
W. Daelemans et al. (Eds.): ECML PKDD 2008, Part II, LNAI 5212, pp. 408–423, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Fast Algorithm to Find Overlapping
Communities in Networks

Steve Gregory

Department of Computer Science
University of Bristol, BS8 1UB, England

steve@cs.bris.ac.uk

Abstract. Many networks possess a community structure, such that vertices
form densely connected groups which are more sparsely linked to other groups.
In some cases these groups overlap, with some vertices shared between two or
more communities. Discovering communities in networks is a computationally
challenging task, especially if they overlap. In previous work we proposed an
algorithm, CONGA, that could detect overlapping communities using the new
concept of split betweenness. Here we present an improved algorithm based on
a local form of betweenness, which yields good results but is much faster. It is
especially effective in discovering small-diameter communities in large net-
works, and has a time complexity of only O(n log n) for sparse networks.

1 Introduction and Related Work

In recent years, networks (graphs) have increasingly been used to represent various
kinds of complex system in the real world. Many networks exhibit community struc-
ture: the tendency of vertices to form communities (or modules) such that intracom-
munity edges are denser than the edges between communities. Communities often
reflect important relationships between individuals (vertices), so the automatic dis-
covery of communities has become one of the key tasks in network analysis.

Even if we restrict our attention to unipartite networks with undirected, unweighted
edges, as we do in this paper, there is already a wide choice of community detection
algorithms. Many of these are described in the survey papers of [6, 14], and there are
also many recent algorithms, including [3, 17, 21, 24, 27].

Unfortunately, there is no standard definition of community and no consensus
about how a network should be divided into communities. The vast majority of exist-
ing algorithms partition a network into a flat set of disjoint sets (clusters) of vertices,
though it is often possible, or necessary, to choose the number of clusters. However,
in some networks the community structure is not flat: for example, a collaboration
network may contain a community for each research area, each comprising a number
of subcommunities corresponding to research groups. A few algorithms [5, 11] can
detect such a hierarchical community structure. Moreover, in many networks, com-
munities are not disjoint: for example, some researchers work on more than one topic
and therefore belong simultaneously to multiple research groups. Some algorithms [2,
9, 20, 28] are able to detect these overlapping communities.

In this paper we focus on the detection of overlapping communities. In previous
work we designed an algorithm, CONGA (Cluster-Overlap Newman Girvan Algorithm)

 A Fast Algorithm to Find Overlapping Communities in Networks 409

[9], for this purpose. It extends Girvan and Newman’s [8, 18] algorithm (the “GN algo-
rithm”) with the ability to split vertices between clusters, based on the new concept of
split betweenness. CONGA yields good results but is extremely slow, with approxi-
mately cubic time complexity, so it can only cope with networks containing at most a
few thousand vertices and edges. Many real-world networks are far larger than this, so
CONGA cannot be used.

CONGA inherits its low speed from the GN algorithm. Both algorithms rely on be-
tweenness, which is a global centrality measure: at each step, it counts the number of
shortest paths between all pairs of vertices in the network. For a fast, scalable, algo-
rithm we need a measure that can be computed locally. In this paper we show how
CONGA can be made much faster using local betweenness [10, 23].

In the next section we outline CONGA, introduce the concept of local between-
ness, and then describe our new algorithm: the CONGO (CONGA Optimized) algo-
rithm. Section 3 presents the results of experiments with the new algorithm on both
synthetic and real-world networks. We compare its performance and execution time
with both CONGA and CFinder [20], another state-of-the-art algorithm for finding
overlapping communities. Conclusions appear in Section 4.

2 The CONGO Algorithm

2.1 The CONGA Algorithm

The CONGA algorithm [9] comprises a sequence of steps, each of which removes an
edge from the network or splits a vertex into two vertices:

1. Calculate edge betweenness of edges and split betweenness of vertices.
2. Remove edge with maximum edge betweenness or split vertex with maximum split

betweenness, if greater.
3. Recalculate edge betweenness and split betweenness.
4. Repeat from step 2 until no edges remain.

Initially, the n-vertex network is treated as a single cluster, assuming it is con-
nected. Eventually, step 2 causes the cluster to split into two components (clusters).
Clusters continue to be split into two until only singleton clusters remain. The binary
splits can be represented as a dendrogram, which is used to reconstruct a partition of
the network into any desired number of clusters.

