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Abstract. Methods for inductive transfer take advantage of knowledge
from previous learning tasks to solve a newly given task. In the con-
text of supervised learning, the task is to find a suitable bias for a new
dataset, given a set of known datasets. In this paper, we take a kernel-
based approach to inductive transfer, that is, we aim at finding a suitable
kernel for the new data. In our setup, the kernel is taken from the linear
span of a set of predefined kernels. To find such a kernel, we apply con-
vex optimization on two levels. On the base level, we propose an iterative
procedure to generate kernels that generalize well on the known datasets.
On the meta level, we combine those kernels in a minimization criterion
to predict a suitable kernel for the new data. The criterion is based on
a meta kernel capturing the similarity of two datasets. In experiments
on small molecule and text data, kernel-based inductive transfer showed
a statistically significant improvement over the best individual kernel in
almost all cases.

Keywords: kernels, inductive transfer, transfer learning, regularized risk
minimization.

1 Introduction

It is well known that the success or failure of a supervised learning method
depends on its bias. If the bias matches well with the underlying learning prob-
lem, the system will be able to construct predictive models. If the bias does not
match very well, the generated classifier will perform poorly. One of the great
advantages of kernel-based methods is the fact that the learning bias can be
flexibly adjusted by choosing a customized kernel for the data at hand. How-
ever, building custom kernels from scratch for individual applications can be
a tedious task. Recent research has dealt with the problem of learning kernels
automatically from data, see e.g. the work by Ong et al. [I7] and Lanckriet et al.
[14]. In practice actual training data is often rare and in most cases it is better
to invest it for the actual learning task than for kernel selection. Even though
data from the same source may be rare, it is sometimes the case that data on
related or similar learning problems is available. As an example, for text classi-
fication problems, plenty of related text data might be available on the internet.
Similarly, for some problems from computational chemistry, research on related
endpoints might lead to related datasets.
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The task of using such related data to improve accuracy for the the learning
problem at hand is known as inductive transfer. Here, the main idea is that a
kernel (i.e., a bias) that has worked well on the related transfer datasets should
also work well on the new data. One particularly pragmatic approach to inductive
transfer is to build a range of classifiers with varying kernels and settings on the
transfer data and to evaluate the predictive accuracy of those classifiers. The
kernel that performed best on the transfer datasets could then be selected for the
new data. While conceptually simple, this method has three disadvantages. First,
classifier evaluation takes quite a lot of time, because evaluation methods like
cross validation require the generation of many classifiers. Second, the method
evaluates only single kernels and does not take into account the case where a
combination of many kernels might perform better than each individual kernel.
Third, it does not consider the fact that some transfer datasets are more similar
to the learning problem at hand than others.

In this paper we would like to address these issues. As a first contribution
we present a method that finds kernels, which generalize well on the existing
transfer data without the need to resort to expensive evaluation methods. Having
these “known good” kernels for the transfer data, we frame the problem of
finding a good kernel for the new data at hand as a meta learning problem.
Roughly, this learning problem can be stated as follows: given a set of transfer
datasets together with the corresponding good kernels, what would a good kernel
for the data at hand look like? We propose to solve this meta learning task
using a strategy based on regularized convex loss minimization with a meta-
kernel. For the case where the design of domain-specific meta-kernels is too
tedious or impossible (perhaps due to lack of suitable background knowledge),
we propose the histogram kernel, a generic meta-kernel that is applicable for
standard propositional datasets.

The paper is organized as follows. After a brief review of some related work in
Section [2] we introduce the setting and describe our approach in Section [Bl We
start with the problem of finding good kernels for the transfer data in Section
B present the histogram kernel in section and discuss our approach to
the meta learning problem in Section B3l Finally, we report on experiments in
Section @] and conclude in Section

2 Related Work

The presented work is related to research in three areas. On one side, there has
been considerable progress in learning kernels from data. The original formula-
tion as a semi-definite optimization problem by Lanckriet et al. [14] has been
extended in various directions [I6/I9]. Other techniques for kernel learning in-
clude hyper kernels [I7] and boosting [A12]. All these approaches aim at learning
a good kernel from training data rather than from transfer data. On the other
side, there is a long history of work on inductive transfer, see e.g. Baxter [2].
Of course, inductive transfer is related to multi-task learning [3], where the goal
is to induce classifiers for many tasks at once. Multi-task learning with kernels
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Fig. 1. We aim at finding a good kernel k for the base learning problem. To do so,
we search for good kernels ki, ..., k, for the n tr&omsfer learning problems. The meta
learning problem deals with learning a predictor f, which outputs a good base kernel
k for the base data.

