
Multiagent Reinforcement Learning for Urban
Traffic Control Using Coordination Graphs

Lior Kuyer1, Shimon Whiteson1, Bram Bakker1, and Nikos Vlassis2

1 Informatics Institute, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{lkuijer,whiteson,bram}@science.uva.nl
2 Department of Production Engineering and Management

Technical University of Crete, Chania, Greece
vlassis@dpem.tuc.gr

Abstract. Since traffic jams are ubiquitous in the modern world, opti-
mizing the behavior of traffic lights for efficient traffic flow is a critically
important goal. Though most current traffic lights use simple heuristic
protocols, more efficient controllers can be discovered automatically via
multiagent reinforcement learning, where each agent controls a single
traffic light. However, in previous work on this approach, agents select
only locally optimal actions without coordinating their behavior. This
paper extends this approach to include explicit coordination between
neighboring traffic lights. Coordination is achieved using the max-plus
algorithm, which estimates the optimal joint action by sending locally
optimized messages among connected agents. This paper presents the
first application of max-plus to a large-scale problem and thus verifies
its efficacy in realistic settings. It also provides empirical evidence that
max-plus performs well on cyclic graphs, though it has been proven to
converge only for tree-structured graphs. Furthermore, it provides a new
understanding of the properties a traffic network must have for such coor-
dination to be beneficial and shows that max-plus outperforms previous
methods on networks that possess those properties.

Keywords: multiagent systems, reinforcement learning, coordination
graphs, max-plus, traffic control.

1 Introduction

Traffic jams are ubiquitous in the modern world and are getting worse, due to
rapidly increasing populations and vehicle usage rates. They commonly occur in
urban settings, where traffic lights are the most typical control mechanism. Ex-
isting road infrastructure is often strained to its limits and expansion is infeasible
due to spatial, environmental, and economic constraints. Therefore, optimizing
the behavior of traffic lights for efficient traffic flow is a critically important goal.

In practice, most traffic lights use very simple protocols that merely alternate
red and green lights for fixed intervals. The interval lengths may change dur-
ing peak hours but are not otherwise optimized. Since such controllers are far

W. Daelemans et al. (Eds.): ECML PKDD 2008, Part I, LNAI 5211, pp. 656–671, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multiagent Reinforcement Learning for Urban Traffic Control 657

from optimal, several researchers have investigated the application of machine
learning to automatically discover more efficient controllers. The methods em-
ployed include fuzzy logic [5], neural networks [12] and evolutionary algorithms
[7]. These methods perform well but can only handle networks with a relatively
small number of controllers.

Since traffic control is fundamentally a problem of sequential decision making,
it is perhaps best suited to the framework of reinforcement learning, in which
an agent learns from trial and error via direct interaction with its environment.
Each action results in immediate rewards and new observations about the state
of the world. Over time, the agent learns a control policy that maximizes the
expected long-term reward it receives.

One way to apply reinforcement learning to traffic control is to train a single
agent to control the entire system, i.e. to determine how every traffic light in the
network is set at each timestep. However, such centralized controllers scale very
poorly, since the size of the agent’s action set is exponential in the number of
traffic lights.

An alternative approach is to view the problem as a multiagent system where
each agent controls a single traffic light [3,14]. Since each agent observes only its
local environment and selects only among actions related to one traffic light, this
approach can scale to large numbers of agents. The primary limitation is that
the individual agents do not coordinate their behavior. Consequently, agents
may select individual actions that are locally optimal but that together result in
global inefficiencies.

This paper extends the reinforcement learning approach to traffic control by
using cooperative learning and explicit coordination among agents. We make
the relaxing assumption that an agent is affected only by those agents with
a direct influence on its environment, i.e. its neighbors in the network. Under
this assumption, the global coordination problem may be decomposed into a set
of local coordination problems and can be solved with the use of coordination
graphs [9].

Since the system must perform under time constraints, an efficient method
for finding optimal joint actions in such graphs is required. For this reason we
apply max-plus [10], which estimates the optimal joint action by sending locally
optimized messages among connected agents. It also allows the agents to report
their current best action at any time (even if the action found so far may be
suboptimal).