CONGA is the same as the GN algorithm [8, 18] except for the vertex splitting
step, which allows overlapping clusters. Because of this, a vertex v may be split into i
vertices (copies of v) distributed between j clusters (1≤j≤i). When reconstructing the
partition, these copies of v are replaced by v itself in each of these j clusters.

The edge betweenness of an edge e is the number of shortest paths, between all
pairs of vertices, that pass along e. The split betweenness of a vertex v is the number
of shortest paths that would pass between the two parts of v if it were split. Since there
are many (2d(v)-1-1, where d(v) is the degree of v) ways to split v into two, we choose
the best split: the one that maximizes the split betweenness.

410 S. Gregory

In [9] we give an approximate algorithm for computing the split betweenness of a
vertex from its pair betweennesses. The pair betweenness of v for {u,w}, where u and
w are neighbours of v, is the number of shortest paths traversing both edges {u,v} and
{v,w}. It is straightforward to compute this while computing edge betweenness.

The GN algorithm has a worst-case time complexity of O(m2n), where m is the
number of edges and n is the number of vertices. In CONGA, each vertex v can split
into at most m/n vertices on average (i.e., d(v)/2), so the number of vertices after split-
ting is O(m) instead of n. This makes the time complexity O(m3) in the worst case:
there are O(m) iterations, and both step 1 and step 3 are O(m2).

In practice, the speed depends heavily on the number of vertices that are split
(which increases the network size) and on how easily the network breaks into separate
components. This is because, in step 3, betweenness need be calculated only for the
component containing the removed edge or split vertex, or for both components if
step 2 caused the component to split.

2.2 Local Betweenness

Betweenness is expensive to compute because it counts all shortest paths in the net-
work. One way to avoid this is to count only short shortest paths. We redefine the
edge betweenness of edge e to be the number of shortest paths running along e whose
length is less than or equal to h (a parameter of the algorithm). The pair betweenness
of vertex v for {u,w} is the number of shortest paths traversing {u,v} and {v,w} whose
length is less than or equal to h. Split betweenness is derived from pair betweennesses
in the same way as in CONGA.

Step 1 of the CONGA algorithm is performed by a breadth-first search from every
vertex. Using local betweenness, the depth of this search (from each vertex) is limited
to h, which is faster than traversing every edge in the network.

Local betweenness has an even greater effect on the speed of step 3: betweenness
need not be recalculated for the whole network, but only locally: in a small subgraph
around the edge that was removed, or the vertex that was split, in step 2. In Figs. 1
and 2 we illustrate how step 3 of CONGA can be optimized in this way, but first we
need to define this small subgraph, which we call an h-region.

The h-region of edge {u,v} ⎯ the region affected by the removal of {u,v} ⎯ is the
smallest subgraph containing all shortest paths no longer than h that pass along {u,v}.
This is an induced subgraph with vertex set

Vu,v,h = {w : d(u,w) < h ∨ d(v,w) < h} (1)

where d(u,w) denotes the shortest-path distance between u and v. The h-region of ver-
tex v ⎯ the region affected by splitting v ⎯ is the smallest subgraph containing all
shortest paths no longer than h that pass through v or start/end at v. This is an induced
subgraph with vertex set

Vv,h = {w : d(v,w) ≤ h} (2)

For example, Fig. 1(a) shows a small network with the 2-region of edge {h,i}
shown shaded. Fig. 2(a) shows another network, highlighting the 2-region of
vertex u.

 A Fast Algorithm to Find Overlapping Communities in Networks 411

(a) Edge {h,i} selected for removal.

2-region of {h,i} is shaded.

(b) Shortest paths within region are found

and subtracted from betweenness.

(c) {h,i} is removed. Shortest paths within

region are found and added to be-

tweenness.

c

i jh

d e f

m

g

a
b

k l

6

8

8
1010

8

8

6

8

6

6

10
10

1010

86 6

6

10

n(a)

c

i jh

d e f

m

g

a
b

k l

6

8

8
1010

8

8

6

8

6

6

2
0

22

80 0

6

2

n(b)

c

i jh

d e f

m

g

a
b

k l

6

8

8
1010

8

8

6

8

6

6

8

88

88 8

6

8

n(c)

Fig. 1. Local recalculation of betweenness after removing an edge

xw

q

y

55

8

8 4

88

10 10

6

8

u

o p

z

sr

vt

8 8

10

99

1010

(a)

xw

q

y

00

4

8 0

22

0 0

0

8

u

o p

z

sr

vt

8 8

4

00

22

(b)

xw

q

y

55

8

8 4

88

4 4

2

8

u’

o p

z

sr

vt

8 8

10

55

1010

u”

(c)

(a) Vertex u selected for splitting.

