

Lecture Notes in Computer Science 5217
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marco Dorigo Mauro Birattari
Christian Blum Maurice Clerc
Thomas Stützle Alan F.T. Winfield (Eds.)

Ant Colony Optimization
and Swarm Intelligence

6th International Conference, ANTS 2008
Brussels, Belgium, September 22-24, 2008
Proceedings

13

Volume Editors

Marco Dorigo
IRIDIA, CoDE, Université Libre de Bruxelles
Avenue F. Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
E-mail: mdorigo@ulb.ac.be

Mauro Birattari
IRIDIA, CoDE, Université Libre de Bruxelles
Avenue F. Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
E-mail: mbiro@ulb.ac.be

Christian Blum
ALBCOM, LSI, Universitat Politècnica de Catalunya
Jordi Girona 1-3, Omega 112 Campus Nord, 08034 Barcelona, Spain
E-mail: cblum@lsi.upc.edu

Maurice Clerc
204 Route de la Nerulaz, 74570 Groisy, France
E-mail: Maurice.Clerc@WriteMe.com

Thomas Stützle
IRIDIA, CoDE, Université Libre de Bruxelles
Avenue F. Roosevelt 50, CP 194/6, 1050 Brussels, Belgium
E-mail: stuetzle@ulb.ac.be

Alan F.T. Winfield
Bristol Robotics Laboratory, University of the West of England
Coldharbour Lane, Bristol BS16 1QY, UK
E-mail: Alan.Winfield@uwe.ac.uk

Library of Congress Control Number: 2008934397

CR Subject Classification (1998): F.2.2, F.1.1, G.1, G.2, I.2, C.2.4, I.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-87526-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-87526-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12519514 06/3180 5 4 3 2 1 0

Preface

The series of biannual international conferences “ANTS – International Con-
ference on Ant Colony Optimization and Swarm Intelligence”, now in its sixth
edition, was started ten years ago, with the organization of ANTS’98. As some
readers might recall, the first edition of ANTS was titled “ANTS’98 – From Ant
Colonies to Artificial Ants: First International Workshop on Ant Colony Opti-
mization.” In fact, at that time the focus was mainly on ant colony optimization
(ACO), the first swarm intelligence algorithm to go beyond a pure scientific
interest and to enter the realm of real-world applications.

Interestingly, in the ten years after the first edition there has been a grow-
ing interest not only for ACO, but for a number of other studies that belong
more generally to the area of swarm intelligence. The rapid growth of the swarm
intelligence field is attested by a number of indicators. First, the number of sub-
missions and participants to the ANTS conferences has steadily increased over
the years. Second, a number of international conferences in computational in-
telligence and related disciplines organize workshops on subjects such as swarm
intelligence, ant algorithms, ant colony optimization, and particle swarm opti-
mization. Third, IEEE started organizing, in 2003, the IEEE Swarm Intelligence
Symposium (in order to maintain unity in this growing field, we are currently
establishing a cooperation agreement between IEEE SIS and ANTS so as to have
IEEE SIS in odd years and ANTS in even years). Last, the Swarm Intelligence1

journal was born.
Continuing a tradition started in 2002 with the third edition of ANTS, in

2008 the proceedings of the conference are also published in the Springer LNCS
series.

The current edition of the proceedings contains 17 full-length papers and
24 short papers. These were selected out of 91 submissions, which means that
45% of the submitted papers were accepted for publication. In addition to this,
10 submissions were accepted as extended abstracts: these represent potentially
interesting research that is still in its initial stage.

All the contributions to the proceedings were presented at the conference in
the form of poster presentations. This choice was intended to promote discussion
among the participants. Additionally, there were a few oral presentation, chosen
among the full-length papers.

Finally, we would like to thank all the people who helped in organizing
ANTS 2008. We are very grateful to the authors who submitted their works;
to the members of the international Program Committee and to the additional
referees for their detailed reviews; to the people of IRIDIA for their enthusiasm in
helping with organizational matters; to the Université Libre de Bruxelles for pro-
viding rooms and logistic support; and, more generally, to all those contributing

1 See http://www.springer.com/11721

VI Preface

to the organization of the conference. We would like to also thank our sponsors:
the IEEE Computational Intelligence Society for technical co-sponsorship, the
company AntOptima, the Belgian Fund for Scientific Research–FNRS, and the
French community of Belgium, for their financial support.

June 2008 Marco Dorigo
Mauro Birattari
Christian Blum
Maurice Clerc

Thomas Stützle
Alan F.T. Winfield

Organization

ANTS 2008 was organized by IRIDIA, Université Libre de Bruxelles, Belgium.

Conference Chair

Marco Dorigo IRIDIA, Université Libre de Bruxelles, Belgium

Technical Program Chairs

Christian Blum Universitat Politècnica de Catalunya, Spain
Maurice Clerc Independent Consultant on Optimisation,

France
Alan F.T. Winfield University of the West of England, Bristol, UK

Publication Chair

Mauro Birattari IRIDIA, Université Libre de Bruxelles, Belgium

Publicity Chair

Thomas Stützle IRIDIA, Université Libre de Bruxelles, Belgium

Program Committee

Ashraf Abdelbar American University in Cairo, Egypt
Carl Anderson Archimedes, Inc., USA
Payman Arabshahi University of Washington, USA
Bart Baesens Katholieke Universiteit Leuven, Belgium
Thomas Bartz-Beielstein Fachhochschule Köln, Germany
Leonora Bianchi USI-SUPSI, Switzerland
Tim Blackwell University of London, UK
Jürgen Branke Universität Karlsruhe (TH), Germany
Marco Chiarandini University of Southern Denmark, Denmark
Carlos Coello Coello CINVESTAV-IPN, Mexico
Oscar Cordón European Centre for Soft Computing, Spain
Carlos Cotta Universidad de Málaga, Spain
Xiaohui Cui Oak Ridge National Laboratory, USA
Gianni Di Caro USI-SUPSI, Switzerland
Karl Doerner Universität Wien & Salzburg Research, Austria
Hai-Bin Duan Beihang University, China

VIII Organization

Andries P. Engelbrecht University of Pretoria, South Africa
Mudassar Farooq NUCES, Pakistan
Dario Floreano EPFL, Switzerland
Alex Freitas University of Kent, UK
Luca Gambardella USI-SUPSI, Switzerland
Deborah Gordon Stanford University, USA
Roderich Gross EPFL, Switzerland
Walter Gutjahr Universität Wien, Austria
Julia Handl University of Manchester, UK
Richard Hartl Universität Wien, Austria
Beat Hirsbrunner University of Fribourg, Switzerland
Colin Johnson University of Kent, UK
James Kennedy Bureau of Labor Statistics, USA
Franziska Klügl Universität Würzburg, Germany
Joshua Knowles University of Manchester, UK
William B. Langdon University College London, UK
Kristina Lerman University of Southern California, USA
Vittorio Maniezzo Università di Bologna, Italy
David Martens Katholieke Universiteit Leuven, Belgium
Alcherio Martinoli EPFL, Switzerland
Monaldo Mastrolilli USI-SUPSI, Switzerland
Ronaldo Menezes Florida Institute of Technology, USA
Daniel Merkle Universität Leipzig, Germany
Bernd Meyer Monash University, Australia
Martin Middendorf Universität Leipzig, Germany
Francesco Mondada EPFL, Switzerland
Nicolas Monmarché Université de Tours, France
Frank Neumann Max-Planck-Institut für Informatik, Germany
Ann Nowé Vrije Universiteit Brussel, Belgium
Luis Paquete Universidade de Coimbra, Portugal
Rafael Stubs Parpinelli Universidade do Estado de Santa Catarina,

Brazil
Konstantinos Parsopoulos University of Patras, Greece
Riccardo Poli University of Essex, UK
Marc Reimann University of Warwick, UK
Andrea Roli Università di Bologna, Italy
Martin Roth Google, UK
Ruben Ruiz Universidad Politécnica de Valencia, Spain
Erol Sahin Middle East Technical University, Turkey
Michael Sampels Université Libre de Bruxelles, Belgium
Giovanni Sebastiani Ist. Applicazioni del Calcolo "Mauro Picone",

Italy
Yuhui Shi Xi’an Jiaotong-Liverpool University, China
Christine Solnon Université Claude Bernard, France
William M. Spears University of Wyoming, USA
Kasper Støy University of Southern Denmark, Denmark

Organization IX

Ponnuthurai Suganthan Nanyang Technological University, Singapore
David Sumpter Uppsala University, Sweden
Fatih Tasgetiren Sultan Qaboos University, Oman
Guy Théraulaz Université Paul Sabatier, France
Vito Trianni Ist. Scienze e Tecnologie della Cognizione, Italy
Richard T. Vaughan Simon Fraser University, Canada
Michael N. Vrahatis University of Patras, Greece
Carsten Witt Universität Dortmund, Germany
Jun Zhang Sun Yat-sen University, China

Local Arrangements

Marco Montes de Oca IRIDIA, Université Libre de Bruxelles, Belgium
Carlotta Piscopo IRIDIA, Université Libre de Bruxelles, Belgium

Additional Referees

Prasanna Balaprakash
Arne Brutschy
Alexandre Campo

Giacomo Di Tollo
Jens Gimmler
Amin Mantrach

Rehan O’Grady
Steffen Wolf
Zhi Yuan

Sponsoring Institutions

AntOptima, Lugano, Switzerland
http://www.antoptima.com

Fund for Scientific Research–FNRS, Belgium
http://www.fnrs.be

French Community of Belgium (through the research project ANTS)
http://www.cfwb.be

IEEE Computational Intelligence Society (as a technical co-sponsor)
http://www.ieee-cis.org

Table of Contents

A Combined Ant Colony and Differential Evolution Feature Selection
Algorithm . 1

Rami N. Khushaba, Ahmed Al-Ani, Akram AlSukker, and
Adel Al-Jumaily

An Improved ACO Based Plug-in to Enhance the Interpretability of
Fuzzy Rule Bases with Exceptions . 13

Pablo Carmona and Juan Luis Castro

Ant Colony Optimization for Energy-Efficient Broadcasting in Ad-Hoc
Networks . 25

Hugo Hernández, Christian Blum, and Guillem Francès

Ant Colony Optimization for Genome-Wide Genetic Analysis 37
Casey S. Greene, Bill C. White, and Jason H. Moore

cAnt-Miner: An Ant Colony Classification Algorithm to Cope with
Continuous Attributes . 48

Fernando E.B. Otero, Alex A. Freitas, and Colin G. Johnson

Finding Minimum Spanning/Distances Trees by Using River Formation
Dynamics . 60

Pablo Rabanal, Ismael Rodŕıguez, and Fernando Rubio

Gathering Multiple Robotic Agents with Crude Distance Sensing
Capabilities . 72

Noam Gordon, Yotam Elor, and Alfred M. Bruckstein

Integration of ACO in a Constraint Programming Language 84
Madjid Khichane, Patrick Albert, and Christine Solnon

Learning from House-Hunting Ants: Collective Decision-Making in
Organic Computing Systems . 96

Arne Brutschy, Alexander Scheidler, Daniel Merkle, and
Martin Middendorf

Modeling Phase Transition in Self-organized Mobile Robot Flocks 108
Ali Emre Turgut, Cristián Huepe, Hande Çelikkanat,
Fatih Gökçe, and Erol Şahin

Molecular Structure Elucidation Using Ant Colony Optimization: A
Preliminary Study . 120

Caroline Farrelly, Douglas B. Kell, and Joshua Knowles

XII Table of Contents

Rigorous Analyses for the Combination of Ant Colony Optimization
and Local Search . 132

Frank Neumann, Dirk Sudholt, and Carsten Witt

Simple Dynamic Particle Swarms without Velocity 144
Jorge Peña

Swarming in a Virtual World: A PSO Approach to Virtual Camera
Composition . 155

Luca Di Gaspero, Andrea Ermetici, and Roberto Ranon

The Binary Bridge Selection Problem: Stochastic Approximations and
the Convergence of a Learning Algorithm . 167

Armand M. Makowski

Two-Level ACO for Haplotype Inference Under Pure Parsimony 179
Stefano Benedettini, Andrea Roli, and Luca Di Gaspero

What Hides in Dimension X? A Quest for Visualizing Particle
Swarms . 191

Namrata Khemka and Christian Jacob

Short Papers

A Dynamic Swarm for Visual Location Tracking . 203
Marcel Kronfeld, Christian Weiss, and Andreas Zell

A Simulation Study of Routing Performance in Realistic Urban
Scenarios for MANETs . 211

Gianni A. Di Caro, Frederick Ducatelle, and Luca M. Gambardella

ACO-Based Scheduling of Parallel Batch Processing Machines with
Incompatible Job Families to Minimize Total Weighted Tardiness 219

Li Li, Fei Qiao, and Qidi Wu

Adaptive Particle Swarm Optimization . 227
Zhi-hui Zhan and Jun Zhang

Ant Based Heuristics for the Capacitated Fixed Charge Location
Problem . 235

Harry Venables and Alfredo Moscardini

Ant Colony Optimization and the Single Round Robin Maximum Value
Problem . 243

David C. Uthus, Patricia J. Riddle, and Hans W. Guesgen

Artificial Ants to Extract Leaf Outlines and Primary Venation
Patterns . 251

Robert J. Mullen, Dorothy Monekosso, Sarah Barman,
Paolo Remagnino, and Paul Wilkin

Table of Contents XIII

Autonomous Reconfiguration in a Self-assembling Multi-robot
System . 259

Rehan O’Grady, Anders Lyhne Christensen, and Marco Dorigo

Beanbag Robotics: Robotic Swarms with 1-DoF Units 267
David M.M. Kriesel, Eugene Cheung, Metin Sitti, and Hod Lipson

Bl̊atAnt: Bounding Networks’ Diameter with a Collaborative
Distributed Algorithm . 275

Amos Brocco, Fulvio Frapolli, and Béat Hirsbrunner

Dependency by Concentration of Pheromone Trail for Multiple
Robots . 283

Ryusuke Fujisawa, Shigeto Dobata, Daisuke Kubota,
Hikaru Imamura, and Fumitoshi Matsuno

Dissemination of Information with Fair Load Distribution in
Self-organizing Grids . 291

Agostino Forestiero, Carlo Mastroianni, and Giandomenico Spezzano

Emergent Sorting in Networks of Router Agents . 299
Alexander Scheidler, Christian Blum, Daniel Merkle, and
Martin Middendorf

Enhancing the Cooperative Transport of Multiple Objects 307
Antoine Decugnière, Benjamin Poulain, Alexandre Campo,
Carlo Pinciroli, Bruno Tartini, Michel Osée, Marco Dorigo, and
Mauro Birattari

Formal Modeling of BeeAdHoc: A Bio-inspired Mobile Ad Hoc Network
Routing Protocol . 315

Muhammad Saleem, Syed Ali Khayam, and Muddassar Farooq

Incorporating Heuristics in a Swarm Intelligence Framework for
Inferring Gene Regulatory Networks from Gene Expression Time
Series . 323

Kyriakos Kentzoglanakis, Matthew Poole, and Carl Adams

Incorporating Preferences to a Multi-objective Ant Colony Algorithm
for Time and Space Assembly Line Balancing . 331

Manuel Chica, Óscar Cordón, Sergio Damas, Jordi Pereira, and
Joaqúın Bautista

KANTS: Artifical Ant System for Classification . 339
Carlos Fernandes, Antonio Miguel Mora, Juan Julián Merelo,
Vitorino Ramos, Juan Lúıs Laredo, and Agostihno Rosa

Lattice Formation in Space for a Swarm of Pico Satellites 347
Carlo Pinciroli, Mauro Birattari, Elio Tuci, Marco Dorigo,
Marco del Rey Zapatero, Tamas Vinko, and Dario Izzo

XIV Table of Contents

Merging Groups for the Exploration of Complex State Spaces in the
CPSO Approach . 355

Stefanie Thiem, Jörg Lässig, and Peter Köchel

Parallel Ant Colony Optimization for the Quadratic Assignment
Problems with Symmetric Multi Processing . 363

Shigeyoshi Tsutsui

Social Odometry in Populations of Autonomous Robots 371
Álvaro Gutiérrez, Alexandre Campo, Francisco C. Santos,
Carlo Pinciroli, and Marco Dorigo

The Architecture of Ant-Based Clustering to Improve Topographic
Mapping . 379

Lutz Herrmann and Alfred Ultsch

The Small World of Pheromone Trails . 387
Paola Pellegrini and Andrea Ellero

Extended Abstracts

A Particle Swarm Optimization Algorithm for Multiuser Scheduling in
HSDPA . 395

Mehmet E. Aydin, Raymon Kwan, Cyril Leung, and Jie Zhang

AntLib v1.0: A Generic C++ Framework for Ant Colony
Optimization . 397

Francisco Javier Diego Mart́ın, José Ángel González Manteca,
Ruth Carrasco-Gallego, and Javier Carrasco Arias

Applying a Distributed Swarm-Based Algorithm to Solve Instances of
the RCPSP . 399

Paulo R. Ferreira Jr. and Ana L.C. Bazzan

bicACO: An Ant Colony Inspired Biclustering Algorithm 401
Fabŕıcio O. de França, Guilherme P. Coelho, and
Fernando J. Von Zuben

Dynamic Routing and Travel Time Prediction with Ant Based
Control . 403

Bogdan Tatomir, Adriana-Camelia Suson, and Leon Rothkrantz

Network Formation Using Ant Colony Optimization 405
Steven C. Oimoen, Gilbert L. Peterson, and Kenneth M. Hopkinson

On the Stability and the Parameters of Particle Swarm Optimization . . . 407
Keiichiro Yasuda, Nobuhiro Iwasaki, and Genki Ueno

Table of Contents XV

Regional Traffic Assignment by ACO: Preliminary Results 409
Vittorio Maniezzo, Matteo Roffilli, Roberto Gabrielli,
Alessandra Guidazzi, Manuel Otero, and Rolando Trujillo

SwarmClass: A Novel Data Clustering Approach by a Hybridization of
an Ant Colony with Flying Insects . 411

Amira Hamdi, Nicolas Monmarché, M. Adel Alimi, and
Mohamed Slimane

The Differential Ant-Stigmergy Algorithm for Large Scale
Real-Parameter Optimization . 413

Peter Korošec and Jurij Šilc

Author Index . 415

A Combined Ant Colony and Differential

Evolution Feature Selection Algorithm

Rami N. Khushaba, Ahmed Al-Ani, Akram AlSukker, and Adel Al-Jumaily

Faculty of Engineering, University of Technology, Sydney, Australia
{rkhushab,ahmed,alsukker,adel}@eng.uts.edu.au

Abstract. Feature selection is an important step in many pattern recog-
nition systems that aims to overcome the so-called curse of dimensional-
ity problem. Although Ant Colony Optimization (ACO) proved to be a
powerful technique in different optimization problems, but it still needs
some improvements when applied to the feature selection problem. This
is due to the fact that it builds its solutions sequentially, where in feature
selection this behavior will most likely not lead to the optimal solution. In
this paper, a novel feature selection algorithm based on a combination of
ACO and a simple, yet powerful, Differential Evolution (DE) operator is
presented. The proposed combination enhances both the exploration and
exploitation capabilities of the search procedure. The new algorithm is
tested on two biosignal-driven applications. The performance of the pro-
posed algorithm is compared with other dimensionality reduction tech-
niques to prove its superiority.

1 Introduction

Pattern recognition is a multi-disciplinary field of research with the goal of clas-
sifying a set of objects into a number of categories or classes. Among the several
parameters that affect the performance of pattern recognition systems, feature
representation of patterns can be the most important. Feature selection (FS)
aims to reduce the feature set dimensionality through selecting a subset of fea-
tures that performs the best under some classification criterion [1]. This is done
by eliminating irrelevant and redundant features, thus providing a better rep-
resentation of the original patterns. This will significantly reduce the computa-
tional cost and will result in a better generalization for the classifier.

As a part of any feature subset selection algorithm, there are several factors
that need to be considered, the two most important are the evaluation mea-
sure and the search procedure [2]. The existing evaluation measures utilized in
feature selection techniques are divided into two categories according to their
dependency on the classification algorithms namely: filters and wrappers. Fil-
ter based feature selection methods are in general faster than wrapper based
methods. This is due to the fact that the filter based methods depend on some
type of estimation of the importance of individual features or subset of features.
Comparing to filter methods, wrapper based methods are more accurate as the
importance of feature subsets is measured using a classification algorithm. On

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 1–12, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 R.N. Khushaba et al.

the other hand, a search strategy is needed to explore the feature space. Var-
ious search algorithms that differ in their optimality and computational cost
have been developed to search the solution space. These methods include: Tabu
Search (TS), Simulated Annealing (SA), and Genetic Algorithm (GA) [3]. An-
other trend of search procedures is based on swarm intelligence, which adopts
the social insect metaphor that emphasizes distributedness and direct or indi-
rect interactions among relatively simple agents. Swarm intelligence methods,
particularly the Ant Colony Optimization (ACO) [4] and Particle Swarm Opti-
mization (PSO) [5] were also utilized as search procedures in feature selection
problems [2,6].

Ant colony optimization is a promising approach to solve discrete optimiza-
tion problems. It was initially used to solve the well known travelling salesman
problem. There were few attempts in the literature that utilized ACO in fea-
ture selection, where it was used to reduce the dimensionality in face, medical
diagnostic, speech, and texture classification problems [2]. However, the main
limitation of those methods is the sequential selection of features, which in most
cases will not lead to an optimal solution.

This paper presents a novel feature selection algorithm based on a combi-
nation of ACO and a Differential Evolution (DE) [7] operator. Although DE
optimization technique was originally developed to optimize problems with real
valued variables, an extension of the original DE algorithm to discrete problems
is presented. The new algorithm, termed ANTDE, will be tested on the Brain
Computer Interface (BCI) and the multifunction myoelectric control (MEC)
problems and the performance will be compared with other state of the art
feature selection and projection techniques.

2 Ant Colony Optimization and Feature Selection

In real ant colonies, a pheromone, which is an odour substance, is used as an
indirect communication medium. When a source of food is found, the ants lay
some pheromone to mark the path. The quantity of the laid pheromone depends
upon the distance, quantity and quality of the food source. While an isolated
ant that moves at random detects a laid pheromone, it is very likely that it will
decide to follow its path. This ant will itself lay a certain amount of pheromone,
and hence enforce the pheromone trail of that specific path. Accordingly, the
path that has been used by more ants will be more attractive to follow. Dorigo
et. al. [4] adopted this concept and proposed an artificial algorithm based on
real ant colonies behavior, to solve hard combinatorial optimization problems.
The ACO metaheuristic was originally applied to solve the classical Travelling
Salesman Problem (TSP), where it was shown to be an effective tool in finding
good solutions.

2.1 Application of ACO in Feature Selection

The feature selection problem differs from TSP as the distance between cities are
fixed in TSP. When adding one more city, the change in the objective function is

A Combined Ant Colony and DE Feature Selection Algorithm 3

affected only by the distance between last two cities. In contrast to TSP, adding
a feature to an existing subset of features can have an impact on the overall
performance. A relevant feature will produce a better subset, and hence improve
the performance, while an irrelevant feature may degrade the performance of
the original subset. When adding a feature to the current feature subset the
local performance measure should take into account the relationship with all
previously selected features and not only the last one. This makes the problem
of feature selection more complicated.

Various ACO based feature selection algorithms were presented in the litera-
ture. Some of them employed a hybrid filter and wrapper techniques to estimate
the heuristic information and overall performance. As an example, Al-Ani [2] pro-
posed an ACO based feature selection algorithm that estimates the pheromone
values by means of mutual information measure, and the overall performance
using a neural network classifier. The method was tested on two different clas-
sification problems achieving higher results than a GA based feature selection
approach. Zhang et al [8] has also used the hybrid of ACO and mutual informa-
tion for selection of features in a forecasting problem. As a different approach,
Gao et al [9] utilized the Fisher Discrimination Rate (FDR) as heuristic infor-
mation in an ACO-based feature selection method used for selection of features
in a network intrusion problem. Jensen et al [10] on the other hand, employed
ACO for finding rough set reducts. On the other hand, the classifier performance
was adopted as heuristic information for ACO in both Kanan et al [11] and Yan
et al [12] experiments.

This paper presents a variation of the approach proposed by Al-Ani [2]. Due to
the fact that the original algorithm searches for the global optimal by forming the
solutions in a semi-sequential way, there is a chance for the ants to be trapped in
a local minima. To overcome this limitation, a parallel search mechanism will be
required. The most well known parallel search algorithms are GA, PSO, and DE
algorithms. In feature selection problems with both GA and PSO, binary strings
are employed usually in which every bit represents an attribute. The value of ’1’
means that the attribute is selected while ’0’ means not selected. This increases
the computational cost for large problems. As an example consider a problem
with 256 features. If a subset of 20 feature is required, then for a population
of 50 elements, the total size of the population matrix will be 50 × 256. On
the other hand, DE was introduced to solve problems with real values. The
DE optimization technique can be viewed as an enhanced version of the real
valued GA that employs a differential mutation operator with faster convergence
properties.

We modified the original DE algorithm to make it suitable for the problem of
feature selection without converting into binary strings. Thus, for the example
mentioned earlier, the size of the population matrix will be 50 × 20, hence, a
lower memory requirement than both GA and PSO. Since DE proved to present
good performance in different problems [7], it was adopted here to form with
ACO a novel feature selection algorithm.

4 R.N. Khushaba et al.

2.2 Differential Evolution

Differential Evolution (DE) is an optimization method, capable of handling non-
differentiable, nonlinear and multimodal objective functions. It is a simple, paral-
lel, direct search, easy to use, having good convergence, and fast implementation
properties [7]. The crucial idea behind DE is a new scheme for generating trial
parameter vectors by adding the weighted difference vector between two popula-
tion members (r1 and r2) to a third member (r3). The following equation shows
how to combine three different, randomly chosen vectors to create a mutant
vector, Vi,g from the current generation g:

Vi,g = Xr0,g + F × (Xr1,g − Xr2,g) (1)

where F ∈ (0, 1) is a scale factor that controls the rate at which the population
evolves.

Extracting both distance and direction information from the population to
generate random deviations results in an adaptive scheme that has excellent
convergence properties. In addition, DE also employs uniform crossover, also
known as discrete recombination, in order to build trial vectors out of parameter
values that have been copied from two different vectors. In particular, DE crosses
each vector with a mutant vector, as given in Eq. (2) below:

Uj,i,g =
{

Vj,i,g if rand(0,1) ≤ Cr or
Xj,i,g Otherwise (2)

where Uj,i,g is the jth trial vector along ith dimension from the current popula-
tion g. The crossover probability Cr ∈ [0, 1] is a user defined value that controls
the fraction of parameter values that are copied from the mutant. If the newly
generated vector results in a lower objective function value (better fitness) than
the predetermined population member, then the resulting vector replaces the
vector with which it was compared.

As a novel contribution of this paper:

1. The population upon which the DE operators are performed are actually
drawn from the solutions that the ACO finds. Hence, DE is utilized to further
explore and exploit around the solutions that each of the ants found. This
is controlled by the values of the scale factor F .

2. Initially the value of F is made to linearly increase from 0.4 to 0.9, thus first
exploiting around the solutions provided by ACO and gradually increasing
to 0.9 thus further exploring around the solutions. If during any iteration a
new global minimum (higher fitness) is found then the value of F is reset
to 0.4 and made to increase again. Also for the mutant vector generation,
either Eq. (1) or the one presented below can be used:

Vig = Xbest,g + F × (Xr1,g − Xr2,g) (3)

where Xbest,g is the best solution found in the current generation g.

A Combined Ant Colony and DE Feature Selection Algorithm 5

3. Since DE is a numerical optimizer, it will need certain amendments before
being suitable for combinatorial optimization problems. This is best under-
stood with the following example. Consider the same problem mentioned
earlier with 256 features from which we seek a subset of 5 features. When
using DE directly the solutions produced will be float numbers, while in FS
problems we need positive decimal numbers. Rounding the solution of DE is
the first operation applied. Secondly, when optimizing a problem with a nu-
merical optimizer, nothing can prevent two or more dimensions from settling
at the same number. As an example if S (the subset of selected features by
a specific ant) is [1.11 202.56 35.98 36.32 90.07] then the rounded value of S
would be [1 203 36 36 90]. This is completely unacceptable as feature (36) is
repeated. In order to overcome such a problem, the redundancies in the so-
lutions produced by DE are removed by utilizing the pheromone intensities
from the ants. In other words, the feature indices are sorted in a descending
manner according to their pheromone values. The repeated features only will
be replaced by the first few features with high pheromone intensities. Thus
S could be for example [1 203 36 150 90] if 150 has the highest pheromone
value (i.e., it is used by most of the ants).

3 The Proposed Feature Selection Algorithm

A hybrid evaluation measure that is able to estimate the overall importance of
subsets as well as the local importance of features is proposed. A Linear Discrim-
inant Analysis (LDA classifier) is used to estimate the performance of subsets
(i.e., a wrapper evaluation function). On the other hand, the local importance
of a given feature is measured using the mutual information. For this purpose
we adopted the approach proposed in [13] known as the mutual information
evaluation function (MIEF).

The following parameters are used in the algorithm:

– n : number of features that constitute the original set, F = {f1, ..., fn}
– na : number of artificial ants to search through the feature space
– τi : intensity of pheromone trail associated with feature fi

– PL :list of the previously tested subsets.
– BL :list of the best k subsets.
– k :where the best k subsets (k < na) will be used to influence the feature

subsets of the next iteration.
– Sj = {s1, ..., sm} :a list that contains the selected feature subset for ant j

In the first iteration, each ant will randomly choose a subset of m features,
where m is the desired number of features. In the second and following itera-
tions, each ant will start with m − p features that are randomly chosen from
the previously selected k-best subsets, where p is an integer that ranges between
1 and m − 1. In this way, the features that constitute the best k subsets will
have more chance to be present in the subsets of the next iteration. Neverthe-
less, it will still be possible for each ant to consider other features as well. For

6 R.N. Khushaba et al.

instance, ant j will consider those features that achieve the best compromise
between previous knowledge, i.e., pheromone trails, and local importance. The
local importance of feature fi is measured with respect to the features of Sj

(features that have already been selected by ant j). The Selection Measure (SM)
used for this purpose is defined as:

SM
Sj
j =

⎧⎨⎩
(τi)

η(LI
Sj
i)ψ

�
g/∈Sj

(τg)η(LI
Sj
g)ψ

if i ∈ Sj

0 Otherwise
(4)

where LI Sj
i is the local importance of feature fi given subset Sj . The param-

eters η and ψ control the effect of trial intensity and local feature importance
respectively.

LI
Sj
i = I(C; fi) ×

[
2

1 + exp(−α × DSj
i)

− 1

]
(5)

where

D
Sj
i = min

fs∈Sj

[
H(fi) − I(fi, fs)

H(fi)

]
× 1

|Sj |
∑

fi∈Sj

[
β

(
I(C; fi, fs)

I(C; fi) + I(C; fs)

)γ]
(6)

The parameters α, β, and γ are constants, H(fi) is the entropy of fi, I(fi; fs)
is the mutual information between fi and fs ,I(C; fi) is the mutual information
between the class labels and fi, and |Sj | is the cardinal of Sj.

Below are the steps of the algorithm:

1. Initialization:
– Start with a fixed small amount of pherimone for all ants, τi = cc, where

cc is a constant.
– Define the maximum number of iterations.
– Define k, where the k-best subsets will influence the subsets of next

iteration.
– Define p, where m− p is the number of features each ant will start with

in the second and following iterations.
2. If in the first iteration,

– For j = 1 to na,
• Randomly assign a subset of m features to Sj .

– Goto step 4.
3. Select the remaining p features for each ant:

– For mm= m-p+1 to m,
• For j = 1 to na,

∗ Given subset Sj , Choose feature fi that maximizes SMSJ
i

∗ Sj = Sj ∪ fi

4. Evaluate the selected subset of each ant using the chosen classification algo-
rithm:
– For j = 1 to na,

• Compute the Mean Square Error (MSEj) of the classification results
obtained by classifying the features of Sj using an LDA classifier.

A Combined Ant Colony and DE Feature Selection Algorithm 7

– Sort the subsets according to their MSE. Update the minimum MSE
(if achieved by any ant), and store the corresponding subset of features.

– Update the list of the previously tested subsets. PL = [PL; Sj], where
(j = 1 : na).

5. Apply the DE operator represented by Eqs. (2) and (3) once in each iteration.
– If redundancies exist in the feature subsets.

• Sort the features according to the pheromone intensities τi associated
with each feature.

• Replace redundant features by the first few features with highest
pheromone intensities

– Evaluate the new solutions and decide whether to keep the original so-
lution found by ACO or the new ones resulting from the DE operator.

6. Update BL (the list of the k best subsets).
7. For each feature fi, update the pheromone trail according to the following

formula:
τi = a1R1i + a2R2i + a3(1 − R3i) + a4 (7)

where
– a1, a2, a3, and a4 are constants.
– R1i: ratio indicating the occurrence of fi in BL.
– R2i: ratio between the occurrence of fi in the best half subsets and the

overall occurrence of fi.
– R3i: ratio indicating the overall occurrence of fi.

8. Using the feature subsets of the best k ant:
– For j = 1 to na,

• Randomly produce m - p feature subset for ant j, to be used in the
next iteration, and store it in Sj .

9. If the stopping criterion is not met, goto 3.

The rationale behind Eq. (7) is to estimate the pheromone intensity of fi.
R1i shows the contribution of fi toward the best k subsets. R2i indicates the
degree that fi contributes in forming good subsets. Hence, a new subset formed
by combining fi with other features might become the best subset. The term
(1 - R3i) aims at favoring exploration, where this term will be close to 1 if the
overall usage of fi is very low. The reader can refer to [2,13] for the selection of
all the parameters mentioend above.

4 Experiments and Practical Results

Two biosignal-driven applications were used to prove the effectiveness of the
ANTDE algorithm. The first application involves the utilization of the Elec-
troencephalogram (EEG) signal from human brain in a brain-computer-interface
problem (BCI). The second application chosen is the myoelectric control (MEC)
problem, in which the human muscles activity, known as the Myoelectric Sig-
nal (MES), is utilized in a noninvasive manner as a control signal for external

8 R.N. Khushaba et al.

devices. Both of these applications witnessed a great focus of research in the
last few years. Due to the fact that such biosignals driven applications usually
utilize a multichannel approach, the feature vector size can become very large.
This in turn will increase the computational cost for such systems, while at the
same time affecting the generalization capability of the classifier. The large size
of the extracted feature sets would also introduce a time delay which hinders
the development of continuous real time control systems.

4.1 A Comparison with Other Feature Selection Techniques in BCI
Problem

The data used here was obtained from the University of Technology, Graz, Aus-
tria.1 EEG signals were recorded for three right-handed females with 56 Ag/AgCl
Electrodes using monopolar montage, with reference electrode on the right ear.
The subjects were placed in an armchair and asked to imagine right or left finger
movements according to stimuli on screen. A total of 406 trials were used, 208
for left movement and 198 for right. The wavelet packet transform was used in
this paper to extract features from this dataset. The total number of features
extracted were 168 features (56 channels ×3 features/channel). For more infor-
mation about the feature extraction process the reader can refer to [14]. The
first 300 patterns were used for training and the rest of the data, 106 patterns,
were used for testing.

The proposed ANTDE was tested against all of the following methods: the
original ant colony feature subset selection by Al-Ani [2] (referred to as ANT),
Genetic Algorithm (referred to as GA), and the binary particle swarm optimiza-
tion (referred to as BPSO). The results of the comparison are given in Fig. 1.
The desired number of selected features was varied between 3 and 99 features.
Each of the mentioned algorithms was executed for ten times when selecting each
feature subset. For example when selecting 9 features, each method was used ten
times and the average result is reported here. It is also worth to mention that
the same initial population was used for all the methods.

In order to analyze the results, one can start by first looking at the perfor-
mance of the methods when selecting a small feature subset. The figure shows
that both ANT and ANTDE achieved higher classification accuracies than GA
and BPSO despite the fact that all methods started from the same initial popu-
lation. This is expected as both ANT and ANTDE employ mutual information
(MI) based heuristic measure. The ants are guided using MIEF into the vicin-
ity with features that best interact together. Since the MIEF measure uses a
sequential procedure to evaluate the importance of features, this is expected to
give good results when selecting small number of features. However, one of the
reasons why the performance of the ANT algorithm becomes very near to that
of GA when selecting large number of features is due to the fact that the MIEF
becomes less accurate in estimating the true MI when the number of features

1 The authors would like to thank the Department of Medical Informatics, University
of Technology, Graz, Austria for providing the EEG data.

A Combined Ant Colony and DE Feature Selection Algorithm 9

10 20 30 40 50 60 70 80 90
70

75

80

85

90

95

Number of Features

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

ANTDE

ANT

BPSO

GA

Fig. 1. A comparison of ANTDE with other feature selection techniques like ANT,
GA, and BPSO on the BCI EEG dataset

increase. The other reason is the fact that ACO actually builds its solutions us-
ing a sequential approach, which can be good when dealing with small number
of features, but with large dimensionalities this may not lead to the optimal
solution. The ANTDE on the other hand can further exploit and explore around
the initial solution provided by the ants, as it also employs a parallel DE based
search procedure, thus providing a powerful mixture of both. In general, within
all of the selected feature subsets the performance of BPSO and GA was al-
most always worse than ANT, while ANTDE performance was almost always
the best. The ANTDE was the only algorithm that achieved a maximum accu-
racy of 93.11% while the maximum accuracies achieved by the other methods
were 91.03%, 90.7%, and 87.64% for ANT, GA, and BPSO respectively.

4.2 A Comparison with Feature Projection Techniques in MEC
Problem

The reason behind selecting the MEC problem for evaluating the successfulness
of ANTDE is that within the MEC problem the focus had always been on uti-
lizing feature projection techniques as a dimensionality reduction stage. Some
of the proposed dimensionality reduction techniques in myoelectric control in-
clude principal components analysis (PCA) [15], the combination of PCA and
a self organizing feature map (SOFM) [16] , linear discriminant analysis (LDA)
based feature projection [17], and the uncorrelated linear discriminant analysis
(ULDA) [18]. This is due to the fact that these methods are able to compress
the whole variance in a subset of few features.

In this paper, we apply the ANTDE algorithm in MEC to re-evaluate the
significance of feature selection in MES classification problems. This is based on
the fact that the proposed method can select subsets of features that best interact
together, and thus produce high classification accuracies. Testing is performed

10 R.N. Khushaba et al.

Initial MV NT MV+NT
85

86

87

88

89

90

91

92

93

94

95

96

C
La

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

ANTDE

ULDA

PCA

(a)

Initial MV NT MV+NT
80

82

84

86

88

90

92

94

96

C
La

ss
ifi

ca
tio

n
A

cc
ur

ac
y

%

ANTDE

ULDA

PCA

(b)

Fig. 2. Classification accuracies averaged across 30 subjects with different dimension-
ality reduction techniques (a) Using the validation set and (b) Using the testing set

by adopting a three way data split scheme in which the datasets were divided
into a training set, validation set, and testing set. The features that minimize
both of the training error and validation error are chosen as the members of the
best solution. Then generalization capability of the classifier is tested based upon
the completely unseen testing data (unseen during training and validation).

The MES datasets utilized in this experiment was originally collected by Goge
et al [19].2 Eight channels of surface MES were collected from the right arm of
thirty normally limbed subjects (twelve males and eighteen females). Each sub-
ject underwent four sessions, with one to two days separation between sessions.
Each session consisted of six trials. Seven distinct limb motions were used, hand
open (HO), hand close (HC), supination (S), pronation (P), wrist flexion (WF),
wrist extension (WE), and rest state (R). Similar to Goge’s original research, we
only used session four here. Data from the first two trials were used as training
set and data from the remaining four trials were divided equally into two trials
for validation (trails 1 and 2) and two trails for testing (trails 3 and 4).

The extracted feature set included the mean of the square values of the wavelet
coefficients using a Symmlet wavelet (WT) family with five levels of decomposi-
tion (total of 48 features = 8 channels × 6 features/channel). The desired number
of features was set to be equal to only 10 features. Classification is performed
using a linear discriminant classifier (LDA). The advantage of this classifier is
that it does not require iterative training, avoiding the potential for under- or
over-training. The classification results averaged across thirty subjects are shown
in Fig. 2. It should be mentioned here that the output of the MES pattern recog-
nition system is usually smoothed using a majority vote post processing tech-
nique [15]. It has been found that applying majority vote in MES classification
problems represents a necessary step as it can achieve an enhancement in the
MES classification accuracy of about 2%. Another step that is usually utilized
in MES recognition problems is to remove the transitional data between classes.
This is due to the fact that the system is in an undetermined state between

2 The authors would like to thank Dr. Adrian D. C. Chan from Carleton University
for providing the MES datasets.

A Combined Ant Colony and DE Feature Selection Algorithm 11

contractions [14]. The results shown for both the validation and the testing sets
were given first without a majority vote (referred to as Initial), then with a
majority vote (MV), followed by excluding the transitional data between classes
(NT), and finally with both majority voting and the excluding of transitional
data (MV+NT).

When analyzing the results, it was obvious that the hit rates obtained by both
the proposed ANTDE and ULDA algorithms highly outperform PCA. This is
expected as the latter does not take into account the relation between features
and class labels. On the other hand, ULDA projects the data into the direct
that maximizes the ratio of the between class scatter matrix to the within class
scatter matrix. One issue to be mentioned regarding ULDA is that the result-
ing dimensionality is limited to C-1, where C represents the number of classes.
Although this might be an advantage since it highly reduces the number of
projected features; but it could also serve as a limitation to this technique, as
this small number of features may not give an optimal solution. In comparison,
the ANTDE has the flexibility of selecting feature subsets of different sizes by
means of a hybrid technique that maximizes the discrimination capability of the
classifier. The figure shows that for both validation and testing data ANTDE
achieved the highest classification accuracies across all subjects. The accuracy
achieved by the proposed ANTDE was 94.73% comparing to 93.35% and 91.11%
for ULDA and PCA respectively for the validation set and 93.39% for ANTDE
and 92.41% and 89.52% for ULDA and PCA respectively for the testing set.

5 Conclusion

This paper presented a novel feature selection algorithm based on a combina-
tion of ant colony and differential evolution optimization techniques. This was
inspired from the fact that the ACO algorithm builds the solutions in a sequen-
tial manner, which may not lead to the optimal solution. The new mixture with
DE provides further exploitation and exploration around the solutions found by
the ants. The proposed ANTDE was compared with other well-known feature
selection and projection techniques using two different biosignal-driven applica-
tions. The results indicated the significance of the proposed method in achieving
higher classification accuracies than the other methods.

References

1. Liu, H., Motoda, H.: Computational Methods of Feature Selection. Taylor & Fran-
cis Group, Abington (2008)

2. Al-Ani, A.: Feature subset selection using ant colony optimization. Int. Journal of
Computational Intelligence 2, 53–58 (2005)

3. Frohlich, H., Chapelle, O., Scholkopf, B.: Feature selection for support vector ma-
chines by means of genetic algorithms. In: 15th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2003), pp. 142–148 (2003)

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, London (2004)

12 R.N. Khushaba et al.

5. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, Lon-
don (2001)

6. Firpi, H., Goodman, E.: Swarmed feature selection. In: Proceedings of the 33rd
Applied Imagery Pattern Recognition Workshop (AIPR 2004), pp. 112–118 (2004)

7. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach
to Global Optimization. Springer, Heidelberg (2005)

8. Zhang, C., Hu, H.: Feature selection using the hybrid of ant colony optimization and
mutual information for the forecaster. In: Proceedings of International Conference
on Machine Learning and Cybernetics, pp. 1728–1732 (2005)

9. Gao, H., Yang, H., Wang, X.: Ant colony optimization based network intrusion
feature selection and detection. In: Proceedings of 2005 International Conference
on Machine Learning and Cybernetics, pp. 3871–3875 (2005)

10. Jensen, R.: Combining Rough and Fuzzy Sets for Feature Selection. PhD thesis,
University of Edinburgh (2005)

11. Kanan, H., Faez, K., Taheri, S.: Feature selection using ant colony optimization
(aco): A new method and comparative study in the application of face recognition
system. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 63–76.
Springer, Heidelberg (2007)

12. Yan, Z., Yuan, C.: Ant colony optimization for feature selection in face recogni-
tion. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 221–226.
Springer, Heidelberg (2004)

13. Al-Ani, A., Deriche, M., Chebil, J.: A new mutual information based measure for
feature selection. Intelligent Data Analysis 7, 43–47 (2003)

14. Al-Ani, A., Al-Sukker, A.: Effect of feature and channel selection on eeg classifica-
tion. In: Proceedings of The 28th IEEE EMBS Annual International Conference,
New York City, USA, pp. 2171–2174 (2006)

15. Englehart, K.: Signal Representation for Classification of The Transient Myoelec-
tric Signal. PhD thesis, University of New Brunswick (1998)

16. Chu, J., Moon, I., Mun, M.: A real-time emg pattern recognition system based
on linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE
Trans. on Biomedical Engineering 53(11), 2232–2239 (2006)

17. Chu, J., Moon, I., Mun, M.: A supervised feature projection for real-time multifunc-
tion myoelectric hand control. In: Proceedings of The 28th IEEE EMBS Annual
International Conference, New York City, USA, pp. 2417–2420 (2006)

18. Chan, A., Green, G.: Myoelectric control development toolbox. In: Proceedings of
The 30’th Conference of the Canadian Medical & Biological Engineering Society,
Toronto, ON (2007)

19. Goge, A., Chan, A.: Investigating classification parameters for continuous myo-
electrically controlled prostheses. In: Proceedings of The 28th Conference of the
Canadian Medical & Biological Engineering Society, Quebec City, Canada, pp.
141–144 (2004)

An Improved ACO Based Plug-in

to Enhance the Interpretability
of Fuzzy Rule Bases with Exceptions

Pablo Carmona1 and Juan Luis Castro2

1 Department of Computer and Telematics Systems Engineering
Industrial Engineering School, University of Extremadura, Spain

pablo@unex.es
2 Department of Computer Science and Artificial Intelligence

Computer and Telecommunication Engineering School, University of Granada, Spain
castro@decsai.ugr.es

Abstract. In a previous work, the authors proposed, on one hand, an
extension on the syntax of fuzzy rules by including new predicates and
exceptional rules and, on the other hand, the use of an ant colony opti-
mization algorithm to obtain an optimal set of such rules that describes
an initial fuzzy model. The present work proposes several extensions on
that algorithm in order to improve the interpretability of the obtained
fuzzy model, as well as the computational cost of the algorithm. Exper-
imental results on several initial fuzzy models reveal the gain obtained
with each extension and when applied altogether.

1 Introduction

Despite the interpretability is one of the distinctive features of fuzzy models,
it is often underestimated in the search for an accuracy improvement. Never-
theless, in the last years, research efforts have been redirected to preserve and
enhance the interpretability power of this type of models in order to obtain a
good interpretability-accuracy trade-off [1].

One way to improve the interpretability of a fuzzy model consists of trying
to identify rules as general as possible, so that each rule positively covers the
highest number of examples [2], and, ultimately, the number and complexity of
the rule diminish. In addition, by extending the syntax of the rules with new
predicates different from the usual equal-to predicate more compact rules can
be provided. Moreover, recently the authors proposed the use of exceptions to
further increase the interpretability of models described with fuzzy rules [3,4].

However, finding the optimal set of such general rules with exceptions is not an
easy task. In a previous work [5], the authors propose a method to search for the
best combination of general rules with exceptions that describes an initial fuzzy
model. In order to solve this combinatorial problem, an ant colony optimization
(ACO) algorithm [6] is proposed. This technique is a global optimization method
which lies on the emergent behavior that rises from the cooperative search of a

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 13–24, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

14 P. Carmona and J.L. Castro

set of agents called artificial ants. These ants communicate among them in an
indirect way —stigmergy— by means of a shared memory which emulates the
pheromones that real ants deposit along the paths they trace between the nest
and the food. For further readings, see [7].

In this work, several extensions to the algorithm described in [5] are proposed
in order to improve the interpretability of the obtained fuzzy model, as well as
the computational cost of the algorithm. The first extension consists of replacing
the AS model used in the original method with the more advanced ACS model.
The second extension adds a local search to refine each solution, a common
practice in this and other metaheuristics. Finally, a third extension proposes
to use a candidate list in order to restrict the number of steps considered to
select the next one, trying that way to diminish the computational cost of the
algorithm.

Next section introduces the syntax of the general rules with exceptions which
allows to enhance the interpretability of fuzzy models. Section 3 outlines the
ACO algorithm proposed in [5]. Section 4 constitutes the core of the paper,
where different extensions to the algorithm are detailed. In Section 5, some
experimental results are provided to show the gains obtained separately for each
extension and when applied altogether. Section 6 summarizes the conclusions.

2 Single, Compound and Exceptional Rules

We consider Multiple-Input–Single-Output (MISO) systems with n input vari-
ables X = {X1, . . . , Xn} defined over the universe of discourse X = X1×. . .×Xn,
and one output variable Y defined over the universe of discourse Y. The fuzzy
domain of Xi is denoted as X̃i = {LXi,1, . . . , LXi,pi}, where LXi,j represents the
linguistic label of the jth value, and pi is the granularity of the fuzzy domain.
Analogously, Ỹ = {LY1, . . . , LYq} is the output fuzzy domain.

Usually, the fuzzy rules for MISO systems contain in their antecedent a
premise for each input variable which associates it with a label from its fuzzy
domain. We refer to this type of rules as single rules and they are denoted as:

Ri1...in
LY i : LX1,i1 , . . . , LXn,in → LY i.

In order to improve the interpretability of the fuzzy rules, it is possible to
extend their syntax both by associating more than one label to an input variable
and by using the negation and other predicates different from the usual equal-to
predicate. We call them compound rules and they are denoted as:

Ri : [¬]X1 opi SX i
1, . . . , [¬]Xn opn SX i

n → LY i

where opi ∈ {=,≤,≥,÷,∈} (÷ means between), and where each SX i
j is one

label if opi ∈ {=,≤,≥}, two labels if opi is ÷, and a set of labels associated
disjunctively if opi is ∈.

Moreover, the compactness of the fuzzy model can be further improved by
introducing the concept of exceptional rule. An exceptional rule is associated

An Improved ACO Based Plug-in to Enhance the Interpretability 15

with another one —the excepted rule— and excludes it from being fired in a
region of its coverage, being the exceptional rule fired instead. This idea was
firstly introduced by the authors in [3,4]. Here, we also propose to take advantage
of the context introduced by the antecedent of the excepted rule to express the
antecedent of the exceptional rule in a further compact way.

For example, suppose a 3-input/1-output system with the same fuzzy do-
main {NL, NS, Z, PS, PL} for all the variables. The excepted and exceptional
rules

R1 : X1 ∈ {NL, Z, PS}, X2 ÷ [NS, PS] → NL
exc: X1 ≥ Z, X3 = Z → NS

comprise 3×3×5 = 45 single rules and equal to the set of non-excepted compound
rules

R1 : X1 = NL, X2 ÷ [NS, PS] → NL,
R2 : X1 ∈ {Z, PS}, X2 ÷ [NS, PS],¬X3 = Z → NL,
R3 : X1 ∈ {Z, PS}, X2 ÷ [NS, PS], X3 = Z → NS.

3 The ACO Algorithm

In this section, the original algorithm proposed in [5] is presented. However, in
order to make comparable the experimental results of the proposed extensions
with this original algorithm, some changes have been included here as part of
it. Specifically, the use of negation (¬), the expression of the exceptional rules
taken advantage of the context introduced by the antecedent of their excepted
rules —as described in Section 2—, the change explained below in the footnote
of Section 3.1, and the initial amount of pheromone defined below in (7) are not
actually included in the original algorithm described in [5].

The algorithm searches for the best transformation of a set of initial rules
(SIR) into a set of compound rules (SCR) possibly with exceptional rules. In
order to do that, ants can take inclusion steps, that add rules from the SIR to
the SCR, or amplification steps, that extend the coverage of the rules in the SCR
by adding a label to one of the premises in the antecedent. Amplifications are
denoted by < i, j, k >, which represents the addition of the kth label, LXj,k, to
the jth premise in the antecedent of Ri. Inclusions are denoted by < i, 0, 0 >,
which represents the inclusion of the ith initial rule (IR) into the SCR, giving
the compound rule Ri.

3.1 Solution Construction Process

In order to build a solution, firstly the ant is randomly located in an IR, so that
this IR is included in the SCR of the ant. Subsequently, the ant will select one
step among the feasible transitions for its state. A step is feasible:1

1 Some modifications to the definition of feasible step presented in [5] are included here
in order allow that consistent rules (i.e., rules with the same consequent) overlap.

16 P. Carmona and J.L. Castro

1. If it is an inclusion, when the IR is not yet positively covered by the SCR.
2. If it is an amplification of a compound rule, Ri:

(a) if Ri is not exceptional, when:
i. the amplification zone (AZ) —i.e., the new zone covered by Ri′ (the

amplified Ri)— does not only negatively cover IRs, and
ii. each Rj that overlaps with Ri′ either:

• is consistent with Ri′ and, either subsumes in it or the overlap-
ping zone does not negatively cover IRs, or

• is in conflict with Ri′ , subsumes in it, is not exceptional of other
rule and does not cover negatively any IR.

(b) If Ri is exceptional of Rj , when the AZ is included in the coverage of Rj ,
does not cover negatively any IR nor overlaps with any rule in conflict
with Ri but Rj .

After each amplification, each consistent rule subsuming with Ri is deleted
and each conflicting rule overlapping with Ri becomes exceptional of it.

3.2 Heuristic Information

It guides the search toward paths containing promising steps and is defined as

η = γ
Regcov

Regmax
+ (1 − γ)

Reg+/(Reg− + 1)
Regmax

, (1)

where Regcov is the number of input regions covered by the AZ, Reg+ (Reg−)
is the number of IR positively (negatively) covered by the AZ and Regmax is
the maximum number of input regions covered by the AZ when amplifying the
variable considered in the step (i.e., if s =< i, j, k >, Regmax =

∏
l �=j p l)2.

Eq. (1) is evaluated just over the state of the ant preceding the step, since the
AZ of an amplification depends on the previous steps.

3.3 Pheromone Update

It refers to the pheromones deposited by an ant once it has completed a solution
(i.e., a final SCR). However, a process is launched before this pheromone update
in order to delete those rules that subsume not in an unique compound rule,
but in the whole rule base. During this process, the excepted rules are analyzed
before its exceptional rules, so that if an excepted rule is deleted, its exceptional
rules become non exceptional rules and then their subsumption in the rule base
are analyzed. In this respect, an excepted rule subsumes in the rule base if all
its coverage but the ones of its exceptional rules is covered by other rules in
the CRC.

Regarding the pheromone update, given a solution, the interpretability of each
final compound rule Ri is evaluated and an amount of pheromone proportional
2 If s =< i, 0, 0 >, Regmax =

�
l p l/minl p l and (1) is divided by 2 in order to favor

amplifications.

An Improved ACO Based Plug-in to Enhance the Interpretability 17

to this value is deposited in every step < i, ·, · > taken by the ant. Both excepted
and exceptional rules are equally dealt.

The evaluation of a compound rule is regarded as a function of its syntactic
simplicity. Due to this, the complexity of each premise Pj is defined as3

c(Pj) =

⎧⎪⎪⎨⎪⎪⎩
0 if void premise
3 if Xj(=,≤,≥)LXj,k

4 if Xj ÷ [LXj,k, LXj,k+l]
l + 2 if Xj ∈ {LXj,k1, . . . , LXj,kl}

(2)

the complexity of a rule is defined as

C(Ri) = min

(
1,

E +
∑

j c([¬]Pj)∑
j pj + 1

)
, (3)

where E is the number of exceptional rules of Ri, and its interpretability is
defined as

I(Ri) = δ(1 − C(Ri)) + (1 − δ)
Regcov

Regmax
, (4)

where Regcov is the number of input regions covered by Ri but those covered by
its exceptional rules, Regmax =

∏
l p l, and δ ∈ [0, 1].

Besides, since the suitability of a step also depends on the previous steps, the
amount of pheromone deposited in a step s :< i, ·, · > is calculated as

Δτs = I(Ri) × L − l + 1
L

, (5)

where L is the length of the path and l is the locus in the path of < i, 0, 0 >.
Finally, the measure used to select the best solution is defined as

I(RB) =
NIR −

∑
i C(Ri)

NIR
, (6)

where NIR is the number of IRs and equals to the highest complexity of the
model (the highest number of rules with the highest interpretability).

The construction graph is initialized with an amount of pheromone equal to

τ0 = IRgreedy/NRgreedy (7)

where IRgreedy is the averaged interpretability of the fuzzy rules obtained with
a greedy algorithm equivalent to the proposed ant colony algorithm (without
the extensions in 4.2 and 4.3) but always selecting the step with the highest
heuristic value, and NRgreedy is the number of rules in such fuzzy model.

3 In order to consider negation, both Pj and ¬Pj are evaluated (where c(¬Pj) =
c(Pj) + 1), being the simplest considered in the rest of equations.

18 P. Carmona and J.L. Castro

4 Extensions to the Algorithm

Several extensions have been developed in order to improve the interpretability of
the results, as well as the computational cost of the algorithm. Those mechanisms
are described in this section.

4.1 ACS Model

The first extension consists of replacing the AS model [6] used in the original
algorithm with the more advanced ACS model proposed by Dorigo and Gam-
bardella in [8]. The novelties of this model are:

– The random proportional rule used in the AS model for selecting a step is
replaced in the ACS model with a pseudorandom proportional rule, which
uses a new parameter q0 that allows to establish the probability for selecting
the best step (from the heuristic and pheromone information) instead of
using the original random proportional rule.

– After each cycle, only the pheromones of each step s of the global best
solution built until that moment are updated by applying the global updating
rule τs = (1 − α) · τs + α · Δτs, instead of being updated the steps taken by
all the ants in the cycle, as it is the case of the AS model.

– During the travel of each ant k, the pheromones of each step s taken by it are
locally updated by applying the local updating rule τk

s = (1− ρ) · τk
s + ρ · τ0.

This update reduces the probability that the remaining ants select this step.

4.2 Local Search

A local search is proposed to be added to the method in Section 3, focused on
enhancing the interpretability of each complete solution.

It should be noted that the wideness of the rule coverage is favored in (1) even
although the corresponding amplification does not obtain an immediate benefit,
with the hope that future amplifications on the same premise provide it. This can
lead to final rules with unnecessary labels that not only do not provide any ben-
efit, but even increase the complexity of the rules. Due to this, a local search was
introduced in order to explore each final rule and analyze the suitability of each
label in the antecedent. Concretely, the local search can be described as follow:

For each rule Ri of the final model:
For each step s :< i, j, k > of the path:

Let Ri′ be equal to Ri but LXj,k

If cond then
Replace Ri with Ri′

Remove step s from the path

where cond are the conditions to consider LXj,k as unnecessary and comprise:

1. I(Ri′) ≥ I(Ri)
2. the SIR remains covered after replacing Ri with Ri′

An Improved ACO Based Plug-in to Enhance the Interpretability 19

3. if Ri is an excepted rule, none of its exceptions covers the AZ delimited by s
4. if Ri is an exceptional rule of Rj , the rules that could overlap with Ri in the

AZ delimited by s are all (if any) exceptional rules of Rj too.

This local search is launched after each construction of a solution and before
the pheromone update. Besides, the resultant rule will be deleted if it subsumes
in the whole rule base.

4.3 Candidate List

An usual problem of metaheuristics, in general, and ACO paradigm, in particu-
lar, is their computational cost. Trying to mitigate this drawback, it is proposed
here to use a subset of candidate feasible steps among which the next step is
selected, with the aim to reduce the number of evaluations of the condition of
feasible step, which is the main contribution to the computational cost of the
algorithm.

In order to do that, for each state of an ant, a number λ of candidate feasible
steps will be considered in the selection of the next step (if the number of feasible
steps is less than λ, all of them will be considered). A random proportional rule is
used for completing the list of candidate feasible steps, which randomly selects a
step to be included in the candidate list proportionally to its current pheromone
level. Specifically, the probability of a step of being included in the candidate
list is given by (8), that gives the probability with which an ant k at the state
S chooses to take the step s∗,

pk(S, s∗) =

⎧⎪⎨⎪⎩
τs∗∑

s∈Jk(S)

τs

, if s∗ ∈ Jk(S)

0 otherwise

(8)

where τs is the pheromone associated with step s and Jk(S) is the set of possible
steps —feasible and not feasible ones— but those tabu-listed that can be taken
by ant k at the state S.

5 Experimental Results

Several experiments were conducted in order to evaluate the performance of the
extensions proposed in Section 4. With this aim, the performance of each of
them was separately evaluated and then evaluated altogether. The results were
compared with those obtained with the original method described in Section 3.
Each setup of the algorithm was run 10 times and the averaged results were
obtained.

The parameters were set as γ = 0.25, δ = 0.5, and a number of ants M = 5.
For the random proportional rule the parameter β = 1 was used. In the AS
model, the pheromone decay parameter was set as ρ = 0.1 and, in the ACS
model, the parameters α = ρ = 0.1 and q0 = 0.9 were used. The number of

20 P. Carmona and J.L. Castro

Table 1. Automatically generated compound rule base RB3 with n/pi = 3/7

R1 : X1 ∈ {PS, PL}, X2 ∈ {NS, PS}, X3 ∈ {NL, Z} → NM
R2 : X1 = PL, X2 ∈ {NL, NM, Z, PL}, X3 ∈ {NS, PM} → Z
R3 : X1 = NS, X2 ∈ {NS, PM}, X3 ∈ {NS, Z} → PS

exc: X2 = PM, X3 = NS → PS
R4 : X1 = NS, ¬X2 ÷ [NS, PS], X3 ∈ {NL, NM, PL} → PM

exc: X2 ≥ PM, X3 = NL → PM
R5 : X1 ∈ {NM, PM}, X2 ≥ NS, X3 ∈ {NL, NM, Z, PS} → PL

exc: X1 = NM, X2 ∈ {NS, PM, PL}, X3 = NM → PL
exc: X1 = NM, X2 = Z, X3 ∈ {NL, PS} → PL

R6 : X1 ≤ NM, ¬X2 ∈ {NM, PS}, X3 ∈ {NM, NS, PM} → PL
exc: X1 = NM, X2 ∈ {NS, PM, PL}, X3 = NM → PL
exc: X2 ∈ {NL, Z, PL}, X3 = NS → PL

cycles was bounded to NCmax = 80 and a stagnation condition was satisfied
and the corresponding run finished if all the ants in a cycle built the same set
of compound rules.

An automatic generator was designed to provide compound rule bases with
exceptions with different dimensionalities —number of input variables, n— and
cardinalities for the fuzzy domains —the same cardinality pi for all the domains.
This generator of compound rule bases randomly selects a set of labels for each
premise in the antecedent of the rules with the restriction that the final model
contains neither conflicting nor subsumed rules. Then, some of these rules are
excepted by randomly generated exceptional compound rules.

The ACO algorithm was applied to two n/pi setups, namely: 2/9, and 3/7.
For each setup, three different rule bases were generated (RB1, RB2, and RB3).
Table 1 shows the third automatically generated rule base RB3 with n/pi =
3/7, that describes 98 single rules with only 12 compound rules (including 6

Table 2. Results obtained from the variety of versions of the proposed method

BR1 BR2 BR3

n = 2, pi = 9 (4.40) 〈10.0〉{49.0} (3.75) 〈9.0〉 {47.0} (3.85) 〈9.0〉 {40.0}
AS (4.40/0.42)〈10.9〉 [140s] (3.61/0.27) 〈9.4〉 [130s] (3.47/0.26) 〈9.1〉 [38s]

ACS (3.78/0.14)〈11.0〉 [149s] (3.38/0.03) 〈9.0〉 [120s] (2.96/0.03) 〈8.5〉 [114s]
ACS+LS (3.43/0.09)〈11.0〉 [152s] (3.27/0.06) 〈9.2〉 [126s] (2.71/0.02) 〈8.1〉 [120s]
ACSλ=5 (3.76/0.10)〈10.3〉 [99s] (3.35/0.11) 〈9.5〉 [95s] (3.11/0.11) 〈8.6〉 [81s]

ACSλ=5+LS (3.38/0.03)〈11.0〉 [97s] (3.11/0.08) 〈9.4〉 [97s] (2.78/0.13) 〈8.5〉 [84s]

n = 3, pi = 7 (4.50) 〈10.0〉 {88} (5.88) 〈13.0〉 {145} (5.54) 〈12.0〉 {98}
AS (5.13/0.74)〈13.2〉 [618s] (6.18/0.72)〈16.0〉 [805s] (4.50/0.47)〈11.0〉 [351s]

ACS (4.77/0.24)〈12.3〉 [500s] (6.46/0.38)〈15.1〉 [791s] (4.40/0.31)〈11.2〉 [443s]
ACS+LS (4.20/0.25)〈12.0〉 [485s] (5.69/0.33)〈13.7〉 [726s] (3.91/0.35)〈11.2〉 [360s]
ACSλ=10 (4.23/0.36)〈11.9〉 [306s] (5.74/0.47)〈15.9〉 [423s] (3.44/0.15)〈10.8〉 [262s]

ACSλ=10+LS (3.58/0.34)〈11.8〉 [297s] (5.18/0.30)〈15.5〉 [399s] (3.24/0.16)〈11.0〉 [236s]

An Improved ACO Based Plug-in to Enhance the Interpretability 21

exceptional rules), includes among them all the extended relational operators,
and provides an accumulated complexity equals to 5.54.

Table 2 summarizes the obtained results. For each setup n/pi, the first row
shows the data related with each initial fuzzy model used as the input of the ACO
algorithm, and the remaining rows show the averaged results related with the dif-
ferent versions of the method: ‘AS’ corresponds to the original ACO algorithm
presented in Section 3 that uses the AS model; ‘ACS’ implement the ACS model
proposed in Section 4.1; ‘ACS+LS’ applies the local search proposed in Section 4.2
to the ACS version; ‘ACSλ=x’ corresponds to the ACS model with the candidate
list proposed in Section 4.3 using x candidate steps; and, finally, ‘ACSλ=x+LS’
join altogether the ACS model, the local search and the candidate list.

That table shows, for each fuzzy model to which the ACO algorithm was ap-
plied, the following items:

– in parenthesis, the averaged accumulated complexity of the—input or out-
put—fuzzy model and the standard deviation. This accumulated complexity
equals to the sum of the complexity of the rules in the fuzzy model and, there-
fore, it is inverse to the interpretability of a rule base defined in (6),

– in angular parenthesis, the number of compound rules of the —input or
output— fuzzy model,

– in braces, the number of initial single rules of the fuzzy model provided as the
input of the ACO algorithm, and

– in brackets, the number of seconds used by the ACO algorithm to obtain a
solution.

It must be stressed that the ACO algorithm does not start from the set of com-
pound rules generated automatically, but from the set of singles rules them con-
tain. Regarding this, although it is not assured that the generator of compound
rule bases provides the optimal description that cover the underlying set of single
rules, it at least generates reasonable good descriptions, on the basis that the ra-
tio NIR/NCR —number of initial rules vs. number of compound rules (including
exceptional rules)— is high. For example, for n/pi = 3/7 the ratios were 88/10,
145/13, and 98/12 (see Table 2). Due to these facts, we set as a goal to obtain with
the ACO algorithm, at least, a compound rule base with the same interpretability
than the automated generated one.

5.1 Original Method

Regarding the original ACO algorithm ‘AS’, it can be observed that, although it
achieves rule bases with better interpretability than the initial set of single rules,
it did not reach our goal of finding solutions, on average, as interpretable as the
automatically generated rule bases in all the cases. The original ACO algorithm
provides a higher accumulated complexity than the initial compound rule bases
for RB3 and RB4 with n/pi = 3/7. Besides, according to the standard deviations,
the variability of the results is also considerable, due to an inadequate exploration
versus exploitation balance that leads to local optima. Therefore, it is justified the
need to include some improvements in order to reach our goal.

22 P. Carmona and J.L. Castro

5.2 ACS Model

The inclusion of this extension yields a double benefit. On one hand, it achieves
a reduction on the averaged accumulated complexity of the rule bases with re-
spect to the solutions obtained with the ‘AS’ version in all but one case. On the
other hand, the variability of the results is also significantly reduced, providing
a more robust algorithm. Besides, the computational cost is roughly maintained,
excepting the case for RB3 with n/pi = 2/9, for which the incidental premature
convergence of the AS model reduced the time for obtaining a solution.

Nevertheless, still for the same cases than in Section 5.1 (RB3 and RB4 with
n/pi = 3/7) the interpretability of the solutions provided by the ‘ACS’ version is,
on average, worse than that of the corresponding original fuzzy model. Therefore,
despite this extension provides important benefits, it is not enough by itself.

5.3 Local Search

In all the cases, the local search clearly increases the interpretability results with
respect to the ‘ACS’ version. Furthermore, the inclusion of this extension allows
to reach the goal of finding solutions, on average, as interpretable as those of the
initial fuzzy models (in fact, more interpretable than them).

Of course, the extra-evaluation derived from the local search increases the com-
putational cost. However, the final averaged computational cost of the algorithm
shows different results depending on the dimensionality of the rule bases. On one
hand, the final computational cost increases with the local search for n/pi = 2/9,
although this increase is almost negligible (5.66% on average, meaning 100% in-
creasing the cost twice). On the other hand, the final computational cost decreases
in a higher extent for n/pi = 3/7 (9.98% on average, meaning 50% reducing the
cost by the half). This latter result can be explained since the local search allows
to increase the focus of the ACO process on the best solutions and it compensates
the cost of the local search process.

5.4 Candidate List

In the experiments of this extension, we set λ = 5 for n/pi = 3/7 and λ = 10 for
n/pi = 2/9. As it was mentioned in Section 4.3, the goal of using a list of candidate
feasible steps is not to increase the interpretability of the results but to diminish
the computational cost without reducing the interpretability results in excess.

Taken this into account, the candidate list extension exceeds the expectations
when its results are compared with the ‘ACS’ version. By restricting the number
of evaluations of the feasible-step condition, this extension does not only achieve
the expected reduction in the computational cost, but it also increases the inter-
pretability of the obtained fuzzy models in almost all the experiments. This latter
effect shows an intensification of the exploitation against the exploration since, al-
though it is favored the presence of the better steps (in terms of pheromone levels)
in the list, their presence is not guaranteed, which favors the exploration of new
paths.

Besides, this extension allows to improve again the interpretability of the initial
rule bases in all the cases.

An Improved ACO Based Plug-in to Enhance the Interpretability 23

Table 3. Rule base obtained with the ‘ACSλ=10+LS’ version

R11 : X1 ∈ {Z, PS, PL} → Z
exc: X2 ∈ {NS, PS} → NM

R5 : X1 = NS → PM
exc: X2 = NS → PS
exc: X2 ≥ PM, X3 = NL → NM
exc: X3 = Z → PS
exc: X2 = PM, X3 = NS → Z

R1 : X1 ∈ {NL, NM, PM} → PL
exc: X1 = NM, X2 ∈ {NS, PM, PL}, X3 = NM → Z
exc: X2 ∈ {NL, Z, PL}, X3 = NS → NL
exc: X1 = NM, X2 = Z, X3 ∈ {NL, PS} → PS

5.5 Application of the Extensions Altogether

Finally, when the extensions are applied altogether, the interpretability improve-
ment with respect to both the ‘AS’ and the ‘ACS’ versions is clear in all the ex-
periments. Besides, our goal of obtaining compound rule bases with, at least, the
same interpretability than the initial fuzzy models is reached, even achieving in
all the cases an increase in the interpretability level.

The computational cost is also reduced (except for the prematurely converged
case RB3 with n/pi = 2/9). This is mainly due to the use of the candidate list.

As an illustrative example, from the 98 initial single rules contained in the
compound rule base RB3 with n/pi = 3/7 shown in Table 1, the ‘ACSλ=10+LS’
version achieved the fuzzy model shown in Table 3 with only 11 compound rules
(including 8 exceptional rules), and which reduces the accumulated complexity to
3.00. It can be observed that the rules obtained with the ACO algorithm uses a
simpler syntax in their antecedents than the initial fuzzy model, providing a more
interpretable description of the model.

6 Conclusions

An initial ant colony optimization algorithm was proposed by the authors in [5]
that tries to increase the interpretability of initial single fuzzy rule bases by search-
ing for good combinations of compound rules with exceptional rules. Despite this
original algorithm achieved interpretable models, it still was not able to find near
to optimal descriptions in general. We propose here several extensions focused on
either increasing the interpretability results of the original algorithm or reducing
its computational cost.

With the aim to evaluate the suitability of the proposed extensions, we imple-
mented a generator of random fuzzy models described by means of compound rules
with exceptional rules. Since these fuzzy models, even though not optimal, pro-
vides good descriptions in the sense of high ratios NIR/NCR —number of single
rules vs. number of compound rules—we consider as a goal to achieve with our
algorithm descriptions as interpretable as the randomly generated fuzzy models.

24 P. Carmona and J.L. Castro

As a conclusion, all the proposed extensions provide some benefit and the high-
est performance was obtained when all the extensions was jointly applied. All the
models provided by this last version not only reach the interpretability levels of
the randomly generated compound rule bases, but they improve them.

Acknowledgments. This work has been supported by the Research Project
TIN2006-03122.

References

1. Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Accuracy Improvements
in Linguistic Fuzzy Modelling. Studies in Fuzziness and Soft Computing, vol. 129.
Springer, Heidelberg (2003)

2. Castro, J., Castro-Schez, J., Zurita, J.: Learning maximal structure rules in fuzzy
logic for knowledge acquisition in expert systems. Fuzzy Sets Syst. 101, 331–342
(1999)

3. Carmona, P., Castro, J., Zurita, J.: FRIwE: Fuzzy rule identification with exceptions.
IEEE Trans. Fuzzy Syst. 12(1), 140–151 (2004)

4. Carmona, P., Castro, J., Zurita, J.: Learning maximal structure fuzzy rules with ex-
ceptions. Fuzzy Sets Syst. 146(1), 63–77 (2004)

5. Carmona, P., Castro, J.: An Ant Colony Optimization plug-in to enhance the inter-
pretability of fuzzy rule bases with exceptions. In: Analysis and Design of Intelligent
Systems Using Soft Computing Techniques. Advances in Soft Computing, vol. 41,
pp. 436–444. Springer, Heidelberg (2007)

6. Dorigo, M., Colorni, A., Maniezzo, V.: The ant system: Optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. B 26(1), 29–41 (1996)

7. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
8. Dorigo, M., Gambardella, L.: Ant colony system: A cooperative learning approach

to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

Ant Colony Optimization for Energy-Efficient

Broadcasting in Ad-Hoc Networks�

Hugo Hernández, Christian Blum, and Guillem Francès

ALBCOM, Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

{hhernandez,cblum,gfrances}@lsi.upc.edu

Abstract. In wireless ad-hoc networks, nodes are generally equipped
with batteries, making energy a scarce resource. Therefore, power con-
sumption of network operations is critical and subject to optimization.
One of the fundamental problems in ad-hoc networks is broadcasting. In
this work we consider the so-called minimum energy broadcast (MEB)
problem, which can be stated as a combinatorial optimization problem.
We develop an ant colony optimization algorithm for two scenarios: net-
works in which nodes are equipped with omni-directional, respectively
directional, antennas. The results show that our algorithm consistently
outperforms other methods for this problem.

1 Introduction

Wireless networks such as ad-hoc and sensor networks are useful in many practi-
cal scenarios. While sensor networks find applications, for example, in healthcare
and weather forecast, ad-hoc networks are often used, for example, to connect
laptops or PDAs. The flexibility and low infrastructure cost they offer make
them quite popular, and, as a consequence, they have received much attention
from the research community in recent years. Nodes in ad-hoc networks, act-
ing potentially both as routers and hosts, are generally equipped with either
omni-directional or directional antennas for sending and receiving information.
They have a packet-forwarding capability in order to communicate via shared
and limited radio channels. Communication may be performed by one-to-one
transmissions (single-hop) or using other nodes as relay stations (multi-hop). In
both cases each sender node must adjust its emission power in order to reach
the respective receiver node. In cases where energy is supplied by batteries, the
network lifetime is limited by the batteries of the wireless devices. Therefore,
energy saving is critical in all network operations.

A fundamental problem in ad-hoc networks arises when one node is required
to transmit data to all other nodes of the network. This scenario is known as
� This work was supported by grants TIN2005-08818 (OPLINK) and TIN2007-66523

(FORMALISM) of the Spanish government, and by the EU project FRONTS (FP7-
ICT-2007-1). Christian Blum acknowledges support from the Ramón y Cajal pro-
gram of the Spanish Ministry of Science and Technology, whereas Guillem Francès
acknowledges support from a UPC research grant.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 25–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

26 H. Hernández, C. Blum, and G. Francès

broadcasting. In this work we study this problem for two cases. In the first
one, each network node is equipped with an omni-directional antenna. However,
omni-directional antennas often waste energy, for example, when information
must only be sent to one neighboring node. Therefore, we also study the case of
directional antennas, which additionally provide the advantage of reducing the
interference with other nodes due to the reduced submission area.

As most other works in this area we consider the following wireless commu-
nication model (see [1]). Given a set of network nodes V , each node i ∈ V can
choose an emission power pi such that 0 ≤ pi ≤ pmax, where pmax is the maximum
emission power possible. By setting pmax to ∞ we ensure that broadcasting is
always possible. Signal power diminishes at a rate proportional to r−α, where r
is the distance to the signal source, and α is a parameter that, depending on the
environment, takes typically values between 2 and 4. In our work we choose (as
in most other works; [2]) α = 2. A sender node i is able to successfully transmit
a signal to a receiver node j if pi ≥ k · d(i, j)α, where pi is the emission power,
d(i, j) is the Euclidean distance between i and j, and k is the receiving node’s
power threshold for signal detection which is usually normalized to 1.

In the case of directional antennas we use an idealized model (as used, for
example, in [2]) in which we assume that the transmitted energy is concentrated
uniformly in a beam of width θ, that is, we neglect fading effects at the borders of
the beam. We assume that the beam-width θ can be chosen for each antenna so
that θmin ≤ θ ≤ 360. As in [2] we chose θmin = 30. Furthermore, we assume that
each antenna beam can be pointed in any desired direction in order to provide
connectivity to a set of the nodes that are within communication range and
within the sector covered by the beam. The energy spent by a node i transmitting
to a node j at a beam-width of θi is:

pθi
ij :=

max{θi, θmin}
360

· d(i, j)α (1)

This shows that a node i equipped with a directional antenna only uses 1/12 of
the energy used by an omni-directional antenna to transmit information to just
one other node j.

1.1 Minimum Energy Broadcast (MEB)

The MEB problem is an NP -hard optimization problem [3] both in case of omni-
directional and directional antennas. It can be stated as follows. Given is a set V
of nodes with fixed positions in a 2-dimensional area. Introducing a directed link
(i, j) between all (ordered) pairs i 	= j of nodes such that d(i, j)α ≤ pmax, where
d(i, j) is the Euclidean distance between i and j, induces a directed network
G = (V, E). In the following we first deal with the case of omni-directional an-
tennas. Given a source node s ∈ V , one must find emission powers for all nodes
such that a broadcast from s to all other nodes is possible, and such that the sum
of all emission powers is minimal. This corresponds to finding a directed span-
ning tree T = (V, ET) with root node s in G such that function Po() is minimized:

Ant Colony Optimization for Energy-Efficient Broadcasting 27

Po(T) :=
∑
i∈V

max
(i,j)∈ET

d(i, j)α (2)

In the case of directional antennas, in addition to an emission power, a beam-
width θi and a beam direction must be chosen for each node i ∈ V . Again, this
corresponds to finding a directed spanning tree T = (V, ET) with root node s in
G such that function Pd() is minimized:

Pd(T) :=
∑
i∈V

max{θi, θmin}
360

· max
(i,j)∈ET

d(i, j)α , (3)

where θi is set to the minimum beam-width possible such that all children of
i in T are reached. The beam direction follows automatically from the known
locations of all the children of i in T .

1.2 Existing Work

The MEB problem in case of omni-directional antennas has been tackled with
centralized heuristics as, for example, [4,5,6]. The most popular constructive
technique is the broadcast incremental power (BIP) algorithm by Wieselthier
et al. [4]. Moreover, local search methods including tree-based methods such
as [7,8] and power-based methods such as [9] have been developed. More re-
cently the MEB problem was also tackled by metaheuristics [10,11,12,13]. The
case of directional antennas is less studied. Constructive algorithms include, for
example, the version of BIP for directional antennas: DBIP [2]. Other approaches
can be found, for example, in [14,15]. Finally, in [16] is proposed a mixed inte-
ger linear programming (MILP) formulation that solves the case of directional
antennas, which also includes—in case θmin = 360—the case of omni-directional
antennas. A comprehensive survey on existing work is given in [17].

Our paper is organized as follows. First, a detailed description of our algorithm
proposal will be given in Sec. 2. In Sec. 3 we present an experimental evaluation
of our algorithm, comparing the results to recent techniques. Finally, in Sec. 4
we provide conclusions and an outlook to future work.

2 The Algorithm

In this work we propose an ant colony optimization (ACO) algorithm [18] for
the MEB problem. In the following we give an algorithm description that covers
both the case of omni-directional and the case of directional antennas. Differences
between both cases will be pointed out when necessary.

Local Search: r-shrink. The local search procedure r-shrink was originally devel-
oped in [9] for the case of omni-directional antennas. Here we use an adaptation
that can also be applied for directional antennas. Given a solution T = (V, ET)
and a parameter r ≤ |V | − 1 as input, our version of r-shrink works as fol-
lows. First, a permutation of all nodes is produced. Nodes with k ≥ r children

28 H. Hernández, C. Blum, and G. Francès

Algorithm 1. Variable neighborhood descent (VND)
1: input: the network G = (V, E), a source node s ∈ V , a spanning tree

T = (V, ET) of G rooted in s, a parameter rmax

2: r := 1
3: while r ≤ rmax do
4: T ′ := r-shrink(T)
5: if P (T ′) < P (T) then T := T ′ and r := 1 else r := r + 1
6: end while
7: output: a (possibly) improved tree T

are treated as explained in the following, in the order given by the permutation.
When a node i is treated, first, the children of i are ordered in a decreasing man-
ner concerning the emission power reduction achieved by disconnection. Note
that an emission power reduction of i may result from a possible distance reduc-
tion and, in the case of directional antennas, also from a possible beam-width
reduction. Then the first r children are disconnected from i, and the algorithm
tries to reconnect them to any of their non-descendants in the best way possible,
that is, in a way that is least energy consuming.

In [9] only the 1-shrink procedure was experimentally evaluated. In contrast,
we decided to utilize the general r-shrink procedure within a variable neigh-
borhood descent (VND) algorithm [19], which is outlined in Alg. 1. Note that
P () stands either for Po() (in the case of omni-directional antennas) or Pd() (in
the case of directional antennas). The VND algorithm requires an appropriate
setting of the parameter rmax (see Sec. 3).

ACO for the MEB Problem. The specific ACO algorithm that we implemented
for the MEB problem is a MAX –MIN Ant System (MMAS) in the Hyper-
Cube Framework [20]. It works roughly as follows. At each iteration na = 10
artificial ants construct a tree rooted at the source node s. Local search is ap-
plied to each of these trees. The pheromone model T used by our ACO algorithm
contains a pheromone value τe for each link e ∈ E. After the initialization of the
variables T bs (i.e., the best-so-far solution), T rb (i.e., the restart-best solution),
and cf (i.e., the convergence factor), all the pheromone values are set to 0.5.
At each iteration, after the generation of solutions, some of them are used for
updating the pheromone values. The details of the algorithmic framework shown
in Alg. 2 are explained in the following.

ConstructBroadcastTree(G,s): A solution construction starts with the partial so-
lution S = (VS , ES) where VS := {s} and ES := ∅. Remember that s is the source
node of the directed spanning tree to be constructed. Henceforth we denote by
VS the set of nodes which are not included in the current partial solution, that
is, VS := V \ VS . At each construction step, one link (and one node) is added to
the current partial solution. The set Eadd of potential links that can be added
to S is defined as follows: Eadd := {(i, j) ∈ E|i ∈ VS , j ∈ VS}. In words, Eadd

Ant Colony Optimization for Energy-Efficient Broadcasting 29

Algorithm 2. ACO for the MEB problem
1: input: the network G = (V, E) and a source node s ∈ V
2: T bs := null, T rb := null, cf := 0, bs update := false
3: forall e ∈ E do τe := 0.5 end forall
4: while termination conditions not satisfied do
5: for j = 1 to na do
6: T j := ConstructBroadcastTree(G,s)
7: T j := LocalSearch(T j)
8: end for
9: T ib := argmin{f(T 1), . . . , f(T na)}

10: Update(T ib,T rb,T bs)
11: ApplyPheromoneValueUpdate(cf ,bs update,T ,T ib,T rb,T bs)
12: cf := ComputeConvergenceFactor(T , T rb, T bs)
13: if cf ≥ 0.99 then
14: if bs update = true then
15: forall e ∈ E do τe := 0.5 end forall
16: T rb := null, bs update := false
17: else
18: bs update := true
19: end if
20: end if
21: end while
22: output: T bs

consists of those links whose source node is in S and whose goal node is not in
S. From these links, one link is chosen according to the following probabilities:

p(e) :=
τe · η(e)∑

e′∈Eadd
τe′ · η(e′)

, (4)

where η(e) is the heuristic information of a link e = (i, j) which is computed
as follows: η(e) := (Po(S′)− Po(S))−1 (respectively, η(e) := (Pd(S′) − Pd(S))−1

in the case of directional antennas), where S′ = (VS ∪ {j}, ES ∪ {e}). In words,
the heuristic information accounts for the increase of emission power spent by
the partial solution when adding link e. After choosing a link e = (i, j) for the
expansion of the current partial solution S, all the other links of Eadd (if any)
that can be added to S without any further increase of emission powers are
also added to S (in addition to e). For example, in the case of omni-directional
antennas, this concerns all links e′ = (i, l) ∈ Eadd with d(i, l) ≤ d(i, j). In the
case of directional antennas, the node l is additionally required to be within
the beam implicitly defined by all links e(i, ∗) that are already in S (including
e = (i, j)).

As Eadd might contain quite a lot of bad-quality links (especially at the be-
ginning of the construction process) we decided to study also ways of restricting
Eadd. In the following we refer to the use of the unrestricted set Eadd as mode 1.

30 H. Hernández, C. Blum, and G. Francès

In contrast, mode 2 works as follows. ∀ j ∈ VS let Eadd,j := {(∗, j) ∈ Eadd}, that
is, Eadd,j contains all links of Eadd with goal node j. Moreover, let b(Eadd,j) :=
argmaxe∈Eadd,j

{η(e)}, that is, b(Eadd,j) is the link of Eadd,j with the best heuris-
tic information value. Given these definitions, in mode 2 set Eadd is restricted
as follows: Em2

add := ∪j∈VS
{b(Eadd,j)}, that is, only the best link to each node in

VS is considered. In the following, let l := argmaxj∈VS
{η(b(Eadd,j))}. Note that

l can be regarded as the best node in VS . Then, the restriction of set Eadd in
mode 3 is obtained as follows: Em3

add := {(∗, l) ∈ Eadd}, that is, Em3
add contains all

the links of Eadd that have l (the best node) as goal node. In addition to the
3 modes outlined above we tested a fourth mode that is obtained by assigning
mode 2 and mode 3 each to half of the ants used by the algorithm.

LocalSearch(T j): In the case of omni-directional antennas, solutions constructed
by the ants may contain nodes whose emission powers can be reduced without
destroying the broadcast property of the solution. Therefore, in case of omni-
directional antennas, we first apply the so-called SWEEP procedure (see [4]) in
order to detect and fix these cases. Then, the VND algorithm as outlined before
is applied in both antenna cases.

Update(T ib,T rb,T bs): In this procedure T rb and T bs are set to T ib (i.e., the
iteration-best solution), if Po(T ib) < Po(T rb) and Po(T ib) < Po(T bs) (respec-
tively, Pd(T ib) < Pd(T rb) and Pd(T ib) < Pd(T bs) in the case of directional
antennas).

ApplyPheromoneUpdate(cf ,bs update,T ,T ib,T rb,T bs): Our ACO algorithm may
use three different solutions for updating the pheromone values: (i) the
iteration-best solution T ib, (ii) the restart-best solution T rb and, (iii) the best-
so-far solution T bs. Their influence depends on the convergence factor cf , which
provides an estimate about the state of convergence of the system. To per-
form the update, first an update value ξe for each link e ∈ E is computed:
ξe := κib · δ(T ib, e)+κrb · δ(T rb, e)+κbs · δ(T bs, e), where κib is the weight of T ib,
κrb the weight of T rb, and κbs the weight of T bs such that κib + κrb + κbs = 1.0.
The δ-function is the characteristic function of the set of links in a tree T , that
is, δ(T, e) = 1 if e ∈ E(T), and δ(T, e) = 0 otherwise. Then, the following update
rule is applied to all pheromone values τe:

τe := min {max{τmin, τe + ρ · (ξe − τe)}, τmax} ,

where ρ ∈ (0, 1] is the learning rate, set to 0.1. The upper and lower bounds
τmax = 0.99 and τmin = 0.01 keep the pheromone values always in the range
(τmin, τmax), thus preventing the algorithm from converging to a solution. After
tuning, the values for κib, κrb and κbs are chosen as shown in Table 1.

ComputeConvergenceFactor(T , T rb, T bs): This function computes, at each itera-
tion, the convergence factor as

cf :=

∑
e∈E(T rb) τe

(|E(T rb)| − 1) · τmax
, respectively cf :=

∑
e∈E(T bs) τe

(|E(T bs)| − 1) · τmax
,

Ant Colony Optimization for Energy-Efficient Broadcasting 31

Table 1. The schedule used for values κib, κrb and κbs depending on cf (the conver-
gence factor) and the Boolean control variable bs update

bs update = false bs update = true
cf < 0.7 cf ∈ [0.7, 0.9) cf ≥ 0.9

κib 2/3 1/3 0 0
κrb 1/3 2/3 1 0
κbs 0 0 0 1

if bs update = false, respectively if bs update = true. Here, τmax is the upper
limit for the pheromone values. The convergence factor cf can therefore only
assume values between 0 and 1. The closer cf is to 1, the higher is the probability
to produce the solution T rb (or T bs analogously).

3 Experimental Evaluation

We implemented our algorithm in ANSI C++ using GCC 3.2.2 for compiling the
software. Our experimental results were obtained on a PC with an AMD64X2
4400 processor and 4 GB of memory. We used the same set of benchmark in-
stances as in [12,13]. This set consists of 30 problem instances with 20 nodes
each, and further 30 problem instances with 50 nodes.

Results for Omni-Directional Antennas. First, we conducted tuning experiments
concerning parameter rmax of the VND algorithm (see Alg. 1), the construction
mode, and a so-called candidate list strategy, which is a mechanism that reduces
the set of all possible choices (in a solution construction step) to the best k choices,
where k is a parameter. We tested k ∈ {4, 8, all}, where ”all” means that no can-
didate list strategy is used. The best results were achieved with rmax = |V | − 1,
construction mode 2, and a candidate list of size 8. See [21] for more details.

We applied our algorithm 30 times for 5 seconds to each of the 30 problem
instances with 20 nodes and for 20 seconds to each of the 30 problem instances
with 50 nodes. Concerning the problem instances with 20 nodes our algorithm
produced an optimal solution for each instance in each run. On average our algo-
rithm needed 0.001 seconds to find these solutions. The ELS algorithm published
in [13] finds (on average) in 24 cases (out of 30) an optimal solution. Moreover,
the average computation time needed by ELS is 0.43 seconds on a computer
with a 2.8 GHz Pentium IV processor.

The results for the problem instances with 50 nodes are shown (in comparison
to NP [12], ELS [13], ILS [11], and BIP + VND) in Table 2. For comparison
reasons we decided to use the same way of presenting the results as in [13].
The first table column contains the instance names. The second table column
provides the values of the best solutions known. In case values are not marked
with a ≤-sign, they are known to be optimal. For algorithms NP, ELS, and
ACO we provide three values: The column headed by excess gives the excess
(in percent) of the average of the values of the best solutions found in 30 trials

32 H. Hernández, C. Blum, and G. Francès

over the optimal (respectively, best known) value. The column with heading
found provides the number of trials in which the optimal (respectively, best
known) value was found. Finally, the column titled time (s) contains the average
computation times (in seconds) over 30 runs. For ILS we were not able to provide
the computation time as it was not given in [13]. For algorithm BIP + VND we
only provide the excess over the optimal (respectively, best known) solutions.
Finally, the last table row gives averages over all instances. The results show
that, first, our algorithm outperforms all other algorithms in terms of solution
quality. Only in 2 cases our algorithm is not able to find the optimal (respectively,
best known) solution in all trials. On average it is found in 29.7 out of 30 trials.
The second-best algorithm, ELS, only finds an optimal (respectively, best known)
solution in 17.3 trials on average.

Results for Directional Antennas. We conducted the same tuning experiments as
outlined in the case of omni-directional antennas also for the case of directional
antennas. With respect to these experiments we chose rmax = |V | − 1, mode 1
for solution construction, and a candidate list of size 8.

The results for the instances with 20 nodes are shown in Table 3 and for the
instances with 50 nodes in Table 4. The format of these tables is as follows.
The first column provides the instance name, the second column the result of
DBIP + VND, and the remaining columns give the results of the ACO algorithm.
Concerning ACO we provide the following information. The column with heading
best gives the value of the best solution found in 30 trials, whereas the column
titled deviation provides the improvement over DBIP + VND (in percent).
Furthermore, the column saving shows how much emission power (in percent)
could be saved in comparison to the case of omni-directional antennas. The
remaining columns provide the average of the best solutions found in 30 trials
(+ standard deviation), and the average of the computation times over 30 trials
(+ standard deviation). The last table row provides the average improvement
(over 30 instances) over DBIP + VND, the average emission power saving, and
the average computation time over 30 instances.

The results show that both for instances with 20 nodes and instances with 50
nodes the improvement of ACO over DBIP + VND is on average more than 12%.
Moreover, the average computation times are very low (0.08 seconds for the small
instances, and 4.42 seconds for the big instances). It is interesting to note that
the computation times are higher than in the case of omni-directional antennas.
This accounts for the fact that the computation of the heuristic information is
more complicated for directional antennas. Finally, it is also worth mentioning
that the saving of emission power is enormous: on average 85.70% in the case of
20 nodes, and 85.86% in the case of 50 nodes.

For showing the difference between solutions in the case of omni-directional
antennas in comparison to solutions for the same instance in the case of direc-
tional antennas we graphically present the best solutions that we found in Fig. 1.
For example, while node 47 has a very high emission power in the solution for
omni-directional antennas, it only sends information to two neighboring nodes
in the solution for directional antennas.

Ant Colony Optimization for Energy-Efficient Broadcasting 33

T
a
b
le

2
.
R

es
u
lt
s

fo
r

in
st

a
n
ce

s
w

it
h

5
0

n
o
d
es

(o
m

n
i-
d
ir
ec

ti
o
n
a
l
a
n
te

n
n
a
s)

In
st

an
ce

B
es

t
k
n
ow

n
N

P
E
L
S

IL
S

B
IP

+
V

N
D

A
C

O
ex

ce
ss

fo
u
n
d

ti
m

e
(s

)
ex

ce
ss

fo
u
n
d

ti
m

e
(s

)
ex

ce
ss

fo
u
n
d

ex
ce

ss
ex

ce
ss

fo
u
n
d

ti
m

e
(s

)
p5

0.
00

39
90

74
.6

4
6.

22
%

0/
30

11
.4

0.
41

%
15

/3
0

57
.0

3.
31

%
0/

30
9.

89
%

0.
0%

30
/3

0
0.

52
p5

0.
01

≤
37

35
65

.1
5

3.
68

%
0/

30
7.

1
0.

16
%

5/
30

47
.0

3.
30

%
0/

30
22

.7
9%

0.
0%

30
/3

0
1.

97
p5

0.
02

39
36

41
.0

9
10

.1
1%

0/
30

10
.3

0.
28

%
13

/3
0

46
.0

12
.0

6%
0/

30
17

.3
9%

0.
0%

30
/3

0
2.

84
p5

0.
03

31
68

01
.0

9
6.

43
%

0/
30

6.
1

1.
71

%
11

/3
0

57
.0

6.
48

%
0/

30
18

.4
3%

0.
0%

30
/3

0
0.

36
p5

0.
04

≤
32

57
74

.2
2

5.
22

%
0/

30
7.

5
0.

30
%

25
/3

0
40

.0
7.

22
%

0/
30

17
.0

4%
0.

0%
30

/3
0

1.
89

p5
0.

05
38

22
35

.9
0

3.
28

%
1/

30
10

.9
0.

83
%

16
/3

0
31

.0
2.

57
%

0/
30

7.
69

%
0.

0%
30

/3
0

3.
42

p5
0.

06
≤

38
44

38
.4

6
1.

19
%

5/
30

10
.2

0.
0%

30
/3

0
29

.0
0.

14
%

18
/3

0
13

.5
0%

0.
0%

30
/3

0
3.

54
p5

0.
07

≤
40

18
36

.8
5

6.
70

%
0/

30
8.

9
0.

54
%

24
/3

0
64

.0
7.

80
%

0/
30

11
.5

0%
0.

0%
30

/3
0

0.
54

p5
0.

08
33

44
18

.4
5

0.
10

%
27

/3
0

4.
6

0.
0%

30
/3

0
29

.0
0.

0%
30

/3
0

11
.4

3%
0.

0%
30

/3
0

0.
73

p5
0.

09
≤

34
67

32
.0

5
9.

20
%

0/
30

12
.9

3.
29

%
0/

30
10

2.
0

11
.4

2%
0/

30
15

.2
2%

0.
0%

30
/3

0
1.

88
p5

0.
10

41
67

83
.4

5
2.

14
%

0/
30

8.
9

1.
16

%
13

/3
0

40
.0

2.
05

%
0/

30
12

.8
0%

0.
0%

30
/3

0
0.

85
p5

0.
11

≤
36

98
69

.4
1

4.
34

%
0/

30
7.

7
2.

87
%

1/
30

28
.0

4.
62

%
0/

30
9.

99
%

0.
0%

30
/3

0
4.

47
p5

0.
12

≤
39

23
26

.0
1

3.
18

%
0/

30
13

.5
0.

57
%

7/
30

66
.0

0.
44

%
0/

30
6.

82
%

0.
0%

30
/3

0
0.

42
p5

0.
13

≤
40

05
63

.8
3

6.
63

%
0/

30
11

.2
0.

04
%

29
/3

0
74

.0
1.

20
%

0/
30

21
.1

6%
0.

0%
30

/3
0

1.
38

p5
0.

14
38

87
14

.9
1

0.
08

%
22

/3
0

6.
6

0.
34

%
3/

30
11

.0
0.

0%
30

/3
0

34
.9

3%
0.

0%
29

/3
0

2.
26

p5
0.

15
37

16
94

.6
5

0.
40

%
0/

30
8.

1
0.

20
%

5/
30

35
.0

1.
40

%
0/

30
9.

62
%

0.
0%

30
/3

0
1.

12
p5

0.
16

≤
41

45
87

.4
2

5.
28

%
0/

30
15

.1
0.

30
%

26
/3

0
81

.0
6.

06
%

1/
30

5.
51

%
0.

0%
30

/3
0

0.
48

p5
0.

17
35

59
37

.0
7

2.
17

%
1/

30
11

.9
1.

88
%

17
/3

0
33

.0
4.

94
%

2/
30

9.
00

%
0.

0%
30

/3
0

0.
38

p5
0.

18
37

66
17

.3
3

5.
96

%
0/

30
11

.3
0.

24
%

8/
30

65
.0

0.
98

%
12

/3
0

7.
28

%
0.

0%
30

/3
0

0.
55

p5
0.

19
33

50
59

.7
2

2.
27

%
5/

30
9.

8
0.

0%
30

/3
0

28
.0

10
.4

9%
1/

30
33

.6
0%

0.
0%

30
/3

0
0.

39
p5

0.
20

41
47

68
.9

6
3.

14
%

0/
30

10
.4

0.
15

%
0/

30
35

.0
6.

33
%

0/
30

9.
54

%
0.

1%
21

/3
0

5.
85

p5
0.

21
≤

36
13

54
.2

7
2.

93
%

2/
30

10
.4

0.
0%

30
/3

0
41

.0
0.

0%
30

/3
0

9.
01

%
0.

0%
30

/3
0

0.
29

p5
0.

22
32

90
43

.5
1

0.
0%

30
/3

0
7.

2
0.

0%
30

/3
0

14
.0

4.
61

%
0/

30
25

.4
9%

0.
0%

30
/3

0
0.

74
p5

0.
23

38
33

21
.0

4
6.

39
%

0/
30

11
.1

0.
0%

30
/3

0
10

9.
0

2.
47

%
0/

30
10

.9
5%

0.
0%

30
/3

0
1.

06
p5

0.
24

40
48

55
.9

2
5.

69
%

0/
30

10
.0

0.
07

%
17

/3
0

37
.0

0.
87

%
3/

30
10

.4
2%

0.
0%

30
/3

0
0.

53
p5

0.
25

36
32

00
.3

2
0.

0%
30

/3
0

3.
2

0.
0%

30
/3

0
7.

0
0.

0%
30

/3
0

24
.6

5%
0.

0%
30

/3
0

0.
45

p5
0.

26
40

66
31

.5
1

9.
59

%
0/

30
11

.5
2.

17
%

2/
30

60
.0

11
.6

3%
0/

30
12

.6
7%

0.
0%

30
/3

0
2.

16
p5

0.
27

45
10

59
.6

2
4.

18
%

0/
30

9.
5

0.
18

%
22

/3
0

40
.0

3.
35

%
0/

30
9.

09
%

0.
0%

30
/3

0
1.

50
p5

0.
28

≤
41

58
32

.4
4

4.
48

%
0/

30
11

.6
0.

47
%

23
/3

0
78

.0
0.

28
%

0/
30

8.
63

%
0.

0%
30

/3
0

0.
38

p5
0.

29
38

04
92

.7
7

0.
0%

30
/3

0
5.

9
0.

08
%

27
/3

0
18

.0
0.

60
%

0/
30

14
.6

2%
0.

0%
30

/3
0

1.
92

4.
03

%
5.

1/
30

9.
5

0.
61

%
17

.3
/3

0
46

.0
3.

89
%

5.
23

/3
0

14
.3

7%
0.

00
4%

29
.7

/3
0

1.
49

34 H. Hernández, C. Blum, and G. Francès

Table 3. Results for instances with 20 nodes (directional antennas)

Instance DBIP + VND
ACO

best deviation saving average (std.) time (s) (std.)
p20.00 64822.56 63199.93 -2.51% 84.48% 63199.93 (0.00) 0.06 (0.05)
p20.01 76436.49 68398.52 -10.52% 84.70% 68398.52 (0.00) 0.02 (0.01)
p20.02 65690.63 47978.29 -26.97% 85.68% 47978.29 (0.00) 0.07 (0.07)
p20.03 68942.34 57398.42 -16.75% 88.25% 57398.42 (0.00) 0.04 (0.02)
p20.04 69845.03 66887.32 -4.24% 87.04% 66887.32 (0.00) 0.01 (0.01)
p20.05 51662.20 45238.84 -12.44% 84.96% 45238.84 (0.00) 0.04 (0.02)
p20.06 60070.64 51729.84 -13.89% 79.35% 51729.84 (0.00) 0.07 (0.06)
p20.07 55895.63 51571.88 -7.74% 85.16% 51571.88 (0.00) 0.03 (0.02)
p20.08 54367.14 49937.22 -8.15% 87.22% 49937.22 (0.00) 0.15 (0.21)
p20.09 65553.86 59488.68 -9.26% 86.71% 59488.68 (0.00) 0.07 (0.06)
p20.10 56304.30 48060.81 -14.65% 84.83% 48060.81 (0.00) 0.06 (0.06)
p20.11 61803.98 52576.87 -14.93% 81.82% 52576.87 (0.00) 0.06 (0.08)
p20.12 47662.65 46448.20 -2.55% 85.23% 46448.20 (0.00) 0.01 (0.01)
p20.13 73334.40 57650.44 -21.39% 83.35% 57650.44 (0.00) 0.03 (0.02)
p20.14 48983.67 39342.53 -19.69% 86.95% 39342.53 (0.00) 0.12 (0.12)
p20.15 63590.04 63346.56 -0.39% 86.15% 63346.56 (0.00) 0.01 (0.01)
p20.16 84518.63 70879.81 -16.14% 85.37% 70879.81 (0.00) 0.05 (0.03)
p20.17 95860.33 69089.46 -27.93% 81.83% 69089.46 (0.00) 0.06 (0.06)
p20.18 47485.69 46477.60 -2.13% 85.49% 46477.60 (0.00) 0.03 (0.02)
p20.19 72365.45 64180.43 -11.32% 86.09% 64180.43 (0.00) 0.07 (0.03)
p20.20 76200.32 66069.32 -13.30% 83.63% 66069.32 (0.00) 0.07 (0.08)
p20.21 45734.98 43714.14 -4.42% 83.93% 43714.14 (0.00) 0.02 (0.01)
p20.22 49408.07 47693.55 -3.48% 85.49% 47693.55 (0.00) 0.03 (0.02)
p20.23 53427.61 51555.92 -3.51% 84.22% 51555.92 (0.00) 0.02 (0.01)
p20.24 57184.69 49804.65 -12.91% 87.42% 49804.65 (0.00) 0.45 (0.45)
p20.25 97379.75 75132.03 -22.85% 83.43% 75132.03 (0.00) 0.46 (0.40)
p20.26 112701.77 83211.94 -26.17% 81.97% 83211.94 (0.00) 0.06 (0.04)
p20.27 66935.67 52136.30 -22.11% 86.60% 52136.30 (0.00) 0.01 (0.01)
p20.28 55028.32 52897.18 -3.88% 81.06% 52897.18 (0.00) 0.09 (0.05)
p20.29 57176.02 52294.99 -8.54% 82.54% 52294.99 (0.00) 0.06 (0.02)

-12.16% 84.70% 0.08

Table 4. Results for instances with 50 nodes (directional antennas)

Instance DBIP + VND
ACO

best deviation saving average (std.) time (s) (std.)
p50.00 67637.45 57143.89 -15.52% 85.68% 57148.02 (2.97) 5.37 (5.12)
p50.01 60089.71 55020.28 -8.44% 85.27% 55022.15 (10.26) 4.33 (2.96)
p50.02 63117.46 55592.02 -11.93% 85.88% 55668.98 (77.17) 8.84 (5.25)
p50.03 49914.53 44151.86 -11.55% 86.06% 44151.86 (0.00) 1.29 (0.83)
p50.04 52739.20 49258.11 -6.61% 84.88% 49281.38 (27.07) 6.54 (5.36)
p50.05 62925.57 54624.04 -13.20% 85.71% 54628.36 (23.65) 3.36 (3.35)
p50.06 59134.80 51440.18 -13.02% 86.62% 51440.18 (0.00) 3.07 (2.17)
p50.07 60529.65 53677.16 -11.33% 86.64% 53677.16 (0.00) 0.84 (0.43)
p50.08 59745.12 53915.98 -9.76% 83.88% 53922.06 (33.31) 6.41 (4.58)
p50.09 55269.83 45721.73 -17.28% 86.81% 45721.73 (0.00) 2.26 (1.55)
p50.10 71832.64 60454.61 -15.84% 85.50% 60472.57 (79.99) 9.94 (5.68)
p50.11 58924.18 50641.36 -14.06% 86.31% 50641.36 (0.00) 1.41 (1.41)
p50.12 71670.15 52365.95 -26.94% 86.65% 52462.37 (150.22) 11.04 (4.95)
p50.13 56645.94 50693.12 -10.51% 87.34% 50693.12 (0.00) 3.32 (2.82)
p50.14 72412.21 58263.43 -19.54% 85.01% 58263.43 (0.00) 4.25 (2.34)
p50.15 55379.00 47647.14 -13.97% 87.18% 47647.14 (0.00) 1.77 (1.25)
p50.16 62602.95 53963.57 -13.81% 86.98% 53963.57 (0.00) 2.39 (1.58)
p50.17 62421.55 50597.19 -18.95% 85.78% 50597.24 (0.22) 4.66 (3.45)
p50.18 59991.97 53211.01 -11.31% 85.87% 53241.50 (56.21) 5.51 (5.21)
p50.19 57547.85 52356.87 -9.03% 84.37% 52387.81 (98.69) 7.37 (4.54)
p50.20 62215.55 55986.52 -10.02% 86.50% 55986.52 (0.00) 1.51 (0.94)
p50.21 57325.62 51102.38 -10.86% 85.86% 51136.06 (25.56) 9.07 (5.48)
p50.22 60044.05 52484.70 -12.59% 84.05% 52484.70 (0.00) 1.96 (1.40)
p50.23 58439.32 51386.64 -12.07% 86.59% 51386.64 (0.00) 5.59 (4.08)
p50.24 68262.05 57834.24 -15.28% 85.71% 57834.24 (0.00) 2.20 (1.52)
p50.25 70594.71 60369.77 -14.49% 83.38% 60406.47 (65.84) 9.93 (5.37)
p50.26 61786.70 56527.63 -8.52% 86.10% 56527.63 (0.00) 5.16 (3.21)
p50.27 66161.21 59330.71 -10.33% 86.85% 59330.71 (0.00) 1.29 (0.53)
p50.28 61571.83 55646.64 -9.63% 86.62% 55646.64 (0.00) 0.72 (0.26)
p50.29 61768.29 54511.41 -11.75% 85.67% 54511.41 (0.00) 1.21 (0.72)

-12.94% 85.86% 4.42

Ant Colony Optimization for Energy-Efficient Broadcasting 35

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

(a) Value: 316801.09

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

(b) Value: 44151.86

Fig. 1. Best solutions found for instance p50.03. (a) shows the solution in the case of
omni-directional antennas, and (b) shows the solution for directional antennas.

4 Conclusions and Future Work

In this work we presented an ant colony optimization algorithm using a sophisti-
cated local search procedure for the minimum energy broadcast problem in static
wireless ad-hoc networks. In the case of omni-directional antennas our algorithm
outperforms existing metaheuristics and heuristics in solution quality as well as
in computation time. In the case of directional antennas we could show that our
algorithm greatly improves over the results of a well-known heuristic enhanced
by our VND algorithm. In the future we plan to adapt our algorithms to the
case of multicasting. Moreover, we plan to develop distributed algorithms that
are more practical in real applications.

References

1. Rapport, T.: Wireless Communications: Principles and Practices. Prentice Hall,
Englewood Cliffs (1996)

2. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: Energy-aware wireless network-
ing with directional antennas: the case of session-based broadcasting and multicas-
ting. IEEE Trans. on Mobile Computing 1(3), 176–191 (2002)

3. Cagalj, M., Hubaux, J.P., Enz, C.: Minimum-energy broadcast in all-wireless net-
works: NP-completeness and distribution issues. In: Proc. of ACM MobiCom, pp.
172–182. ACM press, New York (2002)

4. Wieselthier, J.E., Nguyen, G.D., Ephremides, A.: On the construction of energy-
efficient broadcast and multicast trees in wireless networks. Proc. of INFOCOM
2000 2, 585–594 (2000)

5. Wan, P.J., Calinescu, G., Li, X.Y., Frieder, O.: Minimum-energy broadcast routing
in static ad hoc wirless networks. ACM Wireless Networks 8(6), 607–617 (2002)

6. Liang, W.: Constructing minimum-energy broadcast trees in wireless ad hoc net-
works. In: Proc. of ACM MobiHoc 2002, pp. 112–122. ACM press, New York (2002)

36 H. Hernández, C. Blum, and G. Francès

7. Li, F., Nikolaidis, I.: On minimum-energy broadcasting in all-wireless networks. In:
Proc. of IEEE LCN, pp. 14–16. IEEE press, Los Alamitos (2001)

8. Guo, S., Yang, O.: A dynamic multicast tree reconstruction algorithm for
minimum-energy multicasting in wireless ad hoc networks. In: Proc. of IEEE
IPCCC, pp. 637–642. IEEE press, Los Alamitos (2004)

9. Das, A.K., Marks, R.J., El-Sharkawi, M., Arabshahi, P., Gray, A.: r-shrink: A
heuristic for improving minimum power broadcast trees in wireless networks. In:
Proc. of GLOBECOM 2003, pp. 523–527. IEEE press, Los Alamitos (2003)

10. Das, A.K., Marks, R.J., El-Sharkawi, M., Arabshahi, P., Gray, A.: The minimum
power broadcast problem in wireless networks: an ant colony system approach.
In: Proc. of the IEEE CAS Wshp. on Wireless Communications and Networking
(2002)

11. Kang, I., Poovendran, R.: Iterated local optimization for minimum energy broad-
cast. In: Proc. of WiOpt 2005, pp. 332–341. IEEE press, Los Alamitos (2005)

12. Al-Shihabi, S., Merz, P., Wolf, S.: Nested partitioning for the minimum energy
broadcast. In: Proc. of LION 2007. Springer, Berlin (2007)

13. Wolf, S., Merz, P.: Evolutionary local search for the minimum energy broadcast
problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp.
61–72. Springer, Heidelberg (2008)

14. Cartigny, J., Simplot-Ryl, D., Stojmenovic, I.: An adaptive localized scheme for
energy-efficient broadcasting in ad hoc networks with directional antennas. In:
Niemegeers, I.G.M.M., de Groot, S.H. (eds.) PWC 2004. LNCS, vol. 3260, pp.
399–413. Springer, Heidelberg (2004)

15. Guo, S., Yang, O.: Improving energy efficiency for multicasting in ad-hoc networks
with directional antennas. In: Proc. of IEEE WiMob 2005, pp. 344–351. IEEE
press, Los Alamitos (2005)

16. Guo, S., Yang, O.: Minimum-energy multicast in wireless ad hoc networks with
adaptive antennas: MILP formulations and heuristic algorithms. IEEE Trans. on
Mobile Computing 5(4), 333–346 (2006)

17. Guo, S., Yang, O.W.W.: Energy-aware multicasting in wireless ad hoc networks:
A survey and discussion. Computer Communications 30, 2129–2148 (2007)

18. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
19. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-

tions. European Journal of Operational Research 130, 449–467 (2001)
20. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.

IEEE Trans. on Systems, Man anc Cybernetics – Part B 34(2), 1161–1172 (2004)
21. Hernández, H., Blum, C., Francès, G.: Ant colony optimization for energy-efficient

broadcasting in ad-hoc networks. Technical Report LSI-08-13, LSI, Univeristat
Politècnica de Catalunya (2008)

Ant Colony Optimization

for Genome-Wide Genetic Analysis

Casey S. Greene, Bill C. White, and Jason H. Moore

Dartmouth College, Lebanon, NH, USA
{Casey.S.Greene,Bill.C.White,Jason.H.Moore}@dartmouth.edu

Abstract. In human genetics it is now feasible to measure large num-
bers of DNA sequence variations across the human genome. Given cur-
rent knowledge about biological networks and disease processes it seems
likely that disease risk can best be modeled by interactions between bio-
logical components, which can be examined as interacting DNA sequence
variations. The machine learning challenge is to effectively explore inter-
actions in these datasets to identify combinations of variations which are
predictive of common human diseases. Ant colony optimization (ACO)
is a promising approach to this problem. The goal of this study is to ex-
amine the usefulness of ACO for problems in this domain and to develop
a prototype of an expert knowledge guided probabilistic search wrapper.
We show that an ACO approach is not successful in the absence of expert
knowledge but is successful when expert knowledge is supplied through
the pheromone updating rule.

1 Introduction

Researchers in the biological and biomedical sciences are now capable of gener-
ating enormous amounts of data. In human genetics it is now technically and
economically feasible to measure more than one million DNA sequence variations
from across the human genome. Here we focus on the single nucleotide polymor-
phism or SNP which is a single point in a DNA sequence that differs among
people. It is anticipated that at least one SNP occurs approximately every 100
nucleotides across the 3 × 109 nucleotide human genome. An important goal in
human genetics is the determination of which of the millions of SNPs are useful
for predicting who is at risk for common diseases. This “genome-wide” approach
is expected to revolutionize the genetic analysis of common human disease. The
charge for computer science and bioinformatics is the development of algorithms
for the detection and characterization of SNPs which are predictive of human
health and disease. Success in this endeavor will be difficult due to nonlinearity
in the genotype-to-phenotype mapping relationship that is due, in part, to epis-
tasis or nonadditive gene-gene interactions. The implication of epistasis from a
data mining point of view is that SNPs need to be considered jointly in learning
algorithms rather than individually. The challenge of modeling attribute inter-
actions has been previously described [1]. Due to the combinatorial magnitude
of this problem, intelligent analysis strategies are needed.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 37–47, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

38 C.S. Greene, B.C. White, and J.H. Moore

1.1 Concept Difficulty

Combining the difficulty of modeling nonlinear attribute interactions with the
challenge of attribute selection yields for this domain what Goldberg [2] calls a
needle-in-a-haystack problem. That is, there may be a particular combination of
SNPs that together with the right nonlinear function are a significant predictor
of disease susceptibility. Considered individually they may not look any differ-
ent than thousands of other SNPs not involved in the disease process. Under
these models, the learning algorithm is truly looking for a genetic needle in a
genomic haystack. These epistatic interactions are thought to be widespread,
perhaps ubiquitous, among risk factors for these common human diseases [3].
A recent report from the International HapMap Consortium [4] suggests that
approximately 300,000 carefully selected SNPs may be necessary to capture all
of the relevant variation across the Caucasian human genome. Assuming this
is true (it is probably a lower bound), we would need to scan 4.5 × 1010 pair-
wise combinations of SNPs to find a genetic needle. The number of higher order
combinations is astronomical.

1.2 Ant Colony Optimization

Ant colony optimization (ACO) is a positive feedback approach to search mod-
eled on the behavior of ants [5]. Ant colony optimization is attractive for the area
of human genetics because it is a straightforward population based approach to
search which is easily parallelizable. Ant colony systems have previously been
applied to the mining of biological data. Parpinelli et al. [6] demonstrate their
AntMiner system as a rule discovery method on biological data. Here we begin
to develop a probabilistic search wrapper which can be integrated into the pub-
licly available Multifactor Dimensionality Reduction (MDR) software. But is ant
colony optimization suitable for a problem like this? Without expert knowledge
the answer would seem to be no. There is no reason to expect that an ACO
or any other wrapper method will perform better than a random attribute se-
lector because there are no building blocks for this problem when accuracy is
used as a metric of quality. The accuracy of any given classifier looks no better
than any other with just one of the two correct SNPs in the model. Indeed, we
have observed this in the field of genetic programming [7,8]. Subsequent work has
shown that by integrating expert knowledge into a genetic programming scheme,
it is possible to develop a wrapper that is able to perform better than a ran-
dom attribute selector [9,10]. Fortunately the ACO metaheuristic is amenable to
the inclusion of heuristic information. Work here examines whether or not it is
possible to integrate expert knowledge, our heuristic information, into an ACO
framework to develop a wrapper which performs well in this domain.

2 The Proposed Ant Colony Optimization Algorithm

Ant colony optimization is a particularly appropriate framework for this problem
because of its simplicity and the ease with which expert knowledge can be in-
cluded. For our work with genetic programming we developed specialized fitness

ACO for Genome-Wide Genetic Analysis 39

functions [7], recombination [8] and mutation operators [10]. With ACO it is con-
ceptually much simpler to include expert knowledge. For this ACO metaheuristic
we have elected to include expert knowledge as an additional component of the
pheromone update rule. When the accuracy of the classifier is identical, ants
that choose SNPs with better expert knowledge will contribute more pheromone
to those paths than SNPs with lower expert knowledge scores.

2.1 Implementation

This ACO is implemented in C++. For the purposes of this power analysis
solutions consist of pairs of attributes. The solution kept as the result is the pair
of attributes with the highest balanced accuracy according to MDR (detailed in
section 3). MDR analysis is performed through version 0.2.5 of the libmdr open
source C library available from www.epistasis.org

2.2 Pheromone Updating with Expert Knowledge

We have discovered in our work with genetic programming that expert knowledge
is critical for machine learning algorithms to be successful with this problem [7].
Here we apply principles discovered in our genetic programming work to the ACO
arena and structured our pheromone updating rule such that expert knowledge
is provided within the pheromone update rule. The pheromone is updated for
each SNP, a, according to the following function after the ith update:

τa,i+1 = τa,iρ + Δτa,i (1)

Δτa,i is the additional pheromone contributed by ants during this update cycle
and ρ is the evaporation factor. Δτa,i is obtained as a combination of the MDR
accuracy and the expert knowledge information for each ant, k, of m total ants
that contain attribute a:

Δτa,i =
m∑

k=1

Qa,b
αEa

β (2)

where Q is the MDR accuracy of a model containing that attribute a and the
other attribute, b, chosen by ant k. In the case that a and b are the same SNP the
MDR accuracy is set to zero to push the metaheuristic away from SNPs that have
a strong main effect without an epistatic effect. E is the expert knowledge infor-
mation for attribute a, and α and β are coefficients that determine the relative
weighting of Q and E. In this case Tuned ReliefF (TuRF) weights (see Section 4)
are used as the expert knowledge [11]. This update rule is used through u total
updates. This serves as an easy to understand pheromone updating rule which
incorporates expert knowledge for ACO in the field of genetic analysis. This ap-
proach is similar to the use of heuristic information in other ACO approaches
[5], except that here the heuristic alters the amount of pheromone deposited
instead of modifying the likelihood of an ant selecting a path given pheromone
information. This means that the initial search is very exploratory and that good
SNPs by our heuristic information should be more heavily selected towards the
end as pheromone information accumulates.

www.epistasis.org

40 C.S. Greene, B.C. White, and J.H. Moore

Fig. 1. In our ACO metaheuristic ants explore a pair of SNPs. From that pair of SNPs
a Δτi is calculated as shown in equation 2 for each SNP. Δτi is a combination of the
quality of the pair, Q, and the expert knowledge score for that SNP, E. Shading here
is representative of the strength of pheromone, τ , which begins evenly distributed and
changes with each update, (i).

2.3 Parameter Settings

We restrict the amount of the search space which can be explored to examine
how well the algorithm performs given the ability to search a small number of
the possible interactions. In each run 5000 total ants explore the search space.
This means that at most approximately 1% of the total possible interactions (i.e.
the search space) are examined. The power analysis (i.e. how often the correct
answer is found) is performed with 250 ants per update for 20 updates, 500
ants per update for 10 updates and 1000 ants per update for 5 updates. The
parameter α is fixed at 1 and β is tested at 0, 1, and 2. When β equals 0, the
expert knowledge weighting factor becomes 1 and does not affect the updating of
the pheromone, thus it is possible to examine the impact of expert knowledge on
the ant colony optimization approach in this domain. The evaporation parameter
ρ is held constant at 0.5.

3 Multifactor Dimensionality Reduction (MDR) for
Attribute Construction

Multifactor dimensionality reduction (MDR) was developed as a nonparamet-
ric and genetic model-free data mining strategy for identifying combination of
SNPs that are predictive of a discrete clinical endpoint [12,13,14,15]. The MDR
method has been successfully applied to detecting gene-gene interactions for a
variety of common human diseases including adverse drug reactions [16]. At the
heart of the MDR approach is an attribute construction algorithm that creates a

ACO for Genome-Wide Genetic Analysis 41

new attribute by pooling genotypes from multiple SNPs. Constructive induction
using the MDR kernel is accomplished in the following way. Given a threshold
T , a multilocus genotype combination is considered high-risk if the ratio of cases
(subjects with disease) to controls (healthy subjects) exceeds or equals T , other-
wise it is considered low-risk. Genotype combinations considered to be high-risk
are labeled G1 while those considered low-risk are labeled G0. This process con-
structs a new one-dimensional attribute with levels G0 and G1. It is this new
single variable that is returned by the MDR function as the quality, Q, for the
ACO metaheuristic. Moore et al. [14] describe the MDR method in more detail.
Open-source MDR software is freely available from www.epistasis.org

4 Expert Knowledge from Tuned ReliefF (TuRF)

Our goal is to provide an external measure of attribute quality that can be used as
expert knowledge for pheromone updating by the ACO metaheuristic. Here the
external measure used is statistical, but it can just as easily be biological. There
are many statistical and computational methods for determining the quality of
attributes. Our goal is to use a method that is capable of identifying attributes
that predict class primarily through dependencies or interactions with other
attributes. Kira and Rendell [17] developed an algorithm called Relief that is
capable of detecting attribute dependencies.