has been the subject of research by Evgeniou et al. [6] and Argyriou et al. [IJ.
It is often approached using Bayesian methods [T0J24122]. This paper deals with
a more asymmetric setting, where we use the older datasets only to increase
predictive performance on the new data at hand. Similar settings have been the
subject of work by Kaski and Peltonen [I3] and Erhan et al. [5]. While Kaski and
Peltonen consider the case where only a few instances in the transfer datasets
are relevant, the study by Erhan et al. aims at generalizing from the transfer
data only, so that no base data is necessary.
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Finally, the presented work is also loosely related to research on meta learn-
ing. Here, the goal is to induce meta-classifiers, which, given a dataset and its
characteristics, propose a learning algorithm that is supposed to perform well
on the data at hand. We refer to Pfahringer et al. [I§] for a meta learning study
based on landmarking and a short overview of related work.

3 Kernel-Based Inductive Transfer

For the following discussion, we assume a setting, where a user is interested in
finding a good classifier for some new data. Additionally, she has access to a
range of older datasets, which are assumed to be similar to the new data in
some regard. In the following, we call the older datasets transfer datasets and
the new data base dataset. The main question we are dealing with is how to find
a good kernel (i.e. bias) for the base learning problem, given the old transfer
datasets. As illustrated in Figure [Il we frame this problem as a meta learning
task. We proceed in three steps. First, for each transfer dataset, we generate a
kernel that leads to a highly predictive classifier on this data. Then, from the
transfer datasets and kernels, we learn a meta classifier f, which predicts a new
base kernel when given a base dataset. The meta learning algorithm makes use
of the meta kernel k to compare two datasets. Finally, in the last step, the meta
classifier is applied to the base data at hand, leading to a kernel k& for the base
learning problem. This kernel is then plugged into a standard SVM to construct
a suitable classifier for the base data.

Let us introduce some notation before we delve into the details. As usual,
we assume that the training data is given as a set of labeled examples (X,Y),
where the rows xy,...,x, of the training matrix X € R™ ™ constitute the
examples, and the y1,...,y, € {—1,1} represent the class labels. The goal is
to induce a classifier from (X,Y) that predicts well on new, previously unseen
test instances. Since we are dealing with the inductive transfer setting, we are
given an additional set of ¢ transfer datasets (X1,Y1),...,(Xs, Y;), which are
supposed to pose similar learning problems as the one given by (X,Y). To allow
for a concise description, we mark all parameters and variables referring to the
transfer problems with a bar. For instance, given a particular transfer dataset
(X,Y), we let (Z1,%1),- -, (Zn,¥n) denote its examples. Similarly, if an SVM is
applied on this data, we denote the coefficient vector and threshold output by
the SVM with & := (ay,...,a,)" and b.

As explained above, we proceed in three steps to find a kernel, which is likely
to perform well on the base data. First of all, we compute for each transfer
dataset (X;,Y;) a kernel k! that generalizes well from (transfer) training data to
(transfer) test data. Then, in the second step, we tackle the problem of finding a
good kernel k for the base learning data (X,Y"). We frame this as a meta learning
problem. In particular, we make use of a meta kernel k : (X,Y),(X’,Y"))
r € R, defined on the space of (transfer) datasets, to induce a meta model,
represented by a coefficient vector & and a threshold b. Given a (base) dataset,
the meta model outputs a kernel that is likely to work well for learning on the
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base data. For notational clarity, we again mark all parameters and variables that
deal with the meta learning task (as opposed to the transfer and base learning
tasks) with a circle (e.g., we write k to represent the meta kernel). Finally, in the
last step, we apply the meta model to the training data (X,Y") at hand, yielding
a base kernel k. This kernel is then employed in the base SVM to build a final
classifier. In the following sections we describe the three steps in more detail.

3.1 Learning Kernels from Transfer Data

In the first step, we would like to discover which bias works well for each of the k
transfer data sets. Since we are working with SVMs, this essentially boils down
to the question of what kernel should be chosen in each case. Recall that the soft-
margin SVM optimizes the regularized hinge loss of classifier f on the training
set. More formally, let k be some positive semi-definite kernel, I, (7, f(z)) =
max(0,1 — 5f(Z)) denote the hinge loss, and let C' > 0 be a tuning parameter.
Then, the SVM minimizes the following functional over all linear classifiers f €
Hj, in the Hilbert space produced by kernel k, where | - || denotes the norm in
this space.

