automata, a tree version of the model of nested distance
desert automata used by Kirsten in [8] for deciding the star-height of regular
word languages. The main new contributions are the notion of subset automata,
an abstract description of tree automata that allow the reduction of the star-
height or nesting-depth problem to the limitedness of cost automata, the reduc-
tion of the uniform universality problem for alternating cost automata to the
same problem for purely non-deterministic automata, and the adaption of the
algebraic methods from [8] to the tree setting.

430 T. Colcombet and C. Löding

Possible future work includes the study of other complexity measures for tree
languages. The most natural one is the nesting-depth for μ-calculus (that is for
formulas allowing furthermore the intersection). This problem is open in the
word case, and is referred to as the semi-restricted star-height in the framework
of word languages (the restricted star-height being the one posed by Eggan and
studied by Hashigushi, Kirsten, and in this work, and the generalized star-height
corresponding to regular expressions with complementation, for which we do not
even know if the hierarchy is strict). Another complexity measure concerns the
number of distinct variables used in μ-formulas or regular expressions, and more
precisely the number of variables used in fix-points (as opposed to variables
used for substitutions). For those different problems, reduction to limitedness
questions seems the natural path to follow.

Furthermore, we hope to be able to adapt the game-theoretic framework pre-
sented in Section 4 also to the setting of infinite trees (the remaining of the
proof of limitedness being easy to adapt to this framework). This would be a
major step for solving the problem of parity rank for regular languages of infinite
trees [3], i.e., the problem of finding the minimal number of priorities required
for a parity automaton that accepts a given regular language of infinite trees (a
parameter also known as Mostowski index and tightly connected to the Rabin
index).

References

1. Bojanczyk, M., Colcombet, T.: Bounds in ω-regularity. In: Proceedings of LICS
2006, pp. 285–296. IEEE Computer Society Press, Los Alamitos (2006)

2. Colcombet, T.: A combinatorial theorem for trees. In: Arge, L., Cachin, C., Jur-
dziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 901–912. Springer,
Heidelberg (2007)

3. Colcombet, T., Löding, C.: The non-deterministic Mostowski hierarchy and
distance-parity automata. In: Proceedings of ICALP 2008. LNCS, vol. 5126, pp.
398–409. Springer, Heidelberg (2008)

4. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Löding, C., Lugiez, D.,
Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (2007),
http://tata.gforge.inria.fr

5. Doner, J.: Tree acceptors and some of their applications. Journal of Computer and
System Sciences 4, 406–451 (1970)

6. Eggan, L.C.: Transition graphs and the star-height of regular events. Michigan Math.
J. 10(4), 385–397 (1963)

7. Hashiguchi, K.: Algorithms for determining relative star height and star height. Inf.
Comput. 78(2), 124–169 (1988)

8. Kirsten, D.: Distance desert automata and the star height problem. RAIRO 3(39),
455–509 (2005)

9. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Mathematical Systems Theory 2(1),
57–81 (1968)

http://tata.gforge.inria.fr

Upper Bounds on the Automata Size for Integer

and Mixed Real and Integer Linear Arithmetic�

(Extended Abstract)��

Jochen Eisinger

Albert-Ludwigs-Universität Freiburg, Germany
eisinger@informatik.uni-freiburg.de

Abstract. Automata-based decision procedures have proved to be a
particularly useful tool for infinite-state model checking, where automata
are used to represent sets of real and integer values. However, not all the-
oretical aspects of these decision procedures are completely understood.
We establish triple exponential upper bounds on the automata size for
FO(Z, +,<) and FO(R, Z, +, <). While a similar bound for Presburger
Arithmetic, i.e., FO(Z, +, <) was obtained earlier using a quantifier elim-
ination based approach, the bound for FO(R, Z, +, <) is novel. We define
two graded back-and-forth systems, and use them to derive bounds on
the automata size by establishing a connection between those systems
and languages that can be described by formulas in the respective logics.
With these upper bounds that match the known lower bounds, the the-
oretical background for automata-based decision procedures for linear
arithmetics becomes more complete.

1 Introduction

Automata-theoretic methods have long been a useful mathematical tool to un-
derstand the decidability of various logics. Büchi observed, in the 1960s, that
automata over finite and infinite words can be used to study arithmetical the-
ories [5, 6]. In addition to being a theoretical tool, automata-based methods
are increasingly employed as the basis for implementations of decision proce-
dures. An important example of such a decision procedure is Presburger Arith-
metic, i.e., FO(Z,+, <), which can be decided using deterministic finite automata
(dfa) [4]. The elements of the domain are represented by finite words and for
a given formula, and an automaton is constructed recursively over the formula
structure that accepts precisely the words that represent the integers that satisfy
the formula. A similar approach works for mixed real and linear arithmetic, i.e.,
FO(R, Z,+, <), which can be decided using weak deterministic Büchi automata
(wdba) [3]. To represent reals, one uses infinite words. Note that wdbas can

� This work was supported by the Deutsche Forschungsgemeinschaft (German Re-
search Foundation).

�� Due to space limitations, proofs are omitted. Details are in the technical report [10].

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 431–445, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

432 J. Eisinger

be handled algorithmically almost as efficient as dfa, i.e., they can be efficiently
complemented and minimized [19].

Although there exist efficient implementations of these automata-based deci-
sion procedures [2, 8, 18], many research questions are still only partially an-
swered. Such questions regard an upper bound on the size of the automata for
deciding FO(R, Z,+, <). For instance, the results presented in [11], where cer-
tain systematical redundancies in wdbas are exploited to decrease the automata
sizes, suggest that the automata-based decision procedure for FO(R, Z,+, <)
might not be optimal. A naive analysis of the size of the automata yields one
exponent for each nested negation. In contrast, Fischer and Rabin established
in [13] a lower bound for any decision procedure for FO(R, Z,+, <) [13], namely
double exponential in non-deterministic time.

In this paper, we establish two tight upper bounds, first on the size of a
minimal dfa for deciding FO(Z,+, <), and second on the size of a minimal
wdba for deciding FO(R, Z,+, <). We employ a method recently developed by
Klaedtke to establish an upper bound on the automata size for FO(R,+, <) [16].
Roughly speaking, the states of a minimal automaton for a formula are related
to equivalence classes of an appropriately chosen refinement of the equivalence
relation defined by Ehrenfeucht-Fraissé games. Such refinements are called graded
back-and-forth systems or sometimes Ehrenfeucht-Fraissé relations [12, 14]. It is
often easier to reason about such a refinement, and to show an upper bound on
the index of these relations and therefore on the index of the equivalence relation
defined by Ehrenfeucht-Fraissé games.

We first define two graded back-and-forth systems for FO(Z,+, <) and
FO(R, Z,+, <), which characterize sets of integers and reals, respectively, that
can be expressed using integer and mixed real and integer linear arithmetic.
These systems are parameterized by the dimension of the sets and the quantifier
rank of the formulas. Upper bounds on the indices of the equivalence relations of
the graded back-and-forth systems are proved. In the second part of this paper,
we then show that these graded back-and-forth systems can be used to refine
the Nerode congruence relation on words. By this, we yield upper bounds on
the size of the minimal dfa for deciding FO(Z,+, <) and the minimal wdba for
deciding FO(R, Z,+, <). The triple exponential upper bounds given here match
the known lower bounds for [13, 15], and thus make the theoretical picture for
those automata-based decision procedures more complete.

Related to this work is the result by Klaedtke [16], where a double exponential
upper bound on the size of a minimal wdba for deciding FO(R,+, <) is estab-
lished. We use this result and combine it with our result for FO(Z,+, <) to estab-
lish an upper bound for FO(R, Z,+, <). From an implementation point of view,
the difference between an automata-based decision procedure for FO(R,+, <)
and FO(R, Z,+, <) is minimal, since no algorithms tailored for FO(R,+, <) are
known. Therefore, existing implementations only support the more general the-
ory FO(R, Z,+, <) [2, 18]. Also related to this is the work by Klaedtke [15], where
a triple exponential bound on the size of a minimal dfa for deciding FO(Z,+, <)
is established. In contrast to our approach, this bound is established by quantifier

Upper Bounds on the Automata Size 433

elimination. The quantifier elimination approach relies on a specific quantifier
elimination procedure, and several upper bounds for quantifier-free formulas.
Note that FO(Z,+, <) does not admit quantifier elimination directly but needs
to be augmented with divisibility predicates and constant symbols. On the other
hand, our approach is more direct and independent of how the dfa is actually
constructed. While the resulting bound is identical in both cases, our approach
allows for a straight-forward adoption of the results for showing an upper bound
for FO(R, Z,+, <).

The rest of the paper is structured as follows. In section 2, we recall pre-
liminaries and basic definitions. In section 3, we define equivalence relations on
tuples of reals and integers, which are then (section 4 and section 5) used to
establish upper bounds on the automata size for integer linear arithmetic and
mixed real and integer linear arithmetic respectively. Finally, in section 6 we
summarize our results and draw conclusions.

2 Preliminaries

We assume that the reader is familiar with logic and automata theory. For the
sake of completeness and to fix notation, we state basic definitions and well-
known facts from these areas.

2.1 Words and Languages

Let Σ be an alphabet. We denote the set of all finite words over Σ by Σ∗ and
by Σ+ the set Σ∗ \ {ε}, where ε is the empty word. Σω is the set of all ω-words
over Σ. The concatenation of words is written as juxtaposition. We write |u|
for the length of u ∈ Σ∗. We often write a word u ∈ Σ∗ of length
 ≥ 0 as
u(0) . . . u(
− 1) and an ω-word γ ∈ Σω as γ(0)γ(1)γ(2) . . . , where u(i) and γ(i)
denote the (i + 1)th letter of u and γ, respectively. For L ⊆ Σ∗, we define the
(Nerode) congruence relation ∼L on Σ∗×Σ∗ as u ∼L v iff uw ∈ L ⇔ vw ∈ L, for
all w ∈ Σ∗. For ω-languages, the congruence relation ∼L is defined analogously.

Additional notation. Let r ≥ 1 and 1 ≤ i ≤ r. We denote the ith component of
b ∈ Σr by b�i and we write u�i for the ith track of u ∈ (Σr)∗, i.e., u�i is the word
v ∈ (Σ)∗ defined as v(j) = u�i(j) for 0 ≤ j < |u|. We use the same notation for
ω-words.

2.2 First-Order Logic

We define first-order logic as usual and assume familiarity with the basic notions
of signatures and first-order formulas (see e.g. [9]). In the following, we restrict
ourselves to relational signatures, i.e., signatures without function symbols and
constants.

We write ϕ(x1, . . . , xr) for a formula ϕ with free variables from x1, . . . , xr.
The quantifier rank of a formula ϕ is denoted as qr(ϕ). A first-order structure A

434 J. Eisinger

over a relational signature defines a domain dom(A) and for each relation symbol
of the signature with arity r, A defines a relation over dom(A)r. We use Z, R,
and M to denote the structures (Z,+, <), (R,+, <), and (R, Z,+, <), where +
is the ternary addition relation, < is the binary order predicate over the integers
and the reals respectively, and Z is an unary predicate such that Z(x) is true iff
x is an integer.

For a1, . . . , ar ∈ dom(A) and a formula ϕ(x1, . . . , xr), we write A |=
ϕ[a1, . . . , ar] if ϕ is satisfied in A with xi interpreted as ai for all 1 ≤ i ≤ r.
We often write x̄ and ā for x1, . . . , xr and a1, . . . , ar when r is obvious from the
context.

For m, r ∈ N and ā, b̄ ∈ dom(A)r we write ā ≡r
m b̄ iff A |= ϕ[ā] ⇔ A |= ϕ[b̄] for

all formulas ϕ(x1, . . . , xr) with qr(ϕ) ≤ m. Note that ≡r
m partitions dom(A)r

such that the elements of an equivalence class cannot be distinguished by any
formula of quantifier rank less than or equal to m. The equivalence classes of
≡r

m can be game-theoretically characterized using so-called Ehrenfeucht-Fraissé
games (see e.g. [14]). Since it is often difficult to reason about ≡r

m directly, we
will define relations that refine ≡r

m, and which are easier to reason about.

2.3 Representing Sets of Reals and Integers

In the remainder, let & ∈ N with & > 1 and Σ = {0, . . . , & − 1} be fixed. & is
called the base.

We will use the following well-known mapping from words and ω-words to
reals [4], to define languages corresponding to sets of integers and reals. Note
that this encoding of reals as words is based on the &’s complement, most sig-
nificant bit first representation. In this representation, the first letter of a word
determines the sign of the value. Also, the first letter can be repeated arbitrarily
often, so that we can assume that for a vector of values, each track of the corre-
sponding word has the same length, even if a single component could be encoded
with less letters. The symbol ' plays the role of a decimal point, separating the
integer part from the fractional part. In the following, let r ∈ N with r ≥ 1.

1. Vr denotes the set of all ω-words over the alphabet Σr∪{'} of the form u'γ,
where u ∈ (Σr)+ and γ ∈ (Σr)ω . The word u is called the integer part and γ
the fractional part.

2. An ω-word u ' γ ∈ Vr represents the vector of reals with r components

〈u ' γ〉 =
∑

0<i<|u|
&|u|−i−1 · u(i) +

∑
i≥0

&−i−1 · γ(i) +

{
0̄ if u(0) = 0̄,
−&|u|−1 otherwise,

where vector addition and scalar multiplication are componentwise.1 For u ∈
(Σr)+ and u′ ∈ (Σr)∗, we define 〈u〉 = 〈u ' 0̄ω〉 and 〈u ' u′〉 = 〈u ' u′0̄ω〉.

3. For a formula ϕ(x1, . . . , xr), we define L(ϕ) = {γ ∈ Vr : M |= ϕ[〈γ〉]}, and
L∗(ϕ) = {u ∈ (Σr)+ : Z |= ϕ[〈u〉]}.

1 Note that we do not distinguish between vectors and tuples.

Upper Bounds on the Automata Size 435

Additional notation. For a ∈ R, +a, denotes the largest integer that is less than
or equal to a, �a� denotes the smallest integer that is greater than or equal to a,
and {a} denotes the fractional part of a, i.e., a− +a,. We use the same notation
for tuples of values where +·,, �·�, and {·} are applied componentwise.

3 Characterization of Sets Definable in Linear Arithmetic

In this section, we introduce three families of relations, which refine ≡r
m on the

structures Z, R, and M respectively. Such relations are commonly known as
graded back-and-forth systems or Ehrenfeucht-Fraissé relations [12, 14]. For Z,
we define a family of relations which refine the relations used by Ferrante and
Rackoff in [12], and for R, we will use the relations defined by Klaedtke in [16].
The latter is a refinement of the relations given by Kozen in [17]. With the
refinements of ≡r

m on the structure Z and R, we can then define a family of
relations on M.

In all three cases, the definitions of the relations closely resemble quantifier
elimination methods for the respective structures [7, 21, 22].

3.1 Integer Linear Arithmetic

We will define relations that equate tuples of integers that cannot be distin-
guished by linear functions with bounded coefficients. First, we define sets of
possible coefficients. The definition of the coefficients is technical, but it is re-
quired to establish a tight upper bound on the indices of the relations. Roughly
speaking, we allow only double exponential many integer values out of the set of
integer values whose absolute value is triple-exponentially bounded in m. For an
understanding of this paper, it is sufficient to consider the sets Bm defined in the
following as the set of integer values whose absolute value is triply exponentially
bounded in m. In this section, all formulas are over the structure Z.

For m ∈ N, we inductively define the sets Bm as B0 = {−2,−1, 0, 1, 2},
B′m = {δv/v′ : δ = lcm(Bm); v, v′ ∈ Bm; v′ �= 0}, and Bm+1 = {v + v′ : v, v′ ∈
B′m}, where lcm(A) denotes the least positive common multiple of all non-zero
members of A ⊆ Z.

Next, we define sets of linear functions, where the coefficients are taken from
the sets Bm.

For r,m ∈ N, let Br
m be the set of functions of the form f(x̄) = c0+

∑r
i=1 cixi,

where c1, . . . , cr ∈ Bm, c0 ∈ Z, and |c0| ≤ (r + 1)(lcm(Bm))2. For a function
f ∈ Br

m with f(x̄) = c0+
∑r

i=1 cixi, we use f∗(x̄) to denote the function f(x̄)−c0.
Note that also f∗ ∈ Br

m.
The difference between our definition and the definition given by Ferrante

and Rackoff can be pin-pointed to the set of functions Br
m, where Ferrante and

Rackoff define a smaller bound for the constant element c0 of a function, namely
|c0| ≤ (lcm(Bm))2. Consequently, the family of relations defined here refines the
family of relations given by Ferrante and Rackoff. We will need this refinement
for Lemma 14 where we establish a connection between this family of relations
and languages. This lemma would not hold when using the original definition.

436 J. Eisinger

Definition 1. For ā, b̄ ∈ Zr we define the equivalence relation Er
m as

āEr
mb̄ iff

(1) f(ā) ≥ 0 ⇔ f(b̄) ≥ 0 for every function f ∈ Br
m, and

(2) ai = bi (mod (lcm(Bm))2), for all 1 ≤ i ≤ r.

Observe that Er
m+1 refines Er

m. We will use this fact in the following without
explicitely referencing it.

The next three lemmas state properties of the relations Er
m. The first two

lemmas state that Er
m refines ≡r

m on Z, while the third lemma establishes an
upper bound on the index of Er

m. Although our definition deviates from the one
given by Ferrante and Rackoff, we omit the proof details due to space limitations
and refer the reader to our technical report [10].

Lemma 2. For ā, b̄ ∈ Zr with āEr
m+1b̄, it holds that for all ar+1 ∈ Z there is a

br+1 ∈ Z such that (ā, ar+1)Er+1
m (b̄, br+1).

Lemma 3. For m, r ∈ N, it holds that āEr
mb̄ implies ā ≡r

m b̄.

Lemma 4. There is a constant c ∈ N such that the index of Er
m is bounded by

222c(m+r)

.

3.2 Real Linear Arithmetic

In this section, all formulas are over the structure R. Similar to the previous
section, we will now introduce a family of relations F r

m over the reals, as used by
Klaedtke in [16]. Since divisibility cannot be expressed using first-order formulas
over R, the relations F r

m are only defined over the sign of certain functions with
bounded coefficients.

For r,m ∈ N, let Cr
m be the set of functions of the form f(x̄) = c0+

∑r
i=1 cixi,

where c0, . . . , cr ∈ Z, |c0| ≤ rm, and |ci| ≤ m for all 1 ≤ i ≤ r.

Definition 5. For ā, b̄ ∈ Rr, we define the equivalence relation F r
m as āF r

mb̄ iff
f(ā) ≥ 0 ⇔ f(b̄) ≥ 0, for all f ∈ Cr

m.

Next, we state properties of the relations F r
m, which we will use later in our

proofs. Due to space limitations we refer the reader to [16] for the proof details.

Lemma 6. For ā, b̄ ∈ Rr with āF r
4m2 b̄, it holds that for all ar+1 ∈ R, there is a

br+1 ∈ R such that (ā, ar+1)F r+1
m (b̄, br+1).

Lemma 7. For all ā, b̄ ∈ Rr it holds that āF r
23·2m−2 b̄ implies ā ≡r

m b̄.

Lemma 8. There is a constant c ∈ N such that the index of F r
22m is bounded by

22c(m+r)
.

Upper Bounds on the Automata Size 437

3.3 Mixed Real and Integer Linear Arithmetic

Using the relations defined in the previous two sections, we now define a family
of relations Gm,nr that refine ≡r

m on M. Roughly speaking, Gr
m,n relates two

tuples of real values, if their integer parts are in the same equivalence class of
Er

m, and their fractional part are in the same equivalence class of F r
n . Note that

both Z and R can be interpreted in M. In this section, all formulas will be over
the structure M.

Definition 9. For ā, b̄ ∈ Rr we define the equivalence relation Gr
m,n as

āGr
m,nb̄ iff +ā,Er

m+b̄, and {ā}F r
n{b̄}.

The next lemmas state that this family of relations refines ≡r
m on the structure

M, and establish an upper bound on the index of Gr
m,n. We will use a standard

technique from the field of model theory. First, we show that Gr
m,n has the

back-and-forth property.

Lemma 10. For ā, b̄ ∈ Rr with āGr
m+1,4n2 b̄, it holds that for all ar+1 ∈ R, there

is a br+1 ∈ R with (ā, ar+1)Gr+1
m,n(b̄, br+1).

Proof. Given ā, b̄, and ar+1 with āGr
m+1,4n2 b̄. Because āGr

m+1,4n2 b̄ implies
+ā,Er

m+1+b̄,, Lemma 2 states that for +ar+1, there is a b′r+1 ∈ Z such
that +ā, ar+1,Er+1

m +b̄, b′r+1, holds. Similarly, āGr
m+1,4n2 b̄ implies {ā}F r

4n2{b̄},
so from Lemma 6 it follows that for {ar+1}, there is a b′′r+1 ∈ R such that
{ā, ar+1}F r+1

n {b̄, b′′r+1} holds.
Choose br+1 = b′r+1 + b′′r+1, then for (ā, ar+1)Gr+1

m,n(b̄, br+1) it remains to
show that 0 ≤ {ar+1} < 1 implies 0 ≤ b′′r+1 < 1. Note that the func-
tions xr+1 and −xr+1 + 1 from Cr+1

n are both positive for {ā, ar+1}, and so
{ā, ar+1}F r+1

n {b̄, b′′r+1} implies 0 ≤ b′′r+1 < 1. ��

Next, we state that Gr
m,n refines ≡r

m. by an inductive argument, using the back-
and-forth property for the induction step.

Lemma 11. For m, r ∈ N, it holds that Gr
m,23·2m−2 refines ≡r

m.

Proof. Given ā, b̄ ∈ Rr with āGr
m,23·2m−2 b̄. We prove the claim by induction

over m ∈ N. For m = 0, it suffices to show that ā and b̄ satisfy the same
atomic formulas, namely x + y = z, x = y, x < z, and Z(x). Observe that
āGr

0,23·20−2 b̄ implies both +ā,Er
0+b̄, and {ā}F r

23·20−2{b̄} which refine ≡r
0 on Z

and R respectively. It is easy to see that ai + aj = ak iff bi + bj = bk for
all 1 ≤ i, j, k ≤ r, and similar for x = y and x < y. For Z(x), observe that
{ai} = 0 iff {bi} = 0 for all 1 ≤ i ≤ r, otherwise there is a function f ∈ Cr

22cm

with f(x̄) = −xi and f({ā}) = 0 and f({b̄}) < 0 contradicting {ā}F r
23·20−2{b̄}.

Therefore, Z(ai) iff Z(bi) holds for all 1 ≤ i ≤ r.
Now assume that the claim is true for some m ≥ 0. We have to show that

Gr
m+1,23·2m+1−2 refines ≡r

m+1. Observe that all formulas ϕ with qr(ϕ) = m+1 are

438 J. Eisinger

equivalent to a Boolean combination of formulas of the form ∃xψ with qr(ψ) ≤
m. So it suffices to show that M |= ∃xψ[ā] iff M |= ∃xψ[b̄], where ψ is a formula
with qr(ψ) ≤ m. For reasons of symmetry, it is enough to show one direction.
Assume M |= ∃xψ[ā], then there is a ar+1 ∈ R such that M |= ψ[ā, ar+1].

Assume that āGr
m+1,23·2m+1−2 b̄, and observe that 4(23·2m−2)2 = 23·2m+1−2.

We can conclude from Lemma 10 that there is a br+1 ∈ R such that
(ā, ar+1)Gr+1

m,23·2m−2(b̄, br+1). By the induction hypothesis, it follows that M |=
ψ[b̄, br+1], and therefore M |= ∃xψ[b̄]. ��

Finally, we establish an upper bound on the index of Gr
m,n.

Lemma 12. There is a constant c ∈ N such that the index of Gr
m,22m is bounded

by 222c(m+r)

.

Proof. The index of Gr
m,22m is bounded by the product of the upper bounds on

the index of Er
m and F r

22m , so with Lemmas 4 and 8, there is a constant c such
that the claimed bound holds. ��

4 Integer Linear Arithmetic

In this section, we establish a connection between the relations Er
m defined in

Definition 1 and the Nerode relation ∼L∗
ϕ

for first-order formulas ϕ over the
structure Z. We achieve this by showing that Er

m has certain congruence prop-
erties with regard to word concatenation. This property is the heart of our proof
for an upper bound to the index of the Nerode relation of a given language, and
under the assumption that Lemma 14 has been shown, it is easy to see that the
following theorem holds.

Theorem 13. Let ϕ(x1, . . . , xr) be a formula with qr(ϕ) ≤ m. There is a con-
stant c ∈ N such that the index of ∼L∗

ϕ
is at most 222cn

, where n is the size of
ϕ, i.e., the number of symbols in ϕ.

This theorem follows immediately from the definition of the Nerode relation, the
upper bound on the index of Er

m in Lemma 4, and the following lemma.

Lemma 14. For u, v ∈ (Σr)+, if 〈u〉Er
m〈v〉, then 〈uw〉Er

m〈vw〉 for all w ∈
(Σr)∗.

Proof. Recall that for a linear function f , the linear function f∗ is defined as
f∗(x̄) = f(x̄) − f(0̄). We will use the two facts that for u ∈ (Σr)+, w ∈ (Σr)∗,
and for any integer linear function f , in particular for f ∈ Br

m, the following
holds:

〈uw〉 = 〈u〉&|w| + 〈0̄w〉 and

f(〈uw〉) = f(0̄) + f∗(〈u〉)&|w| + f∗(〈0̄w〉).

Upper Bounds on the Automata Size 439

Assume that the claim is false, i.e., let u, v ∈ (Σr)+ with 〈u〉Er
m〈v〉, and assume

that there is a word w ∈ (Σr)∗ such that 〈uw〉Er
m〈vw〉 does not hold. Let

δ = lcm(Bm). Obviously, 〈uwi〉 = 〈vwi〉 (mod δ2), so we can conclude that there
exists a linear function f ∈ Br

m and either (1) f(〈uw〉) ≥ 0 and f(〈vw〉) < 0
or (2) f(〈uw〉) < 0 and f(〈vw〉) ≥ 0. Because (2) can be reduced to (1) with a
function g(x̄) = −f(x̄), we will restrict ourselves to (1).

We will argue that f∗(〈u〉)&|w| and f∗(〈v〉)&|w| are large enough such that the
addition of f∗(〈w〉) is negligible. Hence, if the sign of f(〈uw〉) and f(〈vw〉) is
different, already the sign of f(〈u〉) and f(〈v〉) has to be different. But this is a
contradiction to 〈u〉Er

m〈v〉.
We continue with the proof by establishing bounds on f∗(〈u〉), f∗(〈v〉) and

f∗(〈w〉). Because the words u and v are in the same equivalence class of Er
m, and

f∗(〈u〉) �= f∗(〈v〉) holds, we can conclude that |f∗(〈u〉)| and |f∗(〈v〉)| are large.
Indeed, we can assume that |f∗(〈u〉)|, |f∗(〈v〉)| ≥ (r+1)δ2. If |f∗(〈u〉)| < (r+1)δ2

or |f∗(〈v〉)| < (r+1)δ2, then there is a function g ∈ Br
m that just shifts f∗(x) by

a value smaller than or equal to (r + 1)δ2, such that g(〈u〉) ≥ 0 and g(〈v〉) < 0.
But this is a contradiction to 〈u〉Er

m〈v〉.
We can also find an upper bound for |f∗(〈0̄w〉)|, which is a sum of r products

between a value from Bm, which is surely less or equal to δ2, and a value which
can be written in base & with |w| letters, so |f∗(〈0̄w〉)| ≤ rδ2(&|w| − 1).

With this, we can now continue our proof. There are two possible cases:

(i) f∗(〈u〉) ≤ −(r + 1)δ2, but then f(〈uw〉) ≤ (r + 1)δ2 − (r + 1)δ2&|w| +
rδ2(&|w| − 1) < 0, contradicting our assumption that f(〈uw〉) ≥ 0, and

(ii) f∗(〈u〉) ≥ (r + 1)δ2, from which follows that f∗(〈v〉) ≥ (r + 1)δ2 and we
get a similar contradiction to f(〈vw〉) < 0.

We have to conclude that such a linear function does not exist but
〈uw〉Er

m〈vw〉 is true for all w ∈ (Σr)∗. ��

It becomes clear now, why we needed the finer graded back-and-forth system
Er

m. When using the original definition from Ferrante and Rackoff, we can only
conclude that |f∗(〈u〉)| and |f∗(〈v〉)| are larger than δ2, while the bound for
|f∗(〈0̄w〉)| also depends on r. Therefore, we defined Br

m to include functions
where the constant element c0 is not bounded by δ2 but by (r + 1)δ2.

With this lemma at hand, it is clear that Er
m refines the Nerode relation

and hence that Theorem 13 holds. Note that for a non-trivial formula ϕ, the
empty word is in its own equivalence class of the Nerode relation ∼L∗

ϕ
, but this

does not affect our upper bound. Because for any formula ϕ, the language L∗ϕ
is regular, the equivalence classes of ∼L∗

ϕ
determine the number of states of the

minimal dfa accepting L∗ϕ. Thus, Theorem 13 establishes a triple exponential
bound with respect to the formula length on the number of states of the minimal
dfa accepting L∗ϕ.

Note that a similar result was already obtained by Klaedtke in [15] using
a quantifier elimination approach. However, the structure Z does not allow for
quantifier elimination but needs to be augmented with divisibility predicates
and constant symbols [7]. Therefore, the method presented there depends on the

440 J. Eisinger

quantifier elimination method and relies on several other bounds both for the
generated quantifier free formulas and automata accepting the languages defined
by these formulas. On the other hand, the proof presented here is more direct
and does not depend on the way the automaton is actually constructed from the
formula. Also, we can reuse it to establish an upper bound on the automata size
for deciding mixed linear integer and real arithmetic in the next section.

Also note that the upper bound on the automata size is tight, i.e., there exists
a family of formulas ϕn such that the index of ∼L∗

ϕn
is at least triple exponential

in n [15].. These formulas are derived from the proof of a lower bound for any
decision procedure for FO(Z,+, <) by Fischer and Rabin [13].

5 Mixed Linear Arithmetic

In this section, we will establish a connection between the relations Gr
m,n and the

relation ∼Lϕ for first-order formulas ϕ over the structure M. While the general
structure of this section is the same as for the previous section, the proofs are
more involved. This has mainly two reasons.