Relief estimates the quality of attributes through a nearest neighbor algorithm
that selects neighbors (instances) from the same class and from the different class
based on the vector of values across attributes. Weights (W) or quality estimates
for each attribute (a) are estimated based on whether the nearest neighbor (near-
est hit, H) of a randomly selected instance (R) from the same class and the nearest
neighbor from the other class (nearest miss, M) have the same or different values.
This process of adjusting weights is repeated for m instances. The algorithm pro-
duces weights for each attribute ranging from -1 (worst) to +1 (best). Kononenko
[18] improved upon Relief by choosing n nearest neighbors instead of just one.
This new ReliefF algorithm has been shown to be more robust to noisy attributes
and missing data [19] and is widely used in data mining applications [19].

We developed a modified ReliefF algorithm for the domain of human genetics
called Tuned ReliefF (TuRF). We have previously shown that TuRF is signif-
icantly better than ReliefF in this domain [11]. The TuRF algorithm system-
atically removes attributes that have low quality estimates so that the ReliefF
values of the remaining attributes can be re-estimated. We apply TuRF as de-
scribed by Moore and White [11] to each dataset. Here TuRF scores compose
the expert knowledge component of the ACO metaheuristic, E.

5 Fisher’s Exact Test

Fisher’s exact test is a significance test appropriate for categorical count data
[20]. The resulting p-value denotes the likelihood that an association of the ob-
served magnitude is likely by chance alone. For our use we arrange the results
in a 2x2 contingency table:

www.epistasis.org

42 C.S. Greene, B.C. White, and J.H. Moore

Table 1. 2x2 contingency table for power analysis

Success Failure

Parameter Set 1 (PS1) # Successful with PS1 # Unsuccessful with PS1

Parameter Set 2 (PS2) # Successful with PS2 # Unsuccessful with PS2

With this contingency table we can detect whether the association between suc-
cess (power) at different parameter settings (PS1 and PS2) is likely due to chance
alone. The resulting p-value for this test can be interpreted as the likelihood of see-
ing a difference among powers of the size observed without an association.

6 Data Simulation

The goal of the simulation study is to generate artificial datasets with high
concept difficulty to evaluate the power of ACO in the domain of human genet-
ics. We first develop 30 different penetrance functions (i.e. genetic models) that
define a probabilistic relationship between genotype and phenotype where sus-
ceptibility to disease is dependent on genotypes from two SNPs in the absence
of any independent effects. The 30 penetrance functions include groups of five
with heritabilities of 0.025, 0.05, 0.1, 0.2, 0.3, or 0.4. These heritabilities range
from a very small to a large genetic effect size. Each functional SNP has two
alleles with frequencies of 0.4 and 0.6.

Table 2. Penetrance values for an example epistasis model

AA (0.36) Aa (0.48) aa (0.16)

BB (0.36) 0.077 0.656 0.880

Bb (0.48) 0.892 0.235 0.312

bb (0.16) 0.174 0.842 0.106

Table 2 summarizes the penetrance values to three significant digits for one
of the 30 models. The values in parentheses are the genotype frequencies. Each
of the models is used to generate 100 replicate datasets with a sample size of
1600. Each dataset consists of an equal number of case (disease) and control (no
disease) subjects. Each pair of functional SNPs is combined within a genome-
wide set of 998 randomly generated SNPs for a total of 1000 attributes. A total
of 3,000 datasets are generated and analyzed.

7 Experimental Design and Statistical Analysis

For each set of 100 datasets and for each set of parameters we count the number
of times the correct two functional attributes are selected as the best model by
our ACO implementation. This count, expressed as a percentage, is an estimate

ACO for Genome-Wide Genetic Analysis 43

of the power of the method. This percentage represents how often ACO meta-
heuristic finds the answer that we know is present. We compare the significance of
power estimates between the methods (e.g. β = 0, β = 1, and β = 2,) by perform-
ing fisher’s exact test [20]. Results are considered statistically significant when
p ≤ 0.05.

0 1 2 0 1 2 0 1 2

250 500 1000

P
ow

er

0
20

40
60

80
10

0

Heritability: 0.025

0 1 2 0 1 2 0 1 2

250 500 1000

P
ow

er

0
20

40
60

80
10

0

Heritability: 0.05

0 1 2 0 1 2 0 1 2

250 500 1000

P
ow

er

0
20

40
60

80
10

0

Heritability: 0.1

0 1 2 0 1 2 0 1 2

250 500 1000

P
ow

er

0
20

40
60

80
10

0

Heritability: 0.2

0 1 2 0 1 2 0 1 2

250 500 1000

P
ow

er

0
20

40
60

80
10

0

Heritability: 0.3

0 1 2 0 1 2 0 1 2

250 500 1000

P
ow

er

0
20

40
60

80
10

0

Heritability: 0.4

Fig. 2. The average power across heritabilities. Each group of three bars shows one
combination of ants and updates (250 ants/20 updates, 500 ants/10 updates, 1000
ants/5 updates respectively). Within the ant and update groups the beta value is 0, 1,
and 2 from left to right.

44 C.S. Greene, B.C. White, and J.H. Moore

8 Experimental Results

Figure 2 summarizes the average power (% success) for each method. Each bar
represents the power averaged over 500 datasets (5 models with 100 datasets
each). Power represents the number of times out of 100 that the ACO finds the
right two attributes. These results clearly show that the ACO approach is unable
to successfully find the correct pair of attributes when expert knowledge is not
used as the power is very low for all cases where the expert knowledge weighting
parameter, β, is set to zero. These results also show that the ACO metaheuristic
is frequently successful when β is one or two, showing the critical need for expert
knowledge.

To assess the reliability and robustness of these results quantitatively we use
fisher’s exact test (Section 5). As figure 3 shows, the difference between values
of β of 0 and values of β of 1 and 2 is highly significant in all circumstances.

Fig. 3. Fisher’s exact test p-values for assessing whether the differences among groups
seen in the bar graph is significant. Values of p between 0.05 and 0.001 mean that
between one time out of twenty and one time out of one-thousand, a difference of that
magnitude is expected by chance alone. Values of p below 0.001 mean that less than one
time out of one-thousand, a difference of that magnitude is expected by chance alone.
Order of parameter settings is retained between the example heritability (0.0250) and
the other heritabilities shown.

ACO for Genome-Wide Genetic Analysis 45

This quantitatively confirms that the expert knowledge factor, E is a crucial
component in the success of the ACO metaheuristic in this domain. At a heri-
tability of 0.100 where the largest performance difference occurs among different
weightings of β, it is apparent that the difference between the powers for values
of β = 1 and β = 2 is significant. This suggests that a higher weighting of β
seems to be advantageous for this problem. In addition at higher heritabilities
the difference between the 1000 ants/5 updates power with a β of 1 becomes
significantly different from the power with other parameter settings, which also
suggests that a high weighting of expert knowledge is more appropriate in these
cases, especially when the number of ants is high and the number of updates low.

9 Discussion and Conclusion

Our results show that ACO is a viable approach to this problem when an expert
knowledge is added in to the pheromone updating rule. This suggests that ACO
may be an appropriate search strategy when exhaustive analysis is impossible.
These results are also encouraging given the relative simplicity of this approach
and the relatively high power given that only about 1% of the dataset can be
explored by the metaheuristic. These results indicate a power somewhat greater
than the previously used genetic programming approaches [7,9,10].

In this case the pheromone updating rule is a combination of the classifier ac-
curacy and the expert knowledge from TuRF. Modifications such as a rank based
ant system [21] or a MIN − MAX ant system [22,23] warrant investigation as
these approaches may be better able to deal with this type of data. Also war-
ranting more investigation is wide sweep of the β, expert knowledge weighting,
parameter which leads to increased power at low (0.100) heritabilities. Merkle
et al. show that dynamically altering the heuristic weighting factor, β, during the
search can lead to greater success for a resource-constrained project scheduling
problem [24]. Perhaps a similar approach is appropriate here to better balance
exploration and exploitation.

Work now can focus on a number of areas within the ACO metaheuristic.
What is the best way to initialize the pheromone? Are there more appropriate
ant systems or updating rules for this problem? We have seen in the field of GP
that by developing highly tuned operators it is possible to keep the power of
the approach high while exploring a much smaller search space. Is it possible
and advantageous to develop similar tuned approaches in the field of ant colony
optimization while keeping parameters for the approach conceptually simple
enough for users of the MDR software to understand?

In this work the building blocks of outside knowledge are obtained by pre-
processing data with TuRF. For the realm of genetic studies, outside knowledge
can also be obtained from the numerous public databases available to geneti-
cists. Tools are being developed which integrate knowledge across these public
databases and generate information about relationships between genes and dis-
ease in the context of protein interactions [25]. Future work will also focus on
integrating multiple distinct expert knowledge types and sources. For the ACO

46 C.S. Greene, B.C. White, and J.H. Moore

metaheuristic the question arises, is it better to include all types of outside
knowledge in the same run in the same large pheromone updating rule, or is
it better to use a reinitialization strategy once convergence occurs that takes
advantage of different sources of expert knowledge in phases? Here we insert
the heuristic information into the pheromone updating rule. We have found that
given domain specific knowledge and an approach which takes advantage of this
knowledge, it is possible for an ACO strategy to succeed, even for a needle-in-a-
haystack problem. This indicates that ACO may be a useful wrapper for genome
wide analysis of common human diseases with a complex genetic architecture.

Acknowledgements. This work was supported by NIH grants LM009012 and
AI59694. The authors would like to thank Chantel Sloan, Anna Tyler and Ryan
Urbanowicz for their careful reading of the manuscript.

References

1. Freitas, A.A.: Understanding the crucial role of attribute interaction in data min-
ing. Artif. Intell. Rev. 16(3), 177–199 (2001)

2. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic
Algorithms. Kluwer Academic Publishers, Norwell (2002)

3. Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to
common human diseases. Human Heredity 56, 73–82 (2003)

4. The International HapMap Consortium: A haplotype map of the human genome.
Nature 437(7063), 1299–1320 (2005); 10.1038/nature04226

5. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Tech-
nical report 91-016, Dipartimento di Elettronica e Informatica, Politecnico di Mi-
lano (1991)

6. Parpinelli, R., Lopes, H., Freitas, A.: An Ant Colony Based System for Data Min-
ing: Applications to Medical Data. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pp. 791–797 (2001)

7. Moore, J.H., White, B.C.: Genome-wide genetic analysis using genetic program-
ming: The critical need for expert knowledge. Genetic Programming Theory and
Practice IV (2007)

8. White, B.C., Gilbert, J.C., Reif, D.M., Moore, J.H.: A statistical comparison of
grammatical evolution strategies in the domain of human genetics. In: Proceedings
of the IEEE Congress on Evolutionary Computing, pp. 676–682 (2005)

9. Moore, J.H., White, B.C.: Exploiting expert knowledge in genetic programming
for genome-wide genetic analysis. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K.,
Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193,
pp. 969–977. Springer, Heidelberg (2006)

10. Greene, C.S., White, B.C., Moore, J.H.: An expert knowledge-guided mutation op-
erator for genome-wide genetic analysis using genetic programming. In: Rajapakse,
J.C., Schmidt, B., Volkert, L.G. (eds.) PRIB 2007. LNCS (LNBI), vol. 4774, pp.
30–40. Springer, Heidelberg (2007)

11. Moore, J.H., White, B.C.: Tuning relieff for genome-wide genetic analysis. In: Mar-
chiori, E., Moore, J.H., Rajapakse, J.C. (eds.) EvoBIO 2007. LNCS, vol. 4447, pp.
166–175. Springer, Heidelberg (2007)

ACO for Genome-Wide Genetic Analysis 47

12. Moore, J.H.: Computational analysis of gene-gene interactions using multifactor
dimensionality reduction. Expert Review of Molecular Diagnostics 4(6), 795–803
(2004)

13. Moore, J.H.: Genome-wide analysis of epistasis using multifactor dimensionality
reduction: feature selection and construction in the domain of human genetics. In:
Knowledge Discovery and Data Mining: Challenges and Realities with Real World
Data. IGI (2007)

14. Moore, J.H., Gilbert, J.C., Tsai, C.T., Chiang, F.T., Holden, T., Barney, N., White,
B.C.: A flexible computational framework for detecting, characterizing, and inter-
preting statistical patterns of epistasis in genetic studies of human disease suscep-
tibility. Journal of Theoretical Biology 241(2), 252–261 (2006)

15. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F.,
Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions
among estrogen metabolism genes in sporadic breast cancer. American Journal of
Human Genetics 69, 138–147 (2001)

16. Wilke, R.A., Reif, D.M., Moore, J.H.: Combinatorial pharmacogenetics. Nature
Reviews Drug Discovery 4, 911–918 (2005)

17. Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Machine
Learning: Proceedings of the AAA 1992 (1992)

18. Kononenko, I.: Estimating attributes: Analysis and extension of relief. In: Machine
Learning: ECML-1994, vol. 94, pp. 171–182 (1994)

19. Robnik-Sikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff
and relieff. Mach. Learn. 53, 23–69 (2003)

20. Sokal, R.R., Rohlf, F.J.: Biometry: the principles and practice of statistics in bio-
logical research, 3rd edn. W. H. Freeman and Co., New York (1995)

21. Bullnheimer, B., Hartl, R., Strauss, C.: A new rank-based version of the ant system:
a computational study. Central European Journal for Operations Research and
Economics 7(1), 25–38 (1999)

22. Stützle, T., Hoos, H.: MAX-MIN Ant System and local search for the travel-
ing salesman problem. IEEE International Conference on Evolutionary Compu-
tation 1997, 309–314 (1997)

23. Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Generation Computer
Systems 16(8), 889–914 (2000)

24. Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource-
constrained project scheduling. IEEE Transactions on Evolutionary Computa-
tion 6(4), 333–346 (2002)

25. Gonzalez, G., Uribe, J.C., Tari, L., Brophy, C., Baral, C.: Mining gene-disease re-
lationships from biomedical literature: Weighting protein-protein interactions and
connectivity measures. In: Pacific Symposium on Biocomputing, vol. 12, pp. 28–39
(2007)

cAnt-Miner: An Ant Colony Classification

Algorithm to Cope with Continuous Attributes

Fernando E.B. Otero, Alex A. Freitas, and Colin G. Johnson

Computing Laboratory, University of Kent, Canterbury, UK
{febo2,A.A.Freitas,C.G.Johnson}@kent.ac.uk

Abstract. This paper presents an extension to Ant-Miner, named cAnt-
Miner (Ant-Miner coping with continuous attributes), which incorpo-
rates an entropy-based discretization method in order to cope with
continuous attributes during the rule construction process. By having the
ability to create discrete intervals for continuous attributes “on-the-fly”,
cAnt-Miner does not requires a discretization method in a preprocessing
step, as Ant-Miner requires. cAnt-Miner has been compared against Ant-
Miner in eight public domain datasets with respect to predictive accuracy
and simplicity of the discovered rules. Empirical results show that creat-
ing discrete intervals during the rule construction process facilitates the
discovery of more accurate and significantly simpler classification rules.

1 Introduction

Data mining is a multi-disciplinary field which aims to extract knowledge from
databases [1]. The data mining task addressed in this paper is the classification
task, where the goal is to predict the class of an example, given the values of
a set of attributes for that example. In essence, the classification task consists
of inducing a model from the data by observing relationships between predic-
tor attributes and classes, which can be used later to classify new examples.
The discovered knowledge is often represented in the form of IF (conditions)
THEN (class) classification rules, which has the advantage of representing a
comprehensible model to the user [2].

In the context of discovering classification rules in data mining, Ant Colony
Optimization (ACO) [3] algorithms have been successfully applied to different
classification problems [4]. Ant-Miner [5,6], the first implementation of an ACO
algorithm for the classification task of data mining, has been shown to be com-
petitive with the well-known C4.5 [7] and CN2 [8] classification-rule discovery
algorithms.

Although real-world classification problems are often described by nominal
(with a finite number of nominal or discrete values) and continuous (real-valued)
attributes, Ant-Miner has the limitation of being able to cope only with nominal
attributes in its rule construction process. In order to overcome this limitation,
a commonly used approach is to discretize continuous attributes in a prepro-
cessing step. In essence, a discretization method aims at converting continuous
attributes into nominal (discrete) attributes by creating interval boundaries (e.g.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 48–59, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

cAnt-Miner: An Ant Colony Classification Algorithm 49

a continuous attribute age might be discretized into “0−14”, “15−24”, “25−64”
and “65+” intervals). A potential disadvantage of this approach is that less in-
formation will be available to the classifier – since the discrete intervals have a
coarser granularity – which can have a negative impact on the accuracy of the
discovered knowledge.

This paper proposes an extension to Ant-Miner, named cAnt-Miner (Ant-
Miner coping with continuous attributes), which incorporates an entropy-based
discretization method in order to cope with continuous attributes during the rule
construction process. cAnt-Miner has the ability to create discrete intervals for
continuous attributes “on-the-fly”, taking advantage of all continuous attributes
information, rather than requiring that a discretization method be used in a
preprocessing step. Note that, although many Ant-Miner variations have been
proposed – as reviewed in [4] – none of them can discretize attributes “on-the-fly”
(during the rule construction process) as proposed in this paper.

The remainder of this paper is organized as follows. Section 2 presents an
overview of Ant-Miner. Section 3 discusses some Ant-Miner variations proposed
in the literature. In Section 4, the proposed cAnt-Miner algorithm is introduced.
Section 5 presents the computational results evaluating cAnt-Miner. Finally,
Section 6 presents the conclusion of the paper and future research directions.

2 Ant-Miner Overview

The goal of Ant-Miner is to extract IF-THEN classification rules of the form IF
(term1) AND (term2) AND ... AND (termn) THEN (class) from data. Each
term in the rule is a triple (attribute, operator, value), where operator represents
a relational operator and value represents a value of the domain of attribute (e.g.
Sex = male). The IF part corresponds to the rule’s antecedent and the THEN
part is the rule’s consequent, which represents the class to be predicted by the
rule. An example that satisfies the rule’s antecedent will be assigned the class
predicted by the rule. As the original Ant-Miner only works with nominal (cate-
gorical or discrete) attributes, the only valid relational operator is “=” (equality
operator). Continuous attributes need to be discretized in a preprocessing step.

Algorithm 1 presents a high level pseudo-code of Ant-Miner [6]. In essence,
Ant-Miner works as follows. It starts with an empty rule list and iteratively
adds one rule at a time to that list while the number of uncovered training
examples is greater than a user-specified maximum value (while loop). In order
to construct a rule, a single ant starts with an empty rule (no terms in its
antecedent) and adds one term at a time to the rule antecedent (repeat-until
loop). It probabilistically chooses a term to be added to the current partial rule
based on the values of the amount of pheromone (τ) and a problem-dependent
heuristic information (η) associated with the term. A pheromone value and a
heuristic value are associated with each possible term – i.e. each possible triple
(attribute, operator, value). As usual in ACO, heuristic values are fixed (based
on an information theoretical measure of the predictive power of the term), while
pheromone values are iteratively updated based on the quality of the rules built

50 F.E.B. Otero, A.A. Freitas, and C.G. Johnson

Algorithm 1. High level pseudo-code of Ant-Miner
begin Ant-Miner

training set ← all training examples;
rule list ← ∅;
while |training set| > max uncovered training examples do

τ ← initializes pheromones;
rulebest ← ∅;
i ← 1;
repeat

rulei ← CreateRule();
ComputeConsequent(rulei);
Prune(rulei);
UpdatePheromones(τ, rulei);
if Q(rulei) > Q(rulebest) then

rulebest ← rulei;
end
i ← i + 1;

until i ≥ max number rules OR convergence ;
rule list ← rule list ∪ rulebest;
training set ← training set \ CorrectlyCoveredExamples(rulebest);

end

end

by the ants. The ant keeps adding a term to the partial rule until any term
added to the antecedent would make the rule cover less training examples than
a user-specified threshold, which would make the rule too specific and unreliable,
or all attributes have already been used by the ant. The latter rule construction
stopping criterion is necessary because an attribute can only occur once in the
antecedent of a rule, in order to avoid inconsistencies such as (Sex = male)
AND (Sex = female). Once this process of rule construction has finished, first
the rule constructed by the ant is pruned to remove irrelevant terms from the
rule antecedent. Then, the consequent of the rule is chosen to be the class value
most frequent among the set of training examples covered by the rule. Finally,
pheromone trails are updated and another ant starts to construct a new rule.
The process of constructing a rule is repeated until a user-specified number of
rules has been reached, or the current ant has constructed a rule that is exactly
the same as rules constructed by a predefined number of previous ants, which
works as a rule convergence test. The best rule, based on a quality measure
Q, found along this iterative process is added to the rule list and the correctly
classified training examples are removed from the training set. An example is
considered correctly classified if it satisfies the rule antecedent and has the class
predicted by the rule consequent.

In [5,6], Ant-Miner was compared against the well-known C4.5 [7] and CN2 [8]
rule induction algorithms. In terms of predictive accuracy, the results have shown
that Ant-Miner is competitive with both C4.5 and CN2. The biggest difference
found was related to the complexity of the discovered rules. Ant-Miner was able

cAnt-Miner: An Ant Colony Classification Algorithm 51

to find significant simpler rules, both in terms of a smaller number of rules and
a smaller number of terms (conditions) per rule, than C4.5 and CN2.

3 Related Work on Ant-Miner Variations

Following the introduction of Ant-Miner, several variations were proposed [4].
They involve different pruning and pheromone update procedures, new rule qual-
ity measures and heuristic functions, discovering fuzzy classification rules and
discovering rules for multi-label classification problems.

Chan & Freitas [9] have proposed a new rule pruning procedure for Ant-Miner.
They have observed that the original Ant-Miner’s pruning procedure processing
time increases significantly with a large increase in the number of attributes,
which affects the scalability of the method. To overcome this limitation, it was
proposed a new prune procedure that led to the discovery of simpler (shorter)
rules and improved the computational time in datasets with a large number of
attributes.

Martens et al. [10] have introduced a new classification algorithm, named
AntMiner+, based on Ant-Miner. It differs from the original Ant-Miner imple-
mentation in several aspects. Firstly, it makes a distinction between nominal and
ordinal attributes. Nominal attributes have unordered nominal values (e.g. gen-
der has unordered values “male” and “female”). Ordinal attributes are those cat-
egorical or discrete attributes whose values are ordered (e.g “0”, “1”, “2”, “3” and
“4 or more”, which may be the domain of an attribute that represents the number
of children in a family). Instead of creating a pair (attribute = value) for each
value of an ordinal attribute, AntMiner+ creates two types of bounds that repre-
sent the interval of values to be chosen by the ants. The first type represents the
lower bound of the interval and takes (attribute ≥ valuei) form, and the second
type represents the upper bound of the interval and takes (attribute ≤ valuej)
form (valuei and valuej are values from the attribute domain). Moreover, it
employs different pheromone initialization and update procedures based on the
MAX −MIN ant system (MMAS) [11]. For additional details refer to [10].

Galea & Chen [12] presented an ACO approach for the induction of fuzzy
rules, named FRANTIC-SRL (Fuzzy Rules from ANT-Inspired Computation
- Simultaneous Rule Learning). FRANTIC-SRL runs several ACO algorithm
instances in parallel, where each instance generates rules for a particular class.
By having separate ACO instances, separate pheromone matrices are maintained
for each class.

Swaminathan [13] proposed an extension to Ant-Miner which enables interval
conditions in the rules. While it still uses a discretization method to define dis-
crete intervals for continuous attributes in a preprocessing step, the continuous
values are not replaced in the dataset. For each discrete interval, a node (e.g.
humidity ≤ 75) is added to the construction graph and the pheromone value
associated to the node is calculated using a mixed kernel probability density
function (PDF).

52 F.E.B. Otero, A.A. Freitas, and C.G. Johnson

Chan & Freitas [14] proposed a new ACO algorithm, named MuLAM (Multi-
Label Ant-Miner) for the multi-label classification task. In a nutshell, MuLAM
differs from the original Ant-Miner in three aspects. First, a classification rule
can predict one or more class attributes, as in multi-label classification problems
an example can belong to more than one class. Second, at each iteration, each
ant constructs a set of rules instead of a single rule as in the original Ant-
Miner. Third, it uses a pheromone matrix for each class attribute and pheromone
updates only occur on the matrix of class attributes that occur in the rule’s
consequent.

Despite the Ant-Miner variations proposed in the literature, to the best of
our knowledge, extending Ant-Miner to discretize continuous attributes “on-
the-fly” (during the rule construction process) is a research topic that has not
yet been explored. We believe that extending Ant-Miner to cope with continuous
attributes “on-the-fly” would enhance its predictive accuracy given that the use
of a discretization method in a preprocessing step can lead to loss of predictive
power – since less information is available to the classication algorithm.

4 Handling Continuous Attributes in Ant-Miner

There are numerous discretization methods for handling continuous attributes
available in the literature [15,16]. These methods can be grouped according to
different discretization strategies. Methods that make use of the examples’ class
information are referred to as supervised, while unsupervised methods do not use
the class information (supervised vs. unsupervised). Global methods use the en-
tire example space to define discrete intervals while local methods use a subset of
example space (global vs. local). One can also categorize discretization methods
as static, if they are applied in a data preprocessing phase before the classifi-
cation algorithm is run, or as dynamic, if they are applied while a classifier is
being built (static vs. dynamic). For a more detailed overview of different kinds
of discretization methods, see [15,16].

As mentioned in the previous section, the current version of Ant-Miner does
not cope with continuous attributes directly. It requires continuous attributes to
be discretized in a preprocessing step. In the experiments reported in [5,6], the
discretization method C4.5-Disc [17] was applied prior to Ant-Miner in a data
preprocessing phase. In essence, the C4.5-Disc discretization method consists in
using the well-known C4.5 [7] decision tree induction algorithm to create discrete
intervals for each continuous attribute separately. For each continuous attribute,
C4.5 is applied to a reduced dataset which only contains the attribute to be
discretized and the class attribute. After the decision tree which contains binary
splits referring only to the single attribute being discretized is built, each path
of the tree from a leaf node to the root node corresponds to a discrete interval.
For further details, refer to [17]. The C4.5-Disc discretization method would be
categorized as supervised, global and static based on the criteria described above.

In this paper, we propose a dynamic discretization method which is incor-
porated into Ant-Miner’s rule construction process and consequently avoids the

cAnt-Miner: An Ant Colony Classification Algorithm 53

need for running a discretization method in a preprocessing step. First of all,
we have extended the original Ant-Miner to support continuous attributes in
the rule antecedent taking the form of (attributec < value) or (attributec ≥
value), where value is a value belonging to the domain of the continuous at-
tribute attributec. Furthermore, we incorporated an entropy-based discretiza-
tion method into Ant-Miner’s rule construction process to dynamically create
thresholds on continuous attributes domain values. The entropy measure, which
is derived from information theory and often used in data mining, quantifies the
impurity of a collection of examples and it is the same measure used as heuris-
tic function in Ant-Miner. Details of the proposed Ant-Miner extension, named
cAnt-Miner, are provided in the next sub-sections.

4.1 Construction Graph

The original Ant-Miner’s construction graph consists of a fully connected graph
in which for each nominal attribute ai and value vij (where ai is the i-th attribute
and vij is the j -th value belonging to the domain of ai), a node (ai = vij)
is added to the graph representing the termij used to create a classification
rule.

We have extended the construction graph to cope with continuous attributes
as follows. For each continuous attribute ai, we add a node (ai) to the graph
representing the termi. Then, the node (ai) is connected to all previous nodes
of the construction graph. It should be noted that at this point the continuous
values have not been discretized. The discretization occurs when an ant selects
a node that represents a continuous attribute to be added to its current partial
rule, as described in sub-section 4.3.

4.2 Heuristic Problem-Dependent Information

The heuristic value associated with each termij in Ant-Miner involves a measure
of entropy. In the case of nominal attributes, where every termij has the form
(ai = vij), the entropy for the attribute-value pair is computed as in equation
(1) – used in the original Ant-Miner:

entropy(ai = vij) ≡
k∑

c=1

−p(c | ai = vij) · log2 p(c | ai = vij) (1)

where p(c | ai = vij) is the empirical probability of observing class c conditional
on having observed ai = vij and k is the number of classes. Note that the entropy
is a measure of the impurity in a collection of examples, hence higher entropy
values correspond to more uniformly distributed classes and smaller predictive
power for the term in question.

However, the equation (1) cannot be straightforwardly applied to compute the
entropy of nodes representing continuous attributes (termi) since these nodes

54 F.E.B. Otero, A.A. Freitas, and C.G. Johnson

do not represent an attribute-value pair. In order to compute the entropy of
termi, we need to select a threshold value v to dynamically partition the con-
tinuous attribute ai into two intervals: ai < v and ai ≥ v. The best threshold
value is the value v that minimizes the entropy of the partition, given by:

epv(ai) ≡
|Sai<v|
|S| · entropy(ai < v) +

|Sai≥v|
|S| · entropy(ai ≥ v) (2)

where |Sai<v| is the total number of examples in the partition ai < v (partition
of training examples where the attribute ai has a value less than v), |Sai≥v|
is the total number of examples in the partition ai ≥ v (partition of training
examples where the attribute ai has a value greater or equal to v) and |S| is
the total number of training examples. After the selection of the threshold vbest,
the entropy of the termi corresponds to the minimum entropy value of the two
partitions and it is defined as:

entropy(termi) ≡ min (entropy(ai < vbest), entropy(ai ≥ vbest)) (3)

We select the lowest entropy value since it corresponds to the value associated
with the “purest” partition (the partition with more examples belonging to the
same class) and it represents the expected predictive power (quality) of the termi

(when termi is added to the rule). It should be noted that the entropy of every
termi – i.e. every term having a continuous attribute – is always the same as
the entropy value of every termij – every term representing an attribute-value
pair of a nominal attribute. Therefore, the entropy of all termi and termij are
computed as a preprocessing step to save computational time.

Concerning the computational complexity, the process of finding a threshold
value can be divided into two steps. First, the continuous attribute values have
to be sorted in order to facilitate the computation of the number of examples be-
longing to each candidate interval. The time complexity of this step is O(n log n),
where n is the number of examples under consideration. Second, the evaluation of
candidate threshold values has the complexity of O(n), where in this case n rep-
resents the number of candidate values to be evaluated. It should be noted that
not all candidate threshold values are evaluated, only those that form boundaries
between classes, as proposed by [18]. Therefore, the efficiency of the evaluation is
increased since less candidate threshold values need to be checked.

4.3 Rule Construction

As every term in the antecedent of a rule must be a triple (attribute, operator,
value), when an ant chooses a node that represents a continuous attribute ai

to add to its current partial rule, a relational operator and a threshold value
are selected as follows. First, the best threshold value for attribute ai is selected
as described in sub-section 4.2, subject to one restriction: only the examples
covered by the current partial rule are considered in the evaluation of threshold
values. Therefore, the selection of a threshold value is influenced by the terms
occurring in the current partial rule. This is what makes the proposed discretiza-
tion method a dynamic one, so that the choice of a threshold value is tailored

cAnt-Miner: An Ant Colony Classification Algorithm 55

to the current candidate rule. The only exception to this restriction is when the
current partial rule is empty. In those cases, all training examples are used in
the evaluation of threshold values, as given by equation (2).

Then, after selecting the threshold value vbest, a relational operator op is
selected based on the entropy values of the two partitions generated. If the par-
tition ai < vbest has a lower entropy, then the operator “<” (less-than operator)
is selected. If the partition ai ≥ vbest has a lower entropy, then the operator
“≥” (greater-equal operator) is selected. The operator selection has a bias of
selecting the more “pure” partition, given that lower entropy values are favored
over higher entropy values.

Once the threshold value vbest and the operator op are selected, a term in
the form of a triple (ai, op, vbest) is added to the ant’s current partial rule (e.g
age ≥ 25) and the rule continues to undergo the Ant-Miner’s rule construction
process.

4.4 Pheromone Updating

In the original Ant-Miner, every termij has an associated pheromone value which
undergoes the pheromone updating (increasing and decreasing) process. In sum-
mary, the pheromone updating process works as follows. The pheromone asso-
ciated with each termij occurring in the rule created by an ant is increased
in proportion to the quality of the rule in question. The pheromone associated
with each termij that does not occur in the rule is decreased, simulating the
pheromone evaporation effect observed in real ant colonies.

We have extended the original Ant-Miner’s pheromone updating process to
cope with termi (a term that represents a continuous attribute ai) as follows.
Since the pheromone value is associated with a continuous attribute ai, and not
the triple (ai, op, vbest) that is added to the current partial rule (see sub-section
4.3), the operator op and the threshold value vbest are discarded in the updating
process. In other words, there is a single entry for each continuous attribute ai

in the pheromone matrix, in contrast to multiple entries for nominal attributes,
which have an entry for every (ai, vij) pair (where ai is the i-th nominal attribute
and vij is the j -th value belonging to the domain of ai).

In the proposed cAnt-Miner, pheromone is still used to indicate the quality of
continuous attributes, but the actual choice of the threshold for each continuous
attribute is dynamically customized to each rule being constructed by the ants.
This effectively incorporates task-dependent knowledge into the algorithm, which
tends to increase its effectiveness.

5 Computational Results and Discussion

In order to evaluate the proposed cAnt-Miner algorithm, we have selected eight
datasets from the UCI Irvine machine learning repository [19] which had at least
one continuous attribute. Table 1 shows a summary of the selected datasets.
All experiments were conducted running a well-known 10-fold cross-validation

56 F.E.B. Otero, A.A. Freitas, and C.G. Johnson

procedure [2]. Since the original version of Ant-Miner requires the data to be
discretized in a preprocessing step, for each cross-validation fold we separately
discretized (using the C4.5-Disc discretization method [17]) the training set and
the created discrete intervals were used to discretize the test set. This was nec-
essary because, if we had discretized the entire dataset before creating the cross-
validation folds, the discretization method would have access to the test data,
which would have compromised the reliability of the experiments. Also, we re-
moved the duplicated instances (instances with the same values for all attributes)
from the resulting discrete dataset to avoid the possibility that a test set contains
an example that is the same as a training example.

We have compared the performance of cAnt-Miner against Ant-Miner, with
respect to predictive accuracy and simplicity of the discovered rule lists. In all
experiments, the user-defined parameters of cAnt-Miner and Ant-Miner were set
to: No of ants = 3000, min cases per rule = 5, max uncovered cases = 10 and
No rules converg = 10 (detailed explanation of these parameters can be found
in [6]). We have made no attempt to optimize these parameters for the datasets
used in the experiments. It should be noted that for cAnt-Miner, the original –
with nominal (or discrete) and continuous attributes – datasets were used, and
for Ant-Miner, the discrete – with only nominal (or discrete) attributes – datasets
were used. To make the comparison as fair as possible, the same cross-validation
folds were used in both datasets, with the exception that in the discrete datasets
we removed the duplicated examples.

Table 2 summarizes the results comparing the predictive accuracy of Ant-
Miner and cAnt-Miner. Each entry in the table shows the average value of
the accuracy obtained via the cross-validation procedure followed by the stan-
dard deviation. An entry in the cAnt-Miner column is shown in bold if, for the

Table 1. Summary of the datasets used in the experiments. The first column gives the
dataset name, the second and third columns give the number of nominal and continuous
attributes respectively, the forth column gives the number of classes, the fifth column
gives the number of instances in the original dataset and the sixth column gives the
number of instances in the discrete dataset (after the removal of duplicated examples).

Dataset Attributes Classes Size
Nominal Continuous Original Discrete

wdbc 0 30 2 569 366

crx 9 6 2 690 639

hepatitis 13 6 2 155 116

glass 0 9 7 213 119

ionosphere 0 34 2 350 292

wine 0 13 3 178 126

australian 8 6 2 690 637

heart 6 7 2 270 232

cAnt-Miner: An Ant Colony Classification Algorithm 57

Table 2. Predictive accuracy (mean ± standard deviation) of Ant-Miner and cAnt-
Miner after the 10-fold cross-validation procedure. An entry in the cAnt-Miner column
is shown in bold if, for the corresponding dataset, the accuracy achieved with cAnt-
Miner was significantly greater than the accuracy achieved with Ant-Miner for that
dataset – according to a two-tailed Student’s t-test with significance level α = 5%.

Dataset Ant-Miner cAnt-Miner

wdbc 93.27 ± 1.44 95.57 ± 0.55

crx 85.32 ± 1.26 85.56 ± 1.16

hepatitis 74.61 ± 2.80 84.89 ± 2.57

glass 51.48 ± 4.84 65.69 ± 2.59

ionosphere 90.68 ± 2.32 90.00 ± 1.49

wine 94.58 ± 2.51 95.14 ± 2.01

australian 85.52 ± 1.60 86.60 ± 1.46

heart 77.62 ± 3.27 79.27 ± 2.74

corresponding dataset, the accuracy achieved with cAnt-Miner was significantly
greater than the accuracy achieved with Ant-Miner for that dataset – according
to a two-tailed Student’s t-test with significance level α = 5%. In two datasets,
namely hepatitis and glass, cAnt-Miner was significantly more accurate than
Ant-Miner. Both Ant-Miner and cAnt-Miner achieved similar (with no signifi-
cant difference) accuracies in the remaining six datasets.

Table 3 summarizes the results concerning the simplicity of the discovered
rule lists, measured by the total number of terms (conditions) in all discovered
rules. Each entry in the table shows the average rule list size obtained via cross-
validation procedure followed by the standard deviation. An entry in the cAnt-
Miner column is shown in bold if, for the corresponding dataset, the rule list
discovered by cAnt-Miner was significantly simpler than the rule list discovered
by Ant-Miner for that dataset – according to a two-tailed Student’s t-test with
significance level α = 5%. Concerning the simplicity of the discovered rule lists,
cAnt-Miner discovered significantly simpler rule lists than Ant-Miner in six out
of eight datasets. In two datasets, namely crx and australian, both cAnt-Miner
and Ant-Miner discovered rule lists with similar simplicity.

The results obtained in the experiments can be summarized as follows. With
respect to predictive accuracy, cAnt-Miner was significantly more accurate than
Ant-Miner in the hepatitis and glass dataset. In the remaining six datasets, both
cAnt-Miner and Ant-Miner achieved similar accuracies. Hence, overall cAnt-
Miner was the most accurate algorithm for this set of eight datasets. Regarding
the simplicity of the discovered rule lists, in six out of eight datasets, cAnt-Miner
discovered rules significantly simpler than Ant-Miner’s rules. These results em-
pirically show that the proposed dynamic-discretization cAnt-Miner facilitates
the discovery of more accurate and significantly simpler classification rules when
compared to the static-discretization Ant-Miner.

58 F.E.B. Otero, A.A. Freitas, and C.G. Johnson

Table 3. Simplicity of the discovered rule list (mean ± standard deviation), measured
as total number of terms in all rules, of Ant-Miner and cAnt-Miner after the 10-fold
cross-validation procedure. An entry in the cAnt-Miner column is shown in bold if,
for the corresponding dataset, the rule list discovered by cAnt-Miner was significantly
simpler than the rule list discovered by Ant-Miner for that dataset – according to a
two-tailed Student’s t-test with significance level α = 5%.

Dataset Ant-Miner cAnt-Miner

wdbc 54.60 ± 5.16 9.40 ± 0.70

crx 25.60 ± 1.86 22.80 ± 2.32

hepatitis 26.10 ± 2.51 16.00 ± 0.95

glass 38.70 ± 1.52 33.30 ± 1.87

ionosphere 21.90 ± 3.08 10.20 ± 1.00

wine 8.80 ± 0.79 6.30 ± 0.45

australian 18.30 ± 1.16 21.40 ± 1.45

heart 20.40 ± 1.53 16.40 ± 0.76

An important remark is that there was no significant increase in the com-
putational time of cAnt-Miner by comparison with Ant-Miner’s time, since the
number of examples that need to be considered when a continuous attribute is
added to the rule decreases proportionally to the number of terms present in the
current partial rule (see sub-sections 4.2 and 4.3).

6 Conclusion and Future Work

This paper has presented an extension to Ant-Miner, named cAnt-Miner, which
copes with continuous attributes during the rule construction process. By hav-
ing the ability to create discrete intervals for continuous attributes “on-the-
fly”, cAnt-Miner does not require a discretization method in a preprocessing
step.

cAnt-Miner has been compared against Ant-Miner with respect to predic-
tive accuracy and simplicity of the discovered rule lists in eight public domain
datasets. Regarding predictive accuracy, cAnt-Miner significantly outperformed
Ant-Miner in two datasets. Regarding simplicity of the discovered rule lists,
cAnt-Miner found significantly simpler rule lists than Ant-Miner in six out of
eight datasets. Therefore, the results obtained by cAnt-Miner are promising.

As future research direction, it would be interesting to extend the entropy-
based discretization method used in the rule construction process to allow the
creation of intervals with both lower and upper bound values in the form vlower ≤
attribute ≤ vupper .

cAnt-Miner: An Ant Colony Classification Algorithm 59

References

1. Fayyad, U., Piatetsky-Shapiro, G., Smith, P.: From data mining to knowledge dis-
covery: an overview. In: Fayyad, U., Piatetsky-Shapiro, G., Smith, P., Uthurusamy,
R. (eds.) Advances in Knowledge Discovery & Data Mining, pp. 1–34. MIT Press,
Cambridge (1996)

2. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
4. Freitas, A., Parpinelli, R., Lopes, H.: Ant colony algorithms for data mining. In:

Encyclopedia of Info. Sci. & Tech., 2nd edn. (to appear, 2008)
5. Parpinelli, R., Lopes, H., Freitas, A.: An ant colony algorithm for classification rule

discovery. In: Abbass, H., Sarker, R., Newton, C. (eds.) Data Mining: a Heuristic
Approach, pp. 191–208. Idea Group Publishing (2002)

6. Parpinelli, R., Lopes, H., Freitas, A.: Data mining with an ant colony optimization
algorithm. IEEE Transactions on Evolutionary Computation 6(4), 321–332 (2002)

7. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco (1993)

8. Clark, P., Niblett, T.: The CN2 rule induction algorithm. Machine Learning 3(4),
261–283 (1989)

9. Chan, A., Freitas, A.: A new classification-rule pruning procedure for an ant colony
algorithm. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.)
EA 2005. LNCS, vol. 3871, pp. 25–36. Springer, Heidelberg (2006)

10. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:
Classification with ant colony optimization. IEEE Transactions on Evolutionary
Computation 11(5), 651–665 (2007)

11. Stützle, T., Hoos, H.: MAX-MIN ant system. Future Generation Computer Sys-
tems 16(8), 889–914 (2000)

12. Galea, M., Shen, Q.: Simultaneous ant colony optimization algorithms for learn-
ing linguistic fuzzy rules. In: Agraham, A., Grosan, C., Ramos, V. (eds.) Swarm
Intelligence in Data Mining, pp. 75–99. Springer, Heidelberg (2006)

13. Swaminathan, S.: Rule induction using ant colony optimization for mixed variable
attributes. Master’s thesis, Texas Tech University (2006)

14. Chan, A., Freitas, A.: A new ant colony algorithm for multi-label classification with
applications in bioinformatics. In: Proc. Genetic and Evolutionary Computation
Conference (GECCO-2006), pp. 27–34 (2006)

15. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Machine Learning: Proceedings of the Twelfth Int. Con-
ference on Artificial Intelligence, pp. 194–202. Morgan Kauffmann, San Francisco
(1995)

16. Liu, H., Hussain, F., Tan, C., Dash, M.: Discretization: An enabling technique.
Data Mining and Knowledge Discovery 6, 393–423 (2002)

17. Kohavi, R., Sahami, M.: Error-based and entropy-based discretization of continu-
ous features. In: Proceedings of the 2nd International Conference Knowledge Dis-
covery and Data Mining, pp. 114–119. AAAI Press, Menlo Park (1996)

18. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes
for classification learning. In: Thirteenth International Joint Conference on Artifical
Inteligence, pp. 1022–1027. Morgan Kaufmann, San Francisco (1993)

19. Asuncion, A., Newman, D.: UCI machine learning repository (2007),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

Finding Minimum Spanning/Distances Trees

by Using River Formation Dynamics�

Pablo Rabanal, Ismael Rodŕıguez, and Fernando Rubio

Dept. Sistemas Informáticos y Computación, Facultad de Informática
Universidad Complutense de Madrid, Madrid, Spain

prabanal@fdi.ucm.es, {isrodrig,fernando}@sip.ucm.es

Abstract. River Formation Dynamics (RFD) is an heuristic method
similar to Ant Colony Optimization (ACO). In fact, RFD can be seen as
a gradient version of ACO, based on copying how water forms rivers by
eroding the ground and depositing sediments. As water transforms the
environment, altitudes of places are dynamically modified, and decreas-
ing gradients are constructed. The gradients are followed by subsequent
drops to create new gradients, reinforcing the best ones. By doing so,
good solutions are given in the form of decreasing altitudes. We apply
this method to solve two NP-complete problems, namely the problems of
finding a minimum distances tree and finding a minimum spanning tree
in a variable-cost graph. We show that the gradient orientation of RFD
makes it specially suitable for solving these problems, and we compare
our results with those given by ACO.

1 Introduction

Ant Colony Optimization (ACO) [1,2,3] approaches provide algorithms based on
copying how (natural) ants find the shortest path from the colony to the nest.
In ACO a pheromone value is attached to each place, and ants probabilistically
tend to choose those edges where the ratio ‘pheromone trail at destination’/‘edge
cost’ is the highest. Alternatively, let us consider that this decision were based
on the gradient of trail values instead of on the trail values themselves. In par-
ticular, let us suppose that ants probabilistically tend to choose the movement
providing the highest ratio ‘difference of trails between the new place and the
current place’/‘edge cost’ (for instance, the more decrease, the higher probabil-
ity). Leaving aside by now the important question of how ants could iteratively
create paths of decreasing pheromone trails (which will be addressed later), what
are the differences between this gradient approach and the standard approach?

First, in the standard approach ants can be led by pheromone trails in such
a way that, after some movements, it is impossible not to repeat a node, i.e. a
local cycle is followed. When an ant finds that it cannot avoid to repeat a node, it
is either killed or reinserted at the origin node. In both cases, the computational
� Research partially supported by projects TIN2006-15578-C02-01, PAC06-0008-6995,

and MRTN-CT-2003-505121/TAROT.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 60–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Finding Minimum Spanning/Distances Trees by Using RFD 61

effort required to move it was useless. However, following a cycle is impossible in
the gradient approach because it would require an ever decreasing cycle, which
is contradictory. Second, let us note that in the standard approach, when an ant
finds a shorter path, it needs a lot of movements to convince other ants following
older well-reinforced paths to join the new path. Technically speaking, reinforcing
the new path until pheromone trails are higher than in older paths requires a lot
of subsequent steps. On the other hand, if the difference of trails is considered
then, when a shorter path is discovered, from this precise moment on its edges are
preferable in the overall to the edges of older paths. This is because the difference of
pheromone trails between the final destination and the origin is the same in these
paths (the origin and the destination are the same indeed), but the cost is lower
in the shorter path. So, the ratio ‘total difference of trails’/‘total cost’ is higher in
the shorter path. On the contrary, when a shorter path is found in the standard
approach, the edges of this path are not preferable yet (not even when considered
as a whole) because the amount of pheromones in its edges is still negligible.

Though adopting this alternative approach provides some advantages, it im-
mediately leads to the following question: If formed paths are not sequences
of high pheromone trails but sequences of decreasing pheronome trails, how
pheromone values must be changed after an ant moves? We can easily find an
answer to this question by giving the ant metaphor up and getting some inspi-
ration from another nature-based phenomenon: The river formation dynamics.
Let us consider that a water mass is unleashed at some high point. Gravity will
make it to follow a path down until it cannot go down anymore. In Geology
terms, when it rains in a mountain, water tries to find its own way down to
the sea. Along the way, water erodes the ground and transforms the landscape,
which eventually creates a riverbed. When a strong down slope is traversed by
the water, it extracts soil from the ground in the way. This soil is deposited
later when the slope is lower. Rivers affect the environment by reducing (i.e.
eroding) or increasing (i.e. depositing) the altitude of the ground. Let us note
that if water is unleashed at all points of the landscape (e.g., it rains) then the
river form tends to optimize the task of collecting all the water and take it to
the sea, which does not imply to take the shortest path from a given origin point
to the sea. Let us remark that there are a lot of origin points to consider (one
for each point where a drop fell). In fact, a kind of combined grouped shortest
path is created in this case. However, if water flows from a single point and no
other water source is considered, then the water tends to form an efficient way
to reduce the altitude (i.e., it tends to find the shortest path).

In [4] an algorithm based on these ideas called RFD (River Formation Dynam-
ics) was presented. In order to apply the previous scheme, ants are substituted
by drops and pheromone trails are replaced by altitudes. Drops tend to take
down slopes and they modify altitudes in the process. A classical benchmark
NP-complete problem, the Traveling Salesman Problem (TSP) [5,6], was consid-
ered, which required to adapt the general scheme to this particular problem. For
instance, since the general framework implicitly avoids that drops follow cycles,
a change was introduced to allow cycles involving all nodes. The experimental

62 P. Rabanal, I. Rodŕıguez, and F. Rubio

results were compared with those obtained by ACO for the same input graphs. It
was observed that the time required by RFD to find good solutions is in general
longer than the time required by ACO to find equivalent solutions, though so-
lutions provided by RFD outperform those given by ACO after some additional
time passes. The reasons for these differences lie in the fact that RFD develops
a deeper exploration of the graph (see [4] for details).

In this paper we adapt RFD to deal with two related problems. Given a cost-
evaluated graph, we consider (a) finding the minimum spanning tree, and (b)
finding the minimum distances tree, that is, a tree such that the addition of
distances from each node to a given exit node is minimal. The standard forms of
both problems do not require using heuristic methods because they can be poly-
nomially solved (e.g., by using Kruskal and Dijkstra algorithms, respectively).
However, some generalizations of both problems are NP-complete indeed. In this
paper we introduce the following generalization: Let us consider that the cost of
taking an edge e depends on the path followed so far. That is, if we traverse e
after following a path σ then the cost of adding e to the path is ce,σ; in general,
we have ce,σ 	= ce,σ′ for any other path σ′. As far as we known, this variant of
both problems has not been studied in the literature. Thus, in order to properly
consider both problems under this assumption, a proof of their NP-completeness
has been done (in [7] we polynomially reduce 3-SAT to each of them). Their ap-
plicability to computational problems will be discussed in subsequent sections.

Since both proposed problems consist in finding short paths, the character-
istics of RFD commented before (that is, the avoidance of local cycles and the
fast reinforcement of shorter paths) make it a suitable choice. Moreover, the Ge-
ology metaphor provides another characteristic that is important in this regard.
Note that the erosion process provides a method to punish inefficient paths as
well as to avoid blocked paths: If a path leads to a node that is lower than any
adjacent node (i.e., it is a blind alley) then the drop will deposit its sediment,
which will increase the altitude of the node. Eventually, this node will match the
altitude of its neighbors, which will avoid that other drops fall in this node. If
the ground reaches this level, other drops will be allowed to cross this node from
one adjacent node to another. Thus, paths will not be interrupted at this point.

We apply both RFD and ACO to solve the presented problems. In both prob-
lems, we observe that solutions given by ACO in the short term are better than
those given by RFD. However, after some additional time passes, the quality of
the solutions given by RFD surpasses the quality of the solutions given by ACO.
In fact, the general tendency of RFD to enable a deeper exploration of the ana-
lyzed graph remains in these cases. Let us remark that only some improvements,
out a big set of choices, have already been applied to the basic RFD scheme.
Thus, we think that these results are not only interesting but also promising.

The rest of the paper is structured as follows. Next we describe the behavior
of RFD. In Section 3 we formally define the problems we have considered in this
paper to analyze the performance of RFD. Next, in Section 4 we apply RFD and
ACO to solve both problems and we report some results. Finally, in Section 5
we present our conclusions and some lines of future work.

Finding Minimum Spanning/Distances Trees by Using RFD 63

2 River Formation Dynamics Method

In this section we introduce the basic structure of our method based on river for-
mation dynamics. The method works as follows. Instead of associating pheromone
values to edges, we associate altitude values to nodes. Drops erode the ground (they
reduce the altitude of nodes) or deposit the sediment (increase it) as they move.
The probability of the drop to take a given edge instead of others is proportional to
the gradient of the down slope in the edge, which in turn depends on the difference
of altitudes between both nodes and the distance (i.e. the cost of the edge). At the
beginning, a flat environment is provided, that is, all nodes have the same alti-
tude. The exception is the destination node, which is a hole. Drops are unleashed
at the origin node, which spread around the flat environment until some of them
fall in the destination node. This erodes adjacent nodes, which creates new down
slopes, and in this way the erosion process is propagated. New drops are inserted
in the origin node to transform paths and reinforce the erosion of promising paths.
After some steps, good paths from the origin to the destination are found. These
paths are given in the form of sequences of decreasing edges from the origin to the
destination.

Let us consider the applicability of RFD to the problems proposed in this
paper, previously sketched in the introduction (they are formally defined in the
next section). Both problems consist in finding a kind of combination of short
paths, in particular a tree. After executing RFD for some time, for each node we
take the edge with the highest gradient, and we discard the rest of edges. Due
to the avoidance of local cycles, the resulting graph must be a tree. As discussed
before, natural rivers do not tend to form solutions where each drop goes to
the sea through its shortest path, but they tend to form grouped solutions. This
allows RFD to implicitly deal with path conflicts, i.e. situations where, at a given
node, two drops coming from different origins have different preferences regarding
which edge should be taken next (because costs are different for each of them;
recall that we are considering that costs depend on previously followed paths).
In these situations, the tendency of RFD to form grouped solutions implicitly
leads to forming paths with a suitable cost tradeoff between available choices:
After some steps, the erosion will reinforce more strongly the slopes providing
the lowest overall cost. In addition, in the minimum spanning tree problem, the
tendency of drops to join each other is very appropriate: If drops tend to join the
main flow, instead of following their respective individual shortest paths, then
less edges are added to the tree and the tree cost is reduced.

The tendency of ACO methods to form grouped solutions is well known, so
similar arguments can be given in the case of RFD. In particular, ACO allows to
form short paths from a single node to a single destination. However, combining
some short paths departing from different points in such a way that a tree is
formed is not a natural task for ACO. Let us suppose that two paths coming
from different origins join at a given node and then continue together.1 Ants
coming from a departure node can be confused by pheromone trails and go on

1 That is, the converge area reminds the form of a ‘Y’ letter.

64 P. Rabanal, I. Rodŕıguez, and F. Rubio

to the other departure node, instead of following to the destination node. Solving
this problem requires to use some artificial methods (e.g., using different types of
pheromones, using directed pheromones, associating ants to specific areas, etc).
On the contrary, edge gradients formed by RFD are intrinsically directed, and
their direction naturally leads to the destination node. This eases the task of
constructing trees in RFD. Interestingly, we can adapt RFD to the minimum
distances tree problem just by changing a parameter: If we reduce the erosion
caused by high flows, then the incentive of drops to join each other is partially
reduced, and thus each drop tends to follow its own shortest path. For instance,
we can achieve this effect by changing the erosion rules in such a way that, if n
drops traverse an edge, then they make the effect of e.g. a single drop. In this
case, grouped paths are promoted by the method only when they are required
to solve path conflicts. Moreover, by considering intermediate erosion effects, we
can construct trees partially fitting into the objectives of both problems (i.e., a
combination of minimum spanning tree and minimum distances tree). This may
be a suitable choice for several optimization problems.2

2.1 Basic Algorithm

The basic scheme of the RFD algorithm follows:

initializeDrops()

initializeNodes()

while (not allDropsFollowTheSamePath()) and (not otherEndingCondition())

moveDrops()

erodePaths()

depositSediments()

analyzePaths()

end while

The scheme shows the main ideas of the proposed algorithm. First, drops are
initialized (initializeDrops()), i.e., all drops are put in the initial node(s).
Next, all nodes of the graph are initialized (initializeNodes()). This consists
of two operations. On the one hand, the altitude of the destination node is fixed
to 0. In terms of the river formation dynamics analogy, this node represents the
sea, that is, the final goal of all drops. On the other hand, the altitude of the
remaining nodes is set to some equal value.

The while loop of the algorithm is executed until either all drops find the same
solution (allDropsFollowTheSamePath()), that is, all drops departing from the
same initial nodes traverse the same sequences of nodes, or another alternative
finishing condition is satisfied (otherEndingCondition()). This condition may
be used, for example, for limiting the number of iterations or the execution
time. Another choice is to finish the loop if the best solution found so far is not
surpassed during the last n iterations.
2 For instance, we design a subway network to carry citizens from different areas to the

downtown in such a way that (a) the time spent by citizens to arrive to the downtown
is minimized (i.e., we need a minimum distances tree), and (b) the expenses required
to build tunnels are minimized (i.e., we need a minimum spanning tree).

Finding Minimum Spanning/Distances Trees by Using RFD 65

The first step of the loop body consists in moving the drops across the nodes of
the graph (moveDrops()) in a partially random way. The following transition rule
defines the probability that a drop k at a node i chooses the node j to move next:

Pk(i, j) =

�
decreasingGradient(i,j)�

l∈Vk(i) decreasingGradient(i,l)
if j ∈ Vk(i)

0 if j 	∈ Vk(i)
(1)

where Vk(i) is the set of nodes that are neighbors of node i that can be visited by
the drop k and decreasingGradient(i,j) represents the negative gradient between
nodes i and j, which is defined as follows:

decreasingGradient(i, j) =
altitude(j) − altitude(i)

distance(i, j)
(2)

where altitude(x) is the altitude of the node x and distance(i,j) is the length of the
edge connecting node i and node j. Note that, at the beginning of the algorithm,
the altitude of all nodes is the same, so

∑
l∈Vk(i)

decreasingGradient(i, l) is 0.
In order to give a special treatment to flat gradients, we modify this scheme as
follows: The probability that a drop moves through an edge with 0 gradient is set
to some (non null) value. This enables drops to spread around a flat environment,
which is mandatory, in particular, at the beginning of the algorithm.

In fact, going one step further, we also introduce this improvement: We let
drops climb increasing slopes with a low probability. This probability will be
inverse proportional to the increasing gradient, and it will be reduced during
the execution of the algorithm by using a similar method to the one used in
Simulated Annealing (see [8,9]). This new feature improves the search of good
paths. Let us note that allowing climbing up gradients does not invalidates the
argument that local cycles are avoided in practice in our method: After following
a sequence of down gradients, completing a cycle requires to climb up all the
altitude lost so far, and the probability of climbing a big up gradient is negligible.

In the next phase (erodePaths()) paths are eroded according to the move-
ments of drops in the previous phase. In particular, if a drop moves from node
A to node B then we erode A. That is, the altitude of this node is reduced de-
pending on the current gradient between A and B. In particular, the erosion is
higher if the down slope between A and B is high. If the edge is flat or increasing
then a small erosion is performed. The altitude of the final node (i.e., the sea)
is never modified and it remains equal to 0 during all the execution.

Once the erosion process finishes, the altitude of all nodes of the graph is slightly
increased (depositSediments()).The objective is to avoid that, after some itera-
tions, the erosionprocess leads to a situationwhere all altitudes are close to 0,which
would make gradients negligible and would ruin all formed paths. In fact, we also
enable drops to deposit sediment in nodes. This happens when all movements avail-
able for a drop imply to climb an increasing slope and the drop fails to climb any
edge (according to the probability assigned to it). In this case, the drop is blocked
and itdeposits the sediments it transports.This increases the altitudeof the current
node. The increment is proportional to the amount of cumulated sediment.

Finally, the last step (analyzePaths()) studies all solutions found by drops
and stores the best solution found so far.

66 P. Rabanal, I. Rodŕıguez, and F. Rubio

3 Formal Problem Definition

In this section we formally define the problems that will be addressed in Section 4
by means of RFD and ACO. We assume that the cost of a path of edges e1, . . . , en

from a given origin node o to a given destination node d depends on the evolution
of a variable through the path. Initially, a value vo is assigned to this variable
at node o. Then, the cost added to the path due to the inclusion of edge e1

is an amount depending on vo. After traversing e1, the value of the variable is
updated to a new value v1. Next, the cost of adding e2 to the path depends on
v1. After taking e2, the value of the variable is updated again, and the process
continues so on until we obtain the whole cost of the path e1, . . . , en.

We can define a variable-cost graph by attaching some information to a stan-
dard graph. Let us consider a set of origin nodes (in particular, this set could
include all nodes of the graph). Then, (1) we assign an initial value to each origin
node; (2) we assign a cost function to each edge. Depending on the value of the
variable just before traversing the edge, taking the edge adds a different cost;
and (3) we assign a transformation function to each edge. Given the value of the
variable before traversing the edge, it returns the new value after taking it.

Let us suppose that a variable-cost graph defined in these terms is given. On
the one hand, a minimum distances tree is a tree connecting each origin node
with the destination node in such a way that the addition of distances from
each origin node to the destination is minimal. Since the returned solution is
a tree, paths departing from different origin nodes could share some edges (in
particular, different sequences of edges could share some suffixes). Let us note
that, in general, the cost of a shared edge is different for each path because the
value of the variable when the edge is reached may be different for each path. On
the other hand, a minimum spanning tree is a tree connecting all origin nodes
with the destination node in such a way that the addition of costs of edges is
minimal. In this case, the cost of an edge e in a tree t is computed as follows.
Let us consider all the paths of t connecting an origin node with the destination
node and including edge e. The cost of e in t is the average of the cost of e for
all of these paths. Let us note that, in both problems, trees are not required to
include all nodes from the original graph, but only those actually used to connect
origin nodes to the destination node. In particular, if all nodes are considered
origin nodes then the resulting tree must include all nodes indeed.

Definition 1. A variable-cost graph is a tuple G = (N, O, d, V, A, E) where:

– N is the set of nodes,
– O ⊆ N is the set of origin nodes,
– d is the destination node,
– V = {v1, . . . , vn} is a finite set of values,
– A : O −→ V is the initial value function, that is, a function assigning an

initial value to each origin node.
– E is the set of edges. Each edge e ∈ E is a tuple (n1, n2, C, T) where n1, n2 ∈

N are the origin and destination nodes, respectively, and

Finding Minimum Spanning/Distances Trees by Using RFD 67

• C : V −→ IN is the cost function of e. Given a value in V denoting the
current value of the variable, it returns the cost of traversing e.

• T : V −→ V is the transformation function of e. Given the current value
of the variable, it returns the new value assigned to the variable if e is
traversed.

Paths are sequences of edges departing at an origin node and arriving to the
destination node. Formally, a path of G is a sequence of edges σ = (e1, . . . , ek)
with ei = (ni, n

′
i, Ci, Ti) ∈ E for all 1 ≤ i ≤ k such that n1 ∈ O, n′

k = d, and for
all 1 ≤ i ≤ k − 1 we have n′

i = ni+1. The cost of σ, denoted by c(σ), is equal to

C1(A(n1))+C2(T1(A(n1)))+C3(T2(T1(A(n1))))+. . .+Ck(Tk−1(. . . (T2(T1(A(n1)))) . . .))

The term denoting the cost of traversing ei in the previous expression, that is
Ci(Ti−1(. . . (T2(T1(A(n1)))) . . .)), will be denoted by cei(σ). In a notation abuse,
we will write e ∈ σ if e = ei for some 1 ≤ i ≤ k.

We say that G′ = (N ′, O, d, V, E′, A) with N ′ ⊆ N and E′ ⊆ E is a tree of G
if for all o ∈ O there exists a single path σ = (e1, . . . , ek) of G′ departing from o,
that is, such that e1 = (o, n, C, T) for some n, C, T . For each o ∈ O, we denote
by σo the unique path of G′ departing from o.

The distances cost of G′, denoted by dc(G′), is equal to
∑

o∈O c(σo). The span-
ning cost of G′, denoted by sc(G′), is equal to

∑
e′∈E′

{ce′ (σo)|o∈O,e′∈σo}
|{ce′(σo)|o∈O,e′∈σo}| . ��

Now we are provided with all the needed machinery to formally define the prob-
lems considered in this paper.

Definition 2. The problem of the minimum distances tree for a variable-cost
graph, denoted by MDV, is stated as follows: Given a variable-cost graph G and a
natural number K ∈ IN, is there any tree G′ of G such that dc(G′) ≤ K?

The problem of the minimum spanning tree for a variable-cost graph, denoted
by MSV, is stated as follows: Given a variable-cost graph G and a natural number
K ∈ IN, is there any tree G′ of G such that sc(G′) ≤ K? ��

The previous problems generalize the classical minimum spanning tree and the
minimum distances tree problems to the case where the cost of traversing each
edge depends on the path traversed before taking the edge. The past path is
abstracted by the value of the variable, which particularizes the cost of each
edge for each path. Let us note that, in formal terms, we do not need to consider
several variables in the problem definition because the dependence on past paths
can be denoted by a using a single variable. Though several variants of the mini-
mum spanning tree and the minimum distances tree problems have been studied
in the literature, as far as we are concerned the variant problems proposed in
this paper have not been considered. Hence, their properties must be analyzed.
A proof of the NP-completeness of both problems is presented in [7].

As a matter of fact, the proposed generalization of both problems increases
their applicability to new interesting scenarios. In fact, we recently came across
these problems because we were constructing some testing derivation algorithms
(for an introduction to Formal Testing Techniques, see e.g. [10]). Typically, the

68 P. Rabanal, I. Rodŕıguez, and F. Rubio

goal of a testing methodology is to interact with the analyzed system so that all
system states are reached at least once. If previous system configurations can be
restored, then we can explore a part of the system, then go back to a previously
traversed point, and next go on through a different way. Thus, the problem of
reaching all states consists in creating a tree embracing all states. Since the time
required to go from state s to state s′ depends on the previous activities of the
system (available resources, values of variables, etc), composing the optimal tree
reaching all states at least once requires taking past activities into account. We
can use a variable-cost graph to denote how the execution time of each activity
depends on the current values of variables. Thus, if we assume that previous
configurations can be restored then finding a tree allowing to reach all states
in minimum time is similar to solving MSV for this graph. In fact, there exists
several related testing problems whose basic structure is the same.

Next we consider an applicability example of MDV. Let us consider that a local
area network (LAN) is constructed on top of a given existing networking infras-
tructure. The transmission cost of a given connection (i.e. edge) depends on the
kind of information being transmitted (e.g., low connections are unacceptable for
a real-time video stream, but may be suitable for low priority packets). Besides,
the kind of information being transmitted depends on the kind of sender ma-
chine. Thus, a variable-cost graph can be used to define communication costs in
the existing infrastructure. Let us suppose that we want to design a networking
tree allowing to communicate all nodes with a central dispatcher in such a way
that average communication costs are minimized. Finding this tree consists in
solving MDV. Other applicability scenarios of MSV and MDV may be considered as
well (for instance, the subway design problem we briefly sketched before).

4 Applying RFD and ACO to MDV and MSV

In this section we describe the application of our approach to solve MDV and MSV
and we report some experimental results. We compare the results found by using
ACO methods and the solutions found by using our method. All the experiments
were performed in an Intel Core Duo T7250 processor with 2.00 GHz.

We present the results obtained when MSV is solved by both methods. In the
case of RFD, we have directly applied the method presented in Section 2, while
in the case of ACO we have used an implementation inspired on [11]. Three
randomly generated variable-cost graphs with 100, 200, and 300 nodes were con-
sidered. In these graphs, each node is connected to approximately 40% of the rest
of nodes. Variables can take up to 10 possible values. Cost functions and trans-
formation functions attached to edges are randomly generated. In particular,
features such as monotonicity or injectivity are not required in these functions.
Figure 1 shows the results of an experiment where the input of both algorithms
was the graph with 100 nodes. The graphic shows the cost of the solution found
by each algorithm for each execution time. Analogously, Figure 2 contains the
results obtained using the graph with 200 nodes. In both cases, figures show the
evolution of the algorithms in a single execution. The basic shape shown in both

Finding Minimum Spanning/Distances Trees by Using RFD 69

Fig. 1. Results for a randomly generated variable-cost graph with 100 nodes

figures is also obtained with the 300 nodes graph. In order to report solutions
that are not biased by a single execution, each algorithm was executed ten times
for each of the graphs. The following table summarizes the average and variance
of the solutions found by each method.

Graph size Average RFD Average ACO Variance RFD Variance ACO
100 nodes 372.76 390.56 6.5824 4.9344
200 nodes 812.38 881.03 7.3416 9.9101
300 nodes 1221.65 1263.83 41.6905 112.7221

The results presented in the previous table show that average solutions found by
the RFD method are 4%-8% better than the solutions found by ACO. Moreover,

Fig. 2. Results for a randomly generated variable-cost graph with 200 nodes

70 P. Rabanal, I. Rodŕıguez, and F. Rubio

the variance is also lower in our algorithm than in the ACO algorithm, with the
only exception of the smallest graph.

The comparison results obtained for the MDV problem are basically the same
as in the case of MSV (they are not depicted due to lack of space). That is, RFD
obtains again better solutions, but solutions provided by ACO in short times are
better. Times required by RFD to surpass ACO solutions are similar as well.

We extract the following conclusions from the experimental results obtained
for both considered problems. We observe that ACO provides good solutions
earlier than RFD. However, after some additional time passes, the solutions
provided by RFD surpass the quality of those given by ACO. These features are
a consequence of the fact that the exploration of the graph is deeper in RFD
than in ACO, which in turn is due to the differences between both methods. Let
us note that drops are not endowed with memory of past movements but ants
are. The implicit avoidance of cycles allows us not to give drops any memory,
but ants do need it because they can fall in cycles indeed. In RFD, cycles are
avoided by formed gradients, but gradients are still weak during the first steps
of the algorithm. Thus, drops follow some cycles during these early steps. In the
long term, when gradients are stronger, drops avoid cycles without maintaining
any memory structure, which boosts their performance with respect to ACO.

5 Conclusions and Future Work

We have applied the River Formation Dynamics approach to the problems of
finding a minimum distances tree and finding a minimum spanning tree in
a variable-cost graph. Let us note that RFD is conceptually related to both
ACO methods and other gradient-oriented Evolutionary Computation (EC) ap-
proaches. On the one hand RFD is, in a rough sense, a gradient-driven variant
of ACO. On the other hand, the gradient orientation of RFD reminds the way
methods like e.g. Hill Climbing (HC) or Genetic Algorithms (GA) traverse a
space of solutions by seeking for solutions with higher fitness. However, there
is a big difference between RFD and these methods. RFD modifies the points
of a given structure (a graph) by iteratively traversing and transforming these
points. In this way, the structure is iteratively transformed as well, and finally
the formed structure constitutes the returned solution. In HC and GA, the tra-
versed structure is the space of solutions itself, which is of exponential size in
general. Hence, only a small proportion of these points can be traversed. In these
cases, aiming at modifying this space is unfeasible.

There are other features of RFD that make it different from other EC ap-
proaches, specially ACO. The main ones are the mechanism of focalized punish-
ment of inefficient paths, the avoidance of local cycles, and the fast reinforcement
of shorter paths. These characteristics are a consequence of the natural tendency
of RFD to form paths that are intrinsically directed towards a given final destina-
tion. As commented in previous sections, these features are suitable for dealing
with the MDV and MSV problems. Interestingly, a simple parameter change allows
RFD to solve one of these problems or the other one.

Finding Minimum Spanning/Distances Trees by Using RFD 71

Since RFD is a young method, there is still a big free room for introducing both
general improvements and specific purpose variants. Out of a long list of choices,
we are specially interested in simulating the speed of the drops. Intuitively, when
a drop falls through a strong down slope, its speed is increased. This gives the
drop some kinetic energy allowing it climb up slopes later. Thus, the speed is
a kind of drop credit. In this way, a second derivative mechanism would be
introduced in RFD.

References

1. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part
B 26(1), 29–41 (1996)

2. Dorigo, M.: Ant Colony Optimization. MIT Press, Cambridge (2004)
3. Dorigo, M., Gambardella, L.: Ant colonies for the traveling salesman problem.

BioSystems 43(2), 73–81 (1997)
4. Rabanal, P., Rodŕıguez, I., Rubio, F.: Using river formation dynamics to design

heuristic algorithms. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G.,
Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 163–177. Springer, Heidelberg
(2007)

5. Gutin, G., Punnen, A.: The Traveling Salesman Problem and Its Variations.
Kluwer, Dordrecht (2002)

6. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

7. Rabanal, P., Rodŕıguez, I., Rubio, F.: MDV and MSV NP-completeness proof
(2008), http://kimba.mat.ucm.es/∼{}fernando/mdvmsv.pdf

8. Kirkpatrick Jr., S., Gelatt, C.D., Vecchi, M.: Optimization by Simulated Annealing.
Science 220(4598), 671 (1983)

9. Fleischer, M.: Simulated annealing: past, present, and future. In: Proceedings of
the 27th conference on Winter simulation, pp. 155–161 (1995)

10. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines:
A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

11. Bui, T., Zrncic, C.: An ant-based algorithm for finding degree-constrained mini-
mum spanning tree. In: GECCO, pp. 11–18. ACM Press, New York (2006)

http://kimba.mat.ucm.es/~{}fernando/mdvmsv.pdf

Gathering Multiple Robotic Agents

with Crude Distance Sensing Capabilities

Noam Gordon, Yotam Elor, and Alfred M. Bruckstein

Center for Intelligent Systems, CS Department
Technion — Israel Institute of Technology, Haifa, Israel

{ngordon,yotame,freddy}@cs.technion.ac.il

Abstract. In this follow-up to an ANTS2004 paper we continue to in-
vestigate the problem of gathering a swarm of multiple robotic agents
on the plane using very limited local sensing capabilities. In our pre-
vious work, we assumed that the agents cannot measure their distance
to neighboring agents at all. In this paper, we consider a crude range-
limited sensing capability that can only tell if neighboring agents are
either near or far. We introduce two new variants of our previously pro-
posed algorithm that utilize this capability. We prove the correctness of
our algorithms, and show that the newly added capability can improve
the performance of the algorithm significantly.

1 Introduction

The gathering problem is roughly defined as the problem of gathering multiple
agents on the plane into a point or a small region, within finite or finite expected
time. In some variants, it is sometimes also referred to as the problem of point
formation, convergence or rendezvous. In the emerging field of theoretical swarm-
robotic research, the gathering problem has been given increasing attention in
recent years. This follows a general increase in interest in swarm robotics, and,
in particular, what we feel as an increasing urge to attain more substantial
theoretical backing to this field which has been initially mostly experimental.
Being such a fundamental problem, a basis to many formation and consensus
problems, it is an ideal setting for theoretical exploration of swarm robotics.

Several theoretical works on this subject exist. Current approaches include
agreement on a meeting point with some unique geometrical property, assuming
unlimited visibility [1,2,3,4]; using a common compass [5,6]; cyclic pursuit [7,8,9];
and others [10,11,12,13,14]. Sugihara et al. suggested a simple way to fill a convex
shape, which is also useful for gathering [15].

These methods rely on strong assumptions about the agents: Some rely on
labeling (e.g., pursuit), some on common orientation, and many on infinite-
range visibility. Nearly all works rely on the agents’ ability to measure their
mutual distances. We focus on the problem under the ant-robotic paradigm,
which assumes anonymous, homogeneous, memoryless agents lacking common
knowledge and communication capabilities, and having only limited local sens-
ing. In previous works [16,17] we proposed gathering algorithms which do not

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 72–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Gathering Multiple Robotic Agents 73

utilize distance sensing at all. To our best knowledge, the gathering problem un-
der the ant-robotic model and without sensing distances has not been considered
elsewhere.

The initial inspiration and motivation for our work came from experiments
with real robots in our lab [18], made from LEGO parts and very simple sensors,
which are range-limited and do not provide usable distance measurements.

The algorithm proposed in [16] was validated in simulations which showed
that the agents always converge into a small dense cluster. The key property
which ensured the convergence, was that the algorithm maintains mutual visi-
bility. However, since the agents were not aware of their mutual distances, their
movement was quite conservative, in order to maintain visibility. As a result,
and as evidenced by our simulations, the convergence rate was slow. A formal
correctness proof of this algorithm currently remains an open problem. In [17] we
proposed a randomized variant of that algorithm, which we were able to prove,
yet its behavior in simulations was similar with regard to the convergence rate.

In this work we investigate whether adding a crude distance sensing capability
to the agents can help them gather more efficiently. We feel that this added
ability, done minimally, does not violate the ant-robotic paradigm. It is plausible
that robots will be able to tell near from far at the least. That’s exactly what
we give them, and the answer to our question is clearly affirmative.

In Sect. 2 we provide the basic definitions and the system model. In Sect. 3
we present and prove the termination of the main proposed algorithm. In Sect. 4
we present a variant of the model and the algorithm, which adds the capability
of collapsing into nearby agents. We present and discuss simulations of the al-
gorithms in Sect. 5, and conclude in Sect. 6. Most proofs were omitted due to
space constraints, and will be published in a forthcoming paper.

2 The System Model

2.1 Basic Definitions

The world consists of the infinite plane R
2 and n point agents living in it.

We adapt Suzuki et al.’s convenient way of modeling a system of asynchronous
agents [4], sometimes referred to as the semi-synchronous model: Time is a
discrete series of time steps t = 0, 1, In each time step, each agent may
be either active or inactive, having no control over the random scheduling of
its activity times. An active agent atomically senses its environment, performs
calculations, and optionally moves instantly to another point within a distance
σ (the maximum step length).

An agent is able to see other agents within distance V (the visibility radius
or range). However, it cannot measure its exact distance from them. Rather, it
can only tell if a visible agent is at either less or more than the near-visibility
distance r. We assume that 3r < V . There are no collisions. Several agents may
occupy the same point. All agents are memoryless, anonymous (indistinguishable
in their appearance) and homogenous (they lack any individuality or identity,
and perform the same algorithm).

74 N. Gordon, Y. Elor, and A.M. Bruckstein

In what follows, we use the following definitions and notations:

– Denote a closed disc of radius R centered at a point p by Bp(R);
– Denote the number of agents in the system by n.
– For an agent a, we also denote its position by a. The agent’s position after

moving (as described in the context) is denoted by a′;
– Agents at a distance r or less are nearby. Otherwise, they are far ;
– We term visibility between nearby agents near-visibility, and visibility be-

tween far agents far-visibility;
– Let b be an agent far-visible by agent a. The point on the line segment ab

at a distance r from a is the image of b with regard to a. It is denoted by b̃.
– Denote by F the subset of the agents which have far-visible neighbors. Denote

by CH(F) the convex hull of the set F .
– For ease of notation we shall use F also to denote the far-visibility graph,

whose nodes are the agents in F , and its edges are all far-visibility edges:
(a, b) ∈ F ⇐⇒ r < ‖a − b‖ ≤ V ;

2.2 Strong Asynchronicity

In Suzuki et al.’s original model, there are no assumptions regarding the activ-
ity schedule of the agents (except that no agent sleeps forever, i.e., each agent
is active an infinite number of times). In our opinion, this proved to be too
weak in the context of formation problems, as they could mostly achieve impos-
sibility results in their works. In [4], they proved that there are no algorithms
guaranteed to form shapes which are not purely symmetrical (e.g., perfect poly-
gons). The reason was that the agents might not be able to break symmetries
given certain schedules (e.g., if they happen to be synchronous). Perncipe et al.
achieved similar impossibility results using similar reasoning under their more
elaborate totally asynchronous model (See [19,20]), in which the agent activity
cycles are neither atomic nor instantaneous. These results are very interesting
in the context of computational swarm-robotic research, yet we feel that, in the
research of real autonomous swarm-robotic systems, this weakness is somewhat
artificial. Therefore, we revise the model by adding an assumption on the agent
scheduling, striving as we can to make it as minimal and generic as possible, and
reflect the natural asynchrony between autonomous robots. It is as follows:

Definition 2.1 (Strong Asynchronicity assumption). There exists a con-
stant ε > 0, such that for any subset S of the agents and in each time step t, the
probability that S will be the set of active agents is at least ε.

This assumption guarantees that any synchrony between robots will break in
finite expected time, since there is always a probability of at least ε that it will
break. More generally, the strong asynchronicity assumption makes us immune
to adversarial schedules and allows us to prove the termination of our algorithms
by construction, that is, if we show that there always exists a schedule that brings
us to a goal configuration, then it is guaranteed that the algorithm will terminate
in finite time. Let us formalize and generalize this idea in the following theorem.

Gathering Multiple Robotic Agents 75

Denote the state (or configuration) space by C, and the subset of goal configu-
rations by G ⊂ C. The system is defined by C, an initial configuration c0 ∈ C, and
a Markovian transition function τ : C × C → [0, 1], which defines the transition
probabilities between the states. Define a reachable configuration as one that it
is possible to reach (directly or indirectly) from c0. Denote the set of reachable
configurations by C′ ⊆ C.

Theorem 2.2. A system will reach a goal configuration in finite expected time,
if there exist constants M and ε > 0, such that for each reachable configuration
c ∈ C′, there exists a path in τ from c to some configuration in G, with at most
M transitions, each having a probability of at least ε.

Armed with this theorem, we can use a constructive approach in our proofs —
we need to show that one can always construct a path from any configuration
to the goal. The strong asynchronicity assumption provides the required lower
bound ε on all transition probabilities.

3 The Algorithm

3.1 Definition

We mentioned above that the proposed algorithm is a variant of an algorithm
presented in [16]. Let us begin with the original algorithm in Algorithm 1, which
assumes no distance sensing ability. It is presented in first person, being per-
formed by each agent from its own point of view.

Algorithm 1. Gathering with no distance sensing
1: if all of the visible agents lie within a wedge which spans less than half of my

visibility disc then
2: move a step of length min(V cos(ψ/2), V/2, σ) along the wedge’s bisector, where

ψ is the angle of the wedge.
3: else
4: do not move.

Beside the physical limitation σ, the step length is set so that visibility be-
tween the agents is maintained after they move, no matter what their mutual dis-
tances are. consequently, the algorithm is somewhat inefficient, as agents which
are very close move (or do not move at all) much more conservatively than
needed to maintain visibility. A central motivation in this work is to examine
whether some crude knowledge of distance can improve the performance of the
algorithm, hence the added capability to sense whether a visible agent is near
or far. The new algorithm, Algorithm 2, is identical to the original, except that
the agent ignores nearby agents, and the step length is different. For simplicity,
we fix σ = r in the remainder of this paper.

76 N. Gordon, Y. Elor, and A.M. Bruckstein

Algorithm 2. Gathering with crude near/far distance sensing
Let N be the set of all my neighbors at a distance between r and V .

1: if N 	= ∅ and all of the agents in N lie within a wedge which spans less than half
of my visibility disc then

2: move a step of length r cos(ψ/2) along the wedge’s bisector, where ψ is the angle
of the wedge.

3: else
4: do not move.

In what follows, we call the agents that reside on the edges of the said wedge
the pulling agents, as the agent seems to be “pulled” by these agents. We make
the following simple yet important geometrical observations:

Remark 3.1. A moving agent’s destination is the midpoint between the images
of its pulling agents (See Fig. 1(a)).

Remark 3.2. Given the locations of agent a and the image of one of its pulling
agents p̃, the set of all possible locations of its destination a′ is a circle whose
diameter is the line segment ap̃. This is due to Thales’s classic theorem and the
fact that a, a′, and p̃ always form a right angle (See Fig. 1(b)). Take note of the
two extreme cases: The case a′ = p̃ corresponds to ψ = 0, where a is pulled only
by p̃. The case a′ = a corresponds to ψ = π, where a doesn’t move at all.

p

a

ψ r

q̃

q

a′

p̃

(a) a′ is the midpoint between p̃
and q̃ and it’s always inside the
triangle apq.

a

r

p̃ q̃

q
p

a′

(b) a′ is always on the circle whose
diameter is ap̃

Fig. 1. Geometric properties of agent movement

3.2 Proof

We now prove that Algorithm 2 indeed gathers all agents within an area of
diameter r, in finite expected time. We use the constructive strategy suggested
in Sect. 2.2, by showing that there always exists a bounded-time schedule that
will either make the perimeter of CH(F) shrink or new visibility links will be
created. Chaining enough such sequences will generate a bounded-time schedule
that shrinks CH(F) into nothing. Then we apply this to Theorem 3.8.

Gathering Multiple Robotic Agents 77

Lemma 3.3. The algorithm maintains visibility.

Lemma 3.4. Consider the following scenario:

1. An agent a moves (Others are not active);
2. Consequently, one or more nearby agents bi /∈ F become far from a (i =

1, . . . , k, k > 0);
3. Next, these agents become active and move.

For each i,

a. b′i must be near a′;
b. b′i must see at least one of the pulling agents of agent a;
c. For each j, b′i must be near b′j;
d. If, as a consequence of bi’s movement, some agent c near bi becomes far from

it, then c must be in F .

Lemma 3.5. A moving agent cannot move outside CH(F).

Let a0 be the agent at a corner of the boundary of CH(F), and let ϕ be the angle
at that corner. Denote by A the isosceles triangle formed by the two boundary
edges touching a0 and a third line, such that the length of each of the triangle’s
edges touching a is r cos ϕ

2 .

Lemma 3.6. For any agent in triangle A, if it becomes active and moves, it
will move outside A.

Lemmas 3.4, 3.5, and 3.6 are used to prove the following lemma, by constructing
a schedule that empties the triangular corner A of F -agents, making CH(F)
shrink.

Lemma 3.7. There exist constants s∗ > 0 and t∗ ∈ N, such that, as long as
F 	= ∅, there always exists an activity schedule that will decrease the perimeter
of CH(F) by at least s∗ in at most t∗ time steps, assuming that no new visibility
links are created during that time.

Theorem 3.8. Given an initial configuration with a connected visibility graph,
when performing Algorithm 2, the system will reach a static configuration of
diameter r or less, in finite expected time.

Proof. The initial visibility graph is globally connected and always remains so,
due to Lemma 3.3, so the perimeter of CH(F) is bounded. Lemma 3.7 always
holds. Thus, we can always chain schedules constructed in Lemma 3.7 enough
times so that the perimeter of CH(F) becomes so small that it implies that
its diameter is less than r. This, in turn, implies that F = ∅ by definition.
The required number of these cycles is bounded, since each cycle decreases the
perimeter by at least a minimal amount s∗, except possibly a bounded number of
cycles during which new visibility links are created (since visibility is maintained,
and there are n(n − 1)/2 possible links in total). Each cycle’s time is bounded

78 N. Gordon, Y. Elor, and A.M. Bruckstein

by t∗, so the resulting chained schedule is of bounded length (Let’s denote the
bound by M). We can construct such a schedule for any given configuration.
The strong asynchronicity assumption gives a minimum probability ε for each
transition. Therefore, Theorem 2.2 holds, and the system will reach a state where
F = ∅ in finite expected time. It is straightforward to show that, together with
the fact that the visibility graph is globally connected, this implies that all agents
are mutually nearby, and so the diameter of the configuration is at most r. By
definition of the algorithm, this configuration is static. ��

4 A Variant — Gathering and Collapsing

When considering real robots, it is plausible to assume that in very close range
r � V the robots are able to sense each other better and perhaps communicate.
Some works on formation (e.g., [21]) suggest that flocks of robots can move
together as a whole, using some control hierarchy, where, for instance, a slave
robot follows the movements of a master robot in the flock. In self-assembly
and aggregation contexts, it is assumed that close robots can join in some rigid
physical link, and effectively function and move as a single unit. In this section,
we present a slightly modified model that abstracts these ideas, and a modified
gathering algorithm for it.

4.1 Definitions

We use the same model and definitions as in Sect. 3.1, with the following modi-
fications.

– We do not assume strong asynchronicity.
– An agent can move to the exact location of another nearby agent. Once it

does so, it is permanently assimilated or collapsed into the other agent. From
our point of view, the agent effectively disappears from the system.

– We regard the unification of nearby agents as a “low-level” action. Thus, we
assume that in each time step, all collapses take place before movements.
The order of collapses is arbitrary.

Algorithm 3 is quite similar to Algorithm 2, with the differences being a shorter
step length (needed for our proof), and the collapsing into a nearby agent instead
of just standing, when no far neighbors are visible.

4.2 Proof

The proof idea is somewhat similar to that of Algorithm 2, in the sense that we
show that the convex hull (of all agents here, not just those in F) must shrink
in finite time. Specifically, we show that the convex hull cannot expand and that
some triangular corner of it must become empty once all agents wake up. We
use the following definitions and notations:

Gathering Multiple Robotic Agents 79

Algorithm 3. Gathering with crude distance sensing and collapsing
Let N be the set of all my neighbors at a distance between r and V .

1: if N 	= ∅ and all of the agents in N lie within a wedge which spans less than half
of my visibility disc then

2: move a step of length 1
2
r cos(ψ/2) along the wedge’s bisector, where ψ is the

angle of the wedge.
3: else
4: Collapse into my closest neighbor.

– Denote the convex hull of all agent locations by C;
– Let b be an agent visible by agent a. The point on the line segment ab at

a distance r/2 from a is the close image of b with regard to a (Note the
difference from the definition of the image of b in Sect. 2.1!).

Analogously to Remark 3.1 on Algorithm 2, we have the following remark:

Remark 4.1. A moving agent’s destination is the midpoint between the close
images of its pulling agents. This follows directly from the algorithm definition.

Remark 4.2. If an agent crosses a line as it moves, then at least one of its pulling
agents must be across that line. This follows straightforwardly from the previous
remark.

Lemma 4.3. The algorithm maintains visibility.

Lemma 4.4. A moving agent cannot move outside C

Let a0 be the agent at a corner of the boundary of C, and let ϕ be the angle
at that corner.Denote byA the isosceles triangle formedby the twoboundary edges
touching a0 and a third line, such that the length of each of the triangle’s edges
touching a is r

2 cos ϕ
2 . Note the differences from the definition of A in Sect. 3.2 — It

is the corner of C (not CH(F)) and its dimensions are halved.

Lemma 4.5. For any agent in triangle A, if it becomes active, it will either
move outside A or collapse into another agent.

Lemma 4.6. An agent outside triangle A cannot enter it.

Theorem 4.7. Given an initial configuration with a connected visibility graph,
when performing Algorithm 3, the system will converge to a point, in finite time.

Proof. According to Lemmas 4.4, 4.5, and 4.6, active agents in C \ A remain
there (or otherwise collapse), while agents in A must necessarily move to C \ A
as well (or otherwise collapse). Thus, once all agents become active, C will shrink
into an area within C \A. This will happen in finite time according to the model,
and it is true for any of the convex hull’s corners. In particular, this is true for
the most acute corner. Thus, it can be easily shown that the perimeter of C will
decrease by at least a minimum amount s∗ = r cos ϕ∗

2

(
1 − sin ϕ∗

2

)
> 0, where

80 N. Gordon, Y. Elor, and A.M. Bruckstein

ϕ∗ = π
(
1 − 2

n

)
< π. Since the initial perimeter is bounded (because the initial

configuration is globally connected), it will take a finite number of these finite-
time cycles until the perimeter becomes small enough that it will imply that all
agents are mutually nearby. At that point, by definition of the algorithm, all
agents will collapse into each other once they become active. ��

5 Experiments

The formal proofs above guarantee that our algorithms indeed work, yet they do
not provide practical bounds on their performance. To gain more insight on their
behavior and compare their performance, we performed extensive simulations of
the three algorithms. We tried various combinations of values of n, r, and V .
We fixed σ = r for simplicity as well as fairness, in the sense that the maximum
step length became equal in both Algorithms 1 and 2. In all simulations, the
initial positions were randomly selected uniformly in a large square area, while
ensuring that the visibility graph is connected. During the simulation runs, each
agent became active independently with probability 1/2.

The most obvious difference between the three algorithms is in their final
or steady state. In Algorithm 1, the agents never stop moving. They contract
into a small cluster whose diameter is around the order of r, and keep leaping
one over the other ad infinitum. This is a direct result of the agents’ inability
to measure distances — they have no idea that they all became so close. The
cluster is not tied in place and it slowly drifts in the plane. In Algorithm 2, as
expected, the agents stop once they are all within an area of diameter r. Finally,
in Algorithm 3, the agents collapse into a point.

Another interesting aspect is the behavior of the swarm during the conver-
gence process. In all of our simulations of Algorithm 3, agent collapses were quite
rare during the process, with most of them occurring in the very end of the run,
once all agents became nearby. This is not surprising given the way we initially
positioned the agents. In order for a collapse to occur before the end, there must
exist an agent with no far-visible neighbors adjacent to another agent which
does see a far agent, which is a somewhat special configuration (Even with the
largest setting r = V/3, more than 96% of the collapses occurred in the end).
As a result, the behavior of Algorithms 2 and 3 was very similar, aside from the
slower convergence rate of Algorithm 3 due to its halved step size.

Figure 2 shows a typical run of Algorithm 2. It can be seen that the most sig-
nificant movement is, as expected, in the outskirts of the swarm, where there are
the most agents which are not surrounded by far neighbors (i.e., their wedge an-
gle ψ is less than π). Initially, the swarm assumes a shape with several “tentacles”
or “lobes”. These tentacles are formed in areas where there was initially a some-
what denser “mass” of agents, which pull more agents from the sparser areas.
Thus, we observe what we believe is a reinforcing process of the denser areas, due
to the larger number of inactive agents there (in absolute terms). All the while,
the agents keep converging in a steady pace until all tentacles contract into an
oval body which ultimately contracts into the final configuration. Interestingly,

Gathering Multiple Robotic Agents 81

−50 0 50

−50

0

50

time= 0

−50 0 50

−40

−20

0

20

time= 100

−20 0 20

−40

−20

0

time= 300

0 10 20

−30

−20

−10

0

time= 500

4 6 8 10 12 14

−25

−20

−15

time= 650

5 10 15
−25

−20

−15
time= 700

Fig. 2. A typical run of Algorithm 2. Here n = 100, V = 20 and r = 1. Notice that
the scale is different between frames.

the swarm typically assumes a different shape with Algorithm 1 (See [16]). Here,
the denser areas along the swarm perimeter soon become dense clusters which
contract inwards very slowly. Viewed at large scale, the swarm perimeter as-
sumes an almost polygonal form with sharp dense corners and straight sparse
edges. The reason that these dense clusters move more slowly is that most of
the agents inside are surrounded by their mates and are therefore immobile.

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000

Number Of agents

C
on

ve
rg

en
ce

 ti
m

e

no distance (Alg 3.1)
crude distance (Alg 3.2)
with collapsing (Alg 4.1)

(a) Convergence time statistics for the
three algorithms. 12 simulation runs
were performed for each value of n.

0 500 1000 1500
0

50

100

150

200

Time [cycles]

D
ia

m
et

er

no distance (Alg 3.1)
crude distance (Alg 3.2)
with collapsing (Alg 4.1)

(b) Diameter vs. time in typical runs of
the algorithms. Here n = 100, V = 20
and σ = r = 1.

Fig. 3.

82 N. Gordon, Y. Elor, and A.M. Bruckstein

Figure 3(a) shows the statistics of our simultations. Algorithm 3 is the slowest,
as expected, due to the smaller step size. It is clear that Algorithm 2 provides
a significant improvement in convergence time over Algorithm 1, especially for
larger swarms. Interestingly, with smaller swarms, there is no clear advantage.
Figure 3(b) sheds more light on this issue. It shows the contraction of the swarm’s
diameter over time in a typical run of each algorithm. Initially, Algorithm 1 is
somewhat faster. This is due to the larger step size in Algorithm 1 for most wedge
angles ψ (It is σ = r versus r cosψ/2 in Algorithm 2). However, the convergence
rate continuously deteriorates whereas the convergence in Algorithm 2 remains
more or less constant. This is due to the accumulation of “mass” in the corners
of the swarm, which has a more adverse effect on their mobility, as explained
above.

6 Conclusion

In this paper we continued to explore the gathering problem under severe dis-
tance sensing limitations. Previously, we showed how a swarm of robotic agents
can gather without sensing distances at all, but only into a drifting cluster and
with suboptimal performance. Now, we have shown that even the crudest form
of near/far distance sensing can improve the situation a lot. With the new ca-
pability, the swarm was able to contract more swiftly and steadily into a small
cluster and stop in place. Finally, introducing the capability of collapsing into
nearby agents, the swarm was able to contract into a point.

Future work includes investigation of robustness to noise, failures, and per-
agent variations to parameters such as r and V , and development of other algo-
rithms under the crude distance sensing model, such as formation and flocking.

An important part of our work is the contribution to what we feel is an
improved model of swarms, through the addition of the strong asynchronicity
assumption to the classical semi-synchronous model. Not only does it dismiss the
somewhat artificial problem of symmetry breaking (in the context of practical
robotics), but it also enables a simple yet powerful approach of proving the
termination of an algorithm by showing (by construction) the existence of paths
to goal configurations. Strong asynchronicity can be applied to other models,
such as the totally-asynchronous model of [19], and possibly to other types of
distributed multi-agent systems as well.

References

1. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering
problem. In: Proc. of ICALP 2003 (2003)

2. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Discrete bee dance algorithms for
pattern formation on a grid. In: Proc. of IEEE Intl. Conf. on Intelligent Agent
Technology (IAT 2003), pp. 545–549 (2003)

3. Schlude, K.: From robotics to facility location: Contraction functions, weber point,
convex core. Technical Report 403, CS, ETHZ (2003)

Gathering Multiple Robotic Agents 83

4. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal on Computing 28(4), 1347–1363 (1999)

5. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of autonomous
mobile robots with limited visibility. In: Ferreira, A., Reichel, H. (eds.) STACS
2001. LNCS, vol. 2010. Springer, Heidelberg (2001)

6. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots
with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 333–349. Springer, Heidelberg (2006)

7. Bruckstein, A.M., Cohen, N., Efrat, A.: Ants, crickets and frogs in cyclic pursuit.
Technical Report CIS-9105, Technion – IIT (1991)

8. Bruckstein, A.M., Mallows, C.L., Wagner, I.A.: Probabilistic pursuits on the grid.
American Mathematical Monthly 104(4), 323–343 (1997)

9. Marshall, J.A., Broucke, M.E., Francis, B.A.: A pursuit strategy for wheeled-vehicle
formations. In: Proc. of CDC 2003, pp. 2555–2560 (2003)

10. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation 15(5), 818–828 (1999)

11. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In:
Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 79–88.
Springer, Heidelberg (2004)

12. Lin, Z., Broucke, M.E., Francis, B.A.: Local control strategies for groups of mobile
autonomous agents. IEEE Trans. on Automatic Control 49(4), 622–629 (2004)

13. Melhuish, C.R., Holland, O., Hoddell, S.: Convoying: using chorusing to form trav-
elling groups of minimal agents. Robotics and Autonomous Systems 28, 207–216
(1999)

14. Cortes, J., Martinez, S., Bullo, F.: Robust rendezvous for mobile autonomous
agents via proximity graphs in arbitrary dimensions. IEEE Trans. on Automatic
Control 51(8), 1289–1298 (2006)

15. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. Journal of Robotic Systems 13(3), 127–139 (1996)

16. Gordon, N., Wagner, I.A., Bruckstein, A.M.: Gathering multiple robotic a(ge)nts
with limited sensing capabilities. In: Dorigo, M., Birattari, M., Blum, C., Gam-
bardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp.
142–153. Springer, Heidelberg (2004)

17. Gordon, N., Wagner, I.A., Bruckstein, A.M.: A randomized gathering algorithm for
multiple robots with limited sensing capabilities. In: Proc. of MARS 2005 workshop
at ICINCO 2005, INSTICC (2005)

18. The Center of Intelligent Systems, Technion IIT web site,
http://www.cs.technion.ac.il/Labs/Isl/index.html

19. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In: Pelc,
A., Raynal, M. (eds.) SIROCCO 2005. LNCS, vol. 3499, pp. 246–261. Springer,
Heidelberg (2005)

20. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems.
In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil,
F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007)

21. Fredslund, J., Mataric, M.J.: Robot formations using only local sensing and control.
In: Proc. of the Intl. Symposium on Computational Intelligence in Robotics and
Automation (IEEE CIRA 2001), Banff, Alberta, Canada, pp. 308–313 (2001)

http://www.cs.technion.ac.il/Labs/Isl/index.html

Integration of ACO in a

Constraint Programming Language

Madjid Khichane1,2, Patrick Albert1, and Christine Solnon2

1 ILOG SA, Gentilly, France
{mkhichane,palbert}@ilog.fr

2 LIRIS CNRS UMR 5205, University of Lyon I, Villeurbanne, France
christine.solnon@liris.cnrs.fr

Abstract. We propose to integrate ACO in a Constraint Programming
(CP) language. Basically, we use the CP language to describe the problem
to solve by means of constraints and we use the CP propagation engine
to reduce the search space and check constraint satisfaction; however, the
classical backtrack search of CP is replaced by an ACO search. We report
first experimental results on the car sequencing problem and compare
different pheromone strategies for this problem.

1 Introduction

Our motivations mainly come from the two following observations:

– Ant Colony Optimization (ACO) has been successfully applied to a wide
range of combinatorial optimization problems [1]; however most works have
focused on designing efficient ACO algorithms for solving specific problems,
but not on integrating these algorithms within declarative languages so that
solving a new problem with this approach usually implies a lot of procedural
programming;

– Constraint Programming (CP) languages provide high level features to decla-
ratively model problems by means of constraints; however, most CP solvers
are based on a systematic “Branch and Propagate” exploration of the search
space, and fail to solve some hard problems within a reasonable time limit.

Hence, we investigate the integration of ACO within a CP language. Our research
is based upon ILOG Solver [2], and we use its modeling language to describe
the problem to solve by means of constraints and its propagation engine to
reduce the search space and check constraint satisfaction; however, the search of
solutions is guided by ACO. This approach has the benefit of reusing all the work
done by ILOG at the modeling level as well as the code dedicated to constraint
propagation and verification. We can as well test different variations of our ideas
on a large benchmark library. Note that this work could be easily extended to
other CP languages, such as, e.g., CHOCO or GECODE.

It is worth reporting that an hybridization of ACO and CP has already been
proposed in [3] to solve a timetabling problem which contains hard constraints,

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 84–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Integration of ACO in a Constraint Programming Language 85

that must be satisfied, and has an objective function to optimize. In this ap-
proach, constraint propagation is used to build feasible solutions that satisfy all
hard constraints while ACO is used to find high quality solutions with respect
to the objective function. Our approach in this paper is rather different as ACO
is used to guide a search procedure aiming at satisfying all the constraints.

The paper is organized as follows. In the next section, we briefly recall some
definitions and terminology about CP. Section 3 describes the basic Ant-CP al-
gorithm for solving constraint satisfaction problems. Section 4 shows how this
algorithm may be used to solve the car sequencing problem and introduces dif-
ferent pheromone strategies and different heuristics for this problem. Section 5
experimentally compares these different variants of Ant-CP.

2 Background

A Constraint Satisfaction Problem (CSP) [4] is defined by a triple (X, D, C)
such that X is a finite set of variables, D is a function that maps every variable
xi ∈ X to its domain D(xi), that is, the finite set of values that can be assigned
to xi, and C is a set of constraints, that is, relations between some variables
which restrict the set of values that can be assigned simultaneously to these
variables.

Solving a CSP involves assigning values to variables so that constraints are
satisfied. More formally, an assignment is a set of variable-value couples, noted
〈xi, v〉 and corresponding to the assignment of a value v ∈ D(xi) to a variable xi.
The variables assigned in an assignmentA are denoted by var(A). An assignment
A is partial if some variables are not assigned in A, i.e., var(A) ⊂ X ; it is
complete if all variables are assigned, i.e., var(A) = X . An assignment A is
consistent if it does not violate any constraint. A solution of a CSP (X, D, C) is
a complete and consistent assignment.

CSPs are solved in a generic way by constraint solvers which are embedded
within CP languages. These constraint solvers are usually based on a system-
atic exploration of the search space: starting from an empty assignment, they
incrementally extend a partial consistent assignment by choosing a non assigned
variable and a consistent value for it until either the current assignment is com-
plete (a solution has been found) or the current assignment cannot be extended
without violating constraints (the search must backtrack to a previous choice
point and try another extension). To reduce the search space, this exhaustive
exploration of the search space is combined with constraint propagation tech-
niques: each time a variable is assigned to a value, constraints are propagated
to filter the domains of the variables that are not yet assigned, i.e., to remove
values that are not consistent with respect to the current assignment. If con-
straint propagation detects an inconsistency or if it removes all values from a
domain, the search must backtrack. Different levels of consistency may be consid-
ered (e.g., node consistency or arc consistency); some consistencies are stronger
than others, removing more values from the domains, but have also higher time
complexities.

86 M. Khichane, P. Albert, and C. Solnon

Algorithm 1. Ant-CP procedure
Input: A CSP (X, D, C), a pheromone strategy Φ, a heuristic factor η
Output: A consistent (partial or complete) assignment for (X, D, C)
Initialize all pheromone trails of Φ to τmax1

repeat2

foreach k in 1..nbAnts do3

/* Construction of a consistent assignment Ak */

Ak ← ∅4

repeat5

Select a variable xi ∈ X so that xi 	∈ var(Ak)6

Choose a value v∈D(xi)7

Add 〈xi, v〉 to Ak8

Propagate constraints to filter domains of D9

until var(Ak) = X or Failure ;10

Update pheromone trails of Φ using {A1, . . . ,AnbAnts}11

until var(Ai) = X for some i ∈ {1..nbAnts} or max cycles reached ;12

return the largest constructed assignment13

3 Description of Ant-CP

Some ACO algorithms have been previously proposed for solving CSPs [5,6,7,8].
In these algorithms, ants iteratively build complete assignments (that assign a
value to every variable) that may violate constraints, and their goal is to mini-
mize the number of constraint violations; a solution is found when the number
of constraint violations is null.

In this paper, we investigate a new ACO framework for solving CSPs: ants
iteratively build partial assignments (such that some variables may not be as-
signed to a value) that do not violate constraints, and their goal is to maximize
the number of assigned variables; a solution is found when all variables are as-
signed. This new ACO framework may be combined with the propagation engine
of ILOG Solver in a very straightforward way.

More precisely, the proposed algorithm for solving CSPs, called Ant-CP, is
sketched in Algorithm 1. First, pheromone trails are initialized to some given
value τmax. Then, at each cycle (lines 2-12), each ant k constructs a consistent
assignment Ak (lines 4-10): starting from an empty assignment, the ant itera-
tively chooses a variable which is not yet assigned and a value to assign to this
variable; this variable assignment is added to Ak, and constraints are triggered
which might in turn narrow the domains of non assigned variables, trigger new
assignments, or detect a failure; this process is iterated until either all variables
have been assigned (i.e., a solution has been found) or the propagation step
detects a failure. Once every ant has constructed an assignment, pheromone
trails are updated. The algorithm stops iterating either when an ant has found
a solution, or when a maximum number of cycles has been performed.

In the next paragraphs, we define the pheromone strategy Φ used to bias the
search, and we describe the variable selection, value selection, propagation and
pheromone updating steps.

Integration of ACO in a Constraint Programming Language 87

Pheromone Strategy. The pheromone strategy, denoted by Φ, is a parameter
of Ant-CP and is defined by a triple Φ = (S, τ, comp) such that:

– S is the set of components on which ants lay pheromone;
– τ is a function which defines how pheromone trails of S are used to bias the

search. More precisely, given a partial assignment A, a variable xi 	∈ var(A),
and a value v ∈ D(xi), the function τ(A, xi, v) returns the value of the
pheromone factor which evaluates the learnt desirability of adding 〈xi, v〉 to
the partial assignment A;

– comp is a function which defines the set of components on which pheromone
is laid when rewarding an assignment A, i.e., the function comp(A) returns
the set of components associated with A.

The goal of the pheromone strategy is to learn from previous constructions
which decisions have allowed ants to build good assignments, and to use this
information to bias further constructions. The default pheromone strategy, de-
noted by Φdefault, is defined as follows:

– ants lay pheromone on variable-value couples, i.e.,

S = {τ〈xi,v〉|xi ∈ X, v ∈ D(xi)}

so that each pheromone trail τ〈xi,v〉 represents the learnt desirability of as-
signing value v to xi;

– the pheromone factor is defined by τ(A, xi, v) = τ〈xi,v〉;
– the set of components associated with an assignment is

comp(A) = {τ〈xi,v〉|〈xi, v〉 ∈ A}

For specific problems, the user may design other pheromone strategies. In this
case, he must define the triple (S, τ, comp). We shall propose and compare two
other pheromone strategies for the car sequencing problem in the next section.

Selection of a Variable. When constructing an assignment, the order in which
the variables are assigned is rather important and variable ordering heuristics
have been studied widely in the context of backtrach search [4,9]. These heuristics
can be used as well in our context of greedy construction of assignments. For
example, we can use the different variable ordering heuristics that are predefined
in ILOG solver such as, e.g., the IloChooseMinSizeInt heuristic which selects
the variable that has the smallest domain.

Choice of a Value. Once a variable xi has been selected, ants have to choose
a value v in the domain D(xi) of xi. Note that this domain may have been
reduced by constraint propagation and may not contain all values of the initial
domain of xi. The main contribution of ACO for solving CSPs is to provide a
generic heuristic for choosing values. The value v to be assigned to a variable
xi is randomly chosen within D(xi) with respect to a probability p(xi, v) which
depends on a pheromone factor τ(A, xi, v) —which reflects the past experience

88 M. Khichane, P. Albert, and C. Solnon

of the colony regarding the addition of 〈xi, v〉 to the partial assignment A— and
a heuristic factor η(A, xi, v) —which is problem-dependent, i.e.,

p(xi, v) =
[τ(A, xi, v)]α[η(A, xi, v)]β∑

w∈D(xi)
[τ(A, xi, w)]α[η(A, xi, w)]β

(1)

where α and β are two parameters that determine the relative weights of phe-
romone and heuristic information.

Constraint Propagation. Each time a variable is assigned to a value, a propa-
gation algorithm is called. This algorithm filters the domains of the non assigned
variables: it removes the values that are inconsistent with respect to some partial
consistencies such as, e.g., node-consistency, arc-consistency or path-consistency
[4]. If the domain of a variable becomes a singleton, then the partial assignment
Ak is completed by the assignment of this variable and the propagation process
is continued. If the domain of a variable becomes empty, then Failure is returned.

One may consider different propagation algorithms, that ensure different par-
tial consistencies. In our premiminary experiments, we have used the default
propagation algorithm integrated to ILOG solver.

Pheromone Updating Step. Once every ant has constructed an assignment,
pheromone trails are updated according to ACO: first, they are decreased by
multiplying them by (1−ρ) (where ρ ∈ [0; 1] is the evaporation rate); then, they
are rewarded with respect to their contribution to the construction of good as-
signments. More precisely, let BestOfCycle be the set of all the best assignments
constructed during the cycle, that is,

BestOfCycle = {Ai ∈ {A1, . . . ,AnbAnts} | #var(Ai) is maximal}

For each assignment Ak ∈ BestOfCycle , pheromone trails associated with phe-
romone components of Ak are increased by a quantity δτ which is proportionally
inverse to the gap of sizes between Ak and the largest assignment Abest built
since the beginning of the search (including the current cycle), i.e.,

δτ = 1/(1 + #Abest − #Ak)

The set of pheromone components associated with a given assignment depends
on the considered pheromone strategy and is defined by comp.

Note that Ant-CP follows the MAX-MIN Ant System scheme [10] so that
pheromone trails are bounded between two given bounds τmin and τmax.

4 Using Ant-CP to Solve the Car Sequencing Problem

The car sequencing problem involves scheduling cars along an assembly line in
order to install options (e.g., sun-roof or air-conditioning) on them. Each option
is installed by a different station, designed to handle at most a certain percentage
of the cars passing along the assembly line, and the cars requiring this option

Integration of ACO in a Constraint Programming Language 89

must be spaced so that the capacity of the station is never exceeded. More
precisely, a car sequencing problem is defined by a tuple (C, O, p, q, r), where C
is the set of cars to be produced and O is the set of different options. The two
functions p :O→N and q :O→N define the capacity constraint associated with
each option oi∈O, i.e., for any sequence of q(oi) consecutive cars on the line, at
most p(oi) of them may require oi. The function r :C×O→{0, 1} defines option
requirements, i.e., for each car ci∈C and for each option oj ∈O, r(ci, oj) returns
1 if oj must be installed on ci, and 0 otherwise.

Solving a car sequencing problem involves finding an arrangement of the cars
in a sequence, defining the order in which they will pass along the assembly line,
such that the capacity constraints are met. This problem is NP-hard [11]. A
more general problem –which introduces paint batching constraints and priority
levels for capacity constraints– has been proposed by Renault for the ROADEF
challenge in 2005 [12].

4.1 CP Model

The car sequencing problem has been first introduced in the CP community in
1988 [13]. Since then, it has been very often used to evaluate CP solvers and it
is the first problem of the CSP library CSPlib [14]. To evaluate Ant-CP, we have
considered a classical CP model for the car sequencing problem which basically
corresponds to the first model described in the user’s manual of ILOG solver. In
order to reduce the search space, this model introduces the concept of car classes:
all cars requiring a same set of options are grouped into a same car class.

There are two different kinds of variables:

– A slot variable xi is associated with each position i in the sequence of cars.
This variable corresponds to the class of the ith car in the sequence and its
domain is the set of all car classes.

– An option variable yj
i is associated with each position i in the sequence and

each option j. This variable is assigned to 1 if option j has to be installed
on the ith car of the sequence, and 0 otherwise, so that its domain is {0, 1}.

There are three different kinds of constraints:

– Link constraints specify the link between slot and option variables, i.e., yj
i =

1 iff option j has to be installed on xi.
– Capacity constraints specify that station capacities must not be exceeded,

i.e., for each option j and each subsequence of qj cars, a linear inequality
specifies that the sum of the corresponding option variables must be smaller
or equal to pj .

– Demand constraints specify, for each car class, the number of cars of this
class that must be sequenced.

4.2 Variable Ordering Heuristic

In experiments reported in Section 5 we have used a classical sequential variable
ordering heuristic, which consists in assigning slot variables in the order defined

90 M. Khichane, P. Albert, and C. Solnon

by the sequence of cars, i.e., x1, x2, x3, . . . Note that option variables yj
i are

assigned by propagation when the corresponding slot variable xi is assigned.

4.3 Pheromone Strategies

As pheromone is at the core of the efficiency of any ACO implementation, we ex-
plore the impact of its structure: besides the default pheromone strategy Φdefault

(which associates a trail with every couple (xi, j) such that xi is the variable as-
sociated with position i and j is a car class), we consider two other strategies
which will be experimentally compared in the next section.

Pheromone Strategy Φclasses. This pheromone strategy has been introduced
in [15]. The set S associates a trail τ(v,w) with every couple of car classes (v, w).
This pheromone trail represents the learnt desirability of sequencing a car of
class w just after a car of class v or, in other words, of assigning the value w to
a variable xi when xi−1 has just been assigned to v.

For this pheromone strategy, the pheromone factor is equal to the pheromone
trail between the last assigned car class and the candidate car class (this factor
is equal to one when assigning the first variable), i.e., if i > 1 and 〈xi−1, w〉 ∈ A,
then τ(A, xi, v) = τ(w,v), otherwise τ(A, xi, v) = 1.

When updating pheromone trails, pheromone is laid on couples of consecu-
tively assigned values, i.e., comp(A) = {τ(v,w)|{〈xi, v〉, 〈xi+1, w〉} ⊆ A}.

Pheromone Strategy Φcars. This pheromone strategy has been introduced in
[8]. The set S associates a trail τ(v,j,w,k) with each couple of car classes (v, w) and
each j ∈ [1; #v] and k ∈ [1; #w] where #v and #w are the number of cars within
the classes v and w respectively. This trail represents the learnt desirability of
sequencing the kth car of class w just after the jth car of class v.

In this case, the pheromone factor τ(A, xi, v) is equal to 1 for the first car,
i.e., τ(A, xi, v) = 1 if i = 1. Otherwise τ(A, xi, v) = τ(w,j,v,k+1) where w is the
value assigned to xi−1 in A, j is the number of variables assigned to w in A, and
k is the number of variables assigned to v in A.

When updating pheromone trails, pheromone is laid on couples of consecu-
tively sequenced cars, i.e.,

comp(A) = {τ(v,j,w,k+1)| {〈xl, v〉, 〈xl+1, w〉} ⊆ A and j = #{〈xm, v〉|m ≤ l}
and k = #{〈xm, w〉|m ≤ l}}.

4.4 Heuristic Factors for the Car Sequencing Problem

In the transition probability defined by eq. (1), the pheromone factor τ(A, xi, v) —
which represents the past experience of the colony— is combined with a heuristic
factor η(A, xi, v) —which is problem-dependent. We now introduce two different
problem-dependent heuristics for the car sequencing problem; these heuristics will
be compared in Section 5.

Integration of ACO in a Constraint Programming Language 91

Dynamic Sum of Utilisation Rates (DSU). Smith [9] has introduced value
ordering heuristics based on option utilization rates: the utilization rate of an op-
tion i is the ratio of the number of cars requiring i with respect to the maximum
number of cars in the sequence which could have i while satisfying its capacity
constraint. Gotlieb et al. [16] have compared different value ordering heuristics
based on option utilization rates, and have shown that one of the best performing
heuristics is the so-called Dynamic Sum of Utilization rates (DSU), i.e.,

η(A, xi, v) =
∑

oj∈reqOptions(v)

reqSlots(oj , nj)
N

where reqOptions(v) is the set of options that are required by cars of class v, N is
the number of cars that have not yet been sequenced in A, nj is the number of cars
that require option oj and have not yet been sequenced inA, and reqSlots(oj , nj) is
a lower bound of the number of slots needed to sequence nj cars that require option
oj without violating capacity constraints. For defining reqSlots(oj , nj), we have
considered the formula introduced in [17], i.e., if nj % pj =0 then reqSlots(oj , nj)=
qj ∗nj/pj−(qj−pj), otherwise reqSlots(oj , nj) = qj ∗(nj−nj % pj)/pj +nj % pj .

Dynamic Sum of Utilisation Rates with Propagation (DSU+P). We
can exploit utilization rates to detect inconsistencies and filter variable domains:
– when the utilization rate of an option becomes greater than 1 (i.e., when

reqSlots(oj , nj) becomes greater than N) one can conclude that it is not
possible to complete the sequence without violating constraints so that one
can stop the current assignment construction on a failure;

– when the utilization rates of one or more options become equal to 1, we can
remove from the domain of the next variable every car class which does not
require all options that have an utilization rate equal to 1.

5 Experimental Results

Test Suite. Satisfiable instances of the library CSPlib [14] with 100 cars (4
instances described in [18]) and 200 cars (70 instances described in [19]) are all
easily solved by Ant-CP. Hence, we consider a harder test suite which is described
in [20]. All instances have 8 options and 20 car classes; capacity constraints are
randomly generated in such a way that ∀oi ∈ O, 1 ≤ p(oi) ≤ 3 and p(oi) <
q(oi) ≤ p(oi)+2. This test suite contains 32 instances with 100 cars, 21 instances
with 300 cars and 29 instances with 500 cars. All these instances are satisfiable.

Considered Ant-CP Instanciations. We compare the three pheromone stra-
tegies Φdefault, Φclasses, and Φcars. To evaluate the influence of the pheromone on
the solution process, we also consider a strategy without pheromone, denoted by
Φ∅: in this case, the set S is the empty set and the pheromone factor τ(A, xk, v)
is set to 1 so that Ant-CP behaves like a greedy randomized approach which
chooses values with respect to the heuristic factor only.

We also compare the two heuristic factors DSU and DSU+P. We note Ant-
CP(Φ, h) the Ant-CP instanciation obtained with the pheromone strategy Φ ∈
{Φ∅, Φclasses, Φcars, Φdefault} and the heuristic h ∈ {DSU,DSU+P}.

92 M. Khichane, P. Albert, and C. Solnon

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l r
un

s
(f

or
 1

0
ru

ns
 o

n
ea

ch
 o

f t
he

 8
2

in
st

an
ce

s)

Number of cycles

Ant-CP(cars,DSU)
Ant-CP(default,DSU)

Ant-CP(classes,DSU)
Ant-CP(0,DSU)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

ag
e

of
 s

uc
ce

ss
fu

l r
un

s
(f

or
 1

0
ru

ns
 o

n
ea

ch
 o

f t
he

 8
2

in
st

an
ce

s)

Number of cycles

Ant-CP(cars,DSU+P)
Ant-CP(default,DSU+P)

Ant-CP(classes,DSU+P)
Ant-CP(0,DSU+P)

Fig. 1. Comparison of different instanciations of Ant-CP(Φ, h), with Φ ∈
{Φdefault, Φclasses, Φcars, Φ∅} and h ∈ {DSU, DSU + P}: each curve plots the evo-
lution of the percentage of runs that have found a solution with respect to the number
of cycles (for 10 runs for each of the 82 instances)

Integration of ACO in a Constraint Programming Language 93

Parameter Setting. Parameters have been set as follows: α = 1, β = 6,
ρ = 0.02, nbAnts=30, τmin = 0.01, and τmax = 4.

Comparison of Ant-CP Instanciations. Fig. 1 compares the four differ-
ent pheromone strategies when using the DSU heuristic (upper curves) and then
when using the DSU+P heuristic (lower curves). One notes that after 3000 cycles,
using pheromone increases the success rate from 66.32% for Ant-CP(Φ∅,DSU) to
79.39% for Ant-CP(Φcars,DSU), 72.56% for Ant-CP(Φdefault,DSU) and 68.29%
for Ant-CP(Φclasses,DSU). Hence, on these instances, the best pheromone strat-
egy is Φcars; the default pheromone strategy is worse than Φcars, but better than
Φclasses.

The DSU+P heuristic usually obtains better results than DSU. However, the
improvement depends on the considered pheromone strategy: it is not significant
when pheromone is ignored (the success rate of Φ∅ is increased from 66.32% to
66.97%); it is rather important for the pheromone strategies Φclasses and Φdefault

(success rates are increased from 68.29% to 74.39% for Φclasses and from 72.56%
to 78.54% for Φdefault); it is not as important for Φcars (the success rate is
increased from 79.39% to 82.32%).

Let us finally note that, given a heuristic, the four variants spend nearly the
same CPU time to perform one cycle, as most of the time is spent by prop-
agation procedures. However, cycles are performed quicker with the DSU+P
heuristic than with the DSU heuristic. Indeed, DSU+P filters variable domains
and detects earlier some inconsistencies. Hence, for the instances with 100 cars,
3000 cycles are performed in 5 minutes with the DSU heuristic whereas they are
performed in 3 minutes with the DSU+P heuristic (on a 2GHz Intel Core Duo).

6 Conclusion

These first experiments on the Car Sequencing problem show that integrating an
ACO search might be designed as a simple extension of a modular CP language
such as ILOG Solver. It is worth noting that thanks to the modular nature of
ILOG Solver that separates the modeling of the problem from the computation
of its solution, the CP model used to describe the sequencing problem does not
depend on the search technique: one can try or combine other search methods
without changing the problem description.

First experimental results are very promising. Indeed, classical CP solvers
based on exhaustive tree search approaches are still not able to solve within
a reasonable amount of time all instances of CSPLib with 100 and 200 cars,
even when using dedicated filtering algorithms such as, e.g., those proposed
in [18,21,22]. All these instances are easily solved by Ant-CP (whatever the
pheromone strategy is): the 70 instances with 200 cars (resp. 4 instances with 100
cars) are solved in less than a second (resp. less than a minute). As a comparison,
filterings introduced in [22] for the “sequence” constraint can solve less than
half of these instances in less than 100 seconds when they are combined with
the default tree search of ILOG Solver on a Pentium 4 sequenced at 3.2 Ghz.

94 M. Khichane, P. Albert, and C. Solnon

Of course, these experiments should be pursued on other problems to further
validate our approach.

These first results might be further enhanced by adapting the propagation al-
gorithms to the specificities of ACO. Indeed, propagation algorithms integrated
in most CP solvers have been designed to fit a procedure that enables backtrack-
ing on the choice points. Such algorithms have thus to maintain data structures
enabling the restitution at each backtrack of the context of the previous choice
point. The allocation and management of these data structures bring a cost
both in terms of memory and Cpu time which is necessary in the context of a
backtrack-based search procedure but not in the context of our ACO inspired
search method which never backtracks.

A similar remark might be done with respect to a language such as Comet
that does not rely on a backtracking tree search but on local search. Indeed, Van
Hentenryck and Michel have shown in [23] that the Comet language may be used
to implement an ACO algorithm in a very declarative way. However, Comet is
dedicated to local search which explores the search space by iteratively applying
elementary moves to a current configuration. In order to efficiently select the
best move to be applied, Comet maintains a set of data structures that support
the incremental evaluation of invariant properties after each elementary move.
These data structures can be used to support an ACO search (they support the
incremental evaluation of the heuristic factor at each step of the construction)
but again, they maintain more information than necessary because choices made
in ACO during the greedy construction of the solution are never revised.

Still, we did not explore in both cases (tree-search based solver such as ILOG
Solver, or local-search based solver such as Comet) how well the cost of extra
data structures could be compensated by an effective combination of the ACO
search procedure and the default search of the host solver. For example one could
do a limited tree-search based exploration of the remaining search space when a
constraint triggers a failure in ILOG Solver, or perform some local search at the
end of the exploration of each or some of the artificial ants.

