
W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 678–683, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Monitoring Patterns through an Integrated
Management and Mining Tool

Evangelos E. Kotsifakos, Irene Ntoutsi, Yannis Vrahoritis, and Yannis Theodoridis

Department of Informatics, University of Piraeus,
80 Karaoli-Dimitriou St, GR-18534 Piraeus, Greece

{ek,ntoutsi,ytheod}@unipi.gr, jb@freemail.gr

Abstract. Patterns upon the data of many real applications are affected by
changes in these data. We employ PATTERN-MINER tool to detect changes of
clusterings extracted from dynamic data and thus, to provide insight on the
dataset and to support strategic decisions. PATTERN-MINER, is an integrated en-
vironment for pattern (data mining model) management and mining that deals
with the whole lifecycle of patterns, from their generation (using data mining
techniques) to their storage and querying, putting also emphasis on the com-
parison between patterns and meta-mining operations over the extracted pat-
terns. In the current version, PATTERN-MINER integrates also an algorithm and
technique for monitoring patterns (currently clusters) over time.

Keywords: Pattern management, Pattern-base, pattern comparison, pattern
monitoring.

1 Introduction

Clustering techniques are used to find interesting groups of similar objects in large data-
sets. As the data in most databases are changing dynamically, clusters upon these data
are affected. A lot of research has been devoted in adapting the clusters to the changed
dataset. On the other hand research has expanded and it is devoted in tracing of the
cluster changes themselves, trying thus to reveal knowledge about the undelying dataset
to support strategic decisions. For example, if a business analyst who studies customer
profiles, could understand how such profiles change over time he/she could act towards
a long-term proactive portfolio design instead of reactive portfolio adaptation.

We demonstrate Pattern-Miner, an integrated environment that deals with pattern
modeling, storage and retrieval issues using state-of-the-art approaches in contrast to
existing tools that deal with specific aspects of the pattern management problem, mostly
storage. Pattern-Miner offers an environment that provides the capability not only to
generate and manage the different types of patterns in a unified way, but also to apply
more advanced operations over patterns, such as comparison, meta-mining and cluster
monitoring without facing interoperability or incompatibility issues as if using different
applications for each task. Pattern-Miner follows a modular architecture and integrates
the different Data Mining components offering transparency to the end user. A previous
version of Pattern-Miner has been demonstrated at KDD2008 conference. In the current

 Monitoring Patterns through an Integrated Management and Mining Tool 679

version, a major addition has been made. A module for monitoring patterns over time.
At first we are dealing with cluster monitoring as it has wide application to many scien-
tific or commercial fields.

In order to better understand the theoretical background of PATTERN-MINER we
briefly present some basic notions on patterns, following the PBMS approach [5]. A
pattern is a compact and rich in semantics representation of raw data. Patterns are
stored in a pattern base for further analysis. The pattern base model consists of three
layers: pattern types, patterns, and pattern classes. A pattern type is a description of
the pattern structure, e.g. decision trees, association rules, etc. A pattern type is a
quintuple pt = (n, ss, ds, ms, f), where n is the name of the pattern type, ss (structure
schema) describes the structure of the pattern type (e.g. the head and the body of an
association rule), ds (source schema) describes the dataset from which patterns are
extracted, ms (measure schema) defines the quality of the source data representation
achieved by patterns (e.g. the support and the confidence in case of an association rule
pattern) and f is the formula that describes the relationship between the source data
space and the pattern space. A pattern is an instance of the corresponding pattern type
and a class is a collection of semantically related patterns of the same type.

2 Extended Pattern-Miner Architecture

Figure 1 depicts the PATTERN-MINER architecture, including the pattern-monitoring
module. PATTERN-MINER engine lies in the core of the system arranging the communica-
tion between the different peripheral components providing also the end user interface.

In this section, we provide an overview of the funcionality of each module of PAT-

TERN-MINER and we focus on the Pattern monitoring module that consists the most
recent and advanced module.

Pattern extraction and representation: The Data Mining engine component is re-
sponsible for the extraction of patterns. We employ for this task WEKA, since it is an
open source tool and offers a variety of algorithms for different Data Mining tasks

Pattern
extraction

DM engine

Pattern-Miner
engine

Pattern
comparison

module

Pattern
Base

Pattern
storage

Querying
results

Pattern
querying

Pattern
retrieval

Patterns

Comparison
results

Meta-mining
module

(complex)
Pattern

extraction

Meta-
clustering results

Pattern
Monitoring

module

Fig. 1. The PATTERN-MINER architecture

680 E.E. Kotsifakos et al.

as well as preprocessing capabilities over raw data. The output of the Data Mining
process is represented with respect to the PBMS approach, described above. Several
schemes have been proposed in the literature for the representation of patterns. The
most popular choice is PMML [3], an XML-based standard that allows the definition
of Data Mining and statistical models using a vendor-independent method. Different
models are described through different XML schemes. In PATTERN-MINER, we adopt
PMML for pattern representation and, thus, we convert the output of the Data Mining
engine component into PMML format.

