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Abstract. In this work, we introduce a powerful and general feature
representation based on a locality sensitive hash scheme called random
hyperplane hashing. We are addressing the problem of centrally learning
(linear) classification models from data that is distributed on a number
of clients, and subsequently deploying these models on the same clients.
Our main goal is to balance the accuracy of individual classifiers and
different kinds of costs related to their deployment, including commu-
nication costs and computational complexity. We hence systematically
study how well schemes for sparse high-dimensional data adapt to the
much denser representations gained by random hyperplane hashing, how
much data has to be transmitted to preserve enough of the semantics of
each document, and how the representations affect the overall compu-
tational complexity. This paper provides theoretical results in the form
of error bounds and margin based bounds to analyze the performance
of classifiers learnt over the hash-based representation. We also present
empirical evidence to illustrate the attractive properties of random hy-
perplane hashing over the conventional baseline representation of bag of
words with and without feature selection.

1 Introduction

In times of increasingly web-oriented information architectures, it becomes more
and more natural to push analytical software down to clients, and to have them
report back critical and prototypical events that require additional attention or
indicate specific business opportunities. Examples of analytical software running
on user PCs include spam filtering, malware detection, and diagnostic tools for
different kinds of system failures.

We are concerned with a family of classification problems where high-dimen-
sional, sparse training data is available on a large number of clients. We want to
centrally collect data to train classifiers for deployment on the clients. Although
the techniques we are studying apply to a broader set of problems, like eDiscov-
ery, for the sake of this paper, we will exemplarily only consider the problem of
classifying (reasonably large) text documents, like web pages a user visits. We
aim to classify with respect to a quickly changing taxonomy of relevant concepts.
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Our constraints in this setting stem from the natural goal of minimizing re-
source consumption on clients. This includes network bandwidth, but also mem-
ory and CPU footprint of classifiers and related software. During a cycle of
training and deploying classifiers we go through the following phases: Data is
preprocessed on clients before it is uploaded to a server. The preprocessing is
required to reduce data volumes, and sometimes also to preserve privacy. The
classifiers are learnt on the server. Clients download a potentially large number
of classifiers, so we would like to minimize the required bandwidth. Finally, the
models are deployed on the clients and triggered for each document under con-
sideration, so we are concerned with the associated costs of preprocessing each
document and of applying a linear classifier on top of that representation.

The questions we are addressing in this paper are therefore, which repre-
sentations of sparse and high-dimensional data are compact enough to be
transmitted over the web, general enough to be used for all kinds of upcoming
multi-class classification problems, cheap enough to be applicable at deploy-
ment time, and are close enough to the performance of the models that are
not narrowed down by operational costs.

The novelty of this work is in exploiting a locality sensitive hashing technique
called random hyperplane hashing (cf. Algorithm 1) towards building a compact,
general, cheap and powerful representation scheme. This technique has the ad-
ditional benefit of being content-agnostic, which implies that it does not require
any deep domain understanding in the preprocessing phase. Further, it can be
used in the text domain, without any feature selection and for any language. The
contributions of this paper are two fold: (i) we present key theoretical results in
terms of error bounds and margin based bounds to quantify the loss of informa-
tion due to random hyperplane hashing and (ii) we present experimental results
to bring out the above mentioned attractive properties of the hashing-based
representation scheme.

The closely related random projection technique [3,4,9,19,10] has been used
successfully as a tool for dimensionality reduction because of its simplicity and
nice theoretical Euclidean distance preserving properties. Though the random
hyperplane hash method has a striking resemblance to the random projection
method (as seen in Algorithm 1), there is a key difference as random hyperplane
hashing preserves the angular distance while random projection preserves Eu-
clidean distance, leading to a completely different representation scheme. More
importantly, from a practical standpoint, the bit-based representation based on
random hyperplane hashing turns out to be significantly more compact, which
we elaborate later in the paper.

