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Abstract. Given a large bipartite graph (like document-term, or user-
product graph), how can we find meaningful communities, quickly, and
automatically? We propose to look for community hierarchies, with com-
munities-within-communities. Our proposed method, the Context-specific
Cluster Tree (CCT) finds such communities at multiple levels, with no
user intervention, based on information theoretic principles (MDL). More
specifically, it partitions the graph into progressively more refined sub-
graphs, allowing users to quickly navigate from the global, coarse struc-
ture of a graph to more focused and local patterns. As a fringe benefit,
and also as an additional indication of its quality, it also achieves better
compression than typical, non-hierarchical methods. We demonstrate its
scalability and effectiveness on real, large graphs.

1 Introduction

Bipartite graphs (or, equivalently, sparse binary matrices) are natural represen-
tations of relations between two sets of nodes, namely source and destination
nodes. Such large bipartite graphs arise naturally in many applications, like in-
formation retrieval (document-term graphs), collaborative filtering and recom-
mendation systems (person-product graphs), social networks, and many more.

Graph mining aims at discovering the useful patterns hidden in the graphs.
Various tools geared towards large graphs have been proposed in the literature.
All of those techniques usually examine the graph at two extreme levels: 1)
global, i.e., patterns present in the entire graph such as power law distribution
on graphs [9], graph partitioning [4, 8, 16], community evolution [25, 27]; or,
2) local, i.e, patterns related to a subgraph such as center-piece graph [28],
neighborhood formation [26], quasi-cliques [21].

In this paper, we aim to fill the gap between global and local patterns, by
proposing a technique that allows users to effectively discover and explore com-
munities in large graphs at multiple levels, starting from a global view and
narrowing down to more local information. More specifically, we study ways
to quickly and automatically construct a recursive community structure of a
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Fig. 1. Hierarchy and context

large bipartite graph at multiple levels, namely, a Context-specific Cluster Tree
(CCT). The resulting CCT can identify relevant context-specific clusters. It also
provides an efficient data summarization scheme and facilitates visualization of
large graphs, which is a difficult, open problem itself [13, 14]. Intuitively, a con-
text is a subgraph which is implicitly defined by a pair of source and destination
node groups (and, thus, includes exactly those edges that connect nodes of those
groups)—see Definition 8. The entire graph and a single edge are the two extreme
contexts, at the global and local level, respectively.

Our approach allows users to start from groups of nodes and edges at the
global, coarse level and quickly focus on the appropriate context to discover more
focused and fine-grained patterns. We shall illustrate the insight and intuition
behind our proposed framework with an example. Consider a set of authors (blue
nodes, top of Figure 1) and a set of conferences (red nodes, bottom of Figure 1),
with edges indicating that the author published in that conference.

At first blush, one might discover a natural partitioning of the graph at the
global level as follows:

– Node groups: Assume there are predominantly two groups of authors, com-
puter scientists and medical researchers. Further assume there are two cor-
responding predominant conference groups. In matrix form, they correspond
to the two row and column partitions, respectively, shown in Figure 2a.

– Contexts: The above node grouping leads to four contexts (i.e., edge groups,
or subgraphs), one for each possible combination of the two node groups
of each type (authors and conferences). In matrix form, they correspond
to the four submatrices in Figure 1b. The dominant contexts are the two
submatrices on the diagonal of Figure 2a corresponding to computer sci-
ence (intersection of computer scientists and CS conferences) and medicine
(intersection of of doctors and medical conferences), respectively.

This first-level decomposition already reveals much information about the struc-
ture of the data and answers the question: “given the mutual associations be-
tween all authors and all conferences, which are the groups of nodes that are
most closely associated.” Each of those group associations reveals a new con-
text, which is a subgraph of the original graph. Thus, it can be likewise analyzed
recursively, to reveal further contexts of finer granularity. In fact, if we stop at
the first level and consider the computer science and medicine contexts, we may
miss bioinformatics which will likely appear as associations between a subset
of computer scientists and medical conferences (see Figure 2). To realize this
intuition, we proceed to explain the two key concepts of hierarchy and context.
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Hierarchy. Graphs often exhibit such community-within-community structure,
leading to a natural recursive decomposition of their structure, which is a hier-
archy. How can we find the appropriate number of levels, as well as the node
groups within each level? These two questions bring in additional challenges to
the design of the algorithm.

For example, let us consider the context induced by the “computer science”
author and the “computer science” conference group (see Figure 1b, or the top-
left part of Figure 2b). Performing a similar analysis as before, we may discover
additional structure in terms of node groups and contexts in the second level.
The computer science field may be further subdivided into systems and theory
authors, with a corresponding division in computer science conferences.

Context. In our example, the dominant contexts are those of “computer sci-
ence” and “medicine,” as explained above. However, there is nothing special
about those “diagonal” contexts. In fact, we argue that one need also examine
“off-diagonal” contexts. For example, the context defined by the intersection
of “computer science” authors and “medical” conferences (see Figure 1c) may
also be further partitioned into multiple lower-level contexts, with one of them
corresponding to “bioinformatics”.

In general, a particular choice of subgraph during the recursive decomposi-
tion consists of a pair of node groups and the context provided by the edges
that associate them. Different contexts may reveal different aspects of the data.
Taking this idea to its logical conclusion, the overall result is a rich hierarchy,
CCT, that captures the graph structure at multiple levels.