2-region of u is shaded.

(b) Shortest paths within region are found

and subtracted from betweenness.

(c) u is split. Shortest paths within region

are found and added to betweenness.

Fig. 2. Local recalculation of betweenness after splitting a vertex

412 S. Gregory

In step 3, our new algorithm recalculates betweenness by a local method. It first
“undoes” the betweenness of the h-region, by finding all shortest paths no longer than
h that lie entirely within the region and subtracting their number from the (previously
computed) edge betweenness of the edges they traverse and the pair betweennesses of
the vertices they pass through. This has the effect of reducing the betweenness of the
chosen edge (Fig. 1(b)) or vertex (Fig. 2(b)) to zero. After removing the edge or split-
ting the vertex, it again finds all shortest paths no longer than h within the region and
adds their number to the edge betweenness of the edges they traverse and the pair be-
tweennesses of the vertices they pass through; see Figs. 1(c) and 2(c).

2.3 The CONGO Algorithm

The CONGO algorithm is the same as CONGA (Section 2.1) but using local be-
tweenness, explained in Section 2.2. The complete CONGO algorithm is as follows:

1. Calculate edge betweenness of edges and split betweenness of vertices.
2. Find edge with maximum edge betweenness or vertex with maximum split be-

tweenness, if greater.
3. Recalculate edge betweenness and split betweenness:

a) Subtract betweenness of h-region centred on the removed edge or split vertex.
b) Remove the edge or split the vertex.
c) Add betweenness for the same region.

4. Repeat from step 2 until no edges remain.

In practice, CONGO’s execution time depends strongly on the structure of the net-
work, but we can estimate its time complexity as follows.

For step 1, the time complexity for h=∞ is O(mn); this would reduce to O(m) for
h=1, which is of no practical use because the 1-betweenness of every edge is the
same. For other small values of h, we make the simplifying assumption that all verti-
ces have about the same degree, 2m/n. Then, for each of the n vertices, the tree
searched contains O((m/n)h) vertices. This makes the time complexity of step 1 ap-
proximately O(mh/nh-1), or O(n) for a sparse network.

Making the same assumption for step 3, an h-region of an edge contains
O((m/n)h-1) vertices and O((m/n)h) edges; an h-region of a vertex contains O((m/n)h)
vertices and O((m/n)h+1) edges. Therefore, the time complexity of step 3 is approxi-
mately O((m/n)2h+1), or O(1) for a sparse network.

Step 2 takes O(log m) time, and the loop containing steps 2 and 3 is repeated O(m)
times. Therefore, the time complexity of the whole algorithm is O(m log m +
m2h+2/n2h+1), or O(n log n) for a sparse network.

3 Experiments

3.1 Experiments on Synthetic Networks

A common way to evaluate network clustering algorithm is by generating artificial net-
works based on a known community structure and comparing the known communities

 A Fast Algorithm to Find Overlapping Communities in Networks 413

with the clusters found by the algorithm. The comparison can be done in various ways,
including the Mutual Information measure [7] and Rand Index [22]. We use the F-
measure, defined as the harmonic mean of recall and precision, where:

• recall: the fraction of vertex pairs belonging to the same community that are also in
the same cluster.

• precision: the fraction of vertex pairs in the same cluster that also belong to the
same community.

(A pair of vertices are considered to “belong to the same community/cluster” if
there exists at least one community/cluster that they both belong to. Because of over-
lap, there may be more than one of these.)

We randomly generated a set of networks containing n vertices divided into c
equally-sized communities, each containing nr/c vertices. Vertices are randomly and
evenly distributed between communities such that each vertex is a member of r com-
munities on average. r is a measure of overlap, ranging from 1 (communities are dis-
joint) to c (communities each contain all vertices). The network is then constructed by
placing edges between pairs of vertices randomly, with probability ipin if there are i
(≥1) communities to which both vertices belong, and pout otherwise. All networks
used in the experiments are connected, and results shown are the average of 10 runs.