First, the value encoded by a finite word u'u′ with u ∈ (Σr)+ and u′ ∈ (Σr)∗

does not change when appending the letter 0̄. This means, the word u ' u′ and
the words u ' u′0̄+ all encode a single value which in turn is member of a single
equivalence class of Gr

m,n. However, when appending an ω-word γ ∈ (Σr)ω , the
ω-words u ' u′γ and u ' u′0̄+γ might encode different real values. Obviously,
these different values might be in different equivalence classes of Gr

m,n. They
potentially encode different real values, because the fractional parts u′ and u′0̄+

are of different length. Therefore, the letters of γ are encoding for digits at
different positions of the fractional parts. In general, this problem occurs for all
finite words u ' u′ and v ' v′ which encode real values in the same equivalence
class of Gr

m,n, but u′ and v′ are of different length.
Second, we cannot treat the integer and the fractional part of a value encoded

by an ω-word u ' u′γ separately by just looking at 〈u〉 and 〈0̄ ' u′γ〉, since, e.g.,
the ω-word 〈0 ' (& − 1)ω〉 encodes the integer value 1. So when examining the
fractional part of the values encoded by u ' u′ and v ' v′, we have to make sure
that u′�i ∈ (&− 1)∗ iff v′�i ∈ (&− 1)∗ for 1 ≤ i ≤ r. It is then the case that if the
fractional part of a track in u ' u′γ encodes 1, the fractional part of the same
track in v ' v′γ also encodes 1, and vice versa.

5.1 Relationship to Languages

Despite the two problems mentioned above, the following lemmas establish cer-
tain properties of Gr

m,n with regard to word concatenation.
First, we recall a result for the family of relations F r

m on R from [16].

Lemma 15. For u, v ∈ (Σr)+ and u′, v′ ∈ (Σr)∗ the following fact holds. If
〈u ' u′〉F r

2m〈v ' v′〉 with |u′| ≥ |v′|, then for all γ ∈ (Σr)ω, it holds that 〈u '
u′γ〉F r

m〈v ' v′0̄kγ〉 with k = min({|u′| − |v′|} ∪ {k ∈ Z : &k ≥ rm}).

Upper Bounds on the Automata Size 441

Roughly speaking, this lemma states that, if two words u ' u′ and v ' v′ encode
values that are in the same equivalence class of F r

m, but u′ and v′ are of different
length, we can extend the shorter one with zeros such that F r

m has a congruence
property with regard to word concatenation. We only need a bounded number
of zeros. Because either after appending zeros to the shorter word, both words
are that long that by appending an arbitrary ω-word, the change in the values
encoded is negligible. Or, both words are of the same size after padding the
shorter one with zeros.

With this result, and with Lemma 14, we can now proceed to show that
Gr

m,n also has a certain congruence property with regard to word concatenation.
However, as mentioned earlier, this is not a direct result, since we cannot treat
the integer part and the fractional part separately.

In the following, we will use the functions D(u) = {i ∈ N : 1 ≤ i ≤ r and u�i ∈
(&−1)∗} for u ∈ (Σr)∗, and Dω(γ) = {i ∈ N : 1 ≤ 1 ≤ r and γ�i = (&−1)ω} for
γ ∈ (Σr)ω . We use these functions to identify tracks where the fractional part
potentially encodes 1 instead of a strictly smaller value.

Lemma 16 states three properties of Gr
m,n with regard to word concatenation,

namely: (1) Gr
m,n has the same properties as Er

m for words without a fractional
part; (2) Gr

m,n has a similar property as F r
n , if avoiding words which might

result in the fractional part encoding for an integer value; And (3) Gr
m,n has a

congruence property with regard to word concatenation, if we restrict ourselves
to words where the same tracks of the fractional part potentially encode the
value 1.

Lemma 16. For u, v ∈ (Σr)+ and u′, v′ ∈ (Σr)∗, the following three facts hold.

(i) If 〈u〉Gr
m,n〈v〉 then for all w ∈ (Σr)∗ it holds that 〈uw〉Gr

m,n〈vw〉.
(ii) If 〈u ' u′〉Gr

m,2n〈v ' v′〉 with |u′| ≥ |v′|, then for all γ ∈ (Σr)ω with
Dω(γ) ∩ (D(u′) ∪ D(v′)) = ∅, it holds that 〈u ' u′γ〉Gr

m,n〈v ' v′0̄kγ〉 with
k = min({|u′| − |v′|} ∪ {k ∈ Z : &k ≥ rn}).

(iii) If 〈u'u′γ〉Gr
m+1,n〈v'v′γ〉 for all γ ∈ (Σr)ω with Dω(γ)∩(D(u′)∪D(v′)) = ∅,

and D(u′) = D(v′), then 〈u ' u′γ〉Gr
m,n〈v ' v′γ〉 holds for all γ ∈ (Σr)ω.

Proof. (i) This follows directly from Lemma 14 and Definition 9.
(ii) The restriction Dω(γ)∩ (D(u′) ∪D(v′)) = ∅ enforces that by appending γ

to either u'u′ or v 'v′0̄k, the integer value of the encoded values cannot change.
Therefore, this property follows from Lemma 15 and Definition 9.

(iii) Due to space limitations, we will only give a proof sketch.
Let γ ∈ (Σr)ω with Dω(γ)∩(D(u′)∪D(v′)) �= ∅, i.e., certain tracks of the words

0̄'u′γ and 0̄'v′γ encode the value 1. Since D(v′) = D(u′), the integer value of the
values encoded by the words u ' u′ and v ' v′ change by the same amount when
appending γ. Therefore, we can proceed to proof the third property separately
for the integer part and for the fractional part. Recall that āGr

m,nb̄ is defined as
+ā,Er

m+b̄, and {ā}F r
n{b̄}.

First, we consider the integer part. Since Er
m+1 refines Er

m, and the change in
the integer part is bounded (at most r components are changed by 1), it is easy
to show that +〈u ' u′γ〉,Er

m+〈v ' v′γ〉, holds.

442 J. Eisinger

For the fractional part, we can just ignore those tracks of 0̄ ' u′γ (and also
those of 0̄ ' v′γ) that encode (the integer value) 1. But then we can find an
ω-word γ′ ∈ (Σr)ω such that f({〈u'u′γ〉}) = f({〈u'u′γ′〉}) for all f ∈ Cr

n (and
similar for v ' v′).

From these two facts, and together with the precondition of (iii), we can now
conclude that 〈u ' u′γ〉Gr

m,n〈v ' v′γ〉 holds for all γ ∈ (Σr)ω . ��

5.2 Upper Bounds

Using the results from this and the previous section, we will establish an upper
bound on the index of ∼Lϕ .

Theorem 17. Let ϕ(x1, . . . , xr) be a formula with qr(ϕ) ≤ m. There is a con-
stant c ∈ N such that the index of ∼Lϕ is at most 222cn

, where n is the size of
ϕ, i.e., the number of symbols in ϕ.

In contrast to the integer linear arithmetic case, Gr
m,n does not directly refine

∼Lϕ. However, we can use Gr
m,n to define a family of relations that refines ∼Lϕ

using the results established in the previous lemma. The general idea is as follows.
We consider all words separately that encode values of a single equivalence class
of Gr

m,n. Then we partition these words by their length using Lemma 16(ii). We
partition these new classes again into words with similar fractional parts as in
the precondition of Lemma 16(iii). Then, after refining Gr

m,n twice, we find a
partition that refines ∼Lϕ, and we can use the upper bound on the index of
Gr

m,n to deduce an upper bound on the index of ∼Lϕ .

Proof. We now define such an equivalence relation Sr
m on (Σr)∗ × (Σr)∗. For

all u, v ∈ (Σr)+ we define uSr
mv iff 〈u〉Gr

m+1,222m+2+1〈v〉 (cf. Lemma 16(i)). The
empty word ε is in its own equivalence class, and all words u ∈ (Σr ∪{'})∗ with
two or more occurrences of ', or where u(0) = ', i.e., words not encoding for a
value, are in one equivalence class.

It remains to define the equivalence classes of Sr
m on the words u ' u′ with

u ∈ (Σr)+ and u′ ∈ (Σr)∗. For such a word u ' u′ consider the set X = {v ' v′ :
〈u ' u′〉Gr

m+1,222m+2+1〈v ' v′〉}. Assume that |u′| ≤ |v′| for all v ' v′ ∈ X . Then
we partition X into classes Yk (cf. Lemma 16(ii)) such that

– for k ∈ {0, . . . , �log� r222m+2+1� − 1}
let Yk = {v ' v′ : v ' v′ ∈ X ∧ |u′|+ k = |v′|}, and

– for k = �log� r222m+2+1�
let Yk = {v ' v′ : v ' v′ ∈ X ∧ |u′|+ k ≤ |v′|}.

Sr
m then refines this partition of X such that u'u′Sr

mv'v
′ iff both D(u′) = D(v′)

and u ' u′, v ' v′ ∈ Yk for some k (cf. Lemma 16(iii)).
It follows immediately that for all u, v ∈ (Σr)+ and u′, v′ ∈ (Σr)∗

(i) uSr
mv implies u ∼Lϕ v, and

(ii) u ' u′Sr
mv ' v

′ implies u ' u′ ∼Lϕ v ' v′.

Upper Bounds on the Automata Size 443

It remains to show an upper bound on the index of Sr
m. We defined Sr

m to
partition the equivalence classes of Gr

m+1,222m+2+1 into �log� r222m+2+1� sets and
each of these sets into 2r classes. From Lemma 12, we know that the index of

Gr
m+1,222m+2+1 is bounded by 222d(m+r)

for some constant d ∈ N. Observe that
1 ≤ m + r ≤ n. Hence, there is a constant c ∈ N such that the index of Sr

m is
bounded by

222d(m+r)

· �log� r222m+2+1� · 2r ≤ 222dn

· 23+n · 2n ≤ 222cn

. ��

Note that for any formula ϕ, the language Lϕ is in the Borel class Fσ ∩Gδ [3],
which exactly captures the expressive power of weak deterministic Büchi au-
tomaton (wdba) [20]. Therefore, the equivalence classes of ∼Lϕ determine the
number of states of the minimal wdba accepting Lϕ [19]. Thus, Theorem 17
establishes a triple exponential bound with respect to the formula length on the
number of states of the minimal wdba accepting Lϕ. Note that the upper bound
on the automata size is tight, i.e., there exists a family of formulas ϕn such that
the index of ∼Lϕn

is at least triple exponential in n. This is the same family of
formulas as for the structure Z, because Z can be interpreted in M.

6 Conclusion

We have established a triple exponential bound on the size of the minimal de-
terministic finite automata for deciding FO(Z,+, <), and on the size of the
minimal weak deterministic Büchi automata for deciding FO(R, Z,+, <). We
used in both cases a most significant bit first (msb) encoding. We defined two
graded back-and-forth systems and showed that they refine the equivalence re-
lation defined by Ehrenfeucht-Fraissé games. By establishing certain congruence
properties of these systems with regard to word concatenation, we could use
them to derive these bounds. The relation between the graded back-and-forth
systems and the languages describing sets of values definable in linear arithmetic
allows for interesting insights into the structure of the automata. For instance
when interpreting FO(Z,+, <) in FO(R, Z,+, <), the size of the minimal wdba

for a formula is (in the number of variables) exponentially larger than the size
of a minimal dfa. This overhead, which also appears in the proof of the upper
bound for FO(R, Z,+, <), is due to the ambiguous encoding of real values as
ω-words.

Both theories, integer linear arithmetic as well as mixed real and integer linear
arithmetic, are prominent examples for automata-based decision procedures, and
are implemented in several tools used in, e.g., infinite state-space model check-
ers [1, 2, 3]. Our results make the theoretical background for these approaches
more complete. The question, whether it is possible to construct the minimal
automaton for a given formula in time polynomial to the size of the resulting
minimal automaton remains open.

As future work, we plan to investigate the automata-based approach for de-
ciding FO(Z,+, <) using the least significant bit first (lsb) encoding. To the
best of our knowledge, no tight upper bounds are known for this case. Note that

444 J. Eisinger

the family of relations Er
m presented here does not refine the Nerode relation

for the lsb encoding. Additionally, we plan to identify further redundancies in
the encoding of sets of values as languages and try to leverage them to achieve
asymptotically smaller automata, similar to the “don’t care” language approach
presented in [11].

Acknowledgements. The author thanks Bernd Becker, Felix Klaedtke, Moritz
Müller, Stefan Wölfl, and the anonymous reviewers for their comments on earlier
versions of this paper.

References

1. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast acceleration of sym-
bolic transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 118–121. Springer, Heidelberg (2003)

2. Becker, B., Dax, C., Eisinger, J., Klaedtke, F.: LIRA: Handling constraints of linear
arithmetics over the integers and the reals. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 307–310. Springer, Heidelberg (2007)

3. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear
arithmetic over the integers and reals. ACM Trans.Comput. Log. 6, 614–633 (2005)

4. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata:
An overview. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 1–19.
Springer, Heidelberg (2002)

5. Büchi, J.: Weak second-order arithmetic and finite automata. Zeitschrift der math-
ematischen Logik und Grundlagen der Mathematik 6, 66–92 (1960)

6. Büchi, J.: On a decision method in restricted second order arithmetic. In: Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pp. 1–11.
Stanford University Press (1962)

7. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer,
B., Michie, D. (eds.) Proceedings of the 7th Annual Machine Intelligence Work-
shop, pp. 91–100. Edinburgh University Press (1972)

8. Couvreur, J.-M.: A BDD-like implementation of an automata package. In: Do-
maratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317,
pp. 310–311. Springer, Heidelberg (2005)

9. Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Springer,
Heidelberg (1994)

10. Eisinger, J.: Upper bounds on the automata size for integer and mixed real and
integer linear arithmetic, Tech. Report 239, Institut für Informatik, Universität
Freiburg (2008)

11. Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-
based approach for real addition. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 67–80. Springer, Heidelberg (2006)

12. Ferrante, J., Rackoff, C.: The Computational Complexity of Logical Theories.
LNM, vol. 718. Springer, Heidelberg (1979)

13. Fischer, M.J., Rabin, M.O.: Super-exponential complexity of presburger arith-
metic, tech. report, Massachusetts Institute of Technology, Cambridge, MA, USA
(1974)

14. Hodges, W.: A shorter model theory. Cambridge University Press, New York (1997)

Upper Bounds on the Automata Size 445

15. Klaedtke, F.: On the automata size for Presburger arithmetic. In: LICS 2004, pp.
110–119. IEEE Computer Society Press, Los Alamitos (2004)

16. Klaedtke, F.: Ehrenfeucht-Fräıssé goes automatic for real addition. In: STACS
2008. IBFI Schloss Dagstuhl, pp. 445–456 (2008)

17. Kozen, D.: Theory of Computation. Springer, New York (2006)
18. LASH, The Liège Automata-based Symbolic Handler,

http://www.montefiore.ulg.ac.be/∼boigelot/research/lash/

19. Löding, C.: Efficient minimization of deterministic weak ω-automata. Information
Processing Letters 79, 105–109 (2001)

20. Maler, O., Staiger, L.: On syntactic congruences for omega-languages. Theoretical
Comput. Sci. 181, 93–112 (1997)

21. Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: ISSAC 1999,
pp. 129–136. ACM, New York (1999)

22. Weispfenning, V., Loos, R.: Applying linear quantifier elimination. The Computer
Journal 36, 450–462 (1993)

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

Syntactic Metatheory of

Higher-Order Subtyping

Andreas Abel and Dulma Rodriguez

Department of Computer Science, University of Munich
Oettingenstr. 67, D-80538 München, Germany
{andreas.abel|dulma.rodriguez}@ifi.lmu.de

Abstract. We present a new proof of decidability of higher-order sub-
typing in the presence of bounded quantification. The algorithm is
formulated as a judgement which operates on beta-eta-normal forms.
Transitivity and closure under application are proven directly and syn-
tactically, without the need for a model construction or reasoning on
longest beta-reduction sequences. The main technical tool is hereditary
substitution, i.e., substitution of one normal form into another, resolv-
ing all freshly generated redexes on the fly. Hereditary substitutions are
used to keep types in normal-form during execution of the subtyping
algorithm. Termination of hereditary substitutions can be proven in an
elementary way, by a lexicographic induction on the kind of the sub-
stituted variable and the size of the expression substituted into—this is
what enables a purely syntactic metatheory.

Keywords: Higher-order subtyping, bounded quantification, algorith-
mic subtyping, hereditary substitution.

1 Introduction

Higher-order subtyping with bounded quantification has been used to model
aspects of object-oriented programming languages [Pie02, Ch. 32]. Decidability
is non-trivial and has been studied extensively in the past. Both Compagnoni
[Com95] and Pierce and Steffen [PS97] have provided an algorithm for deciding
subtyping for Kernel System Fω

<: and proven its completeness by establishing
a strong normalization theorem, while Compagnoni and Goguen [CG03, CG06]
have studied the more general system Fω

≤ and proved completeness by construct-
ing a Kripke model.

The cited works are impressive, but the complexity of the proofs is a bit
overwhelming when it comes to formalizing them in a theorem prover like Coq,
Isabelle, or Twelf. The reason is that strong normalization theorems or models
are laborious to mechanize and little is known about automating the involved
proofs. However, recently there have been successes in formalizing purely syn-
tactical developments of metatheory of programming languages, most notably
SML [LCH07]. Such formalizations use only first-order inductive judgements
over syntactical objects and proofs by induction over these judgements or sim-
ple arithmetical measures.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 446–460, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Syntactic Metatheory of Higher-Order Subtyping 447

A modern technique to treat the metatheory of systems which rely on nor-
malization is hereditary substitution [WC+03]. Hereditary substitution provides
an algorithm for bottom-up normalization whose termination can be proven
by a simple lexicographic induction—provided the proof-theoretical strength of
the language does not exceed that of the simply-typed lambda-calculus. The
technique of hereditary substitution simplifies the metatheory considerably.
Hereditary substitution has been successfully used for the normalization of the
Concurrent Logical Framework [WC+03], the Edinburgh LF [HL07], and the
type language of SML [LCH07].

In this article, we present a purely syntactic metatheory of Fω
<: using the

technique of hereditary substitution, affirming that it is flexible enough to ac-
count for bounded quantification, which is similar to lazy let-binding or singleton
types. The result is a major simplification of the metatheory of Fω

<: and a proof
structure that is ready for formalization in a proof assistant even with low proof-
theoretical complexity such as Twelf.

Detailed proofs for the theorems of this paper can be found in the diploma
thesis of the second author [Rod07].

Contents. In Section 2, we recapitulate System Fω
<: with kinding, equality and

declarative subtyping and present a subtyping algorithm which works on η-long
β-normal type constructors. In Section 3 we present algorithms for hereditary
substitution and normalization and prove their correctness; this section contains
the main technical work. Afterwards, in Section 4, we show soundness, com-
pleteness, and termination of the subtyping algorithm, which is in essence a
consequence of the results of Section 3. Finally, we discuss related and further
work in the conclusions.

Judgements. In this article, the following judgements will be defined inductively:

Γ 0 F : κ constructor F has kind κ in context Γ
Γ 0 F = F ′ : κ F and F ′ of kind κ are βη-equal
Γ 0 F ≤ F ′ : κ F is a higher-order subtype of F ′

Γ 0 V ⇑ κ V is hereditarily normal of kind κ
Γ 0a V ≤ V ′ V is a subtype of V ′, algorithmically

When we write D :: J , we mean that judgement J is established by derivation D.
Then, |D| denotes the height of this derivation. We consider derivations ordered
by their height: D1 ≤ D2 iff |D1| ≤ |D2|.

2 System F ω
<:

This section introduces the syntax and the rules of kinding, equality, and sub-
typing of system Fω

<: , a typed λ-calculus of polymorphic functions, subtyping,
and type operators.

448 A. Abel and D. Rodriguez

2.1 Constructors and Kinds

System Fω
<: consists of terms (programs), type constructors and kinds. This

article is dedicated to the decidability of subtyping alone, thus, we ignore terms
and typing completely. Note, however, that decidability of typing follows from
decidability of subtyping (via the concept of promotion [Pie02, Ch. 28.1] [PS97]).

Constructors are classified by their kind, i.e., as types, functions on types, etc.
Kinds are given by the grammar:

κ ::= ∗ | κ1 → κ2

Let κ → κ′ be an abbreviation for κ1 → κ2 → . . . → κn → κ′ where |κ| = n. Let
|κ| ∈ N denote a measure on kinds with |κ′| ≤ |κ → κ′| and |κ| < |κ → κ′|. An
example of such a measure is the rank, which is defined recursively as rk(κ → ∗) =
max{1 + rk(κi) | 1 ≤ i ≤ |κ|}. In particular, rk(∗) = 0.

Constructors are given by the following Church-style type-level λ-calculus.
The meta-variableX ranges over a countable infinite set of constructor variables.

A,B, F,G ::= X | λX :κ. F | F G | A → B | ∀X≤G :κ.A | �

As usual, λX : κ. F binds variable X in F . We identify constructors up to α-
equivalence, i.e., up to renaming of bound variables. Sometimes, when we want to
stress syntactic identity of constructors, we use ≡ for α-equivalence. The letters
U, V,W denote β-normal constructors and A,B constructors of kind ∗ (types).
We define �κ→∗ = λY : κ.� (meaning λY1 : κ1. . . . λY|Y | : κ|κ|.�) where the
lengths of Y and κ coincide. A vector notation is also used for application: F G
means F G1 . . . G|G|, where application associates to the left as usual.

Contexts follow the grammar Γ ::= < | Γ,X ≤ G : κ. We refer to G as the
bound of X . We assume all variables bound in Γ to be distinct and define the
notation Γ,X :κ as an abbreviation for Γ,X≤�κ : κ.

2.2 Kinding and Well-Formed Contexts

Well-formed contexts Γ 0, defined mutually with the kinding judgement Γ 0
F : κ in Figure 1, are constructed from the empty context by adding well-kinded
type variable declarations. Kinding is decidable and unique, since constructor
variables are annotated with their kinds.

The extra assumption Γ 0 G : κ in rule (K-Var) is due to Pierce and Steffen
[PS97] and simplifies the proof of Theorem 1, which entails termination of the
subtyping algorithm.

We maintain the invariant that kinding statements are only derivable in well-
formed contexts (see Lemma 1.1). Bounds do not matter for kinding, i.e., if a
constructor F has kind κ in a context Γ , and Γ ′ is the same context as Γ but
with different, well-kinded bounds, then F has kind κ in context Γ ′ as well.

Syntactic Metatheory of Higher-Order Subtyping 449

Γ �
(C-Empty) $ � (C-Bound)

Γ � Γ � G : κ

Γ, X≤G :κ �

Γ � F : κ

(K-Var)
(X≤G :κ) ∈ Γ Γ � G : κ

Γ � X : κ
(K-Top)

Γ �
Γ � � : ∗

(K-Abs)
Γ, X :κ � F : κ′

Γ � λX :κ. F : κ → κ′ (K-App)
Γ � F : κ → κ′ Γ � G : κ

Γ � F G : κ′

(K-Arr)
Γ � A : ∗ Γ � B : ∗

Γ � A → B : ∗ (K-All)
Γ � G : κ Γ, X≤G :κ � A : ∗

Γ � ∀X≤G :κ.A : ∗

Γ � F = F ′ : κ

(Eq-β)
Γ, X :κ � F : κ′ Γ � G : κ

Γ � (λX :κ. F) G = [G/X]F : κ′ (Eq-η)
Γ � F : κ → κ′ X �∈ FV(F)

Γ � λX :κ. FX = F : κ → κ′

(Eq-Var)
(X ≤ G :κ) ∈ Γ Γ � G : κ

Γ � X = X : κ
(Eq-Abs)

Γ, X :κ � F = F ′ : κ′

Γ � λX :κ. F = λX :κ. F ′ : κ → κ′

(Eq-App)
Γ � F = F ′ : κ → κ′ Γ � G = G′ : κ

Γ � F G = F ′ G′ : κ′

(Eq-Top)
Γ �

Γ � � = � : ∗ (Eq-Arr)
Γ � A = A′ : ∗ Γ � B = B′ : ∗

Γ � A → B = A′ → B′ : ∗

(Eq-All)
Γ � G = G′ :κ Γ, X ≤ G :κ � A = A′ : ∗

Γ � ∀X ≤ G :κ.A = ∀X ≤ G′ :κ.A′ : ∗

(Eq-Sym)
Γ � F = F ′ : κ

Γ � F ′ = F : κ
(Eq-Trans)

Γ � F1 = F2 : κ Γ � F2 = F3 : κ

Γ � F1 = F3 : κ

Γ � F ≤ F ′ : κ

(S-Var)
Γ � G : κ X≤G :κ ∈ Γ

Γ � X ≤ G : κ
(S-App)

Γ � F ≤ F ′ : κ → κ′ Γ � H : κ

Γ � FH ≤ F ′H : κ′

(S-Top)
Γ � A : ∗

Γ � A ≤ � : ∗ (S-Abs)
Γ, X :κ � F ≤ F ′ : κ′

Γ � λX :κ. F ≤ λX :κ. F ′ : κ → κ′

(S-Arr)
Γ � A′ ≤ A : ∗ Γ � B ≤ B′ : ∗

Γ � A → B ≤ A′ → B′ : ∗

(S-All)
Γ � G : κ Γ, X≤G :κ � A ≤ A′ : ∗
Γ � ∀X≤G :κ.A ≤ ∀X≤G :κ.A′ : ∗

(S-Eq)
Γ � F = G : κ

Γ � F ≤ G : κ
(S-Trans)

Γ � F ≤ G : κ Γ � G ≤ H : κ

Γ � F ≤ H : κ

Fig. 1. Declarative presentation of F ω
<:

450 A. Abel and D. Rodriguez

Lemma 1 (Admissible rules for kinding)

1. Validity: If Γ 0 F : κ then Γ 0.
2. Weakening: If Γ, Γ ′ 0 F : κ′ and Γ 0 G : κ then Γ,X≤G :κ, Γ ′ 0 F : κ′.
3. Substitution: If Γ,X ≤ H :κ, Γ ′ 0 F : κ′ and Γ 0 G : κ then Γ, [G/X]Γ ′ 0

[G/X]F : κ′.

Since bounds do not matter for kinding, we do not require Γ 0 G ≤ H : κ in
the substitution property.

2.3 Equality

In contrast to previous presentations of System Fω
<: [Pie02, Ch. 31], we consider

constructors equivalent modulo β and η. Instead of an untyped equality we
define an equality judgement Γ 0 F = F ′ : κ, since this is more robust w. r. t.
extensions, e. g., by polarities [Ste98, Abe06b]. The judgement is given by the
axioms (Eq-β) and (Eq-η) plus congruence and equivalence rules (see Figure 1).

The equality judgement has the usual properties.

Lemma 2 (Admissible rules for equality)

1. Reflexivity: If Γ 0 F : κ then Γ 0 F = F : κ.
2. Validity: If Γ 0 G = G′ : κ then Γ 0 G : κ and Γ 0 G′ : κ.
3. Weakening: If Γ, Γ ′ 0 F = F ′ : κ and Γ 0 G : κ then Γ,X ≤ G : κ, Γ ′ 0

F = F ′ : κ.
4. Substitution: If Γ,X ≤ H : κ, Γ ′ 0 F = F ′ : κ′ and Γ 0 G : κ then

Γ, [G/X]Γ ′ 0 [G/X]F = [G/X]F ′ : κ′.

Proof Each by induction on the first derivation. In the proof of item 2, case
(Eq-All), we use the fact that bounds do not matter for kinding. �

2.4 Subtyping

The Fω
<: subtyping relation Γ 0 F ≤ F ′ : κ (see Figure 1) extends the subtyping

relation of system F≤ [CW85]. Subtyping for type operators of higher kind is
defined pointwise, see (S-Abs) and (S-App).

Decidability requires using the Kernel-Fun rule (S-All). Full subtyping would
allow a bound G′ ≤ G on the right hand side, losing decidability [Pie92]. We do
not treat antisymmetry here. Reflexivity is inherited from equality.

Lemma 3 (Admissible rules for subtyping)

1. Validity: If Γ 0 F ≤ F ′ : κ then Γ 0 F : κ and Γ 0 F ′ : κ.
2. Weakening: If Γ, Γ ′ 0 F ≤ F ′ : κ and Γ 0 G : κ′ then Γ,X ≤ G :κ′, Γ ′ 0

F ≤ F ′ : κ.
3. Substitution: If Γ,X ≤ H : κ, Γ ′ 0 F ≤ F ′ : κ′ and Γ 0 G ≤ H : κ then

Γ, [G/X]Γ ′ 0 [G/X]F ≤ [G/X]F ′ : κ′ (not needed in the following).

Syntactic Metatheory of Higher-Order Subtyping 451

2.5 Algorithmic Subtyping

The declarative definition of subtyping contains two rules that correspond to a
logical cut : on the level of constructors, the transitivity rule (S-Trans), if one
views types as predicates and subtyping as predicate inclusion; and on the level
of kinds, the application rule (S-App), if one views kinds as implicational propo-
sitions and constructors as their proofs.1 In an algorithmic version of subtyping,
both kinds of cuts have to be eliminated [Com95, PS97]. Application is elim-
inated by considering constructors in normal form V only, in our case η-long
β-normal form. Transitivity is incorporated into the variable rule (SA-Bound),
which is a fusion of (S-Var), (S-App), (S-Eq), and (S-Trans). It looks up the
bound U of the head X of a neutral constructor XV and recursively checks sub-
typing for U V . To keep everything in normal form, a normalizing application
U @ V is employed which will be defined in Section 3.1.

The algorithm receives as input a context Γ and two η-long constructors V, V ′

such that Γ 0 V : κ and Γ 0 V ′ : κ and decides Γ 0 V ≤ V ′ : κ.

Γ 0a V ≤ V ′

(SA-Top)

Γ 0a V ≤ � (SA-Refl)

Γ 0a XV ≤ XV

(SA-Bound)

(X≤U :κ → ∗) ∈ Γ Γ 0a U @ V ≤W

Γ 0a XV ≤W

(SA-Arr)

Γ 0a W ≤ V : ∗ Γ 0a V ′ ≤W ′

Γ 0a V → V ′ ≤ W → W ′

(SA-All)

Γ,X≤V :κ 0a W ≤W ′

Γ 0a ∀X≤V :κ.W ≤ ∀X≤V :κ.W ′

(SA-Abs)

Γ,X :κ 0a V ≤ V ′

Γ 0a λX :κ. V ≤ λX :κ. V ′

Observe that since we are dealing with η-long forms, the only constructors of
higher kind are λ-abstractions (SA-Abs). The rules specify a deterministic algo-
rithm if one checks applicability of rules earlier in the list prior to rules mentioned
later. In particular, (SA-Top) is checked first, and (SA-Refl) before (SA-Bound).

