
A Simple Model for Sequences of Relational State
Descriptions

Ingo Thon, Niels Landwehr, and Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A,
3001 Heverlee, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract. Artificial intelligence aims at developing agents that learn and act in
complex environments. Realistic environments typically feature a variable num-
ber of objects, relations amongst them, and non-deterministic transition behavior.
Standard probabilistic sequence models provide efficient inference and learning
techniques, but typically cannot fully capture the relational complexity. On the
other hand, statistical relational learning techniques are often too inefficient. In
this paper, we present a simple model that occupies an intermediate position in
this expressiveness/efficiency trade-off. It is based on CP-logic, an expressive
probabilistic logic for modeling causality. However, by specializing CP-logic to
represent a probability distribution over sequences of relational state descrip-
tions, and employing a Markov assumption, inference and learning become more
tractable and effective. We show that the resulting model is able to handle proba-
bilistic relational domains with a substantial number of objects and relations.

1 Introduction

One of the current challenges in artificial intelligence is the modeling of dynamic
environments that change due to actions and activities people or other agents take.
As one example, consider a model of the activities of a cognitively impaired person
[1]. Such a model could be used to assist persons, using common patterns to generate
reminders or detect potentially dangerous situations, and thus help to improve living
conditions.

As another example and one on which we shall focus in this paper, consider a model of
the environment in a massively multi-player online game (MMOG). These are computer
games that support thousands of players in complex, persistent, and dynamic
virtual worlds. They form an ideal and realistic test-bed for developing and evaluating
artificial intelligence techniques and are also interesting in their own right (cf. also [2]).
One challenge in such games is to build a dynamic probabilistic model of high-level
player behavior, such as players joining or leaving alliances and concerted actions by
players within one alliance. Such a model of human cooperative behavior in this type of
world can be useful in several ways. Analysis of in-game social networks are not only
interesting from a sociological point of view but could also be used to visualize aspects
of the gaming environment or give advice to inexperienced players (e.g., which alliance
to join). More ambitiously, the model could be used to build computer-controlled players
that mimic the cooperative behavior of human players, form alliances and jointly pursue

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 506–521, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Simple Model for Sequences of Relational State Descriptions 507

goals that would be impossible to attain otherwise. Mastering these social aspects of the
game will be crucial to building smart and challenging computer-controlled opponents,
which are currently lacking in most MMOGs. Finally, the model could also serve to de-
tect non-human players in todays MMOGs — accounts which are played by automatic
scripts to give one player an unfair advantage, and are typically against game rules.

From a machine learning perspective, this type of domain poses three main
challenges: 1) world state descriptions are inherently relational, as the interaction
between (groups of) agents is of central interest, 2) the transition behavior of the world
will be strongly stochastic, and 3) a relatively large number of objects and relations is
needed to build meaningful models, as the defining element of environments such as
MMOGs are interactions among large sets of agents. Thus, we need an approach that
is both computationally efficient and able to represent complex relational state descrip-
tions and stochastic world dynamics.

Artificial intelligence has already contributed a rich variety of different modeling
approaches, for instance, Markov models [3] and decision processes [4], dynamic
Bayesian networks [5], STRIPS [6], statistical relational learning representations [7],
etc. Most of the existing approaches that support reasoning about uncertainty (and
satisfy requirement 2) employ essentially propositional representations (for instance,
dynamic Bayesian networks, Markov models, etc.), and are not able to represent com-
plex relational worlds, and hence, do not satisfy requirement 1). A class of models that
integrates logical or relational representations with methods for reasoning about uncer-
tainty (for instance, Markov Logic, CP-logic, or BLPs) is considered within statistical
relational learning [7] and probabilistic inductive logic programming [8]. However, the
inefficiency of inference and learning algorithms causes problems in many realistic
applications, and hence, such methods do not satisfy requirement 3).

We aim to alleviate this situation, by contributing a novel representation, called
CPT-L (for CPTime-Logic), that occupies an intermediate position in this expressive-
ness/efficiency trade-off. A CPT-L model essentially defines a probability distribution
over sequences of interpretations. Interpretations are relational state descriptions that
are typically used in planning and many other applications of artificial intelligence.
CPT-L can be considered a variation of CP-logic [9], a recent expressive logic for
modeling causality. By focusing on the sequential aspect and deliberately avoiding the
complications that arise when dealing with hidden variables, CPT-L is more restricted,
but also more efficient to use than its predecessor and alternative formalisms within the
artificial intelligence and statistical relational learning literature.

This paper is organized as follows: Section 2 introduces the CPT-L framework; Sec-
tion 3 addresses inference and parameter estimation, while Section 4 presents some
experimental results in both the block’s world and the MMOG Travian. Finally,
Section 5 discusses related work, before concluding and touching upon future work
in Section 6.

2 CPT-L

Let us first introduce some terminology. An atom is an expression of the form
p(t1, ..., tn) where p/n is a predicate symbol and the ti are terms. Terms are built up
from constants, variables and functor symbols. The set of all atoms is called a language

508 I. Thon, N. Landwehr, and L. De Raedt

L. Ground expressions do not contain variables. Ground atoms will be called facts. A
substitution θ is a mapping from variables to terms, and bθ is the atom obtained from b
by replacing variables with terms according to θ. We are interested in describing com-
plex world states in terms of relational interpretations. A relational interpretation I is
a set of ground facts a1, ..., aN . A relational stochastic process defines a distribution
P (I0, ..., IT) over sequences of interpretations of length T , and thereby completely
characterizes the transition behavior of the world.