The rest of the paper is organized as follows. Sec. 2 provides the required tech-
nical preliminaries and reviews locality sensitive hashing with emphasis on the
angular distance preserving random hyperplane representation scheme. In this
paper, we confine ourselves to the problem of learning linear classification models
on top of this representation; in Sec. 3 we discuss this setting and present theo-
retical results based on error bounds and margin based bounds. Sec. 3 includes a
comparative study of our representation scheme with that of random projection
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Require:
– Input document d
– Number k of output dimensions
– Type of transformation, either RP or RHH

Ensure:
k-dimensional boolean (for RHH) or integer (for RP) vector representing d

Computation:
Create a k dimensional vector v with v[i] = 0 for 1 ≤ i ≤ k
for all terms w in document d do

Set random seed to w // cast w to integer or use hash value
for all i in (1, . . . , k) do

b ← sample random bit uniformly from {−1, +1}
v[i] ← v[i] + b

for all i in (1, . . . , k) do
v[i] ← sign(v[i]) // only for RHH, skip this step for RP

return v

Algorithm 1. A random projection (RP) / hyperplane (RHH) algorithm

based representation. We complement our theoretical findings with a number of
empirical results on benchmark datasets in Sec. 4. Finally, we summarize and
conclude in Sec. 5.

2 Random Hyperplane Hashing

Locality Sensitive Hash functions are invaluable tools for approximate near
neighbor problems in high dimensional spaces. Traditionally, nearest neighbor
search in high dimensional spaces has been expensive, because with increasing
dimensionality, indexing schemes such as KD Trees very quickly deteriorate to
a linear scan of all the items. Locality Sensitive Hash Functions [12] were intro-
duced to solve the approximate nearest neighbor problem in high dimensional
spaces, and several advancements [6,2,5] have been done in this area.

Definition 1 (Locality Sensitive Hashing [5,12]). A locality sensitive hash-
ing scheme is a distribution on a family F of hash functions on a set of instances,
such that for two instances x and y,

Prh∈F [h(x) = h(y)] = f(sim(x, y)) (1)

where, sim(x, y) is some similarity function defined on the instances and f is a
monotonically increasing function i.e., more the similarity, higher the probability.

Simply put, a locality sensitive hash function is designed in such a way that if
two vectors are close in the intended distance measure, the probability that they
hash to the same value is high; if they are far in the intended distance measure,
the probability that they hash to the same value is low. Next, we provide a formal
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review of locality sensitive hash functions. In particular, we focus on the cosine
similarity as it is a popular one for a variety of applications such as in document
retrieval [17], natural language processing [16] and image retrieval [18].

Definition 2 (Cosine Similarity). The cosine of two vectors u ∈ R
m and

v ∈ R
m is defined as cos(u, v) = u.v

|u||v| .

As we will discuss, the random hyperplane hashing algorithm provides a locality
sensitive hash function that corresponds to the cosine similarity measure. Let us
first introduce the notion of a cosine hash family.

Definition 3 (Cosine Hash Family [7]). A set of functions H = {h1, h2, . . .}
constitute a cosine hash family over R

m iff for some finite U ⊂ N,

– hk ∈ H : R
m → U

– For any four vectors u, u′, v, v′ in R
m where

cos(u, u′) = cos(v, v′), the following is true:

Prh∈H(h(u) = h(u′)) = Prh∈H(h(v) = h(v′))

– For any four vectors u, u′, v, v′ in R
m where

cos(u, u′) > cos(v, v′), the following is true:

Prh∈H(h(u) = h(u′)) > Prh∈H(h(v) = h(v′))

The following definition is similar to Algorithm 1, but more convenient for ana-
lytical purposes. We will compare the two at a later point.

Definition 4 (Random Hyperplane Hash (RHH) algorithm [5]). The
random hyperplane hashing algorithm works as follows: for a desired hash length
of k, generate an m × k projection matrix M , where each element is chosen
i.i.d from a N (0, 1) distribution. The k dimensional hash of a vector u ∈ R

m is
computed in two steps,

– Compute the vector P = uM

– The ith entry of the hash of u is −1 if Pi < 0, and 1 otherwise.

We will conclude this section with a number of important properties of random
projections that will be used throughout the paper.