Our algorithmic subtyping rules correspond to Compagnoni’s [Com95] and
Pierce and Steffen’s [PS97]—except that they consider Church-style β-normal
constructors, hence, their algorithm does not validate η-equality. Thus, one can-
not claim our algorithm is new, but in the remainder of this article we will
present a novel, very direct and concise correctness proof with purely syntactic
methods, which has a realistic chance of being mechanized in a theorem prover
such as Coq, Isabelle, or Twelf.
1 More precisely, (S-App) is the rule of modus ponens, but in unrestricted form it

allows non-normal proofs.

452 A. Abel and D. Rodriguez

3 Normalization of Constructors

In last section we have described a decision procedure for subtyping which works
on η-long β-normal forms. In this section, we will describe a normalization al-
gorithm nf−(−) which is correct w. r. t. judgmental equality:

1. Sound: If Γ 0 F : κ then Γ 0 nfΓ (F) = F : κ.
2. Complete: If Γ 0 F = F ′ : κ then nfΓ (F) ≡ nfΓ (F ′).

3.1 Hereditary Substitution

There are abundant strategies to compute β-normal forms; we use bottom-up
normalization, because its termination can be shown directly in a simply-typed
setting—in our case it is a simply-kinded setting.

The bottom-up strategy nf(H) normalizes the immediate subterms of H and
then puts them back together. For an application H = F G, normalization nf(F)
of the function part may yield an abstraction λY :κ. F ′. In this case, a β-normal
form can be recovered by substituting nf(G) for Y in F ′. New redexes may be
created in turn which are resolved immediately by another substitution etc. The
iteration of this process, which we call hereditary substitution, terminates since
the kind of the substituted variable decreases with each iteration.

Hereditary substitutions are implicit in combinatorial normalization proofs,
e. g., Prawitz [Pra65], Levy [Lév76], Girard, Lafont, and Taylor [GLT89, Ch. 4],
and Amadio and Curien [AC97, Thm. 2.2.9]. They were first made explicit by
Watkins et. al. [WC+03] and Adams [Ada05] for dependent types. We follow the
presentation of the first author [Abe06a].

Hereditary substitution (see Figure 2) is given as a 4-ary function [G/X]κH ,
whose result F̂ is either just a constructor F or a constructor annotated with a
kind, written Fκ. If G and H are β-normal (and well-kinded) then the result will
also be β-normal (and well-kinded). Results can be coerced back to constructors
via an erasure operation given by Fκ = F and F = F .

It is easy to see that if [G/X]κH = Fκ2 then |κ2| ≤ |κ|. This invariant ensures
the termination of hereditary substitution. For correctness we need to show that,
modulo β-equality, hereditary substitution is conventional substitution. In the
following, we leave the coercion implicit.

Lemma 4 (Termination and soundness of hereditary substitutions).
If D :: Γ,X : κ, Γ ′ 0 F : κ′ and Γ 0 G : κ then Γ, [G/X]Γ ′ 0 [G/X]F =
[G/X]κF : κ′.

Proof. By lexicographical induction on (|κ|,D). The proof is a straightforward
extension of the soundness proof in [Abe06a]. �

Corollary 1. If Γ 0 F : κ → κ′ and Γ 0 G : κ then Γ 0 F @G = F G : κ′.

Syntactic Metatheory of Higher-Order Subtyping 453

[G/X]κF

[G/X]κY := Gκ if X = Y
Y otherwise

[G/X]κ(λY :κ′. F) := λY :κ′. [G/X]κF where Y fresh for X, G

[G/X]κ(FH) := ([Ĥ/Y]κ1F ′)κ2 if F̂ = (λY :κ′
1. F

′)κ1→κ2

F̂ Ĥ otherwise

herein, F̂ = [G/X]κF

Ĥ = [G/X]κH

[G/X]κ(A → B) := [G/X]κA → [G/X]κB

[G/X]κ(∀Y ≤ H :κ.A) := ∀Y ≤ [G/X]κH :κ.

[G/X]κA where Y fresh for X, G

[G/X]κ� := �

F @G

(λX :κ. F)@ G := [G/X]κF

F @G := F G if F �= λX :κ. F ′

F @G

F @G := ((F @ G1)@ G2 . . .) @G|G|

Fig. 2. Hereditary substitution

Lemma 5 (Commutativity of hereditary substitutions). Let Γ 0 U : κ
and Γ,X :κ, Γ ′ 0 V : κ′ with κ′ = κ → κ0.

1. If Γ,X :κ, Γ ′ 0Wi : κi for 1 ≤ i ≤ |κ| then

[U/X]κ(V @ W) ≡ [U/X]κV @ [U/X]κW

2. If Γ,X :κ, Γ ′, Y :κ′, Γ ′′ 0W : κ′′ then:

[U/X]κ([V/Y]κ
′
W) ≡ [[U/X]κV /Y]κ

′
([U/X]κW)

Proof. Simultaneously by simultaneous induction2 on {κ, κ′}, first 1 and then 2.
The proof of 2 proceeds by a local induction on W . �

2 Simultaneous order is defined by {X, Y } < {X ′, Y ′} if X < X ′ and Y ≤ Y ′.

454 A. Abel and D. Rodriguez

3.2 Computing the Long Normal Form

Well-kinded constructors are β-normalizing, and we can compute their η-long β-
normal form. First, let us define the η-expansion ηκ(N) of a neutral constructor
N at kind κ by η∗(N) = N and ηκ→κ′(N) = λX :κ. ηκ′(N ηκ(X)).

Lemma 6 (η-expansion is sound). If Γ 0 N : κ then Γ 0 N = ηκ(N) : κ.

Normalization is given by a function nfΓ (F), defined by recursion on F .

nfΓ (X) := ηκ(X) if (X≤ :κ) ∈ Γ
nfΓ (�) := �
nfΓ (λX :κ. F) := λX :κ. nfΓ,X:κ(F)
nfΓ (A → B) := nfΓ (A) → nfΓ (B)
nfΓ (∀X≤G :κ.A) := ∀X≤nfΓ (G) :κ. nfΓ,X≤G:κ(A)
nfΓ (F G) := nfΓ (F)@ nfΓ (G)

The algorithm η-expands the variables, this way producing η-long β-normal
constructors. For well-kinded constructors nf() returns the normal form (see
Theorem 1), but not for all ill-kinded constructors, e.g., nf(Ω) = Ω for Ω =
(λX :∗. X X) (λX :∗. X X).

We omit the subscript Γ if clear from the context of discourse. Normalization
can be extended to contexts in the obvious way: nf(Γ) computes a context where
all bounds have been normalized.

Lemma 7 (Soundness and termination of normalization). If Γ 0 F : κ
then Γ 0 F = nfΓ (F) : κ.

Proof. By induction on the kinding derivation, using Lemma 6 in the variable
case, and Corollary 1 in the application case. �

3.3 Characterization of Long Normal Forms

We will now define a judgement Γ 0 V ⇑ κ, read “V is hereditarily normal of
kind κ in context Γ”, that classifies the β-normal constructor V as a possible
input for the subtyping algorithm. In particular, V must be η-long, and new
redexes which might be created by (SA-Bound) during the execution of the
algorithm must be normalizable. We call such redexes hidden, an example is
∀X≤(λY :∗. V) :∗→ ∗. X W which contains the hidden redex (λY :∗. V)W .

Γ 0 V ⇑ κ

(LN-Bound)

(X≤U :κ → ∗) ∈ Γ Γ 0 Vi ⇑ κi Γ 0 U @ V ⇑ ∗ (')
Γ 0 X V ⇑ ∗

(LN-Abs)

Γ,X :κ 0 V ⇑ κ′
Γ 0 λX :κ. V ⇑ κ → κ′

(LN-Arr)

Γ 0 V ⇑ ∗ Γ 0W ⇑ ∗
Γ 0 V → W ⇑ ∗

(LN-All)

Γ,X≤U :κ 0 V ⇑ ∗
Γ 0 ∀X≤U :κ. V ⇑ ∗ (LN-Top)

Γ ⇑
Γ 0 � ⇑ ∗

Syntactic Metatheory of Higher-Order Subtyping 455

Remark 1. The third hypothesis (') in (LN-Bound) ensures normalization of
hidden redexes, hence Γ 0 V ⇑ κ can be used as a termination measure for
the algorithm. Even without (') the judgement characterizes the η-long normal
forms.

A context is normal, Γ ⇑, if all bounds in Γ are hereditarily normal. In the
following, we establish that normalization is the identity on long normal forms.
First we prove it for variables.

Lemma 8

1. If Γ 0 V ⇑ κ then [V/X]κηκ(X) ≡ V .
2. If D :: Γ,X :κ, Γ ′ 0W ⇑ κ′ then [ηκ(X)/X]κW ≡W .

Proof. Simultaneously by induction on κ, and a local induction on D in 2. �

Lemma 9 (Idempotency of nf). If D :: Γ 0 U ⇑ κ then nf (U) ≡ U .

Proof. By induction on D, using Lemma 8 in the variable case. �

We now build up to a normalization theorem: we will show that nf produces
a hereditarily normal form from each well-kinded constructor. The following
lemma, which can be seen as the heart of our technical development, proves
normalization of application.

Lemma 10 (Substitution and application for normal forms)
Let E :: Γ 0 U ⇑ κ.

1. Assume D :: Γ,X :κ, Γ ′ ⇑. Then Γ, [U/X]κΓ ′ ⇑.
2. Assume D :: Γ,X :κ, Γ ′ 0 V ⇑ κ′. Then Γ, [U/X]κΓ ′ 0 [U/X]κV ⇑ κ′.
3. Assume D :: Γ 0 V ⇑ κ → κ′. Then Γ 0 V @U ⇑ κ′.

Proof. Simultaneously by lexicographical induction on (|κ|,D). The interesting
case of item 2 is (LN-Bound) with V ≡ XV , κ = κ → ∗.

Γ,X :κ, Γ ′ 0 Vi ⇑ κi Γ,X :κ, Γ ′ 0 �κ @ V ⇑ ∗
Γ,X :κ, Γ ′ 0 XV ⇑ ∗

By induction hypothesis (2), we have Di :: Γ, [U/X]κΓ ′ 0 [U/X]κVi ⇑ κi for
i = 1..|κ|. Moreover, we have by induction hypothesis (3):

E1 :: Γ, [U/X]κΓ ′ 0 U @ [U/X]κV1 ⇑ κ2 → . . . → κn → ∗

because (κ1, E) < (κ,D). We again have by induction hypothesis (3):

E2 :: Γ, [U/X]κΓ ′ 0 U @ ([U/X]κV1)@ ([U/X]κV2) ⇑ κ3 → . . . → κn → ∗

because (κ2, E1) < (κ,D). Continuing this schema, we get

En :: Γ, [U/X]κΓ ′ 0 U @ [U/X]κV ⇑ ∗

which is equivalent to Γ, [U/X]κΓ ′ 0 [U/X]κ(X V) ⇑ ∗ and we are finished.
In case V ≡ Y V , with Y �= X , we use Lemma 5. �

456 A. Abel and D. Rodriguez

Theorem 1 (Normalization)

1. If D :: Γ 0 then nf(Γ) ⇑.
2. If D :: Γ 0 F : κ then nf(Γ) 0 nf (F) ⇑ κ.

Proof. Simultaneously by induction on D, using the previous lemma in case of
application. �

3.4 Completeness of Normalization

In this section, we prove completeness of the normalization function, i.e., that
the normal forms of judgmentally equal constructors are identical.

Lemma 11. If D :: Γ,X : κ, Γ ′ 0 F : κ′ and Γ 0 G : κ then nf ([G/X]F) ≡
[nf(G)/X]κnf(F).

Proof. By induction on D. In the application case we use Lemma 5. �

Theorem 2 (Completeness of the normalization). If D :: Γ 0 F = F ′ : κ
then nf (F) ≡ nf(F ′).

Proof. The proof is by induction on D, in case (Eq-η) we use the characterization
of η-long β-normal forms (Theorem 1 and Lemma 9) and in case (Eq-β) we use
the previous lemma. �

Corollary 2 (Uniqueness of normal forms). If Γ 0 V = V ′ : κ and Γ 0
V, V ′ ⇑ κ then V ≡ V ′.

Proof. Directly, using Theorem 2 and Lemma 9. �

4 Verification of Algorithmic Subtyping

In this section, we show that the subtyping algorithm is sound and complete for
the declarative rules in Section 2. The difficult part, namely establishing the nec-
essary properties of hereditary substitution and normalization and constructing
a termination measure Γ 0 V ⇑ κ, has been completed in the last section. The
actual properties of algorithmic subtyping are now easy to verify.

Soundness of the algorithm is straightforward because the algorithmic rules
are less permissive than the declarative ones.

Lemma 12. Let Γ 0 V, V ′ : κ. If D :: Γ 0a V ≤ V ′, then Γ 0 V ≤ V ′ : κ.

Proof. By induction on D. �

Theorem 3 (Soundness of algorithmic subtyping). Let Γ 0 F, F ′ : κ. If
D :: nf (Γ) 0a nf(F) ≤ nf(F ′), then Γ 0 F ≤ F ′ : κ.

Proof. Combining lemmata 12 and 7. To account for normalization of Γ , we es-
tablish that declarative equality and subtyping remain valid if we replace bounds
in the context by judgmentally equal ones. �

Syntactic Metatheory of Higher-Order Subtyping 457

Completeness of the algorithm means that any derivable statement in the declar-
ative system is also derivable in the algorithmic system. This is more diffi-
cult to show than soundness, because we have eliminated declarative rules like
(S-Trans) or (S-App). Thus, we need to show that these rules are admissible in
the algorithmic system.

Lemma 13 (Reflexivity). If V is β-normal then Γ 0a V ≤ V .

Proof. By induction on V . �

Lemma 14 (Transitivity). D1 :: Γ 0a V1 ≤ V2 and D2 :: Γ 0a V2 ≤ V3 imply
Γ 0a V1 ≤ V3.

Proof. By induction on D1. �

The following substitution lemma is the key step in showing that algorithmic
subtyping is closed under application, i.e., complete for rule (S-App).

Lemma 15 (Substitution). Let Γ,X : κ, Γ ′ 0 V, V ′ ⇑ κ′ and Γ 0 U ⇑ κ. If
D :: Γ,X :κ, Γ ′ 0a V ≤ V ′ then Γ, [U/X]κΓ ′ 0a [U/X]κV ≤ [U/X]κV ′.

Proof. By induction on D. The interesting case is (SA-Bound) for V ≡ Y V with
Y bound later in the context than X .

(Y ≤ U ′ :κ → ∗) ∈ Γ ′ Γ,X :κ, Γ ′ 0a U ′@ V ≤W

Γ,X :κ, Γ ′ 0a Y V ≤W

By induction hypothesis we have

Γ, [U/X]κΓ ′ 0a [U/X]κ(U ′@ V) ≤ [U/X]κW

which by Lemma 5, part (1), is equivalent to

Γ, [U/X]κΓ ′ 0a [U/X]κU ′@ [U/X]κV ≤ [U/X]κW.

The goal Γ, [U/X]κΓ ′ 0a Y [U/X]κV ≤ [U/X]κW follows by (SA-Bound). �

Completeness can now be shown by induction on derivations, using the previous
lemmas: reflexivity, transitivity and substitution.

Theorem 4 (Completeness).
If D :: Γ 0 F ≤ F ′ : κ then nf(Γ) 0a nf (F) ≤ nf(F ′).

Proof. By induction on D, using Lemma 15 in case (S-App). �

Termination of algorithmic subtyping is now proven via the inductive termina-
tion predicate Γ 0 V ⇑ κ (which by Theorem 1 holds for all normal forms of
well-kinded constructors). It is a considerable simplification of Compagnoni’s
[Com95] termination measure which features intersection types as well. It has to
be investigated whether the simplicity of our measure can be kept in the presence
of intersection types.

458 A. Abel and D. Rodriguez

Theorem 5 (Termination of algorithmic subtyping). If D1 :: Γ 0 V ⇑ κ
and D2 :: Γ 0 V ′ ⇑ κ then the query Γ 0a V ≤ V ′ terminates.

Proof. By simultaneous induction on {D1,D2}. We detail the case that D1 ends
with (LN-Bound).

(X≤U :κ → ∗) ∈ Γ Γ 0 Vi ⇑ κi for all i Γ 0 U @ V ⇑ ∗
Γ 0 XV ⇑ ∗

In case V ′ �= XV we apply the rule (SA-Bound)

(X≤U :κ → ∗) ∈ Γ Γ 0a U @ V ≤ V ′

Γ 0a XV ≤ V ′

By the induction hypothesis, the query Γ 0a U @ V ≤ V ′ terminates, thus, the
query Γ 0a XV ≤ V ′ terminates as well. �

Corollary 3 (Decidability). If Γ 0 F, F ′ : κ then Γ 0 F ≤ F ′ : κ is decidable.

Proof. By Theorem 2 nf(Γ) 0 nf(F), nf (F ′) ⇑ κ. Hence, the query nf(Γ) 0a
nf(F) ≤ nf(F ′) terminates by Theorem 5. If it succeeds then Γ 0 F ≤ F ′ : κ
by soundness (Theorem 3), if it fails then Γ � 0 F ≤ F ′ : κ by completeness
(Theorem 4).

5 Conclusions and Related Work

In this article we have proven decidability of subtyping for Fω
<: with βη-equality

in a purely syntactical way, with only first-order inductive definitions and simple
induction measures. The proofs have been organized with a formalization in mind
and can be mechanized in proof assistants such as Coq, Isabelle, or Twelf.

Related work. Foundations of Fω
<: and the type-theoretic investigation of object-

oriented languages have been laid by Cardelli [Car88], Mitchell [Mit90], and
Abadi and Cardelli [AC96].

Most similar to the present work is the one of Compagnoni [Com95] both
in the design of the subtyping algorithm and the organization of the proofs of
soundness, completeness, and termination. She also treats intersection types but
not η-equality of constructors. The main differences in the proof are: She inserts
the notion of normal subtyping between the declarative and the algorithmic
one, which we do not require, she refers to strong normalization of reduction,
which adds some complexity to the proof, and she has a complicated termination
measure which involves the longest reduction sequences of constructors classified
by a judgement similar to our hereditary normal forms. Our approach has allowed
considerable simplifications in comparison with Compagnoni’s.

Pierce and Steffen [PS97] justify algorithmic subtyping using rewriting theory.
They consider an extension of β-reductions by Γ -reduction, which replaces a
head variable by its bound, and �-reduction which witnesses that � is defined

Syntactic Metatheory of Higher-Order Subtyping 459

pointwise for higher kinds. The confluence and strong normalization theorems
shed light on the combination of these notions of reduction, however, they are
not the shortest path to the verification of the subtyping algorithm.

Compagnoni and Goguen [CG03] construct a Kripke model based on typed
operational semantics to analyze the metatheory of Fω

≤, an extension of Fω
<: by

bounded abstraction λX ≤ F.G. They use this model to prove anti-symmetry
[CG06] of subtyping which allows replacing judgmental equality by bi-inclusion.
Recently they have investigated Church-style subtyping [CG07], where each vari-
able is annotated by its bound, hence, the complicated Kripke-model is replaced
by a non-Kripke logical relation. Their subtyping algorithm works with weak-
head normal forms, only the decision whether the bound-lookup rule (SA-Bound)

should fire demands full normalization in some cases. The structure of their
proof, with logical relation and strong normalization theorem, seems very ro-
bust w. r. t. extensions of the type language; however, it cannot compete with us
in terms of proof economics.

The first author [Abe06b] considers Fω̂, the higher-order polymorphic lambda-
calculus with sized types and polarized subtyping, but without bounded quan-
tification. His subtyping algorithm uses weak head normal forms and is proven
complete purely syntactically as in this work. The lexicographic induction on
kinds and constructors, which in this article justifies hereditary substitution, is
used by the first author to prove a substitution property for algorithmic subtyp-
ing, which entails completeness. It remains open whether this argument scales
to bounded quantification.

Future work. Steffen has extended his work to Fω
<: with polarities, i. e., co-,

contra-, and mixed-variant type constructors are distinguished. For this exten-
sion, only backtracking algorithms exist [Ste98, p. 102]; we would like to see
whether our proof technique can simplify its metatheory as well. The same ques-
tion arises for the extension Fω

≤ by bounded abstraction.

Acknowledgments. The research has been partially supported by the EU coor-
dination action TYPES (510996).

References

[Abe06a] Abel, A.: Implementing a normalizer using sized heterogeneous types. In:
McBride, C., Uustalu, T. (eds.) Wksh. on Mathematically Structured Func-
tional Programming, MSFP 2006 (2006)

[Abe06b] Abel, A.: Polarized subtyping for sized types. In: Grigoriev, D., Harrison,
J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 381–392. Springer,
Heidelberg (2006)

[AC96] Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
[AC97] Amadio, R., Curien, P.-L.: Domains and Lambda Calculi. Cambridge Uni-

versity Press, Cambridge (1997)
[Ada05] Adams, R.: A Modular Hierarchy of Logical Frameworks. Ph.D. thesis, Uni-

versity of Manchester (2005)

460 A. Abel and D. Rodriguez

[Car88] Cardelli, L.: Structural subtyping and the notion of power type. In: Proc.
of the 15th ACM Symp. on Principles of Programming Languages, POPL
1988, pp. 70–79 (1988)

[CG03] Compagnoni, A.B., Goguen, H.: Typed operational semantics for higher-
order subtyping. Inf. Comput. 184(2), 242–297 (2003)

[CG06] Compagnoni, A., Goguen, H.: Anti-symmetry of higher-order subtyping and
equality by subtyping. Math. Struct. in Comput. Sci. 16, 41–65 (2006)

[CG07] Compagnoni, A., Goguen, H.: Subtyping à la Church. In: Barendsen, E.,
Capretta, V., Geuvers, H., Niqui, M. (eds.) Reflections on Type Theory,
λ-calculus, and the Mind. Essays dedicated to Henk Barendregt on the Oc-
casion of his 60th Birthday. Radboud University Nijmegen (2007)

[Com95] Compagnoni, A.B.: Decidability of higher-order subtyping with intersection
types. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp.
46–60. Springer, Heidelberg (1995)

[CW85] Cardelli, L., Wegner, P.: On understanding types, data abstraction, and
polymorphism. ACM Computing Surveys 17(4), 471–522 (1985)

[GLT89] Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts
in Theoretical Computer Science, vol. 7. Cambridge University Press, Cam-
bridge (1989)

[HL07] Harper, R., Licata, D.: Mechanizing metatheory in a logical framework. J.
Func. Program 17(4–5), 613–673 (2007)

[LCH07] Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of
Standard ML. In: Hofmann, M., Felleisen, M. (eds.) Proc. of the 34th ACM
Symp. on Principles of Programming Languages, POPL 2007, pp. 173–184.
ACM Press, New York (2007)

[Lév76] Lévy, J.-J.: An algebraic interpretation of the λβK-calculus; and an appli-
cation of a labelled λ-calculus. Theor. Comput. Sci. 2(1), 97–114 (1976)

[Mit90] Mitchell, J.C.: Toward a typed foundation for method specialization and
inheritance. In: Proc. of the 17th ACM Symp. on Principles of Programming
Languages, POPL 1990, pp. 109–124 (1990)

[Pie92] Pierce, B.C.: Bounded quantification is undecidable. In: POPL, pp. 305–315
(1992)

[Pie02] Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge
(2002)

[Pra65] Prawitz, D.: Natural Deduction. Almqvist & Wiksell, Stockholm, 1965. Re-
publication by Dover Publications Inc., Mineola (2006)

[PS97] Pierce, B.C., Steffen, M.: Higher order subtyping. Theor. Comput.
Sci. 176(1,2), 235–282 (1997)

[Rod07] Rodriguez, D.: Algorithmic Subtyping for Higher Order Bounded Quantifi-
cation. Diploma thesis, LMU Munich (2007)

[Ste98] Steffen, M.: Polarized Higher-Order Subtyping. Ph.D. thesis, Technische
Fakultät, Universität Erlangen (1998)

[WC+03] Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical
framework I: Judgements and properties. Tech. rep., School of Computer
Science. Carnegie Mellon University, Pittsburgh (2003)

On Isomorphisms of Intersection Types

Mariangiola Dezani-Ciancaglini1, Roberto Di Cosmo2,
Elio Giovannetti1, and Makoto Tatsuta3

1 Dipartimento di Informatica, Università di Torino, corso Svizzera 185, 10149 Torino, Italy
2 Université Paris Diderot, PPS, UMR 7126, case 7014, 2 place Jussieu, 75005 Paris, France

3 National Institute of Informatics, 2-1-2 Hitotsubashi, 101-8430 Tokyo, Japan

Abstract. The study of type isomorphisms for different λ-calculi started over
twenty years ago, and a very wide body of knowledge has been established, both
in terms of results and in terms of techniques. A notable missing piece of the puz-
zle was the characterization of type isomorphisms in the presence of intersection
types. While at first thought this may seem to be a simple exercise, it turns out that
not only finding the right characterization is not simple, but that the very notion
of isomorphism in intersection types is an unexpectedly original element in the
previously known landscape, breaking most of the known properties of isomor-
phisms of the typed λ-calculus. In particular, types that are equal in the standard
models of intersection types may be non-isomorphic.

1 Introduction

The notion of type isomorphism is a particularization of the general notion of isomor-
phism as defined, for example, in category theory. Two objects σ and τ are isomorphic
iff there exist two morphisms f : σ → τ and g : τ → σ such that f ◦ g = idτ and
g ◦ f = idσ:

�������	σ

f

idσ ��

�������	τ

g

�� idτ

Analogously, two types σ and τ in some (abstract) programming language, like the
typed λ-calculus, are isomorphic if the same diagram holds, with f and g functions of
types σ→τ and τ→σ respectively.

In the early 1980s, some interest started to develop in the problem of finding all the
domain equations (type isomorphisms) that must hold in every model of a given lan-
guage, or valid isomorphisms of types, as they were called in [5].

There are essentially two families of techniques for addressing this question: it is
possible to work syntactically to characterize those programs f that possess an inverse
g making the above diagram commute, or one can work semantically trying to find
some specific model that captures the isomorphisms valid in all models (see [9] for a
recent survey).

Each approach has its own difficulty: finding the syntactic characterization of the
invertible terms can be very hard, while the rest follows then rather straightforwardly;
finding the right specific model and showing that the only isomorphisms holding in it

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 461–477, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

462 M. Dezani-Ciancaglini et al.

Table 1. Type isomorphisms in typed lambda calculi

(swap) σ → (τ → γ) = τ → (σ → γ)
}

Th1

1. σ × τ = τ × σ

2. σ × (τ × γ) = (σ × τ) × γ

3. (σ × τ) → γ = σ → (τ → γ)

4. σ → (τ × γ) = (σ → τ) × (σ → γ)

5. σ ×T = σ

6. σ → T = T

7. T → σ = σ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Th1

×T

8. ∀X.∀Y.σ = ∀Y.∀X.σ

9. ∀X.σ = ∀Y.σ[Y/X]

10. ∀X.(σ → τ) = σ → ∀X.τ

⎫⎪⎪⎬⎪⎪⎭ + swap = Th2

11. ∀X.σ × τ = ∀X.σ × ∀X.τ

12. ∀X.T = T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Th2
×T

split ∀X.σ × τ = ∀X.∀Y.σ × (τ [Y/X])

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 10, 11 = ThML

N.B.: in equation 8, X must be free for Y in σ and Y �∈ FTV (σ); in equation 10, X �∈ FTV (σ).

are those holding in all models can be very hard too, even if the advent of game se-
mantics has a bit blurred the distinction between these approaches, by building models
which are quite syntactical in nature [11].

In our work, we started along the first line (as we already know the shape of the in-
vertible terms), so here we only recall the relevant literature for the syntactic approach.

Type isomorphisms and invertible terms
In [7], Dezani fully characterized the invertible λ-terms as the finite hereditary permu-
tators, a class of terms which can be easily defined inductively, and which can be seen
as a family of generalized η-expansions.

Definition 1 (Invertible term). A λ-term M is invertible if there exists a term M−1

such that M ◦M−1 = M−1 ◦M =βη I (where ◦ denotes, as usual, functional compo-
sition, and I is the identity λx.x). Obviously, M−1 is called an inverse of M .

Definition 2 (Finite Hereditary Permutator). A finite hereditary permutator (f.h.p.) is
a λ-term whose β-normal form is λzx1 . . . xn . zQ1 . . . Qn (n ≥ 0) and is such that, for
a permutation π of 1 . . . n, the λ-terms λxπ(1).Q1, . . . , λxπ(n).Qn are finite hereditary
permutators.

Theorem 1. [7] A λ-term is invertible iff it is a finite hereditary permutator.

Observe that f.h.p.’s are closed terms: so, by the above theorem, invertible λ-terms
are closed terms.The proof of Theorem 1 shows that every f.h.p. has a unique inverse

On Isomorphisms of Intersection Types 463

modulo βη-conversion. We use P to range over β-normal forms of f.h.p.’s. Thus P−1

denotes the unique (modulo η-conversion) inverse of P.
While the result of [7] was obtained in the framework of the untyped λ-calculus,

it turned out that this family of invertible terms can be typed in the simply typed λ-
calculus, and this allowed Bruce and Longo [5] to prove by a straightforward induction
on the structure of the f.h.p.’s that in the simply typed λ-calculus the only type isomor-
phisms w.r.t. βη-equality are those induced by the swap equation

σ → (τ → ρ) = τ → (σ → ρ).

Notice that the type isomorphisms which correspond to invertible terms (called defin-
able isomorphisms of types in [5]) are a priori not the same as the valid isomorphisms
of types: a definable isomorphism seems to be a stronger notion, demanding that not
only a given isomorphism holds in all models, but that it also holds in all models uni-
formly. Nevertheless, in all the cases studied in the literature, it is easy to build a free
model out of the calculus, and to prove that valid and definable isomorphisms coincide,
so this distinction has gradually disappeared in time, and in this work we will use the
following definition of type isomorphism.

Definition 3 (Type isomorphism). Given a λ-calculus along with a type system, two
types σ and τ (in the system’s type language) are isomorphic, and we write σ ≈ τ ,
if in the calculus there exists an invertible term, i.e., by the above theorem, a f.h.p. P,
such that 0 P : σ → τ and 0 P−1 : τ → σ hold in the system. Following a standard
nomenclature, we say that the term P proves the isomorphism σ ≈ τ , and we write
σ ≈P τ . Of course, σ ≈P τ iff σ ≈P−1 τ .

An immediate observation is that

Theorem 2. Isomorphism is an equivalence relation.

Observe that transitivity holds because invertible terms are closed under functional com-
position by definition. So if the f.h.p. P1 proves σ ≈ τ and the f.h.p. P2 proves τ ≈ ρ,
then P2 ◦ P1 is a f.h.p. that proves σ ≈ ρ.