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
2. ILOG: Ilog solver user’s manual. Technical report, ILOG (1998)

3. Meyer, B., Ernst, A.: Integrating aco and constraint propagation. In: Dorigo, M.,
Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS
2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)

4. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)
5. Schoofs, L., Naudts, B.: Solving csps with ant colonies. In: ANTS (2000)

6. Roli, A., Blum, C., Dorigo, M.: ACO for maximal constraint satisfaction problems.
In: Meta–heuristics International Conference (MIC) (2001)

7. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on
Evolutionary Computation 6(4), 347–357 (2002)

8. Solnon, C.: Combining two pheromone structures for solving the car sequencing
problem with Ant Colony Optimization. In: EJOR (to appear, 2008)

Integration of ACO in a Constraint Programming Language 95

9. Smith, B.: Succeed-first or fail-first: A case study in variable and value ordering
heuristics. In: PaCT 1997, pp. 321–330 (1996)

10. Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Sys-
tems, special issue on Ant Algorithms 16, 889–914 (2000)

11. Kis, T.: On the complexity of the car sequencing problem. Operations Research
Letters 32, 331–335 (2004)

12. Solnon, C., Cung, V., Nguyen, A., Artigues, C.: The car sequencing problem:
overview of state-of-the-art methods and industrial case-study of the ROADEF
2005 challenge problem. In: EJOR (to appear, 2008)

13. Dincbas, M., Simonis, H., van Hentenryck, P.: Solving the car-sequencing problem
in constraint logic programming. In: Kodratoff, Y. (ed.) Proceedings of ECAI-1988,
pp. 290–295 (1988)

14. Gent, I., Walsh, T.: CSPLib: A benchmark library for constraints. Technical report
(1999), http://csplib.cs.strath.ac.uk/

15. Gravel, M., Gagné, C., Price, W.: Review and comparison of three methods for the
solution of the car-sequencing problem. In: JORS (2004)

16. Gottlieb, J., Puchta, M., Solnon, C.: A study of greedy, local search and ACO
approaches for car sequencing problems. In: Raidl, G.R., Cagnoni, S., Cardalda,
J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Mar-
chiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003,
EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and Evo-
MUSART 2003. LNCS, vol. 2611. Springer, Heidelberg (2003)

17. Boysen, N., Fliedner, M.: Comments on solving real car sequencing problems with
ant colony optimization. EJOR 182(1), 466–468 (2007)

18. Regin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints.
In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 32–46. Springer, Heidelberg
(1997)

19. Lee, J., Leung, H., Won, H.: Performance of a comprehensive and efficient con-
straint library using local search. In: 11th Australian JCAI. LNCS (LNAI).
Springer, Heidelberg (1998)

20. Perron, L., Shaw, P.: Combining forces to solve the car sequencing problem. In:
Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 225–239.
Springer, Heidelberg (2004)

21. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the se-
quence constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 620–634.
Springer, Heidelberg (2006)

22. Brand, S., Narodytska, N., Quimper, C.-G., Stuckey, P.J., Walsh, T.: Encodings
of the sequence constraint. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp.
210–224. Springer, Heidelberg (2007)

23. Hentenryck, P.V., Michel, L.: Constraint-based local search. MIT Press, Cambridge
(2005)

http://csplib.cs.strath.ac.uk/

Learning from House-Hunting Ants: Collective

Decision-Making in Organic Computing Systems�

Arne Brutschy1, Alexander Scheidler2, Daniel Merkle3,
and Martin Middendorf2

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
arne.brutschy@ulb.ac.be

2 Parallel Computing and Complex Systems Group, Computer Science Department
University of Leipzig, Leipzig, Germany

{scheidler,middendorf}@uni-leipzig.de
3 Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark

daniel@imada.sdu.dk

Abstract. This paper proposes ant-inspired strategies for self-organized
and decentralized collective decision-making in computing systems which
employ reconfigurable units. The particular principles used for the design
of these strategies are inspired by the house-hunting of the ant Temnotho-
rax albipennis. The considered computing system consists of two types
of units: so-called worker units that are able to execute jobs that come
into the system, and scout units that are additionally responsible for
the reconfiguration process of all units. The ant-inspired strategies are
analyzed experimentally and are compared to a non-adaptive reference
strategy. It is shown that the ant-inspired strategies lead to a collec-
tive decentralized decision process through which the units are able to
find good configurations that lead to a high system throughput even in
complex configuration spaces.

1 Introduction

With the increasing complexity of modern computing systems, new design para-
digms become important with regards to solving the resulting management
and reliability issues. Computing systems that follow the paradigms of Auto-
nomic Computing (e.g., [1]) or Organic Computing (e.g., [2,3]) should ideally
be able to address certain critical tasks autonomously, follow the principle of
self-organization, and possess so-called self-x properties. Examples of self-x prop-
erties are self-management, self-reconfiguration, self-optimization, self-servicing
and of course self-organization itself.

Closely related to the property of self-reconfiguration is the field of dynami-
cally reconfigurable hardware (e.g., [4]). A central problem in systems that use
dynamically reconfigurable hardware is to find a good reconfiguration strategy
� Supplementary online material: http://iridia.ulb.ac.be/supp/IridiaSupp2008-
006/

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 96–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://iridia.ulb.ac.be/supp/IridiaSupp2008-
006/

Learning from House-Hunting Ants 97

for deciding when to carry out reconfiguration operations and which configura-
tions to use. In these systems, a trade-off exists between increasing reconfigura-
tion costs (i.e. when reconfiguration operations are carried out more frequently)
and the possible speed gain resulting from adapted configurations.

Because designing computing systems that work autonomously and are able
to make collective decisions is complicated, principles of self-organized decision-
making in social insects (see, e.g., [5,6]) have become an important source of
inspiration for system designers. This approach has been successfully applied
to systems in different technical domains, e.g., scheduling [7], task-allocation in
networks [8] and robotics [9].

In this paper, we propose a nature-inspired reconfiguration strategy for sys-
tems that consist of reconfigurable units. The proposed strategy is inspired by
principles that are used by the ant Temnothorax albipennis for house-hunting.
To our best knowledge, these principles have been exploited so far only once
for the design of a technical system [10]. It is shown that a cluster of decentral-
ized and self-organized reconfigurable units which uses the proposed strategy
can adapt itself to a dynamic environment by making an efficient compromise
between accuracy and speed of the decision-making process.

The paper is organized as follows. A brief overview on the biological system
that inspired the proposed strategy is given in Section 2. Section 3 describes the
model of the computing system with reconfigurable units. Some details about
the reconfiguration strategies are explained in Section 4. Experiments and results
are presented in Section 5. Conclusions are given in Section 6.

2 House-Hunting in Temnothorax Albipennis

Temnothorax albipennis is an ant species that has small workers and lives in
small colonies. As it tends to build the nests in structurally unstable places such
as in crevices and under rocks, the ant has to emigrate frequently [11]. Due to
its peculiar properties, and because having to deal with only a small number
of individuals is an advantage, the emigration behaviour of T. albipennis has
been studied thoroughly [11,12,13]. The details of the emigration process are
described in the following.

When emigration is necessary, the scout ants (which form approximately 20-
30% of the colony [14]) start to search the surrounding environment for a new
nest site. Upon finding a candidate site, a scout starts to assess the site accord-
ing to several criteria (e.g., size and darkness). If the scout considers the site
to be superior to the current nest, it tries to get a “second opinion” by guid-
ing another scout to the candidate nest site. The guidance is accomplished by
tandem-running, which means that one ant teaches another ant the route by
leading it while keeping close physical contact to allow bidirectional feedback.
This makes this technique slow and therefore costly [15]. As soon as the other
scout reaches the candidate nest site, it assesses it and, if it considers it to be
good, starts recruiting another scout as well. Scouts delay recruitment to a can-
didate nest site by a time that is inversely proportional to the perceived quality

98 A. Brutschy et al.

of the site. This behaviour ensures that better nests will attract scouts faster,
thus making the emigration an autocatalytic process.

As soon as a certain number of ants prefer a certain candidate nest site, the
scouts will switch from tandem-running to a transportation behaviour known
as social-carrying. In social-carrying, a scout picks up a passive ant or brood
and carries it to the new nest site. Social carrying is three times faster than
tandem-running, but has the disadvantage that a carried ant does not learn the
route between the old and the new nest site. The switch from tandem-running to
social-carrying can be seen as the start of the actual emigration process towards
the new nest.

The number of scouts that are required for the behaviour to switch to social-
carrying (and thus for making the decision for the nest site) is called quorum
threshold. By adapting the quorum threshold to the colony’s needs, T. albipennis
is able to make a compromise between the accuracy and speed of its decisions.
A low quorum threshold leads to fast but error-prone decisions. This might be
acceptable when a fast emigration is required and the quality of the new nest
is of minor importance, for example, when the current nest has been destroyed
by a predator. On the other hand, if the ants have more time for emigration
(e.g. when the current nest is to small to support the colony), the ants can take
enough time to select a superior site by requiring a high quorum threshold. As
the behaviour of the ants makes them capable of decentralized and self-organized
decisions, we think this strategy has potential to be applied successfully in the
technical domain.

3 Model of the Organic Computing System

The model for an organic computing system that is used for our study is described
in this section. The system consists of a set of computing units. These units are
connected by a simple interconnection network that only allows one-to-one com-
munication; broadcast operations are not possible. Units can communicate with
any other single unit at any time. As no complicated communication is employed,
we do not associate any costs with communication. The purpose of the system is
to maximize the total throughput of jobs. Throughput is measured as the number
of jobs processed by the system per time step. In the current model it is assumed
that there are always j different job types in the system. Additionally, it is assumed
that the system is saturated with jobs, meaning that jobs have to be executed at
every time step and the units are never idle. All units work in parallel and each
unit can only work on a single job at one time step.

Each computing unit consists of s slices that can be reconfigured indepen-
dently (see also [16]). Jobs are executed by the unit using computational logic
configured in these slices. The more slices are configured for a certain type of
job, the bigger the computational logic can be. The degree of specialization of a
unit for a certain type of job depends on the number of slices that are configured
for this job type. Hence, the set of slices of a unit is partitioned with respect to
the different types of jobs. This partition is called the configuration of the unit

Learning from House-Hunting Ants 99

Fig. 1. Example partition of a unit’s configuration resources in 10 slices. Each slice
is configured to one of three possible job types. Numbers denote the job type the
respective slice is configured to.

(see Figure 1 for an example). A configuration can be described as a vector c(i)
with

∑
c(i) = s and 1 ≤ i ≤ j. Each unit has to be able to service every type

of job, i.e. at least one slice has to be configured for every type of job. Hence,
1 ≤ c(i) ≤ m with m = s− j +1 is the maximum number of slices available for a
single job. As the purpose of the system is to maximize the throughput of jobs,
configurations which result in higher throughput are considered to be superior
to others.

It is assumed that the computing system consists of two types of units: units
that are only able to execute jobs, and units that can execute jobs and are addi-
tionally able to reconfigure themselves or other units. The former units are referred
to as worker units, whereas the latter units are called scout units. The computing
system consists of nw worker units and ns scout units. Let n = nw +ns. The ratio
between scouts and workers is assumed to be fixed. A worker unit can only change
configuration with the help of a scout unit. One motivation for this is that a recon-
figurable system needs to know, or must be able to compute reconfiguration data
that is required to define the new configuration. In our case, only the scouts are
able to compute this data. It is the task of the scout units to find and evaluate new
configurations. In order to reconfigure another unit, the corresponding scout unit
requires knowledge of the reconfiguration data for the new configuration. When
this knowledge is additionally transmitted during a scout unit’s reconfiguration,
the newly reconfigured scout unit is able to reconfigure other units to the corre-
sponding configuration as well. In this case, reconfiguration takes rt time steps
and is called a full reconfiguration. When a reconfigured scout did not receive the
knowledge, it is not able to reconfigure other units to its new configuration. The
cost rc for such a reconfiguration (i.e., without transfer of the special knowledge)
is lower than for a full reconfiguration (rc < rt). Worker units can only be recon-
figured using the second reconfiguration type.

Each job has a certain run time that depends on the number of slices a unit
has configured for it. Typically, one would assume that more slices result in
shorter execution time. In reality, processing speed does not increase linearly
with processing resources (e.g. because of caches or verification mechanisms).
Hence, we cannot necessarily assume that more slices result in shorter execution
time. The function which defines the run time for each job type and each possible

100 A. Brutschy et al.

Fig. 2. Example configuration spaces with s = 6 and j = 3. Each cell denotes a
configuration with configured slices per job type (in boxes) and its relative quality
(below boxes). Colors illustrate the relative quality value. (a) The underlying run time
function is linear, thus the configurations are ordered by their quality. In the displayed
case the distribution of job type 1 is 100%, which makes the configuration in the
lower left corner the optimum. (b) Non-linear (exponential) run time function. Job
type 1 cannot utilize more than two slices, whereas job type 2 can. Thus, the optimal
configuration gives more slices to job type 2 than the job distribution would indicate.

slice partition is referred to as the run time function. It is assumed that neither
the global job distribution nor the underlying runtime function is known to the
units. Hence, the units have to sample from the population of jobs.

The quality of a configuration oc is defined as the average number of jobs
which can be serviced per time step. Hence, omax = 1. The quality depends on
the distribution of the different types of jobs that are in the system. Because
the job types and their distribution can change in a dynamic environment, it is
possible that the quality of a configuration changes over time. The ratio of the
actual quality of a configuration to the quality of the optimal reconfiguration
o′c = oc

omax
is referred to as relative quality.

The set of all possible configurations is called configuration space Rc. The
size of the configuration space is

(
s−1
j−1

)
and depends on the number of slices

and number of job types. In the worst case, the size of the configuration space
increases factorially with linear increasing parameters (see Figure 2 for two ex-
ample configuration spaces). The configuration space is strongly characterized
by the run times of the underlying job types. Job types which have a linear run
time function result in spaces where configurations are ordered linearly by their
quality. Hence, this type of configuration space is referred to as a linear con-
figuration space. In order to study the impact of different underlying run time
functions on the system, configuration spaces were classified by the behaviour of

Learning from House-Hunting Ants 101

Table 1. Classification of underlying run time functions

Name Behaviour with increasing number of slices Example

constant constant

linear linearly decreasing

monotone monotonically decreasing

polygonal decreasing with local maxima

exponential exponentially decreasing

increasing increasing

random all functions not classified otherwise

their run time functions.1 All classes of run time functions that have been used
in this paper are given in Table 1.

4 Search and Reconfiguration Strategies

The units of the computing system need to adapt constantly their configuration
in order to deliver good performance in a dynamic environment. In order to
accomplish this, the scout units need to search the configuration space and decide
which configuration should actually be used. Several search and reconfiguration
strategies have been developed which are described in the following.

4.1 Reference Model

As a point of reference, we developed a model that tries to solve the reconfigu-
ration problem employing classical methods. It is therefore called the reference
model. In this model, each scout unit has a fixed set of worker units assigned to
it. A scout unit starts to search for a new configuration when it detects a change
in the current job distribution; when no change is detected scout units act as
workers and process jobs. New configurations are found by employing a simple
heuristic. First, the scout unit generates a partition which reflects the actual job
type distribution in the system. For example, if 80% of the jobs in the system are
of type 1 and 20% of type 2, the heuristic will assign 80% of the computation
resources to job type 1 and the rest to job type 2. After assessing the gener-
ated configuration by trial, the scout unit tries other configurations by making a
random walk in the neighbourhood of this configuration (two configuration are
neighboured when the assignment of the slices differs only for one slice), assessing
a total of 4 other configurations. Thereafter, the scout unit starts to reconfigure
the worker units that are assigned to it to the best configuration it has found.
In order to make the model comparative it uses the same scout-worker ratio as
the other models.
1 Formal details on the generation of a run time model by using these classes are given

in the supplementary online material.

102 A. Brutschy et al.

4.2 Ant-Inspired Models

Two models have been developed which utilize the emigration strategy of T.
albipennis for solving the reconfiguration problem. In one of the models the sys-
tem adapts to the environment by making a compromise between accuracy and
speed of the decision-making process, whereas the other remains static. As both
models share the basic principle, we first describe the common characteristics
followed by the model-specific behaviour.2

Analogously to the case of the real ants, the decision-making process and the
following reconfiguration of the units are referred to as emigration. Scout units
start to search for a better configuration with the probability ps per time step. In
this study, new configurations are tried by generating a random partition cn (if
specific characteristics of the run time functions are known, specialized strategies
might be of advantage). The scout unit then assesses the new configuration for
100 time steps by executing tasks. The perceived quality on is then compared
with the quality of the currently preferred configuration, op. The preferred con-
figuration cp might be the old configuration if the scout unit just started its
search, or another configuration which was assessed by the scout unit before. If
the new configuration is considered to be better than the current preferred con-
figuration, the new configuration becomes the preferred configuration. If not, the
scout unit returns to its previous state. Upon finding a preferable configuration,
the scout unit starts recruiting other scout units with a probability pr = op

omax
per time step, which is proportional to the perceived quality of the configura-
tion. If the quorum threshold has not been reached for this configuration (i.e.,
not enough scout units prefer this configuration), the scout unit tries to gather
more opinions on its preferred configuration by reconfiguring other scout units
to it. Analogously to the case of the real ants, this reconfiguration is referred
to as tandem-running. As soon as the required quorum has been reached, the
scout units start to reconfigure the remaining units to the new configuration.
This is called social-carrying, because, as with the real ants, the scout units do
not transmit the knowledge required for reconfiguring other units to the new
configuration. In general, units are contacted randomly, regardless of their state.

When scout units are not participating actively in the emigration, they act as
worker units and service jobs in order to increase the cluster’s performance. When
a scout unit tries to recruit another scout unit via tandem-running, it contacts a
random scout unit of its colony. If the contacted scout unit is in working state, the
scout stops working with the probability pa per time step and joins the tandem-
run. If the contacted scout unit is already searching for another configuration, it
switches preference with the probability pp per time step. Scout units switch back
to working state as soon as an emigration has been completed. As scout units are
only asked to leave working state when there is an active emigration and possible
better configuration, the number of scout units taking an active part in the emi-
gration varies with the cluster’s needs. In order to detect changes in the current
configuration’s quality, scout units reevaluate it periodically.
2 A finite state diagram of the scout units’ behaviour is available in the supplementary

online material.

Learning from House-Hunting Ants 103

The following subsections describe variants in the handling of the quorum
threshold.

Fixed Quorum Threshold Model. The first model is the so-called fixed quo-
rum threshold model (fixed model). In this model, the computing system is not
able to adapt its quorum threshold to the environment. This means that there is
always the same number of scout units required to make a decision regardless of
the situation. Therefore, the decision speed and accuracy is fixed and does not
change. This model is a simplification of the behaviour of the real ants.

Adaptive Quorum Threshold Model. In the second model the computing
system is able to adapt its quorum threshold to the environment. As for the real
ants, the units are able to sense the current environment and adjust the com-
promise between speed and accuracy of the decision-making process accordingly.
Thus, the model is referred to as the adaptive quorum threshold model (adaptive
model). The adaptation is accomplished by scaling the quorum threshold with
the relative throughput of the system. It is assumed that a system yielding a low
performance should reconfigure as fast as possible. Hence, a low system through-
put results in a low quorum threshold. On the other hand, when the system is
delivering a high throughput, it uses a high quorum threshold. Two limits define
the throughput values between which the quorum threshold is scaled linearly. Be-
low the lower limit ll the minimal threshold Tmin = 1 is used, whereas above the
upper limit lu the maximal quorum threshold Tmax = ns applies. The knowledge
of the overall and optimal throughput of the cluster is required for the scaling
mechanism. In this study it was assumed that the units possess this knowledge.
Experiments have also been made concerning the distribution of this knowledge
via gossiping protocols, but this cannot be described within the limited space of
this paper.

5 Experiments

Experiments have been conducted in a standard environment with the following
characteristics. In order to simulate a dynamic environment, one of the job types
was replaced every 50000 time steps. Thus, always j type of jobs where present
in the system. Jobs were generated randomly with a uniform distribution. The
distribution of job types in the system was changed every 5000 time steps. The
configuration space was generated using a polygonal run time function (see listing
of run time functions in Table 1 for reference). The standard metric used in the
experiments is a fitness metric which is defined as the ratio of average system
throughput to optimal system throughput f = da

do
. An optimal system exhibits

a fitness of f = 1. The model was simulated with the Repast Agent Simulation
Toolkit3.

Each parameter set was evaluated by 20 simulation runs. If not stated oth-
erwise, the following parameter values were used. The total number of units in
3 http://repast.sourceforge.net/

104 A. Brutschy et al.

Fig. 3. (a) Fitness of the adaptive model and the reference model for scout ratios from
0.1 to 0.9, increased in steps of 0.05. (b) Fitness of the adaptive and the fixed model
for increasing cluster sizes (n ∈ {10, 50, 100, 250, 1000}).

the system was n = 250, with a scout ratio of ns

n = 0.3, s = 10 slices and j = 3
job types. Default probabilities were ps = 0.005, pa = 0.001 and pp = 0.7. The
quorum threshold for the fixed threshold model Tfix = 0.3 · ns, which proved
to be optimal when used in conjunction with the default parameter settings.4

The quorum threshold scaling limits of the adaptive models ll and lu were set
to 0.5 and 1.0 respectively. For the reconfiguration times, it was assumed that a
scout reconfiguration takes three times as long as the reconfiguration of a worker
unit (rt = 150, rc = 50). This is similar to the time difference found between
tandem-running and social-carrying in colonies of T. albipennis.

5.1 Results and Discussion

One of the most characteristic features of the model is the distinction between
scout and worker units. Therefore, we first studied the impact of the scout-
worker ratio on the system fitness. Figure 3(a) shows the fitness of the system
for different ratios. As it can be seen clearly, the adaptive model performs badly
when used with a low number of scouts. If less than 20% of the units act as scouts,
the fitness drops rapidly. On the other hand, with more than 20% of scouts
the fitness remains nearly constant. This can be explained with the working-
state mechanism: only those scouts that are actually required take part in an
emigration, the other units continue to act as workers. Thus, increasing the
percentage of scout units beyond the cost-optimal value of 20% does not increase
the fitness of the system. This behaviour is analogous to the real ants, where
the percentage of scouts has been found to be 20-30% [14]. The lower fitness in
the reference model can be explained by the increased reconfiguration overhead
when using more scouts.

The influence of the cluster size has been studied as well. The results are
shown in Figure 3(b). In this experiment, the fixed model shows the same general

4 See the supplementary online material for an experimental validation of this choice.

Learning from House-Hunting Ants 105

Fig. 4. Fitness of the adaptive model for different quorum threshold scaling limits ll
and lu. Limits from 0.0 to 1.0 increased by 0.1.

behaviour as the adaptive model but exhibits a much lower fitness. This loss in
fitness is attributed to the fixed quorum threshold, which enforces the same
percentage of units on each decision, regardless of the situation. The decrease of
fitness when using less than 100 units can be explained with the aforementioned
minimal number of scout units required for the emigration to work. Apart from
this minor restriction, the models scale well with an increasing number of units.
As the fixed model is less effective than the adaptive model, we omitted it in the
description of the following experiments.

In order to study the impact of the quorum threshold scaling on the adaptive
model, we varied the scaling limits ll and lu as shown in Figure 4. As the results
show, threshold scaling strongly affects the fitness of the system. An upper limit
of less than 60% of the total number of units yields too many bad decisions even
in situations where this is not acceptable, thus reducing the fitness substantially.
The system does not react as sensitively to changes of the lower limit as it
does to changes of to the upper limit, although the results show that a lower
limit over 0.5 results in a quorum threshold that requires too many units to
decide unanimously. Having a lower limit higher than the upper limit results
in a dysfunctional quorum scaling. Hence, a strong decrease of fitness can be
observed in left corner of Figure 4.

The final experiment studies the impact of the different configuration spaces
on the fitness of the various models. Figure 5 shows a comparison of the fit-
ness on configuration spaces that are generated by the aforementioned different
classes of run time functions (see Table 1). The ant-inspired models perform
nearly constantly on all run time function classes, with the previously observed
advantage of the adaptive model. The reference model’s fitness drops with an

106 A. Brutschy et al.

Fig. 5. Boxplot of the fitness on different configuration spaces. Whiskers indicate stan-
dard deviation and circles outliers (observations above/below 1.5 · IQR).

increasing complexity of the configuration space, as the scout units are not able to
find good configurations. This shows an important advantage of the ant-inspired
model: The robustness of the self-organized reconfiguration enables it to deliver
nearly constant performance even in dynamic and complex configuration spaces.

6 Conclusion

In this paper, we proposed ant-inspired strategies for self-organized reconfigura-
tion in a computing system with reconfigurable units. In particular, we used prin-
ciples that are also used by the ant Temnothorax albipennis for house-hunting
to design the proposed strategies. In our model, the system consists of scout
units and worker units which execute different jobs coming into the system. The
units are able to specialize on different types of jobs by adjusting their reconfig-
urable hardware, thereby optimizing the system’s throughput. The ant-inspired
strategies for making a decision on which configuration should be employed have
been analyzed experimentally and compared to a non-adaptive reference strat-
egy. The ant-inspired adaptive strategy proved to be versatile and very robust
on all tested environments. In contrast to the reference strategy, the ant-inspired
strategies allowed the scout units to find good configurations even in complex
configuration spaces. They were able to reach a collective, decentralized decision
on which configuration was acceptable in the given situation, and to reconfigure
all of the cluster’s units to it. A interesting similarity to the natural system has
been identified, as the optimal percentage of scouts in the system is about the
same as observed for the real ants.

Acknowledgements. This work was supported by the German Research Foun-
dation (DFG) through the project “Organisation and Control of Self-Organising
Systems in Technical Compounds” within SPP 1183.

Learning from House-Hunting Ants 107

References

1. IBM Research: Autonomic computing: IBM’s perspective on the state of informa-
tion technology. Technical report, IBM Research (2001)

2. Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner,
F., Schmeck, H.: Organic computing – addressing complexity by controlled self-
organization. In: ISoLA 2006 (2006)

3. Würtz, R.P. (ed.): Organic Computing. Springer, Heidelberg (2008)
4. Compton, K., Hauck, S.: Configurable computing: A survey of systems and soft-

ware. Technical report, Northwestern University, Department of ECE (1999)
5. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and deci-

sionmaking in animal groups on the move. Nature 433, 513–516 (2005)
6. Conradt, L., Roper, T.J.: Group decision-making in animals. Nature 421, 155–158

(2005)
7. Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination.

Autonom. Agents and Multi-Agent Sys. 8(3), 237–266 (2004)
8. Merkle, D., Middendorf, M., Scheidler, A.: Using decentralized clustering for task

allocation in networks with reconfigurable helper units. In: de Meer, H., Sterbenz,
J.P.G. (eds.) IWSOS 2006. LNCS, vol. 4124, pp. 137–147. Springer, Heidelberg
(2006)

9. Krieger, M., Billeter, J.B.: The call of duty: Selforganised task allocation in a
population of up to twelve mobile robots. Robot. Autonom. Sys. 30, 65–84 (2000)

10. Parker, C.A.C., Zhang, H.: Collective decision making: A biologically inspired ap-
proach to making up all of your minds. In: IEEE Int. Conf. on Robotics and
Biomimetics, pp. 250–255 (2004)

11. Marshall, J.A.R., Dornhaus, A., Franks, N.R., Kovacs, T.: Noise, cost and speed-
accuracy trade-offs: Decision-making in a decentralized system. J. Roy. Soc. Inter-
face 3(7), 243–254 (2006)

12. Pratt, S.C., Sumpter, D.J.T., Mallon, E.B., Franks, N.R.: An agent-based model
of collective nest choice by the ant temnothorax albipennis. Anim. Behav. 70(5),
1023–1036 (2005)

13. Pratt, S.: Quorum sensing by encounter rates in the ant temnothorax albipennis.
Behav. Ecol. 16, 488–496 (2005)

14. Pratt, S.C., Mallon, E.B., Sumpter, J., Franks, N.R.: Quorum sensing, recruitment,
and collective decision-making during colony emigration by the ant leptothorax
albipennis. Behav. Ecol. Sociobiol. 52(2), 117–127 (2002)

15. Franks, N.R., Richardson, T.: Teaching in tandem-running ants. Nature 439(7073),
153 (2006)

16. Merkle, D., Middendorf, M., Scheidler, A.: Self-organized task allocation for com-
puting systems with reconfigurable components. In: IPDPS 2006, pp. 25–29 (2006)

Modeling Phase Transition

in Self-organized Mobile Robot Flocks�

Ali Emre Turgut, Cristián Huepe, Hande Çelikkanat,
Fatih Gökçe, and Erol Şahin

KOVAN Res. Lab., Dept. of Computer Engineering
Middle East Technical University, Turkey

{aturgut,hande,fgokce,erol}@ceng.metu.edu.tr,
cristian@northwestern.edu

Abstract. We implement a self-organized flocking behavior in a group
of mobile robots and analyze its transition from an aligned state to an
unaligned state. We briefly describe the robot and the simulator plat-
form together with the observed flocking dynamics. By experimenting
with robotic and numerical systems, we find that an aligned-to-unaligned
phase transition can be observed in both physical and simulated robots
as the noise level is increased, and that this transition depends on the
characteristics of the heading sensors. We extend the Vectorial Network
Model to approximate the robot dynamics and show that it displays an
equivalent phase transition. By computing analytically the critical noise
value and numerically the steady state solutions of this model, we show
that the model matches well the results obtained using detailed physics-
based simulations.

1 Introduction

Flocks of birds, herds of quadrupeds and schools of fish stand as fascinating
examples of self-organized coordination, where groups of individuals coherently
move and maneuver in space as a collective unit [1,2]. Although it has long
been studied in biology, it was Reynolds [3] who first demonstrated flocking
in artificial systems, showing that realistic flocking behavior can be obtained
in computer animation using a number of simple behaviors. Reynolds’ seminal
work generated interest in many different fields.

In robotics, Matarić [4] made one of the earliest attempts to obtain flocking
in a group of robots by combining safe-wandering, aggregation, dispersion, and
homing behaviors. She was able to demonstrate that a group of robots can “flock”
towards a common homing direction while maintaining a cohesive grouping.
� The works of A.E. Turgut, F. Gökçe and E. Şahin are supported by TÜBİTAK un-

der grant no: 104E066. The work of C. Huepe is supported by the National Science
Foundation under Grant No. DMS-0507745. H.Çelikkanat acknowledges the partial
support of the TÜBİTAK graduate student research grant. F. Gökçe is currently en-
rolled in Faculty Development Program (ÖYP) in Middle East Technical University
on behalf of Süleyman Demirel University.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 108–119, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modeling Phase Transition in Self-organized Mobile Robot Flocks 109

In [5], Kelly and Keating used robots that can sense the obstacles as well as
the relative range and bearing of their neighbors through a custom-made active
infrared system. The robots used a radio-frequency system to elect one of them
as the leader which would then wander in the environment while being followed
by the others. In a recent study, Hayes et al. [6] proposed a “leaderless distributed
flocking algorithm” consisting of two simpler behaviors: collision avoidance and
velocity matching, using local center-of-mass calculations based on emulated
range and bearing information. Additional studies in robotic flocking have been
carried out in works such as [7,8].

Flocking has also attracted interest in physics, where various models have
been proposed to study the emergence of order in such systems. The emergence
of order corresponds to the collective self-alignment of the group to a common
heading direction as a result of the interactions among its individuals. In a
pioneering study, Vicsek et al. [9] proposed the Self-Driven Particles (SDP) model
to explain the emergence of order in biological swarms. The SDP model uses
massless and volumeless particles that move at a constant speed in a square arena
with periodic boundary conditions. The heading of each particle is updated to
the average direction of motion of its local neighbors and a noise term which is
added to account for uncertainties in its inputs and control. Simulations of this
model revealed that particles align if the system is above a critical mean density
or if the magnitude of the noise is below a critical value. In a follow-up study,
Gregoire et al. [10] extended the SDP model to add attraction and repulsion
among the particles in their local neighborhood, thus achieving self-organized
motion in an open domain.

Aldana et al. [11] proposed the Vectorial Network Model (VNM) to study
the emergence of long-range order in systems with mostly local interactions. In
the VNM, particles are placed in a two-dimensional lattice and their positions
remain fixed. Each heading thus only determines here a pointing direction for
a given lattice site. As in the SDP, headings are updated to the average point-
ing directions of its inputs, but here only some of these inputs are taken from
neighboring lattice sites and the rest from randomly chosen (possibly distant)
sites. The VNM simulations show that long-range order does not emerge at any
nonzero noise value if the neighbors are chosen only locally. However, long-range
order does emerge for sufficiently small noise values if a small fraction of the in-
puts are chosen from random particle sites. An interesting aspect of the VNM is
that an analytic expression was obtained in [11] to describe its order-to-disorder
phase transition for the case with no local interactions, where all inputs are taken
from random particle sites.

Despite many efforts to control and model flocks in robotics and statistical
physics, these two lines of research have remained relatively disconnected from
each other. An exception can be found in the recent study in [12], where a
link was established between the behavior of multi-robot systems and phase
transitions. There have been two main reasons behind the failure to integrate
both perspectives. First, until recently, true self-organized flocking behavior like
the one observed in nature had not been achieved in robotic systems. Indeed,

110 A.E. Turgut et al.

(a)

0

1
2

3

4

5 7
6

(b) (c) (d)

Fig. 1. (a) Photo of a Kobot. (b) Top-view of a Kobot sketch showing the body (circle),
the IR sensors (small numbered rectangles), and the two wheels (grey rectangles). (c-
d) Starting from a disordered state, 7 Kobots negotiate a common heading and advance.
White arrows on the robots indicate the forward direction.

the previous experimental studies in robotics used either a virtual or an explicit
leader [5] to guide the group or assumed that a target heading (or destination)
was sensed by the whole group [4,6,13]. Moreover, in some of these studies [6],
the authors used “emulated sensors”. Second, the assumptions required by the
models developed in physics were often considered to be too unrealistic to be
linked with studies conducted in robotics. The SDP model, for example, uses
massless and volumeless mobile particles.

In [14], we reported the first true self-organized flocking on a group of mobile
robots and showed that the robots can maneuver in an environment as a cohesive
body while avoiding obstacles on their path. In this paper, we first demonstrate
that the emergence of order in a robot flock depends on the amount of noise in
the heading alignment behavior. We then extend the VNM to model the order-
to-disorder phase transition that occurs in these robotic systems as the noise
level is increased. Finally, we compare the predictions of the proposed model to
the results obtained from robots.

2 Experimental Framework

We used a custom-built mobile robot platform, called Kobot, and its physics-
based simulator, that we refer to as CoSS, in our experiments. Kobot is a CD-
sized (with a 12 cm diameter), light-weight, differentially driven robotic plat-
form (Figure 1(a)). It possesses an active Infrared Short-Range Sensing (IRSS)
system designed for short-range proximity measurements. This system utilizes
modulated infrared signals to minimize environmental interference and crosstalk
among the robots. It consists of eight sensors placed evenly at 45◦ intervals (see
Figure 1(b)), each of which is capable of sensing kin-robots and obstacles within
a 21 cm range in seven discrete levels at 18 Hz.

The Virtual Heading Sensor (VHS) consists of a digital compass and a wireless
communication module to receive the relative headings of neighboring robots.
The VHS module measures its own heading with respect to the sensed North
at each control step and broadcasts it to other robots through wireless
communication. Each robot receives the broadcasted heading values within its

Modeling Phase Transition in Self-organized Mobile Robot Flocks 111

communication range. We define the set of robots that are “heard” by a given
robot as its VHS neighbors. The angular difference between the broadcasted val-
ues and its own heading allows a robot to compute its relative heading with
respect to its VHS neighbors and adjust it as needed. This operation of the VHS
module assumes that the sensed North remains approximately the same among
the robots within communication range.

Flocking Behavior. The flocking behavior [14] consists of a heading alignment
and a proximal control combined in the weighted vector sum:

a =
1
8
h + p,

where h is the heading alignment vector, p is the proximal control vector, and a
is the desired acceleration vector. The heading alignment vector h, which is used
to align the robot with the average heading of its neighbors, is calculated as:

h =

∑
j∈N eiθj

‖
∑

j∈N eiθj‖

where N denotes the set of VHS neighbors, θj is the heading of the jth neighbor
and ‖ · ‖ calculates the Euclidean norm.

The proximal control behavior uses readings obtained from the IRSS to avoid
collisions and to maintain cohesion between the robots. For each IR sensor, a
virtual force proportional to the square of the difference between the measured
distance and the desired distance is assumed. The desired distance (ddes) is
defined as a finite value for other robots and ∞ for obstacles, in order to keep
a fixed distance to its peers while moving away from obstacles. The normalized
proximal control vector p is therefore given by:

p =
1
8

∑
k

fkeiφk

where k ∈ {0, 1, · · · , 7} denotes the sensor positioned at angle φk = π
4 k with

respect to the x-axis (see Figure 1(b)) and fk is calculated as:

fk =

⎧⎨⎩− (dk−ddes)
2

1
8

if dk ≥ ddes

(dk−ddes)
2

1
8

otherwise.

The desired acceleration vector is mapped to the forward and angular veloci-
ties of the robot. The forward velocity u is modulated depending on the deviation
of the desired acceleration vector from the current direction, as given by:

u =

{
0.7

(
a

‖a‖ .âc

)
if a

‖a‖ .âc ≥ 0
0 otherwise

where âc is the current direction of the robot parallel to the y-axis of the body-
fixed reference frame. The angular velocity ω is controlled by a proportional
controller:

ω =
1
2
(� âc − � a).

112 A.E. Turgut et al.

The Order and Average Order Metrics. We evaluate the flocking perfor-
mance by using the well-studied measure of order ψ [9], which corresponds to
the average alignment of the group and is computed as:

ψ =
1
M

∣∣∣∣∣
M∑

k=1

eiθk

∣∣∣∣∣ ,
where M is the number of robots and θk is the heading of the kth robot. The
order can take any value between 0 and 1. When individuals are aligned and
the system is ordered we have ψ ≈ 1, and when individuals are not aligned and
the system is disordered we have ψ ≈ 0. When the steady-state performance of
the flocking behavior is considered, we will use the time average of the order,
denoted by ψ̄.

3 Modeling the Virtual Heading Sensor

The properties of the flocking behavior depend on two specific characteristics
of the virtual heading sensor, namely: (1) the number of VHS neighbors that
can be simultaneously detected, and (2) the nature and amount of noise in the
digital compass measurements. Hence, we will study here the dependence of
the system on these characteristics by modeling them with the CoSS simulator.
The number of VHS neighbors N depends on the range of communication, the
number of robots within this range, and the frequency and duration of this
communication. Systematic analysis has shown that in the physical robots, the
number of VHS neighbors can be as large as 20 in large groups.

The noise in VHS solely depends on the noise characteristics of the digital
compass. In indoor environments, the presence of ferrous materials induce large
amounts of noise on the digital compass. We model this noise by adding a vector
of fixed magnitude in a random direction to each heading measurement [10,12].
The resulting noisy heading of the jth neighbor received as input by a given

−180 −120 −60 0 60 120 180
0

0.01

0.02

0.03

0.04

� �h [degree]

p(
x)

η=0.25
η=1
η=120

(a)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

time [s]

ψ

η=0
η=1
η=15

(b)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

time [s]

ψ

η=0
η=5
η=15

(c)

Fig. 2. (a) Probability density function of the simulated noisy measurement inputs
of one VHS neighbor for different η values. (b) Evolution of ψ in time for 7 Kobots.
(c) Evolution of ψ in time for 7 robots in the CoSS simulator. In this figure and
subsequent figures the standard deviations are indicated using error bars.

Modeling Phase Transition in Self-organized Mobile Robot Flocks 113

robot is:
θj = � (eiθa + ηeiξ)

where θa is the actual heading of the jth neighbor, η is the magnitude of the
noise vector, and � (·) is function that calculates the argument of a vector. The
noise-vector direction ξ is a delta-correlated random variable with a uniform
distribution in [−π, π].

The probability density functions of the simulated noisy measurements is
plotted in Figure 2(a) for various values of η. It is apparent that η determines
the standard deviation of the resultant noisy headings, as expected.

4 Analysis of the Flocking Behavior

We investigate the effect of the sensing noise on the transient and on the steady-
state to characterize the flocking phase transition in our system. The transient
characteristics were investigated by conducting experiments with 7 Kobots and
simulating 7 robots in CoSS for 1 VHS neighbor. The steady-state characteristics
were investigated by simulating 100 robots in CoSS. The robots were initially
placed in a regular hexagonal formation with a center-to-center distance of 25 cm
having random orientations. Each experiment was repeated 10 times.

Transient Analysis. We varied the sensing noise on the VHS and measure the
evolution of ψ in time for 7 Kobots in an actual experiment and for 7 robots
in the CoSS simulator. In the Kobot experiments, the environmental noise is
assumed to be negligible, so we set it to correspond to the η = 0 case. Higher η
values are attained by adding noise artificially to each heading measurement. The
evolution in time of ψ for the experimental and simulation cases are plotted on
Figures 2(b) and 2(c). The results indicate that that ψ increases from a random
initial condition, approaching approximately 1 when η is low, while settling to
smaller ψ values when η is increased. Although the trends in the Kobot and CoSS
cases are the same, Kobots perform worse than the robots in the CoSS simulation
for the same amount of noise. This is probably due to the environmental noise
in the Kobot experiments, that adds an unpredictable base noise level to the
system.

Steady-State Analysis. We will now analyze the steady-state flocking behav-
ior by finding the value of ψ at which the system settles for various noise levels.
We consider the results of two sets of CoSS simulations: (1) runs with a small
and a large number of robots (7 and 100, respectively), but with only 1 VHS
neighbor, (2) runs with 100 robots and different numbers of VHS neighbors. Each
simulation was conducted for 1000 s and its steady-state ψ value was calculated
by averaging over the last 500 s. This guarantees that the steady-state condition
has been achieved since it takes less than 250 s for ψ to converge. The results
are plotted on Figures 3(a) and 3(b).

Figure 3(a) shows that, regardless of the flock size, an increase in η decreases
the order. However, the order shows a much smaller decrease for the small group

114 A.E. Turgut et al.

0 5 15
0

0.2

0.4

0.6

0.8

1
ψ

η

7
ro

bo
ts

10
0

ro
bo

ts

(a)

0 12 24 36 48 60 72 84 96 108 120
0

0.2

0.4

0.6

0.8

1

η

ψ

N=1

N=3

N=7

N=10

N=15

N=18

N=20

(b)

Fig. 3. (a) Plot of ψ̄ measured in CoSS simulations containing 7 and 100 robots. The
horizontal lines in the boxes, the box-ends, and the additional error bars correspond
to the median and to its first and third quartiles, respectively. (b) Plot of ψ̄ for 100
robots in CoSS for various N .

when η = 15. This is due to the finite size effects observed that are known
to blur the difference between order and disordered collective states in small-
sized statistical systems. In the rest, we will therefore focus on CoSS simulations
with 100 robots, which enables reasonable run times while minimizing finite-size
effects. It is apparent on Figure 3(b) that for all N values, ψ approaches 1 and
the system organizes in a coherent flock as the noise level η is lowered to zero.
If η is increased, ψ decreases and eventually approaches to 0. We also observe
that increasing N increases the order of the flock for a constant η. The order-to-
disorder transition that occurs by increasing the noise level in this robotic system
is equivalent to the second-order phase-transition observed in various statistical
physics systems. As in the physics context, we will refer to the η value at which
the system loses all order as the critical noise level ηc.

5 Modeling the Phase Transition in Flocking

We are interested in modeling analytically the order-to-disorder phase transi-
tion observed in the flocking behavior of Kobots as a function of noise, and to
determine ηc for a given number of VHS neighbors. We will consider a simple
network-based model that includes the noise, interactions with randomly chosen
agents, and an inertia-like term that captures qualitatively various local interac-
tions that affect the Kobot dynamics. Our model does not, however, deal with all
the complexities of the behavior. Indeed, in order to allow analytical solutions,
it avoids any spatial description by representing agents as nodes interacting
through random switching connections in a network. This model is an extension
of the Vectorial Network Model (VNM) introduced in [11] as a network version
of the SDP model in [9].

The original VNM can be solved analytically and is known to display an
order-to-disorder transition similar to the one observed in Kobots, but it is not
well adapted to describe some of the details of our robotic system. For example,
the noise is introduced differently and the agents can turn in any direction at

Modeling Phase Transition in Self-organized Mobile Robot Flocks 115

every time-step, with no restrictions on the turning rate. We therefore introduce
a new network system to model the Kobots, the Stiff-Vectorial Network Model
(S-VNM), which we define as follows. At every time-step, each node updates its
heading hj(t) based on N inputs chosen randomly from any node in the system,
according to

hj(t + 1) = κeiθj(t) + λ

N∑
k=1

eiθk(t) + η

N∑
k=1

eiξk(t). (1)

Here, the heading hj is a vector of arbitrary magnitude with � [hj] = θj , where
the heading of Kobot j is given (in this network representation) by the angle
θj associated to node j. The model parameters κ, λ, and η determine the rel-
ative importance of the persistence, interaction, and noise terms, respectively.
The latter two correspond directly to the terms implemented in the VHS control
part of the Kobot dynamics. Here, the noise is introduced as in [10], with a
fixed magnitude η in a random direction given by ξk, a delta-correlated random
variable uniformly distributed in [−π, π]. The persistence term models qualita-
tively an effective inertia that appears mainly due to the proximity interactions
between Kobots. These make it harder for a given robot to turn in response to
its VHS inputs or the noise since, if it is surrounded by other robots heading in
the same direction, these will block it from shifting its heading.

Analytical Treatment of the S-VNM. One of the main appeals of the S-
VNM lies in our ability to treat it analytically. We derive here a solution that
allows us to compute the critical noise value ηc (at which the order-to-disorder
transition occurs) in terms of κ, λ, and N . We will approach this problem as
follows. First, we compute the probability density function (PDF) of each term
in Equation (1). Then we impose that the PDF of θj (which is equal for all j) is
the same at time t and at time t+1, which, together with Equation (1), provides
us with a closed expression for the statistical steady state of this PDF. Finally,
we find the value of η at which a constant distribution for θj becomes unstable.
This corresponds to the critical noise level ηc above which there is a stationary
distribution with hj pointing in any direction with the same probability (the
disordered state), and below which such solution is unstable, thus drifting the
system to a distribution with a preferred direction for hj (the ordered state). In
what follows we will use the fact that the magnitude of h does not intervene in
the dynamics of the S-VNM to rescale Equation (1) by dividing it by λ. We thus
define κ̃ = κ/λ and η̃ = η/λ and use these rescaled variables below, dropping
the tildes until the end of this calculation to simplify the notation.

We first consider the noise term, which can be viewed as the total displacement
that results after taking N steps of length 1 in a two-dimensional random walk.
Using this analogy, we can apply well-known random walk results and write the
PDF of the position on the x y plane after N steps as

Pη(x, y) =
1

Nη2π
e
− x2+y2

Nη2 . (2)

116 A.E. Turgut et al.

We will need below the two-dimensional Fourier transform of Eq. 2, that can
be readily computed to obtain

P̂η(λx, λy) = e−
1
4 Nη2(λ2

x+λ2
y). (3)

We now carry out the calculation of the PDF of the interaction term, which
can be quite involved. Fortunately, this result was already obtained in [11]. As-
suming that all the θk have the same PDF and are statistically independent
(which is true if the N inputs are all picked at random from any node in a large
system), the Central Limit Theorem is used in [11] for large enough N values
to find an approximate Gaussian expression for this PDF. Computing again its
Fourier transform we obtain:

P̂Nθ(λx, λy) = eiN(Δ1,0λx+Δ0,1λy)−N
2 (σ2

cλ2
x+σ2

sλ2
y+2σ2

csλxλy) (4)

where σ2
c (t) = Δ2,0(t) − [Δ1,0(t)]2, σ2

s(t) = Δ0,2(t) − [Δ0,1(t)]2, and σ2
cs(t) =

Δ1,1(t)−Δ1,0Δ0,1. Here, Δm,n(t) denotes the instantaneous cosine-sine moment
of the angle distribution, given by

Δm,n(t) =
∫ π

−π

Pθ(α; t) cosm(α) sinn(α)dα,

in which Pθ(α; t) is the PDF of the angle that describes the heading of each
particle. Note that Eq. (4) converges very rapidly to the exact PDF of the inter-
action term as N is increased, providing a very good approximation for N > 5.

The derivations above furnish expressions for the PDF of every element of
equation (1) in terms of the PDF of the direction of a single particle Pθ(α; t).
However, as they stand these expressions are far too complicated to find the
functional form of Pθ(α; t) as a stationary solution of Eq. (1). To continue the
calculations, we will thus concentrate in solutions close to ηc. If η > ηc, the
system is in the disordered regime and we know that all hj must point in any
direction with the same probability. This corresponds to having a uniform dis-
tribution Pθ(α) = 1

2π . If η < ηc we know that this PDF cannot be a stable
stationary solution of the dynamics since the system becomes organized and the
symmetry in the pointing directions of all hj must be broken. Therefore, a small
perturbation about the Pθ(α) solution must grow in this regime. Without loss
of generality, we can write a generic small perturbation of Pθ(α) as:

Pθ(α) =
1
2π

+ δ cos(α), (5)

where δ � 1. Using this form for Pθ(α; t), Eq. (4) becomes:

P̂Nθ(λx, λy) = e
iπNδλx− 1

2 N

�
(1

2−π2δ2)λ2
x+

λ2
y
2

�
. (6)

We now can find the combined PDF of the interaction and noise terms by
computing the inverse Fourier transform of the product of P̂η(λx, λy) times
P̂Nθ(λx, λy) to obtain

Modeling Phase Transition in Self-organized Mobile Robot Flocks 117

PNθη(x, y) =
1

πN
√

(1 + η2)(1 + η2 − 2π2δ2)
e
− 1
N

�
(x−Nπδ)2

1+η2−2π2δ2
+ y2

1+η2

�
. (7)

¿From this result we find the PDF of the Right Hand Side (RHS) of equation (1)
by calculating the convolution of PNθη with Pθ(α) (the PDF of the persistence
term). The resulting expression is:

PRHS(x, y) =
∫ π

−π

PNθη(x − κ cos θ, y − κ sin θ)Pθ(θ)dθ. (8)

Expanding Eq. 8 to first order in the small δ perturbation, then expressing the
resulting equation in polar coordinates (R,Φ) and integrating over R we finally
obtain the PDF of the RHS

PRHS(Φ) =
1
2π

+ δΓ cos(Φ), (9)

where

Γ =
√

π e
−κ2

2N(1+η2)

2
√

N(1 + η2)

[
(N + κ) I0

(
κ2

2N(1 + η2)

)
+ κ I1

(
κ2

2N(1 + η2)

)]
. (10)

Here In(·) are the Modified Bessel Functions of the first kind, usually defined
mathematically as the solutions to the differential equation: z2y′′ + zy′ − (z2 +
n2)y = 0.

In the stationary case, the LHS of Equation 1 is equal to Pθ(φ). Hence, the
LHS and the RHS have the same form and the condition for a statistically
stationary solution Pθ(Φ) = PRHS(Φ) becomes

1
2π

+ δ cos(Φ) =
1
2π

+ λΓ cos(Φ). (11)

The condition for Pθ(α; t) = 1/(2π) to be a stable stationary solution of the
probability distribution associated to the dynamics described in Eq. (1) is there-
fore given by Γ < 1. Setting Γ to 1, we thus find the critical noise level ηc at
which the order-to-disorder transition occurs.

While Γ = 1 fully determines ηc implicitly in terms of the model parame-
ters, this condition cannot be easily inverted to obtain an expression for ηc. We
can find an explicit approximate form for ηc, however, by carrying out certain
approximations in the regime that we are considering. We set κ and λ to 1.5
and 22, respectively, to capture the dynamics of the flocking behavior. For these
coefficients, κ2

2N(1+η2) � 1, which makes I0() ∼ 1 and I1() ∼ 0. In the resulting
expressions, the terms containing κ are small when compared to those containing
other coefficients and, thus, they can be neglected. By then substituting η = η̃λ
we obtain the following simple approximate expression for ηc

ηc = λ

√
Nπ

4
. (12)

118 A.E. Turgut et al.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

η

ψ̄

N=1(S−VNM)
N=1(CoSS)
N=7(S−VNM)
N=7(CoSS)

(a)

0 5 10 15 20
0

20

40

60

80

100

N

η c

CoSS
S−VNM analytic

(b)

Fig. 4. (a) Phase transition diagram obtained numerically using S-VNM and CoSS
simulations. (b) Critical noise values obtained using the analytical solution of S-VNM
and CoSS simulations.

Results Using the S-VNM. The S-VNM can be utilized in two ways to pre-
dict the phase-transition in flocking. On one side, the S-VNM can be easily and
efficiently implemented numerically to obtain the full phase-transition diagram
for the stationary flocking solutions resulting from a given set of parameters. On
the other side, we can use the analytical solution found above for the S-VNM to
predict ηc as a function of N .

The steady-state response was investigated by simulating the S-VNM numer-
ically. The simulations were performed with 100 particles for 10000 time-steps
using N = 1 or N = 7. ψ̄ for the last 5000 steps is plotted in Figure 4(a) as a
function of η. On the same plot, ψ̄ of analogous CoSS simulations is also dis-
played. It is apparent that predictions of the S-VNM are in close agreement with
the CoSS results for N = 1. A slight deviation is observed in the N = 7 case as
the system becomes organized.

Figure 4(b) displays the predicted critical noise value for the flocking behavior
obtained using Eq. 12 together with results from CoSS simulations as a function
of N . The two results are in close agreement both for small and large N values.
However, we should note that Eq. 12 is actually only meant to be valid for
relatively large values of N (typically at least N > 5) due to the use of the
Central Limit Theorem in the analytical treatment.

6 Conclusion

In this paper we studied self-organized flocking in a group of mobile robots.
We consider this work as a first step towards linking the mathematical models
of flocking proposed in statistical physics with the results obtained in robotic
systems. In this particular study, we showed the existence of an order-to-disorder
phase transition in flocking and that the amount of noise as well as the number of
neighbors with which each robot interacts determines the characteristics of this
transition. We have extended the Vectorial Network Model to incorporate the
dynamics of our robots and showed that the steady-state order characteristics

Modeling Phase Transition in Self-organized Mobile Robot Flocks 119

predicted by the model matches the ones obtained for the robotic system. This
analysis shows that the proximal interactions among the robots can be crudely
approximated by the inclusion of a stiffness term in the model.

References

1. Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-organized fish schools: An exam-
ination of emergent properties. Biol. Bull 202, 296–305 (2002)

2. Buhl, J., Sumpter, D.J.T., Couzin, I., Hale, J., Despland, E., Miller, E., Simpson,
S.J.: From disorder to order in marching locusts. Science 312, 1402–1406 (2006)

3. Reynolds, C.: Flocks, herds and schools: A distributed behavioral model. In: Proc.
of SIGGRAPH 1987, pp. 25–34 (1987)

4. Mataric, M.J.: Interaction and Intelligent Behavior. PhD thesis, MIT (1994)
5. Kelly, I., Keating, D.: Flocking by the fusion of sonar and active infrared sensors

on physical autonomous robots. In: Proc. of the 3rd Int. Conf. on M2VIP, vol. 1,
p. 14 (1996)

6. Hayes, A., Dormiani-Tabatabaei, P.: Self-organized flocking with agent failure: Off-
line optimization and demonstration with real robots. In: Proc. of ICRA 2002, pp.
3900–3905 (2002)

7. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle for-
mations. IEEE Trans. Automat. Contr. 49(9), 1421–1603 (2004)

8. Sepulchre, R., Paley, D., Leonard, N.E.: Stabilization of planar collective motion:
All-to-all communication. IEEE Trans. Automat. Contr. 52(5), 811–824 (2007)

9. Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Physical Review Letters 75(6) (1995)

10. Gregoire, G., Chate, H., Tu, Y.: Moving and staying together without a leader.
Physica D 181, 157–170 (2003)

11. Aldana, M., Huepe, C.: Phase transitions in self-driven many-particle systems and
related non-equilibrium models: A network approach. J. of Stat. Phy. 112 (1/2),
135–153 (2003)

12. Baldassarre, G.: Self-organization as phase transition in decentralized groups of
robots: A study based on boltzmann entropy. In: Mikhail, P. (ed.) Advances in
Applied Self-Organizing Systems, pp. 127–146. Springer, Berlin (2008)

13. Campo, A., Nouyan, S., Birattari, M., Groß, R., Dorigo, M.: Negotiation of goal
direction for cooperative transport. In: Dorigo, M., Gambardella, L.M., Birattari,
M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp.
191–202. Springer, Heidelberg (2006)

14. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking with a
mobile robot swarm. In: Proc. of AAMAS 2008, pp. 39–46 (2008)

Molecular Structure Elucidation Using Ant

Colony Optimization: A Preliminary Study

Caroline Farrelly, Douglas B. Kell, and Joshua Knowles

Manchester Interdisciplinary Biocentre, The University of Manchester
Manchester, UK

j.knowles@manchester.ac.uk

Abstract. Identifying the structure of unknown molecules is an impor-
tant activity in the pharmaceutical industry where it underpins the pro-
duction of new drugs and the analysis of complex biological samples. We
present here a new method for automatically identifying the structure of
an unknown molecule from its nuclear magnetic resonance (NMR) spec-
trum. In the technique, an ant colony optimization algorithm is used
to search iteratively the highly-constrained space of feasible molecular
structures, evaluating each one by reference to NMR information on
known molecules stored (in a raw form) in a database. Unlike exist-
ing structure elucidation systems, ours: does not need prior training or
use spectrum prediction; does not rely on expert rules; and avoids enu-
meration of all possible candidate structures. We describe the important
elements of the system here and include results on a preliminary test set
of molecules. Whilst the results are currently too limited to allow param-
eter studies or comparison to other methods, they nevertheless indicate
the system is working acceptably and shows considerable promise.

1 Introduction

Analytical chemists exploit a variety of spectroscopic techniques in order to gain
an insight into the structure of unknown molecules. They use the molecule’s
exact mass, available from mass spectrometry, to reveal the empirical formula
(e.g. C4H8BrF), and then study the molecule’s spectral fingerprint to under-
stand something about how these atoms are arranged. With NMR spectroscopy,
patterns of chemical shifts can reveal information about local structures, from
which it is (theoretically) possible, often after considerable toil, to infer the global
molecular form.

Computer assistance for the task of structure elucidation has been available for
decades now, initially as a means of helping to enumerate parts of the structural
space so that chemists would be sure not to overlook any of the exponentially
many possible forms. More recently, various AI techniques have been employed to
automate the process further (see Section 5). For the most part, these techniques
work by enumerating possible structures and then predicting the spectra of each
one, which is then compared to the observed spectrum of the unknown molecule.
This approach requires training machine learning methods to perform spectrum

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 120–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Molecular Structure Elucidation Using Ant Colony Optimization 121

prediction, a science which is developing but still far from a solved problem.
Moreover, the training process is intricate and time-consuming, and needs to
be targeted to the particular kinds of molecules of interest. The quantitative
comparison of observed and predicted spectra in these systems is also a nontrivial
task which represents a further area under development.

In this paper, we investigate whether it may be feasible to tackle the struc-
ture elucidation problem without the use of spectral prediction methods. The
approach we propose searches the space of possible structures iteratively using
ant colony optimization [1], and evaluates candidate structures more directly by
reference to a database of chemical shift patterns for known molecules. There
is no explicit training necessary in our proposed method (in the sense of super-
vised learning), which potentially makes our system easier to update and less
of a black box. From a machine learning perspective, the approach we use is
similar to lazy learning [2]: we store our ‘prior knowledge’ in a fairly raw and
uncompressed form and wait for a query before doing some work on the data to
answer the query.

At the core of the system is a search of the candidate molecule space; the
prior knowledge data is used mainly as an approximate evaluation function. Our
motivations for choosing ant colony optimization as the search method are two-
fold. First, there are many constraints involved in building the structures and
a constructive method such as ACO allows straightforward building of feasible
solutions. Secondly, much of the structural information in a candidate structure
relates to the order with which small modules (or substructures) are put together.
Thus, we can treat the problem as a pseudo-ordering problem. We know that
ACO is good at ordering problems from its successes in TSP, assignment, and
scheduling applications [1]. In addition, some local enumeration of molecular
structures is necessary to ensure all possibilities have been exhausted; and we
know that combinations of ACO and local search tend to perform well (e.g.,
see [3,4]).

The rest of the paper is organized as follows. Section 2 formulates the problem
that we tackle in this work, and relates it to other problems in machine learning
and optimization. The problem is addressed by the approach we set out in de-
tail in Section 3. Section 4 presents results from running the proposed method
on a number of real NMR spectrum-to-structure problems. We discuss related
literature on small molecule structure prediction from NMR in Section 5 and
in Section 6 we summarise the initial findings presented here and look ahead to
further developments.

2 The Spectrum to Structure Problem

The ‘Spectrum to Structure Problem (SSP)’ asks for the chemical structure of
a molecule, given the molecule’s spectral shift pattern and its empirical formula
(EF). In the version of the problem we consider here, we are concerned with
small organic molecules up to 500 molecular weight (MW) and the spectra are
13C NMR spectra. The EF given denotes only the constituent atoms in the

122 C. Farrelly, D.B. Kell, and J. Knowles

molecule, not their arrangement. Different arrangements of the same constituent
atoms are known as isomers; for even relatively small molecules there can be
many isomeric forms, each giving rise to a slightly different NMR spectrum, e.g.
the hydrocarbon C9H16 has 1 902 isomeric forms. Furthermore, the number of
isomers grows exponentially with the number of constituent atoms.

An example of two isomers and their spectra is given in Figure 1. Notice,
we are concerned only with finding the 2D structure as represented by standard
stick and ball diagrams. These structures have a one-to-one correspondence with
the full chemical name of the molecule as given by the IUPAC nomenclature [5].

C
C

C

H

H

H H

H

H C H

H

CH

H

HH

C

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 40 60 80 100 120 140
ppm

 0

 50

 100

 150

 200

 250

−3−2.5−2−1.5−1−0.5 0
ppm

Fig. 1. Two-dimensional representations of the two constitutional isomers of the em-
pirical formula C3H6 and their respective 13C NMR spectra. In propane (left), three
distinct shifts can be seen because each carbon atom’s electronic environment is dis-
tinct. In cyclopropane (right), only one shift is visible because the ‘view’ from each
carbon atom is identical.

In our version of the SSP, we assume that there is available some ‘prior knowl-
edge’ in the form of a dataset giving the known 2D chemical structures and
spectral shift values of organic molecules. Using this, we wish to infer the overall
structure of an unknown molecule by identifying its likely substructural compo-
nents — substructures that occur in molecules that exhibit similar NMR shifts
to our unknown molecule.

A number of alternative formal definitions of the resulting inference problem
could be given, based on measures such as 0-1 loss, or precision and recall (as used
in classification problems). However, we choose here to allow that the inference
method returns not one, but several attempts at inferring the structure. This

Molecular Structure Elucidation Using Ant Colony Optimization 123

is because the problem is hard and a single attempted structure is unlikely to
be correct, so measures of 0-1 loss would be unhelpful. Moreover, in practice,
chemists would be happier to receive a small number of candidate molecular
structures to investigate further, rather than one single answer that turns out
to be inaccurate.

What we thus measure is the position of the true structure in a ranking (by
internal fitness measure) of the candidate isomers generated by the inference
method. Because our inference method is based on ACO, a stochastic meta-
heuristic, we must run the algorithm several times to evaluate performance, so
to account for this, we report the overall rank of the true structure within a
list (sorted by fitness) of all the unique structures generated by the ACO over
the multiple runs performed. We also indicate the fraction of runs (out of those
performed) on which the true structure is generated.

3 Ant Colony Optimization Approach

The method that we propose for tackling the SSP has three main steps.

1. Data preparation: Identify all substructures up to a given size that ex-
ist in the database; construct a matrix recording the frequency with which
each substructure and spectral shift co-occur in the data. Split this ma-
trix into two, one pertaining to smaller substructures and one pertaining to
larger ones. (This whole step need only be done once for a given database
of molecules. And if new data becomes available, the matrices can be incre-
mentally updated by a trivial procedure.)

2. Set constraints based on the query: Once we have a query — an un-
known molecule to identify — use its empirical formula to remove from
consideration any substructures in the matrices that cannot be a part of
the final structure, i.e., those that contain an atom that is not part of the
given molecule and/or substructures that never produce any of the observed
spectral shifts.

3. Directed search: Search for complete structures that match the empirical
formula. Ants construct candidate structures from the smaller substructures
identified in Step 1. The candidate structures are evaluated with reference
to the larger-substructure frequency matrix from Step 1 via a maximum
weighted assignment algorithm (see Section 3.6).

The underlying ant algorithm that we use for the directed search part is based
on the MAX-MIN Ant System [6] (see Algorithm 1).

3.1 Data Preparation: Frequency Matrices

We are interested in building an approximate probability distribution over the
substructures contained within the database. To obtain this information, the
graph structure of each molecule can be decomposed into its subgraphs. Only
subgraphs of limited size need to be found, where the size refers to the number

124 C. Farrelly, D.B. Kell, and J. Knowles

Algorithm 1. Ant colony optimization algorithm for structure elucidation
Input query: An empirical formula and its 13C NMR spectral shift pattern
Prior knowledge: small substructures freq. matrix, large substructures freq. matrix
Constrain the search: Delete incompatible rows in the frequency matrices
Global best fitness ← 0
while Termination conditions not satisfied do

for n = 1 to nants do
Construct an ordered list of small substructures compatible with the empir-

ical formula, using a pheromone matrix to guide choices
Make all structures that are chemically possible from the ordered list
for j = 1 to nstructures do

Evaluate jth structure using a maximum weight assignment algorithm
end for
Record best fitness for this ant

end for
Record best fitness for this iteration
Update global best fitness
Update pheromone matrix with best fitness structure of the iteration
if global best structure 	= iteration best structure then

Update pheromone matrix with global best structure
end if

end while
Output: ranked list of candidate isomers and their estimated fitness values

of carbon atoms in the substructure. (All the non-carbon atoms bound to these
carbons are also included). We use an algorithm that enumerates all valid sub-
structures of sizes 2-carbon, 3-carbon and 4-carbon. Once this has been done
for every molecule in the database, we are able to correlate substructures with
spectral shifts. This is done by populating a matrix, which has rows representing
substructures and columns representing shift frequencies (suitably binned into
small value ranges) so that each element of the matrix records the number of
co-occurrences of a substructure and a particular spectral shift. It is thus a rep-
resentation of the joint probability of substructures and shifts (when correctly
normalized).

We use this data in two ways in the ACO algorithm. We make one frequency
matrix containing all 2- and 3-carbon substructures. These substructures are
used as the solution components out of which the ants will construct full solu-
tions. We make a second frequency matrix containing all the 4-carbon substruc-
tures only. This matrix is used to evaluate solutions (see Section 3.6).

3.2 Construction Graph Structure

The solution directly constructed by an ant is an ordered set of 2- and 3-carbon
substructures, s = 〈s1, s2, . . . , sk〉, having a variable number of elements k. An
ant begins with a partial solution sp = ∅ and selects s1 from the pool of available
small substructures (with replacement) and adds it to sp. The ant then makes
the choice of s2 adds it to sp, and so on. The pool of available substructures is

Molecular Structure Elucidation Using Ant Colony Optimization 125

updated after each choice to relect the constraint given by the empirical formula.
The construction of a solution s is completed if the ant successfully completes a
structure with the required empirical formula. It may also terminate construc-
tion, in the event that it is no longer possible to complete the empirical formula,
which can occur if the addition of any substructure would result in exceeding the
empirical formula in at least one atom type. In the case of terminating a solution
without successfully completing it, the ant returns to the start of construction,
setting sp = ∅ and with the pool of available structures reset. An ant continues
constructing solutions until it is successful.

The choice of substructure an ant makes at each step is mediated by both
pheromone and heuristic information. Both of these sources of information help
the ants to avoid making choices that lead to constructions ending in incomplete
termination. A standard arc selection method is used [1], with the probability
of selecting component cij , i = 1, . . . , k, j = 1 . . . , |Di| being given by

p(cij |sp) =
τα
ij · η

β
ij∑

cil∈N(sp) τα
il · η

β
il

, ∀cij ∈ N(sp)

where Di is the domain of the decision variable (the set of substructures available
to go in position i), τij and ηij represent the pheromone and heuristic informa-
tion, respectively, and α and β are used to set the influence of these; N(sp)
represents the feasible neighbours of the partial solution sp.

3.3 Local Search: Translating Ant Solutions to Full Structures

The ordered list of substructures generated by an ant does not uniquely define
an isomeric structure. This is because the substructures could be joined to each
other in numerous ways. The ordering of the substructures is, however, intended
to encode at least partially the preferred way in which the substructures should
be joined. Thus, the solution encoded by an ant is interpreted as an instruction
to join s2 to s1, then s3 to s2, and so on. But there are still numerous chemically
valid ways in which this can be done that lead to different structural forms. These
structural forms can be enumerated, given the ant solution. Therefore, an ant’s
construction is regarded as defining an ensemble of possible structures and the
later evaluation of the ant solutions is done with respect to the best solution in
the ensemble. Explicit details of the procedure for performing this enumeration
of structures are given in [7]; space limitations prevent us from giving them here.

3.4 The Pheromone Matrix and Its Initialization

The pheromone matrix has m rows and kmax columns, where m is the number
of substructures in the pool initially (after constraining), and kmax is the maxi-
mum possible number of substructures that could be needed to construct a valid
isomer. It is simple to see that kmax is upper bounded by the number of carbon
atoms in the empirical formula divided by two, since each substructure that we
use to construct solutions has at least two C atoms.

126 C. Farrelly, D.B. Kell, and J. Knowles

An ant choosing substructural element sj looks in the jth column of the
pheromone matrix. The pheromone is thus on the nodes of the construction
graph, and represents the relative desirability of selecting a particular substruc-
ture at a particular position in an ant solution (which as stated above represents
an ordering of selected substructures). The pheromone matrix is initialized here
with the maximum value τmax , following Max-Min Ant System.

3.5 Heuristic Information

The heuristic information ηij is given by

ηij = max(1, I(cij completes EF) · 1000) ·
∏
a∈A

ha
ij ,

where A is the set of different atom types in the target empirical formula,

ha
ij =

∑
cil∈N(sp) 1∑

cil∈N(sp) I(cil contains atom type a)

and I(.) is the indicator function, which has value 1 if its argument is true, and
zero otherwise. Thus, ηij rewards a substructure cij if it contains an atom type
a which is in the target empirical formula and if this atom is rare (or infrequent)
in other available substructures. This encourages the picking of substructures
containing rare atoms early on in solution construction, which helps prevent
building candidate solutions that cannot be completed. The heuristic value of a
substructure is further rewarded (by a factor of 1000) if its selection would com-
plete the target empirical formula; this prevents making poor decisions towards
the end of solution construction.

3.6 Evaluation Using the Maximum Weighted Assignment

To evaluate a candidate isomer, it is first mined for all its constituent 4-carbon
substructures. A match between these larger substructures and those in the fre-
quency matrix that co-occur frequently at similar spectral shifts would indicate
a credible structure.

To assess the overall quality of these matches, we find the best assignment
of shifts to substructures possible, and evaluate this assignment. Specifically, we
have a set M of mined 4-C substructures and a set of observed shifts F . We have
a weight matrix W : M × F → R that stores the number of co-occurrences of
each m ∈ M and each shift f ∈ F within the frequency matrix.

We would like to assign each shift precisely one carbon atom, but the sub-
structures contain 4 carbons each. Therefore, we can allow each substructure to
be matched with up to 4 shifts. To facilitate solving this as a standard bipartite
graph matching problem, we can just copy each element of M four times to ob-
tain an expanded set Q and expand our weight function to be W : Q×F → R, by
simply repeating the weights four times. We now seek an assignment g : F → Q
such that ∑

f∈F

W (f, g(f))

Molecular Structure Elucidation Using Ant Colony Optimization 127

is maximized. This is a bipartite maximum weighted matching problem (or as-
signment problem) and can be solved by various methods including the Hungar-
ian algorithm [8], though we used a restart hillclimbing method.

The solution to this problem here gives the most favourable interpretation
of whether the set of substructures within the isomer could explain the shift
pattern seen.

3.7 Pheromone Update

The elements in the pheromone matrix that appear in a solution to be re-
warded (an iteration best ant or elite ant) are updated according to the following
equation:

τi,j(t + 1) = (1 − ρ) · τi,j(t) + Δτbest
ij

where Δτbest
ij = 0 if cij is not a component used in the best ant, and is oth-

erwise the raw score derived from the weighted assignment problem described
above.

Pheromones are forced to remain within the ranges set by τmin and τmax ,
by setting values below (respectively above) these to the respective bounding
value.

4 Preliminary Experimental Results

Our experiments were conducted with the parameters of the ACO set as shown
in Table 1(i). The basis of our experiments was a database of molecules compiled
by us, as described in Table 1(ii).

The performance of the structure elucidation method is evaluated in two ways
here. First, we examine if it can recover the structure of a molecule that is in
the prior knowledge data itself. This is already a hard problem (and is NOT
equivalent to testing on the training set in a classification/supervised learn-
ing task, because the space of possible structures that we search is still very
large — much larger than our whole database of known structures, so we are
not just learning class labels). These results are reported in Table 2.

Table 1. (i) Parameters of the ACO algorithm; (ii) Details of the database of known
molecules

(i) (ii)

Parameter value

nants 5
max iterations 80

τmin 0.5
τmax 10

ρ 0.01
α 1.0
β 1.0

Training set info

Number of molecules 2 873
Maximum MW 500
Minimum MW 50

Total number of atom types 16
Number of 2C and 3C substructures mined 2 881

Number of 4C substructures mined 5 926

128 C. Farrelly, D.B. Kell, and J. Knowles

Secondly, we verify the performance on molecules not in the initial knowledge-
base. This is achieved here by ‘holding out’ certain molecules we wish to test from
contributing to the frequency matrices. Due to some limitations of our data-sets,
we can only do this for two molecules at present (see Table 2, bottom).

Table 2. Test results on a range of small organic molecules. The target molecule is
found in all cases and in almost all runs. Often the approximate fitness of the true
structure means that it is ranked highly amongst the other candidates. Bottom: results
on hold-out data.

No.
of
carbon
atoms

Molecule name (IUPAC
convention)

Empirical
formula

No. of
isomers
as enu-
merated
by [9]

Rank by
fitness
(total no.
of unique
isomers
gnrtd.)

Number
of runs
target
gnrtd.
/ total
runs

4 1-bromo-2-fluorobutane C4H8BrF 12 1st (2) 27/27
4-aminobutanenitrile C4H8N2 633 1st (27) 17/17
1-methoxypropan-2-ol C4H10O2 28 1st (12) 18/18

5 (1E)-1,2-diiodopent-1-ene C5H8I2 88 3rd (8) 14/14
6 1-(allyloxy)propan-2-ol C6H12O2 1313 17th (396) 10/11

1-propoxypropan-2-ol C6H1402 179 6th (127) 8/8
1,1’-dithiodipropane C6H12S2 timeout 1st (66) 15/15

7 1-butoxypropan-2-ol C7H16O2 463 15th (292) 20/20

Hold-out data results:
6 1-propoxypropan-2-ol C6H1402 179 2nd=

(127)
5/5

7 1-butoxypropan-2-ol C7H16O2 463 10th (292) 4/4

The results reported in Table 2 are currently limited by a couple of factors
that have prevented a larger study. These are that: (i) our system of joining
substructures cannot currently generate ring structures, which means that a
significant fraction of structures cannot be tested yet; and (ii) at several points,
our code calls proprietary software to convert between different representations
of chemical structures (namely, SMILES strings and MOL files), which creates
a substantial computational bottleneck that prevents us from testing the larger
structures in our database. We are working to overcome both of these factors,
which are certainly not inherent problems of the system.

Despite the limitations, the results are positive on the cases we have tested,
with true structures being correctly recovered in all cases, and often ranked
highly by the assignment method compared with other structures generated.
On the hold-out data, the ACO system worked at least equally well when these
isomers were removed from the prior knowledge database as when they were in
it. Much more testing is required to understand the effect of the distribution
of isomers stored in the database on performance; but this initial test indicates
that it is not necessary to have seen the molecule before to predict its structure
using our system.

Molecular Structure Elucidation Using Ant Colony Optimization 129

5 Related Work on Structure Elucidation

In comparison to the number of applications available for spectrum prediction,
the field of structure elucidation is relatively small and immature. Most attempts
to address this issue are built upon an expert system with an inherent rule base.

A common feature is the requirement for an empirical formula. From this,
all possible isomers are generated and a spectrum is predicted for each one, al-
lowing for similarity ranking against the original query spectrum. Although this
significantly narrows the search space, typically thousands of isomeric forms may
remain. If there are significant distinctions between the spectra, the structure
corresponding to the top ranking spectrum can be taken as the structure caus-
ing the experimental spectra. However, if several top-most ranking spectra are
very similar, further analysis may be required. It should be noted at this point
that the both the accuracy of spectrum prediction and similarity ranking are
of primary importance in structure elucidation, because the larger the margin
of error in these, the more likely it will be that the predicted structure will be
incorrect.

There are several factors to be taken into account during ranking, including
matching the number of nuclei visible in the spectrum, chemical shifts values and
scalar couplings. It can be difficult to determine corresponding shifts between
predicted and experimental spectra, especially where multiple shifts occur within
a small separation. A study has highlighted how matrices can be used to de-
tect optimal matches between experimental and predicted spectra [10]. The first
two expert systems developed for this area, CONGEN [11] and GENOA [12],
generated isomeric forms, from which a specialist would select a likely struc-
ture. Both systems required considerable human interaction in forming lists of
favoured or unlikely fragments, but GENOA allowed fragment overlap within
the isomers constructed.

A more modern trend in structure elucidation applications is to utilize several
different spectral types in order to perform elucidation, for example multiple
dimensions, element types or analytical techniques. This rapidly reduces the
chemical search space and facilitates ranking. Programs such as CHEMICS[13],
X-PERT [14], and StrucEluc [15] use such supplementary data to determine
specific libraries and rules which should be accessed in order to improve search
results.

A more unusual approach is taken by the program Genius [16], which uses a
genetic algorithm for structure generation. A neural network is used to categorise
the electronic environment of each carbon in an isomer and then to predict its
spectrum. Using a GA for structure generation means not all isomers need be
initially generated, potentially narrowing the search space. The level of similar-
ity to the query spectrum determines which chromosomes are allowed to mate
and reproduce into the next generation. Runs can be stopped either by correct
structure determination (matching chemical shifts), time limits (after a set num-
ber of generations), or accuracy limits (when chemical shifts lower than those in
the experimental spectrum are achieved).

130 C. Farrelly, D.B. Kell, and J. Knowles

6 Summary and Future Work

A system for tackling the spectrum-to-structure problem based on ACO has
been presented. The system does not use expert rules, nor does it rely on pre-
dicting spectra from structures; instead, iterative heuristic search is combined
with the use of a knowledge-base of identified structures and their characteristic
spectra. On the data used to test the system here, it produced sets of proposed
structures that contained the true structure in all cases, even when the space of
possible isomers was large (i.e. containing over a thousand feasible structures).
On several occasions, the true structure was the isomer ranked highest by the
system. Moreover, the set of structures that a chemist may regard as likely can-
didates can potentially be reduced further, by taking account of the pheromone
trail information, rather than considering every structure generated. Testing has
obviously been very limited to date so it is not possible to draw any more than
preliminary conclusions from this. However, we are encouraged by these results
to continue further investigations.

The system now needs to be extended to tackle different molecular forms,
such as rings, which it is currently incapable of identifying (see [7] for more
details). We need to test the system further and compare it with alternative
approaches, including existing spectrum-to-structure methods and simple base-
line approaches. Such testing will require us to gather more high-quality NMR
spectral data for similar and larger molecules, to allow much larger studies to be
done, with more quantitative reporting of success rates as well as computation
times.

The spectrum-to-structure problem will continue to be an important one in
the pharmaceutical and systems biology arena. There is a growing need for fast
identification of molecules that have been manufactured artificially, such as can-
didates for active pharmaceuticals (drugs), or naturally-occurring molecules that
have never been characterized before, such as many of the metabolic products of
biological cells [17,18]. The work started here may eventually allow us to build
systems that are more scalable — requiring less human input and expertise and
less time-consuming training — than currently available ones.

Acknowledgments. Many thanks to Dr Lee Griffiths (Astra Zeneca, Alderley
Park) and Dr Bryn Roberts (formerly Astra Zeneca, Alderley Park) for advice
on NMR spectroscopy and for providing access to chemical shift data. Caroline
Farrelly was supported by a CASE studentship from Astra Zeneca and EPSRC,
UK. Joshua Knowles is supported by a David Phillips Research Fellowship from
BBSRC, UK.

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
2. Aha, D.: Lazy Learning. Kluwer Academic Publishers, Norwell (1997)
3. Stützle, T., Hoos, H.: MAX–MIN Ant system and local search for combinato-

rial optimization problems. Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, 313–329 (1999)

Molecular Structure Elucidation Using Ant Colony Optimization 131

4. Gambardella, L., Dorigo, M.: An Ant Colony System Hybridized with a New Lo-
cal Search for the Sequential Ordering Problem. INFORMS Journal on Comput-
ing 12(3), 237–255 (2000)

5. http://www.chem.qmul.ac.uk/iupac/

6. Stützle, T., Hoos, H.: MAX-MIN Ant System. Future Generation Computer Sys-
tems 16(8), 889–914 (2000)

7. Farrelly, C.: From Spectrum to Structure Using Machine Learning. PhD thesis,
School of Chemistry, University of Manchester, UK (2008)

8. Munkres, J.: Algorithms for the Assignment and Transportation Problems. Journal
of the Society of Industrial and Applied Mathematics 5(1), 32–38 (1957)

9. MOLGEN Tool, http://molgen.de/?src=documents/molgenonline
10. Griffiths, L., Bright, J.: Towards the automatic analysis of 1H NMR spectra: Part

3. Confirmation of postulated chemical structure. Magn. Reson. Chem. 40, 623–634
(2002)

11. Carhart, R., Smith, D., Brown, H., Djerassi, C.: Applications of artificial intelli-
gence for chemical inference. XVII. Approach to computer-assisted elucidation of
molecular structure. Journal of the American Chemical Society 97(20), 5755–5762
(1975)

12. Carhart, R., Smith, D., Gray, N., Nourse, J., Djerassi, C.: GENOA: A Computer
Program for Structure Elucidation Utilizing Overlapping and Alternative Substruc-
tures. J. Org. Chem. 46, 1708–1718 (1981)

13. Sasaki, S., Kudo, Y.: Structure elucidation system using structural information
from multisources: CHEMICS. Journal of Chemical Information and Computer
Sciences 25(3), 252–257 (1985)

14. Elyashberg, M., Martirosian, E., Karasev, Y., Thiele, H., Somberg, H.: X-PERT: a
user-friendly expert system for molecular structure elucidation by spectral meth-
ods. Analytica Chimica Acta 337(3), 265–286 (1997)

15. Elyashberg, M., Blinov, K., Williams, A., Martirosian, E., Martin, G.: Application
of a New Expert System for the Structure Elucidation of Natural Products from
the 1D and 2D NMR Data. J. Nat. Prod. 65(5), 693–703 (2002)

16. Meiler, J., Will, M.: Genius: A genetic algorithm for automated structure elucida-
tion from C-13 NMR spectra. Journal of the American Chemical Society 124(9),
1868–1870 (2002)

17. Kell, D.: Systems biology, metabolic modelling and metabolomics in drug discovery
and development. Drug Discovery Today 11(23-24), 1085–1092 (2006)

18. Kell, D.: Metabolomic biomarkers: search, discovery and validation. Exp Rev Mol
Diagn 7(4), 329–333 (2007)

http://www.chem.qmul.ac.uk/iupac/
http://molgen.de/?src=documents/molgenonline

Rigorous Analyses for the Combination of

Ant Colony Optimization and Local Search�

Frank Neumann1, Dirk Sudholt2, and Carsten Witt2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
fne@mpi-inf.mpg.de

2 Informatik 2, Technische Universität Dortmund, Dortmund, Germany
{sudholt,cw01}@ls2.cs.uni-dortmund.de

Abstract. Ant colony optimization (ACO) is a metaheuristic that pro-
duces good results for a wide range of combinatorial optimization prob-
lems. Often such successful applications use a combination of ACO and
local search procedures that improve the solutions constructed by the
ants. In this paper, we study this combination from a theoretical point
of view and point out situations where introducing local search into an
ACO algorithm enhances the optimization process significantly. On the
other hand, we illustrate the drawback that such a combination might
have by showing that this may prevent an ACO algorithm from obtaining
optimal solutions.

1 Introduction

Ant colony optimization (ACO) is a metaheuristic that has been applied success-
fully to various combinatorial optimization problems. Often ACO is combined
with local search methods [1,2,3]. Experimental investigations show that the
combination of ACO with a local search procedure improves the performance
significantly. On the other hand, there are examples where local search cannot
help to improve the search process or even mislead the search process [4]. There-
fore, it is interesting to figure out how the incorporation of local search into ACO
algorithms can significantly influence the optimization process.

The goal of this paper is to investigate this effect from a theoretical point of
view, using rigorous runtime analyses. The analysis of ACO algorithms with re-
spect to their runtime behavior is a new research direction, first step to which
appeared in [5,6]. Recently, initial results with respect to the runtime behavior of
variants of the MAX-MIN Ant System (MMAS) [7] have been obtained [8,9,10,11].

Our aim is to point out situations where the effect of local search becomes
visible in a way that can be tackled by rigorous arguments. Therefore we present
functions where MMAS variants with and without local search show a strongly
different runtime behavior. On one function, MMAS with local search outper-
forms MMAS without local search, while on a different function the effect is
� The work of D. Sudholt and of C. Witt was supported by the Deutsche Forschungs-

gemeinschaft (DFG) as a part of the Collaborative Research Center “Computational
Intelligence” (SFB 531).

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 132–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Rigorous Analyses for the Combination of ACO and Local Search 133

reversed. The differences shown in this paper are so drastic that the question of
whether to use local search or not decides between polynomial and exponential
runtimes.

The outline of this paper is as follows. In Section 2, we define MMAS variants
with and without local search. Section 3 discusses different effects that a com-
bination of ACO and local search can have. In Section 4, we present a rigorous
analysis showing the benefits of such a combination. Contrarily, in Section 5
we investigate a different function and prove the opposite effect. We finish with
some conclusions.

2 Algorithms

We consider the runtime behavior of two ACO algorithms for the optimization
of pseudo-Boolean functions. Solutions for a given problem are constructed by
a random walk on a so-called construction graph C according to pheromone
values τ on the edges.

Algorithm 1 (Construct(C, τ))
1.) v:=s, mark v as visited.
2.) While there is an unvisited successor of v in C:

a.) Let Nv be the set of unvisited successors of v and T :=
∑

(v,w)|w∈Nv
τ(v,w).

b.) Choose w ∈ Nv with probability τ(v,w)/T .
c.) Mark w as visited, set v := w and go to 2.).

3.) Return the solution x and the path P (x) constructed by this procedure.

We examine the construction graph displayed in Figure 1 and known as Chain
[12]. Constructing bit strings of length n, the decision whether a bit xi, 1 ≤
i ≤ n, is set to 1 is made at node v3(i−1). In case the edge (v3(i−1), v3(i−1)+1)
(upwards) is chosen, xi is set to 1 in the constructed solution. Otherwise the edge
(v3(i−1), v3(i−1)+2) (downwards) is taken, and xi = 0 holds. After this decision
has been made, the only available edge leads to the decision node for the next bit.

We ensure
∑

(u,·)∈E τ(u,·) = 1 for all decision nodes u = v3i, 0 ≤ i ≤ n − 1.
Let pi = Prob(xi = 1) be the probability of setting the bit xi to 1 in the
next constructed solution. Due to our setting, we have pi = τ(3(i−1),3(i−1)+1)

and 1− pi = τ(3(i−1),3(i−1)+2), i. e., the pheromone values correspond directly to
the probabilities for choosing the bits in the constructed solution. In addition,

xnv3(n−1)

v3(n−1)+1

v3n

v3(n−1)+2

v0 x1

v2

v1

v6

x3 v9

v3

v5

v4

x2 . . .

v8

v7

Fig. 1. Construction graph for pseudo-Boolean optimization

134 F. Neumann, D. Sudholt, and C. Witt

following the MAX-MIN ant system by Stützle and Hoos [7], we restrict each
τ(u,v) to the interval [1/n, 1 − 1/n] such that every solution always has a positive
probability of being chosen.

Depending on whether edge (u, v) is contained in the path P (x) of the con-
structed solution x, the pheromone values are updated to τ ′ as follows:

τ ′
(u,v) = min

{
(1 − ρ) · τ(u,v) + ρ, 1 − 1

n

}
if (u, v) ∈ P (x) and

τ ′
(u,v) = max

{
(1 − ρ) · τ(u,v),

1
n

}
if (u, v) /∈ P (x).

The following algorithm, which we call MMAS*, has been defined by Gutjahr
and Sebastiani [9] under the original name MMASbs. Here, in each generation
the best solution obtained during the run of the algorithm, called best-so-far
solution, is rewarded. Another property of the model is that the best-so-far
solution may not switch to another one that has the same fitness.

Algorithm 2 (MMAS*)
1.) Set τ(u,v) = 1/2 for all edges (u, v).
2.) Compute a solution x∗ using Construct(C, τ).
3.) Update the pheromone values with respect to x∗.
4.) Compute a solution x using Construct(C, τ).
5.) If f(x) > f(x∗), set x∗ := x.
6.) Update the pheromone values with respect to x∗.
7.) Go to 4.).

We enhance the MMAS* with local search. In this work, LocalSearch(x) is a
procedure that, starting from x, repeatedly replaces the current solution by a
Hamming neighbor with strictly larger fitness until a local optimum is found. We
do not specify a pivoting rule, hence we implicitly deal with a class of algorithms.

Algorithm 3 (MMAS-LS*)
1.) Set τ(u,v) = 1/2 for all edges (u, v).
2.) Compute a solution x using Construct(C, τ).
3.) Set x∗ := LocalSearch(x).
4.) Update the pheromone values with respect to x∗.
5.) Compute a solution x using Construct(C, τ).
6.) Set z := LocalSearch(x).
7.) If f(z) > f(x∗), set x∗ := z.
8.) Update the pheromone values with respect to x∗.
9.) Go to 5.).

The fitness functions considered in the following only have a linear number of
fitness values, hence the number of iterations in one local search call is bounded
by O(n). Depending on the pivoting rule, the number of fitness evaluations
needed to find a better Hamming neighbor may vary; however, it is trivially
bounded by n. Hence, the number of function evaluations is at most by a factor
O(n2) larger than the number of generations.

Rigorous Analyses for the Combination of ACO and Local Search 135

We consider as performance measure the number of generations, also referred
to as optimization time. This yields an advantage for MMAS-LS* w. r. t. fitness
evaluations. However, the upcoming performance gaps are between polynomial
and exponential values, and an advantage of order n2 is negligible.

3 The Effect of Combining ACO and Local Search

The effect of using local search with ACO algorithms is manifold. Firstly, local
search can help to find good solutions more quickly as it increases the “greedi-
ness” within the algorithm. Moreover, the pivoting rule used in local search may
guide the algorithm towards certain regions of the search space. For example,
first ascent pays more attention to the first bits in the bit string, which may
induce a search bias. However, we will not deal with this effect in our study. In
particular, our functions are designed such that the pivoting rule is not essential.

There is, however, another effect that we want to investigate more closely.
The pheromone values induce a sampling distribution over the search space. On
a typical fitness landscape, once the best-so-far solution has reached a certain
quality, sampling new solutions with a high variance becomes inefficient and the
current best-so-far solution x∗ is maintained for some time. Previous studies on
MMAS variants [9,10] have shown that then the pheromones quickly reach the
upper and lower bounds corresponding to x∗. This means that the algorithm
turns to sampling close to x∗. In other words, MMAS variants typically reach a
situation where the “center of gravity” of the sampling distribution follows the
current best-so-far solution and the variance of the sampling distribution is low.

When introducing local search into an MMAS algorithm, this may not be true.
Local search is able to find local optima that are far away from the current best-
so-far solution. In this case the “center of gravity” of the sampling distribution
is far away from the best-so-far solution.

Assume there is a path of Hamming neighbors with increasing fitness leading
to a local optimum. Assume further that all points close to the path have lower
fitness. Then for MMAS* it is likely that the sampling distribution closely follows
the path. The path of increasing fitness need not be straight. In fact, it can make
large bends through the search space until a local optimum is reached. On the
other hand, MMAS-LS*, when starting with the same setting, will reach the
local optimum within a single iteration of local search. Then the local optimum
becomes the new best-so-far solution x∗ while the sampling distribution is still
concentrated around the starting point. In the following generations, as long
as the best-so-far solution is not exchanged, the pheromone values on all bits
synchronously move towards their respective bounds in x∗. This implies for the
sampling distribution that the “center of gravity” takes a (sort of) direct route
towards the local optimum, irrespective of the bent path taken by local search.
An illustration is given in Figure 2.

Consequences are that different parts of the search space are sampled by
MMAS* and MMAS-LS*, respectively. Moreover, with MMAS* the variance
in the solution construction is always quite low as the sampling distribution is

136 F. Neumann, D. Sudholt, and C. Witt

Fig. 2. A sketch of the search space showing the behavior of MMAS* and MMAS-LS*.
The dots and circles indicate the sampling distributions of MMAS* and MMAS-LS*,
resp., at different points of time. While the distribution of MMAS* tends to follow the
fitness-increasing path from left to right, the distribution of MMAS-LS* takes a direct
route towards the local optimum.

concentrated on certain points on the path. But when the best-so-far solution
with local search suddenly moves a long distance, the variance in the solution
construction may be very high as the bits differing between the starting point
and x∗ may have pheromones close to 1/2. These bits are assigned almost ran-
domly, which strongly resembles a uniform crossover operation well-known in
evolutionary computation.

Our aim in the following is to create functions where MMAS* and MMAS-LS*
have a different runtime behavior. Moreover, we want the performance difference
to be drastic in order to show how deep the impact of local search can possibly be.
To this end, we exploit that the sampling distributions can follow different routes
through the search space. For one function we place a target region with many
global optima on the straight line between starting point and local optimum and
turn the local optimum into a trap that is hard to overcome. In such a setting,
we expect MMAS-LS* to drastically outperform MMAS*. These ideas are made
precise in Section 4. On the other hand, if the region of global optima is made
a region of traps and the global optimum is very close to the local optimum,
MMAS* has a clear advantage over MMAS-LS*. Another function following
this idea is defined and analyzed in Section 5.

4 Benefits of Combining ACO and Local Search

We now formally define a function where local search is beneficial according to
the ideas from Section 3. It is named SP-Target (short path with target). The
path with increasing fitness is given by the set SP = {1i0n−i | 0 ≤ i ≤ n}. The
path ends with the local optimum 1n. A large target area containing all global
optima is specified by OPT = {x | |x|1 ≥ (3/4) · n ∧ H(x, SP) ≥ n/(γ log n)},
where H(x, SP) denotes the Hamming distance of x to the closest search point
of SP and γ ≥ 1 is a constant to be chosen later. For all remaining search points,

Rigorous Analyses for the Combination of ACO and Local Search 137

Fig. 3. Illustration of the Boolean hypercube and the function SP-Target. Arrows
indicate gradients of increasing fitness.

the function SP-Target gives hints to reach 0n, the start of the path SP. We
denote by |x|0 the number of zeros in x and by |x|1 the number of ones in x.

SP-Target(x) :=

⎧⎪⎨⎪⎩
|x|0 x /∈ (SP ∪ OPT)
n + i x = 1i0n−i ∈ SP
3n x ∈ OPT.

The function SP-Target is sketched in Figure 3. Note that we have actually
defined a class of functions dependent on γ. All following results will hold for
arbitrary constant γ ≥ 1 unless stated otherwise.

The following theorem shows that MMAS* without local search is not success-
ful. We restrict ourselves to polynomially large 1/ρ here and also in the following
as otherwise the ACO component would be too close to random search.

Theorem 1. Choosing ρ = 1/poly(n), the optimization time of MMAS* on
SP-Target is 2Ω(n2/9) with probability at least 1 − 2Ω(n2/9).

To prove the preceding theorem, we have to take into account situations where
the pheromone values of MMAS* have not yet reached their bounds and the
construction procedure samples with high variance. This is the case in particular
after initialization. The following lemma will be used to check the probability of
finding the optimum in the early steps of MMAS* on SP-Target.

Lemma 1. If the best-so-far solution of MMAS* has never had more than 2n/3
1-bits, the probability of creating a solution with at least 3n/4 1-bits is 2−Ω(n) in
each generation.

Proof. The proof is an application of Chernoff bounds w. r. t. the number of ones
in the solutions created by MMAS*. Let the potential Pt := p1 + · · · + pn at

138 F. Neumann, D. Sudholt, and C. Witt

time t denote the current sum of the probabilities of sampling ones over all bits,
which, by definition of the construction procedure, equals the expected number
of ones in the next constructed solution. Observe that Pt ≤ 2n/3 implies by
Chernoff bounds that the probability of creating a solution with at least 3n/4
1-bits is 2−Ω(n). We now show: if all best-so-far solutions up to time t have at
most 2n/3 ones, then Pi ≤ 2n/3 for 0 ≤ i ≤ t. This will prove the lemma.

For the last claim, we denote by k the number of ones in the best-so-far
solution according to which pheromones are updated. Due to the pheromone
update mechanism, the new potential Pi+1 is obtained from Pi and k according
to Pi+1 = (1−ρ)Pi+kρ. Hence, if Pi ≤ 2n/3 and k ≤ 2n/3 then also Pi+1 ≤ 2n/3.
The claim follows by induction since P0 = n/2 ≤ 2n/3. ��
Proof (of Theorem 1). We distinguish two phases in the run according to the
best-so-far solution x∗. Phase 1 holds as long as x∗ /∈ SP and |x∗|1 ≤ 2n/3, and
Phase 2 applies as long as x∗ ∈ SP. Our aim is to show that a typical run passes
through the two phases in their order with a failure probability of 2−Ω(n2/9). The
probability of finishing the second phase will be bounded by 2−Ω(n2/9) for each
step of the phase. This implies the theorem as, by the union bound, the total
probability in 2cn2/9

generations, c > 0 a small constant, is still 2−Ω(n2/9).
Consider the first (and best-so-far) solution x∗ created by MMAS*. By Cher-

noff bounds, n/3 ≤ |x∗|1 ≤ 2n/3 with probability 1 − 2−Ω(n). There is only a
single solution in SP for each value of |x∗|1. By the symmetry of the construction
procedure, we conclude Prob(x∗ ∈ SP | |x∗|1 = k) = 1/

(
n
k

)
. The last expression

is 2−Ω(n) for n/3 ≤ k ≤ 2n/3. Hence, with probability 1 − 2−Ω(n), there is a
non-empty Phase 1. By Lemma 1, the probability that a specific generation in
Phase 1 creates an optimum is 2−Ω(n). Otherwise, the behavior is as for MMAS*
on the function |x|0. Using ρ = 1/poly(n) and the analyses for the symmetric
function |x|1 from [10] and [9], the expected time until the first phase is finished
is polynomial. By the law of total probability and the union bound, the total
failure probability in Phase 1 is bounded by the product of its expected length
and the failure probability in a single generation. Therefore, the total failure
probability for the first phase is still of order 2−Ω(n).

In Phase 2 we have x∗ ∈ SP. The goal is now to show that a solution from
SP with high probability can only be created if the sampling distribution is
sufficiently concentrated around solutions in SP. This in turn makes creating
solutions of high Hamming distance from SP, including OPT, very unlikely.

We make this idea precise and consider a point 1i0n−i ∈ SP. This search point
consists of a prefix of i ones and a suffix of n− i zeros. For a newly constructed
solution x we define P (i) := p1 + · · ·+ pi as the expected number of ones in the
prefix and S(i) := (1 − pi+1) + · · · + (1 − pn) as the expected number of zeros
in the suffix. The number of ones in the prefix plus the number of zeros in the
suffix yields the number of bits equaling in 1i0n−i and x, i. e., n−H

(
1i0n−i, x

)
.

We call P (i) (S(i)) insufficient iff P (i) ≤ i − i2/3 (S(i) ≤ (n − i) − (n − i)2/3)
holds. We now show that with insufficiencies it is very unlikely to create 1i0n−i.
As this holds for all i, we conclude that if SP is reached after a certain number of
generations, the pheromones do not have insufficiencies, with high probability.

Rigorous Analyses for the Combination of ACO and Local Search 139

Let s(i) denote the probability of constructing the solution 1i0n−i. We distin-
guish three cases and apply Chernoff bounds to prove the following implications:

Case 1: i < n2/3. Then insufficient S(i) implies s(i) = 2−Ω(n1/3).
Case 2: i > n − n2/3. Then insufficient P (i) implies s(i) = 2−Ω(n1/3).
Case 3: n2/3 ≤ i ≤ n − n2/3. Then insufficient P (i) and insufficient S(i) each
imply s(i) = 2−Ω(n2/9).

We assume that the described insufficiencies do not occur whenever a best-
so-far solution x∗ = 1i0n−i in Phase 2 is accepted. The failure probability is
2−Ω(n2/9) for each new best-so-far solution x∗. Generations in between two ex-
changes of x∗ cannot create insufficiencies as P (i) and S(i) can only increase as
long as x∗ is maintained. Hence, we do not have insufficiencies in Phase 2 for at
least 2Ω(n2/9) generations with probability at least 1 − 2−Ω(n2/9).

Being in Phase 2 without insufficiencies, we show depending on the three cases
for the current x∗ = 1i0n−i that creating an optimal solution has probability
2−Ω(n2/9). In the first case, the expected number of zeros in the suffix of x is at
least (n − i) − (n − i)2/3. By Chernoff bounds, the random number of zeros is
at least (n − i) − 2(n − i)2/3 with probability at least 1 − 2−Ω(n1/3). Along with
i < n2/3, it follows that then the solution has Hamming distance at most 3n2/3

from SP. By the definition of SP-Target, this is not enough to reach OPT. The sec-
ond case is treated analogously. In the third case, the probability of obtaining less
than i−2i2/3 ones in the prefix or less than (n− i)−2(n− i)2/3 zeros in the suffix
is altogether bounded by 2−Ω(n2/9). Then the solution has Hamming distance at
most 4n2/3 from SP, which is also not enough to reach the optimum. This finishes
the analysis of the second phase, and, therefore, proves the theorem. ��
The following theorem proves the benefits of local search. Recall that the number
of fitness evaluations is at most by a factor of O(n2) larger than the stated
optimization time.

Theorem 2. Choosing 1/poly(n) ≤ ρ ≤ 1/16, the optimization time of MMAS-
LS* on SP-Target is O(1/ρ) with probability 1−2−Ω(n). If γ ≥ 1 is chosen large
enough but constant, the expected optimization time is also O(1/ρ).

Proof. The first solution x∗ is either 1n or a global optimum. In the first case all
pheromone values increase simultaneously and uniformly from their initial value
1/2 towards their upper bound 1 − 1/n. We divide a run into two phases. The
first phase ends when either all pheromones become larger than 27/32 or when a
global optimum has been found. The second phase ends when a global optimum
has been found, hence it is empty if the first phase ended with an optimum.

We first bound the length of the first phase by the first point of time t∗ where
all pheromone values exceed 27/32. Since the pheromone values are at least
min{1 − 1/n, 1− (1/2)(1 − ρ)t} after t steps (cf. [10]), solving the equation

1 −
(

1
2

)
(1 − ρ)t = 27/32 ⇐⇒ (1 − ρ)t = 5/16

yields the upper bound

140 F. Neumann, D. Sudholt, and C. Witt

t∗ ≤
⌈

ln(5/16)
ln(1 − ρ)

⌉
≤ ln(16/5)

ρ
+ 1 = O(1/ρ).

The assumption ρ ≤ 1/16 implies that at the last step in the first phase
the pheromone value at any bit is within the interval [25/32, 27/32], pessimisti-
cally assuming that a global optimum has not been found before. The new
search point x then created fulfills the following two properties with probability
1 − O(2−n/2400):

1. 3n
4 ≤ |x|1 ≤ 7n

8 ,
2. H(x, SP) ≥ n/(γ log n).

Using Chernoff bounds with δ := 1/25, the failure probability for the first
event is at most 2e−(25n/32)(δ2/3) = 2e−n/2400. To bound the failure probability
of the second event, given the first event, we exploit that all pheromone values
are equal. Therefore, if we know that |x|1 = k then x is uniform over all search
points with k ones. Since the number of search points with k ones is monotone
decreasing for 3n/4 ≤ k ≤ 7n/8, we only consider search points with k = 7n/8
ones as a worst case. The number of such search points is

(
n

n/8

)
, and the number

of search points of Hamming distance at most m := n/(γ log n) from SP is at
most m ·

(
n
m

)
. Altogether, the probability of H(x, SP) ≤ m given that 3n/4 ≤

|x|1 ≤ 7n/8 is bounded from above by

m
(

n
m

)(
n

n/8

) ≤
m
(

en
m

)m(
n

n/8

)n/8
≤ m · 2o(n) · 8−n/8.

The last expression is even O(2−n/8). Altogether, the sum of the failure proba-
bilities is O(2−n/2400) as suggested, and the first statement follows.

For the second statement we estimate the time in the second phase, provided
that the first phase has been unsuccessful. Using [10] and ρ = 1/poly(n), the
time to reach the pheromone bound is O((log n)/ρ) = poly(n), or an optimum
is created anyway. With all pheromones at the upper bound, the solution con-
struction process equals a standard mutation of 1n, i. e., flipping each bit in 1n

independently with probability 1/n. Flipping the first m bits results in a global
optimum as 0m1n−m has Hamming distance at least m to 1i0n−i for any i. The
probability of creating 0m1n−m in a standard mutation is at least(

1
n

)n/(γ log n)(
1 − 1

n

)n−n/(γ log n)

≥ e−1 · 2−n/γ .

This means that the expected time in the second phase is O(poly(n)2n/γ). Using
that the first phase is unsuccessful only with probability O(2−n/2400) and ap-
plying the law of total probability, the expected optimization time altogether is
O(1/ρ)+O(2−n/2400) ·O(poly(n)2n/γ). The latter is O(1/ρ) for γ > 2400, which
proves the second statement. ��

Rigorous Analyses for the Combination of ACO and Local Search 141

5 Drawbacks of Combining ACO and Local Search

Similarly to the function SP-Target, we design another function SP-Trap (short
path with trap) where local search is detrimental, using ideas from Section 3.
We take over the path with increasing fitness, SP = {1i0n−i | 0 ≤ i ≤ n}, but
in contrast to SP-Target, the former region of global optima now becomes a
trap, TRAP = {x | |x|1 ≥ (3/4) · n ∧ H(x, SP) ≥ n/logn}. The unique global
optimum is placed within distance 2 from the local optimum: OPT = {021n−2}.
This ensures that local search climbing the path SP cannot reach the global
optimum. All remaining search points give hints to reach the start of the path.

SP-Trap(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|x|0 x /∈ (SP ∪ TRAP ∪ OPT)
n + i x = 1i0n−i ∈ SP
3n x ∈ TRAP
4n x ∈ OPT.

The function SP-Trap is sketched in Figure 4.

Fig. 4. Illustration of the Boolean hypercube and the function SP-Trap. Arrows indi-
cate gradients of increasing fitness.

In the remainder of this section, we prove that MMAS* is efficient on SP-Trap
while MMAS-LS* fails dramatically. Tuning the definition of SP-Trap, we could
also extend the following theorem by a polynomial bound on the expected
optimization time. We refrain from such modifications to illustrate the main
effects.

Theorem 3. Choosing ρ = 1/poly(n), the optimization time of MMAS* on
SP-Trap is O((n log n)/ρ + n3) with probability 1 − 2−Ω(n2/9).

142 F. Neumann, D. Sudholt, and C. Witt

Proof. By the argumentation from Theorem 1, the probability that a solution
in TRAP is produced within O(n3) generations is at most 2−Ω(n2/9).

Under the assumption that TRAP is never reached until the global optimum
is found, MMAS* behaves equally on SP-Trap and a modified function where
x ∈ TRAP receives fitness |x|0. We apply fitness-level arguments from [9,10]
to estimate the expected optimization time on the latter, easier function. The
number of fitness levels is O(n). On every fitness level, the number of generations
until either all pheromones are frozen or the current best-so-far solution has
improved is bounded by O((log n)/ρ) with probability 1 [10]. We pessimistically
assume that an improvement can only happen once all pheromones have been
frozen. Then the optimization time is bounded by O((n log n)/ρ) plus the sum
of waiting times for improvements on all fitness levels. Showing that the latter
quantity is bounded by O(n3) with probability 1 − 2−Ω(n) completes the proof.

After freezing, the solution construction process equals a standard mutation
of the best-so-far solution x∗. The probability for an improvement from x∗ = 1n

is at least 1/(en2). For all other x∗ /∈ TRAP, there is always a better Hamming
neighbor, hence the probability for an improvement is at least 1/(en). Together,
the expected waiting times for improvements on all fitness levels sum up to
en2 +O(n) ·en = O(n2). By Markov’s inequality the probability of waiting more
than cn2 steps is at most 1/2 for a suitable constant c > 0. Hence, the probability
that more than n independent phases of length cn2 are needed is bounded by
2−Ω(n). Therefore, the bound O(n3) holds with probability 1 − 2−Ω(n). ��

Theorem 4. Choosing 1/poly(n) ≤ ρ ≤ 1/16, the optimization time of MMAS-
LS* on SP-Trap is 2Ω(n) with probability 1 − 2−Ω(n).

Proof. We follow the lines of the proof of Theorem 2. As long as OPT = 021n−2 is
not created, the behavior of MMAS-LS* on SP-Trap and SP-Target is identical.
Reconsider the first phase described in the proof of Theorem 2 (with the former
OPT replaced by TRAP) and denote by P := p1+· · ·+pn the sum of probabilities
of sampling ones over all bits. Throughout the phase, P ≤ 27n/32, hence the
probability of sampling at least n− 2 ones, which is necessary to reach OPT, is
2−Ω(n) according to Chernoff bounds.

With probability 1 − 2−Ω(n), the first best-so-far solution 1n is replaced by
some x∗∗ ∈ TRAP where |x∗∗|1 ≤ 7n/8 when the first phase is ended. Due to
strict selection, x∗∗ then can only be replaced if OPT is created. The latter has
probability 2−Ω(n) for the following reasons: the P -value is at most 27n/32 ≤
7n/8 when x∗∗ is accepted. Hence, following the argumentation from the proof
of Lemma 1, the P -value will not exceed 7n/8 unless x∗∗ is replaced. With a
P -value of at most 7n/8, creating OPT has probability 2−Ω(n). ��

6 Conclusions

We have investigated the combination of ACO and local search from a theoretical
point of view and pointed out how this combination can influence the search
process. In particular, we have rigorously shown that the combination of both

Rigorous Analyses for the Combination of ACO and Local Search 143

methods can outperform ACO algorithms not using local search procedures.
Furthermore, we have proven that the combination of ACO and local search may
mislead the search process. Our results are a further step in the runtime analysis
of ACO and its hybridizations. In the future, the analysis of ACO hybridizations
using more than a single ant on more complicated problems would be desirable.

Acknowledgment. Thanks to the participants of SLS 2007 for stimulating
discussions on the issues investigated in this paper.

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
2. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & Applications.

Elsevier/Morgan Kaufmann (2004)
3. Levine, J., Ducatelle, F.: Ant colony optimisation and local search for bin packing

and cutting stock problems. Journal of the Operational Research Society (2004)
4. Balaprakash, P., Birattari, M., Stützle, T., Dorigo, M.: Incremental local search

in ant colony optimization: Why it fails for the quadratic assignment problem. In:
Proc. of ANTS Workshop 2006, pp. 156–166 (2006)

5. Merkle, D., Middendorf, M.: Modeling the dynamics of ant colony optimization.
Evolutionary Computation 10, 235–262 (2002)

6. Gutjahr, W.J.: On the finite-time dynamics of ant colony optimization. Methodol-
ogy and Computing in Applied Probability 8, 105–133 (2006)

7. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Journal of Future Generation Com-
puter Systems 16, 889–914 (2000)

8. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the runtime analysis of the
1-ANT ACO algorithm. In: Proc. of GECCO 2007, pp. 33–40. ACM, New York
(2007)

9. Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization with
best-so-far reinforcement. Methodology and Computing in Applied Probability (to
appear, 2008)

10. Neumann, F., Sudholt, D., Witt, C.: Comparing variants of MMAS ACO algo-
rithms on pseudo-Boolean functions. In: Stützle, T., Birattari, M., H. Hoos, H.
(eds.) SLS 2007. LNCS, vol. 4638, pp. 61–75. Springer, Heidelberg (2007)

11. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization
algorithm. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer,
Heidelberg (2006)

12. Gutjahr, W.J.: First steps to the runtime complexity analysis of ant colony opti-
mization. Computers and Operations Research 35(9), 2711–2727 (2008)

Simple Dynamic Particle Swarms

without Velocity

Jorge Peña

Institut de Mathématiques Appliquées (IMA), Université de Lausanne, Switzerland
jorge.pena@unil.ch

Abstract. The standard particle swarm optimiser uses update rules in-
cluding both multiplicative randomness and velocity. In this paper, we
look into a general particle swarm model that removes these two features,
and study it mathematically. We derive the recursions and fixed points
for the first four moments of the sampling distribution, and analyse the
transient behaviour of the mean and the variance. Then we define ac-
tual instances of the algorithm by coupling the general update rule with
specific recombination operators, and empirically test their optimisation
efficiency.

1 Introduction

The standard Particle Swarm Optimiser (PSO) [1,2] uses an update rule in
the form of a set of second order difference equations including additive and
multiplicative stochasticity. In an effort to obtain particle swarms with reduced
computational complexity or which are more suitable to mathematical analysis,
several researchers have proposed simpler update rules that, intentionally or not,
remove multiplicative randomness from their equations. In previous work [3],
we provided a general framework for particle swarms ruled by second order
difference equations with additive stochasticity only, and showed how some PSOs
already proposed in the literature, as well as new variants, can be derived from
this general model by the definition of particular recombination operators. This
paper focuses on the inertialess or velocity-free case, for which update rules
become first order difference equations with the result that the model becomes
even simpler and more amenable to theoretical analysis.

The paper is organised as follows. Section 2 introduces the concept of simple
dynamic particle swarms without velocity. Section 3 presents a detailed mathe-
matical study (via moment analysis) of the sampling distribution of these PSOs.
In Section 4 the optimisation efficiency of three different instances of the general
model is tested. Conclusions are drawn in Section 5.

2 Particle Swarms

2.1 The Standard Particle Swarm

The position update rules for the Standard PSO are given by difference equations
of the general form:

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 144–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Simple Dynamic Particle Swarms without Velocity 145

xt+1 = xt + w (xt − xt−1) +
K∑

k=1

φ

K
uk (pk − xt) , (1)

where pk is the personal best of the k-th informer (there are K informers in
total), uk ∼ U [0, 1] is a random variable taken from a continuous uniform dis-
tribution in [0, 1], w is the inertia weight, and φ is the acceleration coefficient.
Informers can be given by the standard best-of-neighbourhood (BN), the fully
informed (FI) [4], or any other model of influence. For the general case w 	= 0, the
update rule is a second order equation including the velocity term vt = xt−xt−1.
Since random numbers multiply both the constant term pk and the variable xt,
Eq. 1 is said to have both additive and multiplicative stochasticity [3].

2.2 Particle Swarms with Additive Stochasticity and Different
Recombination Operators

A general particle swarm model that relies only on additive stochasticity has
been recently proposed in [3]. In this model, the positions of the particles are
updated according to

xt+1 = xt + w (xt − xt−1) + α (q − xt) , (2)

where α is a constant acceleration coefficient and q a random variable derived
from a recombination operator acting over the set of informers’ personal bests.
Suitable recombination operators are, for instance, linear stochastic combina-
tions of the personal bests values or, more generally, probability distributions
whose parameters are functions of these personal bests. With the correspond-
ing setting of w, α and q, the presented model can be shown to recover some
existing velocity-based particle swarms such as Kennedy’s Gaussian-Dynamic
Particle Swarm [5], Poli et al.’s Simpler PSO [6] and Peña et al.’s PSO-DR [7].

Table 1. Recombination Operators

Recombination Operator Definition (for K = 2)

Standard q := u1p1+u2p2
u1+u2

Rectangular q := up1 + (1 − u) p2

Discrete q := ηdp1 + (1 − ηd) p2

For the empirical studies presented in this paper, we focus on the three re-
combination operators whose definitions are given in Table 1 for the simplest
case of K = 2.1 The two informers could be, for instance, the self and the best
neighbour in a BN particle swarm, or the left and right neighbours in a FIPS
using a Ring topology without self-influence. In the following, we will respectively
denote the personal bests of these two informers by p1 and p2.
1 Notice, however, that generalisation to a greater number of informers is possible

and that the analytical results presented in the next sections do not depend on the
specific number of informers or the particular recombination operator used.

146 J. Peña

The Standard, Rectangular and Discrete recombination operators consist of
different linear stochastic combinations of the informers’ personal bests. In Ta-
ble 1 u1, u2 and u are random variables taken from a continuous uniform distri-
bution in [0, 1] and ηd ∼ U {0, 1} is a random variable distributed according to
a discrete uniform distribution in {0, 1}. Standard recombination can be shown
to be implicitly implemented in the update equation of the Standard PSO [6,3].
Rectangular and Discrete recombination recover Poli et al.’s Simpler PSO [6]
and Peña et al.’s PSO-DR [7], which are particle swarms that, despite their
simplicity, have been shown to be competitive to Standard PSO in a variety of
problems [7,6,8].

2.3 Particle Swarms without Velocity

Although particle swarms are essentially velocity-based algorithms, there have
been proposals for velocity-free particle swarms in the literature. The most well
known of these models are probably Kennedy’s “bare bones” algorithms [9], in
which position update rules are replaced by sampling from a probability distri-
bution. The update rule of these algorithms can be understood as a zero-order
difference equation, constituting a particular (static) case of the general model
of Eq. 2, obtained with w = 0 and α = 1. In this paper, we are interested in
exploring simple velocity-free but still dynamic algorithms, derived from Eq. 2
with w = 0 and α 	= 0. The update rule for these Simple Dynamic Particle
Swarms (SDPS) is thus given by:

xt+1 = xt + α (q − xt) . (3)

Bratton and Blackwell [8] studied empirically a simplified recombinant PSO
that constitutes a particular case of Eq. 3 with Discrete recombination. Here,
we analyse the more general model of Eq. 3 with any well defined recombination
operator and empirically study the performance of SDPSs with the Standard,
Rectangular and Discrete operators.

3 Mathematical Study

3.1 Recursions for the First Four Moments of the Sampling
Distribution During Stagnation

In order to formally analyse SDPSs, we use the moment analysis introduced by
Poli and Broomhead [10] to see how the sampling distribution of a PSO behaves
during the stagnation phase. Let us firstly rewrite Eq. 3 as

xt+1 = (1 − α) xt + αq. (4)

Our objective is to calculate a recursion for the n-th central moment μn of xt+1.
To do this, first we calculate the raw moments μ′

n and then convert them to
central moments. A difference equation for the n-th raw moment can be easily

Simple Dynamic Particle Swarms without Velocity 147

derived by taking the n-th power of Eq. 4 and then applying the expectation
operator (〈·〉):

μ′
n (xt+1) = 〈(xt+1)

n〉 = 〈((1 − α) xt + αq)n〉.

By making use of the binomial theorem, the linearity of the expectation op-
erator, and assuming that xt and q are statistically independent, we can write:

μ′
n (xt+1) =

〈
n∑

k=0

(
n
k

)
((1 − α)xt)

k (αq)n−k

〉

=

〈
n∑

k=0

(
n
k

)
(1 − α)k αn−k (xt)

k qn−k

〉

=
n∑

k=0

(
n
k

)
(1 − α)k

αn−k
〈
(xt)

k
qn−k

〉
=

n∑
k=0

(
n
k

)
(1 − α)k αn−k

〈
(xt)

k
〉 〈

qn−k
〉

=
n∑

k=0

(
n
k

)
(1 − α)k

αn−kμ′
k (xt)μ′

n−k (q) .

The recursions for the central moments can be calculated using the binomial
transform:

μn (xt) =
n∑

k=0

(
n
k

)
(−1)n−k

μ′
k (xt) (μ′

1 (xt))
n−k

.

From this, the recursions for the first three central moments can be shown to
be given by:

μn (xt+1) = (1 − α)n μn (xt) + αnμn (q) , (5)

for n = 1, 2, 3, while the recursion for the fourth central moment is given by:

μ4 (xt+1) = (1 − α)4 μ4 (xt) + α4μ4 (q) + 6 (1 − α)2 α2μ2 (xt)μ2 (q) . (6)

We are particularly interested in the mean, variance, skewness and kurtosis of
the sampling distribution during stagnation. The mean and variance are equal to
the first and second central moments (μ1 and μ2). The skewness γ1 is a measure
of the degree of asymmetry of a distribution. It is negative if the left tail is
more pronounced than the right tail, and positive otherwise. Among different
alternative definitions, we chose to use γ1 = μ3/μ

3/2
2 . The kurtosis2 γ2 is a

2 We follow standard practice and use the term “kurtosis” for referring to the excess
kurtosis. The kurtosis of the normal distribution is equal to 0. A leptokurtic dis-
tribution has positive kurtosis, which means that it is more peaked and has fatter
tails than the normal distribution. Conversely, a platykurtic distribution has nega-
tive kurtosis, which means that it is less peaked and has thiner tails than the normal
distribution. Finally, a distribution with zero kurtosis (e.g. the normal distribution)
is said to be mesokurtic.

148 J. Peña

measure of the degree of peakedness of a distribution as well as of the thickness
of its tails, and is defined as γ2 = μ4/μ2

2 − 3.

3.2 Fixed Points and Stability Analysis

Let us now calculate the fixed points of the recursions for the first four moments
of the sampling distribution of SDPSs during stagnation. Let μn(x)∗ be the fixed
point of the recursion for μn(xt). Letting μn(xt+1) = μn(xt) = μn(x)∗ in Eq. 5,
we obtain after little algebra

μn(x)∗ =
αn

1 − (1 − α)n
μn(q),

which for n = 1, 2, 3, reduces to:

μ1 (x)∗ = μ1 (q) , (7)

μ2 (x)∗ =
α

2 − α
μ2 (q) , (8)

and

μ3(x)∗ =
α2

3 − 3α + α2
μ3(q). (9)

To calculate the fixed point of μ4(xt) we assume that μ2(xt) has reached its
fixed point μ2(x)∗. Performing the substitution in Eq. 6 and letting μ4(xt+1) =
μ4(xt) = μ4(x)∗, we get after some simplifications:

μ4 (x)∗ =
α3(2 − α)μ4(q) + 6α2(1 − α)2 (μ2(q))

2

(2 − α)2(2 − 2α + α2)
. (10)

The fixed points of the skewness and the kurtosis can be calculated from Eq. 8,
9 and 10, and shown to be given by

γ1(x)∗ =
(2 − α)3/2

3 − 3α + α2
γ1(q) (11)

and

γ2(x)∗ =
α(2 − α)

2 − 2α + α2
γ2(q), (12)

where γ1(q) and γ2(q) are, respectively, the skewness and the kurtosis of q.
It is easy to show (by simple inspection or by a complete eigenvalue analysis)

that the fixed points of the first four central moments (and thus also of γ1(x)∗

and γ2(x)∗) are stable if |1 − α| < 1. This means that the regions of order-1, -2,
-3 and -4 stability3 coincide and are equal to 0 < α < 2.

It can be seen from Eq. 7, 8, 11 and 12 that the equilibrium values of the
mean, variance, skewness and kurtosis of the sampling distribution are propor-
tional to the respective normalised moments of q. The proportional factor is
3 We follow Poli [10] and say that a sampling distribution is order-1 stable if its first

moment is stable, order-2 stable if its first two moments are stable, etc.