Lemma 1. Let u, v be vectors in R
m such that cos(u, v) = ρ and their cor-

responding k-dimensional random hyperplane hash are denoted as u′ and v′ re-
spectively. We denote the distance between u′ and v′ as d′(u′, v′) which is defined
below. Then,

1. P (u′
i = v′i) = 1 − arccos(ρ)

π

2. 1
4 (u′

i − v′i)
2 ∼ Bernoulli(arccos(ρ)

π )
3. d′(u′, v′) := 1

4

∑k
i=1(u

′
i − v′i)

2 ∼ Binomial(k, arccos(ρ)
π )
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4. Additive bound: For any ε > 0,

Pr
(

1
k

d′(u′, v′) − arccos(ρ)
π

> ε

)

≤ e−2ε2k (2)

Pr
(

1
k

d′(u′, v′) − arccos(ρ)
π

< −ε

)

≤ e−2ε2k (3)

5. Multiplicative bound: For any λ ∈ [0, 1],

Pr
(

1
k

d′(u′, v′) ≥ (1 + λ)
arccos(ρ)

π

)

≤ e−
λ2k arccos(ρ)

3π (4)

Pr
(

1
k

d′(u′, v′) ≤ (1 − λ)
arccos(ρ)

π

)

≤ e−
λ2k arccos(ρ)

2π (5)

Proof. The first result is a fundamental property of random hyperplanes exploited
in [11] and was later used to develop the random hyperplane hashing algorithm in
[5]. This key property results in random hyperplane hashes satisfying the proper-
ties of a cosine hash family. The second and third results follow from 1. The fourth
and fifth results are obtained by applying Hoeffding and Chernoff bounds respec-
tively on d′(u′, v′) by expressing it as a sum of independent Bernoulli distributed
random variables (u′

1 − v′1)
2, (u′

2 − v′2)
2, . . . , (u′

k − v′k)2. �	

The key contribution of this work is the use of random hyperplane hashing
as a representation scheme over which classifiers can be learnt. The efficient
random hyperplane hashing algorithm leads to a general and compact angular
distance preserving representation. In the next section, we exploit the properties
of random hyperplane hashing provided in Lemma 1 to obtain bounds on the
performance of linear classifiers learnt over such a representation and further,
compare it with the closely related random projection algorithm.

3 Classifier over Random Hyperplane Hashes

We start with a formal definition of a linear classifier in both spaces, Euclidean
space and random hyperplane hash space.

Definition 5 (Linear classifier and its hash representation). Let T rep-
resent a concept that maps instances xi from an m-dimensional space of reals
R

m to labels yi that belongs to {−1, +1}. The concept T allows for a linear clas-
sifier h ∈ R

m, if there exists a h satisfying, yi(hT xi) ≥ 0 which can alternately
be written as yi

(
1
2 − 1

π arccos( hT xi

|h||xi| )
)

≥ 0. Since, h ∈ R
m, it allows for a ran-

dom hyperplane hash representation h′. In the hash space, we consider linear
classifiers of the form yi

k (h′T x′
i) ≥ 0 1.

1 The 1
k

is for convenience and results in the classifier output to be in the range
[−1, 1].



Client-Friendly Classification over Random Hyperplane Hashes 255

Our first important error bound requires a stronger notion of separability, how-
ever. In the next subsection, we will show that a slightly less restrictive constraint
is not sufficient.

Definition 6 (ε-robust concept). For any real 0 < ε < 0.5, a concept T along
with a distribution D on R

m is ε-robust, if it allows for a linear classifier h that
satisfies 1

2 − 1
π arccos( hT x

|h||x|) > ε for positive and 1
2 − 1

π arccos( hT x
|h||x|) < −ε for

negative instances.

Theorem 1. Let h be a linear classifier that can correctly classify instances
in R

m according to some ε-robust target concept T and let h′ denote its hash
representation. Consider x ∈ R

m and its k dimensional random hyperplane hash
x′, for k ≥ α

2ε2 and projection matrix M . Then,

∀x : D(x) > 0,PrM∼[N(0,1)]m×k [labelh(x) �= labelh′(x′)] ≤ e−α (6)

Proof. Consider a positive instance x. Let the random hyperplane hash of x be
x′. By definition of ε robustness, h satisfies

1
π

arccos(
hT xi

|h||xi|
) ≤ 1

2
− ε. (7)

Now for 0 < ε < 0.5, let us compute the following probability,

Pr
(

1
k

d′(h′, x′) >
1
2

+ ε

)

(8)

The Hoeffding bound from Lemma 1,

Pr
(

1
k

d′(h′, x′) − 1
π

arccos(
hT xi

|h||xi|
) > ε

)