By extending Dezani’s original technique to the invertible terms in typed calculi with
additional constructors (like product and unit type) or with higher order (System F or
Core-ML), it has been possible to pursue this line of research to the point of getting a full
characterization of isomorphisms in a whole set of typed λ-calculi, from λ1βη, which
corresponds to IPC(⇒), the intuitionistic positive calculus with implication, whose
isomorphisms are described by Th1 [13,5], to λ1βηπ∗, which corresponds to Cartesian
Closed Categories and IPC(True,∧,⇒), for which Th1

×T is complete [4]1, to λ2βη
(System F), which corresponds to IPC(∀,⇒), and whose isomorphisms are given by
Th2 [5], to λ2βηπ∗ (System F with products and unit type), which corresponds to
IPC(∀,True,∧,⇒), whose isomorphisms are given by Th2

×T [8]. A summary of the
axioms in these theories is given in Table 1.

Hence, in this line of research, the standard approach has been to find all the type
isomorphisms for a given language (λ-calculus) and a given notion of equality on terms

1 But this result had been proved earlier by Soloviev using model-theoretic techniques [15].

464 M. Dezani-Ciancaglini et al.

(which almost always contains extensional rules like η, as otherwise no nontrivial in-
vertible term exists [7]) as a consequence of an inductive characterization of the in-
vertible terms. The general schema in all the known cases is the same: first guess an
equational theory for the isomorphisms (this is the hard part), then by induction on the
structure of the invertible terms show the completeness of the equational theory (the
easy part).

One notable missing piece in the table summarizing the theory of isomorphisms of
types is the case of intersection types. At first sight, it should be an easy exercise to deal
with it: we already know the form of the invertible terms, as they are again the f.h.p.’s,
and it should just be a matter of guessing the right equational theory and proving it
complete by induction.

But it turns out that with intersection types all the intuitions that one has formed in
the other systems fail: the intersection type discipline can give many widely different
typings for the same term, so that the simple proof technique originated in [5] does not
apply, and we are in for some surprises.

In this paper, we explore the world of type isomorphisms with intersection types,
establishing a series of results that are quite unexpected: on the one hand, we will see
in Section 2 that in the presence of intersection types the theory of isomorphisms is
no longer a congruence, so that there is no hope to capture these isomorphisms via an
equational theory, and the theory does not even include equality in the standard models;
yet, decidability can be easily established, though with no simple bound on its com-
plexity. On the other hand, we will be able to provide a very precise characterization of
isomorphisms, via a special notion of similarity for type normal forms.

2 Basic Properties of Isomorphisms with Intersection Types

In this section we establish the basic properties of intersection types that show their
deep difference with respect to the other cases studied in the literature, before tackling,
in the later sections, their precise characterization.

Isomorphisms of intersection types are not a congruence
In all the cases known in the literature, the isomorphism equivalence relation is a con-
gruence, as the type constructors explored so far (arrow, cartesian product, universal
quantification, sum) all preserve isomorphisms.

Intersection, by contrast, does not preserve isomorphism: from σ ≈ σ′ and τ ≈ τ ′

it does not follow, in general, that σ ∩ τ ≈ σ′ ∩ τ ′. The intuitive reason is that the
existence of two separate (invertible) functions that respectively transform all values of
type σ into values of type σ′ and all those of type τ into values of type τ ′, does not
ensure that there is a function mapping any value that is both of type σ and of type τ to
a value that is both of type σ′ and of type τ ′.

For example, though the isomorphism α → β → γ ≈ β → α → γ is given by
the f.h.p. λxyz . xzy, the two types ϕ ∩ (α → β → γ) and ϕ ∩ (β → α→ γ) are not
isomorphic, since the term λyz . xzy cannot be typed (from the assumption x : ϕ) with
an atomic type ϕ, which can only be transformed into itself by the identity.

On Isomorphisms of Intersection Types 465

Therefore we have the following result:

Theorem 3. The theory of isomorphisms for intersection types is not a congruence.

In particular, this theory cannot be described with a standard equational theory: a non-
trivial equivalence relation has to be devised2.

Isomorphisms do not contain equality in the standard intersection models
Another quite unconventional fact is that

Theorem 4. Types equality in the standard models 3 of intersection types does not en-
tail type isomorphisms.

Proof. Take for example the two isomorphic types α→γ and (α ∩ β→γ) ∩ (α→γ).
They are semantically coincident, because the type α ∩ β → γ is greater than α→ γ,
and therefore its presence in the intersection is useless.

Now, if we just add to both a seemingly innocent intersection with an atomic type,
we obtain the two types (α → γ) ∩ ϕ and (α ∩ β → γ) ∩ (α → γ) ∩ ϕ, which also
have identical meanings but are not isomorphic: if they were, the isomorphism would
be given by the f.h.p. λxy.xy because, while the identity is trivially able to map any
intersection to each of its components (i.e., 0 λx.x : σ ∩ τ → σ, 0 λx.x : σ ∩ τ → τ),
the mapping in the opposite direction, from α→γ to (α ∩ β→γ) ∩ (α→γ), requires
an η-expansion of the identity, as can be seen from the following derivation, where
Γ = x : α→γ, y : α ∩ β:

Γ 0 x : α→γ

Γ 0 y : α ∩ β
(∩ E)

Γ 0 y : α
(→E)

Γ 0 xy : γ
(→I)

x : α→γ 0 λy.xy : α ∩ β→γ

. . . (→E)
x : α→γ, y : α 0 xy : γ

(→I)
x : α→γ 0 λy.xy : α→γ

(∩ I)
x : α→γ 0 λy.xy : (α ∩ β→γ) ∩ (α→γ)

(→I)0 λxy.xy : (α→γ) → (α ∩ β→γ) ∩ (α→γ)

An η-expansion of the identity, however, cannot map an atomic type to itself; in par-
ticular, the judgment x : (α → γ) ∩ ϕ 0 λy.xy : ϕ cannot be derived, hence the term
λxy.xy cannot be assigned the type (α→γ) ∩ ϕ → (α ∩ β→γ) ∩ (α→γ) ∩ ϕ.

We could establish an isomorphism relation including the pair of types (α→γ) ∩ ϕ
and (α ∩ β→ γ) ∩ (α→ γ) ∩ ϕ only by assuming, as in some models, that all atomic
types are arrow types.

One could simply see this fact as a proof that the universal model – traditionally hard
to find – where all and only the valid isomorphisms hold is not a standard model; but it
is quite unconventional that equality in the standard models is not included in the iso-
morphism relation, and this really comes from the strong intensionality of intersection
types.

2 Notice that even in the very tricky case of the sum types, isomorphism is a congruence [10].
3 The standard models of intersection types are the models in which the arrow is interpreted as

function space constructor and the intersection as set theoretic intersection.

466 M. Dezani-Ciancaglini et al.

Decidability
Despite the weird nature of isomorphisms with intersection types, it is easy to establish
the following decidability result.

Theorem 5. Isomorphisms of intersection types are decidable.

Proof. Given two types σ and τ , a f.h.p. of type σ→τ may have a number of top-level
abstractions at most equal to the number of top-level arrows, and also every subterm of
the f.h.p. cannot have, at each nesting level, more abstractions than the corresponding
number of arrows nested at that level. The number of f.h.p.’s that are candidate to prove
the isomorphism σ ≈ τ is therefore finite, and each of them can be checked whether it
can be assigned the type σ→τ [14].

3 The Type System and the Reduction to Type Normal Form

In order to keep the theory sufficiently manageable, we restrict arrow types to the ones
ending with an atomic type: σ := α ∩ α · · · ∩ α, with α := σ → · · ·→ σ → ϕ, since
it is well known that such restriction does not alter the set of typeable terms [1].

The formal syntax of types therefore is:

σ := α | σ ∩ σ types
α := ϕ | σ → α atomic and arrow types

where ϕ denotes an atomic type. We use σ, τ, ρ to range over types, α, β, γ to range
over arrow types, and ϕ, χ, ψ, ϑ, ξ to range over atomic types. We will occasionally use
roman letters to denote atomic types in complex examples.

Also, we consider types modulo idempotence, commutativity and associativity of ∩,
so we can write

⋂
i∈I σi with finite I . We write σ ≡ τ if σ coincides with τ modulo

idempotence, commutativity and associativity of ∩.
The type assignment system is the standard simple system with intersection types for

the ordinary λ-calculus [6].

(Ax) Γ, x : σ 0 x : σ

(→ I)
Γ, x : σ 0M : α

Γ 0 λx.M : σ → α
(→ E)

Γ 0M : σ → α Γ 0 N : σ
Γ 0MN : α

(∩I) Γ 0M : σ Γ 0M : τ
Γ 0M : σ ∩ τ (∩E)

Γ 0M : σ ∩ τ
Γ 0M : σ

Γ 0M : σ ∩ τ
Γ 0M : τ

Since we do not allow an arrow type to have an intersection on the right-hand side,
we must modify the formal definition of isomorphism. To this purpose, the following
notation is useful.
Notation If τ =

⋂
i∈I αi, then 0 P :σ �→ τ is short for 0 P :σ → αi for all i ∈ I .

Definition 3 is then replaced by

Definition 4 (Isomorphism for the intersection type system). Two intersection types
σ and τ are isomorphic (σ ≈ τ) if there exists a f.h.p. P such that 0 P : σ �→ τ and
0 P−1 :τ �→ σ.

On Isomorphisms of Intersection Types 467

Adopting a technique similar to one used by [8], we introduce a notion of type normal
form along with an isomorphism-preserving reduction, and then we give the syntactic
characterization of isomorphism on normal types only. We use reduction to eliminate
redundant (arrow) types in intersections, i.e., those that are intersected with types intu-
itively included in them. For example, (σ → α) ∩ (σ ∩ τ → α) reduces to (σ → α).
The reduction relation is expressed with the help of some preliminary definitions.

Definition 5 (Intersection Occurrence). An intersection occurrence of α in τ is de-
fined inductively as follows (always considering, as stated at the beginning, ∩ modulo
commutativity and associativity):

– if τ = α ∩ σ, then the showed occurrence of α is an intersection occurrence;
– if τ = ρ1 → . . . → ρn → τ ′ → β, and α is an intersection occurrence in τ ′, then
α is an intersection occurrence in τ ;

– if τ = β ∩ σ and α is an intersection occurrence in β, then α is an intersection
occurrence in τ .

Definition 6 (Erasure). If α is an intersection occurrence in τ , then the erasure of α
in τ (notation |τ |α) is defined by:

– |τ |α = σ if τ = α ∩ σ;
– |τ |α = σ1 → . . . → σn → |τ ′|α → β if τ = σ1 → . . . → σn → τ ′ → β and α is

an intersection occurrence in τ ′;
– |τ |α = |β|α ∩ σ if τ = β ∩ σ and α is an intersection occurrence in β.

Definition 7 (Finite Hereditary Identity). A finite hereditary identity (f.h.i.) is a β-
normal form obtained fromλx.x through a finite (possibly zero) number of η-expansions.
We use Id to range over f.h.i.’s (Note that f.h.i.’s are particular forms of f.h.p.’s).

We are now able to state the reduction rule.

Definition 8 (Reduction). The reduction rule is:

τ � |τ |α

if there are a type sub-expression α and two f.h.i.s Id, Id′ such that 0 Id : |τ |α �→ τ and
0 Id′ :τ �→ |τ |α.

It is immediate to see that reduction is confluent and terminating, thus defining a type
normal form. Also, a type and its normal form are isomorphic by definition, since a
f.h.i. is a f.h.p. and all f.h.i.’s are inverse of one another.

Observe that, as noted in Section 1, redundant arrow types cannot be erased if they
occur in intersections with atomic types, which prevent η-expansions of the identity to
provide the isomorphism between the original type and the simplified type: thus, while
we have (α ∩ β→γ) ∩ (α→γ) � α→γ, the type (α ∩ β→γ) ∩ (α→γ) ∩ ϕ does
not reduce to (α→γ) ∩ ϕ. For any type σ, the type σ ∩ ϕ (with ϕ atomic) is in normal
form, since the atom ϕ blocks any reduction.

On the other hand, the type σ = ((α ∩ β → ψ) → ϕ) ∩ ((α → ψ) ∩ χ → ϕ)
reduces to the type γ = (α ∩ β→ψ) → ϕ through the f.h.i. λxy.x(λv.yv). Note that,

468 M. Dezani-Ciancaglini et al.

as pointed out in Section 1, the mapping from σ to γ only needs the simple identity (we
have 0 λx.x : σ→γ), but the opposite mapping requires an η-expansion of the identity,
so as to have the typing 0 λxy.x(λv.yv) : γ �→ σ.

We may now introduce the key notion of our work, i.e., a similarity between
types, which we will prove to be the desired syntactic counterpart of the notion of
isomorphism.

Definition 9 (Similarity). The similarity between two sequences of types 〈σ1, . . . , σm〉
and 〈τ1, . . . , τm〉, written 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉, is the smallest equivalence
relation such that:

1. 〈σ1, . . . , σm〉 ∼ 〈σ1, . . . , σm〉;
2. if 〈σ1, . . . , σi, σi+1, . . . , σm〉 ∼ 〈τ1, . . . , τi, τi+1, . . . , τm〉, then
〈σ1, . . . , σi ∩ σi+1, . . . , σm〉 ∼ 〈τ1, . . . , τi ∩ τi+1, . . . , τm〉;

3. if 〈σ(1)
i , . . . , σ

(m)
i 〉 ∼ 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n, then

〈σ(1)
1 → . . . → σ

(1)
n → α(1), . . . , σ

(m)
1 → . . . → σ

(m)
n → α(m)〉 ∼

〈τ (1)
π(1) → . . . → τ

(1)
π(n) → α(1), . . . , τ

(m)
π(1) → . . . → τ

(m)
π(n) → α(m)〉,

where π is a permutation of 1, . . . , n.

Similarity between types is trivially defined as similarity between unary sequences:
σ ∼ τ if 〈σ〉 ∼ 〈τ〉.

The reason is that, for two intersection types to be isomorphic, it is not sufficient that
they coincide modulo permutations of types in the arrow sequences, as in the case of
cartesian products: the permutation must be the same for all the corresponding type
pairs in an intersection. The notion of similarity exactly expresses such property.

For example, the two types (ϕ1 → ϕ2 → ϕ3 → χ) ∩ (ψ1 → ψ2 → ψ3 → ϑ) and
(ϕ3 → ϕ2 → ϕ1 → χ) ∩ (ψ2 → ψ3 → ψ1 → ϑ) are not similar and thus (as we will
prove) not isomorphic, while the corresponding types with cartesian product instead of
intersection are. The reason is that, owing to the semantics of intersection, the same
f.h.p. must be able to map all the conjuncts of one intersection to the corresponding
conjuncts in the other intersection. In the example, there is obviously not one f.h.p.
that maps both ϕ1 → ϕ2 → ϕ3 → χ to ϕ3 → ϕ2 → ϕ1 → χ and at the same time
ψ1 →ψ2 →ψ3 →ϑ to ψ2 →ψ3 →ψ1 →ϑ.
On the other hand, the two types

(ρ1 →ρ2 →ρ3 →α) ∩ (σ1 →σ2 →σ3 →β),
(ρ2 →ρ3 →ρ1 →α) ∩ (σ2 →σ3 →σ1 →β)

are similar (and therefore isomorphic), since the permutation is the same in the two
components of the intersection.

A type like (σ1 → . . .→ σn → α) ∩ ϕ may only be similar (and thus isomorphic)
to itself, since the presence of the atom ϕ in the intersection blocks the possibility of
any permutation other than the identity in the conjunct type subexpression σ1 → . . .→
σn→α.

On Isomorphisms of Intersection Types 469

A more complex example of similar types is the following:

α1 ∩ α2 ∼ β1 ∩ β2,
where (with roman letters indicating atomic types):
α1 = (e→f) → (a ∩ b→c→d) ∩ (g→b→c) → s → t
α2 = (h→k) ∩ (p→q) → (u→v→w) → q ∩ r → (a ∩ b→z)
β1 = (c→a ∩ b→d) ∩ (b→g→c) → s → (e→f) → t
β2 = (v→u→w) → q ∩ r → (h→k) ∩ (p→q) → (a ∩ b→z).

Note that the introduction of type sequences in the definition of similarity is needed in
order to keep the correspondence between types in intersections. Consider, for example,
the following two types:

ρ1 = (σ1 ∩ α→σ2 →β) ∩ (τ1 →τ2 →γ),
ρ2 = (σ2 →σ1 →β) ∩ (τ2 →α ∩ τ1 →γ).

They are not isomorphic, and are also not similar since the sequences 〈σ1 ∩ α, τ1〉,
〈σ1, α∩τ1〉 are not. If, however, the definitions were given directly through intersection,
owing to the associativity of ∩ the two sequences would be represented by the same
intersection σ1 ∩ α ∩ τ1, and the two types ρ1, ρ2 would therefore be similar.

An equivalent, slightly more algorithmic, definition of similarity may be given
through a notion of permutation tree.

Definition 10 (Permutation Tree)
– The empty tree ∅ is a permutation tree.
– 〈π, [Π1, . . . ,Πn]〉 is a permutation tree if π is a permutation of 1, . . . , n and Π1, . . . ,

Πn are permutation trees.

An example of a permutation tree is the tree Π0 = 〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉.
A more complex example is the tree Π defined as follows:

Π = 〈(2, 3, 1), [Π1,∅,Π3]〉
where

Π1 =
〈(

3, 1, 4, 2
)
,
[
∅,∅, 〈(2, 1), [∅,∅]〉, 〈(1, 3, 2), [∅,∅,∅]〉

]〉
Π3 =

〈(
1, 2, 3

)
,
[
〈(2, 1), [∅,∅]〉,∅, 〈(3, 2, 1, 4), [∅,∅,∅,∅]〉

]〉
A permutation tree is nothing but an abstract representation of a f.h.p. One may easily
build the concrete f.h.p. corresponding to a permutation tree, by creating as many fresh
variables as is the cardinality of the permutation and by recursively creating subterms
that respectively have those variables as head variables, in the order specified by the
permutation.

In the following definition trm is the recursive mapping: it takes a permutation tree
and the name z of a fresh variable, and creates a term with free head variable z, which is
the β-reduct of the corresponding f.h.p. applied to z. The top-level mapping fhp merely
abstracts the head variable so as to transform the term into a f.h.p. proper.

470 M. Dezani-Ciancaglini et al.

Definition 11 (F.h.p. corresponding to a permutation tree)
The f.h.p. corresponding to a permutation tree Π is:

fhp(Π) = λz.trm(Π, z),with z fresh variable;
trm(∅, z) = z;
trm(〈π, [Π1, . . . ,Πn]〉, z) = λx1 . . . xn . z trm(Π1, xπ(1)) . . . trm(Πn, xπ(n))
with x1 . . . xn fresh variables.

Examples.
The f.h.p. corresponding to the permutation tree Π0 =〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉
is the term λzx1x2x3.z(λu1u2.x2u2u1)x3x1.

The f.h.p. corresponding to the permutation tree Π = 〈(2, 3, 1), [Π1,∅,Π3]〉 of the
example above is the term P = λzx1x2x3.zP1P2P3, where

P1 = λu1u2u3u4 . x2u3u1(λv1v2 . u4v2v1)(λw1w2w3 . u2w1w3w2)
P2 = x3

P3 = λy1y2y3 . x1(λs1s2 . y1s2s1)y2(λt1t2t3t4 . y3t3t2t1t4)

A permutation tree represents a tree of nested permutations: if we apply it to a type
having a homologous tree structure, i.e., if we (are able to) recursively perform on the
type all the permutations at all levels, we obtain a new type which is clearly similar to
the original one. We therefore give the following natural definition.

Definition 12 (Application of a permutation tree to a type)
Application of a permutation tree is a partial map from types to types:

– ∅(σ) = σ
– 〈π, [Π1, . . . ,Πn]〉(σ1 → · · ·→ σn → α) = Π1(σπ(1)) → · · ·→ Πn(σπ(n)) → α
– Π(σ ∩ τ) = Π(σ) ∩ Π(τ)
– Π(σ) = undefined otherwise.

Taking again one of the examples above, if

α1 = (e→f) → (a ∩ b→c→d) ∩ (g→b→c) → s → t
α2 = (h→k) ∩ (p→q) → (u→v→w) → q ∩ r → (a ∩ b→z)
Π0 = 〈(2, 3, 1), [〈(2, 1), [∅,∅]〉,∅,∅]〉

then we have Π0(α1 ∩ α2) = β1 ∩ β2, where

β1 = (c→a ∩ b→d) ∩ (b→g→c) → s → (e→f) → t
β2 = (v→u→w) → q ∩ r → (h→k) ∩ (p→q) → (a ∩ b→z)

With the other example, if we have:

σ = γ1 → γ2 → ξ3 → ξ
where
γ1 = (ϕ11 →ϕ12 →χ1) → χ2 → (ϕ31 →ϕ32 →ϕ33 →ϕ34 →χ3) → χ
γ2 = ϑ1 → (ψ21 →ψ22 →ψ23 →ϑ2) → ϑ3 → (ψ41 →ψ42 →ϑ4) → ϑ

On Isomorphisms of Intersection Types 471

then Π(σ) = τ , where

τ = γ′2 → ξ3 → γ′1 → ξ
where
γ′2 = ϑ3 → ϑ1 → (ψ42 →ψ41 →ϑ4) → (ψ21 →ψ23 →ψ22 →ϑ2)→ϑ
γ′1 = (ϕ12 →ϕ11 →χ1) → χ2 → (ϕ33 →ϕ32 →ϕ31 →ϕ34 →χ3) → χ

Two types can then be defined as equivalent when one can be obtained from the other
(modulo idempotence, commutativity and associativity, as usual) by applying a permu-
tation tree.

Definition 13 (Type permutation-equivalence)
Two types σ and τ are permutation-equivalent, notation σ � τ , if ∃Π .Π(σ) ≡ τ .

It is trivial to see that if Π(σ) ≡ τ , then there also exists an inverse permutation tree
Π−1 such that Π−1(τ) ≡ σ.

It is easy to prove that σ ∼ τ if and only if σ � τ , so that the latter equivalence
merely is an alternative definition of the previously defined similarity. We will therefore
always use the first notation.
As an immediate consequence of Definition 12, we have the following lemma.

Lemma 1. If Π(σ) ≡ τ , with Π = 〈π, [Π1, . . . ,Πn]〉, then there exists a set I of indices
such that σ and τ have the forms:

σ ≡
⋂

i∈I(σ
i
1 → . . . → σin → αi), τ ≡

⋂
i∈I(τ

i
1 → . . . → τ i

n → αi)

and for all i ∈ I , for k = 1, . . . , n, one has Πk(σiπ(k)) ≡ τ ik , therefore σiπ(k) ∼ τ ik.

Note that the above definitions of similarity are not equivalent to stating that, in the
inductive case:⋂

i∈I(σ
i
1 → . . . → σin → αi) ∼

⋂
i∈I(τ

i
1 → . . . → τ i

n → αi)

if there exists a permutation π such that

∀i ∈ I . τ ik ∼ σ i
π(k) and

⋂
i∈I τ

i
k ∼

⋂
i∈I σ

i
π(k) for k = 1, . . . , n.

A counterexample is given by the following pair of types:

σ = (β1 → α1) ∩ (β2 → α2) ∩ (β3 → α3)
τ = (γ1 → α1) ∩ (γ2 → α2) ∩ (γ3 → α3)

where

β1 = ϕ → χ → ψ → ϑ = γ2

β2 = ϕ → ψ → χ → ϑ = γ3

β3 = χ → ϕ → ψ → ϑ = γ1

We have Π1(β1) ≡ γ1, Π2(β2) ≡ γ2, Π3(β3) ≡ γ3, with

Π1 = 〈(2, 1, 3), [∅,∅,∅]〉, Π2 = 〈(1, 3, 2), [∅,∅,∅]〉,
Π3 = 〈(3, 1, 2), [∅,∅,∅]〉,

472 M. Dezani-Ciancaglini et al.

and therefore β1 ∼ γ1, β2 ∼ γ2, β3 ∼ γ3; also, β1 ∩ β2 ∩ β3 ∼ γ1 ∩ γ2 ∩ γ3 since
trivially β1 ∩ β2 ∩ β3 ≡ γ1 ∩ γ2 ∩ γ3. This, however, does not allow us to conclude
that σ ∼ τ , since there exists no permutation tree Π such that Π(σ) = τ (because
Π(σ) = Π(σ1)∩Π(σ2)∩Π(σ3) should hold), or, equivalently, since – following the first
definition of similarity – the two sequences 〈β1, β2, β3〉, 〈γ1, γ2, γ3〉 (= 〈β3, β1, β2〉)
are not similar. Accordingly, the two types σ and τ are not similar (σ �∼ τ), and thus, as
will be proved by Theorem 8, not isomorphic (σ �≈ τ).

4 Standard Properties of the Type System

Our system, being a trivial restriction of the simple intersection type system, obviously
has the well-known standard properties of the unrestricted system [2]. In particular, the
Lemma 2, a generation lemma and the subject reduction property hold, and the proofs
are standard.

Lemma 2. If Γ 0 λx.M :σ, then σ cannot be an atomic type.

Lemma 3 (Generation Lemma)

1. If x :
⋂

i∈I αi 0 x :
⋂

j∈J βj , then {βj | j ∈ J} ⊆ {αi | i ∈ I}.
2. If Γ 0 λx.M :

⋂
i∈I(σi → αi), then for all i ∈ I: Γ, x :σi 0M :αi.

3. If Γ 0MN :α, then there exists a type σ such that Γ 0M :σ → α and Γ 0 N :σ.

Proof. The proof is by induction on derivations.

Theorem 6 (Subject Reduction). If Γ 0M :σ and M −→β N , then Γ 0 N :σ.

Proof. Standard.

The Lemmata 4, 5 and 6 state some useful properties of η-expansions of the identity and
of permutators. In particular, Lemma 4 expresses a necessary condition for a f.h.i. to be
typeable with an arrow type, and gives the forms of the types of its subterms. Lemma
5.1 says that a f.h.i. is able to map an intersection α ∩ β to one of its components, for
example α, only if it is able to map such component α to itself (which is not always
the case, since the number of top-level arrows in α cannot be less than the number of
top-level abstractions of the f.h.i.). Lemma 5.2 states the rather obvious fact that if a
f.h.i. is able to map both the type σ to itself and the type τ to itself, then it also maps
their intersection to itself.

Finally, Lemma 6 states that a f.h.p. P maps an intersection
⋂

i∈I αi to another in-
tersection

⋂
j∈J βj , i.e., 0 P :

⋂
i∈I αi �→

⋂
j∈J βj , if and only if every component

βj in the target intersection is obtained by P from some component αi in the source
intersection.

In such lemmata and in the following we write judgments of the form x : σ 0 Px : τ
(where P may also be Id) instead of 0 P : σ �→ τ , in order to simplify the proofs. The
two kinds of judgments are equivalent not because of a property of subject expansion,
which does not hold in general, but because a f.h.p. P is an abstraction, and therefore
0 P : σ �→ τ if and only if x : σ 0 Px : τ , as can be easily seen: if x : σ 0 Px : τ , with
P = λx.M , then by β-reduction and subject reduction one has x : σ 0 M : τ , whence,

On Isomorphisms of Intersection Types 473

Table 2. Proof of Lemma 6

x :
⋂

i∈I αi � Px :
⋂

j∈J βj =⇒ x :
⋂

i∈I αi � λz1 . . . zn.x(P1zπ(1)) . . . (Pnzπ(n)) :
⋂

j∈J βj

by Theorem 6
=⇒ ∀j∈J. x :

⋂
i∈I αi � λz1 . . . zn.x(P1zπ(1)) . . . (Pnzπ(n)) :βj

by rule (∩E)

=⇒ ∀j∈J. βj = σ
(j)
1 → . . . → σ

(j)
n → γ(j)

for some σ
(j)
1 , . . . , σ

(j)
n , γ(j) by Lemma 2

=⇒ ∀j∈ J. Γ � x(P1zπ(1)) . . . (Pnzπ(n)) :γ(j)

where Γ = x :
⋂

i∈I αi, z1 :σ
(j)
1 , . . . zn :σ

(j)
n by Lemma 3(2)

=⇒ ∀j ∈ J. x :
⋂

i∈I αi � x :τ
(j)
1 → . . . → τ

(j)
n → γ(j) &

zπ(1) :σ
(j)

π(1)
� P1zπ(1) :τ

(j)
1 & . . .

& zπ(n) :σ
(j)

π(n) � Pnzπ(n) :τ
(j)
n

for some τ
(j)
1 , . . . , τ

(j)
n by Lemma 3(3)

=⇒ ∀j ∈ J. ∃ij ∈ I. αij = τ
(j)
1 → . . . → τ

(j)
n → γ(j)

by Lemma 3(1)
=⇒ ∀j ∈ J. ∃ij ∈ I. x :αij � Px :βj

by rules (→ E) and (→ I).

by (∩ E) and (→I), 0 P : σ �→ τ (rule (∩ E) is needed since (→I) can only build arrow
types). More generally, this is a consequence of the property of subject expansion for
intersection types in the λI-calculus. The opposite implication, from 0 P : σ �→ τ to
x : σ 0 Px : τ , trivially follows by (→E) and (∩ I).

Lemma 4. 1. If n �= m or ϕ �= ϕ′, then there is no Id such that

0 Id : (σ1 → . . . → σn → ϕ) → τ1 → . . . → τm → ϕ′.

2. If 0 Id : (σ1 → . . . → σn → ϕ) → τ1 → . . . → τn → ϕ and σm �= τm and
σq = τq for m + 1 ≤ q ≤ n, then Id β←− λyz1 . . . zp.y(Id1z1) . . . (Idpzp) for
some p and some Id1, . . . , Idp such that and m ≤ p ≤ n and 0 Idl : τl �→ σl for
1 ≤ l ≤ p.

Proof. Easy, using the Generation Lemma.

Lemma 5. 1. If x :σ ∩ α 0 Idx :α, then x :α 0 Idx :α.
2. If x :σ 0 Idx :σ and x :τ 0 Idx :τ , then x :σ ∩ τ 0 Idx :σ ∩ τ .

Proof. Easy.

Lemma 6. x :
⋂

i∈I αi 0 Px :
⋂

j∈J βj iff ∀j ∈ J. ∃ij ∈ I. x :αij 0 Px :βj .

Proof. The right-to-left direction easily follows by application of the (∩E) rule and
then of the (∩I) rule. For the left-to-right direction the proof is given in Table 2, where
P β←− λyz1 . . . zn.y(P1zπ(1)) . . . (Pnzπ(n)).