Below we compare our CONGO algorithm, for h=2 and h=3, with CONGA (which
is equivalent to CONGO with h=∞). We also compare it with CFinder [1], based on
the clique percolation algorithm of Palla et al. [20], one of the most efficient and best-
known algorithms for finding overlapping communities. For CONGO and CONGA,
the number of clusters is a parameter of the algorithm, so we set this to c, the known
number of communities. This is impossible with CFinder, whose only parameter is k
(cluster density). For fairness, we show the results from CFinder for all values of k.

Fig. 3 shows results for 256 vertices in 32 communities. The overlap is 2, meaning
that each community contains 16 vertices. As pout increases, the community structure
becomes less evident and so CONGO’s F-measure decreases, especially for h=2. In
contrast, CFinder is relatively resilient to these intercommunity edges.

Fig. 4 shows the effect of increasing the density of intracommunity edges. The
CONGO results are good and improve as pin increases. Again, h=2 is worse than h=3,
but only for small values of pin. CFinder, for each k, peaks at a different value of pin.

 0

0.2

0.4

0.6

0.8

 1

 0 0.005 0.01 0.015 0.02
Probability of inter-community edges (p_out)

CONGO: h=2
h=3

CONGA
CFinder: k=3

k=4
k=5
k=6

Fig. 3. F-measure for random networks with n=256, c=32, r=2, pin=0.5, various pout

414 S. Gregory

 0

0.2

0.4

0.6

0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of intra-community edges (p_in)

CONGO: h=2
h=3

CONGA
CFinder: k=3

k=4
k=5
k=6

Fig. 4. F-measure for random networks with n=256, c=32, r=2, pout=0, various pin

In Fig. 5 we fix pin and pout and vary the overlap, r. CONGO’s results decline as r
gets larger, especially for h=2, while CFinder’s results again peak at a different value
of r for each k.

Fig. 6 shows the effect of varying the network size while keeping the community
size constant. As expected, the F-measure results are quite stable, except for very
small networks, because these contain very few communities.

 0

0.2

0.4

0.6

0.8

 1

 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6
Average number of communities per vertex (r)

CONGO: h=2
h=3

CONGA
CFinder: k=3

k=4
k=5
k=6

Fig. 5. F-measure for random networks with n=256, c=32, pin=0.5, pout=0, various r

 0

0.2

0.4

0.6

0.8

 1

 64 128 192 256 320 384 448 512
Number of vertices (n)

CONGO: h=2
h=3

CONGA
CFinder: k=3

k=4
k=5
k=6

Fig. 6. F-measure for random networks with c=n/8, r=2, pin=0.5, pout=0, various n

 A Fast Algorithm to Find Overlapping Communities in Networks 415

 0

0.2

0.4

0.6

0.8

 1

 8 12 16 20 24 28 32
Number of communities (c)

CONGO: h=2
h=3

CONGA
CFinder: k=3

k=4
k=5
k=6

Fig. 7. F-measure for random networks with n=256, r=2, pin=0.5, pout=0, various c

In Fig. 7 we fix the size of the network but vary the number (and therefore size) of
the communities. CONGO again performs well, but slightly less well for h=2.

In summary, on synthetic networks, CONGO’s results are similar to those of
CONGA: generally better than CFinder except where there are intercommunity edges.
CONGO, like CONGA, treats an intercommunity edge as evidence that the two
communities overlap. The difference between CONGO and CONGA is that a smaller
value of h leads to slightly lower accuracy (F-measure).

Figs. 8 and 9 show the effect of local betweenness on execution time. For CONGO
and CONGA, the plots show the time taken to compute the entire dendrogram and ex-
tract the clustering from it, using the author’s implementation of the algorithms in
Java, running on an AMD Opteron 250 CPU at 2.4GHz. For CFinder (v1.21), the
times include the generation of solutions for all values of k, on the same machine.

Fig. 8 shows the time to cluster networks of varying size containing fixed-size (16)
overlapping communities. The figure shows the approximately cubic time complexity
of CONGA, which can only handle 2000 vertices in 20 minutes. CFinder is faster,
taking only 15 minutes to cluster a 30000-vertex network. However, CONGO can
cope with 500000 vertices in about 10 (h=2) or 20 (h=3) minutes. The CONGO re-
sults seem to confirm the O(n log n) time complexity that we predicted.

In Fig. 8 the community size is fixed and so the average degree is constant: about 5
(shown by the dashed line). This is not always the case in real networks. Fig. 9 shows
how the algorithms scale in the extreme case: where there is an increasing number of
vertices divided into a fixed number (12) of communities. Now, CONGO’s execution
time increases with the number of edges, but much more slowly than CFinder’s.