≤ e−2kε2 (9)

and Eqn. 7, with the definition of d′, can be combined to obtain,

Pr
(

1
4k

(
|h′|2 + |x′|2 − 2h′T x′) − (

1
2

− ε) > ε

)

≤ e−2kε2 (10)

and using the property that |h′| = |x′| =
√

k (by construction2) leads to,

Pr
(

1
k

h′T x′ < 0
)

≤ e−2kε2 (11)

which corresponds to the probability that x′ is mislabeled as negative by h′. A
similar result can be shown for negative instances which leads to the error bound
in Eqn. 6. �	
Using Theorem 6, Fig. 1 illustrates the lower bounds on hash length k required
for different label error rate constraints. It is important to note that the bound
is obtained based on the hash of the classifier. A classifier explicitly learnt in the
hash space can only lead to a better margin.
2 The conventional random hyperplane algorithm results in a k dimensional vector

of 0s and 1s, but we construct a vector of −1s and 1s to allow for a constant norm
of

√
k for hash length k.



256 S. Rajaram and M. Scholz

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Robustness

H
as

h 
le

ng
th

 

 
Label error rate ≤ 0.3679
Label error rate ≤ 0.1353
Label error rate ≤ 0.0498
Label error rate ≤ 0.0003

Fig. 1. Plot showing lower bounds on hash length for the random hyperplane hashing
algorithm for different upper bounds on label error rates (set by varying α). The x-
axis represents the level of robustness of the target concept in terms of ε.

3.1 Comparison with Random Projections

The method of random projections (RP) has been used extensively to perform
dimensionality reduction [19] in a distance preserving manner. The random pro-
jection method is the same as the random hyperplane method described in Def. 1
without the thresholding performed in the second step. The thresholding step
results in a key difference: Euclidean distance is preserved with high probability
in the case of random projections [13] whereas the angular distance (Lemma 1) is
preserved in the random hyperplane case. As mentioned before, cosine similarity
is extensively used in domains like text and image retrieval. The work reported
in [3] provides error bounds for classifiers learnt over random projections. The
error bound (based on Lemma 3 from [3]), indicates the number of projections,
kRP ≥ 8α

ε2 compared to our case where the number of hash elements kRHH ≥ α
2ε2

while ensuring the same error bound e−α for different notions of robustness. In
[19], the authors define the notion of l-robustness which simply put, disallows
instances with different labels to be less than l close to each other. Our notion of
ε robustness is much stronger than the l-robustness. Next, we present empirical
results to show the need for such a strong notion of robustness.

In this synthetic experiment, we demonstrate the label errors introduced by
the random projection algorithm and random hyperplane hashing algorithm.
Generate p different random hyperplanes h1, h2, . . . , hp. For every random hy-
perplane, we use the l robustness assumption used in [3] and generate N instances
at random from R

m in such a way that no two instances with different labels are
more than l close to each other. The labeling yij of each instance xi is obtained
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Fig. 2. Plot illustrating the drop in label error rate with increasing projec-
tions/hashlength where the classification obeys l-robustness (left plot) and ε-
robustness (right plot)

based on yij(hT
j xi) ≥ 0 3. We generate K different projection matrices of size

k × m where each element is chosen i.i.d from N (0, 1). The random projection
and random hyperplane hashing algorithms are performed using all l projection
matrices, on all xil, hjl, to obtain x̂il,ĥjl and x′

il, h′
jl respectively. The labels in

the hash space are obtained according to ŷijl(ĥT
jlx̂il) ≥ 0 and y′

ijl(h
′T
jlx

′
il) ≥ 0.

Now, we evaluate the label error rate given by, 1
K×N×p

∑
i,j,l I (yij �= ŷijl) and

1
K×N×p

∑
i,j,l I

(
yij �= y′

ijl

)
for the random projection method and the random

hyperplane case for different values of k. Fig. 2 (left) shows that, even with
hashlength 16384, the label error rate is still around 4% which is clearly unex-
pected based on the lower bounds on hash length. The same inconsistency arises
with the random projection case as well. The reason for this effect is that the
notion of l-robustness does not account for disallowing instances that are very
close to the hyperplane, which leads to high label error rates. In the following
simulation, we enforce the ε-robustness constraint, which simply put, disallows
instances to be too close to the hyperplane. We set ε to be 0.0319. The rest of
the experimental setup is the same as the first experiment. Results presented
in Fig. 2 (right) show a more desirable fast drop-off in label error rate and at
the same time, comfortably satisfying the lower bounds presented in Theorem
6 and illustrated through Fig. 1.

