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Abstract. Gaussian processes using nonstationary covariance functions
are a powerful tool for Bayesian regression with input-dependent smooth-
ness. A common approach is to model the local smoothness by a la-
tent process that is integrated over using Markov chain Monte Carlo
approaches. In this paper, we demonstrate that an approximation that
uses the estimated mean of the local smoothness yields good results and
allows one to employ efficient gradient-based optimization techniques for
jointly learning the parameters of the latent and the observed processes.
Extensive experiments on both synthetic and real-world data, including
challenging problems in robotics, show the relevance and feasibility of
our approach.

1 Introduction

Gaussian processes (GPs) have emerged as a powerful yet practical tool for solv-
ing various machine learning problems such as nonlinear regression or multi-class
classification [16]. As opposed to making parametric assumptions about the un-
derlying functions, GP models are directly expressed in terms of the training
data and thus belong to the so called nonparametric methods. Their increasing
popularity is due to the fact that nonlinear problems can be solved in a princi-
pled Bayesian framework for learning, model selection, and density estimation
while the basic model just requires relatively simple linear algebra. A common
assumption when specifying a GP prior is stationarity, i.e., that the covariance
between function values f(x) and f(x’) only depends on the distance ||x — x/||
between the indexes and not on their locations directly. Consequently, standard
GPs lack the ability to adapt to variable smoothness in the function of interest.

Modeling input-dependent smoothness, however, is essential in many funda-
mental problems in the geo-sciences, mobility mining, activity recognition, and
robotics, among other areas. Consider, for example, the problem of modeling ter-
rain surfaces given sets of noisy elevation measurements. Accurately modeling
such data requires the ability to deal with a varying data density and to bal-
ance smoothing against the preservation of discontinuities. Discontinuities arise
for instance at steps, stairs, curbs, or at walls. These features are important
for planning paths of mobile robots, for estimating traversability, and in terrain
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segmentation tasks. Accordingly, the ability to flexibly adapt a regression model
to the local properties of the data may greatly enhance the applicability of such
techniques.

In the past, several approaches for specifying nonstationary GP models haven
been proposed in the literature [T2IT3]. A particularly promising approach is due
to Paciorek and Schervish [8] who proposed to explicitly model input-depending
smoothness using additional, latent GPs. This approach (a) provides the user
with a continuous latent space of local kernels, (b) allows the user to analyze
the estimated covariance function yielding important insights into the problem
domain, and (c) fully stays in the GP framework so that computational methods
for speeding up GP inference and fitting can be adapted.

Paciorek and Schervish provide a flexible and general framework based on
MCMC integration, which unfortunately — as also noted by the authors — is com-
putationally demanding for large data sets and which is thus not feasible in the
real world situations that are typically encountered in robotics and engineering
tasks. In this paper, we present a simple approximation that does not integrate
over all latent values but uses the predicted mean values only. Specifically, we
parameterize the nonstationary covariances using a second GP with m latent
length-scales. Assuming m < n, where n is the number of training points, this
results in a nonstationary GP regression method with practically no overhead
compared to standard GPs. More importantly, using point estimates naturally
leads to gradient-based techniques for efficiently learning the parameters of both
processes jointly, which is the main contribution of this paper.

We present experiments carried out on on synthetic and real-world data sets
from challenging application domains such as robotics and embedded systems
showing the relevance and feasibility of our approach. More specifically, our
nonstationary GP approach significantly outperforms standard GPs in terms
of prediction accuracy, while it is significantly faster then [§]. We regard these
empirical results as an additional substantial contribution of this paper as they
tighten the link between advanced regression techniques based on GPs and ap-
plication domains such as robotics and embedded systems. To the best of our
knowledge, it is the first time that nonstationary GPs have been learned in a
principled way in these challenging domains.

This paper is organized as follows. After reviewing related work, we introduce
nonstationary Gaussian processes regression and how to make predictions in
Section Bl In Section @ we then show how to learn the hyperparameters using
gradient-based methods. Before concluding, we demonstrate the feasibility and
relevance of our approach in an extensive set of experiments.