Pattern storage and querying: Since patterns are represented as XML documents
(through PMML), a native XML database system is used for their storage in the Pat-
tern Base. In particular, we employ the open source Berkeley DBXML, which com-
prises an extension of the Berkeley DB with the addition of an XML parser, XML
indexes and the XQuery data query language. PATTERN-MINER provides a basic envi-
ronment for querying the pattern base, through the XQuery language. Regarding the
supported query types, the user can retrieve the whole pattern or some component of
the pattern (measure and/ or structure), as well as to impose constraints over these
components. The results are displayed in his/her screen and can be stored in the file
system for future analysis.

Pattern comparison: One of the most important operations on patterns is that of
pattern comparison with applications like querying (e.g. k-nearest neighbor queries)
and change detection upon dynamic data [4]. Recognizing this fact, we distinguish the
comparison process from the querying process and we implement it separately
through the Pattern comparison module. The comparison is carried out on the basis of
PANDA [1], a generic and flexible framework for the comparison of patterns defined
over raw data and over other patterns as well. Comparison utilizes both structure and
measure components of patterns. The user defines the patterns as well as the way that
they should be compared, i.e. how the different components of PANDA are instanti-
ated. The output is a dissimilarity score accompanied with a justification, a report
actually of how the component patterns have been matched.

Meta-mining: Due to the large amount of extracted patterns, several approaches have
lately emerged that apply Data Mining techniques over patterns instead of raw data, in
order to extract more compact information. The Meta-mining module takes as input a
set of different clustering results extracted from the same dataset (through different
clustering algorithms or different parameters) or from different datasets (through from
the same generative distribution) and applies Data Mining techniques over them, in
order to extract meta-patterns. So far, the meta-mining component focuses on meta-
clustering [2], i.e. grouping of clustering results into groups of similar clusterings.
The user has full control of the clustering process by choosing the similarity function
and the clustering algorithm. The extracted meta-patterns can be stored in the pattern
base for further exploitation.

Pattern Monitoring: While PATTERN-MINER is a tool for managing all types of pat-
terns, at the current moment we have implemented a Cluster Monitoring technique that
is based on the theory and algorithm described in [4]. In this approach, the transitions of
clusters extracted upon an accumulating dataset are traced and modeled. Clustering
occurs at specific timepoints and a “data ageing” function can be used to
assigns lower weights to all or some of the past records. The set of features used for

 Monitoring Patterns through an Integrated Management and Mining Tool 681

clustering may also change during the period of observation, thus allowing for the inclu-
sion of new features and the removal of obsolete ones. PATTERN-MINER assumes
re-clustering rather than cluster adaptation at each timepoint, so that both changes in
existing clusters and new clusters can be monitored. Transitions can be detected even
when the underlying feature space changes, i.e. when cluster adaptation is not possible.
Terms like cluster match, cluster overlap, cluster transition and lifetime of a cluster are
core notions of cluster monitoring. This module exploits the clusterings that are stored
in the pattern-base and employs the query and comparison capabilities of the system.

3 Demo Description

PATTERN-MINER is a tool that can be used in a lot of different areas, scientific or
commercial. To point out the major advantages of the integrated environment of PAT-

TERN-MINER we demonstrate a simple senario of a supermarket and its manager as the
end-user. The supermarket has a database and everyday transactions are stored in it.
The manager is interested in finding useful patterns in the data, like associations in the
purchase of the products and clusters of customers with specific profiles and buying
habits. Except from these simple patterns, the manager is interested in comparing
clusters of customers or products discovered from the same dataset. Moreover, the
manager wishes to monitor clusters of customer profiles over time, so he/she can
capture any changes in buying preferences or habits. Are there any new clusters that
describe a different customer profile? Some clusters may have been disappeared or
shrinked while others could have been merged or expanded. PATTERN-MINER can be
used to answer these questions supporting the manager on important decisions about
strategies, campaigns, supplies etc. In the following paragraphs we describe the steps
that the manager as the end-user would follow, to process the data from the dataset of
the supermarket in order to extract and manage interesting patterns.

Pattern extraction and storage: The manager defines the data source (supermarket
database), the Data Mining algorithm and its parameters. He/she would choose the
apriori algorithm to find for example associations between products. To find clusters
over the customer demographics to create profiles, the K-Means or the EM clustering
algorithm would be appropriate. The extraction takes place in WEKA and the results
are converted into PMML format before being stored in a user-specified container in
the XML pattern base as well as, in a file on the hard disk.