3.2 Modularity

Evaluating an algorithm on real-world networks is challenging, because there is usu-
ally no known “correct” solution. The quality of clusterings must be assessed in a dif-
ferent way: for example, by modularity [17, 18], which measures the relative number
of intracluster and intercluster edges. A high modularity indicates that there are more
intracluster edges than would be expected by chance.

416 S. Gregory

 0

 200

 400

 600

 800

 1000

 1200

 500 1000 1500 2000
 0

 1

 2

 3

 4

 5

 6

 7

T
im

e
/s

A
ve

ra
ge

 d
eg

re
e

Number of vertices (n)

CONGO: h=2
h=3

CONGA
CFinder
Degree

 0

 200

 400

 600

 800

 10000 20000 30000
 0

 1

 2

 3

 4

 5

 6

 7

T
im

e
/s

A
ve

ra
ge

 d
eg

re
e

Number of vertices (n)

CONGO: h=2
h=3

CFinder
Degree

 0

 200

 400

 600

 800

1000

 100000 200000 300000 400000 500000
 0

 1

 2

 3

 4

 5

 6

 7

T
im

e
/s

A
ve

ra
ge

 d
eg

re
e

Number of vertices (n)

CONGO: h=2
h=3

Degree

Fig. 8. Execution time for random networks c=n/8, r=1.2, pin=0.5, pout=0, various n

 0

 200

 400

 600

 800

 1000

 1200

 1400

 300 400 500 600

 15

 20

 25

 30

 35

T
im

e
/s

A
ve

ra
ge

 d
eg

re
e

Number of vertices (n)

CONGO h=2
h=3

CFinder
Degree

Fig. 9. Execution time for random networks c=12, r=1.2, pin=0.5, pout=0, various n

 A Fast Algorithm to Find Overlapping Communities in Networks 417

The original modularity measure, Q, is defined only for disjoint communities, but
Nicosia et al. [19] have recently proposed a new modularity measure, Qov, which is
defined also for overlapping communities. The definition of Qov is too long to repro-
duce here, but its main features are:

1. Qov = 0 when all vertices belong to the same community or all belong to singleton
communities.

2. Higher values of Qov show stronger community structure.
3. Each vertex may belong to any number of communities with any belonging coeffi-

cient. For each vertex, the belonging coefficients for all communities sum to 1.

Although both old and new measures are named “modularity”, they generally have
different values even when applied to the same clustering and network. In the rest of
this paper we use the term “modularity” to refer to Qov. We use it in this section to
evaluate solutions on real-world networks. For our experiments we set the belonging
coefficients of each vertex to 1/c, where c is the number of communities it is in; i.e.,
equal membership of all communities.

It is sometimes assumed that the best clustering is the one that maximizes the value
of modularity. The maximum value of modularity has even been used to compare
clustering algorithms. However, as pointed out in [10], the peak value of modularity
does not in general coincide with the correct, or best, clustering. This is true of both Q
and Qov modularity measures.

To illustrate this, Fig. 10 shows the modularities of the solutions found by CONGO
and CFinder for a synthetic network with 250 overlapping communities. For
CONGO, modularity peaks at 0.822 between 45 and 53 clusters, where the F-measure
is below 0.1. At 250 clusters, the correct solution, with F-measure 0.977 (h=3) or
0.891 (h=2), the modularity is only 0.701 (h=3) or 0.705 (h=2). CFinder finds a solu-
tion with 291 clusters with modularity 0.635 and F-measure 0.877.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 50 100 150 200 250 300 350 400

M
od

ul
a

rit
y

(Q
_

ov
)

Number of clusters

CONGO: h=2
h=3

CFinder

Fig. 10. Modularity of clusterings of random network: n=2000, c=250, r=1.2, pin=0.5, pout=0

Fig. 11 shows the results of a similar network with a larger overlap. CONGO’s Qov
at 250 clusters is 0.25 for both h=3 and h=2, and the F-measure is 0.998 (h=3) or
0.992 (h=2). Although Qov has a local maximum at 250 clusters, it is well below the
global maximum between 63 and 79 clusters, where the F-measure is below 0.001.
The closest CFinder solution is at 290 clusters, with Qov 0.142 and F-measure 0.842.