2 Related Work

Gaussian process models [II] have the advantage of providing predictive un-
certainties for their estimates while not requiring, for instance, a fixed dis-
cretization of the space. This has led to their successful application in a wide
range of application areas including robotics and ubiquitous computing. For



206 C. Plagemann, K. Kersting, and W. Burgard

example, Schwaighofer et al. [I4] applied the model for realizing positioning
systems using cellular networks. GPs have been proposed as measurement mod-
els [1] and for model-based failure detection [I0] in robotics because they natu-
rally deal with noisy measurements, unevenly distributed observations, and fill
small gaps in the data with high confidence while assigning higher predictive
uncertainty in sparsely sampled areas. Many robotics applications, however, call
for non-standard GP models. Kersting et al. [5], for example, have shown that
heteroscedastic GP regression, i.e., regression with input-dependent noise out-
performs state-of-the-art approaches in mobile robot localization. Whereas they
also use a GP prior to model local noise rates, they do not estimate the hyper-
parameters jointly using gradient-based optimization but alternate each process
in a sampling-based EM fashion. Lang et al. [6] modeled 3D terrain data using
nonstationary GPs by following the approach of Paciorek and Schervish [§].
They derived a specific adaptation procedure that also does not require MCMC
integration as originally proposed by Paciorek and Schervish, but that is not
derived from first principles. Another approach to modeling nonstationarity is
to use ensembles of GPs, where every GP is assigned to a specific region, an
idea akin to GP mixture models such as presented by Williams’ [16]. A related
idea has also been proposed by Pfingsten et al. [9]. Cornford et al. [3] model
straight discontinuities in wind fields by placing auxiliary GPs along the edge
on both sides of the discontinuity. They are then used to learn GPs representing
the process on either side of the discontinuity.

Apart from Paciorek and Schervish’s [8] (see also the references in there) ap-
proach of directly modeling the covariance function using additional latent GPs,
several other approaches for specifying nonstationary GP models can be found
in the literature. For instance, Sampson and Guttorp [I2] map a nonstationary
spatial process (not based on GPs) into a latent space, in which the problem
becomes approximately stationary. Schmidt and O’Hagan [I3] followed this idea
and used GPs to implement the mapping. Similar in spirit, Pfingsten et al. [9]
proposed to augment the input space by a latent extra input to tear apart re-
gions of the input space that are separated by abrupt changes of the function
values. All GP approaches proposed so far, however, followed a Markov chain
Monte Carlo approach to inference and learning. Instead, we present a novel
maximum-a-posterior treatment of Paciorek and Schervish’s approach that fully
stays in the GP framework, explicitly models the covariance function, provides
continuous estimates of the local kernels, and that naturally allows for gradient-
based joint optimization of its parameters.

3 Nonstationary Gaussian Process Regression

The nonlinear regression problem is to recover a functional dependency y; =
f(xi) + €; from n observed data points D = {(x;,y;)}"_,, where y; € R are the
noisy observed outputs at input locations x; € R?. Throughout this paper we
will also use X € R™*? to refer to all input locations. For the sake of simplic-
ity, we will concentrate on one-dimensional outputs, but all formulas naturally
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Table 1. Notation used to derive the gradient of the model selection criterion w.r.t.
the joint hyperparameters 6 of the nonstationary GP

Observed GP gP,

Hyperparameters of GP, 0, = (0f,0n)

Training set D=(X,y), X cR™ yecR"
Prediction y* € R at location X* € R**4

Latent length-scale process GPy

Latent length-scale support values £ € R™ at locations X € R™*¢
Latent length-scales at training points of GP, £ € R™ at locations X

Latent length-scale at test point " € R at location X*
Hyperparameters of GP, 0, = (of,00,0n)

Joint hyperparameters 0=1(0,,0,,8) =(0f,0n,0f,0¢,0n,L)

generalize to the multidimensional case. The regression task is to learn a model
for p(y*|x*, D), i.e., the predictive distribution of new target values y* at x*
given D. The notation we will use is listed in Table [

Stationary Gaussian Process Regression: In the standard Gaussian process
model for regression (STD-GP), we assume independent, normally distributed
noise terms ¢; ~ N(0,02) with a constant noise variance parameter o2. The
central idea is to model every finite set of samples y; from the process as jointly
Gaussian distributed, such that the predictive distribution p(y*|x*, D) at arbi-
trary query points x* is a Gaussian distribution A/(u, 0?) with mean

H= kiﬂ*,x(Kx’x + UZI)_ly (1)
and variance
0% = k(x*,x*) — kz*,x(Kx,x +021) ke + 02 (2)

Here, we have Ky x € R™" with Kxx(4,5) = k(Xi,%;), kx- x € R with
ks x(1) = k(x*,%:), y = (y1,-..,yn)T, and I the identity matrix.