It is important to note that one projection obtained through random pro-
jection requires a significantly larger chunk of memory compared to one bit
required to represent one element of a random hyperplane hash; each hyper-
plane hash is just one bit long, whereas random projections are of continuous
nature, and would usually be represented by 4 or even 8 bytes. The results from
Fig. 2 (right) lead to another very interesting observation. The label error rate
of the k-dimensional random hyperplane hashing is empirically bound by the
label error rates of 
k

2� random projections and 
k
3 � random projections. It also

3 The random projection method and the random hyperplane algorithm are com-
parable only in the case of hyperplanes passing through the origin.
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illustrates that less than 3 random hyperplane bits are more expressive than a
“full” random projection that allocates multiple bytes. The random hyperplane
algorithm obviously compresses the data better than random projections. In the
experimental results section, we further substantiate the claim that this behavior
also holds for real data.

On the technical side, it is worth noting that the elements of the projection
matrix M used in Def. 4, are not required to be continuous in practice. As
noted in [1] for the random projection case, sampling uniformly from {−1, +1}
instead of sampling from N (0, 1), yields very similar results due to the central
limit theorem. In fact, unless the documents were very short, we found the re-
sults to be indistinguishable. This closes the gap between Def. 4 and Algorithm
1. Regarding preprocessing, random projections are cheaper. Even if we need
only about 2.5 times more random hyperplane “bits” than random projections
to get similarity approximations of the same quality, this still means that the
algorithm has to generate more than twice as many random bits in the first
place. This is required only once for each document, however, and whenever
we expect to apply a large number of classifiers to that representation we may
in return benefit from the cheaper complexity of the models: random hyper-
plane representations are just bits, so linear models just have to add associated
weights. There is a trivial way of simplifying such classifiers: After transforming
the decision function of the classifier from {−1, +1} feature space to {0, +1}
space (which just requires to adapt the threshold) it only has to do an ad-
dition for every second bit on average. In contrast, random projections yield
integer or real-valued vectors, which even requires additional multiplications.
In practice, random hyperplanes should hence be cheaper, even if they operate
on twice as many dimensions. When it comes to uploading models to clients,
which happens only once per model-client pair, the higher dimensionality of the
random hyperplanes algorithm is a disadvantage however, because models that
get the same quality of results will usually have a larger number of associated
weights.

Whether random hyperplanes or random projections are favorable depends on
an application-dependent weighting of CPU and memory footprint, the expected
number of examples to be classified per model, the number of examples to be
uploaded, and the expected frequency of model upgrades.

3.2 Large Margin Classifiers over Random Hyperplane Hashes

The results previously derived in this section show that the preservation of labels
in the random hyperplane hash space is closely related to the notion of a margin.
In this subsection, we consequently analyze how margins of SVM classifiers in
the hash space are affected by the hash length. Further, we determine the hash
length which will preserve the margin with high probability. In [14], the authors
present such a theorem on the effect of learning large margin classifiers over
random projections. We first require a few more definitions.
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Definition 7 (SVM classifiers, margin and angular margin). Consider a
linearly separable data set S = {(xi, yi), i = 1 . . . n}, xi ∈ R

m, yi ∈ {+1, −1}, the
SVM optimization problem is set up as follows:

maxh
1
|h| s.t. yi(hT xi) ≥ 1, i = 1, . . . , n (12)

where, 1
|h| is defined as the margin and hence, the solution to the above optimiza-

tion problem is termed the maximum margin solution. Traditionally, an offset is
included in the constraint and we address this issue at the end of this section.

For the sake of convenience, we define the angular margin la, as

la := mini yi

(
1
2

− 1
π

arccos
hT xi

|h||xi|

)

(13)

where we have exploited the fact that a classifier satisfying yi(hT xi) ≥ 0 can be
rewritten as, yi

(
1
2 − 1

π arccos( hT xi

|h||xi| )
)

≥ 0.