S(X.Y, f.k) = Yo W@ @)+l (1)

(i,y)e(ﬁ?,?)

The standard SVM computes the optimal classifier f* by minimizing () over
f, while keeping the kernel k fixed: f* := argmingeq, S(X,Y, f,k). Since the
hinge loss can be seen as a robust upper bound of the zero-one loss, it is a sensible
strategy to select not only the classifier f, but also the kernel k& by minimizing
S(X,Y, f,k). In other words, to find a good kernel for a given dataset, one
can solve (f*,k*) := argminjey, rex S(X,Y, f, k), where K denotes some pre-
defined space of possible kernels. If IC is a convex set, this enlarged optimization
problem is still convex and can thus be solved efficiently [14].

Unfortunately, minimizing () over a transfer data set (X,Y’) does not neces-
sarily lead to a kernel that generalizes well on new data. This is for two reasons.
First, by optimizing k and f at the same time, one finds a kernel £* that works
well together with the optimal f*. However, when one applies the kernel later
on new data, the SVM might induce a f, which might differ from f* and does
therefore not match well with the k*. In other words, we are not looking for
a k* that works well with f*, but a kernel that works well with an f that is
typically chosen by an SVM on new data. Second, for some classes of kernels
the kernel matrix has always full rank. This means that there is always a sub-
space Hy C Hj, whose classifiers f € Hy achieve Y., 1n(%:, f(Z;)) = 0. This
is also true for practically relevant classes of kernels, for instance, radial basis
kernels. In those cases, minimizing S(X,Y, f,k) focuses almost exclusively on
the regularization term ||f|; and the data-dependent term is largely ignored
(because it is zero in most cases). In other words, a kernel matrix of full rank
leads to overfitting in the sense that the optimization procedure prefers kernels
that match well with the regularization criterion rather than kernels that catch
the bias inherent in the data.
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Algorithm 1. An iterative procedure to find a kernel that generalizes well on
the dataset (X,Y)

procedure FINDGOODKERNEL (X,
select subset (X', Y’) from (X,Y)
select initial k¥ € K
10
repeat

i—i+1

f(i) — argminfeﬁ S( X' Y’ f, E(i_l))

E®  argming S(X,Y, fk)
until S(X,V, fO k@) > §(X, 7V, fi-Y k(-D)
return (k% )

end procedure

70)

To avoid the two problems, we split (X,Y) into two parts and modify the op-
timization criterion, so that f depends only on the first part of the data, whereas
the kernel k € K is evaluated on the whole dataset. In this way, f* is chosen from
a much smaller and more restricted space of classifiers. Consequently, the opti-
mization procedure needs to better adjust k* to ensure that even a f* from the
rather restricted subspace generalizes well to the remaining instances. This setup
is similar to classifier evaluation with a hold-out set, where a classifier is induced
from the training set and then evaluated on a separate test set. More formally,
let (X’,Y”) be some subset of (X,Y). We use the standard SVM regularized risk
functional () to rate a classifier f for a fixed kernel k on this subset:

fi = argmin S(X', Y, f, k) (2)
feH
Then, we choose the optimal kernel so that it performs best with f]-j on all
examples. More precisely, the desired optimal kernel k* is

k* = argmin S(X, Y, argmin (X", Y, f, k), k) (3)
kek FeH;

This criterion contains two nested optimization problems, one to determine the
best classifier, the other, which depends on the first one, to compute the optimal
kernel. Generally, the functional is not convex when optimizing over k and f]C at
the same time. However, on their own, the two single parts are convex optimiza-
tion problems: The first part argmingey, S(X',Y', f, k) is the standard SVM cri-
terion, that is, a quadratic program. The second part argmingcx S(X,Y, fz, k)
is a convex criterion, if one sets f]—: to a fixed value and optimizes only over
k. This naturally leads to an optimization procedure that alternates between
optimizing (@) with a fixed k and optimizing (@] with a fixed fl—: . The loop is
terminated as soon as neither of the two steps improves on the score anymore.
The approach is outlined in Algorithm [I1