An integral part of GP regression is the covariance function k(-,-), which
specifies the covariance of the corresponding targets (see [I1] for more details).
A common choice is the squared exponential covariance function kg (x,x’) =
UJ% exp (—1/2- (s(x,x")/0¢)?) with s(x,x’) = ||x — x'|. The term oy denotes
the amplitude (or signal variance) and oy is the characteristic length-scale. The
parameters 8, = (o, 0¢, 0,,) are called the hyperparameters of the process. Note
that we — as opposed to some other authors — also treat the global noise rate o2
as a hyperparameter for ease of notation.

Modeling Input-Dependent Smoothness: A limitation of the standard GP
framework as described above is the assumption of constant length-scales o, over
the whole input space. Intuitively, length-scales define the extent of the area
in which observations strongly influence each other. For 3D terrain modeling,
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Xi Xz

Fig. 1. Placing a GP prior over the latent length-scales for nonstationary GP regression.
An observed Gaussian process GP, is sketched on left-hand side and the latent GP,
governing the local length-scales is shown on the right-hand side.

for instance, within the context of mobile robot localization, one would like
to use locally varying length-scales to account for the different situations. For
example in flat plains, the terrain elevations are strongly correlated over long
distances. In high-variance, “wiggly” terrain, on the other hand and at strong
discontinuities, the terrain elevations are correlated over very short distances
only, if at all. To address this problem of varying correlation scale, an extension
of the squared exponential (SE) covariance function was proposed by Paciorek
and Schervish [8], which takes the form

—3 o4yt
- €xXp [_d£< ' ) j) dij‘| ) (3)

where d;; = (x; — x;). The intuition is that each input location x’ is assigned a
local Gaussian kernel matrix X’ and the covariance between two targets y; and
y; is calculated by averaging between the two local kernels at the input locations
x; and x;. In this way, the local characteristics at both locations influence the
modeled covariance of the corresponding target values. For the sake of simplicity,
we consider the isotropic case only in this paper. The general case can be treated
in the same way. In the isotropic case, where the eigenvectors of the local kernels
are aligned to the coordinate axes and their eigenvalues are equal, the matrices
3, simplify to ¢? - I,, with a real-valued length-scale parameter ¢;. In the one-
dimensional case, for instance, Eq. [B]) then simplifies to

Ei+2j

) g2 |4 E“ll
k(XwXJ)—Uf|ZZ| | 251 9

(zi — x;)?

, C o1, 1\
k(xi,zj) = 0,26 ()4 ‘(42')4 : (26? + 2@) " exp [_ 1y2 4 102 (4)
271 277

We do not specify a functional form for the length-scale ¢(x) at location = but
place a GP prior over them. More precisely, an independent GP is used to model
the logarithms log(¢(x)) of the length-scales, to avoid negative values. This pro-
cess, denoted as GP, is governed by a different covariance function specified by
the hyperparameters 6, = (0s,0¢,0,). Additionally, we have to maintain the
set of m support values £ as part of 8 as depicted in Figure[Il

Making Predictions: In the extended model, we now have to integrate over
all possible latent length-scales to get the predictive distribution

p(y*1X*, D, 0) ://p(y*\X*J), exp(0*),exp(£),0,)-p(L*, €| X", X, £,X,0,) de dt*
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of aregressand y* at location X* given a dataset D and hyperparameters 6 (Note
that we explicitly highlight here that GP, is defined over the log length-scales).
Because this marginalization is intractable, [8] apply MCMC to approximate
it. Instead, we seek for the solution using the most probable length-scale es-
timates, i.e., p(y*|X*,D,0) ~ p(y*|X", exp(¢*),exp(£), D, 0,) where (£*,£) are
the mean predictions of the length-scale process at X* and the locations in D.
Since the length-scales are independent latent variables in the combined regres-
sion model, making predictions amounts to making two standard GP predictions
using Eqgs. (1)) and (), one using GP, to get (£*,£) and one using GP,, with (£*, £)
treated as fixed parameters.