Simple Dynamic Particle Swarms without Velocity 149

0.0 0.5 1.0 1.5 2.0

1e
−

02
1e

−
01

1e
+

00
1e

+
01

1e
+

02

α

μ 2
(x

)*/
μ 2

(q
)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

γ 1
(x

)*/
γ 1

(q
)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

γ 2
(x

)*/
γ 2

(q
)

Fig. 1. Normalised equilibrium value of the variance (left), skewness (centre) and kur-
tosis (right) of the sampling distribution as a function of α (See Eq. 8, 11 and 12).
Notice the logarithmic scale of the y axis in the left subfigure.

equal to 1 for the mean (i.e. the fixed point of the mean of x is the mean of
q) and a function of α for the other three moments. Fig. 1 shows plots of these
proportional factors. Notice that for α = 1 all proportional factors are equal to 1.
This is not surprising, since for α = 1 the update rule reduces to the zero-order
equation xt+1 = q, and the sampling distribution is thus equal to the probabil-
ity function defining q. For α < 1, the equilibrium value of the variance of the
sampling distribution is smaller than the variance of q, whereas for α > 1 the
opposite happens. Observe the rapid growing (resp. falling) of the variance as α
approaches 2 (resp. 0). Also notice that moving α from 1 towards 0 or 2 makes
the skewness and the kurtosis tend to zero. Since the proportional factors for
the skewness and the kurtosis are non-negative values less than one, the sam-
pling distribution is always right-skewed (resp. left-skewed) if q is right-skewed
(resp. left-skewed) and leptokurtic (resp. platykurtic) if q is leptokurtic (resp.
platykurtic), though less pronouncedly, depending on α.

3.3 Transient Behaviour of μ1(xt) and μ2(xt)

In this section we analyse the transient behaviour of the first two moments of the
sampling distribution. Analytic solutions for the recursions for these moments
are easy to obtain, since the recursions are particular cases of first order linear
difference equations. The general solution of Eq. 5 is given by

μn(xt) = μn(x)∗ + (μn(x0) − μn(x)∗) (1 − α)nt,

from which particular solutions for the cases n = 1 and n = 2 can be obtained.
After the proper substitutions, we get

μ1(xt) = μ1(q) + (μn(x0) − μ1(q)) (1 − α)t,

and

μ2(xt) =
αμ2(q)
2 − α

+
(

μn(x0) −
αμ2(q)
2 − α

)
(1 − α)2t.

In order to analyse the transient behaviour of these equations we borrow the
concept of step response from control theory and look into the dynamics of the

150 J. Peña

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 1
(x

t)

α = 0.1

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t
μ 1

(x
t)

α = 0.3

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 1
(x

t)

α = 0.6

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 1
(x

t)

α = 0.9

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 1
(x

t)

α = 1.1

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

t

μ 1
(x

t)

α = 1.3

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

t
μ 1

(x
t)

α = 1.6

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

t

μ 1
(x

t)

α = 1.9

Fig. 2. Transient behaviour of the mean for μ1(x)∗ = 1 and μ1(x0) = 0

system when μn(x0) = 0 and μn(x)∗ = 1. Fig. 2 and 3 show the numerical results
we obtained for different values of α. As it can be seen from the figures (and
easily proved analytically), the step response of the mean exhibits no oscillations
for α < 1 and oscillates for α > 1. In this last case, the percentage overshoot is
proportional to α, and its maximum value is equal to α− 1 (at t = 1). The step
response of the variance exhibits no overshoot for the whole range of α. Finally,
the duration of the transient state is inversely proportional to |1 − α| for the
mean and to (1 − α)2 for the variance.

The transient behaviour of the mean of the sampling distribution has been
posited to be important for the performance of PSOs, since oscillations of the
mean allow for an amount of “extrapolation” that could be beneficial in some
functions [6]. This feature, present in velocity-based particle swarms with stan-
dard stochasticity and with only additive stochasticity [3], is thus also shared by
the simpler velocity-free algorithms studied in this paper.

3.4 Sampling Distributions of Particular SDPSs

Fig. 4 depicts the histograms of points tested in one million iterations by a
particle ruled by Eq. 3 and Standard, Rectangular and Discrete recombination,
for x0 = 0, p1 = −1 and p2 = 1, and different values of α. Although the
histograms were constructed considering points from consecutive time steps and
include transient points as well, they represent good approximations of the steady
state behaviour of the sampling distribution, since the number of tested iterations
is far larger than the duration of the transients.

The mean and skewness of the random variable q are the same for the three
recombination operators tested (μ1(q) = (p1 + p2) /2, γ1(q) = 0). Their variance,
fourth moment and kurtosis differ. These values are listed in Table 2. Notice that
the three recombination operators give rise to platykurtic distributions since
γ2(q) < 0. Standard recombination has the smallest variance (3/4 − log(2) ≈

Simple Dynamic Particle Swarms without Velocity 151

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 2
(x

t)

α = 0.1

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t
μ 2

(x
t)

α = 0.3

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 2
(x

t)

α = 0.6

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 2
(x

t)

α = 0.9

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 2
(x

t)

α = 1.1

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 2
(x

t)

α = 1.3

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t
μ 2

(x
t)

α = 1.6

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

μ 2
(x

t)

α = 1.9

Fig. 3. Transient behaviour of the variance for μ2(x)∗ = 1 and μ2(x0)

Table 2. Statistical characterization of different recombination operators

Recombination μ2 (q) μ4 (q) γ2 (q)

Standard (3/4 − log 2) (p1 − p2)
2
�

17
48

− 1
2

log 2
�
(p1 − p2)

4 −0.650834

Rectangular 1
12

(p1 − p2)
2 1

80
(p1 − p2)

4 −1.2

Discrete 1
4

(p1 − p2)
2 1

16
(p1 − p2)

4 −2

0.057) and the least negative kurtosis, whereas Discrete recombination has the
largest variance and the most negative kurtosis.

The effect of α in the empirical sampling distributions is well predicted by the
equations derived previously. For α = 1, the sampling distribution during stag-
nation is identical to the distribution of q. Incrementing α makes the probability
density functions grow wider and more peaked. They are always symmetric, and
centred midway between p1 and p2. In the limit when α → 2 the distributions
are practically very wide normal distributions. This is what Eq. 7, 8, 11 and 12,
and Fig. 1 predict for the sampling distributions of SDPSs with recombination
operators leading to symmetric, platykurtic distributions centred in (p1 + p2) /2.
It is interesting to notice that the sampling distributions of all recombination
operators are in general unimodal, except for Discrete that produces multimodal
distributions until somewhat large values of α (somewhere between 1.6 and 1.8).

4 Experimental Results

In this section, we empirically study the optimisation efficiency of SDPSs with
Standard, Rectangular and Discrete recombination. The experimental setup fol-
lows closely that proposed by Bratton and Kennedy [2] as a standard for com-
paring different PSOs. All tested algorithms used populations of 50 particles,
a Ring topology and a FI model without self-influence. We used FI instead of

152 J. Peña

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

−6 −4 −2 0 2 4 6

0.
00

0.
10

0.
20

−30 −20 −10 0 10 20 30

0.
00

0.
02

0.
04

0.
06

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

−3 −2 −1 0 1 2 3

0.
00

0.
10

0.
20

0.
30

−6 −4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

−30 −20 −10 0 10 20 30

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

−1.0 −0.5 0.0 0.5 1.0

0
5

10
15

20
25

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

−4 −2 0 2 4
0.

00
0.

05
0.

10
0.

15
0.

20
−5 0 5

0.
00

0.
04

0.
08

0.
12

−60 −40 −20 0 20 40 60

0.
00

0
0.

01
0

0.
02

0

Fig. 4. Empirical sampling distributions of SDPSs with (from top to bottom) Stan-
dard, Rectangular and Discrete recombination operators for (from left to right)
α ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 1.99}

BN particle swarms because of the better performance of the former in previous
experiments [3].

Algorithms were run on a subset of the suite of benchmark functions pro-
posed by Bratton and Kennedy in [2]. Functions belong to three distinguishable
groups: f1 − f3 are unimodal, f4 − f9 are complex high-dimensional with many
local minima, and f10 − f12 are low-dimensional with few local minima. In order
to remove any centrist bias, both the region scaling and the center offset tech-
niques [2] were used for all functions, except for f4 where only region scaling was
applied. The center offset technique was implemented by shifting the function
by a vector of uniform random values in U [−0.25l, 0.25l] for each run, being l
the size of the search space in each dimension. Particles flying out of the fea-
sible bounds were not evaluated. Finally, the error |f (x) − f (x∗) | found after
300,000 function evaluations was used as the measure for algorithm performance
(or fitness), where f (x∗) is the value of the objective function at the global
minimum. Values less than 10−8 were rounded to 10−8. For a description of the
functions and the dimensionality, feasible bounds, location of the optimum and
initialization ranges for each function, the reader is invited to refer to [2].

The performance as function of α for each of the three algorithms is shown
in Fig. 5. Notice that the performance plots for Standard and Rectangular re-
combination almost overlap. This result is not unexpected given the somewhat
similar sampling distributions produced by the two recombination operators. For
the high-dimensional functions, the optimal region for Standard recombination
is slightly shifted to the right with respect to that for Rectangular recombi-
nation. This could be explained from the fact that Standard recombination has
smaller variance and kurtosis than Rectangular recombination, and thus a larger
α is necessary when using the Standard operator in order to obtain the neces-
sary levels of exploration needed to search in these high-dimensional spaces. For

Simple Dynamic Particle Swarms without Velocity 153

1.0 1.2 1.4 1.6 1.8

1e
−

09
1e

−
01

1e
+

07

α

lo
g(

fit
ne

ss
)

f1

1.0 1.2 1.4 1.6 1.8

1e
−

04
1e

−
01

1e
+

02
1e

+
05

1e
+

08

α
lo

g(
fit

ne
ss

)

f2

1.0 1.2 1.4 1.6 1.8

1e
+

00
1e

+
03

1e
+

06
1e

+
09

α

lo
g(

fit
ne

ss
)

f3

1.0 1.2 1.4 1.6 1.8

20
00

40
00

60
00

10
00

0

α

lo
g(

fit
ne

ss
)

f4

1.0 1.2 1.4 1.6 1.8

5
10

20
50

20
0

50
0

α

lo
g(

fit
ne

ss
)

f5

1.0 1.2 1.4 1.6 1.8

1e
−

09
1e

−
06

1e
−

03
1e

+
00

1e
+

03

α

lo
g(

fit
ne

ss
)

f6

1.0 1.2 1.4 1.6 1.8

1e
−

09
1e

−
06

1e
−

03
1e

+
00

1e
+

03

α
lo

g(
fit

ne
ss

)

f7

1.0 1.2 1.4 1.6 1.8

1e
−

09
1e

−
01

1e
+

07

α

lo
g(

fit
ne

ss
)

f8

1.0 1.2 1.4 1.6 1.8

1e
−

09
1e

−
01

1e
+

07

α

lo
g(

fit
ne

ss
)

f9

1.0 1.2 1.4 1.6 1.8

1e
−

08
1e

−
05

1e
−

02
1e

+
01

1e
+

04

α

lo
g(

fit
ne

ss
)

f10

1.0 1.2 1.4 1.6 1.8

1e
−

08
1e

−
02

1e
+

04

α

lo
g(

fit
ne

ss
)

f11

1.0 1.2 1.4 1.6 1.8

0.
1

0.
5

2.
0

5.
0

20
.0

α
lo

g(
fit

ne
ss

)

f12

Fig. 5. Mean performance over 25 runs of SDPSs and Standard (circles), Rectangular
(squares) and Discrete (diamonds) recombination, as a function of α

low-dimensional functions (f10-f12), higher values of α (thus wider and peaked
distributions with large extrapolation) are favoured regardless of the recombina-
tion operator. Nevertheless, for the multimodal functions (f1 − f9) the optimal
region of α for Standard and Rectangular recombination (1.5 < α < 1.8) is in
general different from that for Discrete recombination (1.1 < α < 1.4). This
reveals two different heuristics for exploring the search space. On the one hand,
normal-like distributions with important overshoots and settling times of the
mean, and, on the other, multimodal distributions with low kurtosis and negli-
gible extrapolation.

5 Conclusions

In this paper, the sampling distribution and the optimisation efficiency of simple
dynamic particle swarms without neither multiplicative stochasticity nor velocity
was analytically and empirically studied. The dynamic equations for the first
four moments of the sampling distribution were derived and their fixed points
calculated. Making use of these mathematical tools, the effect of the acceleration
coefficient in the search behaviour of these algorithms was analysed. Finally, the
optimisation efficiency of these algorithms was empirically tested over a set of
common benchmark functions.

154 J. Peña

When optimising high-dimensional multimodal functions using SDPSs with
Standard and Rectangular recombination, the optimal region of parameter α
gives rise to unimodal sampling distributions centred midway between the per-
sonal bests of the informers, and relevant amounts of oscillations of the mean.
These chacteristics are shared by the Standard PSO and other ‘traditional’
particle swarms, both velocity-based and velocity-free. When using Discrete re-
combination, the optimal region of α produce sampling distributions that are
multimodal, making the particle search focus on the regions near the locations
of the personal bests. Additionally, extrapolation is almost negligible in these
particle swarms. The competitiveness of these discretely recombined SDPSs,
and their somewhat different search strategy, thus challenges some of the par-
ticle swarm lore, particularly the importance of extrapolation and focusing the
search around a ‘social centre’.

Acknowledgements. This work is funded by the Future and Emerging
Technologies programme IST-STREP of the European Community, under grant
number IST-034632 (PERPLEXUS). The author gratefully acknowledge this fi-
nancial support and thanks Isis Fuchs and the three anonymous reviewers for
their comments on this paper.

References
1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the

IEEE International Conference on Neural Networks IV, pp. 1942–1948. IEEE Press,
Piscataway (1995)

2. Bratton, D., Kennedy, J.: Defining a Standard for Particle Swarm Optimization.
In: Proceedings of the IEEE Swarm Intelligence Symposium, pp. 120–127 (2007)

3. Peña, J.: Theoretical and Empirical Study of Particle Swarms with Additive
Stochasticity and Different Recombination Operators. In: Proceedings of the 2008
GECCO Conference on Genetic and Evolutionary Computation (to appear, 2008)

4. Mendes, R., Kennedy, J., Neves, J.: The Fully Informed Particle Swarm: Simpler,
Maybe Better. IEEE Trans. Evolutionary Computation 8, 204–210 (2004)

5. Kennedy, J.: Dynamic-probabilistic Particle Swarms. In: Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, pp. 201–207. ACM Press,
New York (2005)

6. Poli, R., Bratton, D., Blackwell, T., Kennedy, J.: Theoretical Derivation, Analysis
and Empirical Evaluation of a Simpler Particle Swarm Optimiser. In: Proceedings
of the IEEE Congress on Evolutionary Computation, pp. 1955–1962 (2007)

7. Peña, J., Upegui, A., Sanchez, E.: Particle Swarm Optimization with Discrete
Recombination: An Online Optimizer for Evolvable Hardware. In: Proceedings of
the First NASA/ESA Conference on Adaptive Hardware and Systems, AHS, pp.
163–170. IEEE Computer Society, Los Alamitos (2006)

8. Bratton, D., Blackwell, T.: A Simplified Recombinant PSO. Journal of Artificial
Evolution and Applications, Article ID 654184 (2008)

9. Kennedy, J.: Bare Bones Particle Swarms. In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, pp. 80–87 (2003)

10. Poli, R., Broomhead, D.: Exact Analysis of the Sampling Distribution for the
Canonical Particle Swarm Optimiser and its Convergence During Stagnation. In:
Proceedings of the 9th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 134–141. ACM Press, New York (2007)

Swarming in a Virtual World: A PSO Approach

to Virtual Camera Composition

Luca Di Gaspero1, Andrea Ermetici2, and Roberto Ranon2

1 DIEGM, University of Udine, Udine, Italy
l.digaspero@uniud.it

2 DIMI, University of Udine, Udine, Italy
roberto.ranon@dimi.uniud.it

Abstract. Camera placement in 3D scenes is a relevant issue in most
3D graphics interactive application, such as videogames, data visualiza-
tion, and virtual tours. Virtual Camera Composition (VCC) consists in
automatically positioning a camera in a virtual world, such that the re-
sulting image satisfies a set of visual cinematographic properties [1]. We
propose a Particle Swarm algorithm to solve the problem, which exhibits
superior performances w.r.t. other approaches. The algorithm has been
tested on a set of image descriptions on a complex 3D model.

1 Introduction

In 3D graphics interactive applications, such as videogames, data visualization,
and virtual tours, user see the virtual environment through the “eye” of a virtual
camera. Proper camera placement (and also control) is therefore fundamental for
the user to understand the scene and, ultimately, effectively use the application.
For example, in 3D data visualization, bad camera placements could cause the
user to miss important details (e.g., because they are hidden behind objects or
out of camera reach) with the risk of making wrong assumptions on the data
themselves.

In most current 3D applications (e.g., 3D modelers), users directly position
the virtual camera using a input device, such as a mouse, through a tedious and
time-consuming process requiring a succession of “place the camera” and “check
the result” operations [1]. In recent years, some researchers (e.g., [1,2]) have
come up with methods to automatically position the camera that are inspired
by how human cinematographers approach the problem of staging a camera to
compose an image that highlights the important subjects in a scene. More partic-
ularly, the Virtual Camera Composition (VCC) problem consists in positioning
a camera in a virtual world, such that the resulting image satisfies a set of visual
cinematographic properties [1], e.g. subjects’ size and location in the obtained
image (frame). VCC approaches aims at relieving the user from directly manip-
ulating the camera, and typically model the VCC problem as an optimization
or constraint-based system (some approaches use both) where image properties
are represented as constraints or objective functions. A range of different solv-
ing techniques (which we review in Section 2) have been explored in the past,

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 155–166, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

156 L. Di Gaspero, A. Ermetici, and R. Ranon

but generating effective results in real-time (or near-real time) remains an issue.
Therefore, it is worth exploring alternative strategies.

In this paper, we propose to apply a particle swarming approach to deal with
the VCC problem. Although we cannot claim that our approach is better than all
those in the literature (no benchmarks or public implementations are available),
we show that the particle swarm approach is, performance-wise, significantly
better than previously proposed complete approaches based on discretizing the
space and then exhaustively searching, while being still able to produce good
camera placements.

The paper is organized as follows. Section 2 reviews related work, while
Section 3 describes the problem formulation. Then we present the Particle Swarm
approach to the problem in Section 4 and in Section 5 we show the experimental
results on a realistic 3D model. Finally, in Section 6 we outline some conclusion.

2 Related Work

A comprehensive survey of approaches to camera control can be found in [3].
In the following, we focus on approaches to the VCC problem that: (i) employ
a declarative “cinematographic” style, i.e. where the VCC problem is expressed
as a set of requirements on the obtained image, such as distance specification,
relative viewing angles, occlusions, and (ii) model the problem as a constrain
and/or optimization system. These approaches are by far the most general, and
therefore interesting for a wide range of applications. On the other hand, they
currently cannot be used for any situation where camera placements needs to be
generated in real-time.

In constrained and/or optimization approaches to VCC, the properties of
the image “seen” by the camera are expressed as numerical constraints on the
camera variables, which typically include camera position, orientation, and focal
angle (see the next Section for a detailed formulation of the problem). The main
characteristics that differentiate these approaches relate to the richness of the
language to express image properties (what and how properties can be expressed)
and the properties and performances of the solving techniques.

Constraint-based approaches include:

– the CAMDROID system for automated camera planning [4], which uses the
CFSQP numerical constraint solver package. As admitted by the authors,
the solving process is sensitive to the initial configuration and is subject to
local minima failures [1].

– CONSTRAINT CAM [5], which uses a a partial constraint satisfaction sys-
tem to provide alternate solutions when constraints cannot be completely
satisfied. The approach is based on a limited subset of cinematographic prop-
erties (viewing angle, viewing distance and occlusion avoidance).

An example of a purely optimization-based approach is CAMPLAN system [6],
which uses a metaheuristic search (genetic algorithms) method. However, the
CAMPLAN genetic algorithm produces solutions in widely varying amounts of
time and is also subject to the initial population of solutions [1].

Swarming in a Virtual World 157

Some approaches mix constraints and optimization. For example, Bares et al.
[2] propose a heuristic-based complete search algorithm. The process is applied
inside promising 3D areas computed through simple geometric intersections, and
is based on discretizing the search space to increase efficiency. Similarly,

Pickering [7] uses constraints to create feasible regions of space that will serve
as bounds for an optimization procedure. The search space is subdivided by
a “shadow-volumes” algorithm based on the properties of the image, and the
feasible regions are then discretized and stored in an octree structure. Each
node of the octree is then used as a starting point for a genetic algorithm that
tries to find a solution to the problem.

Some approaches try not to focus on finding an unique solution, but isolates
identical possible solutions in 3D volumes with respect to their visual properties.
For example, [1] relies on a space partitioning process derived from a study of
possible camera locations w.r.t. to the objects in the scene, and local search
numerical techniques to compute good representatives of each volume.

3 Virtual Camera Composition

The VCC problem is instanced by means of camera and scene objects’ models
and by a declarative language for specifying the desired features of the frame.

The language includes a set of predicates to state a description of the result-
ing image on the basis of some geometric properties (e.g., object size, position,
occlusion, . . .). The predicates can be combined by means of the classical logical
operators ‘and’, ‘or’ and ‘not’. The predicates semantics is defined in terms of
constraints and/or objectives that are imposed on the set of possible camera
parameters to obtain the desired image.

3.1 Camera and Object Model

The camera model considered in this work is shown in Figure 1a and it is de-
scribed by 6 extrinsic parameters defined as follows:

Camera position: C = (Cx, Cy, Cz) ∈ R
3;

Camera aim direction: A = (Ax, Ay, Az) ∈ R
3, ‖A‖2 = 1;

Camera roll angle: the angle is limited to valid head roll, ψ ∈ [−20◦, 20◦]
(which is the norm in camera composition)

Camera horizontal field of view (FOV) angle: the range of angles exclu-
des telephoto or fisheye lenses, therefore φ ∈ [25◦, 100◦];

Aspect ratio: ρ ∈ [1, 21/9];
Focus depth: d ∈ R

+.

Each relevant object in the scene is described using a bounding sphere, which
includes the whole object (see Figure 1b). The sphere is defined by its center
position and the radius, but in order to retain some information about the object
also a front direction and an up vector are added (these vectors allows one to
express that an object should be viewed from a certain direction). In detail the
bounding sphere parameters are the following:

158 L. Di Gaspero, A. Ermetici, and R. Ranon

(a) Camera model (b) Object model

Fig. 1. The camera and object model

Center position: CB = (CBx , CBy , CBz) ∈ R
3;

Radius: rB ∈ R
+;

Front direction: AB = (ABx , ABy , ABz) ∈ R
3, ‖AB‖2 = 1;

Roll angle: ψB ∈] − 180◦, 180◦].

3.2 Image/Camera Constraints

The set of basic constraints included in the description language allows to spec-
ify the image properties about view angles, inclusion, size, distance, position,
and occlusion. In addition, also constraints on the camera parameters can be
imposed.

In the following we outline the predicates of the image description language
and their semantics. For the sake of conciseness we omit the details of the math-
ematical formulation of the constraints.

Object View Angles. The object view angle defines a zone of the 3D space
in which the camera must be positioned to watch an object from the a suitable
view angle. The zone is described by means of two pair of angles in spherical
coordinates w.r.t. the object’s front and up directions (see Figure 2a).

– Object view horizontal angle: v − angle(Objectx, angle θv, angle θ′v), re-
quires the image of object x to be taken from an horizontal angle in the
range [θv, θ′v], θv, θ

′
v ∈] − 180◦, 180◦];

– Object view vertical angle: h − angle(Objectx, doubleminα, double
maxα), requires the image of object x to be taken from a vertical angle
in the range [φv, φ′

v], φv, φ′
v ∈] − 90◦, 90◦].

Object Inclusion. This constraint requires that at least a fraction of the
bounding sphere lays inside the field of view of the camera. The problem to

Swarming in a Virtual World 159

(a) Object view angle (b) Object inclusion (or exclusion)

(c) Object projection size (d) Object occlusion

(e) Object in frame (f) Camera in region

Fig. 2. A visual illustration of image and camera constraints

160 L. Di Gaspero, A. Ermetici, and R. Ranon

determine the precise fraction value is approximated by a pessimistic model in
which the visible area is a circle whose diameter depends on the FOV angle. This
way it is possible to compute this constraint by means of circle intersections, as
shown in Figure 2b.

The only parameter for this constraint is the visible fraction required for the
object bounding sphere:

– Inclusion: include(Objectx, double ν), object x is required to appear in the
image at least for the percentage ν ∈]0, 1] of its full size.

Object Exclusion. This constraint can be modeled with the same approxima-
tion employed for the previous constraint.

– Exclusion: exclude(Objectx), object x is required not to appear in the
image.

Object Projection Size. The projection of a given object in the frame is
required to cover a given amount of the image:

– Size fraction: size(Objectx, doubleσ), object x is required to cover a per-
centage σ in the image, σ ∈]0, 1].

Distance. The distance between the object and the camera is constrained to
lie within two given bounds dmin and dmax.

– Object distance: distance(Objectx, double dmin, double dmax): the distance
between the camera and the object x must be in the range [dmin, dmax],
0 ≤ dmin ≤ dmax ≤ +∞.

Position in Frame. The projection of an object must be placed within or
outside a given area of the image, delimited by a bounding rectangle:

– Include in frame: includeInFrame(Objectx, 2DPoint p1, 2DPointp2), ob-
ject x must appear in the 2D frame comprised between p1 and p2. The
points p1 and p2 are expressed in relative coordinates w.r.t. the screen (i.e.,
p1, p2 ∈ [0, 1] × [0, 1]).

– Exclude from frame: excludeFromFrame(Object x, 2DPoint p1, 2DPoint
p2): object x must not appear in the 2D frame comprised between p1 and p2.

Object Occlusion. The evaluation of the object occlusion relies on a common
ray casting technique [8]. A bounding box around the object is built and the rays
connecting the camera with the box vertices and the object center are traced (see
Figure 2d). The level of occlusion is estimated as the ratio between the weighted
number of the traced rays that reach the object and the total number of rays.
The weights are assigned so that the ray leading to the object center has higher
influence.

– Occlusion: occlusion(Objectx, double ν), requires that the occlusion level of
object x to be less than ν ∈ [0, 1].

Swarming in a Virtual World 161

Camera Constraints. Camera constraints concern limitations in the camera
positioning or orientation that can be imposed by physical features of the scene.
For example it is meaningless to allow the camera to be placed inside the walls
or other objects, and in most situations it is also unsuitable to have upside-down
cameras.

The camera can be constrained to be placed in a region of the 3D scene
specified by a world-coordinates aligned box (see Figure 2f). More in general,
the region can be specified as a set union or intersection of a set of boxes.
Each box is described by the following pair of coordinates: bottom-right-back,
p1 = (p1x , p1y , p1z) ∈ R

3 and top-left-front:] p2 = (p2x , p2y , p2z) ∈ R
3. The

constraints are:

– Camera inside region: cameraInside(3DPointp1, 3DPointp2), the camera
must be placed within the box defined by the points p1 and p2.

– Camera outside region: cameraOutside(3DPointp1, 3DPointp2): the
camera must not be placed within the box defined by the points p1 and
p2.

Another possibility is to require the camera to be placed above a plane specified
by its origin and the normal direction. This is useful, for example, to model the
fact that the camera position is above a floor of the scene.

– Camera above plane: cameraAboveP lane(3DPointo, 3DPointn), the cam-
era must be placed above the plane whose origin is o ∈ R

3 and the normal
vector is n ∈ R

3, ‖n‖2 = 1.

Finally, other camera constraints can be used to fix the position or the orientation
of the camera to specific values:

– Fix camera Position: lockPosition(3DPointp), the camera must be placed
precisely in p ∈ R

3.
– Fix camera Roll: lockRoll(angleα), the angle of the aim direction w.r.t.

the Z axis must be set to α ∈] − 20◦, 20◦].
– Fix camera Yaw: lockY aw(angleα), the angle of the aim direction w.r.t.

the Y axis must be set to α ∈] − 180◦, 180◦].
– Fix camera Pitch: lockP itch(angleα): the angle of the aim direction w.r.t.

the X axis must be set to α ∈] − 180◦, 180◦].

4 A Particle Swarm Approach

Particle Swarm Optimization (PSO) [9,10] is a population-based method for
global optimization, which is inspired by the social behavior that underlies the
movements of a swarm of insects or a birds’ flock.

Given a D-dimensional (compact) search space S ∈ R
D and a scalar objective

function f : S → R that assesses the quality of each point x ∈ S and (without
loss of generality) has to be maximized, a swarm is made up of a set of N
particles, which are located in that space. The i-th particle is described by three
D-dimensional vectors, namely:

162 L. Di Gaspero, A. Ermetici, and R. Ranon

– the particle current position xi = (xi1 , xi2 , . . . , xiD);
– the particle velocity vi = (vi1 , vi2 , . . . , viD), i.e., the way the particle moves

in the search space;
– the particle best visited position (as measured by the objective function f)

Pi = (pi1 , pi2 , . . . , piD), which is a memory of the best positions ever visited
during the search.

The index of the particle that reached the global best visited position is denoted
by g, that is, g = arg maxi=1,...,N f(Pi).

At the beginning of the search (step n = 0), the particles are set at random
locations and with random velocities. The search is performed as an iterative
process, which at step n modifies the velocity and position vectors of each particle
on the basis of the values at step n − 1. The process evolves according to the
following rules (superscripts denote the iteration number):

vn
i = wvn−1

i + c1r
n−1
1

(
pn−1

i − xn−1
i

)
+ c2r

n−1
2

(
pn−1

g − xn−1
g

)
(1)

xn
i = xn−1

i + vn
i i = 1, 2, . . . , N (2)

In the equations, the different parameters have to be interpreted as follows:
The values r1 and r2 are two uniformly distributed random numbers in [0, 1],
whose purpose is to maintain population diversity. Constants c1 and c2 are re-
spectively the so-called cognitive and social parameter, which are related to the
speed of convergence, and in our experimentation are set to 0.5 according to the
results of preliminary experiments for parameter tuning.

Parameter w is an inertia weight and it establishes the influence of the search
history on the current move. A high weight is related to a global exploration,
while a low weight allows a local exploration (also called exploitation). In our
implementation this parameter varies from an initial value of 1.2 to 0.2, in order
to balance between exploration and exploitation in the different stages of the
search. We experimented with two different ways of varying the inertia weight,
namely reducing it using a linear and an exponential scheme, however the linear
reduction scheme has shown superior performances therefore in the following we
report only its results.

4.1 Search Space and Objective Function

In order to adapt PSO for a specific problem we are required to specify the
search space and the objective function.

In the case at hand, the search space encoding can be naturally composed by
all camera parameters, which account for 10 dimensions. However, in order to
make the search more effective, we decide to consider some of the constraints
described above as hard constraints, i.e., constraints that must be always satisfied
along the search. This allows to restrict the search space removing from it those
regions in which we are sure that no suitable solution can be found.

The predicates modeled as hard constraints are those dealing with the cam-
era properties either relative, such as distance(), angle(), height(), or absolute,

Swarming in a Virtual World 163

i.e., cameraInside(), cameraOutside(), cameraAboveP lane(), lockPosition(),
lockRoll(), lockY aw(), lockP itch(). These properties determine an admissible
volume for the camera parameters, which can be quite complex and made up
of non-contiguous regions, giving rise to a disconnected search space. For this
reason the choice of preventing the particles from going across those regions is
not particularly adequate for this problem and we opt for allowing the particles
to go over these boundaries but we assign them the worst possible value of the
objective function (i.e., 0).

The remaining predicates are treated as soft constraints, that is, restrictions
that can be violated at the price of deteriorating a quality function. The degree
of satisfaction of the predicates is evaluated by means of a function f : Π×D →
[0, 1] whose semantics depends on the predicate π ∈ Π at hand. In general, the
function measures a relative difference between the desired value for the property
and its actual value. The value of f is then normalized in order to obtain a real
value in the range [0, 1], where 1 represents the satisfaction of the associated
constraint and 0 is the complete unfulfillment (in a way that is similar to the
fuzzy logic). These functions are highly non-linear because camera projections
are involved in their computation.

Since the single predicates can be combined in complex image descriptions
by means of the logical operators, the objective function for the combination of
predicates is computed according to the following rules:

f(π1 ∧ π2,x) = w1f(π1,x) + w2f(π2,x)} (3)
f(π1 ∨ p2,x) = max{f(π1,x), f(π2,x)} (4)

f(¬π1,x) = 1 − f(π1,x) π1, π2 ∈ Π,x ∈ D (5)

Notice that the conjunction of predicates is encoded as a weighted sum of the
atomic predicates, where the relative influence of the specific property (i.e., the
weights w1 and w2) can be set by the user in the image description.

In general, the evaluation of a particle requires the function f to be computed
for all the properties of the image description. However, this process can be quite
time consuming especially in the case of complex image descriptions or when
properties that require a computationally intensive evaluation (e.g., occlusion)
are specified. Therefore we adopt a lazy evaluation mechanism for the objective
function, which relies on the monotonicity of the operators employed. We notice
that the computation of f for the particle i can be stopped if the sum of the
weights of the predicates that still have to be evaluated is smaller than the
best objective value f(·,Pi). Therefore, as a heuristic, it could be useful to
sort the predicates leaving at the end the ones whose evaluation has a higher
computational cost.

5 Implementation and Experimental Results

The PSO for VCC has been implemented as a part of a general C++ library
called Constraint Camera Library, which can be used as a component in graphics

164 L. Di Gaspero, A. Ermetici, and R. Ranon

engines or 3D applications. The library contains a set of methods for reading an
XML description of the camera placement problem (i.e., an image description
composed using the language described above, see Listing 1 for an example),
and the optimization suite that, at present, includes also an exhaustive search
method based on a search space discretization. The exhaustive search algorithm
is one of the methods currently used for placing the camera in many virtual
environments, and in this work it has been employed as the baseline for the
evaluation of PSO. In the tests the library has been compiled with Microsoft
Visual Studio 2005 C++ compiler and run on an Intel Core 2 Duo 3GHz PC
equipped with 2Gb of RAM and running Microsoft Windows Vista 64.

The PSO optimizer has been tested on a realistic 3D model of Venzone, a
small medieval town surrounded by walls that was almost completely destroyed
by two earthquakes in 1976. The scene employed in the experimentation is a
50m × 10m × 50m representation of the town hall and the main square. The
model is quite complex: it is composed by about 52000 triangles and contains
several non-convex objects (such as a portico). The methods have been tested
on 4 different image descriptions of increasing complexity (numbered as 1-4 in
Listing 1). The PSO population size is 40 and the procedure is iterated until a
solution within 5% of the optimal best value has been found.

Listing 1. An example of image description for an Over The Shoulder shot

<scene>
<cell id="main" bounds="20,70,15,25,-25,25">

<object id="blueWarrior" frontVector="-1,0,1" upVector="0,1,0"/>
<object id="redWarrior" frontVector="1,0,-1" upVector="0,1,0"/>
<!-- 1. the blue warrior must be visible -->
<property type="outside" ref="blueWarrior"/>
<property type="occlusion" ref="blueWarrior" expectedValue="0" weight="1"/>
<property type="include" ref="blueWarrior" weight="1"/>
<!-- 2. also the red warrior must be visible -->
<property type="outside" ref="redWarrior"/>
<property type="occlusion" ref="redWarrior" expectedValue="0" weight="1"/>
<property type="include" ref="redWarrior" weight="1"/>
<!-- 3. the red warrior must be shot from a reverse angle -->
<property type="angle" ref="redWarrior" min="0" max="-180" weight="1"/>
<!-- 4. the red warrior must be shot at 100% (max) size -->
<property type="objectSize" ref="redWarrior" expectedValue="1" weight="2"/>

</cell>
</scene>

The results of the PSO optimizer are presented in Table 1. In the table there
are reported the averages and the standard deviations (between parentheses) of
a set of performance indicators, namely CPU running time, the value of the ob-
jective function, the number of iterations, and the number of objective function
evaluations. The last two columns report the time and the objective function
found by the exhaustive search procedure on a 20 × 20 × 20 discretization.

We observe that the PSO optimizer is between one and two orders of magni-
tude faster than the exhaustive search procedure and it is able to reach compa-
rable results, except in the description 4 where PSO outperforms the exhaustive
search procedure that would need a finer discretization for reaching acceptable
results. Concerning the number of evaluations of the objective function, it is

Swarming in a Virtual World 165

Table 1. Results of the PSO optimizer on the 3D model for different image descriptions

PSO f evaluations Exhaustive
Desc Time (ms) f Iterations Full Lazy Time (ms) f

1 1132 (67) 1 (0) 1.1 (0.32) 27.7 (4) 14.9 (6.87) 197529 1
2 4359 (3032) 1 (0.01) 3.9 (4.46) 55.1 (33.9) 55.3 (73.37) 360372 1
3 6558 (4525) 0.98 (0.01) 7.4 (4.81) 95.3 (67.06) 62.8 (80.69) 116753 0.99
4 22055 (12638) 0.96 (0.01) 21 (7.6) 366.5 (231.64) 219.2 (80.2) 115201 0.72

(a) The blue warrior must be visible (1) (b) Both warriors must be visible (2)

(c) Red warrior shot from back (3) (d) Red warrior shot at 100% size (4)

Fig. 3. Examples of shots computed by PSO for the different image descriptions

possible to see that the lazy evaluation has a noticeable impact on avoiding
unnecessary computation.

6 Conclusions

We have presented a PSO approach for the VCC problem. The proposed method
has shown to perform significantly better than an exhaustive search on a dis-
cretization of the 3D model. However, additional experiments on other mod-
els and image descriptions should be carried out to evaluate the method more
thoroughly. Moreover, the PSO should be compared against alternative solution
methods (e.g., local search or genetic algorithms).

166 L. Di Gaspero, A. Ermetici, and R. Ranon

Acknowledgments. The authors acknowledge the financial support of the Ital-
ian Ministry of Education, University and Research (MIUR) within the FIRB
project number RBIN04M8S8.

References

1. Christie, M., Normand, J.M.: A semantic space partitioning approach to virtual
camera control. Computer Graphics Forum 24(3), 247–256 (2005); Special Issue:
Proceedings of the Eurographics Annual Conference

2. Bares, W., McDermott, S., Boudreaux, C., Thainimit, S.: Virtual 3d camera com-
position from frame constraints. In: MULTIMEDIA 2000: Proceedings of the 8th
ACM International Conference on Multimedia, New York, USA, pp. 177–186 (2000)

3. Christie, M., Olivier, P.: Automatic camera control in computer graphics. In: Pro-
ceedings of the Annual Eurographics Conference 2006, pp. 89–113 (2006)

4. Drucker, S.M., Zeltzer, D.: Camdroid: a system for implementing intelligent camera
control. In: SI3D 1995: Proceedings of the 1995 symposium on Interactive 3D
graphics, New York, USA, pp. 139–144 (1995)

5. Bares, W.H., Gregoire, J.P., Lester, J.C.: Realtime constraint-based cinematogra-
phy for complex interactive 3d worlds. In: AAAI/IAAI, pp. 1101–1106 (1998)

6. Halper, N., Oliver, P.: CamPlan: A camera planning agent. In: AAAI Workshop
on Smart Graphics (2000)

7. Pickering, J.H.: Intelligent camera planning for computer graphics. PhD thesis,
Department of Computer Science, University of York (2002)

8. Roth, S.D.: Ray casting for modeling solids. Computer Graphics and Image
Processing 18, 109–144 (1982)

9. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Pub-
lishers, San Francisco (2001)

10. Eberhart, R.C., Kennedy, J.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks 1995, Perth, WA, Australia,
vol. 4, pp. 1942–1948 (1995)

The Binary Bridge Selection Problem:

Stochastic Approximations and the
Convergence of a Learning Algorithm

Armand M. Makowski

Department of Electrical and Computer Engineering
and Institute for Systems Research

University of Maryland, College Park, MD, USA
armand@isr.umd.edu

Abstract. We consider an ant-based algorithm for binary bridge selec-
tion, and analyze its convergence properties with the help of techniques
from the theory of stochastic approximations.

1 Introduction

In [1], Deneubourg et al. presented a simple experimental setup to show that
path selection to a food source in the Argentine ant Linepithema humile is based
on self-organization. In this experiment, the food source is separated from the
nest by a bridge with two equally long branches, say A and B [2,3]. Initially there
is no pheromone on the branches which have therefore the same probability of
being selected by the ants. However, random fluctuations will cause a few more
ants to randomly select one branch, say A, over the other. Because ants deposit
pheromone while walking, the greater number of ants on branch A determines a
greater amount of pheromone on A, which in turn stimulates more ants to choose
A, and so on, thereby leading to reinforcement. Deneubourg et al. developed a
model of this phenomenon, and showed by simulations that its behavior closely
matches the experimental observations, namely that only one of the branches is
eventually used most of the time!

The model – The point of departure for the model is the simplifying assump-
tion that the amount of pheromone on a branch is proportional to the number
of ants that have previously traveled on the branch. This reflects situations
where pheromone evaporation need not be taken into account as the experiment
operates at a time scale (roughly one hour) much smaller than one where evapo-
ration would be noticeable (e.g., many hours and possibly days). Deneubourg et
al. posited that the probability of the (n + 1)rst ant selecting a branch is deter-
mined by the number of ants that have previously used that branch. With this in
mind, for each n = 1, 2, . . ., let An and Bn denote the number of ants that have
used branch A and B, respectively, among the first n ants. The (conditional)
probability pn that the (n + 1)rst ant selects the branch A, was taken to be

pn :=
(K + An)ν

(K + An)ν + (K + Bn)ν
(1)

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 167–178, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 A.M. Makowski

with scalars K ≥ 0 and ν ≥ 0 held fixed throughout the discussion. The par-
ticular form (1) was obtained through experiments described in [4] with values
ν � 2 and K � 20 giving the best experimental fit. The parameter K quantifies
the degree of attraction of an unmarked branch in that the larger the value of K,
the greater the amount of pheromone needed to make the choice non-random.
The value of ν determines the degree of nonlinearity of the choice function, and
through it, behavior reinforcement – When ν is large, one branch needs only
have slightly more pheromone than the other for the next ant to select it.

The self-organization observed in colonies of Argentine ants can be expressed
as

lim
n→∞

max
(

An

n
,
Bn

n

)
= 1 a.s. (2)

Indeed, given the constraint An +Bn = n (see Section 2), this amounts to either
An
n or Bn

n being close to unity, and captures the fact that one of the branches is
eventually used most of the time. In [1] this was shown to be the case through
simulations for the values ν � 2 and K � 20.

Contributions – As we shall see shortly these limited simulation results may be
misleading in that the convergence (2) may fail. More precisely, the a.s. con-
vergence of {(An

n , Bn
n), n = 1, 2, . . .} can be entirely characterized by the value

of the parameter ν. Three different behaviors emerge depending on whether
ν ≤ 1, ν = 1 or ν > 1, and are related to simple properties of the mapping
Pν : [0, 1]× R+ → [0, 1] given by

Pν(a, c) :=
(a + c)ν

(a + c)ν + (1 − a + c)ν
, a ∈ [0, 1], c ≥ 0. (3)

To see why this might the case, we observed that the random variables (rvs)
{An

n , n = 1, 2, . . .} can be interpreted as the output sequence of the one-
dimensional recursion

An+1

n + 1
=

An

n
+

1
n + 1

(
1 [Un+1 ≤ pn] − An

n

)
, n = 1, 2, . . . (4)

with pn = Pν(An
n , K

n) and the rvs {Un, n = 1, 2, . . .} are assumed to be i.i.d.
rvs which are uniformly distributed on [0, 1]. This recursion can be viewed as
a stochastic approximation of the Robbins-Monro type [5], albeit of a some-
what non-standard variety. Its limiting behavior is essentially determined by the
stability of the limiting ODE

ȧ(t) = −a(t) +
a(t)ν

a(t)ν + (1 − a(t))ν
, t ≥ 0 (5)

and is known to be related to the solutions of the nonlinear equation

a =
aν

aν + (1 − a)ν
, a ∈ [0, 1]. (6)

The Binary Bridge Selection Problem 169

For ν 	= 1, there are always three distinct roots, namely a = 0, 1, 1
2 which are

therefore the potential equilibrium points (hence possible limiting values for the
sequence of rvs {An

n , n = 1, 2, . . .}): When 1 < ν, a = 1
2 is a point of repulsion

for the dynamics (4), while a = 0, 1 are each a point of attraction for it. As a
result, one should expect the convergence

lim
n→∞

An

n
∈ {0, 1} a.s. (7)

and the desired convergence (2) follows. The situation is reversed when 0 < ν < 1
for then only a = 1

2 constitutes a point of attraction while a = 0, 1 are both points
of repulsion. This suggests that the convergence

lim
n→∞

An

n
= lim

n→∞

Bn

n
=

1
2

a.s. (8)

will take place, in which case the algorithm fails to mimic the experimental
behavior. When ν = 1, (6) has infinitely many solutions, and every point in the
interval [0, 1] is a possible limit.

The convergence properties of the modified Robbins-Monro algorithm can be
studied with the help of martingale methods. These methods are modifications of
well-known arguments used in the time-invariant case, and allow us to handle the
time-varying aspects of the problem. Because of space limitations we omit most
of the technical proofs which can be found in the extended version [6]. However,
as an illustration of the power of martingale techniques, we outline arguments of
a somewhat weaker result (Theorem 4) which identifies the possible accumulation
points of the sequence {An

n , n = 1, 2, . . .}. When ν 	= 1, this leads to the existence
of an a.s. limit for this sequence (Theorem 5) and a finer analysis (available in
[6]) is then required to identify the limits in each of the cases 0 < ν < 1 and
1 < ν.

Additional perspectives – Mathematical models for the binary bridge selection
problem have appeared in literature, e.g., see [2] and [3], but without any anal-
ysis of the convergence properties of the underlying algorithm. We also note
that multiple bridges can be handled by resorting to ideas from the theory of
stochastic approximations [5], but this is beyond the scope of this short confer-
ence paper. Finally, links between the theory of stochastic approximations and
processes with reinforcement have been pointed out by others, e.g., see the recent
survey by Pemantle [9].

2 The Main Results on the Bridge Selection Algorithm

The scalars K ≥ 0 and ν > 0 are held fixed throughout the discussion. Let
{Un, n = 1, 2, . . .} be a sequence of i.i.d. rvs which are uniformly distributed on
the interval [0, 1]. With the two branches still denoted by A and B, we encode
the branch selection for the (n+1)rst ant by means of the {A, B}-valued rv Sn+1

given by
Sn+1 = A if and only if Un+1 ≤ pn (9)

170 A.M. Makowski

where pn is selected according to (1). This gives rise to the two-dimensional
recursion

An+1

Bn+1

= An

= Bn

+ 1 [Un+1 ≤ pn]
+ 1 [Un+1 > pn] , n = 1, 2, . . . (10)

(with 1 [E] denoting the indicator function of the event E). We assume the
R

2
+-valued initial condition (A1, B1) to be independent of the driving sequence

{Un, n = 1, 2, . . .}, and to satisfy

A1 + B1 = 1. (11)

For the selection algorithm considered here, this assumption is satisfied by taking
either (A1, B1) = (1, 0) or (A1, B1) = (0, 1).

Through (10) we see that the constraint (11) implies the relations

An + Bn = n, n = 1, 2, . . . (12)

For each n = 1, 2, . . ., the quantities An and Bn are each determined by the
other. Thus, we need only consider the R+-valued rvs {An, n = 1, 2, . . .} given
through the one-dimensional recursion

An+1 = An + 1 [Un+1 ≤ pn] , n = 1, 2, . . . (13)

with

pn =
(K + An)ν

(K + An)ν + (K + n − An)ν
, (14)

where the [0, 1]-valued rv A1 is selected independently of the driving sequence
{Un, n = 1, 2, . . .}.

We now present the main convergence results for the stochastic recursion (13)-
(14). Three cases emerge depending on the value of ν. No reinforcement takes
place when 0 < ν < 1.

Theorem 1. With 0 < ν < 1, it holds that

lim
n→∞

An

n
= lim

n→∞

Bn

n
=

1
2

a.s. (15)

whence limn→∞
An
Bn

= 1 a.s.

The case ν = 1 is a boundary case.

Theorem 2. With ν = 1, the sequence of rvs {An
n , n = 1, 2, . . .} converges a.s.

to an [0, 1]-valued rv a� whose distribution depends on the initial condition A1.

Learning or reinforcement occurs only when 1 < ν.

Theorem 3. With 1 < ν, it holds that

lim
n→∞

max
(

An

n
,
Bn

n

)
= 1 a.s. (16)

with

P

[
lim

n→∞

An

n
= 1

]
= P

[
lim

n→∞

Bn

n
= 1

]
=

1
2
. (17)

The Binary Bridge Selection Problem 171

3 An Equivalent Stochastic Approximation

In order to study the asymptotic behavior of the sequence {An, n = 1, 2, . . .}
we make the change of variable

an :=
An

n
, n = 1, 2, . . . (18)

The constraint (12) implies

0 ≤ an ≤ 1, n = 1, 2, . . . (19)

and the dynamics (13)-(14) can now be rewritten as

an+1 = an +
1

n + 1
(1 [Un+1 ≤ pn] − an) , n = 1, 2, . . . (20)

where the [0, 1]-valued rv a1 is selected independently of the i.i.d. driving se-
quence {Un, n = 1, 2, . . .}. With the mapping Pν : [0, 1] × R+ → [0, 1] defined
by (3), we note that

pn = Pν

(
an,

K

n

)
. (21)

In short, the rvs {an, n = 1, 2, . . .} are generated through a stochastic ap-
proximation algorithm of the Robbins-Monro type where

E [1 [Un+1 ≤ pn] − an|a1, . . . , an] = pn − an = Pν

(
an,

K

n

)
− an (22)

for all n = 1, 2, However, in contrast with the classical Robbins-Monro al-
gorithm, the right-handside of (22) is a time-dependent function of an, namely
a → Pν(a, K

n) − a. Nevertheless, we still expect that any limit point a� of the
iterate sequence {an, n = 1, 2, . . .} should be a “root” of this right-handside (at
least in the limit), namely

Pν(a�, 0) − a� = 0. (23)

If (23) had a unique solution in [0, 1], say a�, such that

(Pν(a, 0) − a)(a − a�) < 0, a ∈ [0, 1], a 	= a�, (24)

then martingale arguments would readily imply that a� is the a.s. limit of the
iterate sequence {an, n = 1, 2, . . .}, e.g., see the classical references [7] and [8] for
details. Here, depending on the value of ν, the negativity condition (24) may fail
to hold, and a finer analysis is required to establish convergence. Moreover, when
ν 	= 1, the fact that (23) admits three distinct solutions, each either attractive
or repulsive depending on the value of ν, further complicates matters.

172 A.M. Makowski

4 A Preparatory Result and Its Consequences

Define the [0, 1
4]-valued rvs {Vn, n = 1, 2, . . .} by

Vn :=
∣∣∣∣an − 1

2

∣∣∣∣2 , n = 1, 2, . . .

Theorem 4. Under the summability condition

∞∑
n=1

1
n + 1

|(2an − 1)(pn − an)| < ∞ a.s., (25)

there exists an [0, 1
4]-valued rv V such that

lim
n→∞

Vn = V a.s. (26)

Before proving Theorem 4 in Section 5 we pause to derive some key consequences
from it. To that end let Acc(an, n = 1, 2, . . .) denote the set of accumulation
points of the sequence {an, n = 1, 2, . . .}.

Corollary 1. Assume ν 	= 1. Under the assumption (25), we have

Acc(an, n = 1, 2, . . .) ⊆ {0, 1,
1
2
} a.s. (27)

and the limiting rv V appearing in Theorem 4 is therefore an {0, 1
4}-valued rv.

Proof: By standard facts on summable series with non-negative terms, the con-
vergence (25) yields limn→∞

n
n+1 |(2an − 1)(pn − an)| = 0 a.s. or equivalently,

lim
n→∞

(2an − 1)(pn − an) = 0 a.s. (28)

Let Ω� denote the event where both (26) and (28) hold; obviously P [Ω�] = 1.
Pick ω in Ω�, and let α denote an accumulation point of the bounded sequence
{an(ω), n = 1, 2, . . .}. Thus, along a subsequence {nk, k = 1, 2, . . .} (which may
depend on ω), we have α = limk→∞ ank(ω). Taking the limit in (28) along this
subsequence, we get limk→∞(2ank(ω)− 1)(pnk(ω)− ank(ω)) = 0. By continuity,

lim
k→∞

pnk(ω) = lim
k→∞

Pν

(
ank(ω),

K

nk

)
= Pν(α, 0),

and the relation
(2α − 1)(Pν(α, 0) − α) = 0 (29)

follows. Consequently, any accumulation point α of {an(ω), n = 1, 2, . . .} is
necessarily a solution of (29). With ν 	= 1, direct inspection shows that (29) has
exactly three solutions, namely α = 0, 1

2 , 1 (see also Section 6), and the inclusion
(27) is established.

The Binary Bridge Selection Problem 173

We also note that

lim
k→∞

Vnk(ω) =
∣∣∣∣ lim
k→∞

ank(ω) − 1
2

∣∣∣∣2 =
∣∣∣∣α − 1

2

∣∣∣∣2 , (30)

and the convergence (26) (asserted in Theorem 4) now implies

lim
n→∞

Vn(ω) = V (ω) =

⎧⎨⎩
0 if α = 1

2

1
4 if α = 0, 1.

(31)

The desired conclusion follows.

In Section 6 we outline arguments to show that the condition (25) indeed holds
in each of the cases 0 < ν < 1 and 1 < ν; see [6] for full details. With this result
in mind, we can now leverage Corollary 1 in order to prove the existence of an
a.s. limit for the sequence {an, n = 1, 2, . . .} when ν 	= 1.

Theorem 5. When ν 	= 1, the sequence of rvs {an, n = 1, 2, . . .} converges a.s.
to an {0, 1

2 , 1}-valued rv a�.

Proof: Assume ν 	= 1 and pick ω in Ω� (as defined earlier). By Theorem 4 we
already know that limn→∞ Vn(ω) exists, and we now turn to establishing the
existence of limn→∞ an(ω). Two cases are possible:

If 1
2 is a point of accumulation for the sequence {an(ω), n = 1, 2, . . .},

then there exists a subsequence {nk, k = 1, 2, . . .} (possibly dependent on ω)
with limk→∞ nk = ∞ such that limk→∞ ank(ω) = 1

2 , whence limn→∞ Vn(ω) =
limk→∞ Vnk(ω) = 0 by virtue of (30) and (31). Thus, 1

2 is the only point of
accumulation for the sequence {an(ω), n = 1, 2, . . .} and limn→∞ an(ω) = 1

2 .
If 1

2 is not a point of accumulation for the sequence {an(ω), n = 1, 2, . . .},
then Acc (an(ω), n = 1, 2, . . .) ⊆ {0, 1}. If this set of accumulation points coin-
cides with {0, 1}, then there exist two distinct subsequences {nk, k = 1, 2, . . .}
and {m�, � = 1, 2, . . .} (possibly dependent on ω) with limk→∞ nk = ∞ and
lim�→∞ m� = ∞ such that limk→∞ ank(ω) = 0 and lim�→∞ am�

(ω) = 1. There-
fore, for arbitrary ε in the interval (0, 1

2), there exist finite integers k�(ε) and
��(ε) such that ank(ω) ≤ ε for k ≥ k�(ε) and 1 − ε ≤ am�

(ω) for � ≥ ��(ε).
Now, write N(ε) := {nk, k ≥ k�(ε)} ∪ {m�, � ≥ ��(ε)}, and with p�(ε) =
max (nk	(ε), m�	(ε)), consider the set of integers given by N

�(ε) := {p 	∈ N(ε) :
p > p�(ε)}. From these definitions it is plain that

ε < ap(ω) < 1 − ε, p ∈ N
�(ε). (32)

It is easy to see that the set N
�(ε) is countably infinite; see [6] for full de-

tails. Therefore, (32) would yield the inequalities ε ≤ lim infj→∞ apj (ω) ≤
lim supj→∞ apj (ω) ≤ 1− ε where {pj, j = 1, 2, . . .} is the monotone labelling of
the elements of N

�(ε), i.e., pj < pj+1 for j = 1, 2, But lim infj→∞ apj (ω) and
lim supj→∞ apj (ω) are both accumulation points of the sequence {an(ω), n =
1, 2, . . .}, and this contradicts the assumption Acc (an(ω), n = 1, 2, . . .) = {0, 1}.

174 A.M. Makowski

Thus, either Acc (an(ω), n=1, 2, . . .) = {0} or {1}, and limn→∞ an(ω) exists.

When ν = 1, because Pν(a, 0) = a for all a in the range [0, 1], the relation
(29) yields no information concerning the accumulation points of the sequence
{an(ω), n = 1, 2, . . .} for each ω in Ω�. This suggests already that the case ν = 1
will require an approach different from the one used for either cases 0 < ν < 1
and 1 < ν; for lack of space we will not pursue this case any further.

5 A Proof of Theorem 4

We begin with some useful notation and facts: For each n = 1, 2, . . ., let Fn

denote the σ-field generated by the mutually independent rvs U1, . . . , Un and
a1. The relation

E [1 [Un+1 ≤ pn]r |Fn] = pn, r > 0 (33)

will be used repeatedly.
We also introduce the R-valued rvs {Mn, n = 1, 2, . . .} given by M1 := 0 and

Mn+1 =
n∑

m=1

m

(m + 1)2
(2am − 1) (1 [Um+1 ≤ pm] − pm) (34)

for all n = 1, 2, The rvs {Mn, n = 1, 2, . . .} form a zero-mean Fn-martingale
with

E
[
|Mn+1|2

]
=

n∑
m=1

m2

(m + 1)4
E
[
(2am − 1)2pm(1 − pm)

]
for all n = 1, 2, Therefore, the Fn-martingale {Mn, n = 1, 2, . . .} is L2-
bounded, hence a.s. convergent to some a.s. finite rv M [10, Thm. 9.4.5, p. 336]
[11, Cor. 2.2, p. 18] with

lim
n→∞

Mn = M a.s. (35)

Fix n = 1, 2, From (20) we have(
an+1 −

1
2

)
=
(

an − 1
2

)
+

1
n + 1

(1 [Un+1 ≤ pn] − an) . (36)

Squaring both sides of this last relation and rearranging terms, we get

Vn+1 = Vn +
1

n + 1
(2an − 1) (1 [Un+1 ≤ pn] − pn) +

1
n + 1

(2an − 1) (pn − an)

+
1

(n + 1)2
(
1 [Un+1 ≤ pn] (1 − an)2 + 1 [Un+1 > pn] a2

n

)
.

Simplifying the last term in this last expression, and iterating the resulting
relation, we conclude with the help of (34) that

Vn+1 = V1 + Mn+1 +
n∑

m=1

1
m + 1

(2am − 1) (pm − am)

+
n∑

m=1

1
(m + 1)2

(
pm(1 − am)2 + (1 − pm)a2

m

)
. (37)

The Binary Bridge Selection Problem 175

Next, we observe the monotone convergence

lim
n→∞

n∑
m=1

1
(m + 1)2

(
pm(1 − am)2 + (1 − pm)a2

m

)
=

∞∑
n=1

1
(n + 1)2

(
pn(1 − an)2 + (1 − pn)a2

n

)
(38)

to a finite non-negative rv (bounded by
∑∞

n=1 n−2), while under the absolute
summability (25), the a.s. convergence

lim
n→∞

n∑
m=1

1
m + 1

(2am − 1)(pm − am) < ∞ (39)

also takes place to an a.s. finite rv. With these remarks in place, let n go to
infinity in (37). We readily get (26) upon combining (35), (38) and (39) because

0 ≤ Vn ≤ 1, n = 1, 2, . . . (40)

by virtue of (19).

6 Establishing the Summability Condition (25)

We establish the summability condition (25) by proving the stronger condition

E

[∞∑
n=1

1
n + 1

|(2an − 1)(pn − an)|
]

< ∞. (41)

As a first step, take expectations on both sides of the relation (37) so that

E [Vn+1] = E [V1] + E

[
n∑

m=1

1
m + 1

(2am − 1) (pm − am)

]

+E

[
n∑

m=1

1
(m + 1)2

(
pm(1 − am)2 + (1 − pm)a2

m

)]
(42)

for all n = 1, 2, From (19) we also note that

sup
n=1,2,...

E

[
n∑

m=1

1
(m + 1)2

(
pm(1 − am)2 + (1 − pm)a2

m

)]
≤

∞∑
n=1

n−2 < ∞. (43)

Thus, establishing (41) (via (42) with the help of (43)) requires determining
the sign and behavior of the terms

(2an − 1)
(

Pν

(
an,

K

n

)
− an

)
, n = 1, 2, . . .

176 A.M. Makowski

This leads naturally to considering the equation

Pν(a, c) = a, a ∈ [0, 1] (44)

for a given scalar c ≥ 0 (held fixed throughout the discussion). We are interested
in determining all the solutions to (44), such solutions being denoted a(c). This
set of solutions coincide with the set of solutions to the simpler equation

(a + c)ν(1 − a) = (1 − a + c)νa, a ∈ [0, 1]. (45)

Thus, a(c) = 1
2 is always a solution to (44). Moreover, with ν 	= 1, if c = 0,

then a(c) = 0, 1 are also solutions. It is a simple matter to check that if a(c)
is a solution to (44) for some c ≥ 0, then 1 − a(c) is also a solution to it. The
main technical fact needed to identify the solutions of the equation (44) is given
next.

Proposition 1. Fix c ≥ 0. For each ν > 0, the mapping a → Pν(a, c) is strictly
increasing on the interval [0, 1]. If 0 < ν < 1, this mapping is strictly concave
(resp. convex) on the interval [0, 1

2] (resp. [12 , 1]) while if 1 < ν, the mapping is
strictly convex (resp. concave) on the interval [0, 1

2] (resp. [12 , 1]).

6.1 Establishing (25) When 0 < ν < 1

We begin with an easy lemma that builds on Proposition 1.

Lemma 1. Assume 0 < ν < 1. The equation (44) has exactly three solutions
a(c) = 0, 1

2 , 1 if c = 0, and exactly one solution a(c) = 1
2 if c > 0. Moreover, we

have
(2a − 1) (Pν(a, c) − a) ≤ 0, a ∈ [0, 1], c ≥ 0 (46)

with strict inequality if and only if a 	= 0, 1
2 , 1 when c = 0 (resp. a 	= 1

2 when
c > 0).

Fix n = 1, 2, Lemma 1 implies (2am − 1) (pm − am) ≤ 0 for m = 1, . . . , n so
that (2am − 1) (pm − am) = − |(2am − 1) (pm − am)|, and the relation (42) can
be rewritten as

E [Vn+1] + E

[
n∑

m=1

1
m + 1

|(2am − 1) (pm − am)|
]

(47)

= E [V1] + E

[
n∑

m=1

1
(m + 1)2

(
pm(1 − am)2 + (1 − pm)a2

m

)]
.

Using (40) and (43) we then get from (47) that

sup
n=1,2,...

(
E

[
n∑

m=1

1
m + 1

|(2am − 1) (pm − am)|
])

≤ 1 +
∞∑

n=1

n−2 < ∞.

The validity of (41) follows by monotone convergence, and the absolute summa-
bility (25) is now established when 0 < ν < 1.

The Binary Bridge Selection Problem 177

6.2 Establishing (25) When 1 < ν

The needed facts complementing Proposition 1 are presented next

Lemma 2. Assume 1 < ν. The equation (44) has exactly one solution 1
2 if

ν−1
2 ≤ c, and three solutions a−(c), 1

2 and a+(c) if 0 ≤ c < ν−1
2 with a−(c) <

1
2 < a+(c) and a+(c) = 1− a−(c). If c = 0, then a−(c) = 0 and a+(c) = 1, while
if 0 < c < ν−1

2 , then 0 < a−(c) < 1
2 with limc↓0 a−(c) = limc↓0 (1 − a+(c)) = 0.

Moreover, when 0 < c < ν−1
2 , with I(c) := (a−(c), a+(c)), it holds that

max
a�∈I(c)

|Pν(a, c) − a| = Pν(0, c) =
cν

cν + (1 − c)ν
. (48)

Set n� := � 2K
ν−1�, and pick n = n� + 1, n� + 2, . . ., in which case K

n < ν−1
2 . Let

In denote the interval I(K
n). By Lemma 2, we have (2an − 1) (pn − an) > 0 if

an ∈ In, but (2an − 1) (pn − an) ≤ 0 if an 	∈ In. Using these facts in (42) and
rearranging terms, we find

E [Vn+1] + E

[
n∑

m=n	+1

1
m + 1

|(2am − 1) (pm − am)|1 [am 	∈ Im]

]

= E [V1] + E

[
n	∑

m=1

1
m + 1

(2am − 1) (pm − am)

]

+E

[
n∑

m=n	+1

1
m + 1

|(2am − 1) (pm − am)|1 [am ∈ Im]

]

+E

[
n∑

m=1

1
(m + 1)2

(
pm(1 − am)2 + (1 − pm)a2

m

)]
. (49)

By virtue of (40) and (43), we readily conclude from (49) that

E

[∞∑
m=1

1
m + 1

|(2am − 1) (pm − am)|1 [am 	∈ Im]

]
< ∞ (50)

if and only if

E

[∞∑
m=1

1
m + 1

|(2am − 1) (pm − am)|1 [am ∈ Im]

]
< ∞, (51)

in which case the summability condition (41) holds.
For each m = n� + 1, n� + 2, . . ., Lemma 2 also yields

|(2am − 1) (pm − am)| ≤ 2Pν(0,
K

m
) ≤ 2ν

(
K

m

)ν

, am 	∈ Im (52)

as we make use of the convexity of the mapping x → xν . Consequently,
∞∑

m=1

1
m + 1

|(2am − 1) (pm − am)|1 [am 	∈ Im] ≤ n� + (2K)ν
∞∑

m=n	+1

1
mν+1

178 A.M. Makowski

and (50) therefore holds (since ν + 1 > 2). This leads to (41), hence to the ab-
solute summability (25) when 1 < ν.

References

1. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing ex-
ploratory pattern of the Argentine ant. Journal of Insect Behavior 3, 159–168
(1990)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems, Santa Fe Institute Studies in the Sciences of Complexity. Oxford
University Press, Oxford (1999)

3. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
4. Pasteels, J.M., Deneubourg, J.L., Goss, S.: Self-organization mechanisms in ant

societies (I): Trail recruitment to newly discovered food sources. Experientia
Suppl. 54, 155–175 (1987)

5. Kushner, H.J., Yin, G.: Stochastic Approximation Algorithms and Applications.
Springer, New York (1997)

6. Makowski, A.M.: The bridge selection problem and the convergence properties of
a learning algorithm – Stochastic approximations to the rescue (in preparation,
2008)

7. Gladyshev, E.G.: On stochastic approximation. Theory of Probabilities and Ap-
plications 10, 275–278 (1965)

8. Robbins, H., Siegmund, D.: A convergence theorem for non-negative almost super-
martingales and some applications. In: Rustagi, J.S. (ed.) Optimizing Methods in
Statistics, pp. 233–257. Academic Press, New York (1972)

9. Pemantle, R.: A survey of random processes with reinforcement. Probability Sur-
veys 4, 1–70 (2007)

10. Chung, K.L.: A Course in Probability Theory, 2nd edn. Academic Press, New York
(1974)

11. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Applications, Probability
and Mathematical Statistics. Academic Press, New York (1980)

Two-Level ACO for Haplotype Inference

Under Pure Parsimony

Stefano Benedettini1, Andrea Roli1, and Luca Di Gaspero2

1 DEIS, Campus of Cesena
Alma Mater Studiorum Università di Bologna, Cesena, Italy

{stefano.benedettini,andrea.roli}@unibo.it
2 DIEGM, University of Udine, Udine, Italy

l.digaspero@uniud.it

Abstract. Haplotype Inference is a challenging problem in bioinformat-
ics that consists in inferring the basic genetic constitution of diploid
organisms on the basis of their genotype. This information enables re-
searchers to perform association studies for the genetic variants involved
in diseases and the individual responses to therapeutic agents.

A notable approach to the problem is to encode it as a combinatorial
problem under certain hypotheses (such as the pure parsimony criterion)
and to solve it using off-the-shelf combinatorial optimization techniques.
At present, the main methods applied to Haplotype Inference are either
simple greedy heuristic or exact methods, which are adequate only for
moderate size instances.

In this paper, we present an iterative constructive approach to Haplo-
type Inference based on ACO and we compare it against a state-of-the-art
exact method.

1 Introduction

The role of genetic variation and inheritance in human diseases is extremely
important, though still largely unknown [1]. To this aim, the assessment of a
full Haplotype Map of the human genome has become one of the current high
priority tasks of human genomics [2]. A haplotype is one of the two non iden-
tical copies of a chromosome of a diploid organism, i.e., an organism that has
two copies of each chromosome, one inherited from the father and one from the
mother. The haplotypes information makes it possible to perform association
studies for the genetic variants involved in diseases and the individual responses
to therapeutic agents. Technological limitations make it currently impractical
to directly collect haplotypes by experimental procedures, but it is possible to
collect genotypes, i.e., the conflation of a pair of haplotypes. Moreover, instru-
ments can easily identify only whether the individual is homozygous (i.e., the
alleles are the same) or heterozygous (i.e., the alleles are different) at a given site.
Therefore, haplotypes have to be inferred from genotypes in order to reconstruct
the detailed information and trace the precise structure of DNA variations in a
population. This process is called Haplotype Inference (also known as haplotype

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 179–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

180 S. Benedettini, A. Roli, and L. Di Gaspero

phasing) and the goal is to find a set of haplotype pairs (i.e., a phasing) so that
all the given genotypes are resolved, that is, they can be obtained (or explained)
by combining a pair of haplotypes from the set.

The main methods to tackle the Haplotype Inference are either combinatorial
or statistical. Both, however, being of non-experimental nature, need some ge-
netic model that could provide criteria for evaluating the solution returned with
respect to actual genetic plausibility. In the case of the combinatorial methods,
which are the subject of this work, one common criterion is pure parsimony [3],
i.e., to search for the smallest collection of distinct haplotypes that solves the
Haplotype Inference problem. This criterion is consistent with current observa-
tions in natural populations for which the actual number of haplotypes is vastly
smaller than the total number of possible haplotypes, therefore the solutions
found to this model are considered as good and informative phasings (see [3] for
a discussion on the adequacy of this model).

Current approaches for solving the problem under the pure parsimony hypoth-
esis (HIpp) include simple greedy heuristic [4] and exact methods such as Inte-
ger Linear Programming [3,5,6,7], Semidefinite Programming [8,9], SAT models
[10,11] and Pseudo-Boolean Optimization algorithms [12]. At present, complete
approaches, i.e., the ones that guarantee to return an optimal solution, such as
SAT-based ones, are very effective but they seem not to be particularly adequate
very-large size instances. Hence, the need for approximate algorithms, such as
metaheuristics, that trade completeness for efficiency. Moreover, a motivation
for studying and applying approximate algorithms is that the criteria used to
evaluate the solutions provide an approximation of the actual solution quality,
therefore a proof of optimality is not particularly important.

The method we present in this work is a two-level ACO metaheuristic. To
the best of our knowledge, besides [13], the only attempt to employ metaheuris-
tic techniques for HIpp is a recently proposed Genetic Algorithm [14] that is,
however, not applied on real size instances.

The problem is formally stated in Sect. 2, along with the basic related con-
cepts. In Sect. 3 we describe the two-level ACO we devised and in Sect. 4 we show
the results of the experimental analysis in which we first compare the different
variants of the two-level ACO, then we assess its performance by comparing it
against state-of-the-art exact techniques.

2 The Haplotype Inference Problem

In the Haplotype Inference problem we deal with genotypes, that is, strings of
length m that correspond to a chromosome with m sites. Each value in the string
belongs to the alphabet {0, 1, 2}. A position in the genotype is associated with a
site of interest on the chromosome and it has value 0 (wild type) or 1 (mutant) if
the corresponding chromosome site is a homozygous site (i.e., it has that state on
both copies) or the value 2 if the chromosome site is heterozygous. A haplotype
is a string of length m that corresponds to only one copy of the chromosome (in
diploid organisms) and whose positions can assume the symbols 0 or 1.

Two-Level ACO for Haplotype Inference Under Pure Parsimony 181

2.1 Genotype Resolution

Given a chromosome, we are interested in finding an unordered1 pair of haplo-
types that can explain the chromosome according to the following definition:

Definition 1 (Genotype resolution). Given a chromosome g, we say that
the unordered pair 〈h, k〉 resolves g, and we write 〈h, k〉 � g (or g = h⊕ k), if the
following conditions hold (for j = 1, . . . , m):

g[j] = 0 ⇒ h[j] = 0 ∧ k[j] = 0 (1a)
g[j] = 1 ⇒ h[j] = 1 ∧ k[j] = 1 (1b)
g[j] = 2 ⇒ (h[j] = 0 ∧ k[j] = 1) ∨ (h[j] = 1 ∧ k[j] = 0) (1c)

If 〈h, k〉�g we indicate the fact that the haplotype h (respectively, k) contributes
in the resolution of the genotype g writing h � g (resp., k � g). We also say
that h is a resolvent of g. This notation can be extended to set of haplotypes,
writing H = {h1, . . . , hl} � g, with the meaning that hi � g for all i = 1, . . . , l.
The operator ⊕ is defined accordingly.

Conditions (1a) and (1b) require that both haplotypes must have the same value
in all homozygous sites, while condition (1c) states that in heterozygous sites
the haplotypes must have different values.

Observe that, according to the definition, for a single genotype string the hap-
lotype values at a given site are predetermined in the case of homozygous sites,
whereas there is a freedom to choose between two possibilities at heterozygous
places. This means that for a genotype string with l heterozygous sites there are
2l−1 possible pairs of haplotypes that resolve it.

As an example, consider the genotype g = (0212), then the possible pairs of
haplotypes that resolve it are 〈(0110), (0011)〉 and 〈(0010), (0111)〉.

After these preliminaries we can state the Haplotype Inference problem as
follows:

Definition 2 (Haplotype Inference problem). Given a population of n in-
dividuals, each of them represented by a genotype string gi of length m we are
interested in finding a set φ of n pairs of (not necessarily distinct) haplotypes
φ = {〈h1, k1〉, . . . , 〈hn, kn〉}, so that 〈hi, ki〉 � gi, i = 1, . . . , n. We call H the set
of haplotypes used in the construction of φ, i.e., H = {h1, . . . , hn, k1, . . . , kn}.

From the mathematical point of view, there are many possibilities for building
the set H , since there is an exponential number of possible haplotypes for each
genotype. Therefore, a criterion should be added to the model for evaluating the
solution quality.

One natural model of the Haplotype Inference problem is the already men-
tioned pure parsimony approach that consists in searching for a solution that
minimizes the total number of distinct haplotypes used or, in other words, |H |,
the cardinality of the set H . A trivial upper bound for |H | is 2n in the case of all
1 In the problem there is no distinction between the maternal and paternal haplotypes.

182 S. Benedettini, A. Roli, and L. Di Gaspero

genotypes resolved by a pair of distinct haplotypes. It has been shown that the
Haplotype Inference problem under the pure parsimony criterion is APX-hard
[6] and therefore NP-hard.

2.2 Compatibility and Complementarity

It is possible to define a graph that expresses the compatibility between geno-
types, so as to avoid unnecessary checks in the determination of the resolvents.
In the graph G = (G, E), the set of vertices coincides with the set of the geno-
types. Two genotypes g1, g2 are connected by an edge if they are compatible, i.e.,
one or more common haplotypes can resolve both of them. The formal definition
of this property is as follows.

Definition 3 (Genotypes compatibility). Let g1 and g2 be two genotypes,
g1 and g2 are compatible if, for all j = 1, . . . , m, the following conditions hold:

g1[j] = 0 ⇒ g2[j] ∈ {0, 2} (2a)
g1[j] = 1 ⇒ g2[j] ∈ {1, 2} (2b)
g2[j] = 2 ⇒ g2[j] ∈ {0, 1, 2} (2c)

The same concept can be expressed also between a genotype and a haplotype as
in the following definition.

Definition 4 (Compatibility between genotypes and haplotypes). Let g
be a genotype and h a haplotype, g and h are compatible if, for all j = 1, . . . , m,
the following conditions hold:

g[j] = 0 ⇒ h[j] = 0 (3a)
g[j] = 1 ⇒ h[j] = 1 (3b)
g[j] = 2 ⇒ h[j] ∈ {0, 1} (3c)

We denote this relation with h → g, and we write h[j] → g[j] when the conditions
hold for the single site j. Moreover with an abuse of notation we indicate with
h → {g1, g2, . . . } the set of all genotypes that are compatible with haplotype h.

Notice that the set of genotypes that are compatible with a haplotype can contain
only mutually compatible genotypes (i.e., they form a clique in the compatibility
graph). As an example of compatibility graph, consider the set of genotypes in
Figure 1a, which corresponds to the compatibility graph in Figure 1b.

We also point out that disconnected components of the compatibility graph
are necessarily resolved by distinct haplotypes, therefore the optimal set of hap-
lotypes is the union of the optimal sets of each disconnected subgraph. This
property is exploited in a specific preprocessing phase of our algorithm.

Another useful property, which is going to be used in our algorithms, is the
following:

Proposition 1 (Haplotype complement). Given a genotype g and a haplo-
type h → g, there exists a unique haplotype k such that h⊕k = g. The haplotype
k is called the complement of h with respect to g and is denoted with k = g ! h.

Two-Level ACO for Haplotype Inference Under Pure Parsimony 183

g1 : (2210212) g2 : (2112110)
g3 : (1212122) g4 : (1222122)
g5 : (1202201)

(a) A set of 5 genotypes

g1

g2

g3

g4 g5

(b) The corresponding compatibility
graph

Fig. 1. An example of compatibility graph for a set of genotypes

3 Two-Level ACO for the Haplotype Inference Problem

The Haplotype Inference problem definition makes constructive procedures very
promising. Indeed, a constructive procedure can incrementally build a set H of
haplotypes which, taken in pairs, resolve the genotypes. Such a procedure can
start from an empty set and add one or two haplotypes at a time, while it scans
the set of genotypes G. The objective is to build H as small as possible, i.e., to
find a minimal cardinality set of haplotypes that composes the phasing. To this
aim, new haplotypes should be added to H only when necessary, i.e., when no
pair of haplotypes already in H resolves the current genotype g.

The algorithm we propose is an instance of the Ant Colony Optimization
metaheuristic [15] and is composed of two levels: the higher one employs an
ACO for finding a good visiting order of genotypes while the lower level, also
based on ACO, searches for the haplotypes to be added to H . The two levels are
of course coupled, as the order in which genotypes are considered is influenced
by the current set of haplotypes in H and, conversely, a generic step in the
construction of H depends on the previously resolved genotypes.

Before applying the two-level ACO, the problem instance is preprocessed by a
procedure that eliminates replicates among genotypes and identifies disconnected
parts in the compatibility graph that can then be treated as independent instances.

In Algorithm 1 we provide the general search scheme that is going to be
detailed in the following.

3.1 Preprocessing Phase

The instances of the Haplotype Inference problem can be reduced by analyzing
their structure, while preserving the property that a solution to the reduced in-
stance is a solution to the original one. The first preprocessing step consists in
eliminating duplicated genotypes. Furthermore, the analysis of the structure of
the compatibility graph enables us to identify independent sub-instances. In-
deed, the genotypes belonging to an isolated sub-graph, i.e., a disconnected

184 S. Benedettini, A. Roli, and L. Di Gaspero

Algorithm 1. ACO-HI
1: A: set of ants; G: set of genotypes
2: Preprocessing phase
3: while terminating conditions not met do
4: for all a ∈ A do
5: while not all genotypes are resolved do
6: g ← chooseNode(G)
7: resolve genotype g
8: propagate resolvents
9: end while

10: end for
11: pheromoneUpdate()
12: end while

component, identify a sub-instance that can be solved independently. Therefore,
a solution to the original instance can be found by separately solving the sub-
instances composing it. A special case of independent instance is represented by
isolated nodes, i.e., genotypes that are not compatible with any other genotype.
The contribution of such a genotype to the solution of the Haplotype Inference
instance is composed by a pair of haplotypes that, by definition of compatibility,
cannot be used to resolve any other genotype.

3.2 Lower Level: Genotype Resolution

As depicted in Algorithm 1, an ant a builds a solution by considering in turn each
genotype g ∈ G (the order is defined in the higher-level, see Sect. 3.3) and finding
resolvent haplotypes for it. The basic heuristic for this phase consists in trying to
resolve g with haplotypes already in H and add new haplotypes only if necessary.
When a new resolvent has to be added to H , the values of its heterozigous sites
are chosen on the basis of pheromone values.2 For each (heterozygous) site j on
genotype i, we have two pheromone components, τ0

i,j and τ1
i,j , corresponding to

values 0 and 1, respectively. The value assigned to the haplotype site is chosen
with probability pi,j(v) = τv

i,j/(τ0
i,j + τ1

i,j), with v ∈ {0, 1}.
Excluding the case in which H already contains a pair of haplotypes resolving

g, the are three different cases to be considered for the resolution of a genotype g
in this step of the algorithm: (i) no resolving candidates in H , (ii) one candidate,
(iii) more than one candidate. In the following, we detail the procedure defined
for these cases:

Case (i): A haplotype h is built by a pheromone guided construction proce-
dure, as previously described. Then, k = g!h, the complement of h,
is built and both are added to H . Then, these two new haplotypes
are propagated along the compatibility graph in order to update the
list of resolving candidates for the genotypes.

2 Homozygous sites do not represent choice points as they are directly assigned because
the haplotype we are constructing must resolve g.

Two-Level ACO for Haplotype Inference Under Pure Parsimony 185

Case (ii): When one resolving candidate is already available, its complement
w.r.t. g is built and this step completed as in the previous case.

Case (iii): When there are two or more candidates that can resolve g, but no
pair of them can resolve it, we have to choose one among these hap-
lotypes. We implement this operation by iteratively considering each
site and applying the following procedure: if, among the candidates,
the homologous sites have different values (i.e., at least in a pair
there are both values 0 and 1) one of the two is chosen probabilisti-
cally (using pheromone values) and all the candidates with a different
value are discarded. The procedure ends when only one candidate is
left and the final steps of the previous cases are performed again.

The algorithm, named ACO-HI, can be further improved by slightly modify-
ing the procedure implemented for cases (i). In fact, since the new haplotype
added to H must resolve the current genotype g, a heuristic bias toward the
construction of a haplotype that also resolves another genotype compatible with
g can be beneficial. Thus, the genotype g′ that has to be visited after g is de-
termined by the higher level and a haplotype is probabilistically constructed (as
in the original procedure) that not only resolves g, but also g′. Therefore, the
number of sites to be assigned on the basis of the pheromone values is restricted
to the set of sites which are ambiguous in both the genotypes g and g′. In this
way, haplotype construction is still guided by pheromone only, but a simple kind
of heuristic criterion is introduced to avoid building a new haplotype compatible
only with genotype g. A similar procedure is also applied, with slight modifi-
cations, also in case (iii). We will refer to the improved version of ACO-HI as
ACO-HI+.

3.3 Higher Level: Genotypes Visiting Order

The order in which genotypes are visited has a strong influence on solution qual-
ity, therefore the higher level of the algorithm tries to learn a good genotype
visiting order. This learning mechanism is primarily guided by pheromone asso-
ciated to the edges of the compatibility graph. In this way, pairs of consecutive
genotypes in the series are learnt. It would be possible to learn larger building
blocks, such as triplets, but we decided to limit the case to pairs because of
efficiency reasons. Formally, every edge (i, j) of the compatibility graph is asso-
ciated to a pheromone value τij and the probability to move from node i to node
j is given by:

p(i, j) =

⎧⎪⎨⎪⎩
τij�

l∈adj(l) τil
, if j ∈ adj(i)

1
|U| , if j ∈ U ∧ adj(i) = ∅
0, otherwise

(4)

where adj(i) is the set of nodes adjacent to i (i.e., the compatible genotypes)
still unresolved and U is the set of currently unvisited genotypes not compatible
with genotype corresponding to i. In such a way, if i has adjacent unresolved
nodes, then one among them is chosen according to pheromone values; otherwise,

186 S. Benedettini, A. Roli, and L. Di Gaspero

the next genotype in the sequence is chosen randomly among the remaining
unresolved genotypes.

3.4 Pheromone Update

Our algorithm is implemented according to the Hyper-cube framework [16]. The
objective function of the problem is the cardinality of H , that has to be mini-
mized. Therefore, as a quality function used for the reinforcement, we chose the
function F (H) = 2n − |H |. Pheromone is updated in the two levels with the
same evaporation parameter and quality function. The only difference is that
the solution components of the higer level are edges of the compatibility graph,
while in the lower level they are nodes representing values to assign to haplotype
sites.

4 Experimental Analysis

With the aim of understanding the contribution of each algorithmic component,
we compared ACO-HI and its improved version, ACO-HI+, against two versions
of the algorithm with the learning mechanism disabled: ACO-HI-random that
chooses the sequence of genotypes to be visited randomly and ACO-HI+(no learn-
ing) that is a version of ACO-HI+ equipped only with heuristic haplotype con-
struction (ties are broken randomly) and random sequence of visited genotypes.

The sets of instances chosen for the experimental analysis are the common
benchmark used in previous works and they are composed of two parts. The first
one, composed of the sets Harrower uniform and Harrower hapmap, is the bench-
mark used in [7]. The second part of the instances, namely Marchini SU1, Mar-
chini SU2, Marchini SU3 and Marchini SU-100kb, were taken from the website
http://www.stats.ox.ac.uk/∼marchini/phaseoff.html. The main features
of the instance sets are summarized in Table 1.

Table 1. A summary of the main features of the benchmarks

Benchmark set Number of Number of Number of
instances genotypes sites

Harrower uniform 200 10÷100 30÷50
Harrower hapmap 24 5÷68 30÷75
Marchini SU1 100 90 179
Marchini SU2 100 90 171
Marchini SU3 100 90 187
Marchini SU-100kb 29 90 18

We present a comparison of the different versions of ACO in Figure 2, in
which statistics on solution quality are plotted. The boxplots represent statistics
over 10 independent runs of the algorithms on all the instances of each set. The
solution value considered for the statistics is the sum of solutions returned on all

http://www.stats.ox.ac.uk/~marchini/phaseoff.html

Two-Level ACO for Haplotype Inference Under Pure Parsimony 187

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

27
20

27
40

27
60

27
80

28
00

28
20

Harrower Uniform
S

ol
ut

io
n

va
lu

e
(c

um
ul

at
iv

e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

40
9

41
0

41
1

41
2

41
3

Harrower Hapmap

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

12
50

0
13

00
0

13
50

0
14

00
0

14
50

0

Marchini SU1

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

15
50

0
16

00
0

16
50

0
17

00
0

17
50

0
18

00
0

Marchini SU2

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

15
00

0
15

50
0

16
00

0
16

50
0

17
00

0

Marchini SU3

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

ACO−HI−random ACO−HI ACO−HI+ ACO−HI+ (no learning)

11
10

11
20

11
30

11
40

Marchini SU−100kb

S
ol

ut
io

n
va

lu
e

(c
um

ul
at

iv
e)

Fig. 2. Comparison of the main ACO variants w.r.t. solution quality

the instances of each benchmark.3 Algorithms are stopped after 300 iterations
of the main construction loop; this value of maximum iterations is set in such
a way that the algorithm reaches stagnation. Pheromone evaporation has been
set to 0.1, according to a brute force analysis over a representative sample of the
instances. The algorithms have been implemented in C++ and run on a 1GHz
Intel Core Duo with 2GB of RAM and Linux Ubuntu 7.10 (kernel 2.6.22).

We can observe that, except for the set Marchini SU-100kb, ACO-HI+ is su-
perior to the other variants and the synergy between its constructive heuristic
and learning mechanism based on pheromone (both for higher and lower levels)
is quite effective. We conjecture that the good performance of ACO-random on
the set Marchini SU-100kb is caused by the structure of the instances; indeed,

3 Detailed results are omitted because of lack of space and are available from the
authors upon request.

188 S. Benedettini, A. Roli, and L. Di Gaspero

Table 2. Cumulative statistics on the running time of algorithm ACO-HI+. The total
running time (in seconds) for solving all the instances of each set is considered.

Benchmark set Min. 1st Q.le Median Mean 3rd Q.le Max.

Harrower uniform 54.00 55.50 65.00 64.30 72.75 75.00
Harrower hapmap 13.00 21.00 27.00 30.40 34.75 59.00
Marchini SU1 1634 1743 1808 1797 1861 1948
Marchini SU2 466.0 516.2 538.0 533.9 546.8 584.0
Marchini SU3 1401 1452 1488 1487 1541 1549
Marchini SU-100kb 148.0 155.0 169.5 165.8 174.8 182.0

Table 3. Solution quality of ACO-HI+ and local search [13] w.r.t. optimal solution
values

Sum of solution values (Perc. error)
Benchmark set rpoly ACO-HI+ HI-Tabu search [13]

Harrower uniform 2689 2694 (0.186) 3252 (21.0)
Harrower hapmap 321 321 (0.0) 343 (6.854)
Marchini SU1 2453 2483 (1.223) 3456 (40.89)
Marchini SU2 14794 15102 (2.081) 17735 (19.88)
Marchini SU3 2113 2121 (0.379) 2333 (10.41)
Marchini SU-100kb 661 667 (0.009) 755 (14.22)

most of these instances have a very sparse compatibility graph and this charac-
teristic makes the high level learning component much less effective, maybe even
misleading for the search.

For lack of space, we omit detailed data on running times and we just report
the cumulative statistics on the running time of algorithm ACO-HI+ in Table 2,
in which the running time to the best solution, in seconds, is considered.

5 Comparison Against the State of the Art

Algorithm ACO-HI+ has a very good performance, both in terms of quality and
time. In this section we compare its performance against the state-of-the-art
exact solver, in order to assess its effectiveness. To the best of our knowledge,
the best complete solver for the Haplotype Inference problem is rpoly [12]. We
run the solver on the same benchmark instances and on the same machine. We
allotted rpoly 24 hours of computation for each instance. The instances of the
set Harrower uniform, Harrower hapmap, Marchini SU1 and Marchini SU2 were
completely solved. From Marchini SU3 only 89 over 100 instances were solved
and from Marchini SU-100kb were solved 23 over 29 instances. Overall, most of
the instances could be solved with a runtime higher than 12 hours. In Table 3
we provide the comparison between the solutions returned by ACO-HI+ and the
optimal one provided by rpoly (when available) for each benchmark. The solution
values have been summed up over the instances composing the set (for ACO-HI+

Two-Level ACO for Haplotype Inference Under Pure Parsimony 189

we considered the best among the 10 runs) and also the error w.r.t. the sum of
optimal solutions is reported. We can observe that ACO-HI+ achieves a very
good performance in terms of solution quality, as the error w.r.t. the optimum
is rather small. Furthermore, ACO-HI+ also compares quite favourably with the
state-of-the-art local search for HIpp [13] in terms of overall solution quality.4

6 Conclusions and Future Work

We have presented an adaptive constructive approach for the Haplotype In-
ference problem under the pure parsimony criterion, which relies on a two-level
ACO procedure for determining first the genotype to be resolved and then choos-
ing the haplotypes to resolve it.

The experimental evaluation of the algorithm has shown that the algorithm
is very effective for solving medium- to large-scale instances of the problem on
common benchmarks and that its running time scales well with the dimension
of the instances.

In future developments we plan to enhance the behavior of the ACO meta-
heuristic by testing hybrid approaches. A possible research direction we intend
to pursue is to couple the ACO with a Local Search procedure [13] with the
aim improving the solution found by each ant. Other possibilities include the
replacement of the ACO for genotype ordering with other metaheuristics, such
as evolutionary algorithms or again local search.

Acknowledgments. We thank Inês Lynce and Ana Sofia Graça for kindly
providing us their instances and solvers, and we also thank Ian M. Harrower for
sending us his datasets.

References

1. The International HapMap Consortium: A haplotype map of the human genome.
Nature 437 (2005)

2. The International HapMap Consortium: The international HapMap project. Na-
ture 426, 789–796 (2003)

3. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez,
E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer,
Heidelberg (2003)

4. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid pop-
ulations. Molecular Biology and Evolution 7, 111–122 (1990)

5. Halldórsson, B.V., Bafna, V., Edwards, N., Lippert, R., Yooseph, S., Istrail, S.:
A survey of computational methods for determining haplotypes. In: Istrail, S.,
Waterman, M.S., Clark, A. (eds.) DIMACS/RECOMB Satellite Workshop 2002.
LNCS (LNBI), vol. 2983, pp. 26–47. Springer, Heidelberg (2002)

4 We omit the complete direct comparison of the two techniques because of limited
space and we refer the reader to [13].

190 S. Benedettini, A. Roli, and L. Di Gaspero

6. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony:
Complexity of exact and approximation algorithms. INFORMS Journal on Com-
puting 16(4), 348–359 (2004)

7. Brown, D.G., Harrower, I.M.: Integer programming approaches to haplotype infer-
ence by pure parsimony. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 3(2), 141–154 (2006)

8. Kalpakis, K., Namjoshi, P.: Haplotype phasing using semidefinite programming.
In: BIBE, pp. 145–152. IEEE Computer Society, Los Alamitos (2005)

9. Huang, Y.T., Chao, K.M., Chen, T.: An approximation algorithm for haplotype
inference by maximum parsimony. In: Proceedings of the 2005 ACM Symposium
on Applied Computing (SAC 2005), pp. 146–150. ACM, New York (2005)

10. Lynce, I., Marques-Silva, J.: SAT in bioinformatics: Making the case with haplotype
inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 136–
141. Springer, Heidelberg (2006)

11. Lynce, I., Marques-Silva, J.: Efficient haplotype inference with boolean satisfiabil-
ity. In: Proceedings of the 21st National Conference on Artificial Intelligence and
the Eighteenth Innovative Applications of Artificial Intelligence Conference. AAAI
Press, Menlo Park (2006)

12. Graça, A., Marques-Silva, J., Lynce, I., Oliveira, A.L.: Efficient haplotype inference
with pseudo-boolean optimization. In: Anai, H., Horimoto, K., Kutsia, T. (eds.)
Ab 2007. LNCS, vol. 4545. Springer, Heidelberg (2007)

13. Di Gaspero, L., Roli, A.: Stochastic local search for large-scale instances of the
haplotype inference problem by pure parsimony. Journal of Algorithms in Logic,
Informatics and Cognition (2008) doi:10.1016/j.jalgor.2008.02.004

14. Wang, R.S., Zhang, X.S., Sheng, L.: Haplotype inference by pure parsimony via
genetic algorithm. In: Operations Research and Its Applications: the Fifth Inter-
national Symposium (ISORA 2005), Tibet, China, August 8–13. Lecture Notes in
Operations Research, vol. 5, pp. 308–318. Beijing World Publishing Corporation,
Beijing (2005)

15. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
16. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.

Transactions on Systems, Man, and Cybernetics – Part B 34(2) (2004)

What Hides in Dimension X?

A Quest for Visualizing Particle Swarms

Namrata Khemka and Christian Jacob

Evolutionary and Swarm Design Group, Dept. of Computer Science
University of Calgary, Alberta, Canada

{nkhemka,cjacob}@ucalgary.ca

Abstract. The way we perform evolutionary experiments is all influ-
enced by visualizing multi-dimensional solutions, analyzing the extent
to which the search space is explored, displaying the gross population
statistics, determining clustering and building blocks, and finding suc-
cessful combinations of parameter values. Through visualization we can
gain valuable insights to enhance our knowledge about particle swarm op-
timizers, in particular, and the search space that is being explored. In this
paper, we focus on different visualization techniques for particle swarm
systems. We investigate the advantages of a range of graphical data
representation methods by example of the two- and four-dimensional
sphere function, the two-dimensional simplified foxholes function, and
a 56-dimensional real-world example in the context of muscle stimulus
patterns.

1 Introduction

A picture can be worth much more than a thousand words. One benefit of
visualization methods is to communicate ideas universally. However, another
important purpose of a picture is to provide means to create and discover the
idea itself [1]. Using visualization techniques, we can assemble thousands of in-
dividuals of Particle Swarm Optimization (PSO) [2] into ‘pictures’, thereby re-
vealing hidden patterns such as building blocks and clusters. The main purpose
of visualization is to gain insights, discovering new patterns, offering knowledge
about the explored regions within the n-dimensional search spaces, determining
the successful combinations of parameter values, finding the parameter values
where the population has converged, or understanding how partial solutions are
created.

In the past, we have worked on a real-world problem called the “Soccer Kick
Simulation” [3] [4], where the goal was to find optimized settings (via Particle
Swarm Optimization) for control parameters for a kinematic model of 17 leg
muscles, such that a kicked ball travels as far and as fast as possible. The model
included 56 parameters (dimensions). In the course of our investigations and
experiments we realized the importance of visualization in order to efficiently
and successfully tackle such a large-scale optimization problem. The soccer kick
simulation (or in general any real-world system) produces a large number of

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 191–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 N. Khemka and C. Jacob

potential solutions (over 120,000 individuals) each having 56 dimensions. Mon-
itoring and making sense of such large groups of dynamic real-time data poses
various challenges. Presenting this information to the user as raw data (a series
of numbers) would make it difficult if not impossible for the user to observe and
understand the progression of the search algorithm. Normally, we evaluate the
quality of the optimizers by the fitness of their solutions generated. A similar
approach was taken for the soccer kick simulation, where we focused on the
overall performance and gross population statistics, such as comparing the so-
lutions found through different runs, the number of fitness function evaluations
that were required to find a good solution, and the convergence rate of the algo-
rithms. This methodology is a “black box” approach that solely focuses on the
actual outcome, but mainly ignores the behavior of the algorithms.

Visualization methods can help us to analyze, in great depth, the potential
solutions and results discovered. Visualization of particle swarm algorithms can
therefore allow the user to make inferences that are not easy to accomplish oth-
erwise. Visualizing multi-dimensional individuals, analyzing the extent to which
an algorithm has explored the search space, the effects of inherent parameters,
analyzing gross population statistics, determining clusters and building blocks,
and finding the successful combination of parameter values can influence our
choice of experiments. We also gain further insights into particle swarm systems
and the search space of an optimization task in general. In this paper we explore
and introduce the relevance of visualization techniques for particle swarm sys-
tems that investigate the questions touched upon above. The rest of the paper is
organized as follows. We discuss the background work regarding visualization of
evolutionary and swarm systems in Section 2. Section 3 introduces our visualiza-
tion techniques on two benchmark functions and the soccer kick simulation. We
also examine and analyze the results of the visualization techniques in Section 3.
Finally, we conclude our work in Section 4.

2 Related Work

An overview of the most commonly used summary graphs (such as the conver-
gence plots) is provided by Pohlheim [5], whose visualization toolbox helps to
observe both the “course” and the “state” of an evolutionary algorithm. These
visualizations include the fitness of individuals, distances between individuals,
and certain statistics that can be tracked over a single generation or multiple
experiments. The more advanced GEATbx [6] builds on Pohlheim’s work by pro-
viding summary graphs for visualizing the convergence behavior of evolutionary
algorithms.

Attempts to visualize multiple dimensions has led to the development of
‘multi-dimensional scaling’ techniques that transform search spaces of multi-
dimensional into lower dimensions. The most well-known technique in the realm
of visualizing multi-dimensional population-based techniques is Sammon Map-
ping [5]. This method places points on a two-dimensional canvas, which represent

What Hides in Dimension X? A Quest for Visualizing Particle Swarms 193

vectors in the higher dimensional space. The idea is to then iteratively move
points closer together in the two-dimensional space, if they are close together
in the multi-dimensional space. Although this technique works, it has quadratic
time complexity in the number of points, and so can become demanding for large
search spaces [7]. To overcome this problem, search space matrices [8] provide
a technique which maps all possible individuals of a genetic algorithm onto a
two-dimensional canvas, such that the Hamming distance between neighboring
points is minimized. This mapping is simple and the algorithm scales linearly
with the number of points in the search space [7]. We can also display multi-
dimensional data through the use of glyphs. Chernoff faces [9] are an example
of glyphs where data is represented by a sketch drawing of a human face. Each
attribute in the data maps to different items on the face such as the mouth,
nose, separation between eyes, etc. Although with Chernoff faces one can easily
distinguish specific features in the data points, they do not scale well for larger
dimensions.

GONZO, another visualization tool for genetic algorithms, was developed by
Collins [8]. This system displays population summary graphs along with the
genotype and parental information of an individual. GONZO displays the search
space by using search space matrices. The key advantage of this system is that
it allows for both online (while the genetic algorithm is in progress) and offline
(after the genetic algorithm has completed) visualization, thereby supporting
the user to interactively modify the inherent parameters.

Each of these visualization frameworks have their strengths. However, none of
these systems provide an exploratory and inquiry platform for PSO. These sys-
tems do not answer any of the visualization questions related to gaining further
insights into the performance of particle swarm optimizers. In the remainder of
this paper, we introduce density and range plots, along with parallel coordinates
for visualizing multi-dimensional data generated by PSO experiments.

3 Visualizing Particle Swarms: A Detective’s Playground

Our investigations and experiments with the soccer kick simulation made us re-
alize the importance of visualization in order to solve large-scale optimization
problems. A range of graphical methods can aid the user to analyze gross popula-
tion statistics, determine clusters and building blocks, track successful combina-
tions of parameter values, find the extent to which the search space is explored,
and visualize multi-dimensional data produced by a PSO. In this section, we first
discuss phenotype plots (Sect. 3.1) that are restricted to three-dimensions along
with the common fitness curves (Sect. 3.2). Using two-dimensional benchmark
functions (Table 1) such as sphere (simple, symmetric, smooth, unimodal) and
foxholes (multimodal and modified such that all peaks have the same height)
we introduce density plots (Sect. 3.3), parallel coordinate plots (Sect. 3.4), and
range plots (Sect. 3.5).

194 N. Khemka and C. Jacob

(1) Phenotype Plots

(1a) Iteration 1 (1b) Iteration 30 (1c) Iteration 50

(2) Density Plots

(2a) Iteration 1 (2b) Iteration 30 (2c) Iteration 50

(3) Parallel Coordinates Plots

(3a) Iteration 1 (3b) Iteration 30 (3c) Iteration 50

(4) Overlay Parallel Coordinates (5) Fitness Plot

(4) Iteration 1-50 (5)Iteration 1-50

Fig. 1. Snapshots from a PSO evolution over the two-dimensional sphere function.
(1) Phenotype plots at iteration 1, 30, and 50. (2) Density plots at iteration 1, 30,
and 50. (3) Parallel coordinates plots at iteration 1, 30, and 50. (4) Overlay Parallel
Coordinates. (5) Fitness plot (solid line-worst, dotted line-average, long dashed line-
best).

What Hides in Dimension X? A Quest for Visualizing Particle Swarms 195

(1) Phenotype Plots

(1a) Iteration 1 (1b) Iteration 200 (1c) Iteration 400

(2) Density Plots

(2a) Iteration 1 (2b) Iteration 200 (2c) Iteration 400

(3) Parallel Coordinates Plots

(3a) Iteration 1 (3b) Iteration 200 (3c) Iteration 400

(4) Overlay Parallel Coordinates (5) Fitness Plot

(4) Iteration 1-400 (5)Iteration 1-400

Fig. 2. Snapshots from a PSO evolution over the two-dimensional foxholes function.
(1) Phenotype plots at iteration 1, 200, and 400. (2) Density plots at iteration 1, 200,
and 400. (3) Parallel coordinates plots at iteration 1, 200, and 400. (4) Overlay Parallel
Coordinates. (5) Fitness plot (solid line-worst, dotted line-average, long dashed line-
best).

196 N. Khemka and C. Jacob

(1) Range Plots

(1a) Iteration 1 (1b) Iteration 1-30 (1c) Iteration 30-60

(2) Density Plots

(2a) Iteration 1 (2b) Iteration 30 (2c) Iteration 60

(3) Parallel Coordinates Plots

(3a) Iteration 1 (3b) Iteration 30 (3c) Iteration 60

(4) Overlay Parallel Coordinates (5) Fitness Plot

(4) Iteration 1-60 (5)Iteration 1-60

Fig. 3. Snapshots from a PSO evolution over the four-dimensional sphere function.
(1) Phenotype plots at iteration 1, 30, and 60. (2) Density plots at iteration 1, 30,
and 60. (3) Parallel coordinates plots at iteration 1, 30, and 60. (4) Overlay Parallel
Coordinates. (5) Fitness plot (solid line-worst, dotted line-average, long dashed line-
best).

What Hides in Dimension X? A Quest for Visualizing Particle Swarms 197

Table 1. Benchmark functions used in the experiments are denoted in column 1. The
range column states the value each dimension j of a function is valid between, and the
last column shows the best reported optimal value a function has. Note that we are
maximizing each of these functions.

Function Range f(−→x ∗)

Sphere: f1 = -
�d

j=1 x2
j [-5.12, 5.12] 0

Foxholes: f2 = (0.002 +
�Length[a]

j=1
1

j+
�Length[x]

i=1 (x[[i]]−a[[j]][[i]])6
)−1 [-50, 50] 0

a = 0, 0, 0, 16, 16, 0, 16, 16

3.1 Phenotype Plots: Where Are the Particles Heading?

Figures 1 and 2 show examples of the population dynamics resulting from
particle swarms over a number of iterations applied to two typical benchmark
functions for particle swarm optimizers (Table 1). The particles are represented
as dots. The behavior of the particles is seen at different iterations, making it
easy to compare and contrast the movement of the individuals and study their
behavior. These phenotype plots also provide information on finding multiple
solutions, as seen in Figure 2, where the particles have discovered all four peaks.
Although these graphs provide visual clues on the performance of the algorithm,
they are limited to two-dimensional search problems, which are only of minor
practical relevance.

3.2 Fitness Curves: Any Improvement in the Algorithm over Time?

A widely used and straight-forward form of visualization in population-based
methods consists of two-dimensional population statistics graphs. These include
the fitness of the best individual, the average fitness value of all individuals, and
the worst fitness values at each time step (Fig(s). 1, 2, and 3). These plots give
a good indication of whether an algorithm is improving over time and provide
information on the overall behavior, such as the convergence and divergence of
the algorithm. However, these plots do not provide any information regarding
the parameter values or the convergence of the parameter values.

3.3 Density Plots: Are the Particles Converging?

Density plots such as the ones in Figures 1, 2, and 3 further illustrate whether
a population has converged. However, they go a step further; they can even tell
us the values towards which the parameters have converged over time. Figure 1
demonstrates this idea, where the parameter (dimensional) values for each indi-
vidual are plotted as a gray-scale rectangle. For example, the rectangle at the
lower left corner of the plot (Fig. 1) is associated with the value of the first par-
ticle at the first dimension. We observe that at iteration 1 (Fig(s). 1, 2, and 3)
the values are uniformly random, indicating that we have diversity in our popu-
lation. Over time all the parameter values have converged to a particular value
indicated by the shared gray-scale for each individual (Fig(s). 1 and 3).

198 N. Khemka and C. Jacob

A different effect is illustrated in Figure 2. Not all individuals have converged
to a particular value as there are four distinct peaks with the same or very
similar fitness values. We do see combinations of values (0,0), (0,1), (1,0), and
(1,1) represented by their respective gray-scale patterns. This is in sync with
the phenotype plots for this particular experiment, where the individuals have
converged to four different peaks (Fig. 2).

3.4 Parallel Coordinates: Are There Any Patterns, Trends, and
Clusters Among the Particles?

Parallel Coordinates are a two-dimensional visual representation proposed by
Inselberg [10] as a way to represent general multi-dimensional data sets. In a
parallel coordinates visualization system, the d-dimensional structure of an in-
dividual is projected onto the two-dimensional space of the graphical window
(monitor) through a set of d vertical parallel axes. A particular dimension of an
individual corresponds to one vertical axis. All the values associated with the jth

dimension are plotted on the jth axis, j ∈ 1, . . . , d. All the points that visualize
the components of the ith individual are connected by a polygonal line, that is
a polyline, as illustrated in Figures 1, 2, and 3.

Parallel coordinates can be very useful for visualizing the individuals of parti-
cle swarm algorithms. A structured overview of the individuals can be displayed,
thus allowing us to recognize patterns, identify trends, and establish relationships
among the dimensions of various individuals of a population (or experiment(s)).
This is an important visualization aspect, as individuals represent potential so-
lutions to the optimization problem and are the most important elements of a
particle swarm algorithm. Using parallel coordinates we can visualize the struc-
ture of individuals at a particular time-step (such as in Fig. 1), thus providing
insights into the algorithm’s progress at a particular moment in time. One also
gains an overall picture of all individuals during an entire experiment. The over-
laid parallel coordinates plot in Figures 1, 2, and 3 are colored, where the lighter
values indicate those regions that were covered initially during the search, and
the darker colors represent the parallel coordinates with polylines towards the
end of the simulation.

Parallel coordinates also provide information about whether multiple solutions
were discovered. In the foxholes example, we have peaks of the same height.
Particle swarms find all four peaks, nicely illustrated by the parallel coordinates
plot in Figure 2, where the four-dimensional combinations are depicted by four
polyline groups.

3.5 Range Plots: What Are the Parameter Ranges?

The parameter (dimension) range changes during the course of a PSO run can be
observed via range plots. In Figure 3, we display the minimum and the maximum
values (i.e., a range) for each parameter of the initial population at iteration 1.
These ranges are depicted by vertical bars. One can also visualize the ranges
for all individuals over a certain number of iterations as illustrated in Figures 3

What Hides in Dimension X? A Quest for Visualizing Particle Swarms 199

and 3. In Figure 3 the vertical bars are smaller, thus indicating convergence
behavior of the parameter values.

3.6 An Application Example: Soccer Kick Simulation

Kicking the ball is one of the most important skills required for playing soccer
since the arms and hands are not allowed to touch the ball. The motion of the leg
kicking the ball involves 17 different muscle groups in the foot and toes, talus,
thigh, shank, etc. In a kinematic model, the 17 muscles together with the coor-
dinates of the ball result in a 56-dimensional search problem [3]. Particle swarm
optimization was used to optimize the modeled leg movement, such that when
the foot touches the ball, high ball velocity is obtained. The results obtained
from the PSO experiments were compared to those achieved from a simple Evo-
lution Strategies (ES) algorithm [11]. During these experiments we particularly
realized the importance of visualization tools. In the remainder of this section
we discuss the visualization techniques introduced above in the context of this
soccer kick simulation.

We conducted an experiment with PSO using the same initial individual as
in the ES experiment. Since the population size for the PSO experiment was
ten, nine new individuals were mutated from the initial ES individual. The first
23 parameters have values in a lower range than the rest, as is visible in both
the density and parallel coordinates plots in Figure 4. This is observed in the
vertical bars having similar grayscale shades (such as dimensions 1-20). Figure 4
represents time step 12,300, in which one observes that certain parameters are
displayed as single-color columns, indicating that these parameters have been
locked at particular values.

It is often difficult to understand why an algorithm is successful in generating
solutions of high fitness. By looking at the parallel coordinates visualization
for the soccer kick (Fig. 4.2), one can determine the successful ranges for the
parameter values, i.e., the range of values on a polyline. These polylines can be
considered as a means of estimating the distribution of the explored solutions
relative to the entire search space. This can further help us determine the regions
of the search space where the individuals of particle swarms have become stuck in
local peaks. With the parallel coordinates plots we can also identify those regions
where the particle swarm optimizer has found a local peak on the search space.
The identified ranges of values for each dimension can further narrow down our
search space by adding constraints to the fitness function. Parallel coordinates
can be relatively simple and can be very useful in providing information about
how the particle swarm algorithm traverses the search space, and aid in detecting
trends that may suggest convergence or divergence.

Another variant of the range plots was created for the soccer kick simulation
(Fig. 5), where the vertical bars represent the range for each of the 56-dimensions,
over all iterations, limited to all those solutions that have a fitness above a certain
threshold (τ). The range plots graphically reveal the subset of the search space
and the successful combination of parameters that yields a high fitness value for
the soccer kick simulation. For example, Figure 5a represents all the individuals

200 N. Khemka and C. Jacob

(1) Density Plots

(1a) Iteration 1 (1b) Iteration 12300

(2) Parallel Coordinates Plots

(2a) Iteration 1 (2b) Iteration 12300

(3) Overlay Parallel Coordinates (4) Fitness Plot

(3) Iteration 1-12,300 (4) Iteration 1-12,300

Fig. 4. Plots for the 56-dimensional soccer kick simulation. (1) Density plots at itera-
tion 1 and 12,300. (2) Parallel coordinates plots at iteration 1 and 12,300. (3) Parallel
coordinates for all generations. (4) Fitness plot (solid line-worst, dotted line-average,
long dashed line-best).

What Hides in Dimension X? A Quest for Visualizing Particle Swarms 201

(a) Threshold over 80 (b) Threshold over 95

(c) Threshold over 97 (d) Threshold over 99

Fig. 5. Insights from the range plots for the soccer kick simulation The plots show the
location intervals for individuals with fitness over a certain threshold. (a) Threshold:
80. (b) Threshold: 95. (c) Threshold: 97. (d) Threshold: 99.

that have their fitness over 80, and Figure 5d includes all individuals with a
fitness value over 99 (the maximum ball speed obtained is 99.39). These plots
suggest two things:

1. For successful individuals, the range of the parameters decreases over time.
Consider parameter 49, for example. The value of this parameter is initially
varied between 0.1 and 1. Over time, a significant reduction of the parameter
space occurs, and the interval length shrinks to at least a third (0.6 and 1)
for individuals having a fitness over 99. A similar pattern is observed for
parameter 26.

2. We also observe that some of the parameter values get completely locked in.
As the fitness increases, more of these parameter values have a certain main-
tained value. For example, parameter 9 was in the range of 0 and 0.123214.
For individuals with a fitness value of over 95, the value of this parameter is
0. Also the majority of the parameters for individuals with a higher fitness
are locked in at either 0 or 1.

4 Conclusion

Graphically it is much easier to find patterns and visual cues that show relations
among the parameters, clusters in the data, or successful combinations of para-
meters in the data sets generated by particle swarm optimizers. Our exploratory

202 N. Khemka and C. Jacob

and inquiry platform also lets the users visualize multi-dimensional individuals
of the particle swarms and analyze the extent to which the search space is ex-
plored. We can obtain overall gross population statistics, such as the convergence
or divergence of the particle swarm optimizer.

For future work, we expand our PSO visualization platform to allow the user
to analyze results from a single experiment to a series of experiments. We will
also work on creating online data visualization systems for particle swarms, so
that interactive modification and exploration of parameter spaces is possible.
For further information about our visualization tools visit http://www.swarm-
design.org/visualization.

References

1. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in information vi-
sualization: using vision to think. Morgan Kaufmann, San Francisco (1999)

2. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Sixth International
Symposium on Micromachine and Human Science (1995)

3. Khemka, N.: Comparing particle swarm optimization and evolution strategies:
benchmarks and application. Master’s thesis, University of Calgary (2005)

4. Khemka, N., Jacob, C., Cole, G.: Making soccer kicks better: a study in particle
swarm optimization and evolution strategies. IEEE Transactions on Evolutionary
Computation (CEC) (2005)

5. Pohlheim, H.: Visualization of evolutionary algorithms - set of standard techniques
and multidimensional visualization. In: Genetic and Evolutionary Computation
Conference (GECCO) (1999)

6. Pohlheim, H.: Geatbx: genetic algorithm toolbox for use with matlab (1998),
http://www.geatbx.com/index.html

7. Hart, E., Ross, P.: Gavel - a new tool for genetic algorithm visualization. IEEE
Transactions on Evolutionary Computation (CEC) (2001)

8. Collins, T.D.: Understanding evolutionary computing: a hands on approach. In:
IEEE Congress on Evolutionary Computation (CEC) (1998)

9. Jacob, C.: Illustrating Evolutionary Computation with Mathematica. Morgan
Kaufmann, San Francisco (2001)

10. Inselberg, A.: Multidimensional detective. In: IEEE Symposium on Information
Visualization (InfoVis) (1997)

11. Cole, G., Gerritsen, K.: Influence of mass distribution in the shoe and plate stiffness
on ball velocity during a soccer kick. Adidas-Salomon AG (2002)

http://www.geatbx.com/index.html

A Dynamic Swarm for Visual Location Tracking

Marcel Kronfeld, Christian Weiss, and Andreas Zell

Computer Science Department, University of Tübingen, Tübingen, Germany
{marcel.kronfeld,c.weiss,andreas.zell}@uni-tuebingen.de

Abstract. The visual localization problem in robotics poses a dynami-
cally changing environment due to the movement of the robot compared
to a static image set serving as environmental map. We develop a particle
swarm method adapted to this task and apply elements from dynamic
optimization research. We show that our algorithm is able to outperform
a Particle Filter, which is a standard localization approach in robotics,
in a scenario of two visual outdoor datasets, being computationally more
effective and delivering a better localization result.

1 Introduction

Environments with uncertainty like noise or dynamic changes are especially chal-
lenging for optimization [1]. A possible application for dynamic optimization is
self-localization of mobile robots (Fig. 1), which need to know their position to
interact with their environment in any useful way. Visual localization is based on
an image database and therefore computationally expensive [2]. Moreover, the
robot may move between any two iterations of the localization method, making
the problem highly dynamic.

An up-to-date approach for localization in

Fig. 1. RWI outdoor robot Arthur

robotics is the so-called Particle Filter (PF),
introduced in Sec. 3. A Particle Swarm Op-
timization method (PSO, [3]) for visual robot
localization was described in [4] from the
robotics point of view. This work goes into
details of the PSO variant and analyzes pa-
rameter settings empirically. Closely related
is the work of Vahdat et al. [5], who employed
DE and PSO for global robot localization us-
ing laser sensors in an indoor environment.
Their case treats a larger search space, where
standard DE and PSO approaches showed to be superior to a Particle Filter.
They did not, however, go into dynamics and thus handled only an initial phase
of localization. From the robotics view, there have been several approaches ex-
tending Particle Filters with evolutionary concepts, e.g., [6]. Particle swarm al-
gorithms have been extended to dynamic problems, e.g., by boosting diversity
or creating sub-swarms to track optima [7].

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 203–210, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

204 M. Kronfeld, C. Weiss, and A. Zell

2 Particle Swarm Optimization

The PSO technique takes as basic idea the flocking behavior of animals. It
searches the solution space by assigning velocities v and a neighborhood re-
lationship to the individuals x. An individual is in each generation attracted
to the best location in its history (ph) and to the best location found by its
neighborhood (pn). The classical formulation is given in Eqs. 1 and 2.

vi(t + 1) = ωvi(t) + φ1r1(ph
i − xi) + φ2r2(pn

i − xi) (1)
xi(t + 1) = xi(t) + vi(t + 1) (2)

The neighborhood type may range between small (local), randomized, and large
(global), differing especially in the rate of information distribution. The param-
eters φ1/2 control the impact of the attractors, while r1/2 are uniform random
samples in [0, 1] used as stochastic components. The inertness factor ω control-
ling the influence of former velocities is usually set < 1 for convergence.

The PSO concept seems to match problems with dynamically changing target
functions, and dynamic adaptations of PSO have proven to be successful in this
domain [8,7]. Yet, most work in the direction considers problems where the
time between environmental changes is rather long, whereas, for mobile location
tracking, the frequency of change is usually very high. When exploiting the rich
visual data, the PSO method still offers a promising approach.

3 Visual Localization and SIFT

Visual localization addresses the question of how a mobile system, which has
access to a visual representation of its environment (map), can find its position
relative to this map and keep track of it during motion. As internal odometry,
e.g., sensors measuring the speed of the wheels, is prone to errors, external
information is necessary to obtain an initial position estimation and to achieve
robust location tracking over time. Vision is a major source of information for
humans, so it is appealing to use it for robot localization as well.

Visual localization may be divided into two stages. Firstly, for training, images
are collected with position information, e.g. GPS tags, and stored in a database
- the map. For later localization, a mobile robot moves through the same envi-
ronment, takes pictures online, and relates them to the map. Visual data is very
sensitive to changes, e.g. in light conditions, so localization requires a robust
method for image comparison, which is apt to be time-consuming.

If the size of the reference image set is small, localization is possible by just
comparing a new image to every image in the database and choose the best
match as position estimation. This gets, of course, infeasible in larger scenarios.
Using a probabilistic approach such as a Particle Filter, the set of tested images
is reduced to the most probable ones.

A Particle Filter (PF, [9]) is a sequential Monte-Carlo-method for hidden state
estimation, which approximates a probability density function p using a finite

A Dynamic Swarm for Visual Location Tracking 205

set of weighted “particles” xi (not originally related to the particles in PSO).
A particle can be seen as a hypothesis on the state of the system at a time,
and the particle weights wi express the importance of particles. The PF seeks
to deduce from the collected sensor readings s1:t a belief in the current state xt

of the robot: p(xt|s1:t) ≈
∑n

i=1 wi
tδ(x1:t − xi

1:t) (with Dirac δ).
In a PF iteration, a new proposal distribution is first predicted by advancing

the particles using a transition model, e.g., from odometry readings. Then, the
particles are reweighed incorporating new external information, judging how
probable each hypothesis is. By resampling the particles using the updated
weights, the PF concentrates on more promising areas of the state space. For
an application using visual data, the weighing may be traced back to an image
similarity measure. If the state-space is large, a PF requires many particles, e.g.
n = 300 in [2], and much more for less distinctive sensory such as laser scanners
[9,5]. PSO is, by contrast, known to be effective with relatively small swarms.

3.1 Interpretation in an Optimization Context

The aim of the PF method is, in terms of optimization: From a given sample set,
produce a new set which contains samples of same or higher fitness with respect
to the image similarity measure. As the system is mobile, beyond finding an
optimum, we need to track it over time. Assuming that position xt is typically
close to xt−1 and associating particle velocities with the robot’s speed, we argue
that PSO together with a distinctive image similarity measure is effective for
localization. For such a distinctive function of two images, m : S × S → R, we
formulate a target fitness function for the map M :

fM (x, t) = m(imgM (x), s(t)) · pen(d(x, pM (imgM (x)))), (3)

where imgM : X → M ⊂ S returns the associated training image of a position
x, i.e., the training image closest to x. s(t) is the test image at iteration t,
pM : M → X delivers the known position for an image in the map. The penalty
function pen : R → R reduces the fitness for particles far away from the training
data, because localization is feasible only where there is training information.
This is done similarly to [2] in terms of a Gaussian function. The problem of
tracking a position now corresponds to a dynamic optimization problem: find
the optimum x̂ of fM at a time and follow it ensuring a plausible path.

A popular method to find and describe image features is Lowe’s Scale Invariant
Feature Transform (SIFT) [10]. By using an image’s scale-space and assigning
oriented features to the SIFT key points, they can be found relatively robust
under changing views. The SIFT-match function mSIFT delivers a value in [0, 1]
indicating image similarity by calculating the ratio of single feature matches to
all possible matches and is used in the function fM stated above.

4 A Dynamic PSO for Localization

We base the our algorithm on the original PSO formulation [3] using the in-
ertness parameter ω and a maximum velocity v0. Due to the dynamic tracking

206 M. Kronfeld, C. Weiss, and A. Zell

requirement, the swarm is not to converge below a certain scale defined by the
map. The fitness of an individual at time t is calculated using the SIFT similarity
between the current test image and the training image closest to the individual’s
position (Eq. 3). As SIFT is relatively distinctive, we expect one strong main
attractor most of the time and use the global neighborhood as swarm topology.

vi(t + 1) = ωvi(t) + φ0r0δiv0 + φ2r2(pn
i (t) − xi(t)), (4)

xi(t + 1) = xi(t) + vi(t + 1), (5)
xq

i (t + 1) = pn
i (t) + δiN(0, q̂d). (6)

In Eq. 4, we replaced the ph-component by a random term, because we expect
a continuously changing environment where historically good positions lose rel-
evance quickly. φ0 is the weight of the random perturbation, while δi normalizes
to the range of axis i. As the random perturbation is undirected, r0 is sampled
uniformly from [−1, 1].

A fraction of q̂r = 10% of particles xq are treated as quantum particles [7]
to ease the dynamic tracking, cf. Eq. 6. They are distributed around pn with
standard deviation q̂d = 0.15. The inertia is usually below 1 to allow for con-
vergence, yet it needs to be high to stress the correlation of robot motion, so
we set it to 0.99. The trade-off between the φ-values remains important, bal-
ancing between exploration and exploitation. Random perturbation is necessary
for diversity, but reduces accuracy if too dominant. For scenarios with constant
velocity, preliminary tests show robustness towards settings of φ0 ∈ (0, 2]. We
suggest φ0 = 1 as a default, while φ2 is set to 0.6 where not stated otherwise.
A fraction of ĥr = 10% of particles are allowed a velocity v̂0 = 3v0 for quick
optimum recovery. The best individual at every iteration is taken as position
estimation.

4.1 Self-adaptive Parameters

We introduce two self-adaptive mechanisms. By calculating the speed vsw of the
swarm’s center, we dynamically hold the relation v0 ≈ 2vsw. This enables the
method to react to speed changes while providing robust tracking at any speed.
Also, vsw gives a good estimate of the robot’s speed.