Of course, it is impractical to deal with the explicit representations of f— in
a high-dimensional Hilbert space. Fortunately, the representer theorem ensures
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that the optimal f]—j is always contained in the linear span of {k(z',-)|z’ € X'}.
Therefore, a classifier f can be conveniently represented by a coefficient vector
@ and a threshold b, so that f(z) = Z:il yiaik(x, zh) + b. With this, the first
criterion (2 can be equivalently stated as follows:

’
n

argmin C Y 1(7i, [K'D'a); +b) + a" D'K'D'a (4)
a€eRy beR

Here, @ and b are the coefficient vector and threshold of the linear classifier to be
found, n’ is the number of instances in (X', Y”), K’ denotes the n’ x n’ kernel ma-
trix with K; = k(#;, 7;), D" is an’ x n’ diagonal matrix whose diagonal contains
the class labels D}, = 9/, and [z]; denotes the ith component of vector z.

The exact form of the second criterion depends on the structure of K. For
the experiments in section @ we set K to the space of positive linear com-
binations of I main kernels ki,..., k. This means that a kernel k € K can
be represented by a vector i € RY .|| < 1 of linear coefficients, because

k(Z1,%2) = 22:1 fiiki(Z1,Z2). With this, criterion () becomes:

argmin C Z In(Fs, [MA); +b) + 71 1 (5)

RERY RI<L 5

Here, M € R™ ! with Mij = Vi Zz;l dekEj(fi,fk)7 and 7 € R! with 7, =
Z?:/1 Z;L/:l Uiy 0uaky(Z;,2;). Of course, the overall transfer learning scheme
works also with other kernel spaces K. For instance, one could choose K =
{k,|p € R}, where k, is a kernel function parameterized with p. If the resulting
kernel space K is a convex set, the corresponding transfer optimization criterion
@) and the meta learning problem () (see section B3)) can be cast as convex
optimization problems and are thus solvable with standard methods.

3.2 The Histogram Kernel for the Meta Learning Task

In the preceding section we described a method to find a kernel 121* that encodes
the bias inherent in each transfer dataset (X;,Y;). Now, we address the main
question of the paper: How can we make use of this transfer information when
dealing with the base learning problem, where we wish to learn a classifier for
the base dataset (X,Y)? In particular, given the k7, what should a “good” base
kernel k for the base data look like? Since we assume that the transfer learning
problems are similar to the base learning problem, choosing the average over the
k# appears to be a good option. On the second sight, though, it is clear that
some transfer learning problems are more similar to the base setup than others.
Thus, it makes sense to frame the task of finding a good base kernel k as a meta
learning problem. Formally, this problem can be stated as follows: Given a set
of t transfer datasets (X1,Y1),...,(X;,Y;) and the corresponding ¢ known good
kernels k%, ..., k}, we would like to predict a new kernel k that performs as good
as possible on the base data (X,Y).
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We tackle this meta learning problem using a kernel-based approach. As a first
step, we need a meta kernel k : (X,)) x (X,)) — R. As it is the case with all
kernel-based classification systems, it is best to apply a kernel that incorporates
domain specific knowledge about the problem at hand. In our setting one could
use information about the features of the transfer and base datasets to construct
informative kernels. For instance, if the learning task at hand deals with the
classification of text documents, a meta kernel could compare two datasets by
counting the tokens that are shared in the two documents. As a default kernel
for the case where no usable meta-information is available for the construction
of a custom kernel, we propose the histogram kernel.

Given two datasets (X,Y) and (X’,Y"), where X € R"*™ and X’ € R *"
are training matrices, the histogram kernel is the sum of the radial basis kernel
applied on the difference of the two histograms of feature averages and the ra-
dial basis kernel on the difference of the histograms of instance averages. More
precisely, the kernel is computed as follows. Assume one is given the two train-
ing datasets X and X’. First, we compute the averages h.(X) = }LeZX and
he(X) = ! Xe,, for X and X’ (e,, denotes the vector of n ones) over the rows
and columns of those two datasets. Let hc,h.,h, and h] denote the average
vectors for X and X' respectively. In the next step we sort the components in
the four vectors by descending size. With that, each vector represents the distri-
bution of feature and instance averages in the datasets, similar to a histogram.
Unfortunately, we can not compare the corresponding vectors directly, because
the number of columns and rows may differ between X and X’ so that the
histogram vectors differ in the number of components. Thus, we normalize the
histograms h,, h’, and h,., h!. by duplicating components evenly in the smaller of
the two vectors until the two histograms have the same number of components.
Finally, we compute the absolute differences between the two corresponding his-
tograms d, := | Y™ |[he—hl];l and d, == | 377 [k — R ];]. The final kernel
value is then k((X,Y),(X’,Y")) := L(exp(—d.) + exp(—d,)). It is easy to see
that k is positive semi-definite, because d. and d, constitute the one-norm of the
histogram differences. While the histogram kernel is designed as a generic meta
kernel for the case where no application-specific choice is available, it appears to
work quite well in the experiments in section 1l It is an open question, whether
it could also be applied in other transfer or meta learning schemes, and which
other application-specific meta kernels could provide successful alternatives.