The semantics of CPT-L is based on CP-logic, a probabilistic first-order logic that
defines probability distributions over interpretations [9]. CP-logic has a strong focus on
causality and constructive processes: an interpretation is incrementally constructed by a
process that adds facts which are probabilistic outcomes of other already given facts (the
causes). CPT-L combines the semantics of CP-logic with that of (first-order) Markov
processes. Causal influences only stretch from It to It+1 (Markov assumption), are
identical for all time-steps (stationarity), and all causes and outcomes are observable.
Models in CPT-L are also called CP-theories, and can be formally defined as follows:

Definition 1. A CPT-theory is a set of rules of the form

r = (h1 : p1) ∨ . . . ∨ (hn : pn) ← b1, . . . , bm

where the hi are logical atoms, the bi are literals (i.e., atoms or their negation) and
pi ∈ [0, 1] probabilities s.t.

∑n
i=1 pi = 1.

It will be convenient to refer to b1, ..., bm as the body body(r) of the rule and to
(h1 : p1) ∨ . . . ∨ (hn : pn) as the head head(r) of the rule. We shall also assume that
the rules are range-restricted, that is, that all variables appearing in the head of the rule
also appear in its body. Rules define conditional probabilistic events: the intuition be-
hind a rule is that whenever b1θ, ..., bmθ holds for a substitution θ in the current state It,
exactly one of the hiθ in the head will hold in the next state It+1. In this way, the rule
models a (probabilistic) causal process as the condition specified in the body causes one
(probabilistically chosen) atom in the head to become true in the next time-step.

Example 1. Consider the following CPT-rule:

(on(A, table) : 0.9) ∨ (on(A, C) : 0.1) ← free(A), on(A, C), move(A, table).

which represents that we try to move a block A from block C to the table. This action
succeeds with a probability of 0.9.

We now show how a CPT-theory defines a distribution over sequences I0, ..., IT of
relational interpretations. Let us first define the concept of the applicable ground rules
in an interpretation It. From a CPT-theory, the rule (h1 : p1θ) ∨ . . . ∨ (hn : pnθ) ←
b1θ, . . . , bmθ is obtained for a substitution θ. A ground rule r is applicable in It if and
only if body(r) = b1θ, . . . , bmθ is true in It, denoted It |= b1θ, . . . , bmθ.

One of the main features of CPT-theories is that they are easily extended to include
background knowledge. The background knowledge B can be any logic program, cf.
[10]. In the presence of background knowledge, a ground rule is applicable in an in-
terpretation It if b1θ, . . . , bmθ can be logically derived from It together with the logic
program B, denoted It |=B b1θ, . . . , bmθ.

A Simple Model for Sequences of Relational State Descriptions 509

The set of all applicable ground rules in state It will be denoted as Rt. Each ground
rule applicable in It will cause one of its head elements to become true in It+1. More
formally, let Rt = {r1, ..., rk}. A selection σ is a mapping {(r1, j1), ..., (rk, jk)} from
ground rules ri to indices ji denoting that head element hiji ∈ head(ri) is selected.
The probability of a selection σ is

P (σ) =
k∏

i=1

pji , (1)

where pji is the probability associated with head element hiji in ri. In the stochastic
process to be defined, It+1 is a possible successor for the state It if and only if there is
a selection σ such that It+1 = {h1σ(1), ..., hkσ(k)}. We shall say that σ yields It+1 in

It, denoted It
σ→ It+1, and define

P (It+1|It) =
∑

σ:It
σ→It+1

P (σ). (2)

Example 2. Consider the theory

r1 = a : 0.2 ∨ b : 0.8 ← ¬a, ¬b
r2 = a : 0.5 ∨ b : 0.5 ← a
r3 = a : 0.7 ∨ nil : 0.3 ← a

Starting from It = {a} only the rules r2 and r3 are applicable, so Rt = {r2, r3}. The
set of possible selections is

{(r2, j2), (r3, j3) | j2, j3 ∈ {1, 2}}.

The possible successor states It+1 are therefore

I1
t+1 = {a} with P (I1

t+1 | It) = 0.5 · 0.7 + 0.5 · 0.3 = 0.5

I2
t+1 = {b} with P (I2

t+1 | It) = 0.5 · 0.3 = 0.15

I3
t+1 = {a, b} with P (I3

t+1 | It) = 0.5 · 0.7 = 0.35

As for propositional Markov processes, the probability of a sequence I0, ..., IT given
an initial state I0 is defined by

P (I0, ..., IT) = P (I0)
T∏

t=0

P (It+1 | It). (3)

Intuitively, it is clear that this defines a distribution over all sequences of interpretations
of length T much as in the propositional case. More formally:

Theorem 1 (Semantics of a CPT theory). Given an initial state I0, a CPT-theory
defines a discrete-time stochastic process, and therefore for T ∈ N a distribution
P (I0, ..., IT) over sequences of interpretations of length T .

510 I. Thon, N. Landwehr, and L. De Raedt

3 Inference and Parameter Estimation in CPT-L

As for other probabilistic models, we can now ask several questions about the intro-
duced CPT-L model:

– Sampling: How to sample sequences of interpretations I0, ..., IT from a given CPT-
theory T and initial interpretation I0?

– Inference: Given a CPT-theory T and a sequence of interpretations I0, ..., IT , what
is P (I0, ..., IT | T)?

– Parameter Estimation: Given the structure of a CPT-theory T and a set of se-
quences of interpretations, what are the maximum-likelihood parameters of T ?

– Prediction: Let T be a CPT-theory, I0, ..., It a sequence of interpretations, and
F a first-order formula that constitutes a certain property of interest. What is the
probability that F holds at time t + d, P (It+d |=B F | T , I0, ..., It)?