These definitions allow us to formulate the desired probabilistic bound on the
margin:

Theorem 2. Given a linearly separable data set S (|S| = n), let the optimal
maximum margin solution on S be given by h with angular margin la. Let S′

k

represent the set of random hyperplane hashes of instances in the set S. If k ≥
1
2+la
γ2l2a

log n
δ , 0 < γ < 1, 0 < δ < 1, then the maximum margin solution on S′

k

satisfies the following bound,

Pr(lp > (1 − γ)la) ≥ 1 − δ (14)

where lp corresponds to the margin in the hash space.

Proof. Consider a positive example x, and in particular we consider the worst
case where the instance lies on the margin i.e., 1

2 − 1
π arccos hT x

|h||x| = la. Let x′ and
h′ represent the k-dimensional random hyperplane hash of x and the optimal
solution h respectively. Now, let us compute the following probability:

Pr
(

1
k

d′(h′, x′) <
1
2

− (1 − γ)la

)

(15)

which can be reformulated in a more amenable multiplicative form:

1
k

d′(h′, x′) <
1
2

− (1 − γ)la ≡ 1
k

d′(h′, x′) < (1 + λ)
(

1
2

− la

)

(16)

Solving for λ, we obtain λ = γla
1
2−la

. Eqn. 15, can be rewritten as:

Pr
(

1
2k

h′T x′ > (1 − γ)la

)

= Pr
(

h′T x′
√

k
> 2

√
k(1 − γ)la

)

. (17)
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Using the multiplicative Chernoff bounds from Lemma 1, we obtain the following
bound:

Pr
(

h′T x′
√

k
> 2

√
k(1 − γ)la

)

= 1 − Pr
(

1
k

d′(h′, x′) >
1
2

− (1 − γ)la

)

> 1 − e
− γ2l2a

1
2 −la

k
3

⇒ Pr
(

h′T x′
√

k
> (1 − γ)la

)

> 1 − e
− γ2l2a

1
2 −la

k
3 (18)

Similarly for any negative instance x′, we obtain the bound:

Pr
(

h′T x′
√

k
< −(1 − γ)la

)

= 1 − Pr
(

1
k

d′(h′, x′) <
1
2

+ (1 − γ)la

)

> 1 − e
− γ2l2a

1
2 +la

k
2 (19)

By definition, the margin in the hash space expressed as lp is given by min y′ h′T x′√
k

.
The union bound can be used on Eqns. 18 and 19, to obtain guarantees of a
hyperplane in the hash space with a margin lp that is at least (1 − γ)la where

γ ≤
ε
√

la + 1
2

la
(20)

with probability at least 1 − ne−ε2 k
3 . The corresponding value of k is given by:

ne
− γ2l2a

1
2+la

k
3 ≤ δ ⇒ k ≥

1
2 + la

γ2l2a
log

n

δ
(21)

Notice that the sub-optimal h′, which corresponds to the random hyperplane
hash of the optimal classifier h achieves the bound. So, the optimal classifier on
S′

k can only achieve a better margin than h′. �	

Finally, we want to justify for not having included an offset term into Eqn. (12)
for mathematical simplicity. The common SVM constraint is given by

yi(hT xi − b) ≥ 1, i = 1, . . . , n. (22)

It is slightly more expressive in theory, but we found the difference in practice to
be negligible. However, in doubt we can always include a “constant” component
to each example vector, e.g. a new first component which is always equal to 1. In
this case, the vector h effectively also provides the offset b. The only remaining
difference to the regular SVM is then that having the offset b inside h makes it
part of the margin. In the case of high-dimensional data we are discussing in this
paper this obviously does not change matters too much. In the next section we
will complement this argument with empirical evidence that the hashing-based
representation is well suited for building text classifiers, even without spending
any particular attention to the matter of offsets.
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Table 1. LibSVM results for a number of multi-class classification problems previ-
ously used in the context of feature selection. Reported are 10fold cross-validated
accuracies on different representations and corresponding standard deviations.