3.3 The Meta Learning Procedure

With this, we have the building blocks to address the meta learning problem.
Recall that we wish to learn a meta-model that relates the transfer datasets
(X1,Y1),...,(X:,Y;) and the corresponding “known good” kernels ki, ..., k;.
The model is later used to predict a suitable base kernel for the base dataset.
Also recall from section Bl that each kernel &} is a linear combination k} =
Zl | fijk; of some main kernels k;. Thus, the transfer kernels k7,...,k; are
actually represented by the Correspondmg coefficient vectors fiy, ..., fit.
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For the meta learning problem, we chose a regularized loss minimization
approach that resembles a Leave-One-Out-SVM [21]. First of all, it is clear,
that the zero-one or hinge losses are not applicable in this setting, because
the quantity to predict is a whole vector rather than a binary variable. As
a natural replacement, we select the 2-norm to measure the loss between the
predicted and true coefficient vector: lo(j1, f(X,Y)) = ||z — f(X,Y)]2. Fol-
lowing the approach of the SVM, we now aim at finding a coefficient vector
& € Rt and a threshold b € R!, which minimize the loss of the kernel classifier
FX,Y) = S E((X:,Y:), (X,Y))ésfis + b. For the training of this classifier,
though, we follow the philosophy of the Leave-One-Out-SVM and do not con-
sider the contribution of a training example for its own classification. More pre-
cisely, when evaluating the classifier given by (¢, b) on training instance (X;, Y;)
during the learning step, we measure the 2-norm loss of the modified classifier
PUXY) =30 k(X5,Y5), (X, Y))d; /i + b, which does not incorporate the
contribution of the instance it is evaluated on. This ensures that the induced
classifier (&, b) focuses more on generalization from similar training instances,
rather than the rote-learning of dataset-weight associations. In other words, the
approach encourages stronger generalization, which is helpful for the typically
quite small meta datasets. Altogether, the optimization procedure for the meta-
learning task is given by:

t
argmin C' Y lp(ji, f\(X,Y)) + 6" Dé (6)

&>0,b i=1

Here, D is the meta kernel matrix normalized with the main kernel weight vec-
tors: Di; = k((Xi,Y3), (X, Y;)) Al -

Finally, after the meta classifier is induced from the transfer datasets, we can
apply it to the base data (X,Y’) to obtain a kernel k. This kernel, in turn, can
be expected to work well for the data at hand, because it was derived from the
related transfer datasets. In the next section we report results on experiments
with the described transfer learning scheme.

4 Experiments

We evaluated the described approach to inductive transfer in two experiments.
The first one deals with the prediction of biological activity of molecules, the
second with text categorization.

4.1 Structure-Activity Relationship Data

In this experiment, we evaluated kernel-based inductive transfer on the task of
learning the biological activity of compounds given their molecular structure as
a graph. Learning challenges of this sort are known as structure-activity rela-
tionships (SARs), and are common in medicinal chemistry and pharmaceutical
research. For the transfer and base data, we chose six datasets from the literature.
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Table 1. Results: estimated predictive accuracy of the classifiers on the structure-
activity relationship (SAR) data