This paper makes several contributions. First, it augments the existing frame-
work of reinforcement learning for traffic control by allowing scalable coordi-
nation of neighboring traffic lights. Second, it presents the first application of
max-plus to a large-scale problem and thus verifies its efficacy in realistic set-
tings. Third, it provides empirical evidence that max-plus performs well on cyclic
graphs, though it has been proven to converge only for tree-structured graphs.
Fourth, it provides a new understanding of the properties a traffic network must
have for such coordination to be beneficial and shows that max-plus outperforms
previous methods on networks that possess those properties.

658 L. Kuyer et al.

The remainder of this paper is organized as follows. Section 2 introduces
the traffic model used in our experiments. Section 3 describes the traffic control
problem as a reinforcement learning task. Section 4 describes coordination graphs
and the max-plus algorithm and Section 5 describes how max-plus is applied to
the traffic control problem. Section 6 presents experimental results and Section 7
discusses these results. Section 8 outlines directions for future work and Section
9 concludes.

2 Traffic Model

All experiments presented in this paper were conducted using The Green Light
District (GLD) traffic simulator1 [3,14]. GLD is a microscopic traffic model,
i.e. it simulates each vehicle individually, instead of simply modeling aggregate
properties of traffic flow. The dynamic variables of the model represent mi-
croscopic properties such as the position and velocity of each vehicle. Vehicles
move through the network according to their physical characteristics (e.g. length,
speed, etc.), fundamental rules of motion, and predefined rules of driver behav-
ior. GLD’s simulation is based on cellular automata, in which discrete, partially
connected cells can occupy various states. For example, a road cell can be occu-
pied by a vehicle or be empty. Local transition rules determine the dynamics of
the system and even simple rules can lead to a highly dynamic system.

The GLD infrastructure consists of roads and nodes. A road connects two
nodes, and can have several lanes in each direction. The length of each road
is expressed in cells. A node is either an intersection where traffic lights are
operational or an edge node. There are two types of agents that occupy such
an infrastructure: vehicles and traffic lights (or intersections). All agents act
autonomously and are updated every timestep. Vehicles enter the network at
edge nodes and each edge node has a certain probability of generating a vehicle
at each timestep. Each generated vehicle is assigned one of the other edge nodes
as a destination. The distribution of destinations for each edge node can be
adjusted.

There are several types of vehicles, defined by their speed, length, and number
of passengers. In this paper, all vehicles have equal length and an equal number
of passengers. The state of each vehicle is updated every timestep. It either
moves the distance determined by its speed and the state around it (e.g. vehicles
in front may limit how far it can travel) or remains in the same position (e.g.
the next position is occupied or a traffic light prevents its lane from moving).

When a vehicle crosses an intersection, its driving policy determines which
lane it goes to next. Once a lane is selected, the vehicle cannot switch to a differ-
ent lane. For each intersection, there are several light configurations that are safe.
At each timestep, the intersection must choose from among these configurations,
given the current state.

Figure 1 shows an example GLD intersection. It has four roads, each consisting
of four lanes (two in each direction). Vehicles occupy n cells of a lane, depending
1 Available at http://sourceforge.net/projects/stoplicht

Multiagent Reinforcement Learning for Urban Traffic Control 659

Fig. 1. An example GLD intersection

on their length. Traffic on a given lane can only travel in the directions allowed
on that lane. This determines the possible safe light configurations. For example,
the figure shows a lane where traffic is only allowed to travel straight or right.

The behavior of each vehicle depends on how it selects a path to its destination
node and how it adjusts its speed over time. In our experiments, the vehicles
always select the shortest path to their destination node. In previous work [3,14],
vehicles always traveled at constant speed and only a single vehicle could cross
an intersection at each timestep. We extend the simulator to allow more dynamic
behavior. Three speeds (2, 4, or 6 cells per timestep) are now possible. Vehicles
enter the network with a speed of 4 and at each timestep there is a 78% chance
the vehicle will keep its current speed when it is 4 and an 88% chance when it is
either 2 or 6. Furthermore, multiple vehicles from a single lane can now cross an
intersection during each timestep. The number depends on the vehicles’ speed
and on the state of the destination lanes.