418 S. Gregory

 0

 0.1

 0.2

 0.3

 0.4

 50 100 150 200 250 300 350 400

M
od

ul
a

rit
y

(Q
_

ov
)

Number of clusters

CONGO: h=2
h=3

CFinder

Fig. 11. Modularity of clusterings of random network: n=2000, c=250, r=2, pin=0.5, pout=0

We conclude that there is at best a tenuous relationship between modularity and
correctness. Nevertheless, because modularity is widely used to assess clustering al-
gorithms, we use it in the next section to evaluate the performance of CONGO (and
CFinder) on some real-world networks. Because the peak value of modularity is
meaningless, we plot the modularity of all solutions containing up to n/5 clusters.

3.3 Experiments on Real-World Networks

We have run the CONGO algorithm, and CFinder, on several real-world networks,
listed in Table 1. The table shows the source of each network, its size, and the execu-
tion times for CONGO (to compute the entire dendrogram) and CFinder (v1.21) (to
generate solutions for all values of k), running on an AMD Opteron 250 at 2.4GHz.

Table 1. Results on real-world networks

Runtime / s

CONGO Name Ref. Fig. Vertices Edges

h=3 h=2
CF

netscience [16] 12 379 914 1.4 1.3 0.3
cond-mat-2003 [13] 13 27519 116181 45110 1111 1140
blogs [26] 14 3982 6803 33.5 6.1 3.2
blogs2 [26] 15 30557 82301 11702 286 405
PGP [4] 16 10680 24316 636 82 35022
word_association [12] 17 7205 31784 12026 172 97
protein-protein [20] 18 2445 6265 94.5 8.2 2.9

“netscience” (Fig. 12) and “cond-mat-2003” (Fig. 13) are collaboration networks of
coauthorships, of different sizes. The first of these is small enough for CONGA to han-
dle, so its modularities are plotted along with those of CONGO. CONGA finds high-
modularity solutions for small numbers of clusters, but is otherwise similar to CONGO
for h=2 and h=3. For both networks, the modularities of the h=2 and h=3 solutions are

 A Fast Algorithm to Find Overlapping Communities in Networks 419

quite similar. CFinder finds several solutions, one of which, for a relatively large num-
ber of clusters, has a higher modularity than CONGO’s.

“blogs” (Fig. 14) and “blogs2” (Fig. 15) are networks of communication relation-
ships between owners of blogs on the MSN (Windows Live™) Spaces website.
“blogs2” is much larger than “blogs” and has a higher average degree. “PGP” (Fig.
16) is yet another type of social network, representing PGP key signing. For all three
networks, the modularities are quite similar to those of Figs. 12 and 13.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60 70

M
o

du
la

rit
y

(Q
_o

v)

Number of clusters

CONGO: h=2
h=3

CONGA
CFinder

Fig. 12. Modularity of netscience network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1000 2000 3000 4000 5000

M
od

ul
a

rit
y

(Q
_

ov
)

Number of clusters

CONGO: h=2
h=3

CFinder

Fig. 13. Modularity of cond-mat-2003 network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 100 200 300 400 500 600 700 800

M
od

ul
a

rit
y

(Q
_

ov
)

Number of clusters

CONGO: h=2
h=3

CFinder

Fig. 14. Modularity of blogs network

420 S. Gregory

 0

 0.1

 0.2

 0.3

 0 1000 2000 3000 4000 5000 6000

M
od

ul
a

rit
y

(Q
_

ov
)

Number of clusters

CONGO: h=2
h=3

CFinder

Fig. 15. Modularity of blogs2 network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 400 800 1200 1600 2000

M
od

ul
a

rit
y

(Q
_

ov
)

Number of clusters

CONGO: h=2
h=3

CFinder

Fig. 16. Modularity of PGP network

Figs. 17 and 18 show two non-social networks, from psychology and biology, re-
spectively. “word_association” is a word association network from [20], converted
from an original directed, weighted version [12]. “protein-protein” is a yeast core pro-
tein-protein interaction graph provided by [20]. For the first of these, CFinder finds a
higher modularity solution than CONGO for a small number of clusters.