4 Learning Hyperparameters

So far, we have described our model assuming that we have the joint hyper-
parameters @ of the overall process. In practice, we are unlikely to have these
parameters a-priori and, instead, we wish to estimate them from observations y.

Assume a given set of n observations y at locations X. We seek to find those
hyperparameters that maximize the probability of observing y at X, i.e., we
seek to maximize p(y|X,0) = [p(y|X,£,0,) p(€|X,€,X,80,) d¢ . As for mak-
ing predictions, such a marginalization is intractable. Instead, we seek to make
progress by seeking a solution that maximizes the a-posteriori probability of the
latent length-scales

logp(€ly, X, 0) = log p(y|X,exp(£),0,) +logp(£|X,£,X,0;) 4 const.,  (5)

where, again, the £ are the mean predictions of GP,. The gradient of this objec-
tive function w.r.t. to hyperparameters € or a subset of them can be employed
within gradient-based optimization to find the corresponding solution. In our
experiments, we optimized o, 0,, and oy of the latent kernel width process
in an outer cross-validation loop on an independent validation set and assumed
0L(6)/0e = 0, where e denotes one of them, within the inner gradient opti-
mization. The locations X of the latent kernel width variables were sampled
uniformly on the bounding rectangle given by X.

In the following, we will detail the objective function and the gradient of it
with respect to the hyperparameter.

4.1 The Objective Function

We maximize the marginal likelihood (@) of the data with respect to the joint
hyperparameters as well as the support values £ of the length-scale process.
The first term in this equation is the standard objective function for Gaussian
processes
L r 21\ —1 1 2 n

logp(y|X, exp(£),0,y) = — )y (Kxx+0,1) "y~ log[Kxx +03,1| - log(2m) ,
where |M| denotes the determinant of a matrix M and Kx x stands for the
noise-free nonstationary covariance matrix for the training locations X that will
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be detailed below. Our point estimate approach considers the most likely latent
length-scales £, i.e. the mean predictions of GP; at locations X. Thus, the second
term of Eq. (&) has the form

1
log p(€[X, £, X, 0¢) = —  1og [Knx + 071 = Z log(2r) .

Putting both together, we get the objective function
L(6) =logp(Lly, X,0) = c1 +ca- [y' A"y +log|A| +1logB|] ,  (6)

where c¢; and cy are real-valued constants, and A := Ky x + 021 and B =
Ky x + 021 are covariance matrices. The noise-free part of the nonstationary
covariance matrix Ky x is calculated according to Eq. ([B]). As mentioned above,
we consider the isotropic case only for the sake of simplicity. We express Eq. ()
for the case of multivariate inputs x; using the compact matrix-vector notation
suggested in [2]. Recalling that £ represents the local length-scales at the training
locations X, we get

Kux =02 -PrioPeio(1/2) 2Py 2 o (7)
with
P,=p-1}, P.=1].p", p=2L"¢,
P, =P, +Pe, B=expl-s(X)+ Pl , £=oxp [Kpy [Kux +021] 4]

Note that p € R™ and, thus, P, and P, are matrices built using the outer vector
product. Here, s(X) calculates the n x n matrix of squared distances between
the input vectors x contained in X. o and + denote element-wise multiplication
and division respectively and matrix exponentiation M is also defined element-
wise for & # —1. In the same notation, the covariance function for the latent
length-scale process GP; becomes (in the stationary squared exponential form)

;S(JHX)]

Kyx = O’f2 - exp {—

and, analogously, for making predictions within GP,

1
9 s(op 72X, a[QX)] .

Ky x = O'f2 - exp [—

4.2 The Gradient

Using standard results from matrix calculus, the partial derivative of the objec-
tive (B) w.r.t. an element e of @ turns out to be

oLO) 5, 10A _10A _,0B
90 = -y A e A7y +tr(A e B e ), (8)

where tr(M) is the trace of a matrix M. For the two hyperparameters of GP,
we get the straight-forward results

) + tr(
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O0A __ oB __ O0A
oo, 2JnI’ Oon 07 dog

The case @ = £ yields (0B/0€) =0 and (0A)/(0€) = (0Kxx)/(0€) =
8<Pr4)oPcioPs_50E N Pr‘l‘oa(PM)oPS_%oE N
oe oe

piop.io?Ps P g +<Priopciopséoa(E))
oL oL

2 =0.