3 Reinforcement Learning for Urban Traffic Control

Several techniques for learning traffic controllers with model-free reinforcement
learning methods like Sarsa [13] or Q-learning [1,11] have previously been de-
veloped. However, they all suffer from the same problem: they do not scale to

660 L. Kuyer et al.

large networks since the size of the state space grows rapidly. Hence, they are
either applied only to small networks or are used to train homogeneous con-
trollers (by training on a single isolated intersection and copying the result to
each intersection in the network).

A more tractable approach is to use model-based reinforcement learning, in
which the transition and reward functions are estimated from experience and
then used to find a policy via planning methods like dynamic programming [4].
A full transition function would have to map the location of every vehicle in the
system at one timestep to the location of every vehicle at the next timestep.
Doing so is clearly infeasible, but learning a model is nonetheless possible if a
vehicle-based representation [14] is used. In this approach, the global state is
decomposed into local states based on each individual vehicle. The transition
function maps one vehicle’s location at a given timestep to its location at the
next timestep. As a result, the number of states grows linearly in the number of
cells and can scale to much larger networks. Furthermore, the transition function
can generalize from experience gathered in different locations, rather than having
to learn separate mappings for each location.

To represent the model, we need only keep track of the number of times
each transition (s, a, s′) has occurred and each state-action pair (s, a) has been
reached. The transition model can then be estimated via the maximum likelihood
probability |(s,a,s′)|

|(s,a)| . Hence, each timestep produces new data which is used to
update the model. Every time the model changes, the value function computed
via dynamic programming must be updated too. However, rather than having to
update each state, we can update only the states most likely to be affected by the
new data, using an approach based on prioritized sweeping [2]. The remainder
of this section describes the process of learning the model in more detail.

Given a vehicle-based representation, the traffic control problem consists of
the following components:

– s ∈ S: the fully observable global state
– i ∈ I: an intersection controller
– a ∈ A: an action, which consists of setting to green a subset of the traffic

lights at the intersection; Ai ⊆ A is the subset of actions that are safe at
intersection i

– l ∈ L: a traffic lane; Li ⊆ L is the subset of incoming lanes for intersection i
– p ∈ P : a position; Pl ⊆ P is the subset of positions for lane l

The global transition model is P (s′|s, a) and the global state s decomposes
into a vector of local states, s = 〈spli

〉, with one for each position in the network.
The action-value function decomposes as:

Q(s, a) =
∑

i

Qi(si, ai) (1)

where
Qi(si, ai) =

∑

li

∑

pli

Qpli
(spli

, ai) (2)

Multiagent Reinforcement Learning for Urban Traffic Control 661

The vehicle-based update rule is then given by:

Qpli
(spli

, ai) :=
∑

s′
pli

∈S′

P (s′pli
|ai, spli

)[r(spli
, s′pli

) + γV (s′pli
)] (3)

where S′ are all possible states that can be reached from spli
given the current

traffic situation and the vehicle’s properties (e.g. its speed and length). Like
Wiering, we use a learning rate γ = 0.9. V (spli

) estimates the expected waiting
time at pli and is given by:

V (spli
) :=

∑

ai

P (ai|spli
)Q(spli

, ai) (4)

The transition model can be estimated using maximum likelihoods by counting
state transitions and corresponding actions. The update is given by:

P (s′pli
|spli

, ai) :=
C(spli

, ai, s
′
plij

)

C(spli
, ai)

(5)

where C(·) is a function that counts the number of times the event occurs. To
estimate V (spli

), we also need to estimate the probability that a certain action
will be taken given the state, which is done using the following update:

P (ai|spli
) :=

C(spli
, ai)

C(spli
)

(6)

The global reward function decomposes as:

r(s, s′) =
∑

i

∑

li

∑

pli

r(spli
, s′pli

) (7)

and

r(spli
, s′pli

) =
{

0 spli
�= s′pli

−1 otherwise
(8)

Given the current model, the optimal value function is estimated using dy-
namic programming with a fixed number of iterations. Wiering [14] performs
only one iteration per timestep and uses ε-greedy exploration to ensure the es-
timated model obtains sufficiently diverse data.