474 M. Dezani-Ciancaglini et al.

5 Isomorphism Characterisation

Having established an isomorphism-preserving reduction in Section 3, we can now re-
strict ourselves to normal types, for which we show that the similarity relation is a
(sound and complete) characterization of isomorphism.

If we only consider normal types, we can strengthen the Lemma 6 by Lemma 8,
which states that if a f.h.p. P has the type

⋂
i∈I αi �→

⋂
j∈J βj , then not only ∀j∈

J . ∃ij ∈ I. 0 P : αij → βj , but its inverse P−1 precisely maps each component βj of
the target intersection to its correspondingαij in the source intersection. This is the key
lemma that allows us to prove the main theorem, which states the coincidence between
the two relations∼ and ≈ for normal types.

Lemma 7 is instrumental to the proof of Lemma 8, and expresses the fact that in an
intersection in normal form there are no redundant components, i.e., there cannot exist
an η-expansion of the identity that “adds” one of the conjunct types starting from the
others.

Lemma 7. If τ ∩ α is normal, then there is no Id such that x :τ 0 Idx :τ ∩ α.

Proof. Let τ =
⋂

i∈I αi. Towards a contradiction assume x : τ 0 Idx : τ ∩ α. Since
x :τ ∩ α 0 x :τ we get τ ∩ α � τ .

Lemma 8. If
⋂

j∈J βj is a normal type, and x :
⋂

i∈I αi 0 Px :
⋂

j∈J βj , and
x :
⋂

j∈J βj 0 P−1x :
⋂

i∈I αi, and x :αi0 0 Px :βj0 , then x :βj0 0 P−1x :αi0 .

Proof. By Lemma 6 there is j1 ∈ J such that x :βj1 0 P−1x :αi0 . We assume j0 �= j1
towards a contradiction. From x : βj1 0 P−1x : αi0 and x : αi0 0 Px : βj0 we get
x : βj1 0 P(P−1x) : βj0 , which implies x :

⋂
j∈J,j �=j0

βj 0 (P ◦ P−1)x :
⋂

j∈J βj by
Lemma 5. This is, by Lemma 7, impossible, since P ◦ P−1 is β-reducible to a f.h.i.

Theorem 7 (Soundness of∼). If σ and τ are arbitrary types, then σ∼τ implies σ ≈ τ .

Proof. By induction on the definition of ∼ we show that 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉
implies that there is a f.h.p. P such that 0 P :σj �→ τj for 1 ≤ j ≤ m.
The only interesting case is

〈σ1, . . . , σm〉 = 〈σ(1)
1 → . . .→σ

(1)
n →α(1), . . . , σ

(m)
1 → . . .→σ

(m)
n → α(m)〉

〈τ1, . . . , τm〉 = 〈τ (1)
π(1) → . . .→τ

(1)
π(n) →α(1), . . . , τ

(m)
π(1) → . . .→τ

(m)
π(n) →α(m)〉,

since 〈σ(1)
i , . . . , σ

(m)
i 〉 ∼ 〈τ (1)

i , . . . , τ
(m)
i 〉 for 1 ≤ i ≤ n.

By induction, there is a Pi such that 0 Pi : σ(j)
i �→ τ

(j)
i for 1 ≤ j ≤ m. We can then

choose P as the β-normal form of λyz1 . . . zn.y(P1zπ−1(1)) . . . (Pnzπ−1(n)).

The opposite implication does not hold: two isomorphic types are not necessarily sim-
ilar. For example, the type σ = ((α ∩ β → ψ) → ϕ) ∩ ((α → ψ) ∩ χ → ϕ) and its
normal form γ = (α ∩ β→ψ) → ϕ, already considered in Section 3, are isomorphic
but not similar, simply because they are intersection types of different arities: γ consists
of only one arrow type, while σ is an intersection of two arrow types, though one of
them is redundant. On the other hand, the double implication holds for normal types.

On Isomorphisms of Intersection Types 475

Theorem 8 (Main Theorem). If σ and τ are normal types, then σ ≈ τ iff σ∼τ .

Proof. We have to prove that σ ≈ τ =⇒ σ∼τ (the opposite implication is established
by Theorem 7).

We show by structural induction on P that if 0 P : σj �→ τj and 0 P−1 : τj �→ σj for
1 ≤ j ≤ m, then 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉.
Let σj =

⋂
1≤i≤nj

α
(j)
i and τj =

⋂
1≤i≤pj

β
(j)
i .

By Lemma 8 we get nj = pj and 0 P : α(j)
i → β

(j)
i and 0 P−1 : β(j)

i → α
(j)
i . Let

P β←− λyz1 . . . zn.y(P1zπ(1)) . . . (Pnzπ(n)). As in the proof of Lemma 6, we get

α
(j)
i = τ

(i,j)
1 → . . . → τ

(i,j)
n → γ(i,j) and β(j)

i = σ
(i,j)
1 → . . . → σ

(i,j)
n → γ(i,j)

and 0 Pl :σ
(i,j)
π(l) �→ τ

(i,j)
l and 0 P−1

l : τ (i,j)
l �→ σ

(i,j)
π(l) for 1 ≤ l ≤ n. By induction we

have

〈σ(1,1)
π(l) , . . . , σ

(n1,1)
π(l) , . . . , σ

(1,m)
π(l) , . . . , σ

(nm,m)
π(l) 〉

∼
〈τ (1,1)

l , . . . , τ
(n1,1)
l , . . . , τ

(1,m)
l , . . . , τ

(nm,m)
l 〉

for 1 ≤ l ≤ n, which implies

〈α(1)
1 , . . . , α

(1)
n1 , . . . , α

(m)
1 , . . . , α

(m)
nm 〉 ∼ 〈β

(1)
1 , . . . , β

(1)
n1 , . . . , β

(m)
1 , . . . , β

(m)
nm 〉

and then 〈σ1, . . . , σm〉 ∼ 〈τ1, . . . , τm〉.

Of course, the characterization of isomorphisms immediately extends, via normaliza-
tion, to all types of our system, as stated by the following corollary of the main theorem.

Theorem 9. For any two types σ and τ , σ ≈ τ ⇐⇒ σ↓∼ τ↓, where σ↓ and τ↓ are
the normal forms respectively of σ and τ .

Proof. Since a type is isomorphic to its normal form we have that:

1. for the ⇒-direction, if σ ≈ τ , then σ↓ ≈ σ ≈ τ ≈ τ ↓, whence, by the Main
Theorem in the ⇒-direction, σ↓∼ τ↓;

2. for the opposite direction, if σ↓∼ τ↓, then by the Main Theorem in the ⇐-direction
we have σ↓ ≈ τ↓, whence: σ ≈ σ↓ ≈ τ↓ ≈ τ, i.e., σ ≈ τ .

A prototypal isomorphism checker, directly obtained by the permutation-tree definition
of similarity, has been realized in Prolog, and a simple web interface for it is available
at the address http://lambda.di.unito.it/iso/index.html.

6 How to Normalise Types

The application of the type reduction rule, as defined in Section 3, suffers from com-
binatorial explosion in the search for the erasable type subexpression α, thus possibly
making the normalization impractical. However, the search space can be considerably
reduced with a more accurate formulation of the algorithm.

As explained in Section 3, the reduction may only simplify an intersection by eras-
ing a type that is greater – according to the standard semantics – than one of the other

476 M. Dezani-Ciancaglini et al.

conjuncts. We can then formally introduce a preorder relation on types, whose axioms
and rules correspond to the view of “→” as a function space constructor and of “∩” as
set intersection:

σ ≤ σ σ ≤ τ, τ ≤ ρ ⇒ σ ≤ ρ

σ ∩ τ ≤ σ σ ∩ τ ≤ τ

σ ≤ τ, σ ≤ ρ ⇒ σ ≤ τ ∩ ρ
σ ≤ τ, α ≤ β ⇒ τ → α ≤ σ → β

Then, when reducing a type σ to normal form, the search for a redundant type within
σ may be limited to an outermost search for a type α that is greater than a type β in
an intersection, followed by the testing whether there exist two f.h.i.’s Id, Id′ with the
appropriate types, i.e., such that 0 Id : |σ|α �→ σ and 0 Id′ : σ �→ |σ|α. This can be
performed through a mapping I which, applied to two types σ and τ , builds the set of
all f.h.i.’s Id such that 0 Id :σ �→ τ .

I(σ1 → . . . → σn → ϕ, τ1 → . . . → τm → ϕ′) = ∅ if n �= m or ϕ �= ϕ′

I(σ1 → . . . → σn → ϕ, τ1 → . . . → τn → ϕ) =
{Id | λyz1 . . . zp.y(Id1z1) . . . (Idpzp) −→β Id & Idl ∈ I(τl, σl) for 1 ≤ l ≤ p}
if σm �= τm and σq = τq for m+ 1 ≤ q ≤ n and m ≤ p ≤ n

I(
⋂

i∈I αi,
⋂

j∈J βj) = {Id | ∀j ∈ J ∃i ∈ I. Id ∈ I(αi, βj)}

The correctness of the mapping I easily follows from Lemmas 4 and 6.

7 Conclusions and Future Work

In this paper we have investigated for the first time the type isomorphisms for intersec-
tion types, and we have provided, by means of a fine analysis of the invertible terms, a
precise characterization of their structure, despite the unexpected fact that isomorphism
with intersection types is not a congruence.

Even if the isomorphism relation is decidable, we have shown that it is weaker than
type equality in the standard models of intersection types, where arrows are interpreted
as sets of functions, and intersections as set intersections; such equality is a congruence,
consisting of the equality theory given by the axioms of commutativity, associativity
and swap (i.e, the first line and the axioms 1 and 2 of Table 1 with × replaced by ∩)
and by the order relation induced by the preorder reported in Section 6. This means that
the universal model for type isomorphisms is not a standard model of intersection types,
while Cartesian Closed Categories build a universal model for the simply typed lambda
calculus with surjective pairing and terminal object; the existence of such natural uni-
versal model for intersection types is an open question.

Finally, we recall that since types may in general be interpreted – owing to the
well-known Curry-Howard correspondence – as propositions in some suitable logic,
a characterization of type isomorphisms may immediately become a characterization of
strong logical equivalences between propositions. In the case of intersection types, how-
ever, this is a problematic issue, since it is well known that intersection is an intensional

On Isomorphisms of Intersection Types 477

operator, with no direct logical counterpart in the Curry-Howard sense. Recently, new
kinds of logics have been proposed which give a logical meaning to the intersection
operator [3], [12]. It might therefore be interesting to explore the role of intersection
type isomorphisms in such contexts.

Acknowledgments. We would like to thank the anonymous referees for their detailed
remarks and helpful comments.

References

1. van Bakel, S.: Complete restrictions of the intersection type discipline. Theoretical Computer
Science 102(1), 135–163 (1992)

2. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the complete-
ness of type assignment. The Journal of Symbolic Logic 48(4), 931–940 (1983)

3. Bono, V., Venneri, B., Bettini, L.: A typed lambda calculus with intersection types. Theoret-
ical Computer Science 398(1-3), 95–113 (2008)

4. Bruce, K., Di Cosmo, R., Longo, G.: Provable isomorphisms of types. Mathematical Struc-
tures in Computer Science 2(2), 231–247 (1992)

5. Bruce, K., Longo, G.: Provable isomorphisms and domain equations in models of typed
languages. In: Sedgewick, R. (ed.) STOC 1985, pp. 263–272. ACM, New York (1985)

6. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory for the
λ-calculus. Notre Dame Journal of Formal Logic 21(4), 685–693 (1980)

7. Dezani-Ciancaglini, M.: Characterization of normal forms possessing an inverse in the λβη-
calculus. Theoretical Computer Science 2, 323–337 (1976)

8. Di Cosmo, R.: Second order isomorphic types. A proof theoretic study on second order
λ-calculus with surjective pairing and terminal object. Information and Computation, pp.
176–201 (1995)

9. Di Cosmo, R.: A short survey of isomorphisms of types. Mathematical Structures in Com-
puter Science 15, 825–838 (2005)

10. Fiore, M., Di Cosmo, R., Balat, V.: Remarks on isomorphisms in typed lambda calculi with
empty and sum types. Annals of Pure and Applied Logic 141(1–2), 35–50 (2006)

11. Laurent, O.: Classical isomorphisms of types. Mathematical Structures in Computer Sci-
ence 15, 969–1004 (2005)

12. Liquori, L., Ronchi Della Rocca, S.: Intersection types à la Church. Information and Com-
putation 205(9), 1371–1386 (2007)

13. Martin, C.F.: Axiomatic bases for equational theories of natural numbers. Notices of the
American Mathematical Society 19(7), 778 (1972)

14. Ronchi Della Rocca, S.: Principal type scheme and unification for intersection type disci-
pline. Theoretical Computer Science 59, 1–29 (1988)

15. Soloviev, S.: A complete axiom system for isomorphism of types in closed categories. In:
Voronkov, A. (ed.) LPAR 1993. LNCS, vol. 698, pp. 360–371. Springer, Heidelberg (1993)

Undecidability of Type-Checking in Domain-Free

Typed Lambda-Calculi with Existence

Koji Nakazawa1,�, Makoto Tatsuta2,
Yukiyoshi Kameyama3, and Hiroshi Nakano4

1 Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
2 National Institute of Informatics, Japan

3 Department of Computer Science, University of Tsukuba, Japan
4 Department of Applied Mathematics and Informatics, Ryukoku University, Japan

Abstract. This paper shows undecidability of type-checking and type-
inference problems in domain-free typed lambda-calculi with existential
types: a negation and conjunction fragment, and an implicational frag-
ment. These are proved by reducing type-checking and type-inference
problems of the domain-free polymorphic typed lambda-calculus to those
of the lambda-calculi with existential types by continuation passing style
translations.

Keywords: undecidability, existential type, CPS-translation, domain-
free type system.

1 Introduction

Existential types correspond to second-order existence in logic by the Curry-
Howard isomorphism, so they are a natural notion from the point of view of logic.
They have been also actively studied from the point of view of computer science
since Mitchell and Plotkin [7] showed that abstract data types are existential
types.

Existential types are also important since, together with negation and con-
junction, it gives a suitable target calculus for continuation-passing style (CPS)
translations. Thielecke showed that the negation (¬) and conjunction (∧) frag-
ment of a λ-calculus suffices for a CPS calculus [14] as the target of various
first-order calculi. Recent studies on CPS translations for polymorphic calculi
have shown that the ¬ ∧ ∃-fragment of λ-calculus is an essence of a target cal-
culus of CPS translations for various systems, such as the polymorphic typed
λ-calculus [4], the λμ-calculus [3,5], and delimited continuations. [6] showed that
a ¬∧ ∃-fragment is even more suitable as a target calculus of a CPS translation
for delimited continuations such as shift and reset [2].

Domain-free type systems, which are in an intermediate style between Church-
and Curry-style, are useful for having the subject reduction property. In domain-
free style λ-calculus, the type of a bound variable is not explicit in λx.M as in

� knak@kuis.kyoto-u.ac.jp

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 478–492, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Undecidability of Type-Checking in Domain-Free Typed Lambda-Calculi 479

Curry-style, while as in Church-style, terms may contain type information for
second-order quantifiers, such as a type abstraction λX.M for ∀-introduction
rule, and a term 〈A,M〉 with a witness A for ∃-introduction rule. Domain-free
type systems are introduced for a study on the λμ-calculus. [9] showed the Curry-
style call-by-value λμ-calculus does not enjoy the subject reduction property, and
[3] introduced a domain-free λμ-calculus λV μ to have the subject reduction. In
addition, the ¬ ∧ ∃-fragment of the domain-free typed λ-calculus works as a
target calculus of a CPS translation for λV μ.

Type-inhabitation (INH) is a problem that asks whether there exists M such
that 0 M : A is derivable for given A. INH corresponds to provability of the
formula A. The other properties of typed λ-calculi are decidability of type-
checking and type-inference. Type-checking (TC) is a problem that asks whether
Γ 0M : A is derivable for given Γ , M , and A. Type-inference (TI) is a problem
that asks whether there exist Γ and A such that Γ 0M : A is derivable for given
M . These three questions are fundamentally important in computer science.

Although λ-calculi with existential types are important as computational sys-
tems, their properties have not been studied enough yet. It is only recent that
INH in the ¬ ∧ ∃-fragment was proved to be decidable in [13]. TC and TI in
typed λ-calculi with existential types remained unknown until this paper.

This paper proves undecidability of the type-checking and the type-inference
problems in domain-free typed λ-calculi with existential types: (1) a ¬ ∧ ∃-
fragment DF-λ¬∧∃, (2) another ¬ ∧ ∃-fragment DF-λ¬∧∃g with a generalized ∧-
elimination rule, and (3) an →∃-fragment DF-λ→∃.

Our results show that the system DF-λ¬∧∃ is marginal and interesting, be-
cause Tatsuta et al [13] showed the decidability of its INH, while ours shows the
undecidability of its TC and TI. So far we know few type systems that have this
property.

In order to prove undecidability of TC and TI in DF-λ¬∧∃, DF-λ¬∧∃g , and
DF-λ→∃, we reduce it to undecidability of TC and TI in the domain-free poly-
morphic typed λ-calculus DF-λ2. For DF-λ¬∧∃, we define a negative translation
(·)• from types of DF-λ2 to types of DF-λ¬∧∃, and a translation [[·]] from terms of
DF-λ2 to terms of DF-λ¬∧∃, which is a variant of call-by-name CPS translations
inspired by [4]. We will show that Γ 0 M : A is derivable in DF-λ2 if and only
if ¬Γ • 0 [[M]] : ¬A• is derivable in DF-λ¬∧∃. By this fact, we can reduce TC of
DF-λ2 to that of DF-λ¬∧∃, which concludes undecidability of TC of DF-λ¬∧∃.

The key of the proof is as follows. For a term M , a type derivation of ¬Γ • 0
[[M]] : ¬A• in DF-λ¬∧∃ may contain a type B which is not any CPS type, where
a CPS type is defined as a type of the form ¬C• for some type C in DF-λ2. If
a derivation contains such a type B, it does not correspond to any derivation in
DF-λ2. However, in fact, we can define a contraction transformation that maps
a type to a CPS type so that by the contraction transformation, from any type
derivation of ¬Γ • 0 [[M]] : ¬A•, we can construct another type derivation of the
same judgment in which every type is a CPS type. By this we can pull back it
into a derivation in DF-λ2.

480 K. Nakazawa et al.

Systems TC TI INH

Curry-λ2 no[16] no[16] no
DF-λ2 no[1] no[1]

Curry-λ¬∧∃ ? ? yes[13]

DF-λ¬∧∃ NO NO

Curry-λ→∃ ? ? ?

DF-λ→∃ NO NO

Fig. 1. Decidability of TC, TI and INH

We summarize related results about decidability of TC, TI, and INH in several
systems in Figure 1, where DF means domain-free, and NO denotes the main
results of this paper.

Section 2 introduces the domain-free typed λ-calculus DF-λ¬∧∃ with nega-
tion, conjunction and existence. Section 3 gives our main theorem which states
undecidability of TC and TI in DF-λ¬∧∃. Section 4 proves the main theorem,
and applies the proof method to DF-λ¬∧∃g . Section 5 discusses CPS-translations
for various systems to show that DF-λ¬∧∃ is an essence of a target of CPS trans-
lations. Section 6 shows undecidability of TC and TI in a domain-free typed
λ-calculus DF-λ→∃ with implication and existence.

2 Typed λ-Calculus with Negation, Conjunction and
Existence

In this section, we introduce the negation (¬), conjunction (∧), and existence
(∃) fragment DF-λ¬∧∃ of domain-free typed λ-calculus.

Definition 1 (DF-λ¬∧∃). (1) The types (denoted by A, B,. . . , and called ¬∧∃-
types) and the terms (denoted by M , N ,. . .) of DF-λ¬∧∃ are defined by

A ::= X | ⊥ | ¬A | A ∧ A | ∃X.A,
M ::= x | λx.M | 〈M,M〉 | 〈A,M〉 | MM | Mπ1 | Mπ2 | M [Xx.M],

where X and x denote a type variable and a term variable, respectively. In the
type ∃X.A, the variable X is bound in A. In the term λx.M , the variable x is
bound in M . In the term N [Xx.M], the variables X and x are bound in M . We
use ≡ to denote syntactic identity modulo renaming of bound variables.

(2) Γ denotes a context, which is a finite set of type assignments in the form
of (x : A). We suppose that if both (x : A) and (x : B) are in Γ , A ≡ B holds.
We write Γ, x : A for Γ ∪ {x : A}, and Γ1, Γ2 for Γ1 ∪ Γ2. ¬Γ is defined as
{(x : ¬A)|(x : A) ∈ Γ}. The typing rules of DF-λ¬∧∃ are the following.

Γ, x : A 0 x : A
(Ax)

Γ, x : A 0M : ⊥
Γ 0 λx.M : ¬A (¬I) Γ1 0M : ¬A Γ2 0 N : A

Γ1, Γ2 0MN : ⊥ (¬E)

Undecidability of Type-Checking in Domain-Free Typed Lambda-Calculi 481

Γ1 0M : A Γ2 0 N : B

Γ1, Γ2 0 〈M,N〉 : A ∧ B
(∧I)

Γ 0 N : A[X := B]
Γ 0 〈B, N〉 : ∃X.A (∃I)

Γ 0M : A1 ∧ A2

Γ 0Mπ1 : A1
(∧E1)

Γ 0M : A1 ∧ A2

Γ 0Mπ2 : A2
(∧E2)

Γ1 0M : ∃X.A Γ2, x : A 0 N : C

Γ1, Γ2 0M [Xx.N] : C
(∃E)

A[X := B] is the ordinary capture-avoiding substitution for types. In the rule
(∃E), Γ2 and C must not contain X freely. We write Γ 0λ¬∧∃ M : A to denote
that Γ 0M : A is derivable by the typing rules above.

In Section 5, we will show this calculus is useful for a target of CPS translations.
In addition, λ¬∧∃ represents every function representable in the polymorphic
typed λ-calculus, because of a CPS-translation from the polymorphic typed λ-
calculus to this calculus.

3 Type-Checking and Type-Inference

Type-inhabitation (INH) is a problem that asks whether there existsM such that
0M : A is derivable for given A, which corresponds to provability of the formula
A. In [13], INH of λ¬∧∃ was proved to be decidable. Moreover, it immediately
implies decidability of INH in DF-λ¬∧∃.

Type-checking (TC) is a problem that asks whether Γ 0 M : A is derivable
for given Γ , M , and A. Type-inference (TI) is a problem that asks whether there
exist Γ and A such that Γ 0M : A is derivable for given M .

Theorem 1. Type-checking and type-inference of DF-λ¬∧∃ are undecidable.

This theorem is proved in the Section 4.

4 Proof of Undecidability of TC and TI in DF-λ¬∧∃

This section will prove Theorem 1. The subsection 4.1 will give a definition
of a domain-free polymorphic typed λ-calculus DF-λ2. The subsection 4.2 will
define a CPS translation from that calculus to DF-λ¬∧∃. We will also define
an inverse CPS translation from the image DF-λ¬∧∃cps of the CPS translation to
DF-λ2. The subsection 4.3 will show our main lemma, which states that DF-λ¬∧∃

is conservative over DF-λ¬∧∃cps . The subsection 4.4 will finish our undecidability
proof. Our proof method will be applied to a variant DF-λ¬∧∃g with general
elimination rules in the subsection 4.5.

4.1 Domain-Free Polymorphic Typed λ-Calculus

In this subsection, we introduce the domain-free variant DF-λ2 of the polymor-
phic typed λ-calculus, for which TC and TI have been already known to be
undecidable [1].

482 K. Nakazawa et al.

Definition 2 (DF-λ2). (1) The types (denoted by A, B,. . . , and called →∀-
types), and the terms (denoted by M , N ,. . .) of DF-λ2 are defined by
A ::= X | A→A | ∀X.A,
M ::= x | λx.M | λX.M | MM | MA.
(2) The typing rules of DF-λ2 are the following.

Γ, x : A 0 x : A
(Ax)

Γ, x : A 0M : B
Γ 0 λx.M : A→B

(→I)
Γ1 0M : A→B Γ2 0 N : A

Γ1, Γ2 0MN : B
(→E)

Γ 0M : A
Γ 0 λX.M : ∀X.A (∀I) Γ 0M : ∀X.A

Γ 0MB : A[X := B]
(∀E)

In the rule (∀I), the lower sequent must not contain X freely.

Theorem 2 ([1]). Type-checking and type-inference of DF-λ2 are undecidable.

4.2 CPS Translation

We give a CPS translation for DF-λ2 in this subsection. Our translation is in-
spired by Fujita’s translation in [4], but since it is in Church-style, we cannot
use it directly for domain-free calculi, and we modified it appropriately.

Definition 3 (CPS Translation). (1) The negative translation from →∀-types
to ¬ ∧ ∃-types is defined by
X• ≡ X, (A→B)• ≡ ¬A• ∧B•, (∀X.A)• ≡ ∃X.A•.

Γ • is defined as {(x : A•)|(x : A) ∈ Γ}.
(2) The CPS translation from terms in DF-λ2 to terms in DF-λ¬∧∃ is defined

by
[[x]] ≡ λk.xk,
[[λx.M]] ≡ λk.(λx.[[M]](kπ2))(kπ1),
[[λX.M]] ≡ λk.k[Xk′.[[M]]k′],
[[MN]] ≡ λk.[[M]]〈[[N]], k〉,
[[MA]] ≡ λk.[[M]]〈A•, k〉,

where variables k and k′ are supposed to be fresh.

Proposition 1. Γ 0λ2 M : A implies ¬Γ • 0λ¬∧∃ [[M]] : ¬A•.

Definition 4 (DF-λ¬∧∃cps). (1) The continuation types (denoted by A, B,. . .) and
the CPS terms (denoted by P , Q,. . .) are defined as the image of the negative
translation and that of the CPS translation, respectively. These are inductively
defined by
A ::= X | ¬A ∧ A | ∃X.A,
P ::= λk.xk | λk.(λx.P (kπ2))(kπ1) | λk.k[Xk′.Pk′] | λk.P 〈P, k〉 | λk.P 〈A, k〉,

where occurrences of k and k′ denote those of the same variable, for example,
λk.xk denotes λk1.xk1 but does not denote λk1.xk2 for k1 �≡ k2. The CPS types
are defined as types of the form ¬A.

Undecidability of Type-Checking in Domain-Free Typed Lambda-Calculi 483

(2) We define the subsystem DF-λ¬∧∃cps of DF-λ¬∧∃ by restricting terms and
types to CPS terms and CPS types, respectively. We write ¬Γ 0cps P : ¬A to
denote that the judgment is derivable in DF-λ¬∧∃cps .

Definition 5 (Inverse CPS Translation). The inverse translation (·)◦ from
continuation types to →∀-types is defined by
X◦ ≡ X, (¬A ∧ B)◦ ≡ A◦→B◦, (∃X.A)◦ ≡ ∀X.A◦.

The inverse translation (·)# from CPS terms to terms of DF-λ2 is defined by

(λk.xk)# ≡ x,
(λk.(λx.P (kπ2))(kπ1))

≡ λx.P#,
(λk.k[Xk′.Pk′])# ≡ λX.P#,
(λk.P 〈Q, k〉)# ≡ P#Q#,
(λk.P 〈A, k〉)# ≡ P#A◦.

Lemma 1. (1) For any →∀-type A, A• is a continuation type, and A•◦ ≡ A.
(2) For any DF-λ2-term M , [[M]] is a CPS term, and [[M]]# ≡M holds.

Proposition 2. (1) If ¬Γ 0cps P : ¬A holds, then Γ ◦ 0λ2 P
: A◦ holds.

(2) If ¬Γ • 0cps [[M]] : ¬A•, then Γ 0λ2 M : A holds.

Proof. (1) By induction on the derivation.
(2) By (1), we have Γ •◦ 0λ2 [[M]]# : A•◦. By Lemma 1, we have the claim. �

4.3 Typing for CPS Terms in DF-λ¬∧∃

Proposition 1 shows that, for any typable term M in DF-λ2, [[M]] has a CPS
type. In fact, its converse can be also proved. In order to prove that, in this
subsection, we will show that DF-λ¬∧∃ is conservative over DF-λ¬∧∃cps .

A type derivation of a CPS term in DF-λ¬∧∃ may contain a non CPS type.
For example, a CPS term Q ≡ λk′.xk′ has an arbitrary negation type ¬A under
a context {x : ¬A}, and then P ≡ λk.(λx.Q(kπ2))(kπ1) has a type ¬(¬A∧A) as

x : ¬A 0 Q : ¬A
k : ¬A ∧ A 0 k : ¬A ∧ A
k : ¬A ∧ A 0 kπ2 : A

k : ¬A ∧ A, x : ¬A 0 Q(kπ2) : ⊥
k : ¬A ∧ A 0 λx.Q(kπ2) : ¬¬A

k : ¬A ∧ A 0 k : ¬A ∧ A
k : ¬A ∧ A 0 kπ1 : ¬A

k : ¬A ∧ A 0 (λx.Q(kπ2))(kπ1) : ⊥
0 λk.(λx.Q(kπ2))(kπ1) : ¬(¬A ∧ A) ,

where the type A may not be a continuation type, for example, A may be X ∧Y .
However, as we can see in the example, such a type A cannot be consumed in
the type derivation of a CPS term, so we can replace A by any type without
changing the form of the derivation. In general, we can define a translation (·)c
from ¬ ∧ ∃-types to CPS types such that, for any CPS term P and any type
derivation of Γ 0λ¬∧∃ P : A, we have Γ c 0cps P : Ac. We call the translation (·)c
the contraction translation. Moreover, we have (¬A•)c ≡ ¬A•.

484 K. Nakazawa et al.

Definition 6 (Contraction Translation). Let S be a fixed closed continua-
tion type, such as ∃X.X. The contraction translation (·)c from ¬ ∧ ∃-types to
CPS types is defined by

(¬A)c ≡ ¬Ad, Xd ≡ X,
Ac ≡ ¬S (A is not a negation), ⊥d ≡ S,

(¬A)d ≡ S,
(A ∧ B)d ≡ Ac ∧ Bd,
(∃X.A)d ≡ ∃X.Ad.

Γ c is defined as {(x : Ac)|(x : A) ∈ Γ}.

Lemma 2. (1) For any continuation type A, (¬A)c ≡ ¬A and Ad ≡ A hold.
(2) For any continuation type A and any ¬ ∧ ∃-type B, (B[X := A])c ≡

Bc[X := A] and (B[X := A])d ≡ Bd[X := A] hold.

Proof. (1) By induction on A.
(2) By induction on B. Note that any continuation type A is not a negation,

so we have Ac ≡ ¬S. �

Lemma 3 (Main Lemma). For a CPS term P , Γ 0λ¬∧∃ P : A implies
Γ c 0cps P : Ac.