Induct. Kernel Lin Quad RBF Lin Quad. RBF Lin Quad RBF
Trans. Learn. 100 100 100 500 500 500 all all all
bloodbarr 75.6  70.6e 75.9 75.7 72.8e 72.7e 74.1e T1.3e 71.7e 73.Ge 71.3e

factorxa 95.7  93.9e¢ 90.9e 94.9e 78.9e 94.0e 95.0e 71.7e 94.7e¢ 95.5 68.1le
hia 81.8 77.0e 76.7e 77.4e 70.60 79.1e 79.4e (7.2e 77.30 79.2e 66.3e
mutagenesis 77.1 71.9e 72.0e 73.7e (7.7¢ 72.0e 73.6e 57.8e 71.5e 72.8e 56.3e
nctrer 81.6 77.6e 79.3e 78.2e 65.0e 80.0e 79.9¢ (2.8e 78.5e 80.1e G1l.1le
yoshida 72.5 64.9e¢ 63.6e 65.9¢ 68.8e 67.4e 67.50 61.0e G7.7e 67.7e 61.0e

The bloodbarr dataset classifies 415 molecules according to the degree to which
they can cross the blood-brain barrier [15]. The HIA (Human Intestinal Absorp-
tion) dataset contains 164 molecules from various sources, rated according to
their oral bio-availability [20]. For the FactorXa set, the task is to discriminate
between factor Xa inhibitors of high and low affinity [§]. The NCTRER dataset
[7] deals with the prediction of binding activity of small molecules at the estro-
gen receptor, while the mutagenesis dataset [I1] deals with the mutagenicity of
compounds. Finally, the Yoshida dataset [23] consists of 265 molecules classified
according to their bio-availability.

To transform the graph data into an attribute-value representation, we deter-
mined for each dataset the subgraphs that occur in more than a fixed fraction
Pmin Of graphs in the set. We lowered the threshold p,,;, for each dataset until
around 1,000 non-redundant subgraphaEl were found and used these subgraphs as
binary features (“subgraph occurs/does not occur”). For the resulting datasets,
we applied the method described in section Bl We randomly chose half of the
instances for the estimation of f]i: and ran Algorithm [ with C' = 1 to compute
good transfer kernels k*. Each such kernel is a linear combination of nine main
kernels. For the main kernels, we chose a linear kernel, a quadratic kernel, and a
Gaussian kernel with o = 1. Since the subgraph features are sorted by size (i.e.
number of edges), and since it is known that smaller subgraphs tend to be more
informative, we applied the three kernels first on the first 100 features, then on
the first 500 features, and finally on all features. The k} for each transfer dataset
are then linear combinations of these nine main kernels.

Finally, we set one dataset as base learning problem aside and kept the remain-
ing datasets as transfer data. We generated the meta model from this transfer
data using the histogram kernel outlined in section and the optimization
criterion described in section 3.3l The application of the meta model on the base
data yields the desired base kernel, which was used in an SVM with C =1 on
the base data to learn a classifier. An evaluation of this classifier is given in

! Here, “non-redundant” means that we omitted features whose occurrence vector
agreed exactly with an already exiting subgraph feature. This step is necessary to
avoid the combinatorial explosion, which takes place when a large amount of slight
subgraph variants occur frequently in a dataset.
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Table 2. Results: estimated predictive accuracy of the classifiers induced on text cat-
egorization data

Dataset Induct. Kernel Lin Quad RBF Lin Quad RBF Lin Quad RBF
Trans. Learn. 25% 25% 25% 50% 50% 50% all all all
10341-14525 55.9  52.2e¢ 49.9e 49.2¢ 56.6 50.2e¢ 49.2e¢ 57.2 50.le 49.2e 53.4e
1092-1110 78.5 63.3¢ 74.6e 51.7e 61.3e 74.6e 51.8e¢ 61.7e 74.9e 51.8¢ 61.9e
114202-190888  69.3 55.3e 64.6e 52.6e 50.2e 64.6e 52.6e 48.8e 64.9e 52.8e 50.8e
1155181-138526 85.2 64.8e¢ 85.2 57.5e 57.0e 85.2 58.4e 56.1e 85.1 58.3e 55.9e
123412-17899 68.7 66.7 66.3e 64.68 63.5e 66.3e 64.5e 63.7e 66.30 64.2e 64.4e
14271-194927 67.1 56.9e¢ 65.3 52.7e 49.4e (5.1 52.4e 49.8e¢ 64.9 52.0e 49.1e
14630-20186 73.4  56.1e 64.7e 44.6e 59.7e 64.6e 45.2e 59.9e (7.5 45.8e 54.8e
173089-524208  79.8 68.0e T3.5e 63.4e 62.5e 73.7e 63.9¢ 64.50 73.80 63.9e 64.2e
17360-20186 69.5 56.0e 62.8e 51.6e 53.2e 62.6e 51.7e 53.9e 63.1e 51.9e¢ 51.2e
186330-314499  59.3 56.0 52.3e 49.0e 57.4e 52.5¢ 49.0e 57.3e 52.7e 49.0e 55.9e