Bakker et al. [3] extend Wiering’s approach by including congestion informa-
tion in the state representation. The value function Qpli

(spli
, ai) is extended to

Qpli
(spli

, cdest, ai) where cdest ∈ {0, 1} is a single bit indicating the congestion
level at the next lane for the vehicle currently at pli . If the congestion at the
next lane exceeds some threshold then cdest = 1 and otherwise it is set to 0.
This extension allows the agents to learn different state transition probabilities
and value functions when the outbound lanes are congested. This method has
been shown to outperform Wiering’s approach on a saturated network. The cost
of including such congestion information is a larger state space and potentially

662 L. Kuyer et al.

slower learning. It also requires the vehicles to communicate with the controllers,
since the latter need to know the destination lanes of each vehicle.

4 Coordination Graphs

The primary limitation of the approaches developed by Wiering and Bakker et
al. is that the individual agents do not coordinate their behavior. Consequently,
agents may select individual actions that are locally optimal but that together
result in global inefficiencies. Coordinating actions can be difficult since the size
of the joint action space is exponential in the number of agents. However, in
many cases, the best action for a given agent may depend on only a small subset
of the other agents. If so, the global reward function can be decomposed into
local functions involving only subsets of agents. The optimal joint action can
then be estimated by finding the joint action that maximizes the sum of the
local rewards.

A coordination graph [9], which can be used to describe the dependencies
between agents, is an undirected graph G = (V, E) in which each node i ∈ V
represents an agent and each edge e(i, j) ∈ E between agents i and j indicates a
dependency between them. The global coordination problem is then decomposed
into a set of local coordination problems, each involving a subset of the agents.
Since any arbitrary graph can be converted to one with only pairwise dependen-
cies [16], the global action-value function can be decomposed into pairwise value
functions given by:

Q(s, a) =
∑

i,j∈E

Qij(s, ai, aj) (9)

where ai and aj are the corresponding actions of agents i and j, respectively.
Using such a decomposition, the variable elimination [9] algorithm can compute
the optimal joint action by iteratively eliminating agents and creating new con-
ditional functions that compute the maximal value the agent can achieve given
the actions of the other agents on which it depends. Although this algorithm
always finds the optimal joint action, it is computationally expensive, as the ex-
ecution time is exponential in the induced width of the graph [15]. Furthermore,
the actions are known only when the entire computation completes, which can
be a problem for systems that must perform under time constraints. In such
cases, it is desirable to have an anytime algorithm that improves its solution
gradually.

One such algorithm is max-plus [8,10], which approximates the optimal joint ac-
tion by iteratively sending locally optimized messages between connected nodes
in the graph. While in state s, a message from agent i to neighboring agent j de-
scribes a local reward function for agent j and is defined by:

μij(aj) = max
ai

{Qij(s, ai, aj) +
∑

k∈Γ (i)\j

μki(ai)} + cij (10)

where Γ (i)\j denotes all neighbors of i except for j and cij is either zero or can be
used to normalize the messages. The message approximates the maximum value

Multiagent Reinforcement Learning for Urban Traffic Control 663

agent i can achieve for each action of agent j based on the function defined
between them and incoming messages to agent i from other connected agents
(except j). Once the algorithm converges or time runs out, each agent i can
select the action

a∗
i = arg max

ai

∑

j∈Γ (i)

μji(ai) (11)

Max-plus has been proven to converge to the optimal action in finite iterations,
but only for tree-structured graphs, not those with cycles. Nevertheless, the
algorithm has been successfully applied to such graphs [6,10,16].

5 Max-Plus for Urban Traffic Control

Max-plus enables agents to coordinate their actions and learn cooperatively.
Doing so can increase robustness, as the system can become unstable and in-
consistent when agents do not coordinate. By exploiting coordination graphs,
max-plus minimizes the expense of computing joint actions and allows them to
be approximated within time constraints.

In this paper, we combine max-plus with Wiering’s model-based approach to
traffic control. We use the vehicle-based representation defined in Section 3 but
add dependence relationships between certain agents. If i, j ∈ J are two inter-
sections connected by a road, then they become neighbors in the coordination
graph, i.e. i ∈ Γ (j) and j ∈ Γ (i). The local value functions are:

Qi(si, ai, aj) =
∑

li

∑

pli

Qpli
(spli

, ai, aj) (12)

Using the above, we can define the pairwise value functions used by max-plus:

Qij(s, ai, aj) =
∑

pli

Opli
Qpli

(spli
, ai, aj) +

∑

plj

Oplj
Qplj

(splj
, aj , ai) (13)

where Opli
is a binary operator which indicates occupancy at pli :

Opli
=

{
0 pli not occupied
1 otherwise (14)

These local functions are plugged directly into Equation 10 to implement
max-plus. Note that the functions are symmetric such that Qij(s, ai, aj) =
Qji(s, aj , ai). Thus, using Equation 13, the joint action can be estimated di-
rectly by the max-plus algorithm. Like Wiering, we use one iteration of dynamic
programming per timestep and ε-greedy exploration. We also limit max-plus to
3 iterations per timestep.