Conferences
MedicineComp. Science

C
om

p.
 S

ci
en

ce
M

ed
ic

in
e

A
ut

ho
rs

(a) First level
Conferences

Comp. Science

C
om

p.
 S

ci
en

ce

Medicine

M
ed

ic
in

e
A

ut
ho

rs Theory

Surgery

Systems

Bioinf.

Pathology

(b) Second level

Fig. 2. Adjacency matrix
view (cf. Figure 1)
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Fig. 3. Cluster tree (CCT) corresponding to Figure 2.
Unfilled nodes correspond to non-leaves (subgraphs for
which the partitioned model was best) and filled nodes
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graph model was best). The two popups show examples
of information represented at each type of node, with
dark blue representing parts of the model and light green
parts of the code, given the model.
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Our goal is to automatically find this hierarchy and allow users to quickly nav-
igate it. For example, given a theoretician, there are multiple relevant contexts
at different levels. Depending on the conferences, the most relevant context for
her could be “computer theory” if the relevant conference is FOCS, SODA, or
maybe “bioinformatics” if relevant conference is RECOMB or ISMB (see exper-
iments for details). In general, the most relevant context can be automatically
identified given the set of query nodes through a simple tree reversal.

Contributions. The main contributions of this paper are the following:

– We employ a parameter-free scheme based on minimum description language
(MDL) that automatically finds the best context-specific cluster tree (CCT)
to summarize the graph.

– The method is linear on the number of edges, and thus scalable for large,
possibly disk-resident, graphs.

– We provide a scheme for users to navigate from global, coarse structure to
more focused and local patterns.

Because our method is based on sound, information theoretic principles, it also
leads to better compression as a fringe benefit. Moreover, we develop a GUI
prototype that allow users to visualize and explore large graphs in an intuitive
manner. We demonstrate the efficiency and effectiveness of our framework on a
number of datasets. In particular, a number of interesting clusters are identified
in different levels.

The rest of the paper is organized as follows: Section 2 presents the neces-
sary background and Section 3 introduces the fundamental definitions. Section 4
presents our proposed method and Section 5 evaluates it on a number of datasets.
Finally, Section 6 briefly discusses related work and Section 7 concludes.

2 Background

In this section we give a brief overview of a practical formulation of the minimum
description length (MDL) principle. For further information see, e.g., [7, 10].
Intuitively, the main idea behind MDL is the following: Let us assume that we
have a family M of models with varying degrees of complexity. More complex
models M ∈ M involve more parameters but, given these parameters (i.e., the
model M ∈ M), we can describe the observed data more concisely.

As a simple, concrete example, consider a binary sequence A :=[a(1), a(2), . . . ,
a(n)] of n coin tosses. A simple model M (1) might consist of specifying the
number h of heads. Given this model M (1) ≡ {h/n}, we can encode the dataset
A using C(A|M (1)) := nH(h/n) bits [22], where H(·) is the Shannon entropy
function. However, in order to be fair, we should also include the number C(M (1))
of bits to transmit the fraction h/n, which can be done using log�n bits for the
denominator and �log(n+1)� bits for the numerator h ∈ {0, 1, . . . , n}, for a total
of C(M (1)) := log�n + �log(n + 1)� bits.
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Table 1. Symbols and definitions

Symbol Definition
A Binary adjacency matrix.
m,n Dimensions of A.
k, � No. of source and dest. partitions.
Ap,q Submatrix for intersection of p-th

source and q-th dest. partitions.

Symbol Definition
mp, nq Dimensions of Ap,q.
|A| Number of elements |A| := mn.
ρ(A) Edge density in ρ(A) = e(A)/|A|.
H(·) Shannon entropy function.
C(A) Codelength for A.

Definition 1. (Code length and description complexity) C(A|M (1)) is
code length for A, given the model M (1). C(M (1)) is the model description
complexity and C(A, M (1)) := C(A|M (1)) + C(M (1)) is the total code length.

A slightly more complex model might consist of segmenting the sequence in two
pieces of length n1 ≥ 1 and n2 = n − n1 and describing each one independently.
Let h1 and h2 be the number of heads in each segment. Then, to describe the
model M (2) ≡ {h1/n1, h2/n2}, we need C(M (2)) := log�n + �log n� + �log(n −
n1)�+ �log(n1 +1)�+ �log(n2 +1)� bits. Given this information, we can describe
the sequence using C(A|M (2)) := n1H(h1/n1) + n2H(h2/n2) bits.

Now, assume that our family of models is M := {M (1), M (2)} and we wish to
choose the “best” one for a particular sequence A. We will examine two sequences
of length n = 16, both with 8 zeros and 8 ones, to illustrate the intuition.

Let A1 := {0, 1, 0, 1, · · · , 0, 1}, with alternating values. We have C(A1|M (1)
1 ) =

16H(1/2) = 16 and C(M (1)
1 ) = log�16 + �log(16 + 1)� = 10 + 5 = 15. However,

for M
(2)
1 the best choice is n1 = 15, with C(A1|M (2)

1 ) ≈ 15 and C(M (2)
1 ) ≈ 19.