=207Kxx , b0y

o3 (1/2)72 -

The remaining simplifications can be achieved by substitution with the defini-
tions given after Eq. (@) and by applying general rules for differentiation such
as the chain rule

0f(9(X)) _ a(f(U):) 9g(x)

ox ou ox ‘U—g(X)

where X: denotes the vectorization of a matrix by stacking its columns, e.g., as
applied to a term containing element-wise division

0(A +B) Ao 9 inv(U): 0OB:
ox ou: ox  |y_m

for a matrix A that does not depend on x. Substituting the resulting par-
tial derivatives in Eq. (8) yields the gradient 0L(6)/00, which can be used
in gradient-based optimization techniques, such as Mgller’s [7] scaled conjugate
gradients (SCG), to jointly optimize the hyperparameters of GP, and GP,.

5 Experiments

The goal of our experimental evaluation was to investigate to which extent the
point estimate approach to nonstationary GP regression is able to handle input-
dependent smoothness and to quantify the gains relative to the stationary model.
Specifically, we designed several experiments to investigate whether the approach
can solve standard regression problems from the literature. We also applied it to
two hard and relevant regression problems from embedded systems and robotics.
On the two standard test sets, we demonstrate that the prediction accuracy of
our approach is comparable to the one achieved by the MCMC-based method by
Paciorek and Schervish [§], which, compared to our algorithm, is substantially
more demanding regarding the computational resources.

We have implemented and evaluated our approach in MatlaH. Using the
compact matrix notation for all derivations, the core algorithm is implemented
in less than 150 lines of code and, more importantly, advanced optimization
strategies like sparse matrix approximations or parallelization can be realized
with virtually no additional implementation efforts. As optimization procedure,

! The source code and data sets are available at http://robreg.org/projects/lagp
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we applied Mpller’s scaled conjugate gradient (SCG) [7] approach. In all our
experiments, the SCG converged after at most 20 iterations. To quantitatively
evaluate the performance of our nonstationary regression technique, we ran 30 to
50 independent test runs for each of the following test cases. Each run consisted of
(a) randomly selecting or generating training data, (b) fitting the nonstationary
model, and (c) evaluating the predictive distribution of the learned model at
independent test locations. The latter was done either using the known ground
truth function values or by assessing the likelihood of independent observations
in the cases in which the ground truth was not known (e.g., for the RFID and
terrain mapping experiments).

In all test scenarios, we evaluate the accuracy of the mean predictions and
also the fit of the whole predictive distribution using the standardized mean
squared error

. -1 " 1 )2
SMSE:=n~1 ) var(y) ™ (g — my)
and the negative log predictive density
-1\ Ixs
NLPD:=n"') " 10gpmodel (yilxi)

respectively. Here, {(x;,v;)}", denotes the test data set, pmodel(+|x;) stands for
the predictive distribution at location x;, and m; := E[pmodel(-|X;)] denotes the
predicted mean. Statistical significance was assessed using two-sample t-tests
with 95% confidence intervals.

All experiments were conducted using Matlab on a Linux desktop PC with a
single 2 GHz CPU. The typical runtime for fitting the full nonstationary model
to 100 training points was in the order of 50 seconds. The runtime requirements
of the MCMC-based approach [§ which does not employ any gradient infor-
mation were reported to be in the order of hours for a C-implementation on
standard hardware in year 2004. In the following, we term our nonstationary
approach as LA-GP (Locally Adaptive GP), the standard model employing the
isotropic, squared exponential covariance function as STD-GP and Paciorek and
Schervish’s MCMC-based approach as NS-GP (Nonstationary GP).