dataset classes size BOW 8192 RHH 2048 RHH 2048 RP
Cora 36 1800 49.50 ± 2.24 66.56 ± 2.51 58.00 ± 3.45 52.22 ± 3.42
FBIS 17 2463 85.87 ± 1.61 84.94 ± 2.08 83.92 ± 1.29 84.65 ± 1.91
LA1 6 3204 90.20 ± 1.34 89.95 ± 1.32 85.55 ± 1.96 87.42 ± 0.60
LA2 6 3075 90.51 ± 2.28 90.41 ± 1.92 86.86 ± 1.70 87.51 ± 1.98
OH0 10 1003 89.53 ± 3.75 88.83 ± 2.69 87.13 ± 2.68 87.63 ± 2.65
OH10 10 1050 81.43 ± 3.79 81.71 ± 2.44 76.86 ± 2.37 78.19 ± 2.71
OH15 10 913 81.49 ± 2.69 81.71 ± 3.54 79.62 ± 5.09 80.83 ± 5.12
OH5 10 918 87.69 ± 3.76 88.57 ± 3.43 83.33 ± 3.80 85.08 ± 3.88
RE0 13 1504 84.17 ± 2.69 84.31 ± 2.56 83.04 ± 2.86 82.44 ± 2.45
RE1 25 1657 84.55 ± 2.32 80.87 ± 2.80 79.85 ± 3.01 82.62 ± 2.77
WAP 20 1560 85.38 ± 1.34 82.95 ± 2.84 80.06 ± 2.49 82.50 ± 2.48

OHSCAL 10 11162 78.07 ± 0.93 78.31 ± 1.14 71.58 ± 1.19 74.82 ± 0.97

4 Experimental Results

The main goal of the subsequently described experiments is to complement the
theoretical guarantees by empirical evidence that for typical text classification
tasks hashing-based representations are in fact able to capture enough of the
similarities between documents to allow for competitive predictive classifier per-
formance. More detailed questions of interest include how much information is
lost when switching to less exact representations and how this loss qualitatively
changes with the number of bits we allow for each of the representations. We
stress that the experiments do not aim at reaching the best individual classifier
performances reported for each dataset. We are hence not applying any sophis-
ticated preprocessing methods and avoid the issue of parameter tuning by fixing
the experimental setup. We just vary the representations of input data sets.

The representations we want to evaluate are random hyperplane hashing
(RHH) and random projections (RP). We compare the classifiers learnt over
these representations to the classifiers learnt over the regular bag of words vec-
tor space representation of text (BOW). In order to raise the bar of the baseline
method, we also report results when classifying on top of a BOW representa-
tion after feature selection. We do not want to narrow down the setting to the
somewhat unnatural case of strictly binary classifiers, so all of our experiments
involve multi-class problems. For this kind of data, Information Gain feature
selection is a widely used option.

All experimental results reported in this section are the result of tenfold cross-
validation. We chose the LibSVM operator that is part of RapidMiner [15] as
an inner learner, because it is capable of building competitive logistic models
on top of SVM classifiers for multi-class problems. We used a linear kernel with
default settings, and fixed the C parameter to 0.1 for all experiments to establish
a common baseline. Please note that this low value of C introduces a slight
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Fig. 3. Accuracies and standard deviations of different methods on benchmark
datasets

disadvantage for hashing-based representations, since the original vector space
contains up to 30, 000+ dimensions and for the most part much fewer data
points in our experiments; the data can be expected to be linearly separable in
the original space, but after the noisy projections there might be a considerable
number of examples on the wrong side of the hyperplane, which requires a larger
value of C. In our experimental setup we allow for the baseline information gain
based feature selection to select features on the complete data set (including the
test set) which results in a minor disadvantage for the hashing representation.

4.1 Medium-Sized Corpora

For brevity, we first report experiments on a set of publicly available benchmark
data sets, namely corpora that were used in [8] to evaluate feature selection
techniques4. Compression is not a concern for data sets at this scale, but they
allow for estimates of how many projections or RHH bits are required to preserve
similarities in hash space sufficiently well for classification purposes.

Table 1 lists the data sets and summarizes the results for the plain bag of
words representation, random hyperplane hashing with 8192 and 2048 bits (1
KByte and 256 Bytes), and random projections with 2048 projections. We report
results for random projections where we encoded each projection by 2 bytes,
which means that the representation using only 2048 projections is still four
times longer than the 8192 RHH bit representation. Figures 3 and 4 show the
same results and in addition compare to Information Gain with 2048 and 1024
dimensions and 1024 random projections.