SIFT features offer robust image similarity information in outdoor areas, yet
situations may still be ambiguous and the real position may get lost. To handle
this, we include a mechanism to adapt the swarm diversity: If the SIFT match
of the best position guess is still bad, e.g., matching less than 5% of the features,
it may be an ambiguous position or the swarm lost track of the position. If this
happens several times in a row, we start a recovery phase and boost particle
diversity by increasing v0, q̂r and decreasing φ2 towards limit values. As soon as
the particles’ quality increases again, the initial values are gradually restored.
Experiments show that the adaptive speed improves tracking and the recovery
phase improves robustness, cf. Sec. 6.1. With increasing v0 the method becomes
more sensitive to the setting of φ0. Therefore, we tested several values for φ0 in
a setting where recovery phases were important (Sec. 6).

A Dynamic Swarm for Visual Location Tracking 207

5 Experimental Setting

In the experiments in [2], an RWI ATRV-JR outdoor robot (Fig. 1) collected
images in a campus environment. One 320×240 pixel gray scale image per second
was taken with a Videre Design SVS camera system at a constant velocity of
about 0.6 m/s. The robot is equipped with a differential GPS (DGPS) system,
from which ground truth data was read. Under ideal conditions, the accuracy of
the DGPS is below 0.5 m. However, due to occlusion by trees and buildings, the
GPS path sometimes significantly deviated from the real position or contained
gaps. As the robot moved on a smooth trajectory, some wrong GPS values were
eliminated as outliers and gaps could be closed by interpolation.

Two different data sets S and C were produced, each consisting of three rounds
around a building. A round is 260 m long and contains about 400 images. Three
were collected under sunny conditions (S), three more on a cloudy day (C, cf.
Fig. 2). The images contain buildings, streets, cars, as well as vegetation. There
are also dynamic objects like cars and people passing by. The SIFT features of
a round with GPS annotations make up the localization map.

Fig. 2. Example images of the data sets, sunny (left) and cloudy (right)

One experimental run is defined by a training and a test round, the training
round constituting the reference map M . At each iteration, an image img(t) of
the test round is presented to the algorithm and interpreted as current view of
the robot. Where not stated otherwise, the images are presented in the order
they where taken in. At each time step, the deviation of the estimated position
x(t) to the real position of the test image img(t) gives the online error, the
average of which makes up the allover error of the run.

For a full experiment on two rounds, we repeat the localization k times with
different starting positions, so k is the number of images in the test round. The
average error over these runs give the performance in the experiment. To examine
some parameter settings, we experiment on two exemplary rounds, while for the
final results, we additionally loop over all the rounds in the data sets.

6 Results

Table 1 shows results for different settings of φ0 in a sunny vs. cloudy scenario.
They indicate that a setting of φ0 ≈ 1 is favorable, keeping in mind that the

208 M. Kronfeld, C. Weiss, and A. Zell

Table 1. Average error (m) varying φ0 with recovery

φ0 0.005 0.02 0.08 0.32 0.64 0.96 1.28 1.60

Avg.err. (m) 2.64 2.67 2.61 2.50 2.43 2.41 2.44 2.59
Error variance 0.26 0.46 0.28 0.25 0.17 0.09 0.07 0.09

Table 2. Varying the number of particles for the PSO-localization

Method PSO-30 PSO-60 PSO-80 PSO-100 PF-100 PF-300

Avg.err. (m) 3.34 2.51 2.42 2.39 3.95 3.39
Avg.comp./img. 16.87 23.68 27.36 30.60 40.8 62.4

Table 3. Comparing localization with and without recovery for sunny vs. cloudy

Recovery active / φ0 +/1 −/1 +/0.005 −/0.005

Avg.err. (m) 2.87 3.55 2.91 3.46
Error variance 0.39 3.26 0.54 2.68

random perturbation is also proportional to the maximum speed v0 which is
increased in recovery phases. A high φ0-value increases the number of image
comparisons, because the swarm diversity tends to be higher.

When comparing several swarm sizes for φ0 = 1 (Table 2), the localization
performance increases with additional particles as expected. At the same time,
the number of comparisons increases, and consequently the computation time.
For comparison, the results for a PF with 100 and 300 particles are also shown (cf.
Sec. 6.2). For robust localization, PSO uses 80 particles in further experiments.

For the sunny vs. cloudy (S vs. C) situation, the advantage of the adaptive
recovery is compared to the performance without recovery in Table 3. It shows
the averaged errors for 80 particles and φ0 ∈ {0.005, 1}. For a small φ0, local-
ization tends to be more exact in simple rounds but is more likely to lose the
position. For robust localization, we favor setting φ0 = 1 and adaptive v0 with
recovery.

To demonstrate the effect of the v0-adaptation, we run simulations with dif-
ferent virtual robot velocities. For 1

4/ 1
2 of the original speed, we present the

same test image 4/2 times in a row, while for 2/3/4 times the original speed,
we present only the 2nd/3rd/4th image of the test round, resulting in the virtual
speed modified by the respective factor. Fig. 3 (right) shows localization results
in the S vs. C case. For the non-adaptive experiment, v0 is set to roughly twice
the original speed, which works for slower speeds but clearly fails for high speeds.

6.1 Kidnapped-Robot Scenario

For localization, a “kidnapping” of the robot, meaning that it is moved by hand
without getting informed, is one of the toughest challenges. The robot’s position
estimate suddenly becomes completely invalid and misleading. In our environ-
ment, we simulate kidnapping by adding k

2 to the test image index modulo k

A Dynamic Swarm for Visual Location Tracking 209

 2

 3

 4

 5

 6

 7

 8

43211/21/4

A
ve

ra
ge

 e
rr

or
 (

m
)

Simulated Speed

Adaptive
Non-adaptive

Fig. 3. Kidnapped-robot scenario (left). Varying the virtual speed of the robot (right).

after k
2 iterations. Thus, the localization method is forced to jump to the oppo-

site side of the round after converging for half of the run. In Fig. 3 (left), the
simulated kidnapping causes an abrupt error of about 68m averaged. Yet, the
adaptive method quickly finds and retracks the position.

6.2 Final Comparison to a Particle Filter

For the final comparison of the PSO localization method with a Particle Filter
approach, we loop over all the rounds in the two data sets, but without testing
a round against itself. This means that for S vs. S and C vs. C, there are six, for
S vs. C there are nine experiments averaged (Table 4).

Table 4. Comparing the PF to PSO in avg. error and SIFT comparisons per image

PF-100 PF-300 PSO-80,φ0 = 0.005 PSO-80,φ0 = 1

Avg.err.(m) #Cm Avg.err.(m) #Cm Avg.err.(m) #Cm Avg.err.(m) #Cm

S vs. S 3.16±0.89 40.0 2.15 ± 0.29 60.8 2.03± 0.42 21.0 2.16± 0.63 24.2
C vs. C 3.46±1.28 36.5 2.06 ± 0.56 55.3 1.45 ± 0.53 19.3 1.49± 0.35 22.7
S vs. C 3.93±0.66 40.4 3.27 ± 0.27 60.9 2.91 ± 0.73 22.8 2.87± 0.62 27.1

We compare two PSO variants with different scales of the random perturba-
tion with a PF using 100 and 300 particles [2]. The PF-100 localization is rather
inaccurate, producing errors of 3m − 4m, and it requires nearly twice as many
image comparisons as the PSO approach. The PF-300 nearly reaches the accu-
racy of the PSO, but requires about three times as many image comparisons,
so the PSO-80 variant is clearly more effective. The difference between low and
high random perturbation, depending on φ0, lies mostly in robustness. Since the
standard deviations in Table 4 refer to experiments with different rounds and
not single runs, this is more clearly visible in Table 1.

A SIFT comparison of the considered data sets took about 0.015 s on average
on our test system, a 2.4 GHz dual core AMD Opteron. An iteration of PF-300
therefore takes approx. 0.8−0.9 s. Compared to that, PSO reduces the necessary
comparisons by more than 50% and saves nearly half a second in every iteration.

210 M. Kronfeld, C. Weiss, and A. Zell

7 Conclusions

Visual outdoor localization of mobile systems requires visual data processing
and is therefore time-consuming. A typical localization approach from robotics,
the Particle Filter, is successful especially with highly ambiguous sensory and
non-Gaussian noise. Yet, sparse visual outdoor images, which occur if large areas
(e.g. whole cities) are to be mapped in a short time, are relatively distinctive.
We therefore employed a PSO heuristic with modifications appropriate to the
high dynamics of a mobile robotic system. Using a current method to extract
and compare visual features from images, SIFT, we formulated an optimization
problem relating a test image sequence to a given map of images. By adding
adaptive mechanisms, the robustness of the swarm method could be increased.

Test results using two data sets recorded under different wheather conditions
showed that the PSO localization method requires considerably fewer particles and
thus less computation time compared to a Particle Filter approach, but is still more
accurate. It is able to adapt to different speeds and solves the difficult kidnapped-
robot case. We will tackle larger scenarios and incorporate odometry readings from
the robot, e.g., as an additional attractor in the PSO-formula, in future work.

References

1. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey.
IEEE Transactions on Evolutionary Computation 9, 303–317 (2005)

2. Weiss, C., Masselli, A., Tamimi, H., Zell, A.: Fast outdoor robot localization using
integral invariants. In: Proc. of the 5th International Conference on Computer
Vision Systems (ICVS), Bielefeld, Germany (2007)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE Int. Conf. on
Neural Networks, Perth, Australia (1995)

4. Kronfeld, M., Weiss, C., Zell, A.: Swarm-supported outdoor localization with sparse
visual data. In: 3rd Europ. Conf. on Mobile Robots, pp. 259–264 (2007)

5. Vahdat, A.R., NourAshrafoddin, N., Ghidary, S.S.: Mobile robot global localiza-
tion using differential evolution and particle swarm optimization. In: Srinivasan,
D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, Singa-
pore, IEEE Computational Intelligence Society, pp. 1527–1534. IEEE Press, Los
Alamitos (2007)

6. Moreno, L., Garrido, S., Muñoz, M.L.: Evolutionary filter for robust global local-
ization. Robotics and Autonomous Systems 54(7), 590–600 (2006)

7. Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in
a dynamic environment. In: GECCO 2006: Proc. of the 8th annual conf. on Genetic
and evolutionary computation, pp. 51–58. ACM Press, New York (2006)

8. Eberhart, R.C., Shi, Y.: Tracking and optimizing dynamic systems with particle
swarms. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1,
pp. 94–100 (2001)

9. Fox, D., Thrun, S., Burgard, W., Dellaert, F.: Particle Filters for Mobile Robot Lo-
calization. In: Sequential Monte Carlo Methods in Practice, pp. 401–428. Springer,
Heidelberg (2000)

10. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal of
Computer Vision 60(2), 91–110 (2004)

A Simulation Study of Routing Performance in

Realistic Urban Scenarios for MANETs

Gianni A. Di Caro, Frederick Ducatelle, and Luca M. Gambardella

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland
{gianni,frederick,luca}@idsia.ch

Abstract. We study in simulation the performance of two MANET
routing algorithms in an urban environment. The two algorithms, AODV
and AntHocNet, are representative of two different approaches and de-
sign methodologies. AODV is a state-of-the-art algorithm following a
purely reactive approach. AntHocNet is based on Ant Colony Optimiza-
tion and integrates proactive and reactive mechanisms. We investigate
the usefulness of the different approaches they adopt when confronted
with the peculiarities of urban environments and real-world applications.
At this aim we define a detailed and realistic simulation setup in terms
of radio propagation, constrained node mobility, and data traffic.

1 Introduction

Recently, the study of mobile ad hoc networks (MANETs) has attracted a lot
of interest and a number of routing protocols have been designed. However, due
to the cost and technological difficulty of setting up scalable MANET testbeds,
an important part of research is carried out in simulation, as is common in
telecommunications. These simulations are often based on simplified scenarios,
where nodes move randomly in an open area, and rely on idealized models of
radio propagation and interference. Lately, however, experiences with real world
testbeds (e.g., [1]) have shown that results from such simple simulations do not
reflect well the performance that can be expected in reality. There is therefore
now a lot of interest in the study of simulation scenarios that reflect the more
complex situations that can be found in reality in terms of applications, mobility,
and radio propagation (e.g., [2]). In particular, it is well understood that the
closeness between the performance measured in simulation and that obtainable in
practice is strongly affected by the selection of a good model of radio propagation
in relationship to the characteristics of the embedding environment [3]. Urban
scenarios are particularly challenging in this respect due to the pervasive presence
of buildings. Also, they are of interest from an application point of view, since
MANETS and mesh-based MANETs in densely populated areas can be a cheap
and flexible alternative or complement to other types of networks (e.g., GSM),
and are already deployed in some major cities, (e.g., Philadelphia and Taipei).

In this paper, we single out the distinctive properties of urban scenarios in
terms of radio propagation and mobility patterns, and we envisage some basic

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 211–218, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

212 G.A. Di Caro, F. Ducatelle, and L.M. Gambardella

ways of using urban MANETs in everyday life. We study how these properties
affect the effectiveness of different mechanisms commonly used in routing al-
gorithms (see also [4] for more extensive results). We consider two well-known
algorithms, AntHocNet [5,6] and Ad-hoc On-demand Distance Vector routing
(AODV) [7], which have different characteristics and are representative of two
different approaches to routing. AODV is a state-of-the-art algorithm that adopts
a purely reactive strategy: it sets up a route on-demand at the start of a communi-
cation session, and uses it till it breaks, after which a new route setup is initiated.
AntHocNet is a swarm intelligence algorithm designed after a self-organizing be-
havior of ant colonies, the shortest paths discovery, and the principles of the
related framework of ant colony optimization (ACO) [8]. AntHocNet is a hybrid
algorithm based on the integration of a reactive and a proactive approach to set-
up, maintain, and improve paths. We have also investigated the performance of
OLSR [9] and ANSI [10] that are based respectively on a purely proactive strategy
and on a mostly reactive swarm intelligence design; however, in the considered
urban scenarios their overall performance is on average worse than AntHocNet
and AODV (detailed data will be reported in a different paper). We evaluate
both algorithms under different scenarios in an urban environment derived from
the street organization of the Swiss town of Lugano. We model urban mobility
by limiting the movements of the nodes to streets and open areas in the town,
and adjusting their speed to the typical speed of people in a urban environment,
be it pedestrians, cyclists or cars. We model the physical propagation of radio
waves through the streets of the town using a ray-tracing approach, which ac-
counts for interactions between radio waves and buildings, such as reflection and
diffraction [11]. We also did an effort to account for different possible usages of
the network, modeling different kinds of applications, including SMS and VoIP
traffic. The aim of this work is to point out pro and cons of the considered
approaches, both originally developed to mainly address open space situations,
when dealing with the challenges of realistic urban scenarios.

The use of town maps and realistic ray propagation has been proposed in a few
recent publications. In [12], the performance of AODV is evaluated for different
traffic types in a London area, pointing out the need for high node density.
The authors of [13] make a detailed simulation of the Munich city center, and
evaluate how the performance of AODV in this scenario compares to that in open
space simulations. Our work is to our knowledge the first that compares different
routing strategies in such a detailed simulation of an urban environment.

2 The Simulation Setup

For the simulations we used the QualNet [14] discrete event simulator, to which
we have made some adaptations in order to get a realistic simulation of urban
conditions. QualNet provides faithful implementations of the different network
protocols. At the physical and datalink layer, we used the IEEE 802.11b algo-
rithm, running in distributed coordination function mode, and sending 2 Mbps
at 2.4 GHz. At the network layer, we used the routing algorithms described in

A Simulation Study of Routing Performance in Realistic Urban Scenarios 213

Section 2.4. Finally UDP is used at the transport layer, as it is commonly known
that TCP has difficulties to work properly in MANETs [15]. All reported data
points represent averages over 10 different runs of 500 simulated seconds each.

2.1 The Urban Scenario and Node Mobility

Lugano is a relatively small old town presenting an irregular street topology
common to most European cities. We focused on an area of 1561×997 m2, which
covers most of downtown Lugano. Streets define the open spaces where nodes
are free to move. Buildings are inaccessible to the nodes and basically play the
role of obstacles that put constraints on node movements and shield and reflect
signal propagation. Node movements were generated according to an adaptation
of the random waypoint mobility model (RWP) [16]. Under this model, nodes
iteratively choose a random destination and speed, move in a straight line to the
chosen destination at the chosen speed, and then pause for a certain time. In our
urban version of RWP, destinations are only chosen from among the open spaces
in the town, and nodes do not move along a straight line to their destination,
but instead follow the shortest path through the streets of the town.

In all our simulations, we have chosen node speeds that correspond to realistic
inner city movements. In most simulations, we chose the MANET nodes to be
pedestrians, with a maximum speed of 3 m/s. Only in the experiments with
increased mobility, we allow nodes to go up to 15 m/s, which is a reasonably
maximum speed for cars in an urban environment. The pause time of our RWP
is always 30 sec. Finally, in all experiments, we keep 20% of the nodes static, to
represent immobile network users in the town or mesh infrastructure devices.

2.2 Radio Propagation

Wireless communication in an urban environment is strongly conditioned by the
way radio waves interact with the objects they encounter. The most basic effect
is that waves produced at street level are blocked by buildings, so that connec-
tivity in urban wireless networks is restricted compared to open space scenarios.
Many urban simulation studies for MANETs only account for this effect, using
open space propagation models along the line of sight (LoS) and blocking any
non-LoS communication (see e.g. [17]). Others use different heuristic approxi-
mations, reducing signal strength for each encountered building (e.g., [2]). In the
current study, we use a more detailed approach, which incorporates also other
propagation effects. The most important of these effects is reflection off buildings:
as radio rays bounce off building walls, they can travel around corners into side
streets. Also, reflection allows a signal to travel further along the LoS through
a street than it would in open space, since multiple reflected rays are tunneled
in the same direction. This means that crude approximation models that do not
account for reflection are too restrictive. Another important effect is diffraction,
which allows rays to bend around corners to a certain extent. This further im-
proves connectivity to side streets. Other effects include scattering, which is the
reflection off small objects and uneven surfaces, and signal variations over time

214 G.A. Di Caro, F. Ducatelle, and L.M. Gambardella

due to changes in the environment, such as the passing of vehicles or people.
Both of these last effects are hard to model correctly and greatly increase the
computational complexity (see [18]), and were therefore not taken into account.

The modeling of radio propagation was done in preprocessing using the Win-
Prop tool [19], which is a commercial software package to calculate ray prop-
agation in cluttered environments. We started from a two-dimensional map of
the center of Lugano, and assumed each building on the map to be of a height
sufficient to block radio communication going over it (a height of 5 meters al-
ready makes diffraction over the building impossible [18]). Then, we took sample
positions every 5 meters along the streets of the town, resulting in 6070 different
positions. We placed a transmitter sending with 10 mW at 2.4 GHz in each of
these positions, and calculated the resulting received signal strength in each of
the other positions using WinProp. Subsequently, we adapted the radio prop-
agation module of QualNet. The precalculated signal strength values are read
into memory. During the simulation, the signal strength between a transmitter
a and a receiver b is approximated by the precalculated signal strength between
a transmitter in the sample point closest to a and a receiver in the point closest
to b. This results in a maximal error of 2.5 meters on each side.

2.3 Traffic Patterns

In order to account for different possible application of the network by the users’
community, we consider different realistic scenarios for traffic load and distri-
bution. All nodes are seen as equal peers and the two end-nodes of a traffic
session are selected at random among all nodes. Data traffic is exchanged in bi-
directional way to model interactive communications. Data rate is varied, from
1 packet every 30 seconds, representing an interactive SMS (short messaging
service) communication, up to 25 packets/s, which is sufficient to support good
quality voice-over-IP (VoIP) applications. The packet size if set to 160 bytes
which is the payload used by the G.711 PCM voice codec and can also represent
a typical size of an SMS. In order to represent silent periods in the interactive
communication, only 40% of all scheduled packets are sent (this corresponds to
the typical proportion of send time in VoIP traffic).

2.4 The Routing Algorithms

We consider the ACO algorithm AntHocNet and AODV, a reference state-of-
the-art algorithm in the field. Both algorithms have been presented in a number
of papers, therefore, here we only briefly summarize their characteristics.

AODV [7] follows a reactive approach to routing, which means that nodes only
gather routing information for destinations that they are actively communicating
with. Nodes that start a data session with a destination that they have no
information about, launch a route discovery process that, if successful, sets up
a single path to route session data. During the session, the only action taken by
the routing algorithm is to periodically send out beacon messages, which allows
nodes along the path to control whether each link is still alive. When a link

A Simulation Study of Routing Performance in Realistic Urban Scenarios 215

failure is detected, either intermediate nodes try to locally rebuild the route or
the source starts a new route discovery process.

AntHocNet [5,6] combines the typical path sampling behavior of ACO algo-
rithms with a pheromone bootstrapping mechanism derived from Bellman-Ford
algorithms to adaptively learn pheromone tables playing the role of routing ta-
bles. AntHocNet is a hybrid algorithm, since it combines both reactive and
proactive elements. It is reactive since it gathers routing information at the
start of a new session via the generation of path discovery agents called reac-
tive ants, it uses periodic broadcast of messages to detect link failures, and it
reacts to route failures with the generation of ants for local repair or with a
new route discovery. In addition to this, while a route is being used AntHocNet
also performs proactive actions to improve and extend the available paths. The
proactive route improvement is based on a combination of pheromone diffusion
and path sampling. Periodically, nodes send out messages including pheromone
information about the paths that they have available. This allows to incremen-
tally build up and revise paths according to a bootstrapping mechanism. Since
these paths might be potentially unreliable due to the slow node-by-node con-
struction, proactive ants are repeatedly generated to validate these paths.

3 Experimental Results

3.1 Effect of Data Send Rate and Number of Sessions

In a first set of experiments, we consider an urban scenario with 300 nodes and
10 randomly chosen parallel bi-directional sessions. We change their data send
rate from 0.033 packets/s (1 packet every 30 seconds, corresponding to interac-
tive SMS exchanges) up to 25 packets/s (corresponding to good quality VoIP
communications). Figure 1 shows the results for delivery ratio and average delay.
At the lowest data rate, both algorithms show low delivery and high delay. This
is because both of them need to set up a route between source and destination
prior to communication. When data packets are sent sporadically, previously
constructed routes can hardly ever be reused, and a new route setup is needed
almost every time. This is reflected in the overhead, not shown here, calculated
as number of control packets forwarded per received data packet. AntHocNet
scores bad for this measure at the lowest data rate due to its continuous efforts
to improve the created route. As data rates increase, subsequent packets can
profit from previous route setups. In AntHocNet, where routes are proactively
maintained and therefore remain valid for longer, this effect is visible at lower
rates than for AODV, and it is reflected both in the performance and in the
overhead, that becomes comparable between the two algorithms starting from 1
packet/s. For the highest rate, both algorithms have a decrease in performance,
because the high load of data packets starts to interfere with the control packets.
For AntHocNet, that uses more and larger control packets, this effect is stronger.

Since VoIP requires both a delivery ratio ≥ 90% and a delay ≤ 0.15 s, the
results for the VoIP rate seem to indicate that none of the two algorithms can
support VoIP. However, when we do tests varying the number of sessions from 1

216 G.A. Di Caro, F. Ducatelle, and L.M. Gambardella

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.033 2 5 10 25

P
ac

ke
t d

el
iv

er
y

ra
tio

Packet generation frequency (packets/s)

AntHocNet
AODV

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.033 2 5 10 25

A
ve

ra
ge

 e
nd

-t
o-

en
d

pa
ck

et
 d

el
ay

 (
se

c)

Packet generation frequency (packets/s)

AntHocNet
AODV

Fig. 1. Delivery and delay with increasing data send rate

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 150 200 250 300 350 400

P
ac

ke
t d

el
iv

er
y

ra
tio

Number of nodes

AntHocNet 25
AODV 25

AntHocNet 2
AODV 2

AntHocNet 0.033
AODV 0.033

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 150 200 250 300 350 400

A
ve

ra
ge

 e
nd

-t
o-

en
d

pa
ck

et
 d

el
ay

 (
se

c)

Number of nodes

AntHocNet 25
AODV 25

AntHocNet 2
AODV 2

AntHocNet 0.033
AODV 0.033

Fig. 2. Delivery and delay with increasing node density and different data send rates

to 10 and we look at individual sessions, we see that a few of them can actually
deliver VoIP (results are not shown for lack of space). The average fraction of
sessions that can meet VoIP requests degrades linearly from 90% for 1 session
to 10% for 10 sessions for AntHocNet, while it stays almost constant for AODV,
passing from 40% to 10%. For AntHocNet the total number of sessions with VoIP
quality grows up on average to almost 2.5 with 4 sessions, and then remains more
or less stable up to 7, when it decreases. For 10 sessions only 1 gets VoIP quality.
For AODV, on average, always only 1 session can reach VoIP quality.

3.2 Effect of Node Density and Node Speed

Figure 2 shows results for delivery ratio and delay for changing node density in
the case of three types of realistic data load: low (0.033 packets/s), medium (2
packets/s) and high (25 packets/s). The general pattern is similar for each of
the data rates: delivery increases as density increases, while the delay stays more
or less constant. In terms of delivery, AntHocNet always outperforms AODV,
except for the highest data rate in the densest scenario, confirming that the
proactive mechanism has its limits when interference gets too high. The same
is seen in terms of delay, with AntHocNet outperforming AODV at all densities
for the low and medium data rate, but suffering at the highest rate.

We also studied the effect of node speed considering the case of 300 nodes and
varying the maximum speed for the same data rates as before. Results in Figure 3

A Simulation Study of Routing Performance in Realistic Urban Scenarios 217

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3 6 9 12 15

P
ac

ke
t d

el
iv

er
y

ra
tio

Max node velocity (m/s)

AntHocNet 25
AODV 25

AntHocNet 2
AODV 2

AntHocNet 0.033
AODV 0.033

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 3 6 9 12 15

A
ve

ra
ge

 e
nd

-t
o-

en
d

pa
ck

et
 d

el
ay

 (
se

c)

Max node velocity (m/s)

AntHocNet 25
AODV 25

AntHocNet 2
AODV 2

AntHocNet 0.033
AODV 0.033

Fig. 3. Delivery and delay with increasing node speed and different data send rates

show that delivery ratio slowly goes down with increased mobility, while delay
remains more or less constant. AntHocNet systematically outperforms AODV.
The interesting remark is that the node speed has overall relatively little impact
on the performance, especially in the limited range of speeds that can be found
in a realistic city scenario. The impact of node density and data traffic load
seems to be much more important, even if in many MANET simulation studies
the speed parameter has often gotten relatively more attention.

4 Conclusions

We have reported the results of an extensive simulation study investigating
the performance of two routing algorithms in a realistic simulation of an ur-
ban environment. The algorithms, AODV and AntHocNet, differ in their design
approach. AODV is a reference state-of-the-art algorithm that uses a purely
reactive strategy, while AntHocNet is based on the Ant Colony Optimization
framework and combines a reactive approach to route setup with a proactive
mechanism to improve and extend existing routing information. The aim of the
study was to investigate the advantages of either approach in relationship to
the peculiar characteristics of urban environments and to practical application
models for real-world MANETS. We created urban node mobility by limiting
movements to the streets and open spaces of the town, used ray tracing tech-
niques to model the propagation of radio waves in the urban environment, and
applied different types of traffic loads to reflect different kinds of utilization of
the network such as exchange of SMS and VoIP communications.

In general, we can see that AntHocNet outperforms AODV both in terms
of delivery ratio and delay for most of the scenarios. Thanks to the proactive
mechanism, more routing information is available in the network. In other tests
(not described here due to space constraints), we have found that this leads to a
lower need for route setups and to more success in local route repair attempts.
This advantage can lead to less overhead in terms of number of packets despite
the use of extra control packets to support the proactive function. However, in
situations of high node density, or high data load, the larger beacon messages
start to interfere with each other or with data packets. At very low rates, both

218 G.A. Di Caro, F. Ducatelle, and L.M. Gambardella

algorithms have difficulties due to their specific approach. In urban scenarios,
AntHocNet has the advantage that the local density experienced by each node
(the number of neighbors) is relatively low, and grows slowly [4]. In previous
work, we have noticed that also in open space, AntHocNet outperforms AODV
more clearly in sparser scenarios with longer paths and less good connectivity [5].
We also found that node density has a strong impact on the delivery ratio, while
the node speed seemed to have relatively lower impact.

References

1. Tschudin, C., Gunningberg, P., Lundgren, H., Nordström, E.: Lessons from exper-
imental MANET research. Ad Hoc Networks Journal 3(2), 221–233 (2005)

2. Huang, E., Hu, W., Crowcroft, J., Wassell, I.: Towards commercial mobile ad hoc
network applications: A radio dispatch system. In: Proceedings of the sixth ACM
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc) (2005)

3. Liu, J., Yuan, Y., Nicol, D., Gray, R., Newport, C., Kotz, D., Perrone, L.: Em-
pirical validation of wireless models in simulations of ad hoc routing protocols.
Simulation 81(4), 307–323 (2005)

4. Ducatelle, F., Di Caro, G., Gambardella, L.M.: A study on the use of MANETs in
urban environments. Technical Report 01-07, IDSIA (2007)

5. Di Caro, G.A., Ducatelle, F., Gambardella, L.: AntHocNet: an adaptive nature-
inspired algorithm for routing in mobile ad hoc networks. European Transactions
on Telecommunications (ETT) 16(5) (2005)

6. Ducatelle, F., Di Caro, G.A., Gambardella, L.: Using ant agents to combine reac-
tive and proactive strategies for routing in mobile ad hoc networks. International
Journal of Computational Intelligence and Applications (IJCIA) 5(2) (2005)

7. Perkins, C., Royer, E.: Ad-hoc on-demand distance vector routing. In: Proceedings
of the 2nd IEEE Workshop on Mobile Computing Sys. and Applications (1999)

8. Dorigo, M., Di Caro, G.A., Gambardella, L.M.: Ant algorithms for distributed
discrete optimization. Artificial Life 5(2), 137–172 (1999)

9. Clausen, T., Jacquet, P., Laouiti, A., Muhlethaler, P., Qayyum, A., Viennot, L.:
Optimized link state routing protocol. In: Proceedings of IEEE INMIC (2001)

10. Rajagopalan, S., Shen, C.: ANSI: A swarm intelligence-based unicast routing pro-
tocol for hybrid ad hoc networks. Journal of Systems Architecture 52(8-9) (2006)

11. Wireless Communications. Cambridge University Press, Cambridge (2005)
12. Sridhara, V., Kim, J., Bohacek, S.: Performance of urban mesh networks. In: Pro-

ceedings of ACM MSWiM (2005)
13. Schmitz, A., Wenig, M.: The effect of the radio wave propagation model in mobile

ad hoc networks. In: Proceedings of ACM MSWiM (2006)
14. Scalable Network Technologies, Inc.: QualNet Simulator, Version 3.8 (2005),

http://www.scalable-networks.com
15. Gerla, M., Tang, K., Bagrodia, R.: TCP performance in wireless multihop netwo-

rks . In: 2nd IEEE Workshop on Mobile Computing Sys. and Applications (1999)
16. Johnson, D., Maltz, D.: Dynamic Source Routing in Ad Hoc Wireless Networks.

In: Mobile Computing. Kluwer Academic Publishers, Dordrecht (1996)
17. Marinoni, S., Kari, H.H.: Ad hoc routing protocol performance in a realistic envi-

ronment. In: Proceedings of IEEE ICN (2006)
18. Sridhara, V., Bohacek, S.: Realistic propagation simulation of urban mesh net-

works. Computer Networks 51(12), 3392–3412 (2007)
19. AWE Communications: WinProp software suite

http://www.scalable-networks.com

ACO-Based Scheduling of Parallel Batch

Processing Machines with Incompatible Job
Families to Minimize Total Weighted Tardiness�

Li Li, Fei Qiao, and Qidi Wu

School of Electronics & Information Engineering, Tongji University, Shanghai, China
{lili,fqiao}@mail.tongji.edu.cn, wuqidi@moe.edu.cn

Abstract. This research is motivated by the scheduling problem in the
diffusion and oxidation areas of semiconductor wafer fabrication facili-
ties (fabs), where the machines are modeled as Parallel Batch Processing
Machines (PBPM). The objective is to minimize the Total Weighted Tar-
diness (TWT) on PBPM with incompatible lot families and dynamic lot
arrivals, with consideration on the sequence-dependent setup times. Since
the problem is NP-hard, Ant Colony Optimization (ACO) is used to
achieve a satisfactory solution in a reasonable computation time. A num-
ber of experiments have been implemented to demonstrate the proposed
method. It is shown by the simulation results that the proposed method
is superior to the common Apparent Tardiness Cost-Batched Apparent
Tardiness Cost (ATC-BATC) rule with smaller TWT and makespan,
especially TWT that has been improved by 38.49% on average.

1 Motivation

There are many Batch Processing Machines (BPMs) with the ability of process-
ing several lots together in the diffusion and oxidation areas of wafer fabs. A
good BPMs scheduling decision is important to efficiently utilize their capac-
ity while satisfy the requirements of their downstream machines to balance the
workload in a fab to achieve better fab-wide operational performance.

In recent years, there were considerable researches related to the BPMs schedul-
ing problem. [1] presented a literature review of the related 98 articles published
between 1986 and 2004. The related research has been extended a lot since
2004. For example, [2] developed a genetic algorithm (GA) combined with a
novel timetabling algorithm for the scheduling of the furnace process. [3] pre-
sented a mixed integer program and a simulated annealing (SA) based heuristic
method for a single BPM. To be applicable to the real production environment,
� This project was supported by the National Natural Science Foundation of China

(No.70531020), the National Basic Research Program of China (No.2002CB312202),
the Grant from the Ph.D. Programs Foundation of Ministry of Education of China
(No. 20070247007), the Program for Young Excellent Talents in Tongji University
(No.2006KJ006), and the Program for New Century Excellent Talents (No.NCET-
07-0622).

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 219–226, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

220 L. Li, F. Qiao, and Q. Wu

[4] took into account the future arrival lots during the scheduling process. [5]
proved that the single BPM scheduling problem of minimizing total tardiness
was NP-hard even if the machine’s capacity was two jobs. As a result, the meta-
heuristic searching methods (such as GA and SA), with the ability to pursue
global optimization, have been gradually adopted to solve this kind of problems.

Ant colony optimization (ACO), inspired by the behavior of real ant colonies,
in particular by their foraging behavior, is a population-based approach devel-
oped by [6] in 1996. It has been successfully applied to several NP-hard combina-
torial optimization problems, such as TSP, QAP, VRP, JSP, FSP, etc. However,
few researchers have applied ACO to solve the BPMs scheduling problem. We
just find that [7] applied ACO to solve the static scheduling of PBPM with
incompatible job families to minimize TWT.

In this paper, we model the diffusion and oxidation operations as PBPM with
incompatible lot families and dynamic lot arrivals, and propose an ACO-based
solution to minimize TWT. The rest of this paper is organized as follows. In
Sect. 2, we describe the problem assumptions and notations. Then we outline the
ACO algorithm considered in Sect. 3. In Sect. 4, we continue with computational
experiments and results. Finally, we provide conclusions in Sect. 5.

2 Problem Assumptions and Notations

The assumptions and notations of the PBPM scheduling problem include:

1. There are M identical BPMs ({m|m = 1, . . . , M}) in PBPM, whose capacity
is B lots.

2. There are I recipes ({i|i = 1, . . . , I}) on one BPM. The processing time
of recipe i is denoted as Pi. The lots using the same recipe on one BPM
can be processed together. However, their number cannot exceed the BPM’s
capacity, i.e., the maximum batch size constraint. Besides, the processing
time of one batch on one BPM is independent of the number of the lots in
the batch. Once processing begins on one batch, no lot can be removed from
or added to the machine until the processing of the batch finishes.

3. There is sequence-dependent random setup times for changeovers between
the lots from different families, and no setup times between the lots from
the same family. The setup time between recipe i and h is denoted as Uih.

4. There are ni lots of family i to be scheduled during the schedule horizon,∑I
i=1 ni = N .

5. Lot j of family i is described as ij. The arrival time, due date, finish time
and weight of ij are denoted as Aij , Dij , Cij and wij , respectively. The tar-
diness of ij is represented as Tij = max{0, (Cij −Dij)}. Then, the optimized

objective can be written as min
(∑

i

∑
j wijTij

)
.

Finally, the PBPM scheduling problem in this paper can be represented as

M |Aij , Batch, Incompatible |min(
∑

i

∑
j wijTij) (1)

ACO-Based Scheduling of Parallel Batch Processing Machines 221

3 ACO-Based Solution

There are two ways to solve the PBPM scheduling problem. One is to distribute
the scheduled lots to PBPM first, then, batch the lots on each BPM and de-
termine the priorities of the batches on each BPM. The other is to batch the
scheduled lots first, then, distribute the batches to PBPM and determine the
priorities of the batches on each BPM. [8] pointed out that the second way is
superior to the first way with better solution quality and shorter computation
time. So we adopt it to solve the PBPM scheduling problem in this paper.

There are two main phases to solve the PBPM scheduling problem by using
ACO, i.e., building the search space and implementing the searching process.

3.1 Building the Search Space

The first job to build the search space is to batch the scheduled lots. When
batching the lots, there are two main constraints to consider. Firstly, only lots
using the same recipe on one BPM can be processed together. On the other
hand, the number of the lots in one batch cannot exceed the BPM’s capacity.
Besides, there is still one important issue to consider, i.e., the trade-off between
the time-based utility and the capacity-based utility of PBPM.

There are C1
ni + C2

ni + · · · + CB
ni batching styles for ni lots of family i, sub-

ject to the maximum batch size constraint. When there are many lots to be
scheduled (especially with a number of dynamic arrival lots), this approach is
more vulnerable to the low computation efficiency, which is also helpless to
obtain better solution. In this paper, we batch the scheduled lots with the
time window concept proposed by [9] to increase the computation efficiency
of ACO. At every point of batching decision time t, we consider a time win-
dow Δt = dt

∑
i

∑
j Pij/BM where dt is the distribution parameter of Δt; Pij

is the processing time of ij equal to Pi. The set of un-batched lots of family
i with arrival time less than the upper boundary of the time window interval
t + Δt is denoted as M(j, t, Δt) = {ij |Aij ≤ (t + Δt)}. Then, we batch the lots
in M(j, t, Δt) according to their arrival time in ascending order subject to the
maximum batch size constraints. Repeat the above process until the batching
process finishes. It is noted that the ready time of a batch equals to the lat-
est arrival time of the lots composed of the batch. Eventually, the search space
(denoted as S) is built by the combinations of the batches and BPMs in PBPM.

3.2 Implementing the Searching Process

The searching process is to determine the processing machines and processing
priorities of the batches. The main issues to consider are the due dates of the
scheduled lots and the sequence-dependent setup times. The number of the ants
in the artificial ant colony is set as the number of the combinations of the batches
and BPMs in the search space. In addition, there are two kinds of termination
conditions. One is the maximum iterations (denoted as tmax), while the other is
the minimum difference between the continuous minimum objective values

222 L. Li, F. Qiao, and Q. Wu

1. Initialization of each artificial ant
Firstly, build a tabu-list Lk

tabu and task-list Lk
task for each artificial ant k,

whose initial values are set as φ and S, respectively. Secondly, distribute
the combinations in the search space randomly to the artificial ants. The
distributed combination to ant k will be added to Lk

tabu, and deleted from
Lk

task. Finally, the combinations with the same batch as the distributed com-
bination will be deleted from Lk

task to guarantee one batch processed once.
2. Searching process

Step 1: Initialize the pheromone on each arc as a small positive number ε

τxy(0) =
{

ε x, y ∈ S, x 	= y
0 x, y ∈ S, x = y

, (2)

where x, y denote the combinations (i.e., the nodes) in the search space.
Step 2: Each ant selects its next combination from Lk

task according to (3).
The combination with the largest probability will be added to Lk

tabu and
deleted from Lk

task. Meanwhile, the combinations with the same batch as the
selected combination will be deleted from Lk

task. Repeat above process until
Lk

task becomes φ. Obviously, Lk
tabu is the solution obtained by ant k.

pk
c0c =

(
τα
c0c ηβ

c0c

)∑
c

(
τα
c0c ηβ

c0c

) (c ∈ Lk
task) (3)

ηc0c =
(

1 − Pc + Uc0c + max((Ac − fc0), 0)
max

c
(Pc) + max

c
(Uc0c) + max

c
(max((Ac − fc0), 0))

)
+ Bc

B +ΔWc

Wc =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Wc

max
m

(Wm)
if Wc ≤ max

m
(Wm)

Wc

max
m

(Wm)
− 1 if Wc ≤ max

m
(Wm)

,

where c is the candidate combination in Lk
task; c0 is the last selected com-

bination by artificial ant k that uses the same machine with c ; Pc is the
processing time of c ; Uc0c is the setup time for the changeover between c0

and c ; fc0 is the finish time of c0; Ac is the arrival time of c ; ηc0c is the
heuristic factor comprised of three parts: c’s occupation time (including pro-
cessing time, setup time and waiting time) on the machine processing c0, the
capacity utility rate of the machine processing c0 and the relative workload
among the machines in PBPM if c is selected as the successor task of c0; Bc

is the batch size of c ; Wc is the workload of the machine processing c0 if c is
selected as the successor task of c0; Wm is the workload of machine m; α, β
are the parameters standing for the relative importance of the pheromone
density and the heuristic factor.
Step 3: Compute the objective value of the solution obtained by each ant.
If the difference between continuous minimum objective values is no more
than a small positive value δ, stop the searching process. The tabu-list of

ACO-Based Scheduling of Parallel Batch Processing Machines 223

the ant with the minimum objective value is set as the solution. Otherwise,
determine whether tmax is reached. If the answer is yes, select the tabu-list
with the minimum objective value as the solution; otherwise, go to Step 4.
Step 4: Update the pheromone value on the arcs with the minimum objective
value according to (4). Repeat Step 2 and Step 3.

Δτxy =

{
1/ min

k
(
∑

i

∑
j wijTij) xy ∈ Lk

tabu|mink(
�
i

�
j wijTij)

0 otherwise
(4)

τxy(t + 1) = (1 − ρ)τxy(t) + Δτxy, 0 < ρ < 1,

where ρ is the evaporation rate of the pheromone on the arcs.

4 Computational Experiments and Results

4.1 Simulation Model Description

We use the problem instances from the poly diffusion operations of a real wafer
fab to demonstrate our proposed ACO-based solution. There are 3 machines
for poly diffusion operations in the wafer fab. The capacity of each machine is
4-lot. Each machine can process 6 different recipes. Firstly, we determine Δt’s
distribution parameter dt’s value by simulations (shown as Table 1).

Table 1. Problem instances for determining Δt’s distribution parameter dt

Problem Parameter Value Used Total Values

Number of machines 3 1
Number of lots per recipe 8 1
Capacity 4 1
Number of recipes 6 1
Setup times (min) Uniform(20,30) 1
Recipe1 processing time (min) Uniform(200,220) 1
Recipe2 processing time (min) Uniform(200,220) 1
Recipe3 processing time (min) Uniform(200,220) 1
Recipe4 processing time (min) Uniform(230,250) 1
Recipe5 processing time (min) Uniform(200,220) 1
Recipe6 processing time (min) Uniform(200,220) 1

Arrival time (min) Uniform(0, r ·

∑
i

∑
j

Pij/(BM)), r = 0.25, 0.50, 0.75 3

Due date (min) Aij+Uniform(0, d ·

∑
i

∑
j

Pij/(BM)), d = 0.25, 0.50, 0.75 3

Time window Δt dt ·
∑

i

∑
j

Pij/(BM), dt = 0.05, 0.25, 0.5, 0.75, 1 5

Weight per lot Uniform(0,1) 1
Total parameter combinations 45
Number of problems per combination 5
Total problems 225

The simulation results are shown in Fig. 1. From the simulation results, it can be
seen that a better selection for dt’s value is set as 0.25, 0.5 and 0.5 when r is set as
0.25, 0.5 and0.75, respectively.Themain cause is that smallerdt results in thebatch
size of more batches less than the PBPM’s capacity, i.e., less waiting time leads to
capacity’s loss. So it is worthy to sacrifice some waiting time to gain full utilization
of PBPM’s capacity in practical production environment unless there are some hot
lots or a small quantity of the scheduled lots with extraordinarily loose arrival rate.

224 L. Li, F. Qiao, and Q. Wu

dt=0.05 dt=0.25 dt=0.5 dt=0.75 dt=1
300

400

500

600

700

800

900
TWT with different dt

r=0.25
r=0.5
r=0.75

Fig. 1. Simulation results for determining dt

4.2 Comparison between ACO and ATC-BATC

A dispatching rule called ATC-BATC is used to validate the performance of the
proposed ACO-based solution. The parameters of ACO-based method are set as
follows. The relative importance parameters α and β of the pheromone density
and the heuristic are set as 0.9; the evaporation rate of the pheromone ρ is set as
0.1; the initial value of the pheromone on the arcs ε is set as 0.01; the minimum
difference between the continuous minimum objective values δ is set as 0.001;
the maximum iterations tmax is set as 1000. In addition, we set the maximum
computation time as 300 seconds to guarantee the proposed method suitable to
the practical production environments.

The problem instances for the comparison between ACO and ATC-BATC are
generated in the same manner as Table 1. However, we consider different number
of the scheduled lots set as 48, 60, 72, 90 and 120, respectively.

The simulation resules are shown as Fig. 2 and Fig. 3. From the simulation
results, we can obtain following conclusions.

Improvement on TWT Improvement on makespan
0

10

20

30

40

50

Sc
he

du
lin

g
pe

rf
or

m
an

ce
s

im
pr

ov
em

en
ts

 (
%

)

(a)Scheduling performance improvements

N=48
N=60
N=72
N=90
N=100
Avg.

N=48 N=60 N=72 N=90 N=100
0

50

100

150

200

250

300

C
om

pu
ta

tio
n

tim
e

(s
)

(b)Computation times

Fig. 2. Comparison between ACO and ATC-BATC with variable number of the sched-
uled lots

1. The number of the scheduled lots has strong impacts on ACO-based so-
lution’s improvement on TWT that is continuously enhanced with the in-
creasing number of the scheduled lots. For example, when the number of the
scheduled lots is 48, 60, 72, 90 and 120, the average improvement on TWT

ACO-Based Scheduling of Parallel Batch Processing Machines 225

Improvement on TWT Improvement on makespan
0

10

20

30

40

50

Sc
he

du
lin

g
pe

rf
or

m
an

ce
s

im
pr

ov
em

en
ts

 (
%

)

(a)Variable arrival time distribution

r=0.25
r=0.5
r=0.75

Improvement on TWT Improvement on makespan
0

10

20

30

40

50

Sc
he

du
lin

g
pe

rf
or

m
an

ce
s

im
pr

ov
em

en
ts

 (
%

)

(b)Variable due date distribution

d=0.25
d=0.5
d=0.75

Fig. 3. Comparison between ACO and ATC-BATC with variable arrival time distri-
bution and due date distribution

is 31.89%, 34.56%, 36.63%, 44.36% and 45.03%, respectively. However, it
has fewer impacts on ACO’s improvement on the makespan that are always
between 12.20% and 15.36%. So ACO-based solution is always superior to
ATC-BATC with smaller TWT and makespan that are improved by 38.49%
and 13.73% on average, respectively (shown in Fig. 2(a)). In addition, the
number of the scheduled lots has serious impacts on ACO-based solution’s
average computation time. For example, when the number of the scheduled
lots is 48, 60, 72, 90 and 120, the average computation time is 11s, 42s, 66s,
166s and 300s, respectively (shown in Figure 2(b)).

2. ACO-based solution’s improvements on the performance issues are strongly
correlated to the arrival time distribution parameter r of the scheduled lots.
If the scheduled lots are coming more loosely during the schedule horizon, the
improvements on TWT and makespan are much better. For example, when
the arrival time distribution parameter r is set as 0.25, 0.5 and 0.75, the aver-
age improvement on TWT is 27.86%, 38.64% and 48.99%, respectively, and
the average improvement on the makespan is 9.80%, 14.23% and 17.17%, re-
spectively (shown in Fig. 3(a)). However, the due date distribution parameter
d has relatively less compacts on ACO solution’s improvements on the perfor-
mance issues. For example, when the due date distribution parameter d is set
as 0.25, 0.5 and 0.75, the average improvement on TWT is 37.25%, 37.89%
and 40.35%, respectively, and the average improvement on the makespan is
14.26%, 13.75% and 13.19%, respectively (shown in Fig. 3(b)).

5 Conclusions

BPMs play an important role in semiconductor wafer fabrication facilities. In
this paper, an ACO-based algorithm is proposed to solve the PBPM scheduling
problem with incompatible lot families and dynamic lot arrivals. The main con-
tributions of the paper are to create a production environment applicable method
concerned with dynamic lot arrivals, and apply ACO algorithm to obtain the
solutions. The simulation results show that the proposed method is superior to
the common ATC-BATC rule, especially for TWT performance issue. It has the
potential to be used in the real fabs to achieve better operational performances.

226 L. Li, F. Qiao, and Q. Wu

References

1. Mathirajan, M., Sivakumar, A.I.: A literature review, classification and simple meta-
analysis on scheduling of batch processors in semiconductor. International Journal
of Advanced Manufacturing Technology 29, 990–1001 (2006)

2. Chien, C.F., Chen, C.H.: A novel timetabling algorithm for a furnace process for
semiconductor fabrication with constrained waiting and frequency-based setups. OR
Spetrum 29, 391–419 (2007)

3. Erramilli, V., Mason, S.J.: Multiple orders per job compatible batch scheduling.
IEEE Transactions on Electronics Packaging Manufacturing 29, 285–296 (2006)

4. Mönch, L., Zimmermann, J., Otto, P.: Machine learning techniques for scheduling
jobs with incompatible families and unequal ready times on parallel batch machines.
Engineering Applications of Artificial Intelligence 19, 235–245 (2006)

5. Liu, L.L., Ng, C.T., Cheng, T.C.E.: Scheduling jobs with agreeable processing times
and due dates on a single batch processing machine. Theoretical Computer Sci-
ence 374, 159–169 (2007)

6. Dorigo, M., Maniezzo, V., Alberto, C.: The ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B:
Cybernetics 26, 29–41 (1996)

7. Raghavan, N.R.S., Venkataramana, M.: Scheduling parallel batch processors with
incompatible job families using ant colony optimization. In: Proceeding. of the 2006
IEEE International Conference on Automation Science and Engineering, Shanghai,
China, pp. 507–512 (2006)

8. Balasubramanian, H., Mönch, L., Fowler, J.W., Pfund, M.E.: Genetic algorithm
based scheduling of parallel batch machines with incompatible job families to min-
imize total weighted tardiness. International Journal of Production Research 42,
1621–1638 (2004)

9. Mönch, L., Balasubramanian, H., Fowler, J.W., Pfund, M.E.: Heuristic scheduling
of jobs on parallel batch machines with incompatible job families and unequal ready
times. Computers and Operations Research 32, 2731–2750 (2005)

Adaptive Particle Swarm Optimization�

Zhi-hui Zhan and Jun Zhang

Department of Computer Science, Sun Yat-sen University, China
junzhang@ieee.org

Abstract. This paper proposes an adaptive particle swarm optimiza-
tion (APSO) with adaptive parameters and elitist learning strategy (ELS)
based on the evolutionary state estimation (ESE) approach. The ESE
approach develops an ‘evolutionary factor’ by using the population dis-
tribution information and relative particle fitness information in each
generation, and estimates the evolutionary state through a fuzzy clas-
sification method. According to the identified state and taking into ac-
count various effects of the algorithm-controlling parameters, adaptive
control strategies are developed for the inertia weight and acceleration
coefficients for faster convergence speed. Further, an adaptive ‘elitist
learning strategy’ (ELS) is designed for the best particle to jump out
of possible local optima and/or to refine its accuracy, resulting in sub-
stantially improved quality of global solutions. The APSO algorithm is
tested on 6 unimodal and multimodal functions, and the experimental
results demonstrate that the APSO generally outperforms the compared
PSOs, in terms of solution accuracy, convergence speed and algorithm
reliability.

1 Introduction

Particle swarm optimization (PSO) is one of the swarm intelligence (SI) algo-
rithms that was first introduced by Kennedy and Eberhart in 1995 [1], inspired
by swarm behaviors such as birds flocking and fishes schooling. Since its incep-
tion in 1995, PSO has been seen rapid development and improvement, with lots
of successful applications to real-world problems [2].

Attempts have been made to improve the PSO performance in recent years
and a few PSO variants have been proposed. Much work focused on parameters
settings of the algorithm [3,4] and on combining various techniques into the PSO
[5,6,7]. However, most of these improved PSOs manipulate the control param-
eters or hybrid operators without considering the varying states of evolution.
Hence, these operations lack a systematic treatment of evolutionary state and
still sometimes suffer from deficiency in dealing with complex problems.

This paper identifies and utilizes the distribution information of the popu-
lation to estimate the evolutionary states. Based on the states, the adaptive
� This work was supported by NSF of China Project No.60573066 and the Scientific

Research Foundation for the Returned Overseas Chinese Scholars, State Education
Ministry, P.R. China.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 227–234, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

228 Z. Zhan and J. Zhang

control parameters strategies are developed for faster convergence speed and
the elitist learning strategy (ELS) is carried out in a convergence state to avoid
the probability of being trapped into local optima. The PSO is thus system-
atically extended to adaptive PSO (APSO), so as to bring about outstanding
performance when solving global optimization problems.

The rest of this paper is organized as follows. In Section 2, framework of PSO
will be described. Then Section 3 presents the evolutionary state estimation
(ESE) approach in details and develops the ESE enabled adaptive particle swarm
optimization (APSO) through an adaptive control of PSO parameters and an
adaptive elitist learning strategy (ELS). Section 4 compares this APSO algorithm
against some various existing PSO algorithms using a number of test functions.
Conclusions are drawn in Section 5.

2 Particle Swarm Optimization

In PSO, a swarm of particles are introduced to represent the solutions. Each
particle i is associated with two vectors, the velocity vector Vi = [v1

i , v2
i , ..., vD

i]
and the position vector Xi = [x1

i , x
2
i , ..., x

D
i]. During an iteration, the fitness of

particle i will first be evaluated at its current position. If the fitness is better
than that of pBesti, defined as the best solution that the ith particle has achieved
so far, then pBesti will be replaced by the current solution. Following updating
all pBesti, the algorithm selects the best pBesti among the entire swarm as the
global best, denoted as gBest. Then, the velocity and position of every particle
are updated as (1) and (2)

vd
i = ω × vd

i + c1 × randd
1 × (pBestdi − xd

i) + c2 × randd
2 × (gBestd − xd

i). (1)

xd
i = xd

i + vd
i . (2)

where ω is inertia weight linearly decreasing from 0.9 to 0.4 [3] and c1, c2 are
acceleration coefficients that are conventionally set to a fixed value 2.0; randd

1

and randd
2 are two independently generated random numbers within the range

[0, 1] for the dth dimension. Then the algorithm goes to iteration, until a stop
condition is met.

Given its simple concept, PSO has been applied in many fields concerning
optimization and many researchers have attempted to improve the performance,
with variants of PSOs proposed [2].

On the concerns of parameters study, Shi and Eberhart introduced the lin-
early decreasing inertia weight [3]. Also, Ratnaweera et al. [4] has proposed a
linearly time-varying values method for both acceleration coefficients, namely
HPSO-TVAC, with a larger c1 and a smaller c2 at the beginning and gradually
decreasing c1 whilst increasing c2 during the running time.

What is more, different techniques such like the selection [5], mutation [4]
introduced from GAs have been merged into original PSO to improve the per-
formance. By the inspiration of biology, some researchers introduced niche tech-
nology [6] and speciation technology [7] into PSO on the purpose of avoiding the
swarm crowding too close and locating as many optimal solutions as possible.

Adaptive Particle Swarm Optimization 229

3 Particle Swarm Optimization

3.1 Evolutionary State Estimation

The evolutionary state estimation (ESE) approach in this paper will use not
only the fitness information of individuals, but also the population distribution
information of the swarm. The evolutionary state in each generation is deter-
mined by a fuzzy classification method controlled by an evolutionary factor f.
These techniques and the estimation process are detailed in the following steps.

Step 1: At current position, calculate the mean distance of particle i to all the
other particles by (3)

di =
1

N − 1

N∑
j=1,j �=i

√√√√ D∑
k=1

(xk
i − xk

j)2. (3)

where N and D are the population size and dimension, respectively.

Step 2: Compare all di’s and determine the maximal distance dmax and the
minimal distance dmin. Denote di of the global best particle by dg. Define an
evolutionary factor f as (4)

f =
dg − dmin

dmax − dmin
∈ [0, 1]. (4)

which is set to 1 if dmax is equal to dmin, and is also initialized to 1 when the
algorithm starts.

Step 3: Classify the value of f through fuzzy set membership functions, as shown
in Fig. 1(a), and hence determine the current evolutionary state into one of the
four different states, say, convergence, exploitation, exploration and jumping-out
states. These membership functions are designed empirically and are according
to the intuitions that f is relative large in the exploration or jumping-out state
and is relative small in the exploitation or convergence state. Since the functions
are likely to overlap, the expected oscillation sequence of Si, such as S3 =>
S2 => S1 => S4 => S3 =>, may be further used to ascertain the classification.

3.2 Adaptive Strategies for Parameters

The inertia weight ω is used to balance the global and local search abilities, and
was suggested to linearly decrease from 0.9 to 0.4 with generation [3]. However,
it is not necessarily proper to decrease purely with time. Hence, in this paper,
the value of the ω is adaptively adjusted by the mapping ω(f) : " → " as (5).

ω(f) =
1

1 + 1.5e−2.6f
∈ [0.4, 0.9], ∀f ∈ [0, 1]. (5)

Note that, with the mapping function, ω now changes with f, with large value
in exploration state and small value in exploitation state, but not purely with

230 Z. Zhan and J. Zhang

0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1.0

0

Evolutionary factor f

M
em

be
rs

hi
p

S1

Convergence
S2

Exploitation
S3

Exploration
S4

Jumping-out

c1

c2

(a)

(b)

Fig. 1. (a) Fuzzy membership functions for different evolutionary states; (b) Adapta-
tion of the acceleration coefficients according to ESE with the ideal sequence of states
S3 => S2 => S1 => S4 => S3 =>

time or with the generation number. Hence, the adaptive inertia weight is ex-
pected to be changed efficiently according to the evolutionary states. Since f is
initialized to 1, ω is therefore initialized to 0.9 in this paper.

Acceleration coefficients c1 and c2 are also important for the exploration and
exploitation abilities. In [4], the values of c1 and c2 are dynamic changed with
time, with larger c1 and smaller c2 at the beginning for better exploration and
smaller c1 with larger c2 at the end for better convergence. Based on the effect
of these two parameters, this paper adaptively adjusts them according to the
strategies as in Table 1 for different evolutionary states.

Table 1. Strategies for tuning the values of c1 and c2

Strategies States c1 c2

Strategy 1 Exploration Increase Decrease
Strategy 2 Exploitation Slight increase Slight decrease
Strategy 3 Convergence Slight increase Slight increase
Strategy 4 Jumping-out Decrease Increase

These strategies share the common attempts with [4] to control the accelera-
tion coefficients dynamic. However, the strategies in this paper are according to
the evolutionary states and are expected to be more reasonable and warrantable.
The values of c1 and c2 are initialized to 2.0 and gradually change as illustrated
in Fig. 1(b). With larger c1 in the exploration state and larger c2 in the con-
vergence state, the algorithm will balance the global and local search ability
adaptively. What is more, a larger c2 with a smaller c1 in the jumping-out state
can make the swarm in local optimal region separate and fly to the new better
region as fast as possible.

The generational change is as (6) where δ is a uniformly generated random
value in the range [0.05, 0.1], as indicated by the empirical study. It should be
noticed that we use 0.5δ in the strategies 2 and 3 where “Slight” changes are
used.

ci(g + 1) = ci(g) ± δ, i = 1, 2. (6)

Adaptive Particle Swarm Optimization 231

What is more, the values of c1 and c2 are clamped in range [1.5, 2.5] and their
sum is clamped within [3.0, 4.0]. If the sum exceeds the bound, the values of c1

and c2 are adjusted by sliding scale.

3.3 Elitist Learning Strategy for gBest

The ESE enabled adaptive parameters are expected to bring faster convergence
speed to the PSO algorithm. Nevertheless, when the algorithm is in a convergence
state, for the gBest particle, it has no other exemplars to follow. So the standard
learning mechanism does not help gBest escape from the current optimum if it is
local. Hence, an elitist learning strategy (ELS) is developed in this paper to give
momentum to the gBest particle. The ELS randomly chooses one dimension of
gBest’s historical best position, denoted by pd, and assigns it with momentum
to move around. For this, a learning strategy through Gaussian perturbation
as (7)

pd = pd + (Xd
max − Xd

min) × Gaussian(μ, σ2). (7)

within the saturation limits [Xd
min, Xdmax] can be applied. Here, Gaussian(μ,σ2)

represents Gaussian distribution with a mean μ=0 and a time-varying standard
deviation as (8)

σ = σmax − (σmax − σmin) × (g/G). (8)

where σmax=1.0 and σmin=0.1 as indicated by the empirical study. It is should
be noted that, the new position will be accepted if and only if its fitness is better
than the current gBest.

4 Experimental Tests and Comparisons

4.1 Testing Functions and Tested PSOs

Six benchmark functions listed in Table 2 are used for the experimental tests.
These test functions are widely adopted in benchmarking optimization algo-
rithms [8]. The first 3 are unimodal functions, and the second 3 are complex
multimodal functions with a large number of local minima. For details of these
functions, refer to [8].

Table 2. Six test functions used in comparison

Test function n Search Space fmin Acceptance

f1 =
�n

i=1 x2
i 30 [−100, 100]n 0 0.01

f2 =
�n

i=1 |xi| +
�n

i=1 |xi| 30 [−10, 10]n 0 0.01

f3 =
�n−1

i=1 [100(xi+1 − x2
i)

2 + (xi − 1)2] 30 [−10, 10]n 0 100

f4 =
�n

i=1 −xi sin(
�

|xi|) 30 [−500, 500]n -12569.5 -10000
f5 =

�n
i=1[x

2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]n 0 50

f6 = −20 exp(−0.2
�

1/n
�n

i=1 x2
i) 30 [−32, 32]n 0 0.01− exp(1/n

�n
i=1 cos 2πxi) + 20 + e

232 Z. Zhan and J. Zhang

The PSO-IW [3] and HPSO-TVAC [4] algorithms are used here for com-
parison because PSO-IW aims to improve the parameter inertia weight while
HPSO-TVAC is improved PSO, by improving the acceleration coefficients. The
parameters of these PSOs are set according to the literatures [3,4], and the pa-
rameters of APSO are as descriptions above. For a fair comparison among all the
three PSOs, they are tested using the same population size of 20, and the same
maximal number of 2.0×105 function evaluations (FEs) for each test function.
Each function is simulated 30 trials independently and their mean values are
used in the comparisons.

4.2 Results Comparisons and Discussions

The performance of every PSO is compared in Table 3, in terms of the mean
and standard deviation of the solutions obtained by each algorithm.

Table 3. Results of variant PSOs on six test functions

f PSO-IW HPSO-TVAC APSO

f1 1.98 × 10−53 ± 7.08 × 10−53 3.38 × 10−41 ± 8.50 × 10−41 1.45 × 10−150 ± 5.73 × 10−150

f2 2.51 × 10−34 ± 5.84 × 10−34 6.90 × 10−23 ± 6.89 × 10−23 5.15 × 10−83 ± 1.44 × 10−83

f3 28.1 ± 24.6 13.0 ± 16.5 2.84 ± 3.27
f4 −10090.16 ± 495 −10868.57 ± 289 −12569.5 ± 5.22 × 10−11

f5 30.7 ± 8.68 2.39 ± 3.71 5.80 × 10−15 ± 1.01 × 10−14

f6 1.15 × 10−14 ± 2.27 × 10−15 2.06 × 10−10 ± 9.45 × 10−10 1.11 × 10−14 ± 3.55 × 10−15

The comparisons in Table 3 show that, when solving unimodal problems,
APSO offers the best performance on all the test functions. The fact that
the APSO can obtain better solutions on unimodal functions indicates that its
adaptive nature indeed offers a faster convergence speed. What is more, APSO
outperforms other PSOs on the optimization of all the complex multimodal func-
tions f4-f6 as the results presented in Table 3. The advantages are more evident
while solving the much more complex problems as Schwefel’s function (f4) and
the Rastrigin’s function (f5). This suggests that the APSO has the ability of
jumping out local optimal and achieve the global optimum efficiently.

0 100 200 300 400 500
1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

Generation

A
cc

el
er

at
io

n
C

oe
ff

ic
ie

nt
s

 C
1

 C
2

Fig. 2. Adaptive acceleration coefficients during the running time on f5

Adaptive Particle Swarm Optimization 233

Table 4. Mean FEs to reach acceptable solutions and successful ratio

f PSO-IW HPSO-TVAC APSO

f1 105695(100.0%) 30011(100.0%) 7074(100.0%)
f2 103077(100.0%) 31371(100.0%) 7900(100.0%)
f3 101579(100.0%) 33689(100.0%) 5334(100.0%)
f4 90633(100.0%) 44697(100.0%) 5159(100.0%)
f5 94379(56.7%) 7829(100.0%) 3531(100.0%)
f6 110844(96.7%) 52516(100.0%) 40736(100.0%)

Mean Reliability 92.2% 100.0% 100.0%

In order to track the change of acceleration coefficients, Fig. 2 plots the curves
of c1 and c2 on function f5 for the first 500 generations. Fig. 2 shows that c1 is
increasing whilst c2 is decreasing for a number of generations at the beginning
because the population is exploring for the optimum. Then c1 and c2 reverse
their change directions when exploiting for convergence. The jumping out state
can also be detected where the value of c2 increases, c1 decreases. The search
behavior indicates that APSO algorithm has indeed identified the evolutionary
states and can adaptively adjust the parameters for better performance.

Table 4 reveals that the APSO offers a generally faster convergence speed,
using a small number of function evaluations (FEs) to reach an acceptable solu-
tion. For example, tests on f1 show that the average numbers of FEs of 105695
and 30011 are needed by the PSO-IW and HPSO-TVAC, respectively, to reach
an acceptable solution. However, the APSO uses only 7074 FEs to reach the so-
lution. Table 4 also reveals that the APSO offers a generally highest percentage
of trials reaching acceptable solutions and the highest reliability averaged over
all the test functions.

While the APSO uses identified evolutionary states to adaptively control the
algorithm parameters for a faster convergence, it also performs elitist learning
in the convergence state to avoid possible local optima. In order to quantify
the significance of these two operations, the performance of the APSO without
parameters adaptation or elitist learning was tested. Results of mean values on
30 independent trials are presented in Table 5.

Experimental results in Table 5 show that with elitist learning only and
without adaptive control of parameters, the APSO can still deliver good solu-
tions to multimodal functions (although with a much lower speed, such a lower

Table 5. Merits of parameter adaptation and elitist learning

f
APSO with Both APSO Without APSO Without PSO-IW (Standard PSO

Adaptation & Learning Parameters Adaptation Elitist Learning Without Either)

f1 1.45 × 10−150 3.60 × 10−50 7.67 × 10−160 1.98 × 10−53

f2 5.15 × 10−84 2.41 × 10−32 6.58 × 10−88 2.51 × 10−34

f3 2.84 12.75 13.89 28.10
f4 -12569.5 -12569.5 -7367.77 -10090.16
f5 5.80 × 10−15 1.78 × 10−16 52.73 30.68
f6 1.11 × 10−14 1.12 × 10−14 1.09 1.15 × 10−14

234 Z. Zhan and J. Zhang

convergence speed can be reflected by the lower accuracy in solutions to uni-
modal functions at the end of the search run). On the other hand, the APSO
with parameters adaptation only and without an ELS can hardly jump out of
local optima and hence results in poor performance on multimodal functions,
but it can still solve unimodal problems well. However, both reduced APSO
algorithms generally outperform a standard PSO with neither parameters adap-
tation nor elitist learning, but the full APSO is the most powerful and robust
for any given problem. This is most evident in the test result on f3. These re-
sults confirm the hypothesis that adaptive control of parameters speeds up the
convergence while elitist learning helps to jump out of local optima.

5 Conclusions

An adaptive particle swarm optimization (APSO) enabled by evolutionary state
estimation has been developed in this paper. Experimental results show that
the proposed algorithm yields outstanding performance on not only unimodal,
but also multimodal function, with faster convergence speed, higher accuracy
solutions, and better algorithm reliability. Future work will focus on testing the
APSO on a comprehensive set of benchmarking functions and the applications
to real-world optimization problems.

References

1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948
(1995)

2. Li, X.D., Engelbrecht, A.P.: Particle Swarm Optimization: an Introduction and Its
Recent Developments. In: Proceedings of the 2007 Genetic Evolutionary Computa-
tion Conference, pp. 3391–3414 (2007)

3. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of
the IEEE World Congress on Computation Intelligence, pp. 69–73 (1998)

4. Ratnaweera, A., Halgamuge, S., Watson, H.: Self-organizing Hierarchical Particle
Swarm Optimizer with Time-varying Acceleration Coefficients. J. IEEE Trans. Evol.
Comput. 8, 240–255 (2004)

5. Angeline, P.J.: Using Selection to Improve Particle Swarm Optimization. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation, Anchorage, AK, pp.
84–89 (1998)

6. Brits, R., Engelbrecht, A.P., van den Bergh, F.: A Niching Particle Swarm Opti-
mizer. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolutionary
Learning, pp. 692–696 (2002)

7. Parrott, D., Li, X.D.: Locating and Tracking Multiple Dynamic Optima by a Particle
Swarm Model Using Speciation. J. IEEE Trans. Evol. Comput. 10, 440–458 (2006)

8. Yao, X., Liu, Y., Lin, G.M.: Evolutionary Programming Made Faster. J. IEEE Trans.
Evol. Comput. 3, 82–102 (1999)

Ant Based Heuristics for the Capacitated Fixed

Charge Location Problem

Harry Venables1 and Alfredo Moscardini2

1 Sunderland Business School, University of Sunderland, UK
harry.venables@sunderland.ac.uk

2 School of Computing & Technology, University of Sunderland, UK
alfredo.moscardini@sunderland.ac.uk

Abstract. This paper presents two different MAX −MIN Ant Sys-
tem (MMAS) based algorithms for the Capacitated Fixed Charge Loca-
tion Problem (CFCLP) which is a discrete facility location problem that
consists of selecting a subset of facilities that must completely supply
a set of customers at a minimum cost. The first algorithm is concerned
with extending and improving existing work primarily by introducing a
previously unconsidered local search scheme based on pheromone inten-
sity. Whilst, the second method makes a transformation of the derived
MMAS algorithm into the hyper-cube famework in an attempt to im-
prove efficiency and robustness. Computational results for a series of
standard benchmark problems are presented and indicate that the pro-
posed methods are capable of deriving optimal solutions for the CFCLP.

1 Introduction

The Capacitated Fixed Charge Location Problem (CFCLP) considers the prob-
lem of selecting a subset of facilities from a potential set that have to supply
a set of customers at a minimum cost, where each customer has an associated
demand to be met and each facility has a finite amount of supply available. The
CFCLP has been widely studied in the literature and applied in a variety of
domains, and is known to be NP-hard [1,2,3].

Very successful solution techniques are often attributed to those incorporating
Lagrangean relaxation combined with various local search and problem reduction
strategies [4,5,6]. Various meta-heuristic techniques have also been applied to lo-
cation problems with some success, such as Simulated Annealing, Genetic Algo-
rithms, Tabu Search and Very Large Scale Neighborhood Search [7,8,9,10,11,12]
and more recently Ant Colony Optimization (ACO) methods have been applied
to a small number of facility location problems [13,14,15,16]. A common feature
of these methods is an iterative selection of a feasible sub-set of facilities, as the
problem then reduces to a transportation problem (TP).

The aims of this paper are to develop, extend and improve work presented in
[15]. Two iterative algorithms are presented where each consists of three phases.
First a construction phase which randomly selects facilities based on pheromone
intensities is implemented. The second is a local search phase that is two-fold,

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 235–242, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

236 H. Venables and A. Moscardini

consisting of pheromone biased DROP and SWAP procedures. The main differ-
ence between the two algorithms is in the third phase concerned with updating
the pheromone values. The whole process is repeated until a maximum number
of iterations are reached. The first algorithm is an adaption of MAX −MIN
Ant System (MMAS) [17,18], whilst the second relies on an implementation of
the Hyper-Cube Framework (HCF) [19].

2 Mathematical Formulation of the CFCLP

In the CFCLP, n customers and m potential facility locations are given. Each
customer j has demand qj that must be completely supplied by at least one
facility i. The unit transportation cost of supplying a customer j from a facility
i is given as cij . Each facility that is used incurs a one-off fixed opening charge
fi and has a supply capacity of Qi. The objective is to select a set of facilities
that supply all of the customers at a minimum cost.

Let us define:
xij = the amount of demand customer j is supplied from facility i,

and the binary decision variable associated with opening a facility i

yi =
{

1 if facility i is opened,
0 otherwise.

The capacitated fixed charge location problem is defined as

min z =
m∑

i=1

n∑
j=1

cijxij +
m∑

i=1

fiyi (1)

such that
m∑

i=1

xij = qj j = 1, . . . , n . (2)

n∑
j=1

xij ≤ Qiyi i = 1, . . . , m . (3)

yi ∈ {0, 1} i = 1, . . . , m . (4)

xij ≥ 0 i = 1, . . . , m, j = 1, . . . , n . (5)

Where (1) is the objective function used to minimize the total fixed and trans-
portation costs associated with facility and allocation variables yi and xij . Con-
straint (2) ensures that the demand qj of each customer j is satisfied, (3) ensures
that an open facility i does not supply more than its capacity Qi, (4) is the bi-
nary variable, concerned with a facility i being selected as opened or closed and
finally (5) refers to amount of demand supplied from facility i to customer j.

Ant Based Heuristics for the Capacitated Fixed Charge Location Problem 237

3 CFCLP: Ant Visibility and Local Search

In this section we describe the main modifications and extentions to the MMAS
presented in [15]. First, we consider how to obtain the visibility or heuristic in-
formation ηi associated with an ant visiting a facility i. Intially this involves cal-
culating a new transportation unit cost matrix, with elements Cij = cij + fi/qj .
Those facilities with low Cij values are deemed most likely to be in solutions
with low objective function values. We previously used a “total opportunity-
cost” method to define the visibility of a facility i as ηi = 1/

∑n
j=1 Tij , where

Tij is a penalty matrix derived from the Cij values; due to space limitations the
reader is directed to [15] for a detailed description. Alternatively the Tij ele-
ments could be set to the Cij values. Unfortunately, cases may arise when unit
transportation costs of customer(s) to a selection of facilities are very expensive,
which may result in potentially good facilities with plenty of nearby customers
being given poor visibility values. In an attempt to overcome this issue penal-
ties are summed up to and including the median penalty. We define our new
visibility as

ηi =
1
Ti

i = 1, . . . , m ;

where

Ti =
�n+1

2 �∑
k=1

Tik i = 1, . . . , m

and Tik are the ordered Tij penalties, as defined by [15], in ascending order up
to the median position.

Local Search Phases
During the construction phase some facilities that are fixed open early on may
later only play a minor role in accommodating customer demand and thus,
improvements may be made locally by closing one or more facilities in the cur-
rent solution. We previously addressed this by using a best-improvement DROP
heuristic and reported final solution errors between 0.10% and 12.45%, with some
best solution times of just over two minutes. A two-phase local search procedure
is presented where both procedures employ a technique that initially relies on
the pheromone intensity τi at each facility i to help identify those that are most
likely to be dropped or swapped in a current solution. Our rationale for this is
that some poor facilities may be repeatedly occurring in the best solution to
date and consequently acquire too much pheromone. However, this procedure
involves obtaining solution to many TPs which can be computationally expen-
sive. Consequently, we only apply these to the best ant solution found at the
current iteration.

DROP Heuristic. Firstly, facilities are sorted into ascending order of phero-
mone intensity. Then, starting with the highest pheromone intensity, facilities are

238 H. Venables and A. Moscardini

sequentially closed and tested for any overall cost improvements. If an improve-
ment occurs then that facility is closed and the current solution is updated, oth-
erwise it remains open. The advantage of this is that once the open facilities are
sorted, each facility is only considered once during the process whereas a best-
improvement method requires repeated searches over the set of open facilities.

SWAP Heuristic. We further attempt to improve the DROP solution by using
a SWAP heuristic in a similar manner to those used in Lagrangean relaxation
[4,5]. Initially, the current iterative solution is sorted into sets of opened and
closed facilities based on increasing pheromone intensity, F = {i|yi = 1} and
F̄ = {i|yi = 0}. A restricted number of SWAP -candidates are then selected by
their pheromone levels such that those opened facilities with high intensities are
considered for swapping with closed facilities having low levels. The idea is to
encourage the interchange of opened facilities with ones that were previously
overlooked. The candidate search space is restricted in size by max(15, 0.1|S|)
where |S| is the size of the set of opened or closed facilities being considered. We
adopt a first-improvement local search policy that seeks the first swap to give
a solution improvement for an opened candidate facility. The technique is then
repeated for all remaining open candidates.

4 MMAS for the CFCLP

Solutions are constructed for each ant in the colony by making probabilistic
moves based upon pheromone intensity and visibility. We consider the CFCLP
to be a fully connected graph consisting of nodes that represent facilities and
ant movements determine whether facilities should be opened or closed. Initially
all facilities are closed and the constraints placed upon this phase are such that
a feasible number of facilities are opened and each facility is visited only once,
where its status is determined and then fixed. A facility is fixed open if an
improvement in the objective function is observed.

Moves are based upon a pseudo-random proportional rule as described by
[18]. The scheme selects the next available facility i to be tested for inclusion
into the current solution as the facility l with the largest [τl]α[ηl]β in the neigh-
borhood L with probability q0, otherwise facility i is chosen with probability
pi = [τi]α[ηi]β/

∑
l∈L [τl]

α [ηl]
β . Parameters α and β correspond to the influen-

tial roles of pheromone intensity τi and visibility information ηi.
After all the ants have finished their tours and the local search phase is com-

pleted the pheromones are updated, which includes some evaporation and de-
posit of pheromone at each facility. Our pheromone update rule is

τi ← (1 − ρ)τi + Δτbest
i i = 1, . . . , m .

Where Δτbest
i = 1/zbest and zbest is the overall cost of the best solution to-

date. Upper and lower limits τmax and τmin are placed on the pheromones in
an attempt to avoid convergence to a local optimum. These are set as τmax =
1/ρzbest and τmin = τmax/a where a is a parameter. Also, τmax is updated

Ant Based Heuristics for the Capacitated Fixed Charge Location Problem 239

whenever an improvement is made in the best overall cost zbest . If the procedure
begins to stagnate then the pheromones are reset to the current value of τmax

along with ρ and q0 being discounted by 10% . This is an attempt to encourage
a new exploratory search away from the region of stagnation.

5 Hyper-Cube Framework for the MMAS CFCLP

Two main features of the hyper-cube framework (HCF) are that the pheromone
levels are restricted to the interval [0, 1] and as the algorithm iterates their
intensities tend towards a binary vector [19]. This is certainly a desirable feature
for the CFCLP as we use ACO to derive which facilities should be opened to
give an optimal solution. During experiments carried out on the OR-Library test
data [20] we observed that the algorithm often stagnated at an early stage and
frequently thereafter; which is why we introduced discounting of ρ and q0 in
Section 4. The upper pheromone limit is inversely related to the size of the best
objective function and the lower limit is scaled factor of this. Consequently, if
the objective function is large then their difference is small and thus may cause
early stagnation which is an issue raised in [19]. Fortunately, scaling within HCF
allows the setting of the lower and upper limits to be fixed at zero and one, so
premature stagnation is usually avoided. By applying the HCF to our algorithm
we expect a more reliable method of solution than in previous efforts.

To implement this method we need to consider changing the pheromone up-
date phase, setting the initial pheromone levels τ0 = 0.5 and the upper and lower
pheromone limits τmax and τmin. The new pheromone update phase becomes

τi ← (1 − ρ)τi + ρ k Δτbest
i i = 1, . . . , m ,

and we set

Δτbest
i =

1/zbest∑k
h=1 (1/zh)

.

Where zbest is the overall cost of the best solution to-date and k is the number
of ants. If the procedure begins to stagnate then the pheromones are reset to the
initial value τ0 along with ρ and q0 being discounted as previously by 10% .

6 Computational Experience

Experiments for a series of benchmark capacitated location problems, whose op-
timum solutions are known, were used and are available from the OR-Library
(http:// people.brunel.ac.uk/ mastjjb/jeb/info.html). The algorithms were coded
in C++ and experiments were executed on a Pentium 4 3.0GHz Linux PC with
2Gb of RAM. Source codes were compied using the GNU g++ compiler using
the -O option. All TPs were solved exactly using a simplex dual network algo-
rithm from the COIN-OR distribution [21].

240 H. Venables and A. Moscardini

Initially, experiments were carried out on thirty seven test problems of various
sizes consisting of five trials per problem. Single ant experiments were consid-
ered to assess the performance of the DROP and SWAP procedures for our
proposed MMAS algorithms. Each experiment was limited to two hundred it-
erations with the best solution time being recorded. The parameter setting were:
α = 2.5, β = 0.8, ρ = 0.06, and q0 = 0.5. Initial pheromone levels τ0 = 1/ρz0,
where z0 is an initial feasible solution obtained using a sufficient number of best
visibility facilities. They are reset to the current value of τmax should there be
no overall improvement after fifty iterations. The average error obtained from
[15] was 3.16%, whilst the new method found optimal solutions for all of the test
problems across most of the trials. We then considered the effects of efficiency
and reliability when using a small colony of five ants. In both sets of experi-
ments sub-optimal trial instances typically gave solutions within 0.1% of their
goal. Table 1 gives summary run-time statistics for the experiments conducted.
These results indicate that as problem size increases then the two-phase local
search plays a more important role in reducing the computational time whilst
marginally improving reliability. Interestingly, the simpler DROP1 procedure
performs slightly better than DROP/SWAP1 for smaller problem instances. The
respective coefficients of variation for the single ant DROP/SWAP1 and small
colony of ants for the DROP/SWAP5 procedures across all problem sizes are
1.48 and 1.34, which suggests that the use of a small colony is more reliable even
though it may take a little longer to obtain an optimal solution.

Recently a cross-entropy (CE) method was presented [22] and claimed to solve
these test problems within two seconds. CE was recognized as being equivalent
to the HCF, which uses a smoothing parameter and an elitist strategy during its
update phase that are the same as ρ and Δτ in ACO [23]. We adopted the same
parameters into our HCF algorithm: α = 1.0, β = 0.0, ρ = 0.9 and τ0 = 0.5.
Experiments were then carried out on the same test problems for the same
number of trials and iteration limit. HCF5 results are presented in the final row
of Table 1. The coefficient of variation across all problem sizes is 0.95 with an
average of 0.62 seconds which is superior to that of our MMAS DROP-SWAP5

algorithm.
Our next set of experiments were concerned with determining the ability of

using our MMAS and HCF techniques to solve the twelve large problems avail-
able in the OR-Library; one hundred facilities by one thousand customers. The
number of experimental trials was restricted to a maximum of five using a max-

Table 1. Algorithmic run-time summary statistics for the OR-Library test problems
of size m × n results using parameter settings: α = 2.5, β = 0.8 and ρ = 0.06. Data
displays average CPU time in seconds t̄, CPU time standard deviation in seconds σt

and coefficient of variation cv.

16 × 50 25 × 50 50 × 50 All Instances
Algorithm t̄ σt cv t̄ σt cv t̄ σt cv t̄ σt cv
DROP1 0.08 0.07 0.89 0.81 0.78 0.96 5.99 2.42 0.40 2.22 2.99 1.35

DROP/SWAP1 0.11 0.04 0.36 0.66 0.40 0.61 3.59 2.49 0.69 1.42 2.10 1.48
DROP/SWAP5 0.15 0.07 0.47 0.74 0.41 0.55 3.60 2.18 0.61 1.46 1.96 1.34

HCF5 0.11 0.03 0.27 0.40 0.15 0.38 1.49 0.51 0.34 0.62 0.59 0.95

Ant Based Heuristics for the Capacitated Fixed Charge Location Problem 241

imum of twenty iterations and ceased when an optimal solution was observed.
If an optimum was not found then the best solution and its relative error were
recorded. Experiments were conducted using the previous parameters and a small
colony of five ants. The HCF found all of the optimal solutions whereas MMAS
DROP-SWAP algorithm found all but one with an error of 0.2%, performance
times were marginally in favor of HCF at just over 3.5 minutes.

7 Conclusions

In this paper we present two ACO based algorithms to solve the CFCLP. The
first method is based on MMAS and the second on the HCF. When using a
small colony of ants, both methods are capable of deriving optimal solutions to
a series of OR-Library benchmark problems that outperform recently presented
works on CE and Tabu Search [10]. We observed via experimentation that the
CE algorithm often gave sub-optimal solutions for those problems with fifty
facilities, but obtained short run-times for any optimal solutions found. The
proposed algorithms are capable of deriving near optimal solutions to a set of
larger-size instances available in the library, but suffer from larger run-times
than those of CE and more sophisticated Lagrangean relaxation based methods
reported in the literature. It may be beneficial to use a swarm of ants in the
construction phase to assist with various aspects of exploitation and exploration
of solution sample spaces to improve efficiency. Finally, future research should
also concentrate on improving the local search phases, perhaps by considering
a k -flip technique as opposed to a restricted large neighborhood technique that
was employed by the authors.

References

1. Daskin, M.: Network and Discrete Location: Models, Algorithms and Applications.
John Wiley and Sons, Inc., New York (1995)

2. Drezner, Z. (ed.): Facility Location. A Survey of Applications and Methods.
Springer, New York (1995)

3. Klose, A., Drexl, A.: Facility location models for distribution system design. Eu-
ropean Jounal of Operational Research (2004)

4. Agar, M., Sahli, S.: Lagrangean heuristics applied to variety of large capacitated
plant location problems. J. Opl. Res. Soc. 49(10), 1072–1084 (1998)

5. Beasley, J.: Lagrangean heuristcs for location problems. Eur. J. Opl. Res. 65, 383–
399 (1993)

6. Bornstein, C., Campêlo, M.: An add/drop procedure for the capacitated plant
location problem. Pesquisa Operacional 24(1), 151–162 (2004)

7. Bornstein, C., Azlan, H.: The use of reduction tests and simulated annealing for
the capacitated plant location problem. Loc. Sci. 6, 67–81 (1998)

8. Jaramillo, J., Bhadur, J., Batta, R.: On the use of genetic algorithms to solve
location problems. Computers and Operations Research 29, 761–779 (2002)

9. Filho, V., Galváo, R.: A tabu search heuristic for the concentrator location problem.
Location Science 6, 189–209 (1998)

242 H. Venables and A. Moscardini

10. Sörensen, K.: Investigation of practical, robust and flexible decisions for facility
location problems using tabu search and simulation. J. Opl. Res. Soc. 59(5), 624–
636 (2008)

11. Ahuja, R., Orlin, J., Pallottino, S., Scaparra, M., Scutellà, M.: A multi-exchange
heuristic for the single-source capacitated facility location problem. Mgmt.
Sci. 50(6), 749–760 (2004)

12. Bischoff, M., Dächert, K.: Allocation search methods for a generalized class of
location-allocation problems. European Jounal of Operational Research (2007)

13. Olivetti, F., Zuben, F.V., de Castro, L.N.: MAX-MIN ant system and capacitated
p-medians: Extensions and improved solutions. Informatica 29, 163–171 (2005)

14. Levanova, T., Loresh, M.: Ant colony optimization algorithm for the capacitated
plant location problem. In: 12th IFAC Symposium on Information Control Prob-
lems in Manufacturing - INCOM 2006, vol. 3, pp. 423–428 (2006)

15. Venables, H., Moscardini, A.: An adaptive search heuristic for the capacitated
fixed charge facility location problem. In: Dorigo, M., Gambardella, L., Birattari,
M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp.
348–355. Springer, Heidelberg (2006)

16. Chen, C., Ting, C.: Combining lagrangian heuristic and ant colony system to solve
the single source capacitated facility location problem. Transportation Research
Part E (2007)

17. Stützle, T., Hoos, H.: The MAX-MIN ant system. Fut. Gen. Com. Sys. 16(8),
889–914 (2000)

18. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
19. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.

IEEE Transactions on Systems, Man, and Cybernetics - Part B 34(2), 1161–1172
(2004)

20. Beasley, J.: Or-library: Distributing test problems by electronic mail. In: Opera-
tions Research Proceedings, vol. 41, pp. 1069–1079. Springer, Heidelberg (1990)

21. Lougee-Heimer, R.: The common optimization interface for operations research.
IBM Journal of Research and Development 47(1), 57–66 (2003)

22. Caserta, M., Quiñonez Rico, E.: k A cross entropy-based metaheuristic algorithm
for large scale facility location problems. In: MIC - VII Metaheuristic International
Conference (June 2007)

23. Dorigo, M., Zlochin, M., Meuleau, N., Birattari, M.: Updating ACO pheromones
using stochastic gradient ascent and cross-entropy methods. In: Cagnoni, S., Got-
tlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWork-
shops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279,
pp. 21–30. Springer, Heidelberg (2002)

Ant Colony Optimization and the Single Round

Robin Maximum Value Problem

David C. Uthus1, Patricia J. Riddle1, and Hans W. Guesgen2

1 Department of Computer Science, University of Auckland, Auckland, New Zealand
{dave,pat}@cs.auckland.ac.nz

2 School of Engineering and Advanced Technology, Massey University,
Palmerston North, New Zealand
h.w.guesgen@massey.ac.nz

Abstract. In this paper, we apply the ant colony optimization meta-
heuristic to the Single Round Robin Maximum Value Problem, a problem
from sports scheduling. This problem contains both feasibility constraints
and an optimization goal. We approach this problem using a combination
of the metaheuristic with backtracking search. We show how using con-
straint satisfaction techniques can improve the hybrid’s performance. We
also show that our approach performs comparably to integer program-
ming and better than tabu search when applied to the Single Round
Robin Maximum Value Problem.

1 Introduction

It is often difficult to apply the ant colony optimization (ACO) metaheuristic[2]
to problems that contain both feasibility constraints and an optimization goal.
Previous approaches have tried to either treat the hard constraints as soft
constraints[6,9] or combine ACO with constraint satisfaction algorithms like con-
straint programming[6], stochastic ranking[5], and backtracking search[1]. With
the exception of backtracking search, the approaches used here could not guar-
antee that a feasible solution would be found, even if most solutions in the search
space are feasible.

While using backtracking search with ACO guarantees feasible solutions, it
can be slow in finding these solutions. This was seen when the approach was used
with the Traveling Tournament Problem (TTP)[1]. The time needed for ACO
to construct a solution grew at such a rate that it affected overall performance.
This increase in time was due to the excessive amount of backtracking required
to produce a single feasible solution.

This research looks at improving the performance of using backtracking search
with ACO. We will be working with the Single Round Robin Maximum Value
Problem (SRRMVP)[12], which has simpler constraints than the TTP and is
therefore easier to study. To improve the performance, we use two search strate-
gies used for constraint satisfaction problems, backjumping and the minimum
remaining values (MRV) heuristic, along with a problem-specific heuristic in-
spired from forward checking[8].

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 243–250, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

244 D.C. Uthus, P.J. Riddle, and H.W. Guesgen

Furthermore, we will compare our approach with integer programming (IP)
[12] and tabu search (TS)[4] when applied to the SRRMVP. These tests show
that combining backtracking search with ACO is a viable approach for both hard-
constrained problems in general and sports scheduling problems in particular.

2 Single Round Robin Maximum Value Problem

A Single Round Robin (SRR) Tournament[7,12] is a problem from sports schedul-
ing where one is creating a round robin schedule with each team playing every
other team once. A problem instance consists of n teams, with n being even. The
teams play across r rounds where r = n−1. Within each round, each team must
play one other team, and no team may play more than once within a round.

An extension of this problem is the SRRMVP, which was introduced by
Trick[12]. SRR was extended by assigning random values for team i playing
team j during round k. The range of these random values are 1...n2. The objec-
tive is to maximize the sum of these values while maintaining a valid solution.
By including these random values and trying to maximize them, the problem is
given elements of both feasibility and optimality. The motivation behind this was
to simulate real-life sports scheduling where one has both feasibility constraints
and an optimization goal such as maximizing game attendance.

3 Ant Colony Optimization

ACO is a metaheuristic that has been used on many optimization problems.
It is based on the idea of ants being able to find a shortest path from a food
source to their nest using a substance called pheromone. Within ACO, artificial
pheromone is used to help construct new solutions using information gained
from previously constructed solutions, slowly leading to optimal or near-optimal
solutions. This separates it from local search algorithms such as tabu search and
simulated annealing, which repeatedly improve on a single candidate solution[8].

3.1 Applying to the Single Round Robin Maximum Value Problem

We chose to use MAX −MIN Ant System (MMAS)[10,11] as the basis for our
approach. This is because it is one of the best performing ACO algorithms for the
Quadratic Assignment Problem (QAP) compared to other ACO algorithms[11],
and the QAP shares some similarities with the SRRMVP.

When applying ACO to the SRRMVP, we have to work with hard constraints.
For this approach, we construct a solution using backtracking search[8], similar
to Crauwels’ and Van Oudheusden’s application of ACO to the TTP[1]. The
pseudocode of constructing a solution can be seen in Fig. 1. We use the same
number of ants as there are teams. Each ant constructs a solution one round at a
time. Within each round, the ith ant begins to pair up the teams by picking the
first available team in numerical order starting with the ith team. It then creates
a list of available, feasible teams it can play, T . If T is not empty, it chooses team2

ACO and the Single Round Robin Maximum Value Problem 245

(1) procedure constructSolution(currentRound)

(2) team1 := first unassigned team for currentRound starting

with the team corresponding to ant_number

(3) T := list of unassigned, feasible teams team1 can play in

currentRound

(4) repeat

(5) choose team2 from T using the random_proportional_rule

(6) if schedule is complete then return true

(7) else if all teams assigned for currentRound then

check := constructSolution(currentRound+1)

(8) else check := constructSolution(currentRound)

(9) if check = true then return true

(10) else T := T \ {team2}

(11) until T is empty

(12) return false

(13)end.

Fig. 1. Code for constructing a solution when combining ACO with backtracking
search. The variable currentRound is set to 0 when code first begins.

from T using the random proportional rule. For this problem, the heuristic values
used for the random proportional rule is defined as ηijk = dijk, with dijk being
the random value assigned for team i playing team j during round k. As there
is no home or away games, dijk = djik . The pheromone values, τijk , are then
defined as the desirability of teams i and j playing during round k.

Should T become empty while constructing a solution, the ant will then have
to backtrack. When constructing a solution for the SRRMVP, there are two
cases of backtracking we have to consider. The first case is backtracking within
a round, which is the more common of the two cases. The second case we have to
consider is backtracking to a previous round or multiple previous rounds. This is
less frequent due to the random nature of the algorithm, but can cause excessive
backtracking in the worst case.

3.2 Enhanced Backtracking Search

We improve the performance of combining ACO with backtracking search by
using various search strategies commonly found when working with constraint
satisfaction problems (CSPs). These search strategies help reduce the amount of
backtracking required, thus decreasing the amount of time needed to construct a
solution. We use two classic search strategies, backjumping and MRV, along with
a problem-specific technique we call future round checking (FRC). Backjumping
is used when we have to backtrack, MRV is used for picking the first team, and
FRC is used to make sure a pairing will not cause future backtracking.

Backjumping. Backjumping[8] allows us to jump back to a conflicting pairing
instead of the last assignment when we cannot go any further in constructing a
solution. Unlike classic backjumping that keeps track of a conflict list for every

246 D.C. Uthus, P.J. Riddle, and H.W. Guesgen

variable, we instead only check for conflicts when backjumping. This helps reduce
the overhead associated with keeping a conflict list updated.

With the SRRMVP, after we have come across a team that has no avail-
able teams it can be paired with in a given round, we mark that team as the
conflictT eam and begin to backtrack. We stop backtracking when we come
across a pairing where team1 or team2 is either the conflictT eam or at least
one of teams conflictT eam still has to play and, in either case, T \{team2} 	= ∅
for that round. This checking would be done at line 9 in Fig. 1.

Minimum Remaining Values Heuristic. MRV[8] is used when working with
CSPs to pick the next variable to assign a value to that has the least number
of remaining available values left to be assigned. For this problem, it is being
used when picking the first team of the pairings, which is line 2 in Fig. 1. Ties
are broken by picking a team in numerical order within the subset of tied teams
starting with the ith team corresponding to the ith ant. Two important things
that we discovered which help MRV perform better when applying ACO to the
SRRMVP are using metadata and using MRV only during rounds where there
is a lot of backtracking taking place instead of uniformly.

The metadata that we use for MRV is a short list for each team of the teams
that it still needs to play. This information can be found out from an ant’s tabu
list when constructing a solution, but it is slower than keeping a short list for
each team and updating this list every time we pair up two teams. We keep the
metadata updated during the rounds where we are using MRV.

Using MRV throughout the solution construction process can help reduce the
amount of backtracking in total. But with the SRRMVP, most of the backtrack-
ing is taking place during the second half of the solution construction process.
It is better to use MRV only during the later rounds due to its overhead. As can
be seen in Fig. 2, we found that MRV worked best when applied only during the
last fourth of the rounds. This shows the importance of using these techniques
only in locations where most of the backtracking takes place.

Future Round Checking. We developed a special technique, FRC, for the
SRRMVP. The purpose of FRC is to look one round ahead and make sure the
selection of the current round does not cause conflict for the future round. We
apply FRC during round r−2. When constructing a solution during this round,
we look to see if there is an odd number subset of teams left in round r − 1
which have to play each other exclusively. If it is an odd number of teams, then
there will be no possible way to construct a solution. For example, assume we
have three teams, and each team has to play the other two. Since there are two
rounds left, it will be impossible for them to play each other during these two last
rounds. The same can be said of any odd number of teams. In terms of Fig. 1,
this would be line 5, where we would check the pairing of team1 and team2 do
not cause this conflict. We do this check after every pairing, even though the
check might not fail until the whole subset has been assigned for that round.

We created this technique after noticing that most of the backtracking to a
previous round was being caused by this problem. This check is fast and efficient

ACO and the Single Round Robin Maximum Value Problem 247

 0

 1

 2

 3

 4

 5

 8 10 12 14 16 18 20 22 24 26

C
P

U
 S

ec
on

ds

Number of Teams

Backtracking
MRV-All

MRV-LastHalf
MRV-LastFourth

Fig. 2. Comparison of using MRV with metadata for different number of rounds.
Time is the medium length of time for an ant to construct 10,000 solutions without
pheromone updates over 500 runs.

since we are only checking one round in advance. In addition, we can improve
its performance using the same metadata that is used for MRV. If we use FRC
and MRV together, FRC’s performance is further improved since MRV forces a
subset of teams to be assigned together sooner within the round.

Technique Comparisons. In this section, each test for every approach consists
of 500 trials of an ant constructing 10,000 solutions and no pheromone updates
being used. These tests were done on a 2.13Ghz Intel processor. As can be seen
in Fig. 3, each technique by itself helped improve the performance of combining
ACO with backtracking search. Backjumping had the largest impact, improving
the performance for all problem sizes. This is because it greatly reduced the
severity of excessive backtracking and also had the smallest overhead. Using all
three combined even further improved the overall performance when n > 10.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 8 10 12 14 16 18 20 22 24 26

C
P

U
 S

ec
on

ds

Number of Teams

Backtracking
Backjumping

MRV
FRC

Backjumping+MRV+FRC

Fig. 3. Comparison of using only backtracking, backjumping, MRV with metadata
during the last fourth of the rounds, FRC with metadata, and all three combined.
Time is the average length of time for one ant to construct 10,000 solutions without
pheromone updates over 500 runs.

248 D.C. Uthus, P.J. Riddle, and H.W. Guesgen

We make note of the fact for this problem, backjumping would have been
sufficient to solve this problem within a reasonable time. But we worked with the
other two techniques to show that using them can further improve performance,
which is important when working with more highly-constrained problems.

4 Comparisons and Results

We want to compare our approach to integer programming (IP)[12] because it
gives guaranteed optimal results for sports scheduling problems. We also compare
our approach with a tabu search (TS) approach that was designed for the TTP[4].
TS has been shown to produce equivalent average solutions with a much faster
running time than other approaches to the TTP. The neighborhood we use
when applying TS to the SRRMVP is composed of a union of Di Gaspero’s and
Schaerf’s SwapMatches and SwapMatchRound neighborhoods, or N4 ∪ N5. We
do not use their more specialized neighborhoods such as CN3 or CN4 since they
are optimized for the TTP and will not be applicable to the SRRMVP.

When we run our ACO approach by itself, we set α = 1.0, β = 2.0, and ρ =
.02, which are commonly used values for MMAS[2]. We also run our approach in
a hybrid form (ACO+TS), pairing up with the TS approach mentioned earlier.
Creating a hybrid algorithm of ACO with a local search algorithm is common
practice in the field[2]. When running ACO+TS, we use a similar approach as
when MMAS with TS was used for the QAP[10,11]. We do not use heuristic
information and ρ = .2. There are two differences between our approach and
what was used for the QAP. Instead of using only 5 ants, we use the same number
of ants as there are teams, but only the top 5 ants’ solutions are improved with
TS. Second, we run TS for 4 · n

2 · (n− 1) cycles instead of 4 · n with n being the
number of teams for SRRMVP and variables for the QAP. This is because the
QAP has a problem size of n while for the SRRMVP it is of size n

2 · (n − 1).
We ran ACO, ACO+TS, and TS for the same number of seconds that it took

IP to find optimal solutions for team sets from n = 8 up to n = 16. IP was run
on a 1.6Ghz Intel Processor, so we made sure our running times were the same
in comparison to processor speed. We ran each approach for 30 trials for each
team set. Since we have both optimal maximum and minimum values for each
problem set along with their timings, we ran the three approaches twice, once
to find the maximum value and once for the minimum.

Table 1 shows the average values found for each algorithm. The times listed
in the table are the seconds used by IP. As can be seen when looking for either
maximum or minimum values, ACO by itself performs the worse. Yet when we
combine it with TS, it performs much better than ACO and has a better average
solution quality and smaller standard deviation than TS by itself.

When comparing ACO+TS to IP, ACO+TS did only slightly worse than
IP, with the average solutions being within 4% of the optimal solution for all
instances. But as can be seen, the time IP required to find the optimal solutions
grew exponentially. The advantage of using ACO+TS is that we can run it with
less time and still find good solutions. When we run it with an eighth of the

ACO and the Single Round Robin Maximum Value Problem 249

Table 1. Results for the Single Round Robin Maximum Value Problem. The maximum
values and minimum values were found separately. The values under IP are the optimal
values, while the values under ACO, ACO+TS, and TS are the average values over 30
runs, with standard deviations listed in the brackets.

Maximum Value

n Time IP ACO ACO + TS TS

8 0.06 1393 1380.93(16.75) 1393(0) 1393(0)
10 0.17 3529 3453.03(33.79) 3529(0) 3521.93(12.1)
12 1.55 7635 7213.83(85.43) 7621.3(13.36) 7597.77(21.29)
14 59.26 14824 13799.97(185.29) 14775.4(15.16) 14626.6(55.8)
16 2581 26137 23937.87(206.02) 25871.93(54) 25408.97(89.67)

Minimum Value

n Time IP ACO ACO + TS TS

8 0.06 499 517.43(16.27) 499(0) 499(0)
10 0.18 1061 1208.47(43.33) 1061(0) 1064.9(21)
12 3.83 2092 2555.43(75.55) 2094.83(4.1) 2135.7(19.05)
14 80.58 3055 4220.2(75.17) 3102.93(23.85) 3310.03(50.86)
16 3010 4576 6740.7(110.65) 4774.7(42.73) 5329.17(93.74)

time used by IP, we obtain average maximum values of 1393, 3512.83, 7585.33,
14726.43, and 25774 for the five team sets respectively. We would expect IP to
be unable to find solutions for larger team sets or more difficult problems in a
reasonable amount of time, as was seen with the TTP[3]. It is with these types
of problems where using a metaheuristic like ACO is required[3,7].

5 Conclusion

This research looks at improving the performance of backtracking search when
applying ACO to problems that contain both feasibility constraints and an opti-
mization goal. We show that when using classic constraint satisfaction techniques
along with a problem-specific heuristic, we can greatly decrease the amount of
time required for an ant to construct a solution.

We also show that ACO, when combined with TS as a hybrid algorithm,
performs comparably to IP and better than TS by itself on the SRRMVP. This
is an indication that ACO has strong potential for sports scheduling problems,
an area which ACO has had little application to so far. In the future, we want
to look at applying our approach to the TTP. From the performance we have
seen with the SRRMVP, we would expect to see a hybrid ACO algorithm with a
local search algorithm like TS perform strongly for this more difficult problem.

Acknowledgments. We would like to thank Professor Michael A. Trick of
Carnegie Mellon University for his advice on this research and for finding the
optimal maximum and minimum values for the SRRMVP.

250 D.C. Uthus, P.J. Riddle, and H.W. Guesgen

References

1. Crauwels, H., Van Oudheusden, D.: Ant Colony Optimization and Local Improve-
ment. In: Workshop of Real-Life Applications of Metaheuristics, Antwerp (2003)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
3. Easton, K., Nemhauser, G., Trick, M.: Solving the Travelling Tournament Problem:

A Combined Integer Programming and Constraint Programming Approach. In:
Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 100–
109. Springer, Heidelberg (2003)

4. Di Gaspero, L., Schaerf, A.: A Composite-Neighborhood Tabu Search Approach
to the Traveling Tournament Problem. J. Heuristics 13, 189–207 (2007)

5. Meyer, B.: Constraint Handling and Stochastic Ranking in ACO. The 2005 IEEE
Congress on Evolutionary Computation 3, 2683–2690 (2005)

6. Meyer, B., Ernst, A.: Integrating ACO and Constraint Propagation. In: Dorigo,
M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.)
ANTS 2004. LNCS, vol. 3172, pp. 166–177. Springer, Heidelberg (2004)

7. Rasmussen, R.V., Trick, M.A.: Round Robin Scheduling - A Survey. European
Journal of Operations Research 188, 617–636 (2008)

8. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pren-
tice Hall, New Jersey (2003)

9. Socha, K., Sampels, M., Manfrin, M.: Ant Algorithms for the University Course
Timetabling Problem with Regard to the State-of-the-Art. In: Raidl, G.R.,
Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E.,
Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003,
EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003,
EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 334–345. Springer,
Heidelberg (2003)

10. Stützle, T.: MAX-MIN Ant System for Quadratic Assignment Problems. Technical
report AIDA-97-4, FG Intellektik, FB Informatik, TU Darmstadt, Germany (1997)

11. Stützle, T., Dorigo, M.: ACO Algorithms for the Quadratic Assignment Problem.
In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 33–50.
McGraw-Hill, London (1999)

12. Trick, M.A.: Integer and Constraint Programming Approaches for Round Robin
Tournament Scheduling. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, vol. 2740, pp. 63–77. Springer, Heidelberg (2003)

Artificial Ants to Extract Leaf Outlines and

Primary Venation Patterns

Robert J. Mullen, Dorothy Monekosso, Sarah Barman,
Paolo Remagnino1, and Paul Wilkin2

1 Digital Image Research Center, Kingston University, London, UK
{r.mullen,n.monekosso,s.barman,p.remagnino}@kingston.ac.uk

2 Royal Botanic Gardens KEW, London, UK
p.wilkin@kew.org

Abstract. This paper presents preliminary results on an investigation
into using artificial swarms to extract and quantify features in digital
images. An ant algorithm has been developed to automatically extract
the outlines and primary venation patterns from digital images of living
leaf specimens via an edge detection method. A qualitative and quantita-
tive analysis of the results is carried out herein. The artificial swarms are
shown to converge onto the edges within the leaf images and statistical
accuracy, as measured against ground truth images, is shown to increase
in accordance with the swarm convergence. Visual results are promising,
however limitations due to background noise need to be addressed for
the given application. The findings in this study present potential for
increased robustness in using swarm based methods, by exploiting their
stigmergic behaviour to reduce the need for parameter fine-tuning with
respect to individual image characteristics.

1 Introduction

The use of artificial swarms to solve computational problems has received sig-
nificant attention in recent years, and the scope of the types of problems and
applications to which these techniques are successfully being applied is widening.
Swarm intelligence [1] techniques have been shown to perform particularly well
at solving certain types of problems such as shortest route problems [2], schedul-
ing problems [3] and assignment problems [4]. Their application is however not
limited to these types of problems, and in this paper we address a problem of
quite different characteristics, in the field of image processing.

This paper presents an investigation into the application of swarm intelligence
to image feature extraction via boundary detection. An ant algorithm is devel-
oped and implemented to extract the outline and primary venation pattern from
digital images of living leaves.

Identification of leaf types from their venation pattern and outline is common
practice for botanist, however traditional plant taxonomy often involves hand
drawing such features and making subjective identification by eye [5]. With
vastly increasing data sets of digitised herbarium specimen, the scope for data

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 251–258, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

252 R.J. Mullen et al.

mining such sources of data has wide reaching importance in applications rang-
ing from vegetation inventory to medicinal plant use to evolutionary links with
environmental change. Quantification of leaf features such as venation patterns
and outline structures would add a whole new dimension to such data sets, ex-
tending the comparative search possibilities of plant characteristics. Due to the
very large numbers of specimens involved in these data sets, a robust automated
method is required that can efficiently quantify specimen characteristics from a
wide range of images. Since specimens are in varying conditions when digitised,
robustness of any method used is of key importance.

The motivation behind this work is two-fold; to further research in swarm
intelligence, and in doing so, to develop new image processing and classification
algorithms with improved robustness. The main aim here is to develop an arti-
ficial swarm based automated feature extraction and classification system, with
an emphasis on improving robustness, which is key to the success of the chosen
application in this paper. This paper presents the first stage in this work.

2 Related Work

Image segmentation is already a well posed problem to which there exists an
array of solutions. The measure of success of these solutions is however often
based on subjective measurements, and the majority of these methods are based
on similar techniques.

More ‘conventional’ methods are often based on filtering operations, such
as gradient based methods like the Canny edge detector [6] and Laplacian of
Gaussian (LOG) filter [7]. These methods assume edges to be regions in the
image that exhibit a large rate of change in gray-level intensity.

The relatively recent approach of using swarm intelligence based methods in
image processing has produced some promising results and led to increased in-
terest and further development in this area. Swarm intelligence methods, and
more specifically ant algorithms, have been used for such tasks as image seg-
mentation via clustering methods [8][9][10] and via boundary detection methods
[11][12][13], as well as image thresholding [14].

In this paper we present an ant algorithm for image segmentation via bound-
ary detection methods with similar characteristics to the algorithm in [13], and
perform a quantitative analysis based on a pixel-wise comparison of the results
with ground truth images.

3 The Algorithm

The basic framework of this algorithm is based around the workings of the
original Ant System (AS) [2], with a modified, application specific pheromone
update rule and heuristic information.

The algorithm employs artificial ants as simple computational agents. The
algorithm is initialised with N ants occupying ‘random’ pixels within the image,
where pixels in the image are equivalent to states in the search environment.

Artificial Ants to Extract Leaf Outlines and Primary Venation Patterns 253

At each time step t, each of the N ants moves a distance of 1 pixel to one of
the eight surrounding pixels. Each ants transition from state to state is guided
by two main factors: heuristic information, and artificial pheromone trials.

The heuristic information is defined here as the visibility, ηij , which is a mea-
sure of the local directional image gradient around the ants current pixel location.
This problem specific heuristic information aims to guide the ant agents to follow
along edges and high contrast boundary regions within the image.

The pheromone concentration at any given pixel is given by τij . Pheromone
deposition by the ants happens at the end of each time step, along with a constant
evaporation of the entire pheromone field. These processes are governed by the
following pheromone update rule:

τij (t + 1) = (1 − ρ) · τij (t) +
N∑

k=1

Δτk
ij , (1)

where ρ ∈ (0, 1] is the evaporation rate and Δτk
ij is the quantity of pheromone

deposited at pixel location (i, j) by the kth ant and is given by:

Δτk
ij =

{
ηij/255 if ant k in pixel (i, j) and ηij > T ,
0 otherwise, (2)

where T is a user defined threshold value that can be set to only allow pheromone
deposition by ants following edges or boundaries above a certain ‘strength.’ In
addition there is also a daemon action implemented that terminates any ant
agent with ηij < T for more than Z consecutive time steps. This terminated
agent is immediately replaced by a new ant agent at a new ‘random’ location.
This step is implemented to reduce the amount of ant agents ‘lost’ searching
large background areas of the image and to speed up the rate of convergence of
the agents onto the desired regions of the image search space.

Each ant then chooses its next pixel location by applying a probabilistic state
transition rule, such that the probability of the kth ant moving from state i to
state j, at time step t, is given by

pk
ij (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[τij(t)]

α · [ηij]
β∑

k∈allowedk

[τik(t)]α · [ηik]β
if j ∈ allowedk

0 otherwise,

(3)

where allowedk is the eight pixels surrounding the kth ant, excluding any pixels
in tabuk, and α and β control the relative importance of the pheromone trail
and visibility respectively. tabuk is a list containing the last n pixel locations of
the kth ant, where n = tabu max gives the number of time steps into the past
for which ants cannot re-visit previously visited pixel locations.

The input to the algorithm is a leaf image, and the output is the emerged
pheromone field. This is then thresholded to a binary image to serve as the
output feature image.

254 R.J. Mullen et al.

4 Results

The algorithm was tested on both real and artificial leaf images. The real leaf
images are of living samples collected and scanned at the Royal Botanic Gardens
KEW (RBG KEW), London, England. Image sizes range from approx. 240px
by 600px to approx. 500px by 600px and all images are converted to grayscale
before processing.

For each image, unless stated otherwise, the algorithm was run for t = 500
time steps, with the following parameters: N = 5000, α = 1.0, β = 7.0, ρ =
0.0001, T = 20, Z = 5, and tabu max = 500.

These values were determined, by trial and error, to produce good results over
the range of images used in this study.

4.1 Ground Truth Images

Ground truth images for the real leaf images were created by manually tracing
the leaf outlines and primary venation patterns via a touch-screen tablet PC
device.

Quantitative analysis of the algorithm performance was measured by a pixel
wise comparison of the algorithm output against the ground truth images, mea-
suring the True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) pixel classifications, allowing us to compute the statistical
measures of accuracy, sensitivity and specificity.

The quality of the manual ground truth method was assessed by carrying out
this analysis method on a set of artificial leaf images (to which the true boundary
locations are known). The accuracy, sensitivity and specificity results were all in
excess of 0.93, and this method was deemed acceptable for this study.

4.2 Qualitative Analysis

As the algorithm runs the ant agents converge onto the boundary regions of the
image, resulting in an emergent pheromone field as shown in Figure 1, where the

(a) t=5 (b) t=20 (c) t=80 (d) t=320

Fig. 1. Emerging pheromone map at different time-steps in the algorithm run. Brighter
pixels equal higher pheromone concentration at that point.

Artificial Ants to Extract Leaf Outlines and Primary Venation Patterns 255

brighter pixels correspond to higher pheromone intensity at that pixel location
within the image search space.

Figure 2 shows example results of the final pheromone field next to the cor-
responding ground truth image and original image for both a real and artificial
leaf image. As we can see the resultant pheromone field maps out the boundaries
within the image, showing clearly the leaf outline and primary venation pattern,
where large amounts of pheromone have built up.

Closer visual inspection reveals some inevitable limitations. The effects of
noise and non-uniform lighting result in the finer venation detail towards the leaf
edges not being fully represented in the algorithm output (see Figure 2(c)). Such
missing information could cause problems for leaf type classification, as closely
related venation patterns might not be picked up, and unrelated patterns might
be wrongly grouped together [15].

The quality of the specimen can vary significantly between samples, with some
specimen exhibiting much more defined venation patterns than others, and aside
from the effects of noise, lighting issues inherent in the scanning process also
affect the specimen image quality.

The images shown in Figures 1 and 2 are typical of the results seen in all the
leaf images used in this study.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example results: original images, (a,d), corresponding ground truth images,
(b,e), and final pheromone fields, (c,f). Original image (a) is a real leaf image, and
original image (d) is an artificial leaf image.

256 R.J. Mullen et al.

(a) (b) (c)

Fig. 3. Plots of average results from 20 real leaf images. Plots show average accuracy,
(a), sensitivity, (b), and specificity, (c), over 500 time-steps, as measured from compar-
ing the algorithm output with the ground truth images. Note: Scales are not the same
for each image.

4.3 Quantitative Analysis

The quantitative performance analysis of the algorithm is carried out by com-
puting the sensitivity, specificity and accuracy of the algorithm output when
compared to the ground truth images, as described in Section 4.1.

The results in Figure 3 are averages from the results of twenty real leaf images.
The results show how the accuracy, sensitivity and specificity vary as the algo-
rithm runs. As can be seen, the overall accuracy increases over time, as the ant
agents converge on the edges and the pheromone concentration here increases
such that more and more pixels are detected as edge pixels. This results in an
increase in the number of TP classifications and a decrease in FN, which is also
reflected in the increase in sensitivity (Figure 3(b)). The specificity (Figure 3(c))
decreases over time as the number of TN counts decreases and the FP increases,
as pheromone concentration builds up across the entire pheromone field, includ-
ing areas outside of the ‘true’ edge regions. The specificity does not however
decrease by any large amount and remains at a high value due to the fact that
the TN count is always much greater than the other counts because the majority
of the pixels within all of the images are in fact not edge or boundary pixels (i.e.
they are background pixels).

5 Discussion

One of the main motivations behind the use of artificial swarms in the area of
image processing is to improve on robustness and automation. Many traditional
edge detection methods, such as the previously mentioned Canny edge detector
[6], operate on the entire image in a linear fashion, and require a number of
parameters to be tuned for a given image in order to produce satisfactory results.
The ant algorithm approach works in a different way, relying on the phenomena
known as stigmergy [1] to produce self emergent behaviour amongst the artificial
swarm in response to the given environment, which in this case is a digital image.
When programmed with a search preference towards high image gradient change,

Artificial Ants to Extract Leaf Outlines and Primary Venation Patterns 257

the swarm converges onto the stronger edges of the image and the resulting
pheromone field produced by the swarm maps out these edges. This convergence
is reflected in Figure 3(a) with the rapid increase in accuracy over time during
the early time-steps as the swarm is converging onto the image edges. After
approximately 400 time-steps the gradient of the accuracy curve has almost
dropped off to zero, as convergence is achieved.

A potential advantage of the swarm intelligence approach is that it is possible
to remove the need to set a sensitivity threshold. In many traditional methods
choosing an appropriate threshold value is of most importance in obtaining the
best quality results. Future work will therefore aim to remove the threshold
value T , which was used in this work as an application specific parameter to
facilitate faster convergence and eliminate as much as possible the effects of
noise in the resultant pheromone field. A careful choice of all other parameters (in
particular the control parameters α and β) to optimise for image edge detection
in general (i.e. not just leaf images) could provide a robust enough platform so
as to not require any threshold value, and moreover, no parameter tuning at all,
for different images.

6 Concluding Remarks

In this paper we have presented a new algorithm for edge detection in image
processing using an ant algorithm approach. This has been implemented for
the specific task of automated feature extraction of leaf outlines and primary
venation patterns in digital leaf images.

The limitation of noise susceptibility addressed in this paper is not specific to
our approach, and is in fact a typical problem amongst edge detection algorithms.
Ways to combat this problem will be part of the next stage of development of this
approach. This will focus on optimising the trade-off between exploration and
exploitation, and positive and negative feedback within the system. By perform-
ing a thorough analysis of the effects of the parameters used in this method, we
aim to increase the robustness of the algorithm and improve on its performance.

The next stage in this work will involve developing ways to quantify the
extracted leaf outline and venation pattern data and perform automated leaf
classification based on this information.

Robustness being the focal point, additional future work will involve devel-
oping hybrid ant algorithms that employ other machine learning techniques to
achieve online parameter adjustment with an aim to focusing on dynamic prob-
lems including the application to feature tracking in near real time imagery.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, Oxford (1999)

2. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperating learning ap-
proach to the travelling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

258 R.J. Mullen et al.

3. Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant System for job-shop
scheduling. JORBEL - Belgian Journal of Operations Research, Statistics and
Computer Science 34(1), 39–53 (1994)

4. Maniezzo, V., Colorni, A., Dorigo, M.: The Ant System applied to the quadratic as-
signment problem. Technical Report IRIDIA/94-28, Universite Libre de Bruxelles,
Belgium (1994)

5. Hickey, L.J.: Classification of the architecture of dicotyledonous leaves. American
Journal of Botany 60(1), 17–33 (1973)

6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal-
ysis and Machine Intelligence 8, 679–698 (1986)

7. Gonzalez, R.C., Woods, R.W.: Digital image processing, 2nd edn. Prentice Hill
(2001)

8. Ouadfel, S., Batouche, M.: Unsupervised image segmentation using a colony of
cooperating ants. In: Bülthoff, H.H., Lee, S.-W., Poggio, T.A., Wallraven, C. (eds.)
BMCV 2002. LNCS, vol. 2525, pp. 109–116. Springer, Heidelberg (2002)

9. Ouadfel, S., Batouche, M.: An efficient ant algorithm for swarm-based image clus-
tering. Journal of Computer Science 3(3), 162–167 (2007)

10. Channa, A.H., Rajpoot, N.M., Rajpoot, K.M.: Texture segmentation using ant tree
clustering. In: 2006 IEEE International Conference on Engineering of Intelligent
Systems, pp. 1–6 (2006)

11. Ramos, V., Almeida, F.: Artificial ant colonies in digital image habitats - a mass
behaviour effect study on pattern recognition. In: Bosma, W. (ed.) ANTS 2000.
LNCS, vol. 1838, pp. 113–116. Springer, Heidelberg (2000)

12. Fernandes, C., Ramos, V., Rosa, A.C.: Self-regulated artificial ant colonies on dig-
ital image habitats. Int. Journal of Lateral Computing 2(1), 1–8 (2005)

13. Nezamabadi-pour, H., Saryazdi, S., Rashedi, E.: Edge detection using ant algo-
rithms. Soft Computing 10, 623–628 (2006)

14. Malisia, A.R., Tizhoosh, H.R.: Image thresholding using ant colony optimization.
In: CRV 2006: Proceedings of the 3rd Canadian Conference on Computer and
Robot Vision (CRV 2006), p. 26. IEEE Computer Society, Los Alamitos (2006)

15. Wilkin, P.: personal communication, Royal Botanic Gardens, KEW, London, Eng-
land (February 2008)

Autonomous Reconfiguration in a

Self-assembling Multi-robot System

Rehan O’Grady1, Anders Lyhne Christensen2, and Marco Dorigo1

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{rogrady,mdorigo}@ulb.ac.be

2 DCTI-ISCTE, Lisbon, Portugal
anders.christensen@iscte.pt

Abstract. Self-assembling multi-robot systems can, in theory, overcome
the physical limitations of individual robots by connecting to each other
to form particular physical structures (morphologies) relevant to spe-
cific tasks. Here, we show for the first time how robots in a real-world
multi-robot system can autonomously self-assemble into and reconfigure
between arbitrary morphologies. We use a distributed control paradigm.
The robots are individually autonomous and homogeneous - they all
independently execute the same control program. Inter-robot communi-
cation is visual and strictly local. We demonstrate our technique on real
robots.

1 Introduction

In multi-robot systems, the individual robots can carry out different tasks in
parallel. When necessary, they can also cooperate. Self-assembly is a mechanism
that allows teams of cooperating robots to overcome the physical limitations
of the individual team members by connecting to each other to form physi-
cally larger composite robotic entities. In order to maximize the utility of self-
assembly, the morphology of the resulting robotic entity must be appropriate to
the task. In this paper, we demonstrate how a group of robots can autonomously
self-assemble into and reconfigure between different specific morphologies.

This paper’s contributions are as follows. 1) We demonstrate autonomous
distributed reconfiguration in a real world system of self-assembling robots. 2)
We build on our previous work to implement a coordination mechanism that
allows a group of connected, independently controlled, self-assembled robots to
coordinate the distributed reconfiguration process. 3) We show reconfiguration
with six real robots from a star morphology to a line morphology to a square
morphology and back to a star. 4) We demonstrate more complex reconfiguration
in simulation.

2 Related Work

There is a large body of existing research on self-reconfiguring robotic systems.
However, successful demonstrations of reconfiguration on real world robotic

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 259–266, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

260 R. O’Grady, A.L. Christensen, and M. Dorigo

platforms have been restricted to systems in which the individual modules were
simple and incapable of independently executing meaningful tasks. Other studies
have explored the reconfiguration possibilities of systems made up of autonomous
self-assembling robots, but only in simulation.