 0

 0.1

 0.2

 0.3

 0.4

 0 300 600 900 1200

M
od

ul
a

rit
y

(Q
_

ov
)

Number of clusters

CONGO: h=2
h=3

CFinder

Fig. 17. Modularity of word_association network

 A Fast Algorithm to Find Overlapping Communities in Networks 421

 0

 0.1

 0.2

 0.3

 0.4

 50 100 150 200 250 300 350 400 450

M
od

ul
a

rit
y

(Q
_

ov
)

Number of clusters

CONGO: h=2
h=3

CFinder

Fig. 18. Modularity of protein-protein network

Finally, we present an experiment on a real-world example with a known solution.
Wirz [25] has constructed an ego-graph of his “friends” on Facebook, the social net-
work website. An ego-graph of v is a network whose vertices are the “friends” of v
and whose edges are the “friend” links between these vertices; v itself is excluded
from the network in this experiment. The network has 84 vertices, in five compo-
nents, and 351 edges. Wirz has manually classified the 84 vertices into ten communi-
ties and three isolated vertices, based on personal judgement and without knowledge
of the network structure. CONGA, CONGO, and CFinder were run on this network.

Table 2 shows the results for ten clusters (the correct number), seven clusters (the
clustering that maximizes modularity), and six clusters (at which CFinder found its
highest-modularity solution, for k=3). CONGO, for h=3 or more, has higher F-
measure and modularity than CFinder; for h=2, CONGO performs slightly worse than
CFinder, but has higher modularity for 11 or more clusters (not shown in the table).

Table 2. Results on ego-graph network

F-measure Modularity
 c=10 c=7 c=6 c=10 c=7 c=6
CONGA 0.353 0.310 0.225 CONGA 0.704 0.912 0.886
h=3 0.345 0.310 0.225 h=3 0.722 0.912 0.886
h=2 0.281 0.209 0.225 h=2 0.607 0.834 0.886
CFinder 0.303 CFinder 0.858

4 Conclusions

The results presented in Section 3 show that CONGO can be an effective and fast al-
gorithm for detecting overlapping communities in networks. Compared with
CONGA, it is substantially faster, especially for h=2. Indeed, almost all of the real-
world networks used in Section 3 are too large for CONGA to process in a reasonable
time. CONGO is slightly less accurate than CONGA in most, but not all, cases. As
discussed in [10], we believe this is because local betweenness is unable to correctly
identify communities whose diameter is much larger than h. When communities have
a small diameter, CONGO can be at least as accurate as CONGA.

422 S. Gregory

Compared with CFinder, CONGO has similar execution time. CFinder is faster for
small examples but CONGO, with h=2, is faster for larger networks. For synthetic
networks, CONGO appears generally more accurate than CFinder. For real-world
networks, modularity is usually better for CONGO, but CFinder often finds one solu-
tion with high modularity: this is for k=3 in all cases except the “jazz” network. Look-
ing at these high-modularity solutions in more detail reveals a few large clusters and
many small (mostly 3-vertex) clusters; in addition, there are many vertices that appear
in no clusters. The sizes of CONGO’s clusters are generally more balanced. It is hard
to say which type of solution is best, except perhaps by comparing the computed clus-
terings with a “ground truth” solution, as in the “ego-graph” network of Section 3.

In conclusion, we believe that CONGO with h=2 is ideally suited to finding over-
lapping communities in very large networks. For smaller networks, where a solution
can be found quickly, h can be increased for more accurate results.

Future work includes improving the CONGO algorithm. One issue is the value of
the parameter. h=2 is fast and usually effective, but sometimes a larger value is re-
quired; h=3 is sometimes more effective, but too slow in general. The best value for h
seems to depend on the diameter of communities, which might vary widely in real-
world networks. It may be better to allow the length of shortest paths to vary dynami-
cally in different parts of a network to suit the diameter of each community.

Another possible improvement is to introduce “belonging coefficients”, showing
how strongly each vertex belongs to each cluster. This should make solutions more
informative than in the current algorithm, in which vertices belong equally to all their
clusters. For example, partitioning a network into {1,2,3} and {1,2,3,4,5,6} seems
meaningless, but if vertices 1, 2, and 3 belong more strongly to the first cluster than
the second, the solution is more like two clusters {1,2,3} and {4,5,6} that overlap.

Further information related to this paper, including the implementation, networks
analysed, and results, can be found at http://www.cs.bris.ac.uk/~steve/networks/ .

Acknowledgements. I am very grateful to Peter Flach for comments on a draft of this
paper. Thanks are also due to Vincenzo Nicosia for explaining the details of his
extended modularity measure, and to Martin Wirz for providing his ego-graph data.