The total code lengths are C(A1, M
(1)
1 ) ≈ 16 + 15 = 31 and C(A1, M

(2)
1 ) ≈

15 + 19 = 34. Thus, based on total code length, the simpler model is better1.
The more complex model may give us a lower code length, but that benefit is not
enough to overcome the increase in description complexity: A1 does not exhibit
a pattern that can be exploited by a two-segment model to describe the data.

Let A2 := {0, · · · , 0, 1, · · · , 1} with all similar values contiguous. We have
again C(A2|M (1)

2 ) = 16 and C(M (1)
2 ) = 15. But, for M

(2)
2 the best choice is

n1 = n2 = 8 so that C(A2|M (2)
2 ) = 8H(0) + 8H(1) = 0 and C(M (2)

2 ) ≈ 24.
The total code lengths are C(A2, M

(1)
2 ) ≈ 16 + 15 = 31 and C(A2, M

(2)
2 ) ≈

0 + 24 = 24. Thus, based on total code length, the two-segment model is better.
Intuitively, it is clear that A2 exhibits a pattern that can help reduce the total
code length. This intuitive fact is precisely captured by the total code length.

3 CCT: Encoding and Partitioning

We want to subdivide the adjacency matrix in tiles (or “contexts”), with possible
reordering of rows and columns, and compress them, either as-is (if they are
1 The absolute codelengths are not important; the bit overhead compared to the

straight transmission of A tends to zero, as n grows to infinity.
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homogeneous enough) or by further subdividing. First, we formalize the problem
and set the stage, by defining a lossless hierarchical encoding. As we shall see,
the cluster-tree structure corresponds to the model, whereas the code for the
data given the model is associated only with leaf nodes. This encoding allows us
to apply MDL for automatically finding the desired progressive decomposition.
In this section we define the codelength, assuming that a tree structure is given.
Next, in Section 4, we present a practical algorithm to find the structure.

3.1 Problem Definition

Assume we are given a set of m source nodes, I := {1, 2, . . . , m} and a set of
n destination nodes, J := {1, 2, . . . , n}. Each node pair (i, j), for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, may be linked with an edge. Let A = [a(i, j)] denote the
corresponding m × n (m, n ≥ 1) binary adjacency matrix.

Definition 2 (Bipartite graph and subgraph). The bipartite graph G is the
triple G ≡ (I, J , A). A subgraph of this graph is a triple G′ ≡ (I ′, J ′, A′), where
I ′ ⊆ I, J ′ ⊆ J and A′ := [a(i′, j′)] for all i′ ∈ I′ and j′ ∈ J ′.

Our goal is to discover groups of edges that closely link groups of source nodes
and destination nodes.

Definition 3 (Subgraph partitioning). Given a graph G ≡ (I, J , A), we will
partition it into a set of subgraphs {G1, G2, . . . , GT } such that their union equals
the original graph G.

More specifically, we seek to decompose the original graph into a set of subgraphs,
which should have the following properties:

– Connectedness: Each of the subgraphs should ideally be either fully con-
nected or fully disconnected, i.e., it should be as homogeneous as possible.

– Flexible: The structure of the decomposition into subgraphs should be rich
enough, without imposing too many constraints. On the other hand, it should
lead to tractable and practical algorithms to find the decomposition.

– Progressive: The decomposition should allow users to navigate from global,
coarse structure to more focused and local patterns, in the form of progres-
sively more dense subgraphs.

Furthermore, we seek to automatically find such a decomposition, without requir-
ing any parameters from the user. To that end, we employ MDL on an encoding
of the bipartite adjacency matrix. The encoding we choose is hierarchical, so as
to satisfy the last two properties.

3.2 Hierarchical Encoding

In order to achieve the previously stated goals, we employ a top-down approach.
Consider an m × n adjacency matrix A, which may correspond to any bipartite
subgraph (including the entire graph). We proceed to explain how we can build
a code for a given hierarchical partitioning.
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Base case. Our first and simplest option is that no patterns are present in the
data. In this case, we may safely model the data by simply assuming that each
edge is independently drawn with probability ρ(A), where ρ(A) is the density of
edges (or, of ones in the adjacency matrix A).

Definition 4 (Random graph model). In this case, we may encode the entire
matrix using

C0(A) := �log(|A| + 1)� + �|A|H(ρ(A))� bits. (1)

More specifically, we use �log(|A| + 1)� bits to transmit ρ(A) and finally �|A|
H(ρ(A))� bits to transmit the individual edges. This assumes that we already
know the graph size (i.e., m and n). For the initial graph G, we may safely
assume this. For its subgraphs, this information is provided by our model, as
will be explained shortly.

Recursive case. The second option is to try to find joint groups of nodes and
edges, as described before, which partition the original graph into subgraphs.
Note that the partitioning (see Definition 3) is equivalent to a tiling of the
adjacency matrix with T tiles, allowing for row and column reordering and, in the
most general case, possibly overlapping tiles. Although we can allow arbitrary
tilings, this leads to significant penalty in terms of complexity. Therefore, we
impose certain constraints on the structure of the partitioning, so as to make
the problem more tractable, while still allowing enough flexibility in the model
to capture interesting patterns.