Note that there are two levels of value propagation among agents. On the lower
level, the vehicle-based representation enables estimated values to be propagated
between neighboring agents and eventually through the entire network, as in

664 L. Kuyer et al.

Wiering’s approach. On the higher level, agents use max-plus when computing
joint actions to inform their neighbors of the best value they can achieve, given
the current state and the values received from other agents.

Using this approach, agents can learn cooperative behavior, since they share
value functions with their neighbors. Furthermore, they can do so efficiently,
since the number of value functions is linear in the induced width of the graph.
Stronger dependence relationships could also be modeled, i.e. between intersec-
tions not directly connected by a road, but we make the simplifying assumption
that it is sufficient to model the dependencies between immediate neighbors in
the traffic network.

6 Results

In this section, we compare the novel approach described in Section 5 to the
TC-1 (Traffic Controller 1) developed by Wiering [14] and the TC-SBC (Traffic
Controller with State Bit for Congestion) extension of Bakker et al. [3]. Wiering
compared TC-1 to two heuristic strategies, one that always sets the lights at
each intersection to maximize throughput and another that always gives right-
of-way to the longest queue. These heuristics perform well in light traffic but
TC-1 substantially outperforms them in heavy traffic. Therefore, we focus our
experiments on comparisons between the novel method, TC-1, and TC-SBC in
highly saturated conditions.

These experiments are designed to test the hypothesis that, under highly sat-
urated conditions, coordination is beneficial when the amount of local traffic
is small. Local traffic consists of vehicles that cross a single intersection and
then exit the network, thereby interacting with just one learning agent. If this
hypothesis is correct, coordinated learning with max-plus should substantially
outperform TC-1 and TC-SBC when most vehicles pass through multiple inter-
sections.

In particular, we consider three different scenarios. In the baseline scenario,
the traffic network includes routes, i.e. paths from one edge node to another,
that cross only a single intersection. Since each vehicle’s destination is chosen
from a uniform distribution, there is a substantial amount of local traffic. In the
nonuniform destinations scenario, the same network is used but destinations are
selected to ensure that each vehicle crosses two or more intersections, thereby
eliminating local traffic. To ensure that any performance differences we observe
are due to the absence of local traffic and not just to a lack of uniform desti-
nations, we also consider the long routes scenario. In this case, destinations are
selected uniformly but the network is altered such that all routes contain at least
two intersections, again eliminating local traffic.

While a small amount of local traffic will occur in real-world scenarios, the
vast majority is likely to be non-local. Thus, the baseline scenario is used, not
for its realism, but to help isolate the effect of local traffic on each method’s
performance. The nonuniform destinations and long routes scenarios are more

Multiagent Reinforcement Learning for Urban Traffic Control 665

challenging and realistic, as they require the methods to cope with an abundance
of non-local traffic.

We present initial proof-of-concept results in small networks and then study
the same three scenarios in larger networks to show that the max-plus approach
scales well and that the qualitative differences between the methods are the same
in more realistic scenarios.

For each case, we consider three different metrics: 1) average trip waiting time
(ATWT): the total waiting time of all vehicles that have reached their destination
divided by the number of such vehicles, 2) ratio of stopped vehicles (RSV): the
fraction of all vehicles in the network that do not move in a given timestep, and
3) total queue length (TQL): the number of vehicles that have been generated
but are still waiting to enter the network because the outbound lane of their
edge node is full.

Due to lack of space, we present graphs only for ATWT. In most cases, ATWT
is sufficient to determine the methods’ relative performance, i.e. lower ATWT
implies lower RSV and TQL. Therefore, we mention the RSV and TQL results
only when they are qualitatively different from ATWT. All results are averaged
over 10 independent runs.