Sampling from a CPT-theory T given an initial interpretation I0 is straightforward due
to the causal semantics employed in CP-logic. For t ≥ 0, It+1 can be constructed
from It by finding all groundings rθ of rules r ∈ T , and sampling for each rθ a head
element to be added to It+1. Algorithmic solutions for solving the inference, parameter
estimation, and prediction problem will be presented in turn in the rest of this section.

3.1 Inference

Because of the Markov assumption (Equation 3), the crucial task for solving the infer-
ence problem is to compute P (It+1 | It) for given It+1 and It. According to Equation 2,
this involves summing the probabilities of all selections yielding It+1 from It. However,
the number of possible selections σ is exponential in the number of ground rules |Rt|
applicable in It, so a naive generate-and-test approach is infeasible. Instead, we present
an efficient approach for computing P (It+1 | It) without explicitly enumerating all
selections yielding It+1, which is strongly related to the inference technique discussed
in [11]. The problem is first converted to a DNF formula over boolean variables such
that assignments to variables correspond to selections, and satisfying assignments to
selections yielding It+1. The formula is then compactly represented as a binary de-
cision diagram (BDD), and P (It+1 | It) efficiently computed from the BDD using
dynamic programming. Although finding satisfying assignments for DNF formulae is
a hard problem in general, the key advantage of this approach is that existing, highly
optimized BDD software packages can be used.

The conversion of a given inference problem to a DNF formula f is realized as
follows:

1. Initialize f := true
2. Compute applicable ground rules

Rt = {rθ|body(rθ) is true in It}
3. For all rules (r = (p1 : h1, ..., pn : hn) ← b1, ..., bm) in Rt do:

(a) f := f ∧ (r.h1 ∨ ... ∨ r.hn), where r.h denotes the proposition obtained by
concatenating the name of the rule r with the ground literal h resulting in a
new propositional variable r.h (if not hi = nil).

(b) f := f ∧ (¬r.hi ∨ ¬r.hj) for all i �= j

A Simple Model for Sequences of Relational State Descriptions 511

4. For all facts l ∈ It+1

(a) Initialize g := false
(b) for all r ∈ Rt with p : l ∈ head(r) do g := g ∨ r.l
(c) f := f ∧ g

Boolean variables of the form r.h represent that head element h was selected in rule r1.
The second step of the algorithm computes all applicable rules, the third step assures
that selections are obtained, and the final step assures that the selection generates the
interpretation It+1. It is easily verified that the satisfying assignments for the formula
f correspond to the selections yielding It+1.

Example 3. The following formula f is obtained for the transition {a} → {a, b} and
the CPT-theory given in Example 2.

(r2.a ∨ r2.b)
︸ ︷︷ ︸

3.a

∧ (¬r2.a ∨ ¬r2.b) ∧ (¬r3.a ∨ ¬r3.nil)
︸ ︷︷ ︸

3.b

∧ (r2.a ∨ r3.a) ∧ r2.b
︸ ︷︷ ︸

4

The parts of the formula are annotated with the steps in the construction algorithm that
generated them.

From the formula f , a reduced ordered binary decision diagram (BDD) [12] is con-
structed. Let x1, ..., xn denote an ordered set of boolean variables (such as the r.h
contained in f). A BDD is a rooted, directed acyclic graph, in which nodes are an-
notated with variables and have out-degree 2, indicating that the variable is either true
or false. Furthermore, there are two terminal nodes labeled with 0 and 1. Variables along
any path from the root to one of the two terminals are ordered according to the given
variable ordering. The graph compactly represents a boolean function f over variables
x1, ..., xn: given an instantiation of the xi, we follow a path from the root to either 1
or 0 (indicating f is true or false). Furthermore, the graph must be reduced, that is, it
must not be possible to merge or remove nodes without altering the represented function
(cf. [12] for details). Figure 1, left, shows an example BDD.

From the BDD graph, P (It+1 | It) can be computed in linear time using dynamic
programming. This is realized by a straightforward modification of the algorithm for
inference in ProbLog theories [11]. The algorithm exploits that paths in the BDD from
the root node to the 1-terminal correspond to satisfying assignments for f , and thus se-
lections yielding It+1. By sweeping through the BDD from top to bottom contributions
from all such selections are summed up (Equation 2) without explicitly enumerating all
paths. The efficiency of this method crucially depends on the size of the BDD graph,
which in turn depends strongly on the chosen variable ordering x1, ..., xn. Unfortu-
nately, computing an optimal variable ordering is NP-hard. However, existing imple-
mentations of BDD packages contain sophisticated heuristics to find a good ordering
for a given function in polynomial time.

Interestingly, it is possible to further reduce complexity for the particular problem
we are interested in by adapting a different semantics in the BDD. A zero-suppressed
binary decision diagrams (or ZDD) is an alternative form of graphical representation

1 Variables r.h are standardized apart in case head elements coincide after grounding.

512 I. Thon, N. Landwehr, and L. De Raedt

 player(8614,2,6049) 0.994

 nil 0.006

 conquest(7899,8614) 0.002

 nil 0.998

 conquest(7899,8614) 0.001

 nil 0.999

 conquest(7899,8614) 0.039

 nil 0.961

 conquest(7899,8614) 0.011

 nil 0.989

 nil 0

 city(7899,9,85,8614,huge) 0

 city(7899,9,85,8614,small) 0.683

 city(7899,9,85,8614,huge) 0.273

 city(7899,9,85,8614,normal) 0.044

c8

c7

0

c6

c5bf

c4be

bcbd c3

c2bb

ba b9 c1

b8 c0

b6b7

b5

b4

b1 b3

b0 b2

af

1

 player(8614,2,6049) 0.994

 conquest(7899,8614) 0.002

 nil 0.998

 conquest(7899,8614) 0.001

 nil 0.999

 conquest(7899,8614) 0.039

 nil 0.961

 conquest(7899,8614) 0.011

 nil 0.989

 city(7899,9,85,8614,huge) 0

 city(7899,9,85,8614,huge) 0.273

8b

8a

0

89

83 88

82

81

87

86

80

7f

85

84

7e

7d

7c

1

Fig. 1. Graphical representation of a formula f resulting from the conversion of a CPT-L inference
problem represented as a BDD (left) and ZDD (right)

in which variables appear in a path only if their positive branch is not directly con-
nected to the terminal 0 [13]. Figure 1 shows example BDD and ZDD structures that
represent the same function. We will now show that a reduced ZDD representation of f
will always be smaller than (or identical to) the corresponding BDD representation for
CPT-L:

Theorem 2. Let f be a formula resulting from the conversion of a CPT-L inference
problem, G its BDD representation, and G′ its ZDD representation (for a fixed variable
ordering). Then size(G′) ≤ size(G).

Proof. We first show that in G every path Q from the root to the 1-terminal contains all
variables appearing in f . Assume r.h1 �∈ Q, and let r.h2, ..., r.hl denote the variables
corresponding to the other head elements of rule r. Because of the constraint added in
step 3. of the conversion, f can only be true if exactly one of the r.h1, ..., r.hl is true.
However, this cannot be verified by looking at any subset of the variables, and therefore
they must all be contained in the path. Because all variables appear in every path from
the root to 1, the graph structure G is also a faithful representation of f under the ZDD
semantics. If G as a ZDD is fully reduced, G = G′ because reduced ZDDs, as BDDs,
are a canonical representation. Otherwise, G can be further reduced to the ZDD G′ with
size(G′) < size(G).

Typically a ZDD representation of f will be more compact than the BDD representa-
tion, as shown in Figure 1.

A Simple Model for Sequences of Relational State Descriptions 513

3.2 Parameter Estimation

Assume the structure of a CPT-theory is given, that is, a set T = {r1, ..., rk} of rules of
the form

ri = (hi1 : pi1) ∨ . . . ∨ (hin : pin) ← bi1, . . . , bim,

where π = {pij}i,j are the unknown parameters to be estimated from a set of
training sequences D. A standard approach is to find max-likelihood parameters
π∗ = arg maxπ P (D | π). To determine a model parameter pij , we essentially need to
know the number of times head element hij has been selected in an application of the
rule ri in the training data, which will be denoted by κij . However, the quantity κij is
not directly observable. To see why this is so, first consider a single transition It → It+1
in one training sequence. We know the set of rules Rt applied in the transition; however,
there are in general many possible selections σ of rule head elements yielding It+1. The
information which selection was used, that is, which rule has generated which fact in
It+1, is hidden. We will now derive an efficient Expectation-Maximization algorithm in
which the unobserved variables are the selections used at every transition, and κij the
sufficient statistics. To keep the notation uncluttered, we present the expectation step
E[κij | π, D] for a single transition τ = It → It+1; contributions from different transi-
tions and different training sequences simply sum up. Let Γ = {σ | It

σ→ It+1} denote
the set of selections yielding τ . The expectation is

E[κij | π, τ] =
∑

σ

P (δij | σ, π, τ)

=
∑

σ

P (δij | σ)P (σ | π, τ)

=
∑

σ∈Γ

P (δij | σ)
P (σ | π)

∑
σ′∈Γ P (σ′ | π)

(4)

where δij is an indicator variable representing that head hij was selected in rule ri. Note
that P (δij | σ) is simply 1 if the head is selected in σ and 0 otherwise, and P (σ | π) is
defined by Equation 1. Given the expectation, the maximization step is

p
(new)
ij =

E[κij | π, D]
∑

j E[κij | π, D]
.

The key algorithmic challenge is to compute the expectation given by Equation 4 ef-
ficiently. As outlined above, the set Γ of selections yielding the observed transitions
can be compactly represented as the set of paths from the root to the 1-terminal in a
(possibly zero-suppressed) decision diagram.

By analogy to the inference problem, the summation given by Equation 4 can be
performed in linear time given the BDD (ZDD) structure. This is realized by a dynamic
programming algorithm similar to the forward-backward algorithm in hidden Markov
models [3] that sweeps through the BDD structure twice to accumulate the sufficient
statistics κij . Details of the algorithm are straightforward but somewhat involved, and
omitted for lack of space. Note that the presented Expectation-Maximization algorithm,
by taking the special structure of our model into account, is significantly more efficient
than general-purpose parameter learning techniques employed in CP-logic.

514 I. Thon, N. Landwehr, and L. De Raedt

3.3 Prediction

Assume we are given a (partial) observation sequence I0, ..., It, a CPT-theory T , and a
property of interest F (represented as a first-order formula), and would like to compute
P (It+d |=B F | I0, ..., It, T). For instance, a robot might like to know the probability
that a certain world state is reached at time t + d, given its current world model and
observation history. Note that the representation as a first-order formula allows one to
express richer world conditions than queries on (sets of) atoms, as they are typically
supported in statistical relational learning systems. In CPT-L,

P (It+d |=B F | I0, ..., It, T) = P (It+d |=B F | It, T)

as the world model is Markov. Powerful statistical relational learning systems are in
principle able to compute this quantity exactly by “unrolling” the world model into
a large dynamic graphical model. However, this is computationally expensive as it
requires to marginalize out all (unobserved) intermediate world states It+1, ..., It+d−1.
In contrast, inference in CPT-theories draws its efficiency from the full observability
assumption.