5.1 Simulation Results in 1D and 2D

First, we verified that our approach accurately solves standard regression prob-
lems described in the literature. To this aim, we considered the two simulated
functions shown in Figure 2l Both functions were also used for evaluation pur-
poses by Dimatteo et al. [4] and in []]. In the remainder, these test scenarios
will be referred to as SMOOTH-1D and JUMP-1D. Whereas SMOOTH-1D is
a smoothly varying function with a substantial “bump” close to 0, JUMP-1D
has a sharp jump at 0.4. For SMOOTH-1D, we sampled 101 training points and
400 test points from the interval (—2,2). In the case of JUMP-1D, we sampled
111 training points and 111 for testing from (0, 1). Table ] gives the results for
theses experiments (averaged over 50 independent runs). Additionally, this table
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Smoothly varying test case (SMOOTH-1D) Sharp jump test case (JUMP-1D)

0 0.2 0.4 0.6 0.8 1
Latent length-scales (LA-GP)

Latent length-scales (LA-GP)

200

6 '
—_ — gth—scale
1/length—scale 150
4 ]
100
2 1 50
0,
-2 -1 0 1 2 00 0.2 0.4 0.6 0.8 1

Fig. 2. Two standard nonstationary test cases SMOOTH-1D (top left) and JUMP-1D
(top right) that were used for evaluation purposes in previous work [4] and [8]. The
lower two plots give the inverse latent length-scales as optimized by our approach.
Higher values in these plots indicate a larger local frequency.

contains results for a two-dimensional simulated function NONSTAT-2D, which
is described further below in this sub-section.

The results can be summarized as follows: with respect to the sMSE, the ac-
curacy of our approach is comparable to the MCMC-based method of Paciorek
and Schervish. Note that values given here were taken from their publication [§].
Both approaches significantly («=0.05) outperform standard GPs. Our approach
also provides a significantly better performance compared to standard GPs with
respect to the NLPD. For a visual comparison of the regression results, con-
sider the left two diagrams in Figure Bl Whereas the standard GP (left plot)
— having a constant length-scale for the whole domain — cannot adapt to all
local properties well, our LA-GP accurately fits the bump and also the smoother
parts (center plot). It should be noted that LA-GP tends to assign higher fre-
quencies to the border regions of the training set, since there is less constrain-
ing data there compared to the center regions (see also the lower left plot in

Figure [2).

Table 2. Quantitative evaluation of the proposed nonstationary approach (LA-GP)
and the standard Gaussian process (STD-GP) as well as the MCMC-based approach
of [§] (NS-GP). We compare the prediction accuracies using the negative log predictive
density (NLPD) and the standardized mean squared errors (sMSE), see text. Results
marked by e differ significantly (« = 0.05) from the others in their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP NS-GP [§]
SMOOTH-1D  -1.100  -1.026 (e)  0.0156  0.021 (e) 0.015
JUMP-1D -0.375  -0.440 (o)  0.0268  0.123 (e) 0.026

NONSTAT-2D -3.405 -3.315 (e) 0.0429 0.0572 (o) -
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STD-GP prediction (SMOOTH-1D) LA-GP prediction (SMOOTH-1D)

SCG convergence

2 N

Change of log data Ih
L b L b o

|
5

5 10 15
Number of SCG cycles

2 -1 0 1 2 2 -1 0 1 2

Fig. 3. Typical regression results in the SMOOTH-1D test scenario for the STD-GP
model (left) and LA-GP (middle). The right diagram gives the statistics for changes
of the objective function per SCG optimization cycle (in log data liklihood).

STD-GP absolute errors (JUMP-1D) LA-GP absolute errors (JUMP-1D)
4 LY 4
2K e o o e e e e m 2
L T O e e ]
Omw omw
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 4. Absolute distances of the test points from the predicted means in one run of
the JUMP-1D scenario using the STD-GP model (left) and LA-GP (right). The model
confidence bounds (2 standard deviations of the predictive distribution) are given by
dashed lines.

The right diagram of Figure Bl provides statistics about the individual gains
during the SCG cycles for 50 independent test runs. As can be seen from this plot,
after about 20 cycles the objective function, which corresponds to the negative
log data likelihood, does not change notably any more. * Figure [l compares the
confidence bounds of the different regression models to the actual prediction
errors made. It can be seen that the LA-GP model has more accurate bounds. It
should be noted that the predictive variance of the STD-GP model depends only
on the local data density and not on the target values and, thus, it is constant
in the non-border regions.