Table Il For comparison, we state the accuracy of a classifier that was induced
by kernel learning without the use of the transfer data. To obtain this classifier,
we split the training data into two parts of equal size, learn a kernel from the
first part of the data and a classifier from the second part. We also give the
accuracies of the classifiers induced by the nine main kernels. The estimates are
averages over ten ten-fold cross-validation runs. An accuracy estimate for the
comparison classifiers is marked with a bullet (“e”), if it is significantly worse
than the one for the inductive transfer method according to a paired Wilcoxon
rank test at the 5% significance level. The classifiers generated by the presented
inductive transfer method were never significantly worse than those induced by
the main kernels and by kernel learning. Inductive transfer outperforms kernel
learning on all six datasets and it is better than all main kernels on five of them
(significantly so on four datasets). Only on the bloodbarr dataset, the classifier
constructed by the linear kernel proved to be competitive with the inductive
transfer approach.

4.2 Text Data

For the second experiment, we evaluated the proposed method on text catego-
rization data. This domain is well suited for our setting, because the internet
provides a wealth of labeled text documents that can be used for inductive
transfer. The experiments are based on the datasets from TechTC, the Technion
repository of text categorization datasets [9]. Each dataset contains between 150
and 200 web documents, which were obtained by crawling the english language
section of a web directory. The binary classification task posed by a dataset con-
sists in telling which category of the web directory a document was taken from.
An instance is represented by a vector whose components state the number of
occurrences of a word. We sorted the features in descending order from frequently
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to infrequently occurring words. For the experiments, we randomly chose fifty
datasets as transfer data, and selected ten base datasets for evaluation.

As a first step, we applied Algorithm [I] to construct a predictive kernel for
each transfer dataset. As before, we used half of the data for classifier estimation
and set C' = 1. The kernels were again represented as linear combinations of nine
main kernels k1, . . ., kg. The first three main kernels were applied on only the first
quarter of the features (that is, the 25% of most frequently occurring words), the
second three main kernels used the 50% most frequently occurring words, and the
last three kernels were computed on all features. As in the previous experiment,
we had a linear, a quadratic and a Gauss main kernel for each feature (sub-)set. In
the next step, we computed the meta kernel matrix for the fifty transfer datasets.
The meta kernel was computed based on the overlap of word features between
two datasets. More precisely, we chose k(X1, X2) := |[WiNWa|/ max(|W1|, |[Wa|),
where W, and W5 denote the set of words in X; and X», respectively.

Plugging this meta kernel into the optimization criterion (), we obtain a
meta classifier that predicts a kernel for each base dataset. Table 2] gives an
evaluation of the predictive accuracy of the classifiers that were induced with
those base kernels (setting C' = 1 for the base SVM). As before, we give also the
predictive performance of a kernel induced from the training data and the single
main kernels. All estimates are averaged over ten runs of tenfold-cross valida-
tion. An estimate is marked with a bullet (“e”), if it is significantly worse than
the estimate for the inductive transfer method according to a paired Wilcoxon
rank test on the 5% significance level, and with a circle (“0”), if it is better.
The inductive transfer method outperformed the kernel learning on all datasets
(significantly so on eight out of the ten) and it was better than all main kernels
in nine cases (in seven of them significantly), a clear indication that the pre-
dicted base kernels provide indeed a good bias for text categorization tasks on
web documents.

5 Conclusion

In this paper, we described a kernel-based approach to inductive transfer. In this
setting, the main goal is to make use of existing datasets to increase the predictive
performance of classifiers induced on a new dataset. We framed the problem of
finding a good bias for the new data as a meta learning problem: Given the
transfer data, what should a kernel for the new data look like? We proposed a
kernel-based approach to this problem. First, we presented an iterative procedure
to find transfer kernels, which encode the bias necessary to perform well on the
transfer datasets. Second, we introduced a convex optimization criterion for the
meta learning problem to predict a suitable base kernel for the new data. Third,
we described the histogram kernel, a general purpose kernel for the meta learning
task. Of course, the work can be extended in various directions. For example, it
would be interesting to investigate other meta kernels that use more (possibly
domain specific) knowledge about the datasets.
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