As an alternative approach, we propose a straightforward sample-based approxi-
mation to P (It+d |=B F | It, T). Given It, independent samples can be obtained
from the conditional distribution P (It+1, ..., It+d | It, T) by simply sampling accord-
ing to T from the initial state It. Ignoring It+1, ..., It+d−1 and checking F in It+d

yields independent samples of the boolean event It+d |=B F from the distribution
P (It+d |=B F | It, T). The proportion of positive samples of this variable will thus
quickly approach the true probability P (It+d |=B F | It, T).

4 Experimental Evaluation

The proposed CPT-L model has been evaluated in two different domains. First, we
discuss experiments in a stochastic version of the well-known blocks world domain,
an artificial domain that allows to perform controlled and systematic experiments e.g.
with regard to the scaling behavior of the proposed algorithms. Second, the model is
evaluated on real-world data collected from a live server of a massively multi-player
online strategy game. Experiments in these two domains will be presented in turn.

4.1 Experiments in a Stochastic Blocks World Domain

As an artificial test bed for CPT-L, we performed experiments in a stochastic version
of the well-known blocks world domain. The domain was chosen because it is truly
relational and also serves as a popular artificial world model in agent-based approaches
such as planning and reinforcement learning. Application scenarios involving agents
that act and learn in an environment are one of the main motivations for CPT-L. In
such scenarios world-transition dynamics typically stem from actions carried out by
the agents according to some policy. In the blocks-world domain discussed in this sec-
tion, we assume that the policy of the agent is known and the task is to probabilistically
model transition dynamics given the policy. It is straightforward to represent such con-
ditional world models in CPT-theories by including the policy as part of the background
knowledge.

A Simple Model for Sequences of Relational State Descriptions 515

-10000
-9000
-8000
-7000
-6000
-5000
-4000
-3000
-2000
-1000

 0 2 4 6 8 10

Lo
g-

Li
ke

lih
oo

d

Iterations of the EM-Algorithm

10 blocks
25 blocks
50 blocks

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50

ru
nt

im
e

[m
in

ut
es

] f
or

 1
0

ite
ra

tio
ns

Number of blocks

runtime

Fig. 2. Left graph: per-sequence log-likelihood on the training data as a function of the EM it-
eration. Right graph: Running time of EM as a function of the number of blocks in the world
model.

World Model. The blocks world we consider consists of a table and a number of
blocks. Every block rests on exactly one other block or the table, denoted by a fact
on(A, B). Blocks come in different sizes, denoted by size of(A, N)with N ∈{1, ..., 4}.
A predicate free(B) ← not(on(A, B)) is defined in the background knowledge. Ad-
ditionally, a background predicate stack(A, S) defines that block A is part of a stack
of blocks, which is represented by its lowest block S. Actions derived from the policy
are of the form move(A, B). If both A and B are free, the action moves block A on B
with probability 1 − ε, with probability ε the world state does not change. Furthermore,
a stack S can start to jiggle, represented by jiggle(S). A stack can start to jiggle if its
top block is lifted, or a new block is added to it. Furthermore, stacks can start jiggling
without interference from the agent, which is more likely if they contain many blocks
and large blocks are stacked on top of smaller ones. Stacks that jiggle collapse in the
next time-step, and all their blocks fall on the table. Two example rules from this domain
are

(jiggle(S) : 0.2) ∨ (nil : 0.8) ← move(A, B), stack(A, S)

(jiggle(S) : 0.2) ∨ (nil : 0.8) ← move(A, B), stack(B, S),

they describe that stacks can start to jiggle if blocks are added to or taken from a stack.
Furthermore, we consider a simple policy that tries to build a large stack of blocks by
repeatedly stacking the free block with second-lowest ID on the free block with lowest
ID. This strategy would result in one large stack of blocks if the stack never collapsed.

Results in the Blocks-World Domain. In a first experiment, we explore the conver-
gence behavior of the EM algorithm for CPT-L. The world model together with the
policy for the agent, which specifies which block to stack next, is implemented by a
(gold-standard) CPT-theory T , and a training set of 20 sequences of length 50 each
is sampled from T . From this data, the parameters are re-learned using EM. Figure 2,
left graph, shows the convergence behavior of the algorithm on the training data for
different numbers of blocks in the domain, averaged over 15 runs. It shows rapid and
reliable convergence. Figure 2, right graph, shows the running time of EM as a func-
tion of the number of blocks. The scaling behavior is roughly linear, indicating that

516 I. Thon, N. Landwehr, and L. De Raedt

the model scales well to reasonably large domains. Absolute running times are also
low, with about 1 minute for an EM iteration in a world with 50 blocks2. This is in
contrast to other, more expressive modeling techniques which typically scale badly to
domains with many objects. The theory learned (Figure 2) is very close to the ground
truth (”gold standard model”) from which training sequences were generated. On an
independent test set (also sampled from the ground truth), log-likelihood for the gold
standard model is -4510.7, for the learned model it is -4513.8, while for a theory with
randomly initialized parameters it is -55999.4 (50 blocks setting). Manual inspection of
the learned model also shows that parameter values are on average very close to those
in the gold-standard model.

The experiments presented so far show that relational stochastic domains of substan-
tial size can be represented in CPT-L. The presented algorithms are efficient and scale
well in the size of the domain, and show robust convergence behavior.

4.2 Experiments in a Massively Multi-player Online Game

As an example for a massively multi-player online game, we consider Travian3, a com-
mercial, large-scale strategy game with a player community of about 3.000.000 players
worldwide. In Travian, players are spread over several independent game worlds, with
approximately 20.000–30.000 players interacting in a single world. Travian game play
follows a classical strategy game setup. A game world consists of a large grid-map,
and each player starts with a single city located on a particular tile of the map. Dur-
ing the course of the game, players harvest resources from the environment, improve
their cities by construction of buildings or research of technologies, or found new cities
on other (free) tiles of the map. Additionally, players can build different military units
which can be used to attack and conquer other cities on the map, or trade resources on
a global marketplace.