In self-reconfiguring modular systems, morphological flexibility is explored
through the use of relatively simple connected units. Examples include CE-
BOT [1], PolyBot [2], M-TRAN [3], ATRON [4] and SuperBot [5]. For detailed
overviews see [6,7]. In a few self-reconfigurable systems such as the Super-Mechano
Colony [8] and the Swarm-bot platform (which we use in this study), the individ-
ual modules are capable of carrying out meaningful tasks on their own.

Some proposed control algorithms for self-assembly and/or reconfiguration are
centralized, see for instance [9]. Other approaches give each unit a unique ID and
a predefined position in the final structure, see for instance [10]. More distributed
approaches include [11], [12], and [13]. In simulation, Støy and R. Nagpal [14,15]
have demonstrated algorithms for self-reconfiguration anddirected growth of cubic
units based on gradients and cellular automata. Bojinov et al. [16] have shown how
a simulated modular robot (Proteo) can self-reconfigure into useful and emergent
morphologies when the individual modules use local sensing and local control rules.

3 Hardware Platform and Control Methodology

For our experiments we use the Swarm-bot robotic platform [17], see Fig. 1
(left). This platform was designed and built by Francesco Mondada’s group at
the Laboratoire de Système Robotiques (LSRO) of EPFL. The Swarm-bot plat-
form consists of a number of robots called s-bots. Each s-bot is self-propelled us-
ing a differential drive system composed of combined tracks and wheels (treels).
Physical connections between s-bots are established by a gripper-based connec-
tion mechanism as shown in Fig. 1. An s-bot is surrounded by a transparent
ring that can be grasped by other s-bots. Eight sets of RGB-colored LEDs are
distributed around the inside of the transparent ring. Individual LEDs can be
independently illuminated. The s-bot camera can perceive the illuminated LEDs
of other s-bots at a range of up to approximately 50 cm depending on light con-
ditions. The camera records the panoramic images reflected in a spherical mirror
mounted above the s-bot in a perspex turret.

Our control paradigm is distributed. The robots are homogeneous and individu-
ally autonomous — each robot independently executes the same control program.
Because of the limited sensing range of the robots, no individual robot can per-
ceive the global shape of a morphology composed of physically connected s-bots.
This means that an unattached robot cannot deduce where it should connect in
order to extend or reconfigure a morphology appropriately. Instead, robots that
are already part of a morphology indicate how new robots should connect. This
is done using the directional self-assembly mechanism, which allows a robot to
light up a specific set of LEDs in order to invite a connection at a given point on
its body with a corresponding specified orientation for the connecting robot (see
Fig. 1 right). This mechanism is described in more detail in [18].

Autonomous Reconfiguration in a Self-assembling Multi-robot System 261

Fig. 1. Left: Two physically connected s-bots. Right top: An s-bot with an open con-
nection slot to its rear (it has illuminated its left green LEDs and its right blue LEDs).
Right bottom: Representation of the eight possible connection slots that an s-bot can
open. The eighth connection slot (F) is only used for signalling, as it is occupied by
the gripper of the s-bot displaying the connection slot.

When a new connection is formed, the two connected robots communicate.
Using a low bandwidth visual communication protocol, instructions are typically
passed from the robot that is already part of the morphology to the newly con-
nected robot. Similar communication between connected robots occurs during
the reconfiguration process. Simple algorithmic rule sets describe when the ro-
bots choose to communicate and how to interpret and act upon received commu-
nication. Different rule sets allow self-assembly into and reconfiguration between
arbitrary morphologies. These rule sets are expressed in a high level descriptive
language — SWARMORPH-script. This language is described in more detail
in [19].

4 Reconfiguration

In our previous work [19], we showed how homogeneous independently operat-
ing robots executing SWARMORPH-script instructions can generate arbitrary
morphologies. In this study, we use the same principles to generate autonomous
reconfiguration in a distributed self-assembling system.

The key new challenge we have solved in this study is that of coordination be-
tween independently controlled robots once they are self-assembled. Coordination
is an essential component for any distributed reconfiguration system. Imagine a
group of connected robots crossing a hole. If the first robots to cross the hole detect
a new obstacle which triggers self-reconfiguration and these robots start trying to
reconfigure while some robots are still suspended over the hole, the consequences
could be disastrous. In this example, we would want each individual robot to wait
before reconfiguring until the whole morphology is ready to reconfigure. What ren-
ders this type of coordination difficult is the distributed nature of the system—
each robot is controlled independently, and at the same time communication is
local and can only occur between directly connected robots.

262 R. O’Grady, A.L. Christensen, and M. Dorigo

Fig. 2. Coordinated reconfiguration example. A small grey circle in the center of an
s-bot indicates that the s-bot is waiting for a signal. For details see text.

On our hardware platform, each robot has a single gripper. This means that
any morphology formed, whatever its spatial configuration (shape), has a tree-
like connection topology, where a parent node can have many child nodes, but
a child node can only have a single parent node. To enable coordination in a
connected morphology, we allow for two types of communication. Information
can be passed up the tree, and instructions can be passed down the tree.

An example of reconfiguration using these two types of communication is
shown in Fig. 2. In this simple example, a three s-bot arrow morphology (one root
node, two child nodes) reconfigures into a line morphology. The SWARMORPH-
script to generate this behavior is shown in Algorithm 1 (the script includes
instructions for the self-assembly of the initial arrow morphology which is not
shown in the figure). The control is homogeneous for the three robots—the root
node is the first robot to encounter a hole, the other two robots see an open
connection slot, attach, and become the child nodes.

In Fig. 2, a small grey circle in the center of an s-bot indicates that the s-
bot is waiting for a signal. In Fig. 2 step 1, the arrow morphology has already
formed and the seed is waiting for both children to signal that they are ready to
reconfigure. In steps 2-4, the child nodes independently wait for a given timeout
before they are ‘ready’. Once the child nodes are ready to reconfigure, they both
independently signal their readiness to the root node.1 Once they have signaled
their readiness to the root node (information passing up the tree), the child
nodes wait for a signal from the root node (instructions passing down the tree)
before proceeding with any further reconfiguration steps. In step 5, the root node
has received signals from both of its children, and thus knows that the whole
morphology is ready to reconfigure. In steps 6-8, the root node signals to both
of the child nodes in turn that they can proceed with the reconfiguration. In
steps 9-10, having received the relevant instruction, each child node carries out
its subsequent reconfiguration instructions. The result is the line morphology.

In the more general case, morphologies can be of arbitrary depth and have
arbitrary numbers of branches. Information is passed up the tree from child nodes
to parent nodes. Information continues to ascend the tree in this manner until one
node takes responsibility for collating the information and issuing instructions
to nodes beneath it in the tree. Starting from this collating node, instructions
to start the reconfiguration process are then passed down the tree from parent
nodes to child nodes.
1 In this example, the child node signals do not overlap temporally. The algorithm

would be unaffected, however, if both child nodes signalled their readiness at the
same time—the root node would acknowledge receipt of each of the two signals in
turn.

Autonomous Reconfiguration in a Self-assembling Multi-robot System 263

Algorithm 1. Reconfiguration script to generate the reconfiguration se-
quence in Fig. 2. The script is independently executed on each of the robots.

RandomWalk(); // until hole detected OR connection slot detected
if hole-detected then

// I am the root node since I detected the hole before I saw a connection slot
OpenConnSlot(back); // Attract a child robot and...
SendRuleID(1); // instruct it to follow rule 1
OpenConnSlot(left); // Attract another child robot and...
SendRuleID(2); // instruct it to follow rule 2
WaitForASignal(); // One child is ready
WaitForASignal(); // Other child is ready
SendSignal(back); // Instruct one child to start reconfiguration
SendSignal(left); // Instruct other child to start reconfiguration

end
else if connection-slot-detected then

// I am a child node since I saw a connection slot before I detected the hole
SearchForAndAttachToConnectionSlot();
ReceiveRuleID();
if receivedruleid = 1 then

Timeout(); // Ready after timeout
SendSignal(front); // Inform parent I am ready
WaitForASignal(); // Wait to receive reconfigure instruction
Disconnect();

SearchForConnSlot();
end
if receivedruleid = 2 then

Timeout(); // Ready after timeout
SendSignal(front); // Inform parent I am ready
WaitForASignal(); // Wait to receive reconfigure instruction
OpenConnSlot(back);

end

end
StopExecution();

In the experiments we perform in this study, the node that takes responsibility
for collating information is always the root node (that is, the node that has no
parents). However, in other cases, a purely local reconfiguration might be more
efficient—this can occur if a node further down the tree takes responsibility
for collating information and issuing reconfiguration instructions. Imagine, for
example, a self-assembled entity in which a single constituent robot develops a
fault. The local structure could reconfigure to eject the faulty robot, or otherwise
compensate for the fault. The rest of the assembled robots need not be involved
in or even be aware of the local reconfiguration. Note that local configuration
still requires coordination—it is just that the coordination is restricted to the
subset of assembled robots that are reconfiguring.

5 Results

We performed an experiment with real robots in which six s-bots form the
sequence of morphologies: star-line-square-star. We implemented a simple co-
ordination strategy to ensure that each individual morphology is complete be-
fore reconfiguration into the next morphology begins: each sub-branch of the

264 R. O’Grady, A.L. Christensen, and M. Dorigo

Fig. 3. Photos of different stages in a self-reconfiguration experiment with six real s-
bots. a) The start configuration. b) The star morphology. c) The line morphology. d)
The line morphology reconfiguring into the square. e) The square morphology. f) The
star morphology.

morphology reports local completion up the tree (information passing up the
tree). The root node collates the information, and once it is sure that all sub-
branches have completed, it sends the instruction to reconfigure down through
each branch (instructions passing down the tree). As individual nodes receive
the reconfiguration instruction, they execute their subsequent reconfiguration
control logic that results in the formation of the next morphology.

Photographic snapshots of this experiment with the real robots are shown in
Fig. 3. Videos of the experiments described in this section and other explanatory
material, including full SWARMORPH-script reconfiguration algorithms, can be
found on the web at http://iridia.ulb.ac.be/supp/IridiaSupp2008-004.

We conducted several more complex experiments in simulation. An exam-
ple is shown in Fig. 4. Here, by executing the relevant SWARMORPH-script
program, the robots first assemble into a 9-robot square formation and then
reconfigure into three 3-robot arrow morphologies. During the reconfiguration,
two connected pairs of s-bots (four s-bots in total) remain connected. Using a

Fig. 4. Snapshots of different stages in a self-reconfiguration experiment with fifteen
simulated s-bots (reconfiguration from single 9 s-bot square morphology to three 3
s-bot arrow morphologies)

Autonomous Reconfiguration in a Self-assembling Multi-robot System 265

SWARMORPH-script primitive for coordinated motion, these pairs travel away
from the site of the original morphology in opposite directions to give them-
selves the space required to form subsequent morphologies. These pairs form the
basis for two of the three new arrow morphologies. The s-bot that seeded the
square morphology does not move, and becomes the seed for the third new arrow
morphology. All other s-bots detatch and try to join growing morphologies by
attaching to displayed connection slots.

6 Conclusions and Future Work

In this study, we showed how a group of real robots can autonomously reconfigure
using self-assembly and local communication between connected robots. Our
approach relies on a completely distributed control paradigm — the robots are all
independently autonomous and rely only on local communication to cooperate.
One advantage of distributed control is scalability. With large numbers of robots,
different subsets of robots could perform different tasks in parallel. Since our
approach is decentralized, multiple different morphologies can be formed and
undergo reconfiguration at the same time.

In our ongoing research we are trying to give the robots the capability to
identify different types of obstacle and to reconfigure adaptively into appropriate
morphologies based on the environments they encounter.

Acknowledgments. This work was made possible by the innovative robotic
hardware developed by Mondada’s group at the Laboratoire de Système Ro-
botiques (LSRO) of EPFL. This work was supported by the SWARMANOID
project, funded by the Future and Emerging Technologies programme (IST-
FET) of the European Commission, under grant IST-022888 and by the VIR-
TUAL SWARMANOID project funded by the F.R.S.-FNRS. The information
provided is the sole responsibility of the authors and does not reflect the Eu-
ropean Commission’s opinion. The European Commission is not responsible for
any use that might be made of data appearing in this publication. Marco Dorigo
acknowledges support from the F.R.S.-FNRS, of which he is a Research Director.

References

1. Fukuda, T., Buss, M., Hosokai, H., Kawauchi, Y.: Cell structured robotic sys-
tem CEBOT: control, planning and communication methods. Robotics and Au-
tonomous Systems 7(2-3), 239–248 (1991)

2. Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.B.: Modular
reconfigurable robots in space applications. Autonomous Robots 14(2-3), 225–237
(2003)

3. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.:
M-tran: Self-reconfigurable modular robotic system. IEEE-ASME Transactions on
Mechatronics 7(4), 431–441 (2002)

4. Østergaard, E.H., Kassow, K., Beck, R., Lund, H.H.: Design of the ATRON lattice-
based self-reconfigurable robot. Autonomous Robots 21(2), 165–183 (2006)

266 R. O’Grady, A.L. Christensen, and M. Dorigo

5. Shen, W., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh, J.:
Multimode locomotion for reconfigurable robots. Autonomous Robots 20(2), 165–
177 (2006)

6. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robotics & Au-
tomation Magazine 14(1), 43–52 (2007)

7. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in
swarm-bots. IEEE Transactions on Robotics 22(6), 1115–1130 (2006)

8. Damoto, R., Kawakami, A., Hirose, S.: Study of super-mechano colony: concept
and basic experimental set-up. Advanced Robotics 15(4), 391–408 (2001)

9. Rus, D., Vona, M.: Crystalline robots: Self-reconfiguration with compressible unit
modules. Autonomous Robots 10(1), 107–124 (2001)

10. White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic recon-
figuration of modular robots. In: Proceedings of Robotics Science and Systems, pp.
161–168. MIT Press, Cambridge (2005)

11. Jones, C., Matarić, M.J.: From local to global behavior in intelligent self-assembly.
In: Proceedings of the 2003 IEEE International Conference on Robotics and Au-
tomation, ICRAM 2003, vol. 1, pp. 721–726. IEEE Computer Society Press, Los
Alamitos (2003)

12. Butler, Z., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-
based self-reconfigurable robots. International Journal of Robotics Research 23(9),
919–937 (2004)

13. Shen, W.M., Will, P., Galstyan, A., Chuong, C.M.: Hormone-inspired self-
organization and distributed control of robotic swarms. Autonomous Robots 17(1),
93–105 (2004)

14. Støy, K., Nagpal, R.: Self-reconfiguration using directed growth. In: Proceedings
of the Internation Conference on Distributed Autonomous Robot Systems (DARS-
2004), pp. 1–10. Springer, Berlin (2004)

15. Støy, K.: Using cellular automata and gradients to control self-reconfiguration.
Robotics and Autonomous Systems 54(2), 135–141 (2006)

16. Bojinov, H., Casal, A., Hogg, T.: Emergent structures in modular self-
reconfigurable robots. In: Proceedings of the IEEE International Conference on
Robotics & Automation, vol. 2, pp. 1734–1741. IEEE Computer Society Press, Los
Alamitos (2000)

17. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D.,
Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: A
new distributed robotic concept. Autonomous Robots 17(2–3), 193–221 (2004)

18. O’Grady, R., Christensen, A.L., Dorigo, M.: SWARMORPH: Multi-robot mor-
phogenesis using directional self-assembly. Technical Report IRIDIA/2008-001,
IRIDIA, Université Libre de Bruxelles (2008)

19. Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: A language for
arbitrary morphology generation in self-assembling robots. Swarm Intelligence 2 (in
press, 2008)

Beanbag Robotics:

Robotic Swarms with 1-DoF Units

David M.M. Kriesel1, Eugene Cheung2, Metin Sitti2, and Hod Lipson1

1 Computational Synthesis Laboratory, Mechanical and Aerospace Engineering
Cornell University, Ithaca, NY, USA

mail@dkriesel.com, hod.lipson@cornell.edu
2 Robotics Institute, Department of Mechanical Engineering

Carnegie Mellon University, Pittsburgh, PA, USA
{eccheung,msitti}@andrew.cmu.edu

Abstract. Robotic swarm behavior is usually demonstrated using
groups of robots, in which each robot in the swarm must possess full
mobile capabilities, including the ability to control both forward and
reverse motion as well as directional steering. Such requirements place
severe constraints on the cost and size of the individual robots (swarm-
ers), limiting the number of units and constraining the overall minimal
size of a swarm. Here we show that similarly-complex swarm behavior
can be achieved using much simpler individual swarmers. These possess
significantly fewer controllable degrees of freedom, namely the ability
to move forward at different velocities. We demonstrate how the inter-
action between different units then causes the entire swarm to obtain
maneuverability unavailable at the individual level. These results may
open the door to fabrication of simpler and smaller units for swarms
allowing significantly larger numbers of units and smaller overall swarm
footprints.

1 Introduction

Social insects, schools of fish and flocking birds often exhibit cooperative swarm-
ing behavior that enables complex tasks that individuals (swarmers) cannot
manage separately. The system as a whole is said to accomplish more than the
sum of its parts and to be scalable, robust and fault-redundant [1]. These ob-
servations have inspired studies in the field of swarm intelligence that seek to
demonstrate similar properties in synthetic swarms [2,3]. Most reported demon-
strations of robotic swarms use groups of individual swarmers already in pos-
session of high degrees of locomotive freedom. This complexity leads to several
consequences including higher costs, more possible points of failure and fewer
redundancies and places severe constraints on the minimal size of individual
swarmers and consequently on the size of the swarm. We suggest that complete
navigational control can be attained using much simpler units, that have only the
ability to control the speed of their noisy forward locomotion, constrained in a

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 267–274, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

268 D.M.M. Kriesel et al.

Fig. 1. Concept of a robotic system built of swarmers and a passive membrane, chang-
ing its shape to get through the gap in the background

flexible membrane (Fig. 1). We use evolutionary computation methods to demon-
strate how a swarm of these simple devices can accomplish behaviors equivalent
to those demonstrated by swarms composed of fully controllable individuals.

Outline. In this paper, we will first present a concept of simple swarmers
(Sec. 2). We outline our principles of swarmer simulation (Sec. 3) and demon-
strate first evolved behaviors (Sec. 5) in two standard experiments (Sec. 4).
Following, we call attention to problems concerning the swarm and present a
passive membrane as solution. We will then present the results of the same ex-
periments performed with the membrane added (Sec. 6), and present reliability
statistics. Finally, we present two physical swarmer implementations (Sec. 7)
with the potential ability to be built at a very small scale.

2 Swarmer Design

Morphology, Restricted Locomotion and Steering Options. The
swarmer morphology is kept very simple in our experiments: Every swarmer’s
body is elliptical in shape (Fig. 2). In every experiment, the sensor area is tri-
angular, beginning at a swarmer’s front. The sensor height is about 20 · x, the
sensor width about 10 · x, where x is a swarmer’s length (arbitrary units).

Fig. 2. Left: Individual swarmer architecture. The arrow represents the movement
direction. Right: 10 sample trajectories by swarmers starting from the blue area.

Beanbag Robotics: Robotic Swarms with 1-DoF Units 269

A swarmer is equipped with a tail-light that may be switched on or off, with
other swarmers able to sense its state. It only has the ability to locomote forward
and is unable to control its orientation. When it moves forward, some random
noise up to 30 degrees is added to its orientation, leading to stochastic movement
trajectories.

Synthesized Controllers. In the experiments below, we synthesize the con-
trollers using evolutionary algorithms [4,5]. We evolve [6] the weights of a recur-
rent neural net [7,8] that controls locomotion speed and the tail-light in response
to input from the frontal sensor(s). All swarmers have identically evolved con-
trollers. Fitness was determined as a function of an overall swarm behavior with
regards to reaching a specific goal.

3 Simulation Principle

Simulations consist of a number of simulation steps carried out iteratively. In
one step, every swarmer moves a distance defined by its speed towards the di-
rection in which it is currently oriented. In addition to the swarmers, the world
also contains two types of immobile objects. The first type constitutes obstacles
that are impenetrable to the swarmers, while the second is penetrable to the
swarmers, as if drawn underneath them (examples: light sources, nest objects).
Objects that swarmers can sense must be visible to them, implying that they
must not be entirely covered by another object or swarmer. Some experiments
contained interaction with an additional, elastic passive membrane, which will
be introduced later on. Being made of a closed chain of 50 links, the membrane
simulation uses kinematic relaxation methods [9]. The swarmers can apply forces
to every single link. In return, the entire membrane applies reaction forces to
swarmers while contracting after elastic expansion. As a result, the membrane
can move, expand and change its shape.

4 Experiment Setups

During all experiments, the swarmers were given one of the following two tasks:
Reaching a light source, which makes it necessary for the swarm to navigate and
avoid obstacles, or food foraging, which adds the challenge of collective decision
making, because there are two possible locomotion goals: the food, and the nest.

Light Search. Our first goal was to create swarmers capable of reaching a
light source. A swarmer is equipped with a single brightness sensor on its front.
A swarmer’s controller has four inner neurons, one input neuron receiving the
brightness value, and two output neurons controlling the forward movement
speed and tail-light. The brightness stimulus given to the input neuron increases
quadratic: The nearer, the higher gets the stimulus. We assumed that a swarmer
needs to gather energy from light sources to keep up an internal energy level: If
it does not see the light source soon after starting, the energy level will gradually

270 D.M.M. Kriesel et al.

Fig. 3. Left: Traces of swarmers evolved to stay close to a light source (yellow). Right:
Traces of swarmers evolved to collect food and bring it back to their nest (green). The
food (orange) re-appears at bottom of the triangular area marked blue.

decrease to zero, so it will stop. If it sees the light source, it can gather energy
from it – the closer, the more. In our fitness function f1 (eqn. 1), e represents the
gathered energy, d the distance to the light source (each measured per swarmer
simulation end) and n represents the number of individuals in the swarm.

f1 =
∑
swarm

(
e − d

n

)
(1)

Food Foraging. In this experiment, food is collected by touching, and delivered
to the nest by touching the nest afterwards. When a food item is collected by a
swarmer, a new one appears at another (random) location, so that the number
of food items is not limited by the environment. In the fitness function f2 for
this experiment (eqn. 2), f represents the number of food items delivered to the
nest by an individual swarmer, measured at the end of the simulation.

f2 =
∑
swarm

f (2)

The controller was slightly modified: It contains four input neurons for sensing
swarmer tail-lights, food, the nest and whether the individual swarmer had food
loaded. The stimuli for the input neurons for food, nest and tail-lights were
generated analogously to the light stimuli in the first experiment. Furthermore,
we increased the number of inner neurons to 5.

5 Experiments and Problems with Free Swarmers

In the light source experiment, the swarmers evolved a behavior that made them
speed up when a light source was visible and slow down otherwise. The overall
behavior of the swarmers was an oscillating locomotion around the light source
(Fig. 3, left part). In the food foraging, too, the swarmers evolved behavior to

Beanbag Robotics: Robotic Swarms with 1-DoF Units 271

solve that problem (Fig. 3, right part) by accelerating and getting slower at
appropriate points in time. So in general, the simple swarmers were capable of
completing their tasks in both cases – but there remains a problem that needs to
be addressed: Individual swarmers can easily get lost if they move too far away
from the destination to sense it, or if it is occluded by obstacles.

6 Experiments with Swarmers in a Passive Membrane

A solution to the problem mentioned above is to create a passive, elastic mem-
brane around a group of swarmers. The swarmers can apply forces to the mem-
brane, and the resulting reaction forces are then applied to the swarmers in turn.
The overall swarm movement direction is then the direction in which the major-
ity of swarmers apply a force. In subsequent sections, we present a comparison
of the light search (this time with obstacles) and the food search – both with
swarmers in a membrane, and free swarmers.

Light Search. The swarmers had to get through a narrow gap to reach the
target light source, which was in addition partly occluded by another obstacle.
The swarm without the membrane did not evolve any successful behavior for
this task (see evolution statistics in fig. 5). Although each swarmer is as simple
as described, the swarm with membrane evolved a behavior which allowed it to
perform directed locomotion, avoid the obstacle, morph to get through the gap
and then reach and stay on the light source (Fig. 4). The controller of the light-
seeking swarm enclosed in a membrane did not need to evolve dynamics, even
though it had the opportunity. The more light a single swarmer sees, the faster
it moves, and if the sensed brightness surpasses a certain treshold, a swarmer
switches on its tail-light. This simple behavior implies that swarmers that are
able to see the goal accelerate in the direction of the goal and propagate the
signal to attract other swarmers that are not positioned to directly see the goal.

Fig. 4. Frames of the light searching swarm in a membrane with different obstacle
layouts. The swarmer colors represent the energy state of the swarmers: Blue means
that they are fully charged, black means that they have no energy, and their color
gradually changes from green to red while discharging. A yellow tail indicates a tail-light
turned on. The yellow object represents the light source, dark objects are obstacles.

272 D.M.M. Kriesel et al.

-500

0

500

1000

1500

2000

2500

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

2
1

0
0

0

2
2

0
0

0

2
3

0
0

0

2
4

0
0

0

2
5

0
0

0

Evaluations

C
o

ll
e

c
te

d
E

n
e

rg
y

 -
 D

is
ta

n
c

e
T

o
L

ig
h

tS
o

u
rc

e

With membrane

Without membrane

Fig. 5. Light search fitness plotted by number of evaluations. The error bars represent
the standard deviation.

Fig. 6. Frames of the food collecting swarm in a membrane. The green object is the
nest, the smaller orange objects are food objects. The food on the back of the swarmers
is shown if they carry any. A yellow tail marks a tail-light turned on.

Food Foraging. This experiment was also repeated using the membrane-
enclosed swarm. However, when looking at the evolution statistics (Fig. 7, left
pane) the swarm without membrane seemed to be more efficient. The reasons
for this effect are the following: When not contained in a membrane, individual
swarmers move much faster, so that when all swarmers are in the right region,
they can collect more food per time than the swarmers in the membrane. The
food foraging behavior of the membrane-enclosed swarm was to collect several
food items at a time and then return to the nest to deposit all of them simultane-
ously (Fig. 6), which is slower. But as free swarmers get lost over time, the swarm
without membrane gradually loses its efficiency, while the swarm with membrane
showed more robustness and reliability. The behavior of the evolved food for-
aging swarmer seems to follow the following rules: Whenever a swarmer sees a
food object, a nest or swarmer tail-light, it accelerates. Whenever a swarmer sees
a food object or another swarmer’s tail-light, it switches on its own tail-light.
However, seeing a nest does not cause a swarmer to switch on its tail-light. The
result is an oscillating locomotion between the nest and food objects, where the
swarmers are more likely to go to the food because of their tail-lights, which
they only switch on when they see food in order to attract others.

Beanbag Robotics: Robotic Swarms with 1-DoF Units 273

0

5

10

15

20

25

30

35

40

45
1

0
0

0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
1

0
0

0

1
2

0
0

0

1
3

0
0

0

1
4

0
0

0

1
5

0
0

0

1
6

0
0

0

1
7

0
0

0

1
8

0
0

0

1
9

0
0

0

2
0

0
0

0

2
1

0
0

0

2
2

0
0

0

2
3

0
0

0

2
4

0
0

0

2
5

0
0

0

Evaluations

F
o

o
d

 i
te

m
s

 b
ro

u
g

h
t

to
 t

h
e

 n
e

s
t

With membrane

Without membrane

0

1

2

3

4

5

6

1,0E+04 1,0E+05 1,0E+06

Number of simulation steps

C
o

ll
e
c
te

d
 f

o
o

d
 /
 1

0
0
0
 s

im
u

la
ti

o
n

 s
te

p
s

With membrane

Without membrane

Fig. 7. Left: Food search fitness plotted by number of evaluations. Right: Perfor-
mance of the evolved swarm with and without a membrane over longer periods of
simulation. Error bars represent the standard deviation.

Fig. 8. Left: Implementation of the directional friction approach. The thorns that
cover the surface cause directed friction, while one of the two parts vibrates along the
axis of a swarmer. Right: A more traditional approach. A pager motor turns a worm
gear that drives three rollers.

In all evolutionary runs (regardless of the specific goal) the swarmers, if put
into a membrane, evolved controllers which showed the capability to locomote
in an arbitrary direction as a collective behavior. In addition, no swarm ever
got lost during our experiments. Without membrane, both light search and food
foraging experiments were either impossible or unreliable over long time.

7 Physical Implementation

The simplified requirement of only forward, unsteerable motion, allows the con-
sideration of much simpler robot designs. For example, simple vibratory actu-
ation combined with non-symmetrical (directional) friction, can provide such
noisy forward motion. A physical prototype imitating this behavior can be seen
in fig. 8, where thorns create the directed friction and a pager motor provides
vibration. We suggest that this simplified behavior is more appropriate for micro-
fabrication than traditional robot designs. Another prototype capable of simple
forward motion [10] can also be seen in fig. 8.

274 D.M.M. Kriesel et al.

8 Conclusions and Future Work

We presented a simple swarmer that is only capable of noisy forward locomotion.
Using a passive elastic membrane, we showed that this simple behavior can
be channeled to achieve a variety of complex behaviors that are traditionally
accomplished using significantly more complex individual swarmers. We showed
a robotic system that is highly redundant. It is also morphable and capable of
robust, relatively complex behavior. Furthermore, it is variable in size by two
factors (the size of every swarmer and the number of swarmers in the membrane),
and capable of directed locomotion even though the individuals are not. The
agility of locomotion achieved by an artificial robotic swarm demonstrated in
this paper, opens the door to a concept of ”beanbag” robotics: Simple swarmers
in a membrane. Ultimately, a robotic system consisting of large numbers of very
small swarmers in a membrane could behave almost like a liquid, able to freely
change its overall shape while moving in any desired direction.

References

1. Camazine, S.: Self-Organization in Biological Systems. Princeton University Press,
Princeton (2003)

2. Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T., Baldassarre, G., Nolfi,
S., Deneubourg, J., Mondada, F., Floreano, D., et al.: Evolving Self-Organizing
Behaviors for a Swarm-Bot. Autonomous Robots 17(2), 223–245 (2004)

3. Nouyan, S., Dorigo, M.: Path formation in a robot swarm. Technical Report
TR/IRIDIA/2007-002, Brussels, Belgium (February 2007)

4. Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. Farnsbor-
ough Hants: Ministery of Aviation, Royal Aircraft Establishment (1965)

5. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1996)

6. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-organizing Machines. MIT Press, Cambridge (2000)

7. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review 65, 386–408 (1958)

8. Kriesel, D.: A brief introduction on neural networks (2007)
9. Lipson, H.: A Relaxation Method for Simulating the Kinematics of Compound

Nonlinear Mechanisms. ASME Journal of Mechanical Design 128, 719 (2006)
10. Sitti, M.: Microscale and nanoscale robotics systems – Characteristics, state of the

art, and grand challenges. IEEE Robotics and Automation Magazine 14(1), 53–60
(2007)

Bl̊atAnt: Bounding Networks’ Diameter with a

Collaborative Distributed Algorithm�

Amos Brocco, Fulvio Frapolli, and Béat Hirsbrunner

Department of Informatics, University of Fribourg, Switzerland
{amos.brocco,fulvio.frapolli,beat.hirsbrunner}@unifr.ch

Abstract. In this paper we describe Bl̊atAnt, a new algorithm to create
overlay networks with small diameters. Bl̊atAnt is a fully distributed
and adaptive algorithm inspired by Ant Colony Optimization (ACO),
which targets dynamic and evolving networks without requiring a global
knowledge. Simulation results show that our approach results in networks
with a bounded diameter. This algorithm, implemented and empirically
tested, will be the foundation of a fully decentralized resource discovery
mechanism optimized for networks with small diameters.

1 Introduction

The “small-world phenomenon”, first observed during social studies by Stan-
ley Milgram in the 1960’s [1], reveals that people are linked by short chains of
acquaintances; that observation gave birth to the myth of “six degrees of separa-
tion”. Although not all experiments done by Milgram were successful, the inter-
est on the topic increased, and through further research many other real-world
networks (such as plane routes, power grids, etc.) were found to be instances
of small-world networks. In mathematics, small-world problems concern graph
theory and the distance (number of edges) between vertices in a graph. Research
focuses on modeling such graphs, and reproduce their main characteristics, such
as short diameters1. In computer science, being able to reach any node following
a short path is particularly interesting in distributed systems such as P2P net-
works or grids, even without implementing all features of small-worlds. Resource
discovery is a good example of a problem that benefits from short paths.

This paper presents Bl̊atAnt, a distributed algorithm that augments an ex-
isting network with a minimal number of new logical links in order to minimize
its diameter. The algorithm will be applied to a grid system to support efficient
monitoring and resource discovering; in particular, by lowering the network di-
ameter, we aim at being able to query virtually every peer on the network in a
minimal number of hops. Our contribution is based on the collaboration between
different types of mobile agents inspired by ants. In contrast to some existing
algorithms, the one we detail in this paper does not enforce a fixed topology,
� Research supported by the Swiss Hasler Foundation (“ManCom Initiative”, project

Nr. 2122).
1 The diameter of the graph being the maximum of all shortest paths’ lengths.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 275–282, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

276 A. Brocco, F. Frapolli, and B. Hirsbrunner

is completely distributed and decentralized, and does not require any kind of
global knowledge of the network.

The rest of this paper is organized as follows: section 2 presents research in
the topic of graph augmentation algorithms, and resource discovery in small-
diameter networks. Section 3 presents a description of the underlying rules used
in the algorithm. Section 4 details the Bl̊atAnt algorithm. Section 5 provides an
empirical evaluation of the distributed algorithm in static and dynamic scenarios.
Finally, section 6 presents conclusions on the work done and some insights on
future research directions.

2 Related Works

In our vision, the Bl̊atAnt2 algorithm is the base for a fully decentralized resource
discovery protocol that exploits the small-diameter of the network.

Although there exist various models for generating small-worlds or networks
with simply a bounded diameter, see for example [2], there are only very few
distributed algorithms to achieve what is commonly called small-worldization of
a generic network. One of these few examples is [3], which proposes a distributed
algorithm for the construction of networks with small diameter by adding a
single additional link to each node. Even though this algorithm is not directly
comparable to the work presented in this paper, it shows that decentralized
construction of small-diameter networks based only on local information of the
original topology is indeed possible.

By turning the focus to research done on P2P and grid networks, it is possible
to find many distributed systems [4,5] that try to keep short distances between
nodes in overlay networks even without referring them explicitly as small-worlds.
These solutions are generally geared toward the problem of resource discovery,
and the efficient routing of queries.

Current distributed solutions are commonly based on two techniques: distrib-
uted hashtables (DHTs) and flooding. Whereas resource discovery using DHTs
[4,5] forces structured networks in order to optimally partition the resource space
and intelligently route queries to nodes that are likely to store the desired infor-
mation, flooding is used mostly in unstructured networks and from a simplistic
point of view, it involves querying as many nodes as possible.

In a more general way, the problem of decentralized search in small-world net-
works has been analyzed in [6,7], and some examples of construction of overlay
networks with small-world properties are reported. Other approaches [8,9,10],
let the small-world phenomenon emerge by clustering peers with similar infor-
mation, whereas [11] constructs a small-world overlay network to improve the
availability of resource under heavy loading. As pointed out in [12], hierarchi-
cal solutions work well for static content, but typically suffer from the mutable
and heterogeneous nature of resources shared in a grid. Thus, resource discovery
in unstructured and dynamically evolving networks is usually performed using
2 From Harald Bl̊atand, the king thought to have reunited Denmark, Norway, and

Sweden under a unique kingdom.

Bl̊atAnt: Bounding Networks’ Diameter 277

flooding algorithms. The detailed analysis on flooding mechanisms in [13] reveals
that a requirement to avoid large network overheads is to limit the search space
and prevent forwarding multiple copies of the same query. An a priori knowl-
edge of the diameter may be used to restrict the maximum distance traveled by
queries, thus limiting one of the problems of flooding.

In the same spirit, the Bl̊atAnt algorithm constructs and maintains an overlay
network with short diameter, to provide a foundation for an optimized flooding-
based resource discovery mechanism. In contrast to similar approaches, the con-
struction step is completely separated from the resource discovery task, and it
is independent from the underlying topology, the distribution of the resources,
and their type. This way, beside resource discovery, other kind of distributed
algorithms benefiting from the small diameter can be implemented.

3 General Idea

The Bl̊atAnt algorithm is meant to be executed in a distributed way on a network
which will be represented, without loss of generality, as a finite graph G. In this
section the general idea behind the proposed algorithm is introduced.

The goal is to augment an existing network (either physical or logical) with
a minimal number of additional logical links in order to bound its diameter into
a certain interval determined by a parameter D. For the rest of this paper we
will refer to this process simply as rewiring. By applying these rewiring rules in
any order, for any undirected finite graph G, with a global knowledge and in
a finite number of steps, it is possible to produce a graph with a diameter less
than 2D − 1; a formal proof is provided in [14].

3.1 Connection and Disconnection Rules

Our algorithm rewires the network according to two simple rules. The first rule
is used to create an edge if the distance between two nodes is greater than a fixed
threshold. The second rule is used to remove those edges that do not contribute
to the solution. These rules only depend on a single integer parameter D > 0.

Rule 1 (Connection Rule). Let ni and nj be two non-connected nodes in the
network graph G, and dG(ni, nj) the minimal distance from ni to nj in G. We
connect ni to nj if:

dG(ni, nj) ≥ 2D − 1 (1)

Rule 2 (Disconnection Rule). Let ni and nj be two connected nodes in the
network graph G, i 	= j. Let G′ ← G \ {ni}, and Ni be the set of all nodes
adjacent to ni. Node ni is disconnected from nj ∈ Ni if:

∃ nk ∈ Ni, k 	= j : dG′(nj , nk) + 1 ≤ D (2)

From the definition of Rule 2 it is clear that, for D > 2, the resulting graph has
a clustering coefficient equal to zero. In other words, graphs created with our
algorithm will not have full small-world characteristics.

278 A. Brocco, F. Frapolli, and B. Hirsbrunner

4 Bl̊atAnt Algorithm Description

This section provides a description of the Bl̊atAnt data structures and algorithm.
The idea is to globally optimize the network through successive local optimiza-
tions done by single nodes. Each node in the network executes independently by
creating new ants and evaluating the creation or deletion of links; its actions are
based only on local information about other nodes, which is updated by mean
of ants wandering across the network. A detailed description of the algorithm is
provided in [14].

4.1 Node Data Structures

The algorithm requires each node ni to maintain some data structures containing
local information and data produced during the execution.

Alpha Table αi. Each node ni has a αi table which is used to store local
information about the network. This table is constantly updated by mean of
the information gathered through the activity of ants. As the table has a fixed
maximum size, old information is purged from the table depending on the time it
was last updated. Each entry contains information about another node nj , j 	= i,
such as the estimated distance, neighbors, local time, and remote time.

Beta and Gamma Pheromone Trails. Ants coming from nj increase the
pheromone concentration βi[nj] on ni. If this pheromone evaporates completely,
nj is assumed to be dead, and a disconnection procedure is initiated. Conversely,
when an ant moves from ni to a neighbor nj , trail γi[nj] is reinforced; trails
with high concentration becomes less desirable, thus a complete coverage of the
network is ensured.

4.2 Discovery, Link and Unlink Ants

We distinguish three species of ants: Discovery Ants, used to collect and spread
information about the network, Link Ants, used to perform connections between
two nodes, and Unlink Ant, used to disconnect nodes.

At regular intervals, with some probability each node generates a new Dis-
covery ant. This, combined with a maximum ant lifetime (number of wandering
steps), regulates the ant population and prevents complete extinction in the
event of node or network crashes.

Regardless of their species, all ants can only access local pheromone trails
and information, and remember the details of the node nj where they come
from (i.e. neighbors Nj , and timestamp tj). Information about the last visited
node is handed out to the current node and used to update the Alpha table.
Ants have a limited lifespan that is determined by their mission.

4.3 Frozen Connections

As methods to recover from network disconnection have not yet been imple-
mented in the algorithm, to avoid accidentally disconnecting the network, we

Bl̊atAnt: Bounding Networks’ Diameter 279

freeze user-created links (including links existing before the execution of the
algorithm), i.e. we do not allow the algorithm to remove them.

4.4 Timing and Pheromone Reinforcement and Evaporation

Each node ni maintains a logical time ti proportional to the number of incom-
ing and outgoing ants. Using such a logical time instead of real time regulates
pheromone evaporation according to the traffic, and prevents nodes with limited
ant flows from clearing their information too quickly.

4.5 Algorithm Phases

The algorithm is divided in four phases: inform, evaluation, connection, and
disconnection. The inform phase is executed continuously by the discovery ants
while moving across the network. At regular intervals, each node evaluates if
new connections need to be made and if existing connections are redundant, and
can be removed. For the rest of this section, we describe the algorithm from the
perspective of a node ni.

Inform Phase. During the inform phase, discovery ants collect information
and pass it to each visited node ni, updating αi.

Evaluating a Connection. To determine if new connections are necessary, a
node has to evaluate its distance to other nodes, and check if Rule 1 applies.
Since this process is based only on local information, the first step is to construct
a graph G̃ using the information available in the αi table and the neighbor set
Ni. Then, the distance dG̃(ni, nj) ∀nj ∈ G̃ \ {ni} is computed. For each node nj

satisfying condition (1), a connection procedure is initiated by sending a Link
Ant from node ni to nj .

Evaluating a Disconnection. The process of evaluating a disconnection is
similar to the one used for a connection procedure, but it depends on Rule 2.
A graph G̃ based on αi and Ni is constructed, but because frozen connections
cannot be removed an additional restricted neighbor set N ′

i is used beside Ni.
N ′

i is defined as N ′
i ← Ni ∩Λ \ {nj ∈ Ni | link from ni to nj is frozen}, where Λ

contains all valid keys found in the alpha table. Thus, N ′
i is the set of all neighbors

with a non-null entry in the alpha table, and whose connection with ni is not
frozen. For each node in nj ∈ N ′

i , the distance dG̃(nj , nk) ∀nk ∈ Ni \ {nj}, is
computed, and condition (2) is checked. Eventually, disconnection of a node is
achieved by sending an Unlink Ant.

Connection and Disconnection Procedures. A node ni connects to another
node nj by first adding nj to Ni and then updating the information in the αi

table. Conversely, disconnection from a node nj is performed by first removing
nj from the local neighbor set Ni, thus preventing Discovery ants from migrating
to nj .

280 A. Brocco, F. Frapolli, and B. Hirsbrunner

5 Evaluation

To evaluate the Bl̊atAnt algorithm, we conducted simulations on different topolo-
gies (including dynamic ones). We have tested our algorithm with the following
topologies: a path graph of 1024 nodes, a 2D grid of size 32x32, a hypercube of
1024 nodes, and a LAN of 1281 nodes 3. For each scenario, a simulation run con-
sisted of 1280 iterations, where an iteration corresponds to a complete migration
of the entire population of ants4. Each run was executed 42 times; details on the
parameter values used during all tests, as well as additional results can be found
in [14]. We present both maximum standard deviation σmax of all topologies at
the 1280th iteration, and the maximum mean standard deviation σ′

max over all
iterations.

Fig. 1. Convergence of the diameter Fig. 2. Number of edges

Convergence. Figure 1 shows the evolution of the network diameter in the
four considered scenarios (σmax = 0.32, σ′

max = 1.16). The diameter converges
exponentially under the upper bound 2D − 1 = 11, to a value close to D = 6.
The LAN 1281 topology takes more iterations because of its lower degree of
connectivity, forcing ants to a longer exploration before nodes with a sufficient
distance are found.

Graph Complexity. A desired property of networks generated by our algo-
rithm is not only small diameters but also a minimal number of edges. We
evaluate the minimality of the solution by computing the number of edges dur-
ing the execution. Results are shown in Figure 2 (σmax = 51.85, σ′

max = 91.24).
By comparing this result with Figure 1 it is possible to notice that the number
of edges stabilizes as soon as the diameter reaches its minimum.

Network Load. Figure 3 shows the number of ants created by the algo-
rithm during its execution, which can be used to estimate the network load
3 https://networkx.lanl.gov/browser/networkx/trunk/doc/examples/lanl.edges
4 Typical execution time per iteration is 200 ms for a population of 500 ants in a 1024

nodes topology on a dual-core 2 GHz.

Bl̊atAnt: Bounding Networks’ Diameter 281

Fig. 3. Ant population size Fig. 4. Dynamic scenario

(σmax = 21.97, σ′
max = 21.62). Each topology starts with roughly the same pop-

ulation of Discovery ants, which can be estimated to 15% of the total number
of nodes. When the rewiring process begins, multiple Link and Unlink ants are
instantiated. As soon as an optimal diameter is found, the population starts to
decrease.

Dynamic Networks. Although the Bl̊atAnt algorithm does not implement any
mean of preventing network partitioning when a node disconnects or crashes, we
propose an initial test of its behavior in dynamic networks. For that purpose
we used an initial path topology consisting of 100 nodes: every 250 iterations
a chain of 25 nodes is added to a random node in the graph, and every 50
iterations a node is removed. Figure 4 shows the evolution of the diameter: a
minimal diameter is restored in about 100 iterations after a chain was added.

6 Conclusion and Future Works

In this paper we presented Bl̊atAnt, a collaborative and distributed algorithm
inspired by ACO, to bound the diameter of a network without requiring a global
knowledge. The algorithm uses different species of ants with different tasks in or-
der to collect and propagate information across the network, and to create and
remove links. Pheromone trails are used to direct ants toward underexploited
paths, and to detect the departure of adjacent nodes. Simulations on different
topologies validated the behavior of the algorithm in a fully distributed environ-
ment. Furthermore, when applied to an evolving network, the adaptive nature
of the algorithm illustrated its ability to rapidly control the diameter.

There are several issues that are worth further investigation. First, a thought-
ful analysis of the algorithm in large scale networks would allow us to validate its
scalability. Additionally, although the algorithm performed well in the simulated
dynamic network, full fault-tolerance is still lacking.

In conclusion, we believe Bl̊atAnt can be a foundation for a wide range of
distributed algorithms that will exploit the network’s shallowness, for example,
a flooding based resource discovery, or an optimized network monitoring.

282 A. Brocco, F. Frapolli, and B. Hirsbrunner

References

1. Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)
2. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: Pro-

ceedings of the 32nd ACM Symposium on Theory of Computing (2000)
3. Duchon, P., Hanusse, N., Lebhar, E., Schabanel, N.: Towards small world emer-

gence. In: SPAA 2006: Proceedings of the 18th annual ACM symposium on Paral-
lelism in algorithms and architectures, pp. 225–232. ACM, New York (2006)

4. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. SIGCOMM Comp. Com. Rev. 31(4), 161–172 (2001)

5. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: Proceedings of the
2001 ACM SIGCOMM Conference, pp. 149–160 (2001)

6. Kleinberg, J.: Complex networks and decentralized search algorithms. In: Proceed-
ings of the International Congress of Mathematicians (ICM) (2006)

7. Sandberg, O.: Searching a small world. Master’s thesis, Chalmers University (2005)
8. Zhang, H., Goel, A., Govindan, R.: Using the small-world model to improve freenet

performance. In: INFOCOM 2002. 21st Annual Joint Conference of the IEEE Com-
puter and Communications Societies, vol. 3, pp. 1228–1237 (2002)

9. Akavipat, R., Wu, L.S., Menczer, F.: Small world peer networks in distributed web
search. In: WWW Alt. 2004: Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, pp. 396–397. ACM, New
York (2004)

10. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. In: Proceedings of Designing Privacy En-
hancing Technologies: Workshop on Design Issues in Anonymity and Unobservabil-
ity, pp. 46–66 (July 2000)

11. Hui, K.Y.K., Lui, J.C.S., Yau, D.K.Y.: Small-world overlay p2p networks: construc-
tion, management and handling of dynamic flash crowds. Comput. Netw. 50(15),
2727–2746 (2006)

12. Iamnitchi, A., Foster, I.T.: On fully decentralized resource discovery in grid en-
vironments. In: Lee, C.A.(ed.). LNCS, Vol. 2242, pp. 51–62. Springer, Heidelberg
(2001)

13. Dimakopoulos, V.V., Pitoura, E.: On the performance of flooding-based resource
discovery. IEEE Trans. Parallel Distrib. Syst. 17(11), 1242–1252 (2006)

14. Brocco, A., Frapolli, F., Hirsbrunner, B.: Shrinking the network: The blatant algo-
rithm. Technical Report 08-04, Department of Informatics, University of Fribourg,
Fribourg, Switzerland (April 2008), http://diuf.unifr.ch/pai

http://diuf.unifr.ch/pai

Dependency by Concentration of Pheromone

Trail for Multiple Robots

Ryusuke Fujisawa1, Shigeto Dobata2, Daisuke Kubota1,
Hikaru Imamura1, and Fumitoshi Matsuno1

1 The University of Electro-Communications, Tokyo, Japan
{fujisawa,kubota,hikaru0420,matsuno}@hi.mce.uec.ac.jp

2 The University of Tokyo, Tokyo, Japan
dobatan@dolphin.c.u-tokyo.ac.jp

Abstract. In this paper, we discuss the concentration dependency of
pheromone communication in swarm robotics. Instead of a pheromone
trail and the insect antenna, we used ethanol and an alcohol sensor. This
experimental system has a trade-off problem; high concentrations of the
pheromone yield high signal strength but the signal duration is short,
while low pheromone concentrations yield low signal strength but a long
signal duration. We examined the optimal pheromone concentration for
a swarm of robots. For this purpose, we developed a swarm behaviour
algorithm and swarm robots that communicate using a pheromone trail.
In addition, we discuss the effects of the pheromone concentration.

1 Introduction

A pheromone is any chemical or set of chemicals produced by a living organism
that transmits a message to other members of the same species [1]. There are
two types of pheromone: releaser pheromone (sexual, alarm, trail and aggregation
pheromones) and primer pheromones (queen substances) [2]. In this study, we
focus on “trail pheromones” for communication. A swarm is constructed by a
large number of agents, and can search for and collect multiple objects. The
ants use the trail pheromone to forage for prey. This communication method is
chemical, local, indirect and plastic. The trail pheromone is a volatile substance,
and evaporates over time.

Several studies using real or virtual pheromones have been reported previ-
ously. Sugawara et al. [3] and Garnier et al. [4] achieved the foraging behaviour
of ants using a swarm of robots and a virtual pheromone (with a projector and
screen). These studies represented a well-conceived measurement system. Phe-
romone diffusion is an important factor in real pheromone studies, and is a very
difficult problem. To adjust the duration of the pheromone signal, the concen-
tration of the pheromone should be changed or it should be mixed some other
substance(s). In addition, there are few advantageous chemical sensors. The use
of a virtual pheromone solves these problems. Shimoyama et al. [5] achieved
pheromone tracking behaviour using the real insect antenna and pheromone,

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 283–290, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

284 R. Fujisawa et al.

but they did not consider swarm behaviour, and the use of biomaterials is dif-
ficult for swarm robotics. Purnamadjaja et al. [6] studied swarm robots that
communicate using two real chemical substances. The latter regulates a gas sen-
sor in a refined way. However, only one robot secretes the pheromone, so this
system involves only one-sided communication.

In this study, we focused on the concentration of the pheromone when robots
search for objects and attract other robots. We constructed a swarm behaviour al-
gorithm and developed a swarm of robots that communicate using the pheromone
trail. In addition, the effect of the pheromone concentration is also discussed.

2 Swarm Behaviour Algorithm

1P

3P

4P

1P

2P

1S

1E
1S

1S

2E
2S

1S

3E
3S

1P

3P

4P

1P

2P

1S

1E
1S1S

1E
1S1S

1S

2E
2S

1S

3E
3S

Fig. 1. State transition rule
for swarm behaviour

We simplified the algorithm of Kurumatani [7] to at-
tract another agent. In this paper, the experimental
field was limited, and included only agents, prey and
nest, similarly to the study of Kurumatani [7]. All
agents can detect the direction of the nest, which
we feel is a reasonable assumption. For example,
fire ants (S. invicta) have been shown to detect the
location of the nest based on the direction of the
sun [8].

The algorithm is described by the deterministic
finite automaton as shown in Fig. 1. To design this
algorithm, we defined 3 states Si(i = 1, 2, 3), 4 per-
ceptual cues (stimuli) Pi(i = 1, · · · , 4) and 3 effector cues (actions) Ei(i = 1, 2, 3).
We assume that there are many agents in the field, and that all agents can de-
tect the location of the nest as in the case of ants. As shown in Fig. 1, the
agent whose state is Si selects the action Ei. If the agent in state Si detects
the perceptual cue Pj , the state of the agent is transited to Sk. The details of
the internal states of the robot, perceptual cues and effector cues are as follows.
Si: S1, Search (Agent does not have any information of the prey); S2, Attrac-
tion (Agent has the location information of the prey); S3, Tracking (Agent has
only the direction information of the location of the prey). Pi: P1, Contact with
prey; P2, Nest arrival; P3, Presence of pheromone; P4, Timeout occurs. Ei: E1,
Random walk; E2, Secrete pheromone along the nest direction; E3, Follow the
pheromone path toward the prey.

In [7], Kurumatani proposed a global-level algorithm of the attraction behav-
ior, so it is difficult to consider collision of robots. Hence, we should model the
collision phenomena of robots. We propose action rules when the robot detects
the collision as shown in Table 1. The traffic jam problem on the pheromone
trail is solved by following algorithm.

Agents have different actions after the collision. The internal state of the
agent is detected by itself. The purpose of the swarm is “attracting other agents
using the pheromone”. So we introduce priority of the action of agents by its
internal state. We define the order of high priority as following; 1) S2 (stopping

Dependency by Concentration of Pheromone Trail for Multiple Robots 285

Table 1. The action rules when an agent detects collision

State of agent Collision object Action of agent after collision

S1
agent or wall disengage from collision point and turn around
prey lay down the pheromone trail

S2
agent temporary stop
prey or wall (out of the model)

S3
agent or wall disengage from collision point
prey lay down the pheromone trail

and waiting for avoidance of other agent.), 2) S3 (acting by the rule in Table 1
and tracks the pheromone trail.), 3) S1 (avoiding other agent.). After collision,
a high priority agent makes the action based on the rule in Table 1, and a low
priority agent stops for a given time or avoids the high priority agent and then
makes the action.

3 Experimental Robot

To demonstrate the validity of the proposed swarm behaviour algorithm and
the effects of the pheromone concentration, we developed a robot designated
ARGOS-01. Figure 2 shows a photograph of the robot and its construction of
robot. This is a fully autonomous robot comprised of 3 microcomputers and
sensors as shown in Fig. 3.

We used PSoC (Programmable System-on-Chip) supplied by Cypress Semi-
conductor Corp. These microcomputers are connected with each other by I2C
(Inter-Integrated Circuit). Two alcohol sensors are used as pheromone sensors
to trace the pheromone trail. Eight LEDs and 8 Cds are used to find the neigh-
bouring prey. Eight switches detect collisions with other robots, the prey or the
wall as touch sensors. Seven infrared phototransistors detect the direction of the
nest consisting of infrared lamps.

Wheel

Castor

Ethanol tank

Motor

Battery

Micropump

Main system board

Alcohol sensor

Touch sensor

& LED・Cds unit

Nest sensor

Fig. 2. Construction of ARGOS-01

H/L

Voltage Voltage

H/L

Voltage H/L

PWM

I2C

I2C

PSoC (master)

CY8C29466

PSoC (slave1)

CY8C29466

Motor drive unit

TA8440HQ

Alcohol Sensor

NGSX-03 ×2

Nest Sensor

PT381F ×7

Touch Sensor

AB-15AV ×8

Cds unit

Cds×8

Motor

DN22S

Pump

CM-15W

LED unit

LED ×8

PSoC (slave2)

CY8C29466

Fig. 3. Outline of the system of
ARGOS-01

286 R. Fujisawa et al.

The robot has 2 active wheels and 4 castors. Its active wheels can be controlled
independently, so the robot can move freely on a flat plane. The specifications
of ARGOS-01 are as follows: body diameter, 150[mm]; height, 195[mm]; weight,
1.26[kg]; and maximum speed, 0.1[m/s].

The robot detects 4 perceptual cues (P1, · · · , P4). The robot has 4 sensors:
Touch sensor (P1), Nest sensor (P2), Alcohol sensor (P3) and Internal timer
(P4). The robot detects contact between with other objects (other robots, prey
and wall) via the touch sensor. In addition, the robot detects the direction and
distance to the nest with the nest sensor. The robot detects its absolute position.
In this study, we used an electric infrared lamp as the nest. In addition, we used
ethanol (C2H5OH) as the pheromone. The ethanol volatilises at normal tem-
perature, and we expected that the chemical, plastic, indirect and local effects
would be similar to those of a real pheromone.

Pheromone trail of alcohol

Robot

Driven wheel

π/6

Fig. 4. Behavior on the pheromone trail

The robot should perform 3 ac-
tions (E1, E2, and E3). To drip the
ethanol and lay down the phero-
mone trail, we used a micropump,
and the robot had an alcohol tank
in place of the secretory glands
of an insect. Alcohol sensors were
used to detect the ethanol, and the
robot traced the pheromone trails
by a mechanism emulating the behaviour of ants. The robot communicates with
the other robots indirectly via the pheromone trails. In the actual robotic system,
ethanol is used as a substitute for the pheromone. The robot ejects the phero-
mone from the bottom of the body when the robot is in the attraction state (S2).
The ethanol is perceived as a pheromonal perceptual cue by the other robots in
state S1 via the ethanol sensors, which are used to detect and trace the phero-
mone trail. The tracing mechanism is analogous to that of ants, which detect
pheromone trails using two right and left antennae [9]. When the right (left)
sensor detects the alcohol, the left (right) wheel is driven, and the robot moves
to the right (left) as shown in Fig. 4. To imitate this action, two ethanol sensors
were installed on the bottom of the body of the robot. The attached angles are
π/6 from the direction of forward movement as shown in Fig. 4.

4 Experiment

The proposed behaviour algorithm has been implemented in a swarm of robots.
Experiments were performed to verify the effects of the pheromone concentra-
tion. The number of robots in the swarm was 10, and the size of the field was
1800[mm]×1800[mm]. A nest was set at one corner, with the prey set at the
opposite corner as shown in Fig. 5.

We monitored the state of the environment for 20 [min]. The ethanol con-
centration was set as 0, 25, 50, 75 and 100%, and the experiments were carried
out 10 times for each setting. The robot found the prey, changed its behaviour

Dependency by Concentration of Pheromone Trail for Multiple Robots 287

Fig. 5. Experimental field for
swarm of robots

and then went to the nest while laying down
a pheromone trail. When the robots de-
tected the prey, they dripped the alcohol as
a pheromonal signal, and the temperature of
the dripped part was lower than the initial
temperature.

Figure 6 shows a photograph of the normal
camera and the temperature distributions of
the field determined by thermography. At
t = 0[min] (Fig. 6-A, A’), 10 robots were put
in the experimental field. At t = 10[min] (Fig.
6-B, B’), multiple robots laid down and rein-
forced the pheromone trail.

Fig. 6. Snapshots of experimental re-
sults

0

5

10

15

20

25

30

Concentration of pheromone trail [%]

N
u
m
b
e
r
o
f
ti
m
e
s

Laying down 11.9 3.6 3.5 4.6 10

Reinforcing 0 15 20.9 15.6 8.4

Error 0 3.1 5 2.7 2.2

Total 11.9 21.7 29.4 22.9 20.6

0% 25% 50% 75% 100%

Fig. 7. Dependency by concentration of phero-
mone trail

Figure 7 shows the relationship between the pheromone concentration and
the performance of the swarm. These data are the averages of 10 experiments.
The pheromone concentration is shown on the horizontal axis, while the number
of times that agents made contact with the prey is shown on the vertical axis.
“Laying down” is when the internal state of the agent transits to S2 (Attraction)
from S1 (Search), while “Reinforcing” is the action in which the internal state
of the agent transits to S2 from S3 (Tracking). “Error” means that “Laying
down” or “Reinforcing” failed. In addition, “Total” is the summation of “Laying
down”, “Reinforcing” and “Error”. As shown in Fig. 7, the number of times that
agents made contact with the prey was lower at a pheromone concentration of
0% than at the other concentrations examined. At 0% pheromone, the robots
generated the pheromone trail a total of 11.9 times, and at 25%, 50%, 75%
and 100% pheromone, the robots generated the pheromone trail 21.7, 29,4, 22.9
and 20.6 times, respectively. These observations indicated that the pheromone
communication was an effective method for this search task.

288 R. Fujisawa et al.

5 Discussion

We used ethanol instead of a pheromone in this system. The ratio of the mixture
of ethanol and water (H2O) had a trade-off problem for the robots; a high concen-
tration of the pheromone (ethanol) yielded high signal strength but the signals
were of short duration, while a low concentration of the pheromone yielded low
signal strength but the signals were of long duration. This trade-off is a very
interesting problem for the swarm. When a behavioural field is a narrow space,
a short signal duration is needed from the viewpoint of the dynamics problem.
If the signal duration is too long, the pheromone trail loses plasticity, and the
function for the dynamic problem is deteriorated. This example indicates that a
suitable concentration of the pheromone is needed.

When 100% pheromone was used, it was vaporised easily and the information
therefore did not remain in the experimental field for a long time and it was
difficult for robots to detect the pheromone. Thus, “Laying down” and “Rein-
forcing” became about the same. At 50% pheromone, the robots showed the
highest performance. These observations indicated that the performance of the
swarm of robots is influenced by the pheromone concentration.

In the system developed here, the pheromone trails constantly evaporate and
diffuse into the atmosphere, and are updated by the robots. This feature excels
in finding a solution to a dynamic problem. There are two possible methods of
increasing the performance of the swarm of robots: 1) increasing the amount of
the pheromone, or 2) increasing sensor sensitivity. However, when we used these
methods without sufficient thought, the ability of the swarm of robots related
to the dynamic problem was reduced as described previously.

The system presented here mimics the recruitment behaviour of social insects
- a form of communication that brings nestmate workers to the same place where
collective action (foraging or nest site movement) is required [10]. A typical ex-
ample has been reported in foraging recruitment behaviour of fire ants (Solenop-
sis) [11]. During recruitment and subsequent collective actions, trail following or
recruitment pheromones (“trail pheromones”) are of great importance in mass
communication.

Our results indicated that there is an optimal moderate ratio of trail phe-
romones when secreted with the non-pheromone component in mixed solution.
In ants, the trail pheromones are mainly secreted from the poison gland, Du-
four’s gland or hindgut, which are also known to be sources of a number of
chemicals [12]. These chemicals are sometimes highly specialised pheromones
in some social insects with complex communication systems. Therefore, trail
pheromones are often secreted along with chemicals that do not have trail phe-
romone activity, which may affect the volatility of the trail pheromones. Gener-
ally, the volatility of chemicals in mixed solution is proportional to the number
of molecules of the chemicals on the surface of the solution. Thus, the volatility
of trail pheromones becomes lower than that in pure form. Although our system
employed a water-ethanol mixture, and the details of volatility are affected by
molecular interactions among the components, the global trend must hold in any

Dependency by Concentration of Pheromone Trail for Multiple Robots 289

pheromone system using mixed solutions. The physicochemical properties of real
trail pheromone mixtures should be investigated in future studies.

Previous studies that identified trail pheromones assayed only the activity of
the chemicals artificially dissolved in organic solvents (e.g., acetone or hexane,
which volatilise very quickly), and did not consider volatility in varying concen-
trations in “bio-solvents”. Some studies indicated that intermediate quantities
of trail pheromone molecules are optimal for trail following [13] [14]. These re-
sults are discussed in the context of sensitivity of the insect antennae to the
pheromone: a larger quantity results in too broad a pheromone field to follow
a discrete trail, and smaller quantities result in failure of trail detection. Our
results provided insight into the novel aspect of pheromone concentration, and
suggest that social insects evolved the optimal intermediate ratio of trail phe-
romones in mixed solutions: higher concentrations have problems with regard
to volatility, while the lower concentrations are problematic for sensitivity. This
holds even for equal quantities of the molecules themselves.

Our results have several further implications. First, our system may have flex-
ibility in changing environments. The recruitment and subsequent trail following
systems should be robust against fluctuations in the external microenvironment,
such as temperature, humidity, and surface substrates. In species in which trail
pheromones are single active substances, pheromone concentration in mixed so-
lutions may provide a way to deal with such changing environments by altering
the concentration of the trail pheromone. Real biological systems should be ex-
plored along with investigation of the flexibility of our robot systems.

Second, in some social insects, trail pheromones are known to be multicompo-
nent chemicals. This has been discussed in the context of guaranteeing species
specificity or synergism [12]. In some species, the optimal trail following activity
is achieved with some intermediate mixture ratio of the components [15] [16] [17].
Although each component has trail following activity in pure form in the above
examples, our system considering the volatility in mixtures may partially explain
this phenomenon.

Third, our results may explain why several ant species, which vary in life history
strategy, can use the same chemical as the trail pheromone. In the ant subfamily
Myrmicinae, alkylpyrazines secreted from the poison gland are often the source of
trail pheromones [18]; 3-ethyl-2,5-dimethylpyrazine is used frequently. Some phy-
logenetic constraints may explain the commonality, but these species seem to be
well-differentiated in life history strategies, such as foraging and nest relocation,
requiring fine-tuning of the trail pheromone activity. These species may use differ-
ent concentrations of the substances in mixed solution. Thus, further comparative
studies of pheromone concentration and life history strategies are required.

References

1. Karlson, P., Butenandt, A.: Pheromones (ectohormones) in insects. Annual Review
of Entomology 4, 39–58 (1959)

2. Matsuka, M., Kitano, H., Matsumoto, T., Oono, M., Gokan, N.: Biology of Insect.
Tamagawa university publishing (1992) (in Japanese)

290 R. Fujisawa et al.

3. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots
with virtual pheromone. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, vol. 3, pp. 3074–3079 (2004)

4. Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone
land: An experimental setup for the study of ant-like robots. In: Swarm Intelligence
Symposium, 2007. SIS 2007, 1-5 April 2007, pp. 37–44. IEEE, Los Alamitos (2007)

5. Shimoyama, I., Kanzaki, R.: Biological type micromachine. Journal of society of
biomechanisms 22(4), 152–157 (1998) (in Japanese)

6. Purnamadjaja, A.H., Russell, R.A.: Guiding robots’ behaviors using pheromone
communication. Autonomous Robots 23(2), 113–130 (2007)

7. Kurumatani, K.: Macro-model generation for emergent cooperative behaviors in
ant colony’s foraging (1) -a simple model case. Journal of the Japanese Society for
Artificial Intelligence 15(5), 829–837 (2000) (in Japanese)

8. Wilson, E.O.: Sociobiology. Sinsisakusya (1999) (in Japanese)
9. Hangartner, W.: Spezifitat und inaktivierung des spurpheromons von lasium fulgi-

nosus latr. und orientierung der arbeiterinnen im duftfeld. Zeitschrift für vergle-
ichende Physiologie 57, 103–136 (1967)

10. Wilson, E.: The Insect Societies. The Belknap Press of Harvard University Press,
Cambridge (1971)

11. Wilson, E.: Chemical communication among workers of the fire ant (Solenopsis
saevissima) (fr. smith). Animal Behaviour 10(1-2), 134–164 (1967)

12. Hölldobler, B., Wilson, E.: The ants. The Belknap Press of Harvard University
Press, Cambridge (1990)

13. Evershed, R., Morgan, E., Cammaerts, M.: 3-ethyl-2,5-dimethyl-pyrazine, the trail
pheromone from the venom gland of eight species of (Myrmica). Insect Biochem-
istry 12, 383–395 (1982)

14. Calenbuhr, V., Chrétien, L., Deneubourg, J.L., Detrain, C.: A model for os-
motropotactic orientation ii. Journal of theoretical Biology 158, 395–407 (1992)

15. Attygalle, A., Morgan, E.: Trail pheromone of the ant (Tetramorium caespitum) l.
Naturwissenschaften 70, 364–365 (1983)

16. Billen, J., Beeckman, W., Morgan, E.: Active trail pheromone compounds and trail
following in the ant (Atta sexdens sexdens) (hymenoptera, formicidae). Ethology,
Ecology and Evolution 4, 197–202 (1992)

17. Janssen, E., Übler, E., Bauriegel, L., Kern, F., Bestmann, H., Attygalle, A.B.,
Steghaus-Kovac, S., Maschwitz, U.: Trail pheromone of the ponerine ant (Lep-
togenys peuqueti) (hymenoptera: Formicidae): a multicomponent mixture of related
compounds. Naturwissenschaften 84, 122–125 (1997)

18. Billen, J., Morgan, E.: Pheromone communication in social insects: sources and
secretions. In: Vander Meer, R.K., Breed, M.D., Espelie, K.E., Winston, M. (eds.)
Pheromone Communication in Social Insects, pp. 3–33. Westview Press (1998)

Dissemination of Information with Fair Load

Distribution in Self-organizing Grids

Agostino Forestiero, Carlo Mastroianni, and Giandomenico Spezzano

Institute of High Performance Computing and Networking
ICAR-CNR, Rende, Italy

{forestiero,mastroianni,spezzano}@icar.cnr.it

Abstract. This paper presents an ant-inspired algorithm for building a
self-organizing information system of a Grid. Ant-inspired mobile agents
travel the Grid through P2P (peer-to-peer) interconnections and dis-
seminate “descriptors”, i.e., metadata information about available Grid
resources. Descriptors are reorganized and spatially sorted over the Grid,
thus facilitating resource management and discovery. Moreover, agents
distribute descriptors so as to respect the different capabilities of Grid
hosts: hosts with higher storage capacity are assigned a larger number
of descriptors than low capacity hosts. The effectiveness of the presented
algorithm is assessed by event-driven simulation which proves that the
simple operations performed by mobile agents successfully achieve both
descriptor reorganization and fair load distribution.

1 Introduction

Owing to the inherent scalability and robustness of P2P algorithms, several P2P
approaches have recently been proposed for resource organization and discovery
in distributed environments and specifically in Grids [1]. The main goal of these
approaches is to allow users to locate Grid resources, either hardware or software,
which have the required characteristics. This is reduced to the problem of finding
resource descriptors, which are metadata documents through which it is possible
to obtain information and access the resources. Descriptors are usually indexed
through bit strings, or keys that can have a semantic meaning (for example, each
bit may indicate if the resource focuses on a specific topic or provides a specific
functionality) or can be obtained through a hash function. In the latter case,
the hash function is often “locality preserving” [2], which assures that resources
having similar characteristics are associated to similar descriptor keys.

In this paper, we present an approach for the construction of a P2P-based
Grid information system, which is inspired by the behavior of some species of
ants that cluster items within their environment [3] [4]. The devised algorithm
is able to disseminate and reorder descriptors in order to facilitate and speed up
discovery operations. Replication and relocation of descriptors are achieved by
means of simple pick and drop operations performed by ant-like mobile agents.
These agents probabilistically copy and relocate descriptors with a tendency to
remove a descriptor that differs significantly from other descriptors in current

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 291–298, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

292 A. Forestiero, C. Mastroianni, and G. Spezzano

network neighborhood and place it where it is more similar to its neighbors.
These operations allow the possible initial equilibrium (if descriptors having
different keys are uniformly distributed among hosts) to be broken, and then
reinforce the spatial separation and ordering of descriptors.

The ant algorithm is an improved version of the algorithm published in [5].
The enhancement presented here takes into account the storage capacity of hosts,
and aims to cope with the problem of fairly distributing descriptors among hosts,
which is a critical issue for the efficient operation of P2P systems. To achieve
this objective, enhanced pick and drop operations are defined so as to facilitate
the pick operations in hosts with low storage capacity and the drop operations
in hosts with high storage capacity.

In summary, the presented algorithm concurrently achieves multiple objec-
tives: (i) it replicates and disseminates descriptors; (ii) it spatially sorts them,
so that descriptors with similar indexes are placed in neighbor hosts; (iii) it
adapts the distribution of descriptors to the storage capabilities of different hosts.
Moreover, thanks to the self-organizing nature of the ant-based approach, agent
operations spontaneously adapt to the ever changing environment, for exam-
ple to the joins and departs of Grid hosts and to the changing characteristics
of resources. In this paper, we present the results of an event-based simulation
analysis, which shows that the algorithm successfully achieves the mentioned
objectives.

2 Reorganization and Fair Distribution of Descriptors

As a peer connects to the network, with a given probability it generates a mo-
bile agent that will travel the Grid through P2P interconnections and offer its
contribution to the reorganization of descriptors. Whenever an agent arrives at
a new host, it operates as follows: (i) if the agent does not carry any descriptor,
it evaluates the pick probability function for every descriptor stored in this host,
so as to decide whether or not to pick this descriptor; (ii) if the agent carries
some descriptors, it evaluates the drop probability function for each carried de-
scriptor, so as to decide whether or not to drop it in the current host. The pick
and drop operations are driven by the corresponding probability functions that
are defined and discussed in the following.

The pick probability function, as well as the drop probability function dis-
cussed later, is defined starting from the similarity function f(d̄, R) reported in
formula (1). This function measures the average similarity of a given descriptor
d with all the descriptors d located in the visibility region R. The visibility region
includes all the hosts that are reachable from the current host with one hop. In
formula (1), Nd is the overall number of descriptors maintained in the region R,
and H(d, d̄) is the Hamming distance between d and d. B is the number of bits
that are contained in descriptor keys. The parameter α defines the similarity
scale [6]; here it is set to B/2, which is half the value of the maximum Hamming
distance between binary vectors having B bits. The value of f(d̄, R) assumes
values ranging between -1 and 1, but negative values are truncated to 0.

Dissemination of Information with Fair Load Distribution 293

f(d̄, R) =
1

Nd
·
∑
dεR

(1 − H(d, d̄)
α

) (1)

The probability of picking a descriptor d from the current host must satisfy two
basic requirements:

(i) it must be inversely proportional to the average similarity f(d̄, R), thus
obtaining the effect of averting a descriptor from co-located dissimilar descrip-
tors. As soon as the possible initial equilibrium is broken (i.e., descriptors having
different keys begin to be accumulated in different Grid regions), a further reor-
ganization of descriptors is increasingly driven, because the probability of picking
a dissimilar descriptor increases.

(ii) it must be inversely proportional to the storage capacity of the current
host. This assures that in steady conditions high capacity hosts store more de-
scriptors than low capacity hosts, thus respecting the different characteristics
of the hosts in a Grid. To cope with this requirement, each host must estimate
the average capacity of a Grid host or, more specifically, the average amount of
storage space that is offered by a host to store resource descriptors. Estimation
is achieved through an exchange of messages with neighbor hosts. Each host
assigns a reference value of 1 to the estimated average value and assigns itself a
storage index that is proportional to the amount of storage space that this host
offers to the network. For example, a host assigns itself a capacity index equal
to 5 if it offers an amount of storage space that is 5 times the estimated average
storage space offered by a generic host.

The pick probability function Ppick, reported in formula (2), is evaluated by
an agent for each descriptor d̄ stored in the local host, to probabilistically decide
whether or not to pick this descriptor. The value of Ppick is obtained as the
product of two factors. The first factor is inversely proportional to f(d̄, R), the
average similarity of the descriptor under consideration with all the other de-
scriptors stored in the visibility region R. The second factor takes into account
the capacity of the current peer Lpeer, and the average capacity of a generic
peer L, which is set to 1 as discussed before. The formula assures that it is more
probable to pick a descriptor if it is an outlier in the local region and/or if the
local host has less storage capacity then the estimated average.

Ppick =
(

kp

kp + f(d̄, R)

)2

·

⎛⎝ kpl

kpl + Lpeer−L

L

⎞⎠2

(2)

In the Ppick formula, the parameters kp and kpl can be tuned to modulate
the relative impact of the two factors. In particular, the parameter kp assumes
a value between 0 and 1 and can be used to tune the degree of similarity among
descriptors. In fact, the first factor of the pick probability function approaches 1
when f(d̄, R) is much lower than kp (meaning that d is extremely dissimilar from
the other descriptors) and 0 when f(d̄, R) is much larger than kp (meaning that
d is very similar to others descriptors). Here kp is set to 0.1, as in [3]. Conversely,
the value of kpl assumes a value greater than 1, to assure that the denominator
of the second factor is greater than 0. In the case that the value of Ppick value

294 A. Forestiero, C. Mastroianni, and G. Spezzano

exceeds 1, it is truncated to 1, which corresponds to having a 100% probability
of picking a very dissimilar descriptor and/or of picking a descriptor from a host
with very low capacity.

The pick operation can be performed with two different modes, copy and
move. If the copy mode is used the agent, when executing a pick operation,
leaves the descriptor on the current host, generates a replica of it, and carries
the new descriptor until it drops it into another host. Conversely, with the move
mode, an agent picks the descriptor and removes it from the current host. Each
agent first operates in the copy mode, than it switches to the move mode, in
order to prevent an excessive proliferation of replicas, which would hinder the
correct spatial sorting of descriptors. This mechanism is better described in [5].

After picking some descriptors, an agent must decide whether or not to drop
them in the hosts through which it passes. For each carried descriptor d̄, the
agent evaluates the drop probability function Pdrop, which as opposed to the pick
probability, must be: (i) directly proportional to the similarity function f(d̄, R),
i.e., to the average similarity of d̄ with the descriptors maintained in the visibility
region; (ii) directly proportional to the storage capacity of the current host. Pdrop

is defined in formula (3), which satisfies the two mentioned requirements. In (3),
the parameter kd is set to a higher value than kp, specifically to 0.5, in order
to limit the frequency of drop operations. This is useful to let the agents carry
descriptors to appropriate Grid regions, without dropping them too early. In the
same fashion as kpl in formula (2), kdl must be given a value higher than 1.

Pdrop =
(

f(d̄, R)
kd + f(d̄, R)

)2

·

⎛⎝ kdl

kdl + L−Lpeer
Lpeer

⎞⎠2

(3)

3 Performance Evaluation

The performance of the ant algorithm was evaluated with an event-based simu-
lator. A Grid network having a number of hosts Np equal to 2500 is considered.
Hosts are linked through P2P interconnections, and each host is connected to 4
peers on average. The topology of the network is built using the scale-free algo-
rithm defined by Albert and Barabasi [7], which incorporates the characteristic
of preferential attachment (the more connected a node is, the more likely it is
to receive new links) that was proved to exist widely in real networks.

Peers can go down and reconnect. The average connection time of a peer is
generated according to a Gamma probability function, with an average value set
to 100,000 seconds. To maintain a stable number of agents, the lifecycle of agents
is correlated to the lifecycle of peers. When joining the Grid, a host generates
an agent with a probability Pgen, and sets the life-time of this agent to its own
average connection time. This setting assures that the overall number of agents
is nearly equal to the number of peers times Pgen. In our experiments, Pgen is set
to 0.5, therefore the number of agents is about half the number of peers. Every
time a peer disconnects from the Grid, it discards the descriptors previously

Dissemination of Information with Fair Load Distribution 295

deposited by agents, thus contributing to the removal of obsolete descriptors.
The average time Tmov between two successive agent movements is set to 60
s, whereas the maximum number of P2P hops that are performed in a single
agent movement is set to 3. The number of resources published by each host is
obtained with a Gamma stochastic function with an average value equal to 15.
Resource descriptors are indexed with bit keys having B bits. Descriptor keys
are obtained through the application of a locality preserving hash function [2].
This guarantees that similar keys are given to descriptors of similar resources.

The effectiveness of the ant algorithm is evaluated through the spatial homo-
geneity function H . Specifically, for each peer p, the average homogeneity Hp

of the descriptors located in the visibility region of p, Rp, is calculated. This is
obtained, as shown in formula (4), by averaging the Hamming distance between
every couple of descriptors in Rp and then subtracting the obtained value from
B, which is the maximum Hamming distance. Thereafter, the value of Hp is
averaged over the whole Grid, as formalized in formula (5).

Hp = B − AV G{d1,d2εRp}(H(d1, d2)) (4)

H =
1

Np
·
∑

pεGrid

Hp (5)

The objective is to increase the homogeneity function as much as possible,
because it would mean that similar descriptors are actually mapped and ag-
gregated into neighbor hosts, and therefore an effective sorting of descriptors is
achieved. In [5], several performance results concerning the basic version of the
algorithm are discussed. The present work, however, focuses on the ability of the
enhanced version of the algorithm of achieving a satisfactory load distribution
among hosts that have different storage capabilities.

In the literature, the storage capacity of hosts is often assumed to be dis-
tributed according to some statistical distribution, for example, the Pareto dis-
tribution. Here we assume a simpler distribution, which facilitates a more accu-
rate and assessable analysis of our algorithm. Specifically, Grid hosts are divided
into two classes: low capacity and high capacity hosts. They can correspond to
ordinary personal computers and high capacity servers, respectively. It is as-
sumed that half the load of the system is equally shared among the hosts of each
class, and we vary the percentage of hosts that belong to the two classes. The
following notation is adopted: the pattern {H : L} means that H% (L%) of the
hosts are high (low) capacity ones, and that the load of each host is obtained
by sharing half the overall capacity of the system among the hosts of each class.
Following this notation, we analyzed the behavior of the algorithm with patterns
{10 : 90}, {20 : 80}, {30 : 70}, {40 : 60}, and {50 : 50}. Of course, the last case
corresponds to a scenario, used for comparison purposes, in which all the hosts
have approximately the same capacity.

A set of simulation experiments were performed to assess the distribution of
load obtained with our algorithm. In these experiments, the number of bits B in
resource descriptor indexes is equal to 4. Figure 1 shows that the work of agents

296 A. Forestiero, C. Mastroianni, and G. Spezzano

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 500000 400000 300000 200000 100000 0

O
ve

ra
ll

ho
m

og
en

ei
ty

 f
un

ct
io

n,
 H

Time(s)

{10 : 90}
{20 : 80}
{30 : 70}
{40 : 60}
{50 : 50}

Fig. 1. Overall homogeneity function vs. time, with different patterns of capacity
distribution

 0

 20

 40

 60

 80

 100

 600000 400000 200000 0M
ea

n
nu

m
be

r
of

 d
es

cr
ip

to
rs

 p
er

 p
ee

r,
 N

d

Time(s)

High capacity hosts

{10 : 90}
{20 : 80}
{30 : 70}
{40 : 60}
{50 : 50}

 0

 10

 20

 30

 40

 50

 600000 400000 200000 0M
ea

n
nu

m
be

r
of

 d
es

cr
ip

to
rs

 p
er

 p
ee

r,
 N

d

Time(s)

Low capacity hosts

{10 : 90}
{20 : 80}
{30 : 70}
{40 : 60}
{50 : 50}

(a) (b)

Fig. 2. Average number of descriptors that are stored in high (a) and low (b) capacity
hosts, with different patterns of capacity distribution. The factors kpl and kdl of pick
and drop probability functions are both set to 3.

makes the value of the spatial homogeneity function H increase from about B/2
to much higher values. After a transient phase, the value of H becomes stable: it
means that the system reaches an equilibrium state despite the fact that peers
go down and reconnect, agents die and others are generated, etcetera. In other
words, the algorithm adapts to the varying conditions of the network and is ro-
bust with respect to them. Figure 1 also shows that the trend of the homogeneity
function is similar for all the tested patterns of capacity distribution. Therefore,
the load distribution feature of the algorithm does not affect the accumulation
and reorganization of descriptors, which of course is a positive outcome.

The effectiveness of the load distribution approach is confirmed by Figure 2,
which shows the average number of descriptors stored in high and low capacity
hosts, with different capacity distribution patterns. The factors kpl and kdl of the
pick and drop probability functions (see Section 2) are both set to 3. Figure 2(a)
shows that, as the percentage of high capacity hosts decreases, and consequently,
the average capacity of such hosts increases (because half the system load is
divided among a lower number of hosts), these hosts are actually assigned a
larger number of descriptors. For example, the average number of descriptors
stored by high capacity hosts, in steady conditions, is about 100 with the pattern
{10 : 90}, whereas it is less than 60 with the pattern {40 : 60}. The opposite

Dissemination of Information with Fair Load Distribution 297

 0

 20

 40

 60

 80

 100

 120

 600000 400000 200000 0M
ea

n
nu

m
be

r
of

 d
es

cr
ip

to
rs

 p
er

 p
ee

r,
 N

d

Time(s)

High capacity hosts

kpl = kdl = 2
kpl = kdl = 3
kpl = kdl = 4
kpl = kdl = 5
kpl = kdl = 6

 0

 10

 20

 30

 40

 50

 600000 400000 200000 0M
ea

n
nu

m
be

r
of

 d
es

cr
ip

to
rs

 p
er

 p
ee

r,
 N

d

Time(s)

Low capacity hosts

kpl = kdl = 2
kpl = kdl = 3
kpl = kdl = 4
kpl = kdl = 5
kpl = kdl = 6

(a) (b)

Fig. 3. Average number of descriptors that are stored in high (a) and low (b) ca-
pacity hosts, with different values of the factors kpl and kdl. The pattern of capacity
distribution is set to {10 : 90}.

effect is observed for low capacity hosts, as can be observed in Figure 2(b). Note
also that the trend corresponding to the pattern {50 : 50} is comparable in the
two figures, since high and low capacity hosts coincide in this case. Therefore,
the objective of assigning more descriptors to hosts that have better storage
capabilities, and at the same time of alleviating the load of ordinary hosts, is
successfully achieved.

We also calculated the variance and the coefficient of variation CV of the
number of descriptors stored by the high and low capacity hosts, to verify how
the load is distributed among the hosts of the same class. We found that the
the value of CV ranges from about 0.73 to about 0.82 for low capacity hosts
and from 0.82 to 0.98 for high capacity hosts. These results reveal that the
distribution of load within a class of hosts is not highly affected by the pattern
of capacity distribution. Moreover, the value of CV decreases as the number of
hosts of the class under consideration increases: therefore, the highest values of
CV are obtained with pattern {50 : 50} for high capacity hosts and with pattern
{10 : 90} for low capacity hosts.

It is also possible to regulate the fraction of load assigned to high and low
capacity hosts by tuning the values of the factors kpl and kdl. To analyze this
point, a set of experiments were made with the distribution pattern {10 : 90} and
different values of those factors. Figure 3 shows that the number of descriptors
stored in high (low) capacity hosts is inversely (directly) proportional to the
value of the factors kpl and kdl. For example, the average number of descriptors
stored in high capacity hosts, in steady conditions, is almost 120 if the factors
are set to 2, while it decreases to much lower values for larger values of kpl and
kdl. Therefore these factors can be used to balance the load among high and low
capacity hosts, according to network and host requirements.

4 Conclusions

In this paper we introduced and evaluated an ant-inspired algorithm for building
a P2P information system of a Grid. Grid resources are described by metadata

298 A. Forestiero, C. Mastroianni, and G. Spezzano

documents, or “descriptors”, which are indexed by binary keys. Ant-inspired
mobile agents exploit probability functions to replicate descriptors, pick them
from some hosts and drop them into other hosts. The objective is to reorganize
descriptors and spatially sort them on the network. Moreover, descriptors are
distributed by agents respecting the different capabilities of Grid hosts. Simula-
tion analysis confirmed the effectiveness of the algorithm both in the spatially
sorting of descriptors and in the achievement of a fair distribution of load among
hosts having high and low storage capabilities. Indeed, hosts with higher stor-
age capacity are assigned more descriptors than low capacity hosts. Currently,
we are designing a discovery algorithm that exploits the characteristics of the
obtained information system. According to this algorithm, query messages may
be driven to hosts that have a large number of useful descriptors. Preliminary
results are confirming that the performance of discovery operations is indeed
improved thanks to the relocation and reorganization of information performed
by mobile agents.

References

1. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., San Francisco (2003)

2. Cai, M., Frank, M., Chen, J., Szekely, P.: Maan: A multi-attribute addressable
network for grid information services. In: Proc. of GRID 2003, 4th International
Workshop on Grid Computing, Washington, DC, USA (2003)

3. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to arti-
ficial systems. Oxford University Press, New York (1999)

4. Forestiero, A., Mastroianni, C., Spezzano, G.: So-Grid: A self-organizing grid fea-
turing bio-inspired algorithms. ACM Transactions on Autonomous and Adaptive
Systems 3(2) (2008)

5. Forestiero, A., Mastroianni, C., Spezzano, G.: Antares: an ant-inspired P2P informa-
tion system for a self-structured grid. In: Proc. of Bionetics 2007, 2nd International
Conference on Bio-Inspired Models of Network, Information, and Computing Sys-
tems, Budapest, Hungary (2007)

6. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants.
In: Proc. of SAB 1994, 3rd International Conference on Simulation of Adaptive
Behavior: from animals to animats, Cambridge, MA, USA (1994)

7. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439) (1999)

Emergent Sorting in Networks of Router Agents�

Alexander Scheidler1, Christian Blum2,
Daniel Merkle1,3, and Martin Middendorf1

1 Department of Computer Science, University of Leipzig, Leipzig, Germany
{scheidler,middendorf}@informatik.uni-leipzig.de
2 ALBCOM, Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

cblum@lsi.upc.edu
3 Department of Mathematics and Computer Science
University of Southern Denmark, Odense, Denmark

daniel@imada.sdu.dk

Abstract. In this paper we study basic properties of so called Emergent
Sorting Networks. These are directed networks which consist of router
agents and buffer sites that are located between every two neighbouring
agents. The agents can move objects from their input buffer sites to their
output buffers. It is assumed that the objects may differ in type and are
inserted randomly at an input agent. Brueckner (2000) presented a set
of simple local policies for the agents which lead to a sorted outflow
(batches of objects of the same type) of the objects out of an output
agent. In this paper we introduce a pheromone based variant of the
routing policies. The different policies are studied on quadratic and linear
network topologies in terms of sorting performance and fairness.

1 Introduction

The following description of an industrial problem, arising in various industrial
settings, was given in [1]:

Given a segment of a transport system of arbitrary layout in discrete
high-volume production [environments] composed of unidirectional line-
buffers (e.g., conveyors) and multi-input multi-output sequential routing
devices (e.g., rotation tables, lifts), and assuming that the workpieces
sent through the segment are all of one product but may be differentiated
on the basis of the value of one product parameter; how may the segment

� This work was supported by German Research Foundation (DFG) through the
project “Organisation and Control of Self-Organising Systems in Technical Com-
pound” within SPP 1183, by the Integrated Action grant MEC HA2006-0127 (Ger-
many/Spain), by grant TIN2007-66523 (FORMALISM) of the Spanish government,
and by the EU project FRONTS (FP7-ICT-2007-1) funded by the European Comis-
sion under the FET Proactive Initiative Pervasive Adaptation. In addition, Christian
Blum acknowledges support from the Ramón y Cajal program of the Spanish Min-
istry of Science and Technology of which he is a research fellow.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 299–306, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

300 A. Scheidler et al.

be controlled in a decentralized manner so that the outflow of workpieces
occurs in batches of workpieces of the same product parameter value with
the average batch size of the outflow being significantly higher than that
of the inflow?

The author of [1] states that the solution to such a sorting problem requires
a new approach to control, based on self-organization rather than on a central
controller. This is because the problem is highly dynamic: at any time new work-
pieces may enter the system while others leave it. Moreover, system parameters
such as the volume of the inflow may vary strongly over time. It may not even
be known how many different product variants have to be handled at a time.

Social insect colonies are an example of distributed systems of simple agents
that work without a central control (see, for example, [2,3]). The author of [1]
reports on the following distributed solution to the batching problem stated
above that was developed taking inspiration from the interaction of individuals
in insect colonies: to each sequential routing device is assigned a so-called router
agent. These agents act autonomously from other agents. An action of a router
agent is to take a workpiece from an entry of its router to one of its exits. In its
memory the agent stores for each exit the value of the product parameter of the
last workpiece that has passed this exit. Having available multiple entries and
multiple exits a router agent must decide on which workpiece to move to which
exit. These decisions are taken by a set of simple rules that reportedly result in
a batching (sorting) behaviour of the system.

Existing work. To the best of our knowledge, the above mentioned system of
router agents for emergent sorting has never been studied in great detail. They
were first mentioned in the context of the ESPRIT LTR project MASCADA.
In the PhD thesis of Sven Brückner [1] they served for motivating the work
carried out in the context of the thesis. And in a poster paper presented in the
proceedings of GECCO 2006 [4] some limited experiments were presented.

Our contribution. First our goal was to study the effect of different network
structures. The original proposal was limited to networks with square shape.
Here we also study simpler networks that are composed of router agents orga-
nized in a line. Second, we introduce and study an agent routing policy that is
based on pheromones, as used for example by ant colonies while foraging (see [5]).
We try to deepen the understanding of emergent sorting networks by means of
extensive experiments based on different routing policies, different network lay-
outs, different number of object types, and different number of agents.

2 Sorting Networks of Router Agents

The basic components of sorting networks are router agents. Each router agent
a ∈ A has an input and an output buffer with n, respectively m, positions. We
denote the input buffer positions by x1, . . . , xn, and the output buffer positions
by y1, . . . , ym. A buffer position can store exactly one object of k different types
t1, . . . , tk. In the rest of this paper we use different colors to represent different

Emergent Sorting in Networks of Router Agents 301

(a) Square

(b) Line

Fig. 1. Sorting networks of different shapes

object types. Router agents are connected to form a network topology by asso-
ciating output buffer positions with input buffer positions of other agents. This
is done with respect to the following conditions: (1) All input/output buffer po-
sitions must be involved in connections. (2) A one-to-one relationship between
associated output and input buffer positions must hold. (3) The connections
must be such that the resulting network is acyclic. Note that the set A of agents
contains two special agents: the so called inflow agent serves to feed the network
with incoming objects and the outflow agent produces the output of the network.

Router agents can pick up objects from their input buffer positions and move
them to a free output buffer position (if any). At each time step, first the input
position of the inflow agent is filled with a randomly generated object. Then,
in randomly order all router agents perform their local routing policy. Within a
time step every object can be moved at most once. The system starts empty.

In Fig. 1a the network structure that was originally proposed in [1] is shown.
The buffer positions are depicted as squares. White buffer positions are free, and
a colored buffer position indicates the type of object it stores. Agents are shown
as black circles. At the agent on the bottom left is the inflow agent and on the
top right is the outflow agent. The input/output sequences of objects are shown
as sequences of squares, in the same style as buffer positions.

3 Agent Behaviors

In the original system [1] every agent memorizes for each of its output buffer
positions the type of the last object that was moved to this position (if any).
How this memory affects the agent is given in Alg. 1.

Our work now considers three different aspects. First, to study if networks
need to be square-shaped for exhibiting a sorting behaviour, we consider net-
works that are simply composed of a line of agents, as shown in Fig. 1b. Second,
we explore a variation of the agent behaviour by replacing the orginal behaviour

302 A. Scheidler et al.

Algorithm 1. Original Behavior of an Agent a ∈ A
1: if exists an input buffer position xi that stores an (within this time step)

unmoved object o of type t, and a free output buffer position yj for which
the agent has memorized the type t then

2: Pick up o from xi and move it to yj .
3: else
4: Let r be the number of unmoved objects in input buffer positions of a
5: With probability r/n choose an unmoved object from one of the input

buffer positions and move it to one of the free output buffer positions.
6: end if

Algorithm 2. Pheromone-Based Behavior of an Agent a ∈ A
1: T is the set of objects in input buffer of a that are unmoved in this timestep
2: Choose a random number p ∈ [0, 1]
3: if p < |T |/n then
4: if exists at least one free output buffer position then
5: Choose a type ts ∈ T according to the following probability distribution:

p(ti) =
τa
i∑

tl∈T τa
l

∀ ti ∈ T

6: Move an object o with color ts to random free output buffer position
7: Update pheromon values
8: end if
9: end if

of an agent as explained in Alg. 1. For each agent a ∈ A and for each object type
ti (i = 1, . . . , k) we introduce a pheromone value 0 ≤ τa

i ≤ 1. All pheromone
values are initially set to 1/k. The pheromone-based agent behaviour is shown
in Alg. 2. After an agent a ∈ A has moved an object of type ts from an in-
put position to one of its output positions (see lines 7 and 8 of Alg. 2), the
pheromone values of agent a are updated as τa

j := τa
j +β(μj −τa

j), j = 1, . . . , k
where μj = 1 in case j = s, and μi = 0 otherwise. For the learning rate β an
appropriate value must be found.

We also test a variation of the two agent behaviours described in Algs. 1 and 2
concering the so called waiting behavior, by removing in Algs. 1 line 6 and in
Alg. 2 line 3 and replacing them by ”if no input buffer position is empty then”.
In words, an agent is only allowed to act if all its input buffer positions are
occupied by an object.

4 Experimental Evaluation

All results of this work were obtained by simulation. For the remainder of this
paper, we use the following notation for the different options outlined before.
The notation XY Z consists of three letters, where:

Emergent Sorting in Networks of Router Agents 303

– X ∈ {B,P}. Hereby, B denotes the original agent behaviour (Alg. 1), and
P denotes the pheromone-based agent behaviour (Alg. 2).

– Y ∈ {o,n}. Letter o refers to the old waiting behavior (the probability to act
is proportional to the number of occupied input buffer positions), whereas
n corresponds to the system using the new waiting behavior (the agent only
acts when all its input buffer positions are occupied).

– Z ∈ {s,l}. These identifiers refer to the network structure. Letter s indicates
a square-shaped network, and letter l refers to a network in shape of a line.

4.1 Measures of System Performance

Most of our measurements concern the following sorting measure computed with
respect to the output sequence of the system. When the system is stopped after a
predefined number of time steps, we compute the probability of a color change in
the output sequence. This measure will henceforth be denoted by pc. In general
the simulation runs for different parametersare done over 50.000 time steps.

Another measure of interest is the number of time steps that an object on
average spends in the system. In addition to the average time that a workpiece
spends in the system, we will also look at the maximum time and at the standard
deviation to investigate how fair the system is. We also took a look at the
throughput, by measuring how many objects leave the systems when simulating
1.000.000 time steps (simulations were always using 100 agents).

4.2 Tuning

As mentioned previously, the pheromone-based agent behaviour requires an ap-
propriate setting of the parameter β ∈ [0, 1] which corresponds, in some sense,
to the pheromone evaporation parameter of the ACO metaheuristic (see [6]).
For all the experiments described in the following we used the following options:
β ∈ {0, 0.05, 0.1, . . . , 1.0}. The tuning results are used in the rest of the paper to
choose a good parameter β for every different pheromone based agent behavior.

The graphics of Fig. 2 present tuning results (in terms of measure pc, see
Sect. 4.1) of the pheromone based systems. Each graphic contains four perfor-
mance curves, corresponding to four different network sizes: 16, 64, 144, and 256
agents. Following conclusions can be made: First, in the square-shaped networks
an agent should always try to repeat the action of the previous time step (β = 1).
Second, in the line-shaped networks the more agents used, the smaller should be
the value of β. Third, the optimal value for beta also depends on the different
waiting rules and also slightly on the number of colors (results not shown).

4.3 Results

Figure 3 presents the measure pc (that is, the probability of a color change) for
the original system as well as the variants that we proposed. Results are shown
for different numbers of colors {3, 5} and for different numbers of agents.

304 A. Scheidler et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
7

β

p c

l = 16
l = 64
l = 144
l = 256

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
4

0.
7

β

p c

l = 16
l = 64
l = 144
l = 256

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

β

p c

l = 16
l = 64
l = 144
l = 256

0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
6

β

p c

l = 16
l = 64
l = 144
l = 256

Fig. 2. Tuning results for systems Po* (top) and Pn* (bottom) for the square (left)
and the line topology (right); 5 colors used; Circles indicate the best value for β

50 100 150 200 250

0.
10

0.
20

number of agents

p c

Pol
Bol
Bos
Pos

50 100 150 200 250

0.
05

0.
15

number of agents

p c

Pnl
Bnl
Bns
Pns

50 100 150 200 250

0.
1

0.
3

0.
5

number of agents

p c

Pol
Bol
Bos
Pos

50 100 150 200 250

0.
05

0.
15

0.
25

number of agents

p c

Pnl
Bnl
Bns
Pns

Fig. 3. Performance pc over the number of agents for systems *o* (left) and systems
n (right) for 3 (top) and 5 (bottom) colors

Concerning the original agent behaviour (systems ∗o∗), one can observe that
the sorting behaviour of the line-shaped networks is in general much better
than the sorting behaviour of the square-shaped networks. This trend becomes

Emergent Sorting in Networks of Router Agents 305

stronger when the number of colors grows. Second, the pheromone-based system
greatly improves over the original system when line-shaped networks with many
agents are concerned. But opposite is the case for square-shaped networks.

Interestingly, the results concerning the new waiting rule of the agent be-
haviours (systems ∗n∗) look quite different. Here the original system (Bns)
in conjunction with a square-shaped network, works best. When 3 colors are
concerned, the sorting behaviour of the square-shaped networks outperform the
sorting behaviour of the line-shaped networks. However, when the number of col-
ors grows, the performance of the pheromone-based system on a square-shaped
network drops but the performance of the line-shaped networks improves.

In order to study this effect more in detail we performed experiments con-
cerning higher number of colors. In the outcome the three systems Bns, Bnl,
and Pnl had the best performance. The results are shown in form of a 3D-plot
in Fig. 4(left). An interesting effect can be observed here. First the results show
that for low number of colors the system Bns outperforms both line-based sys-
tems. But when there are more colors in the system suddenly the number of
agents becomes important, since with few agents system Bnl is best, whereas
with many agents the system Pnl performs best.

When comparing the performance of the systems with the original waiting
behavior (*o*) to the performance of the changed systems (*n*), there is a
clear advantage of the modified systems. The best-performing changed system
(Bns) performs always better than the best-performing original system (Pol).

In the second column of Table 1 we provide the average time an object spends
in the different systems. The third column gives the standard deviation of these
times and the fourth column provides the maximum time an object spent in
the system. In general, the pheromone-based systems are characterized by a
longer ”average time in system” but the ”maximum time in system” is greatly
reduced as compared to the original systems. The line-shaped networks show a
short ”maximum time in system” and are more fair since the times the different
objects stay in the system has a lower variance. In addition, we can observe that
the changed waiting behavior (systems ∗n∗) leads to an increase in both average
and maximum time that an object stays in the system.

Bns
Bnl
Pnl

 0 50 100 150 200 250 300

agents

 3 4 5 6 7 8 9 10 11 12
colors

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

pc

Bos Bol Pos Pol Bns Bnl Pns Pnl

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4. Performance results concerning higher numbers of colors (left); Throughput of
the different systems (right)

306 A. Scheidler et al.

Table 1. Results concerning the time objects stay in the system

System Av SD Max System Av SD Max
Bos 257.5 354.7 16194 Bns 302.9 301.1 11155
Bol 241.7 16.10 341 Bnl 433.8 19.20 587
Pos 335.8 203.9 5600 Pns 527.6 310.2 6158
Pol 381.1 13.30 482 Pnl 496.0 11.20 600

In Fig. 4(right) the throughput measurement is given. It can be seen that in
systems using the unmodified waiting behavior more objects leave the system,
because the agents can act more often and do not need to wait. Pheromone
based systems have a lower throughput than the original systems, because here
the waiting behavior is always applied, whereas in the original system the agents
will always act if there is a ”good” move possible (e.g. line 1 in Alg.1).

5 Conclusions

In this paper we presented a study of emergent sorting effects exhibited by a
certain type of networks of router agents. In addition to the original proposal
of such networks, we examined variants and extensions, including a pheromone-
based agent behaviour. The experimental results show that the sorting perfor-
mance strongly depends on the shape and the size of the network, the number
different object types, and the agent behaviour.

References

1. Brueckner, S.A.: Return From the Ant—Synthetic Ecosystems for Manufacturing
Control. PhD thesis, Humbold University, Berlin (2000)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, Oxford (1999)

3. Blum, C., Merkle, D. (eds.): Swarm Intelligence – Introduction and Applications.
Natural Computing. Springer, Berlin (2008)

4. Tozier, W.A., Chesher, M.R., Devgan, T.S.: The brueckner network: An immobile
sorting swarm. In: Cattolico, M., et al. (eds.) Proceedings of GECCO 2006 – Genetic
and Evolutionary Computation Conference, pp. 91–92. ACM Press, New York (2006)

5. Wyatt, T.D.: Pheromones and Animal Behaviour: Communication by Smell and
Taste. Cambridge University Press, Cambridge (2003)

6. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

Enhancing the Cooperative Transport

of Multiple Objects

Antoine Decugnière1, Benjamin Poulain1, Alexandre Campo1, Carlo Pinciroli1,
Bruno Tartini2, Michel Osée2, Marco Dorigo1, and Mauro Birattari1

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{adecugni,bpoulain,acampo,cpinciro,mdorigo,mbiro}@ulb.ac.be

2 BEAMS, Université Libre de Bruxelles, Brussels, Belgium
{btartini,mosee}@ulb.ac.be

Abstract. In this paper we present an approach to the cooperative
transport of multiple objects in swarm robotics. The approach is moti-
vated by the observation that the performance of cooperative transport
in insect colonies as well as in groups of robots grows in a super linear
way with the number of individuals participating in the transport. The
transport relies on a cart in which multiple objects are collected and
stored before being moved to destination. The cart is carried by a group
of robot that would be otherwise allocated to the transport of single
objects. The cart is endowed with computational and communication
abilities that allow it to cooperate with the transporting robots. This
research is carried out within the framework of the Swarmanoid project
and aims at enhancing the transport capabilities of the robot swarms
developed in this project.

1 Introduction

Cooperative transport is a classical problem studied in the collective robotics
literature [1,2,3,4,5]. Robots have to perform cooperative transport when a task
requires the transport of an object that a single robot is not able to handle and
move. Approaches to solve this problem have typically taken inspiration from
biological systems, especially from colonies of social insects [6,7,8].

In particular, ant colonies display two different transport behaviours: solitary
transport and group transport. In some ant species, group transport is observed
when a prey is larger or heavier than the transporting capability of a single ant.
In this case, ants have the option either to cut the prey in pieces and to transport
each piece individually, or to cooperate to transport the whole prey as a group.
Studies show that transporting the prey as a whole in group is usually more
efficient than the solitary transport of pieces [9,10].

Kube and Zhang developed a model of cooperative transport inspired by the
behaviour of socials insects [7]. This model was then demonstrated by Kube and
Bonabeau with experiments involving a group of real robots [11]. Additional
experiments have shown that transport performance grows in a super linear way
with the number of robots, which is similar to what is observed with ants [12,13].

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 307–314, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

308 A. Decugnière et al.

In this paper, we present an approach to enhance the ability of a group of
robots to transport objects cooperatively. The objects to be transported are
gathered in a cart and are then transported collectively as a single entity. The
research presented in this paper is carried out within the framework of the Swar-
manoid project [14], a Future and Emerging Technologies (FET-OPEN) project
funded by the European Commission. The goal of the project is to develop a
swarmanoid, that is, a swarm-based alternative to a humanoid robot. In a swar-
manoid, the functionalities that one typically expects in a humanoid robot are
distributed among the individuals of an heterogeneous swarm of robots. The
swarmanoid is composed of (i) a number of eye-bots, flying robots that are able
to explore a scene and to localize objects; (ii) a number of hand-bots, manipula-
tors that are able to climb and to grasp object; and (iii) a number of foot-bots,
robot rovers that are able to move on the ground and to transport objects or
other robots. In the spirit of the Swarmanoid project, we design a fourth kind of
robot: the cart-bot. A cart-bot is able to store a number of objects, to cooperate
with hand-bots in order to facilitate the loading and unloading of objects, and
to cooperate with foot-bots to ease its own transport.

The rest of the paper is organized as follows: in Section 2 we detail the integra-
tion of the cart-bot in the Swarmanoid project. In Section 3 we describe the final
design of the cart-bot hardware. Finally, in Section 4 we conclude the paper.

2 Integration of the Cart-Bot in the Swarmanoid Project

The Swarmanoid project is developed around a main scenario, which illustrates
the use of morphologically specialised robots to solve a complex mission in a
human-like environment. In the following, we describe how the cart-bot can be
used to enhance transport tasks within the scope of this scenario.

In the Swarmanoid scenario, an heterogeneous group of robots is employed
to locate books situated on shelves, collect them, and bring them to a target
place. For practical reasons, rather than with real books, robots deal instead
with models of books that we call book-bots. A book-bot is made of foam so
that it causes less damages if it inadvertently falls on the ground or on a robot;
moreover, it features a number of LEDs on the spine to facilitate its localisation.

A typical unfolding of the scenario is as follows: first the eye-bots explore the
environment. Once they have located a number of book-bots, they guide other
robots to them. The hand-bots that have extended manipulation capabilities are
transported by the foot-bots close to these book-bots. The hand-bots get a hold
of the book-bots one by one. In a scenario without the cart-bot, each book-bot
is transported by a system composed of a hand-bot holding a book-bot and a
number of foot-bots carrying the hand-bot.

With the cart-bot included in the scenario, once a hand-bot grasps a book-
bot, it lays it on the depository area of the cart-bot, as shown in Figure 1(a).
The cart-bot automatically swallows the book-bot to store it inside his rack and
the hand-bot is therefore free to pursue the collection of another book-bot. As
soon as the cart-bot is full or has loaded the required number of book-bots, it
advertises to surrounding foot-bots that it is ready to be transported. Once

Enhancing the Cooperative Transport of Multiple Objects 309

(a) (b)

(c) (d)

Fig. 1. (a) Book-bot put on the loading bay by a hand-bot. (b) Base elevation on the
rack to reach a high slot. (c) Foot-bots docked to the cart-bot. (d) Rack elevated to
remove friction with the ground.

foot-bots are physically connected to the cart-bot, it lifts up the part of its body
that was previously in contact with the floor— see Figures 1(c) and 1(d). By
doing this, the cart-bot prevents any friction with the ground, therefore facili-
tating its transport. Eventually, the cart-bot communicates with the connected
foot-bots to let them know that transport can be performed at any time.

The integration of the cart-bot in Swarmanoid allows to study stacked trans-
port against single transport of multiple objects. Furthermore, contrary to the
hand-bot, the cart-bot is specialized for transport: it is able to store a number of
book-bots, it has no fragile external components like manipulators do, book-bots
are stabilized inside the cart-bot and may not fall on the floor. Lastly, the cart-
bot is large and foot-bots can connect to it all around such that the resulting
assembly is very stable.

3 Hardware Design

The two main functionalities of the cart-bot are storing book-bots in a single rack
and allowing the single cooperative transport of all the gathered book-bots by
the foot-bots. The design of these functionalities is described in the following.

310 A. Decugnière et al.

(a) (b)

(c) (d)

Fig. 2. (a) The arms rotating towards a book-bot on the loading bay. (b) The wheels
pushing the book-bot inside a slot. (c) The arms finishing to push the book-bot in the
slot. (d) The arms reversed to get a book-bot from a slot.

3.1 Storing Ability

In order to store the book-bots, the cart-bot introduces them inside the slots of a
storing system called the rack. This can be done in two different ways: either by
having the hand-bot inserting a book-bot directly in a selected slot, or by having
the hand-bot laying a book-bot down on a specific bay and then moving the book-
bot to the appropriate slot through some loading and unloading mechanisms.
The second approach turns out to be simpler to implement and requires less
accuracy in the positioning of the book-bot by the hand-bots.

In the design we developed, the loading and the unloading functions are carried
out by a single mechanism. This loading/unloading mechanism consists of two ro-
tating arms with wheels at their ends. The arms are located on both sides of the
loading bay, right in front of the slots as it can be seen in Figures 2(a), 2(b), 2(c) and
2(d). By rotating in one direction or in the opposite, these arms can reach a book-
bot either when the book-bot is on the loading bay—as shown in Figure 2(a)—or
when the book-bot is inside the slot—as shown in Figure 2(d). In particular, Fig-
ure 2(b) shows how the arms, pressed against a book-bot, push the book-bot itself
inside the slot. The wheels turn and push the book-bot in the same direction. This
always ensures a tight contact and a good grip with the book-bot. Once the book-bot
has been swallowed by the wheels, the arms complete their rotation and push the
book-bot inside the slot to their final storage position—as shown in Figure 2(c).

Enhancing the Cooperative Transport of Multiple Objects 311

(a) (b)

Fig. 3. (a) Belt transmission and linear guides. (b) Brake mechanism on a slot.

During the loading phase, the trajectory followed by the book-bot is deter-
mined by the angular position of the arms. In particular, in order to insure that
the book-bot enters the slot with a correct angle, the rotating arms must assume
a symmetric angular position. During the whole procedure, the speed and the
direction of the motors are adapted in order to correct the trajectory of the book-
bot. If an incoming book-bot gets stuck, the failure is detected by a current peak
on the blocked motor or by the incomplete angular positioning of the rotating
arms. The motors are reversed and the whole procedure is repeated.

The slots where the book-bots are stored are engineered in a way that they
form a vertical rack of horizontal slots—see Figure 1(a). The storing system
manages the slots and takes care to align the loading bay and the loading/un-
loading system with the slot in which the book-bot has to be inserted. In order to
achieve correct alignment, the rack can be moved relatively to the base platform
or the base platform can be moved relatively to the rack, depending on whether
the cart-bot is being held by foot-bots or it lies on the ground—see Figure 1(b).
This allows the system to lift up the rack and ease transport by preventing any
friction with the ground, as described in Section 3.2.

The structure of this system is very similar to an elevator architecture and can
be controlled through a classical elevator-like regulation. It uses linear guides and
a timing (toothed) belt—see Figure 3(a). The belt is driven by a pulley fixed
directly on the shaft of a motor with an encoder. The belt transmission was
preferred to a screw drive transmission because of weight and efficiency concerns,
but it has the drawback of not being auto-blocking. This led us to implement
a braking system that insures precise alignment of the slot to the loading bay.
The braking system is designed to be finely adjustable in height and is based on
simple and lightweight components—see Figure 3(b).

The presence of a book-bot in a slot is perceived as the success of the loading
and is memorized by the storing system. To ensure a reliable perception of the
status of the slots, we introduce redundancy with optical sensors. This informa-
tion is critical to know where are the free slots and when the cart-bot is ready
to be transported.

312 A. Decugnière et al.

3.2 Transportability

To display its status, for example when it is ready to be transported, the cart-bot
uses a ring of RGB LEDs. This color ring can also be used coordinate the foot-
bots by indicating them in what position they should dock. Docking is achieved
by the foot-bots by gripping a docking ring on the cart-bot. This docking ring
is positioned on the lowest part of the base platform. The cart-bot uses the
mechanism of the storing system to elevate the ring up to the height of the
gripper of the foot-bots. This prevents the ring to be in the way of a book-bot
brought horizontally by a hand-bot to the loading bay when the base platform
is lowered—see Figure 1(a).

During all these manipulations the rack of slots is resting on the floor. It
presents high resistance to the foot-bots trying to push or pull it. Docked foot-
bots may rely on this resistance to decide to recruit more foot-bots, as exposed
in [15]. Once enough foot-bots are docked, the rack is lifted up so that it doesn’t
touch the floor anymore and the friction to the ground is canceled—see Figure
1(c). Thanks to this mechanism, the cart-bot has a good ground clearance when
transported. The system formed by the cart-bot and the foot-bots is very stable
with a large base and has a good mobility.

4 Conclusions

In the paper we have discussed the problem of the cooperative transport of multi-
ple objects by a swarm of robots. In the approach we adopted, rather than trans-
porting objects one by one, these are gathered in a cart which is subsequently
transported by the swarm. With this approach, the transport performance grows
super linearly with the size of the swarm, with the classic limitations induced by
the problem of coordinating the movement of the swarm [12]. In the paper, we
have analyzed the problem of transporting multiple objects within the frame-
work of the Swarmanoid project. In particular, we have described the features
and the design of the cart-bot, a robot which is able to store objects, the book-
bots, and ease the task of other robots, such as the foot-bots that are intended
to carry out transport.

The cart-bot enhances the robustness provided by the distributed hardware
and control [16] in the transport of book-bots. The cart-bot secures the stored
book-bots to avoid losing them during the transport due to collisions or to the
roughness of the terrain. The large round shape of the cart-bot allows the foot-
bots to dock all around it: this results in a very stable assembly. Moreover, the
transporting assembly is not much sensitive to terrain condition, thanks to a
good ground clearance obtained through the elevation of the rack of the cart-bot
after the docking with the foot-bots.

To ensure a robust transport, the cart-bot is designed to be simple and reliable.
During transport, the cart-bot can be seen as a single resistant entity, as it
has no fragile external parts. The use of the same mechanisms for different
functionalities minimizes the complexity and reduces the global weight of the
cart-bot : rotating arms are used for loading and unloading and an elevation

Enhancing the Cooperative Transport of Multiple Objects 313

system is used for reaching different slots of the rack when loading and unloading
and for elevating the rack itself during the transport. Finally, the cart-bot is
mainly built with generic electronic and mechanical components, which makes
the cart-bot easy to maintain.

Acknowledgments. The authors thank Francesco Mondada and Michael Bo-
nani for the useful discussions and the valuable advice. The research described in
the paper was carried out in the framework of Swarmanoid, a project funded by
the Future and Emerging Technologies programme (IST-FET) of the European
Commission under grant IST-022888. The work was partially supported by the
project ANTS, an Action de Recherche Concertée funded by the Scientific Re-
search Directorate of Belgium’s French Community. Alexandre Campo, Marco
Dorigo, and Mauro Birattari acknowledge support from the fund for scientific
research F.R.S.–FNRS of Belgium’s French Community.

References

1. Matarić, M., Nilsson, M., Simsarian, K.: Cooperative multi-robot box-pushing. In:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Pittsburg, PA, pp. 556–561. IEEE Computer Society Press, Los Alamitos
(1995)

2. Pereira, G.A.S., Kumar, V., Spletzer, J., Taylor, C.J., Campos, M.F.M.: Coopera-
tive transport of planar objects by multiple mobile robots using object closure. In:
Proceedings of the 8th International Symposium on Experimental Robotics, ISER
2002, Sant’Angelo d’Ischia, Italy (2002)

3. Wang, Z., Kumar, V.: Object closure and manipulation by multiple cooperative
mobile robots. In: Proceedings of the IEEE International Conference on Robotics
and Automation, ICRA2002, Washington, DC, pp. 394–399. IEEE Computer So-
ciety Press, Los Alamitos (2002)

4. Groß, R., Dorigo, M.: Cooperative transport of objects of different shapes and sizes.
In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle,
T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 107–118. Springer, Heidelberg (2004)

5. Campo, A., Nouyan, S., Birattari, M., Groß, R., Dorigo, M.: Negotiation of goal
direction for cooperative transport. In: Dorigo, M., Gambardella, L.M., Birattari,
M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp.
191–202. Springer, Heidelberg (2006)

6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

7. Kube, R.C., Zhang, H.: Collective robotics: from social insects to robots. Adaptive
Behaviour 2(2), 189–218 (1994)

8. Martinoli, A., Mondada, F.: Collective and cooperative group behaviours: Biolog-
ically inspired experiments in robotics. In: Proceedings of the Fourth Symposium
on Experimental Robotics, ISER-1995, Stanford, California, USA (June 1995)

9. Moffett, M.W.: Cooperative food transport by an asiatic ant. National Geographic
Research 4, 386–394 (1988)

10. Traniello, J.F.A., Beshers, S.N.: Maximization of foraging efficiency and ressource
defense by group retrieval in the ant Formica schaufussi. Behavioral Ecology and
Sociobiology 29, 283–289 (1991)

314 A. Decugnière et al.

11. Kube, C., Bonabeau, E.: Cooperative transport by ants and robots. Robotics and
Autonomous Systems 30(1 - 2), 85–101 (2000)

12. Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., Floreano, D.:
Superlinear physical performances in a swarm-bot. In: Capcarrère, M.S., Freitas,
A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI),
vol. 3630, pp. 282–291. Springer, Heidelberg (2005)

13. O’Grady, R., Groß, R., Christensen, A., Mondada, F.M., Bonani, M.D.: Per-
formance benefits of self-assembly in a swarm-bot. In: Proceedings of the 2007
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, IROS 2007, San
Diego, CA (2007)

14. Dorigo, M., Tuci, E., Groß, R., Trianni, V., Labella, T., Nouyan, S., Ampatzis,
C., Deneubourg, J.L., Baldassarre, G., Nolfi, S., Mondada, F., Floreano, D., Gam-
bardella, L.: The SWARM-BOTS project. In: Şahin, E., Spears, W.M. (eds.) Swarm
Robotics 2004. LNCS, vol. 3342, pp. 31–44. Springer, Heidelberg (2005)

15. Groß, R.: Self-assembling robots. PhD thesis, Université Libre de Bruxelles, Brus-
sels, Belgium (2007)

16. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I., Floreano, D., Deneubourg,
J.L., Nolfi, S., Gambardella, L., Dorigo, M.: Swarm-bot: a new distributed robotic
concept. Autonomous Robots 17(2–3), 193–221 (2004)

Formal Modeling of BeeAdHoc: A Bio-inspired

Mobile Ad Hoc Network Routing Protocol

Muhammad Saleem1, Syed Ali Khayam2, and Muddassar Farooq3

1 Center for Advanced Studies in Engineering (CASE) Islamabad, Pakistan
2 WisNeT, SEECS-NUST Rawalpindi, Pakistan

3 nexGIN RC, NUCES-FAST Islamabad, Pakistan
msaleem@case.edu.pk,khayam@niit.edu.pk,

muddassar.farooq@nu.edu.pk

Abstract. Design and development of routing protocols for Mobile Ad
Hoc Networks (MANETs) is an active area of research. The standard
practice among researchers working in this emerging domain is to evalu-
ate the performance of their routing protocols in a network simulator. It
is now a well known fact that the simulation studies are scenario specific
and hence their results can not be generalized. In this paper, we present
mathematical models of two key performance metrics, routing overhead
and route optimality, of BeeAdHoc MANET routing protocol. One of
the key components of our BeeAdHoc model is the collision model at
Medium Access Control (MAC) layer. The mathematical expressions of
the performance metrics provide valuable insight about the behavior of
BeeAdHoc in particular, and a typical ad hoc routing protocol in general,
without resorting to scenario specific time consuming simulations.

1 Introduction

Design of novel routing techniques for Mobile Ad Hoc Networks (MANETs) re-
ceived a significant amount of attention by researchers that resulted in a number
of Bio-inspired routing protocols: AntHocNet [1], ARA [2], BeeAdHoc [3,4] and
ANSI [5]. As topology of ad hoc network is dynamic, such protocols need to adapt
themselves to continuously changing routes between corresponding source and
destination pairs. The frequency of route changes is dependent on node density
and their deployment pattern, nodes speed etc. In order to understand the be-
havior of protocols over a wide operational spectrum, designers create a number
of different scenarios by changing the values of the above-mentioned parameters
and then collect relevant performance metrics through extensive simulations that
might take several days or even weeks to finish.

The simulation-based study has three shortcomings: (1) the results are scena-
rio-specific, (2) simulation tools have limited scalability, and (3) large simulation
time significantly slows down the protocol engineering cycle. Therefore, we argue
that mathematical tools must be utilized to complement the simulation studies
in order to overcome their shortcomings. This is also the corollary of the paper
by Kurkowski et al. [6].

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 315–322, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

316 M. Saleem, S.A. Khayam, and M. Farooq

Formal modeling of MANET routing protocols is difficult due to various rea-
sons: dynamic topology, diverse flooding patterns, contention at the MAC layer
etc. In this paper, we model two well known metrics, for BeeAdHoc protocol by
incorporating the collisions at the MAC layer. The derived metrics not only pro-
vide an unbiased analysis of BeeAdHoc protocol but also unveils some interesting
facts about its behavior. Derived metrics may be used to derive a number of other
evaluation metrics: total energy consumption, computational complexity, packet
latency etc.

Related Work. The formal modeling of Bio-inspired protocols have received
little attention. The exceptions are the work of Roth and Wicker [7], Saleem et
al. [8] and Zahid et al. [9]. The later is however limited to fixed networks. In [7],
Roth has developed an analytical framework based on the Markov chains for the
analysis of probabilistic routing protocols.

Organization of Paper. The rest of the paper is organized as follows. Section
2 contains system description and modeling assumptions. A brief description of
BeeAdHoc protocol is presented in section 3. Section 4 describes the modeling
of routing overhead followed by the route optimality model in Section 5. Finally
we conclude our paper with an outlook to our future research.

2 System Description and Modeling Assumptions

2.1 Basic Graph Terminology

A typical graph is denoted by G(V, E) in which V is a set of vertices in the graph
and E represents the set of edges. This model can be used to represent an ad
hoc network in which individual nodes are the vertices of the graph connected
through wireless links (or edges of the graph). In this section, definitions of some
basic graph-theoretic terms are provided.

Node degree: Degree of a node x, d(x), represents the number of nodes directly
connected with x. Minimum degree of a graph G is then defined as:

dmin(G) = min {d(x)} ∀ x ε G

A similar term is the average node degree defined as:

davg(G) =
1
n

n∑
x=1

d(x)

Connected and disconnected graphs: A graph is connected if at least a path
exists between each pair of nodes in the graph [10]; otherwise, it is a disconnected
graph.