6.1 Small Networks

Fig. 2. The small network used in the baseline
and nonuniform destinations scenarios

Figure 2 shows the small net-
work used for the baseline and
nonuniform destinations scenar-
ios. Each intersection allows
traffic to cross from only one di-
rection at a time. All lanes have
equal length and all edge nodes
have equal spawning rates (ve-
hicles are generated with prob-
ability 0.2 per timestep). The
left side of Figure 3 shows re-
sults from the baseline scenario,
which have uniform destina-
tions. As a result, much of the
traffic is local and hence there is
no significant performance dif-
ference between TC-1 and max-
plus. TC-SBC performs worse
than the other methods, which
is likely due to slower learn-
ing as a result of a larger state
space.

The right side of Figure 3 shows results from the nonuniform destinations sce-
nario. In this case, all traffic from intersections 1 and 3 is directed to intersection
2. Traffic from the top edge node of intersection 2 is directed to intersection 1 and

666 L. Kuyer et al.

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

300

timestep

A
T

W
T

TC−1
TC−SBC
max−plus

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

300

350

400

450

timestep

A
T

W
T

TC−1
TC−SBC
max−plus

Fig. 3. Average ATWT per timestep for each method in the small network for the
baseline (left) and nonuniform destinations (right) scenarios

traffic from the left edge node is directed to intersection 3. Consequently, there
is no local traffic. This results in a dramatic performance difference between
max-plus and the other two methods.

This result is not surprising since the lack of uniform destinations creates a
clear incentive for the intersections to coordinate their actions. For example, the
lane from intersection 1 to 2 is likely to become saturated, as all traffic from edge
nodes connected to intersection 1 must travel through it. When such saturation
occurs, it is important for the two intersections to coordinate, since allowing
incoming traffic to cross intersection 1 is pointless unless intersection 2 allows
that same traffic to cross in a “green wave”.

Fig. 4. The small network used in the long routes scenario

To ensure that the performance difference between the baseline and nonuni-
form destinations scenarios is due to the removal of local traffic and not some
other effect of nonuniform destinations, we also consider the long routes scenario.
Destinations are kept uniform, but the network structure is altered such that all
routes involve at least two intersections. Figure 4 shows the new network, which
has a fourth intersection that makes local traffic impossible. Figure 5 shows the
results from this scenario.

Multiagent Reinforcement Learning for Urban Traffic Control 667

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

300

350

400

450

500

timestep

A
T

W
T

TC−1
TC−SBC
max−plus

Fig. 5. Average ATWT per timestep in the
small network for the long routes scenario

As before, max-plus substantially
outperforms the other two methods,
suggesting its advantage is due to the
absence of local traffic rather than
other factors. TC-1 achieves a lower
ATWT than TC-SBC but actually
performs much worse. In fact, TC-1’s
joint actions are so poor that the out-
bound lanes of some edge nodes be-
come full and its TQL skyrockets. As
a result, the ATWT is not updated,
leading to an artificially low score. At
the end of each run, TC-1 had an av-
erage of TQL of 9259.7 while TC-SBC
had only 3966.9 and max-plus had 0.0.
The low quality of TC-1’s joint actions becomes clear when comparing the RSV:
0.92 for TC-1, 0.55 for TC-SBC, and 0.09 for max-plus.

6.2 Large Networks

We also consider the same three scenarios in larger networks to show that the
max-plus approach scales well and that the qualitative differences between the
methods are the same in more realistic scenarios. Figure 6 shows the network
used for the baseline and nonuniform destinations scenarios. It includes 15 agents
and roads with four lanes. The left side of Figure 7 shows results from the baseline
scenario, which has uniform destinations. As with the smaller network, max-plus
and TC-1 perform very similarly in this scenario, though max-plus’s coordination
results in slightly slower learning. However, TC-SBC no longer performs worse
than the other two methods, probably because the network is now large enough
to incur substantial congestion. TC-SBC, thanks to its congestion bit, can cope
with this occurrence better than TC-1.

The right side of Figure 7 shows results from the nonuniform destinations
scenario. In this case, traffic from the top edge nodes travel only to the bottom
edge nodes and vice versa. Similarly, traffic from the left edge nodes travel only
to right edge nodes and vice versa. As a result, all local traffic is eliminated and
max-plus performs much better than TC-1 and TC-SBC. TC-SBC performs
substantially better than TC-1, as the value of its congestion bit is even greater
in this scenario.