We give the absolute average errors of the mean predictions in the different
test cases in Figure Bl To highlight the more accurate confidence bounds of the
LA-GP model, we also give the statistics for the 50% most confident predictions.

In addition to the two one-dimensional standard test cases, we evaluated the
performance or our approach on a bivariate function (NONSTAT-2D). In par-
ticular, we simulated observations y(z1,z2) ~ f(x1,x2) + N(0,0.025) using the
noise-free bivariate function f(x1,x2) = 1/10-(sin(zq b(x1, z2)+sin(xs b(x1, x2))
and the underlying bandwidth function b(x1,x2) = 7 (221 4+ 0.522 + 1). This
function and typical observations are depicted in the left diagram of Figure
During training, we sampled 11 - 11 = 121 points from a uniform distribution
over [—0.5,1] x [-0.5,1] and corresponding simulated observations (the latter
were drawn independently for each run). For testing, we uniformly sampled
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Average absolute errors (SMOOTH-1D) Average absolute errors (JUMP-1D) Average absolute errors (NONSTAT-2D)

Observations to ground truth } Observations to ground truth ‘ Observations to ground truth

STD-GP STD-GP ‘ STD-GP

STD-GP (confident) STD-GP (confident) ‘ STD-GP (confident) |
LA-GP LA-GP LA-GP

LA-GP (conf.) LA-GP (confident) LA-GP (confident)

0 0.05 0.1 0.15 0.2 0 0.1 0.2 0.3 0.4 0.5 0 0.005 0.01 0.015 0.02

Fig. 5. Absolute average errors of the mean predictions in the SMOOTH-1D test sce-
nario (left), JUMP-1D (middle), and NONSTAT-2D (right). We give the absolute dis-
tances of the simulated observations to the true function values, the overall average
errors for the different models, and the average errors of the 50% most confidently
predicted means respectively.

31-31 = 961 points from [—0.5, 1] x [-0.5, 1] including their true function values.
A typical example of the resulting optimized length-scales are visualized in the
upper right contour plot of Figure [0l It can be seen that larger length-scales
(which correspond to stronger smoothing) are assigned to the flat part of the
surface around (—0.5,0)” and smaller ones towards (1,1)7.

The quantitative results in terms of NLPD and sMSE for 30 independent test
runs are given in Table[2l The absolute errors of the mean predictions are given
in the right bar chart of Figure Bl The two lower plots of Figure [6l give a visual
impression about the accuracy of the two regression models. We give the NLPD
errors at equidistantly sampled test locations overlayed by contour plots of the
predictive uncertainties. Note that the LA-GP model assigns higher confidence
to the flat part of the function, which — given the uniform sampling of training
points — can be reconstructed more accurately than the higher-frequency parts.

5.2 Modeling RFID Signal Strength

We have applied our nonstationary regression approach to the problem of learn-
ing the signal strength distribution of RFID (Radio Frequency Identification)
tags. For this experiment, 21.794 signal strength measurements (logarithmic to
the base of 10) have been recorded in a test setup at the University of Freiburg
using a static antenna and a mobile, externally localized RFID tag. For effi-
ciency reasons, only the left half-space of the antenna was sampled with real
measurements and then mirrored along the respective axis. We randomly sam-
pled 121 training points for learning the regression models and 500 different ones
for evaluation. Note that although larger training sets lead to better models, we
learn from this comparably small number of observations only to achieve faster
evaluation runs. Table [3] gives the quantitative comparison to the standard GP
model (STD-GP). As can be seen from the results, the standard model is out-
performed by our nonstationary extension both in terms of sSMSE and NLPD.
Figure [ shows predicted mean log signal strengths of the two models as color
maps overlayed with contour plots of the corresponding predictive uncertainties.
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Simulated 2D scenario (NONSTAT-2D)
Latent length—scales (LA-GP)

1 -05
X X
STD-GP prediction errors (NLPD) LA-GP prediction errors (NLPD)

y =0. 0 0.5

— Uncenalmy comours — Uncertainty contours

085 0.5 1 35 0 0.5
X X

4

Fig. 6. The true function and noisy observations in the NONSTAT-2D test case (top
left). Note the spatially varying oscillation frequency. The top right plot depicts the
contours of the latent length-scales as estimated by our LA-GP model. In the two lower
diagrams, we give the individual prediction errors (NLPD) of the Standard GP model
(bottom left) and LA-GP (bottom right). The predictive uncertainty of the models is
visualized using overlayed contours.