2.2 Network Topology

Ad hoc network topology plays the pivotal role in modeling of an upper layer pro-
tocol. Connectivity of graph depends upon the nodes deployment pattern, their

Formal Modeling of BeeAdHoc 317

transmission powers, environmental conditions etc. Bettstetter’s seminal work
[10] addresses the connectivity of wireless networks. Assuming that N nodes are
randomly distributed and connected through symmetric links, Bettstetter de-
rived an expression that, for a given node density ρ, determines the transmission
range r0 to ensure that a randomly chosen node will have exactly n0 neighbors.
Probability P that a node has exactly n0 neighbors is given below:

P (d = n0) =
(ρπr2

0)n0

n0!
· e−ρπr2

0 . (1)

Expected or average degree of the node is E(d) = davg = ρπr2
0 − 1. To be sure

with a certain probability p that the network having n >> 1 nodes is connected,

r0 ≥

√
− ln(1 − p

1
n)

ρπ
. (2)

We can use (1) and (2) to generate the underlying network topology. Interested
readers are referred to [10] for further information.

2.3 Modeling Assumptions

We assume a network in which N nodes are deployed according to a homogeneous
Poisson distribution with node density ρ and an average node degree of davg.
Each node has a transmission radius r0 and an 802.11b distributed coordination
function (DCF) acts as an underlying MAC layer protocol.

3 BeeAdHoc

BeeAdHoc is an on-demand multi-path routing algorithm for mobile ad hoc net-
works inspired from the foraging principles of honey bees [4]. BeeAdHoc works
with four types of agents: packers, scouts foragers and swarms. The packers lo-
cate a forager and hand over the data packet to the discovered forager. Scouts
discover new routes from the launching node to the destination node through
broadcasting principle and an expanding time to live (TTL) timer. Foragers,
the main workers of BeeAdHoc, receive the data packets from the packers and
transport them to the destination. Transportation of foragers back to the source
node, in case of unreliable transport protocol, is the key role of swarms. Inter-
ested readers are referred to [4] for more details.

4 Routing Overhead Model

We define routing overhead as the number of scouts generated in the network
up to a particular number of hops (h) during a route discovery process. Our
definition of routing overhead reflects the time to live mechanism employed in
BeeAdHoc during a route discovery. When TTL expires, nodes stop rebroadcast-
ing the scouts. A typical propagation pattern of scouts in BeeAdHoc is shown

318 M. Saleem, S.A. Khayam, and M. Farooq

0

f

Fig. 1. Route discovery pattern in an ad hoc network

in Fig. 1 in which source S, located at the center, broadcasts a scout to all its
neighbors (i.e. nodes located within its transmission circle). In the rest of this
section, we derive an expression to calculate the expected number of scouts up
to h hops from the source node.

4.1 Routing Overhead in Terms of Expected Forward Degree

The first scout broadcasted by the source is received by davg nodes, where davg is
the average degree of the node. Each one of the davg neighbors rebroadcast the
scout unconditionally. However, due to collisions, a fraction of the rebroadcasted
scouts get lost and we do not count them in the calculation of routing overhead.
Hence, the first hop rebroadcasting nodes equal pcdavg where pc is the probability
of no collision. To compute the routing overhead of BeeAdHoc, C

(beeadhoc)
p , we

accumulate the scouts generated at each hop up to a distance of h hops from the
source node.

C(beeadhoc)
p = 1 + pcdavg + (pc)2davg × df [1] +

(
(pc)3.davg.df [1]

)
× df [2] +

+ . . . +
(
(pc)h.davg.df [1] . . . df [h−2]

)
× df [h−1]. (3)

Equation (3) contains a new term known as expected forward degree of a node.
We define it as: ”the number of new nodes that will receive the scout of that node
and are likely to rebroadcast it to the next hop”. The terms, df [1], df [2], ..., df [h−1]

in (3) represent the expected forward degree of nodes at 1, 2, ..., h− 1 hops from
the source node respectively. Knowing the expected forward degree of a node at a
stage, we can multiply it with the number of rebroadcasting nodes at the same

Formal Modeling of BeeAdHoc 319

stage to calculate the number of nodes that are likely to rebroadcast scout at
the next stage. Getting back to (3), we have a total of h + 1 terms. Hence, its
closed form is

C
(beeadhoc)
p =

{
1 + pcdavg if h = 1
1 + pcdavg + pcdavg

∑h−1
i=1 (pc)i

∏i
j=1 df [j]. otherwise

(4)

The above expression validates the intuition that routing overhead C
(beeadhoc)
p

is a function of the number of hops. As the value of h increases, the routing over-
head increases as well. Similarly, routing overhead of BeeAdHoc varies directly
with expected forward degree. On the other hand, probability of no collision has
reverse effect. Theoretically, in no collision case, number of scouts must be equal
to the total number of nodes within the ring. However, being a fractional term,
pc is likely to reduce this number substantially in dense networks.

Assuming that df [1] = df [2] = df [3] = ... = df [h−1] = df , (4) simplifies to

Cp =

{
1 + hpcdfdavg if pcdf = 1

1 + pcdavg

(
1−(pcdf)

h

1−pcdf

)
otherwise

(5)

Assumption of a constant expected forward degree in (5) is valid under two
scenarios. Either the network is sparse where nodes are scattered and they have
no or extremely small overlapping transmission regions. Secondly, it also applies
to small sized networks. With these limitations, an expression for df is derived
in [8] and we simply reproduce it here for the sake of brevity.

df �
davg − ρr2

0(
2π
3 −

√
3

2)
2

. (6)

Equation (6) shows that df is a function of davg and r0 respectively. The
concept of constant forward degree, however, does not hold for large and dense
networks. As we move away from the source node, ideally expected forward degree
should reduce at every step. Intuitively, as more and more nodes receive the
broadcasted scouts, the uncovered area reduces. Consequently, the probability
to deliver to a new area reduces and hence the expected forward degree. Apart
from its dependence upon the number of hops from the source node, expected
forward degree must also be marginalized i.e. expected forward degree of nodes
near the edges will fall sharply.

Now the only unknown variable in (5) is pc for which an expression is derived
below.

4.2 Collision Modeling

As wireless channel is shared by mobile nodes, collisions are bound to happen.
Having an 802.11b ad hoc network with its distributed coordination function

320 M. Saleem, S.A. Khayam, and M. Farooq

No collision probability

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84

S
uc

ce
ss

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1
optimal path:t=6
sub−optimal−1: t+1
sub−optimal−2: t+2
expected probability

Fig. 2. Routing overhead and success probabilities of route discovery in BeeAdHoc

(DCF) as MAC layer protocol, probability of collision is given by the following
expression [11].

pc = 1 −
(

1 − 1
CWmin

)M−1

(7)

where CWmin(= 31 for 802.11b) is the minimum contention window and M
represents the number of contending nodes. Each of the davg neighbors may
be contending for the channel access under heavy traffic. However, minimum
contention case is the one in which a source initiates a route discovery process.
Each node in this case is not a potential rebroadcasting node. Keeping in mind
the concept of forward degree, M = davg − df − 2. Therefore, using (7), the
probability of no collision is

pc =
(

1 − 1
CWmin

)davg−df−2

(8)

(8) shows that pc decreases exponentially with an increase in the number of
nodes contending for the channel access.

5 Route Optimality

BeeAdHoc maintains multiple paths to a given destination. Each scout reaching
the destination is likely to discover a new route. We do not consider the route
caching behavior of BeeAdHoc in this model. Let us assume that there are k
edge disjoint paths between the source-destination pair with t hops path as an
optimal path. We further assume that a function f [i− t] gives the total number
of edge-disjoint paths of length i between source-destination pair.

5.1 Probability of Optimal Path Discovery

BeeAdHoc discovers each link with a probability pc and hence the probability of
discovering an optimal path is ε = (pc)t−1. The probability of failure in finding

Formal Modeling of BeeAdHoc 321

an optimal path is then (1 − ε). Now the probability of finding j optimal paths
out of a total of f [0] optimal paths is simply a binomial distribution given as

b(j; f [0], ε) = P (X [t] = j) =
(

f [0]
j

)
εj(1 − ε)f [0]−j . (9)

where X [t] represents the number of t hop paths discovered successfully. Using
(9), the probability of discovering at least a single optimal path is

P (X [t] ≥ 1) = 1 − (1 − ε)f [0], (10)

(1 − ε)f [0] is the probability of failure in discovering an optimal path which can
be minimized either by increasing the value of f [0] or pc. However, f [0] can be
increased by increasing node density (ρ) which in turn reduces pc. Therefore,
reducing the failure probability of route discovery is a tricky problem.

5.2 Probability of Suboptimal Path Discovery

Using (10), probability of discovering a suboptimal path of length t + n hops
where n = 1, 2, . . . , n is

P (X [t + n] ≥ 1) = 1 − (1 − ε(pc)n)f [n] (11)

where f [n] is the number of edge-disjoint paths of length t+n hops. Equation (11)
shows that as n → ∞, the probability of discovering a path of length t + n hops
approaches zero. Hence, suboptimal paths have a lower discovery probability as
compared to optimal paths.

5.3 Expected Probability of Path Establishment

In addition to the path optimality problem, it is important to evaluate the
marginal probability of path discovery. Using (10) and (11), the expected prob-
ability of finding a path (irrespective of the path length) is

E{X} =
n∑

i=0

w[i]
(
1 −

(
1 − ε(pc)i

)f [i]
)

(12)

where w[i] = f [i]
k is the normalized weight of the paths of lengths i. Expected

probability of route discovery in sparse networks is close to 1 due to high value
of pc. However, it substantially reduces in high density networks. We plotted
(10), (11) and (12) (assuming f [0] & f [1] & . . .) for varying values of pc and
the results are shown in Fig. 2. As the probability of no collision (pc) rises, so
does the probability of route discoveries. Second important observation is that as
pc approaches 1, expected probability of route discovery equals the probability
of optimal path discovery. Finally, we also note that optimal paths are more
probable than suboptimal paths.

322 M. Saleem, S.A. Khayam, and M. Farooq

6 Conclusion and Future Work

In this paper, we developed mathematical models of two key performance met-
rics for BeeAdHoc protocol: routing overhead and route optimality. Routing over-
head is a function of the expected forward degree, number of hops and collisions
probability. We quantified the intuition that severe contention adversely affects
the route optimality and may result in suboptimal route discovery. Route opti-
mality, on the other hand, is a function of the collision probability, number of
available paths and their corresponding distribution. We also conclude that the
probability of discovering optimal paths is usually higher than the probability
of discovering suboptimal paths. In future work we intend to derive an exact
expression for expected forward degree and incorporate the mobility model.

References

1. Caro, G.D., Ducatelle, F., Gambardella, L.M.: AntHocNet: An adaptive nature-
inspired algorithm for routing in mobile ad hoc networks. Telecommunications
(ETT), Special Issue on Self Organization in Mobile Networking 16(2) (2005)

2. Genes, M., Sorges, U., Bouazizi, I.: ARA - the ant-colony based routing algorithm
for manets. In: Proceedings of ICPP Workshop on Ad Hoc Networks (2002)

3. Farooq, M.: Bee-inspired Protocol Engineering: From Nature to Networks. Natural
Computing Series. Springer, Heidelberg (in press)

4. Wedde, H., Farooq, M., Pannenbaecke, T., Vogel, B., Mueller, C., Meth, J., Jer-
uschkat, R.: BeeAdHoc: an energy efficient routing algorithm for mobile ad hoc
networks inspired by bee behavior. In: Proceedings of GECCO (2005)

5. Rajagopalan, S., Shen, C.C.: ANSI: a swarm intelligence-based unicast routing
protocol for hybrid ad hoc networks. Journal of System Architecture 52(8-9), 485–
504 (2006)

6. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: The incred-
ibles. ACM SIGMOBILE Mobile Computing and Communications Review 9(4),
50–61 (2005)

7. Roth, M.: The markovian termite: A soft routing framework. In: Proceedings of
IEEE Swarm Intelligence Symposium, SIS (April 2007)

8. Saleem, M., Khayam, S.A., Farooq, M.: A formal performance modeling framework
for bio-inspired ad hoc routing protocols. In: Proceedings of GECCO (2008)

9. Zahid, S., Shehzad, M., Ali, S.U., Farooq, M.: A comprehensive formal framework
for analyzing the behavior of nature inspired routing protocols. In: Proceedings of
IEEE Congress on Evolutionary Computing (CEC) (2007)

10. Bettstetter, C.: On the minimum node degree and connectivity of a wireless mul-
tihop network. In: Proceedings of MobiHoc (2002)

11. Heusse, M., Rousseau, F., Sabbatel, G.B., Duda, A.: Performance anomaly of
802.11b. In: Proceedings of IEEE INFOCOM (2003)

Incorporating Heuristics in a Swarm Intelligence

Framework for Inferring Gene Regulatory
Networks from Gene Expression Time Series

Kyriakos Kentzoglanakis, Matthew Poole, and Carl Adams

School of Computing, University of Portsmouth, Portsmouth, UK
{kyriakos.kentzoglanakis,matthew.poole,carl.adams}@port.ac.uk

Abstract. In this paper, we address the problem of reverse-engineering
a gene regulatory network from gene expression time series. We approach
the problem by implementing an ant system to generate candidate net-
work structures. The quality of a candidate structure is evaluated using
a particle swarm optimization algorithm that tunes the parameters of
the corresponding model, by minimizing the error between the actual
time series and the trained model’s output. We extend this approach by
incorporating domain-specific heuristics to the ant system, as a mecha-
nism that has the potential to bias the pheromone amplification effect
towards biologically plausible relationships. We apply the method to a
subset of genes from a real world data set and report on the results.

1 Introduction

Gene expression is the process by which a gene’s DNA sequence is converted
through a series of steps into a functional product: the protein. This cellu-
lar process constitutes the central dogma of molecular biology, i.e. that genes
code for proteins. During this process, DNA is first transcribed (copied) to
an intermediate macromolecular form, the mRNA (messenger RNA), which is
then translated to protein. Proteins are involved in essential functions of a liv-
ing organism, including transcription, the catalysis of chemical reactions, cell
signalling etc.

Certain genes code for special proteins called transcription factors, which are
responsible for regulating the expression of other genes (targets). Transcription
factors bind a cis-regulatory site in the promoter region of the target gene, thus
inducing a change in the target’s rate of transcription. The nature of change
specifies this effect as either activatory, in case of an increase in the target’s rate
of transcription, or repressive (inhibitory) in case of a decrease [1].

A gene regulatory network (GRN) is a complex network of causal relationships
between genes, where connections represent regulatory interactions between ac-
tivators or repressors and targets.

With the advent of DNA microarray technology that measures the mRNA
levels of thousands of targets, it has become possible to observe such complex
biological processes by taking snapshots of the cellular state and capturing the

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 323–330, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

324 K. Kentzoglanakis, M. Poole, and C. Adams

expression profiles of thousands of genes simultaneously. Gene expression data
can either be static, with gene profiles from different organisms, each typically
characterized by a class value, or dynamic in the form of gene expression time
series from the same organism.

The problem of reverse-engineering GRNs from gene expression data is a
major issue in systems biology [2]. A principal obstacle is the relative insufficiency
of observations (typically tens or a few hundreds) compared to the number of
genes measured (in the order of thousands or a few tens of thousands), the
so-called curse of dimensionality.

Additionally, the common practice of validating the biological plausibility of
inferred causal relationships by consulting the relevant literature, albeit unavoid-
able, is controversial because, in the absence of such experimental evidence for
a putative connection, there is no apparent method of classifying it either as a
previously unknown interaction or as just a spurious edge [3].

In this paper, we describe a swarm intelligence approach to the problem of
reverse-engineering GRNs from gene expression time series. We model a GRN as
a graph, upon which the ant colony optimization (ACO) meta-heuristic is imple-
mented for the selection of putative GRN architectures. The selected structure is
then modelled as a recurrent neural network (RNN), whose parameters (weights
and bias terms) are optimized using particle swarm optimization (PSO), so as
to minimize the error between the model’s output and the actual time series.

Our approach extends the work by Ressom et al. [4], first by changing the way
candidate architectures are constructed by individual artificial ants and, second,
by introducing a heuristic metric with the intention to bias the probabilistic edge
selection process towards biologically plausible relationships.

In the next section, we present an overview of existing approaches to the prob-
lem of GRN inference from time course gene expression data. In section 3, the
proposed framework is outlined by describing its components and their interre-
lationships. In section 4, we report on the results of applying the method to a
subset of known genes from the yeast gene expression data set and we discuss
some of the issues that emerged, before the paper’s conclusion in section 5.

2 Existing Approaches

The earliest approaches to the problem of inferring gene relationships from time
course gene expression data, were cluster analysis methods, mostly based on
global correlation metrics, such as Pearson correlation coefficient, mutual infor-
mation etc., that extracted co-regulation information out of co-expressed gene
clusters [5,6]. These pioneering, model-free methods essentially group genes ac-
cording to their expression levels, providing an insight into the functionality of
unknown genes based on the cluster in which they belong. However, they do not
take the temporal nature of data into consideration and do not assign regulatory
roles to genes, since, given two genes that are co-expressed (have similar expres-
sion), it is not clear which regulates the other. Nevertheless, cluster analysis is

Incorporating Heuristics in a Swarm Intelligence Framework 325

still useful, primarily as a technique to reduce the search space and improve the
performance of algorithms.

Model-based methods, on the other hand, operate by assuming the existence
of a model that represents the gene regulatory network and attempt to train
this model based on the available artificial or experimental data. In essence,
they attempt to reconstruct the architecture by reproducing the system dynam-
ics. Such models include Boolean networks, Bayesian networks, linear additive
models, systems of differential equations, power law systems etc. [7]

In Boolean networks, the state of a node at one time point is a boolean
function of the states of K other nodes at the previous time point. As such,
they constitute binary idealizations of genetic network architectures that, while
succeeding in the simulation and analysis of global dynamics [8], seem to suffer
from the problem of information loss during data binarization.

Dynamic Bayesian networks are models of joint, multivariate probability dis-
tributions that attempt to represent conditional independence relationships be-
tween variables. Their strength in representing noisy, stochastic processes due
to their probabilistic nature, makes them good candidates for addressing the
problem of inferring gene regulatory networks [9].

In linear additive (neural) models [10,11], the output of each node is a com-
bination of inputs from all other nodes, a function of the weighted sum of their
expression levels. Zero weights indicate no regulation, positive weights signify
activation, while negative weights signify repression. The assumption of linear-
ity is not a severe one [12], especially if one considers the statistical treatment
of microarray data and the increased levels of noise.

Ressom et al. [4] implement a swarm intelligence framework where an ant
system, driven only by pheromone amplification, is used for the selection of pu-
tative network structures. For each gene (regulator), each artificial ant considers
all 2n regulator-target combinations, where n is the number of genes, for the
construction of a candidate architecture. After a structure has been formed,
the corresponding model (RNN) is optimized using PSO, in order to evaluate
the quality of the selected structure.

Xu et al. [13] deploy a discrete version of PSO for structure selection and a
continuous version for model training. They also discuss the relative difficulty
of reconstructing the correct regulatory network structure over reproducing the
correct dynamics, explaining that there is no unique network to satisfy the data
upon which inference is based. Reconstructing the structure depends upon re-
producing the system dynamics and, therefore, is a problem of higher order.

3 Methods

Our approach uses an ACO implementation, on a graph with nodes representing
genes and directed edges representing regulatory (causal) relationships, to select
putative network architectures, driven by pheromone amplification and heuristic
information, where:

326 K. Kentzoglanakis, M. Poole, and C. Adams

– pheromone trails are updated according to the ability of the model (RNN)
that represents the selected structure to reproduce the time series, after
having been trained using a PSO algorithm.

– the desirability value for a particular edge is calculated by a suitably defined
heuristic function.

A candidate gene network structure is represented by a recurrent neural network
model, whose update equation is given by:

xi(t) = f(
N∑

j=1

wijxj(t − 1) + bi) (1)

where xi(t) is the value (expression level) of node i at time t, bi a bias term and
weights wij express the influence of node j to node i, ranging from -1 (gene j
represses gene i) to 1 (gene j activates gene i). A value of 0 signifies no regulation.
f is a nonlinear transfer function, either the logistic or the hyperbolic tangent.

Network architectures are constructed using the ACO meta-heuristic [14],
whereby artificial ants navigate a graph of N nodes, where N is the number of
genes in the time series. Each artificial ant probabilistically selects K regula-
tor nodes for each target node in the graph, resulting in a candidate network
structure S = {eji} of NK connections. The parameter K reflects the fact that
gene networks are sparse and that a gene is regulated by only a handful of other
genes. An edge eji represents a regulatory relationship from node j to node
i. The probability of selection of node j as a potential regulator of node i is
given by:

pij =
τα
ijη

β
ij∑N

j=1 τα
ijη

β
ij

(2)

where τij is the pheromone value of edge eji, ηij is the selection desirability
of edge eji based on a suitably defined heuristic function and α, β are their
respective relative influences.

After a candidate structure S has been constructed, its quality is assessed by
tuning the corresponding model’s parameters in order to compare its predicted
output with the actual time series. The synaptic weights of the edges that are
not part of the selected structure are locked to 0.

Optimization of the model’s parameters is performed using a PSO algorithm
[15], where each particle’s position is encoded as a vector wS of size N(K + 1)
that contains the weights of the selected edges, as well as the bias terms. The
quality of a particle’s position is determined by calculating the MSE between
the predicted model output and the actual time series:

ε(wS) =
1

TN

T∑
t=1

N∑
i=1

[xi(t) − xwS
i (t)]2 (3)

where T is the number of available time points, N is the number of genes, xi(t)
is the actual expression level of the ith gene at time t and xwS

i (t) is the predicted

Incorporating Heuristics in a Swarm Intelligence Framework 327

expression level of the ith gene at time t. The predicted time series are calculated
by setting up the model using wS and running it using each state of the actual
time series, in order to obtain the next state of the predicted time series.

After the threshold of maximum allowed PSO iterations has been reached, the
minimum achieved error ε(wS) is returned to the ACO algorithm as the quality
of the selected structure S. The pheromone matrix is then updated according
to:

τij =
1

ε(wS)
∀eji ∈ S (4)

The incorporation of heuristics to probabilistic structure selection offers a way
of enriching a domain-agnostic procedure with problem-specific insights. The
heuristic factor ηij from equation (2) can be defined as a function η : N×N → R
that maps a pair (i, j) to a score that reflects the strength and nature of gene’s j
influence on gene i. In this context, strength means the likelihood of regulation
and nature means the type of regulation (activation or repression).

For the purpose of demonstrating our approach, we are using a heuristic pro-
posed by Kwon et al. [16]. They hypothesize that if a rise in the expression of
gene A is followed by a rise in the expression of gene B, then this indicates that
gene A potentially activates gene B. Conversely, if a rise in the expression of gene
A is followed by a fall in the expression of gene B, then gene A is a potential
repressor for gene B.

These expression changes in a gene’s temporal profile are encoded as ‘events’,
by calculating the slope of the expression profile at every time interval and
classifying it as either ‘R’ (rising), ‘F’ (falling) or ‘C’ (constant). A variation of
the Needleman-Wunsch algorithm for sequence alignment [17] is then used to
determine the best possible alignment for a pair of event strings, by using the
event scoring matrix shown in Table 1.

Given the expression levels of two genes, one of which is assumed to be the
regulator and the other the target, the algorithm first calculates the score for
the presumed activatory relationship and then for the inhibitory relationship,
by complementing the event string of the target. This is done by swapping ‘R’s
with ‘F’s, while ‘C’s remain intact. The maximum score of the two is returned
to ACO as the overall score of the particular relationship and is cached to avoid
recalculation.

Table 1. Scoring matrix for event matching. The score of a pair of symbols is a
function of the time lag dt between two events. S(dt) is a linearly decreasing function
with 0 < S(dt) < 1, so that the bigger the time lag, the less likely a causal effect is
to be assumed. In case of a negative dt, the match is assigned a maximum penalty.
Parameters a and b range from 0 to 1 and their role is to emphasize particular matching
forms, based on biological arguments [16].

R C F

R S(dt) 0 −bS(dt)
C 0 0 0
F −bS(dt) 0 aS(dt)

328 K. Kentzoglanakis, M. Poole, and C. Adams

4 Results

We selected 5 cyclin genes that are known to be involved in cell cycle regulation,
from the S. cerevisiae (yeast) data set published in Spellman et al. [18], for the
purpose of comparing our results to those of Ressom et al. [4]. The yeast data
set contains multiple time series from the yeast cell cycle; we chose the cdc15
time series, consisting of 24 time points (more than the others). Gene expression
levels were first smoothed, by using a sliding window method (convolution of a
scaled Hann window with the expression profile), and consequently normalized
between 0 and 1.

Table 2. The known relations for the collection of selected genes come from Path-
wayStudio software, as reported in Ressom et al. [4]. The last column summarizes how
our algorithm compares with their predictions.

Relation Type Known Relation Predicted by [4] Our Prediction

Expression CLB1 ← CLB6 yes (reversed) yes
Expression CLB1 ←+ CLB2 yes yes
Regulation CLB6 → CLB5 yes (reversed) yes
Regulation CLB6 +→ CLB2 no yes (opposite sign)
Regulation CLB1 ←+ CLB5 yes (reversed) no
MolSynthesis CLB1 +→ CLB2 yes yes
Direct Regulation CLB6 +→ cdc28 yes (reversed) yes (reversed)
Direct Regulation CLB5 +→ cdc28 yes yes
Direct Regulation CLB2 +→ cdc28 yes yes
Direct Regulation CLB2 ←+ CLB5 no yes (opposite sign)
Direct Regulation CLB1 +→ cdc28 yes no

For the PSO implementation we used a swarm with the global best topology,
a population size of 15 particles, a maximum number of 2000 iterations, φ1 =
φ2 = 2 and a random inertia weight ω drawn from a uniform distribution, ranging
from ωmin = 0.3 to ωmax = 0.8.

The settings for ACO were set as follows: the relative influences of pheromone
and heuristic value α = 1 and β = 1 respectively, the pheromone evaporation
rate ρ = 0.1 and the number of regulators for a given target gene K = 2. The
colony size was set to 5 and it was allowed to run for 50 steps.

We performed 10 such experiments and recorded the number of times each
edge was selected. We considered a particular relationship to be inferred if the
corresponding graph edge was selected at least half of the times, during all
experiments. The average MSE of RNN training was 0.058 with a standard
deviation of 0.0026.

The results, as shown in Table 2, do not indicate a notable (if any) improve-
ment over the predictions in [4]. The incorporation of the selected heuristic metric
does not seem to influence structure selection in a decisive manner. Perhaps, this
is due to the relative influences of pheromone value and heuristic desirability, α
and β, being equally weighted.

Incorporating Heuristics in a Swarm Intelligence Framework 329

Table 3. Two examples of actual gene expression levels from the original time series
and predicted levels from the optimal RNN that resulted from the experiments

0 5 10 15 20 25
time points

0.0

0.2

0.4

0.6

0.8

1.0

g
e
n

e
 e

xp
re

ss
io

n
 l

e
ve

l

CLB1

actual data
predicted data

0 5 10 15 20 25
time points

0.0

0.2

0.4

0.6

0.8

1.0

g
e
n

e
 e

xp
re

ss
io

n
 l

e
ve

l

CLB2

actual data
predicted data

Two of our predicted, putative connections, namely CLB2 → CLB6 and CLB5
→ CLB6, are not reported as known relationships by [4] and their biological
plausibility can only be verified experimentally.

5 Further Work

The reported early results that have been presented in this paper, form part of
an ongoing study into a swarm intelligence perspective to the problem of reverse-
engineering gene regulatory networks. The proposed framework allows for the
incorporation of an arbitrary number of problem-specific heuristics, perhaps
with an appropriately defined weighting scheme, to a model-based optimization
approach.

The behaviour of the ant system needs to be studied in relation to the values
of its parameters and the aggregation of heuristics. The suitability of different
models, representing selected structures, is also a path to be explored.

Furthermore, we note that our experiments have used a hand-picked subset of
temporal gene expression profiles. An investigation of the algorithm’s scalability
is necessary, particularly when considering the full set of genes, whose expression
levels are captured in a real world data set.

References

1. Alon, U.: An introduction to systems biology: design principles of biological cir-
cuits. Chapman & Hall/CRC, Boca Raton (2007)

2. Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)
3. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interac-

tions from microarray experiments with dynamic Bayesian networks. Bioinformat-
ics 19(17), 2271–2282 (2003)

4. Ressom, H., Zhang, Y., Xuan, J., Wang, Y., Clarke, R.: Inference of gene reg-
ulatory networks from time course gene expression data using neural networks
and swarm intelligence. In: IEEE Symposium on Computational Intelligence and
Bioinformatics and Computational Biology, pp. 1–8 (2006)

330 K. Kentzoglanakis, M. Poole, and C. Adams

5. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of
genome-wide expression patterns. PNAS 95(25), 14863–14868 (1998)

6. D’Haeseleer, P., Wen, X., Fuhrman, S.: Mining the gene expression matrix: inferring
gene relationships from large scale gene expression data. In: Second International
Workshop on Information Processing in Cell and Tissues, pp. 203–212 (1998)

7. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature
review. Journal of Computational Biology 9(1), 69–105 (2002)

8. Somogyi, R., Fuhrman, S., Askenazi, M.: The gene expression matrix: towards the
extraction of genetic network architectures. Nonlinear Analysis, Theory, Methods
& Applications 30(3), 1815–1824 (1997)

9. Perrin, B., Ralaivola, L., Mazurie, A., Bottani, S., Mallet, J., d’Alche Buc, F.: Gene
networks inference using dynamic Bayesian networks. Bioinformatics 19(suppl. 2),
ii 138–ii 148 (2003)

10. Vohradsky, J.: Neural model of the genetic network. Journal of Biological Chem-
istry 276(39), 36168–36173 (2001)

11. Wahde, M., Hertz, J.: Modeling Genetic Regulatory Dynamics in Neural Develop-
ment. Journal of Computational Biology 8(4), 429–442 (2001)

12. Pournara, I., Wernisch, L.: Factor analysis for gene regulatory networks and tran-
scription factor activity profiles. BMC Bioinformatics 8(61) (2007)

13. Xu, R., Wunsch, D.C.I., Frank, R.: Inference of genetic regulatory networks with
recurrent neural network models using particle swarm optimization. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 4(4), 681–692 (2007)

14. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from natural to
artificial systems. Oxford University Press, Oxford (1999)

15. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

16. Kwon, A., Hoos, H., Ng, R.: Inference of transcriptional regulation relationships
from gene expression data. Bioinformatics 19(8), 905–912 (2003)

17. Needleman, S., Wunsch, C.: A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins. Journal of Molecular Biology 48,
443–453 (1970)

18. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P.O.,
Botstein, D., Futcher, B.: Comprehensive Identification of Cell Cycle-regulated
Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization. Molec-
ular Biology of the Cell 9, 3273–3297 (1998)

Incorporating Preferences to a Multi-objective

Ant Colony Algorithm for Time and Space
Assembly Line Balancing�

Manuel Chica1, Óscar Cordón1, Sergio Damas1,
Jordi Pereira2, and Joaqúın Bautista2

1 European Centre for Soft Computing, Mieres (Asturias), Spain
{manuel.chica,oscar.cordon,sergio.damas}@softcomputing.es

2 Universitat Politècnica de Catalunya, Barcelona, Spain
{joaquin.bautista,jorge.pereira}@upc.edu

Abstract. We present an extension of a multi-objective algorithm based
on Ant Colony Optimisation to solve a more realistic variant of a classical
industrial problem: Time and Space Assembly Line Balancing. We study
the influence of incorporating some domain knowledge by guiding the
search process of the algorithm with preferences-based dominance. Our
approach is compared with other techniques, and every algorithm tackles
a real-world instance from a Nissan plant. We prove that the embedded
expert knowledge is even more justified in a real-world problem.

1 Introduction

The Time and Space Assembly Line Balancing Problem (TSALBP) [1] belongs to
a family of academic problems which came up with the name of Simple Assembly
Line Balancing Problem (SALBP) [2]. It considers an additional space constraint
to become a simplified but closer version to real-world problems. In this paper
we tackle the 1/3 variant of the TSALBP, which tries to minimise the number
of stations and their area for a given product cycle time, a very complex and
realistic multi-criteria problem in the automotive industry.

In our previous work [3], we successfully solved the TSALBP-1/3 by means
of multi-objective and constructive approaches. We selected the Multiple Ant
Colony System (MACS) algorithm [4] because of its good performance to develop
a multi-objective ant colony optimisation (MOACO) proposal [5] for it. In the
current contribution we aim to extend this proposal by incorporating problem-
specific information provided by the plant experts in the form of preferences
in the decision variable space which will allow us to guide the search. We will
use an a priori approach to incorporate these expertise although a posteriori
and interactive procedures have been mostly applied in the Evolutionary Multi-
objective Optimisation and Operations Research communities [6].
� UPC Nissan Chair as well as the Spanish Government partially funded this work by

means of PROTHIUS-II project: DPI2007-63026 including EDRF fundings.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 331–338, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

332 M. Chica et al.

This improved model aims to reduce the size of the Pareto set and, collat-
eraly, increase the quality of the Pareto front by increasing the MACS conver-
gence capability and focusing on actually interesting and useful solutions for the
decision-maker using problem-specific knowledge.

Our MACS algorithm is applied both to academic real-like problem instances
and to a real-world instance which has more peculiarities than the others. It
corresponds to the assembly process of the Nissan Pathfinder engine, developed
at the Nissan industry plant of Barcelona (Spain).

The paper is structured as follows. In Section 2, the problem formulation, and
our previous MOACO proposal are explained. The preferences based on domain
knowledge are detailed in Section 3. Experiments and analysis of results are
shown in Section 4. In Section 5, some concluding remarks are discussed.

2 Preliminaries

In this section the problem preliminaries and our previous MOACO proposal are
presented. First, an overview of the assembly line balancing problem is discussed.
Then, the main features of the MACS algorithm are briefly described.

2.1 The Time and Space Assembly Line Balancing Problem

The manufacturing of a production item is divided up into a set V of n tasks.
Each task j requires an operation time for its execution tj > 0 that is determined
as a function of the manufacturing technologies and the employed resources. Each
station k is assigned to a subset of tasks Sk (Sk ⊆ V), called its workload. A
task j must be assigned to one station k.

Each task j has a set of direct predecessors, Pj , which must be accomplished
before starting it. These constraints are normally represented by means of an
acyclic precedence graph, whose vertices stand for the tasks and where a directed
arc (i, j) indicates that task i must be finished before starting task j on the
production line. Thus, if i ∈ Sh and j ∈ Sk, then h ≤ k must be fulfilled. Each
station k presents a station workload time t(Sk) that is equal to the sum of the
tasks’ lengths assigned to the station k. SALBP [2] focuses on grouping tasks
in workstations by an efficient and coherent way. There is a large variety of
exact and heuristic problem-solving procedures [7], even an hybrid ant colony
algorithm-beam search approach has been recently developed in [8].

The need of introducing space constraints in the assembly lines’ design is based
on two main reasons: (a) the length of the workstation is limited in the majority
of the situations, and (b) the required tools and components to be assembled
should be distributed along the sides of the line. Hence, an area constraint may
be considered by associating a required area aj to each task j and an available
area Ak to each station k that, for the sake of simplicity, we shall assume it to be
identical for every station and equal to A : A = max∀k∈{1..n}{Ak}. Thus, each
station k requires a station area a(Sk) that is equal to the sum of areas required
by the tasks assigned to station k.

Incorporating Preferences to a Multi-objective Ant Colony Algorithm 333

This leads us to a new family of problems called TSALBP in [1]. It may be
stated as: given a set of n tasks with their temporal tj and spatial aj attributes
(1 ≤ j ≤ n) and a precedence graph, each task must be assigned to a single
station such that: (i) every precedence constraint is satisfied, (ii) no station
workload time (t(Sk)) is greater than the cycle time (c), and (iii) no area required
by any station (a(Sk)) is greater than the available area per station (A).

TSALBP presents eight variants depending on three optimization criteria: m
(the number of stations), c (the cycle time) and A (the area of the stations).
Within these variants there are four multi-objective problems and we will tackle
one of them, the TSALBP-1/3. It consists of minimising the number of stations
m and the station area A, given a fixed value of the cycle time c. We chose this
variant because it is quite realistic in the automotive industry since the annual
production of an industrial plant (and therefore, the cycle time c) is usually set
by some market objectives. Besides, the search for the best number of stations
and areas makes sense if we want to reduce costs and make workers’ day better
by setting up less crowded stations. For more information we refer to [3].

2.2 A MACS Algorithm to Solve TSALBP-1/3

In this section, a brief summary of our previous multi-objective proposal based
on the MACS algorithm is presented. The complete MACS description can be
found in [4], and our proposal is detailed in [3].

Since the number of stations is not fixed, we use a constructive and station-
oriented approach (as usually done for the SALBP [7]) to face the precedence
problem. Thus, our algorithm will open a station and select one task till a stop-
ping criterion is reached. Then, a new station is again opened to be filled.

Experiments showed that the performance is better if MACS is only guided by
the pheromone trail information. Such information has to memorise which tasks
are the most appropriate to be assigned to a station. Hence, pheromone has to
be associated to a pair (stationk, taskj), k = 1...n, j = 1...n, so our pheromone
trail matrix has a bi-dimensional nature. We used two station-oriented single-
objective greedy algorithms to obtain the initial pheromone value τ0.

In addition, we introduced a new mechanism in the construction algorithm
to close a station according to a probability distribution, given by the filling
rate of the station: p(closing) =

(∑
∀i∈Sk

ti
)
/c. It helps the algorithm to reach

more diverse solutions from closing stations by a deterministic process. The
probability is computed at each construction step so its value is progressively
increased. Then, a random number is generated to decide if the station is closed.

Besides, there is a need to achieve a better intensification-diversification trade-
off. That was achieved by introducing different filling thresholds associated to the
ants. These thresholds make the different ants have a different search behaviour.
The higher the ant’s threshold, the more filled the station will be (there will be
less possibilities to close the station during its creation process).

In this way, the ant population will show a highly diverse search behaviour,
allowing the algorithm to properly explore the different parts of the optimal
Pareto front by appropiately spreading the generated solutions.

334 M. Chica et al.

3 Adding Preferences Based on Domain Knowledge

In this work, we have included some expert information into the dominance def-
inition considered by the algorithm (using an a priori approach). This addition
of domain knowledge allows us to derive a Pareto set composed of a smaller
number of more likely solutions for the final user as well as to induce a better
convergence to the actual Pareto front as a collateral effect [6]. In this section
we describe how we have modified the original dominance definition including
specific preferences given by the expert for the current problem.

We have applied these preferences based on domain knowledge when there
are some solutions with the same objective values 1, i.e. the same value for area
and number of stations (A and m) for a fixed cycle time (c). Decision between
two solutions with different c, A and m values is made by using the traditional
dominance relationship.

Since the number of solutions of this kind can be quite large, thus difficulting
the final choice of the best one for each combination of objective values to the
user, it is important to establish a criterion based on the expert’s preferences to
choose, among those solutions, the one having the best quality according to the
industrial context. Thus, we can discriminate between two solutions with same
c, A and m values considering that:

(a) The workload of the plant must be well-balanced in every station. For m
stations, all the station workload times t(Sk) for k = 1..m are alike. Due to
this criterion, and considering the same number of employees per station,
a well-balanced plant provides less human resources’ conflicts. Likewise, it
eliminates the need of shifts among the workers of the different stations.

(b) The required space for worker’s instruments must be as similar as possi-
ble. This preference aims to offer solutions in which every worker has the
same working conditions. If we reduce the extra effort in movements and the
crowding sensation, it will eliminate industrial disputes.

The latter criteria are formulated through the following preference measures:

Pt(σ) =
m∑

k=1

(c − t(Sk))2 Pa(σ) =
m∑

k=1

(A − a(Sk))2

where σ represents a solution with known c, A and m values. Sk, ∀k = 1...m is
the assignment of the different tasks to the k-th station in σ.

Bearing in mind these measures, the following preferences-based dominance
relations can be considered:

Definition 1. A solution σ1 is said to partially dominate another solution σ2

with respect to time, both with identical c, A and m values, if Pt(σ1) < Pt(σ2).
1 Notice that preferences are usually applied to guide the search to the specific Pareto

front zones that are interesting for the user (i.e. in the objective space) while, in our
case, it is applied on the decision variable space to reduce the number of solutions
considering different task assignments presenting the same objective values.

Incorporating Preferences to a Multi-objective Ant Colony Algorithm 335

Table 1. Used parameter values

Parameter Value Parameter Value
GENERAL MACS/ACS

Number of runs 10 (except for ACS) Number of ants 10
Max. run time 900 seconds β 2

PC Specs. Intel PentiumTM D ρ 0.2
2 CPUs at 2.80GHz q0 0.2

OS CentOS Linux 4.0 Ants’ thresholds {0.2, 0.4, 0.6, 0.7, 0.9}
GCC 3.4.6 (2 ants per threshold)

MORGA ACS
αMORGA 0.3 Number of runs 11

(one for each αACS value)
Diversity {0.2, 0.4, 0.6, 0.7, 0.9} αACS for the {0, 0.1, ..., 0.9, 1}
thresholds objective aggregation

Definition 2. A solution σ1 is said to partially dominate another solution σ2

with respect to space, both with identical c, A and m values, if Pa(σ1) < Pa(σ2).

Definition 3. A solution σ1 is said to completely dominate another solution σ2

with respect to time and space, both with identical c, A and m values, if:

([Pt(σ1) ≤ Pt(σ2)]∧ [Pa(σ1) < Pa(σ2)])∨([Pt(σ1) < Pt(σ2)]∧ [Pa(σ1) ≤ Pa(σ2)])

4 Experiments

We present two different algorithms, MORGA and ACS, to compare our MACS
algorithm with them. Then, the considered experimental setup is showed. We
finally lay out the developed experimentation and discuss the obtained results
considering multi-objective metrics and some graphics.

4.1 Other Approaches to TSALBP-1/3

Apart from the MACS algorithm, we have also designed a modified ACS algorithm
and a multi-objective randomised greedy algorithm (MORGA), already proposed
in [3]. In both cases, we use the same constructive approach, non-dominated solu-
tion archive, and all the remaining multi-objective mechanisms than in our MACS
algorithm. The ACS algorithm has been developed according to the original ver-
sion [9] but including a weighted aggregation of the two objectives. An approxi-
mate Pareto set is built by fusing all the obtained solutions of the different runs
of the algorithm. On the other hand, MORGA has a diversification generation
mechanism that behaves similarly to a GRASP construction phase. We use an
αMORGA parameter which stands for the diversification-intensification trade-off
control parameter in the decision step of the algorithm. The most suitable value
for αMORGA is 0.3 (see [3]), the one used in this work.

4.2 Problem Instances and Parameter Values

Five real-like problem instances have been selected for the experimentation (see
Table 2). Originally, these instances were SALBP-1 instances 2 only having time
2 Available at http://www.assembly-line-balancing.de

336 M. Chica et al.

Table 2. Mean and standard deviation values (x̄(σ)) of the unary metrics for barthol2,
barthold, lutz2, nissan, scholl and weemag instances

barthol2 barthold lutz2 nissan scholl weemag

No. of non-dominated solutions
MORGA 12.1 (1.5) 2437.2 (578.3) 1227.3 (652.7) 809.9 (103.6) 595.4 (67.5) 10.8 (2.3)
ACS 5 (0) 2 (0) 5 (0) 3 (0) 3 (0) 5 (0)
MACS 13.5 (2.8) 12 (1.4) 268.9 (22.4) 571.9 (81.1) 50.6 (85.7) 15.6 (4.4)
MACS prefs. 10.8 (1.5) 12 (1.2) 7.6 (1.0) 7.2 (0.8) 13 (2.1) 7.9 (1.2)

No. of different Pareto front solutions
MORGA 7.1 (0.5) 9.3 (1.6) 7.4 (0.8) 7.6 (0.7) 3.9 (0.7) 6.7 (0.9)
ACS 5 (0) 2 (0) 5 (0) 3 (0) 3 (0) 5 (0)
MACS 12.8 (2.8) 11 (0.9) 6.7 (0.6) 7.6 (1.0) 14.6 (2.0) 8.2 (1.5)
MACS prefs. 10.8 (1.5) 12 (1.2) 7 (0.8) 7.2 (0.8) 13 (2.1) 7.8 (1.2)

Metric S
MORGA 393060.69 711632.81 26115 8815.17 16337440 63679.2

(28.2) (58.3) (178.0) (7.9) (752.6) (21.5)
ACS 390161 (0) 709528 (0) 26470 (0) 8713 (0) 16458204 (0) 65062 (0)
MACS 391719.09 725348.19 26027.3 8889.75 16550586 65148.1

(1204.8) (2127.4) (3.5) (0.7) (6318.0) (5.7)
MACS prefs. 391410.59 726088 26071.1 8864.45 16552952 65151.6

(166.4) (2202.9) (135.7) (31.9) (7248.2) (17.5)

Metric M2*
MORGA 5.82 (0.7) 7.29 (1.0) 6.89 (0.7) 6.73 (0.3) 3.85 (0.6) 6.35 (0.9)
ACS 4 (0) 2 (0) 5 (0) 3 (0) 2 (0) 4.5 (0)
MACS 10.86 (2.1) 9.49 (0.6) 6.21 (0.5) 6.88 (0.8) 11.51 (1.4) 7.46 (1.3)
MACS prefs. 9.38 (1.2) 10.19 (1.0) 6.62 (0.7) 6.54 (0.7) 10.09 (1.7) 7.15 (1.1)

Metric M3*
MORGA 80.6 (0.2) 684.09 (0) 22.45 (3.7) 21.11 (1.6) 2163.08 (0) 20.56 (1.7)
ACS 58.6 (0) 712.08 (0) 21.21 (0) 8.25 (0) 3563.24 (0) 24.19 (0)
MACS 61.99 (12.9) 407.91 (21.0) 19.73 (0.6) 21.12 (1.3) 1645.49 (38.7) 24.61 (1.0)
MACS prefs. 64.82 (6.6) 403.31 (23.3) 20.27 (0.9) 19.62 (2.6) 1658.79 (40.8) 24.39 (1.6)

No. of applications of preferences-based dominance
MACS prefs. 8.3 (3.0) 5.6 (2.9) 478.1 (105.4) 935.4 (231.4) 240.2 (145.1) 39.5 (18.2)

information. However, we have created their area information by reverting the
task graph to make them bi-objective (as done in [1]). Apart from these real-like
instances, we have considered a real-world problem corresponding to the assem-
bly process of the Nissan Pathfinder engine, developed at the Nissan industry
plant of Barcelona (Spain). See [1] for additional information on this problem
instance.

The MACS algorithm and MORGA have been run ten times with ten different
seeds for each of the five real-like and the Nissan instances. The ACS algorithm
has been run eleven times with different values for the αACS parameter in order
to spread all the extent of the Pareto front. Every considered parameter value
is shown in Table 1.

4.3 Results Analysis

We have applied some multi-objective unary metrics to measure the performance
of the different approaches: the number of total and different (in the objective

Incorporating Preferences to a Multi-objective Ant Colony Algorithm 337

Fig. 1. Pareto fronts for the barthol2 problem instance

vectors) Pareto solutions returned by each algorithm, and the S, M2∗ and M3∗

metrics [6]. S, the size of the space covered, measures the volume enclosed by the
Pareto front, M2∗ evaluates the distribution of the solutions and M3∗ evaluates
the extent of the obtained Pareto fronts 3. In addition, the number of applications
of the preferences-based dominance criterion for each problem is shown in Table
2. We can also observe the obtained values for the different unary metrics. The
different variants of the MACS algorithm achieve better and vaster Pareto fronts
than MORGA and ACS in almost every case. Mainly, they obtain more diverse
Pareto fronts with a better convergence. The single-objective ACS algorithm
is the worst choice because it only achieves few solutions in the Pareto set.
However, the values of M3∗ for ACS are higher than MACS. This behaviour
can be explained since ACS convergence to the actual Pareto front is not good
enough, above all, in its most left part.

The preferences-based MACS variant shows the best convergence and reduces
the number of non-dominated solutions with the same objective values as ex-
pected while keeping a similar value of different solutions. In some cases, this
reduction is quite important (see nissan instancee, from an average of 571.9
solutions to 7.2). We should highlight that the real-world instance of Nissan is
the most appropriate to use preferences based on domain knowledge. Indeed, the
number of applications of the preferences-based dominance is the highest.

The graphical representation of the returned aggregated Pareto fronts for the
barthol2 instance is shown in Figure 1. We can arrive to the same previous

3 M1∗ has not been applied because we do not know the optimal Pareto fronts.

338 M. Chica et al.

conclusions by observing it. MACS variants are the best approaches, and even
MACS with preferences achieves a better convergence. MORGA and ACS are
not able to reach all the Pareto front surface, getting only few solutions. We have
only included the Pareto front of this problem instances for the lack of space but
pretty similar behaviours are obtained in the remainder. For the same reason,
the binary metric C [6] is not included here, but their values and boxplots can
be found in an external appendix at http://www.nissanchair.com/TSALBP/

5 Concluding Remarks

An existing MOACO proposal has been extended by introducing preferences
based on domain knowledge to tackle the TSALBP-1/3. Other competitive al-
ternatives to baseline the performance of our MOACO proposal, MORGA and
a modified ACS, have been used. From the obtained results we have found out
that the MACS algorithm gets better results than MORGA and ACS in ev-
ery considered metric. It has a better convergence, distribution and number of
solutions. The enrichment of MACS with domain knowledge provides excellent
results, reducing the number of solutions in the Pareto set which have the same
objective values and getting a better convergence. Our improved proposal is
especially suitable for real-world problems like Nissan’s one.

References

1. Bautista, J., Pereira, J.: Ant algorithms for a time and space constrained assembly
line balancing problem. European Journal of Operational Research 177, 2016–2032
(2007)

2. Scholl, A.: Balancing and Sequencing of Assembly Lines, 2nd edn. Physica-Verlag,
Heidelberg (1999)

3. Chica, M., Cordón, O., Damas, S., Bautista, J., Pereira, J.: Multi-objective, con-
structive heuristics for the 1/3 variant of the time and space assembly line balanc-
ing problem: ACO and randomised greedy. Technical Report AFE-08-01, European
Centre for Soft Computing, Asturias (Spain) (2008)

4. Barán, B., Schaerer, M.: A multiobjective ant colony system for vehicle routing
problem with time windows. In: 21st IASTED Conf., Germany, pp. 97–102 (2003)

5. Garćıa Mart́ınez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis
of multiple objective ant colony optimization algorithms for the bi-criteria TSP.
European Journal of Operational Research 180, 116–148 (2007)

6. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-objective Problems, 2nd edn. Springer, Heidelberg (2007)

7. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for
simple assembly line balancing. European Journal of Operational Research 168,
666–693 (2006)

8. Blum, C., Bautista, J., Pereira, J.: Beam-ACO applied to assembly line balancing.
In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle,
T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 96–107. Springer, Heidelberg (2006)

9. Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computa-
tion 1(1), 53–66 (1997)

KANTS: Artifical Ant System for Classification

Carlos Fernandes1,2, Antonio Miguel Mora2, Juan Julián Merelo2,
Vitorino Ramos1, Juan Lúıs Laredo2, and Agostihno Rosa1

1 LASEEB-ISR/IST. University of Lisbon, Portugal
{cfernandes,vramos,acrosa}@laseeb.org

2 Dep. de Arquitectura y Tecnoloǵıa de Computadores, University of Granada, Spain
{amorag,jmerelo,juanlu}@geneura.ugr.es

Abstract. This paper investigates a new model that takes advantage of
the cooperative self-organization of Ant Algorithms to evolve a naturally
inspired pattern recognition (and also clustering) method. The approach
considers each data item as an ant that changes the environment as it
moves through it. The algorithm is successfully applied to well-known
classification problems and yields better results than some other classi-
fication approaches, like K-Nearest Neighbours and Neural Networks.

1 Introduction and State of the Art

Clustering is performed naturally by some types of ants in two different ways.
First, ant colonies recognize by odour other members of their colony [1] leading to
a natural clustering of ants belonging to the same nest; second, ants do physically
cluster their larvae and dead bodies, putting them in piles whose position and size
is completely self-organized [2]. Ant Algorithms inspired by these models, such
as those proposed in [1,3,4], have been applied to clustering and classification. In
general, these methods follow the second clustering behavior: data for training
the clusters is represented as dead bodies that ants have to pick up (following
some rule) and drop, while at the same time deposit and follow pheromone, but
another approach is possible by considering each data item as an ant.

This paper presents KohonAnts (or KANTS), an Ant Algorithm that merges
the biologically inspired concepts of Kohonen’s Self-Organizing Map (SOM) [5]
with Chialvo and Millona’s Ant System (AS) [6] and introduces a few new ideas
in order to deal with classification. First, every ant represents a data item. Ants
move in a grid dropping vectorial pheromones. The grid is initially filled with
random vectors (of the same dimension as the data), and every time an ant
visits a cell it changes the pheromone following a method similar to that used
by SOM, by ”pushing” the pheromone closer to the data stored in the ant itself.
Since ants move around in the grid, ant position and pheromone co-adapt, so
that eventually ants with similar data are close together in the grid (nesting
behavior), and the grid itself contains vectors similar to those stored in the
ants on top of them. The grid can then be used to classify in the same way
as SOM, while ants can be used to visually identify the clusters’ position. The
interesting part of the method is that self-organization comes through stigmergy:

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 339–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

340 C. Fernandes et al.

ants change the environment (pheromones in the grid), and that influences the
behavior of the rest of the ants.

2 Preliminary Concepts

SOM, introduced by Teuvo Kohonen [5] as a non-supervised neural network that
tries to imitate the self-organization of the sensory cortex of the human brain,
may be used as a clustering/classification tool or as a method to find unknown
relationships in a set of variables that describe a problem. SOM makes a nonlin-
ear projection from a high-dimensional data space (one dimension per variable)
on a regular, low-dimensional (usually 2D) grid of neurons. Since this type of net-
work is distributed in a plane it can be concluded that the projections preserve
the topologic relations while simultaneously creating a dimensional reduction of
the representation space. SOM processes a set of input vectors (samples or pat-
terns), which are composed by variables (features) typifying each sample, and
creates an output topological network where each neuron is associated also to a
vector of variables (model vector) which is representative of a group of the input
vectors. The consecutive iterations of the method have the effect of ’moving’ the
model vectors from the winning neuron towards the input vector: vectors tend
to follow the distribution of the input vectors. Consequently, the algorithm leads
to a topological arrangement of the characteristic map of the input space, in the
sense that adjacent neurons in the network tend to have similar weight vectors.
Then, ooking at the SOM’s display, it is possible to recognize some clusters as
well as the metric-topological relations of the data items and the variables.

AS [6] is an ant model where trails and networks of ant traffic emerge without
impositions by any special boundary conditions, lattice topology, or additional
behavioral rules. The state of an ant can be expressed by its position r and
orientation θ. Transition rules were derived from noisy response functions, which
in turn were found to reproduce a number of experimental results with real
ants. The response function can effectively be translated into a two-parameter
transition rule between the cells by using a pheromone weighting function,

W (σ) =

�
1 +

δ

1 + σ · δ

�β

(1)

that measures the relative probabilities of moving to a cell r with pheromone
density σ(r). Parameter β (associated with the osmotropotaxic sensitivity [7])
controls the degree of randomness with which each ant follows the pheromone’s
gradient [6]. Sensory capacity 1/δ describes the fact that each ant’s ability to
sense pheromone decreases somewhat at high concentrations. (In addition to
the former equation, there is a weighting factor w(Δθ), where Δθ is the change
in direction at each time step. This factor ensures that very sharp turns are
much less likely than turns through smaller angles.) In test some assumptions,
a discretization of the model is necessary and for that purpose a square lattice
where ants can move around, taking one step at every iteration, was created.
The decision (where to go) is made according to the pheromone concentration
in all eight neighboring cells (Von Neumann neighbourhood). As an additional

KANTS: Artifical Ant System for Classification 341

Algorithm 1. KANTS Algorithm
initialize randomly grid vectors
place randomly ants in grid
for N iterations do

for each ant a at cell (x, y) do
j = decide where to go(a,(x, y))

end for
update grid // Using Equation 4
evaporate grid // Using Equation 7
update neighbourhood radio // decreases radio

end for

condition, each individual leaves a constant amount η of pheromone at the cell
where it is located at every time step t. This pheromone decays at each time
step at a rate k. Please note that there is no direct communication between the
organisms but a type of indirect communication through the pheromone field.

3 Self-Organizing Ants Model

The proposed model has some common features with Chialvo and Millona’s
AS and Kohonen’s SOM. The later inspired the model’s name: KohonAnts (or
KANTS). KANTS was designed as a clustering algorithm, in order to be ca-
pable of grouping a set of input (training) samples into clusters with similar
features. In addition, it behaves as a classification algorithm, working in a non-
supervised way, without considering the class of the input patterns during the
process.

The main idea is to assign each input sample (a vector) to an ant, and
then dropping it into an habitat designed as a toroidal X · Y grid. Then, the
ants/vectors move around changing the environment. Every cell also contains a
vector of the same dimension and range as the training set. Since every ant tends
to move towards areas in the grid which hold vectors more similar to themselves
(to their associated vectors), ant position and pheromone content co-adapt. This
means that ants with similar data items tend to gather closer in the grid, and
the area itself will contain similar vectors to those stored in the ants on top of
them. Then, the grid can be used as a classification tool (as a SOM after train-
ing), while ants will be grouped in clusters of similar individuals. The model’s
pseudo-code is shown in Algorithm 1.

The function DecideWheretoGo is described here in detail. Transition proba-
bilities are computed as follows:

Pij =

������
�����

W (σij)�
u∈Nt

i

W (σiu)
if j ∈ N t

i

0 otherwise

(2)

342 C. Fernandes et al.

Algorithm 2. Decide Where To Go (a,(i, j))
for all cells (x, y) in neighbourhood of (i, j) do

σij,xy = ED((i, j),centroid((x, y)))
compute W (σij,xy) // Using Equation 1

end for
q = random(0,1)
if q ≤ q0 then

(k, l) = MAX(Pij,xy) // selected cell = the one with maximum probability
else

(k, l) = roulette wheel(Pij,xy) // selected cell = roulette wheel
end if

where Ni is the neighbourhood of the cell i. There is also a neighbourhood radius
(nr) which diminish along the run, meaning that the neighbourhood varies with
t. Values σ are defined by:

σij =
�

Vi(v)2 − CTRj(v)2 ∀v = 1..nvars (3)

where Vi is the vector associated to the cell i and CTRj is the centroid of a
zone centered in the cell j. The formula is equivalent to compute the Euclidean
distance between the vector associated to the cell i and the centroid vector
for the cell j, both vectors have a number of variables nvars. Finally, in the
DecideWheretoGo rule, W (σ) is the Ant System pheromone weighting function
(Equation 1). The rule works as follows: when an ant is building a solution path
and is placed at one node i, a random number q in [0,1] is generated; if q ≤ q0

the best neighbour j is selected as the next node in the path. Otherwise, the ant
chooses the neighbour by using a roulette wheel considering Pij as probability
for every feasible neighbour j (Equation 2).

The UpdateGrid function is similar to those performed by classical Ant Al-
gorithms when depositing pheromone on the trails. At every step, each ant k
updates its cell i, using an formula similar to SOMs’ learning function [5]. Bear-
ing in mind that every sample/ant and cell in the grid is a vector of nvars
variables, the formula is as follows:

V t
i (v) = V t−1

i (v) + R · [ak(v) − V t−1
i (v)] ∀v = 1..nvars (4)

where Vi is the vector associated to the cell i, t is the current iteration, and ak

is the vector associated to the ant k. R is a kind of reinforcement rate:

R = α · (1 − D(ak, CTRi)) (5)

where α is the learning rate factor typical in SOM (which is constant in this
algorithm), CTRi is again the centroid of a zone centered in the cell i. Finally,
D is the mean Euclidean distance between the ant’s vector and the centroid
vector:

D =

nvars�
v=1

�
ak(v)2 − Ci(v)2

nvars
(6)

KANTS: Artifical Ant System for Classification 343

As in all the Ant Algorithms, it is very important that environment reverts to
its previous (or initial) state. The evaporation in KANTS is performed in every
cell once all the ants have moved and updated the environment.

Vi(v) = Vi(v) − ρ · Vi0(v) ∀v = 1..nvars (7)

where ρ is the usual evaporation factor and Vi0 is the initial vector associated
to the cell i. The function changes the vector in order to be closer to its initial
values. This can be interpreted as an evaporation of the trails in the environment.

4 Experiments and Results

The datasets used to test and validate the model are well-known real world
databases. IRIS contains data of 3 species of iris plant (Iris Setosa, Versicolor and
Virginica), 50 samples of each one and 4 numerical attributes (the sepal and petal
lengths and widths in cms.). GLASS contains data from different types of glasses
studied in criminology. There are 6 classes, 214 samples (unevenly distributed
in classes) and 9 numerical features related to the chemical composition of the
glass. PIMA (Pima Indians Diabetes database) contains data related to some
patients and a class label representing their diabetes diagnostic according to
the world-wide health organization’s criterion. There are 768 samples with 8
numerical features (medical data).

For each of the databases, 3 sets were built by transforming the original into
3 disjoint sets of equal size. The original class distribution (before partitioning)
is maintained within each set. Then 3 pair of datasets ’training-test’ are consid-
ered by splitting the 3 previous into half size ones; they are named 50tra-50tst.
In addition, 3 other pairs are created, but considering a distribution of 90% of
samples for training and 10% for test. These sets are named 90tra-10tst. In order
to classify with KANTS, a parameter was introduced: the number of neighbours
to compare with the test sample. This way, the algorithm searches for the K
nearest vectors in the grid (using the Euclidean distance) to the vector corre-
spondent to the sample which it wants to classify. It assigns the class of the
majority. It is similar to the one used in K-Nearest Neighbours (KNN) method
(see [8] for details), but in this case it is used once the grid has been trained (with
the training dataset) and many times the algorithm works well even considering
K = 1. Ten runs were made for each pair of datasets (training and test). Results
are presented in Table 1.

Results are compared with those yielded using some techniques. Two statis-
tical methods: the traditional deterministic KNN and the Linear Discriminant
Analysis (LDA) [9], which determines if an instance is of a class or not using
linear classification based on the covariance matrix. In addition, we consider the
results yielded by a Neural Network for classification (the Multilayer perceptron
for classification problems with Conjugate Gradient based training (MLPCG)
[10]), which is a typical back-propagation algorithm [11] where the weights are
adjusted by using a method (for non-linear optimization) that is called conjugate
gradient. All these algorithms have been applied using the Keel Project.1

1 http://www.keel.es/

344 C. Fernandes et al.

Table 1. Classification with Iris, Glass, Pima (6 different datasets each time)

IRIS KANTS KNN LDA MLPCG
Dataset Best Mean Best Best Best Mean

50tra-50tst-Set1 98.67 98.00 ±0.67 97.30 97.00 97.00 95.00 ±2.22
50tra-50tst-Set2 98.67 97.60 ±0.53 96.00 99.00 95.00 93.00 ±1.06
50tra-50tst-Set3 100.00 98.80 ±0.40 94.60 97.00 96.00 94.00 ±0.80
90tra-10tst-Set1 100.00 100.00 ±0.00 100.00 100.00 100.00 99.00 ±2.10
90tra-10tst-Set2 100.00 99.33 ±2.00 93.33 100.00 100.00 100.00 ±0.00
90tra-10tst-Set3 100.00 100.00 ±0.00 93.33 100.00 100.00 100.00 ±0.00

GLASS KANTS KNN LDA MLPCG
Dataset Best Mean Best Best Best Mean

50tra-50tst-Set1 68.22 65.42 ±1.62 62.60 65.00 33.00 33.00 ±0.00
50tra-50tst-Set2 67.29 64.86 ±1.52 64.40 61.00 33.00 33.00 ±0.00
50tra-50tst-Set3 74.77 71.03 ±2.17 64.40 60.00 33.00 33.00 ±0.00
90tra-10tst-Set1 69.57 65.65 ±1.30 47.80 52.00 30.00 30.00 ±0.00
90tra-10tst-Set2 73.91 73.48 ±1.30 60.80 48.00 30.00 30.00 ±0.00
90tra-10tst-Set3 91.30 83.48 ±3.25 82.60 65.00 33.00 31.00 ±1.04

PIMA KANTS KNN LDA MLPCG
Dataset Best Mean Best Best Best Mean

50tra-50tst-Set1 75.52 74.32 ±0.61 70.03 78.00 76.00 70.00 ±2.02
50tra-50tst-Set2 77.34 76.61 ±0.58 71.80 77.00 73.00 71.00 ±1.61
50tra-50tst-Set3 77.60 75.13 ±0.85 72.90 77.00 77.00 72.00 ±2.61
90tra-10tst-Set1 83.12 80.52 ±1.42 64.90 76.00 75.00 67.00 ±3.08
90tra-10tst-Set2 79.22 75.32 ±1.42 73.60 77.00 79.00 75.00 ±2.12
90tra-10tst-Set3 84.42 80.65 ±2.05 70.10 77.00 81.00 77.00 ±2.79

Results obtained by KANTS are always better when compared with the rest
of the methods, even in the comparison with a traditional clustering and classi-
fication approach such as KNN and with the MLPCG method which also yields
very good results. Glass and Pima datasets usually obtain a low classification
rate (both are difficult databases as the LDA classifications show), while KANTS
achieves in some cases a rate 10% higher than MLPCG and KNN. It is impor-
tant to comment that the running time of the algorithm is just a few seconds,
depending on the dataset size: 8 seconds in Iris, 10 seconds in Glass and 20 sec-
onds in Pima. The second best method (MLPCG) takes about 10 times more.
All the experiments have been performed in a Pentium 1.6 GHz.

In [6], the authors performed a study on the distribution of ants in AS, with
different configurations in the β-δ parameter space. Three types of behavior
were observed when looking at the snapshots of the system after 1000 iterations:
disorder, patches and trails. The results follow theoretical prediction: a second
order phase transition is observed, when a region of the parameter space which
gives rise to disorder regimes ”turns into” a region where trails are formed.
Moving away from the order-disorder line, the system loses its ability to evolve
lines/trails of ants and patches gradually appear. In another experiment the
system was tuned to a region in the parameter space were trails emerge, and,
after the traffic network was formed, β was decreased in order to tune the system
bellow the transition line; then, the ants started executing random walks and
left their previously formed trails. Once β was set again to the initial value, the
ants self-organized again on a similar traffic network.

A similar test was performed with KANTS. Parameters β and δ were varied,
and the resulting ants’ distribution after 100 iterations is depicted in Figure 1. (Pa-
rameters α, (nr) and (cr), were set to 1, 1 and 3, respectively.) It is not possible to

KANTS: Artifical Ant System for Classification 345

Fig. 1. Snapshots of the ants in the system after 100 iterations for different β and δ values.
The straight lines roughly delimit the region where clusters emerge.

distinguish three different types of behavior, as in Chialvo and Millonas’ experi-
ments described above, but it is clear that there is a transition line fromadisordered
state, where ants/data do not cluster, and a ordered state where clusters emerge.
Further away from the transition line, the model’s ability to form clusters gradu-
ally decays. As in the original model, there is only a small region of the parameter
space that gives rise to self-organization, but while AS forms trails, KANTS forms
clusters that represent data samples.

Considering this results, KANTS appear to be a also promising tool for data
clustering. With proper tuning of β and δ, data represented by (and behaving
as) ants form clusters that are easily distinguishable in the grid. Even if some
kind of local search is necessary in order to tackle real-world problems, KANTS
by now come forward as a core (and simple) model where hybridization may be
performed in order to build algorithms to solve hard problems.

5 Conclusions and Future Work

This paper investigates KohonAnts, a new method for data classification, based
on the hybridization of Ant Algorithms and Kohonen Self-Organizing Maps.
The model turns n-variable data samples into artificial ants that evolve in a 2D
toroidal grid paved with n-dimensional vectors. Data/Ants act on the habitat
vectors by pushing the values towards their own. In addition, ants are attracted
by regions were the vector values are closer to their own data. In this way,
similar ants tend to aggregate in common regions of the grid. There is indirect
communication between ants through the grid (stigmergy) leading, with a proper
setting of the model’s parameters, to the emergence of data clusters. In addition,
pheromone deposition and evaporation creates a kind of cognitive field that can
be used for classification purposes. The concept is very simple and naturally

346 C. Fernandes et al.

inspired but the results obtained on classification are quite competitive when
compared with traditional methods. As future lines of work, further tests will
be performed on clustering, in order to properly evaluate KANTS’s abbilities on
these kind of problems. In addition, a lot of enhancements are still possible in
the original KANTS model presented in this paper. A neighbourhood function
may be considered, similar to the one used in Self-Organizing Maps for updating
the environment in a radius. And, as in [12], reproduction may improve speed
and accurateness of the algorithm.

Acknowledgements. First author wishes to thank FCT, Ministério da Ciência
e Tecnologia, his Research Fellowship SFRH/BD/18868/2004, also partially sup-
ported by FCT (ISR/IST plurianual funding) through the POS Conhecimento
Program that includes FEDER funds. This work has also been supported by
NOHNES project from the Spanish Ministry of Science and Education (TIN2007-
68083-C02-01).

References

1. Labroche, N., Monmarche, N., Venturini, G.: AntClust: Ant Clustering and Web
Usage Mining. In: GECCO 2003. LNCS, vol. 2723, pp. 25–36. Springer, Heidelberg
(2003)

2. Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien,
L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Pro-
ceedings of the first international conference on simulation of adaptive behavior on
From animals to animats table of contents, pp. 356–363 (1991)

3. Bonabeau, E., Theraulaz, G., Fourcassié, V., Deneubourg, J.: Phase-ordering ki-
netics of cemetery organization in ants. Physical Review E 57(4), 4568–4571 (1998)

4. Ramos, V., Merelo, J.J.: Self-organized stigmergic document maps: Environment
as a mechanism for context learning. In: Alba, E., Fernández, F., Gómez, J.A.,
Herrera, F., Hidalgo, J.I., Merelo-Guervós, J.J., Sánchez, J.M. (eds.) Actas primer
congreso español algoritmos evolutivos, AEB 2002, pp. 284–293. Universidad de Ex-
tremadura (2002), http://citeseer.nj.nec.com/ramos02selforganized.html

5. Kohonen, T.: The Self-Organizing Maps. Springer, Heidelberg (2001)
6. Chialvo, D., Millonas, M.: How swarms build cognitive maps. In: The Biology and

Technology of Intelligent Autonomous Agents. NATO ASI Series, vol. 144, pp.
439–450 (1995)

7. Wilson, E.: The Insect Societies. Belknam Press, Cambridge (1971)
8. Fix, E., Hodges, J.L.: Discriminatory analysis: Nonparametric discrimination: Con-

sistency properties. In: International Statistical Review, vol. 57, pp. 238–247 (1989)
9. Friedman, J.H.: Regularized discriminant analysis. Journal of the American Sta-

tistical Association 84, 165–175 (1989)
10. Moller, F.: A scaled conjugate gradient algorithm for fast supervised learning.

Neural Networks 6, 525–533 (1990)
11. Widrow, B., Lehr, M.: 30 years of adaptive neural networks: Peceptron, madaline,

and backpropagation. In: Proceedings of the IEEE, vol. 78, pp. 1415–1442 (1990)
12. Fernandes, C., Ramos, V., Rosa, A.C.: Varying the population size of artificial

foraging swarms on time varying landscapes. In: Duch, W., Kacprzyk, J., Oja,
E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 311–316. Springer,
Heidelberg (2005)

http://citeseer.nj.nec.com/ramos02selforganized.html

Lattice Formation in Space

for a Swarm of Pico Satellites

Carlo Pinciroli1, Mauro Birattari1, Elio Tuci1, Marco Dorigo1,
Marco del Rey Zapatero2, Tamas Vinko2, and Dario Izzo2

1 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{cpinciro,mbiro,etuci,mdorigo}@ulb.ac.be

2 European Space Agency, Noordwijk, The Netherlands
{marco.del.rey.zapatero,tamas.vinko,dario.izzo}@esa.int

Abstract. We present a distributed control strategy that lets a swarm
of satellites autonomously form a lattice in orbit around a planet. The
system, based on the artificial potential field approach, proposes a novel
way to split the artificial field in two main terms: a global artificial field
that gathers the satellites around a predefined meeting point, and a local
term that allows a satellite to place itself in the correct position relative
to its closest neighbors. We apply the method to the problem of forming a
two dimensional hexagonal lattice, using the well-known Lennard-Jones
potential as local artificial field. The control parameters have been ob-
tained with a genetic algorithm to maximize the precision of the formed
lattice. The precision does not depend on the number of satellites and
convergence is achieved from all initial distributions of the satellites.

1 Introduction

In this paper, we propose a control system that allows a swarm of small space-
craft, called pico satellites, to build an hexagonal lattice in orbit around a planet.
This is considered an important prerequisite for applications such as formation
flight, coordinated observation [1,2], autonomous self-assembly of solar powered
satellites [3], large antennas and large reflectors in space. The control system
follows the principles of swarm intelligence: it is distributed and interactions
among satellites are only local. Thanks to these characteristics, the system is
highly scalable. Moreover, the system converges to the desired configuration for
any initial distribution of the satellites. The validity of our results has been
tested in simulations of up to 500 satellites. This paper builds on top of our
preliminary work [4], in which we introduce the control system and we briefly
study the precision of the lattice with control parameters chosen by hand in a
flat space (no gravitational forces). In this paper, we optimize the control pa-
rameters for a real orbital environment and we study the precision of the formed
lattice with a varying number of satellites and with different initial conditions.

The swarm is represented as a set of N identical point-masses. Initially, the
satellites are randomly distributed in space under the gravitational influence of
a near planet. A point p orbiting around the planet is defined at design time as

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 347–354, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

348 C. Pinciroli et al.

Fig. 1. An example of hexagonal lattice
with 100 satellites

Orbit ω (rad/s) R (km) T (s)

LEO 1 · 10−3 7,000 6,283
GEO 7.3 · 10−5 42,000 86,071
Amalthea 1.5 · 10−4 181,000 41,888
Metis 2.5 · 10−4 129,000 25,133
Io 4.1 · 10−5 421,600 153,248

Fig. 2. Different types of orbital environ-
ments considered. ω is the angular speed
of rotation around the planet, R is the
distance from its center and T is the time
needed to complete one orbit.

the origin of a reference frame. The control strategy we present in this paper lets
the satellites position themselves around p to form a regular hexagonal lattice
located on the xy plane (see Figure 1). The satellites keep a mutual target
distance σ which is a control parameter fixed at design time. In our simulations,
the motion of a satellite has been modeled with the Hill’s system of differential
equations [5] assuming that the orbit of p around the planet is circular. The
satellites have a mass m = 100 kg and a thrusting capability Tmax = 50 mN.
The swarm has been tested in various orbital scenarios, reported in Table 2:
geostationary orbits (GEO), low Earth orbits (LEO), and Jupiter orbits close to
those of its satellites Amalthea, Metis and Io.

The main goals of the work are to ensure that satellites are not lost in space,
that collisions are avoided and that the overall system is scalable, i.e., that the
control strategy does not depend on the number N of satellites.

2 The Control Strategy

The control strategy studied in this work follows the artificial potential ap-
proach [6]. This idea has been first introduced for robot path planning [7] and
proved effective also in satellite control problems [8]. The agent is imagined im-
mersed in a virtual potential field calculated by its control system. The control
action u is the virtual force due to the virtual potential. The goal position of the
agent corresponds to the status of minimum energy in the potential field. The
artificial potential approach has been applied for formation control of wheeled
robots. Balch and Arkin [9] proposed a system in which a small group of robots,
uniquely identified, keep preassigned relative positions with a very simple attrac-
tion potential. Spears et al. [10] devised a distributed system in which robots
form an hexagonal lattice through local interactions inspired by gravitational
forces. This work neglects collision avoidance and assumes the robots to be ini-
tially very tightly distributed.

Lattice Formation in Space for a Swarm of Pico Satellites 349

x

y

(a) (b)

Fig. 3. (a) The equipotential curves of g on the xy plane (b) A butterfly shaped lattice
obtained with a suitable g potential

The features of the task considered in this paper suggested a novel definition
of the virtual potential field. The control strategy u has been expressed as the
superposition of three contributions:

u = g + l + d, (1)

where g is a force that attracts each satellite towards the origin of the common
reference frame, l is a force that creates locally flat lattices with the neighboring
satellites while avoiding in-swarm collisions, and d is a damping factor analo-
gous to viscosity, used to stabilize the behavior of the swarm and to ensure
convergence.

2.1 Global Attraction to the Origin

We assume that the satellites know their position with respect to the reference
frame defined by p. This is not a stringent requirement in a space application
because many well known techniques can be employed, spanning from the use
of triangulation with fixed star positions to placing a special satellite in p that
broadcasts its position in space.

Defining q as the position of a satellite with respect to p, and defining the nor-
malized vector q̄ = [q̄x q̄y q̄z]T = q/‖q‖, then the virtual force that attracts
satellites towards the origin is defined as:

g = −η‖q‖2q̄, (2)

where η is a design parameter. Thanks to virtual viscosity (term d of Equation 1,
see also Section 2.3), a satellite starting from any point in space converges, after
some time, to the origin.

As shown in Figure 3a, sections of the potential that defines g cut parallel
to the xy plane are circle shaped. Therefore, the global shape of the swarm is a
circle. Using a potential with a different section contour, it is possible to change
the global shape of the formation. As an example, Figure 3b depicts a butterfly
shape obtained with a different g.

350 C. Pinciroli et al.

V

r
σ

ε

0

(a) (b)

Fig. 4. (a) The Lennard-Jones potential (b) Its equilibrium state, an hexagonal lattice

2.2 Local Lattice Formation

The local potential field lets a satellite interact with its neighbors to create a
lattice, while avoiding collisions. In this work, the local potential is inspired by a
simple and very well known model of molecular interaction, the Lennard-Jones
potential [11]:

V (r) = ε

[(
σ

r

)12

− 2
(

σ

r

)6]
, (3)

r being the distance between two molecules. The force F (r) between two
molecules is given by

F (r) = −∇V (r) = − d

dr
V (r)r̂, (4)

where r̂ is a normalized vector directed as the line going from the center of the
first molecule to the center of the second. This force is null when the distance
coincides with the target distance σ; the force is increasingly repulsive as r < σ
decreases; the force is attractive when r > σ. As Figure 4a shows, the attraction
is very strong when r is not much larger than σ, but after a certain distance this
force fades to zero, thus explaining the reason why we call this potential local.
The stable arrangement of two molecules is such that they keep the mutual
target distance σ (in our experiments, σ = 300 m). Increasing the number of
molecules, the stable arrangement is an hexagon (see Figure 4b).

The design parameters of the potential are few and very intuitive to set: σ
is the mutual distance among the satellites in the lattice, while ε is the depth
of the potential well, which accounts for the attractiveness and stability of the
minimum located at distance σ. Notably, the lattice is formed on the basis of
positional information only: no communication is needed.

From Equations 3 and 4, the magnitude of the virtual force parallel to the xy
plane between a satellite and its i-th neighbor is given by

lxy
i = − d

dr
V (r) =

12ε

r

[(
σ

r

)12

−
(

σ

r

)6]
.

To flatten the lattice, a virtual force parallel to the z axis is defined as lzi =
−ψ sign(rz)r2

z , where rz is the projection of r = rr̂ on the z axis. The force

Lattice Formation in Space for a Swarm of Pico Satellites 351

is then li = [lxy
i q̄x lxy

i q̄y lzi]T . Eventually, l is defined as the average of the
virtual forces due to the M closest neighbors (in our experiments, M = 6):

l =
1
M

M∑
i=1

li.

It is possible to control the shape of the local lattice by using a different po-
tential. A natural choice is a molecular model already studied in crystallography.
In other terms, the work presented here suggests a link between crystallography
and lattice formation in robotics.

2.3 Ensuring Convergence

The virtual forces g and l are defined by conservative fields. This means that
convergence is impossible without a dissipative term. To obtain convergence,
we imagine that the satellites are immersed in a viscous medium. Thus, the
expression of d is analogous to viscosity: d = −ξq̇, where ξ is a design parameter,
usually smaller than 0.2.

2.4 Formation Stabilization After Convergence

Experiments revealed that once the swarm converges to its final configuration,
the satellites oscillate around their equilibrium points, thus wasting propellant.
A solution to this problem is increasing the damping factor ξ after the final
configuration has been reached:

ξ̇ =

{
ξconve

−ξ/2 if ξ < ξstab,

0 otherwise.

The value of ξconv is the one that ensures convergence when satellites form the
lattice (see Section 2.3). The value ξstab for which oscillations disappear depends
on the orbit at which p is located. In our experiments ξstab = 0.7.

A further problem is when to trigger the stabilization. Currently we adopt a
simple time-based criteria. Each satellite individually measures the time elapsed
since the beginning of the shape formation process. After a certain time, stabi-
lization is triggered. A more elegant method would be to trigger the stabilization
with a distributed consensus algorithm [12].

3 Results

Experimental evaluation shows that even with suboptimal parameters the sy-
stem works reasonably well, although good parameters for an orbital environ-
ment are not equally good for another [4]. Here, we optimize the parameters to
minimize positioning errors in the lattice. With these parameters, we study scala-
bility. Finally, we test the dependence of the control system on initial conditions
(placement of satellites).

352 C. Pinciroli et al.

Parameter Value

Number of generations 1000
Population size 50
Mutation probability 0.2
Crossover probability 0.9
Elitism the best survives

Fig. 5. Parameters of the genetic algorithm em-
ployed for setting the control parameters

Parameter Value

η 1.6295 · 108

ψ 5.96201 · 108

ε 4.5332 · 104

ξ 0.165984

Fig. 6. Values of the control
parameters obtained via the
genetic algorithm

3.1 Optimizing the Control Parameters

Good values of some control parameters, such as η, ψ, ε and ξ, are not easy to
find. We chose to optimize them with Goldberg’s simple genetic algorithm [13].
Table 5 summarizes the parameter values used for the genetic algorithm.

Evolutions were performed with 10 satellites in a GEO environment. The
trials lasted 1000 time steps, each time step being 12.5 s long. The placement of
a satellite has been evaluated as follows:

χi =
1
Ni

∑
j∈Ni

|σ − rij |
σ

where Ni is the set containing the Ni closest neighbors of satellite i and rij is
the relative distance between the satellites i and j at the final lattice acquisition
time. The genetic algorithm minimizes the worst satellite placement, defined
as χ = maxi χi. The best control parameters that we obtained are reported in
Table 6. They yield a score χ = 0.012842, which corresponds to a positioning
error of 3.85 m (σ = 300 m).

3.2 Scalability

Scalability makes it possible to optimize the parameters with a minimal number
of satellites, thus finding quickly a convenient setup. Figure 7 reports the be-
havior of the placement error for different numbers of satellites. The placement
error is calculated as χ̄ = 1

N

∑N
i=1 χi. Although the parameters were obtained

through trials involving only 10 satellites, χ̄ remains practically constant around
the value 0.02 (that corresponds to 6 m), with a minimum of 0.007 (2.1 m) and
a maximum of 0.035 (10.5 m). Only with 500 satellites the maximum error is
slightly larger: 0.088 (26.4 m).

3.3 Initial Conditions

Convergence to the final structure can be mathematically proven by the presence
of the global attractor located at the origin of the virtual global field and by the
known results about the Lennard-Jones potential.

Table 8 shows the results of a set of experiments run to test if χ̄ is affected by
the initial spatial distribution of the swarm. In the centered cubic distribution,

Lattice Formation in Space for a Swarm of Pico Satellites 353

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200 250 300 350 400 450 500

χ̄

satellites

Fig. 7. Average placement error for a different
number of satellites

Distribution χ̄

Centered Cubic 0.0215913
Centered Spheric 0.0199159
Shifted Cubic 0.0207984
Shifted Spheric 0.0191019

Fig. 8. Placement error χ̄ ob-
tained with different initial spatial
distributions

the satellites are placed uniformly in a cube with side of 6 km and centered
around the origin. The centered spheric distribution is a hollow sphere centered
around the origin with radius 3 km and 300 m thick. The shifted distributions are
centered in point [3 3 3] (coordinates in km). For all the experiments, the same
experimental conditions described in Section 3.1 have been used with swarms of
100 satellites. The results show that χ̄ has values similar to those found for the
scalability tests.

4 Conclusions

The presented work deals with a decentralized control strategy for swarms of
satellites that allows them to autonomously form a bi-dimensional hexagonal
lattice under the gravitational influence of a near planet. The method is based
on the artificial potential field approach. In the paper, a novel way of defining the
potential is proposed. This method allows the designer to split the problem of
forming the lattice into two more intuitive subproblems: an artificial field attracts
globally the satellites towards a meeting point and controls the shape of the
formation; another artificial field takes care of defining the interactions among
the satellites to form local lattices. In this work, the Lennard-Jones potential
has been used to define the local field. The control parameters to be set by the
designer are few and very intuitive, and acceptable results can be obtained even
by setting the parameters by hand. We have optimized the control parameters
to minimize the placement error and results show that such error is independent
of the number of satellites and of the initial spatial distribution of the swarm.

The way here proposed to define the artificial potential field suggests a possible
link between lattice formation in robotics and known results in crystallography.
We plan to further study this link by trying other potentials that are known in
the literature.

Acknowledgments. This research was funded by the European Space Agency
under the Ariadna scheme. It was also partially supported by COMP2SYS and

354 C. Pinciroli et al.

by the ANTS project. COMP2SYS is a Marie Curie Early Stage Training Site
funded by the European Commission under contract MEST-CT-2004-505079.
ANTS is an Action de Recherche Concertée funded by the French Community
of Belgium. Mauro Birattari and Marco Dorigo acknowledge support from the
Belgian F.R.S.-FNRS.

References

1. Curtis, S., Mica, J., Nuth, J., Marr, G., Rilee, M., Bhat, M.: ANTS (Autonomous
Nano-Technology Swarm): An artificial intelligence approach to asteroid belt
resource exploration. In: International Astronautical Federation, 51th Congress
(2000)

2. D’Arrigo, P., Santandrea, S.: The APIES mission. ASTRIUM Ltd./ESA-ESTEC
Feasibility Study A0/1-3846/02/NL/JA, Stevenage, UK (2004)

3. Mori, M., Nagayama, H., Saito, Y., Matsumoto, H.: Summary of studies on space
solar power systems of the national space development agency of Japan. Acta
Astronautica 54(5), 337–345 (2004)

4. Pinciroli, C., Birattari, M., Tuci, E., Dorigo, M., del Rey Zapatero, M., Vinko, T.,
Izzo, D.: Self-organizing and scalable shape formation for a swarm of pico satellites.
In: Proceedings of the NASA/ESA Conference on Adaptive Hardware and Systems
(AHS-2008). IEEE Computer Society Press, Washington (in press, 2008)

5. Clohessey, W., Wiltshire, R.: Terminal guidance systems for satellite rendez-vous.
Journal of the Aerospace Sciences 27(9), 653–658 (1960)

6. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In-
ternational Journal of Robotics Research 5(1), 90–98 (1986)

7. Ge, S.S., Cui, Y.I.: Dynamic motion planning for mobile robots using potential
field method. Autonomous Robots 13(3), 207–222 (2002)

8. Badawy, A., McInnes, C.: On-orbit assembly using superquadric potential fields.
Journal of Guidance, Control, and Dynamics 31(1), 30–43 (2008)

9. Balch, T., Arkin, R.C.: Motor schema-based formation control for multiagent robot
teams. In: Lesser, V., Gasser, L. (eds.) Proceedings of the First International Con-
ference on Multiagent Systems (ICMAS 1995), pp. 10–16. AAAI Press, San Fran-
cisco (1995)

10. Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control of
swarms of vehicles. Autonomous Robots 17(2-3) (2004)

11. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1986)
12. Lamport, L.: Lower bounds on asynchronous consensus. In: Schiper, A., Shvarts-

man, A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in Distributed
Computing. LNCS, vol. 2584, pp. 22–23. Springer, Heidelberg (2003)

13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Boston (1989)

Merging Groups for the Exploration of

Complex State Spaces in the CPSO Approach

Stefanie Thiem, Jörg Lässig, and Peter Köchel

Department of Computer Science, Chemnitz University of Technology
Chemnitz, Germany

{stefanie.thiem,joerg.laessig,peter.koechel}@cs.tu-chemnitz.de

Abstract. In recent years many investigations have shown that Parti-
cle Swarm Optimization (PSO) is a very competitive global optimization
heuristic. However, in very complex state spaces the classical PSO algo-
rithm converges too fast and hence provides only suboptimal results.
Looking at swarm robotics it seems natural to adopt a repulsive force
to avoid this undesired behavior as suggested in Charged PSO but the
downside of this is the problem of final convergence in static applications.

The contribution of this paper is to introduce a dynamic charge re-
duction over time defining particle groups which are iteratively merged,
reducing the number of charged particles during the optimization run.

A visualization of this process shows spontaneous formation of indepen-
dent particle groups, redolent very much of swarm movement in nature.
Optimization results are superior compared to other PSO approaches es-
pecially in very complex high dimensional search spaces.

1 Introduction

Particle Swarm Optimization (PSO), invented by Kennedy and Eberhart in 1995
[1], has shown to be competitive compared to other global optimization heuristics
as e.g. Genetic Algorithms or stochastic approaches as Simulated Annealing or
Threshold Accepting [2]. In recent years, many different versions and additional
heuristics have been introduced.

The general idea of PSO is the movement of each particle partly in the direc-
tion of its current velocity, in the direction of its local best solution (cognitive
component) and to the so far global optimum (social component) in each itera-
tion. In this paper a fourth repulsive force component is added, preventing early
convergence as suggested by Blackwell et al. with Charged PSO (CPSO) [3]. Be-
sides strongly positive effects as superior results for instances with complex state
spaces or high dimensionality one faces now the problem to encompass final con-
vergence if applied to static problems. We solve this by introducing a dynamic
charge reduction over time defining particle groups which are iteratively merged,
reducing the overall charge of the system gradually during the optimization run.

A merging of groups of particles deterministically or by random according to
different schemes is considered. Repulsive terms are applied only between par-
ticles of different groups. Then the dynamic reduction of the number of groups

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 355–362, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

356 S. Thiem, J. Lässig, and P. Köchel

eventually conducts convergence to classical PSO and hence an excellent conver-
gence of the algorithm itself. We dub the mentioned deterministic and random
approaches Deterministic CPSO and Random CPSO, respectively (D/RCPSO).

Details of both approaches are introduced in the remaining sections, organized
as follows: In the next section classical PSO is introduced formally and differ-
ent repulsive components are discussed. Section 3 considers the new approaches
D/RCPSO stating also theoretical properties. Section 4 focuses on experimental
results applying D/RCPSO to standard continuous test functions in high dimen-
sions. It is shown that our new approach provides results substantially better
compared to classical PSO variants in many cases. In chapter 5 the results are
briefly summarized and an outlook on future work is given as well.

2 The Theoretical Framework

The optimization process is represented by the movement of the particles, i.e.
the change rate of the velocity and the position of each one. A commonly used
PSO and very competitive version is based on the following equations of motion
for a particle i and a discrete time parameter t [4]

vt+1
i = w [vt

i + c1 ·R1 · (lti − rt
i) + c2 ·R2 · (gt − rt

i)] + at
i (1)

rt+1
i = rt

i + vt
i .

The diagonal matrices R1 and R2 contain uniform random numbers and thus
randomly weight each component of the connecting vector from the current po-
sition ri to the local position li respectively global optimum g. The new position
is obtained by adding the velocity to the current position.

2.1 Common PSO Version

In the classical model at
i = 0 and the weight w is given by

w =
2

|2 − c −
√

c2 − 4c|
with c = c1 + c2 . (2)

Often a disadvantage of this approach is the fast convergence behavior preventing
the algorithm to escape from local minima later on in the optimization process.
In particular, a known result is that the particles quickly converge to a small area
of the search space with a rate of shrinkage following a scaling law for spherical
symmetric functions [5]. Comparing Equ. (1) with the equations of motion for
swarm models one can identify four different force/acceleration components [2]:

– an attractive force in direction of the global best g and local best li,
– a stochastic component to prevent the particles from early convergence,
– a velocity dependent friction term influenced by the weight factor w and
– a repulsive force at

i to avoid obstacles and collisions in swarm models [6],

Merging Groups for the Exploration of Complex State Spaces in the CPSO 357

where the acceleration term at
i is unused so far. Random PSO (RPSO) and CPSO

introduce this concept to swarm optimization. RPSO replaces the attraction
to the global minimum with a repulsive component depending linearly on the
distance of the current particle and a random other particle [7]. One disadvantage
is that the repulsive force increases with distance, which seems to be unnatural.
In CPSO the repulsive term is based on the well-known Coulomb law [3], which
is also similar to the commonly used gravitational force in swarm robotics [6].

2.2 Charged Particle Swarm Optimization

The CPSO approach is based on the already introduced PSO version of Equ. (1),
where the acceleration of a particle i is then determined additively from the
repulsive force term between particle i and k by

ai =
∑

k

ai(k) . (3)

The force itself is given by the Coulomb law as already mentioned above
depending on the charges Qi of the particle and assuming a particle mass mi = 1.
In order to prevent divergence and reduce computational efforts, the force law is
restricted for small distances with rc and large ones with rp [3] and is given by

ai(k) =

⎧⎪⎨⎪⎩
QiQk

|ri−rk|3 (ri − rk) rc ≤ |ri − rk| ≤ rp

QiQk
r2
c ·|ri−rk| (ri − rk) |ri − rk| ≤ rc

0 |ri − rk| > rp

. (4)

One is still free to choose the charge of each particle, so that there are sev-
eral versions of this approach possible. If all particles are charged, we call it a
charged swarm. But, if only a certain percentage of the particles are charged and
the others remain neutral, this is called an atomic swarm because the charged
particles move in a sphere around the core built from the neutral particles [8].
And clearly when all particles are neutral, we again have the classical PSO.

3 CPSO with Random/ Deterministic Charging

With the introduction of a repulsive force we face the problem of final conver-
gence. There are variants of the CPSO algorithm with groups of charged and
uncharged particles but if a particle i is assigned a charge Qi = 1 within these
approaches, it keeps this for all times. The idea now is to modify the number of
repelling particles with time by reorganizing particles in groups.

On algorithm start, the group number G0 is defined to equal to the number of
particles P . Only particles which are in different groups repel each other, which
is an invariant in all iterations of the algorithm. So this means all particles are
charged and the behavior is just like in CPSO as explained above. If we sum up
all pairs which repel each other to a variable S (charge sum), we have

S0 =
(

G0

2

)
=
(

P

2

)
=

P 2 − P

2
. (5)

358 S. Thiem, J. Lässig, and P. Köchel

(a) Deterministic CPSO (b) Random CPSO

Fig. 1. Visualization of Grouping and Reorganization

The subscripts of Si and Ci count the number of reorganizations, where with
each reorganization the number of groups is reduced gradually. A straightforward
approach is to unify pairs of groups in each iteration. If two groups are merged
in this early phase then the number of groups is P −1 and we have S1 = S0−1 .
Finally after n iterations, all particles end up in one single group and Sn = 0.

3.1 Deterministic Grouping

Basically, we distinguish between two merging methods, i.e. deterministic and
random grouping. Deterministic grouping denotes merging processes where only
complete groups are merged and single particles cannot change the group belong-
ing. Random grouping allows the arbitrary reorganization of groups like breaking
up one group and assigning the particles to different groups, see Fig. 1.

There are also different ways to realize deterministic grouping like for instance
the merging of the two smallest groups in a merging iteration. Another possibility
is to perform several merges in one merging iteration i such as the merging of
(Gi/2) pairs of groups, further denoted as exponential merging, because the
number of groups Gi shrinks exponentially in the number of iterations.

3.2 Random Grouping

Instead of only deterministically finding the group belongings of the particles,
e.g. different groups are just collapsed into one group, this version allows more
general randomized reorganization schemes, see Table 1 and Algorithm 1.

Table 1. Random grouping for a swarm with ten particles using integer division

Number of Merges Group belongings of the particles Charge sum S

0 0 1 2 3 4 5 6 7 8 9 45
1 0 0 1 1 2 2 3 3 4 4 40
2 0 0 0 1 1 1 2 2 2 3 36
3 0 0 0 0 1 1 1 1 2 2 32
4 0 0 0 0 0 1 1 1 1 1 25
5 0 0 0 0 0 0 1 1 1 1 24
6 0 0 0 0 0 0 0 1 1 1 21
7 0 0 0 0 0 0 0 0 1 1 16
8 0 0 0 0 0 0 0 0 0 1 9
9 0 0 0 0 0 0 0 0 0 0 0

Merging Groups for the Exploration of Complex State Spaces in the CPSO 359

The number of merging iterations in random grouping is P − 1, caused intrin-
sically by the behavior of the integer division and modulo operators. Consider-
ing the modulo operator, the group number is reduced by exactly one in each
merging iteration, which results in an asymmetric reduction of Si comparable
to deterministic exponential merging. But, in the integer division case the num-
ber of groups in each iteration is not reduced exactly by one (Table 1). In the
first iterations the number of groups decreases faster but afterwards the group
number keeps constant over many iterations, which results in a quasi constant
merging speed. While the average charge sum reduction in each merging iteration is(

P

2

)/
(P − 1) =

P · (P − 1)
2 · (P − 1)

=
P

2
,

due to the fixed number of steps, the largest possible charge sum reduction in
one merging operation is P − 1, which is only twice this value. Further, every
reduction scheme would have at least one step of size P − 1. Furthermore, it is
computationally very efficient to reduce grouping to a few integer operations.

3.3 Simplified Force Law

Additionally, in our experiments we noticed that the complicated force law of
Equ. (4) can be simplified without loosing the good performance results. One
possibility is the usage of the exponential function for the force, which does not
diverge for small particle distances and is motivated from the Lennard-Jones-
potential. The force term does not include charges anymore but is again only
active when particles i and k are in different groups. It reads

ai(k) = exp−|ri−rk| (ri − rk) . (6)

Unfortunately, the computation of the exponential function is very time consum-
ing, but we obtained equally competitive performance for the simple Coulomb

Algorithm 1. Position / Velocity Update Rule in Random CPSO.
Require: Position ri, velocity vi and local best position li for each particle i

global best position g and cognitive parameter c1 and social parameter c2

Ensure: New position ri and velocity vi for each particle
1: c ← c1 + c2, w ← 2/|2 − c −

√
c2 − 4c|, t ← 1

2: for all particles i do
3: ai ← 0
4: for k = i + t to k < i + P with k = k + t do {equivalent to i div t 	= k div t}
5: ai ← ai + ai(k mod P) {see equation (3) and (4)}
6: for all dimensions d do
7: r1, r2 ← get uniform random number(0, 1)
8: vid ← w · (vid + c1 · r1 · (lid − xid) + c2 · r2 · (gd − xid) + aid)
9: xid ← xid + vid

10: if (t < N ∧ fixed iterations reached()) then t ← t + 1
11: return {ri}, {vi}

360 S. Thiem, J. Lässig, and P. Köchel

force law. The basic advantage is the abolishment of the two parameters rc and
rp by taking the first case of Equ. (4) unbiased. Another approach would be to
use a probability distribution for the force law as used in Quantum PSO [8].

4 Parameter Setup and Experimental Results

The different PSO algorithms are applied to a selection of test functions, summa-
rized in Table 2. The parameter setup is oriented at [10] with c1 = 2.8, c2 = 1.3,
which outperforms the standard setup with c1 = c2 = 2.05 already. The initial
positions are chosen randomly in the solution space and the initial velocities here
are 0. As swarm size N = 50 in 30 dimensions and N = 100 in 50 dimensions are
used. For the charged variants we assume a charge of Qi = 1 for charged particles
and 0 otherwise. For CPSO half of the particles carry a charge and the other
ones are neutral and we use the fixed values rc = 0.5 and rp = 3. In DCPSO we
use exponential merging and in RCPSO the explained integer division scheme.

All results for the selected test functions are summarized in Table 3, where
the average solutions for ten runs are given. The optimization run terminates
when the global optimum is approximated by an additive error of 10−6 or at
most 1,000 iterations (50,000 function evaluations) in 30 dimensions and 6,000
iterations (600,000 function evaluations) in 50 dimension are done. In the cases
where the global optimum is found, the number of such runs is given in brackets.

Experimental results show that the achieved diversification of search behavior
and delayed convergence evolves better solutions especially in high dimensions.
This has been shown exemplary on the Rastrigin and Ackley function in 50
dimensions, where D/RCPSO provided final minimization values about half of
the value compared to conventional PSO. For less difficult search spaces, repre-
sented by less demanding functions as the Sphere or Griewangk function, this
advantage over other methods reduces gradually with the problem complexity,
showing the same behavior for D/RCPSO and CPSO in rather simple domains.

Table 2. Selection of N-dimensional functions [9]

Name Function Definition Domain and Minimum

Ackley
Function

f(x) = −20 exp[− 1
5

�
1
N

�N
i=1 x2

i] −
exp[1

N

�N
i=1 cos(2πxi)] + 20 + e

xi ∈ [−32.768, 32.768]
Min. Pos.: x	i = 0
Min. Value: f(x) = 0

Griewangk
Function

f(x) = 1 + 1
4000

N�
i=1

x2
i −

N�
i=1

cos
�
xi√
i

� xi ∈ [−600.0, 600.0]
Min. Pos.: x	i = 0
Min. Value: f(x) = 0

Rastrigin
Function

f(x) = 10N +
N�
i=1

�
x2
i − 10 cos(2πxi)

� xi ∈ [−5.12, 5.12]
Min. Pos.: x	i = 0
Min. Value: f(x) = 0

Rosenbrock
Function

f(x) =
N−1�
i=1

�
100

	
x2
i − xi+1

2
+ (1 − xi)

2
� xi ∈ [−2.048, 2.048]

Min. Pos.: x	i = 1
Min. Value: f(x) = 0

Sphere
Function

f(x) =
N�
i=1

x2
i

xi ∈ [−5.12, 5.12]
Min. Pos.: x	i = 0
Min. Value: f(x) = 0

Step
Function

f(x) =
N�
i=1

�xi� + 6N
xi ∈ [−5.12, 5.12]
Min. Pos.: x	i ∈ [−5.12,−5.0]
Min. Value: f(x) = 0

Merging Groups for the Exploration of Complex State Spaces in the CPSO 361

Table 3. Performance of PSO in 30 and 50 dimensions

D Function PSO CPSO DCPSO RCPSO

Ackley 1.045803 (3) 1.413774 0.000006 (9) 0.000000 (10)
Griewangk 0.023132 (2) 0.010601 (2) 0.013776 (3) 0.012546 (4)

30 Rastrigin 40.196296 40.0596210 37.722015 38.504870
Rosenbrock 22.564743 29.375666 23.496527 23.429378
Sphere 0.000000 (10) 0.000077 (2) 0.000000 (10) 0.000000 (10)
Step 8.500000 14.300000 9.800000 7.500000

Ackley 2.271681 1.833939 0.268883 0.000012 (4)
Griewangk 0.028530 (1) 0.028230 0.017136 (4) 0.024520 (3)

50 Rastrigin 99.923959 100.590839 71.636957 55.877123
Rosenbrock 42.442448 69.775139 40.9471946 41.389139
Sphere 0.000000 (10) 0.000053 0.000000 (10) 0.000000 (10)
Step 15.300000 19.800000 6.600000 3.000000 (1)

(a) PSO (b) CPSO

(c) Deterministic CPSO (d) Random CPSO

Fig. 2. Convergence Behavior: red - best so far value, green - current value average

Then, the predominant comparison criterion between different approaches is
the running time evoked by the different convergence behavior of the different
methods. It should be clear that D/RCPSO faces disadvantages in this respect
because it is designed to search the state space more in detail before converging.
In some cases RCPSO performs better than DCPSO, probably due to a more
symmetric charge sum reduction as discussed in section 3.

5 Conclusion

In the paper on hand we introduced a new approach to CPSO. The two con-
sidered methods D/RCPSO showed spontaneously self-organizing behavior as
observable in natural swarms. During the search process the groups are reorga-
nized incrementally which courses a dynamic convergence to classical PSO. Both

362 S. Thiem, J. Lässig, and P. Köchel

methods provided optimization results for various benchmark functions signifi-
cantly better compared to classical PSO or CPSO, where RCPSO performed for
some instances better than DCPSO.

This gives also hints for future directions in research. Also for DCPSO differ-
ent other more symmetric merging schedules are imaginable, choosing only two
groups per merging iteration or choosing the delay between merging iterations
based on the charge reduction. It is also possible to apply different strategies
to choose merging groups, considering e.g. group size or spatial proximity. The
advantage of the applied schemes is their efficient implementation and RCPSO
shows already a good symmetry for charge reduction. More general it would be
interesting to introduce some kind of adaptive behavior. Ideally, the method con-
verges relatively fast to classical PSO started on straight forward problems but
searches very involved state spaces more in deep before convergence is obtained.

References

1. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

2. Thiem, S.: Swarmintelligence - Simulation, Optimization and Comparative Anal-
ysis. Diplom Thesis, Chemnitz University of Technology (2008)

3. Blackwell, M.: Particle Swarms and Population Diversity. Soft Computing 9(11),
793–802 (2005)

4. Shi, Y., Eberhart, R.: A Modified Particle Swarm Optimizer. In: Proceedings of the
IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

5. Clerc, M., Kennedy, J.: The Particle Swarm - Explosion, Stability, and Conver-
gence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary
Computation 6(1), 58–73 (2002)

6. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, Physics-Based
Control of Swarms of Vehicles. Autonomous Robots 17(2-3), 137–162 (2004)

7. Urfalioglu, O.: Robust Estimation of Camera Rotation,Translation and Focal
Length at High Outlier Rates. In: Proceedings of the First Canadian Conference
on Computer and Robot Vision, pp. 464–471 (2004)

8. Blackwell, T.M.: Particle Swarm Optimization in Dynamic Environments (2008),
http://igor.gold.ac.uk/mas01tb/papers/PSOdynenv.pdf

9. Hedar, A.R.: Test Functions (2007), http://www-optima.amp.i.kyoto-u.ac.jp/
member/student/hedar/Hedar files/TestG files/Page364.htm

10. Carlisle, A., Dozier, G.: An off-the-Shelf PSO. In: Proceedings of the Workshop on
Particle Swarm Optimization, vol. 1, pp. 1–6 (2001)

http://igor.gold.ac.uk/mas01tb/papers/PSOdynenv.pdf
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestG_files/Page364.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestG_files/Page364.htm

Parallel Ant Colony Optimization for the

Quadratic Assignment Problems with
Symmetric Multi Processing

Shigeyoshi Tsutsui

Hannan University, Matsubara, Osaka, Japan
tsutsui@hannan-u.ac.jp

Abstract. Recently symmetric multi processing (SMP) has become
available at a reasonable cost. In this paper, we propose several types of
parallel ACO algorithms with SMP for solving the quadratic assignment
problem (QAP). These models include the master-slave models and the
island models. We evaluated each parallel algorithm with a condition
that the run time for each parallel algorithm and the base sequential
algorithm are the same. The results suggest that using the master-slave
model with increased iteration of ACO algorithms is promising in solving
QAPs.

1 Introduction

Recently, microprocessor vendors supply CPUs which have multiple cores of 2,
4, or more, and PCs or WSs which use such CPUs are available at a reasonable
cost. They are normally configured with symmetric multi processing (SMP) ar-
chitecture. Since the main memory is shared among processors in SMP, parallel
processing can be performed efficiently with less communication overhead among
processors. Thus, we can say that computing platforms running parallel algo-
rithms using SMP to get higher performance are now ready for end users.

There are two main reasons for using parallel algorithms [1,2]: (i) cases given
a fixed time to search, to increase the quality of the solutions found within that
time; (ii) cases given a fixed solution quality, to reduce the time to find a solution
not worse than that quality.

In this paper, we discuss parallel ACO algorithms mainly applied to the first
reason to solve the quadratic assignment problems (QAPs), with SMP type
computing platforms, within the same time as is given for computing platforms
with a single processor. We discuss several parallel schemes for this purpose.
For this study, we use the cunning Ant System (cAS) that showed promising
performance both for the traveling salesman problems (TSPs) [3] and QAPs [4].
In solving a QAP with an ACO algorithm, local search occupies a major portion
of run time. We use this feature when we set up our parallel schemes.

The articles are organized as follows. Section 2 describes related work in brief.
Section 3 gives a brief overview of cAS. Then, Section 4 describes various schemes
of parallel implementation of cAS in SMP for solving QAP, and the empirical
analysis is given in Section 5. Finally, Section 6 concludes this paper.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 363–370, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

364 S. Tsutsui

2 Related Work

Many parallel ACO algorithms have been studied [1,2,5,6,7,8,9,10]. Brief sum-
maries can be found in [2,9]. In [1], parallel MMAS with k independent runs was
studied.

The most commonly used approach to parallelization is island model where
multiple colonies exchange information synchronously or asynchronously. In [6],
it is reported that the communication of the whole pheromone matrix leads to
a decreased solution quality as well as worse run-time. However the exchanges
of best-so-far solutions approach leads to good solution quality.

In [9], a scheme in which the whole pheromone matrix is shared with two
colonies using SMP is studied on TSPs. The results showed no clear advantage
of parallel ACO algorithms over sequential algorithm. In [2], parallel MMAS al-
gorithms using message passing interface (MPI) libraries with various topologies
have been studied on TSPs, and a clear advantage of parallel algorithms with
independent run is reported.

3 An Overview of cAS [3,4]

cAS uses agents called cunning ants (c-ants), which differ from traditional ants
in the manner of solution construction. A part of each new solution is taken from
one of the previously generated solutions (also called a donor ant; d-ant) whereas
the remainder of the solution is generated probabilistically from pheromone den-
sity τij(t) as usual, where t is iteration counter of the algorithm. In a sense, since
this agent in part appropriates the work of others to construct a solution, we
named the agent a cunning ant after the metaphor of its cunning behavior.

In cAS, we maintain an archive consisting of m candidate solutions generated
in the past; kth solution in the archive at iteration t is denoted by sk,t (k ∈{1, 2,
. . . , m}). At iteration t, a new c-antk,t+1(solution) is generated for each position
k in the archive using the current sk,t i.e., solution in this position, as the donor.
Then, the newly generated c-antk,t+1 is compared with its donor sk,t with respect
to the objective function, and the best of the two survives as the next solution
in this position of the archive, sk,t+1.

The pheromone density τij(t) in QAP correspond to the desirability of assign-
ing a facility i to a location j. This pheromone density is updated with sk,t+1

for k=1, 2, . . . , m and τ ij(t+1) is obtained as in Ant System (AS) [12], keeping
all pheromone densities within the interval [τmin, τmax] as in MMAS [11].

Let us represent the number of nodes of partial solution that are constructed
based on τij(t), by ls (i.e., lc, the number of nodes of partial solutions from its
donor, is n− ls). Then cAS introduces the control parameter γ which can define
E(ls) (the average of ls) by E(ls) = n× γ. For each creation of a new candidate
solution, we determine ls so that E(ls) = n×γ is satisfied. One simple approach
is to determine value of ls deterministically as ls = n × γ. In this research,
we used a probabilistic function defined in [3,4] (please see those references for
details).

Parallel Ant Colony Optimization for the QAP with SMP 365

4 Parallel Implementation of cAS in SMP for QAP

4.1 Base Model of the Sequential cAS for QAP

The QAP is the problem of assigning a set of facilities to a set of locations with
given distances between the locations and given flows between the facilities.
Given n facilities and n locations, two n × n matrices A = [aij] and B = [brs],
where aij is the distance between locations i and j, and brs is the flow between
facilities r and s, the QAP is the problem to minimize

f(φ) =
n∑

i=1

n∑
j=1

bijaφ(i)φ(j), (1)

where φ is an arbitrary permutation of the set of integers.
In [11], when MMAS for QAP was combined with the robust taboo search

(Ro-TS) by Taillard [13], parameter settings and the methods of applying Ro-
TS were carefully designed so that computational time was the same as the
computational times of other meta-heuristics to attain a fair comparison. These
are as follows: the number of ant (m) was 5 and the evaporation rate (ρ) was
0.8. 250 times of short Ro-TS runs of length 4n were applied. Since m=5, the
maximum iterations are 50 (= 250/5). In a previous study in [4], we used the
same setup in cAS for QAP and got promising results.

For the base model of the sequential cAS in this work, we used the same
setup with MMAS in [11] except for the value of m and the maximum number of
solution constructions. Number of processors in SMP is usually an even number
(power of 2), we used m value of 8, which is easy to configure for parallelization.
Number of Ro-TS runs of length 4n is 248 (fewer than in [11] by 2) and thus the
maximum iterations are 31 (= 248/8). We found the performance of cAS with
m = 8 is slightly better than that with m = 5 in [4].

4.2 Parallel Implementation of cAS for QAP with a SMP

In this study, we have implemented two types of parallel cAS; master-slave mod-
els and island models.

Table 1. Time used by the local search

Problem size n 40 50 60 80 100

Local search (%) 99.75% 99.85% 99.89% 99.94% 99.96%

Master-Slave Models with
SMP. Table 1 shows compu-
tation time occupied by the lo-
cal search (Ro-TS) in runs of
sequential cAS with the base
model described in Section 4.1.

From this table, we can see that more than 99% of computational time of
the base cAS is occupied by the local search. Taking into account this feature
in solving QAP, we can implement a parallel model with a master-slave model
as shown in Fig. 1. In this model, P threads perform local search in parallel.
Here, P is number of processors of the SMP. In this research, we implemented
the following two types of master-slave models.

366 S. Tsutsui

Colony Thread

1st Local Search
Thread

Pth Local Search
Thread

Master

Slave

Fig. 1. Master-slave model in SMP

(1) Master-slave model with
longer local search: In this model,
we generate P threads which can run
in parallel. m solutions are generated
in each iteration of cAS of the colony
thread, we assign m/P solutions to
each local search thread. Since we as-
sume run time for this model is the
same as the base cAS, each local search thread can run local search longer by P
times. We identify this model as MS-LSxP .

(2) Master-slave model with longer iteration of cAS: Instead of longer
run of local search of MS-LSxP , we increase maximum iteration number of cAS
by P times. We identify this model as MS-ITxP .

Control Thread

1st Colony with LS
Thread

Pth Colony with LS
Thread

blackboard

Fig. 2. Island model in SMP

Island Models with SMP. The is-
land model is the most popular parallel
processing model in evolutionary com-
putation. In our implementation, we
exchange the solutions in the archive.
There are P colonies as shown in
Fig. 2. Each colony is coded as a thread
which can run in parallel. They ex-
change solutions through the control thread every I interval of iteration syn-
chronously.

Although there are many topologies [2], in this study we implemented the
three models as described in the following.
(1) Island model with fully-connected : In this model, the control thread
collects the best solutions in the archive of each colony and chooses the best
solution from them, and then distributes it to all colonies except the colony that
produced that best solution. In each colony, the worst solution in each archive
is replaced with the received best solution. We identify this model as IS-FCxP .
(2) Island model with replace-worst : This model is basically the same as
(1) but the replacement is performed only in the colony which produced the
worst solution among the best solutions. We identify this model as IS-RWxP .
(3) Island model with independent-runs: P colonies simply run indepen-
dently until the end of the run. We identify this model by IS-INxP .

5 Experiments of Parallel cAS on QAP

5.1 Experimental Setup
Here we evaluate parallel cAS on QAP using SMP. Setup for the base sequen-
tial cAS is described already in Section 4.1. All experiments were performed 25
times. The machine we used had two Dual Core AMD OpteronTM 280 (2.4GHz)
processors with 2.87GB main memory, and 32-bit Windows XP. Thus, this ma-
chine has a total of four processors with an SMP architecture.

Parallel Ant Colony Optimization for the QAP with SMP 367

In cAS, parameter value of γ (see Section 3) plays an important role. Ac-
cording to [14,11], QAP instances in QAPLIB [15] can be divided into 4 classes;
(i) randomly generated instances, (ii) grid-based distance matrix instances, (iii)
real-life instances, and (iv) real-lifelike instances. In previous study in [4], we
found γ value of 0.4 for QAP classes (i) and (ii), and 0.8 for (iii) and (iv) work
well, respectively. Thus, in experiments in Section 5 we used γ values of 0.4 for
classes (i) and (ii), and 0.8 for (iii) and (iv), respectively.

cAS was written in Java and the thread programming uses Java Thread class.
We used the Ro-TS code which is available at [13], though the code, which is
originally written in C, was rewritten in Java.

To attain the same run time between parallel cAS on the SMP machine and
the base cAS on the same machine, we experimented in the following manner.
(1) The base model: The base model uses the setup described in Section 4.1,
and was run as a single process. This model becomes the base to see the solution
quality and real run time.
(2) Master-slave model: We ran MS-LSxP and MS-ITxP with P=4. Thus,
these models are indicated as MS-Lx4 and MS-Ix4, respectively.
(3) Island model: We ran IS-INxP , IS-FCxP abd IS-RWxP with P=4 with
solutions exchange interval I = 2. These models are indicated as IS-INx4, IS-
FCx4 and IS-RWx4, respectively.

All of these models should have almost the same run time (see Section 4.2) if
the machine has a well-designed architecture.

5.2 Analysis of the Results

Results are summarized in Table 2. In the table, the notations are as follows:
Error(%) indicates the solution quality calculated by the average of
(function value − known best)/known best over 25 independent runs.
R-time (ratio) indicates average run time of algorithm of each model in sec-
onds. Values in brackets are ratios of the run time of the base model.
#OPT indicates the number of runs in which algorithms succeeded in finding
the known best solution.
O-time (ratio) indicates the average time to find the known best solution in
those runs where it did find it, where the values in brackets are ratios of the
O-time of the base model.
B-time (ratio) indicates the average time at which the best functional values of
each run was found, where the values in brackets indicate ratios of the B-time of
IS-INx4.

Before analyzing the results, let us see values of the R-time (ratio) of each
experiment. We can see that each run time of the parallel model attained almost
the same value as the run time of its base model, i.e., the value of ratio is
very near to 1. Thus, we can say that the SMP platform used in this research
executed the algorithms in parallel without significant performance degradation.
Overhead caused by the synchronous solutions exchanges with interval I = 2 in
the island models was also negligible.

368 S. Tsutsui

Table 2. Results of parallel cAS with SMP

MS-LSx4 MS-ITx4 IS-INx4 IS-FCx4 IS-RWx4

Error (%) 0.789 0.495 0.630 0.587 0.566 0.569
R-time (ratio) 6.81 (1) (1.00) (1.04) (1.00) (1.03) (1.01)

#OPT 0 1 0 0 0 0
O-time (ratio) - 0.92 - - - -
B-time (ratio) - (0.85) (0.93) 3.83 (1) (0.85) (1.16)
Error (%) 1.064 0.738 0.830 0.832 0.804 0.773
R-time (ratio) 13.44 (1) (0.99) (1.03) (1.00) (1.01) (1.01)

#OPT 0 1 0 0 0 0
O-time (ratio) - 11.56 - - - -
B-time (ratio) - (0.82) (0.82) 8.92 (1) (0.92) (1.04)
Error (%) 1.101 0.881 0.930 0.913 0.899 0.886
R-time (ratio) 23.34 (1) (0.99) (1.02) (1.00) (1.01) (1.01)

#OPT 0 0 0 0 0 0
O-time (ratio) - - - - - -
B-time (ratio) - (0.92) (1.00) 16.65 (1) (0.69) (1.00)
Error (%) 0.815 0.592 0.547 0.672 0.581 0.585
R-time (ratio) 56.73 (1) (0.99) (1.02) (1.01) (1.00) (1.01)

#OPT 0 0 0 0 0 0
O-time (ratio) - - - - - -
B-time (ratio) - (0.98) (0.84) 36.81 (1) (1.19) (1.23)

Error (%) 0.057 0.034 0.024 0.035 0.030 0.031
R-time (ratio) 12.57 (1) (0.99) (1.02) (1.00) (1.00) (1.02)

#OPT 6 10 14 10 12 11
O-time (ratio) 6.89 (1) (0.80) (0.91) (1.19) (1.01) (1.04)
B-time (ratio) - (0.82) (0.88) 7.37 (1) (1.01) (1.08)
Error (%) 0.072 0.005 0.011 0.009 0.005 0.006
R-time (ratio) 28.47 (1) (0.98) (1.01) (1.00) (1.00) (1.00)

#OPT 1 10 8 13 17 16
O-time (ratio) 20.20 (1) (0.89) (0.61) (0.77) (0.71) (0.78)
B-time (ratio) - (1.03) (0.78) 15.47 (1) (0.96) (1.00)
Error (%) 0.129 0.044 0.048 0.076 0.049 0.059
R-time (ratio) 58.91 (1) (0.99) (1.02) (1.01) (1.01) (1.01)

#OPT 0 0 1 0 0 0
O-time (ratio) - - 33.92 - - -
B-time (ratio) - (0.96) (0.97) 43.53 (1) (0.93) (1.09)
Error (%) 0.155 0.074 0.095 0.085 0.050 0.063
R-time (ratio) 81.04 (1) (1.00) (1.03) (1.01) (1.01) (1.01)

#OPT 0 0 0 1 2 1
O-time (ratio) - - - 57.860 39.36 13.25
B-time (ratio) - (0.92) (0.91) 59.77 (1) (1.05) (1.12)

Error (%) 0.054 0 0 0 0 0
R-time (ratio) 2.84 (1) (1.00) (1.05) (1.03) (1.00) (0.99)

#OPT 24 25 25 25 25 25
O-time (ratio) 0.88 (1) (0.81) (0.65) (0.52) (0.49) (0.52)
B-time (ratio) - (1.55) (1.25) 0.46 (1) (0.94) (0.99)
Error (%) 0.009 0 0 0 0 0
R-time (ratio) 2.84 (1) (1.00) (1.05) (1.01) (0.99) (1.01)

#OPT 22 25 25 25 25 25
O-time (ratio) 1.46 (1) (0.51) (0.35) (0.47) (0.58) (0.47)
B-time (ratio) - (1.09) (0.74) 0.69 (1) (1.24) (1.00)
Error (%) 0.032 0.004 0.010 0.025 0.023 0.004
R-time (ratio) 4.94 (1) (1.00) (1.04) (1.00) (1.01) (1.00)

#OPT 20 24 24 23 24 23
O-time (ratio) 2.96 (1) (0.59) (0.64) (0.79) (0.86) (0.79)
B-time (ratio) - (0.83) (0.98) 2.28 (1) (1.09) (0.97)
Error (%) 0 0 0 0 0 0
R-time (ratio) 4.94 (1) (1.00) (1.04) (1.01) (1.01) (1.00)

#OPT 25 25 25 25 25 25
O-time (ratio) 1.42 (1) (0.50) (0.31) (0.63) (0.57) (0.63)
B-time (ratio) - (0.78) (0.48) 0.89 (1) (0.90) (0.98)

Error (%) 0 0 0 0 0 0
R-time (ratio) 6.76 (1) (1.01) (1.04) (1.01) (1.01) (1.01)

#OPT 25 25 25 25 25 25
O-time (ratio) 3.16 (1) (0.90) (0.26) (0.50) (0.40) (0.44)
B-time (ratio) - (1.79) (0.53) 1.58 (1) (0.80) (0.88)
Error (%) 0.071 0.069 0.046 0.009 0.002 0.001
R-time (ratio) 23.17 (1) (0.99) (1.02) (1.01) (1.00) (1.00)

#OPT 4 9 22 9 23 21
O-time (ratio) 22.61 (1) (0.86) (0.35) (0.93) (0.76) (0.86)
B-time (ratio) - (0.93) (0.41) 20.79 (1) (0.84) (0.96)
Error (%) 0.484 0.671 0.208 0.226 0.262 0.196
R-time (ratio) 56.58 (1) (0.99) (1.03) (1.00) (1.01) (1.01)

#OPT 0 0 9 0 2 0
O-time (ratio) - - 34.35 (1) - (1.67) -
B-time (ratio) - (1.11) (0.81) 50.68 (1) (1.07) (1.08)
Error (%) 0.154 0.138 0.055 0.112 0.075 0.102
R-time (ratio) 114.89 (1) (0.98) (1.00) (1.01) (1.01) (1.01)

#OPT 0 0 13 0 3 0
O-time (ratio) - - 50.77 (1) - (1.99) -
B-time (ratio) - (0.96) (0.61) 106.35 (1) (1.00) (1.03)

Master-Slave Model Island ModelQAP Measure Base Model

class (i) with =0.4

tai40a

ste36b

class (iv) with =0.8

class (iii) with =0.8

class (ii) with =0.4

ste36a

kra30b

kra30a

tai100b

tai80b

tai60b

tai40b

tai50a

tai60a

tai80a

sko90

sko81

sko64

sko49

All results with the
parallel models show in-
creases of solution qual-
ity as compared to the
quality of their corre-
sponding base models.
In the following, we an-
alyze these results for
each problem class.