First, we require that the tiling is exclusive (i.e., no two tiles overlap) and
complete (i.e., the tiles completely cover the entire adjacency matrix, with-
out “gaps”). Next, we proceed to construct the tiling in a hierarchical fash-
ion. We constrain the tiling to follow a checkerboard structure only within a
single level of the hierarchy. The first-level decomposition of Figures 2a and 3
follows such a structure, consisting of G1 = (I1, J1, A1,1), G2 = (I1, J2, A1,2),
G3 = (I2, J1, A2,1), and G4 = (I2, J2, A2,2), where I1 is the set of “computer
science researchers” and I2 the set of “medical researchers” and similarly for
the conference sets J1 and J2. Formally, the checkerboard structure means that
set of source-destination group pairs, {(I1, J1), (I1, J2), (I2, J1), (I2, J2)}, can
be written as a Cartesian product of individual sets of source and destination
groups, {I1, I2} × {J1, J2}.

In general, we can define a checkerboard decomposition into T = k·� subgraph
tiles, using k source groups Ip, for 1 ≤ p ≤ k, and � destination groups Jq, for
1 ≤ q ≤ �. We denote the sizes of Ip and Jq by mp := |Ip| and nq := |Jq|,
respectively, and the corresponding adjacency submatrices by Ap,q := [a(Ip, Jq)],
for 1 ≤ p ≤ k and 1 ≤ q ≤ �.

Definition 5 (Partitioned graph model). The cost of encoding the parti-
tioned graph is

C1(A) := �log m� + �log n� +
⌈
log

(
m

m1 ··· mk

)⌉
+

+
⌈
log

(
n

n1 ··· n�

)⌉
+

∑k
p=1

∑�
q=1 C(Ap,q). (2)
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We need �log m� bits to transmit k and �log n� bits to transmit �. Furthermore,
if we assume each mapping of m source nodes into k source groups equally
likely, then we need �log

(
m

m1 ··· mk

)
� bits to transmit the source partitioning

{I1, . . . , Ik}, and similarly for the destination partitioning. Note that this parti-
tioning implicitly determines the size mp×nq of each subgraph (which is assumed
known by the random graph model). Finally, we need to recursively encode each
of the k · � adjacency submatrices, one for each subgraph, which is represented
by the last term in Equation (2).

Using Stirling’s approximation lnn! ≈ n ln n−n and the fact that
∑

i mi = m,
we can easily derive that

log
(

m
m1 ··· mk

)
≈ mH

(
m1
m , . . . , mk

m

)
,

where H(·) denotes the Shannon entropy. Now we are ready to define the overall
codelength cost C(A).

Definition 6 (Total hierarchical codelength). Given a hierarchical decom-
position, the total codelength cost for transmitting the graph (I, J , A) is

C(A) := 1 + min{C0(A), C1(A)}. (3)

We choose the best of the two options, (i) pure random graph, or (ii) partitioned
graph. Additionally, we need one bit to transmit which of these two options was
the best. Ties are broken in favor of the simpler, random graph model. Note that
the definition of the total cost is recursive, since C(Ap,q) appears in Equation (2).

Final result. To summarize, we have recursively built a hierarchical encoding
based on a tiling of the adjacency matrix, each tile uniquely corresponding to a
subgraph of the original bipartite graph. At each level of the hierarchy, we use
checkerboard tiles. Each of those may be further subdivided in the same manner
(such as all three tiles except the bottom left one from Figure 2a).

Definition 7 (Context-specific Cluster Tree). The set of all subgraphs in
the progressive, hierarchical decomposition consists the context-specific cluster
tree (CCT). The leaf nodes correspond to subgraphs for which the best choice is
the random graph model. These subgraphs comprise the leaf-level partitioning.
The code for the data given the model consists of the information for individual
edges within subgraphs only at the leaf level.

For example, in Figure 3, the root node would encode the partitioning {I1, I2}
and {J1, J2}; this is part of the model. The node corresponding to G3 ≡ (I2, J1,
A2,1) would encode the density ρ(A2,1)—which is also part of the model—and
subsequently, the individual edges of G3 using entropy coding—which is part of
the code given the model. In addition to the root G, the CCT consists of all
16 nodes corresponding to subgraphs G1 through G16. The leaf-level partition
consists of 13 graphs {G3, G5, G6, . . . , G16}, which are represented by filled nodes.

It is clear from the construction that the leaf-level partitioning is also an
exclusive and complete tiling, but with a richer structure than the per-level
checkerboard tiles.

Finally, we can define the context for a set of nodes.
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Definition 8 (Context). Given as input a pair of source and destination node
sets (Ii, Ji) of interest, a context of (Ii, Ji) is any pair (Ic, Jc) such that Ii ⊆ Ic

and Ji ⊆ Jc.

In other words, a context for (Ii, Ij) is any subgraph of the original graph that
fully includes Ii and Ji. We will typically constrain (Ic, Jc) to be only those
pairs that appear in some node of our hierarchical decomposition. Given that
constraint, we can give the next definition.

Definition 9 (Minimal hierarchical context). The minimal hierarchical
context among a set of contexts is the context (Imc , Jmc) such that no other
context (Ic, Jc) exists with Imc ⊆ Ic and Jmc ⊆ Jc

Intuitively, the minimal hierarchical context is the deepest-level tree node in
CCT that fully contains the input context. Note that, if Ii 
= ∅ 
= Ji, then the
minimal hierarchical context of (Ii, Ji) is unique. If one of Ii or Ji is empty,
then there may be multiple overlapping minimal contexts and, if both are empty,
then all leaf nodes are trivially minimal contexts.