In addition to these low-level game play elements, there are high-level aspects of
game play involving multiple players, which need to cooperate and coordinate their
playing to achieve otherwise unattainable game goals. More specifically, in Travian
players dynamically organize themselves into alliances, for the purpose of jointly at-
tacking and defending, trading resources or giving advice to inexperienced players.
Such alliances constitute social networks for the players involved, where diplomacy is
used to settle conflicts of interests and players compete for an influential role in the
alliance. In the following, we will take a high-level view of the game and focus on
modeling player interaction and cooperation in alliances rather than low-level game el-
ements such as resources, troops and buildings. Figure 3 shows such a high-level view
of a (partial) Travian game world, represented as a graph structure relating cities, play-
ers and alliances which we will refer to as a game graph. It shows that players in one
alliance are typically concentrated in one area of the map—traveling over the map takes
time, and thus there is little interaction between players far away from each other.

We are interested in the dynamic aspect of this world: as players are acting in the
game environment (e.g. by conquering other players’ cities and joining or leaving

2 All experiments were run on standard PC hardware, 2.4GHz Intel Core 2 Duo processor, 1GB
memory.

3 www.travian.com;www.traviangames.com

www.travian.com
www.traviangames.com

A Simple Model for Sequences of Relational State Descriptions 517

Alliance 1

Alliance 2

Alliance 4

Alliance 5

Alliance 9

Alliance 10

Alliance 11

P 1

885

593

P 12P 15

958

986
911

P 18

943

910

924929

947

1001

869

892 1045
1005

959

P 22

813

771

878

623

P 24

935 898

634

882823

581

832

P 26

753

P 28

908

P 30

932

841

P 33

853803

P 34

1018

797

P 36

904
1003

1028 1036

972 976

982
920
823

783
717

P 37

1017

911

879

751

P 38

693

817

P 40

690

626

P 41

905

947
759

P 42

756606

P 43

762

863

P 45

695

P 46

1001

833

P 47

991

833
638

P 50

882
857
864

P 51

951
1023

873

P 52

649

P 55

635

596

P 56

1042

1047

802

978

1043

984

P 57

996
936

928
924

1030

819

934
1007

9961004

842

P 59

640

901 529

P 61
994

702

801

600

837

P 63

959

1031

811

P 64

934 907

835

863

P 66

888
847934

871

776

671

577

P 67

538

430

P 68

651

626

585

P 70

934823

940

795

P 72

782

664

P 75

1083
961

794

1000

P 77

904994

657

P 78

947

529

583

P 89

P 91

1035

836

P 92

P 95

966

961

823 1000

794

P 105

830

P 107

P 111

P 116

P 120

880
933

940
867

768
743

P 121

1049

1013

968

986

942
748

P 122

1060

908886
973

783

P 123

799

P 124

926

P 125

812

858

913

620

P 126

1190

849
612

803

799

P 127

776

892

825

833

607

P 128

899

P 129

634

1001

650

P 132

736
546
436

P 134

744

880

P 135

948
825P 136

720

839

952

807

P 137

665

850

677

863
751

756

761

674

P 138

985

724

932

P 139

960
590

P 140
P 141

P 142

P 143

1040

1055

P 145

693

P 146

1106

1068

P 150

1005
773

793

P 153

919

969

783

905

991
954

946

910

884804

594

P 154

892 855

P 156

P 158

897

P 167

843

712

798

790

739635

P 168

913

P 172

588

591

970

P 174

483541

607

P 177
P 179

P 180

P 181

1000

1063

598

P 183

P 185

P 187
P 189

1001

722
874

974

786

1014

780

P 191

P 193

718

P 195

753

P 199

966

950

P 201

P 217

953

894

P 220

918

P 222

P 228

P 233

746

P 234

747

P 235

972
889

788

P 236

1228

579

578
614

P 238

Fig. 3. High-level view of a (partial) game world in Travian. Circular nodes indicate cities, shown
in their true positions on the game’s grid-map. Diamond-shaped nodes indicate players, and are
connected to all cities currently owned by the player. Rectangular nodes indicate alliances, and
are connected to all players currently members of the alliance. Moreover, players and cities are
color-coded according to their alliance affiliation.

alliances), the game graph will continuously change, and thereby reflect changes in
the social network structure of the game. As an example for such transition dynamics,
consider the sequence of game graphs shown in Figure 4. Here, three players from the
pink alliance launch a concerted attack against territory currently held by the green and
orange alliances, and partially conquer it.

Data Collection and Preprocessing. The data used in the experiments was collected
from a “live” Travian server with approximately 25.000 active players. Over a period of
three months (December 2007, January 2008, February 2008), high-level data about the
current state of the game world was collected once every 24 hours. This included infor-
mation about all cities, players, and the alliance structure in the game. For cities, their size
and position on the map are available; for players, the list of cities they own; and for al-
liances the list of players currently affiliated with that alliance. From all available data, we
extracted 30 sequences of local game world states. Each sequence involves a subset of 10
players, which are tracked over a period of one month (10 sequences each for December,
January and February). Player sets are chosen such that there are no interactions between
players in different sets, but a high number of interactions between players within one set.
Cities that did not take part in any conquest event were removed from the data, leaving
approximately 30–40 cities under consideration for every player subset.