The results of our experiments suggest that 8192 RHH bits are enough to
represent documents based on hashes with a negligible loss in classification ac-
curacy (see bar plots). Only in rare cases, the RHH representation and the vector
space model give significantly different results. Examples include the Cora data

4 It is available at the JMLR website:
http://www.jmlr.org/papers/volume3/forman03a/forman03a data.tgz.
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set, where RHH performs much better, and RE1, where the original represen-
tations and feature selection perform better. Using only 2048 RHH bits reduces
the accuracy typically by about 3 to 4%. Keeping the number of classes and the
generality of the representation in mind, this is still a decent result. Interestingly,
reducing the number of bits even further to 1024 (factor of 2) the performance
drops more than when we reduced it by a factor of 4 before. This reflects the
exponentially decreasing quality of approximations.

Using random projections in the order of 200 dimensions, a case that has been
studied in the literature, clearly does not serve the purpose. It is interesting to
note though that even if we assume just 4 bytes per projection (float, single
precision) we end up with 8192 bits representing only 256 dimensions. In our ex-
periments we generally found that – depending on whether accuracy or shorter
representations are more important – choices between 100 bytes and 1KByte
seem to work reasonably well. A pleasant property of the hashing-based repre-
sentation we found is that the accuracy always increased monotonically with an
increasing number of features. This does not hold for feature selection.

4.2 Experiments with Larger Corpora

The practically more relevant task is to scale up the sketched method to data
sets of very high dimensionality and size. To study the effects with larger corpora
we hence ran experiments on the widely used 20 newsgroups data set and on
a hand-crafted corpus that contained examples of categorized web pages. The
former contains about 20K examples, 40K terms, and 20 different categories. For
the latter we crawled pages from the different sports subcategories of the Open
Directory (DMOZ). We removed all non-textual parts from the web pages, and
tokenized and Porter stemmed the plain text. To reduce noise, we deleted pages
with less than 2 KBytes. Finally, we removed all categories with less than 20
remaining documents, leaving about 30K documents, 200K terms, and 52 skewed
classes for the evaluation. The largest category is “Soccer” with 4858 documents.
Due to the high dimensionality of the original corpus, we only compared the
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performance of random hyperplane projections to BOW after feature selection.
For 20 newsgroups, the information gain based selection of 1024 features gave
an accuracy of 77.11% ± 1.82; increasing the number of selected features up
to 8192 reduced the accuracy. The same LibSVM classifier on a 2048 RHH bit
representation still gave 73.26% ± .64 accuracy. The representation that gave
best results used 8192 RHH bits; the accuracy was 83.28 ± .62 in that case.

On the sports corpora, varying the number of selected features between 2048
and 8192 did not change the performance much. The best result on information
gain feature selection was 90.99% ± .5. With only 1024 bits of RHH data the
same classifier still reached an accuracy of 84.75% ± .45, on 2048 bits it reached
88.68 ± .37. We got the best result of 91.66 ± .41 using 8192 RHH bits.

The results on both these tasks are very competitive in terms of predictive
performance. They illustrate that global feature selection can be avoided without
compromising accuracy, e.g., if transmitting raw data to a central server for
learning is prohibitively expensive in client-server settings.

5 Conclusion

We studied a specific locality sensitive hashing scheme called random hyper-
plane hashing as a representation for building linear classifiers. It differs from
random projections in that it preserves angular rather than Euclidean distances.
A margin-based robustness criterion allowed us to both upper-bound the error
rate and to lower-bound the margin of the resulting classifier in the hash-space in
a strong probabilistic sense. We illustrated that (i) a certain pre-defined weaker
notion of robustness fails to achieve desirably low label error rates, but that
(ii) label errors when enforcing our margin-based robustness criterion decrease
exponentially fast with increasing hash length (dimensionality). Moreover, we
showed that less than 3 random hyperplane hash bits are as expressive in terms
of preserving labels as a full, real-valued random projection.

The error and margin bounds coupled with the high density and expressiveness
motivated an evaluation of the hash representation for learning text classifiers in
a client-centered setting where the representation length of documents and mod-
els as well as the computational costs of classifiers are crucial. We demonstrated
significant gains in representation length over bag of words and the random pro-
jection method, and a classification performance that is competitive to standard
feature selection, despite using a generic, content-agnostic preprocessing scheme.
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