Proof. By induction on P . Note that any type of P is a negation, since any
CPS term is a λ-abstraction. So we will show that Γ 0λ¬∧∃ P : ¬A implies
Γ c 0cps P : ¬Ad.

Case P ≡ λk.Q〈R, k〉. Any derivation of Γ 0λ¬∧∃ P : ¬A has the following
form.

Γ 0 Q : ¬(B ∧ A)
Γ 0 R : B k : A 0 k : A
Γ, k : A 0 〈R, k〉 : B ∧ A

Γ, k : A 0 Q〈R, k〉 : ⊥
Γ 0 λk.Q〈R, k〉 : ¬A

By the induction hypotheses, we have Γ c 0cps Q : ¬(Bc ∧Ad) and Γ c 0cps R : Bc,
so we have Γ c 0cps P : ¬Ad.

Case P ≡ λk.Q〈B, k〉. Any derivation of Γ 0λ¬∧∃ P : ¬A has the following
form, where A must be C[X := B].

Γ 0 Q : ¬∃X.C
k : A 0 k : A

k : A 0 〈B, k〉 : ∃X.C
Γ, k : A 0 Q〈B, k〉 : ⊥
Γ 0 λk.Q〈B, k〉 : ¬A

By the induction hypothesis, Γ c 0cps Q : ¬∃X.Cd holds, so we have Γ c 0cps

P : ¬Cd[X := B] by letting k : Cd[X := B], where Cd[X := B] is identical to
(C[X := B])d by Lemma 2 (2).

Other cases are similarly proved. �

Undecidability of Type-Checking in Domain-Free Typed Lambda-Calculi 485

4.4 Proof of Undecidability

By the main lemma, we can reduce TC and TI of DF-λ2 to those of DF-λ¬∧∃,
and then conclude undecidability of TC and TI in DF-λ¬∧∃.

Proposition 3. (1) Γ 0λ2 M : A holds if and only if ¬Γ • 0λ¬∧∃ [[M]] : ¬A•
holds.

(2) For any DF-λ2-term M , Γ 0λ2 M : A holds for some Γ and A if and only
if Γ ′ 0λ¬∧∃ [[M]] : A′ holds for some Γ ′ and A′.

Proof. (1) The only-if part is Proposition 1, so we will show the if part. If
¬Γ • 0λ¬∧∃ [[M]] : ¬A• holds, by Lemma 3, we have (¬Γ •)c 0cps [[M]] : (¬A•)c,
from which ¬Γ • 0cps [[M]] : ¬A• follows by Lemma 2 (1). By Proposition 2 (2),
Γ 0λ2 M : A holds.

(2) The only-if part follows from the only-if part of (1). The if part follows
from Lemma 3 and Proposition 2 (2). �

Proof of Theorem 1. Undecidability of TC and TI in DF-λ¬∧∃ are proved by
Proposition 3 and Theorem 2. �

4.5 TC and TI of DF-λ¬∧∃
g Are Undecidable

The discussion for DF-λ¬∧∃ in the previous subsections can be applied to a vari-
ant DF-λ¬∧∃g with general elimination rules by defining a suitable CPS transla-
tion from DF-λ2 to DF-λ¬∧∃g .

Definition 7 (DF-λ¬∧∃g). The terms of DF-λ¬∧∃g are defined by
M ::= x | λx.M | 〈M,M〉 | 〈A,M〉 | MM | M [xx.M] | M [Xx.M]. The

typing rules of DF-λ¬∧∃g are the same as DF-λ¬∧∃ except for replacing (∧E1)
and (∧E2) by the following rule.

Γ1 0M : A ∧ B Γ2, x : A, y : B 0 N : C

Γ1, Γ2 0M [xy.N] : C
(∧E)

Γ 0λ¬∧∃
g

M : A is defined similarly to that in DF-λ¬∧∃.

Definition 8. The CPS translation [[·]] of DF-λ¬∧∃g and its inverse (·)# are the
same as those of DF-λ¬∧∃ except for the cases of λ-abstractions, which are de-
fined by [[λx.M]] ≡ λk.k[xk′.[[M]]k′], and (λk.k[xk′.Pk′])# ≡ λx.P#, where the
definition of CPS terms is also changed by
P ::= λk.xk | λk.k[xk′.Pk′] | λk.k[Xk′.Pk′]| λk.P 〈P, k〉 | λk.P 〈A, k〉.

¬Γ 0g-cps P : ¬A is defined similarly to that in DF-λ¬∧∃.

Lemma 4 (Main Lemma). If P is a CPS term, Γ 0λ¬∧∃
g

P : A implies
Γ c 0g-cps P : Ac.

486 K. Nakazawa et al.

Proposition 4. (1) Γ 0λ2 M : A holds if and only if ¬Γ • 0λ¬∧∃
g

[[M]] : ¬A•
holds.

(2) For any DF-λ2-term M , Γ 0λ2 M : A holds for some Γ and A if and only
if Γ ′ 0λ¬∧∃

g
[[M]] : A′ holds for some Γ ′ and A′.

Theorem 3. Type-checking and type-inference of DF-λ¬∧∃g are undecidable.

Proof. By Proposition 4 and Theorem 2. �

5 A Target of CPS Translations

In this section, we discuss that DF-λ¬∧∃ is an essence of a target of CPS transla-
tions by showing it works well as a CPS target for the call-by-value computational
λ-calculus, the call-by-value λμ-calculus, and delimited continuations. At first
sight, λ¬∧∃ may look weak as a computational system, but it suffices as a target
calculus of several CPS translations [4,5]. Moreover, the domain-free style cal-
culus with existence works also as a CPS target of the domain-free call-by-value
λμ-calculus λV μ [3].

First, we define the reduction relation in DF-λ¬∧∃. We omit η-rules, but the
results in this section can be extended straightforwardly to η-rules.

Definition 9. The reduction rules of DF-λ¬∧∃ are the following.

(β→) (λx.M)N → M [x := N]
(β∧) 〈M1,M2〉πi → Mi (i = 1 or 2)
(β∃) 〈A,M〉[Xx.N] → N [X := A, x := M]

The relation →λ¬∧∃ is the compatible closure of the above rules, and the relation
→∗λ¬∧∃ is its reflexive transitive closure.

5.1 Call-by-Value Second-Order Computational λ-Calculus

In [11], Sabry and Wadler gave a call-by-value CPS translation from the com-
putational λ-calculus λc [8] to a CPS calculus λcps, which is a subsystem of the
ordinary λ-calculus. Furthermore, they gave an inverse translation from λcps to
λc, and showed that those translations form a reflection of λcps in λc.

DF-λ¬∧∃ can be a target of a CPS translation for λc with polymorphic types.
In this subsection, we define DF-λ¬∧∃cps/v as a subsystem of DF-λ¬∧∃, and show
that we have a reflection of DF-λ¬∧∃cps/v in λc with polymorphic types.

Definition 10 (DF-λ∀c). The system DF-λ∀c is an extension of DF-λ2 by adding
let-expressions with the typing rule for them as follows.

Γ1 0M : A Γ2, x : A 0 N : B
Γ1, Γ2 0 let x = M in N : B

(let)

The values are defined by V ::= x | λx.M | λX.M . We use P , Q,. . . to denote
terms that are not values. The call-by-value reduction is defined by the following
rules.

Undecidability of Type-Checking in Domain-Free Typed Lambda-Calculi 487

(β.v) (λx.M)V → M [x := V]
(β.t) (λX.M)A → M [X := A]
(β.let) let x = V in M → M [x := V]
(ass) let y = (let x = L in M) in N → let x = L in (let y = M in N)
(let.1) PM → let x = P in xM
(let.2) V P → let x = P in V x
(let.3) PA → let x = P in xA

In (ass), N must not contain x freely.

Definition 11 (DF-λ¬∧∃cps/v). (1) Let k be a fixed term variable. The value types
(denoted by A, B,. . .), the terms (denoted by M , N ,. . .), the values (denoted by
V , W ,. . .), and the continuations (denoted by K,. . .) of DF-λ¬∧∃cps/v are defined by

A ::= X | ¬(A ∧ ¬A) | ¬∃X.¬A,
M ::= KV | V 〈V,K〉 | V 〈A,K〉,
V ::= x | λc.(λx.(λk.M)(cπ2))(cπ1) | λc.c[Xk.M],
K ::= k | λx.M ,

where c is a fresh variable, and occurrences of c denote those of the same
variable. We write λ〈x, k〉.M for λc.(λx.(λk.M)(cπ2))(cπ1), and λ〈X, k〉.M for
λc.c[Xk.M].

(2) The reduction rules of DF-λ¬∧∃cps/v are the following.

(β.v) (λ〈x, k〉.M)〈V,K〉→ M [x := V, k := K]
(β.t) (λ〈X, k〉.M)〈A,K〉→ M [x := A, k := K]
(β.let) (λx.M)V → M [x := V]

DF-λ¬∧∃cps/v is a subsystem of DF-λ¬∧∃, and closed under the reduction. The first-
order fragment of DF-λ¬∧∃cps/v is isomorphic to λcps in [11].

Definition 12. (1) The negative translation (·)' from →∀-types to value types
and its inverse (·)(are defined by

X' ≡ X, X(≡ X,
(A→B)' ≡ ¬(A' ∧ ¬B'), (¬(A ∧ ¬B))(≡ A(→B(,
(∀X.A)' ≡ ¬∃X.¬A', (¬∃X.¬A)(≡ ∀X.A(.

(2) The CPS translation [[·]] from DF-λ∀c to DF-λ¬∧∃cps/v is defined by

[[M]] ≡M : k, V : K ≡ KΦ(V),
VW : K ≡ Φ(V)〈Φ(W),K〉,

Φ(x) ≡ x, PW : K ≡ P : λm.m〈Φ(W),K〉,
Φ(λx.M) ≡ λ〈x, k〉.[[M]], V Q : K ≡ Q : λn.Φ(V)〈n,K〉,
Φ(λX.M) ≡ λ〈X, k〉.[[M]], PQ : K ≡ P : λm.(Q : λn.m〈n,K〉),

V A : K ≡ Φ(V)〈A',K〉,
PA : K ≡ P : λm.m〈A',K〉,
let x = M in N : K ≡M : λx.(N : K),

where m and n are fresh variables.

488 K. Nakazawa et al.

(3) The inverse translation (·)# from DF-λ¬∧∃cps/v to DF-λ∀c is defined by

(KV)# ≡ K�[V �], x� ≡ x,
(V 〈W,K〉)# ≡ K�[V �W �], (λ〈x, k〉.M)� ≡ λx.M#,
(V 〈A,K〉)# ≡ K�[A(W �], (λ〈X, k〉.M)� ≡ λX.M#,
k� ≡ [],
(λx.M)� ≡ let x = [] in M#.

Proposition 5. (1) Γ 0λ∀
c
M : A implies Γ', k : ¬A' 0λ¬∧∃ [[M]] : ⊥.

(2) [[·]] and (·)# form a reflection of DF-λ¬∧∃cps/v in DF-λ∀c , that is, (a) [[·]] and
(·)# preserve reduction relation →∗, (b) [[M#]] ≡ M holds for any term M of
DF-λ¬∧∃cps/v, and (c) M →∗ [[M]]# holds for any term M of DF-λ∀c .

5.2 Call-by-Value λμ-Calculus

The λμ-calculus was introduced by Parigot in [9] as an extension of λ-calculus,
and it corresponds to the classical natural deduction for second-order proposi-
tional logic by the Curry-Howard isomorphism. In [3], Fujita pointed out that
the Curry-style call-by-value λμ-calculus does not enjoy the subject reduction
property, so he introduced a domain-free call-by-value λμ-calculus λV μ to avoid
the problem. In this subsection, we show that DF-λ¬∧∃ works as a target calculus
of a CPS translation for λV μ.

Definition 13 (λV μ). (1) The system λV μ has a set of another sort of variables
called μ-variables (denoted by α, β,. . .). The types of λV μ are the →∀-types. The
terms (denoted by M , N ,. . .), and the values (denoted by V , W ,. . .) of λV μ are
defined by
M ::= V | MM | MA | μα.[α]M ,
V ::= x | λx.M | λX.M .
(2) The typing rules of λV μ are the following.

Γ, x : A 0 x : A;Δ
(Ax)

Γ 0M : B;Δ
Γ 0 μα.[β]M : A; (Δ,β : B)− {α : A} (μ)

Γ, x : A 0M : B;Δ
Γ 0 λx.M : A→B;Δ

(→I)
Γ1 0M : A→B;Δ1 Γ2 0 N : A;Δ2

Γ1, Γ2 0MN : B;Δ1, Δ2
(→E)

Γ 0M : A;Δ
Γ 0 λX.M : ∀X.A;Δ

(∀I)
Γ 0M : ∀X.A;Δ

Γ 0MB : A[X := B];Δ
(∀E)

Γ denotes a context similarly to DF-λ¬∧∃. Δ denotes a μ-context, which is a
finite set of type assignments for μ-variables in the form of (α : A). In the rule
(∀I), the lower sequent must not contain X freely.

(3) The singular contexts are defined by C ::= []M | V [] | []A. The term C[M]
is obtained from C by replacing [] by M . The structural substitution M [α⇐C] is
obtained from M by replacing each subterm [α]L by [α]C[L[α⇐C]]. The reduction
rules of λV μ are the following.

Undecidability of Type-Checking in Domain-Free Typed Lambda-Calculi 489

(βtm) (λx.M)N → M [x := N] (μ) C[μα.M] → μα.M [α⇐C]
(βtp) (λX.M)A → M [X := A]

Definition 14. The negative translation (·)' and the CPS translation [[·]] from
λV μ to DF-λ¬∧∃ are the same as Definition 12, except for replacing the definition
for let by μα.[β]M : K ≡ (M : xβ)[xα := K], where we suppose that DF-λ¬∧∃

contains a term variable xα for each μ-variable α.

Proposition 6. (1) Γ 0λV μ M : A;Δ implies Γ',¬Δ', k : ¬A' 0λ¬∧∃ [[M]] : ⊥.
(2) M →∗λV μ N implies [[M]] →∗λ¬∧∃ [[N]].

5.3 Delimited Continuations

The ¬ ∧ ∃-fragments are also useful as a target of a CPS translation for de-
limited continuations such as shift and reset [2]. For calculi with delimited
continuations, we consider multi-staged CPS translations, and we need call-by-
value calculi as intermediate CPS calculi. However, in order to have a sound
CPS translation to an →∃-fragment, the calculus has to have not only the call-
by-value η-reduction, but also the full η-reduction. On the other hand, as it was
shown in [6], we can define a sound CPS translation from a calculus with shift
and reset to a call-by-value ¬ ∧ ∃-fragment without full η-reduction.

6 Undecidability in Implicational Fragment

Our method by means of CPS translations can be used for the domain-free
typed λ-calculus DF-λ→∃ with implication and existence. In this section, we
define DF-λ→∃ and a CPS translation from DF-λ2 to DF-λ→∃, by which TC and
TI of DF-λ2 are reduced to those of DF-λ→∃.

Definition 15 (DF-λ→∃). The types (called →∃-types) and the terms of
DF-λ→∃ are defined by

A ::= X | ⊥ | A→A | ∃X.A,
M ::= x | λx.M | 〈A,M〉 | MM | M [Xx.M],

We write ¬A for A→⊥. The typing rules of DF-λ→∃ are (Ax), (∃I), (∃E) of
DF-λ¬∧∃ and

Γ, x : A 0M : B

Γ 0 λx.M : A→B
(→I)

,

Γ1 0M : A→B Γ2 0 N : A

Γ1, Γ2 0MN : B
(→E)

.

Definition 16 (CPS translation). (1) The negative translation (·)• from →∀-
types to →∃-types and its inverse (·)◦ from continuation types to →∀-types are
defined by

X• ≡ X, X◦ ≡ X,
(A→B)• ≡ ¬(¬A•→¬B•), (¬(¬A→¬B))◦ ≡ A◦→B◦,
(∀X.A)• ≡ ∃X.A•, (∃X.A)◦ ≡ ∀X.A◦,

490 K. Nakazawa et al.

where the continuation types are defined by A ::= X | ¬(¬A→¬A) | ∃X.A. The
CPS types are defined as types of the form ¬A.

(2) The CPS translation from terms in DF-λ2 to terms in DF-λ→∃ and its
inverse from CPS terms to terms of DF-λ2 are defined by

[[x]] ≡ λk.xk, (λk.xk)# ≡ x,
[[λx.M]] ≡ λk.k(λx.[[M]]), (λk.k(λx.P))# ≡ λx.P#,
[[λX.M]] ≡ λk.k[Xk′.[[M]]k′], (λk.k[Xk′.Pk′])# ≡ λX.P#,
[[MN]] ≡ λk.[[M]](λm.m[[N]]k), (λk.P (λm.mQk))# ≡ P#Q#,
[[MA]] ≡ λk.[[M]]〈A•, k〉, (λk.P 〈A, k〉)# ≡ P#A◦,

where the CPS terms are defined by
P ::= λk.xk | λk.k(λx.P) | λk.k[Xk′.Pk′] | λk.P (λm.mPk) | λk.P 〈A, k〉,

where occurrences of k and k′ denote those of the same variable.
(3) The system DF-λ→∃cps is defined as a subsystem of DF-λ→∃ by restricting

terms and types to CPS terms and CPS types, respectively. We write ¬Γ 0→∃cps

P : ¬A to denote that the judgment is derivable in DF-λ→∃cps .

Lemma 5. (1) For any →∀-type A, A• is a continuation type, and A•◦ ≡ A
holds.

(2) For any DF-λ2-term M , [[M]] is a CPS term, and [[M]]# ≡M holds.

Proposition 7. (1) Γ 0λ2 M : A implies ¬Γ • 0λ→∃ [[M]] : ¬A•.
(2) ¬Γ 0→∃cps P : ¬A implies Γ ◦ 0λ2 P

: A◦.
(3) ¬Γ • 0→∃cps [[M]] : ¬A• implies Γ 0λ2 M : A.

Definition 17 (Contraction Translation). Let S be a fixed closed continua-
tion type. The contraction translation (·)c from →∃-types to CPS types is defined
by

(A→B)c ≡ ¬Ad,
Ac ≡ ¬S (A is not an implication),
Xd ≡ X,
⊥d ≡ S,
((A→B→C)→D)d ≡ ¬(Ac→¬Bd),
((A→B)→D)d ≡ ¬(Ac→¬S), (B is neither an implication nor ⊥),
(A→D)d ≡ S (otherwise),
(∃X.A)d ≡ ∃X.Ad.

Lemma 6. (1) For any continuation type A, (¬A)c ≡ ¬A and Ad ≡ A hold.
(2) For any continuation type A and any →∃-type B, (B[X := A])c ≡ Bc[X :=

A] and (B[X := A])d ≡ Bd[X := A] hold.

Proof. (1) is straightforwardly proved by induction. For (2), we use the fact
Ac ≡ S and (A→ B)d ≡ S. �

Lemma 7 (Main Lemma). If P is a CPS term, Γ 0λ→∃ P : A implies
Γ c 0→∃cps P : Ac.

Undecidability of Type-Checking in Domain-Free Typed Lambda-Calculi 491

Proof. By induction on P . Note that any type of a CPS term is an implication,
so we will show that Γ 0λ→∃ P : A1→A2 implies Γ c 0→∃cps P : ¬Ad

1. We will
show only non-trivial cases, and other cases are proved similarly to DF-λ¬∧∃.

Case P ≡ λk.k(λx.Q). Any derivation of Γ 0λ→∃ P : A1→A2 has the following
form, where A1 must be (B1→B2)→A2.

k : A1 0 k : A1

Γ, x : B1 0 Q : B2

Γ 0 λx.Q : B1→B2

Γ, k : A1 0 k(λx.Q) : A2

Γ 0 λk.k(λx.Q) : A1→A2

Note that B2 is an implication since it is a type of a CPS term Q, so we have Ad
1 ≡

((B1→B2)→A2)
d ≡ ¬(Bc

1→Bc
2) by Definition 17. By the induction hypothesis,

we have Γ c, x : Bc
1 0→∃cps Q : Bc

2, so Γ c 0→∃cps P : ¬¬(Bc
1→Bc

2).
Case P ≡ λk.Q(λm.mRk). Any derivation of Γ 0λ→∃ P : A1→A2 has the

following form, where B must be (C→A1→D)→D.

Γ 0 Q : B→A2

m : C→A1→D 0 m : C→A1→D Γ 0 R : C
Γ,m : C→A1→D 0 mR : A1→D k : A1 0 k : A1

Γ, k : A1,m : C→A1→D 0 mRk : D

Γ, k : A1 0 λm.mRk : (C→A1→D)→D

Γ, k : A1 0 Q(λm.mRk) : A2

Γ 0 λk.Q(λm.mRk) : A1→A2

By the induction hypotheses, we have Γ c 0→∃cps Q : ¬Bd and Γ c 0→∃cps R : Cc,
where Bd is identical to ¬(Cc→¬Ad

1). So we have Γ c 0→∃cps P : ¬Ad
1 by letting

k : Ad
1 and m : Cc→¬Ad

1. �

Proposition 8. (1) Γ 0λ2 M : A holds if and only if ¬Γ • 0λ→∃ [[M]] : ¬A•
holds.

(2) For any DF-λ2-term M , Γ 0λ2 M : A holds for some Γ and A if and only
if Γ ′ 0λ→∃ [[M]] : A′ holds for some Γ ′ and A′.

Theorem 4. Type-checking and type-inference of DF-λ→∃ are undecidable.

7 Concluding Remarks

We can consider the Curry-style system with negation, conjunction, and exis-
tence, where the inference rules for ∃ are

Γ 0 N : A[X := B]
Γ 0 〈∃, N〉 : ∃X.A (∃I)

,

Γ1 0M : ∃X.A Γ2, x : A 0 N : C

Γ1, Γ2 0M [x.N] : C
(∃E)

,

where terms do not contain any type information [12]. We could not directly
apply our approach to this system. Proving undecidability of TC and TI in this
system would be future work.

492 K. Nakazawa et al.

Acknowledgments. The authors would like to thank Professor Ken-etsu Fu-
jita for helpful comments, and Professor Masahito Hasegawa for a copy of his
draft [6]. The first author was partially supported by the Japanese Ministry of
Education, Culture, Sports, Science and Technology, Grant-in-Aid for Young
Scientists (B) 18700008.

References

1. Barthe, G., Sørensen, M.H.: Domain-free pure type systems. J. Functional Pro-
gramming 10, 412–452 (2000)

2. Danvy, O., Fillinski, A.: Representing Control: a Study of the CPS Translation.
Mathematical Structures in Computer Science 2(4), 361–391 (1992)

3. Fujita, K.: Explicitly typed λμ-calculus for polymorphism and call-by-value. In:
Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 162–177. Springer, Heidelberg
(1999)

4. Fujita, K.: Galois embedding from polymorphic types in to existential types. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 194–208. Springer, Heidelberg
(2005)

5. Hasegawa, M.: Relational parametricity and control. Logical Methods in Computer
Science 2(3:3), 1–22 (2006)

6. Hasegawa, M.: (unpublished manuscript, 2007)
7. Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Transac-

tions on Programming Languages and Systems 10(3), 470–502 (1988)
8. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of 4th

Annual Symposium on Logic in Computer Science (LICS 1989), pp. 14–23 (1989)
9. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduc-

tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer,
Heidelberg (1992)

10. Plotkin, G.: Call-by-name, call-by-value, and the λ-calculus. Theoretical Computer
Science 1, 125–159 (1975)

11. Sabry, A., Wadler, P.: A reflection on call-by-value. ACM Transactions on Pro-
gramming Languages and Systems 19(6), 916–941 (1997)

12. Tatsuta, M.: Simple saturated sets for disjunction and second-order existential
quantification. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 366–
380. Springer, Heidelberg (2007)

13. Tatsuta, M., Fujita, K., Hasegawa, R., Nakano, H.: Inhabitance of Existential Types
is Decidable in Negation-Product Fragment. In: Proceedings of 2nd International
Workshop on Classical Logic and Computation (CLC 2008) (2008)

14. Thielecke, H.: Categorical Structure of Continuation Passing Style. Ph.D. Thesis,
University of Edinburgh (1997)

15. van Benthem Jutting, L.S.: Typing in pure type systems. Information and Com-
putation 105, 30–41 (1993)

16. Wells, J.B.: Typability and type checking in the second-order λ-calculus are equiv-
alent and undecidable. In: Proceedings of 9th Symposium on Logic in Computer
Science (LICS 1994), pp. 176–185 (1994)

Type-Based Termination with Sized Products

Gilles Barthe1,�, Benjamin Grégoire2, and Colin Riba2

1 IMDEA Software, Madrid, Spain
gilles.barthe@imdea.org

2 INRIA Sophia-Antipolis, France
{Benjamin.Gregoire,Colin.Riba}@sophia.inria.fr

Abstract. Type-based termination is a semantically intuitive method
that ensures termination of recursive definitions by tracking the size
of datatype elements, and by checking that recursive calls operate on
smaller arguments. However, many systems using type-based termina-
tion rely on a semantical anomaly to guarantee strong normalization;
namely, they impose that non-recursive elements of a datatype, e.g. the
empty list, have size 1 instead of 0. This semantical anomaly also pre-
vents functions such as quicksort to be given a precise typing.

The main contribution of this paper is a type system that remedies
this anomaly, and still ensures termination. In addition, our type system
features prenex stage polymorphism, a weakening of existential quantifi-
cation over stages, and is precise enough to type quicksort as a non-size
increasing function. Moreover, our system accomodate stage addition
with all positive inductive types.

1 Introduction

Type-based termination is a method to guarantee termination of recursive defi-
nitions by a non-standard type system in which datatype elements are assigned
a size, which is used by the typing rule for letrec to ensure that recursive calls
are made on smaller elements, i.e. elements with a smaller size. The semantical
intuition behind size-based termination is embedded in the (simplified) typing
rule for recursive definitions, which states that the definition of a function on
elements of size ı can only make recursive calls on elements of smaller size:

Γ, f : Listıτ → σ 0 e : List̂ıτ → σ

Γ 0 letrec f = e : List∞τ → σ
(1)

where ı is a size variable, Listı denotes the type of lists of size less or equal to
ı, and ̂ is the successor function on stages, List̂ı denotes the type of lists of size
less or equal to ı̂ and List∞ denotes the usual type of lists.

One distinguishing feature of type-based termination is its expressiveness.
Indeed, even the simplest systems of type-based termination are sufficiently ex-
pressive to allow to give precise typings for some structurally recursive functions:

map : (X → Y) → ListıX → ListıY

� Most of this work was performed while working at INRIA Sophia-Antipolis.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 493–507, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

494 G. Barthe, B. Grégoire, and C. Riba

and to type functions that are not structurally recursive such as the quicksort
function:

letrec qs = λl. case l of
| nil ⇒ nil
| cons x xs ⇒ let 〈z1, z2〉 = (filter x xs)

in app (qs z1) (cons x (qs z2))

(2)

Many type-based termination systems [1, 2, 3, 7] allow the typing:

quicksort : List∞X → List∞X (3)

but cannot yield the more precise typing:

quicksort : ListıX → ListıX (4)

Achieving a precise typing for quicksort requires extending the type system so
that it yields precise typings for app and filter: first, app must be given a precise
typing by means of stage addition:

app : ListıX → ListjX → Listı+jX (5)

Second, we have to express that filter divides a list of size ı into two lists whose
respective sizes j1 and j2 sum up to ı which could be expressed using constrained
existential types, as in [4, 10]:

filter : X → ListıX → ∃j1, j2 (j1 + j2 = ı). Listj1X × Listj2X (6)

Unfortunately, adding constrained existential quantification over stages may
break subject reduction (see Section 2) and leads to complex type systems,
where type checking requires solving constraints in Presburger arithmetic.

Furthermore, having nil of size at least 0̂ (as in [1, 2, 3, 7]), we cannot type
filter as in (6), and this prevents the typing quicksort as in (4). Thus, we must
give the size 0 to nil. Alas, using the typing rule for fixpoints of [1, 2, 3, 7], and
letting nil : List0X , leads to typable non-terminating terms: using the typing rule
for fixpoints of [1, 2, 3, 7], (letrec f x = f nil) nil is typable (using the subtyping
rule List0X ≤ ListıX) but not terminating.

Thus,defininga simpleyetprecise typesystemthatenjoys goodmeta-theoretical
properties is a challenge. The main contribution of this article is the definition
of a type system F×̂ that features a monoidal structure on stages (with zero
and addition), that simulates existential quantification over stages, and still en-
joys subject reduction and strong normalization for first-order and higher-order
inductive types. Technically, we achieve subject reduction for existentials by
attaching existential quantification to a container structure: this way, introduc-
tion and elimination of existential quantification is linked with introduction and
elimination of the corresponding type constructor. This leads to a system which
features subject reduction and where eliminations of existential quantification
are easier to write for the user. The resulting system provides a well-behaved

Type-Based Termination with Sized Products 495

intermediate step between basic type-based termination criterion [1, 2, 3, 7], and
more powerful but less tractable constraint based approaches [4, 10]. For sim-
plicity, in this paper we focus on a binary product, which we call sized product.

To achieve strong normalization, we resort to constraining the form of recur-
sive definitions, requiring that the body of the function immediately performs a
case analysis on its recursive argument; this syntactic restriction forces a style of
definitions close to rewriting. However, in contrast with rewriting, the body of
recursive definitions are still part of the terms. This allows for a more powerful
intensional equality between functions than with rewriting. Another feature of
F×̂ is the associativity and commutativity of the addition on the stages of higher-
order inductive datatypes. This is possible because, in the model construction
for strong normalization, stage addition is interpreted by the natural addition
on the ordinals which interpret the stages of higher-order inductive datatypes.

The paper is organized as follows. In Sect. 2 we discuss related works and
presents informally the main characteristics of F×̂. Sect. 3 is devoted to the
formal definition of the system, while Sect. 4 and Sect. 5 outline respectively the
proofs of subject reduction and strong normalization proofs.

2 Overview and Related Work

The purpose of this section is to present the main characteristics of F×̂ and
its relation with other works on type-based termination. We begin with a brief
overview of the works that support precise typings for quicksort, and then explain
the main specificities of our work.

There has been a lot of interest in using type systems to guarantee termi-
nation or to characterize the complexity of recursive functions, see e.g. [1] for
an overview. Most systems share the semantical anomaly of F̂ and we are only
aware of three systems in which quicksort can be given its exact typing.

The first system is that of Chin and Khoo [5], which annotates every type with
size annotations and infers a formula of Presburger arithmetic that guarantees
termination. We believe that their system, while expressive, generates constraints
which are too complex to be used in practice. The second system is that of Xi [10],
which uses restricted dependent types to ensure termination. The third system
is that of Blanqui and Riba [4]. Recursive functions are defined by rewrite rules,
and as in F×̂, having non-recursive constructors of size 0 is not problematic.