4 Finding the CCT

In the previous section we described the cost objective function that determines
how “good” a given CCT partitioning is. However, if we don’t know the parti-
tioning we need a way to find it. The total codelength provides a yardstick to
compare different hierarchical encodings with different number of partitions at
each level of the hierarchy, but we need a practical search strategy to find such
an encoding given only the initial graph.

In order to build a scalable and practical algorithm, we choose to employ a
top-down strategy for building the hierarchy, rather than a bottom-up approach.
Starting with the original graph, we try to find a good “checkerboard” tiling for
the first level of the decomposition. Then, we fix this tiling and we recursively
attempt the same procedure on each of the tiles.

However, there are two problems that need to be addressed. First, the re-
cursive definition of Equation (2) is too expensive to evaluate for each possible
assignment of nodes into partitions, so we use the following equation instead,

C′
1(A) := �log m� + �log n� +

⌈
log

(
m

m1 ··· mk

)⌉
+

+
⌈
log

(
n

n1 ··· n�

)⌉
+

∑k
p=1

∑�
q=1 C0(Ap,q), (4)

where we have substituted C0 for C in the summation at the end. This surrogate
cost heuristic is fairly effective in practice, as we shall also see in the experiments.

Even with this simplification, finding the optimal checkerboard tiling (i.e.,
assignment of nodes into partitions) is NP-hard [4], even if the number of tiles
(or, equivalently, source and destination node partitions) is known. Addition-
ally, we also seek the number of tiles. Therefore, we will employ an alternating
minimization [4] scheme that converges towards a local minimum.
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Algorithm Shuffle:
Start with an arbitrary partitioning of the matrix A into k source partitions I(0)

p and �

column partitions J (0)
q . Subsequently, at each iteration t perform the following steps:

1. For this step, we will hold destination partitions, i.e., J (t)
q , for all 1 ≤ q ≤ �, fixed.

We start with I(t+1)
p := I(t)

p for all 1 ≤ p ≤ k. Then, we consider each source
node i, 1 ≤ i ≤ n and move it into the p∗-th partition I(t+1)

p∗ so that the choice
maximizes the “surrogate cost gain” C′

1(A) of Equation (4).
2. Similar to step 1, but swapping destination nodes instead to find new partitions

J (t+2)
q for 1 ≤ q ≤ �.

3. If there is no decrease in surrogate cost C′
1(A), stop. Otherwise, set t ← t + 2, go

to step 1, and iterate.

Fig. 4. Source and destination node partitioning, given the number of partitions

Algorithm Split:
Start with k0 = �0 = 1 and at each iteration τ :
1. Try to increase the number of source partitions, holding the number of destination

partitions fixed. We choose to split the source partition p∗ with maximum per-node
entropy, i.e.,

p∗ := arg max1≤p≤k

∑
1≤q≤� |Ap,q|H(ρ(Ap,q))/mp.

Increase the number of row partitions, kτ+1 = kτ + 1 and construct a partitioning
{I(τ+1)

1 , . . . , I(τ+1)
kT+1 } by moving each node i of the partition I(τ)

p∗ that will be split

into the new source partition I(τ+1)
kT+1 , if and only if this decreases the per-node

entropy of the p∗-th partition.
2. Apply algorithm Shuffle with initial state {I(τ+1)

p | 1 ≤ p ≤ kτ+1} and {J (τ)
p |

1 ≤ p ≤ �τ}, to find better assignments of nodes into partitions.
3. If there is no decrease in total cost, stop and return (k, �) = (kτ , �τ ) with corre-

sponding partitions. Otherwise, set τ ← τ + 1 and continue.
4–6. Similar to steps 1–3, but trying to increase destination partitions instead.

Fig. 5. Algorithm to find number of source and destination partitions

We recursively search for the best checkerboard partitions and stop when
partitioned graph model is worse than the random graph model, which indicates
the subgraph is sufficiently homogeneous. The search algorithm then proceeds in
two steps: (i) an outer step, Split, that attempts to progressively increase the
number of source and destination partitions; and (ii) an inner step, Shuffle,
that, given a fixed number of partitions, tries to find the best assignment of
nodes into partitions. The pseudocode in Figures 4, 5, and 6 shows the steps of
the overall process in detail.

Complexity. Algorithm Shuffle is linear with respect to the number of edges
and the number of iterations. Algorithm Split invokes Shuffle for each split,
for a worst-case total of 2(k + � + 1) splits. For each level of the recursion in
Hierarchical, the total number of edges among all partitions of one level is at
most equal to the number of edges in the original graph. Thus, the total time
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Algorithm Hierarchical:

1. Try Split to find the best partitioned graph model.
2. Compare its codelength C′

1(A) with that of the random graph model, C0(A).
3. If the partitioned graph model is better then, for each subgraph (Ip,Jq, Ap,q), for

all 1 ≤ p ≤ k and 1 ≤ q ≤ �, apply Hierarchical recursively.

Fig. 6. Algorithm to find the cluster tree

is proportional to the total number of edges, as well as the average leaf depth
and number of partitions. Section 5 presents wall-clock time comparisons of the
single-level and hierarchical algorithms.