World Model. The game data was represented using predicates city(C, X, Y, S, P)
(city C of size S at coordinates X, Y held by player P), allied(P, A) (player P is
a member of alliance A), conq(P, C) (indicating a conquest attack of player P on

518 I. Thon, N. Landwehr, and L. De Raedt

Alliance 1

Alliance 2

Alliance 3

P 2

1081

895
1090

1090

1093

1084

915

1081

1040

1077

955

1073

8041054

9421087

621

P 3

744

P 5

P 6

950

644

985

932

837
871

777

946

878

864 913

P 9

Alliance 1

Alliance 3

P 2

918
1090

931

977

835

9581087

701

P 3

838

947

1026

1081

1002
987

994

P 5

1032

1026

1024

1049

905

P 6

986

712

985

920

877

807

P 7

895

959

P 10

824

Alliance 1

Alliance 3

P 2

923
1090

941

983

844

9661087

711

P 3

864

986

842

1032

1083

712

1002
1000

996

P 5

1039

1037

1030

1053

826

P 6

985

807

894

963

P 10

829

781
828

Alliance 1
Alliance 3

P 2

938
1090

949

987

849

9761087

724

P 3

888

863

868

1040

1083

667

1005
994

1002

P 5

1046

1046

1040

985

894

1058

879 921

807

P 6
P 7

P 10

830

782
829

Alliance 1

Alliance 3

P 2

948

951

990

856

980

730

P 3
898

803

860

964

1037

1085

689

1005
1007

1005

P 5

1051

1051

1040

860

774

1061

886 844

945

713

P 10

839

796
838

Fig. 4. Travian game dynamics visualized as changes in the game graph (for t = 1, 2, 3, 4, 5).
Bold arrows indicate conquest attacks by a player on a particular city.

city C) and alliance change(P, A) (player P changes affiliation to alliance A). A
predicate distance(C1, C2, D) with D ∈ {near, medium, far} computing the (dis-
cretized) distance between cities was defined in the background knowledge. The final
state descriptions (game graphs) on average contain approximately 50 objects (nodes)
at every step in time, and relations between them. Sequences consists of between 29
and 31 such state descriptions.

We defined a world model in CPT-L that expresses the probability for player actions
such as conquests of cities and changes in alliances affiliation, and updates the world
state accordingly. Player actions in Travian—although strongly stochastic—are typi-
cally explainable from the social context of the game: different players from the same
alliance jointly attack a certain territory on the map, there are retaliation attacks at the
alliance level, or players leave alliances that have lost many cities in a short period of
time. From a causal perspective, actions are thus triggered by certain (relational) pat-
terns that hold in the game graph, which take into account a player’s alliance affiliation
together with the actions carried out by other alliance members. Such patterns can be
naturally expressed in CPT-L as bodies of rules which trigger actions encoded in the
head of the rule. We manually defined a number of simple rules capturing such typical
game patterns. As an example, consider the rules

conq(P, C):0.039 ∨ nil:0.961 ← conq(P, C′), city(C′, , , , P ′), city(C, , , , P ′)
conq(P, C):0.011 ∨ nil:0.989 ←

city(C, , , , P ′′), allied(P, A), allied(P ′, A), conq(P ′, C′), city(C′, , , , P ′′)

The first rule encodes that a player is likely to conquest a city of a player he already
attacked in the previous time-step. The second rule generalizes this pattern: a player
P is likely to attack a city C of player P ′′ if an allied player has attacked P ′′ in the
previous time-step.

Moreover, the world state needs to be updated given the players’ actions. After a con-
quest attack conq(P, C), the city C changes ownership to player P in the next time-step.
If several players execute conquest attacks against the same city in one time-step, one
of them is chosen as the new owner of the city with uniform probability (note that such
simultaneous conquest attacks would not be observed in the training data, as only one

A Simple Model for Sequences of Relational State Descriptions 519

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

CPT-L, k = 1
CPT-L, k = 2
CPT-L, k = 3
CPT-L, k = 4
CPT-L, k = 5

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 2 3 4 5

A
re

a
un

de
r

R
O

C
 c

ur
ve

Number of steps predicted (k)

January 2008
February 2008

Fig. 5. Left figure: ROC curve for predicting that a city C will be conquered by a player P within
the next k time-steps, for k ∈ {1, 2, 3, 4, 5}. The model was trained on 10 sequences of local
game state descriptions from December 2007, and tested on 10 sequences from January 2008.
Right figure: AUC as a function of the number k of future time-steps considered in the same
experiment. Additionally, AUC as a function of k is shown for 10 test sequences from February
2008.

snapshot of the world is taken every 24 hours). Similarly, an alliance change(P, A)
event changes the alliance affiliation of player P to alliance A in the next time-step.

Results in the Travian Domain. We consider the task of predicting the “conquest” ac-
tion conq(P, C) based on a learned generative model of world dynamics. The collected
sequences of (local) game states were split into one training set (sequences collected in
December 2007) and two test sets (sequences collected in January 2008 and sequences
collected in February 2008). Maximum-likelihood parameters of a hand-crafted CPT-
theory T as described above were learned on the training set using EM. Afterwards,
the learned model was used to predict the player action conq(P, C) on the test data
in the following way. Let S denote a test sequence with states I0, ..., IT . For every
t0 ∈ {0, ..., T − 1}, and every player p and city c occurring in S, the learned model is
used to compute the probability that the conquest event conq(p, c) will be observed in
the next world state, P (It0+1 |= conq(p, c) | T , I0, ..., It0). This probability is obtained
from the sampling-based prediction algorithm described in Section 3. The prediction is
compared to the known ground truth (whether the conquest event occurred at that time
in the game or not). Instead of predicting whether the player action will be taken in
the next step, we can also predict whether it will be taken within the next k steps, by
computing

P (It0+1 |= conq(p, c) ∨ ... ∨ It0+k |= conq(p, c) | T , I0, ..., It0).