From the results of
class (i) instances, we
can see the values of
Error of master-slave
models are slightly bet-
ter than those of the
island models. But in
QAP instances of this
class (randomly gener-
ated instances), there
are not such signifi-
cant differences among
the five parallel mod-
els, though the results
of the island model with
independent runs (IS-
INx4) show the worst
Error values among is-
land models for all in-
stances in this class.
However, if we look at
the B-time, the master-
slave models show
smaller B-time. This
means the master-slave
models find their best
solutions faster in each
run than island models.

From the results of
class (ii) instances (grid-
based distance matrix
instances), we can see
the values of Error
of master-slave models
are slightly better than
those of the island mod-

Parallel Ant Colony Optimization for the QAP with SMP 369

els except for sko90. Again IS-INx4 shows the worst Error values among island
models for all instances in this class. Comparisons with O-time are possible on
sko49 and sko64. On these instances, the master-slave models have smaller val-
ues of O-time than the island models, showing faster finding of the known best
solutions.

Results of class (iii) instances (real-life instances) showed a different feature as
compared to the results of classes (i) and (ii). In class (iii), values of #OPT for
all parallel models attained 25 except for on ste36a. So, we cannot see differences
in Error values among parallel algorithms. Instead let us turn our attention to
O-time (ratio). For example in ste36b, #OPT of all models including the base
model is is 25. On the other hand, looking at the O-time values of the parallel
model, the ratios of O-time against the base model are 0.50 (MS-LSx4), 0.31
(MS-ITx4), 0.63 (IS-INx4), 0.57 (IS-FCx4), and 0.63 (IS-RWx4), respectively.
Thus, we can see that the master-slave models perform faster searches than the
island models on this instance. Other instances in this class except for kra30a
showed similar results. On kra30a, island models find known best solution faster
than the master-slave models.

Results of class (iv) instances (real-lifelike instances) showed similar results
to that of class (iii), though values of #OPT in this class are smaller than those
of (iii) instances except for tai40b. Results for tai40b are almost the same as
instances of class (iii). Although on tai60b, the values of Error of all island
models are smaller than the values of Error of master-slave models, the values
of O-time of island models are much larger than those of master-slave models.
On the all instances in this class, MS-ITx4 has the smallest O-time values among
parallel models. Thus, the advantage of MS-ITx4 can be observed in this class.
We can also observe that the B-time of the MS-ITx4 is the smallest among all
parallel models.

As a summary of analysis in this section, we can say master slave models,
especially MS-ITx4 (master-slave model with longer iteration), showed the clear
advantage for instances in classes (iii) and (iv) on the measures of Error, O-time,
and B-time. Although we could not observe which parallel models are the best
for instances in classes (i) and (ii) by looking at Error values, B-time analysis
suggests that using master-slave models is a better choice than island models.

6 Conclusions

In SMP, parallel run can be performed efficiently with less communication over-
head among processors. In this paper, we proposed a total of five parallel ACO
algorithms with SMP for solving QAP. We evaluated each parallel algorithm
under conditions in which the run time for each parallel algorithm and the base
algorithm are about the same.

The results showed all parallel models studied here improved solution qual-
ity of the base algorithm. Although detail improvement features were differ-
ent depending on problem classes of QAPs, our results suggested that using
the master-slave models, especially MS-ITxP (master-slave model with longer

370 S. Tsutsui

iteration) for classes (iii) and (iv), is promising in solution quality and search
speed for solving QAPs where computation for local search occupies a large
part of the total computation time. To apply these models to problems in other
domains remains for future work.

Acknowledgements. This research is partially supported by the Ministry of
Education, Culture, Sports, Science and Technology of Japan under Grant-in-
Aid for Scientific Research number 19500199.

References

1. Stützle, T.: Parallelization strategies for ant colony optimization. In: 5th Inter-
national Conf. on Parallel Problem Solving for Nature (PPSN-V), pp. 722–731
(1998)

2. Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel ant colony optimization
for the traveling salesman problems. In: Ant Colony Optimization and Swarm
Intelligence, 5th International Workshop, ANTS 2006, pp. 224–234 (2006)

3. Tsutsui, S.: cAS: Ant colony optimization with cunning ants. In: Proc. of the 9th
Int. Conf. on Parallel Problem Solving from Nature (PPSN IX), pp. 162–171 (2006)

4. Tsutsui, S.: Cunning ant system for quadratic assignment problem with local search
and parallelization. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS,
vol. 4815, pp. 269–278. Springer, Heidelberg (2007)

5. Randall, M., Lewis, A.: A parallel implementation of ant colony optimization.
Journal of Parallel and Distributed Computing 62(9), 1421–1432 (2002)

6. Benkner, S., Doerner, K., Hartl, R., Kiechle, G., Lucka, M.: Communication strate-
gies for parallel cooperative ant colony optimization on clusters and grids. In:
Complimentary Proc. of PARA 2004 Workshop on State-of-the-art in Scientific
Computing, pp. 3–12 (2005)

7. Bullnheimer, B., Kotsis, G., Strauss, C.: Parallelization strategies for the ant sys-
tem. High Performance Algorithms and Software in Nonlinear Optimization, 87–
100 (1998)

8. Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant alorithms. Journal of
Heuristics 8(3), 3005–3200 (2002)

9. Lv, Q., Xia, X., Qian, P.: A parallel aco approach based on one pheromone matrix.
In: Ant Colony Optimization and Swarm Intelligence, 5th International Workshop,
ANT 2006, pp. 332–339 (2006)

10. Talbi, E., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for the
quadratic assignment problem. Generation Computer System 17, 441–449 (2001)

11. Stützle, T., Hoos, H.: MAX-MIN ant system. Future Generation Computer Sys-
tems 16(9), 889–914 (2000)

12. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony
of cooperating agents. IEEE Trans. on SMC-Part B 26(1), 29–41 (1996)

13. Taillard, É.D.: The robust taboo search code,
http://mistic.heig-vd.ch/taillard/

14. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel
Computing 17, 443–455 (1991)

15. QAPLIB –AQuadratic Assignment Problem Library,
http://www.seas.upenn.edu/qaplib/

http://mistic.heig-vd.ch/taillard/
http://www.seas.upenn.edu/qaplib/

Social Odometry in Populations of

Autonomous Robots

Álvaro Gutiérrez1, Alexandre Campo2,
Francisco C. Santos2, Carlo Pinciroli2, and Marco Dorigo2

1 ETSIT, Universidad Politécnica de Madrid, Madrid, Spain
aguti@etsit.upm.es

2 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{acampo,fsantos,cpinciro,mdorigo}@ulb.ac.be

Abstract. The improvement of odometry systems in collective robotics
remains an important challenge for several applications. In this work,
we propose a localisation strategy in which robots have no access to
centralised information. Each robot has an estimate of its own location
and an associated confidence level that decreases with distance travelled.
Robots use estimates advertised by neighbouring robots to correct their
own location estimates at each time-step. This simple online social form
of odometry is shown to allow a group of robots to both increase the
quality of individuals’ estimates and efficiently improve their collective
performance. Furthermore, social odometry produces a successful self-
organised collective pattern.

1 Introduction

Many robotics applications require localisation methods to achieve different
tasks. Many different solutions to the localisation problem have been imple-
mented. Among these, odometry is probably the most used as it provides easy
and cheap real time position information by the integration of incremental mo-
tion information over time. Unfortunately, this integration causes an accumula-
tion of errors during the movement of the robot. Many different approaches have
been implemented to deal with systematic and non-systematic localisation errors
[1]. Some implementations have used Kalman filters [2]. Thrun and colleagues in
[3] create a map of indoor environments combining the idea of posterior estima-
tion with incremental map construction using maximum likelihood estimators.

Some applications in multirobot exploration are implemented without using
odometry or dead-reckoning techniques. In [4], a group of robots remains sta-
tionary while the other team is in motion. In [5], only one robot is allowed to
move while the others act as immobile landmarks. In [6], a chain between two
specific areas is created, so that the rest of the group can follow it. In [7], the
LOST method enables a team of robots to navigate in an indoor environment.
Each robot updates the new optimal path to the goal communicating with a
central computer.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 371–378, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

372 Á. Gutiérrez et al.

All these implementations have a number of different limitations: i) they are
power consuming in terms of computation because of the Kalman filters and
use of maps, ii) some robots are not allowed to move while others are tracking
distance between them, iii) robots must maintain visual contact at all times with
the rest of the group, and iv) in some cases robots have to communicate with a
central device to update or download maps, synchronise movements, or update
positions.

The solution we propose in this paper exploits self-organised cooperation in
a group of robots to reduce each individual location error. In a nutshell, each
robot location knowledge consists of an estimate of its own location and an
associated confidence level that decreases with the distance travelled. In order
to maximise its confidence about its estimate, each individual tries to update
it using the information available in its neighbourhood. Estimated locations,
confidence levels and actual locations of the robots co-evolve in parallel in order
to guide each robot to the correct objective. This simple online social dynamics
is shown to allow the population of robots to both reduce individual’s errors and
efficiently reach a common objective.

In the rest of this paper, we present the details of our solution and analyse
its performance in a particular task in which collective correction of odometry
errors is beneficial.

2 The Task

To study cooperative odometry, we have devised a task of central place foraging
[8] in which robots need to explore the environment to find resource sites and
bring items back to a central place. The robots can perceive the central place
and the resource site only when they are closer than a threshold distance, given
by their sensorial capabilities. Initially, robots are scattered in the arena and
they explore the environment to locate both areas. Robots rely on odometry to
maintain an estimate of the location of each area (central place and resource
site). As soon as a robot comes back to an area, the corresponding location
estimate is reset and odometry errors affecting this estimate are discarded.

In an ideal case, robots would make no mistake in estimating the location of
the two areas. They could travel endlessly from one place to the other without
drifting away. As soon as errors are introduced in the odometry system, estimated
locations differ from true locations. A robot may not manage to go back to a
given area, and may end up lost. In that case, the robot is doomed to explore
again the environment to find the area. To reduce the impact of odometry errors,
robots keep in memory both estimated area locations and share this information
among them.

3 Mobile Robot Positioning

The accuracy of odometry measurements depends on the kinematics of the robot
(see [9]). Let the location of a robot at time k−1 be Lk−1 =

[
xk−1 yk−1 θk−1

]T

Social Odometry in Populations of Autonomous Robots 373

where (xk−1, yk−1) are the Cartesian coordinates and θk−1 is the orientation
with respect to a global reference frame. A rotation Δθk and a translation Δρk

move the robot to a new location Lk:

Lk = Lk−1 +

⎡⎣Δρkcos(θk−1 + Δθk/2)
Δρksin(θk−1 + Δθk/2)

Δθk

⎤⎦ (1)

Equation 1 is not taking into account problems such as slippage, unequal
wheels diameters, wheels misalignments, etc. These errors can be classified as
either systematic or non-systematic errors [10]. The first ones can be modelled
and corrected [11], while the last ones can not be corrected and many classical
techniques have been implemented to cope with them [12].

When modelling non-systematic errors, each computed robot position is sur-
rounded by a characteristic error ellipse that represents a region of uncertainty
in which the actual location lies. This region grows with the distance travelled,
and it is reset to zero when the robot can localise itself exactly thanks to an
environmental landmark (entering one of the two areas in our case). The error
ellipse model is based on the covariance matrix of the robot’s location defined as:

Cov(Lk) = JLk−1f · Cov(Lk−1) · JLk−1f + JUkf · Cov(Uk) · JUkf (2)

where JLk−1f and JUkf are the Jacobians of f with respect to Lk−1 and Uk, f
is the (x, y, θ, ΔUr, ΔUl) vector, Uk is the (ΔUl, ΔUr) vector and ΔUl and ΔUr

are the displacements of the left and right wheels respectively. The covariance
matrix Cov(L0) has an initial value of 0.

4 Methods

4.1 Experimental Setup

Our experiments are carried out using a simulation software based on ODE1. The
arena is a bounded square area of 3x3 m2 and the robots are randomly scattered
in the centre of the arena at the beginning of the experiment. The ground of
the arena is white except for the two areas: central place is a black circle of 20
cm radius and the resource site is a grey circle of the same dimensions. Robots
differentiate areas using an infrared sensor directed to the ground. A specific
simulated range and bearing communication board, based on infrared sensors,
allows robots to send messages to each other when their interdistance is less than
25 cm.

We introduce errors to simulate the imperfect response of the range and bear-
ing sensor. Noise is added to the bearing (±20◦) and range (±2.5 cm) values.
Moreover, each message emitted can be lost with a probability that varies linearly
from 1% when the sender-receiver distance is less than 1 cm, to 50% when the
two robots are at 25 cm from each other. Errors have also been introduced on the
encoder sensors chosen uniformly random in ±20% of the maximum movement
at each time step.
1 http://www.ode.org

374 Á. Gutiérrez et al.

dij

γj

α

 AREA Y

Communication axis

Communicated direction

dy

dy

i

j

γ
i

robot i

robot j

jφ
α

φi

X Axis (Robot’s heading)

X axis (Robot’s heading)

Y Axis

Y Axis

Fig. 1. Robots sharing information about the estimated location of area Y

4.2 Learning from Others

Figure 1 shows how information about the estimated location of area Y is trans-
mitted from robot i to robot j. In a first step, robot i transmits its estimate of
the distance dyi and direction φi of area Y to robot j. For the direction, the
value transmitted is the angle α, obtained from φi using the communication
beam as reference axis: α = φi − γi. In a second step, robot j transforms the
received data into its own coordinates system. First, it calculates the direction
pointed by robot i as φj = γj + α − π. Then, robot j calculates the location
locj = (x, y) of area Y related to its own reference frame using robot i infor-
mation and the simple trigonometric equations x = dij · cosγj + dyi · cosφj and
y = dij · sinγj + dyi · sinφj .

At this stage, robot j has the opportunity to adopt the estimate of the neigh-
bour, to keep its own or to produce an updated location (loc upj) based on
both. Given that estimates get worse with distance travelled, the robots use the
inverse of the distance travelled as a confidence level of their estimated location.
This confidence level, denoted by εi for robot i, respectively εj for robot j, is
part of any communicated location and informs about the reliability, or quality,
of the information. To calculate loc upj, we use the so-called pairwise compar-
ison rule [13] for the social learning dynamics, which makes use of the Fermi
distribution:

c =
1

1 + e−β(εi−εj)
, (3)

where β measures the importance of the relative confidence levels in the decision
making. We use a weighted average to merge locations and confidence levels using
the Fermi function: loc upj = c · locj +(1− c) · loci and ε upj = c · εj +(1− c) · εi

Social Odometry in Populations of Autonomous Robots 375

5 Results

The performance of the robots in the foraging task under study is measured as
the number of total round trips completed from the central place to the resource
site and back during one simulated hour.

Figure 2a shows box-plots of the performance with respect to different β values
tested. We observe an optimal value β = 10−3 showing that robots efficiently
rely on imitation to increase their collective performance.
Next, we carry out a comparison of different behaviours:

– no communication: robots do not communicate and are affected by odom-
etry errors.

– no odometry error: robots communicate and are not affected by odometry
errors.

– covariance knowledge: robots communicate and robots update new loca-
tion using their own covariance matrix value and the one offered by their
neighbours.

– global communications: robots communicate with each other globally.
Each robot updates its estimates by averaging the knowledge of the whole
group.

– local communications: robots communicate with each other locally, β is
set to its optimal value previously determined, that is, the behaviour detailed
in section 4.

Figure 2b reports the outcome of the comparisons. In the no communication
behaviour, robots rely solely on error prone odometry to find the areas. Once
lost, they have to explore the environment and find the areas by chance, which
explains the poor performance. In the no odometry error case, robots know

1e−06 1e−04 0.01 0.1 1 10 100

40
0

45
0

50
0

55
0

60
0

65
0

70
0

β values

R
ou

nd
 T

rip
s

β =0.001 No Error Covar Global No Com

20
0

40
0

60
0

80
0

Behaviour

R
ou

nd
 T

rip
s

Best performing β
No odometry error
Covariance knowledge
Global communication
No communication

(a) (b)

Fig. 2. (a) Task performance using local communications as a function of parameter
β. (b) Task performance for the different individual behaviours tested (30 replications
for each boxplot). Each box comprises observations ranging from the first to the third
quartile. The median is indicated by a horizontal bar, dividing the box into the upper
and lower part. The whiskers extend to the farthest data points that are within 1.5
times the interquartile range. Outliers are shown as dots.

376 Á. Gutiérrez et al.

1 3 5 7 9 11 14 17 20 23 26 29

50
0

10
00

15
00

20
00

Number of Robots

T
im

e(
s)

1 3 5 7 9 11 14 17 20 23 26 29

50
0

10
00

15
00

20
00 No communication

Best performing β

1 3 5 7 9 11 14 17 20 23 26 29

20
0

40
0

60
0

80
0

Number of Robots

R
ou

nd
 T

rip
s

1 3 5 7 9 11 14 17 20 23 26 29

20
0

40
0

60
0

80
0

1 3 5 7 9 11 14 17 20 23 26 29

20
0

40
0

60
0

80
0 No odometry error

Best performing β
No communication

(a) (b)

Fig. 3. (a) Time employed for a group of 30 robots to initially localise the central
place and the resource site. (b) Task performance as function of group size for three
representative cases (30 replications for each boxplot).

accurately the location of both areas. When robots employ global communi-
cation, they tend to perform worse than with local communication, mainly
because of the negative influence of lost robots on the knowledge of the group.
Interestingly, the covariance knowledge behaviour does not show statistically
different performance with local communications with the best performing β.
Not taking into account ideal behaviours that are not implementable in reality,
our collective behaviour is therefore exhibiting maximal performance.

We focus now on the comparison between the no communication and the
local communication behaviours. We study the time required to have each
robot visit the central place and the resource site at least once. Figure 3a shows
these times as a function of the number of robots. With few robots, the two be-
haviours perform equally well, which is explained by the infrequent encounters
of the robots and the consequent low amount of communications. As the number
of robots in the experiment increases, we clearly observe that using local com-
munication allows the robots to find the areas faster. Using communication,
robots are intrinsically carrying out a recruitment process which speeds up the
initial exploration phase.

Figure 3b shows the performance of the robots with respect to increasing
density, using three different behaviours. The performance of local commu-
nication is always in between the performances of no odometry error and
no communication. When the number of robots is small (less than 10), the
performance of local communication is increasing very fast. With more than
10 robots, the performance still increases but at a lower rate. This is due to two
counterbalancing effects, namely the improvement of the knowledge of areas’
locations through communication versus the disruption of the measure of odom-
etry caused by a higher number of obstacle avoidance events. Results suggest
that a high density of robots disrupts performance and there is most likely an
optimal density to carry out the foraging task as reported in [14]. We also see
that local communication allows the robots to cope with density to some extent
and have performance that scales linearly in a wide range of situations.

Social Odometry in Populations of Autonomous Robots 377

6 Conclusions

In this paper we have described a social strategy in which robots use pairwise
local communication to share knowledge about specific locations to improve their
performance in a foraging task. By letting the robots use the estimates of the
others, we engineer an efficient and decentralised knowledge sharing mechanism
which allows the robots to achieve their goals, both from an individual and group
perspective. This simple mechanism drives the system to a successful collective
pattern that none of the individuals is able to achieve independently.

We show that local communications are more effective than global communica-
tions which would additionally require either more expensive devices or a central
system taking care of routing robots’ communications. Social odometry does not
rely on any internal model provided to each robot, but exclusively on a general col-
lective dynamics of knowledge sharing. This has obvious advantages, given that
less effort is needed for environmental dependent parameter tuning.

Preliminary observations suggest that the β parameter depends on the dis-
tance between the areas, suggesting that the robots can tune parameter β know-
ing the distance between the central place and the resource site. The tuning of
the parameter can be done off-line, where the designer introduces the value or
on-line, where robots update the β parameter once they have located both ar-
eas. In the future, we intend to implement and test this strategy on real robots,
emphasising the online tuning of the parameter β.

Finally, the performance of the social odometry allows an optimistic forecast
concerning the use of online self-organised methodologies in the field of collective
robotics.

Acknowledgments. A. Gutiérrez acknowledges support from the Consejo So-
cial of the Universidad Politécnica de Madrid via the Fifth PhD Formation
programme. A. Campo, F. C. Santos and M. Dorigo acknowledge support from
the F.R.S.-FNRS. C. Pinciroli acknowledges support from COMP2SYS, a Marie
Curie Early Stage Research Training Site funded by the European Community’s
Sixth Framework Programme. This work was partially supported by the SWAR-
MANOID project, funded by the Future and Emerging Technologies programme
(IST-FET) of the European Commission and by the ANTS project, an Action de
Recherche Concerté funded by the Scientific Research Directorate of the French
Community of Belgium. The information provided is the sole responsibility of
the authors and does not reflect the European Commission’s opinion. The Eu-
ropean Commission is not responsible for any use that might be made of data
appearing in this publication.

References

1. Wang, C.M.: Location estimation and uncertainty analysis for mobile robots. Au-
tonomous Robot Vehicles 1(1), 90–95 (1990)

2. Larsen, T., Bak, M., Andersen, N., Ravn, O.: Location estimation for autonomously
guided vehicle using an augmented Kalman filter to autocalibrate the odometry.
In: FUSION 1998 Spie Conference, pp. 33–39. CSREA Press, Las Vegas (1998)

378 Á. Gutiérrez et al.

3. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping
with applications to multi-robot and 3D mapping. In: Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 321–328. Robotics and
Automation Society, NJ (2000)

4. Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning sys-
tem. Autonomous Robots 8(1), 43–52 (2000)

5. Grabowski, R., Navarro-Serment, L., Paredis, C., Khosla, P.: Heterogeneous teams
of modular robots for mapping and exploration. Autonomous Robots 8(2), 293–308
(2000)

6. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: Self-
organized strategies to find your way home. Swarm Intelligence 2(1), 1–23 (2008)

7. Vaughan, R., Stoy, K., Sukhatme, G., Matarić, M.: LOST: Localization-space trails
for robot teams. IEEE Transactions on Robotics and Automation 18(5), 796–812
(2002)

8. Balch, T.: Reward and diversity in multirobot foraging. In: IJCAI-1999 Workshop
on Agents Learning About, From and With other Agents, pp. 15–21. Morgann
Kaufman, San Francisco (1997)

9. Klarer, P.: Simple 2-d navigation for wheeled vehicles. Technical report, Sandia
Report SAND88-0540, Sandia National Laboratories, Livermore, CA (1988)

10. Feng, L., Borenstein, J., Everett, H.: Where am I? Sensors and Methods for Au-
tonomous Mobile Robot Positioning. University of Michigan Press, Ann Arbor
(1994)

11. Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors
in mobile robots. IEEE Transactions on Robotics and Automation 12, 869–880
(1999)

12. Chong, K., Kleeman, L.: Accurate odometry and error modelling for a mobile robot.
In: IEEE International Conference on Robotics and Automation, pp. 2783–2788.
Robotics and Automation Society, NJ (1997)

13. Santos, F.C., Pacheco, J.M., Lenaerts, T.: Cooperation prevails when individuals
adjust their social ties. PLoS Computational Biology 2(10), e140 (2006)

14. Goldberg, D., Matarić, M.J.: Interference as a tool for designing and evaluating
multi-robot controllers. In: Proceedings of the Fourteenth National Conference on
Artificial Intelligence, pp. 637–642. AAAI Press, Menlo Park (1997)

The Architecture of Ant-Based Clustering

to Improve Topographic Mapping

Lutz Herrmann and Alfred Ultsch

Databionics Research Group, Dept. of Mathematics and Computer Science
University of Marburg

{lherrmann,ultsch}@informatik.uni-marburg.de

Abstract. This paper analyzes the popular ant-based clustering ap-
proach of Lumer/Faieta. Analysis of formulae unveils that ant-based
clustering is strongly related to Kohonen’s Self-Organizing Batch Map.
Known phenomena, e.g. formation of too many and too small clusters,
can be explained due to that. Furthermore it is shown how topographic
mapping of ant-based methods is substantially improved by means of a
modified error function. This is demonstrated on few selected fundamen-
tal clustering problems.

1 Introduction

Techniques inspired by flocking behaviour of social insects have attracted a lot of
attention in numerous research papers over the last decade due to the ability of
simple interacting entities to exhibit sophisticated self-organization abilities. The
idea behind ant-based clustering is that autonomous stochastic agents, called
ants, move data objects on a low-dimensional regular grid such that similar
objects are more likely to be placed on nearby grid nodes than dissimilar ones.

Most popular methods are based on the algorithm proposed by Lumer and
Faieta [6]. Lumer/Faieta derivatives are known for at least two flaws: results
highly depend on parametrization [1] and have been found to be “not competi-
tive to the established methods of Multi-dimensional Scaling or Self-Organizing
Maps” [3] in terms of topographic mapping.

This paper shows how to analyze ant-based clustering methods on basis of Self-
Organizing Maps. A unifying representation for Lumer/Faieta and well-known
Self-Organizing Batch Maps is introduced. Naive improvements for topographic
mappings of ant-based methods are derived and experimentally verified.

2 Ant-Based Clustering

The method proposed by Lumer and Faieta [6] (here after LF algorithm) op-
erates on a fixed regular low-dimensional grid G ⊂ N2. A finite set of input
samples X from a vector space with norm ‖.‖ is projected onto the grid by
m : X → G. The mapping m is altered by autonomous stochastic agents,
called ants, that move input samples x ∈ X from m(x) to new location m′(x).

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 379–386, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

380 L. Herrmann and A. Ultsch

Ants might pick input samples when facing occupied nodes and drop input
samples when facing empty nodes. Probabilities for picking and dropping are
computed using the average similarity φx(i) between x ∈ X and input sam-
ples located on the so-called perceptive neighbourhood around node i ∈ G.
The perceptive neighbourhood usually consists of σ2 ∈ {9, 25} quadratically
arranged nodes at which the ant is located in the center. The set of input sam-
ples mapped onto the perceptive neighbourhood around i ∈ G is denoted with
Nx(i) = {y ∈ X : y 	= x, m(y) neighbouring i}. In this context, φ is referred
to as error function since its minimization determines the ants’ probabilistic
modifications of mapping m.

φx(i) =
1
σ2

∑
y∈Nx(i)

(
1 − ‖x − y‖

α

)
(1)

LF-like methods lead to a local sorting of input samples on the grid in terms of
similarities. Ants gather scattered input samples into dense crowds. In literature,
it has been noticed that LF and its derivatives are prone to produce too many
and too small clusters [1] [3]. For illustration see Figure 1.

Fig. 1. Typical results [1] of LF algorithm from left to right: gaussian data with 4
clusters, initial mapping of data objects, dense clusters appear, finally too many clusters
with topological defects have emerged

3 Analysis of Ant-Based Clustering by Means of
Self-Organizing Batch Maps

Self-Organizing Batch Maps (Batch-SOM, [5]) are well-known artificial neural
networks that consist of grid G, codebook vectors wi ∈ Rn, i ∈ G and a mapping
function m : X → G with m(x) = arg mini∈G ‖x − wi‖. The codebook vectors
are defined according to Equation 2 at which h : G × G → [0, 1] denotes a
time-dependent neighbourhood function. An update of m : X → G leads to an
update of codebook vectors wi, i ∈ G and vice versa. This is how the Batch-SOM
modifies mapping m : X → G. For details see [5].

In literature, two main types of Self-Organizing Maps (SOM) can be distin-
guished: first, SOM in which each codebook vector represents a single cluster.
In contrast to that, SOM consisting of several thousands of codebook vectors

The Architecture of Ant-Based Clustering to Improve Topographic Mapping 381

visualize structural features of the input space These SOM are referred to as
Emergent Self-Organizing Maps (ESOM, [9]).

wi =
∑

x∈X h(m(x), i) · x∑
x∈X h(m(x), i)

(2)

A meaningful error function for the Batch-SOM is derived from the quantization
error ‖x − wi‖ because its minimization determines the update of m : X → G.
Resolving the quantization error with Equation 2 leads to the error function
Φ of the Batch-SOM. Φx represents the norm of averaged differences x − y of
grid-neighbouring input samples y ∈ X .

Φx(i) =

∥∥∥∑y∈X h(m(y), i) · (x − y)
∥∥∥∑

y∈X h(m(y), i)
(3)

In the following, the mechanism of picking and dropping ants is no longer subject
of consideration. In [7] it was shown that collective intelligence can be discarded
in LF systems, i.e. same results could be achieved without ants but using error
function φ directly for probabilistic cluster assignments. This simplification is
evident: over a period of time, randomly moving ants may select an arbitrary
subset of input samples but re-allocation through picking and dropping depends
on φ only. Probability of selection is the same on all input samples such that
ants might be omitted in favor of any other subset sampling technique.

For the LF algorithm a meaningful neighbourhood function h : G×G → [0, 1]
is defined according to the perceptive neighbourhood of ants, i.e. h(i, j) is 1 if
j ∈ G is located in the perceptive neighbourhood of node i ∈ G and 0 elsewhere.
This neighbourhood function allows to restate φ as follows:

φx(i) =
|Nx(i)|

σ2
·
(

1 − Φ′
x(i)
α

)
with Φ′

x(i) =

∑
y∈X h(m(y), i) · ‖x − y‖∑

y∈X h(m(y), i)
(4)

The error function φ = |N |
σ2 (1 − Φ′

α) of the LF algorithm incorporates the term
Φ′ that is a weighted sum of local input space distances. Obviously, Φ′ measures
the local stress of topographic mapping m : X → G, comparable to the error
function Φ of the Batch-SOM. Φ′ even acts as an upper limit to Φ since ∀x ∈
X, i ∈ G : Φx(i) ≤ Φ′

x(i). Due to that Φ′ is referred to as topographic term of
the LF algorithm. The term |Nx(i)|

σ2 estimates the output space density around
grid node i ∈ G. Therefore, it is referred to as output density term of the LF
algorithm.

A unifying framework for analysis and assessment of Batch-SOM and LF
exists by means of error functions Φ and φ. Both error functions are denoted
by means of three functions: norm ‖.‖, neighbourhood h : G × G → [0, 1], and
mapping m : X → G. This leads to the following insights: The LF algorithm
uses a fixed neighbourhood function with small radius, whereas Batch-SOM
uses shrinking neighbourhood functions with large radiuses. The LF algorithm
has a probabilistic update of mapping m : X → G, whereas Batch-SOM is

382 L. Herrmann and A. Ultsch

Table 1. Differences of Batch-SOM, LF-algorithm

Batch-SOM Lumer/Faieta

neighbourhood large, small,
h : G×G → [0, 1] shrinking fixed

update of m : X → G deterministic probabilistic

searching for global local
update of m : X → G G Nm(x) ⊂ G

error function Φ |N|
σ2 (1 − Φ′

α
)

termination cooling scheme never

deterministic. The error function of the LF algorithm decomposes into an output
density term |N |

σ2 and a topographic term 1− Φ′

α . The topographic term is easily
identified as a topographic distortion measure because of its relation to Batch-
SOM error Φ. Therefore, the LF algorithm is easily convertible into a special
case of Batch-SOM, and vice versa. For an overview of differences see Table 1.

4 Assessment and Improvement

Ant-based clustering methods following the LF scheme are prone to produce bad
topographic mappings, e.g. too many, too small and topographically distorted
clusters. If one regards LF as a derivative of the Batch-SOM, improvement of
topographic mapping can easily be achieved.

Maximization of the topographic term 1 − Φ′

α corresponds to minimization
of Φ′ and Φ, too. This is known to produce sufficiently topography preserving
mappings m : X → G, e.g. when using Batch-SOM [5].

In contrast to that, the output density term |N |
σ2 has two mayor flaws. First,

maximization of output space densities does not imply any preservation. Ob-
tained mappings are, therefore, not related to the configuration of available
clusters in the input space. In additon to that, the LF algorithm is not allowed
to assign two or more objects to a single grid node (see Section 2) in order to
prevent the mapped clusters from collapsing into a single grid node. Due to that,
densities of input data are hardly preservable on grid G.

In comparison with the topographic term, the output density term is much
easier to maximize and, therefore, will distort the error φ. Accounting of output
densities is prone to distort the formation of correct topographic mappings be-
cause it is responsible for additional local optima of φ. Future derivatives of the
LF algorithm should maximize 1− Φ′

α and minimize Φ′, respectively, in order to
obtain better topographic mappings. For example, Figure 2 illustrates that tra-
ditional LF does not preserve looped cluster structures, in contrast to Emergent
SOM and modified LF without density term.

The topographic term 1 − Φ′

α of the LF error depends on the shape of the
neighbourhood function h : G × G → [0, 1] (see Section 3). Usually, the neigh-
bourhoods’ sizes are chosen as σ2 ∈ {9, 25}, i.e. the immediate neighbours. From
the Self-Organizing Batch Map (Batch-SOM) it is known that the cooling scheme

The Architecture of Ant-Based Clustering to Improve Topographic Mapping 383

−4

−2

0

2

−2
−1

0
1

2
−3

−2

−1

0

1

2

3

(a) data (b) Lumer/Faieta

(c) LF, no density term (d) Emergent SOM

Fig. 2. Looped chainlink data from FCPS [8], data mapped on grid by several methods,
only Emergent SOM and “LF without density term” enable formation of looped clusters
with little effort

of the neighborhood radius influences the goodness for topographic mapping very
strongly (see [4] for details). A bigger radius enables a more continuous mapping
in the sense that proximities existing in the original data are visible on the grid.
This is evident because smaller neighbourhoods are more likely to exclude parts
of a cluster.

In order to prevent future LF derivatives from unsufficient topographic map-
pings, i.e. too many and too small clusters emerge during the training process,
bigger neighbourhood radiuses are to be chosen. The ideal learning radius, how-
ever, remains a data-dependent quality.

5 Advanced Topographic Mapping

LF derivatives that do not account for output densities, usually will produce
a SOM-like, equally distributed mapping of input samples (see Figure 2 for
illustration). In this case, cluster retrieval cannot be achieved according to sparse
regions dividing dense clusters on the grid.

384 L. Herrmann and A. Ultsch

(a) Emergent SOM (b) Lumer/Faieta

Fig. 3. U-Maps of looped chainlink data, input space distances depicted as gray levels
(a) looped clusters, large distances occur between clusters (b) no looped clusters, large
distances occur even inside clusters due to accounting for output density

A promising technique for cluster retrieval is based on so-called U-Maps [9].
Arbitrary projections from normed vector spaces onto grid G are transformed
into landscapes, so-called U-Maps. The U-Map technique assigns each grid node
a height value that represents the averaged input space distance to its’ neigh-
bouring nodes and codebook vectors, respectively. Clusters lead to valleys on
U-Maps whereas empty input space regions lead to mountains dividing the clus-
ter valleys (see Figure 3 for illustration). The U*C cluster algorithm uses the
so-called watershed transformation to retrieve cluster valleys on U-Maps (see
[10] for details).

6 Experimental Settings and Results

In order to measure the distortion of a given topographic mapping method, a
collection of fundamental clustering problems (FCPS) is used [8]. Each data set
represents a certain problem that arbitrary algorithms shall be able to handle
when facing unknown real-world data. Here, two versions of the Lumer/Faieta
approach are tested on which one delivers the best topographic mapping: with
and without accounting for output density.

A comprehensive overview on topographic distortion measurements can be
found in [2]. Here, the so-called minimal path length (MPL) measurement is
used. It is an easy-to-compute measurement that sums up input space distances
of grid-neighbouring data objects and codebook vectors, respectively.

mpl =
∑
x∈X

1
|Nx|

∑
y∈Nx

‖x − y‖ (5)

Lower MPL values indicate less topographic distortion when moving on the grid
and, therefore, a more trustworthy topographic mapping. Each algorithm is run
several times with the same parametrization. MLP values indicate if accounting

The Architecture of Ant-Based Clustering to Improve Topographic Mapping 385

Table 2. Topographic distortion measured by minimal path length method, mean
values ± standard deviation of each 100 experiments, p-values of Kolmogorov-Smirnov
test indicate that “LF without density term” produces significantly smaller error values
than traditional LF

data set LF with density term LF without density term p-value

atom 161 ± 15.6 > 142 ± 6.2 1.24E−12

chainlink 6.33 ± 0.33 > 6.19 ± 0.12 1.38E−05

hepta 11.16 ± 0.66 > 9.86 ± 0.54 2.65E−13

iris 11.8 ± 0.65 > 10.02 ± 0.57 1.03E−17

target 6.69 ± 0.41 > 5.35 ± 0.33 8.79E−23

2diamonds 3.86 ± 0.09 > 3.28 ± 0.10 1.08E−23

wingnut 5.64 ± 0.32 > 5.07 ± 0.23 9.91E−11

for output densities assists the formation of good topographic mappings, or not.
All data sets from the FCPS collection were processed with the same parameters
established in literature, i.e. α = 0.5, σ2 = 25, k1 = 0.3 and k2 = 0.1 on a 64×64
grid with 100 ants during 100000 iterations. The results can be found in Table 2.
Accounting for output densities leads to increasing MPL values on an average,
i.e. worsenings of topographic mappings. Significance has been confirmed using
a Kolmogorov-Smirnov test on a α = 5% level.

7 Discussion

Minimal path lengths (MPL), as proposed in Section 6, are well-known topo-
graphic distortion measures. The length of paths is normalized by the cardinal-
ity |Nx| of the corresponding grid neighbourhood, i.e. the number of objects
mapped onto the grid neighbourhood. This is supposed to decrease error values
of locally dense mappings, as produced by traditional LF, because small radial
neighbourhoods usually do not cover objects of another cluster, since locally
dense mappings imply sparse dividing grid regions around clusters. Neverthe-
less, traditional LF produces bigger MPL errors than the modified LF that is
not accounting for densities. We conclude that the topographic mapping quality
is improved beyond our empirical evaluation.

8 Summary

To the best of our knowlege, this is the first work that shows how the LF al-
gorithm by Lumer and Faieta [6] is related to Self-Organizing Maps [5]. The
mechanism of picking and dropping ants was omitted in favor of a formal anal-
ysis of the underlying formulae and comparison with Kohonen’s Batch-SOM. It
could be shown that a unifying framwork for both methods does exist in terms of
closely related topographic error functions. The LF algorithm is to be considered
a probabilistic, first-class relative of the Batch-SOM. The behaviour of LF and
derivatives becomes explainable on that unifying basis.

386 L. Herrmann and A. Ultsch

Ant-based clustering methods derived from LF exhibit poor clustering abil-
ities because of distorted topographic mappings. Improvements of topographic
mapping were derived by means of SOM architecture. Perceptive areas are to be
increased, and accounting for density of mapped data is futile. The obtainable
methods do not produce dense clusters any more but equally distributed, SOM-
like mappings. Due to that, cluster are to be retrieved using U-Map technology.
As predicted by our theory, an empirical evaluation showed on few clustering
problems that not-accounting for density of mapped data improves the quality
of topographic mapping despite of unfavorable settings.

References

1. Aranha, C., Iba, H.: The effect of using evolutionary algorithms on ant clustering
techniques. In: Proc. Third Asian-Pacific workshop on Genetic Programming, pp.
24–34 (2006)

2. Goodhill, G.J., Sejnowski, T.J.: Quantifying neighbourhood preservation in topo-
graphic mappings. In: Proc. 3rd Joint Symposium on Neural Computation, pp.
61–82 (1996)

3. Handl, J., Knowles, J., Dorigo, M.: Ant-Based Clustering and Topographic Map-
ping. Artificial Life 12, 35–61 (2006)

4. Nybo, K., Venna, J., Kaski, S.: The self-organizing map as a visual neighbor re-
trieval method. In: Proc. of the Sixth Int. Workshop on Self-Organizing Maps
(2007)

5. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences (2001)
6. Lumer, E., Faieta, B.: Diversity and adaption in populations of clustering ants. In:

Proc. Third International Conference on Simulation of Adaptive Behaviour: From
Animals to Animats, vol. 3, pp. 501–508 (1994)

7. Tan, S.C., Ting, K.M., Teng, S.W.: Reproducing the Results of Ant-Based Cluster-
ing Without Using Ants. In: Proc. IEEE Congress on Evolutionary Computation,
pp. 1760–1767 (2006)

8. Fundamental Clustering Problem Suite,
http://www.uni-marburg.de/fb12/datenbionik/data

9. Ultsch, A., Mörchen, F.: U-maps: topograpic visualization techniques for projec-
tions of high dimensional data. In: Proc. 29th Annual Conference of the German
Classification Society (2006)

10. Ultsch, A., Herrmann, L.: Automatic Clustering with U*C. Technical Report.
Philipps-University of Marburg (2006)

http://www.uni-marburg.de/fb12/datenbionik/data

The Small World of Pheromone Trails

Paola Pellegrini and Andrea Ellero

Department of Applied Mathematics, University Ca’ Foscari of Venice
Venice, Italy

paolap@pellegrini.it, ellero@unive.it

Abstract. In this paper we consider MAX–MIN Ant System and Ant
Colony System. They are generally recognized to be the best performing
algorithms of the Ant Colony Optimization family. They are character-
ized by a quite different way for dealing with the pheromone trail. We
propose an experimental analysis for observing whether this difference
impacts significantly on the characteristics of the pheromone distribu-
tions produced during the runs. The results obtained are analyzed by
using some concepts derived by the literature on small-world networks. It
comes out that ants actually build small-world pheromone graphs during
their runs. This behavior is interpreted here as a sort of decomposition
of the instances tackled.

1 Introduction

In this paper we consider two Ant Colony Optimization (ACO) algorithms:
MAX–MIN Ant System (MMAS) and ant colony system (ACS). They are
recognized as the two best performing procedures of the Ant Colony Optimiza-
tion family [1]. They are characterized by a pretty different behavior with respect
to pheromone distribution and exploitation, as described in the following.

The aim of this paper is analyzing the effect of such a difference in the way
the two algorithms deal with the distribution of the pheromone trail on solution
components. In order to study this distribution, we use two elements coming from
the literature on the small-world phenomenon. This concept originally belongs to
the field of social sciences: A social network exhibits the small-world phenomenon
if, roughly speaking, any two individuals in the network are likely to be connected
through a short sequence of intermediate acquaintances [2,3,4]. Shifting this
definition to mathematics, a small-world network is a graph in which nodes are
neighbors of few others, but most nodes can be reached from every other in few
steps. Moreover, the network is highly clustered, in the sense that if two vertices
are neighbors of a third one, with high probability they will be connected. The
small-world phenomenon is of particular interest here, since its definition allows
us to interpret the evolution of a run (in terms of pheromone distribution) as
some kind of splitting an instance in sub-instances. In this sense, each cluster
represents a sub-instance: when it is reached, various ways are available for
visiting the neighborhood, while when it is left only few paths are likely to be
chosen.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 387–394, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

388 P. Pellegrini and A. Ellero

In order to make this concept more explicit, and to observe the difference in
the pheromone structure imposed by MAX–MIN Ant System and Ant Colony
System, the rest of the paper is organized as follows: in Section 2 the two algo-
rithms are described, while in Section 3 some elements on small-world graphs
are summarized. Sections 4 and 5 report the experimental setup and results, and
Section 6 concludes the paper.

2 MAX–MIN Ant System and Ant Colony System

Let us consider the generic combinatorial optimization problem to be solved as
mapped on an edge-weighted graph G = (N, E), with N = {1, 2, · · · , n} set of
nodes, and E = {(i, j) : i, j ∈ N} set of edges. The graph is such that each
solution to the combinatorial optimization problem corresponds to at least one
path on the graph itself. The weights associated to the edges are such that the
cost of a path (Vs) equals the cost of the associated solution s.

In MAX–MIN Ant System [5], the state transition rule is named random-
proportional rule. The probability of choosing the generic edge (i, j) is biased by
the heuristic information ηij and by the pheromone trail τij . The relative weight
of these values are controlled by two parameters of the algorithms, namely α
and β.

After the activity of m ants, the pheromone evaporates on all the edges of
the graph. The amount of this evaporation depends on the value of parameter
ρ, 0 < ρ < 1. Moreover, some pheromone is deposited on those used in a specific
solution: One solution is used for the reinforcement. It is either the iteration best
one, i.e. the best among the last m solutions built, or the best so far one, i.e.
the best solution constructed. Finally, the pheromone is constrained between a
lower and an upper bound τmin and τMAX .

In ACS [6], the pseudorandom-proportional rule is applied: With probability
q0, the step to perform is the one with the highest combination of the values of
the heuristic information ηij and by the pheromone trail τij . Only the former is
weighted by using an exponent β. With probability 1 − q0 the random propor-
tional rule is applied (with α = 1). The pheromone update is performed both
after each iteration (global update) and after each ant has added one compo-
nent to the solution under construction (local update). In the global pheromone
update, the pheromone changes only on the edges belonging to the best so far
solution. Its evaporation and deposit are controlled by parameter ρ. In the lo-
cal pheromone update, after ant k has included edge (i, j) in the path, the
pheromone level on (i, j) itself is updated, and the role of ρ is taken by another
parameter ξ.

The two algorithms are not hybridized with any local search procedure. This
choice is owed to the fact that we are interested in the nature of the algorithms
themselves rather than in the absolute quality of the results. For a more detailed
description of the procedures, we refer the reader to the specific literature.

The Small World of Pheromone Trails 389

3 Small-World Graphs

For observing the characteristics and the evolution of the pheromone trails on
solution components, we analyze the structure of the graph we obtain consid-
ering all the nodes of the original one G = (N, E), and the subset of edges on
which the pheromone level is above the average: G′ = (N, E′), E′ ⊆ E : τi,j ≥
|E|−1

∑
(i,j)∈E τi,j , ∀(i, j) ∈ E′. G′ will be referred to as pheromone graph. We

study the structure of the pheromone graphs built during a run of the algorithm.
This is done by using two measures that are typical of the literature on small-
world networks [7], namely the characteristic path length (L) and the clustering
coefficient (C). The former is defined as the average number of edges that must
be traversed in the shortest path between pairs of nodes in the graph. The lat-
ter, instead, describes the neighborhood structure of the graph. In particular, if
a node v is directly connected to kv vertices, then this neighborhood defines a
subgraph in which at most kv(kv − 1)/2 edges can exist. The clustering coeffi-
cient of v (Cv) is the ratio between this maximum and the number of edges that
actually compose the subgraph. The average clustering coefficient is the average
of this measure over all the nodes of the graph.

In order to state whether a graph G with n vertices exhibits the small-world
property, its characteristic path length and clustering coefficient are compared
to those of a random graph with the same number of nodes. In the latter kn/2
out of all possible n(n − 1)/2 edges are chosen at random with equal proba-
bility (k indicates the average degree of the vertices of G). In such a random
graph, an asymptotic approximation of the two measures we are considering are:
Lrandom ∼ ln(n)/ ln(k), Crandom ∼ k/n [8]. If L ∼ Lrandom and C & Crandom ,
the graph under analysis is a small-world network. In words, it represents a clus-
tered structure and, in average, a quite short path is sufficient to move from one
node to another. In the following we will consider the ratios L/Lrandom (L ratio)
and C/Crandom (C ratio) in order to analyze the presence of the small-world
property. Usually a graph is recognized to have this property if L ratio ∼ 2.5 or
lower and C ratio ∼ 5 or higher [9,10,11,12].

To our aim, a small-world pheromone graph may be interpreted as the algo-
rithm splitting an instance in sub-instances: computational resources are used
for focusing on the clusters. Once one node of a cluster is reached, the possibility
for visiting its neighbors are various, while, when a cluster is left, only few paths
have high probability of being selected.

In the analysis proposed here, we use these concept for observing whether the
pheromone graphs created during a run by MAX–MIN Ant System and Ant
Colony System allow to think to this kind of problem decomposition.

4 Experimental Setup

The classical combinatorial optimization problem called traveling salesman prob-
lem (TSP) is considered in the experiments. Four sets of instances are tackled,
with 200, 300, 400 and 500 nodes respectively.

390 P. Pellegrini and A. Ellero

Table 1. Values tested for the parameters

MAX–MIN Ant System Ant colony system
parameter values tested

m 50, 100, 150, 200
β 2, 3, 4, 5, 6
ρ 0.02, 0.07, 0.12, 0.17, 0.22,

0.27, 0.32
α 1, 2, 3, 4

parameter values tested

m 5, 10, 20, 50
β 2, 3, 4, 5, 6
ρ 0.16, 0.25, 2.33, 0.42, 0.5
q0 0.75, 0.8, 0.85, 0.9
ξ 0.1, 0.2

Table 2. Values chosen for the parameters after the tuning procedure

Fairly explorative parameters MMAS Fairly explorative parameters ACS
n m ρ β α n m ρ β α

200 50 0.17 4 1 400 50 0.22 4 1
300 50 0.22 4 1 500 50 0.32 4 1

n m ρ β q0 ξ n m ρ β q0 ξ

200 20 0.33 4 0.75 0.1 400 10 0.16 4 0.75 0.1
300 20 0.25 4 0.75 0.1 500 20 0.25 4 0.75 0.1

Explorative parameters MMAS Explorative parameters ACS
n m ρ β α n m ρ β α

200 150 0.07 3 1 400 150 0.12 3 1
300 150 0.07 3 1 500 150 0.12 4 1

n m ρ β q0 ξ n m ρ β q0 ξ

200 50 0.42 4 0.75 0.1 400 20 0.25 4 0.75 0.1
300 20 0.33 4 0.8 0.1 500 20 0.42 5 0.75 0.1

For both MAX–MIN Ant System and Ant Colony System, we consider two
configurations of parameters for each set of instances: a fairly explorative con-
figuration and an explorative one. In order to fix them, we apply the tuning
procedure F-Race [13]. The stopping criteria adopted is the total number of
objective function evaluations (which is proportional to computational time).
The reasoning is based on the fact that ACO algorithms, in order to get good
performances, need to devote resources to both exploration and exploitation. If
the available time is short, good parameters should imply a level of exploration
such that some time is left to exploitation. On the other hand, if the compu-
tational time is longer, the exploration level can be higher, still allowing for
exploitation [14]. Therefore, the maximum number of objective function evalua-
tions allowed for a run is varied: we consider first a short run (25000 evaluations)
in order to get a fairly explorative configuration, and then a long one (175000
evaluations) in order to get a more explorative one.

All the combinations of the values reported in Table 1 are considered for the
tuning procedure. These values are chosen on the basis of the literature on the
two algorithms [1]. Five hundred instances are used for the tuning phase. The
values selected after the tuning procedure are reported in Table 2.

5 Experimental Results

In the experiments proposed, we apply the two algorithms presented in Section 2
to the traveling salesman problem. Ten TSP instances are used for each set, with
200, 300, 400 and 500 nodes respectively. The number of objective function eval-
uations considered as stopping criterion is 175000. Beside observing the quality
of the results returned for each run, we consider the dynamics of the distribution
of pheromone on solution components during the run itself. More in detail, for
each run we focus on the pheromone graphs as defined in Section 3: Every ten
iterations, we observe the graph having all the nodes of the original one, and

The Small World of Pheromone Trails 391

Table 3. Number of objective function evaluations after which the pheromone graph
loses the small-world property (results are recorded each 10 iterations)

Fairly explorative parameters
inst n=200 n=300 n=400 n=500

MMAS ACS MMAS ACS MMAS ACS MMAS ACS

1 3500 13800 3500 12000 4000 25600 2500 88800
2 3000 3200 2500 1200 3500 26800 2500 31200
3 4000 10200 2500 2600 7500 71400 3000 15800
4 3500 4300 3000 2600 3500 101400 3500 45600
5 3000 4400 3000 19600 4000 44200 3000 33600
6 4000 3000 2500 14000 4000 23200 2500 27500
7 3500 1600 3500 24600 4500 44800 3000 16700
8 4000 1200 4000 18600 5000 13200 3000 15200
9 4000 7800 3000 18400 4000 92600 2500 25000
10 4000 6000 4000 20000 4500 22000 3500 30000

Explorative parameters
inst n=200 n=300 n=400 n=500

MMAS ACS MMAS ACS MMAS ACS MMAS ACS

1 24000 43200 55500 19400 24000 56800 40500 20600
2 27000 2000 31500 30900 18000 35200 22500 15200
3 30000 27800 45000 22500 21000 32000 30000 14600
4 34500 45300 37500 32400 22500 42200 24000 21700
5 36000 1200 46500 35100 30000 15600 21000 15400
6 36000 200 52500 43600 46500 35400 27000 9700
7 36000 1200 51000 25000 33000 43400 25500 13900
8 37500 2000 55500 30200 33000 43000 22500 21400
9 28500 2700 49500 24000 27000 24100 22500 55800
10 51000 12200 36000 26000 27000 16700 37500 8000

only the edges on which the pheromone trail is above the average. For each of
these pheromone graphs, we compute the C and L ratios (Section 3), and we
verify whether we are in presence of a small-world network.

As for what the quality of the result is concerned, for all the runs, at the
beginning Ant Colony System performs better than MAX–MIN Ant System,
while the latter ends up being the best at the end of the process. By the way,
the number of objective function evaluations after which the value of the best
solution returned by MMAS is smaller than the one returned by ACS with
the explorative parameters, is often higher than the value chosen as stopping
criterion for these configurations.

After this observations, let us focus on the presence of small-world pheromone
graphs during the runs. Interestingly, the presence of such networks can be ob-
served in all the runs performed. Table 3 reports the number of objective function
evaluations after which the small-world phenomenon weakens, i.e. after which
the relevant values are no more above (or below, respectively) the thresholds
reported in Section 3.

For visualizing the small-world presence in the pheromone graphs, we pro-
pose the results obtained for a representative instance with 400 nodes (instance
number 2 in Table 3). Figure 1 reports the C and L ratios computed on the
pheromone graph for the two algorithms and for the different sets of parame-
ters. Moreover, in the upper part of the graphics (above the dashed line), the
number and size of the clusters are represented: The size of the bullets is pro-
portional to the average size of the clusters, and their y-coordinates correspond
to the number of clusters that are present in the graphs. As it can be observed,
clusterization is somehow present during the whole runs, but it is clearly higher
at the beginning. A difference can be detected in the behavior of MAX–MIN
Ant System and Ant Colony System, regardless the set of parameters consid-
ered: at the very beginning the former works with one or two large clusters,

392 P. Pellegrini and A. Ellero

0 50000 100000 150000
Tours

C ratio
L ratio

clusters

5

11
16

18

36

(a) Fairly explorative parameters ACS

0 50000 100000 150000
Tours

C ratio
L ratio

clusters

5

11
16

18

36

(b) Explorative parameters ACS

0 50000 100000 150000
Tours

C ratio
L ratio

clusters

7

13

20

9

18

(c) Fairly explorative parameters MMAS

0 50000 100000 150000
Tours

C ratio
L ratio

clusters

6

12

17

6

13

(d) Explorative parameters MMAS

Fig. 1. C and L ratios, and number of clusters in one instance with 400 nodes

0 50000 100000 150000

0
5

10
15

20

Tours

C ratio MMAS
L ratio MMAS

C ratio ACS
L ratio ACS

(a) Fairly explorative(n=400)

0 50000 100000 150000

0
5

10
15

20

Tours

C ratio MMAS
L ratio MMAS

C ratio ACS
L ratio ACS

(b) Explorative (n=400)

Fig. 2. Friedman super smoother computed on the observations of the C and L ratios
in the set of instances with 400 nodes, for ACS and MMAS

which are then decomposed in smaller ones. The latter, instead, immediately
creates several small groups and only progressively decreases their number. In
some sense, then, MMAS chooses more carefully which nodes are to be grouped
together, at the cost that, in some sense, it works for some time without any
indication given by the pheromone. ACS, on the other hand, exploits from the
first iteration the indirect communication that characterizes ACO algorithms, at
the cost of possibly choosing the clusters in an imprecise way. According to the
results obtained, ACS’s strategy may be more powerful when the computational
resources are very limited, while it is in general outperformed by MMAS’s one
when the time available is longer. For summarizing the trends followed, Figure 2
represents the Friedman super smoother [15] computed on the observations of
the C and L ratios in the set of instances with 400 nodes, for ACS and MMAS.
The pictures concerning the other sets are qualitatively similar: The difference
implied by the sets of parameters chosen is much stronger for MMAS than for
ACS. This can be read as a sort of greater ability of MAX–MIN Ant System
to adapt to the conditions in which it has to work, and, on the other hand, as

The Small World of Pheromone Trails 393

a higher stability of Ant Colony System. Besides the difference in the duration
of small-world effect, it is interesting to notice that both algorithms present the
same type of behavior: At the beginning of a run, when the need for exploration
is higher, the pheromone is distributed in a very particular way. The nodes are
grouped in clusters. As a consequence, when an ant reaches one vertex of a
cluster, several possibilities for choosing the following vertex have a probability
significantly higher than zero. Intuitively, then, the order in which the nodes of
a cluster appear in the different solutions will vary. When a cluster has been
completely visited, instead, only very few edges are rich of pheromone.

As already mentioned, this characteristic of the runs can be seen as the algo-
rithms splitting the instances in sub-instances, i.e. the clusters. This procedure is
very effective, as the results on ACO algorithms applied to the TSP reported in
the literature show. Moreover, it reproduces the algorithmic idea behind several
procedure used for solving, among a large set of problems, the traveling salesman
problem [16]: This idea consists in recursively breaking down a problem into two
or more sub-problems of the same type, until these become simple enough to be
solved directly.

6 Conclusions

In this paper we propose the application of MAX–MIN Ant System and Ant
Colony System to the traveling salesman problem. The original contribution of
the research consists in observing the characteristics of the pheromone distribu-
tions, beside the relative performance of the algorithms.

In the experiments proposed, during each run, we observed the graphs ob-
tained by discarding, at different points in time, the edges with a very low level
of pheromone which are less likely to be selected as far as alternative arcs exist.

These pheromone graphs ended up in exhibiting the small-world properties:
simplifying, at the beginning of each run each of them appeared as a set of
clusters linked by few chains. The presence of the small-world properties in the
pheromone graphs at the beginning of each run, when the need of exploration
is higher, and their vanishing later on, represents a strong link between the
behaviors of the two ACO algorithms. This is particularly surprising given the
different ways pheromone is treated in the two procedures.

We read this behavior as ants decomposing the instances in sub-problems,
without even the implementer being aware of it. The solutions to the sub-
problems are then combined to give a solution to the original problem. One
of the main problems of divide et impera approaches lies in fixing a rule for se-
lecting the groups to be tackled separately. ACO algorithms solve this problem
for us, building their small-world on the instances they are given.

Of course, further experiments need to be done in order to state that these
observations can actually be extended to the whole ACO family, or at least
to a great part of it. Moreover, we need to deal with some other optimization
problem. The next step will consist in extending the analysis to a problem in
which ACO algorithms build oriented pheromone graphs, namely the Quadratic
Assignment Problem.

394 P. Pellegrini and A. Ellero

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
2. Pool, I., Kochen, M.: Contacts and influence. Social Networks 1, 1–48 (1978)
3. Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)
4. Newman, M.E.J., Barabasi, A.L., WattsD., J.: The Structure and Dynamics of

Complex Networks. Princeton University Press, Princeton (2006)
5. Stützle, T., Hoos, H.H.: Improving the Ant System: A detailed report on the MAX–

MIN Ant System. Technical Report AIDA-96-12, FG Intellektik, FB Informatik,
Technische Universität Darmstadt, Darmstadt, Germany (1996)

6. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

7. Watts, D.: Networks, dyanmics, and the small-world phenomenon. The American
Journal of Sociology 105(2), 493–527 (1999)

8. Bollobas, B.: Random Graphs. Academic Press, London (1985)
9. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393,

440–442 (1998)
10. Abe, S., Suzuki, N.: Small-world structure of earthquake network. Physica A 337,

357–362 (2004)
11. Montoya, J.M., Solé, R.V.: Small wolrd patterns in food webs. Journal of theoretical

biology 214(3), 405–412 (2002)
12. Stam, C.J.: Functional connectivity patterns of human magnetoencephalographic

recordings: a small-world network? Neuroscience Letters 355, 25–28 (2004)
13. Birattari, M.: The Problem of Tuning Metaheuristics as Seen from a Machine

Learning Perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium
(2004)

14. Pellegrini, P.: ACO: parameters, exploration and quality of solutions. PhD thesis,
Department of Applied Mathematics, Università Ca’ Foscari, Venice, Italy (2007)

15. Friedman, J.H.: A variable span smoother. Technical Report 5, Department of
Statistics, Stanford University, Stanford, CA, USA (1984)

16. Halton, J.H., Terada, R.: A fast algorithm for the euclidean traveling salesman
problem, optimal with probability one. SIAM J. Comput. 11(1), 28–46 (1982)

A Particle Swarm Optimization Algorithm

for Multiuser Scheduling in HSDPA

Mehmet E. Aydin1, Raymon Kwan1, Cyril Leung2, and Jie Zhang1

1 University of Bedfordshire, CWIND, Luton, UK
2 The University of British Columbia, Vancouver, B.C., Canada

This paper briefs the problem of optimal multiuser scheduling in HSDPA. The
modulation and coding schemes (MCSs), numbers of multicodes and power lev-
els for all users are jointly optimized at each scheduling period, given that only
limited Channel Quality Indicator (CQI) information, as specified in the HSDPA
standard [1], is fed back to the BS. An integer programming model is proposed
in order to provide a globally optimal solution to the multiuser scheduling prob-
lem. Due to the complexity of the globally optimal method, a swarm intelligence
approach, namely particle swarm optimization (PSO), is subsequently proposed.
The experimentations suggest that it potentially provides a near-optimum per-
formance with significantly reduced complexity.

The problem is modeled in the following way. The CQI feedback value, qi, from
user i corresponds to the rate index that the user requests from the BS, and is
associated with a required number of OVSF codes (multicodes) and downlink
transmit power. Since the number of multicodes and transmit power are limited,
the BS might not be able to simultaneously satisfy the bit rate requests for all
users as described by {qi, i = 1, . . . , N}. Thus, given the set {qi, i = 1, . . . , N},
the BS must calculate a set of modified CQIs, {Ji, i = 1, . . . , N}, for all users by
taking into account the power and number of multicodes constraints. This can be
achieved by obtaining an approximated downlink Signal-to-Noise Ratio, γ̂i based
on the value of qi [2]. The optimal scheduling problem P1 can be expressed as

P1 : max
A,φ

N∑
i=1

Ji∑
j=0

ai,jri,j (1)

subject to
∑Ji

j=0 ai,j = 1,
∑N

i=1

∑Ji
j=0 ai,jni,j ≤ Nmax, and

∑N
i=1 φi ≤ N , where

ai,j ∈ {0, 1}, and Nmax is the maximum number of multicodes available for
HSDPA at the BS. By making use of the appropriate mappings in system level
model [3], the set of modified CQIs, {Ji, i = 1, . . . , N}, can be obtained as
Ji = min (max (ηi(γ̃∗

i , φi), 0) , qi,max) by assigning a power adjustment factor φi

to user i, i.e. γ̂i → φiγ̂i, where qi,max is the maximum rate index level due to the
mobile capability of user i, γ̃∗

i = log10(γ̂i), ηi(γ̃∗
i , φi) = (ci,1 (γ̃∗

i + 10 log10 φi) +

ci,2), and 0 ≤ φi ≤ 10

�
qi,max−(ci,1 γ̃

∗
i
+ci,2)

10ci,1

�
.

The terms ri,j and ni,j correspond to the achievable bit rate and the required
number of multicodes associated with CQI value j, j ∈ {0, 1, . . . , K}, for user
i, and are given in [1]. Note that Ji is the maximum allowable CQI value for

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 395–396, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

396 M.E. Aydin et al.

user i after the power adjustment. Depending on code availability, the assigned
combination of MCS and the number of multicodes may correspond to a bit rate
that is smaller than that permitted by Ji. The objective of the above optimization
problem is to select the values of the decision variables A = {ai,j} and φ =
{φi} at each TTI in order to maximize (1), subject to the above-mentioned
constraints. Further information regarding the model and the implementation
can be found in [4].

PSO has been applied in various continuous and discrete problems with good
record of achievements [5]. This implementation is based on a standard PSO, but
without the use of the velocity vector. The reason is to avid double adaptation
in computation process. Instead, the rule xi,k(t + 1) = xi,k(t)+ Δxi,k(t) is used,
where t is the time index and as Δxi,k(t) = δwt+1(c1r1(yi,k(y) − xi,k(t)) +
c2r2(gk(t) − xi,k(t))).

This maximization model is to optimize two decision variables; φ and A,
where φ is a set of positive real numbers identifying the relative power level for
each user, and A is a set of binary variables which identifies the appropriate rate
index, j, assigned to user, i. The aim is to obtain the most appropriate values
for both set of variables such that the throughput of the system is maximized
as described in (1).

For illustration purposes, we have simulated different scenarios for evaluating
the performance of the proposed algorithms. We first consider N = 2, assum-
ing that the mobiles are of category 10 and the values for ni,j and ri,j are
obtained from [1]. We solved the problem instances generated as 3 different sce-
narios with a global optimization algorithm, which we denote as Joint Global
Optimum (JGO). Then, a simple greedy (SG) algorithm is used to draw a min-
imum level of solution quality. This SG simply allocates resources to the users
in decreasing order of their estimated SIR values. Finally, the same problem
instances are solved using a PSO algorithm as summarized above. Simulation
results indicates that the performances of PSO and JGO are very similar, and
are consistently more superior than that of SG. The results show that a good
throughput improvement can be achieved with JGO and PSO approaches over
SG, and that the performances of JGO and PSO are very similar.

References

1. Universal Mobile Telecommunications Systems (UMTS); Physical Layer Procedures
(FDD) (2007)

2. Kwan, R., Leung, C., Zhang, J.: A Power Assignment Scheme for Improving Outage
Probability in HSDPA. In: IEEE Vehicular Technology Conference, Singapore (2008)

3. Motorola, Nokia: Revised CQI Proposal. Technical Report R1-02-0675, 3GPP RAN
WG1 (2002)

4. Kwan, R., Aydin, M.E., Leung, C., Zhang, J.: Multiuser Scheduling in HSDPA using
Simulated Annealing. In: Proc. of IEEE International Wireless Communications and
Mobile Computing Conference, IWCMC 2008 (2008)

5. Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, San
Mateo (2001)

AntLib v1.0: A Generic C++ Framework

for Ant Colony Optimization

Francisco Javier Diego Mart́ın, José Ángel González Manteca,
Ruth Carrasco-Gallego, and Javier Carrasco Arias

Escuela Técnica Superior de Ingenieros Industriales
Universidad Politécnica de Madrid, Spain

javier.diego@upm.es, jagonzalez@etsii.upm.es, ruth.carrasco@upm.es

This paper introduces AntLib, an Ant Colony Optimization (ACO) framework.
C++ developed; it is a generic framework that can be applied with almost no
adaptations to any combinatorial optimization problem. AntLib is a reusable
object oriented framework, based on several well known design patterns [2].

AntLib is an extensible framework with a great amount of code ready to use, is
efficient on execution leading to a high-speed performance, and it is very robust
with loads of code checking. But the essential goal kept in mind in the AntLib
design and development has been to provide a tool to the researcher that helps in
the development phase of a combinatorial optimization system solved by ACO.
AntLib offers a re-builder that reproduces a solution building process in order
to achieve an easy debug and bug’s repair tasks, a verifier to check whether
the solution is properly built (to send it back to the rebuilder), and an analyst
that studies the evolution of an algorithm, enables de parameters adjustment
values and stagnation detection. AntLib is a generic framework, so almost no
adaptation has to be done to solve different kinds of problems. Besides the object
oriented paradigm, to achieve all the things mentioned before, AntLib makes use
of templates, that can significantly reduce source code size and increases code
flexibility without reducing safety type.

Architecture
The AntLib architecture is divided in four horizontal layers and two vertical
layers as shown in Figure 1. The horizontal layers give more specialty as we
climb, starting at the bottom with a technology layer (STL)[3], to the top layer
that implements the ACO algorithms. The intermediate layers are the Library
Foundations that defines the basic behaviours of the entire system, and ACO
Framework that builds the basic framework to work with different algorithm
types.

The vertical layers, services and monitoring, include the log files, exception
processing, statistical performance, configuration files and utilities.

The basic classes for the framework are defined in ’Library Foundations’ layer.
The classes defined in this base layer are templates, what means the design is very
generic, and can be applied to different problems and ACO algorithms without
making any adjustment. The solver is a central class that manages the course

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 397–398, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

398 F.J.D. Mart́ın et al.

Fig. 1. Architecture in layers of AntLib

of an algorithm. An algorithm is composed by two operator types: structure
operators, that performs all initialization steps, and iterative operators, which
are executed once per iteration. There is also a context that encapsulates all the
information that is needed on any algorithm step.

The ’ACO Framework’ layer defines the structures that an ACO algorithm
uses: the graph, the pheromone trails, and the total information. It also it defines
the data structures that ants use to construct the solutions. These structures
are generic and can be easily adapted to different combinatorial optimization
problems.

The ’ACO Algorithms’ layer contains classes that implements many different
published ACO algorithms. It is done mainly by pheromone trails updating
classes. Due to its design, it is easy to change them for a given problem and
compare their results.

Future Developments

New ACO algorithms will be added to AntLib, to enhance its genericy, making
it able to be applied to more problems. AntLib will evolve towards a framework
for hybrid metaheuristics development.

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Pearson Education, London (1995)
3. Musser, D.R., Saini, A.: STL Tutorial and Reference Guide: C++ Programming

with the Standard Template Library. Addison-Wesley, Reading (1996)

Applying a Distributed Swarm-Based Algorithm

to Solve Instances of the RCPSP

Paulo R. Ferreira Jr.1,2 and Ana L.C. Bazzan1

1 Instituto de Informática, UFRGS - Porto Alegre, RS, Brasil
{prferreiraj,bazzan}@inf.ufrgs.br

2 Instituto de Ciências Exatas e Tecnológicas, Feevale - Novo Hamburgo, RS, Brasil

This paper addresses distributed task scheduling problems generalized as a
distributed version of the Resource-Constrained Project Scheduling Problem
(RCPSP) [1]. We apply and evaluate a novel approach for the RCPSP that is
distributed and based on theoretical models of division of labor in social insects.

Our approach uses a probabilistic decision model, based on paradigms from
swarm intelligence such as the tendency social insects have for performing certain
tasks [2]. It has been implemented as an algorithm called Swarm-DRCPSP and
was experimented in an abstract simulation environment. We show that Swarm-
DRCPSP performs better than a distributed greedy algorithm, and that this
performance is not much far from the best known solutions for the RCPSP, with
the advantage of being computed in a distributed way.

Swarm-DRCPSP

In [3] the authors present a model where the interactions among members of the
colony and the individual perception of local needs result in a dynamic distribution
of tasks. Using our approach, agents decide which task to schedule based on that
model. Furthermore, worker ants in several species retrieve preys or food items
larger and heavier than a single individual capability using a mechanism of coop-
erative transport. We use this mechanism to handle simultaneous task allocation.

Experiments and Results

Empirical evaluations of Swarm-DRCPSP were conducted using three RCPSP
instances available in the “j120” benchmark data set of the Project Scheduling
Problem Library library [4]. Contrarily to our algorithm, the best known solution
for those instances is not distributed. Thus, to analyze the performance of our
algorithm in a fair way we have implemented a distributed greedy algorithm. This
algorithm works almost as Swarm-DRCPSP, except that all perceived tasks are
scheduled if resources are available. As mentioned, both Swarm-DRCPSP and
the greedy algorithm are compared with the best approximate solution available
for those three instances of the PSPLIB.

Figure 1 shows the comparison regarding the total time makespan achieved by
using the Swarm-DRCPSP, the greedy algorithm, and the best heuristic solution,
for three experimentation instances from the PSPLIB. The greedy algorithm

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 399–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

400 P.R. Ferreira Jr. and A.L.C. Bazzan

Fig. 1. Comparing the total time makespan of Swarm-DRCPSP, a greedy algorithm
and the best heuristic solution, for 3 instances of the PSPLIB

achieves the worst result, obtaining schedules that are two to six times larger
than the best approximate solution. Swarm-DRCPSP is much more efficient than
the greedy algorithm, especially in the case of the most complex instance. The
schedule makespans obtained by Swarm-DRCPSP are at worst twice that of the
best known solution. However this performance is achieved despite its distributed
computation and has a further advantage of not needing specific heuristics used
by the best known solutions for the RCPSP.

Conclusion

Our approach for the DRCPSP is simple and effective. Empirical results show
that the theoretical models of the division of labor in social insects may be
successfully applied to the distributed task scheduling.

References

1. Brucker, P., Drexl, A., Mohring, R., Neumann, K., Pesch, E.: Resource-constrained
project scheduling: Notation, classification, models, and methods. European Journal
of Operational Research 112(1), 3–41 (1999)

2. Robison, G.E.: Regulation of division of labor in insect societies. Annual Review of
Entomology 37, 637–665 (1992)

3. Theraulaz, G., Bonabeau, E., Deneubourg, J.: Response threshold reinforcement and
division of labour in insect societies. Royal Society of London Series B - Biological
Sciences 265, 327–332 (1998)

4. Kolisch, R., Sprecher, A.: Psplib – a project scheduling problem library. European
Journal of Operational Research 96(1), 205–216 (1997)

bicACO: An Ant Colony Inspired

Biclustering Algorithm�

Fabŕıcio O. de França, Guilherme P. Coelho, and Fernando J. Von Zuben

Laboratory of Bioinformatics and Bioinspired Computing (LBiC)
University of Campinas (Unicamp), Campinas, SP, Brazil
{olivetti,gcoelho,vonzuben}@dca.fee.unicamp.br

A recent proposal developed to avoid some of the drawbacks presented by stan-
dard clustering algorithms is the so-called biclustering technique [1], which per-
forms clustering of rows and columns of the data matrix simultaneously, allowing
the extraction of additional information from the dataset. Since the bicluster-
ing problem is combinatorial, and ant-based systems present several advantages
when dealing with this kind of problems [2], in this work we propose an ant-
inspired algorithm for biclustering, which was named bicACO.

In order to adapt ACO to the biclustering problem some modifications must
be made. First of all, each ant will have a separate pheromone table, mainly be-
cause the biclustering is a multimodal problem and requires that several different
solutions be provided at the same time. In this way, indirect communication on
bicACO occurs only among ants related to the same bicluster, but in different
iterations of the algorithm. Additionally, each one of the k ants (the desired num-
ber of biclusters) starts from the full matrix and decides upon which row/column
to remove, according to the probabilistic equation given in [2]. Each ant will re-
peat this step while the residue of the bicluster (defined in [1]) is above a given
threshold δ or the volume is above a minimum value. The pheromone table will
represent the probability (probabilistic factor of the algorithm) of removing a row
or column from the full data matrix of dimension n×m, so that the pheromone
table will have a size of n+m. The heuristic term of the probabilistic equation is
defined as the average residue of a given row/column. The probability of remov-
ing a given row/column will become higher if the corresponding average residue
is high when compared to the average residue of other rows/columns.

After each ant has built a unique bicluster, the pheromone table must be up-
dated (iterative improvement step) proportionally to the obtained results (as in
[3]) and, in order to avoid stagnation, the pheromone value of the rows/columns
that remained on the bicluster is reduced until τij < Δτi (Eq. 1). Once this lower
limit is reached, the pheromone will automatically start to increase, in order to
favor the exploration of the search space.{

τij = τij + ρ.(Δτi − τij) for all j ∈ Bi

Δτi = V oli/ri�
i V oli/ri

, (1)

where V oli is the volume and ri is the mean residue value of bicluster Bi.
� The authors would like to thank CAPES and CNPq for the financial support.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 401–402, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

402 F.O. de França, G.P. Coelho, and F.J. Von Zuben

Table 1. Comparison of bicACO, CC and FLOC. The bicACO results are shown in
the format (average ± std. deviation), taken over 5 independent runs.

Algorithm Avg. Residue Avg. Volume

bicACO 176.15 ± 1.37 2725.61 ± 105.53
CC 204.29 1576.98

FLOC 187.543 1825.78

The bicACO algorithm was compared to FLOC [4] and CC [1] algorithms on
the Yeast microarray dataset [5], that contains 2, 884 genes under 17 experimen-
tal conditions. The results of the latter two algorithms were taken from [4]. The
proposed algorithm was executed over ten iterations to generate 100 biclusters
(k = 100 ants) with a residue threshold of 180 and a pheromone decay rate (ρ)
of 0.2. As reported in [4], the CC and FLOC algorithms were run in order to
find 100 biclusters with a residue value smaller than 300. This difference on the
adopted residue threshold is justified because bicACO stops immediately after
reaching this objective, while FLOC and CC continue the optimization of the
residue until they are not capable of improving the solutions anymore.

Table 1 presents the average results obtained by bicACO, over 5 independent
runs, together with the results from the other two algorithms. In each run,
the average residue and volume of the ants in the population were taken. It
can be seen from this table that bicACO could find biclusters with an average
residue smaller than the ones proposed by CC and FLOC, and with a much
higher volume. This means that the generated biclusters present a much better
coherence (given by the smaller residue) and may be more useful on post analysis
(due to their higher volume). This fact is not a surprise, since the construction
heuristic adopted in this work is based on the one adopted in CC, with the
addition of the probabilistic factor (pheromone) and the iterative improvement.

References

1. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th Int.
Conf. on Inteligent Systems for Molecular Biology, pp. 93–103 (2000)

2. Dorigo, M.: Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico
di Milano, Italy (1992)

3. de França, F.O., Von Zuben, F.J., de Castro, L.N.: Max min ant system and capac-
itated p-medians: Extensions and improved solutions. Informatica 29(2), 163–172
(2005)

4. Jiong, Y., Haixun, W., Wei, W., Yu, P.S.: Enhanced biclustering on expression data.
In: Proc. of the Third IEEE Symposium on Bioinformatics and Bioengineering, pp.
321–327 (2003)

5. Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfs-
berg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genome-wide
transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)

Dynamic Routing and Travel Time Prediction

with Ant Based Control

Bogdan Tatomir1, Adriana-Camelia Suson2, and Leon Rothkrantz2

1 Quintiq, ’s-Hertogenbosch, The Netherlands
bogdan.tatomir@quintiq.com

2 Delft University of Technology, Delft, The Netherlands
{A.C.Suson,L.J.M.Rothkrantz}@ewi.tudelft.nl

At this moment the capacity of the highways is not sufficient to transport all
car drivers without delay. Especially in the rush hours there are enormous traffic
jams. In case of special events such as traffic accidents car drivers can be delayed
by hours. The losses in time and money are enormous, so the problem of traffic
congestion has a high priority.

To increase the capacity of the road network is not an option. The construction
of new freeways in some areas is blocked by ecological, financial or political
reasons. On the short term the only solution is to use the road network in
an optimal way. Usually, there are many alternatives to travel from A to B.
In case one route is blocked or delayed car drivers should be informed about
alternatives routes. Nowadays, information about traffic jams is broadcasted via
news on radio and TV, or via mobile phones, but normally only big congestions
are reported and no alterative routes are suggested. Most current route planner
devices have TMC (Traffic Message Channel) integrated but their information
is updated only every 30 minutes which is not so fast. For extra payment special
services provide personalized information which gets updated every few minutes.
But all these services use the situation of the roads on a given moment and are
unable to take the future into account. If all the cars are advised to take the
same alternative route, soon also this one will get congested.

To compute alternatives routes it is necessary to have good prediction models
of expected congestions and fast algorithm to compute the shortest path while
being able to react to dynamic changes in the network caused by special inci-
dents. In this paper we present a dynamic routing system founded on Ant Based
Control (ABC). Starting from historical traffic data, ants are used to compute
and predict the travel times along the road segments. They are finding the fastest
routes not only looking to the past and present traffic conditions but also trying
to anticipate and avoid future congestions.

Various shortest path algorithms are available for computing the optimal
route. The most popular algorithm is Dijkstra’s algorithm that has a runtime
complexity of O(n2), where n is the number of nodes in the network. Many vari-
ations to the Dijkstra’s algorithm such as bidirectional search and binary heap
implementation have been proposed to improve its response time. An improved
version of the Dijkstras algorithm is the A* algorithm [1], which is widely used
in vehicle navigation.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 403–404, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

404 B. Tatomir, A.-C. Suson, and L. Rothkrantz

Static routing algorithms like Dijkstra’s algorithm only apply to central rout-
ing. To minimize the traveling time we need a decentralized routing algorithm
which is able to adapt to the dynamic changes that take place in the traffic
network. We found the answer in the real life behaviour of ants. Despite they
are very simple insects, together, in a colony, they show what is called emer-
gent behaviour and are able to accomplish complex tasks. Using the laying of
pheromone ants are able to find the shortest path from their nest to a food
source and vice-versa.

In [2] a dynamic vehicle routing system was introduced which uses the Ant
Based Control algorithm (ABC-algorithm) for car navigation in a city. But the
algorithm proved to be suitable for small networks and showed scalability prob-
lems on big networks as the one of the streets of a city. This problem was solved
in [3] where the H-ABC, a scalable ant colony optimization algorithm was pre-
sented. Similar with the current navigation systems the previous algorithms looks
only at the past and present and no future is considered.

To predict travel time, historical data (recorded from the ANWB) can be
used, especially when the prediction horizon becomes further away. Apparently
the load on the freeway network is almost the same on compatible days (same
day of the week). Unfortunately, this has one considerable drawback: when unex-
pected events (like accidents) happen, a travel time prediction based on historical
data will be completely wrong. Our approach is to use an Ant Based Control al-
gorithm to approximate how many cars are expected to travel between two nodes
in a specific time interval. Knowing the traffic flow, based on the speed/density
relation of the traffic, we can make an estimate of the expected travelling time
on a road segment. To test our concepts we modeled a part of the Dutch high-
way network. It consists of 58 nodes (highway intersections) and 84 bidirectional
roads characterized by the number of lanes and the maximum allowed speed. Be-
cause of the big amount of data, we focused only on the morning period between
5:00 and 12:00. For almost 57% of the 3306 possible routes, faster alternatives
were found by our routing system compared with a static one using with the
Dijkstra’s algorithm. A difference from 10 to 20 minutes was noticed in 12.16%
of the situations. If we consider that The Netherlands is a small country and
most of the selected routes are shorter than 150 km, using the dynamic routing
system is a real benefit.

References

1. Chabini, I., Lan, S.: Adaptations of the A* Algorithm for the Computation of Fastest
Paths in Deterministic Discrete-Time Dynamic Networks. IEEE Transactions on
Intelligent Transportation Systems 3(1), 60–74 (2002)

2. Tatomir, B., Rothkrantz, L.J.M.: Dynamic traffic routing using Ant Based Control.
In: International Conference on Systems, Man and Cybernetics IEEE SMC, pp.
3970–3975 (2004)

3. Tatomir, B., Rothkrantz, L.J.M.: Hierarchical routing in traffic using swarm intel-
ligence. In: The 9th International IEEE Conference on Intelligent Transportation
systems, pp. 228–235 (2006)

Network Formation

Using Ant Colony Optimization

Steven C. Oimoen, Gilbert L. Peterson, and Kenneth M. Hopkinson

Air Force Institute of Technology, Wright Patterson AFB, OH, USA
steven.oimoen@afit.edu

A significant area of research in the field of hybrid communications is the Net-
work Design Problem (NDP) [1]. The NDP is an NP complete problem [1] that
focuses on identifying the optimal network topology for transmitting commodi-
ties between nodes, under constraints such as bandwidth, limited compatible
directed channels, and link and commodity costs. The NDP focuses on design-
ing a flexible network while trying to achieve optimal flow or routing. If a link
(or arc) is used, then an associated fixed cost of the edge is incurred. In addition,
there is a cost for using the arc depending on the flow. The solution is a network
topology connecting all of the nodes that minimizes the total system cost.

The specific topology control problem in this work is the Multi-Commodity
Capacitated Network Design Problem (MCNDP) [1,2]. The MCNDP adds ca-
pacity limits for each arc to the uncapacitated NDP. A formal description of the
MCNDP can be found in [1,2]. This paper presents a novel approach to solv-
ing this problem using the Ant Colony System (ACS) to construct the network
topology and several heuristics for ACS to utilize to reduce computation time.

MCNDP Learning Using Ant Colony System (ACS)

Ant Colony Optimization (ACO) is a meta-heuristic technique that has been
shown to be quite successful in solving many combinatorial optimization prob-
lems [3]. ACO mimics the foraging behavior of real ants, where ants deposit
pheromone and over time identify the shortest paths from their nest to food.

The MCNDP solver uses ACS [4] to learn a graph similar to ACO learning of
Bayesian Networks [5]. A network object contains lists of nodes and commodities.
In addition, each node object contains a list of regular edges and potential edges.
After all data is initialized, the list of edges used in the topology is empty. Each
ant in building its solution uses the ACS selection strategy to select an edge from
the list of all potential edges. The selected potential edges form the network
topology. Ants iteratively select edges based on the pheromone on each edge,
and the heuristic evaluation of the edge. Once all available potential edges have
been explored, the ant stops searching.

The ACS algorithm was applied using two approaches, these are ACS Stan-
dard for the MCNDP (ACSS-MCNDP) and ACS Estimated for the MCNDP
(ACSE-MCNDP). ACSS-MCNDP constructs a network topology and performs
a full routing of commodities for each ant solution to evaluate the objective score
of the proposed network. ACSS-MCNDP produces near optimal networks, at the

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 405–406, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

406 S.C. Oimoen, G.L. Peterson, and K.M. Hopkinson

Table 1. Algorithm Comparative Analysis Summary

Number of Nodes Max Flow ACSS-MCNDP ACSE-MCNDP

10 1083.39 (+/- 60.48) 870.06 (+/- 8.11) 920.61 (+/-3.63)

15 5575.94 (+/- 6628.40) 2066.75 (+/- 22.90) 2377.14 (+/- 16.38)

cost of high run times due to performing routing. ACSE-MCNDP uses heuris-
tics that replace the routing process in constructing the network. Routing only
occurs at the end of the algorithm to evaluate the final network. Four heuristics
were tested; a) fixed edge cost, b) sum of the fixed and variable edge costs, c)
weighted sum of the fixed edge cost and capacity, and d) a weighted sum of the
fixed edge cost and the edge value. The fixed edge cost is the cost associated
with using a particular edge in the network (regardless of commodities using
it). The variable edge cost is an average commodity cost associated with using
an edge. The edge capacity is equivalent to its bandwidth and the edge value
is the value of the commodity that would flow from that edge’s source to its
destination. Several combinations of the weighted cost heuristics were tested.

Both ACS algorithms found solutions with no dropped commodities for both
10-node and 15-node networks. For our ACSE approach we experienced mixed
results. However, we did find that the 80 percent fixed cost and 20 percent edge
capacity heuristic, although not consistent across all routing algorithms, closely
approximated the ACSS solutions. Table 1 shows a comparative assessment of
a Maximum Flow solution (1), our ACSS-MCNDP solution and our ACSE-
MCNDP solution. The numbers in bold identify the best overall cost solutions.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Saddle River (1993)

2. Garner, R.: Heeuristically Driven Search Methods for Topology Control in Direc-
tional Wireless Networks. Masters Thesis Air Force Institute of Technology, Wright-
Patterson AFB, OH (2007)

3. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a Colony
of Cooperating Agents. IEEE Transactions of Systems, Man and Cybermetrics Part
B 26, 1–13 (1996)

4. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Ap-
proach to the Traveling Salesman Problem. IEEE Transactions on Evolutionary
Computation 1, 53–66 (1997)

5. de Campos, L., Fernandez-Luna, J., Gamez, J., Puerta, J.: Ant Colony Optimization
for Learning Bayesian Networks. International Journal of Approximate Reasoning,
291–311 (2002)

On the Stability and the Parameters of Particle

Swarm Optimization

Keiichiro Yasuda, Nobuhiro Iwasaki, and Genki Ueno

Department of Electrical and Electronic Engineering, Tokyo Metropolitan University
Tokyo, Japan

yasuda@eei.metro-u.ac.jp

In this paper, swarm activity is defined as the root mean square velocity of the
particles in Particle Swarm Optimization (PSO). A new method for determining
the numerical stability of PSO based on swarm activity was developed. Using
the results of a numerical stability analysis of PSO, the search of conventional
PSO methods is examined. From this analysis, issues related to diversification
and intensification during the search can be explored.

Definition of Swarm Activity
In order to obtain a quantitative assessment of the search’s progress, it is neces-
sary to define a new index that quantitatively assesses the extent of diversifica-
tion and intensification during a PSO search [1]. Swarm activity, Act, is defined
in Eq.(1) as the root mean square velocity of particles, which can be used as an
index of diversification and intensification during the PSO search.

Act =

√√√√ 1
mn

m∑
i=1

n∑
j=1

vij
2 (1)

Numerical Stability Analysis of PSO
The algorithm for activity-based numerical stability analysis of PSO with pa-
rameters w and c (= c1 = c2) is given below.

Step 0: [Preparation]
Select the number of particles 2 ≤ m ∈ R1, upper and lower limits of PSO
parameters 0 < wmin ∈ R1, 0 < wmax ∈ R1, 0 < cmin ∈ R1, 0 < cmax ∈ R1,
step width 0 < Δw ∈ R1, 0 < Δc ∈ R1, activity threshold 0 < Acts ∈ R1,
maximum iteration number Tmax.

Step 1: [Initialization]
w = wmin, c = cmin, c1 = c2 = c.

Step 2: [Assessment of Stability]
PSO is applied to the selected optimization problem. The swarm activity at
k = Tmax is set at
ActTmax =

√
1

mn

∑m
i=1

∑n
j=1(v

Tmax
ij)2.

If ActTmax > Acts, the parameter values {w, c} are considered unstable.
Otherwise, they are considered stable.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 407–408, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

408 K. Yasuda, N. Iwasaki, and G. Ueno

Stability limit based on
the simplified model

Stability limit based on the
numerical stability analysis

w

c
(=

 c
 =

 c
)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1

2

CM

stable region

unstable region

INSM

LDVM
LDIWM

RIWM
CM: Constriction

RIWM: Random Inertia Weight Method

LDIWM: Linearly Decreasing Inertia Weight Method

LDVM: Linearly Decreasing Vmax Method

INSM: Increasing Neighborhood Size Method

Fig. 1. Strategies for setting and adjusting the parameters in typical PSO methods

Step 3: [Inner Loop Termination Criterion]
If c = cmax, proceed to Step 4. Otherwise, set c = min{c + Δc, cmax},
c1 = c2 = c, and return to Step 2.

Step 4: [Outer Loop Termination Criterion]
If w = wmax, terminate. Otherwise, set w = min{w + Δw, wmax}, c = cmin,
c1 = c2 = c, and return to Step 2.

Based on a numerical stability analysis in the parameter plane presented in
Fig.1, it is possible to make some observations about strategies for setting and
adjusting the parameters in typical PSO methods with respect to stability.

Conclusions

The results presented in this paper can be summarized as follows:

(1) Swarm activity was defined as the root mean square velocity of particles, and
a new activity-based numerical stability analysis method was developed.

(2) General and systematic strategies based on the activity-based numerical
stability analysis were developed for setting and adjusting the parameters.

Reference

1. Yasuda, K., Ide, A., Iwasaki, N.: Stability Analysis of Particle Swarm Optimization.

In: Proceedings of The Fifth Metaheuristics International Conference, MIC 2003

(2003)

Regional Traffic Assignment by ACO

Preliminary Results

Vittorio Maniezzo1, Matteo Roffilli1, Roberto Gabrielli2, Alessandra Guidazzi2,
Manuel Otero3, and Rolando Trujillo3

1 Dept. Computer Science, University of Bologna, Bologna, Italy
vittorio.maniezzo@unibo.it

2 Province of Forl̀ı - Cesena, Forl̀ı and Cesena, Italy
3 University of Havana, Havana, Cuba

An established research line in ACO systems supports the intuition that ant
algorithms are particularly fit for dynamic optimization problems because of
their ability to construct an internal representation of the essential elements
of the problem to solve, a representation which needs to be updated and not
reconstructed when the instance changes.

Our work is about one such case arising in public authorities control and
planning functions, where the availability of modeling tools which support both
queries on the current state and simulation and optimization when forecasting is
essential for territorial processes management and control. In the framework of
a research line on road traffic simulation and forecast we implemented an ACO
model targeted at real-world traffic flow simulation at a regional scale.

Traffic flow simulation is a well-known research topic, which has lead to a
significant theoretical corpus and to effective marketed packages. Nevertheless,
the current state of the art is not yet fully satisfactory for local government
agencies, especially for medium sized ones, because of operational constraints
and inherent rigidity of currently available models and software.

The core problem to face is the so-called Traffic Assignment Problem (TAP),
which determines traffic flows on the roads given an Origin - Destination (OD)
matrix describing the vehicle movements. The TAP can be modeled as a com-
binatorial optimization problem with a nonlinear objective function, and is par-
ticularly tricky because the flow levels on the roads are a function of the flows
themselves (traffic flows divert from congested, i.e. high flow, roads).

ACO modeling, meaning with this the ability of ACO systems to construct a
model of the instance to solve by means of trail distribution, is particularly suited
for the TAP. The general flow distribution is dictated by Wardrop’s principles
[1], but physical road parameters are not enough to fully determine all chosen
paths. This is where ACO trail become central: physical road properties are
considered in the attractiveness computations, but the resulting congestion level
is implicitly modeled in the trail distribution.

We report results obtained at a province (regional in the literature) level, in
a setting which is rather common for this type of application, featuring a GIS-
based road network, with a superimposed region zoning decomposing the area of
interest into about 60 zones, each of which corresponds to a row/column of an OD

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 409–410, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

410 V. Maniezzo et al.

Fig. 1. Validated simulation results

matrix. Moreover, we had over 100 geocoded points, where actual traffic counts
are available. The ants are called to determine flows so to minimize a global cost,
which is given by the sum of the costs on arcs, where costs are a function of the
flows themselves. Along the iterations, trail is added to divert flows from the
paths that appear to be the least time ones, but that turn out not to be such
once they are chosen by too many travelers. The general workings of our solution
bears strong similarities with the Internet packet-routing applications [2], but
a number of structural differences make a direct translation of packet-routing
codes infeasible.

First results are available on a road network of the Italian province of Forl̀ı
- Cesena. To get actual data, we interfaced our code with the GIS of the
Forl̀ı-Cesena province, directly accessing the shapefiles it is based upon, thereby
obtaining interoperability with the province’s GIS. The network, along with val-
idated simulation results, is shown in figure 1. Results validation is made against
the data available as forecasts of traffic flows following the infrastructural scenar-
ios for the next 20 years. The model implicit in the trail distribution permits to
extend the assessment of non/physical road arcs, which can be determined when
calibrating against known data, also to future scenarios, where calibration data
is obviously unavailable. Thus, trail distribution does not only support a warm
start on modified instances, but truly enables forecasting for future scenarios.

References

1. Wardrop, J.G.: Some theoretical aspects of road traffic research, vol. PART II, Vol.1,
pp. 325–378. Institute of Civil Engineers, Palo Alto (1952)

2. Caro, G.D., Dorigo, M.: Antnet: Distributed stigmergetic control for communica-
tions networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)

SwarmClass: A Novel Data Clustering Approach

by a Hybridization of an Ant Colony
with Flying Insects

Amira Hamdi1,2, Nicolas Monmarché1,
M. Adel Alimi2, and Mohamed Slimane1

1 Laboratoire d’Informatique, Université François Rabelais de Tours, France
amira hamdi7@yahoo.fr, {nicolas.monmarche,mohamed.slimane}@univ-tours.fr

2 Department of Electrical Engineering, National School of Engineers (ENIS)
University of Sfax, Tunisia
adel.alimi@ieee.org

Swarm behaviors contribute to the resolution of very large number of difficult
tasks thanks to simplified models and elementary rules [1]. This work claims a
new swarm based behavior used for unsupervised classification. The proposed
behavior starts from the ants collective sorting behavior as initially proposed by
Lumer and Faieta [2] and overwrites it with additional behaviors inspired from
birds and spiders. Our algorithm is then based on the existing work of [3], [4] and
[2]. The proposed approach, called SwarmClass, outperforms previous ant-based
clustering methods and resolve all its drawbacks by the introduction of simple
swarm techniques and without the need of complex parameters configuration and
prior information on classes’ partition and distribution. Our proposed algorithm
uses ants’ segregation behavior to group similar objects together; birds’ moving
behavior to control next relative positions for a moving ant; and spiders’ homing
behavior to manage ants’ movements when conflicting situations occur.

In SwarmClass, each object is placed in a cell on a discrete grid, which rep-
resents the environment of the ants. Each ant may pickup or drop an object
according to a similarity function that measures the degree of similarity of an
object with others neighboring objects. In SwarmClass, ants are moving in a
new way: ants will cross and will follow a local behavioral rule that make them
become closer or roll away, go on the same direction or not depending on the
similarity of carried objects. More precisely, the ant can perform two kinds of
move: a classical random move where the ant selects a random direction among
the neighboring cells and an intelligent move (we should call it a swarm move).
From this rules, ant groups will appear and will move together allowing to de-
fine hopefully better groups in data. Experimental results on synthetic and real
data sets demonstrated the ability of SwarmClass to extract the correct number
of clusters and to give better clustering quality compared to those obtained by
a classical clustering algorithm like K-means and several ant based clustering
algorithms [5,6,7].

With SwarmClass, we have demonstrated that it can be possible to improve
stochastic algorithms for clustering by using hybridization of various swarm
techniques.

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 411–412, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

412 A. Hamdi et al.

Table 1. Comparative results obtained with 10-means and several ant-based clustering
algorithms (values are averaged number of classes obtained over 50 runs)

database # of real K-means AntClass AntTree V-AntClust FlyingInsects SwarmClass
name classes

Art1 4 8.58 4.22 2.36 4.66 4.5 4.2

Art2 2 8.52 12.32 1.94 3.76 3.6 2.54

Art3 4 8.28 14.66 2.26 3.54 3.3 5.5

Art4 2 6.38 1.68 3.80 2.16 5.2 2.15

Iris 3 7.12 3.52 2.36 2.28 4.1 3.22

Thyroid 3 9.56 5.84 2.76 11.66 2.2 3.67

Soybean 4 8.82 1.60 3.90 4 5.6 4.1

This work suggests many perspectives. For the next step, we plan to use
SwarmClass algorithm to tackle the image segmentation problem. Here, image
segmentation can be viewed as a clustering problem which aims to partition the
image into clusters such that the pixels within a cluster are as homogenous as
possible whereas the clusters among each other are as heterogeneous as possible
with respect to a similarity. The swarm behavior of the ants moving on the
grid can be of interest in this context where many pixels should be manipulated
together.

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

2. Lumer, E., Faieta, B.: Diversity and Adaptation in Populations of Clustering Ants.
In: Cliff, D., Husbands, P., Meyer, J., Wilson, S.W. (eds.) Proceedings of the Third
International Conference on Simulation of Adaptive Behavior (SAB), pp. 501–508.
MIT Press, Cambridge (1994)

3. Bourjot, C., Chevrier, V., Thomas, V.: A new swarm mechanism based on social
spiders colonies: from web weaving to region detection. Web Intelligence and Agent
Systems: An International Journal - WIAS (2003)

4. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Com-
puter Graphics (SIGGRAPH 1987 Conference Proceedings) 21(4), 25–34 (1987)

5. Monmarché, N.: On data clustering with artificial ants. In: Freitas, A. (ed.) AAAI-
1999 & GECCO-1999 Workshop on Data Mining with Evolutionary Algorithms:
Research Directions, Orlando, Florida (July 18 1999), pp. 23–26 (1999)

6. Labroche, N., Monmarché, N., Venturini, G.: AntClust: Ant Clustering and Web
Usage Mining. In: Cantu-Paz, E. (ed.) GECCO 2003. LNCS, vol. 2723, pp. 25–36.
Springer, Heidelberg (2003)

7. Azzag, H., Monmarché, N., Slimane, M., Venturini, G., Guinot, C.: AntTree: A
new model for clustering with artificial ants. In: IEEE Congress on Evolutionary
Computation, Canberra, 8-12 december 2003, vol. 4, pp. 2642–2647. IEEE Press,
Los Alamitos (2003)

The Differential Ant-Stigmergy Algorithm for

Large Scale Real-Parameter Optimization

Peter Korošec and Jurij Šilc

Computer Systems Department, Jožef Stefan Institute, Ljubljana, Slovenia
{peter.korosec,jurij.silc}@ijs.si

The optimization problem treated here is to find x, which optimizes cost function
F (x), where x = {x1, x2, . . . , xD} is a set of real parameters and D represents
the dimension of the cost function. Domains of the real parameters are defined by
their lower and upper bounds: xlow

j , xupp
j ; 1 ≤ j ≤ D. In this paper we consider

only high-dimensional cost functions with real parameters; D up to 1000.

Proposed Approach

In [3] our ACO-based continuous optimization method, so-called Differential
Ant-Stigmergy Algorithm (DASA), is presented. So far, the DASA was already
tested on low-dimensional cost functions and compared to the state-of-the-art
continuous optimization algorithms. It has proved to be an effective and efficient
algorithm for this kind of problems [4].

The optimization consists of an iterative improvement of the temporary best
solution, xtb, by constructing an appropriate path p. By applying p to xtb new
solutions are produced.

First a solution xtb is randomly chosen and evaluated. Then a search graph
is created and an initial amount of pheromone is deposited on search graph
according to the Cauchy probability density function C(z) = 1

sπ(1+(z−ls)2)
, where

l is the location offset and s = sglobal − slocal is the scale factor. For an initial
pheromone distribution the standard Cauchy distribution (l = 0, sglobal = 1,
and slocal = 0) is used and each parameter vertices are equidistantly arranged
between z = [−4, 4].

There are m ants in a colony, all of which begin simultaneously from the start
vertex. Ants use a probability rule to determine which vertex will be chosen next.
The rule is the same as in Simple-ACO with α = 1. The ants repeat this action
until they reach the ending vertex. For each ant, path p is constructed. If for
some predetermined number of tries we get p = 0 the search process is reset by
randomly choosing new xtb and pheromone re-initialization. New solution x is
constructed and evaluated with a calculation of F (x).

The current best solution, xcb, out of m solutions is compared to the tempo-
rary best solution xtb. If xcb is better than xtb, then xtb values are replaced with
xcb values. In this case sglobal is increased (in our case for 1%) and pheromone
amount is redistributed according to the associated path. Furthermore, if new
xtb is better then xb, then xb values are replaced with xtb values. So, global

M. Dorigo et al. (Eds.): ANTS 2008, LNCS 5217, pp. 413–414, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

414 P. Korošec and J. Šilc

best solution is stored. If no better solution is found sglobal is decreased (in our
case for 3%).

Pheromone evaporation is defined by some predetermined percentage ρ. The
probability density function C(z) is changed in the following way: l ← (1 − ρ)l
and slocal ← (1 − ρ)slocal.

The whole procedure is then repeated until some ending condition is met.

Performance Evaluation

The DASA algorithm was tested on six CEC’2008 special session benchmark
functions [5]. Functions were optimized for three dimensions D = 100, D = 500,
and D = 1000 with 25 runs on each function.

The DASA is compared to state-of-the-art algorithm for global optimization
over continuous space. A differential evolution (DE) turned out to be one of
the best metaheuristic for such problems. There are many variations of DE. We
decided to use the algorithm jDEdynNP-F introduced in [1,2]. The jDEdynNP-F
is a self-adaptive Differential Evolution algorithm where control parameters are
self-adaptive and a population size reduction method.

The experimental results show that the DASA is capable of solving large scale
real-parameter optimization problems. It outperformed the included differential
evolution type algorithm in convergence on all test functions and also obtained
better solutions on some test functions.

These results confirm that the DASA is effective to small and large scale
optimization problems.

References

1. Brest, J., Sepesy Maučec, M.: Population size reduction for the differential evolution
algorithm. Appl. Intell. 29 (2008)

2. Brest, J., Zamuda, A., Bošković, B., Sepesy Maučec, M., Žumer, V.: High-
dimensional real-parameter optimization using self-adaptive differential evolution
algorithm with population size reduction. In: Proc. IEEE World Congress on Com-
putational Intelligence, Hong Kong (2008)

3. Korošec, P.: Stigmergy as an approach to metaheuristic optimization. PhD Thesis,
Jožef Stefan International Postgraduate School, Ljubljana, Slovenia (2006)

4. Korošec, P., Šilc, J., Oblak, K., Kosel, F.: The differential ant-stigmergy algorithm:
An experimental evaluation and a real-world application. In: Proc. IEEE Congress
on Evolutionary Computation, Singapore, pp. 57–164 (2007)

5. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.P., Chen, C.M., Yang,
Z.: Benchmark functions for the CEC 2008, special session and competition on
large scale global optimization. Technical Report NCL-TR-2007012. Nature Inspired
Computation and Applications Laboratory, University of Science and Technology
of China (2007), http://nical.ustc.edu.cn/cec08ss.php

http://nical.ustc.edu.cn/cec08ss.php

Author Index

Adams, Carl 323
Al-Ani, Ahmed 1
Al-Jumaily, Adel 1
Albert, Patrick 84
Alimi, M. Adel 411
AlSukker, Akram 1
Aydin, Mehmet E. 395

Barman, Sarah 251
Bautista, Joaqúın 331
Bazzan, Ana L.C. 399
Benedettini, Stefano 179
Birattari, Mauro 307, 347
Blum, Christian 25, 299
Brocco, Amos 275
Bruckstein, Alfred M. 72
Brutschy, Arne 96

Campo, Alexandre 307, 371
Carmona, Pablo 13
Carrasco-Gallego, Ruth 397
Carrasco Arias, Javier 397
Castro, Juan Luis 13
Çelikkanat, Hande 108
Cheung, Eugene 267
Chica, Manuel 331
Christensen, Anders Lyhne 259
Coelho, Guilherme P. 401
Cordón, Óscar 331

Damas, Sergio 331
Decugnière, Antoine 307
de França, Fabŕıcio O. 401
del Rey Zapatero, Marco 347
Di Caro, Gianni A. 211
Diego Mart́ın, Francisco Javier 397
Di Gaspero, Luca 155, 179
Dobata, Shigeto 283
Dorigo, Marco 259, 307, 347, 371
Ducatelle, Frederick 211

Elor, Yotam 72
Ellero, Andrea 387
Ermetici, Andrea 155

Farooq, Muddassar 315
Farrelly, Caroline 120
Fernandes, Carlos 339
Ferreira Jr., Paulo R. 399
Forestiero, Agostino 291
Francès, Guillem 25
Frapolli, Fulvio 275
Freitas, Alex A. 48
Fujisawa, Ryusuke 283

Gabrielli, Roberto 409
Gambardella, Luca M. 211
Gökçe, Fatih 108
González Manteca, José Ángel 397
Gordon, Noam 72
Greene, Casey S. 37
Guesgen, Hans W. 243
Guidazzi, Alessandra 409
Gutiérrez, Álvaro 371

Hamdi, Amira 411
Hernández, Hugo 25
Herrmann, Lutz 379
Hirsbrunner, Béat 275
Hopkinson, Kenneth M. 405
Huepe, Cristián 108

Imamura, Hikaru 283
Iwasaki, Nobuhiro 407
Izzo, Dario 347

Jacob, Christian 191
Johnson, Colin G. 48

Kell, Douglas B. 120
Kentzoglanakis, Kyriakos 323
Khayam, Syed Ali 315
Khemka, Namrata 191
Khichane, Madjid 84
Khushaba, Rami N. 1
Knowles, Joshua 120
Köchel, Peter 355
Korošec, Peter 413
Kriesel, David M.M. 267
Kronfeld, Marcel 203

416 Author Index

Kubota, Daisuke 283
Kwan, Raymon 395

Laredo, Juan Lúıs 339
Lässig, Jörg 355
Leung, Cyril 395
Li, Li 219
Lipson, Hod 267

Makowski, Armand M. 167
Maniezzo, Vittorio 409
Mastroianni, Carlo 291
Matsuno, Fumitoshi 283
Merelo, Juan Julián 339
Merkle, Daniel 96, 299
Middendorf, Martin 96, 299
Monekosso, Dorothy 251
Monmarché, Nicolas 411
Moore, Jason H. 37
Mora, Antonio Miguel 339
Moscardini, Alfredo 235
Mullen, Robert J. 251

Neumann, Frank 132

O’Grady, Rehan 259
Oimoen, Steven C. 405
Osée, Michel 307
Otero, Fernando E.B. 48
Otero, Manuel 409

Pellegrini, Paola 387
Peña, Jorge 144
Pereira, Jordi 331
Peterson, Gilbert L. 405
Pinciroli, Carlo 307, 347, 371
Poole, Matthew 323
Poulain, Benjamin 307

Qiao, Fei 219

Rabanal, Pablo 60
Ramos, Vitorino 339
Ranon, Roberto 155
Remagnino, Paolo 251
Riddle, Patricia J. 243
Rodŕıguez, Ismael 60

Roffilli, Matteo 409
Roli, Andrea 179
Rosa, Agostihno 339
Rothkrantz, Leon 403
Rubio, Fernando 60

Şahin, Erol 108
Saleem, Muhammad 315
Santos, Francisco C. 371
Scheidler, Alexander 96, 299
Šilc, Jurij 413
Sitti, Metin 267
Slimane, Mohamed 411
Solnon, Christine 84
Spezzano, Giandomenico 291
Sudholt, Dirk 132
Suson, Adriana-Camelia 403

Tartini, Bruno 307
Tatomir, Bogdan 403
Thiem, Stefanie 355
Trujillo, Rolando 409
Tsutsui, Shigeyoshi 363
Tuci, Elio 347
Turgut, Ali Emre 108

Ueno, Genki 407
Ultsch, Alfred 379
Uthus, David C. 243

Venables, Harry 235
Vinko, Tamas 347
Von Zuben, Fernando J. 401

Weiss, Christian 203
White, Bill C. 37
Wilkin, Paul 251
Witt, Carsten 132
Wu, Qidi 219

Yasuda, Keiichiro 407

Zell, Andreas 203
Zhan, Zhi-hui 227
Zhang, Jie 395
Zhang, Jun 227

	Title Page
	Preface
	Organization
	Table of Contents
	A Combined Ant Colony and Differential Evolution Feature Selection Algorithm
	Introduction
	Ant Colony Optimization and Feature Selection
	Application of ACO in Feature Selection
	Differential Evolution

	The Proposed Feature Selection Algorithm
	Experiments and Practical Results
	A Comparison with Other Feature Selection Techniques in BCI Problem
	A Comparison with Feature Projection Techniques in MEC Problem

	Conclusion
	References

	An Improved ACO Based Plug-in to Enhance the Interpretability of Fuzzy Rule Bases with Exceptions
	Introduction
	Single, Compound and Exceptional Rules
	The ACO Algorithm
	Solution Construction Process
	Heuristic Information
	Pheromone Update

	Extensions to the Algorithm
	ACS Model
	Local Search
	Candidate List

	Experimental Results
	Original Method
	ACS Model
	Local Search
	Candidate List
	Application of the Extensions Altogether

	Conclusions
	References

	Ant Colony Optimization for Energy-Efficient Broadcasting in Ad-Hoc Networks
	Introduction
	Minimum Energy Broadcast (MEB)
	Existing Work

	The Algorithm
	Experimental Evaluation
	Conclusions and Future Work
	References

	Ant Colony Optimization for Genome-Wide Genetic Analysis
	Introduction
	Concept Difficulty
	Ant Colony Optimization

	The Proposed Ant Colony Optimization Algorithm
	Implementation
	Pheromone Updating with Expert Knowledge
	Parameter Settings

	Multifactor Dimensionality Reduction (MDR) for Attribute Construction
	Expert Knowledge from Tuned ReliefF (TuRF)
	Fisher’sExactTest
	Data Simulation
	Experimental Design and Statistical Analysis
	Experimental Results
	Discussion and Conclusion
	References

	cAnt-Miner: An Ant Colony Classification Algorithm to Cope with Continuous Attributes
	Introduction
	Ant-Miner Overview
	Related Work on Ant-Miner Variations
	Handling Continuous Attributes in Ant-Miner
	Construction Graph
	Heuristic Problem-Dependent Information
	Rule Construction
	Pheromone Updating

	Computational Results and Discussion
	Conclusion and Future Work
	References

	Finding Minimum Spanning/Distances Trees by Using River Formation Dynamics
	Introduction
	River Formation Dynamics Method
	Basic Algorithm

	Formal Problem Definition
	Applying RFD and ACO to MDV and MSV
	Conclusions and Future Work
	References

	Gathering Multiple Robotic Agents with Crude Distance Sensing Capabilities
	Introduction
	The System Model
	Basic Definitions
	Strong Asynchronicity

	The Algorithm
	Definition
	Proof

	A Variant — Gathering and Collapsing
	Definitions
	Proof

	Experiments
	Conclusion
	References

	Integration of ACO in a Constraint Programming Language
	Introduction
	Background
	Description of $Ant-CP$
	Using $Ant-CP$ to Solve the Car Sequencing Problem
	CP Model
	Variable Ordering Heuristic
	Pheromone Strategies
	Heuristic Factors for the Car Sequencing Problem

	Experimental Results
	Conclusion
	References

	Learning from House-Hunting Ants: Collective Decision-Making in Organic Computing Systems
	Introduction
	$\House-Hunting in Temnothorax Albipennis$
	Model of the Organic Computing System
	Search and Reconfiguration Strategies
	Reference Model
	Ant-Inspired Models

	Experiments
	Results and Discussion

	Conclusion
	References

	Modeling Phase Transition in Self-organized Mobile Robot Flocks
	Introduction
	Experimental Framework
	Modeling the Virtual Heading Sensor
	Analysis of the Flocking Behavior
	Modeling the Phase Transition in Flocking
	Conclusion
	References

	Molecular Structure Elucidation Using Ant Colony Optimization: A Preliminary Study
	Introduction
	The Spectrum to Structure Problem
	Ant Colony Optimization Approach
	Data Preparation: Frequency Matrices
	Construction Graph Structure
	Local Search: Translating Ant Solutions to Full Structures
	The Pheromone Matrix and Its Initialization
	Heuristic Information
	Evaluation Using the Maximum Weighted Assignment
	Pheromone Update

	Preliminary Experimental Results
	Related Work on Structure Elucidation
	Summary and Future Work
	References

	Rigorous Analyses for the Combination of Ant Colony Optimization and Local Search
	Introduction
	Algorithms
	The Effect of Combining ACO and Local Search
	Benefits of Combining ACO and Local Search
	Drawbacks of Combining ACO and Local Search
	Conclusions
	References

	Simple Dynamic Particle Swarms without Velocity
	Introduction
	ParticleSwarms
	The Standard Particle Swarm
	Particle Swarms with Additive Stochasticity and Different Recombination Operators
	Particle Swarms without Velocity

	Mathematical Study
	Recursions for the First Four Moments of the Sampling Distribution During Stagnation
	Fixed Points and Stability Analysis
	Transient Behaviour of $\mu_1(x_t)$ and $\mu_2(x_t)$
	Sampling Distributions of Particular SDPSs

	Experimental Results
	Conclusions
	References

	Swarming in a Virtual World: A PSO Approach to Virtual Camera Composition
	Introduction
	Related Work
	Virtual Camera Composition
	Camera and Object Model
	Image/Camera Constraints

	A Particle Swarm Approach
	Search Space and Objective Function

	Implementation and Experimental Results
	Conclusions
	References

	The Binary Bridge Selection Problem: Stochastic Approximations and the Convergence of a Learning Algorithm
	Introduction
	The Main Results on the Bridge Selection Algorithm
	An Equivalent Stochastic Approximation
	A Preparatory Result and Its Consequences
	AProofofTheorem4
	Establishing the Summability Condition (25)
	Establishing (25) When 0 $< \nu < 1$
	Establishing (25) When $1 < \nu$

	References

	Two-Level ACO for Haplotype Inference Under Pure Parsimony
	Introduction
	The Haplotype Inference Problem
	Genotype Resolution
	Compatibility and Complementarity

	Two-Level ACO for the Haplotype Inference Problem
	Preprocessing Phase
	Lower Level: Genotype Resolution
	Higher Level: Genotypes Visiting Order
	Pheromone Update

	Experimental Analysis
	Comparison Against the State of the Art
	Conclusions and Future Work
	References

	What Hides in Dimension X? A Quest for Visualizing Particle Swarms
	Introduction
	Related Work
	Visualizing Particle Swarms: A Detective’s Playground
	Phenotype Plots: Where Are the Particles Heading?
	Fitness Curves: Any Improvement in the Algorithm over Time?
	Density Plots: Are the Particles Converging?
	Parallel Coordinates: Are There Any Patterns, Trends, and Clusters Among the Particles?
	Range Plots: What Are the Parameter Ranges?
	An Application Example: Soccer Kick Simulation

	Conclusion
	References

	A Dynamic Swarm for Visual Location Tracking
	Introduction
	Particle Swarm Optimization
	Visual Localization and SIFT
	Interpretation in an Optimization Context

	A Dynamic PSO for Localization
	Self-adaptive Parameters

	Experimental Setting
	Results
	Kidnapped-Robot Scenario
	Final Comparison to a Particle Filter

	Conclusions
	References

	A Simulation Study of Routing Performance in Realistic Urban Scenarios for MANETs
	Introduction
	The Simulation Setup
	The Urban Scenario and Node Mobility
	Radio Propagation
	Traffic Patterns
	The Routing Algorithms

	Experimental Results
	Effect of Data Send Rate and Number of Sessions
	Effect of Node Density and Node Speed

	Conclusions
	References

	ACO-Based Scheduling of Parallel Batch Processing Machines with Incompatible Job Families to Minimize Total Weighted Tardiness
	Motivation
	Problem Assumptions and Notations
	ACO-BasedSolution
	Building the Search Space
	Implementing the Searching Process

	Computational Experiments and Results
	Simulation Model Description
	Comparison between ACO and ATC-BATC

	Conclusions
	References

	Adaptive Particle Swarm Optimization
	Introduction
	Particle Swarm Optimization
	Particle Swarm Optimization
	Evolutionary State Estimation
	Adaptive Strategies for Parameters
	Elitist Learning Strategy for $gBest$

	Experimental Tests and Comparisons
	Testing Functions and Tested PSOs
	Results Comparisons and Discussions

	Conclusions
	References

	Ant Based Heuristics for the Capacitated Fixed Charge Location Problem
	Introduction
	Mathematical Formulation of the CFCLP
	CFCLP: Ant Visibility and Local Search
	$MMAS$ for the CFCLP
	Hyper-Cube Framework for the $MMAS$ CFCLP
	Computational Experience
	Conclusions
	References

	Ant Colony Optimization and the Single Round Robin Maximum Value Problem
	Introduction
	Single Round Robin Maximum Value Problem
	Ant Colony Optimization
	Applying to the Single Round Robin Maximum Value Problem
	Enhanced Backtracking Search

	Comparisons and Results
	Conclusion
	References

	Artificial Ants to Extract Leaf Outlines and Primary Venation Patterns
	Introduction
	Related Work
	The Algorithm
	Results
	Ground Truth Images
	Qualitative Analysis
	Quantitative Analysis

	Discussion
	Concluding Remarks
	References

	Autonomous Reconfiguration in a Self-assembling Multi-robot System
	Introduction
	Related Work
	Hardware Platform and Control Methodology
	Reconfiguration
	Results
	Conclusions and Future Work
	References

	Beanbag Robotics: Robotic Swarms with 1-DoF Units
	Introduction
	Swarmer Design
	Simulation Principle
	Experiment Setups
	Experiments and Problems with Free Swarmers
	Experiments with Swarmers in a Passive Membrane
	Physical Implementation
	Conclusions and Future Work
	References

	Bl\aatAnt: Bounding Networks’ Diameter with a Collaborative Distributed Algorithm
	Introduction
	Related Works
	General Idea
	Connection and Disconnection Rules

	Bl\aatAnt Algorithm Description
	Node Data Structures
	Discovery, Link and Unlink Ants
	Frozen Connections
	Timing and Pheromone Reinforcement and Evaporation
	Algorithm Phases

	Evaluation
	Conclusion and Future Works
	References

	Dependency by Concentration of Pheromone Trail for Multiple Robots
	Introduction
	Swarm Behaviour Algorithm
	Experimental Robot
	Experiment
	Discussion
	References

	Dissemination of Information with Fair Load Distribution in Self-organizing Grids
	Introduction
	Reorganization and Fair Distribution of Descriptors
	Performance Evaluation
	Conclusions
	References

	Emergent Sorting in Networks of Router Agents
	Introduction
	Sorting Networks of Router Agents
	Agent Behaviors
	Experimental Evaluation
	Measures of System Performance
	Tuning
	Results

	Conclusions
	References

	Enhancing the Cooperative Transport of Multiple Objects
	Introduction
	Integration of the $Cart-Bot$ in the Swarmanoid Project
	Hardware Design
	Storing Ability
	Transportability

	Conclusions
	References

	Formal Modeling of \BeeAdHoc: A Bio-inspired Mobile Ad Hoc Network Routing Protocol
	Introduction
	System Description and Modeling Assumptions
	Basic Graph Terminology
	Network Topology
	Modeling Assumptions

	BeeAdHoc
	Routing Overhead Model
	Routing Overhead in Terms of Expected Forward Degree
	Collision Modeling

	Route Optimality
	Probability of Optimal Path Discovery
	Probability of Suboptimal Path Discovery
	Expected Probability of Path Establishment

	Conclusion and Future Work
	References

	Incorporating Heuristics in a Swarm Intelligence Framework for Inferring Gene Regulatory Networks from Gene Expression Time Series
	Introduction
	Existing Approaches
	Methods
	Results
	FurtherWork
	References

	Incorporating Preferences to a Multi-objective Ant Colony Algorithm for Time and Space Assembly Line Balancing
	Introduction
	Preliminaries
	The Time and Space Assembly Line Balancing Problem
	A MACS Algorithm to Solve TSALBP-1/3

	Adding Preferences Based on Domain Knowledge
	Experiments
	Other Approaches to TSALBP-1/3
	Problem Instances and Parameter Values
	Results Analysis

	Concluding Remarks
	References

	KANTS: Artifical Ant System for Classification
	Introduction and State of the Art
	Preliminary Concepts
	Self-Organizing Ants Model
	Experiments and Results
	Conclusions and Future Work
	References

	Lattice Formation in Space for a Swarm of Pico Satellites
	Introduction
	TheControlStrategy
	Global Attraction to the Origin
	Local Lattice Formation
	Ensuring Convergence
	Formation Stabilization After Convergence

	Results
	Optimizing the Control Parameters
	Scalability
	Initial Conditions

	Conclusions
	References

	Merging Groups for the Exploration of Complex State Spaces in the CPSO Approach
	Introduction
	The Theoretical Framework
	Common PSO Version
	Charged Particle Swarm Optimization

	CPSO with Random/ Deterministic Charging
	Deterministic Grouping
	Random Grouping
	Simplified Force Law

	Parameter Setup and Experimental Results
	Conclusion
	References

	Parallel Ant Colony Optimization for the Quadratic Assignment Problems with Symmetric Multi Processing
	Introduction
	Related Work
	An Overview of \cAS [3,4]
	Parallel Implementation of cAS in SMP for QAP
	Base Model of the Sequential \cAS for QAP
	Parallel Implementation of cAS for QAP with a SMP

	Experiments of Parallel \cAS on QAP
	Experimental Setup
	Analysis of the Results

	Conclusions
	References

	Social Odometry in Populations of Autonomous Robots
	Introduction
	TheTask
	Mobile Robot Positioning
	Methods
	Experimental Setup
	Learning from Others

	Results
	Conclusions
	References

	The Architecture of Ant-Based Clustering to Improve Topographic Mapping
	Introduction
	Ant-Based Clustering
	Analysis of Ant-Based Clustering by Means of Self-Organizing Batch Maps
	Assessment and Improvement
	Advanced Topographic Mapping
	Experimental Settings and Results
	Discussion
	Summary
	References

	The Small World of Pheromone Trails
	Introduction
	$\MAX–MIN$ Ant System and Ant Colony System
	Small-World Graphs
	Experimental Setup
	Experimental Results
	Conclusions
	References

	A Particle Swarm Optimization Algorithm for Multiuser Scheduling in HSDPA
	References

	AntLib v1.0: A Generic C++ Framework for Ant Colony Optimization
	References

	Applying a Distributed Swarm-Based Algorithm to Solve Instances of the RCPSP
	References

	$bicACO$: An Ant Colony Inspired Biclustering Algorithm
	References

	Dynamic Routing and Travel Time Prediction with Ant Based Control
	References

	Network Formation Using Ant Colony Optimization
	References

	On the Stability and the Parameters of Particle Swarm Optimization
	Reference

	Regional Traffic Assignment by ACO Preliminary Results
	References

	SwarmClass: A Novel Data Clustering Approach by a Hybridization of an Ant Colony with Flying Insects
	References

	The Differential Ant-Stigmergy Algorithm for Large Scale Real-Parameter Optimization
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