5 Experimental Evaluation

In this section we demonstrate our method on a number of real datasets. We
compare against previous non-hierarchical/flat node partitioning schemes [4] and
demonstrate that our proposed hierarchical graph decomposition provides sig-
nificant benefits—in terms of revealing meaningful, interesting contexts and fa-
cilitating data exploration, summarization and compression—while still being
scalable to large graphs and suitable for interactive visualization.

We implemented our algorithms in Matlab 7, with certain crucial parts (in
particular, the main loop of Shuffle which iterates over all nodes) written
in C as Matlab extensions (MEX). We have also developed a Matlab GUI2 to
facilitate navigation of the results and allow easy exploration of the clustering
results.

The goal of the experiments is to show that CCT discovers intuitively mean-
ingful subgraphs of various degrees of coarseness. We provide the evaluation from
three aspects: navigation case-study, cluster quality, and method scalability. In
particular we show that

– The hierarchical decomposition improves subgraph uniformity, with a rea-
sonable number of subgraphs and an easy-to-navigate structure.

– The hierarchical decomposition achieves significantly lower total codelengths.
– Our approach is scalable to large datasets, with results progressively reported

within very reasonable time.

5.1 Datasets

The first dataset, DBLP, consists of 8,539 source nodes representing authors that
have published at least 20 papers and 3,092 destination nodes representing con-
ferences. An edge represents that an author has published in the corresponding
conference. The graph has 157,262 edges, or 0.60% non-zero entries in the ad-
jacency matrix. The second dataset, CLASSIC, is from an information retrieval

2 http://www.cs.cmu.edu/∼spapadim/dist/hcc/

http://www.cs.cmu.edu/~spapadim/dist/hcc/
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Table 2. All authors in the most dense “theory” context (see text). The conferences
of this context are SODA, STOC, FOCS, and ICALP.

Theory authors
Dhalia Malkhi Nancy M. Amato Yossi Matias Monika R. Henzinger Ronald L. Rivest
Joan Feigenbaum Robert Endre Tarjan Moni Naor Michael T. Goodrich David P. Dobkin
Thomas Lengauer Frank T. Leighton Jon M. Kleinberg Ravi Kumar Madhu Sudan
Nikhil Bansal Eli Upfal Lars Arge Edith Cohen Noga Alon
Richard Cole Yishay Mansour Randeep Bhatia Sanjeev Khanna Rajeev Motwani
Yonatan Aumann Amit Kumar Avi Widgerson Arne Andersson Vijaya Ramachandran
Micah Adler Stefano Leonardi Arnold Rosenberg Gianfranco Bilardi Ivan Hal Sudborough
Haim Kaplan Jeffrey Scott Vitter Cynthia Dwork Bhaskar Dasgupta Avrim Blum
Michael Mitzenmacher Mihalis Yannakakis Anne Condon David R. Karger Vwani P. Roychowdhuri
Richard E. Ladner Wojiciech Szpankowski Amihood Amir Sampath Kannan Tandy Warnow

setting, with 3,893 source nodes representing documents and 4,303 destination
nodes representing terms. The collection consists of papers from three different
disciplines, medicine (MEDLINE), information retrieval (CISI) and aerodynam-
ics (CRANFIELD), and has 176,347 edges, or 1.05% non-zero entries. The last
dataset, ENRON, is from a social network setting, with 37,335 email addresses.
Source nodes correspond to senders and destination nodes to recipients, with an
edge representing the fact that the corresponding parties exchanged an email at
some point in time. The graph has 367,660 edges, or 0.03% non-zero entries.

5.2 Navigating the Results—Case Study

We focus our intuitive explanation of results on the DBLP dataset, due to space
constraints and also better familiarity with the domain. The dataset consists of
author-conference associations from DBLP. We have kept authors with at least
20 publications. In this setting, homogeneous subgraphs consist of authors that
publish in similar venues. One should also keep in mind that most researchers
have worked in more than one areas over the years and thus the venues they
publish in differ over time.

We start our navigation by seeking the most specific theory context. For this
purpose, we choose SODA, STOC and FOCS as representative of “theory” and
we seek the densest leaf subgraph that contains at least these three conferences.
This leaf is three levels deep in our decomposition. Table 2 shows the complete list
of 50 authors in that subgraph, which indeed consists mostly of well-known the-
ory researchers. Additionally, our method automatically included ICALP (Intl.
Colloq. on Automata, Lang. and Programming) in the set of conferences for that
subgraph. The density of this cluster is approximately 90%.

Table 3. Theory authors in most specific context w.r.t. RECOMB. Authors common
with Table 2 are highlighted in bold.

Theory/bioinformatics authors
Robert Endre Tarjan Xin He Francis Y.L. Chin Frank T. Leighton Haim Kaplan
Frank Hoffmann Bhaskar Dasgupta Tandy Warnow Mihalis Yannakakis Anne Condon
Tao Jiang Christos H. Papadimitriou Michael Mitzenmacher Richard M. Karp Piotr Berman
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Table 4. Pair contexts

(Rakesh Agrawal, SIGMOD) – 3rd level, 100%
Authors (35) Conf. (3)

Rakesh Agrawal Joseph M. Hellerstein Bruce G. Lindsay Daniel M. Dias SIGMOD
Peter J. Haas Soumen Chakrabarti Kenneth C. Sevcik Luis Gravano VLDB
Johannes Gehrke Jim Gray S. Muthukrishnan Bettina Kemme ICDE
Anastassia Ailamaki Samuel Madden S. Sheshadri . . .