References

1. Adamcsek, B., Palla, G., Farkas, I., Derényi, I., Vicsek, T.: CFinder: Locating Cliques and
Overlapping Modules in Biological Networks. Bioinformatics 22, 1021–1023 (2006)

2. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient Identification of Overlapping
Communities. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen,
H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 27–36. Springer, Heidelberg
(2005)

3. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast Unfolding of Commu-
nity Hierarchies in Large Networks. Eprint arXiv:0803.0476v1 at arxiv.org (2008)

4. Boguña, M., Pastor-Satorras, R., Diaz-Guilera, A., Arenas, A.: Phys. Phys. Rev. E 70,
056122 (2004)

5. Clauset, A., Moore, C., Newman, M.E.J.: Structural Inference of Hierarchies in Networks.
In: Statistical Network Analysis: Models, Issues, and New Directions, pp. 1–13 (2007)

 A Fast Algorithm to Find Overlapping Communities in Networks 423

6. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing Community Structure Iden-
tification. J. Stat. Mech., P09008 (2005)

7. Fred, A.L.N., Jain, A.K.: Robust Data Clustering. In: IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 128–133. IEEE Press, New York (2003)

8. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks.
Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

9. Gregory, S.: An Algorithm to Find Overlapping Community Structure in Networks. In:
Kok, J.N., Koronacki, J., López de Mántaras, R., Matwin, S., Mladenič, D., Skowron, A.
(eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 91–102. Springer, Heidelberg (2007)

10. Gregory, S.: Local Betweenness for Finding Communities in Networks. Technical report,
University of Bristol (2008)

11. Lancichinetti, A., Fortunato, S., Kertesz, J.: Detecting the Overlapping and Hierarchical
Community Structure of Complex Networks. Eprint arXiv:0802.1218v1 at arxiv.org (2008)

12. Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: The University of South Florida Word As-
sociation, Rhyme and Word Fragment Norms (1998),
http://w3.usf.edu/FreeAssociation/

13. Newman, M.E.J.: The Structure of Scientific Collaboration Networks. Proc. Natl. Acad.
Sci. USA 98, 404–409 (2001)

14. Newman, M.E.J.: Detecting Community Structure in Networks. Eur. Phys. J. B 38, 321–
330 (2004)

15. Newman, M.E.J.: Fast Algorithm for Detecting Community Structure in Networks. Phys.
Rev. E 69, 066133 (2004)

16. Newman, M.E.J.: Finding Community Structure in Networks Using the Eigenvectors of
Matrices. Phys. Rev. E 74, 036104 (2006)

17. Newman, M.E.J.: Modularity and Community Structure in Networks. Proc. Natl. Acad.
Sci. USA 103, 8577–8582 (2006)

18. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks.
Phys. Rev. E 69, 026113 (2004)

19. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending Modularity Definition
for Directed Graphs with Overlapping Communities. Eprint arXiv:0801.1647v3 at
arxiv.org (2008)

20. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the Overlapping Community
Structure of Complex Networks in Nature and Society. Nature 435, 814–818 (2005)

21. Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random Walks.
J. Graph Algorithms and Applications 10(2), 191–218 (2006)

22. Rand, W.M.: Objective Criteria for the Evaluation of Clustering Methods. J. Am. Stat.
Assoc. 66, 846–850 (1971)

23. Salvetti, F., Srinivasan, S.: Local Flow Betweenness Centrality for Clustering Community
Graphs. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 531–544. Springer,
Heidelberg (2005)

24. Wakita, K., Tsurumi, T.: Finding Community Structure in Mega-scale Social Networks.
In: 16th International World Wide Web Conference, WWW 2007, pp. 1275–1276 (2007)

25. Wirz, M.: Personal communication
26. Xie, N.: Social Network Analysis of Blogs. M.Sc Dissertation. University of Bristol (2006)
27. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: SCAN: a Structural Clustering Algorithm

for Networks. In: 13th International Conference on Knowledge Discovery and Data Min-
ing, KDD 2007, pp. 824–833. ACM, New York (2007)

28. Zhang, S., Wang, R., Zhang, X.: Identification of Overlapping Community Structure in
Complex Networks Using Fuzzy C-means Clustering. Physica A: Statistical Mechanics
and its Applications 374(1), 483–490 (2007)

	A Fast Algorithm to Find Overlapping Communities in Networks
	Introduction and Related Work
	The CONGO Algorithm
	The CONGA Algorithm
	Local Betweenness
	The CONGO Algorithm

	Experiments
	Experiments on Synthetic Networks
	Modularity
	Experiments on Real-World Networks

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