This quantity is also easily obtained from the prediction algorithm for CPT-L. Figure 5,
left, shows ROC curves for this experiment with different values k ∈ {1, 2, 3, 4, 5},
evaluated on the first test set (January 2008). Figure 5, right, shows the corresponding
AUC values as a function of k for both test sets. The achieved area under the ROC curve
is substantially above 0.5 (random performance), indicating that the learned CPT-theory
T indeed captures some characteristics of player behavior and obtains a reasonable

520 I. Thon, N. Landwehr, and L. De Raedt

ranking of player/city pairs (p/c) according to the probability that p will conquer c.
Moreover, the model is able to predict conquest actions several steps in the future,
although AUC is slightly lower for larger k. This indicates that uncertainty associated
with predictions accumulates over time. Finally, predictions for the first test set (January
2008) are slightly more accurate than for the second test set (February 2008). This is not
surprising as the model has been trained from sequences collected in December 2007,
and indicates a slight change in game dynamics over time. In summary, we conclude
that player actions in Travian are indeed to some degree predictable from the social
context of the game, and CPT-L is able to learn such patterns from the data.

Parameter learning for the CPT-L theory T on the training set takes approximately
30 minutes, and the model needed 5 iterations of EM to converge. Predicting the prob-
ability of conq(p, c) for all player/city pairs and the next k time-steps starting from a
particular world state takes approximately 1 minute.

5 Related Work

There are relatively few existing approaches that can probabilistically model sequences
of relational state descriptions. CPT-L can be positioned with respect to them as follows.
First, statistical relational learning systems such as Markov Logic [14], CP-logic [9],
Probabilistic Relational Models [15] or Bayesian Logic Programs [16] can be used in
this setting by adding an extra time argument to predicates (then called fluents). How-
ever, inference and learning in these systems is computationally expensive: they sup-
port very general models including hidden states, and are not optimized for sequential
data. A second class of techniques, for instance [17], uses transition models based on
(stochastic) STRIPS rules. This somewhat limits the transitions that can be expressed, as
only one rule “fires” at every point in time, and it is difficult to model several processes
that change the state of the world concurrently (such as an agent’s actions and naturally
occurring world changes). In contrast, such scenarios are naturally modeled in CP-logic
and thus CPT-L. Another approach designed to model sequences of relational state de-
scriptions are relational simple-transition models [18]. In contrast to CPT-L, they focus
on domains where the process generating the data is hidden, and inferring these hid-
den states from observations. This is a harder setting than the fully observable setting
discussed in this paper, and typically only approximate inference is possible [18].

6 Conclusions and Future Work

We have introduced CPT-L, a probabilistic model for sequences of relational state de-
scriptions. In contrast to other approaches that could be used as a model for such
sequences, CPT-L focuses on computational efficiency rather than expressivity. This
is essential for many real-life applications. The main direction for future work is to
further evaluate the trade-off between representational power and scaling behavior in
challenging real-world domains. Furthermore, we want to explore how the model can
be extended, for instance to account for hidden data, without sacrificing efficiency.

A Simple Model for Sequences of Relational State Descriptions 521

Acknowledgments. The authors would like to thank the anonymous reviewers for help-
ful comments. This work was supported by FWO-Vlaanderen, and the GOA/08/008
project “Probabilistic Logic Learning”.

References

1. Pollack, M.E.: Intelligent technology for an aging population: The use of AI to assist elders
with cognitive impairment. AI Magazine 26(2), 9–24 (2005)

2. Laird, J.E., van Lent, M.: Human-Level AI’s Killer Application: Interactive Computer
Games. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence (2000)

3. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2), 257–286 (1989)

4. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., Chichester (1994)

5. Ghahramani, Z.: Learning dynamic bayesian networks. Adaptive Processing of Sequences
and Data Structures. In: International Summer School on Neural Networks, pp. 168–197
(1997)

6. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to
problem solving. In: Computation & intelligence: collected readings, Menlo Park, CA, USA,
pp. 429–446. American Association for Artificial Intelligence (1995)

7. Getoor, L., Taskar, B. (eds.): Statistical Relational Learning. MIT Press, Cambridge (2007)
8. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic

Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)
9. Vennekens, J., Denecker, M., Bruynooghe, M.: Representing causal information about a

probabilistic process. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 452–464. Springer, Heidelberg (2006)

10. Bratko, I.: Prolog Programming for Artificial Intelligence, 2nd edn. Addison-Wesley, Read-
ing (1990)

11. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic Prolog and its application
in link discovery. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence, pp. 2462–2467 (2007)

12. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
puters 35(8), 677–691 (1986)

13. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: DAC
1993: Proceedings of the 30th international conference on Design automation, pp. 272–277.
ACM, New York (1993)

14. Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62, 107–136
(2006)

15. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In:
Relational Data Mining, pp. 307–335. Springer, Heidelberg (2001)

16. Kersting, K., De Raedt, L.: Bayesian Logic Programming: Theory and tool. In: Getoor, L.,
Taskar, B. (eds.) An introduction to statistical relational learning. MIT Press, Cambridge
(2007)

17. Zettlemoyer, L.S., Pasula, H., Kaelbling, L.P.: Learning planning rules in noisy stochastic
worlds. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI
2005), pp. 911–918 (2005)

18. Fern, A.: A simple-transition model for relational sequences. In: Kaelbling, L., Saffiotti, A.
(eds.) IJCAI, pp. 696–701. Professional Book Center (2005)

	A Simple Model for Sequences of Relational State Descriptions
	Introduction
	CPT-L
	Inference and Parameter Estimation in CPT-L
	Inference
	Parameter Estimation
	Prediction

	Experimental Evaluation
	Experiments in a Stochastic Blocks World Domain
	Experiments in a Massively Multi-player Online Game

	Related Work
	Conclusions and Future Work