Pattern query: The user defines, in the “Query pattetrn base” tab, the pattern set to
be queried and the query in the Xquery language. PATTERN-MINER engine creates the
connection to the pattern base, executes the query and returns the results to the user
and also saves them to a file. A sample query is shown in Figure 2, described in both
natural language and Xquery.

Pattern comparison: This module allows the user to define the patterns to be com-
pared, e.g. sets of rules extracted from different months or clusters describing cus-
tomer profiles. Then, the user chooses the appropriate comparison function from the
candidate functions implemented for each pattern type. The results are returned to the
user, who can detect any changes in the sales-patterns and decide whether these
changes were expected (based on company’s strategy) or not (indicating some suspi-
cious or non-predictable behavior).

682 E.E. Kotsifakos et al.

Query (natural language):

Retrieve the clusters from the super_market dataset that have been extracted using
EM algorithm.
Query (XQuery):
declare namespace a="http://www.dmg.org/PMML-3_2";
collec-
tion("Clustering.dbxml")[dbxml:metadata("dbxml:dataFileName")="C:\Patter
nMiner\data_files\super_market_data.ARFF"]/a:PMML/a:ClusteringModel[@alg
orithmName="weka.clusterers.EM"]

Fig. 2. A sample query for the Clustering pattern-model

Meta-mining: The user defines the pattern sets to be used as input to the Meta-
mining module (e.g. sets of rules extracted at each month of 2007), selects the cluster-
ing algorithm/ parameters, as well as the similarity measure between sets of rules. The
input sets are clustered into groups of similar sets of rules (e.g. March and April are
placed in the same group, since they depict similar buying behavior), which can be
also stored in the pattern base for future use. The manager can exploit these results in
order to decide similar strategies for months belonging to the same cluster.

Fig. 3. Cluster Monitoring screenshot

Cluster Monitoring: User defines the dataset
from which the clusters have been extracted. A
list of all the clusterings that have been carried
out over the spesific dataset is available to the
user, sorted by the extraction time. The super-
maket manager wants to observe the customer
profiles over time. Choosing the apropriate data-
set (supermarket.arff), Pattern-Miner returns all
the different clusterings that have been created
from that dataset, along with the clustering algo-
rithm and the extraction time. The manager

Fig. 4. Graphical reprepsentation of
cluster monitoring output

 Monitoring Patterns through an Integrated Management and Mining Tool 683

chooses two or more clusterings and runs the cluster monitring process. This process
results in a matrix showing the clusters of the first clustering and their changes over
time (new clusters, clusters that no longer exists, shrinked or expanded clusters etc).
Currently the output is in text format, representing the graph depicted in Figure 4.

4 Conclusions and Outlook

Advanced operations over patterns, like comparison, meta-mining and cluster moni-
toring while important for users of a variety of fields, are not supported from data
mining or database systems. PATTERN-MINER is an integrated environment for pattern
management that supports the whole lifecycle of patterns and also offers sophisticated
comparison, meta-mining and cluster monitoring operations over patterns. It follows a
modular architecture that employs state-of-the-art approaches at each component. Its
advantage lies in the fact that all the operations related to the management of patterns
(as data mining results) are integrated into one system in transparent to the user way.
It is open source and easily expandable while, because of the use of PMML files, the
exhange of data and results with other systems is a simple issue.

Several improvements though, can be carried out: First, existing components can
be enhanced, e.g. querying could be improved through appropriate indices and new
query types could be supported. Also, the Meta-mining and cluster monitoring mod-
ules can be extended so as to support more pattern types, like decision trees. Second,
new components can be added, e.g. some visualization module for better interpreta-
tion of the results. Except for the scenario we described, other potential applications
include cluster-based image retrieval, pattern validation, comparison of patterns ex-
tracted from different sites in a distributed environment setting, etc.

References

1. Bartolini, I., Ciaccia, P., Ntoutsi, I., Patella, M., Theodoridis, Y.: A Unified and Flexible
Framework for Comparing Simple and Complex Patterns. In: Boulicaut, J.-F., Esposito, F.,
Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 496–499.
Springer, Heidelberg (2004)

2. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta Clustering. In: Proc. ICDM (2006)
3. DMG - PMML, http://www.dmg.org/pmml-v3-1.html
4. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: MONIC: Modelling and monitor-

ing cluster transitions. In: KDD (2006)
5. Terrovitis, P., Skiadopoulos, S., Bertino, E., Catania, B., Maddalena, A., Rizzi, S.: Model-

ing and language support for the management of pattern-bases. Data Knowl. Eng. 62(2)
(August 2007)

	Monitoring Patterns through an Integrated Management and Mining Tool
	Introduction
	Extended Pattern-Miner Architecture
	Demo Description
	Conclusions and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