(Hari Balakrishnan, SIGCOMM) – 4th level, 58%
Authors (17) Conf. (3)

Hari Balakrishnan Ion Stoica Srinivasan Sheshan Leonard Kleinrock SIGCOMM
M. Frans Kaashoek Ramesh Govindan Mario Gerla J.J. Garcia-Luna-Aceves MOBICOM
Christophe Diot . . . ICNP

Next, we navigate up to the top-level subgraph that contains the same the-
ory authors and seek the most specific context with respect to bioinformatics
conferences. First, we chose RECOMB, which is more theory-oriented. Table 3
shows those 15 authors from that subgraph, which is also at the third level and
has a density of about 40%. This leaf subgraph also includes the IEEE Conf. on
Comp. Complexity, the Structure in Compl. Th. Conf. and CPM, as well as an
additional 18 authors that have published in these conferences only. In general,
the subgraph of theory people publishing in bioinformatics is far less dense than
those subgraphs in their core areas, but still exhibits structure. Note that, since
the (“theory”, RECOMB) node is a sibling of the SODA-STOC-FOCS node, the
list of authors in Table 3 is not a subset of the list in Table 2; authors common
in both are highlighted in bold. Certain authors who have recently focused on
bioinformatics are now included.

We also chose ISMB, another bioinformatics conference with less theoretical
focus—hence it is in a different top-level partition than RECOMB. By navigating
to the most dense leaf subgraph for the same set of theory authors, we quickly
find that its density is merely 5%, with almost no theory people publishing
there.

Finally, in Table 4 we show the most specific contexts for two author-conference
pairs from different disciplines. We show a partial list of authors in the most spe-
cific context, due to space. The headings list the total number of author and con-
ference nodes, as well as the level and density of the most specific subgraph.

First, from data management and mining we chose (Rakesh Agrawal, SIG-
MOD). Note that the the conference list automatically includes VLDB and
ICDE, which are the other two main database conferences. The author list in-
cludes many previous collaborators or coworkers of Rakesh Agrawal, mostly se-
nior, who have (co-)published in similar venues over time. Some junior people
with similar publishing records are also included.

Next, from networking we chose (Hari Balakrishnan, SIGCOMM). The con-
ference list automatically includes MOBICOM and ICNP (Intl. Conf. on Net.
Protocols), as well as well-known networking researchers that have published in
similar venues. Interestingly, INFOCOM is placed in a different subgraph from
the highest level of the decomposition, since it has a much broader set of authors,
who have also published in other areas.
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Fig. 7. Subgraph density distribution:CCT gives more high-density clusters close to 1

5.3 Quantitative Evaluation

In this section we compare “Flat,” which is the non-hierarchical, context-free
approach in [4], and “Hier,” which is our proposed CCT method, in terms of (i)
subgraph uniformity, (ii) compression ratios, and (iii) computation time.

Subgraph uniformity. Figures 7(a1–c1) shows the distribution of subgraph edge
densities ρ of the non-hierarchical approach, whereas Figures 7(a2–c2) show the
same for the leaf-level subgraphs of our CCT decomposition. As expected, the
leaf-level decomposition consists of more homogeneous subgraphs. The distribu-
tion of densities is clearly more concentrated towards either zero or one. The flat
decomposition occasionally fails to produce any fully connected (or even close
to fully connected) subgraphs. At the same time, the number of subgraphs in
CCT is still fairly reasonable, typically at most 6–7% of the number of individ-
ual edges. The increased homogeneity of the subgraphs in conjunction with the
appropriate complexity of the overall decomposition also leads to good compres-
sion, as we shall see later. Finally, as the level of the decomposition increases,
subgraph sizes become small in comparison to the size of the original graph, at
a rate that is roughly exponential with respect to the depth. In almost all cases,
the average depth is close to three, with the maximum ranging from eight to
nine. As we shall see later, this is significant to allow progressive reporting of
results in interactive graph exploration.

Compression. Figure 8a shows the compression achieved by the non-hierarchical
approach and by CCT. We estimate the number of bits needed to store the
original, “raw” matrix as �mnH(ρ(A))�, i.e., we use the random graph model
for the entire matrix. One can get very close to this estimate in practice by
using techniques such as arithmetic coding [22]. Similarly, for the hierarchical
decomposition we use the cost C(A), from Equation (3). For the non-hierarchical
approach, we use the cost formula from [4]. The figure shows the compression
ratios for each method. It is clear from Figure 8a that CCT achieves significantly



184 S. Papadimitriou et al.

DBLP CLASSIC ENRON
0

20

40

60

80

100

Com
pre

sse
d si

ze (
%)

Compression

Flat
Hier.

(a) Compression ratios

DBLP CLASSIC ENRON
0

0.2

0.4

0.6

0.8

1

Pe
r−s

ub
gra

ph
 tim

e (
se

c)

Per−node time

Flat
Hier.

(b) Per-subgraph time

Flat 5sec 2sec 1sec all
10

1

10
2

10
3

10
4

Cutoff

To
ta

l ti
m

e 
(s

ec
)

Computation time

DBLP
CLASSIC
ENRON

(c) Startup time

Fig. 8. (a) Compression ratios. CCT is significantly better, due to better balance be-
tween number of clusters and their homogeneity. (b,c) Wall-clock times. In (b) we see
that, if users can tolerate a 1 sec navigation delay, the precomputation cost for our
hierarchical approach (CCT) is almost as cheap as the context-free approach.

better compression, since it produces much more homogeneous subgraphs (see
also Figure 7), while maintaining an appropriate number of partitions.