We now discuss the two main characteristics of F×̂: the sized product and the
typing of fixpoints.

2.1 The Sized Product

Advanced systems of type-based termination, such as Xi and Blanqui, feature
constrained existential and universal stage quantification, respectively written
∃ıP.τ and ∀ıP.τ , where P is a constraint and τ is a type. These systems deal
with judgments of the form K ; Γ 0 e : τ where K is a conjunction of constraints,
and their type checking algorithm generate constraints in Presburger arithmetic.

496 G. Barthe, B. Grégoire, and C. Riba

Apart from the inherent complexity of type checking, there are some known
difficulties with existential types.

Fully explicit existential types, which are used by Xi [10], enjoy subject reduc-
tion but rely on a complex elaboration mechanism for type checking. In contrast,
implicit existential types do not satisfy subject reduction. Blanqui and Riba [4]
use the elimination rule:

(∃-elim)
K ; Γ 0 e : ∃ıP.τ K, P ; Γ, x :τ 0 e′ : σ

K ; Γ 0 let x = e in e′ : σ
ı /∈ K,Γ, σ

together with the let-reduction rule:

let x = e in e′ �→ e′[x := e]

Subject reduction fails in this system (Tatsuta’s example [9] is easily adapted).
Because let-reduction is performed even if the typing of e does not end with
an ∃ıP.τ -introduction, the sharing information given by the second premise of
(∃-elim), which is lost by let-reduction, is not regained by the witness informa-
tion given by ∃ıP.τ -introductions. Note that the failure of subject reduction is
actually not a so big problem in [4] since the constrained type system is used to
analyze rewrite rules, while ensuring their termination in a standard type system
which features subject reduction.

The above discussion illustrates the difficulties with existential quantification
over stages and justifies our choice to focus on a simpler system that partially
simulates, but does not have, existential quantification. Indeed, our type system
F×̂ achieves a similar effect using prenex stage quantification and using instead
of explicitly existential quantification an embedding of existential quantification
inside some specific type constructors. This way, introduction and elimination
of existential quantification is linked with introduction and elimination of the
corresponding type constructor. This leads to a system which features subject
reduction and where eliminations of existential quantification are easier to write
for the user. For simplicity, in this paper we focus on a binary product, which
we call sized product. We explain it with an example. To express that filter x l
computes a pair of lists whose sizes sum up to the size of l, we write

filter : X → ListıX → ListX ×ı ListX

The existential information on j1 and j2 in (6) is expressed using the rule (let),
which is inspired by the usual elimination of existential quantification

(let)

K ; Γ 0 filter x l : List X ×ı List X
K, j1 + j2 ≤ ı ; Γ, z1 :Listj1X, z2 :Listj2X 0 e : Listı X

K ; Γ 0 let 〈z1, z2〉 = filter x l in e : Listı X
j1, j2 /∈ K,Γ

The sized product allows to combine pair opening and let-reduction, which cor-
responds to the elimination of the existential information in the rule (let). This
leads to the following rewrite rule, which is the key-point for subject reduction
in F×̂:

let 〈x1, x2〉 = 〈e1, e2〉 in e �→θ e[x1 := e1, x2 := e2]

Type-Based Termination with Sized Products 497

2.2 Typing of Fixpoints

In order to reject the non-terminating term in the introduction, we constrain the
form of recursive definitions, requiring that the body of the function immediately
performs a case analysis on its recursive argument, and distinguishing in the
typing rule between recursive and non-recursive constructors. This approach is
connected to definitions by rewriting [4], where fixpoints and case analysis are
performed in a single definition. To avoid the non-normalizing term (letrec f x =
f nil) nil while having nil of size 0, we ensure that no evaluation strategy of a
typable expression of the form (letrec f = e) nil can make recursive calls to
letrec f = e. The simplest syntactic way to achieve this is to stick fixpoints
definitions letrec f = e to case analysis, and to make a distinction between the
recursive and the non-recursive constructors of a datatype d. Intuitively, d can
not occur in the type of the arguments of a non-recursive constructors. Then,
our fixpoints have the shape

letrec f case {cnr ⇒ enr | cr ⇒ er}

where cnr are non-recursive constructors and cr are recursive constructors, and
where enr can not depend on f . Thus, the following term is strongly normalizing:

(letrec f case {0 ⇒ 1 | s ⇒ λx.(f 0) + (f x)}) 0

It would be desirable to separate fixpoints from case analysis, as in F ,̂ but we
have been unable to find a strongly normalizing system for the usual syntax.

In contrast, Xi [10] can have nil : List0τ without disturbing normalization.
Instead of (1), fixpoints can be typed as follows:

K ; Γ, f : ∀ı < j.Listıτ → σ 0 e : Listjτ → σ

Γ 0 letrec f = e : ∀ı.Listıτ → σ

It is possible for Xi to rely on a strict ordering on stages, because he relies on
existential quantification to encode List∞τ as ∃ı.Listıτ . In our case, we cannot
use such a strict ordering, because ı ≤∞ but not ı <∞.

3 System F×̂

In this section, we present the syntax of system F×̂. We begin by the stages, then
define types, terms, reductions and present the typing rules of the system.

3.1 Stages

Stages expression are built from a set VS = {ı, j, κ, . . . } of stage variables. They
use a binary stage addition +, a successor operation ·̂ and the constants 0, ∞,
denoting respectively the least and the greatest stage.

498 G. Barthe, B. Grégoire, and C. Riba

Definition 3.1 (Stages). The set S of stage expressions is given by the abstract
syntax:

s, r ::= VS | 0 | ∞ | ŝ | s+ r

The substitution s[ı := r] of the stage variable ı for r in s is defined in the
obvious way.

The system uses inequalities s ≤ r on stage expressions. They are derived by
judgments of the form K 0 s ≤ r, where K is a conjunction of stages inequalities
called stage constraint. These judgments are defined by the substage relation.

Definition 3.2. A stage constraint is a finite set K ∈ K of stage inequalities
s ≤ r with s, r ∈ S. The substage relation is the smallest relation K 0 s ≤ r,
where K ∈ K and s, r ∈ S, such that

(ax)
K, s ≤ r � s ≤ r

(refl)
K � s ≤ s

(inf)
K � 0 ≤ s

(sup)
K � s ≤ ∞

(trans)
K � s ≤ r K � r ≤ p

K � s ≤ p
(mon)

K � s ≤ r

K � s + p ≤ r + p
(inj)

K � ŝ ≤ r̂

K � s ≤ r

(com)
K � s + r ≤ r + s

(assoc)
K � s + (r + p) ≤ (s + r) + p

(succ)
K � s + r̂ = ŝ + r

(zero)
K � 0 + s = s

where K 0 s = r abbreviates the conjunction of K 0 s ≤ r and K 0 r ≤ s.

Note that the rule (sup) implies ∞̂ ≤ ∞. Moreover, we can derive K 0 s ≤ ŝ,
K 0 (s+ r) + p ≤ s+ (r + p), K 0 s ≤ s+ r; and K 0 ŝ ≤ r̂ from K 0 s ≤ r.

3.2 Types and Datatypes Declarations

The system F×̂ is an extension of Church’s style System F . In addition to the
function space and the second order type quantification ΠX.τ , sized types are
built using the sized product ×s and the bounded universal stage quantification
∀ı ≤ s.τ , which binds ı in τ but not in s (so that, by Barendregt convention,
we may always assume ı /∈ s). The bound s in universal stage quantification is
essential for the typing of fixpoints (typing rule (rec)).

We consider three sets of types: erased types |τ | ∈ |T|, that do not carry size
annotations, sized types τ ∈ T, in which stage variables are free, and constrained
types τ ∈ T, which are built from sized types using prenex universal stage
quantification. Erased types are needed because Church’s typing imposes types
to appear at the term level, while we do not want size annotations to appear in
terms because it makes fail subject reduction (see Sect. 2.4 of [3]).

We assume given a set VT = {X,Y, . . .} of type variables and a set D of
datatype identifiers. Each datatype identifier comes equipped with an arity ar(d).

Type-Based Termination with Sized Products 499

Definition 3.3 (Types). The sets |T|, T and T of erased types, sized types and
constrained types are given by the following abstract syntaxes:

|T| ::= VT | |T|→ |T| | ΠVT .|T| | D |T| | |T| × |T|
T ::= VT | T → T | ΠVT .T | DS T | D T ×S D T

T ::= T | ∀ı ≤ s.T

where ı /∈ s and in the clause for datatypes, it is assumed that the length of the
vectors T and |T| is exactly the arity of the datatype.

Let |τ |, |θ|, |σ|, . . . range over erased types, τ, θ, σ, . . . range over sized types and
τ , θ, σ, . . . range over constrained types. We write ∀ı.τ for ∀ı ≤∞.τ and ∀ı ≤ s.τ
for ∀ı1 ≤ s1. · · · ∀ın ≤ sn.τ . Note that every τ ∈ T can be written ∀ı ≤ s.τ with
τ ∈ T. Moreover, we denote by |.| the obvious erasure map from T to |T|. A type
is closed if it contains no free stage variables and no free type variables.

The subtyping relation is inherited from the substage relation. The rules are
syntax-directed.

Definition 3.4 (Subtyping). The subtyping relation is the smallest relation
K 0 τ : σ, where K ∈ K and τ, σ ∈ T, such that

(var)
K � X # X

(cst)
K � r ≤ s K, ı ≤ r � τ # σ

K � ∀ı ≤ s.τ # ∀ı ≤ r.σ
if ı /∈ K

(func)
K � τ ′ # τ K � σ # σ′

K � τ → σ # τ ′ → σ′ (prod)
K � σ # σ′

K � ΠX.σ # ΠX.σ′

(data)
K � s ≤ r K � τ # τ ′

K � dsτ # drτ ′ (pair)
K � s ≤ r K � τ # σ K � τ ′ # σ′

K � dτ ×s d′τ ′ # dσ ×r d′σ′

Note that the rule (cst) is contravariant wrt. stages inequalities.

Lemma 3.5. The relation K 0 : is reflexive and transitive.

We now turn to datatype declarations. We assume given a fixed set C of con-
structors, and a function C : D �→ ℘(C) such that C(d) ∩ C(d′) = ∅ for every
distinct d, d′ ∈ D. Each constructor c ∈ C(d) is given an erased type of the
form ΠX.|θ| → dX, where |θ| is an erased type in which d and X occur only
positively [2]. Note that the arity condition on d imposes that X has the same
length for all c ∈ C(d). We let C =def

⋃
{C(d) | d ∈ D}.

Moreover, we distinguish between recursive and non-recursive constructors.
This is essential to annotate constructor types and to the reduction and typing
rules of fixpoints. Formally, we assume that C(d) = Cnr(d) - Cr(d). Then, c ∈
C(d) is recursive if c ∈ Cr(d) and non-recursive otherwise. Intuitively, c is non-
recursive iff d does not occur in |θ|. For instance, the constructor nil : ΠX.ListX
is non-recursive, while cons : ΠX.X → ListX → ListX is recursive. We write cr

(resp. cnr) to denote a recursive (resp. non-recursive) constructor.
Constructor types are annotated as follows: each occurrence of d′ �= d in |θ|

is annotated with ∞, and each occurrence of d in |θ| is annotated with a stage

500 G. Barthe, B. Grégoire, and C. Riba

variable ı. Then, the constrained type of c is of the form ∀ı.ΠX.θ → dı̂X if c
is recursive and of the form ∀ı.ΠX.θ → dıX otherwise. In particular, we get
nil |τ | : List0τ and cons |τ | a l : Listŝτ whenever l : Listsτ and a : τ .

Definition 3.6 (Inductive datatypes)
(i) A signature is a map Σ : C �→ T such that for all c ∈ C(d), Σ(c) is a closed

type of the form ∀ı.ΠX.θ → dıX where
– θ are sized types on the abstract syntax T+ (where d′ �= d):

T+ ::= VT | T− → T+ | ΠVT .T
+ | d′∞ T+ | dı X

T− ::= VT \X | T+ → T− | ΠVT .T
− | d′∞ T −

– if d occurs in θ then c ∈ Cr(d) and ı = ı̂; otherwise c ∈ Cnr(d) and ı = ı.
Moreover, let Inst(c, s, τ , σ) =def θ[X := τ , ı := s] → σ.

(ii) Let d ≤Σ d′ iff d occurs in Σ(c) for some c ∈ C(d′). Σ is well-formed if ≤Σ

is a partial order whose strict part <Σ is well-founded.

Note that if c ∈ C(d) has type ∀ı.ΠX.θ → dıX, then ı is the sole stage variable
occurring in θ. Hence, if c is non-recursive, Inst(c, s, τ , σ) is of the form θ[X :=
τ] → σ, and we write it Inst(c, , τ , σ).

Note also that well-formed signatures rule out heterogeneous datatypes, and
for simplicity, mutually inductive datatypes also. Besides, the positivity require-
ment for dıX is standard to guarantee strong normalization. Also, the positivity
requirement for X is added to guarantee the soundness of the subtyping rule
(data) for datatypes, and to avoid considering polarity, as in e.g. [8].

In the remaining of the paper we assume given a well-formed signature Σ.

3.3 Terms and Reductions

Terms are built from variables, abstractions, applications, constructors, case-
expressions, pairs, let-expressions and recursive definitions letrec. Recursive def-
initions come with case analysis for pattern matching, and let-expressions bind
pairs of variables. We assume given a set VE = {f, x, y, z, . . .} of term variables.

Definition 3.7. The set E of terms is given by the syntax (where |τ | ∈ |T|):

e, e′ ::= VE | λx : |τ |.e | e e′ | ΛX.e | e |τ | | c
| case|τ | e of {c ⇒ e}
| 〈e, e′〉 | let 〈x, x′〉 = e in e′

| letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}

Free and bound variables are defined as usual with the following proviso: in letrec
expressions, the (fixpoint) variable f is bound in the branches er for the recursive
constructors, but not in the branches enr for the non-recursive ones. Hence, by
Barendregt convention, we may assume that f /∈ enr. This is important for the
typing and reduction rules of letrec. Note that no stage variable occurs in a term
e ∈ E.

Substitutions are maps ρ : (VE �→ E) - (VT �→ |T|) of finite domain. The
capture-avoiding application of ρ to e is denoted eρ, but we may also write
e[x := ρ(x),X := ρ(X)] when dom(ρ) = x -X. The reductions are as follows.

Type-Based Termination with Sized Products 501

Definition 3.8 (Reductions). The relation of βιμθ-reduction → is the small-
est rewrite relation containing �→βιμθ, where

(λx : |τ |.e) e′ �→β e[x := e′] (ΛX.e) |τ | �→β e[X := |τ |]
case|τ | (ci |σ|a) of {c ⇒ e} �→ι ei a

let 〈x1, x2〉 = 〈e1, e2〉 in e �→θ e[x1 := e1, x2 := e2]

letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} (cnri |σ|a) �→μ enri a
letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} (cri |σ|a) �→μ eri [f := ef] a

with ef = letrec|τ | f case {cnr ⇒ enr | cr ⇒ er}.

The rewrite system �→βιμθ is orthogonal and thus confluent.

3.4 Typing Rules

The typing system is an extension of [3] with sized products and prenex bounded
universal stage quantification. Recall that τ ∈ T denotes a constrained type, ie.
a type of the form ∀ı ≤ s.τ where τ ∈ T is a sized type. The capture-avoiding
substitution of τ for X in σ is written σ[X := τ].

Definition 3.9 (Typing). A context is a map Γ : VE �→ T of finite domain.
The typing relation is the smallest relation K ; Γ 0 e : τ which is closed by the
rules of Fig. 1.

The positivity condition ı pos σ in the rule (rec) is defined in the usual way [2].
Note that the expression λx : Nat.x has type ∀ı.Natı → Natı.

The rule (rec) combines the usual rule of fixpoints (1) with the rule (case). The
first premise line is the typing of the branches corresponding to non-recursive con-
structors. They can not depend on the fixpoint variable f . The others premises are
the branches for the recursive constructors, which can depend on the fixpoint vari-
able f . The intuition of the termination argument is the following. Assume that we
typecheck the approximation of f at type dĵτ → θ[ı := ĵ] and let crk : ∀ı.ΠX.θ →
dı̂X. The branch erk corresponding to crk must be of type θ[X := τ , ı := j] →
θ[ı := ĵ], provided that f is used with type ∀ı ≤ j.dıτ → θ. That is, only strictly
less defined approximations of f can be used to type erk.

The μ-reduction of fixpoints takes into account the difference between recur-
sive and non-recursive constructors: the fixpoint variable is only substituted in
the recursive branches.

Finally, a crucial point with constrained-based approaches is that the satis-
fiability of the constraints K in judgments K ; Γ 0 e : τ must be preserved by
typing rules read bottom up. With general constraints systems like [4, 10], satis-
fiability tests of K during type-checking generate existential constraints. This is
manageable when stages are interpreted by natural numbers, but this may not
be the case when constraints have to be interpreted by countable ordinals. By
restricting to bounded universal quantifications ∀ı ≤ s.τ , type checking gener-
ates constraints of the form ı ≤ s, which are always satisfiable by [ı := s]. As a

502 G. Barthe, B. Grégoire, and C. Riba

(var)
K ; Γ, x :σ � x : σ

(abs)
K ; Γ, x :τ � e : σ

K ; Γ � λx : |τ |.e : τ → σ

(app)
K ; Γ � e : τ → σ K ; Γ � e′ : τ

K ; Γ � e e′ : σ

(T-abs)
K ; Γ � e : σ

K ; Γ � ΛX.e : ΠX.σ
if X �∈ Γ

(T-app)
K ; Γ � e : ΠX.σ

K ; Γ � e |τ | : σ[X := τ]

(S-gen)
K, ı ≤ s ; Γ � e : τ

K ; Γ � e : ∀ı ≤ s.τ
if ı /∈ Γ, K, s

(S-inst)
K ; Γ � e : ∀ı ≤ s.τ K � r ≤ s

K ; Γ � e : τ [ı := r]

(cons)
c ∈ C(d) for some d

K ; Γ � c : Σ(c)

(pair)
K ; Γ � e1 : ds1

1 τ1 K ; Γ � e2 : ds2
2 τ2

K ; Γ � 〈e1, e2〉 : d1 τ1 ×s1+s2 d2 τ2

(let)

K ; Γ � e : d1 τ1 ×s d2 τ2

K, ı1 + ı2 ≤ s ; Γ, x1 :dı1
1 τ1, x2 :dı2

2 τ2 � e′ : σ

K ; Γ � let 〈x1, x2〉 = e in e′ : σ
where ı1, ı2 /∈ Γ, K, σ, s, τ1, τ2

(case)

K ; Γ � e : dŝτ
C(d) = {c1, . . . , cn} K ; Γ � ek : Inst(ck, s, τ , θ) (1 ≤ k ≤ n)

K ; Γ � case|θ| e of {c ⇒ e} : θ

(rec)

Cnr(d) = {cnr
1 , . . . , cnr

n } K ; Γ � enr
k : Inst(cnr

k , , τ , θ) (1 ≤ k ≤ n)
Cr(d) = {cr

1, . . . , c
r
m}

K ; Γ, f :∀ı ≤ j.dıτ → θ � er
k : Inst(cr

k, j, τ , θ[ı := ĵ]) (1 ≤ k ≤ m)

K ; Γ � letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} : ∀ı.dıτ → θ

where ı /∈ K, Γ, τ ı pos θ j /∈ ı, K, Γ, τ , θ |τ | = d|τ | → |θ|

(sub)
K ; Γ � e : σ K � σ # τ

K ; Γ � e : τ

Fig. 1. Typing rules for F×̂

Type-Based Termination with Sized Products 503

consequence, the satisfiability of K in K ; Γ 0 e : τ is preserved by typing rules,
and there is no need of satisfiability tests during type checking. That is why we
have a tractable system with stage addition and all positive inductive types.

4 Subject Reduction

The proof of the subject reduction property relies on the usual intermediate
properties, namely inversion and substitution.

For inversion of typing, it is convenient to work in an equivalent type system, in
which stage quantification is independent from the introduction and elimination
rules of term constructs.

Definition 4.1. Let F ′̂× be the type system identical to F×̂, except for the rules
(cons) and (rec) which are replaced with

(cons’)
c ∈ C(d) for some d Σ(c) = ∀ı.σ

K ; Γ � c : σ[ı := s]

(rec’)

Cnr(d) = {cnr
1 , . . . , cnr

n } K ; Γ � enr
k : Inst(cnr

k , , τ , θ) (1 ≤ k ≤ n)
Cr(d) = {cr

1, . . . , c
r
m}

K ; Γ, f :∀ı ≤ j.dıτ → θ � er
k : Inst(cr

k, j, τ , θ[ı := ĵ]) (1 ≤ k ≤ m)

K ; Γ � letrec|τ | f case {cnr ⇒ enr | cr ⇒ er} : dsτ → θ[ı := s]

where ı /∈ K, Γ, τ ı pos θ j /∈ ı, K, Γ, τ , θ |τ | = d|τ | → |θ|

Lemma 4.2. K ; Γ 0 e : τ is derivable in F×̂ iff it is derivable in F ′̂× .

Proposition 4.3 (Inversion of stage quantification). Let e /∈ VX. In F ′̂× ,
if K ; Γ 0 e : ∀ı ≤ p.τ then there is a sized type σ such that K, ı ≤ p 0 σ : τ
and K, ı ≤ p ; Γ 0 e : σ is derivable in a derivation whose last rule is neither
(S-gen), (S-inst) nor (sub).

The main point in using F ′̂× instead of F×̂ in Prop. 4.3 is to ensure that the last
rule of the derivation is the rule corresponding to the top symbol of e, when e
is not a variable. This leads to the usual inversion properties for typing in F ′̂× ,
and thus in F×̂ using Lem. 4.2.

Theorem 4.4 (Subject reduction). In F×̂,

(K ; Γ 0 e1 : τ ∧ e1 → e2) =⇒ K ; Γ 0 e2 : τ

5 Strong Normalization

We outline a realizability proof that typable terms are strongly normalizing. We
begin by the interpretation of stages, and then turn to the strong normalization
proof itself, which relies on Tait’s saturated sets.

Stages are interpreted by the ordinals used to build the interpretation of in-
ductive types. While first-order inductive types can be interpreted by induction

504 G. Barthe, B. Grégoire, and C. Riba

on N, higher-order inductive types may require an induction on countable or-
dinals. Existing systems with stage addition [4, 10] are restricted to first-order
inductive types, and stages constraints are formulas of Presburger arithmetic.

We go one step further by allowing at the same time all positive inductive
types and stage addition. Stage addition is interpreted by the natural addition on
countable ordinals. This operation is associative and commutative, in contrast
with the usual ordinal addition which is in general not commutative.

In the whole section, if f is a map from A to B, a ∈ A and b ∈ B, then
f(a := b) : A �→ B maps a to b and is equal to f everywhere else.

5.1 The Stage Model

Stages are interpreted by ordinals below the first uncountable cardinal.

Definition 5.1 (Countable ordinals). We denote by (Ω,≤Ω) the well-ordered
set of countable ordinals and by +Ω the usual ordinal addition on Ω.

Recall that N can be seen as a proper subset of Ω and that +Ω coincide with the
usual addition on N. We want an associative and commutative addition on Ω,
but +Ω is in general not commutative on Ω. Instead, we use the natural addition
on ordinals. To define it, we use the well-known fact that every α ∈ Ω can be
written in Cantor normal form,

α = cn.ω
αn +Ω · · ·+Ω c1.ω

α1

where α1 <Ω . . . <Ω αn ∈ Ω and c1, . . . , cn ∈ N. The natural addition ⊕ on Ω
is then defined as

(cn.ωαn +Ω · · ·+Ω c1.ω
α1) ⊕ (dn.ωαn +Ω · · ·+Ω d1.ω

α1)
=def (cn +Ω dn).ωαn +Ω · · ·+Ω (c1 +Ω d1).ωα1

Proposition 5.2. The natural addition is associative, commutative and with
neutral element 0. Moreover, for all α ∈ Ω, the successor ordinal of α is α⊕ 1.

We are now ready to define our stage model. Each inductive type can be inter-
preted using an induction up to a countable ordinal (see Prop. 5.9). We can thus
interpret ∞ by Ω. This motivates the following definition.

Definition 5.3 (Stage model). Let Ω̂ =def Ω ∪ {Ω}. For all α, β ∈ Ω̂, let

α < β iff (β = Ω ∨ α <Ω β) and α+ β =def

{
α⊕ β if α, β ∈ Ω
Ω otherwise

So we have an addition + on stages which is monotone, associative and commu-
tative. Moreover we have α+ β < Ω for all α, β < Ω.

Definition 5.4 (Interpretation of stages). A stage valuation is a map π

from VS to Ω̂, and is extended to a stage interpretation �.�π : S �→ Ω̂ as follows:

�0�π =def 0 �∞�π =def Ω �ŝ�π =def �s�π+1 �s+ r�π =def �s�π+�r�π

We let π |= K if �s�π ≤ �p�π for all s ≤ p ∈ K, and let K |= s ≤ r if π |= s ≤ r
for all π such that π |= K. K is satisfiable if there is π such that π |= K.

Type-Based Termination with Sized Products 505

5.2 Type Interpretation

Let SN be the set of strongly normalizing terms. We interpret types by saturated
sets. It is convenient to define them by means of elimination contexts :

E[] ::= [] | E[] e | E[] |τ | | case|τ | E[] of {c ⇒ e}
| let 〈x, x′〉 = E[] in e′ | letrec|τ | f case {c ⇒ e} E[]

Note that the hole [] of E[] never occurs under a binder. Thus E[] can be seen
as a term with one occurrence of a special variable [].

Let E[e] →wh E[e′] if e �→βιμθ e
′.

Definition 5.5 (Saturated sets)
A set S ⊆ SN is saturated (S ∈ SAT) if

(SAT1) E[x] ∈ S for all E[] ∈ SN and all x ∈ VX,
(SAT2) if e ∈ SN and e →wh e

′ for some e′ ∈ S then e ∈ S.

It is well-known that SN ∈ SAT and that
⋂

Y,
⋃

Y ∈ SAT for all non-empty
Y ⊆ SAT. Hence, for each X ⊆ SN there is a smallest saturated set containing
X , written X.

As usual, the function space on SAT is given for X,Y ∈ SAT by:

X → Y =def {e | ∀e′. e′ ∈ X =⇒ e e′ ∈ Y }

The interpretation of types is defined in two steps. We first define the inter-
pretation scheme of types, given an interpretation of datatypes. We then define
the interpretation of datatypes.

Definition 5.6. An interpretation of datatypes is a family of functions (Id)d∈D

where Id : SATar(d) × Ω̂ �→ SAT for each d ∈ D. Given an interpretation of
datatypes I, a stage valuation π and a type valuation ξ : VT �→ SAT, the type
interpretation �.�Iπ,ξ : T �→ SAT is defined by induction on types as follows

�∀ı ≤ s.τ�Iπ,ξ =
⋂
{�τ�Iπ(ı:=α),ξ | α ≤ �s�π}

�X�Iπ,ξ = ξ(X)

�τ → σ�Iπ,ξ = �τ�Iπ,ξ → �σ�Iπ,ξ

�ΠX.τ�Iπ,ξ = {e | ∀|σ| ∈ |T|, ∀S ∈ SAT, e |σ| ∈ �τ�Iπ,ξ(X:=S)}

�dτ ×s d′τ ′�Iπ,ξ =
⋃
{〈Id(�τ �Iπ,ξ, α), Id′(�τ ′�Iπ,ξ, α

′)〉 | α+ α′ ≤ �s�π}

�dsτ �Iπ,ξ = Id(�τ �Iπ,ξ, �s�π)

where 〈S1, S2〉 =def {〈e1, e2〉 | e1 ∈ S1 ∧ e2 ∈ S2} for all S1, S2 ∈ SAT.

Note that unions and intersections are always taken over non-empty sets of
saturated sets.

We now define the interpretation of inductive datatypes. Recall that the rela-
tion <Σ is assumed to be a well-founded strict partial order (see Def. 3.6). The
interpretation (Id)d∈D is defined by induction on <Σ, and for each d ∈ D, the
map Id : SATar(d) × Ω̂ �→ SAT is defined by induction on Ω̂.

506 G. Barthe, B. Grégoire, and C. Riba

Substitution �p[ı := s]�π = �p�π(ı:=�s�π)

�τ [ı := s]�π,ξ = �τ�π(ı:=�s�π),ξ

�τ [X := σ]�π,ξ = �τ�π,ξ(X:=�σ�π,ξ)

Stage monotony α ≤ β ⇒ Id(S, α) ⊆ Id(S, β)
α ≤ β ∧ ı pos θ ⇒ �θ�π(ı:=α),ξ ⊆ �θ�π(ı:=β),ξ

α ≤ β ∧ ı neg θ ⇒ �θ�π(ı:=β),ξ ⊆ �θ�π(ı:=α),ξ

Substage soundness K � s ≤ p ⇒ K |= s ≤ p
Subtyping soundness K � τ # σ ∧ π |= K ⇒ �τ�π,ξ ⊆ �σ�π,ξ

Fig. 2. Properties of the type interpretation

Definition 5.7. For all d ∈ D, all S ∈ SATar(d) and all α ∈ Ω̂, we define
Id(S, α), by induction on pairs (d, α) ordered by (<Σ, <)lex, as follows:

Id(S, 0) =
⋃
{cnr �θ�I∅,X:=S | c

nr ∈ Cnr(d) ∧Σ(cnr) = ∀ı.ΠX.θ → dıX}

Id(S, α⊕ 1) =
⋃
{c �θ�Iı:=α,X:=S | c ∈ C(d) ∧Σ(c) = ∀ı.ΠX.θ → dıX}

Id(S, λ) =
⋃
{Id(S, α) | α < λ} if λ is a limit ordinal

where cS =def {c |τ |a | a ∈ S ∧ |τ | ∈ |T|} for all S ∈ SAT.

Note that Id(S, α⊕1) only uses c�θ�Iı:=α,X:=S with c ∈ C(d), which in turn only
uses Id′(U , β) with (d′, β) (<Σ , <)lex (d, α⊕ 1).

Definition 5.8. Let �.�π,ξ =def �.�Iπ,ξ.

Fig. 2 collects some essential properties of �.�π and �.�π,ξ. The following propo-
sition states that each inductive datatype can be interpreted by a countable
ordinal. This is crucial in order to deal with the rule (cons) in the proof of
Thm. 5.10. The key-point is that for every countable S ⊆ Ω, there is β ∈ Ω such
that α < β for all α ∈ S [6].