Table 3. Quantitative results for the RFID-2D experiment. Results marked by e differ
significantly (o = 0.05) from the others in their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP
RFID-2D -0.0101 (e) 0.1475 0.3352 () 0.4602
Log signal strength (STD-GP) B Log signal strength (LA-GP) Latent length-scales (LA-GP)

10
8
6
1 4
2
— Pred. uncertainty| Ho
8

Fig. 7. Predicted mean log signal strengths of RFID tags using the standard GP (left)
and the locally adapted GP (middle). The sensor location (0,0) is marked by a cross
and the predictive uncertainties of the models are visualized by overlayed contours. The
right plot visualizes the adapted latent length-scales of the LA-GP model. Coordinates
are given in Meters.
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Table 4. Quantitative results for the simulated (TERSIM-2D) and the real
(TERREAL-2D) terrain mapping experiment. Results marked by e differ significantly
(e =0.05) from the others in their category.

NLPD sMSE
Test Scenario LA-GP STD-GP LA-GP STD-GP
TERSIM-2D -4.261 (e) -4.198 0.127 0.126
TERREAL-2D -3.652 -3.626 0.441 (o) 0.475

Laser measurements

Latent length-scales (LA-GP)

Fig. 8. A quadruped robot equipped with a laser sensor (left) acquires elevation mea-
surements of a rough terrain surface (middle) by executing a ’pushup’ motion. From
a subset of elevation samples, our LA-GP approach learns a predictive model that
captures the nonstationary nature of the data set (right).

We also visualize the contours of the latent length-scales modeling higher
frequencies in the proximity of the sensor location and lower ones in front of it.

5.3 Laser-Based Terrain Mapping

We also applied our model to the particularly hard robotics problem of learning
probabilistic terrain models from laser range measurements. In a joint project
with the Massachusetts Institute of Technology, we have equipped a quadruped
robot with a Hokuyo URG laser range sensor (see the left picture in Figure ).
The robot was programmed to perform a ’pushup’ motion sequence in order
to acquire a 3D scan of the local environment. For evaluation, we selected a
20 x 20cm part of a rough terrain (with a maximum height of around 9 cm)
including its front edge (see the middle plot of Figure [). 4.282 laser end points
of the 3D scan fall into this area.

We have trained the standard GP model and our nonstationary variant on
80 randomly selected training points from a noise-free simulation of the real
terrain (TERSIM-2D) and evaluated the prediction accuracy for 500 test points
(averaged over 30 independent runs). We repeated the same procedure on the
real data (TERREAL-2D) and evaluated the prediction accuracy for other, in-
dependently selected test points from the real scan. Thus, the latter evaluation
quantifies how well the models are able to predict other samples from the same
distribution while the former gives the prediction errors relative to a known
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ground truth function. Table @ gives the quantitative results for these two ex-
periments. The right colormap in Figure [ depicts the optimized length-scales
of the LA-GP model. It can be seen that the flat part of the terrain is assigned
larger local kernels compared to the rougher parts.

6 Conclusions

This paper has shown that GP regression with nonstationary covariance func-
tions can be realized efficiently using point estimates of the latent local smooth-
ness. The experimental results have shown that the resulting locally adaptive
GPs perform significantly better than standard GPs and that they have the
potential to solve hard learning problems from robotics and embedded systems.

There are several interesting directions for future work. First, the idea of opti-
mizing the parameters of the latent and the observed process jointly should be
applied to GP regression with input-dependent noise. In robotics applications,
one is likely to encounter both, input-dependent noise and variable smoothness.
Hence, the joint treatment of both should be addressed. Another direction is the
extensions of our approach to the pseudo-noise setting introduced by Snelson and
Ghahramani, see e.g. [T5], so that the locations of the length-scale support values
are learned from data, too. Finally, one should investigate multi-task learning e.g.
along the lines of Yu et al. [I7] to generalize e.g. across different types of terrains.
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