Scalability and progressive result reporting. Figures 8(b,c) shows measurements
of wall-clock time for our prototype implementation in Matlab 7. The experi-
ments were measured on a Pentium 4 running at 3GHz, with 2GB of memory.
Figure 8b shows the total wall-clock time divided by the number of subgraphs
produced by each method (previous non-hierarchical approach and CCT). As
discussed before, subgraph sizes decrease quickly with respect to node depth.
Thus, the processing time required to further decompose them decreases dra-
matically. Figure 8c shows the total wall-clock time if we were to compute: (i)
just the first level of the decomposition, (ii) all nodes in the decomposition that
require at least 5, 2, or 1 seconds, and (iii) all nodes at all levels of the de-
composition. In an interactive graph exploration scheme, this effectively means
that if we are willing to tolerate a delay of at most 5, 2 or 1 seconds when we
wish to drill down a subgraph context, then the time required to pre-compute
all other results would be equal to the corresponding y-axis value in Figure 8c.
For example, if we are willing to tolerate at most 2 seconds “click lag,” then
DBLP requires 221 seconds (3.5 minutes) of pre-computation, ENRON 717 seconds
(or, 12 minutes), versus 1609 seconds (27 minutes) and 3996 seconds (1 hour 7
minutes), respectively, for pre-computing everything.

6 Related Work

We now survey related work beyond graph mining mentioned in Section 1 [9,
16, 21, 25, 26, 27, 28].

Biclustering. Biclustering/co-clustering [19] simultaneously clusters both rows
and columns into coherent submatrices (biclusters). Cheng and Church [5]
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proposed a biclustering algorithm for gene expression data analysis, using a
greedy algorithm that identifies one bicluster at a time by minimizing the sum
squared residue. Cho et al. [6] use a similar measure of coherence but find all
the biclusters simultaneously by alternating K-means. Information-theoretic Co-
clustering [8] uses an alternating minimization algorithm for KL-divergence be-
tween the biclusters and the original matrix. The work in [4] formulates the
biclustering problem as a binary matrix compression problem and also employs
a local search scheme based on alternating minimization. However, it does not
study hierarchical decomposition schemes or context-specific graph analysis and
exploration. More recently, streaming extensions of biclustering has been pro-
posed in [1, 25].

There are two main distinctions between our proposed method and existing
work: 1) Most existing methods require a number of parameters to be set, such as
number of biclusters or minimum support. 2) Existing methods are context-free
approaches, which find biclusters global to the entire dataset, while our approach
is context-specific and finds communities at multiple levels. Liu et al. [18] have
leveraged the existing ontology for biclustering, which assumes the hierarchy is
given, while our method automatically learns hierarchy from the data.

Hierarchical clustering. Hierarchical clustering builds a cluster hierarchy over
the data points. The basic methods are agglomerative (bottom-up) or divisive
(top-down) approaches through linkage metrics [12]. Following that spirit, a
number of more sophisticated methods are developed, such as CURE that takes
special care of outliers [11], CHAMELEON that relies on partitioning the k-
NN graph of the data [15], and BIRCH that constructs a Cluster-Feature (CF)
tree to achieve good scalability [30]. All these methods are one-dimensional, in
the sense that all records (rows) are clustered based on all features (columns),
while our proposed method clusters both records (rows) and features (columns)
into coherent and context-specific groups. Another difference is that all these
methods require a number of ad-hoc parameters, while our method is completely
parameter-free.

Multilevel or multigrid methods for graph clustering [2, 16] and, more re-
motely related, local mesh refinement techniques pioneered in [3] also employ
hierarchical schemes, but still require a few parameters (e.g., density thresholds).
Finally, Yang et al develop techniques for 2D image compression via hierarchical,
quadtree-like partitionings, which employ heuristics that are more powerful but
still require a few parameters (e.g., for deciding when to stop recursion) and,
more importantly, are less scalable [29].

Parameter-free mining. Recently, “parameter-free” as a desirable property has
received more and more attention in many places. Keogh et al. [17] developed
a simple and effective scheme for mining time-series data through compression.
Actually, compression or Minimum Description Language (MDL) have become
the workhorse of many parameter-free algorithms: frequent itemsets [24], biclus-
tering [4, 23], time-evolving graph clustering [25], and spatial-clustering [20].
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7 Conclusion

In this paper we develop the Context-specific Cluster Tree (CCT) for community
exploration on large bipartite graphs. CCT has the following desirable proper-
ties: (1) Parameter-free: CCT is automatically constructed without any user
intervention, using the MDL principle. (2) Context-Specific: Communities
are detected at multiple levels and presented depending upon what contexts are
being examined. (3) Efficiency: CCT construction is scalable to large graphs,
and the resulting CCT can provide a compressed representation of the graph
and facilitate visualization. Experiments showed that both space and computa-
tional efficiency are achieved in several large real graphs. Additionally, interesting
context-specific clusters are identified in the DBLP graph. Future work could fo-
cus on parallelizing the CCT computation in order to speed up the construction.
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