Proposition 5.9. For all d ∈ D and all S ∈ SATar(d), there is an ordinal α < Ω
such that Id(S, α) = Id(S, β) for all β such that α ≤ β ≤ Ω.

As usual, soundness is shown by induction on typing derivations. Note that if
K is satisfied by π, then every K ′ occurring in the derivation of K ; Γ 0 e : τ is
satisfied by an extension of π. Thus, in contrast to [4], there is no need of tests
of the form K 0 ∃ı.P in typing derivations.

Theorem 5.10 (Typing soundness). Given π : VS �→ Ω̂, ξ : VT �→ SAT and
ρ : (VE �→ E) - (VT �→ |T|), we let (π, ξ, ρ) |= K;Γ if and only if π |= K and
ρ(x) ∈ �Γ (x)�π,ξ for all x ∈ dom(Γ).

If K ; Γ 0 e : τ , then eρ ∈ �τ�π,ξ for all π, ξ, ρ such that (π, ξ, ρ) |= K;Γ .

We deduce the strong normalization of terms typable with satisfiable K.

Corollary 5.11. If K ; Γ 0 e : τ with K satisfiable, then e ∈ SN.

Type-Based Termination with Sized Products 507

6 Conclusion

F×̂ is a variant of F̂ that supports simple yet precise typing by using sized prod-
ucts instead of existential quantification, for which subject reduction is prob-
lematic. We have proved strong normalization and subject reduction of F×̂, and
conjecture that type-checking is tractable. On the other hand, size inference
seems more difficult than in [3], in particular for precise annotations with addi-
tion such as for the function append on lists.

Our main next objective is to extend our results to the Calculus of Inductive
Constructions, and to implement type-based termination in Coq. It would also
be interesting to study the expressivity of more general forms of sized products,
both with general container types instead of cartesian products, and arbitrary
binary operators instead of +. Moreover, it would be interesting to study the
tractability of more liberal subtyping relations for universal stage quantifications.
Finally, an outstanding issue is the design of a strongly normalizing type system
in which non-recursive constructors can be given the size zero while keeping
fixpoint definitions separated from case analysis.

References

1. Abel, A.: Type-Base Termination. A Polymorphic Lambda-Calculus with Sized
Higher-Order Types. PhD thesis, LMU University, Munich (2006)

2. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-Based Termina-
tion of Recursive Definitions. Mathematical Structures in Computer Science 14(1),
97–141 (2004)

3. Barthe, G., Grégoire, B., Pastawski, F.: Practical Inference for Type-Based Ter-
mination in a Polymorphic Setting. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS,
vol. 3461, pp. 71–85. Springer, Heidelberg (2005)

4. Blanqui, F., Riba, C.: Combining Typing and Size Constraints for Checking the
Termination of Higher-Order Conditional Rewrite Systems. In: Hermann, M.,
Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 105–119. Springer,
Heidelberg (2006)

5. Chin, W.-N., Khoo, S.-C.: Calculating Sized Types. Higher-Order and Symbolic
Computation 14(2–3), 261–300 (2001)

6. Gallier, J.H.: What’s So Special About Kruskal’s Theorem and the Ordinal Γ0? A
Survey of Some Results in Proof Theory. Annals of Pure and Applied Logic 53(3),
199–260 (1991)

7. Hughes, J., Pareto, L., Sabry, A.: Proving the Correctness of Reactive Systems
Using Sized Types. In: Proceedings of POPL 1996, pp. 410–423. ACM, New York
(1996)

8. Steffen, M.: Polarized Higher-order Subtyping. PhD thesis, Department of Com-
puter Science, University of Erlangen (1997)

9. Tatsuta, M.: Simple Saturated Sets for Disjunction and Second-Order Existential
Quantification. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 366–
380. Springer, Heidelberg (2007)

10. Xi, H.: Dependent Types for Program Termination Verification. Higher-Order and
Symbolic Computation 15(1), 91–131 (2002)

The Ackermann Award 2008

J.A. Makowsky and D. Niwinski

Members of EACSL Jury for the Ackermann Award�

The fourth Ackermann Award is presented at this CSL’08. This is the sec-
ond year in which the EACSL Ackermann Award is generously sponsored. Our
sponsor for the remaining two years is the worlds leading provider of personal
peripherals, Logitech S.A., situated in Romanel, Switzerland1.

Eligible for the 2008 Ackermann Award were PhD dissertations in topics
specified by the EACSL and LICS conferences, which were formally accepted as
PhD theses at a university or equivalent institution between 1.1. 2006 and 31.12.
2007. The Jury received 13 nominations for the Ackermann Award 2008. The
candidates came from 8 different nationalities from Europe, Russia and India,
and received their PhDs in 8 different countries in Europe and North America.

The topics covered the full range of Logic and Computer Science as represented
by the LICS and CSL Conferences. All the submissions were of very high standard
and contained outstanding results in their particular domain. In the past the Jury
reached a consensus to give more than one award. This time, in spite of the extreme
high quality of the nominated theses, the Jury decided finally, to give for the year
2008 only one award. The 2008 Ackermann Award winner is

Krishnendu Chatterjee

for his thesis Stochastic ω-Regular Games issued by the University of California
at Berkeley, supervised by Prof. Thomas A. Henzinger.

The Jury wishes to congratulate the recipient of the Ackermann Award for
his outstanding work and wishes him a successful continuation of his career.

The Jury wishes also to congratulate all the remaining candidates for their
outstanding work. The Jury encourages them to continue their scientific careers,
and hopes to see more of their work in the future.

Krishnendu Chatterjee

Citation. Krishnendu Chatterjee receives the 2008 Ackermann Award of the
European Association of Computer Science Logic (EACSL) for his thesis

Stochastic ω-Regular Games .
� We would like to thank T. Henzinger and L. de Alfaro for their help in preparing

the citations.
1 We would like to thank Daniel Borel, Co-founder and Chairman of the Board of

Logitech S.A, for his generous support of the Ackermann Award for the years
2007-2009. For a history of the company, founded in 1981 in Switzerland, consult
http://www.logitech.com.

M. Kaminski and S. Martini (Eds.): CSL 2008, LNCS 5213, pp. 508–512, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Ackermann Award 2008 509

The thesis greatly advances the algorithmics of repeated games, and indicates
that the new degrees of freedom, such as stochastic and concurrent moves, need
not increase the computational complexity. The results reveal the algorithmic
aspect of determinacy of repeated games and enhance the scope of formal meth-
ods in verification of reactive systems, where repeated games form one of leading
paradigms.

Background of the thesis. Since the pioneering work of Zermelo on deter-
minacy of chess, determinacy of games has been recognized as an interesting
mathematical problem. It cannot be taken for granted, even for perfect infor-
mation games, if the players take liberty to play ad infinitum (as noted by Gale
and Stewart in 1953). But the fundamental result of Martin (1975) establishes
the determinacy of all turn-based perfect information games with Borel winning
objectives.

While determinacy assures the existence of a winning strategy for one of the
players, the algorithmic solution of a game consists in determining the winner
effectively, and computing the strategy. The usefulness of determinacy of infi-
nite games in the design of decision procedures was discovered by Büchi, and
then by Gurevich and Harrington (and, independently, A.A.Muchnik) in their
celebrated simplified proofs of the Rabin Tree Theorem (in 1982). The algo-
rithmic approach also revealed the role of players’ memory in the determinacy
results, which can be actually finite for games with ω-regular objectives, and is
not needed at all for the (essentially equivalent) parity games. The subsequent
development of the mathematical theory of verification, synthesis, and control
of reactive systems (especially by E.A.Emerson and his collaborators) showed
that, in spite of a large variety of possible logical formalisms, the algorithmic
content of the main verification problem – model checking – can be reduced to
solving some conceptually simple (though infinite) repeated games on graphs,
like parity games. In these games the players, in turns, choose which edge of the
graph to follow, so that a play of the game forms an infinite path in the graph,
which is winning for one of the players depending on the winning objective. In-
deed, it is natural to formulate the verification problems directly within a game
framework, e.g., as a game of a system versus environment, or a a controller
versus a non-deterministic system under its control.

Now the game framework also opens paths to extensions of the model, less
apparent in logical setting, but for long present in the main stream of the game
theory. These are, in particular, games with quantitative rather than qualita-
tive objectives (like mean-payoff games), games with simultaneous rather than
turn-based moves (so-called concurrent games), or games where the players se-
lect probability distributions over successor states (so-called stochastic games).
While the determinacy of the one-shot concurrent stochastic games is given by
the classical von Neumann Minimax Theorem (of 1928), its powerful repeated
game extension, the determinacy of Blackwell games, has been established by
D.A.Martin only quite recently (1998). What is more, one can also consider a
more general case, where the players’ objectives are not antagonistic, and the

510 J.A. Makowsky and D. Niwinski

role of determinacy is taken by the central concept of the game theory – the
Nash equilibrium.

All these features can make sense in a number of verification scenarios, which
makes the aforementioned game models attractive for computer science. They
are however inherently complex mathematically, in particular the very concept
of winning has to be refined, according to if we search for (almost) sure win-
ning, or for maximizing the winning probability (quantitative analysis). One
could expect that the computational complexity of the decision problems of the
new games is also prohibitive. By the time when Krishnendu Chatterjee started
his research, only few results were known for some special cases (the work by
Condon, Zwick and Paterson, Jurdziński on turn-based stochastic games, and
Secchi and Sudderth on concurrent games with boolean safety objectives). His
subsequent work had to change the picture essentially.

Chatterjee’s thesis. Krishnendu Chatterjee has established a number of strong
algorithmic results, proving the optimal or nearly optimal upper bounds for
most of the games mentioned above, thus solving a long list of open problems.
A general message of all these results is that enhancing the game model by
concurrent and stochastic elements is much more feasible than it could appear
at the first sight. This greatly improves our algorithmic understanding of games,
and opens new perspectives for a variety of formal methods based on game
scenarios. The main contributions are as follows.

– For turn-based stochastic games the author provides algorithms for both
qualitative and quantitative analysis, which yield a PSPACE upper bound for
games with Muller objective, and NP (resp. co-NP) upper bounds for games
with Rabin and Streett objectives, respectively. This implies an NP ∩ co-NP
upper bound for games with parity objective, which coincides with the best
known upper bound in deterministic case. The previous upper bounds known
for stochastic games, due to de Alfaro and Majumdar, were 2EXPTIME for
parity games, and 3EXPTIME for the remaining games. The author also
optimizes the amount of memory needed in optimal strategies, and designs
a strategy improvement algorithm for turn-based Rabin and Streett games.

– For concurrent stochastic games, the author shows that the quantitative
analysis can be achieved in PSPACE for games with parity objective, and in
EXPSPACE for Muller, Rabin, and Streett objectives. The previous upper
bounds here were 3EXPTIME and 4EXPTIME, respectively (again, due to
de Alfaro and Majumdar). This impressive result, showing that a big ad-
vance in expressive power can be achieved with a relatively small complexity
overhead, is obtained by a deep mathematical and game-theoretic insight.

– The author gives an elementary and combinatorial proof of existence of mem-
oryless ε-optimal strategies in concurrent games with reachability objectives,
for all ε > 0. The previous proof (in a monograph of Filek and Vrieze) used
advanced results from analysis. The proof technique originally developed
here also yields a strategy improvement algorithm for concurrent reachabil-
ity games.

The Ackermann Award 2008 511

– The author makes a fundamental contribution to the theory of repeated
games, by giving an EXPTIME algorithm for solving concurrent games with
limit-average objective. This is a first algorithmic result in the analysis of
these games, extensively studied in game theory for decades. The result also
yields a PSPACE upper bound for solving concurrent games with discounted
reward objectives.

– The author develops a game-theoretic model for an interaction between pro-
cesses or components of a system, whose goals are not strictly conflicting,
but rather conditionally competitive. This is a turn-based deterministic game
with an ω-regular objective for each player. An essential conceptual contri-
bution consists in an idea of a secure equilibrium, which is a special case of
a Nash equilibrium, in which no player can lower the other player’s payoff,
without lowering her own payoff as well. The author establishes the existence
and uniqueness of such equilibria, presents an algorithm to compute them,
and demonstrates their applications in the modular verification of systems.

The results of the thesis were published in numerous papers, presented to con-
ferences CSL, CONCUR, SODA, ICALP, QEST, LICS, FSTTCS, and TACAS,
as well as in journals: Theoretical Computer Science and International Journal
of Game Theory. Some of these papers were co-authored; the list of co-authors
includes L. de Alfaro, T.A.Henzinger, M.Jurdziński, and R.Majumdar.

Biographic Sketch. Krishnendu Chatterjee was born in 1978 and received his
B.Tech. degree in Computer Science and Engineering from the Indian Institute
of Technology, Kharagpur, India, in 2001. He is the recipient of various excellent
student awards, among them the President of India Gold Medal in 2001. He
received his M.Sc. degree in Computer Science from the University of California,
Berkeley, in 2004. He wrote his Ph.D. thesis under the supervision of professor
Thomas A. Henzinger, and obtained the Ph.D. degree in Computer Science from
the University of California in Berkeley in 2007. He is currently a post-doctoral
researcher at the University of California in Santa Cruz.

The Ackermann Award

The EACSL Board decided in November 2004 to launch the EACSL Outstanding
Dissertation Award for Logic in Computer Science, the Ackermann Award,
The award2. is named after the eminent logician Wilhelm Ackermann (1896-
1962), mostly known for the Ackermann function, a landmark contribution in
early complexity theory and the study of the rate of growth of recursive func-
tions, and for his coauthorship with D. Hilbert of the classic Grundzüge der
Theoretischen Logik, first published in 1928. Translated early into several lan-
guages, this monograph was the most influential book in the formative years of

2 Details concerning the Ackermann Award and a biographic sketch of W. Ack-
ermann was published in the CSL’05 proceedings and can also be found at
http://www.dimi.uniud.it/eacsl/award.html

512 J.A. Makowsky and D. Niwinski

mathematical logic. In fact, Gödel’s completeness theorem proves the complete-
ness of the system presented and proved sound by Hilbert and Ackermann. As
one of the pioneers of logic, W. Ackermann left his mark in shaping logic and
the theory of computation.

The Ackermann Award is presented to the recipients at the annual confer-
ence of the EACSL. The Jury is entitled to give more than one award per year.
The award consists of a diploma, an invitation to present the thesis at the CSL
conference, the publication of the abstract of the thesis and the citation in the
CSL proceedings, and travel support to attend the conference.

The Jury for the Ackermann Award consists of eight members, three of
them ex officio, namely the president and the vice-president of EACSL, and
one member of the LICS organizing committee. The current jury consists of J.
van Benthem (Amsterdam), B. Courcelle (Bordeaux), M. Grohe (Berlin), M.
Hyland (Cambridge), J.A. Makowsky (Haifa, President of EACSL), D. Niwinski
(Warsaw, Vice President of EACSL), G. Plotkin (Edinburgh, LICS Organizing
Committee) and A. Razborov (Moscow and Princeton).

Previous winners of the Ackermann Award were

2005, Oxford:
Miko�laj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from The Netherlands, and
Stefan Milius from Germany

2007, Lausanne
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China

Detailed reports on their work appeared in the CSL’05, CSL’06 and CSL’07
proceedings, and are also available via the EACSL homepage.

Author Index

Abel, Andreas 446

Barthe, Gilles 493
Berardi, Stefano 215
Beyersdorff, Olaf 199
Blanqui, Frédéric 1
Bonfante, Guillaume 49
Brochenin, Rémi 323

Cardelli, Luca 32
Charatonik, Witold 94
Chatterjee, Krishnendu 385
Colcombet, Thomas 416
Creignou, Nadia 109
Curien, Pierre-Louis 15

Dal Lago, Ugo 230
Dawar, Anuj 354
de’Liguoro, Ugo 215
Demri, Stéphane 323
Dezani-Ciancaglini, Mariangiola 461
Di Cosmo, Roberto 461
Doyen, Laurent 385

Eisinger, Jochen 431

Fontaine, Gaëlle 139

Giovannetti, Elio 461
Grädel, Erich 354
Grégoire, Benjamin 493

Hamano, Masahiro 262
Henzinger, Thomas A. 385
Hermant, Olivier 169
Hodkinson, Ian 308
Hofmann, Martin 79
Horbach, Matthias 293

Jouannaud, Jean-Pierre 1

Kahle, Reinhard 49
Kameyama, Yukiyoshi 478
Katsumata, Shin-ya 278
Kotek, T. 339
Kuncak, Viktor 124

La Torre, Salvatore 33
Laurent, Olivier 230
Lipton, James 169
Löding, Christof 416
Lozes, Etienne 323

Madhusudan, P. 33
Makowsky, J.A. 339, 508
Marion, Jean-Yves 49
McKenzie, Pierre 64
Montanari, Angelo 308
Müller, Sebastian 199

Nakano, Hiroshi 478
Nakazawa, Koji 478
Nguyen, Phuong 184
Niwinski, D. 508

Oitavem, Isabel 49

Parlato, Gennaro 33
Piskac, Ruzica 124
Place, Thomas 401

Riba, Colin 493
Rodriguez, Dulma 446
Rubio, Albert 1

Saurin, Alexis 154
Schewe, Sven 369
Schnoor, Henning 109
Schnoor, Ilka 109
Schöpp, Ulrich 79
Sciavicco, Guido 308

Takemura, Ryo 262
Tatsuta, Makoto 461, 478
Thomas, Michael 64
Thomas, Wolfgang 23
Tranquilli, Paolo 246

Vollmer, Heribert 64

Weidenbach, Christoph 293
Wrona, Micha�l 94

Zilber, B. 339

	Title Page
	Preface
	Conference Organization
	Table of Contents
	The Computability Path Ordering: The End of a Quest
	Introduction
	Higher-Order Algebras
	The Computability Path Ordering
	Basic Ingredients
	Notations
	Ordering Definition
	Accessibility

	Conclusion
	References

	The Joy of String Diagrams
	Hom-Functors
	Limits
	Explicit Equalities
	References

	Model Transformations in Decidability Proofs for Monadic Theories
	Introduction
	Equivalences
	Reduction to Periodic Structures
	Transformations Preserving Decidability
	Limit Models
	Conclusion
	References

	Molecules as Automata
	An Infinite Automaton Characterization of Double Exponential Time
	Introduction
	Multi-stack Pushdown Rewriting
	The Upper Bound
	The Lower Bound
	Discussion
	References

	Recursion Schemata for \nc{k}
	Introduction
	Preliminaries
	The Classes \INC{k}
	Mutual in Place Recursion
	Explicit Structural Recursion
	Time Iteration

	Simulation of Alternating Turing Machines
	Compilation of Recursive Definitions to Circuit
	$\nc{0}$ Circuits for Mutual Recursion
	Simulation of Time Recursion

	References

	Extensional Uniformity for Boolean Circuits
	Introduction
	Preliminaries
	Complexity Theory
	First-Order Logic

	The Uniformity Duality Property
	Characterizing the Context-Free Numerical Predicates
	The Uniformity Duality and Context-Free Languages
	The Duality in Higher Classes
	Conclusion
	References

	Pure Pointer Programs with Iteration
	Introduction
	Pointer Structures
	Pure Pointer Programs
	Examples
	Operational Semantics
	Basic Properties

	Related Models of Computation
	Jumping Automata on Graphs
	Deterministic Transitive Closure Logic

	Counting
	Conclusion
	References

	Quantified Positive Temporal Constraints
	Introduction
	Preliminaries
	Surjective Unary Polymorphisms of Temporal Relations
	PSPACE-Complete Positive Temporal Languages
	PTIME-Complete Positive Temporal Languages
	References

	Non-uniform Boolean Constraint Satisfaction Problems with Cardinality Constraint
	Introduction
	MainResult
	TheWeakBaseMethod
	Proofs of Hardness Results
	Another Statement of the Main Result
	Some Basic Hardness Results
	Hardness Results with Unified Proofs
	Hardness Results with Non-unified Proofs

	Conclusion
	References

	Fractional Collections with Cardinality Bounds, and Mixed Linear Arithmetic with Stars
	Introduction
	Examples
	From Collections to Stars
	Separating Mixed Constraints
	Eliminating Star Operator from Formulas
	Language with Nested Star Operators and Quantifiers
	Related Work
	Conclusions
	References

	Continuous Fragment of the mu-Calculus
	Introduction
	Preliminaries
	Continuity
	Syntactic Characterization of the Continuous Fragment
	Conclusion and Further Work
	References

	On the Relations between the\\ Syntactic Theories of \lm-Calculi
	Introduction
	Four \lm-Calculi
	Parigot's Original Calculus: \lm
	\lm-Calculus with Extensionality: Py's \lmeta
	A \lm-Calculus Satisfying B\"ohm Theorem: \Lm-Calculus
	De Groote's Extended Syntax with ϵ-Reduction: \lmeps

	Syntactical Results for Pure \Lm-Calculus
	\Lm-Calculus Reduction System
	Confluence of \Lm-Calculus
	Characterizing Canonical Normal Forms in \Lm

	Comparing the Four \lm-Calculi
	Conservative Extensions
	Separability Properties

	Simply-Typed \Lm-Calculus
	Simply Typed Streams: \Ls
	Typed Reduction Rules
	Comments about the Type System \Ls
	Properties of \Ls

	Conclusion
	References

	A Constructive Semantic Approach to Cut Elimination in Type Theories with Axioms
	Introduction
	The Formal System: A Sketch
	GlobalModels
	Soundness of ICTT for Global Models

	From Semivaluations to Valuations
	Cut Elimination by Completeness
	The Cut-Free Contexts Heyting Algebra
	A Semivaluation \low and \up
	Completeness and Cut Elimination of {\sc ictt

	Adding Non-logical Axioms
	Completeness and Cut Elimination in Presence of Axioms

	On the Constructivity of the Proof of Cut Admissibility
	References

	Proving Infinitude of Prime Numbers Using Binomial Coefficients
	Introduction
	Existing Formalizations
	Our Formalizations
	Organization

	The Theories \IDelZ, \IDelZpi, and $\IDelZ(\pi,\lbc)$
	Rational Numbers in \IDelZ
	Approximating $\ln(x)$ in \IDelZ
	Defining $\sum\ln(i)$ in \IDelZ
	$\IDelZ(\pi)$ and Defining $\sum\ln(p)$ in $\IDelZ(\pi)$
	Unique Prime Factorization
	The Function \lbc
	Defining \lbc\ in $\IDelZ(\xi)$

	A Lower Bound for $\pi(n)$ in $\IDelZbar(\pi,\lbc')$
	Bertrand's Postulate and a Lower Bound for\\ $\pi(2n) - \pi(n)$
	Formalization in $\IDelZbar(\pi,\lbc')$

	Conclusion
	References

	A Tight Karp-Lipton Collapse Result in Bounded Arithmetic
	Introduction
	Preliminaries
	Representing Complexity Classes by Bounded Formulas
	The Karp-Lipton Collapse Result in \VPV
	Propositional Proof Systems with Advice
	Optimal Proof Systems with Advice
	Classical Proof Systems with Advice
	Discussion and Open Problems
	References

	A Calculus of Realizers for \EM_1 Arithmetic
	Introduction
	\EM_1 Arithmetic of Primitive Recursive Functions
	States of Knowledge, Synchronous and Convergent Functionals
	The Realizability Interpretation
	References

	Quantitative Game Semantics for Linear Logic
	Introduction
	Syntax
	Game Semantics
	Games
	Constructions on Games
	Strategies
	Constructions on Strategies
	Interpretation of Proofs

	Realizability
	Complexity
	Dynamics under Exposed Cuts
	Full Abstraction

	FurtherWork
	References

	A Characterization of Hypercoherent Semantic Correctness in Multiplicative Additive Linear Logic
	Introduction
	TheFramework
	MALL Proof Structures
	Hypercoherent Spaces
	Experiments
	Examples

	The Criterion
	Hypercorrectness
	Hypercorrectness Implies Hypercoherence
	Hyperincorrectness Implies Hyperincoherence

	Compendium
	References

	An Indexed System for Multiplicative Additive Polarized Linear Logic
	Introduction
	Multi-pointed Relational Semantics for \MALLP
	Indexed Multiplicative Additive Polarized Linear Logic \MALLP($_I$)
	A Correspondence between \MALLP($_I$)-Provability and Denotations of \MALLP-Proofs
	Discussions and Future Work
	References

	A Characterisation of Lambda Definability with Sums Via \TT-Closure Operators
	Introduction
	Definability of Calculi with Sums
	Kripke Predicates with Varying Arity
	A Characterisation of Definability with Sums
	Fullness of Free Distributive Categories in Free Bi-CCCs

	\TT -Closure Operators and the Restriction Theorem
	\TT-Closure Operators
	Full Reflective Subcategory of \TT-Closed Objects
	Restriction Theorem

	Related Work
	Grothendieck Logical Predicates
	Other RelatedWork

	References

	Superposition for Fixed Domains
	Introduction
	Preliminaries
	First-Order Reasoning in Fixed Domains
	Finite Domain and Minimal Model Validity of Constrained Clauses
	Conclusion
	References

	Non-finite Axiomatizability and Undecidability of Interval Temporal Logics with C, D, and T
	Introduction
	BasicNotions
	Expressive Power of L_{CDT} and L_{CDT}^{π}
	Undecidability
	Language, Shortcuts, and u-Intervals
	The Encoding of the Tiling Problem and Undecidability
	Undecidability over Finite Models

	Non-finite Axiomatizability
	Basic Definitions
	Frames $\c F_S(\eta,\kappa)$ Not Validating $S(\Lin)$
	Frames $\c F_S(\eta,\kappa)$ That Do Validate $S^\pi(\mathbb{Q},<)$
	Non Finite Axiomatizability

	Conclusions
	References

	On the Almighty Wand
	Introduction
	Preliminaries
	Separation Logic and Second-Order Logic
	A Selection of Properties \iftwovar in \sepltwo\fi
	Preliminary Translations

	On the Complexity of $\sepl(\separate)$
	Advanced Arithmetic Constraints
	$\sepl(--*)$ Is Equivalent to \so
	Concluding Remarks
	References

	On Counting Generalized Colorings
	Introduction
	Prelude: The Chromatic Polynomial
	Generalized Chromatic Polynomials
	SOL-Definable Graph Polynomials
	Conclusions
	References

	The Descriptive Complexity of Parity Games
	Introduction
	Background from Logic
	Parity Games
	Definability of Parity Games on Arbitrary Game Graphs
	Definability in Fragments of Second-Order Logic
	Non-definability in Least Fixed-Point Logic

	Definability of Parity Games on Finite Graphs
	Non-definability in the μCalculus
	Definability in Fixed-Point Logics
	Restricted Classes

	Conclusions
	References

	An Optimal Strategy Improvement Algorithm for Solving Parity and Payoff Games
	Introduction
	Parity Games
	Escape Games
	SolvingEscapeGames
	BenchmarksandResults
	Discussion
	References

	Quantitative Languages
	Introduction
	Boolean and Quantitative Languages
	Boolean Languages
	Quantitative Languages

	The Complexity of Quantitative Decision Problems
	Quantitative Simulation
	The Expressive Power of Weighted Automata
	Positive Reducibility Results
	Negative Reducibility Results

	References

	Characterization of Logics over Ranked Tree Languages
	Introduction
	Notations
	Binary Algebras
	Links between \ensuremath{\Delta_{2} and \ensuremath{EF + F^{-1}
	Characterization of \ensuremath{EF + F^{-1}
	First Case
	Second Case
	Third Case

	Characterization of \ensuremath{\Delta_{2}
	Characterization of Boolean Combinations of \ensuremath{\Sigma_{1}}
	Discussion
	References

	The Nesting-Depth of Disjunctive $\mu{μ}$-Calculus for Tree Languages and the Limitedness Problem
	Introduction
	Definitions
	Trees and Patterns
	Automata
	Disjunctive $\mu{μ}$-Calculus
	Cost Automata

	From Nesting-Depth to Limitedness
	Subset Automata
	Reduction of the Nesting-Depth Problem to Limitedness

	Decidability of the Limitedness Problem
	Cost Games
	Alternating and Purely Non-deterministic Automata
	Uniform Universality of Purely Non-deterministic Tree Automata

	Conclusion
	References

	Upper Bounds on the Automata Size for Integerand Mixed Real and Integer Linear Arithmetic* (Extended Abstract)
	Introduction
	Preliminaries
	Words and Languages
	First-Order Logic
	Representing Sets of Reals and Integers

	Characterization of Sets Definable in Linear Arithmetic
	Integer Linear Arithmetic
	Real Linear Arithmetic
	Mixed Real and Integer Linear Arithmetic

	Integer Linear Arithmetic
	Mixed Linear Arithmetic
	Relationship to Languages
	Upper Bounds

	Conclusion
	References

	Syntactic Metatheory of Higher-Order Subtyping
	Introduction
	System F^\omega_{<:}\,
	Constructors and Kinds
	Kinding and Well-Formed Contexts
	Equality
	Subtyping
	Algorithmic Subtyping

	Normalization of Constructors
	Hereditary Substitution
	Computing the Long Normal Form
	Characterization of Long Normal Forms
	Completeness of Normalization

	Verification of Algorithmic Subtyping
	Conclusions and Related Work
	References

	On Isomorphisms of Intersection Types
	Introduction
	Basic Properties of Isomorphisms with Intersection Types
	The Type System and the Reduction to Type Normal Form
	Standard Properties of the Type System
	Isomorphism Characterisation
	How to Normalise Types
	Conclusions and Future Work
	References

	Undecidability of Type-Checking in Domain-FreeTyped Lambda-Calculi with Existence
	Introduction
	Typed$\lambda{λ}$-Calculus with Negation, Conjunction andExistence
	Type-Checking and Type-Inference
	Proof of Undecidability of TC and TI in $dfree$lambda^{\neg\land\exists}
	Domain-Free Polymorphic Typed $\lambda{λ}$ -Calculus
	CPS Translation
	Typing for CPS Terms in $dfree$lambda^{\neg\land\exists}
	Proof of Undecidability
	TC and TI of \dfree\lambda^{\neg\land\exists Are Undecidable

	A Target of CPS Translations
	Call-by-Value Second-Order Computational $lamda{λ}$-Calculus
	Call-by-Value λμ-Calculus
	Delimited Continuations

	Undecidability in Implicational Fragment
	Concluding Remarks
	References

	Type-Based Termination with Sized Products
	Introduction
	Overview and Related Work
	The Sized Product
	Typing of Fixpoints
	System \fsomprod
	Stages
	Types and Datatypes Declarations
	Terms and Reductions
	Typing Rules

	Subject Reduction
	Strong Normalization
	The Stage Model
	Type Interpretation

	Conclusion
	References

	The Ackermann Award 2008
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