To implement the long routes scenario, we remove one edge node from the
two intersections that have two edge nodes (the top and bottom right nodes in
Figure 6). Traffic destinations are uniformly distributed but the new network
structure ensures that no local traffic occurs. The results of the long routes
scenario are shown in Figure 8. As before, max-plus substantially outperforms
the other two methods, confirming that its advantage is due to the absence of
local traffic rather than other factors.

668 L. Kuyer et al.

Fig. 6. The large network used in the baseline and nonuniform destinations scenarios

0 1 2 3 4 5

x 10
4

0

5

10

15

timestep

A
T

W
T

TC−1
TC−SBC
max−plus

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

300

350

400

timestep

A
T

W
T

TC−1
TC−SBC
max−plus

Fig. 7. Average ATWT per timestep for each method in the large network for the
baseline (left) and nonuniform destinations (right) scenarios

Multiagent Reinforcement Learning for Urban Traffic Control 669

7 Discussion

0 1 2 3 4 5

x 10
4

0

50

100

150

200

250

timestep

A
T

W
T

TC−1
TC−SBC
max−plus

Fig. 8. Average ATWT per timestep for
each method in the long routes scenario

The experiments presented above
demonstrate a strong correlation be-
tween the amount of local traffic and
the value of coordinated learning. The
max-plus method consistently outper-
forms both non-coordinated methods
in each scenario where local traffic has
been eliminated. Hence, these results
help explain under what circumstances
coordinated methods can be expected
to perform better. More specifically,
they confirm the hypothesis that, un-
der highly saturated conditions, coor-
dination is beneficial when the amount
of local traffic is small.

Even when there is substantial local
traffic, the max-plus method achieves the same performance as the alternatives,
though it learns more slowly. Hence, this method appears to be substantially
more robust, as it can perform well in a much broader range of scenarios.

By testing both small and large networks, the results also demonstrate that
max-plus is practical in realistic settings. While max-plus has succeeded in small
applications before [10], this paper presents its first application to a large-scale
problem. In fact, in the scenarios without local traffic, the performance gap
between max-plus and the other methods was consistently larger in the big
networks than the small ones. In other words, as the number of agents in the
system grows, the need for coordination increases. This property makes the max-
plus approach particularly attractive for solving large problems with complex
networks and numerous agents.

Finally, these results also provide additional confirmation that max-plus can
perform well on cyclic graphs. The algorithm has been shown to converge only for
tree-structured graphs, though empirical evidence suggests it also excels on small
cyclic graphs [10]. The results presented in this paper show that this performance
also occurs in larger graphs, even if they are not tree-structured.

8 Future Work

There are several ways in which the work presented this paper could be extended
or improved. First, the algorithm could be augmented to automatically discover
the best coordination graph for the problem. We currently use fixed coordina-
tion graphs with dependencies only between intersections connected by a road.
In some cases, other coordination graphs could lead to better performance. Opti-
mization methods such as genetic algorithms could potentially be used to search
for the best coordination graph for a given problem.

670 L. Kuyer et al.

Second, max-plus could be implemented in a distributed fashion. The current
implementation is centralized and uses iterations. In each iteration, an agent
sends messages to its neighbors in a predefined order. The same functionality
could be achieved with a distributed implementation where each agent sends an
updated message as soon as it receives a new message from a neighbor. Since
messages would be sent in parallel, computational savings would occur. However,
such an implementation would require the development of protocols and other
functionality not presently supported by the simulator.

Third, vehicle route selection could be adapted on-line, i.e. traffic controllers
and vehicles could coordinate their behavior based on real-time traffic conditions.
This functionality could avoid bottlenecks by distributing traffic more wisely over
the network. Such an approachmay be difficult to implement in practice since it re-
quires vehicles to cooperate and communicatewith the traffic controllers.However,
previous work [14] has generated promising initial results for such an approach.

Fourth, several simplifying assumptions could be removed from the simulator.
The environment is currently fully observable and stationary. Communication
costs are not modeled. Many real-world factors such as weather, pedestrian be-
havior, vehicle accidents, illegal parking, etc. are not considered. Overall, the
current simulation does exhibit most of the crucial characteristics that make ur-
ban traffic control difficult. Nonetheless, future work should focus on construct-
ing even more realistic environments and developing the algorithmic extensions
necessary to tackle them.

9 Conclusions

This paper presents a novel method for learning efficient urban traffic controllers.
Previouswork used multiagent reinforcement learning but the agents selected only
locally optimal actions without coordinating their behavior. This paper extends
this approach to include explicit coordination between neighboring traffic lights.
Coordination is achieved using the max-plus algorithm, which estimates the opti-
mal joint action by sending locally optimized messages among connected agents.
This paper presents the first application of max-plus to a large-scale problem and
thus verifies its efficacy in realistic settings. Empirical results on both large and
small traffic networks demonstrate that max-plus performs well on cyclic graphs,
though it has been proven to converge only for tree-structured graphs. Further-
more, the results provide a new understanding of the properties a traffic network
must have for such coordination to be beneficial and show that max-plus outper-
forms previous methods on networks that possess those properties.

References

1. Abdulhai, B., et al.: Reinforcement Learning for True Adaptive Traffic Signal Con-
trol. ASCE Journal of Transportation Engineering 129(3), 278–285 (2003)

2. Moore, A.W., Atkenson, C.G.: Prioritized Sweeping: Reinforcement Learning with
less data and less time. Machine Learning 13, 103–130 (1993)

Multiagent Reinforcement Learning for Urban Traffic Control 671

3. Bakker, B., Steingrover, M., Schouten, R., Nijhuis, E., Kester, L.: Cooperative
multi-agent reinforcement learning of traffic lights. In: Gama, J., Camacho, R.,
Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720.
Springer, Heidelberg (2005)

4. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton
(1957)

5. Chiu, S.: Adaptive Traffic Signal Control Using Fuzzy Logic. In: Proceedings of
the IEEE Intelligent Vehicles Symposium, pp. 98–107 (1992)

6. Crick, C., Pfeffer, A.: Loopy belief propagation as a basis for communication in
sensor networks. In: Proceedings of Uncertainty in Artificial Intelligence (UAI)
(2003)

7. Foy, M.D., Benekohal, R.F., Goldberg, D.E.: Signal timing determination using
genetic algorithms. Transportation Research Record No. 1365, 108–115

8. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001)

9. Guestrin, C., Lagoudakis, M.G., Parr, R.: Coordinated reinforcement learning. In:
Proceedings Nineteenth International Conference on Machine Learning, pp. 227–
234 (2002)

10. Kok, J.R., Vlassis, N.: Collaborative Multiagent Reinforcement Learning by Payoff
Propagation. J. Mach. Learn. Res. 7, 1789–1828 (2006)

11. Shoufeng, M., et al.: Agent-based learning control method for urban traffic signal
of single intersection. Journal of Systems Engineering 17(6), 526–530 (2002)

12. Spall, J.C., Chin, D.C.: Traffic-Responsive Signal Timing for System-wide Traffic
Control. Transportation Research Part C: Emerging Technologies 5(3), 153–163
(1997)

13. Thorpe, T.L., Andersson, C.: Traffic light control using sarsa with three state
representations. Technical report, IBM corporation (1996)

14. Wiering, M.: Multi-Agent Reinforcement Learning for Traffic Light Control. In:
Proc. 17th International Conf. on Machine Learning, pp. 1151–1158 (2000)

15. Vlassis, N.: A Concise Introduction to Multiagent Systems and Distributed Artifi-
cial Intelligence. Synthesis Lectures in Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers, San Francisco (2007)

16. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. In: Exploring Artificial Intelligence in the New Millennium, ch. 8,
pp. 239–269 (2003)

17. Zhang, N.L., Poole, D.: Exploiting causal independence in Bayesian network infer-
ence. Journal of Artificial Intelligence Research 5, 301–328 (1996)

	Multiagent Reinforcement Learning for Urban Traffic Control Using Coordination Graphs
	Introduction
	Traffic Model
	Reinforcement Learning for Urban Traffic Control
	Coordination Graphs
	Max-Plus for Urban Traffic Control
	Results
	Small Networks
	Large Networks

	Discussion
	Future Work
	Conclusions
	References

